

Scheduling Algorithms

Peter Brucker

Scheduling
Algorithms

Fifth Edition

With 77 Figures and 32 Tables

123

Professor Dr. Peter Brucker
Universität Osnabrück
Fachbereich Mathematik/Informatik
Albrechtstraße 28a
49069 Osnabrück
Germany
pbrucker@uni-osnabrueck.de

Library of Congress Control Number: 2006940721

ISBN 978-3-540-69515-8 Springer Berlin Heidelberg New York
ISBN 978-3-540-20524-1 4th ed. Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2001, 2004, 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Production: LE-TEX Jelonek, Schmidt & Vockler GbR, Leipzig
Cover-design: WMX Design GmbH, Heidelberg

SPIN 11970705 42/3100YL - 5 4 3 2 1 0 Printed on acid-free paper

¨

Preface of the Fifth and Fourth Edition

In these editions new results have been added to the complexity columns.
Furthermore, the bibliographies have been updated.

Again many thanks go to Marianne Gausmann for the typesetting and
to Dr. Sigrid Knust for taking care of the complexity columns which can
be found under the www-address

http://www.mathematik.uni-osnabrueck.de/research/OR/class.

Osnabrück, October 2006 Peter Brucker

vi Preface

Preface of the Third Edition

In this edition again the complexity columns at the end of each chap-
ter and the corresponding references have been updated. I would like
to express may gratitude to Dr. Sigrid Knust for taking care of a cor-
responding documentation of complexity results for scheduling problems
in the Internet. These pages can be found under the world-wide-web
address http://www.mathematik.uni-osnabrueck.de/research/OR/class.

In addition to the material of the second edition some new results on
scheduling problems with release times and constant processing times
and on multiprocessor task problems in which each task needs a certain
number of processors have been included.

The new edition has been rewritten in LATEX2ε. Many thanks go to
Marianne Gausmann for the new typesetting and to Christian Strotmann
for creating the bibliography database files.

Osnabrück, March 2001 Peter Brucker

Preface of the Second Edition

In this revised edition new material has been added. In particular, the
chapters on batching problems and multiprocessor task scheduling have
been augmented. Also the complexity columns at the end of each chap-
ter have been updated. In this connection I would like thank Jan Karel
Lenstra for providing the current results of the program MSPCLASS.
I am grateful for the constructive comments of Jacek Blazewicz, Jo-
hann Hurink, Sigrid Knust, Svetlana Kravchenko, Erwin Pesch, Mau-
rice Queyranne, Vadim Timkowsky, Jürgen Zimmermann which helped
to improve the first edition.

Finally, again special thanks go to Marianne Gausmann and Teresa Gehrs
for the TEX typesetting and for improving the English.

Osnabrück, November 1997 Peter Brucker

Preface vii

Preface

This is a book about scheduling algorithms. The first such algorithms
were formulated in the mid fifties. Since then there has been a growing
interest in scheduling. During the seventies, computer scientists discov-
ered scheduling as a tool for improving the performance of computer
systems. Furthermore, scheduling problems have been investigated and
classified with respect to their computational complexity. During the last
few years, new and interesting scheduling problems have been formulated
in connection with flexible manufacturing.

Most parts of the book are devoted to the discussion of polynomial algo-
rithms. In addition, enumerative procedures based on branch & bound
concepts and dynamic programming, as well as local search algorithms,
are presented.

The book can be viewed as consisting of three parts. The first part,
Chapters 1 through 3, covers basics like an introduction to and classi-
fication of scheduling problems, methods of combinatorial optimization
that are relevant for the solution procedures, and computational com-
plexity theory.

The second part, Chapters 4 through 6, covers classical scheduling algo-
rithms for solving single machine problems, parallel machine problems,
and shop scheduling problems.

The third and final part, Chapters 7 through 11, is devoted to problems
discussed in the more recent literature in connection with flexible man-
ufacturing, such as scheduling problems with due dates and batching.
Also, multiprocessor task scheduling is discussed.

Since it is not possible to cover the whole area of scheduling in one book,
some restrictions are imposed. Firstly, in this book only machine or
processor scheduling problems are discussed. Secondly, some interesting
topics like cyclic scheduling, scheduling problems with finite input and/or
output buffers, and general resource constrained scheduling problems are
not covered in this book.

I am indebted to many people who have helped me greatly in preparing
this book. Students in my courses during the last three years at the Uni-
versity of Osnabrück have given many suggestions for improving earlier
versions of this material. The following people read preliminary drafts of
all or part of the book and made constructive comments: Johann Hurink,
Sigrid Knust, Andreas Krämer, Wieslaw Kubiak, Helmut Mausser.

viii Preface

I am grateful to the Deutsche Forschungsgemeinschaft for supporting
the research that underlies much of this book. I am also indebted to the
Mathematics and Computer Science Department of the University of Os-
nabrück, the College of Business, University of Colorado at Boulder, and
the Computer Science Department, University of California at Riverside
for providing me with an excellent environment for writing this book.

Finally, special thanks go to Marianne Gausmann for her tireless efforts
in translating my handwritten hieroglyphics and figures into input for
the TEX typesetting system.

Osnabrück, April 1995 Peter Brucker

Contents

Preface v

1 Classification of Scheduling Problems 1

1.1 Scheduling Problems . 1

1.2 Job Data . 2

1.3 Job Characteristics . 3

1.4 Machine Environment 5

1.5 Optimality Criteria . 6

1.6 Examples . 7

2 Some Problems in Combinatorial Optimization 11

2.1 Linear and Integer Programming 11

2.2 Transshipment Problems 12

2.3 The Maximum Flow Problem 13

2.4 Bipartite Matching Problems 14

2.5 The Assignment Problem 18

2.6 Arc Coloring of Bipartite Graphs 22

2.7 Shortest Path Problems and Dynamic Programming . . . 26

3 Computational Complexity 37

3.1 The Classes P and NP 37

3.2 NP-complete and NP-hard Problems 41

3.3 Simple Reductions Between Scheduling Problems 48

3.4 Living with NP-hard Problems 51

3.4.1 Local Search Techniques 51

x Contents

3.4.2 Branch-and-Bound Algorithms 56

4 Single Machine Scheduling Problems 61

4.1 Minimax Criteria . 62

4.1.1 Lawler’s Algorithm for 1 | prec | fmax 62

4.1.2 1 |prec; pj = 1; rj | fmax and 1 | prec; pmtn; rj | fmax 63

4.2 Maximum Lateness and Related Criteria 67

4.3 Total Weighted Completion Time 73

4.3.1 1 | tree | ∑
wjCj 73

4.3.2 1 | sp-graph | ∑
wjCj 79

4.4 Weighted Number of Late Jobs 84

4.4.1 1 | rj ; pj = 1 | ∑
wjUj 84

4.4.2 1 | pj = 1 | ∑
wjUj 85

4.4.3 1 || ∑
Uj . 86

4.4.4 1 | rj ; pmtn | ∑
wjUj 88

4.5 Total Weighted Tardiness 93

4.6 Problems with Release Times and Identical Processing
Times . 98

4.6.1 1 | rj ; pj = p | ∑
wjUj 98

4.6.2 1 | rj ; pj = p | ∑
wjCj and 1 | rj; pj = p | ∑

Tj . . 101

4.7 Complexity of Single Machine Problems 104

5 Parallel Machines 107

5.1 Independent Jobs . 107

5.1.1 Identical Machines 107

5.1.2 Uniform Machines 124

5.1.3 Unrelated Machines 136

5.2 Jobs with Precedence Constraints 139

5.2.1 P | tree; pi = 1 | Lmax-Problems 140

5.2.2 Problem P2 | prec; pi = 1 | Lmax 145

5.3 Complexity Results . 150

6 Shop Scheduling Problems 155

Contents xi

6.1 The Disjunctive Graph Model 156

6.2 Open Shop Problems . 158

6.2.1 Arbitrary Processing Times 158

6.2.2 Unit Processing Times 161

6.3 Flow Shop Problems . 174

6.3.1 Minimizing Makespan 174

6.4 Job Shop Problems . 178

6.4.1 Problems with Two Machines 179

6.4.2 Problems with Two Jobs. A Geometric Approach 186

6.4.3 Job Shop Problems with Two Machines 196

6.4.4 A Branch-and-Bound Algorithm 202

6.4.5 Applying Tabu-Search to the Job Shop Problem . 221

6.5 Mixed Shop Problems 226

6.5.1 Problems with Two Machines 226

6.5.2 Problems with Two Jobs 227

6.6 Complexity of Shop Scheduling Problems 232

7 Due-Date Scheduling 243

7.1 Problem 1 | dopt |
∑

wi|Lσ(i)| + w0 · d 244

7.2 Problem 1|dopt|wE

∑
Ei+wT

∑
Ti + w0d 247

7.3 Problem 1 | d | ∑
wi|Lσ(i)| 249

7.4 Problem 1 | d | wE

∑
Ei + wT

∑
Ti 255

7.5 Problem 1 | d | |Li|max and 1 | dopt | |Li|max 257

7.6 Problem 1 | dopt |
∑

wi|Li| 259

7.7 Problem 1 | d | ∑
wi|Li| 262

8 Batching Problems 267

8.1 Single Machine s-Batching Problems 267

8.2 Single Machine p-Batching Problems 271

8.2.1 The Unbounded Model 272

8.2.2 The Bounded Model 276

8.3 Complexity Results for Single Machine Batching Problems 277

xii Contents

9 Changeover Times and Transportation Times 281

9.1 Single Machine Problems 282

9.2 Problems with Parallel Machines 286

9.3 General Shop Problems 290

10 Multi-Purpose Machines 293

10.1 MPM Problems with Identical and Uniform Machines . 294

10.2 MPM Problems with Shop Characteristics 300

10.2.1 Arbitrary Processing Times 300

10.2.2 Unit Processing Times 311

10.3 Complexity Results . 315

11 Multiprocessor Tasks 317

11.1 Multiprocessor Task Systems 318

11.2 Shop Problems with MPT : Arbitrary Processing Times 323

11.3 Shop Problems with MPT : Unit Processing Times . . . 329

11.4 Multi-Mode Multiprocessor-Task Scheduling Problems . 335

11.5 Complexity Results . 342

Bibliography 347

Index 367

Chapter 1

Classification of Scheduling
Problems

The theory of scheduling is characterized by a virtually unlimited number
of problem types (see, e.g. Baker [12], Blazewicz et al. [27], Coffman [69],
Conway et al. [72], French [93], Lenstra [151] , Pinedo [180], Rinnooy
Kan [181], Tanaev et al. [193], Tanaev et al. [194]). In this chapter, a
basic classification for the scheduling problems covered in the first part
of this book will be given. This classification is based on a classification
scheme widely used in the literature (see, e.g. Lawler et al. [145]). In
later chapters we will extend this classification scheme.

1.1 Scheduling Problems

Suppose that m machines Mj(j = 1, . . . , m) have to process n jobs
Ji(i = 1, . . . , n). A schedule is for each job an allocation of one or
more time intervals to one or more machines. Schedules may be rep-
resented by Gantt charts as shown in Figure 1.1. Gantt charts may
be machine-oriented (Figure 1.1(a)) or job-oriented (Figure 1.1(b)). The
corresponding scheduling problem is to find a schedule satisfying certain
restrictions.

2 Classification of Scheduling Problems

�M1

M2

M3

J1

J2

J2 J1 J3

J3

J3 J1 J4

t
(a)

�J4

J3

J2

J1

M1

M3 M1 M2

M2 M3

M1 M2 M1

t
(b)

Figure 1.1: Machine- and job-oriented Gantt charts.

1.2 Job Data

A job Ji consists of a number ni of operations Oi1, . . . , Oi,ni
. Asso-

ciated with operation Oij is a processing requirement pij. If job Ji

consists of only one operation (ni = 1), we then identify Ji with Oi1 and
denote the processing requirement by pi. Furthermore, a release date
ri, on which the first operation of Ji becomes available for processing may
be specified. Associated with each operation Oij is a set of machines
μij ⊆ {M1, . . . , Mm}. Oij may be processed on any of the machines in
μij. Usually, all μij are one element sets or all μij are equal to the set
of all machines. In the first case we have dedicated machines. In
the second case the machines are called parallel. The general case is
introduced here to cover problems in flexible manufacturing where ma-
chines are equipped with different tools. This means that an operation
can be processed on any machine equipped with the appropriate tool.
We call scheduling problems of this type problems with multi-purpose
machines (MPM).

It is also possible that all machines in the set μij are used simultane-
ously by Oij during the whole processing period. Scheduling problems
of this type are called multiprocessor task scheduling problems.
Scheduling problems with multi-purpose machines and multiprocessor
task scheduling problems will be classified in more detail in Chapters 10
and 11.

1.3. Job Characteristics 3

Finally, there is a cost function fi(t) which measures the cost of com-
pleting Ji at time t. A due date di and a weight wi may be used in
defining fi.

In general, all data pi, pij, ri, di, wi are assumed to be integer. A sched-
ule is feasible if no two time intervals overlap on the same machine, if
no two time intervals allocated to the same job overlap, and if, in addi-
tion, it meets a number of problem-specific characteristics. A schedule is
optimal if it minimizes a given optimality criterion.

Sometimes it is convenient to identify a job Ji by its index i. We will use
this brief notation in later chapters.

We will discuss a large variety of classes of scheduling problems which dif-
fer in their complexity. Also the algorithms we will develop are quite dif-
ferent for different classes of scheduling problems. Classes of scheduling
problems are specified in terms of a three-field classification α|β|γ where
α specifies the machine environment , β specifies the job character-
istics , and γ denotes the optimality criterion. Such a classification
scheme was introduced by Graham et al. [108].

1.3 Job Characteristics

The job characteristics are specified by a set β containing at the most
six elements β1, β2, β3, β4, β5, and β6.

β1 indicates whether preemption (or job splitting) is allowed. Preemp-
tion of a job or operation means that processing may be interrupted
and resumed at a later time, even on another machine. A job or opera-
tion may be interrupted several times. If preemption is allowed, we set
β1 = pmtn. Otherwise β1 does not appear in β.

β2 describes precedence relations between jobs. These precedence
relations may be represented by an acyclic directed graph G = (V, A)
where V = {1, . . . , n} corresponds with the jobs, and (i, k) ∈ A iff Ji

must be completed before Jk starts. In this case we write Ji → Jk. If
G is an arbitrary acyclic directed graph we set β2 = prec. Sometimes
we will consider scheduling problems with restricted precedences given
by chains, an intree, an outtree, a tree or a series-parallel directed graph.
In these cases we set β2 equal to chains, intree, outtree, and sp-graph.

If β2 = intree (outtree), then G is a rooted tree with an outdegree
(indegree) for each vertex of at the most one. Thus, in an intree (outtree)

4 Classification of Scheduling Problems

all arcs are directed towards (away from) a root. If β2 = tree, then G
is either an intree or an outtree. A set of chains is a tree in which the
outdegree and indegree for each vertex is at the most one. If β2 = chains,
then G is a set of chains.

Series-parallel graphs are closely related to trees. A graph is called
series-parallel if it can be built by means of the following rules:

Base graph. Any graph consisting of a single vertex is series-parallel.
Let Gi = (Vi, Ai) be series-parallel (i = 1, 2).

Parallel composition. The graph G = (V1 ∪ V2, A1 ∪ A2) formed from
G1 and G2 by joining the vertex sets and arc sets is series parallel.

Series composition. The graph G = (V1∪V2, A1∪A2∪T1×S2) formed
from G1 and G2 by joining the vertex sets and arc sets and adding all
arcs (t, s) where t belongs to the set T1 of sinks of G1 (i.e. the set of
vertices without successors) and s belongs to the set S2 of sources of G2

(i.e. the set of vertices without predecessors) is series parallel.

We set β2 = sp-graph if G is series parallel. If there are no precedence
constraints, then β2 does not appear in β.

If β3 = ri, then release dates may be specified for each job. If ri = 0 for
all jobs, then β3 does not appear in β.

β4 specifies restrictions on the processing times or on the number of
operations. If β4 is equal to pi = 1(pij = 1), then each job (operation)
has a unit processing requirement. Similarly, we may write pi =
p(pij = p). Occasionally, the β4 field contains additional characteristics
with an obvious interpretation such as pi ∈ {1, 2} or di = d.

If β5 = di, then a deadline di is specified for each job Ji, i.e. job Ji must
finish not later than time di.

In some scheduling applications, sets of jobs must be grouped into bat-
ches. A batch is a set of jobs which must be processed jointly on a
machine. The finishing time of all jobs in a batch is defined as equal
to the finishing time of the batch. A batch may consist of a single job
up to n jobs. There is a set-up time s for each batch. We assume that
this set-up time is the same for all batches and sequence independent.
A batching problem is to group the jobs into batches and to sched-
ule these batches. There are two types of batching problems, denoted
by p-batching problems, and s-batching problems. For p-batching
problems (s batching-problems) the length of a batch is equal to the max-
imum (sum) of processing times of all jobs in the batch. β6 = p-batch

1.4. Machine Environment 5

or β6 = s-batch indicates a batching problem. Otherwise β6 does not
appear in β.

1.4 Machine Environment

The machine environment is characterized by a string α = α1α2 of two
parameters. Possible values of α1 are ◦, P, Q, R, PMPM, QMPM, G, X,
O, J, F . If α1 ∈ {◦, P, Q, R, PMPM, QMPM}, where ◦ denotes the
empty symbol (thus, α = α2 if α1 = ◦), then each Ji consists of a single
operation.

If α1 = ◦, each job must be processed on a specified dedicated machine.

If α1 ∈ {P, Q, R}, then we have parallel machines, i.e. each job can be
processed on each of the machines M1, . . . , Mm. If α1 = P , then there
are identical parallel machines. Thus, for the processing time pij of
job Ji on Mj we have pij = pi for all machines Mj . If α1 = Q, then there
are uniform parallel machines, i.e. pij = pi/sj where sj is the speed
of machine Mj . Finally, if α1 = R, then there are unrelated parallel
machines, i.e. pij = pi/sij for job-dependent speeds sij of Mj .

If α1 = PMPM and α1 = QMPM , then we have multi-purpose ma-
chines with identical and uniform speeds, respectively.

If α1 ∈ {G, X, O, J, F}, we have a multi-operation model, i.e. associated
with each job Ji there is a set of operations Oi1, . . . , Oi,ni

. The machines
are dedicated, i.e. all μij are one element sets. Furthermore, there are
precedence relations between arbitrary operations. This general model is
called a general shop. We indicate the general shop by setting α1 = G.
Job shops, flow shops, open shops, and mixed shops are special cases of
the general shop. In a job shop , indicated by α1 = J , we have special
precedence relations of the form

Oi1 → Oi2 → Oi3 → . . . → Oi,ni
for i = 1, . . . , n.

Furthermore, we generally assume that μij �= μi,j+1 for j = 1, . . . , ni − 1.
We call a job shop in which μij = μi,j+1 is possible a job shop with
machine repetition.

The flow shop, indicated by α1 = F , is a special case of the job-shop in
which ni = m for i = 1, . . . , n and μij = {Mj} for each i = 1, . . . , n and
j = 1, . . . , m. The open shop , denoted by α1 = O, is defined as the flow
shop, with the exception that there are no precedence relations between

6 Classification of Scheduling Problems

�M4

M3

M2

M1

t

O14 O24 O34

O13 O23 O33

O12 O22 O32

O11 O21 O31

Figure 1.2: Feasible schedule for a permutation flow shop problem.

the operations. A mixed shop, indicated by α1 = X, is a combination
of a job shop and an open shop.

A permutation flow shop is a flow shop in which jobs are processed
in the same order on each machine. Figure 1.2 shows a feasible schedule
for a permutation flow shop. If we have a job shop problem, we may set
β4 equal to ni ≤ 2. In this case all jobs have at the most two operations.

If α2 is equal to a positive integer 1, 2, . . ., then α2 denotes the number
of machines. If α2 = k, then k is an arbitrary, but fixed number of
machines. If the number of machines is arbitrary, we set α2 = ◦.

1.5 Optimality Criteria

We denote the finishing time of job Ji by Ci, and the associated cost
by fi(Ci). There are essentially two types of total cost functions

fmax(C) := max{fi(Ci)|i = 1, . . . , n}
and

∑
fi(C) :=

n∑

i=1

fi(Ci)

called bottleneck objectives and sum objectives, respectively. The
scheduling problem is to find a feasible schedule which minimizes the
total cost function.

If the functions fi are not specified, we set γ = fmax or γ =
∑

fi.
However, in most cases we consider special functions fi.

The most common objective functions are the makespan max{Ci|i =

1, . . . , n}, total flow time
n∑

i=1

Ci, and weighted (total) flow time

1.6. Examples 7

n∑

i=1

wiCi. In these cases we write γ = Cmax, γ =
∑

Ci, and γ =
∑

wiCi,

respectively.

Other objective functions depend on due dates di which are associated
with jobs Ji. We define for each job Ji:

Li := Ci − di lateness

Ei := max{0, di − Ci} earliness

Ti := max{0, Ci − di} tardiness

Di := |Ci − di| absolute deviation

Si := (Ci − di)
2 squared deviation

Ui :=

{
0 if Ci ≤ di

1 otherwise
unit penalty.

With each of these functions Gi we get four possible objectives γ =
max Gi, max wiGi,

∑
Gi,

∑
wiGi. The most important bottleneck ob-

jective besides Cmax is maximum lateness Lmax :=
n

max
i=1

Li. Other ob-

jective functions which are widely used are
∑

Ti,
∑

wiTi,
∑

Ui,
∑

wiUi,∑
Di,

∑
wiDi,

∑
Si,

∑
wiSi,

∑
Ei,

∑
wiEi. Linear combinations of

these objective functions are also considered.

An objective function which is nondecreasing with respect to all variables
Ci is called regular. Functions involving Ei, Di, Si are not regular. The
other functions defined so far are regular.

A schedule is called active if it is not possible to schedule jobs (op-
erations) earlier without violating some constraint. A schedule is called
semiactive if no job (operation) can be processed earlier without chang-
ing the processing order or violating the constraints.

1.6 Examples

To illustrate the three-field notation α|β|γ we present some examples. In
each case we will describe the problem. Furthermore, we will specify an

8 Classification of Scheduling Problems

instance and present a feasible schedule for the instance in the form of a
Gantt chart.

Example 1.1 P |prec; pi = 1|Cmax is the problem of scheduling jobs with
unit processing times and arbitrary precedence constraints on m identical
machines such that the makespan is minimized.

An instance is given by a directed graph with n vertices and the number
of machines.

Figure 1.3 shows an instance of this problem and a corresponding feasible
schedule.

��

��

3
��

��

6

��

��

1
��

��

4
��

��

7

��

��

2
��

��

5

m = 2

�

�

�
���

�
���

�
���

�
���

�
���

�M2

M1

t

1 2 4 6 7

3 5
Cmax = 5

Figure 1.3: Instance for P | prec; pi = 1 | Cmax.

Example 1.2 1|s-batch|∑wiCi is the problem of splitting a set of jobs
into batches and scheduling these batches on one machine such that the
weighted flow time is minimized. The processing time of a batch is the
sum of processing times of the jobs in the batch.

Figure 1.4 shows a schedule with three batches for the following instance
of this problem:

i 1 2 3 4 5 6
pi 3 2 2 3 1 1 s = 1
wi 1 2 1 1 4 4

The objective value for the schedule is
∑

wiCi = 2 · 3 + (1 + 1 + 4) · 10 + (1 + 4)15.

1.6. Examples 9

�
1 3 4 10 11 15 t

2 3 1 5 4 6

� �
S

� �
batch 1

� �
S

� �
batch 2

� �
S

� �
batch 3

Figure 1.4: Schedule with three batches.

Example 1.3 1|ri; pmtn|Lmax is the problem of finding a preemptive
schedule on one machine for a set of jobs with given release times ri �= 0
such that the maximum lateness is minimized. An instance is presented
in Figure 1.5

i 1 2 3 4
pi 2 1 2 2
ri 1 2 2 7
di 2 3 4 8

�1 2 3 1 4
Lmax = 4

0 r1 r2 = r3 r4
d1 d2 d3 d4

t

Figure 1.5: Instance for 1 | ri; pmtn | Lmax.

Example 1.4 J3|pij = 1|Cmax is the problem of minimizing maximum
completion time in a three-machine job shop with unit processing times.
An instance is presented in Figure 1.6. The table contains the machines
μij associated with the operations Oij.

10 Classification of Scheduling Problems

i/j 1 2 3 4
1 M1 M3 M2 M1

2 M2 M3 − −
3 M3 M1 − −
4 M1 M3 M1 −
5 M3 M1 M2 M3

�M3

M2

M1

J5 J3 J1 J4 J5 J2

J2 J5 J1

J1 J5 J4 J3 J1 J4

t

Figure 1.6: Instance for J3 | pij = 1 | Cmax.

Chapter 2

Some Problems in
Combinatorial Optimization

Some scheduling problems can be solved efficiently by reducing them
to well-known combinatorial optimization problems, such as linear pro-
grams, maximum flow problems, or transportation problems. Others can
be solved by using standard techniques, such as dynamic programming
and branch-and-bound methods. In this chapter we will give a brief sur-
vey of these combinatorial optimization problems. We will also discuss
some of the methods.

2.1 Linear and Integer Programming

A linear program is an optimization problem of the form

minimize z(x) = c1x1 + . . . + cnxn (2.1)

subject to (s.t.)

a11x1 + . . . + a1nxn ≥ b1

... (2.2)

am1x1 + . . . + amnxn ≥ bm

xi ≥ 0 for i = 1, . . . , n.

A vector x = (x1, . . . , xn) satisfying (2.2) is called a feasible solution.
The problem is to find a feasible solution which minimizes (2.1). A linear

12 Some Problems in Combinatorial Optimization

program that has a feasible solution is called feasible. A linear program
may also be unbounded, which means that for each real number K
there exists a feasible solution x with z(x) < K. Linear programs which
have a feasible solution and are not unbounded always have an optimal
solution.

The most popular method for solving linear programs is the simplex
algorithm. It is an iterative procedure which finds an optimal solution
or detects infeasibility or unboundedness after a finite number of steps.
Although the number of iteration steps may be exponential, the simplex
algorithm is very efficient in practice.

An integer linear program is a linear program in which all variables
xi are restricted to integers. If the variables xi can only take the values
0 or 1, then the corresponding integer linear program is called a binary
linear program. If in a linear program only some variables are restricted
to integers, then we have a mixed integer linear program.

Many books exist on linear and integer programming. The interested
reader is referred to the more recent books by Chvátal [67], Nemhauser
& Wolsey [175], and Schrijver [182].

2.2 Transshipment Problems

The transshipment problem is a special linear program. Let G = (V, A)
be a directed graph with vertex set V = {1, . . . , n} and arc set A. Arcs
are denoted by (i, j) with i, j ∈ V . A transshipment problem is given
by

minimize
∑

(i,j)∈A

cijxij

s.t.
∑

j
(j,i)∈A

xji −
∑

j
(i,j)∈A

xij = bi for all i ∈ V (2.3)

lij ≤ xij ≤ uij for all (i, j) ∈ A. (2.4)

Graph G may be interpreted as a transportation network. The bi-value
is the demand for or the supply of some goods in vertex i. If bi > 0,
we have a demand of bi units. If bi < 0, we have a supply of −bi units.

2.3. The Maximum Flow Problem 13

Notice that either the demand in i or the supply in i may be zero. The
goods may be transported along the arcs. cij are the costs of shipping
one unit of the goods along arc (i, j). xij denotes the number of units
to be shipped from vertex i to vertex j. Equations (2.3) are balancing
equations: in each vertex i, the amount shipped to i plus the supply
in i must be equal to the amount shipped away from i, or the amount
shipped to i must be equal to the demand plus the amount shipped away.
By (2.4) the amount shipped along (i, j) is bounded from below by lij
and from above by uij. We may set lij = −∞ or uij = ∞, which means
that there are no bounds. A vector x = (xij) satisfying (2.3) and (2.4)
is called a feasible flow. The problem is to find a feasible flow which
minimizes the total transportation costs. We assume that

n∑

i=1

bi = 0, (2.5)

i.e. the total supply is equal to the total demand. A transshipment
problem with bi = 0 for all i ∈ V is called a circulation problem .

Standard algorithms for the transshipment problem are the network sim-
plex method (Dantzig [74]), and the out-of-kilter algorithm, which was
developed independently by Yakovleva [207], Minty [168], and Fulkerson
[94]. Both methods have the property of calculating an integral flow if
all finite bi, lij, and uij are integers. These algorithms and other more
recent algorithms can be found in a book by Ahuja et al. [6]. Complex-
ity results for the transshipment problem and the equivalent circulation
problem will be discussed in Chapter 3. In the next two sections we
discuss special transshipment problems.

2.3 The Maximum Flow Problem

A flow graph G = (V, A, s, t) is a directed graph (V, A) with a source
vertex s, and a sink vertex t. Associated with each arc (i, j) ∈ A is
a nonnegative capacity uij, which may also be ∞. The maximum flow
problem is to send as much flow as possible from the source to the sink
without violating capacity constraints in the arcs. For this problem, we

14 Some Problems in Combinatorial Optimization

have the linear programming formulation

maximize v
s.t.

∑

j
(j,i)∈A

xji −
∑

j
(i,j)∈A

xij =

⎧
⎨

⎩

−v for i = s
v for i = t
0 otherwise

0 ≤ xij ≤ uij for all (i, j) ∈ A.

The maximum flow problem may be interpreted as a transshipment prob-
lem with exactly one supply vertex s and exactly one demand vertex t,
and variable supply (demand) v which should be as large as possible. It
can be formulated as a minimum cost circulation problem by adding an
arc (t, s) with uts = ∞ and cost cts = −1. The cost of all other arcs
(i, j) ∈ A should be equal to zero.

The first algorithm for the maximum flow problem was the augment-
ing path algorithm of Ford and Fulkerson [91]. Other algorithms and
their complexity are listed in Chapter 3. All these algorithms provide an
optimal solution which is integral if all capacities are integers.

2.4 Bipartite Matching Problems

The bipartite maximum cardinality matching problem is a special
maximum flow problem which can be formulated as follows:

Consider a bipartite graph, i.e. a graph G = (V1 ∪ V2, A) where the
vertex set V is the union of two disjoint sets V1 and V2, and A ⊆ V1 ×V2.
A matching is a set M ⊆ A of arcs such that no two arcs in M have
a common vertex, i.e. if (i, j), (i′, j′) ∈ M with (i, j) �= (i′, j′), then
i �= i′ and j �= j′. The problem is to find a matching M with maximal
cardinality.

The maximum cardinality bipartite matching problem may be reduced
to a maximum flow problem by adding a source s with arcs (s, i), i ∈ V1

and a sink t with arcs (j, t), j ∈ V2 to the bipartite graph. Furthermore,
we associate unit capacities with all arcs in the augmented network. It
is not difficult to see that a maximal integer flow from s to t corresponds
with a maximum cardinality matching M . This matching is given by all
arcs (i, j) ∈ A carrying unit flow.

The maximum cardinality bipartite matching problem can be solved in

2.4. Bipartite Matching Problems 15

O(min{|V1|, |V2|} · |A|) steps by maximum flow calculations. Hopcroft

and Karp [114] developed an O(n
1
2 r) (see Section 3.1 for a definition of

this O-notation) algorithm for the case n = |V1| ≤ |V2| and r = |A|.
Now, consider a bipartite graph G = (V1 ∪ V2, A) with |V1| ≥ |V2| = m.
For each j ∈ V2 let P (j) be the set of predecessors of j, i.e. P (j) =
{i ∈ V1 | (i, j) ∈ A}. Clearly, m is an upper bound for the cardinality
of a maximal cardinality matching in G. The following theorem due to
Hall [110] gives necessary and sufficient conditions for the existence of a
matching with cardinality m.

Theorem 2.1 Let G = (V1 ∪ V2, A) be a bipartite graph with |V1| ≥
|V2| = m. Then there exists in G a matching with cardinality m if and
only if

|
⋃

i∈N

P (i) |≥| N | for all N ⊆ V2.

�

Next we will show how to use this theorem and network flow theory to
solve an open shop problem.

O | pmtn | Cmax

This preemptive open shop problem can be formulated in the follow-
ing way: n jobs J1, . . . , Jn are given to be processed on m machines
M1, . . . , Mm. Each job Ji consists of m operations Oij (j = 1, . . . , m)
where Oij must be processed on machine Mj for pij time units. Preemp-
tion is allowed and the order in which the operations of Ji are processed
is arbitrary. The only restriction is that a machine cannot process two
jobs simultaneously and a job cannot be processed by two machines at
the same time. We have to find a schedule with minimal makespan.

For each machine Mj(j = 1, . . . , m) and each job Ji(i = 1, . . . , n) define

Tj :=
n∑

i=1

pij and Li :=
m∑

j=1

pij.

Tj is the total time needed on machine Mj , and Li is the length of job
Ji.

Clearly,

T = max{ n
max
i=1

Li,
m

max
j=1

Tj} (2.6)

16 Some Problems in Combinatorial Optimization

is a lower bound for the Cmax-value.

A schedule which achieves this bound must be optimal. We construct
such a schedule step by step using the following ideas.

First, we add m dummy jobs Jn+j (j = 1, . . . , m) and n dummy machines
Mm+i (i = 1, . . . , n). Then we construct a network N which has the
following vertices:

• a source s and a sink t,

• job vertices Ji (i = 1, . . . , n + m), and

• machine vertices Mj (j = 1, . . . , n + m).

The arcs in N are

• for each Ji (i = 1, . . . , n+m) an arc (s, Ji) with capacity T and for
each Mj (j = 1, . . . , n + m) an arc (Mj , t) with capacity T ,

• for each job Ji (i = 1, . . . , n) and each machine Mj (j = 1, . . . , m)
with pij > 0 an arc (Ji, Mj) with capacity pij,

• for each i = 1, . . . , n with T−Li > 0 an arc (Ji, Mm+i) with capacity
T − Li connecting the job Ji with the dummy machine Mm+i, and

• for each j = 1, . . . , m with T − Tj > 0 an arc (Jn+j, Mj) with
capacity T −Tj connecting the dummy job Jn+j with machine Mj .

If all arcs defined thus far receive a flow equal to the capacity of the
arc, then for each job vertex Ji (i = 1, . . . n) and each machine vertex
Mj (j = 1, . . . , m) the total flow T into such a vertex is equal to the total
flow out of this vertex. This is not true for the dummy vertices. To create

a flow balance in these vertices, we send
m∑

j=1

Tj =
n∑

i=1

m∑

j=1

pij =
n∑

i=1

Li units

of flow from the dummy job vertices to the dummy machine vertices.
Such a flow (fij) exists in the complete bipartite graph connecting all
dummy jobs with all dummy machines. We complete our network N by
adding

• for each i = 1, . . . , n and j = 1, . . . , m with fn+j,m+i > 0 an arc
(Jn+j, Mm+i) with capacity fn+j,m+i.

2.4. Bipartite Matching Problems 17

M1

Mj

Mm

Mm+n

Ji

Jn

Jn+m

S t

...

...

...

...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

pij > 0

fn+j,m+i > 0

...

T − Li > 0

T − Tj > 0T

T T

T

T

T

T

T

T

T

T

T

Jn+j Mm+i

Jn+1

J1

Mm+1

If we now saturate all arcs up to their capacity, we get a flow x = (xij)
from s to t with the value (n + m)T . For a set M ⊆ {M1, . . . , Mn+m} of
machines let P (M) be the set of all predecessors of vertices in M , i.e. all
jobs Ji such that xij > 0 for some Mj ∈ M . We have

|M | T =
∑

Mj∈M

∑

Ji∈P (Mj)

xij ≤ |P (M)| T

which implies |M | ≤ |P (M)| for all machine sets M . By Theorem 2.1
there exists a matching R with cardinality n + m. Let �1 := min{xij |
(Ji, Mj) ∈ R}. Then we construct a partial schedule in the time interval
[0,�1] by

• scheduling Ji in [0,�1] on Mj if (Ji, Mj) ∈ R,

• scheduling Ji not in [0,�1] if (Ji, Mm+i) ∈ R, and

• leaving Mj idle in [0,�1] if (Jn+j, Mj) ∈ R.

Furthermore, we replace T by T −�1, reduce the capacity of all arcs in
R by �1 and eliminate all arcs which now have zero capacity. Finally,
we replace the current scheduling time s = 0 by s = �1 and repeat the

18 Some Problems in Combinatorial Optimization

process to schedule the next interval [s, s+�2], etc. The whole procedure
stops if T = 0, providing a schedule of length T which is optimal.

After each step at least one arc is eliminated. Thus, if r is the number
of operations Oij with pij > 0, then we have at the most O(r) steps (we
assume that r ≥ n and r ≥ m). A matching can be calculated in O(r(n+
m)0.5) steps (Hopcroft and Karp [114]). Thus, the total complexity is
O(r2(n+m)0.5). The complexity can be reduced to O(r2) due to the fact
that in each step the matching from the previous step may be used to
calculate the new matching.

2.5 The Assignment Problem

Consider the complete bipartite graph, G = (V1 ∪ V2, V1 × V2) with
V1 = {v1, . . . , vn} and V2 = {w1, . . . , wm}. Assume w.l.o.g. that n ≤ m.
Associated with each arc (vi, wj) there is a real number cij. An assign-
ment is given by a one-to-one mapping ϕ : V1 → V2. The assignment
problem is to find an assignment ϕ such that

∑

v∈V1

cvϕ(v)

is minimized.

We may represent the assignment problem by the n×m-matrix C = (cij)
and formulate it as a linear program with 0-1-variables xij :

minimize
n∑

i=1

m∑

j=1

cijxij (2.7)

s.t.
m∑

j=1

xij = 1 i = 1, . . . , n (2.8)

n∑

i=1

xij ≤ 1 j = 1, . . . , m (2.9)

xij ∈ {0, 1} i = 1, . . . , n; j = 1, . . . , m. (2.10)

Here xij = 1 if and only if vi is assigned to wj . Due to (2.8) and (2.9)
each vi ∈ V1 is assigned to a unique element in V2, and each wj ∈ V2 is
involved in at the most one assignment.

The assignment problem may be reduced to the transshipment problem
by adding a source vertex s with arcs (s, vi), vi ∈ V1 and a sink t with

2.5. The Assignment Problem 19

arcs (wj, t), wj ∈ V2 to the bipartite graph. All costs of the new arcs
are defined as zero, and the lower and upper capacities are zero and one,
respectively. Finally, we let s be the only supply node, and t the only
demand node. Both supply and demand are equal to n.

Any integer solution provided by an algorithm which solves this trans-
shipment problem is feasible for (2.7) to (2.10). Thus, we may solve the
assignment problem by solving the corresponding transshipment prob-
lem. The first algorithm for the assignment problem was the Hungarian
method introduced by Kuhn [132]. It solves the assignment problem in
O(n2m) steps by exploiting its special structure.

Next we show that single machine problems with unit processing times
can be reduced to assignment problems.

1|ri;pi = 1|∑ fi

To solve problem 1|ri; pi = 1|∑ fi, where the fi are monotone functions
of the finishing times Ci of jobs i = 1, . . . , n, we have to assign to the jobs
n different time slots. If we assign time slot t to job i, the corresponding
costs are fi(t + 1). Next we will show that at the most n time slots are
to be considered. Thus, the corresponding assignment problem can be
solved in O(n3) time.

Because functions fi are monotone nondecreasing, the jobs should be
scheduled as early as possible. The n earliest time slots ti for scheduling
all n jobs may be calculated using the following algorithm, in which we
assume that the jobs are enumerated in such a way that

r1 ≤ r2 ≤ . . . ≤ rn.

Algorithm Time Slots
1. t1 := r1;
2. FOR i := 2 TO n DO

ti := max{ri, ti−1 + 1}

There exists an optimal schedule which occupies all of the time slots ti(i =
1, . . . , n). To see this, consider an optimal schedule S which occupies time
slots t1, . . . , tj where j < n is maximal. According to the construction of
the ti-values, tj+1 is the next time slot in which a job can be scheduled.
If time slot tj+1 in S is empty, a job scheduled later in S can be moved
to tj+1 without increasing the objective value. Thus, the new schedule is

20 Some Problems in Combinatorial Optimization

optimal, too, and we have a contradiction to the maximality of j. Notice
that the schedule created this way defines time intervals Iν in which the
machine is busy. These intervals are separated by idle periods of the
machine.

The complete bipartite graph which defines the corresponding assignment
problem is given by

V1 = {1, . . . , n}
V2 = {t1, . . . , tn}.

For the cij-values we choose

cij =

{
fi(tj + 1) if ri ≤ tj
∞ otherwise.

Next we consider an assignment problem which has a very simple solu-
tion.

Let V1 = {v1, . . . , vn} and V2 = {w1, . . . , wm} and consider the corre-
sponding complete bipartite graph G = (V1 ∪ V2, V1 × V2). Then the cor-
responding assignment problem is specified by a n × m array C = (cij).
C is called a Monge array if

cik + cjl ≤ cil + cjk for all i < j and k < l. (2.11)

Theorem 2.2 Let (cij) be a Monge array of dimension n × m where
n ≤ m. Furthermore, let cij ≤ cik for all i and j < k. Then

xij =

{
1 if i = j
0 otherwise

is an optimal solution for the assignment problem.

Proof: Let y = (yij) be an optimal solution of the assignment problem
with yνν = 1 for ν = 1, . . . , i where i is as large as possible. Assume that
i < n (if i = n we have finished). Because yi+1,i+1 = 0, there exists an
index l > i + 1 with yi+1,l = 1. Now we consider two cases.

Case 1: There exists an index j > i + 1 with yj,i+1 = 1.

(2.11) yields
ci+1,i+1 + cjl ≤ ci+1,l + cj,i+1.

Thus, if we set

ȳrs =

⎧
⎨

⎩

1 if r = s = i + 1 or r = j, s = l
0 if r = i + 1, s = l or r = j, s = i + 1
yrs otherwise

2.5. The Assignment Problem 21

then ȳrs is again an optimal solution of the assignment problem, contra-
dicting the maximality of i.

Case 2: yν,i+1 = 0 for all ν ≥ i + 1.

There exists an l > i + 1 with yi+1,l = 1. Furthermore, ci+1,i+1 ≤ ci+1,l.
Thus, ȳrs defined by

ȳrs =

⎧
⎨

⎩

1 if r = s = i + 1
0 if r = i + 1, s = l
yrs otherwise

is again an optimal solution, contradicting the maximality of i. �

Corollary 2.3 Let C = (cij) be a Monge array of dimension n×n. Then

xij =

{
1 if i = j
0 otherwise

is an optimal solution for the assignment problem.

Proof: If m = n, then all wj ∈ V2 must be assigned. Thus, we only have
Case 1 and therefore we do not need the rows of C to be monotone.

�

Corollary 2.4 Let (ai) and (bj) be arrays of real numbers a1 ≥ a2 ≥
. . . ≥ an ≥ 0 and 0 ≤ b1 ≤ b2 ≤ . . . ≤ bm where n ≤ m. Then the
assignment problem given by the array

C = (cij)n×m with cij = aibj

has an optimal solution given by

xij =

{
1 if i = j
0 otherwise.

Proof: We have cij = aibj ≤ aibk = cik for all i and j < k. Furthermore,
C is a Monge array because if i < j and k < l, then ai ≥ aj and bk ≤ bl.
Thus,

aibl + ajbk − aibk − ajbl = (ai − aj)(bl − bk) ≥ 0,

i.e.
aibk + ajbl ≤ aibl + ajbk.

�

Due to Corollary 2.4 we may efficiently solve the following scheduling
problem.

22 Some Problems in Combinatorial Optimization

P||∑Ci

n jobs i = 1, . . . , n with processing times pi are to be processed on m
identical parallel machines j = 0, . . . , m− 1 to minimize mean flow time.
There are no precedence constraints between the jobs.

A schedule S is given by a partition of the set of jobs into m disjoint
sets I0, . . . , Im−1 and for each Ij, a sequence of the jobs in Ij . Assume
that Ij contains nj elements and that j(i)(i = 1, . . . , nj) is the job to be
scheduled in position nj − i+1 on machine Mj . We assume that the jobs
in Ij are scheduled on Mj starting at zero time without idle times. Then
the value of the objective function is

n∑

i=1

Ci =
m−1∑

j=0

nj∑

i=1

i · pj(i). (2.12)

Now consider the assignment problem with cik = aibk where ai = pi for
i = 1, . . . , n, and bk = � k

m
1 for k = 1, . . . , n. A schedule S corresponds

with an assignment with objective value (2.12). In this schedule job i is
assigned to the bk-last position on a machine if i is assigned to k.

If we assume that
p1 ≥ p2 ≥ . . . ≥ pn,

then we get an optimal assignment by assigning ai = pi to bi(i =
1, . . . , n). This assignment corresponds with a schedule in which job
i is scheduled on machine (i−1)mod(m). Furthermore, on each machine
the jobs are scheduled according to nondecreasing processing times. Such
a schedule can be calculated in O(n log n)-time, which is the time to sort
the jobs according to their processing times.

2.6 Arc Coloring of Bipartite Graphs

Consider again a directed bipartite graph G = (V1 ∪ V2, A) with V1 =
{v1, . . . , vn} and V2 = {w1, . . . , wm}. (Arc) coloring is the assignment
of a color to each arc of G such that arcs incident to any vertex (i.e.
arcs (vi, wk), (vi, wl) with k �= l or arcs (vk, wj), (vl, wj) with l �= k) have
distinct colors. Minimum coloring uses as few colors as possible. The
problem we address in this section is to find a minimum coloring for a
bipartite graph.

1�x is the smallest integer greater or equal to x

2.6. Arc Coloring of Bipartite Graphs 23

For each v ∈ V1 ∪ V2 let deg(v) be the number of arcs incident with v
(i.e. arcs of the form (vi, wk) if v = vi ∈ V1 or arcs of the form (vk, wi)
if v = wi ∈ V2). deg(v) is called the degree of node v. The maximum
degree

� := max{deg(v) | v ∈ V1 ∪ V2}
of G is a lower bound for the number of colors needed for coloring. Next,
we describe an algorithm to construct a coloring using � colors.

It is convenient to represent G by its adjacency matrix A = (aij) where

aij =

{
1 if (vi, wj) ∈ A
0 otherwise.

By definition of � we have

m∑

j=1

aij ≤ � for all i = 1, . . . , n (2.13)

and
n∑

i=1

aij ≤ � for all j = 1, . . . , m. (2.14)

Entries (i, j) with aij = 1 are called occupied cells. We have to assign
colors c ∈ {1, . . . ,�} to the occupied cells in such a way that the same
color is not assigned twice in any row or column of A. This is done by
visiting the occupied cells of A row by row from left to right. When
visiting the occupied cell (i, j) a color c not yet assigned in column j is
assigned to (i, j). If c is assigned to another cell in row i, say to (i, j∗),
then there exists a color c not yet assigned in row i and we can replace
the assignment c of (i, j∗) by c. If again a second cell (i∗, j∗) in column j∗

also has the assignment c, we replace this assignment by c, etc. We stop
this process when there is no remaining conflict. If the partial assignment
before coloring (i, j) was feasible (i.e. no color appears twice in any row
or column) then this conflict resolution procedure ends after at the most
n steps with feasible coloring. We will prove this after giving a more
precise description of the algorithm.

Algorithm Assignment
1. For i := 1 TO n DO
2. While in row i there exists an uncolored occupied cell DO

BEGIN

24 Some Problems in Combinatorial Optimization

3. Find a first uncolored occupied cell (i, j);
4. Find a color c not assigned in column j;
5. Assign c to (i, j);
6. IF c is assigned twice in row i THEN

BEGIN
7. Find a color c that is not assigned in row i;
8. Conflict (i, j, c, c)

END
END

Conflict(i, j, c, c) is a conflict resolution procedure which applies to a
situation in which c is assigned to cell (i, j). It is convenient to write
Conflict(i, j, c, c) as a recursive procedure.

Procedure Conflict (i, j, c, c)
1. IF c is assigned to some cell (i, j∗) with j∗ �= j

THEN assign c to (i, j∗)
2. ELSE RETURN;
3. IF c is assigned to some cell (i∗, j∗) with i∗ �= i THEN

BEGIN
4. Assign c to (i∗, j∗);
5. Conflict (i∗, j∗, c, c)

END
6. ELSE RETURN

Due to (2.14), a color c can always be found in Step 4 of Algorithm
Assignment. Furthermore, due to (2.13), in Step 7 there exists a color c
which is not yet assigned to a cell in row i. Next, if there is a c-conflict
in column j∗ due to the fact that c is replaced by c, then c cannot
appear in this column again if we assume that previous conflicts have
been resolved. Thus, it is correct to resolve the c-conflict by replacing
the other c-value by c (Step 4 of Procedure Conflict(i, j, c, c)). Similarly,
Step 1 of Procedure Conflict(i∗, j∗, c, c)) is correct.

Finally, we claim that the Procedure Conflict terminates after at the
most n recursive calls. To prove this, it is sufficient to show that if color
c of cell (i, j∗) is replaced by c, then it is impossible to return to a cell
in row i again. The only way to do so is by having a c-conflict in some
column s where c is the color of (i, s) and (k, s) with i �= k. Consider a
situation where this happens the first time. We must have s = j∗ because

2.6. Arc Coloring of Bipartite Graphs 25

otherwise c is the color of two different cells in row i, which contradicts
the correctness of previous steps. Because s = j∗ we must have visited
column j∗ twice, the first time when moving from cell (i, j∗) to some cell
(i∗, j∗). (i∗, j∗) cannot be visited a second time due to the assumption
that row i is the first row which is revisited. Thus, when visiting column
j∗ a second time we visit some cell (k, j∗) which is different from (i, j∗)
and (i∗, j∗). At that time cells (i∗, j∗) and (k, j∗) are colored c, which
again contradicts the fact that the algorithm maintains feasibility.

Next we show that Algorithm Assignment has a running time of O((n +
�)e), where e is the number of occupied cells.

We use a data structure with the following components:

• An n ×�-array J-INDEX where

J-INDEX(i, l)=

{
j if (i, j) is the l-th occupied cell in row i
0 if there are less than l occupied cells in row i.

• For each column j, a list COLOR(j) containing all color numbers
assigned to cells in column j in increasing order.

• For each row i, a double linked list FREE(i) containing all colors
not yet assigned to cells in row i. Moreover, we use a �-vector of
pointers to this list such that deletion of a color can be done in
constant time.

• An �× m-array I-INDEX where

I-INDEX(c, j) =

{
i if color c is assigned to cell (i, j)
0 if no cell in column j is assigned to c.

Using the array J-INDEX Step 3 of Algorithm Assignment can be done
in constant time. In Step 4 color c is found in O(�) time using the
list COLOR(j) because this list contains at the most � elements. Step
5 is done by updating COLOR(j), FREE(i), and I-INDEX in O(�)
steps. Step 6 is done in O(�)-time using the arrays J-INDEX and I-
INDEX. Furthermore, the color c in Step 7 is found in constant time
using FREE(i).

During the recursive processing of the Procedure Conflict, the list FREE
is not changed. Moreover, the list COLOR(j) only changes if a column
not already containing color c is found (in this case Conflict terminates).

26 Some Problems in Combinatorial Optimization

A cell (i∗, j∗) already colored by c (Step 3 of Conflict) can be found
in constant time using the array I-INDEX. Because each change of the
array I-INDEX only needs a constant amount of time and Conflict always
terminates after n steps, we get an overall complexity of O((n + �)e).

Another more sophisticated algorithm for solving the arc coloring prob-
lem for bipartite graphs can be found in Gabow & Kariv [95]. It improves
the complexity to O(e log2(n + m)).

2.7 Shortest Path Problems and Dynamic

Programming

Another method for solving certain scheduling problems is dynamic pro-
gramming, which enumerates in an intelligent way all possible solutions.
During the enumeration process, schedules which cannot be optimal are
eliminated. We shall explain the method by solving the following schedul-
ing problems:

1||∑wiUi

Given n jobs i = 1, . . . , n with processing times pi and due dates di,

we have to sequence these jobs such that
n∑

i=1

wiUi is minimized where

wi ≥ 0 for i = 1, . . . , n. Assume that the jobs are enumerated according
to nondecreasing due dates:

d1 ≤ d2 ≤ . . . ≤ dn. (2.15)

Then there exists an optimal schedule given by a sequence of the form

i1, i2, . . . , is, is+1, . . . , in

where jobs i1 < i2 < . . . < is are on time and jobs is+1, . . . , in are
late. This can be shown easily by applying the following interchange
arguments. If a job i is late, we may put i at the end of the schedule
without increasing the objective function. If i and j are early jobs with
di ≤ dj such that i is not scheduled before j, then we may shift the block
of all jobs scheduled between j and i jointly with i to the left by pj time
units and schedule j immediately after this block. Because i was not late
and di ≤ dj this creates no late job.

2.7. Shortest Path Problems and Dynamic Programming 27

To solve the problem, we calculate recursively for t = 0, 1, . . . , T :=
n∑

i=1

pi

and j = 1, . . . , n the minimum criterion value Fj(t) for the first j jobs,
subject to the constraint that the total processing time of the on-time
jobs is at the most t. If 0 ≤ t ≤ dj and job j is on time in a schedule
which corresponds with Fj(t), then Fj(t) = Fj−1(t − pj). Otherwise
Fj(t) = Fj−1(t) + wj . If t > dj, then Fj(t) = Fj(dj) because all jobs
1, 2, . . . , j finishing later than dj ≥ . . . ≥ d1 are late. Thus, for j =
1, . . . , n we have the recursion

Fj(t) =

{
min{Fj−1(t − pj), Fj−1(t) + wj} for 0 ≤ t ≤ dj

Fj(dj) for dj < t < T

with Fj(t) = ∞ for t < 0, j = 0, . . . , n and F0(t) = 0 for t ≥ 0.

Notice that Fn(dn) is the optimal solution to the problem.

The following algorithm calculates all values Fj(t) for j = 1, . . . , n and
t = 0, . . . , dj. We assume that the jobs are enumerated such that (2.15)
holds. pmax denotes the largest processing time.

Algorithm 1||∑wiUi

1. FOR t := −pmax TO -1 DO
2. FOR j := 0 TO n DO

Fj(t) := ∞;
3. FOR t := 0 TO T DO F0(t) := 0;
4. FOR j := 1 TO n DO

BEGIN
5. FOR t := 0 TO dj DO
6. IFFj−1(t) + wj < Fj−1(t − pj) THEN Fj(t) := Fj−1(t) + wj

ELSE Fj(t) := Fj−1(t − pj);
7. FOR t := dj + 1 TO T DO

Fj(t) := Fj(dj)
END

The computational time of this algorithm is bounded by O(n
n∑

i=1

pi).

To calculate an optimal schedule it is sufficient to calculate the set L of
late jobs in an optimal schedule. Given all Fj(t)-values this can be done
by the following algorithm.

28 Some Problems in Combinatorial Optimization

Algorithm Backward Calculation
t := dn; L := φ
FOR j := n DOWN TO 1 DO
BEGIN
t := min{t, dj};
IF Fj(t) = Fj−1(t) + wj THEN L := L ∪ {j}
ELSE t := t − pj

END

P||∑wiCi

n jobs 1, . . . , n are to be processed on m identical parallel machines such

that
n∑

i=1

wiCi is minimized. All wi are assumed to be positive.

We first consider the problem 1||∑wiCi. An optimal solution of this
one machine problem is obtained if we sequence the jobs according to
nondecreasing ratios pi/wi. The following interchange argument proves
this. Let j be a job which is scheduled immediately before job i. If we
interchange i and j, the objective function changes by

wipi + wj(pi + pj) − wjpj − wi(pi + pj) = wjpi − wipj

which is nonpositive if and only if pi/wi ≤ pj/wj. Thus, the objective
function does not increase if i and j are interchanged.

A consequence of this result is that in an optimal solution of problem
P ||∑wiCi, jobs to be processed on the same machine must be processed
in order of nondecreasing ratios pi/wi. Therefore we assume that all jobs
are indexed such that

p1/w1 ≤ p2/w2 ≤ . . . ≤ pn/wn.

Let T be an upper bound on the completion time of any job in an optimal
schedule. Define Fi(t1, . . . , tm) to be the minimum cost of a schedule
without idle time for jobs 1, . . . , i subject to the constraint that the last
job on Mj is completed at time tj for j = 1, . . . , m. Then

Fi(t1, . . . , tm) =
m

min
j=1

{witj + Fi−1(t1, . . . , tj−1, tj − pi, tj+1, . . . , tm)}.
(2.16)

2.7. Shortest Path Problems and Dynamic Programming 29

The initial conditions are

F0(t1, . . . , tm) =

{
0 if tj = 0 for j = 1, . . . , m
∞ otherwise .

(2.17)

Starting with (2.17), for i = 1, 2, . . . , n the Fi(t)-values are calculated for
all t ∈ {1, 2, . . . , T}m in a lexicographic order of the integer vectors t. A
t∗ ∈ {1, 2, . . . , T}m with Fn(t) minimal provides the optimal value of the
objective function. The computational complexity of this procedure is
O(mnT m).

Similar techniques may be used to solve problem Q||∑wjCj .

A Shortest Path Algorithm

Next we will introduce some shortest path problems and show how these
problems can be solved by dynamic programming.

A network N = (V, A, c) is a directed graph (V, A) together with a func-
tion c which associates with each arc (i, j) ∈ A a real number cij . A
(directed) path p in N is a sequence of arcs:

p : (i0, i1), (i1, i2,) . . . , (ir−1, ir).

p is called an s-t–path if i0 = s and ir = t. p is a cycle if i0 = ir. The
length l(p) of a path p is defined by

l(p) = ci0i1 + ci1i2 + . . . + cir−1ir .

Assume that N = (V, A, c) has no cycles, and |V | = n. Then the vertices
can be enumerated by numbers 1, . . . , n such that i < j for all (i, j) ∈ A.
Such an enumeration is called topological. If (i, j) is an arc, then i is
the predecessor of j, and j is the successor of i. Using this notion, an
algorithm for calculating a topological enumeration α(v)(v ∈ V) may be
formulated as follows.

Algorithm Topological Enumeration
1. i := 1;
2. WHILE there exists a vertex v ∈ V without predecessor DO

BEGIN
3. α(v) := i;
4. Eliminate vertex v from V and all arcs (v, j) from A;
5. i := i + 1

END
6. If V �= ∅ then (V, A) has a cycle and there exists no

topological enumeration.

30 Some Problems in Combinatorial Optimization

Using an appropriate data structure this algorithm can be implemented
in such a way that the running time is O(|A|).
The problem shortest paths to s is to find for each vertex i ∈ V a
shortest i-s–path. We solve this problem for networks without cycles
by a dynamic programming approach. Assume that the vertices are
enumerated topologically, and that s = n. If we denote by F (i) the
length of a shortest i-n–path, then we have the recursion

F (n) := 0
F (i) = min{cij + F (j)|(i, j) ∈ A, j > i} for i = n − 1, . . . , 1.

(2.18)

This leads to

Algorithm Shortest Path 1
1. F (n) := 0;
2. FOR i := n − 1 DOWN TO 1 DO

BEGIN
3. F (i) := ∞;
4. FOR j := n DOWN TO i + 1
5. IF (i, j) ∈ A AND cij + F (j) < F (i) THEN

BEGIN
6. F (i) := cij + F (j);
7. SUCC(i) := j

END
END

SUCC(i) is the successor of i on a shortest path from i to n. Thus,
shortest paths can be constructed using this successor array. The running
time of this algorithm is O(n2).

A Special Structured Network

Now we consider an even more special situation. Let N = (V, A, c) be a
network with

V = {1, . . . , n}
(i, j) ∈ A if and only if i < j (2.19)

cil − cik = r(k, l) + f(i)h(k, l) for i < k < l

2.7. Shortest Path Problems and Dynamic Programming 31

where f(i) is nonincreasing, the values r(k, l) are arbitrary, and h(k, l) ≥
0 for all k, l. The last property is called the product property. It is
not difficult to show that an array C = (cij) which satisfies the product
property also satisfies the Monge property, i.e. is a Monge array.

Next we will develop an O(n)-algorithm for finding shortest paths in a
network satisfying (2.19). Later we will apply this algorithm to certain
batching problems.

Again we use the recursion formulas (2.18). However, due to the special
properties of the cij-values the computational complexity decreases from
O(n2) to O(n).

As before, let F (i) be the length of a shortest path from i to n and set

F (i, k) = cik + F (k) for i < k.

Thus, we have

F (i) =
n

min
k=i+1

F (i, k).

First, we assume that h(k, l) > 0 for all k < l. The relation

F (i, k) ≤ F (i, l) i < k < l (2.20)

stating that k is as good as l as a successor of i is equivalent to

F (k) − F (l) ≤ cil − cik = r(k, l) + f(i)h(k, l)

or

ϑ(k, l) :=
F (k) − F (l) − r(k, l)

h(k, l)
≤ f(i). (2.21)

Lemma 2.5 Assume that ϑ(k, l) ≤ f(i) for some 1 ≤ i < k < l ≤ n.
Then F (j, k) ≤ F (j, l) for all j = 1, . . . , i.

Proof: Because f is monotonic nonincreasing for all j ≤ i, the inequality
ϑ(k, l) ≤ f(i) ≤ f(j) holds, which implies F (j, k) ≤ F (j, l). �

Lemma 2.6 Assume that ϑ(i, k) ≤ ϑ(k, l) for some 1 ≤ i < k < l ≤ n.
Then for each j = 1, . . . , i we have F (j, i) ≤ F (j, k) or F (j, l) ≤ F (j, k).

Proof: Let 1 ≤ j ≤ i. If ϑ(i, k) ≤ f(j), then F (j, i) ≤ F (j, k). Oth-
erwise we have f(j) < ϑ(i, k) ≤ ϑ(k, l), which implies F (j, l) < F (j, k).

�

32 Some Problems in Combinatorial Optimization

An Efficient Shortest Path Algorithm

As Algorithm Shortest Path 1, the efficient algorithm to be developed
next calculates the F (i)-values for i = n down to 1. When calculating
F (i) all values F (i+1), . . . , F (n) are known. Furthermore, a queue Q of
the form

Q : ir, ir−1, . . . , i2, i1

with
ir < ir−1 < . . . < i2 < i1 (2.22)

is used as a data structure. i1 is the head and ir is the tail of this queue.
Vertices not contained in the queue are no longer needed as successors
on shortest paths from 1, . . . , i to n. Furthermore, the queue satisfies the
following invariance property

ϑ(ir, ir−1) > ϑ(ir−1, ir−2) > . . . > ϑ(i2, i1). (2.23)

In the general iteration step we have to process vertex i and calculate
F (i):

If f(i) ≥ ϑ(i2, i1), then by Lemma 2.5 we have F (j, i2) ≤ F (j, i1) for
all j ≤ i. Thus, vertex i1 is deleted from Q. We continue with this
elimination process until we reach some t ≥ 1 such that

ϑ(ir, ir−1) > . . . > ϑ(it+1, it) > f(i)

which implies

F (i, iν+1) > F (i, iν) for ν = t, . . . , r − 1.

This implies that it must be a successor of i on a shortest path from i to
n, i.e. F (i) = ciit + F (it).

Next we try to append i at the tail of the queue. If ϑ(i, ir) ≤ ϑ(ir, ir−1),
then by Lemma 2.6 vertex ir can be eliminated from Q. We continue
this elimination process until we reach some ν with ϑ(i, iν) > ϑ(iν , iν−1).
When we now add i at the tail of the queue the invariance property (2.23)
remains satisfied.

Details are given by the following algorithm. In this algorithm, head(Q)
and tail(Q) denote the head and tail of the queue. In SUCC(i) we store
the successor of i in a shortest path from i to n. Next(j) and previous(j)
are the elements immediately after and immediately before, respectively,
the element j in the queue when going from head to tail.

2.7. Shortest Path Problems and Dynamic Programming 33

Algorithm Shortest Path 2
1. Q := {n}; F (n) := 0;
2. FOR i := n − 1 DOWN TO 1 DO

BEGIN
3. WHILE head(Q) �= tail(Q) and f(i) ≥ ϑ (next(head(Q)), head(Q))

DO delete head(Q) from the queue;
4. SUCC(i) :=head(Q);
5. j := SUCC(i);
6. F (i) := cij + F (j);
7. WHILE head(Q) �= tail(Q) and ϑ(i, tail (Q)) ≤ ϑ(tail(Q),

previous(tail(Q))) DO delete tail(Q) from the queue;
8. Add i to the queue

END

Each vertex is added and deleted once at the most. Thus, the algorithm
runs in O(n) time if the necessary ϑ-values can be computed in total
time O(n), which is the case in many applications.

If h(k, l) = 0, then ϑ(k, l) is not defined. Therefore Steps 7 and 8 of
the Algorithm Shortest Path 2 must be modified if h(i, k) = 0 and k =
tail(Q):

For all j < i we have with (2.19) the equations

F (j, k) − F (j, i) = cjk − cji + F (k) − F (i) = F (k) − F (i) + r(i, k).

If F (k) − F (i) + r(i, k) ≥ 0, then F (j, i) ≤ F (j, k) for all j < i. Thus
k = tail(Q) can be deleted from the queue. Otherwise F (j, i) > F (j, k)
for all j < i, and i is not added to the queue. Furthermore, in Step 3
the condition f(i) ≥ ϑ(iν+1, iν) must be replaced by F (iν+1) − F (iν) −
r(iν+1, iν) ≤ 0.

1 | s − batch | ∑
Ci and 1 | pi = p; s − batch | ∑

wiCi

Single machine s-batching problems can be formulated as follows. n jobs
Ji are given with processing times pi (i = 1, . . . , n). Jobs are scheduled
in so-called s-batches. Recall that an s-batch is a set of jobs which are
processed jointly. The length of an s-batch is the sum of the processing
time of jobs in the batch. The flow time Ci of a job coincides with the
completion time of the last scheduled job in its batch and all jobs in
this batch have the same flow time. The production of a batch requires

34 Some Problems in Combinatorial Optimization

a machine set-up S of s ≥ 0 time units. We assume that the machine
set-ups are both sequence independent and batch independent, i.e. they
depend neither on the sequence of batches nor on the number of jobs in
a batch. The single machine s-batching problem we consider is to
find a sequence of jobs and a collection of batches that partitions this
sequence of jobs such that the weighted flow time

n∑

i=1

wiCi

is minimized. We assume that all weights wi are non-negative and con-
sider also the case that all wi = 1.

Consider a fixed, but arbitrary job sequence J1, J2, . . . , Jn of the single
machine s-batching problem. Any solution is of the form

BS : SJi(1) . . . Ji(2)−1SJi(2) Ji(k)−1SJi(k) . . . Jn

where k is the number of batches and

1 = i(1) < i(2) < . . . < i(k) ≤ n.

Notice that this solution is completely characterized by the job sequence
and a sequence of batch sizes n1, . . . , nk with nj = i(j + 1) − i(j)
where i(k + 1) := n + 1. We now calculate the

∑
wiCi value F (BS) for

BS. The processing time of the jth batch equals

Pj = s +

i(j+1)−1∑

ν=i(j)

pν .

Thus,

F (BS) =
n∑

i=1

wiCi =
k∑

j=1

(
n∑

ν=i(j)

wν)Pj =
k∑

j=1

(
n∑

ν=i(j)

wν)(s +

i(j+1)−1∑

ν=i(j)

pν).

In order to solve the batch sizing problem, we obviously have to find an
integer 1 ≤ k ≤ n and a sequence of indices

1 = i(1) < i(2) < . . . < i(k) < i(k + 1) = n + 1

such that the above objective function value is minimized. This problem
can be reduced to the specially structured shortest path problem.

2.7. Shortest Path Problems and Dynamic Programming 35

S S S SJi(1) Ji(2)−1 Ji(2) Ji(3)−1 Ji(3) Ji(k)−1 Ji(k) JnJn+1· · · · · · · · · · · · · · ·
� 	

ci(1),i(2)

�
� 	

ci(2),i(3)

�
� 	
ci(k),i(k+1)

�
� 	

ci(3),i(4)

�
� 	
ci(k−1),i(k)

�

Every solution BS corresponds to a path of the form

Here Jn+1 is a dummy job. The length cij of arc (i, j) is set to

cij = (
n∑

ν=i

wν)(s +

j−1∑

ν=i

pν).

cij is the “cost” of the batch Ji, Ji+1, . . . , Jj−1. For i < k < l we have

cil − cik = (
n∑

ν=i

wν)(
l−1∑

ν=k

pν) = f(i)h(k, l)

where f(i) =
n∑

ν=i

wν is monotone nonincreasing and h(k, l) =
l−1∑

ν=k

pν ≥ 0.

Thus, we have a network with n + 1 vertices satisfying conditions (2.19)
and we may use Algorithm Shortest Path 2 to solve the problem.

To calculate each f(i)-value and h(k, l)-value in constant time we first

calculate in a preprocessing step the sums spi =
i−1∑

ν=1

pν and swi =
i∑

ν=1

wν .

Then f(i) = swn − swi−1 and h(k, l) = spl − spk. The preprocessing can
be done in O(n)-time. Thus, we have an overall time bound of O(n).

Next we will show that problem 1 | s-batch | ∑
Ci can be solved by

sequencing the jobs in a nondecreasing order of processing times and
applying the batching procedure to this sequence. Similarly, problem
1 | pi = p; batch|∑ wiCi can be solved by sequencing the jobs in non-
increasing order of job weights wi. In both cases we have an overall
computational complexity of O(n log n).

Lemma 2.7 Any optimal schedule for problem 1 | s-batch | ∑
Ci can

be transformed into an optimal schedule in which the jobs are ordered
according to nondecreasing processing times.

Proof: Consider an optimal solution of the problem 1 | s-batch | ∑
Ci

given by a job sequence S and a sequence n1, n2, . . . , nk of batch sizes. If
Ji and Jk are jobs with pk < pi such that in S job Ji is processed before

36 Some Problems in Combinatorial Optimization

Jk, then we may swap Ji and Jk and move the block of jobs in S between
Ji and Jk by pi − pk time units to the left. Furthermore, we keep the
sequence of batch sizes unchanged. This does not increase the value of
the objective function because the new Ci-value is the old Ck-value, the
new Ck-value is less than or equal to the old Ci-value, and the Cj-values
of the other jobs are not increased. Iterating such changes leads to an
optimal solution with the desired property. �

Lemma 2.8 Any optimal schedule for problem 1 | pi = p; s-batch |∑
wiCi can be transformed into an optimal schedule in which the jobs

are ordered according to nonincreasing job weights wi.

Proof: Consider an optimal solution and let Ji and Jk be two jobs with
wi < wk, where Ji is scheduled preceding Jk. Interchanging Ji and Jk

does not increase the value of the objective function and iterating such
interchanges leads to an optimal solution with the desired property. �

Chapter 3

Computational Complexity

Practical experience shows that some computational problems are easier
to solve than others. Complexity theory provides a mathematical frame-
work in which computational problems are studied so that they can be
classified as “easy” or “hard”. In this chapter we will describe the main
points of such a theory. A more rigorous presentation can be found in
the fundamental book of Garey & Johnson [99].

3.1 The Classes P and NP
A computational problem can be viewed as a function h that maps each
input x in some given domain to an output h(x) in some given range.
We are interested in algorithms for solving computational problems. Such
an algorithm computes h(x) for each input x. For a precise discussion,
a Turing machine is commonly used as a mathematical model of an al-
gorithm. For our purposes it will be sufficient to think of a computer
program written in some standard programming language as a model of
an algorithm. One of the main issues of complexity theory is to measure
the performance of algorithms with respect to computational time. To
be more precise, for each input x we define the input length |x| as the
length of some encoding of x. We measure the efficiency of an algorithm
by an upper bound T (n) on the number of steps that the algorithm takes
on any input x with |x| = n. In most cases it will be difficult to calculate
the precise form of T . For these reasons we will replace the precise form
of T by its asymptotic order. Therefore, we say that T (n) ∈ O(g(n))
if there exist constants c > 0 and a nonnegative integer n0 such that

38 Computational Complexity

T (n) ≤ cg(n) for all integers n ≥ n0. Thus, rather than saying that the
computational complexity is bounded by 7n3 + 27n2 + 4, we say simply
that it is O(n3).

Example 3.1 Consider the problem 1 ‖ ∑
wiCi. The input x for this

problem is given by the number n of jobs and two n-dimensional vectors
(pi) and (wi). We may define |x| to be the length of a binary encoded
input string for x. The output f(x) for the problems is a schedule min-

imizing
n∑

i=1

wiCi. It can be represented by an n-vector of all Ci-values.

The following algorithm calculates these Ci-values (see Section 4.3).

Algorithm 1||∑wiCi

1. Enumerate the jobs such that
w1/p1 ≥ w2/p2 ≥ . . . ≥ wn/pn;

2. C0 := 0;
3. FOR i := 1 TO n DO

Ci := Ci−1 + pi

The number of computational steps in this algorithm can be bounded
as follows. In Step 1 the jobs have to be sorted. This takes O(n logn)
steps. Furthermore, Step 3 can be done in O(n) time. Thus, we have
T (n) ∈ O(n log n). If we replace n by the input length |x|, the bound is
still valid because we always have n ≤ |x|. �
A problem is called polynomially solvable if there exists a polynomial
p such that T (|x|) ∈ O(p(|x|)) for all inputs x for the problem, i.e. if there
is a k such that T (|x|) ∈ O(|x|k). Problem 1 ‖ ∑

wiCi is polynomially
solvable, as we have shown in Example 3.1

Important classes of problems which are polynomially solvable are linear
programming problems (Khachiyan [125]) and integer linear program-
ming problems with a fixed number of variables (Lenstra [149]).

The fastest currently known algorithms for network flow problems are
presented in Tables 3.1 and 3.2. In these tables n and m denote the
number of vertices and arcs in the underlying network.

Table 3.1 contains the running times of maximum flow algorithms and
corresponding references.

U denotes the maximum of all arc capacities.

Table 3.2 contains running times of algorithms for the minimum-cost
circulation problem.

3.1. The Classes P and NP 39

Running time References
O(n3) Malhotra, Kumar, Maheshwari [164]
O(n2

√
m) Cheriyan & Maheshwari [65]

O(nm log(n
m

√
log U + 2)) Ahuja, Orlin, Tarjan [7]

Table 3.1: Running times of algorithms for the maximum flow problem.

Running time References
O(m log U(m + n log n)) Edmonds & Karp [87]
O(nm log(n2/m) log(nC)) Goldberg & Tarjan [101]
O(m(m + n log n) log n) Orlin [178]
O(nm log log U log(nC)) Ahuja, Goldberg, Orlin, Tarjan [5]

Table 3.2: Running times of algorithms for the minimum-cost circulation
problem.

C is the maximum of all cost values.

The notion polynomially solvable depends on the encoding. We assume
that all numerical data describing the problem are binary encoded. For
example, Algorithm 1||∑wiUi is not polynomially bounded because the

number of steps depends on
n∑

i=1

pi, which is an exponentially growing

function of the length of an input string with a binary encoding. Algo-
rithm 1||∑wiUi is called pseudopolynomial which means that T (n)
is polynomial where n is the input length with respect to unary encod-
ing. With unary encoding all numerical data, which are assumed to be
integers, are encoded by strings of ones (more specifically an integer d is
represented by a sequence of d ones). A problem is called pseudopoly-
nomially solvable if there exists a pseudopolynomial algorithm which
solves the problem.

A problem is called a decision problem if the output range is {yes, no}.
We may associate with each scheduling problem a decision problem by
defining a threshold k for the corresponding objective function f . This
decision problem is: Does there exist a feasible schedule S such that
f(S) ≤ k?

The class of all decision problems which are polynomially solvable is
denoted by P.

40 Computational Complexity

When a scheduling problem is formulated as a decision problem there
is an important asymmetry between those inputs whose output is “yes”
and those whose output is “no”. A “yes”-answer can be certified by a
small amount of information: the feasible schedule S with f(S) ≤ k.
Given this certificate, the “yes”-answer can be verified in polynomial
time. This is not the case for the “no”-answer.

In general, let NP denote the class of decision problems where each “yes”
input x has a certificate y, such that |y| is bounded by a polynomial in
|x| and there is a polynomial-time algorithm to verify that y is a valid
certificate for x.

Example 3.2 Consider the decision version of problem P |prec|Cmax:
Given m machines, n jobs Ji with processing times pi(i = 1, . . . , n),
precedence relations between the jobs, and a threshold value k. Does
there exist a schedule such that the corresponding Cmax-value is less than
or equal to k?

A certificate is given by a vector (Ci) of finishing times and a vector (μi)
where μi is the machine on which Ji is processed. Clearly, (Ci) and (μi)
have binary encodings which are bounded by polynomials in the input
length of the problem. Furthermore, it can be checked in polynomial
time whether (Ci) and (μi) define a feasible schedule with Cmax-value
≤ k. This is done by checking that

– Ci ≤ Cj − pj for all jobs Ji, Jj with Ji → Jj,

–
n

max
i=1

Ci ≤ k, and

– the intervals [Ci − pi, Ci[, [Cj − pj, Cj[do not overlap for all i �= j
with μi = μj.

Thus, problem P |prec|Cmax belongs to NP. �
Similarly, it can be shown that other scheduling problems when consid-
ered as decision problems belong to NP.

Every decision problem solvable in polynomial time belongs to NP. If
we have such a problem P and an algorithm which calculates for each
input x the answer h(x) ∈ {yes, no} in a polynomial number of steps,
then this answer h(x) may be used as a certificate. This certificate can be
verified by the algorithm. Thus P is also in NP which implies P ⊆ NP.

3.2. NP-complete and NP-hard Problems 41

One of the major open problems of modern mathematics is whether P
equals NP. It is generally conjectured that this is not the case. There is
a beautiful theory developed by Cook [73], Karp [124], and Levin [159]
which provides some strong evidence that P �= NP. We will discuss this
theory in the next section.

3.2 NP-complete and NP-hard Problems

The principal notion in defining NP-completeness is that of a reduction.
For two decision problems P and Q, we say that P reduces to Q (denoted
P ∝ Q) if there exists a polynomial-time computable function g that
transforms inputs for P into inputs for Q such that x is a ‘yes’-input for
P if and only if g(x) is a ‘yes’-input for Q.

To illustrate these concepts we first introduce some decision problems
which play an important role in proving that decision versions of schedul-
ing problems are NP-complete.

PARTITION (PART)

Given n positive integer numbers s1, s2, . . . , sn, is there a subset J ⊆ I =
{1, . . . , n} such that ∑

i∈J

si =
∑

i∈I\J
si?

3-DIMENSIONAL MATCHING (3DM)

We are given a set N ⊆ W ×X ×Y where W, X, and Y are disjoint sets
with the same number of q elements.

Does N contain a matching, that is, a subset M ⊆ N with q elements
such that no two elements of M agree in any coordinate?

VERTEX COVER (VC)

We are given an undirected graph G = (V, E) and a positive integer
k ≤ |V |.
Is there a vertex cover of size k or less for G, that is, a subset C ⊆ V
with at the most k elements such that for each edge {u, v} ∈ E, at least

42 Computational Complexity

one of u and v belongs to C?

CLIQUE

We are given an undirected graph G = (V, E) and a positive integer
k ≤ |V |.
Does G contain a clique of size k or more, that is, a subset C ⊆ V with
at least k elements such that every two vertices in C are joined by an
edge in E?

HAMILTON CIRCUIT (HC)

We are given an undirected graph G = (V, E).

Does G contain a Hamiltonian circuit,that is, an ordering v1, v2,
. . . , vn of the vertices of G, where n = |V |, such that {vn, v1} ∈ E
and {vi, vi+1} ∈ E for i = 1, . . . , n − 1?

In the following examples we will illustrate some reductions.

Example 3.3 The partitioning problem is reducible to the decision ver-
sion of problem F3 ‖ Cmax: PARTITION ∝ F3 ‖ Cmax. To prove this, we
consider a 3-machine flow shop problem with n + 1 jobs i = 1, . . . , n + 1,
where the processing times of the operations are of the form

pi1 = 0, pi2 = si, pi3 = 0 for i = 1, . . . , n

pn+1,1 = pn+1,2 = pn+1,3 = b := 1
2

n∑

i=1

si.

We choose k = 3b as the threshold for the corresponding decision prob-
lem.

If PARTITION has a solution, then there exists an index set J ⊆
{1, . . . , n} such that ∑

i∈J

si = b.

In this case the schedule shown in Figure 3.1 solves the decision version
of problem F3 ‖ Cmax.

If, on the other hand, the flow-shop problem has a solution with Cmax ≤
3b, then job n+1 must be scheduled as shown in Figure 3.1. Furthermore,
J = {i| job finishes not later than b} solves the partitioning problem.

3.2. NP-complete and NP-hard Problems 43

0 b 2b 3b

Job n + 1

Job n + 1

Job n + 1

Jobs i ∈ J Jobs i /∈ J

Figure 3.1: Feasible schedule.

Finally, the input of the flow-shop problem can be computed in polyno-
mial time given the input of the partitioning problem. �

Example 3.4 We show that CLIQUE ∝ P2|prec; pi ∈ {1, 2}|Cmax. The
input of CLIQUE is given by an undirected graph G = (V, E) with
vertices v1, . . . , vq and edges e1, . . . , er, and a threshold value p (0 < p ≤
q). We must polynomially transform this input into an instance of the
P2|prec; pi ∈ {1, 2}|Cmax-problem such that there is a clique C with
|C| ≥ p if and only if there is a schedule with Cmax ≤ k for a suitable
value k.

We set k = q + 2r + (q − p + 1) and define the scheduling problem as
follows: Consider jobs denoted by

v1, . . . , vq, e1, . . . , er, w1 . . . , wt with t = k + (q − p + 1),

i.e. we have v-jobs and e-jobs which correspond with the vertices and
edges of G and dummy jobs wi.

Let the processing time of all e-jobs be equal to 2. The processing times
of v-jobs and dummy jobs are 1. Furthermore, define vi → ej if and only
if vi is an endpoint of ej . We only have additional precedence relations
between dummy jobs. They are chosen in such a way that, under the
assumption that Cmax ≤ k in each time period, at least one dummy job
must be scheduled, say on machine 2, and that on machine 1 free blocks
are created, as shown in Figure 3.2.

In the first block there is exactly space for the p vertex jobs and 1
2
p(p−1)

edge jobs which correspond to a clique with p vertices. Thus the length of
this block is p+2 · 1

2
p(p−1) = p2. In the following q−p unit time blocks

which are separated by dummy jobs, there is space for the remaining
vertex jobs. In the last block, which starts at time p2 + 2(q − p) + 1
and ends at time k, there is exactly space for the remaining edge jobs.

44 Computational Complexity

M1

M2

vi ∈ V ′ ej ∈ E ′ ej /∈ E ′

� �

���

���

� � � � �

���

��� ���
 ���

���

� � � � �
�� � � � � �

� � �

p2 vi /∈ V ′ p2 + 2(q − p) + 1 k

Figure 3.2: Additional precedence relations.

Given the clique problem, this scheduling problem can be constructed in
polynomial time.

If G contains a clique (V ′, E ′) with p vertices, then the schedule shown
in Figure 3.2 is feasible and satisfies Cmax ≤ k. If, on the other hand,
there exists a feasible schedule with Cmax ≤ k, then we may assume that
the dummy jobs are processed as in Figure 3.2. The blocks created on
machine 1 must be completely filled. Thus, in the q − p unit time blocks
in the middle, q − p v-jobs must be scheduled. To fill the p2 units of the
first block, the p remaining v-jobs and 1

2
p(p − 1) e-jobs must be used.

The corresponding vertices and edges must build a clique. �
The significance of a polynomial transformation comes from the following
lemma:

Lemma 3.1 Let P, Q be decision problems. If P ∝ Q, then Q ∈ P
implies P ∈ P (and, equivalently, P /∈ P implies Q /∈ P).

Furthermore, we have

Lemma 3.2 Let P, Q, R be decision problems. If P ∝ Q and Q ∝ R,
then P ∝ R.

We omit the easy proofs of these two lemmas.

A decision problem Q is called NP-complete if Q ∈ NP and, for all
other decision problems P ∈ NP, we have P ∝ Q.

If any single NP-complete problem Q could be solved in polynomial time,
then due to Lemma 3.1 all problems in NP could be solved in polynomial
time and we would have P = NP. This underlines the important role of
NP-complete problems in complexity theory.

Cook [73] has proved that there exist NP-complete problems. The first
such problem is a decision problem from Boolean logic, which is usu-

3.2. NP-complete and NP-hard Problems 45

ally referred to as the satisfiability problem. The terms we shall use in
describing it are defined as follows.

Let U = {u1, u2, . . . , um} be a set of Boolean variables . A truth
assignment for U is a function t : U → { true, false }. u ∈ U is true
(false) if and only if t(u) = true (false). If u ∈ U , then u and u are
literals over U , where u is true iff u is false.

A clause over U is a set of literals over U (such as {u1, u2, u7}). It
represents the disjunction of those literals and is satisfied by a truth
assignment if and only if at least one of its members is true under the
assignment. A collection C of clauses over U is satisfiable if and only if
there exists some truth assignment for U that simultaneously satisfies all
the clauses in C. Such a truth assignment is called a satisfying truth
assignment for C. The satisfiability problem is specified as follows.

SATISFIABILITY (SAT)

We are given a set U of Boolean variables and a collection C of clauses
over U .

Is there a satisfying truth assignment for C?

The problem in which each clause contains exactly 3 literals is called the
3-SATISFIABILITY problem (3-SAT).

The important theorem of Cook [73] can now be stated:

Theorem 3.3 (Cook’s Theorem) SAT is NP-complete.

For a proof of this theorem we refer to Garey & Johnson [99].

The following lemma gives us a straightforward approach for proving new
problems to be NP-complete.

Lemma 3.4 If P and Q belong to NP, P is NP-complete, and P ∝ Q,
then Q is NP-complete.

Proof: Since Q ∈ NP, all we need to do is to show that, for every R ∈
NP, R ∝ Q. However, because P is NP-complete, we have R ∝ P ∝ Q
and thus by Lemma 3.2, R ∝ Q for every R ∈ NP. �

Usually it is an easy task to show that Q ∈ NP. Therefore, when proving
NP-completeness the main task is to find an NP-complete problem P
such that P ∝ Q.

46 Computational Complexity

PART HC CLIQUE
�

�
�

��	

�

3DM VC

������

�������

3-SAT
�

SAT

Figure 3.3: Basic polynomial transformations.

The diagram of Figure 3.3 shows some basic polynomial transformations
between problems introduced in this section. An arc from P to Q in
Figure 3.3 indicates that P ∝ Q. Because all problems in Figure 3.3
belong to NP all these problem are NP-complete.

We are dealing with scheduling problems which are not decision problems,
but optimization problems. An optimization problem is called NP-hard
if the corresponding decision problem is NP-complete. Examples 3.3
and 3.4 show that the scheduling problems F3 ‖ Cmax and P2|prec; pi ∈
{1, 2}|Cmax are NP-hard.

Note that if we could polynomially solve an NP-hard optimization prob-
lem, this would imply P = NP.

Finally, we will introduce the concept of strong NP -completeness which
is related to pseudopolynomial algorithms.

Let x be the input of some problem. Then we denote by |x|bin the length
of x with respect to some binary encoding. Furthermore, let |x|max be the
magnitude of the largest number in x. A problem P is pseudopolyno-
mially solvable if and only if its time complexity function is bounded
above by a polynomial function of the two variables |x|max and |x|bin.

A decision problem P is a number problem if there exists no polyno-
mial p such that |x|max ≤ p(|x|bin) for all inputs x of P . The partition

problems PART is a number problem, because
n

max
i=1

si is an exponen-

tial function of the length of a binary input string which encodes all
si-values. All other decision problems introduced in this section are not

3.2. NP-complete and NP-hard Problems 47

number problems because no numbers are used to define them (in which
case we set |x|max = 1).

An NP-complete problem P which is not a number problem cannot
be solved by a pseudopolynomial algorithm unless P = NP. Other-
wise, there exists a monotone polynomial function h such that the time
complexity is bounded by h(|x|max, |x|bin) ≤ h(p(|x|bin), |x|bin), i.e. the
NP-complete problem P would be polynomially solvable.

For any decision problem P and any polynomial q let Pq denote the
subproblem of P obtained by restricting P to those instances satisfying
|x|max ≤ q(|x|bin). Then Pq is not a number problem. A decision problem
P is NP-complete in the strong sense if P belongs to NP and there
exists a polynomial q for which Pq is NP-complete.

Lemma 3.5 If P is NP-complete in the strong sense, then P cannot be
solved by a pseudopolynomial time algorithm unless P = NP.

Proof: Let q be a polynomial such that Pq is NP-complete. Pq is not a
number problem. Thus, the existence of a pseudopolynomial algorithm
for P (which is also pseudopolynomial for Pq) would imply P = NP. �

This lemma implies that it is very unlikely that problems which are NP-
complete in the strong sense can be solved pseudopolynomially.

The most straightforward way to prove that a number problem P is
NP-complete in the strong sense is simply to prove for some specific
polynomial q that Pq is NP-complete. In this way we conclude that
NP-complete problems which do not involve numbers are NP-complete
in the strong sense. With the exception of PART, all basic problems
introduced in this section are NP-complete in the strong sense for this
reason. PART can be proved to be pseudopolynomially solvable (Garey &
Johnson [99]). Thus, by Lemma 3.5 it is not NP-complete in the strong
sense (unless P = NP). Another way to prove NP-completeness in the
strong sense is to use pseudopolynomial reductions (Garey & Johnson
[99]): P is NP-complete in the strong sense if P belongs to NP and
there exists a pseudopolynomial reduction from a problem Q, which is
NP-complete in the strong sense, to P .

A pseudopolynomial reduction from a problem Q to a problem P uses
a pseudopolynomial time computable function g (i.e. g(x) is computable
in time polynomial in two variables |x|max and |x|bin.) Furthermore, g
must satisfy the following two conditions:

48 Computational Complexity

• there exists a polynomial q1 such that q1(|g(x)|′bin) ≥ |x|bin for all
inputs x of Q, and

• there exists a two-variable polynomial q2 such that

|g(x)|′max ≤ q2(|x|max, |x|bin)

for all inputs x of Q.

The first condition is almost always satisfied. It requires that g does not
cause a substantial decrease in the input length. The second condition
ensures that the magnitude of the largest number in g(x) does not blow
up exponentially.

3.3 Simple Reductions Between Schedul-

ing Problems

If in a description of a scheduling problem we replace F by J , we get a
simple reduction because the flow shop is a special case of a job shop.
Similarly, we get a simple reduction if we replace tree by prec. Possible
simple reductions are shown by the reduction graphs Gi(i = 1, . . . , 8) in
Figure 3.4.

Note that the reduction of G8 only holds if the objective function is
regular. In this case, s-batching with set-up time s = 0 means that we
may consider only one-element batches, which is equivalent to having no
batches at all.

There are similar relations between objective functions. These relations
are shown in Figure 3.5.
∑

fj reduces to
∑

wjfj by setting wj = 1 for all j. Cmax,
∑

Cj, and∑
wjCj reduce to Lmax,

∑
Tj , and

∑
wjTj , respectively, by setting dj = 0

for all j. Furthermore, we have

max Lj ≤ k ⇔ Cj − dj ≤ k for all j

⇔ Cj − (dj + k) ≤ 0 for all j

⇔ max{0, Cj − (dj + k)} ≤ 0 for all j

⇔ ∑
Tj =

∑
max{0, Cj − (dj + k)} ≤ 0

⇔ ∑
Uj ≤ 0.

Thus Lmax reduces to
∑

Tj and
∑

Uj .

3.3. Simple Reductions Between Scheduling Problems 49

P ◦ F 2 3 4 . . .

PMPM O J k

Q
QMPM X

R G ◦

�

�������
� � ����� ����

� ����
����

�

�
�

��

������

���� �

G1 G2

◦ pmtn ◦ ◦ ◦ pij=1 ◦

chains

◦outtree intree

ri di
pij = p s−batch

tree

sp−graph

prec

�

�
��

�
��

�
��

�
��

�

�

� �

�

� �

G3 G4 G5 G6 G7 G8

Figure 3.4: Graphs of basic reductions.

Each scheduling problem in the class outlined in Chapter 1 corresponds
to a nine-tuple (v1, . . . , v9) where vi is a vertex of the graph Gi shown
in Figures 3.4 and 3.5 (i = 1, . . . , 9). For two problems P = (v1, . . . , v9)
and Q = (w1, . . . , w9) we have P ∝ Q if either vi = wi or Gi contains a
directed path from vi to wi, for i = 1, . . . , 9.

These types of reductions play an instrumental role in the computer pro-
gram MSPCLASS developed by Lageweg, Lawler, Lenstra & Rinnooy
Kan [134]. The program records the complexity status of scheduling
problems on the basis of known results and the use of simple inference

50 Computational Complexity

Cmax

�

∑
Cj Lmax

� �

�
�

�
��

�
�

�
��

∑
wjCj

∑
Tj

∑
Uj

� �

�
�

�
��

∑
wjTj

∑
wjUj

G9

Figure 3.5: Reductions between objective functions.

rules as given above. Of interest are the hardest problems which are
known to be polynomially solvable, the simplest problems which are
known to be NP-hard, as well as the simplest and hardest problems
for which the complexity status is unknown.

For each problem class discussed in this book corresponding updated lists
containing the problems which are

• maximal polynomial solvable,

• minimal NP -hard, and

• minimal and maximal open

can be found under our world-wide-web address

http: //www.mathematik.uni-osnabrueck.de/research/OR/class.

3.4. Living with NP-hard Problems 51

3.4 Living with NP-hard Problems

The knowledge that a scheduling problem is NP-hard is little consolation
for the algorithm designer who needs to solve the problem. Fortunately,
despite theoretical equivalence, not all NP-hard problems are equally
hard from a practical perspective. We have seen that some NP-hard
problems can be solved pseudopolynomially using dynamic programming.
Such an approach may provide satisfactory results if the problems to be
solved are not too large. A method related to dynamic programming
is branch-and-bound, which will be discussed at the end of this section.
The branch-and-bound method is based on the idea of intelligently enu-
merating all feasible solutions.

Another possibility is to apply approximation algorithms. These algo-
rithms produce solutions that are guaranteed to be within a fixed per-
centage of the actual optimum. One of the most successful methods of
attacking hard combinatorial optimization problems is the discrete ana-
log of “hill climbing”, known as local (or neighborhood) search, which
will be discussed at the beginning of this section. Local search methods
generally only provide feasible solutions which are not guaranteed to be
optimal. However, for minimization (maximization) problems, a possible
deviation from the optimal objective value can be bounded if a lower
(upper) bound is available.

Any approach without formal guarantee of performance can be consid-
ered a “heuristic”. Such approaches are useful in practical situations if
no better methods are available.

3.4.1 Local Search Techniques

In this section we will study local search techniques which are useful tools
for solving discrete optimization problems. A discrete optimization
problem can be described as follows. For a given finite set S and a given
function c : S → R, one has to find a solution s∗ ∈ S with

c(s∗) ≤ c(s) for all s ∈ S.

All nonpreemptive scheduling problems introduced thus far are discrete
optimization problems. Local search is an iterative procedure which
moves from one solution in S to another as long as necessary. In order
to systematically search through S, the possible moves from a solution s

52 Computational Complexity

to the next solution should be restricted in some way. To describe such
restrictions, we introduce a neighborhood structure N : S → 2S on
S. For each s ∈ S, N(s) describes the subset of solutions which can
be reached in one step by moving from s. The set N(s) is called the
neighborhood of s.

A neighborhood structure N may be represented by a directed graph
G = (V, A) where V = S and

(s, t) ∈ A iff t ∈ N(s).

G is called the neighborhood graph of the neighborhood structure.

Usually it is not possible to store the neighborhood graph because S has
an exponential size. To overcome this difficulty, a set AM of allowed
modifications F : S → S is introduced. For a given solution s, the
neighborhood of s can now be defined by

N(s) = {F (s) | F ∈ AM}.
Using these definitions, a local search method may be described as
follows. In each iteration we start with a solution s ∈ S and choose a
solution s′ ∈ N(s) (or a modification F ∈ AM which provides s′ = F (s)).
Based on the values c(s) and c(s′), we choose a starting solution of the
next iteration. According to different criteria used for the choice of the
starting solution of the next iteration, we get different types of local
search techniques.

The simplest choice is to take the solution with the smallest value of the
cost function. This choice leads to the well-known iterative improvement
method which may be formulated as follows.

Algorithm Iterative Improvement
1. Choose an initial solution s′ ∈ S;
2. REPEAT
3. s := s′

4. Generate the best solution s′ ∈ N(s);
5. UNTIL c(s′) ≥ c(s)

This algorithm will terminate with some solution s∗. In general, s∗ is
only a local minimum with respect to the neighborhood N (i.e. a
solution such that no neighbor is better than this solution) and may
differ considerably from the global minimum.

3.4. Living with NP-hard Problems 53

A method which seeks to avoid being trapped in a local minimum is
simulated annealing. It is a randomized method because

• s′ is chosen randomly from N(s), and

• in the i-th step s′ is accepted with probability

min{1, exp(−c(s′) − c(s)

ci
)}

where (ci) is a sequence of positive control parameters with lim
i→∞

ci =

0.

The interpretation of this probability is as follows. If c(s′) ≤ c(s), then s
is replaced by s′ with probability one. If, on the other hand, c(s′) > c(s),
then s is replaced by s′ with some probability. This probability decreases
with increasing i. In other words, we can leave a local minimum, but the
probability for doing so will be low after a large number of steps. In
the following algorithm random [0, 1] denotes a function which yields a
uniformly distributed random value between 0 and 1. Furthermore, the
sequence (ci) is created by a function g, i.e. ci+1 = g(ci) for all i.

Algorithm Simulated Annealing
1. i := 0;
2. Choose an initial solution s ∈ S;
3. best := c(s);
4. s∗ := s;
5. REPEAT
6. Generate randomly a solution s′ ∈ N(s);

7. IF random [0, 1] < min{1, exp(− c(s′)−c(s)
ci

)} THEN s := s′;
8. IFc(s′) < best THEN

BEGIN
9. s∗ := s′;
10. best := c(s′);

END;
11. ci+1 := g(ci);
12. i := i + 1

UNTIL stop criterion

54 Computational Complexity

A detailed discussion of how one should define the control function g and
the stop criterion for practical applications is described in Van Laarhoven
and Aarts [205]. One possibility is to stop after a given amount of com-
putation time.

A variant of simulated annealing is the threshold acceptance method.
It differs from simulated annealing only by the acceptance rule for the
randomly generated solution s′ ∈ N(s). s′ is accepted if the difference
c(s′)− c(s) is smaller than some non-negative threshold t. t is a positive
control parameter which is gradually reduced.

Algorithm Threshold Acceptance
1. i := 0;
2. Choose an initial solution s ∈ S;
3. best := c(s);
4. s∗ := s;
5. REPEAT
6. Generate randomly a solution s′ ∈ N(s);
7. IF c(s′) − c(s) < ti THEN s := s′;
8. IF c(s′) < best THEN

BEGIN
9. s∗ := s′;
10. best := c(s′);

END;
11. ti+1 := g(ti);
12. i := i + 1

UNTIL stop criterion

g is a non-negative function with g(t) < t for all t.

Simulated annealing and the threshold acceptance method have the ad-
vantage that they can leave a local minimum. They have the disadvan-
tage that it is possible to get back to solutions already visited. Therefore
oscillation around local minima is possible and this may lead to a sit-
uation where much computational time is spent on a small part of the
solution set. A simple way to avoid such problems is to store all visited
solutions in a list called tabu list T and to only accept solutions which
are not contained in the list. However, storing all visited solutions in a
tabu list and testing if a candidate solution belongs to the list is gener-
ally too consuming, both in terms of memory and computational time.
To make the approach practical, we store attributes which define a set

3.4. Living with NP-hard Problems 55

of solutions. The definition of the attributes is done in such a way that
for each solution visited recently, the tabu list contains a corresponding
attribute. All moves to solutions characterized by these attributes are
forbidden (tabu). In this way cycles smaller than a certain length t,
where t usually grows with the length of the tabu list, will not occur.

Besides a tabu status, a so-called aspiration criterion is associated with
each attribute. If a current move leading to a solution s′ is tabu, then this
move will be considered admissible if s′ satisfies the aspiration criterion
associated with the attribute of s′. For example, we may associate with
each attribute a threshold k for the objective function and allow a move
m to a solution s′ if c(s′) ≤ k, even though m is tabu.

The following algorithm describes the general framework of tabu search.

Algorithm Tabu Search
1. Choose an initial solution s ∈ S;
2. best := c(s);
3. s∗ := s;
4. Tabu-list:= φ;

REPEAT
5. Cand(s) := {s′ ∈ N(s) | the move from s to s′ is not tabu OR

s′ satisfies the aspiration criterion };
6. Generate a solution s ∈ Cand(s);
7. Update the tabu list;
8. s := s;
9. IF c(s) < best THEN

BEGIN
10. s∗ := s;
11. best := c(s)

END
UNTIL stop criterion

Different stopping criteria and procedures for updating the tabu list T
can be developed. We also have the freedom to choose a method for
generating a solution s ∈ Cand(s). A simple strategy is to choose the
best possible s with respect to function c:

c(s) = min{c(s′) | s′ ∈ Cand(s)}. (3.1)

56 Computational Complexity

However, this simple strategy can be much too time-consuming, since
the cardinality of the set Cand(s) may be very large. For these reasons
we may restrict our choice to a subset V ⊆ Cand(s):

c(s) = min{c(s′) | s′ ∈ V }. (3.2)

Usually the discrete optimization problem (3.1) or (3.2) is solved heuris-
tically.

3.4.2 Branch-and-Bound Algorithms

Branch-and-bound is another method for solving combinatorial optimiza-
tion problems. It is based on the idea of intelligently enumerating all
feasible solutions.

To explain the details, we assume again that the discrete optimization
problem P to be solved is a minimization problem. We also consider
subproblems of P which are defined by a subsets S ′ of the set S of feasible
solutions of P . It is convenient to identify P and its subproblems with
the corresponding subset S ′ ⊆ S. Two things are needed for a branch-
and-bound algorithm.

1. Branching: S is replaced by smaller problems Si(i = 1, . . . , r)

such that
r⋃

i=1

Si = S. This process is called branching. Branching

is a recursive process, i.e. each Si is the basis of another branch-
ing. The whole branching process is represented by a branching
tree. S is the root of the branching tree, Si(i = 1, . . . , r) are the
children of S, etc. The discrete optimization problems created by
the branching process are called subproblems.

2. Lower bounding: An algorithm is available for calculating a lower
bound for the objective values of all feasible solutions of a subprob-
lem.

3. Upper bounding: We calculate an upper bound U of the objec-
tive value of P . The objective value of any feasible solution will
provide such an upper bound. If the lower bound of a subproblem
is greater than or equal to U , then this subproblem cannot yield
a better solution for P . Thus, we need not continue to branch
from the corresponding node in the branching tree. To stop the

3.4. Living with NP-hard Problems 57

branching process in many nodes of the branching tree, the bound
U should be as small as possible. Therefore, at the beginning of
the branch-and-bound algorithm we apply some heuristic to find a
good feasible solution with small value U . After branching many
times we may reach a situation in which the subproblem has only
one feasible solution. Then the lower bound LB of the subproblem
is set equal to the objective value of this solution and we replace U
by LB if LB < U .

Algorithm Branch-and-Bound summarizes these basic ideas. In this al-
gorithm, LIST contains all subproblems for which we have to continue
the branching process.

Algorithm Branch-and-Bound
1. LIST:={S};
2. U := value of some heuristic solution;

currentbest:= heuristic solution;
3. WHILE LIST �= φ DO

BEGIN
4. Choose a branching node k from LIST;
5. Remove k from LIST;
6. Generate children child (i) for i = 1, . . . , nk and calculate

corresponding lower bounds LBi;
7. For i := 1 TO nk DO
8. IF LBi < U THEN
9. IF child (i) consists of a single solution THEN

BEGIN
10. U := LBi;
11. currentbest := solution corresponding with

child (i)
END

12. ELSE add child (i) to LIST
END

As an example, we will present a branch-and-bound algorithm for prob-
lem F2||∑Ci which is known to be NP-hard (Garey et al. [100]).

Example 3.5 Problem F2||∑Ci is defined as follows. We are given n
jobs i = 1, . . . , n. Each job has two operations to be performed on one of

58 Computational Complexity

M1

M2

· · · i l · · · h j

· · · i j

Figure 3.6: Different job orders.

two machines. Job i requires a processing time pij on machine j(j = 1, 2)
and each job must complete processing on machine 1 before starting on
machine 2. Let Ci be the time at which job i finishes on machine 2. We

have to find a schedule which minimizes the sum of finishing times
n∑

i=1

Ci.

The next theorem shows that we may restrict our search to a single
permutation that determines the complete schedule.

Theorem 3.6 For the flow-shop problem F2||∑Ci there exists an opti-
mal schedule in which both machines process the jobs in the same order.

Proof: Consider an optimal schedule in which the processing order on
both machines is identical for the first k scheduled jobs, where k < n is
maximal. Let i be the k-th job and let j be the job scheduled on machine
2 after the second operation of job i. Then we may have a situation as
shown in Figure 3.6.

If on machine 1 we shift job j to the position immediately after job i and
move the jobs scheduled previously between job i and job j by pj1 time
units to the right, we get another optimal schedule. This contradicts the
maximality of k. �

According to Theorem 3.6, an optimal schedule may be represented by
a job permutation.

Using this result, a natural way to branch is to choose the first job to
be scheduled at the first level of the branching tree, the second job at
the next level, and so on. What we need next is a lower bound. Such a
bound is derived as follows.

Suppose we are at a node at which the jobs in the set M ⊆ {1, . . . , n}
have been scheduled, where |M | = r. Let ik, k = 1, . . . , n, be the index
of the k-th job under any schedule which is a descendant of the node
under consideration.

3.4. Living with NP-hard Problems 59

The cost of this schedule, which we wish to bound, is

S =
∑

i∈M

Ci +
∑

i/∈M

Ci. (3.3)

For the second sum in (3.3) we will derive two possible lower bounds.

(1) If every job i /∈ M could start its processing on machine 2 immedi-
ately after completing its processing on machine 1, the second sum
in (3.3) would become

S1 =

n∑

k=r+1

[
∑

i∈M

pi1 + (n − k + 1)pik1 + pik2].

If that is not possible, then we have

∑

i/∈M

Ci ≥ S1.

The bound S1 depends on the way the jobs not in M are scheduled.
This dependence can be eliminated by noting that S1 is minimized
by scheduling jobs i /∈ M in an order of nondecreasing pi1-values
(compare to solution of P ‖ ∑

Ci in Section 2.5). Call the resulting
minimum value S∗

1 .

(2) max{Cir ,
∑

i∈M

pi1 +min
i/∈M

pi1} is a lower bound on the start of the first

job i /∈ M on machine 2. Thus, the second sum in (3.3) would be
bounded by

S2 =
n∑

k=r+1

[max{Cir ,
∑

i∈M

pi1 + min
i/∈M

pi1} + (n − k + 1)pik2].

Again, S2 is minimized by scheduling jobs i /∈ M in an order of
nondecreasing pi2-values. Call the resulting minimum value S∗

2 .

Combining the two lower bounds we get

∑

i∈M

Ci + max{S∗
1 , S

∗
2} (3.4)

which is an easily computed lower bound.

60 Computational Complexity

Algorithm Branch-and-Bound may be implemented using lower bound
(3.4) and the simple branching rule. This algorithm can be improved by
exploiting a natural dominance relation introduced by Ignall and Schrage
[117]:

Suppose we have two nodes t and u representing partial sequences
i1, . . . , ir and j1, . . . , jr of the same set of jobs, M . Denote by Ci(t)
and Cj(u) the corresponding finishing times. If

Cir(t) ≤ Cjr(u) (3.5)

and if the accumulated cost under the partial schedule t is no more than
under u, ∑

i∈M

Ci(t) ≤
∑

j∈M

Cj(u) (3.6)

then the best completion of schedule t is at least as good as the best com-
pletion of u. Checking conditions (3.5) and (3.6) for nodes with identical
sets M , nodes may be eliminated from LIST in Algorithm Branch-and-
Bound. �
There are many alternatives to implement a branch-and-bound algo-
rithm. There may be many possibilities to organize the branching. When
calculating lower bounds, one often has a choice between bounds that are
relatively tight, but require much computation time, and bounds that are
not so tight but can be computed quickly. A similar trade-off may exist in
choosing a dominance relation. At each branching step, it is necessary to
select the branching node. The usual alternatives are least-lower-bound-
next, last-in-first-out, or first-in-first-out.

Finally, we should mention that the branch-and-bound algorithm is often
terminated before optimality is reached. In this case we have a complete
solution with cost U , and the lowest lower bound LB of all nodes in the
list provides a lower bound on the optimal cost.

Note that if OPT is the optimal solution value, then U−OPT
OPT

≤ U−LB
LB

,
i.e. U−LB

LB
is an upper bound for the performance ratio for the heuristic

we get by terminating the branch-and-bound procedure before reaching
the optimum.

Which design strategy is taken depends very much on the problem and
its data. Designing a good branch-and-bound procedure usually requires
some computational experience.

Chapter 4

Single Machine Scheduling
Problems

The single machine case has been the subject of extensive research ever
since the early work of Jackson [118] and Smith [188]. In this chapter,
we will present algorithms for single machine scheduling problems which
are polynomial or pseudopolynomial. It is useful to note the following
general result which holds for single machine problems: if all rj = 0 and
if the objective function is a monotone function of the finishing times
of the jobs, then only schedules without preemption and without idle
time need to be considered. This follows from the fact that the optimal
objective value does not improve if preemption is allowed. To see this,
consider a schedule in which some job i is preempted, i.e.

• i is scheduled in [t1, t2[and [t3, t4[where t1 < t2 < t3 < t4, and

• i is neither scheduled in [t2, t3[nor immediately before t1.

If we reschedule so that the part of i occurring in [t1, t2[is scheduled
between t3 − (t2 − t1) and t3, and so that anything scheduled between t2
and t3 is moved back t2 − t1 units of time, we eliminate this preemption
of i without increasing the objective function. Furthermore, no new
preemption is created. Continuing this process, we obtain an optimal
solution for the preemptive problem where no preemption is necessary.

Note that this transformation generally creates infeasibility if rj �= 0 for
some jobs j.

62 Single Machine Scheduling Problems

4.1 Minimax Criteria

4.1.1 Lawler’s Algorithm for 1 | prec | fmax

To solve problem 1 | prec | fmax with fmax =
n

max
j=1

fj(Cj) and fj monotone

for j = 1, . . . , n, it is sufficient to construct an optimal sequence π :
π(1), π(2), . . . , π(n) (π(i) denotes the job in position i). Lawler [135]
developed a simple algorithm which constructs this sequence in reverse
order.

Let N = {1, . . . , n} be the set of all jobs and denote by S ⊆ N the
set of unscheduled jobs. Furthermore, define p(S) =

∑

j∈S

pj . Then the

scheduling rule may be formulated as follows: Schedule a job j ∈ S,
which has no successor in S and has a minimal fj(p(S))-value, as the
last job in S.

To give a precise description of the algorithm, we represent the prece-
dence constraints by the corresponding adjacency matrix A = (aij)
where aij = 1 if and only if j is a direct successor of i. By n(i) we denote
the number of immediate successors of i.

Algorithm 1 | prec | fmax

1. FOR i := 1 TO n DO n(i) :=
n∑

j=1

aij ;

2. S := {1, . . . , n}; p :=
n∑

j=1

pj ;

3. FOR k := n DOWN TO 1 DO
BEGIN

4. Find job j ∈ S with n(j) = 0 and minimal fj(p)-value;
5. S := S\{j};
6. n(j) := ∞;
7. π(k) := j;
8. p := p − pj ;
9. FOR i := 1 to n DO

IF aij = 1 THEN n(i) := n(i) − 1
END

The complexity of this algorithm is O(n2).

Theorem 4.1 Algorithm 1 | prec | fmax constructs an optimal sequence.

4.1. Minimax Criteria 63

Proof: Enumerate the jobs in such a way that 1, 2, . . . , n is the sequence
constructed by the algorithm. Let σ : σ(1), . . . , σ(n) be an optimal se-
quence with σ(i) = i for i = n, n− 1, . . . , r and σ(r − 1) �= r − 1 where r
is minimal. We have the following situation

σ : . . . r − 1 k . . . j r . . . n

It is possible to schedule r−1 immediately before r. Therefore, r−1 and
j have no successor in the set {1, . . . , r−1}. This implies fr−1(p) ≤ fj(p)

with p =
r−1∑

i=1

pi because 1, . . . , n was constructed by the algorithm. Thus,

the schedule we get by shifting the block of jobs between r − 1 and r an
amount of pr−1 units to the left and processing r− 1 immediately before
r is again optimal. This contradicts the minimality of r. �

In the next section, we show that the problem can also be solved effi-
ciently if we have release times rj and either preemption is allowed or all
jobs have unit processing times.

4.1.2 1 |prec;pj =1; rj | fmax and 1 | prec;pmtn; rj | fmax

We assume again that fmax is the maximum of monotone functions. The
first step in solving these problems is to modify the release times rj . If
i → j (i.e. if j is a successor of i) and ri +pi > rj , then job j cannot start
before r′j = ri + pi. Thus, we may replace rj by r′j. The release times
can be modified in a systematic way using the following algorithm. We
assume that the jobs are enumerated topologically (i.e. for all jobs i, j
with i → j we have i < j). If this is not the case, we apply the algorithm
presented in Section 2.7.

Algorithm Modify rj

1. FOR i := 1 TO n − 1 DO
2. FOR j := i + 1 TO n DO
3. IF i → j THEN rj := max{rj, ri + pi}

We denote the modified release time by r′j. Note that if the processing
times are nonzero, then we have

r′j > r′i if i → j. (4.1)

64 Single Machine Scheduling Problems

1 2 3 4 5 6

Figure 4.1: Schedule with three blocks.

Thus, if we schedule jobs according to nondecreasing release times r′j such
that the release times are respected, we always get a feasible schedule.
Such a schedule may consist of several blocks. A block is a maximal set
of jobs which are processed without any idle time between them (see Fig.
4.1). The following algorithm gives a precise description of blocks Bν

constructed in this way. We assume that all release times are modified
and that the jobs are sorted according to these modified release times.

Algorithm Blocks ({1, 2, . . . ,n})
1. i := 1; j := 1;
2. WHILE i ≤ n DO

BEGIN
3. t := ri; Bj := φ;
4. WHILE ri ≤ t AND i ≤ n DO

BEGIN
5. Bj := Bj ∪ {i};
6. t := t + pi;
7. Ci := t
8. i := i + 1;

END;
9. j := j + 1;

END

The Ci-values calculated by the algorithm define the finishing times of
jobs in a feasible nonpreemptive schedule. An example of such a schedule
is shown in Figure 4.1. For a block Bj we define

sj := min
i∈Bj

ri

p(Bj) =
∑

i∈Bj

pi

tj = t(Bj) := sj + p(Bj).

sj and tj are the starting time and the finishing time, respectively,
of Bj.

4.1. Minimax Criteria 65

The discussion thus far is valid for nonpreemptive schedules with jobs
having arbitrary processing times.

Now we turn to problem 1 | prec; pmtn; rj | fmax.

Lemma 4.2 For problem 1 | prec; pmtn; rj | fmax there exists an optimal
schedule such that the intervals [sj, tj] (j = 1, . . . , k) constructed by
Algorithm Blocks are completely occupied by jobs.

Proof: Consider an optimal schedule with the property that [s, t] is
some idle interval contained in some block interval [sj , tj]. Furthermore,
assume that in this schedule [s, t] is the first such interval. We claim
that there exists some job i with ri ≤ s which finishes later than time
s. Otherwise, for the set T of jobs which are processed in time periods
later than time s we would have

r = min{rk | k ∈ T} > s

and in the schedule created by Algorithm Blocks interval [s, r] must be
an idle interval, which is a contradiction.

We move job i into the idle interval so that either [s, t] is completely filled
or job i finishes in [s, t]. Continuing this process, after a finite number of
steps we get a schedule with the desired properties. �

Due to Lemma 4.2 we may treat each block separately. The optimal
solution value for the whole problem is given by the maximum of the
solution values of all blocks.

Let B be such a block. Denote by f ∗
max(B) the optimal solution value

for the jobs in this block. Furthermore, let f ∗
max(B\{j}) be the optimal

solution value for the jobs in B\{j}. Clearly, f ∗
max(B\{j}) ≤ f ∗

max(B) for
all j scheduled in B and thus

f ∗
max(B) ≥ max

j∈B
{f ∗

max(B\{j})}. (4.2)

Furthermore,

fl(t(B)) := min{fj(t(B)) | j ∈ B without successors in B} ≤ f ∗
max(B)

(4.3)
because in an optimal schedule one job k ∈ B without successors in B
finishes at time t(B).

A schedule is now constructed as follows. We solve the problem for the
set of jobs B\{l}. The optimal solution of this problem again has a

66 Single Machine Scheduling Problems

corresponding block structure. Similar to the proof of Lemma 4.2 we
can show that job l can be scheduled in the idle periods of this block
structure yielding a schedule with objective value of at the most

max{f ∗
max(B\{l}), fl(t(B)} ≤ f ∗

max(B)

which is the optimal value for B (see (4.2) and (4.3)).

Now we are ready to formulate a recursive procedure which solves prob-
lem 1 | prec; pmtn; rj | fmax.

Algorithm 1 | prec;pmtn; rj | fmax

S := {1, . . . , n};
f ∗

max := Decompose(S)

Decompose is a recursive procedure which returns the optimal fmax-value
for the problem with the job set S �= φ.

Procedure Decompose (S)
1. If S = ∅ THEN RETURN −∞;
2. IF S = {i} THEN RETURN fi(ri + pi)

ELSE
BEGIN

3. Call Blocks (S);
4. f := −∞;
5. FOR ALL blocks B DO

BEGIN
6. Find l with fl(t(B)) = min{fj(t(B)) | j ∈ B

without successor in B};
7. h := Decompose(B\{l});
8. f := max{f, h, fl(t(B))}

END;
9. RETURN f

END

The procedure Decompose can be easily extended in such a way that the
optimal schedule is calculated as well. We have to schedule job l in the
idle periods of the schedule for B\{l}. This is done from left to right
respecting rl. Due to the fact that all release dates are modified, job l
will respect the precedence relations.

4.2. Maximum Lateness and Related Criteria 67

The complexity of the algorithm is O(n2). This can be seen as follows.
If we exclude the recursive calls in Step 7, the number of steps for the
Procedure Decompose is O(|S|). Thus, for the number f(n) of computa-
tional steps we have the recursion f(n) = cn +

∑
f(ni) where ni is the

number of jobs in the i-th block and
∑

ni ≤ n.

The number of preemptions is bounded by n−1 because each preemption
induces a splitting of blocks.

If all data are integer, then all starting and finishing times of the blocks
are also integer. Thus, if we apply the algorithm to a problem with unit
processing times, no preemption is necessary. Therefore, our algorithm
also solves problem 1 | prec; pj = 1; rj | fmax.

Finally, we would like to mention that when applying Algorithm 1 |
prec; pmtn; rj | fmax to problem 1 | prec | fmax Lawler’s algorithm is
yielded.

4.2 Maximum Lateness and Related Crite-

ria

Problem 1 | rj | Lmax is NP-hard. However, each of the following three
special cases is polynomial solvable:

(a) rj = r for all j = 1, . . . , n.

We get an optimal schedule by applying Jackson’s scheduling rule:

Schedule jobs in order of nondecreasing due dates. (4.4)

This rule is also called the earliest due date (EDD-) rule. It is a
consequence of Lawler’s algorithm.

(b) dj = d for all j = 1, . . . , n.

We get an optimal schedule by applying the following rule:

Schedule jobs in order of nondecreasing release dates. (4.5)

(c) pj = 1 for all j = 1, . . . , n.

For this case Horn [115] formulated the following scheduling rule:

At any time schedule an available job with the smallest due date.
(4.6)

68 Single Machine Scheduling Problems

All of these rules can be implemented in O(n log n) steps. Furthermore,
correctness of all these rules can be proved by using simple interchange
arguments.

The results (a), (b) and (c) may be extended to the corresponding prob-
lems with precedence relations between jobs. In case (b) we have to
modify the release dates before applying rule (4.5). Cases (a) and (c)
require a similar modification to the due dates.

If i → j and d′
i := dj − pj < di, then we replace di by the modified due

date d′
i. Again, the modification can be done in two steps:

1. Find a topological enumeration;

2. Modify due dates dj from j = n down to 1.

Here we will present an algorithm which combines both steps. We as-
sume that the precedence relations are represented by the sets IP (i) of
immediate predecessors of jobs i. Furthermore, ni denotes the num-
ber of immediate successors for job i which have not yet been used, and
F is the set of jobs i with ni = 0.

Algorithm Modify dj

1. FOR i := 1 TO n DO ni := 0;
2. FOR i := 1 TO n DO
3. FOR ALL j ∈ IP (i) DO nj := nj + 1;
4. F := φ;
5. FOR i := 1 TO n DO
6. IF ni = 0 THEN F := F ∪ {i};
7. WHILE F �= φ DO
8. BEGIN
9. Choose j ∈ F ;
10. FOR ALL i ∈ IP (j) DO

BEGIN
11. di := min{di, dj − pj};
12. ni := ni − 1;
13. IF ni = 0 THEN F := F ∪ {i}

END;
14. F := F\{j}

END

4.2. Maximum Lateness and Related Criteria 69

The computational complexity of this algorithm is O(n + e), where e is
the number of precedence relations.

Note that if all processing times are positive and all release dates are
equal, then a sequence with nondecreasing due dates is compatible with
the precedence constraints.

Again, we can prove by exchange arguments that after modifying release
times and due dates the scheduling rules (4.4) to (4.6) provide optimal
schedules. We will give a proof only for problem 1 | prec; rj; pj = 1 | Lmax.
The other proofs are similar.

1 | prec; rj;pj = 1 | Lmax

Theorem 4.3 A schedule constructed by rule (4.6) is optimal for prob-
lem 1 | prec; rj; pj = 1 | Lmax.

S∗

S

t s

j

i

i1 i2 i3 . . . i

Figure 4.2: Schedules S and S∗ for 1 | prec; rj; pj = 1 | Lmax.

Proof: There exists an optimal schedule which is active (i.e. with the
property that no job can be moved to the left without violating the
constraints). In such an active schedule, each job starts at a release time
or at a finishing time of some job. Consider an optimal active schedule
S∗ which coincides as long as possible with the schedule S constructed
by the algorithm (cf. Figure 4.2). Let t be the first time at which a job i
of S and a different job j of S∗ begin. Because ri, rj ≤ t we have di ≤ dj.
This follows from the fact that in S job i was scheduled according to rule
(4.6). Let i1, . . . , il be all jobs scheduled in S∗ between job j and job i
which are (not necessarily immediate) successors of job j. Furthermore,
we assume that these jobs are ordered according to their starting times.
If we replace i by il, il by il−1, . . . , i2 by i1, i1 by j, and j by i, we
again have a feasible schedule S ′. Furthermore, S ′ is optimal because
di ≤ dj ≤ diν for ν = 1, . . . , l. The last inequality follows from the fact
that jobs iν are successors of j and we have modified di-values. �

70 Single Machine Scheduling Problems

1 | prec;pmtn; rj | Lmax

This problem is a special case of the problem discussed in 4.1.2 and can
be solved using the methods developed in 4.1.2.

A more direct way to solve this problem is to apply the following Earliest
Due Date rule (EDD-rule):

Schedule the jobs starting at the smallest rj-value. At
each decision point t given by a release time or a finishing
time of some job, schedule a job j with the following
properties: rj ≤ t, all its predecessors are scheduled,
and it has the smallest modified due date.

(4.7)

Theorem 4.4 A schedule constructed by rule (4.7) is optimal for prob-
lem 1 | prec; pmtn; rj | Lmax.

Proof: The proof is similar to the proof of Theorem 4.3. Let S be a
schedule constructed by applying rule (4.7) and let S∗ be an optimal
schedule. Assume that both schedules coincide until time t. Then we
have a situation as shown in Figure 4.3 where s > t is the earliest time
at which job i is processed in S∗. If in S∗ we eliminate the part of job

S∗

S

j

i

i

t s r

Figure 4.3: Schedules S and S∗ for 1 | prec; pmtn; rj | Lmax.

i starting at time s, move job j and possible successors of j scheduled
between t and s to the right, and reschedule the part of i with length
l = r− s in the created empty time slots, then again we have an optimal
schedule. Continuing this process we get, after a finite number of steps,
an optimal schedule which coincides with S. �

Optimal schedules for the last two problems can be constructed in O(n2)-
time.

If all dj-values are nonpositive, Lmax can be written in the form

n
max
j=1

(Cj − dj) =
n

max
j=1

(Cj + qj) (4.8)

4.2. Maximum Lateness and Related Criteria 71

where qj = −dj ≥ 0 for all j = 1, . . . , n. qj is called the tail of job
j. (4.8) is the finishing time, including post processing times qj , of all
jobs j. Single machine problems with an objective function (4.8) play an
important role in connection with job-shop problems, whereby the release
times rj are called heads. The head-tail problem involves finding a
schedule which is feasible with respect to the heads and minimizes (4.8).

We have the following result.

Corollary 4.5 (a) A preemptive schedule for the one machine head-
tail problem with precedence constraints can be constructed in
O(n2) time using the following rule:

At each time given by a head t or a finishing time t
of some job, schedule a precedence feasible job j with
rj ≤ t which has a largest tail.

(4.9)

(b) If there are no precedence constraints between jobs, then an optimal
schedule for the head-tail problem can be found in O(n log n) time.

Proof: An earliest due date ordering corresponds with a largest tail
ordering. Thus, (a) follows from the results in this section.

To get the O(n logn)-algorithm in (b) we first sort the jobs according to
nondecreasing heads. In addition to this sorted list, we keep a priority
queue with the tails as keys. At each time t this priority queue holds all
unfinished jobs j with rj ≤ t. It allows us to find an available job with
largest tail in constant time. Jobs which become available are inserted
into the queue and a job is deleted after finishing. Insertion and deletion
of a job takes O(logn) time. �

Finally, we will present an efficient algorithm for the problem

1 | prec;pj = 1 | Lmax

This problem, which is a special case of problem 1 | prec; rj; pj = 1 | Lmax,
can be solved more efficiently using an idea of Monma [169].

The first step is to modify the due dates in such a way that they are com-
patible with the precedence relations. This is done by applying Algorithm
Modify dj. Additionally, we assume that all modified due dates are non-
negative. If this is not the case, we subtract the minimum modified due
date dmin from all modified due dates. This decreases the Lmax-value by

72 Single Machine Scheduling Problems

the constant dmin. Furthermore, after this second modification we have
Lmax ≥ 0.

Using the modified due dates dj, an optimal schedule can be calculated
in O(n) time. The corresponding algorithm is based on two ideas:

• the jobs are processed in [0, n]. This implies that no job j with
dj ≥ n is late, even if it is processed as the last job. Because
Lmax ≥ 0, these jobs have no influence on the Lmax-value, and

• to sort the jobs we may use a bucket sorting method i.e. we
construct the sets

Bk :=

{
{j | dj = k} if 0 ≤ k ≤ n − 1

{j | dj ≥ n} if k = n.

Note that all due dates are assumed to be integer. If this is not the case,
we may replace the due dates by d′

j = �dj� where �x� is defined to be
the largest integer not greater than x.

An optimal sequence π may be constructed by

Algorithm 1 | prec;pj = 1 | Lmax

1. FOR k := 0 TO n DO Bk := φ;
2. FOR i := 1 TO n DO
3. IF di < n THEN Bdi

:= Bdi
∪ {i}

4. ELSE Bn := Bn ∪ {i};
5. i := 1;
6. FOR k := 0 TO n DO
7. WHILE there exists a j ∈ Bk DO

BEGIN
8. π(i) := j;
9. Bk := Bk\{j};
10. i := i + 1

END

A similar approach may be used to solve problem 1 | rj ; pj = 1 | Lmax in
O(n) time (see Frederickson [92]).

4.3. Total Weighted Completion Time 73

4.3 Total Weighted Completion Time

We will first discuss problem 1 | tree | ∑
wjCj and some of its special

cases. Problem 1 | sp-graph | ∑
wjCj will be discussed in 4.3.2. We allow

negative wj-values. However, in this case all jobs must be scheduled in

the time interval [0,
n∑

j=1

pj].

4.3.1 1 | tree | ∑
wjCj

We have to schedule jobs with arbitrary processing times on a single
machine so that a weighted sum of completion times is minimized. The
processing times are assumed to be positive. Precedence constraints are
given by a tree. We first assume that the tree is an outtree (i.e. each
node in the tree has at the most one predecessor). Later we will deal
with intrees (in which each node has at the most one successor). The
algorithms presented are due to Adolphson and Hu [3].

Before presenting an algorithm for outtrees, we will prove some basic
properties of optimal schedules, which motivate the algorithm and are
useful for the correctness proof.

First we need to introduce some notation. For each job i = 1, . . . , n,
define qi = wi/pi and let S(i) be the set of (not necessarily immediate)
successors of i including i. For a set of jobs I ⊆ {1, . . . , n} define

w(I) :=
∑

i∈I

wi, p(I) =
∑

i∈I

pi, and q(I) := w(I)/p(I).

Two subsets I, J ⊆ {1, . . . , n} are parallel (I ∼ J) if, for all i ∈ I, j ∈ J ,
neither i is a successor of j nor vice versa. The parallel sets must be
disjoint. In the case {i} ∼ {j} we simply write i ∼ j.

Each schedule is given by a sequence π.

Lemma 4.6 Let π be an optimal sequence and let I, J represent two
blocks (sets of jobs to be processed consecutively) of π such that I is
scheduled immediately before J . Let π′ be the sequence we get from π
by swapping I and J . Then

(a) I ∼ J implies q(I) ≥ q(J),

(b) if I ∼ J and q(I) = q(J), then π′ is also optimal.

74 Single Machine Scheduling Problems

Proof:

(a) Denote by f the objective function
∑

wjCj . We have f(π) ≤ f(π′),
because π is optimal. Thus

0 ≤ f(π′) − f(π) = w(I)p(J) − w(J)p(I).

Division by p(I)p(J) yields

q(I) = w(I)/p(I) ≥ w(J)/p(J) = q(J).

(b) If q(I) = q(J), then f(π) = f(π′) and π′ is also optimal.

�

Theorem 4.7 Let i, j be jobs with i → j and qj = max{qk | k ∈ S(i)}.
Then there exists an optimal schedule in which i is processed immediately
before j.

Proof: Each schedule can be represented by a sequence. Let π be an
optimal sequence with the property that the number l of jobs scheduled
between i and j is minimal. Assume l > 0. Then we have the following
situation:

i · · · k j

We consider two cases.

Case 1: k ∈ S(i)
j is not a successor of k because otherwise j would have at least two
predecessors. Thus, k ∼ j and Lemma 4.6 imply q(k) ≥ q(j). By
definition of j we also have q(j) ≥ q(k) which implies q(j) = q(k). Again,
by Lemma 4.6, jobs j and k can be interchanged without destroying
optimality. This contradicts the minimality of l.

Case 2: k /∈ S(i)
Let h be the last job scheduled between i and j (i included) which belongs
to S(i), i.e. for jobs r in the set K of jobs scheduled between h and j we
have r /∈ S(i). The outtree structure and i → j imply that a predecessor
of j is also a predecessor of i. Thus, a job in K cannot be a predecessor
of j, and we have K ∼ j. This implies q(K) ≥ q(j).

h ∈ S(i) is not a predecessor of some r ∈ K because this would imply
r ∈ S(i). Therefore h ∼ K, which implies q(h) ≥ q(K) ≥ q(j). By

4.3. Total Weighted Completion Time 75

definition of j, we also have q(j) ≥ q(h), which implies q(j) = q(h) =
q(K). Using Lemma 4.6 we can interchange blocks K and j without
destroying optimality. �

The conditions of Theorem 4.7 are satisfied if we choose a job j different
from the root with maximal qj-value, along with its unique father i. Since
there exists an optimal schedule in which i is processed immediately
before j, we merge nodes i and j and make all sons of j additional sons
of i. The new node i, which represents the subsequence πi : i, j, will have
the label q(i) := q(Ji), with Ji = {i, j}. Note that for a son of j, its new
father i (represented by Ji) can be identified by looking for the set Ji

which contains j.

The merging process will be applied recursively.

In the general step, each node i represents a set of jobs Ji and a cor-
responding sequence πi of the jobs in Ji, where i is the first job in this
sequence. We select a vertex j different from the root with maximal
q(j)-value. Let f be the unique father of j in the original outtree. Then
we have to find a node i of the current tree with f ∈ Ji. We merge j
and i, replacing Ji and πi by Ji ∪ Jj and πi ◦ πj , where πi ◦ πj is the
concatenation of the sequences πi and πj .

Details are given by the following algorithm in which

E(i) denotes the last job of πi,

P (i) denotes the predecessor of i with respect to the prece-
dence relation, and later a predecessor of i in an optimal
sequence.

We assume that i = 1 is the root of the tree.

Algorithm 1 | outtree | ∑
wjCj

1. w(1) := −∞;
2. FOR i := 1 TO n DO
3. BEGIN E(i) := i; Ji := {i}; q(i) := w(i)/p(i) END;
4. L := {1, . . . , n};
5. WHILE L �= {1} DO

BEGIN
6. Find j ∈ L with largest q(j)-value;
7. f := P (j);
8. Find i such that f ∈ Ji;

76 Single Machine Scheduling Problems

6 7 3

1;5;1/56;3;23;1;3

1,4,2,5

5 6 7

4

3;1;3

6;3;2

1;5;1/5

4;1;46;2;3

10;2;5

32

1

(a)

7

16;4;4

1,4

2,5

6

3;1;3 6;3;2

3

1;5;1/5

(b) (c)

(d)

1,4,2,5,6,7,3

−∞; 8;−∞

ω(1) = −∞; p(1) = 3; q(1) = −∞

−∞; 4;−∞

−∞; 17;−∞

Figure 4.4: Application of Algorithm 1 | outtree | ∑
wjCj .

9. w(i) := w(i) + w(j);
10. p(i) := p(i) + p(j);
11. q(i) := w(i)/p(i);
12. P (j) := E(i);
13. E(i) := E(j);
14. Ji := Ji ∪ Jj;
15. L := L\{j}

END

Initially, we set w(1) = −∞ to avoid choosing the root in Step 6. After

4.3. Total Weighted Completion Time 77

termination, the optimal sequence π∗ may be constructed using E(1)
and the array P (i). This is done by constructing π∗ from right to left:
j := E(1) is the last job in π∗, P (j) is the predecessor of j in π∗, etc.
The example in Figure 4.4 shows how the algorithm works. Fig. 4.4(a)
shows a problem with 7 jobs. Fig. 4.4(b) i presents the tree after two
iterations. The result after the next operations is shown in Figs 4.4(c)
and (d). The optimal sequence is 1,4,2,5,6,7,3.

Algorithm 1 | outtree | ∑
wjCj can be implemented in O(n log n)-time

if a priority queue is used for the q(i)-values and an efficient union-find
algorithm for sets is used in Steps 8 and 14 (see Aho, Hopcroft, Ullmann
[4]). It remains to prove that an optimal sequence is constructed.

Theorem 4.8 Algorithm 1 | outtree | ∑
wjCj calculates an optimal

sequence in O(n log n)-time.

Proof: We prove optimality by induction on the number of jobs.

Clearly the algorithm is correct if we have only one job. Let P be a
problem with n jobs. Assume that i, j are the first jobs merged by the
algorithm. Let P ′ be the resulting problem with n − 1 jobs, where i is
replaced by I := (i, j) with w(I) = w(i) + w(j) and p(I) = p(i) + p(j).

Let R be the set of sequences of the form

π : π(1), . . . , π(k), i, j, π(k + 3), . . . , π(n)

and let R′ be the set of sequences of the form

π′ : π(1), . . . , π(k), I, π(k + 3), . . . , π(n).

Note that by Theorem 4.7 set R contains an optimal schedule. Further-
more, for the corresponding objective function values fn(π) and fn−1(π

′)
we have

fn(π) − fn−1(π
′)

= w(i)p(i) + w(j)(p(i) + p(j)) − (w(i) + w(j))(p(i) + p(j))

= −w(i)p(j).

We conclude that π ∈ R is optimal if and only if the corresponding
π′ ∈ R′ is optimal. However, π′ has only n − 1 jobs. Thus, by the
induction hypothesis, the sequence constructed by our algorithm must
be optimal. �

To solve a 1 | intree | ∑
wjCj-problem P , we reduce P to a 1 | outtree |∑

w′
jCj-problem P ′ with

78 Single Machine Scheduling Problems

• i is a successor of j in P ′ if and only if j is a successor of i in P ,
and

• w′
j = −wj for j = 1, . . . , n.

Then a sequence π : 1, . . . , n is feasible for P if and only if π′ : n, . . . , 1
is feasible for P ′. Furthermore, we have

f ′(π′) =
n∑

i=1

(−wi)(
∑

j≥i

pj) =
n∑

i=1

(−wi)(
∑

j>i

pj) −
n∑

i=1

wipi

=
n∑

i=1

wi(
∑

j≤i

pj) − (
n∑

i=1

wi)(
n∑

j=1

pj) −
n∑

i=1

wipi

= f(π) − a

where a does not depend on the sequence π. Thus a sequence π for P is
optimal if and only if the reverse sequence π′ is optimal for P ′.

An instance of problem 1 || ∑
wjCj can be reduced to an instance of

problem 1 | outtree | ∑
wjCj by adding a root r with very small pro-

cessing time as a dummy job. After calculating an optimal sequence,
we have to eliminate r to get an optimal sequence for the instance of
1 || ∑

wjCj . This process leads to

Smith’s ratio rule: Put the jobs in order of nondecreasing ratios pj/wj ,
which applies if all wj > 0.

That Smith’s ratio rule leads to an optimal sequence can also be shown
by a simple interchange argument.

If all weights are equal to one, we have problem 1 || ∑
Cj which is solved

by

Smith’s rule: Put the jobs in order of nondecreasing processing times
(“shortest processing time first” -rule).

A related problem is

1 | rj;pmtn | ∑
Cj

This problem can be solved by constructing a schedule from left to right
using:

Modified Smith’s rule: At each release time or finishing time of a
job, schedule an unfinished job which is available and has the smallest
remaining processing time.

4.3. Total Weighted Completion Time 79

S :

S∗ : j i j j i

i

t t′

Figure 4.5: Schedules S∗ and S for 1 | rj; pmtn | ∑
Cj

Theorem 4.9 A schedule constructed by modified Smith’s rule is opti-
mal for problem 1 | rj; pmtn | ∑

Cj.

Proof: The proof is similar to the proof of Theorem 4.4. Therefore we
only discuss the exchange argument which is different.

Assume that an optimal active schedule S∗ coincides with a schedule
S constructed by modified Smith’s rule up to time t. Then we have a
situation as shown in Figure 4.5.

Let job i in S which starts at time t be processed up to time t′. Let j
be the job in S∗ which starts at time t. According to modified Smith’s
rule, the remaining processing time of j is not smaller than the remaining
processing time of job i. Furthermore, we have ri, rj ≤ t. Now in S∗ we
eliminate all intervals of both jobs i and j which do not start before time
t. After this we reschedule these parts in the empty time slots starting at
time t by first scheduling the remaining parts of i and then the remaining
parts of j. The schedule created in this way is again optimal. We repeat
this interchange process until S and the new optimal schedule coincide
up to time t′. �

Surprisingly, the problem 1 | rj ; pmtn | ∑
wjCj is NP-hard.

4.3.2 1 | sp-graph | ∑
wjCj

The results of the previous section can be generalized to job systems
with series-parallel precedence constraints. Recall that a series-parallel
graph can be constructed from singletons (i.e. graphs with one vertex
only) by a sequence of series compositions and parallel compositions. A
parallel composition joins two directed graphs without adding new arcs.
A series composition of two graphs G1 and G2 joins G1 and G2 and adds
all arcs (t, s) where t is a terminal vertex of G1 and s is an initial vertex

80 Single Machine Scheduling Problems

of G2. Note that unlike parallel composition, a series composition is not
a symmetric operation.

Figure 4.6(a) shows a series-parallel graph which is constructed by the
following operations. First we build G1 and G2 by a parallel composition
of the singletons 2,3 and 5,6, respectively. Then we construct G3 and
G4, composing the singleton 1 in series with G1 and G3 in series with the
singleton 4. Finally, we get the graph shown in Figure 4.6(a) by series
composition of G4 and G2.

A series-parallel graph may be represented by its decomposition tree,
which is a binary tree, with singletons as leaves. Each inner node of
the tree represents a composition. Parallel and series composition are
labeled P and S, respectively. Figure 4.6(b) shows a decomposition tree
for the graph in Figure 4.6(a). The algorithm which solves problem
1 | sp-graph | ∑

wjCj works from the bottom of the tree upward, merging
sequences of jobs in an appropriate way. These sequences are associated
with the leaves of the tree. All sequences are disjoint subsequences of
an optimal sequence which can be constructed by concatenating these
subsequences. Initially, we associate with a leaf representing job i the
one element set Si := {i}, consisting of the subsequence i of length 1. In
the general step of the algorithm, two leaves with the same father f are
merged, creating a new set Sf of subsequences. Furthermore, the father
turns into a leaf with subsequences set Sf . The merging process depends
on the type of composition represented by the father.

To describe this composition in more detail we need some further nota-
tions. Let π be a subsequence. Then p(π) and w(π) denote the sum of
processing times and weights of all jobs in subsequence π. Furthermore,
let q(π) = w(π)/p(π). The concatenation of two subsequences π1 and π2

is denoted by π1 ◦ π2.

Let Si(Sj) be the set of subsequences of the left (right) child of f . Then
the following two procedures calculate the set of subsequences of the
father f depending on the label of f .

If f is a parallel node, then we simply have

Parallel (Si,Sj)
1.RETURN Si ∪ Sj

The procedure in the case of a series composition is more involved.

4.3. Total Weighted Completion Time 81

Series (Si,Sj)
1. Find πi ∈ Si with q(πi) = min{q(π) | π ∈ Si};
2. Find πj ∈ Sj with q(πj) = max{q(π) | π ∈ Sj};
3. IF q(πi) > q(πj) THEN RETURN Si ∪ Sj

ELSE
BEGIN

4. π := πi ◦ πj ;
5. Si := Si\{πi};
6. Find πi ∈ Si with q(πi) = min{q(π) | π ∈ Si};
7. Sj := Sj\{πj};
8. Find πj ∈ Sj with q(πj) = max{q(π) | π ∈ Sj};
9. WHILE q(π) ≥ q(πi) OR q(πj) ≥ q(π) DO
10. IFq(π) ≥ q(πi) THEN

BEGIN
11. π := πi ◦ π; Si := Si\{πi};
12. Find πi ∈ Si with q(πi) = min{q(π) | π ∈ Si}

END
ELSE

BEGIN
13. π := π ◦ πj ; Sj := Sj\{πj};
14. Find πj ∈ Sj with q(πj) = max{q(π) | π ∈ Sj}

END;
15. RETURN Si ∪ Sj ∪ {π}

END

Note that after applying Series (Si, Sj), for all πi ∈ Si and πj ∈ Sj ,
the inequalities q(πi) > q(πj) or q(πi) > q(π) > q(πj) hold. Thus, if a
subsequence πi must be processed before a subsequence πj , we must have
q(πi) > q(πj). The following algorithm calculates an optimal sequence
π∗ for problem 1 | sp-graph | ∑

wjCj.

Algorithm 1 | sp-graph | ∑
wjCj

1. FOR ALL leaves i of the decomposition tree DO Si := {i};
2. WHILE there exists a vertex f with two leaves as children DO

BEGIN
3. i := leftchild(f); j := rightchild(f);
4. IF f has label P THEN
5. Sf := Parallel (Si, Sj)

ELSE

82 Single Machine Scheduling Problems

(a)

4

8

1

10

2

2

2

4

3

5

6

(c)

2
1/2

4
1/10

1/2
3

(b)

1
1/3

5
1/8

6
1/4

4
1/10

1/8 1/4

1/3
2; 3

1/2 1/2
1

4
1/10

1,2,3
3/7

(d) (e) (f)

5; 6

3/71,2,3; 4
4, 6
1/76

1,2.3;
1/8

1/8 1/4
5;

6

3/7 1/10

5; 6
1/8 1/4

p1 = 3

S

S

P

S

P

S

S

S

S
S

S

Figure 4.6: Application of Algorithm 1 | sp-graph | ∑
wjCj.

6. Sf := Series (Si, Sj);
7. Eliminate i and j and replace f by a leaf with label Sf

END;
8. Construct π∗ by concatenating all subsequences of the single

leaf in an order of nonincreasing q-values.

Figure 4.6 demonstrates how the algorithm works if applied to the prob-
lem shown in Figure 4.6(a) with wi = 1 for i = 1, . . . , 6. The leaves of
the trees of Figure 4.6(b) to (f) are labeled with the corresponding sets of

4.3. Total Weighted Completion Time 83

sequences. The corresponding q(π)-value is shown below each sequence
π. If we concatenate the three sequences shown in Figure 4.6(f) in such
a way that the sequence with the larger q-value is first, we get the opti-
mal sequence π∗ : 1, 2, 3, 4, 6, 5. The algorithm runs in O(n log n) time if
implemented appropriately (Aho et al. [4]).

To prove that Algorithm 1 | sp-graph | ∑
wjCj is correct, we first show

that it satisfies the following invariance property: There exists an opti-
mal solution which can be constructed by concatenating all subsequences
associated with the leaves of the current decomposition tree (i.e. all sub-
sequences σ ∈ ⋃

Si).

The invariance property holds initially, when each job corresponds with a
one element subsequence associated with some leaf of the decomposition
tree. Furthermore, a parallel composition keeps the invariance property
satisfied.

Lemma 4.10 The invariance property is satisfied during all steps of
Algorithm 1 | sp-graph | ∑

wjCj.

Proof: If the invariance property is violated, it will be violated when
concatenating two subsequences. Consider the first concatenation violat-
ing the invariance property. We assume that this is a concatenation πi◦πj

done in Step 4 of the procedure Series(Si, Sj). Concatenations of Steps
11 and 13 are treated similarly. The subsequence πi ◦πj is not contained
in an optimal solution σ but all subsequences created previously are con-
tained in some σ. Thus, σ contains πi with q(πi) = min{q(π) | π ∈ Si}
and πj with q(πj) = max{q(π) | π ∈ Sj}. Furthermore, in σ, sub-
sequence πi is scheduled before πj and between πi and πj we have a
sequence σ1, σ2, . . . , σr. Additionally, q(πi) ≤ q(πj) holds. We assume
that the optimal solution σ is chosen in such a way that the number r of
subsequences σν between πi and πj is minimal.

If σ1 ∈ Si, then q(σ1) ≥ min{q(π) | π ∈ Si} = q(πi) and we can swap σ1

and πi without increasing the objective value. This follows from the fact
that σ1 can be processed before πi because q(σ1) ≥ q(πi). Furthermore,
according to the proof of Lemma 4.6, the objective function does not
increase when swapping σ1 and πi. Thus, the new sequence is optimal,
contradicting the minimality of r. Similarly, we can swap σr and πj if
σr ∈ Sj . Because σs ∈ Si and σt ∈ Sj imply s < t, the only cases left are:

Case 1: σt ∈ Sj and σt+1, . . . , σr /∈ Si ∪ Sj .

Let ρ := σt+1 ◦ . . . ◦ σr. If q(σt) ≤ q(ρ), we may swap σt with ρ, and σt

84 Single Machine Scheduling Problems

with πj without increasing the objective function. This follows from the
fact that there is no job k in one of the subsequences σt+1, . . . , σr which
is a successor of a job in σt ∈ Sj. Otherwise, due to the construction
of the series parallel graph, such a job k would also be a successor of
a job in πj ∈ Sj, which is impossible. If q(ρ) ≤ q(πj), we may swap ρ
with πj and then σt with πj . The remaining case q(σt) > q(ρ) > q(πj)
contradicts the definition of πj .

Case 2: σ1, . . . , σs−1 /∈ Si ∪ Sj and σs ∈ Si is symmetric to Case 1.

Case 3: σ1, . . . , σr /∈ Si ∪ Sj.

Let ρ := σ1 ◦ . . .◦σr. If q(ρ) ≥ q(πi), then we may swap ρ and πi without
increasing the objective function. If q(ρ) < q(πi) ≤ q(πj), then we may
swap ρ and πj . �

Theorem 4.11 Algorithm 1 | sp-graph | ∑
wjCj is correct.

Proof: Due to Lemma 4.10 there exists an optimal sequence σ which
contains all subsequences created by the algorithm. If, in σ, we permute
these subsequences according to nonincreasing q-values, the objective
value will not increase. Furthermore, the subsequences are constructed
in such a way that the sequence resulting from this permutation is com-
patible with the precedence constraints. Hence, it must be optimal. �

4.4 Weighted Number of Late Jobs

In this section we will discuss problems with objective function
∑

wjUj .
Karp [124] has shown that problem 1 || ∑

wjUj is NP-hard. In Sec-
tion 2.7 we presented a pseudopolynomial algorithm based on dynamic
programming for this problem. In connection with this algorithm, we
have shown that an optimal schedule is defined by the set of early jobs
scheduled in order of nondecreasing due dates. In this section we will
consider special cases of problem 1 ‖ ∑

wjUj . Furthermore, we will
discuss preemptive versions of the problem.

4.4.1 1 | rj;pj = 1 | ∑
wjUj

In Section 2.5 we showed that problem 1 | rj; pj = 1 | ∑
wjUj can be

reduced to an assignment problem that can be solved in time O(n3). In

4.4. Weighted Number of Late Jobs 85

this section we will show that the problems 1 | pj = 1 | ∑
wjUj and

1 | pj = 1 | ∑
Uj can be solved more efficiently.

4.4.2 1 | pj = 1 | ∑
wjUj

The following algorithm constructs an optimal set S of early jobs. To
get an optimal schedule, we schedule the jobs in S according to nonde-
creasing due dates. All jobs which do not belong to S are late and will
be scheduled in an arbitrary order after the jobs in S. The idea of the
algorithm is to try to schedule the jobs in earliest due date order. If a
job i to be scheduled next is late, then i is scheduled and a job k with
smallest wk-value is deleted from the set of scheduled jobs.

In the following algorithm we assume that 1 ≤ d1 ≤ d2 ≤ . . . ≤ dn. t
denotes the current time.

Algorithm 1 | pj = 1 | ∑
wjUj

1. t := 1; S := φ;
2. FOR i := 1 TO n DO

BEGIN
3. IF di ≥ t THEN
4. BEGIN Add i to S; t := t + 1 END

ELSE
5. IF there exists a job k ∈ S with wk < wi THEN

BEGIN
6. Delete job k from S where k is the largest index such that

the value wk is minimal;
7. Add i to S

END
END

To see that this algorithm constructs a feasible schedule, consider the
first job i with di < t. Because the previous job l was scheduled on time
we have t−1 ≤ dl ≤ di. Furthermore, job i is scheduled to finish at time
t − 1 because k is deleted. Thus, i is on time.

The complexity of the algorithm is O(n logn) if the scheduled jobs are
organized in a priority queue with respect to the wj-values. For a cor-
rectness proof we refer to Section 5.1 where P | pj = 1 | wjUj is solved
by a generalized version of the algorithm.

86 Single Machine Scheduling Problems

When solving problem 1 | pj = 1 | ∑
Uj , we need only the first four steps

of Algorithm 1 | pj = 1 | ∑
wjUj . Furthermore, all jobs j with dj ≥ n are

on time in any schedule. Therefore, we put these jobs at the end of any
schedule. To sort the other jobs according to nondecreasing due dates,
we use bucket sorting (see Section 4.2): Calculate for k = 1, . . . , n − 1
the sets

Sk := {j | dj = k}
and order the jobs according to the set sequence S1, S2, . . . , Sn−1. This
can be done in O(n) time. Thus, problem 1 | pj = 1 | ∑

Uj can be solved
in O(n) time.

4.4.3 1 || ∑
Uj

To generate an optimal schedule, it is sufficient to construct a maximal
set S of jobs which are on time. The optimal schedule then consists of
the sequence of jobs in S ordered according to nondecreasing dj-values
followed by the late jobs in any order.

An optimal set S is constructed by the following rule.

Add jobs to S in order of nondecreasing due dates. If the addition of job
j results in this job being completed after dj, then a job in S with the
largest processing time is marked to be late and removed from S.

The following algorithm, in which t denotes the current schedule time,
implements this rule.

Algorithm 1 ‖ ∑
Uj

1. Enumerate jobs such that d1 ≤ d2 ≤ . . . ≤ dn;
2. S := φ; t := 0;
3. FOR i := 1 to n DO

BEGIN
4. S := S ∪ {i};
5. t := t + pi;
6. IF t > di THEN

BEGIN
7. Find job j in S with a largest pj-value;
8. S := S\{j};
9. t := t − pj

END
END

4.4. Weighted Number of Late Jobs 87

Theorem 4.12 Algorithm 1 || ∑
Uj constructs the set S of early jobs

in an optimal schedule.

Proof: We denote a schedule by P = (S, F), where S is the set of early
jobs and F is the set of the late jobs.

Let j be the first job which, in Step 8 of the algorithm, is deleted from
set S. We first prove that there exists an optimal schedule P = (S, F)
with j ∈ F . Denote by k the job which was added to S in the preceding
Step 4. Then

pj =
k

max
i=1

pi.

Furthermore, when scheduling the partial sequence 1, 2, . . . , j − 1, j +
1, . . . , k no job is late. This follows from the fact that in 1, 2, . . . , k − 1
no job is late and pk ≤ pj . We replace j by k and reorder jobs according
to nondecreasing due dates.

Now consider an optimal schedule P ′ = (S ′, F ′) with j ∈ S ′. There exists
a sequence

π : π(1), . . . , π(m), . . . , π(r), π(r + 1), . . . , π(n)

with

F ′ = {π(r + 1), . . . , π(n)} (4.10)

dπ(1) ≤ . . . ≤ dπ(r) (4.11)

{π(1), . . . , π(m)} ⊆ {1, . . . , k} (4.12)

{π(m + 1), . . . , π(r)} ⊆ {k + 1, . . . , n} (4.13)

j ∈ {π(1), . . . , π(m)}. (4.14)

Since d1 ≤ d2 ≤ . . . ≤ dn, there always exists m such that (4.12) and
(4.13) are satisfied. Furthermore, (4.14) holds because j ∈ S ′∩{1, . . . , k}.
Since {π(1), . . . , π(m)} ⊆ S ′, no job in {π(1), . . . , π(m)} is late. On the
other hand, there is a late job in {1, . . . , k} in any schedule. Thus we
have

{π(1), . . . , π(m)} � {1, . . . , k},
which implies that we have a job h(1 ≤ h ≤ k) with h /∈ {π(1), . . . ,
π(m)}. We delete job j from {π(1), . . . , π(m)} and replace it by h. If we
order all jobs in {π(1), . . . , π(m)} ∪ {h}\{j} ⊆ {1, . . . , k}\{j} according
to nondecreasing due dates, all jobs are on time because {1, . . . , k}\{j}

88 Single Machine Scheduling Problems

has this property. If we add the jobs π(m + 1), . . . , π(r) to the set
{π(1), . . . , π(m)} ∪ {h}\{j} and sort all jobs according to nondecreas-
ing due dates, all jobs are on time because ph ≤ pj implies

m∑

i=1

pπ(i) − pj + ph ≤
m∑

i=1

pπ(i).

Thus we get an optimal schedule P = (S, F) with j ∈ F .

Now it is not difficult to prove the theorem by induction on the number n
of jobs. Clearly the algorithm is correct if n = 1. Assume the algorithm
is correct for all problems with n−1 jobs. Let P = (S, F) be the schedule
constructed by the algorithm and let P ′ = (S ′, F ′), an optimal schedule
with j ∈ F ′.

Then, by optimality, we have | S |≤| S ′ |.
If we apply the algorithm to the set of jobs {1, . . . , j−1, j +1, . . . , n} we
get an optimal schedule of the form (S, F\{j}). Because (S ′, F ′\{j}) is
feasible for the reduced problem, we have | S ′ |≤| S |. Thus | S ′ |=| S |
and P is optimal. �

4.4.4 1 | rj;pmtn | ∑
wjUj

Karp [124] has shown that problem 1 ‖ ∑
wjUj is NP-hard. At the

beginning of this chapter, we saw that a preemptive schedule for a one
machine problem with monotone objective function and rj = 0 for all
jobs j can be polynomially transformed into a nonpreemptive schedule
without increasing the objective function. This implies that 1 | pmtn |∑

wjUj is NP-hard as well. In this section we present an O(nk2W 2)-
algorithm for problem 1 | rj; pmtn | ∑

wjUj where k is the number of

distinct release dates and W =
n∑

j=1

wj. This gives an O(n5)-algorithm for

problem 1 | rj; pmtn | ∑
Uj.

We assume that all data are integer and that wj > 0 for j = 1, . . . , n.

A set of jobs S is feasible if there exists a schedule for S in which all
jobs are completed on time. To check whether a set is feasible, we may
apply the following simplified version of the EDD rule (see 4.7):

Schedule the jobs in time starting with the smallest rj-value.
At each decision point given by a release time or a finish time
of some job, schedule a job with smallest due date.

(4.15)

4.4. Weighted Number of Late Jobs 89

S is feasible if and only if there are no late jobs in the EDD schedule for
S. This is an immediate consequence of Theorem 4.4. If S has n jobs,
the corresponding EDD schedule can be constructed in O(n logn) time.
Our problem reduces to that of finding a maximum-weight feasible set
S.

For a given nonempty feasible set S define

r(S) = min
j∈S

rj ; p(S) =
∑

j∈S

pj ; w(S) =
∑

j∈S

wj .

Furthermore, let C(S) be the completion time of the last job in S in an
EDD schedule.

An EDD schedule consists of periods of continuous processing, separated
by periods of idle time during which no job is available for processing.
This means that S can be partitioned into subsets S1, S2, . . . , Sl with
C(Si) = r(Si)+p(Si) < r(Si+1) for i = 1, . . . , l−1. A feasible subset S is
a block if S is processed continuously from start to finish and S cannot
be decomposed into subsets that are schedule-disjoint, i.e. C(S) = r(S)+
p(S), and S is not the union of subsets S1, S2 such that C(S1) < r(S2).

Next we will present a dynamic programming solution for problem 1 |
rj ; pmtn | ∑

wjUj . Again, we assume that

d1 ≤ d2 ≤ . . . ≤ dn.

Let k denote the number of distinct release dates.

For a release date r and an integer w with 0 ≤ w ≤ W define

Cj(r, w) := min{C(S) | S ⊆ {1, . . . , j} is feasible; r(S) ≥ r; w(S) ≥ w}

if there exists a feasible set S ⊆ {1, . . . , j} with r(S) ≥ r, w(S) ≥ w and
Cj(r, w) = ∞ otherwise.

The maximum weight of a feasible set is given by the largest value of w

such that Cn(rmin, w) is finite, where rmin :=
n

min
j=1

rj .

We compute the values Cj(r, w) in n iterations, j = 1, 2, . . . , n, starting
with the initial conditions

C0(r, 0) = r for all r,

C0(r, w) = ∞ for all r and w > 0.

90 Single Machine Scheduling Problems

j cannot be contained in a feasible set S with r(S) > rj. Hence,

Cj(r, w)

{
= Cj−1(r, w) if r > rj

≤ Cj−1(r, w) otherwise .

It follows that at iteration j we have only to compute the value of Cj(r, w)
for which r ≤ rj .

Let S ⊆ {1, 2, . . . , j} with Cj(r, w) = C(S). If j /∈ S, then we have
Cj(r, w) = Cj−1(r, w). If j ∈ S, we consider two cases.

Case 1: Job j starts after C(S\{j}).
Either C(S\{j}) ≤ rj , or C(S\{j}) > rj . In the first case, we have
C(S) = rj + pj . In the second case, jobs in S\{j} are processed con-
tinuously in the interval [rj , C(S\{j})] because otherwise j would start
before C(S\{j}). We conclude that

Cj(r, w) = max{rj, C(S\{j})} + pj .

We may assume that S\{j} is such that

C(S\{j}) = Cj−1(r, w − wj).

If this is not so, replace S\{j} by a feasible subset of {1, 2, . . . , j−1} for
which this is satisfied.

It follows that

Cj(r, w) = max{rj, Cj−1(r, w − wj)} + pj.

Case 2: Job j starts before C(S\{j}).
In this case there is idle time in the EDD schedule for the set S\{j}
after rj . Let S ′ be the last block in S\{j}, i.e. r(S ′) = max{r(B) | B
is a block of S\{j}}. Then r(S ′) ≥ rj, and it must be the case that
C(S ′) = Cj−1(r(S

′), w(S ′)), otherwise S is not optimal.

Also, we may assume that the total amount of processing done on jobs in
(S\{j})\S ′ in the interval [rj , r(S

′)] is minimal, with respect to all fea-
sible sets S ′′ ⊆ {1, 2, . . . , j − 1} with r(S ′′) ≥ r, C(S ′′) ≤ r(S ′), w(S ′′) ≥
w − wj − w(S ′).

Let r, r′ be release dates with r ≤ rj < r′, and w′′ be an integer with
0 ≤ w′′ < W . Define Pj−1(r, r

′, w′′) to be the minimum amount of
processing done in the interval [rj , r

′] with respect to feasible sets S ′′ ⊆

4.4. Weighted Number of Late Jobs 91

{1, 2, . . . , j − 1} with r(S ′′) ≥ r, C(S ′′) ≤ r′, w(S ′′) ≥ w′′. If there is no
such feasible set S ′′, then let Pj−1(r, r

′, w′′) = ∞.

Using this notation, the amount of time available for processing job j in
the interval [rj , r(S

′)] is

(r(S ′) − rj) − Pj−1(r, r(S
′), w − wj − w(S ′)).

The amount of processing done on j after time r(S ′) is

max{0, pj − (r(S ′) − rj) + Pj−1(r, r(S
′), w − wj − w(S ′))}

and the completion time of the last job in S is

Cj(r, w) = min
r′,w′

{Cj−1(r
′, w′)

+ max{0, pj − r′ + rj + Pj−1(r, r
′, w − wj − w′)}}. (4.16)

Putting all of the above observations together, we obtain the recurrence
relation

Cj(r, w) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cj−1(r, w)

max{rj, Cj−1(r, w − wj)} + pj

min
r′,w′

{Cj−1(r
′, w′) + max{0, pj − r′ + rj

+Pj−1(r, r
′, w − wj − w′)}},

(4.17)

where the inner minimization is taken over all distinct release dates r′ >
rj such that r′ = r(S ′) ∈ {r1, . . . , rj−1} and all integers w′, 0 ≤ w′ <
w−wj . It is important to note that (4.17) is valid only if the right-hand
side does not exceed dj; if this is not so we set Cj(r, w) = ∞.

Now we have to consider how to compute the values Pj−1(r, r
′, w′′) for

r ≤ rj < r′ and 0 ≤ w′′ < W . If w′′ = 0, then Pj−1(r, r
′, w′′) = 0. If w′′ >

0, then Pj−1(r, r
′, w′′) is realized by a nonempty set S ′′ ⊆ {1, . . . , j − 1}.

If r(S ′′) > r, then Pj−1(r, r
′, w′′) = Pj−1(r(S

′′), r′, w′′). Also, in general,
we observe that

Pj−1(r, r
′, w′′) ≤ Pj−1(r

+, r′, w′′)

where r+ is the smallest distinct release date, if any, larger than r.

If r(S ′′) = r, then let S ′ ⊆ S ′′ be the block of S ′′ such that r(S ′) = r.
We may assume that C(S ′) = Cj−1(r, w(S ′)). Hence, the total amount
of processing done on S ′ in the interval [rj , r

′] is

max{0, Cj−1(r, w(S ′)) − rj}.

92 Single Machine Scheduling Problems

Let r′′ be the smallest release date greater than or equal to Cj−1(r, w(S ′)).
Then the total amount of processing done on S ′′\S ′ in the interval [rj , r

′]
is Pj−1(r

′′, r′, w′′ − w(S ′)). Hence, the total amount of processing done
on S ′′ in the interval [rj , r

′] is

max{0, Cj−1(r, w(S ′)) − rj} + Pj−1(r
′′, r′, w′′ − w(S ′)). (4.18)

The right-hand side of (4.18) must be minimal with respect to sets
S ′, S ′′\S ′, with r(S ′) = r, C(S ′) ≤ r(S ′′\S ′) = r′′, w(S ′)+w(S ′′\S ′) = w′′.
It follows that we now have

Pj−1(r, r
′, w′′) = min

⎧
⎪⎪⎨

⎪⎪⎩

Pj−1(r
+, r′, w′′)

min
0<w′≤w′′

{max{0, Cj−1(r, w
′) − rj}

+Pj−1(r
′′, r′, w′′ − w′)}

(4.19)

with the initial conditions

Pj−1(r, r
′, 0) = 0 for j = 1, . . . , n

P0(r, r
′, w′′) = ∞ for w′′ > 0.

We now analyze the time complexity of the dynamic programming com-
putation.

At each of n iterations j = 1, . . . , n, there are O(k2W) of the Pj−1(r, r
′,

w′′) values to compute, one for each combination of r, r′, w′′. By (4.19),
each Pj−1(r, r

′, w′′) is found by minimization over O(W) choices of w′ ≤
w′′. Hence, the time required to compute the Pj−1(r, r

′, w′′) values at
each iteration is bounded by O(k2W 2). There are O(kW) of the Cj(r, w)
values to compute, one for each combination of r and w. By (4.17), each
Cj(r, w) is found by minimization over O(kW) choices of r′, w′. Hence,
the time required to compute the Cj(r, w) values at each iteration is
bounded by O(k2W 2). The maximum weight of a feasible subset can
be obtained by finding the maximum value w such that Cn(rmin, w) is
finite. This takes O(W) time. It follows that the overall time bound is
O(nk2W 2).

To construct a maximum-weight feasible set, we compute an incidence
vector of the set realizing each Pj−1(r, r

′, w′′) and Cj(r, w) value. The
computation of these incidence vectors can be carried out in O(n2k2W)
time, which is dominated by the O(nk2W 2) time bound obtained above.

Finally, we will discuss some special cases. When release dates and due
dates are similarly ordered, i.e. when

r1 ≤ r2 ≤ . . . ≤ rn and d1 ≤ d2 ≤ . . . ≤ dn,

4.5. Total Weighted Tardiness 93

then Case 2 never applies. In such a situation the recurrence relations
(4.17) simplify to

Cj(r, w) = min

{
Cj−1(r, w)

max{rj, Cj−1(r, w − wj)} + pj

or, if we set Cj(w) := Cj(rmin, w), to

Cj(w) = min

{
Cj−1(w)

max{rj , Cj−1(w − wj)} + pj .

This means that we have an O(nW) computation for this special case,
with the maximum weight of a feasible set being given by the largest w
such that Cn(w) is finite. When all job weights are equal, the time bound
becomes O(n2).

When all release dates are equal to zero, the recurrence further simplifies
to

Cj(w) = min{Cj−1(w), Cj−1(w − wj) + pj}
which, due to the fact that preemption does not improve the optimal solu-
tion value, leads to an alternative algorithm for the 1 ‖ ∑

wjUj-problem
which has complexity O(n

∑
wj) (compare Algorithm 1 ‖ ∑

wjUj in
Section 2.7 with complexity O(n

∑
pj)).

4.5 Total Weighted Tardiness

In this section we consider the problem of scheduling n jobs j = 1, . . . , n

on one machine such that
n∑

j=1

wjTj is minimized, where Tj = max{0, Cj −
dj} is the tardiness of job j. As before, dj denotes the due date of job j.

If we have arbitrary processing times, then there is no hope of finding
polynomial algorithms because problem 1 ‖ ∑

Tj is NP-hard. This has
been shown by Du & Leung [81]. Due to the remark at the beginning of
this chapter, this implies that 1 | pmtn | ∑

Tj is NP-hard as well.

On the other hand problem 1 | rj; pj = 1 | ∑
wjTj can be solved in O(n3)

time using the matching model we introduced for solving the more general
problem 1 | rj; pj = 1 | ∑

fj with monotone functions fj . However,
1 | prec; pj = 1 | ∑

Tj has been shown to be NP-hard (Lenstra &
Rinnooy Kan [152]).

94 Single Machine Scheduling Problems

Finally, we will present a pseudopolynomial algorithm for problem 1 ‖∑
Tj which is due to Lawler [136]. This algorithm is also applicable to the

problem 1 ‖ ∑
wjTj if the weights wj are agreeable with the processing

times pj (i.e. if pi < pj implies wi ≥ wj for j = 1, . . . , n), which are
assumed to be integer. Clearly the weights wj = 1 are agreeable.

The algorithm is based on the following results.

Lemma 4.13 Let the jobs have arbitrary weights. Let π be any sequence
which is optimal with respect to given due dates d1, d2, . . . , dn, and let
Cj be the completion time of job j(j = 1, . . . , n) for this sequence. Let
d′

j be chosen such that

min{dj, Cj} ≤ d′
j ≤ max{dj, Cj}.

Then any sequence π′ which is optimal with respect to the due dates
d′

1, d
′
2, . . . , d

′
n is also optimal with respect to d1, d2, . . . , dn.

Proof: Let T denote total weighted tardiness with respect to d1, d2, . . . ,
dn and let T ′ denote total weighted tardiness with respect to d′

1, d
′
2, . . . ,

d′
n. Let π′ be any sequence which is optimal with respect to d′

1, d
′
2, . . . , d

′
n

and let C ′
j be the completion time of job j for this sequence. We have

T (π) = T ′(π) +

n∑

j=1

Aj (4.20)

T (π′) = T ′(π′) +

n∑

j=1

Bj (4.21)

where, if Cj ≤ dj

Aj = 0

Bj = −wj max{0, min{C ′
j, dj} − d′

j}
and if Cj ≥ dj

Aj = wj(d
′
j − dj)

Bj = wj max{0, min{C ′
j, d

′
j} − dj}.

(4.20) holds, because if Cj ≤ dj , then

Cj = min{dj, Cj} ≤ d′
j ≤ max{dj, Cj} = dj

4.5. Total Weighted Tardiness 95

which implies

wj max{0, Cj − dj} = wj max{0, Cj − d′
j} = 0.

If, on the other hand, dj ≤ Cj, then

dj = min{dj, Cj} ≤ d′
j ≤ max{dj, Cj} = Cj

which implies

wj max{0, Cj − dj} = wj max{0, Cj − d′
j} + wj(d

′
j − dj).

(4.21) holds because if Cj ≤ dj, then Cj ≤ d′
j ≤ dj and, by considering

the cases C ′
j ≤ d′

j, d′
j ≤ C ′

j ≤ dj, and dj ≤ C ′
j, we verify

wj max{0, C ′
j − dj} = wj max{0, C ′

j − d′
j}−wj max{0, min{C ′

j, dj}− d′
j}.

If dj ≤ Cj, then dj ≤ d′
j ≤ Cj and we have

wj max{0, C ′
j − dj} = wj max{0, C ′

j − d′
j}+ wj max{0, min{C ′

j, d
′
j}− dj}.

Clearly, Aj ≥ Bj for all j and therefore
n∑

j=1

Aj ≥
n∑

j=1

Bj. Moreover,

T ′(π) ≥ T ′(π′) because π′ minimizes T ′. Therefore, the right-hand side
of (4.20) dominates the right-hand side of (4.21). It follows that T (π) ≥
T (π′) and π′ is optimal with respect to d1, d2, . . . , dn. �

Lemma 4.14 Suppose the jobs are agreeably weighted. Then there ex-
ists an optimal sequence π in which job i precedes job j if di ≤ dj and
pi < pj , and in which all on time jobs are in nondecreasing due date
order.

Proof: Let π be an optimal sequence. Suppose that i follows j in π,
where di ≤ dj and pi < pj. Because the jobs are agreeably weighted, pi <
pj implies wj ≤ wi. Therefore, wj max{0, T − dj} ≤ wi max{0, T − di}
holds for all T . Thus, if we shift job j to the position immediately after
job i, then this new schedule must also be optimal.

Furthermore, if job i follows job j where di ≤ dj and i and j are both
on time, then moving j to the position immediately following i keeps j
on time. Thus, we get a sequence for which the total weighted tardiness
does not increase.

96 Single Machine Scheduling Problems

Repeated application of these two rules yields an optimal sequence sat-
isfying the conditions of the lemma. �

In order to simplify exposition somewhat, let us assume that all process-
ing times are distinct. If this is not the case, then they may be perturbed
infinitesimally without violating the assumption of agreeable weighting
and without changing the problem significantly.

Theorem 4.15 Let j = 1, . . . , n be jobs with d1 ≤ d2 ≤ . . . ≤ dn and
with agreeable weights. Let k be a job with a largest processing time.
Then there exists a job j∗ ≥ k such that in an optimal schedule all jobs
ν = 1, . . . , j∗ with ν �= k are scheduled before k and the remaining jobs
are scheduled after k.

Proof: Let C ′
k be the latest possible completion time of job k in any

sequence which is optimal with respect to due dates d1, d2, . . . , dn. Let π
be a sequence which is optimal with respect to the due dates

d1, d2, . . . , dk−1, d
′
k = max{C ′

k, dk}, dk+1, . . . , dn

and which satisfies the conditions of Lemma 4.15. Let Ck be the com-
pletion time of job k for π. By Lemma 4.13, the sequence π is optimal
with respect to the original due dates d1, d2, . . . , dn. Thus, by definition
of C ′

k, we have Ck ≤ C ′
k ≤ max{C ′

k, dk} = d′
k.

Therefore, job k cannot be preceded by any job j such that dj > d′
k.

Otherwise, job j would also be on time, in violation of the conditions
of Lemma 4.15. On the other hand, job k must be preceded by all jobs
j �= k such that dj ≤ d′

k because pj < pk. If we choose j∗ to be the
largest integer such that dj∗ ≤ d′

k = max{C ′
k, dk}, then j∗ ≥ k because

dk ≤ d′
k and j∗ has the desired properties. �

The algorithm calculates, for each j ≥ k, an optimal schedule in which
the job set I1 = {1, . . . , j}\{k} is scheduled before k and the set I2 =
{j + 1, . . . , n} is scheduled after k. Thus, for each j, the problem splits
into two subproblems. In the first problem, jobs in I1 are to be scheduled

Sequence (t, I)
1. IF I = φ THEN σ∗ :=empty sequence

ELSE
BEGIN

2. Let i1 < i2 < . . . < ir be the jobs in I;
3. Find ik with pik := max{pi | i ∈ I};

4.5. Total Weighted Tardiness 97

4. f ∗ := ∞;
5. FOR j = k TO r DO

BEGIN
6. I1 := {iν | 1 ≤ ν ≤ j; ν �= k}; t1 := t;
7. σ1 := Sequence (t1, I1);

8. I2 := {iν | j < ν ≤ r}; t2 := t +
j∑

ν=1

piν ;

9. σ2 := Sequence (t2, I2);
10. σ := σ1 ◦ ik ◦ σ2;
11. Calculate the objective value f(σ, t) for σ;
12. IFf(σ, t) < f ∗ THEN

BEGIN
13. σ∗ := σ;
14. f ∗ := f(σ, t)

END
END

END;
15. RETURN (σ∗)

optimally starting at time t1 = 0. In the second problem, jobs in I2 are

to be scheduled optimally starting at time t2 =
j∑

i=1

pi. This suggests the

recursive procedure Sequence (t, I), which calculates an optimal sequence
σ∗ for the job set I starting at time t.

Algorithm 1 ‖ ∑
wjTj

σ∗ := Sequence (0, {1, . . . , n})

calculates an optimal sequence σ∗ if the weights are agreeable with the
processing times.

Assume that all processing times are different. Then it is easy to estab-
lish a time bound for this algorithm. The sets I which appear in the
arguments of the recursive procedure are of the form

Ii,j,k := {ν | i ≤ ν ≤ j; pν < pk},
i.e. they are completely characterized by the index triples i, j, k. We

also have at the most p :=
n∑

j=1

pj different t-values. Thus, we need to

call procedure Sequence (t, I) at the most O(n3p) times. Furthermore,

98 Single Machine Scheduling Problems

for fixed k, all values max{pν | ν ∈ Iijk} for i, j = 1, . . . , n, i < j can
be calculated in O(n2) time. Thus, the computational complexity for all
Steps 3 is O(n3). For each call of the recursive procedure the other steps
can be done in constant time. Thus, we have an O(n3p)-algorithm or

O(n4pmax)-algorithm where pmax =
n

max
i=1

pi.

4.6 Problems with Release Times and Iden-

tical Processing Times

In this section we consider the problem of scheduling jobs j with integer
release times rj and pj = p for all j where p is an arbitrary integer. If the
release times are not multiples of p such problems are in general more
complex than problems with unit processing times pj = 1.

4.6.1 1 | rj;pj = p | ∑
wjUj

A schedule for a subset X of jobs is said to be feasible if and only if

• all jobs in X start after or at their release date and are completed
before or at their due date, and

• jobs do not overlap in time.

We have to find a feasible set X of jobs such that the total weight
∑

j∈X

wj

is maximal.

This problem can be solved by a dynamic programming algorithm. For
this algorithm we assume that jobs are indexed in an non-decreasing
order of due dates. The following lemma shows that the starting times
of all jobs can be restricted to a set of at most n2 values.

Lemma 4.16 An optimal schedule exists in which each job starts at a
time belonging to the set

T := {rj + lp | j = 1, . . . , n; l = 0, . . . , n − 1}

Proof: Consider an optimal schedule S. Let j1, j2, . . . , jn be the corre-
sponding processing order of the jobs in S. By the following procedure S

4.6. Problems with Release Times and Identical Processing Times 99

can be transformed into a feasible schedule which has the desired prop-
erties. The first job j1 can be shifted to the left until its starting time
and the release date of j1 coincide. Then j2 is shifted to the left until
it hits its release date or the finishing time of j1. In the general step jν

is left-shifted such that its starting time is equal to the maximum of its
release date and the finishing time of the (shifted) job jν−1. �

For any integer k ≤ n and s, e ∈ T with s ≤ e let Uk(s, e) be the set of
jobs j ≤ k with s ≤ rj < e. Furthermore, let W ∗

k (s, e) be the maximal
total weight of a subset of Uk(s, e) such that there is a feasible schedule
S for the jobs in the subset with

• S is idle before time s + p and after time e, and

• the starting times of jobs on S belong to T .

W ∗
k (s, e) is set equal to 0 if no subset providing a feasible schedule exists.

To solve problem 1 | rj ; pj = p | ∑
wjUj we apply the following algo-

rithm.

Algorithm 1 | rj;pj = p | ∑
wjUj

1. Enumerate the jobs such that d1 ≤ d2 ≤ . . . ≤ dn;
2. FOR ALL s, e ∈ T with s ≤ e DO W0(s, e) := 0;
3. FOR k := 1 TO n DO
4. FOR ALL s, e ∈ T with s ≤ e DO

Wk(s, e) :=

{
Wk−1(s, e) if rk /∈ [s, e)

max{Wk−1(s, e), W
′
k(s, e)} otherwise

where

W ′
k(s, e) := max{wk + Wk−1(s, s

′) + Wk−1(s
′, e)|s′ ∈ Tj;

max{rk, s + p} ≤ s′ ≤ min{dk, e} − p};
5. Calculate Wn(min

t∈T
t − p, max

t∈T
t)

Note, that W ′
k(s, e) corresponds to a feasible schedule in which job k

starts at time s′. Furthermore, the maximum over the empty set is
defined to be equal to zero. Due to the fact that T contains O(n2)
elements the time complexity of this algorithm is O(n7).

Next we will show the values Wk(s, e) calculated by the algorithm are
equal to W ∗

k (s, e). Thus, in Step 5 of the algorithm the optimal solution
value is calculated.

100 Single Machine Scheduling Problems

Theorem 4.17 For k = 0, . . . , n and all s, e ∈ T with s ≤ e the equality

Wk(s, e) = W ∗
k (s, e) (4.22)

holds.

Proof: We prove (4.22) by the induction on k. Clearly, the assertion is
true for k = 0. Assume that (4.22) holds for k − 1.

If rk /∈ [s, e) then Uk(s, e) = Uk−1(s, e) which implies Wk(s, e) = Wk−1

(s, e) = W ∗
k−1(s, e) = W ∗

k (s, e). It remains to show that

max{Wk−1(s, e), W
′
k(s, e)} = W ∗

k (s, e) if rk ∈ [s, e). (4.23)

This is accomplished in two steps by showing that each side of (4.23) is
smaller or equal than the other side.

We first prove

max{Wk−1(s, e),W′
k(s, e)} ≤ W∗

k(s, e).

We have Wk−1(s, e) = W ∗
k−1(s, e) ≤ W ∗

k (s, e) because Uk−1(s, e) ⊆
Uk(s, e). Furthermore, if W ′

k(s, e) > 0 then there exists some s′ with

max{rk, s + p} ≤ s′ ≤ min{dk, e} − p

such that

W ′
k(s, e) = wk + Wk−1(s, s

′) + Wk−1(s
′, e)

= wk + W ∗
k−1(s, s

′) + W ∗
k−1(s

′, e)

≤ W ∗
k (s, s′).

The inequality holds because wk + W ∗
k−1(s, s

′) + W ∗
k−1(s

′, e) is the total
weight of a schedule of

• job k scheduled in [s′, s′ + p],

• a subset of jobs of Uk−1(s, s
′) scheduled in [s + p, s′], and

• a subset of jobs of Uk−1(s
′, e) scheduled in [s′ + p, e].

Finally, we prove

4.6. Problems with Release Times and Identical Processing Times 101

W∗
k(s, e) ≤ max{Wk−1(s, e),W′

k(s, e)}.
Let Z be a subset of Uk(s, e) corresponding with W ∗

k (s, e). If k /∈ Z then
W ∗

k (s, e) = W ∗
k−1(s, e) = Wk−1(s, e) and we finished the proof. Other-

wise, let S∗ be the schedule realizing W ∗
k (s, e) and let s′ be the starting

time of job k. We must have max{rk, s + p} ≤ s′ ≤ min{dk, e} − p.

We denote by Zb and Za the subset of jobs in Z which in S∗ are scheduled
before and after job k, respectively. We may assume that the release dates
of all jobs in Za are greater than the starting time s′ of job k. Otherwise
let i be a job in Za with ri ≤ s′. Because the jobs are ordered according
to non-decreasing due-dates we have di ≤ dk. Thus, by swapping jobs i
and k in S∗ the total weight does not change. We continue this process
until the new schedule S∗ has the desired property. We now have

W ∗
k (s, e)=

∑

j∈Z

wj =
∑

j∈Zb

wj+wk+
∑

j∈Za

wj ≤ W ∗
k−1(s, s

′)+wk+W ∗
k−1(s

′, e)

= Wk−1(s, s
′) + wk + Wk−1(s

′, e) ≤ W ′
k(s, e) (4.24)

because clearly Zb ⊆ Uk−1(s, s
′) and, due to our assumption, Za ⊆

Uk−1(s
′, e). holds. �

The ideas of this section can be extended to the preemptive case. Baptiste
[15] has shown that the corresponding problem 1 | rj ; pj = p; pmtn |∑

wjUj can be solved in time O(n10).

4.6.2 1 | rj;pj = p | ∑
wjCj and 1 | rj;pj = p | ∑

Tj

To derive polynomial algorithms for the problems 1 | rj; pj = p | γ with
γ ∈ {∑wjCj,

∑
Tj} where wj ≥ 0 for all jobs j we use techniques similar

to those derived in the previous section. We apply these techniques to a
more general objective function

∑
fj(Cj) where the functions f1, . . . , fn

have the following properties:

• fj is non-decreasing for j = 1, . . . , n (4.25)

• fi−fj is non-decreasing for all i, j = 1, . . . , n with i < j. (4.26)

∑
wjCj and

∑
Tj =

∑
max{0, Cj − dj} are functions of the form∑

fj(Cj) satisfying (4.25) and (4.26) if the jobs are enumerated in such
a way that w1 ≥ w2 ≥ . . . ≥ wn and d1 ≤ d2 ≤ . . . ≤ dn, respectively.

102 Single Machine Scheduling Problems

Due to the fact that the functions fj satisfy (4.25), for problem 1 | rj ; pj =
p | ∑

fj there exists an optimal schedule in which each job starts at a
time belonging to the set

T := {rj + lp | j = 1, . . . , n; l = 0, . . . , n − 1}
The proof of this claim is identical with the proof of Lemma 4.16.

For any integer k ≤ n and s, e ∈ T with s ≤ e let Uk(s, e) be the set of
jobs j ≤ k with s ≤ rj < e. Furthermore, let F ∗

k (s, e) be the minimal
value that the function ∑

j∈Uk(s−p,e)

fj(Cj)

can take among the feasible schedules S of all jobs in Uk(s − p, e) such
that

• S is idle before time s and after time e, and

• the starting times of jobs on S belong to T .

If non such schedule S exists then we define F ∗
k (s, e) := ∞.

The following dynamic programming algorithm which solves problem 1 |
rj; pj = p | ∑

fj is similar to the algorithm formulated in Section 4.6.1.

Algorithm 1 | rj;pj = p | ∑
fj

1. Enumerate the jobs such that condition (4.26) holds;
2. FOR ALL s, e ∈ T with s ≤ e DO F0(s, e) := 0;
3. FOR k := 1 TO n DO
4. FOR ALL s, e ∈ T with s ≤ e DO

Fk(s, e) =

{
Fk−1(s, e) if rk /∈ [s − p, e)

F ′
k(s, e) otherwise

where

F ′
k(s, e) = min {Fk−1(s, tk) + Fk−1(tk + p, e) + fk(tk + p) | tk ∈ T ;

max{s, rk} ≤ tk ≤ e − p} ;

5. Calculate Fn

(
n

min
i=1

ri, maxt∈T t + p

)

The time complexity of this algorithm which calculates the optimal so-
lution value in Step 5 is O(n7).

The next theorem shows that the algorithm is correct.

4.6. Problems with Release Times and Identical Processing Times 103

Theorem 4.18 For k = 0, . . . , n and all s, e ∈ T with s ≤ e

Fk(s, e) = F ∗
k (s, e) (4.27)

holds.

Proof: The proof is similar to the proof of Theorem 4.17. Assume that
(4.27) is true for k − 1 (clearly (4.27) is true for k = 0).

If rk /∈ [s−p, e) then Uk(s−p, e) = Uk−1(s−p, e) which implies (4.27). It
remains to show that (a) F ∗

k (s, e) ≤ F ′
k(s, e) and (b) F ′

k(s, e) ≤ F ∗
k (s, e)

when rk ∈ [s − p, e).

(a) Assume that F ′
k(s, e) is finite. Then some tk ∈ T with max{s, tk} ≤

tk ≤ e − p exists such that

F ′
k(s, e)=Fk−1(s, tk) + Fk−1(tk + p, e) + fk(tk + p)

=F ∗
k−1(s, tk) + F ∗

k−1(tk + p, e) + fk(tk + p) ≥ F ∗
k (s, e).

(b) Assume that F ∗
k (s, e) is finite. Among all feasible schedules pro-

viding the value F ∗
k (s, e) we choose a schedule S such that the cor-

responding vector (Ci1, Ci2 , . . . , Cil) of finishing times where i1 <
i2 < . . . < il is lexicographic minimal. Let tk ∈ T be the starting
time of job k in S. Then

F ∗
k (s, e)=

∑

j∈Uk(s−p,e)

fj(Cj)

=
∑

j∈Uk(s−p,tk)

fj(Cj) +
∑

j∈Uk(tk ,e)

fj(Cj) + fk(tk + p)

≥Fk−1(s, tk) + Fk−1(tk + p, e) + fk(tk + p)

≥F ′
k(s, e).

To prove that the first inequality holds we have to show that all
jobs of Uk−1(s − p, tk) are scheduled in S in the interval [s, tk] and
all jobs of Uk−1(tk, e) are scheduled in S in the interval [tk + p, e].
We prove the first assertion (the second follows similarly).

Assume there is a job j with s − p ≤ rj < tk starting in S at a
time tj > tk, i.e. starting after job k. By swapping k and j we get

104 Single Machine Scheduling Problems

a feasible schedule S ′ with

ϑ :=objective value of S ′ - objective value of S

= fj(tk + p) + fk(tj + p) − fj(tj + p) − fk(tk + p)

= (fj − fk)(tk + p) − (fj − fk)(tj + p).

Now j < k implies ϑ ≤ 0 because fj − fk is non-decreasing. Thus,
S ′ is optimal too. However, this contradicts the lexicographic min-
imality of S. �

4.7 Complexity of Single Machine Prob-

lems

The results of this chapter are summarized in Tables 4.1 and 4.2. The
processing and release times are assumed to be integer. In Table 4.1
we list problems which are polynomially solvable and their complexity
bounds. In addition to the problems discussed in Section 4.6, we listed
two other problems with pj = p. 1 | prec; rj; pj = p | ∑

Ci can be
solved by constructing blocks as for 1 | prec; rj; pj = 1 | fmax in Section
4.1.2. 1 | prec; rj; pj = p | Lmax is a special case of a problem with
identical parallel machines which will be discussed in Section 5.1. Table
4.2 summarizes some problems which are pseudopolynomially solvable.

Table 4.3 contains the easiest problems which are NP-hard if we consider
the elementary reductions of Figures 3.5 and 4.7.

pj = 1

◦

rj

rj; pj = 1

rj ; pj = p

rj; pj = p; pmtn

rj ; pmtn

� � �

�

�
�

���

�
�

���

��������������������

Figure 4.7: Elementary reductions for single machine problems.

Some of the reductions in Figure 4.7 are based on the fact that only sched-
ules without preemption have to be considered in the following cases:

4.7. Complexity of Single Machine Problems 105

1 | prec; rj | Cmax 4.2 Lawler [135] O(n2)

1 | prec; rj; pj = p | Lmax 5.1 Simons [185] O(n3 log log n)

1 | prec | fmax 4.1.1 Lawler [135] O(n2)

1 | prec; rj; pj = 1 | fmax 4.1.2 O(n2)

1 | prec; rj; pmtn | fmax 4.1.2 Baker et al. [13] O(n2)

1 | rj; pmtn | ∑
Cj 4.3.1 Baker [12] O(n log n)

1 | prec; rj; pj = p | ∑
Cj 4.1.2 O(n2)

1 | prec; rj; pj = p, pmtn | ∑
Cj Baptiste et al. [21] O(n2)

1 | rj; pj = p | ∑
wjCj 4.6.2 Baptiste [18] O(n7)

1 | sp-graph | ∑
wjCj 4.3.2 Lawler [137] O(n log n)

1 ‖ ∑
Uj 4.4.2 Moore [171] O(n log n)

1 | rj; pmtn | ∑
Uj 4.4.3 Lawler [141] O(n5)

Baptiste [14] O(n4)

1 | rj; pj = p | ∑
wjUj 4.6.1 Baptiste [15] O(n7)

1 | rj; pj =p; pmtn|∑ wjUj Baptiste [15] O(n10)

1 | rj; pj = p | ∑
Tj 4.6.2 Baptiste [18] O(n7)

1 | rj; pj = 1 | ∑
fj 2.5 O(n3)

1 | rj; p;pmtn | ∑
Tj Tian et al. [197] O(n2)

Table 4.1: Polynomially solvable single machine problems.

1 ‖ ∑
wjUj 2.7 Lawler & Moore [147]

1 | rj; pmtn | ∑
wjUj 4.4.3 Lawler [141]

1 ‖ ∑
Tj 4.5 Lawler [136]

Table 4.2: Pseudopolynomially solvable single machine problems.

• All release times are zero and the objective function is monotone.

• All release times are integer, the objective function is monotone,
and we have unit processing times.

Problems which are NP-hard in the strong sense are marked with “∗”.

Also, references for the corresponding NP-hardness proofs are given. In
the objective functions fmax = max fj and

∑
fj , the functions fj are

106 Single Machine Scheduling Problems

∗1 | rj | Lmax Lenstra et al. [155]

∗1 | rj |
∑

Cj Lenstra et al. [155]

∗1 | prec | ∑
Cj Lenstra & Rinnooy Kan [152]

∗1 | chains; rj ; pmtn | ∑
Cj Lenstra [150]

∗1 | prec; pj = 1 | ∑
wjCj Lenstra & Rinnooy Kan [152]

∗1 | chains; rj ; pj = 1 | ∑
wjCj Lenstra & Rinnooy Kan [154]

∗1 | rj; pmtn | ∑
wjCj Labetoulle et al. [133]

∗1 | chains; pj = 1 | ∑
Uj Lenstra & Rinnooy Kan [154]

1 ‖ ∑
wjUj Karp [124]

1 ‖ ∑
Tj Lawler [136]

Du & Leung [81]

∗1 | chains; pj = 1 | ∑
Tj Leung & Young [157]

∗1 ‖ ∑
wjTj Lawler [136]

Lenstra et al. [155]

Table 4.3: NP-hard single machine problems.

assumed to be monotone.

Chapter 5

Parallel Machines

In this chapter, we discuss the problem of scheduling jobs on parallel
machines. Problem P ‖ ∑

Ci and, more generally, problem R ‖ ∑
Ci

are the only nonpreemptive problems with arbitrary processing times
known to be known polynomially solvable. Problems P2 ‖ Cmax and P2 ‖∑

wiCi are NP-hard. For these reasons, we essentially discuss problems
in which preemption is possible or in which all jobs have unit processing
times. In the first section of this chapter, problems with independent
jobs are discussed. In the second section, we permit precedence relations
between jobs.

5.1 Independent Jobs

In the following three sections, problems with identical, uniform, and
unrelated parallel machines are discussed separately.

5.1.1 Identical Machines

Consider n jobs Ji(i = 1, . . . , n) with processing times pi (i = 1, . . . , n)
to be processed on m identical parallel machines M1, . . . , Mm. Then the
following problem can be solved polynomially.

108 Parallel Machines

m = 3
i
pi

1
4

2
5

3
3

4
5

5
4

1 2
2 3 4
4 5

LB = 70

Figure 5.1: Optimal schedule for an instance of P | pmtn | Cmax.

P | pmtn | Cmax

A lower bound for this problem is

LB := max{max
i

pi, (
n∑

i=1

pi)/m}.

A schedule meeting this bound can be constructed in O(n) time: fill
the machines successively, scheduling the jobs in any order and splitting
jobs into two parts whenever the above time bound is met. Schedule
the second part of a preempted job on the next machine at zero time.
Figure 5.1 shows a schedule constructed in this way. Due to the fact that
pi ≤ LB for all i, the two parts of a preempted job do not overlap.

P | pmtn; ri | Cmax and P | pmtn | Lmax

We will show in Section 5.1.2 that the corresponding problems with uni-
form machines Q | pmtn; ri | Cmax and Q | pmtn | Lmax, which are special
cases of Q | pmtn; ri | Lmax, can be solved in time O(n logn+mn). Thus,
the problem with identical machines can be solved with the same time
bound.

P | pmtn; ri | Lmax

Associated with each job Ji there is a release time ri and a due date
di with ri ≤ di. We have to find a preemptive schedule on m identical

machines such that the maximum lateness
n

max
i=1

{Ci − di} is minimized.

To this end, we first consider the decision version of this problem: Given
some threshold value L does there exist a schedule such that

n
max
i=1

Li =
n

max
i=1

{Ci − di} ≤ L? (5.1)

5.1. Independent Jobs 109

In addition, we want to find such a schedule if it exists. (5.1) holds if
and only if

Ci ≤ dL
i := L + di for all i = 1, . . . , n.

Thus, all jobs i must finish before the modified due dates dL
i and cannot

start before the release times ri, i.e. each job Ji must be processed
in an interval [ri, d

L
i] associated with Ji. We call these intervals time

windows.

Next we address the general problem of finding a preemptive schedule
for jobs Ji(i = 1, . . . , n) on m identical machines such that all jobs Ji

are processed within their time windows [ri, di]. This problem may be
reduced to a maximum flow problem in a network constructed as follows.

Let

t1 < t2 < . . . < tr

be the ordered sequence of all different ri-values and di-values. Consider
the intervals

IK := [tK , tK+1] of length TK = tK+1 − tK for K = 1, . . . , r − 1.

We associate a job vertex with each job Ji and an interval vertex with
each interval IK . Furthermore, we add two dummy vertices s and t.
Between these vertices, arcs and capacities for these arcs are defined as
follows. From s we have an arc to each job vertex Ji with capacity pi

and from each interval vertex IK we have an arc to t with capacity mTK .
There exists an arc from Ji to IK iff job Ji can be processed in IK , i.e.
iff ri ≤ tK and tK+1 ≤ di. The capacity of this arc is TK . Denote this
network, which is shown in Figure 5.2, by N = (V, A, c).

It is not difficult to prove that there exists a schedule respecting all time

windows if and only if the maximum flow in N has the value
n∑

i=1

pi. If

this is the case, the flow xiK on the arc (Ji, IK) corresponds with the
time period in which job Ji is processed in the time interval IK and we
have

r−1∑

K=1

xiK = pi for i = 1, . . . , n (5.2)

and
n∑

i=1

xiK ≤ mTK for K = 1, . . . , r − 1. (5.3)

110 Parallel Machines

s Ji

J1

Jn

IK

I1

Ir−1

t
TK

···

···

pi

p1

pn

mTK

mT1

mTr−1

Figure 5.2: A network for problem P | pmtn; ri | Lmax.

Then each job is completely processed and the total amount of processing
time in IK is at the most mTK , which is the capacity of m machines.
Furthermore,

xiK ≤ TK for all (Ji, IK) ∈ A. (5.4)

If there exists a maximal flow satisfying (5.2) to (5.4), a feasible solution
for the scheduling problem with time windows is constructed by schedul-
ing partial jobs JiK with processing times xiK > 0 in the intervals IK on
m identical machines. For each K, this is essentially a P | pmtn | Cmax-
problem, which has a solution with Cmax ≤ TK because of (5.3) and
(5.4).

Because network N has at the most O(n) vertices, the maximum flow
problem can be solved in O(n3) time. Furthermore, the schedule respect-
ing the windows can be constructed in O(n2) time. Thus, the window
problem can be solved in O(n3) steps.

To solve problem P | pmtn; ri | Lmax, we apply binary search on different

L-values. We assume di ≤ ri + n
n

max
j=1

pj, which implies −n
n

max
j=1

pj ≤
Lmax ≤ n

n
max
j=1

pj . This yields an algorithm which approximates the value

of the solutions with absolute error ε in at the most O(n3(log n+log(
1

ε
)+

log(
n

max
j=1

pj))) steps.

5.1. Independent Jobs 111

P | pi = 1; ri | Lmax

It is convenient to assume that the jobs are indexed in such a way that

r1 ≤ r2 ≤ . . . ≤ rn.

The problem has an easy solution if all release times ri are integer. In this
case, we get an optimal schedule by scheduling available jobs in the order
of nondecreasing due dates. More specifically, if at the current time t not
all machines are occupied and there is an unscheduled job Ji with ri ≤ t,
we schedule such a job with the smallest due date. Technical details
are given by the following algorithm in which K counts the number of
machines occupied immediately after Step 7 at current time t, m is the
number of machines, M is the set of unscheduled jobs available at time
t, and j is a counter for the number of scheduled jobs.

Algorithm P | pi = 1; ri integer | Lmax

1. j := 1;
2. WHILE j ≤ n DO

BEGIN
3. t := rj; M := {Ji | Ji is not scheduled; ri ≤ t}; K := 1;
4. WHILE M �= φ DO

BEGIN
5. Find job Ji in M with smallest due date;
6. M := M\{Ji};
7. Schedule Ji at time t;
8. j := j + 1;
9. IF K + 1 ≤ m THEN K := K + 1

ELSE
BEGIN

10. t := t + 1;
11. K := 1;
12. M := M ∪ {Ji | Ji in not scheduled; ri ≤ t}

END
END

END

The inner “while”-loop creates blocks of jobs which are processed with-
out idle time on the machines between the scheduled jobs. After finishing
such a block, the current rj-value is the starting time of the next block.

112 Parallel Machines

m = 2

i 1 2 3 4

ri 0 0.2 0.5 0.5

di 2 3 1.9 3

M2

M1

0.2 0.5 1 1.9 2
2 4

1 3

Earliest due date schedule

Lmax = 0.1

0.2 0.5 1 1.9 2
3 4

1 2

Better schedule

Lmax ≤ 0

Figure 5.3: Earliest due date schedule is not optimal for problem P |
pi = 1; ri | Lmax.

The algorithm runs in O(n log n) time if a priority queue data structure
is used for M .

Correctness of the algorithm may be proved as follows. Let S be a sched-
ule constructed by the algorithm and denote by S∗ an optimal schedule
with the following properties:

• the first r − 1 jobs scheduled in S are scheduled at the same time
in both schedules S and S∗, and

• r − 1 is maximal.

Thus, the job Jr is scheduled in S at some time t while Jr is scheduled
in S∗ at some later time. If some machine is idle in S∗ at time t, Jr may
be moved to that machine and processed at time t. Otherwise, there
exists a Job Jk with dr ≤ dk which is processed in S∗ at time t but not
processed in S at time t. Then we interchange Jk and Jr in S∗. In both
cases S∗ remains optimal, which contradicts the maximality of r − 1.

Scheduling available jobs with smallest due dates fails to provide an opti-
mal schedule if the release times are arbitrary rational numbers, as shown
in Figure 5.3.

Next we consider the more complicated case in which all release times
are rational or even real numbers. To simplify the notation we denote
the jobs by 1, . . . , n instead of J1, . . . , Jn.

First we introduce the notion of a list schedule. A list is a permutation
π : π(1), π(2), . . . , π(n) of all jobs. A corresponding cyclic list sched-
ule is constructed by the following algorithm. In connection with this

5.1. Independent Jobs 113

algorithm, it is convenient to number the machines from 0 to m−1. The
starting time of job i in this schedule is denoted by x(i), h(i) denotes the
machine on which i is to be processed, and t(j) is the finishing time of
the last job on machine j.

Algorithm cyclic list schedule
1. FOR j := 0 TO m − 1 DO t(j) := 0;
2. FOR i := 1 TO n DO

BEGIN
3. Schedule job i on machine h(i) := i(mod m) at time

x(i) := max{t(h(i)), ri};
4. t(h(i)) := x(i) + 1

END

The following lemma shows that we only need to consider cyclic list
schedules if we want to solve a problem of the form P | pi = 1; ri; di | f
with regular objective function f .

Lemma 5.1 Let f be a regular objective function and assume that P |
pi = 1; ri; di | f has a feasible solution. Then there always exists a cyclic
list schedule which is optimal.

Proof: We will show that any feasible solution (x(i), h(i)) can be trans-
formed into a feasible cyclic list schedule without increasing the objective
function value. Such a transformation is done in two steps. The first step
changes the machine on which the jobs are scheduled as follows.

Consider a permutation π with

x(π(1)) ≤ x(π(2)) ≤ . . . ≤ x(π(n)).

Then we schedule job π(k) on machine k(mod m). The corresponding
schedule has no overlapping jobs on the same machine. This can be seen
as follows. Assume that two jobs π(i0) and π(i1), with i0 = jm + k and
i1 = lm + k where l > j, overlap in an interval I. We have x(π(i0)) ≤
x(π(i)) ≤ x(π(i1)) for all i0 ≤ i ≤ i1 and the processing time of all jobs is
equal to one. Therefore, all jobs π(i) (i0 ≤ i ≤ i1) are processed during
the interval I. This contradicts the feasibility of (x(i), h(i)) because there
are at least m + 1 jobs π(i) (i0 ≤ i ≤ i1).

In the second step, the new schedule is transformed into the list schedule
which corresponds to π by decreasing the starting times x(π(i)) of all

114 Parallel Machines

jobs. Thus, the regular objective function does not increase during the
transformation. �

We will present an algorithm which constructs a schedule (x(i), h(i))
respecting all time windows [ri, di] (i.e. with ri ≤ x(i) < x(i) + 1 ≤ di

for i = 1, . . . , n) or finds that such a schedule does not exist. If such a
schedule exists, then the schedule constructed by the algorithm minimizes∑

Ci as well as Cmax.

The idea of the algorithm is to construct an optimal list π(1), π(2), . . . ,
π(n). This is done by trying to schedule at the current time t an available
job i with the smallest deadline. However, this is not always correct, as
we have seen in Figure 5.3. For these reasons, if di < t + 1 (i.e. if job
i is late) we have to call a crisis subroutine. The crisis subroutine
backtracks over the current partial schedule π(1), . . . , π(k − 1) searching
for a job π(j) with a highest position j that has a deadline greater than
that of the crisis job i. If such a job π(j) does not exist, the subroutine
concludes that there is no feasible schedule and halts. Otherwise, we call
job π(j) a pull job and the set of all jobs in the partial schedule with
positions greater than j a restricted set. The subroutine determines
the minimum release time r of all jobs in the restricted set and creates
a barrier (j, r). This barrier is an additional restriction to the starting
time of jobs scheduled in positions k ≥ j. It is added to a barrier list
which is used to calculate the current scheduling time. Finally, π(j) and
all jobs in the restricted set are eliminated from the partial schedule and
we continue with the partial schedule π(1), . . . , π(j − 1).

If di ≥ t+1, then job i is scheduled at time t on machine h(i) = i(mod m).

Details are given below. U is the set of unscheduled jobs, the barrier list

Algorithm P | pi = 1; ri;di |
∑

Ci,Cmax

1. Initialize;
2. WHILE there are unscheduled jobs DO

BEGIN
3. Calculate current time t;
4. Find unscheduled job i available at time t

with smallest due date;
5. If di ≥ t + 1 THEN schedule job i

ELSE
6. crisis (i)

END

5.1. Independent Jobs 115

contains all barriers, and π(j) denotes the j-th job currently scheduled
for j = 1, 2, . . . , k − 1.

We now describe the initialize, calculate current time t, schedule
job i and crisis (i) modules.

The most important module is crisis (i), which resolves a crisis with
job i.

Crisis (i)
IF there exists an index 1 ≤ ν ≤ k − 1 with dπ(ν) > di THEN

BEGIN
Calculate largest index 1 ≤ j ≤ k − 1 with dπ(j) > di;
r := min({rπ(ν) | ν = j + 1, . . . , k − 1} ∪ {ri});
Add (j, r) to barrierlist;
Add jobs π(j), π(j + 1), . . . , π(k − 1) to U ;
k := j
END

ELSE HALT (There exists no feasible schedule)

Initialize
barrierlist := φ; k := 1; U := {1, . . . , n}

Schedule job i
x(i) := t;
h(i) := k(mod m);
U := U\{i};
t(h(i)) := t + 1;
π(k) := i;
k := k + 1

Calculate current time t
IF 1 ≤ k ≤ m THEN t1 := 0 ELSE t1 := t(k (mod m));
t2 := min{rj | j is an unscheduled job };
t3 := max({r | (j, r) is a barrier ; 1 ≤ j ≤ k} ∪ {0});
t := max{t1, t2, t3}

A barrier (j, r) is correct for a problem instance if, in all feasible sched-
ules, the job in position j can start no earlier than r. To demonstrate the
correctness of the algorithm, we shall prove that each barrier is correct
and that if the algorithm does not provide a feasible schedule, then none
exists.

116 Parallel Machines

Let B be a barrier list. A feasible B-schedule is a cyclic list schedule for
P | pi = 1; ri; di |

∑
Ci, Cmax with the property that if (j, r) ∈ B, then

the job in position j does not begin processing before time r.

We obtain Algorithm (B) by replacing the initialization statement
“barrierlist := φ” by “barrierlist := B”.

Let π(1), . . . , π(k − 1) be the current sequence and denote by B the
corresponding set of barriers at some stage of the Algorithm P | pi =
1; ri; di |

∑
Ci, Cmax. Then we have the following property. If Algorithm

(B) is applied to the set of jobs {π(i) | i = 1, . . . , k−1}, then it constructs
the sequence π(1), . . . , π(k − 1) without any call of the crisis subroutine.

Lemma 5.2 Let B be a set of barriers. Assume that Algorithm (B) has
scheduled the first jobs π(1), . . . , π(k−1) with starting times t1, . . . , tk−1

and calculates time t as a possible starting time for job π(k). Then the
following holds:

(i) There is no feasible B-schedule in which any of the jobs π(ν) (ν =
1, . . . , k − 1) is scheduled before time tν .

(ii) There is no feasible B-schedule in which π(k) starts before t.

Proof: We prove this lemma by induction on k. If (ii) holds for all
ν ≤ k − 1, then (i) holds. Thus, it remains to prove (ii) for ν = k. Let t
be the current time after jobs π(1), . . . , π(k − 1) are scheduled.

If t = t1, then either t = 0 or t = t(k (mod m)). In the former case,
π(k) trivially cannot be started earlier. In the latter case, by assumption
t(k (mod m)) is the earliest possible time at which job π(k −m + 1) can
finish. Furthermore, the jobs π(ν) (ν = k − m + 1, . . . , k − 1) occupy m
different machines. None of these jobs can be finished earlier than time
t(k (mod m)). This follows from the fact that all jobs have unit pro-
cessing times and are scheduled in nonincreasing order of release times
and barrier values. π(k) cannot be scheduled before any of these m jobs
because this would contradict the algorithm. Furthermore, by induction
assumption each of these m jobs is scheduled as early as possible. There-
fore, t(k (mod m)) is the earliest possible starting time of π(k) in any
feasible schedule.

If t = t2, then π(k) is started at the minimum release time of the un-
scheduled jobs. Thus, t2 must be the release time of π(k).

If t = t3, then a barrier constraint is preventing π(k) from starting
earlier. �

5.1. Independent Jobs 117

Theorem 5.3 Each barrier created by the algorithm is correct.

Proof: Assume the first i − 1 barriers are correct, that the algorithm
has constructed a partial schedule π(1), . . . , π(k − 1) at the time of the
ith crisis, and that (j, r) is the ith barrier to be created. Denote by B
the set of the first i − 1 barriers.

Suppose to the contrary that there is a feasible schedule in which π(j) is
scheduled before time r. Since r is the minimum release time of all jobs
in the restricted set, all jobs in the restricted set must be scheduled in
positions greater than j. Thus, at least one job in the restricted set must
be scheduled in a position greater than k − 1.

Let t be the current time after jobs π(1), . . . , π(k − 1) are scheduled and
let l be the crisis job. Thus, dl < t + 1. Furthermore, for each job h in
the restricted set we have dh ≤ dl < t+1. By applying Lemma 5.2 using
the set B defined previously, we conclude that a job in position k (and
in position ν > k) cannot start before time t.

Thus, a feasible schedule in which π(j) is scheduled before time r cannot
exist. �

Lemma 5.4 If the crisis subroutine does not find a pull job, then there
is no feasible schedule.

Proof: Let i be a crisis job for which no pull job is found. It follows from
the definition of a pull job that all jobs in the current partial schedule
π(1), . . . , π(k − 1) have a deadline not greater than di. Due to the fact
that di < t + 1 and t is the earliest scheduling time of i, if all jobs
π(1), . . . , π(k−1) are scheduled as early as possible, then there exists no
feasible schedule. �

Theorem 5.5 If a feasible schedule exists, then the barrier algorithm
produces a feasible schedule minimizing Cmax and

∑
Ci in at the most

O(n3 log log n) time.

Proof: There are at the most n distinct release times and n positions.
Thus, n2 is an upper bound on the number of barriers which the algorithm
can create. If one uses a standard priority queue, the cost of scheduling
each job is O(log n), but using a stratified binary tree the cost is only
O(log log n) (see Boas [30]). Since at the most n jobs can be scheduled
before a new barrier is created, we have a running time of O(n3 log log n).

118 Parallel Machines

Let B be the set of all barriers created by the algorithm. If we apply
Lemma 5.2 with this set B, we conclude that the algorithm minimizes
Cmax as well as

∑
Ci. �

We may replace the restrictions that pi = 1 and that ri, di are rational
by the equivalent restrictions that pi = p and ri, di are integers. Thus,
we have shown that P | pi = p; ri; di | f with f ∈ {Cmax,

∑
Ci} can be

solved in O(n3 log log n) time.

Problem P | pi = p; ri | Lmax can be solved using binary search.

P | pi = 1 | ∑
wiUi

An optimal schedule for P | pi = 1 | ∑
wiUi is given by a set S of jobs

which are early. The late job can be scheduled at the end in an arbitrary
order. Furthermore, we may assume that the early jobs are scheduled in
the following way: Sort the jobs according to nondecreasing due dates
and schedule the jobs in this order, i.e. schedule the first m jobs in S at
time 0, the next m jobs at time 1, etc.

To calculate an optimal set S of early jobs we add jobs to S in non-
decreasing order of their due dates (and try to schedule them) and as
soon as some job appears late we delete from S a job with minimal wi-
value.

More specifically, assume that we have jobs 1, . . . , n with d1 ≤ d2 ≤
. . . ≤ dn. Then the following algorithm calculates an optimal set S of
early jobs.

Algorithm P | pi = 1 | ∑
wiUi

1. S := φ;
2. FOR i := 1 TO n DO
3. IF i is late when scheduled in the earliest empty time slot on a

machine
THEN

BEGIN
4. Find a job i∗ with wi∗ = min

i∈S
wi;

5. IF wi∗ < wi THEN replace i∗ by i in the schedule and in S
END

6. ELSE add i to S and schedule i in the earliest time slot.

Clearly, this algorithm can be implemented in O(n log n) time if appro-
priate data structures are used.

5.1. Independent Jobs 119

Theorem 5.6 Algorithm P | pi = 1 | ∑
wiUi is correct.

Proof: Let S be the set of the jobs calculated by the algorithm. Then
all jobs in S are early because if job i replaces an early job k then i must
be early as well. This follows from the fact that dk ≤ di. Let S∗ be the
set of early jobs of an optimal schedule with the following properties:

• l is the first job in S with l /∈ S∗, and

• k is the first job in S∗ with k /∈ S.

We may assume that such jobs l and k exist because

• S ⊂ S∗ would lead to a contradiction to the construction of S, and

• if S∗ ⊆ S then S must be optimal too and the theorem is proven.

We show that in S∗ job k can be replaced by l without increasing the
objective function which is a contradiction to the definition of S∗. There
are two cases to be considered.

Case 1: l < k
The job which eliminates k in S must be considered later than job l.
Thus, we must have wl ≥ wk. Due to the definition of k all jobs i ∈ S∗

with i < k must belong to S. Therefore, S∗ remains feasible if l replaces
k.

Case 2: k < l
If in S∗ job k is replaced by l then l is on time because k is on time and
dk ≤ dl. Therefore, all we have to prove is that wl ≥ wk holds.

Let ki0 := k be eliminated by i0 and let ki1, . . . , kir be the sequence of
jobs which are eliminated afterwards from S, where kiν is eliminated by
iν (ν = 1, . . . , r). Then i0 < i1 < . . . < ir. We say “iν dominates iμ”
(μ < ν) if kiν ≤ iμ. In this case the inequality wkiν

≥ wkiμ
holds (Figure

5.4).

kiν kiμ iμ iν

Figure 5.4: iν dominates iμ.

If a subsequence j0 = i0 < j1 < . . . js of i0 < i1 < . . . < ir exists which
has the properties

120 Parallel Machines

• jν+1 dominates jν for ν = 0, 1, . . . , s − 1, and

• js−1 < l ≤ js

then
wl ≥ wkjs

≥ . . . ≥ wkj0
= wk

and the theorem is proven.

Otherwise a job it with smallest index t exists which is not dominated
by a job iν with ν > t and it < l. Thus, after it is added to S no job
i ≤ it will be deleted from S. Because it < l all jobs which belong to S
when it is added must also belong to S∗. This contradicts the fact that
k ∈ S∗ and S∗ contains no late jobs.

To derive such a contradiction let St be set S after deleting kit and adding
it. We consider two cases.

If k′ := kit > k, i.e. dk′ ≥ dk then we may replace k by k′ in S∗ without
providing late jobs. Thus, St ∪ {k′} has no late jobs which contradicts
the construction of S. Otherwise, k′ < k. Then all jobs in St∪{k} can be
scheduled early. Furthermore, all jobs in {j ∈ St | j < k} ∪ {k′} can be
scheduled early. This implies that all jobs in St ∪ {k′} can be scheduled
early which again is a contradiction. �

P ‖ ∑
Ci

We will show in the next section that the corresponding problem with
uniform machines can be solved by a polynomial algorithm, which pro-
vides the complexity bound O(n logn) for problem P ‖ ∑

Ci.

P | pi = 1 | ∑
wiCi and P | pi = 1;pmtn | ∑

wiCi

We get an optimal schedule for problem P | pi = 1 | ∑
wiCi by scheduling

the jobs in order of nonincreasing weights wi. To give a more precise
description of such an optimal schedule S, it is convenient to represent
the jobs by numbers 0, . . . , n − 1 such that

w0 ≥ w1 ≥ . . . ≥ wn−1

and to denote the machines by 0, . . . , m − 1. In S, job i is scheduled at
time �i/m� on machine i(mod m). It can be shown by simple interchange
arguments that S is an optimal schedule.

5.1. Independent Jobs 121

The following theorem shows that an optimal schedule for P | pi = 1 |∑
wiCi is optimal even if preemption is allowed.

Theorem 5.7 For P | pmtn | ∑
wiCi there exists an optimal schedule

without preemption.

Proof: It is sufficient to show that an arbitrary schedule with a finite
number of preemptions can be transformed into a nonpreemptive sched-
ule without increasing the value of the objective function.

By preemption, a job i may be split at some time s, i.e. processing job i
at some machine is stopped and either continued at time s on a different
machine or at some time s′ > s on the same or a different machine.

Consider an optimal preemptive schedule S with a minimal number l of
preemption times. If l = 0, we have finished. Otherwise, let t′ < t be the
two greatest splitting times of S (if l = 1, we set t′ = 0).

We show that by transforming S into a schedule S ′, all preemptions at
time t can be eliminated without creating new preemptions. Further-
more, the objective value for S ′ is not greater than the objective value
for S which contradicts the fact that S is an optimal schedule with a
minimal number of preemptions.

If a job i processed on machine Mj is preempted at time t and continued
at time t on a different machine Mk, then we may interchange the sched-
ule after time t on Mj and the schedule after t on Mk. This reduces the
number of preemptions at time t of this type.

Therefore, we may assume that all jobs iν(ν = 1, . . . , r) preempted at
time t are continued at some time tν > t on some machine until com-
pleted. We assume w.l.o.g. that iν is preempted at time t on machine
Mν (ν = 1, . . . , r). Now we consider two cases.

Case 1: Each job preemption at time t is continued on a machine which
is different to the first r machines M1, . . . , Mr.

Let Mk, k > r be one of the machines having at least one of the jobs
i1, . . . , ir scheduled on it . Suppose that il (1 ≤ l ≤ r) is the earliest
such job to be scheduled on Mk after time t. Then il is scheduled on Ml

between time q and t where q ≥ t′(if il is processed from time q < t′ to
time t on Ml we preempt il at time t′) and on Mk between times u and
u′ where t ≤ u < u′. Let c = t− q, d = u′ − u, and e = u− t (see Figure
5.5(a)).

Let S1 be like S, except that il is not scheduled on Ml at all after time

122 Parallel Machines

Mk

Ml

S :

il y

il x

t′ q t u u′
�

c
�

e
�

d
(a)

Mk

Ml

S1 :

il y

x

t′ q t u
�

c + d
(b)

Mk

Ml

S2 :

x

il y

t′ t

(c)

Figure 5.5: Transformation into a non-preemptive schedule: Case 1.

q but is scheduled from u to u′ + c on Mk, all the other jobs scheduled
after t on Ml in S are moved ahead c units of time, and all jobs scheduled
after u′ on Mk in S are delayed c units of time (Figure 5.5(b)). S1 is a
feasible schedule because

• jobs which are delayed on Mk are processed only on Mk after time
t because there is no preemption after time t, and

• jobs moved ahead on Ml are not preempted after time q because
if so, such a job must be preempted at time t on a machine Ml′

(1 ≤ l′ ≤ r) and continued on Ml which is not possible according
to the assumptions of Case 1.

Let S2 be obtained from S by interchanging the schedule Ml after time t

5.1. Independent Jobs 123

i i

t′ q t u u′

Figure 5.6: Transformation into a non-preemptive schedule: Case 2.

with the schedule of Mk after time u (Figure 5.5(c)). Again, S2 is feasible
because all jobs moved are scheduled after time t.

For ν = 1, 2, the transformation of S into Sν removes the preemption
of il at time t and adds no new preemption. To get a contradiction we
have to show that for S1 or S2 the objective value is not greater than the
objective value of S.

Let X be the sum of all weights wi of jobs scheduled in S after t on Ml.
Let Y be the sum of all weights of jobs scheduled in S after time u on
Mk (it will include il). Going from S to Sν , the objective value changes
by Lν (ν = 1, 2), where

L1 = cY − cX = c(Y − X)

L2 = eX − eY = −e(Y − X).

Since both c and e are positive, either L1 or L2 is non-positive, i.e. with
at least one of the two transformations the objective function does not
increase.

Case 2: There exists at least one job preemption at time t and placed
on a machine Mj (1 ≤ j ≤ r).

In this case, we partition the set C of jobs split at time t into sets A and
B. A is the set of jobs i in C which occur on some Mj , 1 ≤ j ≤ r after
time t and there is no other job i′ of this type scheduled on Mj after t
and before the last part of job i. B is the set of jobs i in C that occur
either on Mk, k > r or on some Mj, 1 ≤ j ≤ r after the last part of a
job in A has been completed on Mj .

We may assume that each job i ∈ A preempted on machine Mj finishes
on Mj as well (if this is not the case, we have to interchange final blocks
of jobs which are scheduled on the same machine from time t). Thus,
a job i ∈ A is processed on machine Mj between q and t, q ≥ t′, and
between u and u′ where t < u. Furthermore, all jobs scheduled in the
intervals [t′, q] and [t, u] are different from i (see Figure 5.6).

If we reschedule i to occur between u− (t−q) and u instead of between q

124 Parallel Machines

and t and move ahead t−q units of time all that has occurred between in
[t, u], we get a feasible schedule with an objective value not greater than
before (note that jobs scheduled in [t, u] can be moved ahead because
these jobs are not preempted at time t).

By such a rescheduling procedure, jobs in A are eliminated. On the
other hand, jobs in C finished after a job in A must be added to A. The
rescheduling process ends after a finite number of steps with a Case 1
situation. �

P | pi = 1; ri |
∑

fi can be solved by a network flow algorithm. P2 | pi =
p; pmtn; ri | ∑

Ci has been solved polynomially by Herrbach & Leung
[111].

The following problems are NP-hard:
P2 ‖ Cmax, P2 ‖ ∑

wiCi, P2 | pmtn; ri |
∑

Ci, P2 | pmtn | ∑
wiCi, P2 |

pmtn; ri |
∑

Ui, P | pmtn | ∑
Ui.

5.1.2 Uniform Machines

In this section we consider n jobs Ji(i = 1, . . . , n) to be processed on
m parallel uniform machines Mj(j = 1, . . . , m). The machines have
different speeds sj(j = 1, . . . , m). Each job Ji has a processing re-
quirement pi(i = 1, . . . , n). Execution of job Ji on machine Mj requires
pi/sj time units. If we set sj = 1 for j = 1, . . . , m, we have m parallel
identical machines. All problems with parallel identical machines which
are NP-hard are also NP-hard if we replace the machines by uniform
machines. Therefore, we first consider problems with preemptions. We
also assume that 1 = s1 ≥ s2 ≥ . . . ≥ sm and p1 ≥ p2 ≥ . . . ≥ pn.

Q | pmtn | Cmax

We will present a lower bound w for the objective value of problem Q |
pmtn | Cmax. In a second step, we will give an algorithm which constructs
a schedule of length w (i.e. an optimal schedule). Let

Pi = p1 + . . . + pi and Sj = s1 + . . . + sj

for i = 1, . . . , n and j = 1, . . . , m. Furthermore, we assume that n ≥ m.
If n < m, we only have to consider the n fastest machines. A necessary
condition for processing all jobs in the interval [0, T] is

Pn = p1 + . . . + pn ≤ s1T + . . . + smT = SmT

5.1. Independent Jobs 125

or
Pn/Sm ≤ T.

Similarly, we must have Pj/Sj ≤ T for j = 1, . . . , m− 1 because Pj/Sj is
a lower bound on the length of a schedule for the jobs J1, . . . , Jj. Thus,

w := max{m−1
max
j=1

Pj/Sj, Pn/Sm} (5.5)

is a lower bound for the Cmax-values.

Next we will construct a schedule which achieves this bound. The corre-
sponding algorithm is called the level algorithm. Given a partial schedule
up to time t, the level pi(t) of job i at time t is the portion of pi not
processed before t. At time t, the level algorithm calls a procedure as-
sign (t) which assigns jobs to machines. The machines are run with this
assignment until some time s > t. A new assignment is done at time s,
and the process is repeated.

Algorithm level
1. t := 0;
2. WHILE there exist jobs with positive level DO

BEGIN
3. Assign(t);
4. t1 := min{s > t | a job completes at time s};
5. t2 := min{s > t | there are jobs i, j with pi(t) > pj(t) and

pi(s) = pj(s)};
6. t := min{t1, t2}

END
7. Construct the schedule.

The procedure assign(t) is given by

Assign (t)
1. J := {i | pi(t) > 0};
2. M := {M1, . . . , Mm};
3. WHILE J �= ∅ and M �= ∅ DO

BEGIN
4. Find the set I ⊆ J of jobs with highest level;
5. r := min{|M |, |I|};
6. Assign jobs in I to be processed jointly on the r fastest

machines in M ;

126 Parallel Machines

t0 t1 t2 t3 t4 t5

t

pi(t)

p5(t)

p4(t)

p3(t)

p2(t)

p1(t)

M4

M3

M2

M1

�

J1

J1, J2

J2

J3

J4 J4, J5

t

Figure 5.7: Application of the level algorithm.

7. J := J\I;
8. Eliminate the r fastest machines in M from M

END

The example with 5 jobs to be processed on 4 machines presented in
Figure 5.7 shows how the algorithm works.

Initially, the four jobs 1,2,3,4 with the largest processing times are pro-
cessed on machines M1, M2, M3, M4, respectively. At time t1 job 4 has a
level which is equal to the processing time of job 5. Thus, from time t1
jobs 4 and 5 are processed jointly on machine M4. Due to the fact that
job 1 is processed on a faster machine than job 2 at time t2, we reach
the situation that p1(t2) = p2(t2). Therefore, jobs 1 and 2 are processed
jointly on both M1 and M2.

5.1. Independent Jobs 127

1 2 3 4 5 6

6 1 2 3 4 5

5 6 1 2 3 4

Figure 5.8: Processing 6 jobs jointly on 3 machines.

To process r jobs 1, . . . , r jointly on l machines M1, . . . , Ml (r ≥ l) during
some time period T , we process each job during a period of T/r time units
on each of the machines. A corresponding schedule is shown in Figure
5.8 for the case r = 6 and l = 3.

Using these ideas, the schedule may be constructed in Step 7 of the
algorithm.

Theorem 5.8 Algorithm level constructs an optimal schedule for prob-
lem Q | pmtn | Cmax.

Proof: Because

w := max{ m
max
j=1

Pj/Sj, Pn/Sm}

is a lower bound for the schedule length, it is sufficient to show that the
schedule constructed achieves this bound.

Assume that at the beginning of the level algorithm we have p1(0) ≥
p2(0) ≥ . . . ≥ pn(0). This order does not change during the algorithm,
i.e. we have

p1(t) ≥ p2(t) ≥ . . . ≥ pn(t) for all t. (5.6)

We assume that the algorithm always assigns jobs to machines in this
order.

To prove the desired property, we first assume that no machine is idle
before all jobs are finished, say at time T . Then

T (s1 + . . . + sm) = p1 + p2 + . . . + pn or T = Pn/Sm.

Thus bound w is achieved by the algorithm.

If a machine is idle before the last job finishes, then for the finishing
times f1, . . . , fm of machines M1, . . . , Mm we have

f1 ≥ f2 ≥ . . . ≥ fm. (5.7)

128 Parallel Machines

Otherwise, if fi < fi+1 for some 1 ≤ i ≤ m − 1, the level of the last
job processed on Mi at some time fi − ε, where ε > 0 is sufficiently
small, is smaller than the level of the last job on Mi+1 at the same time.
This is a contradiction. Furthermore, in (5.7) we have at least one strict
inequality.

Assume that T := f1 = f2 = . . . = fj > fj+1 with j < m. The jobs
finishing at time T must have been started at time 0. If this is not the
case, then we have a job i which starts at time t > 0 and finishes at time
T . This implies that at time 0 at least m jobs, say jobs 1, . . . , m, are
started and processed together on all machines. We have p1(0) ≥ . . . ≥
pm(0) ≥ pi(0), which implies p1(T −ε) ≥ . . . ≥ pm(T −ε) ≥ pi(T −ε) > 0
for all ε with 0 ≤ ε < T − t. Thus, until time T no machine is idle, which
is a contradiction. We conclude T = Pj/Sj. �

The level algorithm calls the procedure assign(t) at the most O(n) times.
The computational effort for assigning jobs to machines after each call
is bounded by O(nm). Thus, we get a total complexity of O(n2m) (the
total work for calculating all t-values is dominated by this).

Unfortunately, the algorithm generates schedules with an excessive num-
ber of preemptions. Also the complexity can be improved. This has
been shown by Gonzalez & Sahni [106], who developed an algorithm
which needs O(n + m log n) steps to construct an optimal schedule with
at the most 2(m − 1) preemptions.

Problem Q | pmtn; chains | Cmax which is equivalent to Q | pmtn | Cmax

can be solved with the same complexity.

Next we will derive necessary and sufficient conditions for scheduling a
set of jobs in a time interval of length T which will be used in the next
section.

We have seen that jobs 1, 2, . . . , n with processing times p1 ≥ p2 ≥ . . . ≥
pn can be scheduled on machines M1, . . . , Mm with speeds s1 ≥ s2 ≥
. . . ≥ sm within an interval of length T if and only if the following
inequalities hold:

j∑

i=1

pi ≤ T
j∑

i=1

si = TSj for j = 1, . . . , min{n, m}
n∑

i=1

pi ≤ T
m∑

i=1

si = TSm if n > m.

Due to the monotonicity of the pi-values, for an arbitrary subset A ⊆

5.1. Independent Jobs 129

{1, . . . , n}, we have

∑

i∈A

pi ≤
|A|∑

i=1

pi ≤ Th(A)

where

h(A) =

{
S|A| if |A| ≤ m

Sm otherwise .

Thus, jobs 1, . . . , n with processing requirements p1, . . . , pn can be sched-
uled within an interval of length T if and only if

∑

i∈A

pi ≤ Th(A) for all A ⊆ {1, . . . , n}. (5.8)

Finally, we would like to mention that Q | pmtn; ri | Cmax and Q | pi =
1; ri | Cmax has been solved polynomially by Labetoulle et al. [133] and
Dessouky et al. [76], respectively.

Q | pmtn; ri | Lmax

Again, we first consider the problem of finding a schedule with the prop-
erty that each job i is processed in the time window [ri, di] defined by
a release time ri and a deadline di of job i. We call such a schedule
feasible with respect to the time windows [ri, di]. In a second step,
we apply binary search to solve the general problem.

As in Section 5.1.1 for identical machines, we solve the feasibility problem
by reducing it to a network flow problem. Again, let

t1 < t2 < . . . < tr

be the ordered sequence of all different ri-values and di-values and define
IK := [tK−1, tK], TK = tK − tK−1 for K = 2, . . . , r. Next we expand the
network shown in Figure 5.2 in the following way.

Let IK be an arbitrary interval node in Figure 5.2 and denote by Ji1 , Ji2,
. . . , Jis the set of predecessors of node IK . Then we replace the subnet-
work defined by IK , Ji1 , Ji2, . . . , Jis which is shown in Figure 5.9(a) by
the expanded network shown in Figure 5.9(b).

Again, we assume that the machines are indexed in nonincreasing order
of speeds

s1 ≥ s2 ≥ . . . ≥ sm.

130 Parallel Machines

JiS

Ji1

IK

(a)

Jis K, m

K, j IK

Ji1 K, 1

m(sm−sm+1)TK

j(sj−sj+1)TK

1·(s1−s2)TK

(sm−sm+1)TK

(sj−sj+1)TK

(sm−sm+1)TK

(s1−s2)TK

(sj−sj+1)TK

(s1−s2)TK

(b)

Figure 5.9: Expanded network.

Furthermore, we define sm+1 = 0. The expanded subnetwork is con-
structed by adding to vertices IK , Ji1, Ji2, . . . , Jis vertices (K, 1), (K, 2),
. . . , (K, m). For j = 1, . . . , m, there is an arc from (K, j) to IK with
capacity j(sj − sj+1)TK and for all ν = 1, . . . , s and j = 1, . . . , m there
is an arc from Jiν to (K, j) with capacity (sj − sj+1)TK . For each IK

we have such an expansion. Furthermore, we keep the arcs from s to
Ji with capacity pi and the arcs from IK to t with capacity SmTK (see

5.1. Independent Jobs 131

Figure 5.2). The network constructed in this way is called an expanded
network.

The following theorem shows that we can check feasibility by solving a
maximum flow problem in the expanded network.

Theorem 5.9 The following properties are equivalent:

(a) There exists a feasible schedule.

(b) In the expanded network there exists a flow from s to t with value
n∑

i=1

pi.

Proof: (b) ⇒ (a): Consider a flow with value
n∑

i=1

pi in the expanded

network. Denote by xiK the total flow which goes from Ji to IK . Then
n∑

i=1

r∑

K=2

xiK =
n∑

i=1

pi. It is sufficient to show that for each subset A ⊆
{1, . . . , n} we have ∑

i∈A

xiK ≤ TKh(A).

This means that condition (5.8) holds and the processing requirements
x1K , . . . , xnK can be scheduled in IK for K = 2, . . . , r.

Consider in the expanded network the subnetwork induced by A and the
corresponding partial flow. The portion of this partial flow which goes
through (K, j) is bounded by

min{j(sj − sj+1)TK , |A|(sj − sj+1)TK} = TK(sj − sj+1) min{j, |A|}.
Thus, we have

∑

i∈A

xiK ≤ TK

m∑

j=1

(sj − sj+1) min{j, |A|} = TKh(A). (5.9)

That the equality in (5.9) holds can be seen as follows. If |A| > m, we
have

m∑

j=1

min{j, |A|}(sj − sj+1)= s1 − s2 + 2s2 − 2s3 + 3s3 − 3s4

+ . . . + msm − msm+1

= Sm = h(A).

132 Parallel Machines

Otherwise

m∑

j=1

min{j, |A|}(sj − sj+1)

= s1 − s2 + 2s2 − 2s3 + 3s3 − . . . + (|A| − 1)s|A|−1

−(|A| − 1)s|A| + |A|(s|A| − s|A|+1 + s|A|+1 − . . . − sm + sm − sm+1)

= S|A| = h(A).

(a) ⇒ (b): Assume that a feasible schedule exists. For i = 1, . . . , n
and K = 2, . . . , r let xiK be the “amount of work” to be performed on
job i in the interval IK according to this feasible schedule. Then for all
K = 2, . . . , r and arbitrary sets A ⊆ {1, . . . , n}, the inequality

∑

i∈A

xiK ≤ TKh(A) (5.10)

holds. Furthermore, for i = 1, . . . , n we have pi =
r∑

K=2

xiK . It remains

to show that it is possible to send xiK units of flow from Ji to IK (i =
1, . . . , n; K = 2, . . . , r) in the expanded network. A sufficient condition
for the existence of such a flow is that for arbitrary A ⊆ {1, . . . , n} and
K = 2, . . . , r the value

∑

i∈A

xiK is bounded by the value of a minimum cut

in the partial network with sources Ji(i ∈ A) and sink IK . However, this
value is

TK

m∑

j=1

min{j, |A|}(sj − sj+1).

Using (5.10) and the right-hand side of (5.9), we get

∑

i∈A

xiK ≤ TKh(A) = TK

m∑

j=1

min{j, |A|}(sj − sj+1)

which is the desired inequality. �

Because a maximal flow in the expanded network can be calculated in
O(mn3) steps, a feasibility check can be done with the same complexity.
To solve problem Q | pmtn; ri | Lmax we do binary search. This yields
an ε-approximation algorithm with complexity O(mn3(log n+log(1/ε)+

log(
n

max
i=1

pi)) because Lmax is certainly bounded by n
n

max
i=1

pi if s1 = 1.

Because (5.10) holds for all K, the partial jobs with processing require-
ments xiK can be scheduled in IK with the level algorithm. Problem

5.1. Independent Jobs 133

Q | pmtn; ri | Cmax, which is a special case of Q | pmtn; ri | Lmax,
can be solved more efficiently. Labetoulle, Lawler, Lenstra, and Rinnooy
Kan [133] have developed an O(n log n + mn)-algorithm for this special
case. Also problem Q | pmtn | Lmax can be solved in O(n log n + mn)
steps. This is a consequence of the following considerations.

Problem Q | pmtn; ri | Cmax is equivalent to finding a smallest T ≥ 0 such
that the problem with time windows [ri, T] (i = 1, . . . , n) has a feasible
solution. On the other hand, problem Q | pmtn | Lmax is equivalent
to finding a smallest T ≥ 0 such that the problem with time windows
[0, di + T] or with time windows [−T, di] has a feasible solution. Thus,
the problems Q | pmtn; ri | Cmax and Q | pmtn | Lmax are symmetrical.

Q ‖ ∑
Ci

Assume that i1, i2, . . . , ir is the sequence of jobs to be processed on ma-
chine Mj . Then the contribution of these jobs on machine Mj in the
objective function is given by

pi1

r

sj

+ pi2

r − 1

sj

+ . . . + pir

1

sj

.

This implies that in an optimal schedule the jobs on machine Mj are
sequenced according to nondecreasing processing requirements pi.

To find an optimal distribution of jobs to machines we may proceed as
follows. Let t1, . . . , tn be a nondecreasing sequence of the n smallest
numbers in the set { 1

s1
, 1

s2
, . . . , 1

sm
, 2

s1
, 2

s2
, . . . , 2

sm
, 3

s1
, . . .}. If ti = k

sj
, then

schedule job i on Mj as the k-th last job because we assume p1 ≥ p2 ≥
. . . ≥ pn. Optimality of this strategy is a consequence of the results in
Section 2.5.

These ideas lead to the following algorithm in which, for j = 1, . . . , m,
we denote by Πj the sequence of jobs currently scheduled at machine Mj .

Each minimal w-value can be calculated in O(log m) time if we use a
priority queue. Thus, the overall complexity is O(n log m) if the pi-values
are sorted. Otherwise, we have a total complexity of O(n log n) if n > m.

Next we will consider the preemptive version of this problem.

Algorithm Q ‖ ∑
Ci

1. FOR j = 1 TO m DO
2. BEGIN Πj := φ; wj := 1

sj
END;

134 Parallel Machines

3. FOR i := 1 TO n DO
BEGIN

4. Find the largest index j with wj :=
m

min
ν=1

wν ;

5. Πj := i ◦ Πj ;
6. wj := wj + 1

sj

END

Q | pmtn | ∑
Ci

To solve this problem, we apply an adapted version of the SPT-rule.
Order the jobs according to nonincreasing processing requirements, and
schedule each successive job preemptively so as to minimize its comple-
tion time. In other words, we schedule job n on the fastest machine M1

until it is completed at time t1 = pn/s1. Then we schedule job n−1 first
on machine M2 for t1 time units and then on machine M1 from time t1
to time t2 ≥ t1 until it is completed. Job n− 2 is scheduled on M3 for t1
time units, on M2 for t2− t1 time units, and on machine M1 from time t2
to time t3 ≥ t2 until it is completed, etc. An example is shown in Figure
5.10. Note the staircase pattern of the schedule.

m = 3 s1 = 3 s2 = 2 s3 = 1

n = 4 p1 = 10 p2 = 8 p3 = 8 p4 = 3

0 1 3 4 6

∑
Ci = 14

J2 J1

J3 J2 J1

J4 J3 J2 J1

Figure 5.10: An optimal schedule for an instance of Q | pmtn | ∑
Ci.

A precise description of this procedure is given by the following algorithm
which fills the machines simultaneously one time period after the other.

Algorithm Q | pmtn | ∑
Ci

1. a := 0;
2. WHILE p1 > 0 DO

5.1. Independent Jobs 135

BEGIN
3. Find the largest index i with pi > 0;
4. �t := pi/s1;
5. For ν := i DOWN TO k := max{1, i − m + 1} DO

BEGIN
6. Schedule job ν on M1+i−ν during [a, a + �t];
7. pν := pν −�t · s1+i−ν

END
8. a := a + �t

END

The computational complexity is O(n log n + mn). The number of pre-
emptions is bounded by (m−1)n−[1+2+. . .+(m−1)] = (m−1)(n−m

2
).

A simple interchange argument may be used to prove the correctness of
the algorithm .

Q | pi = 1 | ∑
fi and Q | pi = 1 | fmax

In this section we consider the problem of scheduling n jobs with unit
processing requirements on m uniform machines with speeds s1, . . . , sm.

The objective functions are
n∑

i=1

fi(Ci) and
n

max
i=1

fi(Ci), where fi(Ci) are

monotone nondecreasing functions depending on the finishing times Ci

of jobs i. These problems are easily solved in polynomial time. First, ob-
serve that there exists an optimal schedule in which the jobs are executed
in time periods with the n earliest possible completion times. These com-
pletion times can be generated in O(n log m) time: initialize a priority
queue with completion times 1/sj(j = 1, . . . , m) and, at a general step,
remove the smallest completion time from the queue. If this smallest
completion time is k/sj, then (k + 1)/sj is inserted.

Let t1, . . . , tn denote the n smallest completion times in nondecreasing
order.

An optimal solution of problem Q | pi = 1 | ∑
fi can be found by solving

an n × n-assignment problem with cost coefficients cik = fi(tk)(i, k =
1, . . . , n). The overall complexity is O(n3).

To solve problem Q | pi = 1 | fmax, Lawler’s algorithm can be adapted
in the following way.

136 Parallel Machines

Algorithm Q | pi = 1 | fmax

1. J := {1, . . . , n};
2. FOR i := n DOWN TO 1 DO

BEGIN
3. Find a job j ∈ J with minimal fj(ti)-value;
4. Schedule job j finishing at time ti;
5. J := J\{j}

END

The correctness of this algorithm follows in a similar way as for Lawler’s
algorithm. The overall complexity is O(n2).

There are several special cases which can be solved more quickly. Q |
pi = 1 | ∑

wiCi is solved by assigning the job with the k-th largest weight
to tk, and Q | pi = 1 | ∑

Ti is solved by assigning the job with the k-th
smallest due date to tk. The time required is O(n log n).

Q | pi = 1 | Lmax can be solved by simply matching the k-th smallest due
date with tk. Again the complexity is O(n logn). Q | ri, pi = 1 | Cmax

can be solved symmetrically.

To procedure for calculating the tk-value can be adapted if we have pi = p
instead of pi = 1 for all jobs i. Thus, also the problems Q | pi = p | Lmax

and Q | pi = p; ri | Cmax can be solved with time complexity O(n logn).

5.1.3 Unrelated Machines

We have n independent jobs i = 1, . . . , n to be processed on m machines.
The processing time of job i on machine Mj is pij (i = 1, . . . , n; j =
1, . . . , m). This model is a generalization of the uniform machine model
we get by setting pij = pi/sj. In this case, problem Q ‖ ∑

Ci was the
only problem which was polynomially solvable in the case of nonpre-
emptable jobs with arbitrary processing times. Next we will show that
a polynomial algorithm also exists for the corresponding problem with
unrelated machines.

R ‖ ∑
Ci

We reduce this problem to an assignment problem. Again, if i1, i2, . . . , ir
is the sequence of jobs processed at machine Mj , then the contribution

5.1. Independent Jobs 137

of these jobs in the objective function is

rpi1j + (r − 1)pi2j + . . . + 1pirj .

We define a position of a job on a machine by considering the job pro-
cessed last on the first position, the job processed second from last on
the second position, etc. To solve problem R ‖ ∑

Ci we have to assign
the jobs i to positions k on machines j. The cost of assigning job i to
(k, j) is kpij . Note that an optimal solution of this assignment problem
has the following property: if some job i is assigned to position k > 1
on machine j, then there is also a job assigned to position k − 1 on ma-
chine j. Otherwise, scheduling job i in position k − 1 would improve the
total assignment cost (provided that pij > 0). Thus, a solution of the
assignment problem always yields an optimal solution of our scheduling
problem.

R | pmtn | Cmax, R | pmtn | Lmax and R | pmtn; ri | Lmax

We solve problem R | pmtn | Cmax in two steps. In the first step we
formulate a linear program to calculate for each job i and each machine
j the amount of time tij machine j works on job i in an optimal schedule.
In a second step, a corresponding schedule in constructed.

First we give the linear programming formulation. Problem R | pmtn |
Cmax is given by nm positive integers pij, which represents the total
processing time of job i on machine Mj . Let tij be the processing time of
that part of job i which is processed on Mj . Then tij/pij is the fraction
of time that job i spends on machine j, and the equation

m∑

j=1

tij
pij

= 1

must hold in order for job i to be completed (i = 1, . . . , n).

138 Parallel Machines

This leads to the following formulation of the problem:

minimize Cmax

subject to
m∑

j=1

tij
pij

=1, i = 1, . . . , n (5.11)

m∑

j=1

tij≤Cmax, i = 1, . . . , n (5.12)

n∑

i=1

tij≤Cmax, j = 1, . . . , m (5.13)

tij≥0, i = 1, . . . , n; j = 1, . . . , m.

The left-hand side of (5.12) represents the time job i (i = 1, . . . , n) spends
on all machines. The left-hand side of (5.13) represents the total time
machine Mj (j = 1, . . . , m) spends processing jobs. Note that for an
optimal solution of this linear program we have

Cmax = max{ n
max
i=1

m∑

j=1

tij ,
m

max
j=1

n∑

i=1

tij}. (5.14)

The problem of finding a corresponding schedule is equivalent to the
problem of finding a solution to the preemptive open shop problem with
processing times tij (i = 1, . . . , n; j = 1, . . . , m) which has a Cmax-value
given by (5.14). In Section 2.4, we presented a polynomial algorithm
for solving this problem. We conclude that problem R | pmtn | Cmax is
polynomially solvable.

A similar approach may be used to solve R | pmtn | Lmax. We formulate
a linear programming problem to minimize Lmax.

Assume that the jobs are numbered in nondecreasing due date order, i.e.
d1 ≤ d2 ≤ . . . ≤ dn.

Let t
(1)
ij be the total amount of time that machine Mj spends on job i

in time period I1 = [0, d1 + Lmax]. Furthermore, for k = 2, . . . , n let t
(k)
ij

be the total amount of time that machine Mj spends on job i within the
time period Ik = [dk−1 + Lmax, dk + Lmax]. Then we have to solve

5.2. Jobs with Precedence Constraints 139

minimize Lmax

subject to
m∑

j=1

i∑

k=1

t
(k)
ij

pij
= 1, i = 1, . . . , n

m∑

j=1

t
(1)
ij ≤ d1 + Lmax, i = 1, . . . , n

m∑

j=1

t
(k)
ij ≤ dk − dk−1, i = k, . . . , n; k = 2, . . . , n

n∑

i=1

t
(1)
ij ≤ d1 + Lmax, j = 1, . . . , m

n∑

i=k

t
(k)
ij ≤ dk − dk−1, j = 1, . . . , m; k = 2, . . . , n

t
(k)
ij ≥ 0, j = 1, . . . , m; i, k = 1, . . . , n.

Given an optimal solution of this linear programming problem, an Lmax-
optimal schedule can be obtained by constructing for each of the time
periods Ik (k = 1, . . . , n) a corresponding schedule using the data given

by the matrix Tk = (t
(k)
ij). We again conclude that problem R | pmtn |

Lmax is polynomially solvable.

In a similar way, we may solve problem R | pmtn; ri | Lmax by considering
intervals [tk, tk+1], k = 1, . . . , r − 1, where

t1 < t2 < . . . < tr

is the ordered sequence of all ri-values and di +Lmax values. In this case,
we have the variables t

(k)
ij and Lmax where t

(k)
ij is the processing time of

job i on Mj within the interval [tk, tk+1].

5.2 Jobs with Precedence Constraints

In this section we consider problems with n jobs i = 1, . . . , n with prece-
dence constraints between these jobs. We write i → j if j is an immediate
successor of i or, equivalently, i is an immediate predecessor of j. The
set IP (i) (IS(i)) of all immediate predecessors (successors) of job i is
given by

IP (i) = {j | j → i} (IS(i) = {j | i → j}).
Besides scheduling problems with arbitrary precedence constraints, we
consider intrees (outtrees) which are precedence constraints with the

140 Parallel Machines

property that each IS(i) (IP (i)) contains at the most one job. Given
an intree (outtree), we denote by s(i) (p(i)) the unique successor (pre-
decessor) of i if such a successor (predecessor) exists. Otherwise we set
s(i) = 0 (p(i) = 0).

Release times ri of the jobs are called consistent with the precedence
constraints if ri + pi ≤ rj whenever i → j. Similarly, due dates di are
called consistent with the precedence constraints if di ≤ dj −pj whenever
i → j.

5.2.1 P | tree;pi = 1 | Lmax-Problems

We now consider the problem in which unit time jobs with precedence
constraints are to be scheduled on identical parallel machines. The prece-
dence constraints are either intrees or outtrees.

P | intree;pi = 1 | Lmax

The procedure which solves this problem has two steps. In the first
step, the due dates of the jobs are modified in such a way that they are
consistent with the precedence constraints.

In the second step, jobs are scheduled in an order of nondecreasing mod-
ified due dates.

The due date modification procedure is a special case of a corresponding
procedure already introduced in the last chapter. The idea is to replace
di by min{di, dj − 1} whenever i → j. This is done in a systematic way
going from the roots (vertices i with s(i) = 0) to the leaves (vertices
i with IP (i) = φ) of the intree. After modifying the due date di, we
eliminate i from the intree. T denotes the set of roots in the current tree.
Details are described by the following algorithm.

Algorithm Due Date Modification 1
1. T := {i | i has no successor};
2. WHILE T �= φ DO

BEGIN
3. Choose a job i in T ;
4. FOR ALL j ∈ IP (i) DO

BEGIN
5. dj := min{dj, di − 1};

5.2. Jobs with Precedence Constraints 141

6. T := T ∪ {j}
END;

7. T := T\{i}
END

Implementing Algorithm Due Date Modification 1 in an appropriate way
yields an O(n)-algorithm if applied to intrees.

We denote the modified due dates by d′
i. Note that d′

i < d′
j whenever

i → j. Furthermore, the following lemma holds.

Lemma 5.10 A schedule has no late jobs with respect to the original
due dates di if and only if it has no late jobs with respect to the modified
due dates.

Proof: Because d′
i ≤ di for all jobs i, a schedule without late jobs with

respect to the d′
i-values has no late jobs with respect to the di-values.

To prove the other direction, assume w.l.o.g. that n, n − 1, . . . , 1 is the
order in which the due dates are modified by Algorithm Due Date Modi-
fication 1. Consider a schedule with finishing times C1, . . . , Cn satisfying
Ci ≤ di for i = 1, . . . , n. Then Cn ≤ dn = d′

n. If for some 1 < r ≤ n we
have Ci ≤ d′

i for i = r, . . . , n, and there exists a job j ∈ {r, . . . , n} with
s(r − 1) = j then we have Cr−1 ≤ min{dr−1, d

′
j − 1} = d′

r−1. �

In the second step the jobs are scheduled sequentially in order of non-
decreasing modified due dates. This is done by scheduling each job at
the earliest available starting time, i.e. the earliest time at which less
than m tasks are scheduled to start and all predecessors of the job have
been completed. A more precise description is given by the following
algorithm. We assume that the jobs are numbered in such a way that
d′

1 ≤ d′
2 ≤ . . . , d′

n. Furthermore, F denotes the earliest time at which a
machine is available, and r(i) is the latest finishing time of a predecessor
of job i. n(t) counts the number of jobs scheduled at time t and x(i) is
the starting time of job i. As before, s(i) is the successor of i.

Algorithm P | intree;pi = 1 | Lmax

1. F := 0;
2. FOR i := 1 TO n DO r(i) := 0;
3. FOR t := 0 TO n DO n(t) := 0;
4. FOR i := 1 TO n DO

142 Parallel Machines

BEGIN
5. t := max{r(i), F};
6. x(i) := t;
7. n(t) := n(t) + 1;
8. IF n(t) = m THEN F := t + 1;
9. j := s(i);
10. r(j) := max{r(j), t + 1}

END

The schedule constructed by this algorithm has the important property
that the number of tasks scheduled at any time is never less than the
number scheduled at a later time. This can be seen as follows. Suppose
k tasks are scheduled to start at a time t and at least k + 1 tasks are
scheduled to start at time t + 1. Since the procedure schedules jobs at
the earliest available starting time and less than m jobs are scheduled at
time t, the k+1 jobs scheduled at time t+1 must each have an immediate
predecessor scheduled to start at time t. This is impossible because, due
to the intree property, each job starting at time t has at the most one
successor.

The running time of Algorithm P | intree; pi = 1 | Lmax is O(n). Thus,
problem P | intree; pi = 1 | Lmax can be solved in O(n log n) time.

We still have to prove that Algorithm P | intree; pi = 1 | Lmax is correct.

Lemma 5.11 If there exists a schedule in which no job is late, then a
schedule constructed by Algorithm P | intree; pi = 1 | Lmax has this
property.

Proof: Assume that there is a late job in the schedule x(1), . . . , x(n)
constructed by the algorithm. Then there is also a late job with respect
to the modified due dates. Consider the smallest i with x(i) + 1 > d′

i.

Let t < d′
i be the largest integer with the property that | {j | x(j) =

t, d′
j ≤ d′

i} |< m.

Such a t exists because otherwise md′
i jobs j with d′

j ≤ d′
i are scheduled

before d′
i. Job i does not belong to this set because x(i) + 1 > d′

i. This
means that at least md′

i + 1 jobs must be scheduled in the time interval
[0, d′

i] if no job is late. This is a contradiction.

Each job j with d′
j ≤ d′

i and x(j) > t must have a (not necessarily
immediate) predecessor starting at time t. Now we consider two cases.

5.2. Jobs with Precedence Constraints 143

Case 1: t = d′
i − 1

We have x(i) > d′
i − 1 = t. Thus, a predecessor k of i must start at time

t and finish at time d′
i. Because d′

k ≤ d′
i − 1 < d′

i = x(k) + 1, job k is
late, too. However, this is a contradiction to the minimality of i.

Case 2: t < d′
i − 1

Exactly m jobs j with d′
j ≤ d′

i start at time t + 1, each of them having
a predecessor starting at time t. Due to the intree structure, all these
predecessors must be different. Furthermore, if k is such a predecessor
of a job j, then d′

k ≤ d′
j − 1 < d′

j ≤ d′
i which contradicts the definition of

t. �

Theorem 5.12 The Algorithm P | intree; pi = 1 | Lmax is correct.

Proof: Let L∗
max be the optimal solution value. Then there exists a

schedule satisfying
n

max
i=1

{Ci − di} ≤ L∗
max (5.15)

which is equivalent to

Ci ≤ di + L∗
max for i = 1, . . . , n. (5.16)

Due to Lemma 5.10, a schedule S constructed by the algorithm for the
due dates di +L∗

max satisfies (5.16) or equivalently (5.15). Thus it is opti-
mal. However, S is identical to a schedule constructed by the algorithm
for the due dates di because (di + L∗

max)
′ = d′

i + L∗
max for i = 1, . . . , n. �

If we use the same idea we applied for solving problem 1 | prec; pi =
1 | Lmax, the complexity of problem P | intree; pi = 1 | Lmax can be
improved to O(n) as well.

To get this result, we first calculate the modified due dates d′
j using Al-

gorithm Due Date Modification 1. We may assume that the smallest
modified due date d′

j∗ = min{d′
j | j = 1, . . . , n} is equal to one. Other-

wise, we replace the original due dates by dj − d′
j∗ +1 which implies that

(dj − d′
j∗ + 1)′ = d′

j − d′
j∗ + 1. We conclude that

Lmax =
n

max
j=1

(Cj − d′
j) ≥ Cj∗ − d′

j∗ ≥ 0

for any schedule.

144 Parallel Machines

Next we partially sort the jobs according to modified due dates in O(n)
time by partitioning the set of jobs into sets Sk, defined by

Sk =

{
{j | d′

j = k} if 1 ≤ k ≤ n − 1

{j | d′
j ≥ n} if k = n.

Then we apply Algorithm P | intree; pi = 1 | Lmax to the job set
n−1⋃

k=1

Sk

by first scheduling the jobs in S1 in an arbitrary order, then the jobs in
S2 in an arbitrary order, etc. We extend the partial schedule constructed
this way by scheduling the jobs in Sn in an order of nondecreasing d′

j-
values according to algorithm P | intree; pi = 1 | Lmax. The resulting
schedule must be optimal because all jobs are scheduled in an order of
nondecreasing d′

j-values. Denote the corresponding objective value by
L∗

max.

Unfortunately, the jobs in Sn must be sorted, which takes O(n logn)
time. We can avoid this by ordering the jobs in Sn consistently with the
precedence constraints and scheduling them in this order. The resulting
schedule must be optimal because

n
max
j=1

{Cj − d′
j}= max(max{Cj − d′

j | j ∈
n−1⋃

k=1

Sk},
max{Cj − d′

j | j ∈ Sn})
= max{Cj − d′

j | j ∈
n−1⋃

k=1

Sk} ≤ L∗
max.

The last equality follows from the fact that Cj ≤ n ≤ d′
j for all j ∈ Sn.

P | intree; pi = p | Lmax can be solved with the same complexity
because by scaling with factor 1/p this problem is transformed into
the corresponding equivalent problems with pi = 1. Symmetrically to
P | intree; pi = p | Lmax, problem P | outtree; pi = p; ri | Cmax can be
solved in linear time.

P | tree;pi = 1 | Cmax

Clearly, P | outtree; pi = 1 | Cmax can be solved in time O(n) as well. P |
intree; pi = 1 | Cmax has the same complexity because it is symmetrical
to P | outtree; pi = 1 | Cmax. Thus, P | tree; pi = 1 | Cmax can be solved
in linear time. However, problem P | outtree; pi = 1 | Lmax is NP-hard.

5.2. Jobs with Precedence Constraints 145

P | outtree;pi = 1 | ∑
Ci

If we specialize algorithm P | intree; pi = 1 | Lmax to problem P |
intree; pi = 1 | Cmax, it may be formulated as follows. Calculate for each
job i the number l(i) of jobs on the unique path to the root. Schedule the
job according to nonincreasing l(i) values. For problem P | outtree; pi =
1 | Cmax the same algorithm works if we replace l(i) by the largest number
of vertices on a path leaving job i. It can be shown that this algorithm
also solves problem P | outtree; pi = 1 | ∑

Ci.

Brucker, Hurink, and Knust [38] have show that P | outtree; pi = 1; ri |∑
Ci can be solved in time O(n2). Furthermore, they proved that pre-

emption does not help to improve the objective value.

5.2.2 Problem P2 | prec;pi = 1 | Lmax

As in the last section, we solve this problem by calculating modified due
dates and scheduling the jobs in order of nondecreasing modified due
dates. However, the due date modification procedure is more sophisti-
cated.

Again, the modified due dates are calculated while going from successors
to predecessors. Let S(i) be the set of not necessarily immediate succes-
sors of job i. Assume that the modified due dates d′

j are calculated for
all j ∈ S(i). Then we define for each real number d and job i

g(i, d) =| {k | k ∈ S(i), d′
k ≤ d} |,

i.e. g(i, d) is the number of successors k of i with d′
k ≤ d.

If j ∈ S(i) and all successors of i have to be finished before their modified
due dates, then job i must be finished before

d′
j −

⌈
g(i, d′

j)

2

⌉

where �x denotes the smallest integer greater or equal to x. This follows
from the fact that all successors k of i with d′

k ≤ d′
j must be scheduled

on two machines in the time period between the finishing time of job i
and time d′

j. This leads to the following definition of d′
i

d′
i = min

{

di, min

{

d′
j −

⌈
g(i, d′

j)

2

⌉

| j ∈ S(i)

}}

. (5.17)

146 Parallel Machines

1

2

3

4

5 6

7

13

12

11

8

10

9

d1 = 2; d′
1 = −1

2;0 3;1 5;2

3;-1 4;0 4;4

7;4
6;6

6;6

6;6

6;6

6;6

Figure 5.11: Calculation of modified due dates.

Example:

A graph with original and modified due dates is shown in Figure 5.11. For
jobs i = 9, 10, 11, 12, 13 which have no successors, we have di = d′

i = 6.
Furthermore, we get d′

8 = min{4, 6 − �2
2
} = 4, d′

7 = min{7, 6 − �3
2
} =

4, d′
6 = min{5, 4 − �2

2
, 6 − �7

2
} = 2, etc. �

If the jobs are ordered topologically, the modified due dates can be cal-
culated by evaluating (5.17) when scanning jobs j in reverse topological
order. If we evaluate (5.17) in a straightforward way, we need O(n2) steps
yielding an O(n3) due date modification algorithm. We will improve the
complexity to O(n2) by keeping a list L in which all jobs are sorted with
respect to the current due date. These due dates are either modified or
not modified. L(i) is the job in position i of the list and di is its current
due date. Assume that all successors of job i have been modified and
we want to calculate d′

i according to (5.17). Then we scan the list L.
If k = L(j) ∈ S(i), then g(i, d′

k) is the number of successors of i which
appear in the list in a position smaller than or equal to j. Thus, by
scanning the list L we may evaluate (5.17) in an efficient way. Details
are given by Steps 6 to 9 of the following algorithm. As before, A = (aij)
is the adjacency matrix associated with the precedence constraints and
n(i) is the number of successors not yet treated by the due date modi-
fication procedure. S is the set of untreated jobs. The running time of
the algorithm is O(n2) if the successor sets S(j) are known. Otherwise,
we may calculate this set by an algorithm of Fischer & Meyer [90] which

5.2. Jobs with Precedence Constraints 147

takes O(nlog 7) steps.

Algorithm Due Date Modification 2

1. FOR i := 1 TO n DO n(i) :=
n∑

j=1

aij;

2. Calculate a list L of all jobs ordered according to nondecreasing
di-values;

3. S := {1, . . . , n};
4. WHILE S �= φ DO

BEGIN
5. Find job i ∈ S with n(i) = 0;
6. count := 1;
7. FOR j := 1 TO n DO IF k := L(j) ∈ S(i) THEN

BEGIN
8. di := min{di, dk − � count

2
};

9. count := count + 1;
END

10. Eliminate i from L and insert i according to its current
di-value;

11. FOR j := 1 TO n DO IF aji = 1 THEN n(j) := n(j) − 1;
12 S := S\{i}

END

The final list L will be input to a second algorithm which constructs an
optimal schedule by scheduling jobs in order of nondecreasing modified
due dates. Each job is scheduled as early as possible on one of the two

Algorithm P2 | prec;pi = 1 | Lmax

1. FOR j := 1 TO n DO v(j) =
n∑

i=1

aij ;

2. T := 0;
3. M := φ;
4. WHILE L �= φ DO

BEGIN
5. IF |M | = 2 OR there is no job in L with v(j) = 0 THEN

BEGIN
6. T := T + 1;
7. WHILE there exists i ∈ M DO

BEGIN

148 Parallel Machines

8. FOR j := 1 TO n DO
IF aij = 1 THEN v(j) := v(j) − 1;

9. M := M\{i}
END

END
10. Find the first job j in L with v(j) = 0;
11. x(j) := T ;
12. M := M ∪ {j};
13. L := L\{j}

END

machines. The variables used in this algorithm are

• the current time T ,

• the number v(i) of predecessors of job i which are not scheduled
yet,

• the starting time x(i) of job i in the schedule to be constructed,
and

• a set M of at the most two jobs and at least one job to be scheduled
at current time T .

The complexity of this algorithm is O(n2). Thus, the total time for
solving problem P2 | prec; pi = 1 | Lmax is O(n2) or O(nlog 7) if the
successor sets S(j) must be calculated.

We still have to prove the correctness of this procedure.

The following lemma is an immediate consequence of the discussions in
this section.

Lemma 5.13 A schedule has no late jobs with respect to the original
due dates di if and only if it has no late jobs with respect to the modified
due dates d′

i. �

Lemma 5.14 If there exists a schedule without late jobs then Algorithm
P2 | prec; pi = 1 | Lmax calculates such a schedule.

Proof: Assume that a schedule x(1), . . . , x(n) constructed by Algorithm
P2 | prec; pi = 1 | Lmax has a late job with respect to the d-values. By

5.2. Jobs with Precedence Constraints 149

Lemma 5.13, this schedule also has a job which is late with respect to the
d′-values. Let i be a job with the smallest x-value satisfying d′

i < x(i)+1.
Due to the algorithm, at each time t < x(i) at least one job j with d′

j ≤ d′
i

must be processed. We consider two cases.

Case 1: At some time t < x(i) only one job k with d′
k ≤ d′

i is processed.

We choose a maximal t < x(i) with this property. Then for all jobs j
processed in the interval [t + 1, x(i)] we have d′

j ≤ d′
i. Furthermore, no

machine is idle during this period. All jobs j processed in [t + 1, x(i)]
and job i must be successors of k, because otherwise such a j must be
processed before t + 1. We have

⌈
g(k, d′

i)

2

⌉

≥
⌈

2(x(i) − t) − 1

2

⌉

= x(i) − t

which implies

d′
k ≤ d′

i −
⌈

g(k, d′
i)

2

⌉

≤ d′
i − x(i) + t < x(i) + 1 − x(i) + t = t + 1.

We conclude that job k is also late which contradicts the minimality of
x(i).

Case 2: At each time 0 ≤ t < x(i), two jobs are scheduled and for all
these jobs j the inequality d′

j ≤ d′
i holds.

Then we have d′
j ≤ d′

i < x(i) + 1 for at least 2x(i) + 1 jobs, which means
that in each schedule there exists a late job. �

The following lemma shows that the schedule constructed by the algo-
rithm will not change if all original due dates are shifted by a constant l.

Lemma 5.15 If d′
i(i = 1, . . . , n) are the modified due dates for di(i =

1, . . . , n), then d′
i + l are the modified due dates for di + l(i = 1, . . . , n)

for any real number l.

Proof: The assertion is clearly true for all jobs without successors. Oth-
erwise, we have by induction

(di + l)′= min{di + l, min{d′
j + l − �g(i,d′j)

2
 | j ∈ S(i)}

= d′
i + l

because

{k | k ∈ S(i), d′
k + l ≤ d′

j + l} = {k | k ∈ S(i), d′
k ≤ d′

j}.
�

150 Parallel Machines

Theorem 5.16 Algorithm P2 | prec; pi = 1 | Lmax is correct.

Proof: Similar to proof of Theorem 5.12.

The procedure can be generalized to an O(n3 log n)-procedure which
solves problem P2 | prec; pi = 1; ri | Lmax (Garey & Johnson [97]).

�

5.3 Complexity Results

In Tables 5.1 and 5.2 we summarize scheduling problems to be processed
without preemption on parallel machines which are polynomially solv-
able and pseudopolynomially solvable, respectively. In connection with
“chains” l denotes the number of chains. In Table 5.3 we will also give a
list of related NP-hard problems.

Tables 5.4 to 5.6 summarize the corresponding complexity results for
parallel machine problems with preemptions.

Tables 5.1 and 5.6 show that P | pi = p | ∑
wiUi is polynomially solvable

but P | pi = p; pmtn | ∑
wiUi is NP-hard. This is very surprising be-

cause in the other cases if a problem with pi = p or pi = 1 is polynomially
solvable then the corresponding preemptive problem is also polynomially
solvable even with arbitrary processing times. Another result of this type
was provided more recently by Sitters [187].

5.3. Complexity Results 151

Q | pi = 1 | fmax 5.2.1Graham et al. [108] O(n2)

P | pi = p; outtree; ri | Cmax 5.2.1Brucker et al. [35] O(n)

P | pi = p; tree | Cmax Hu [116] O(n)

P2 | pi = p; prec | Cmax 5.2.2Garey & Johnson [96] O(nlog7
)

Q | pi = 1; ri | Cmax Dessouky et al. [76] O(n log n)

Q | pi = p; ri | Cmax 5.1.2 O(n log n)

Q2 | pi = p; chains | Cmax Brucker et al. [39] O(l)

P | pi = 1; chains; ri | Lmax Dror et al. [78]

P | pi = p; intree | Lmax 5.2.1Brucker et al. [35],

Monma [169] O(n)

P | pi = p; ri | Lmax 5.1.1 Simons [186] O(n3 log log n)

P2 | pi = 1; prec; ri | Lmax Garey & Johnson [97] O(n3 log n)

P | pi = 1; outtree; ri |
∑

Ci Brucker et al. [38] O(n2)

P | pi = p; outtree | ∑
Ci Hu [116] O(n log n)

Pm | pi = p; tree | ∑
Ci Baptiste et al. [22] O(nm)

P | pi = p; ri |
∑

Ci 5.1.1Baptiste & Brucker [20] O(n log n)

P2 | pi = p; prec | ∑
Ci Coffman & Graham [70] O(nlog7

)

P2 | pi = 1; prec; ri |
∑

Ci Baptiste & Timkowski [23] O(n9)

Qm | pi = 1; ri |
∑

Ci Dessouky et al. [76] O(mn2m+1)

R ‖ ∑
Ci 5.1.3Bruno et al. [58] O(mn3)

P | pi = p; ri |
∑

wiCi Brucker & Kravchenko [52] lin. progr.

P | pi = p | ∑
wiCi 5.1.1McNaughton [165] O(n log n)

P | pi = p | ∑
wiUi 5.1.1Brucker & Kravchenko [50] O(n log n)

P | pi = 1; ri |
∑

wiUi Networkflowproblem O(mn3)

Pm | pi = p; ri |
∑

wiUi Baptiste et. al [21] O(n6m+1)

Q | pi = p | ∑
wiUi Assignment-problem O(n3)

P | pi = p; ri |
∑

Ti Brucker & Kravchenko [53] lin. progr.

P | pi = 1; ri |
∑

wiTi Networkflowproblem O(mn3)

Q | pi = p | ∑
wiTi Assignment-problem O(n3)

Table 5.1: Polynomially solvable parallel machine problems without pre-
emption.

152 Parallel Machines

Qm | ri | Cmax Lawler et al. [145]

Qm ‖ ∑
wiCi Lawler et al. [145]

Qm ‖ ∑
wiUi Lawler et al. [145]

Table 5.2: Pseudopolynomially solvable parallel machine problems with-
out preemption.

P2 ‖ Cmax Lenstra et al. [155]

∗ P ‖ Cmax Garey & Johnson [98]

∗ P | pi = 1; intree; ri | Cmax Brucker et al. [35]

∗ P | pi = 1; prec | Cmax Ullman [203]

∗ P2 | chains | Cmax Du et al. [86]

∗ Q | pi = 1; chains | Cmax Kubiak [129]

∗ P | pi = 1; outtree | Lmax Brucker et al. [35]

∗ P | pi = 1; intree; ri |
∑

Ci Lenstra [150]

∗ P | pi = 1; prec | ∑
Ci Lenstra & Rinnooy Kan [152]

∗ P2 | chains | ∑
Ci Du et al. [86]

∗ P2 | ri |
∑

Ci Single-machine problem

P2 ‖ ∑
wiCi Bruno et al. [58]

∗ P ‖ ∑
wiCi Lenstra [150]

∗ P2 | pi = 1; chains | ∑
wiCi Timkovsky [201]

∗ P2 | pi = 1; chains | ∑
Ui Single-machine problem

∗ P2 | pi = 1; chains | ∑
Ti Single-machine problem

Table 5.3: NP-hard parallel machine problems without preemption.

5.3. Complexity Results 153153

P | pmtn | Cmax McNaughton [165]
5.1.1 O(n)

P | outtree; pmtn; ri | Cmax Lawler [139]
O(n2)

P | tree; pmtn | Cmax Gonzalez & Johnson [103]
O(n log m)

Q | pmtn; ri | Cmax Labetoulle et al. [133]
O(n log n + mn)

Q | chains; pmtn | Cmax Gonzalez & Sahni [105]
5.1.2 O(n + m log n)

P | intree; pmtn | Lmax Lawler [139]
O(n2)

Q2 | prec; pmtn; rj | Lmax Lawler [139]
O(n2)

Q2 | prec; pmtn; ri | Lmax Lawler [139]
O(n6)

P | pmtn | Lmax Baptiste [17]
O(n log n)

Q | pmtn | Lmax Labetoulle et al. [133]
O(n log n + mn)

Q | pmtn, ri; di | − Federgruen & Gronevelt [89]
5.1.2 O(mn3)

R | pmtn; ri | Lmax Lawler & Labetoulle [142]
5.1.3 lin. progr.

P | pi = p; outtree; pmtn | ∑
Ci Brucker et al. [38]

O(n2)
P | pi = 1; outtree; pmtn; ri |

∑
Ci Brucker et al. [38]

O(n2)
P2 | pi = p; prec; ; pmtn | ∑

Ci Coffman et al. [68]
P2 | pi = p; outtree; pmtn; ri |

∑
Ci Lushchakova [163]

P2 | pi = p; pmtn; ri |
∑

Ci Herrbach & Leung [111]
O(n log n)

P | pi = p; pmtn; ri |
∑

Ci Brucker & Kravchenko [52]
lin. progr.

Q | pmtn | ∑
Ci Labetoulle et al. [133]

5.1.2 O(n log n + mn)
P | pi = p; pmtn | ∑

wiCi McNaughton [165]
5.1.1 O(n log n)

Q | pi = p; pmtn | ∑
Ui Baptiste et al. [21]

Qm | pmtn | ∑
Ui Lawler [138], Lawler & Martel [146]

O(n3(m−1))
Pm | pi = p; pmtn | ∑

wiUi Baptiste [18], Baptiste [17]
O(n3m+4)

P | pi = 1; pmtn; ri |
∑

wiUi Brucker et al. [37]
O(mn3)

P | pi = p; pmtn | ∑
Ti Baptiste et al. [21]

O(n3)
P | pi = 1; pmtn; ri |

∑
wiTi Baptiste [19]

O(mn3)

Table 5.4: Polynomially solvable preemptive parallel machine problems.

154 Parallel Machines

Pm | pmtn | ∑
wiCi McNaughton [165], Lawler et al. [145]

Qm | pmtn | ∑
wiUi Lawler [138] , Lawler & Martel [146]

Table 5.5: Pseudopolynomially solvable preemptive parallel machine
problems.

∗ P | intree; pmtn; ri | Cmax Lenstra [150]

∗ P | pi = 1; prec; pmtn | Cmax Ullman [204]

∗ R2 | chains; pmtn | Cmax Lenstra [150]

∗ P | outtree; pmtn | Lmax Lenstra [150]

P2 | pmtn; ri |
∑

Ci Du et al. [85]

∗ P2 | chains; pmtn | ∑
Ci Du et al. [86]

∗ P | pmtn; ri |
∑

Ci Brucker & Kravchenko [51]

∗ R | pmtn | ∑
Ci Sitters [187]

∗ P2 | pi = 1; chains; pmtn | ∑
wiCi Du et al. [86]

P2 | pmtn | ∑
wiCi Bruno et al. [58]

∗ P | pi = p; pmtn; ri |
∑

wiCi Leung & Young [158]

∗ P | pmtn | ∑
wiCi Lenstra [150]

∗ P2 | pmtn; ri |
∑

wiCi Labetoulle et al. [133]

P | pmtn | ∑
Ui Lawler [140]

P2 | pmtn; ri |
∑

Ui Du et al. [84]

∗ P2 | pi = 1; chains; pmtn | ∑
Ui Baptiste et al. [21]

∗ R | pmtn; ri |
∑

Ui Du & Leung [82]

∗ R | pmtn | ∑
Ui Sitters [187]

P | pi = p; pmtn | ∑
wiUi Brucker & Kravchenko [50]

P2 | pmtn | ∑
wiUi Single-machine problem

Table 5.6: NP-hard preemptive parallel machine problems.

Chapter 6

Shop Scheduling Problems

In this chapter we will discuss shop scheduling problems, such as
open shop problems, flow shop problems, job shop problems, and mixed
shop problems, which are widely used for modeling industrial production
processes. All of these problems are special cases of the general shop
problem.

The general shop problem may be defined as follows. We have n jobs
i = 1, . . . , n and m machines M1, . . . , Mm. Each job i consists of a set of
operations Oij (j = 1, . . . , ni) with processing times pij. Each operation
Oij must be processed on a machine μij ∈ {M1, . . . , Mm}. There may
be precedence relations between the operations of all jobs. Each job can
only be processed only by one machine at a time and each machine can
only process one job at a time. The objective is to find a feasible schedule
that minimizes some objective function of the finishing times Ci of the
jobs i = 1, . . . , n. The objective functions are assumed to be regular.

In Section 6.1 we will introduce disjunctive graphs, which are a use-
ful tool for representing feasible schedules for shop problems. In sub-
sequent sections we will discuss open shop problems (Section 6.2), flow
shop problems (Section 6.3), job shop problems (Section 6.4), and mixed
shop problems (Section 6.5). In Section 6.6 complexity results for shop
scheduling problems are presented. Unless otherwise stated, preemption
is not allowed.

156 Shop Scheduling Problems

6.1 The Disjunctive Graph Model

Disjunctive graphs can be used to represent certain feasible schedules
for general shop problems. If the objective function is regular, the set
of feasible schedules represented in this way always contains an optimal
solution for the problem. Thus, the disjunctive graph model may be used
to construct optimal schedules.

For a given instance of the general shop problem, the disjunctive graph
G = (V, C, D) is defined as follows.

V is the set of nodes representing the operations of all jobs. In addi-
tion, there are two special nodes, a source 0 ∈ V , and a sink ∗ ∈ V .
A weight is associated with each node. The weights of 0 and ∗ are
zero, while the weights of the other nodes are the processing times
of the corresponding operations.

C is the set of directed conjunctive arcs. These arcs reflect the
precedence relations between the operations. Additionally, there
are conjunctive arcs between the source and all operations without
a predecessor, and between all operations without a successor and
the sink.

D is the set of undirected disjunctive arcs. Such an arc exists for
each pair of operations belonging to the same job which are not con-
nected by a chain of conjunctive arcs and for each pair of operations
to be processed on the same machine which are not connected by
a chain of conjunctive arcs.

Figure 6.1 shows a disjunctive graph for a general shop problem with
4 jobs and 4 machines. Each node has a label indicating the machine
on which the corresponding operation has to be processed. The basic
scheduling decision is to define an ordering between the operations con-
nected by disjunctive arcs. This can be done by turning the undirected
disjunctive arcs into directed ones. A selection S is a set of directed
disjunctive arcs. Disjunctive arcs which have been directed are called
fixed. A selection is a complete selection if

• each disjunctive arc has been fixed, and

• the resulting graph G(S) = (V, C ∪ S) is acyclic.

6.1. The Disjunctive Graph Model 157

O41 O42

O31 O32 O33

0 ∗
O21 O22

O11 O12 O13

M1

M1

M1

M1

M2

M2

M3

M3

M3

M4

Figure 6.1: Disjunctive graph for a general shop problem with 4 jobs and
4 machines.

O41 O42

O31 O32 O33

0 ∗
O21 O22

O11 O12 O13

Figure 6.2: Complete selection for the example presented in Figure 6.1.

Figure 6.2 shows a complete selection for the example presented in Figure
6.1. Given a complete selection S, we may construct a corresponding
nonpreemptive (semi-active) schedule x = (xi) defined by the starting
times of all operations i. For each path p from vertex i to vertex j in
G(S), define the length of p to be the sum of all labels of nodes in p, j
excluded. For each operation i, let l(i) be the length of a longest path
from 0 to the vertex representing i. If we define xi = l(i) for all operations
i, then we get the feasible schedule x associated with S.

158 Shop Scheduling Problems

On the other hand, an arbitrary feasible schedule x defines an order
of operations for each job and each machine. This induces a complete
selection S and, given a regular objective function, the corresponding
schedule x′ is not worse than x. Thus, a complete selection always exists
which represents an optimal schedule.

If the objective function is to minimize makespan, then the length l(∗) of
a longest 0−∗−path is the Cmax-value which corresponds with a complete
selection.

6.2 Open Shop Problems

An open shop problem is a special case of the general shop in which

• each job i consists of m operations Oij (j = 1, . . . , m) where Oij

must be processed on machine Mj , and

• there are no precedence relations between the operations.

Thus, the problem is to find job orders (orders of operations belong-
ing to the same job) and machine orders (orders of operations to be
processed on the same machine).

6.2.1 Arbitrary Processing Times

If the processing times pij are arbitrary and preemption is not allowed,
then O2 ‖ Cmax (or symmetrically O | n = 2 | Cmax) seems to be the only
problem which is polynomially solvable.

An O(n)-algorithm for problem O2 ‖ Cmax can be described as follows.

Let A and B be the two machines and denote by ai and bi the pro-
cessing times of job i (i = 1, . . . , n) on machines A and B, respectively.
Furthermore, define

I = {i | ai ≤ bi; i = 1, . . . , n} and

J = {i | bi < ai; i = 1, . . . , n}.
We consider two cases.

Case 1:
ar = max{max{ai | i ∈ I}, max{bi | i ∈ J}}

An optimal schedule is constructed by scheduling

6.2. Open Shop Problems 159

B

A

r I\{r} J

I\{r} J r

(a)

B

A

J\{r} I r

r J\{r} I

(b)

Figure 6.3: Optimal schedules for O2 ‖ Cmax.

• first all jobs in I\{r} in an arbitrary order on machine A, then all
jobs in J in an arbitrary order, and, finally, job r,

• first job r on machine B, then all jobs in I\{r} in the same order
as jobs in I\{r} are scheduled on A, and, finally, all jobs in J in
the same order as on machine A, and

• first job r on machine B and then on machine A, while all other
jobs are first scheduled on machine A (see Figure 6.3(a)).

Case 2:
br = max{max{ai | i ∈ I}, max{bi | i ∈ J}}

We have to interchange the machines and sets I and J before applying
the same rule (see Figure 6.3(b)).

The complexity of this procedure is O(n).

To prove the correctness of this procedure we consider only Case 1 (Case
2 is similar).

Let G(S) be the network induced by the solution S. Then it is sufficient
to show that one of the following paths is a longest path in G(S):

(i) 0 → ai (i ∈ I\{r}) −→ ai (i ∈ J) −→ ar → ∗
(ii) 0 → br −→ bi (i ∈ I\{r}) −→ bi(i ∈ J) → ∗
(iii) 0 → br −→ ar → ∗

160 Shop Scheduling Problems

Here ai (I\{r}), ai (i ∈ J), etc. stand for corresponding subpaths.

Because the length of each of these three paths is a lower bound for the
open shop problem, the solution must be optimal.

To simplify the notation we assume that the jobs are enumerated accord-
ing to the sequence on machine A. Thus, I\{r} = {1, . . . , |I|−1}, J =
{|I|, . . . , n − 1}, and r = n.

The only paths other than (i), (ii), and (iii) that exist in G(S) are paths
of the form

0 → a1 → . . . → ai → bi → . . . → bn−1 → ∗ (i = 1, . . . , n − 1).

We show that none of these paths is longer than the longest of (i), (ii),
(iii).

If i ∈ I, then

i∑

j=1

aj +
n−1∑

j=i

bj ≤
i−1∑

j=1

bj + ai +
n−1∑

j=i

bj ≤
n∑

j=1

bj

because ai ≤ max{aj | j ∈ I} = an ≤ bn.

If i ∈ J , then

i∑

j=1

aj +

n−1∑

j=i

bj ≤
i∑

j=1

aj + bi +

n−1∑

j=i+1

aj ≤
n∑

j=1

aj

because bi ≤ max{bj | j ∈ J} ≤ max{max{ai | i ∈ I}, max{bj | j ∈
J}} = an. �

In Section 2.4 we showed that problem O | pmtn | Cmax can be solved in
O(n5/2m) time. Similar results can be obtained for the minimization of
maximum lateness if preemption is allowed. Lawler, Lenstra & Rinnooy
Kan [144] give an O(n) time algorithm for O2 | pmtn | Lmax and, by
symmetry, for O2 | pmtn, ri | Cmax. For O | ri; pmtn | Lmax Cho &
Sahni [66] show that a trial value of Lmax can be tested for feasibility by
linear programming; binary search is then applied to minimize Lmax in
polynomial time.

The following problems are NP-hard: O | pmtn | ∑
Ci, O2 | pmtn; di |∑

Ci (Liu & Bulfin [160]), and O2 | pmtn | ∑
Ci (Du & Leung [83]).

6.2. Open Shop Problems 161

6.2.2 Unit Processing Times

To solve an open shop problem P with unit processing times we proceed
as follows.

We transform P into a problem P by replacing

• the machines by m identical parallel machines, and

• each job i by a chain of m unit time jobs Oik (k = 1, . . . , m),

and solve problem P .

A schedule for problem P may be represented by a binary matrix A =
(ait) where ait = 1 iff Oik is scheduled in time period t for some k (k =
1, . . . , m). Such a schedule can be transformed into a feasible schedule of
the original open shop problem by assigning machines to the unit time
operations in such a way that

• all m unit time operations belonging to the same chain are assigned
to different machines, and

• all unit time operations scheduled at the same time are assigned to
different machines.

This machine assignment problem is equivalent to coloring the arcs of the
bipartite graph G defined by A with exactly m colors. According to the
results in Section 2.6, this is always possible because m is the maximum
degree of G. Note that G has nm edges. Furthermore, we assume that
m ≤ n. Then the machine assignment can be done in O(n2m) time
using the edge coloring algorithm of Section 2.6. If we use the more
sophisticated algorithm of Gabow & Kariv [95], we get a time bound of
O(nm log2(nm)) because the number of columns in A are bounded by
O(nm).

An optimal solution of P yields an optimal solution of the original prob-
lem P . This follows from the fact that P is a relaxation of P and that a
solution of P also defines a solution for P .

Problem P is equivalent to the problem P̂ of scheduling identical jobs
with processing time m on m identical machines where preemption and
restart is only allowed at integer times.

We have considered the case m ≤ n. If n < m, then it is always possible
to construct a schedule in which job i finishes at time ri + m. Such a

162 Shop Scheduling Problems

1 2 3

1 2 3 n = 3, m = 4

3 1 2

2 3 1

Figure 6.4: Optimal schedule for an instance of O | pij = 1 | γ with
n < m.

1 2 3 4 5 6 7

7 1 2 3 4 5 6 m = 4, n = 7

6 7 1 2 3 4 5

5 6 7 1 2 3 4

Figure 6.5: Optimal schedule for an instance of O | pij = 1 | Cmax.

schedule must be optimal if the objective function is regular. Figure 6.4
shows such a schedule for the case in which all release times ri are zero.

Table 6.1 in Section 6.6 shows open shop problems P that can be solved
polynomially due to the fact that the corresponding parallel machine
problem P̂ with processing times m and integer preemption can be solved
polynomially. The complexity of problem P is given by the maximum of
the complexity for P̂ and O(nm log2(nm)). Most of the parallel machine
problems have been discussed in the previous chapter. Other results will
be derived in this section. However, we will first discuss some open shop
problems with unit processing times for which an optimal solution can
be constructed directly, i.e. without applying the assignment procedure.
As before, we assume m ≤ n.

O | pij = 1 | Cmax

The results derived in 5.1.1 show that problem P | pi = m; pmtn | Cmax

with n jobs has a solution with an optimal Cmax-value equal to n. Thus,
n is a lower bound for the solution value. It is also not difficult to
construct a schedule for the corresponding problem O | pij = 1 | Cmax

with a makespan equal to n. Figure 6.5 shows an example for such a
schedule which is an optimal solution for the open shop problem.

6.2. Open Shop Problems 163

Block 1 Block 2 Block 3 Block 4

1 2 3 4 5 6 7 8 9 10 11

3 1 2 6 4 5 9 7 8 10 11

2 3 1 5 6 4 8 9 7 11 10

Figure 6.6: Optimal schedule for an instance of O | pij = 1 | ∑
wiCi.

O | pij = 1 | ∑
wiCi

We first investigate how to solve the corresponding problem P | pi =
m; pmtn | ∑

wiCi. In Section 5.1.1, we saw that preemptions are not
advantageous when solving P | pmtn | ∑

wiCi, i.e. an instance of
P ‖ ∑

wiCi has the same optimal objective value as the correspond-
ing instance of P | pmtn | ∑

wiCi.

Thus, it is sufficient to solve P | pi = m | ∑
wiCi. This is accomplished

by scheduling the jobs in order of nonincreasing wi-values (see 5.1.1). If
we assume that n = lm + r with r < m, we get l blocks of jobs, each
consisting of exactly m jobs, and a block l+1 consisting of the remaining
r jobs. All jobs of block k (k = 1, . . . , l + 1) are scheduled in the time
interval [(k − 1)m, km]. To construct a schedule for the corresponding
O | pij = 1 | ∑

wiCi-problem, we schedule each of the first l blocks as
shown in Figure 6.5 and the last block as shown in Figure 6.4. Figure
6.6 shows the total schedule for the case m = 3 and n = 11.

Problem O | pij = 1; di |- is to determine whether a feasible schedule
exists for the open shop problem with unit processing times in which no
jobs finish later than their deadlines.

In the next sections we will present algorithms for this problem and
other problems involving due dates. We will assume that the jobs are
enumerated in such a way that

d1 ≤ d2 ≤ . . . ≤ dn. (6.1)

O | pij = 1;di | −
If d1 < m, then C1 > d1 in any schedule for O | pij = 1; di | −. Thus, we
may assume that m ≤ di for all i = 1, . . . , n.

Algorithm O | pij = 1; di | − solves problem O | pij = 1; di | − for

164 Shop Scheduling Problems

m machines. Later we will show that this algorithm has an O(nm)-
implementation.

The idea of Algorithm O | pij = 1; di | − is to assign the m unit opera-
tions of each job to the time slots [t − 1, t] for t = 1, . . . , T := max{di |
i = 1, . . . , n}. Job i is first assigned to time slots di − m + 1, . . . , di. If
some time slot t > 1 contains m + 1 operations, then an operation from
the smallest time slot t > 1 with this property is moved one unit to the
left and the process is repeated if necessary. Thus, only the first time
slot may accumulate more than m operations and this happens if and
only if the decision problem O | pij = 1; di | − has a negative answer.
We denote by h(t) the number of operations accumulated in time slot
[t − 1, t].

Algorithm O | pij = 1;di | −
1. T := max{di | i = 1, . . . , n};
2. FOR t := 1 TO T DO h(t) := 0;
3. FOR i := 1 TO n DO

BEGIN
4. FOR j := di DOWN TO di − m + 1 DO h(j) := h(j) + 1;
5. WHILE there exists a t > 1 with h(t) = m + 1 DO

BEGIN
6. Find a minimal t0 > 1 with h(t0) = m + 1;
7. h(t0 − 1) := h(t0 − 1) + 1;
8. h(t0) := m

END
END

9. IF h(1) ≤ m THEN there exists a schedule without late jobs

We call the vector h calculated by the algorithm the frequency vector.
The frequency vector does not depend on the numeration of jobs.

It remains to show that Algorithm O | pij = 1; di | − is correct.

Lemma 6.1 For a set of jobs with deadlines d1, . . . , dn problem O | pij =
1; di | − has a feasible solution if and only if h(1) ≤ m holds.

Proof: If h(1) > m, the capacity of machines is not sufficient to perform
all operations in time.

Algorithm O | pij = 1; di | − initially assigns all operations of the same
job to pairwise different time slots. If there is a t > 1 with h(t) = m + 1

6.2. Open Shop Problems 165

and h(t−1) ≤ m, then there must exist at least one job which is assigned
to time t but not to time t − 1. Thus, after shifting one operation the
vector h still corresponds to an assignment of each job to m different time
slots. If h(1) ≤ m, then vector h satisfies h(t) ≤ m for all t = 1, . . . , T ,
i.e. it corresponds to a feasible schedule for the corresponding problem
on parallel machines. Using the coloring algorithm in Section 2.6, we can
construct a feasible solution for O | pij = 1; di | −. �

Remark 6.2 If there exists a schedule without late jobs, such a schedule
can be constructed using Algorithm O | pij = 1; di | − by replacing Step
4 by

4’. FOR j:= di DOWN TO di − m + 1 DO
BEGIN h(j) := h(j) + 1; Schedule job i in [j − 1, j] END

and adding

8a. Move a job not scheduled in time slot t0 − 1 but in time slot t0
to time slot t0 − 1

after Step 8.

Next we will show that O | pij = 1; di | − can be solved in O(nm) steps.

First, we consider the following question. Let U be a set of jobs with the
property that a schedule exists for U without late jobs. Furthermore, let
i be a job not belonging to U with dj ≤ di for all j ∈ U . Is it possible to
schedule all jobs in V := U ∪ {i} such that no job in V is late?

Before answering this question, we introduce some further notations.
The h-vectors corresponding to U and V are denoted by hU and hV ,
respectively. Furthermore, let x(di)be the number of time periods t with
di − m + 1 ≤ t ≤ di and hU(t) < m. Finally, we state that a set of jobs
can be scheduled early if a schedule exists for this set with no late jobs.

Theorem 6.3 Let U be a set of jobs which can be scheduled early and
let i be a job not belonging to U with dj ≤ di for all j ∈ U . Then the
set of jobs V = U ∪ {i} can be scheduled early if and only if

x(di) +

di−m∑

t=1

(m − hU(t)) ≥ m. (6.2)

For the proof of this theorem we need

166 Shop Scheduling Problems

Lemma 6.4 Consider jobs 1, 2, . . . , i with d1 ≤ d2 ≤ . . . ≤ di and let
U := {1, . . . , i − 1}, V := U ∪ {i}. Then for all j = di − m + 1, . . . , di

with hU(j) < m we have hV (j) = hU(j) + 1.

Proof: We get vectors hU and hV after i−1 and i iterations of Algorithm
O | pij = 1; di | −. During the algorithm, components of the h-vector
with h(j) ≤ m never decrease.

Thus, if di −m+1 ≤ j ≤ di and hU(j) < m, then hV (j) ≥ hU (j)+ 1. To
prove that hV (j) ≥ hU(j) + 2 is not possible for di −m + 1 ≤ j ≤ di, we
consider the schedule which can be constructed by Algorithm O | pij =
1; di | − (see Remark 6.2).

If hV (j) ≥ hU(j) + 2, then during the i-th iteration an operation of job i
is added to time slot j and at least one operation of some other job, say
k, is moved from time slot j +1 to time slot j. This is only possible if no
operation of job k is scheduled before time slot j (no operation is moved
from j to j − 1 as long as h(j) < m). Thus, job k is scheduled in time
slot j and time slots ν > j +1 which implies j < dk −m+1 ≤ di−m+1,
i.e. a contradiction. �

Proof of Theorem 6.3: Condition (6.2) is equivalent to

(di − m)m ≥
di−m∑

i=1

hU(t) + m − x(di). (6.3)

Due to Lemma 6.4 we have

di∑

j=di−m+1

hV (j) =

di∑

j=di−m+1

hU(j) + x(di).

Subtracting this equation from

di∑

j=1

hV (j) =

di∑

j=1

hU(j) + m

we get
di−m∑

t=1

hV (t) = m − x(di) +

di−m∑

t=1

hU (t).

Thus, (6.2) or (6.3) is equivalent to

Tm ≥
T∑

t=1

hV (t) (6.4)

6.2. Open Shop Problems 167

with T := di − m.

It remains to show that if (6.4) holds for T = di − m, then (6.4) also
holds for T = 1, . . . , di − m − 1. By Lemma 6.1 hV (1) ≤ m implies that
all jobs in V can be scheduled early. If, on the other hand, hV (1) ≤ m,
then (6.4) holds because hV (t) ≤ m for all t ≥ 2 by construction of hV .

We prove that (6.4) holds for all T = 1, . . . , di − m by induction on T .

Assume that (6.4) holds for some T with 1 < T ≤ di − m. We consider
two cases depending on the value hV (T).

Case 1: hV (T) = m
Because (6.4) holds for T we have

(T − 1)m ≥
T∑

t=1

hV (t) − m =

T−1∑

t=1

hV (t),

i.e. (6.4) holds for T − 1.

Case 2: hV (T) < m
In the V -schedule all operations of job i must have been assigned to
[T − 1, di] because T ≤ di − m and there is an idle machine during [T −
1, T]. By the same reasoning, all operations in the U -schedule assigned
to [T − 1, di] are also assigned to [T − 1, di] by the V -schedule.

Thus, we have

(T − 1)m ≥
T−1∑

t=1

hU(t) =
T−1∑

t=1

hV (t),

i.e. (6.4) holds for T − 1. Note that the last inequality holds, since a
feasible schedule exists for the jobs of U . �

Let k be the cardinality of the set U . Then we have

di−m∑

j=1

(m − hU(j))= m(di − m) −
di−m∑

j=1

hU (j)

= m(di − m) − (km −
di∑

j=di−m+1

hU(j))

and (6.2) becomes

m(di − m) − (km −
m∑

j=1

hU(di − m + j)) + x(di) ≥ m. (6.5)

168 Shop Scheduling Problems

We conclude that we only need to know the values hU(di − m + 1),
. . . , hU(di) and the cardinality k of the set U to check whether (6.5)
holds, i.e. whether V = U ∪ {i} can be scheduled early. Furthermore,
(6.5) can be checked in O(m) time.

To solve problem O | pij = 1; di | − for jobs i = 1, . . . , n with d1 ≤ d2 ≤
. . . ≤ dn for each i = 1, . . . , n we check whether the job set Ui = {1, . . . , i}
can be scheduled early if Ui−1 can be scheduled early. This is done in
O(m) time by checking (6.5). Furthermore, due to Lemma 6.4, the values
hUi(di − m + 1), . . . , hUi(di) can be updated in O(m) time. Therefore,
Algorithm O | pij = 1; di | − can be implemented such that the running
time is O(nm) if the jobs are ordered according to nondecreasing due
dates.

The O(nm)-algorithm for solving O | pij = 1; di | − may be used to
calculate the optimal objective value of O | pij = 1 | ∑

Ui in O(mn log n)
time. This will be discussed in the next section.

O | pij = 1 | ∑
Ui

We will first solve the parallel machine problem corresponding to O |
pij = 1 | ∑

Ui. An optimal schedule of this problem consists of a schedule
for the set E of early jobs followed by the set L := {1, . . . , n}\E of tardy
jobs scheduled arbitrarily.

Again we assume that (6.1) holds. An easy exchange argument shows
that a maximal set E∗ of early jobs has the form E∗ = {k∗, k∗+1, . . . , n}.
We can calculate k∗ by binary search using the O(nm)-
algorithm which solves O | pij = 1 | di | − as a subroutine. This provides
an O(mn log n)-algorithm for solving the parallel machine problem.

To construct a schedule in which all jobs in E∗ are early, we may apply
an O(nm log2(nm))-algorithm to be discussed later in this section, which
solves problem O | pij = 1 | ∑

Ti.

Finally, we would like to mention that Tautenhahn [195] has developed
an O(nm + n log n)-algorithm for solving problem O | pij = 1; ri |

∑
Ui.

O | pij = 1 | ∑
wiUi

To solve this problem we have to find a set U∗ of jobs which can be
scheduled early such that

∑

i/∈U∗
wi, i.e. the sum of the weights of jobs

6.2. Open Shop Problems 169

not scheduled in U∗ is minimized. We solve this problem by dynamic
programming using the results developed in connection with problem
O | pij = 1; di | −.

Again, assume that d1 ≤ d2 ≤ . . . ≤ dn. For each job i we have to
decide whether it should be scheduled early or late. Assume that we
have already made this decision for jobs 1, 2, . . . , i − 1, i.e. we have a
subset U ⊆ {1, . . . , i − 1} of jobs which can be scheduled early. Let
hU be the frequency vector for U . To decide whether U ∪ {i} can be
scheduled early we have to check condition (6.5):

m(di − m) − (km −
m∑

j=1

hU(di − m + j)) + x(di) ≥ m

where k is the cardinality of U and x(di) denotes the number of time
periods di − m + 1 ≤ t ≤ di with hU(t) < m. U ∪ {i} can be scheduled
early iff (6.5) holds. To check this, we only need m components hU(t), t =
di − m + 1, . . . , di. Therefore, we introduce the variables

kj :=

{
hU(di − m + j) if j ∈ {1, . . . , m}
0 otherwise.

Furthermore, it is convenient to define additional variables.

lj :=

{
1 if j ∈ {1, . . . , m} and kj < m

0 otherwise.

Note that x(di) =
m∑

j=1

lj. Therefore, (6.5) implies

m(di − m) − (km −
m∑

j=1

kj) +

m∑

j=1

lj ≥ m

or

m(di − m − k) +

m∑

j=1

(kj + lj) ≥ m. (6.6)

For the dynamic programming approach, we define fi(k, k1, . . . , km) to
be the minimum cost of scheduling jobs i, i + 1, . . . , n given that a set U
of k jobs in {1, . . . , i−1} is scheduled early, and kj = hU(di−m+ j)(j =

170 Shop Scheduling Problems

1, . . . , m). Moreover, let p := di+1 − di. Then we have the following
recurrence relations:

fi(k, k1, . . . , km) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi+1(k, k1+p, k2+p, . . . , km+p) + wi (6.7)

if m(di − m − k) +
m∑

j=1

(kj + lj) < m

min{fi+1(k, k1+p, k2+p, . . . , km+p) + wi,

fi+1(k + 1, k1+p + l1+p, k2+p + l2+p, . . . (6.8)

. . . , km+p + lm+p)} otherwise.

The boundary conditions are

fn+1(k, k1, . . . , km) = 0 (k, k1, . . . , km = 0, 1, . . . , m).

(6.7) describes the case in which job i cannot be scheduled early due to
inequality (6.5). Thus, the objective value increases by wi. The frequency
vector does not change but the indices of the variables kj have to be
increased by p because, when considering job i + 1, the new variables
must reflect the frequency vector at positions t = di+1 −m + 1, . . . , di+1.

In the second case (see (6.8)), job i may be scheduled early or late. If job
i is scheduled early, then there is no increase in the objective function,
but the frequency vector changes. This is reflected by increasing each
variable kj by lj(j = 1, . . . , m). Moreover, analogously to the first case,
the indices of the variables kj have to be increased by p. If job i is
scheduled late, we get the same formula as in the first case (namely
formula (6.7)).

Note that the values fi(k, k1, . . . , km) can only be calculated if all values
fi+1(k, k1, . . . , km) are already known. Therefore, the recurrence relations
are first evaluated for i = n, then for i = n − 1, etc. The cost of the
optimal schedule is f1(0, 0, . . . , 0).

To calculate the time complexity of this dynamic program, note that the
range of i and k is 0, . . . , n and the range of kj is 0, . . . , m for each j =
1, . . . , m. Each fi(k, k1, . . . , km)-value may be calculated in O(m) time.
Thus, the complexity of the algorithm is O(n2mm+1), which is O(n2) for a
fixed number of machines. The final calculation of a feasible schedule for
the early jobs can be done in O(mn log2(mn)) time using an algorithm

6.2. Open Shop Problems 171

to be derived in the next section for solving problem O | pij = 1 | ∑
Ti.

O | pij = 1 | ∑
Ti

Again, we consider the corresponding parallel machine problem. This
means that we have to schedule n jobs, each consisting of m unit time

operations, in such a way that
n∑

i=1

max{0, Ci − di} is minimized, where

Ci is the finishing time of the last operation of job i(i = 1, . . . , n). Recall
that the operations have to be scheduled in such a way that no two
operations of the same job are processed in the same time slot and that
at the most m jobs are scheduled in each time slot.

As before, we assume that d1 ≤ d2 ≤ . . . ≤ dn. Then the following lemma
holds.

Lemma 6.5 An optimal schedule always exists with C1 ≤ C2 ≤ . . . ≤
Cn.

Proof: By a simple exchange argument. �

Next we consider only optimal schedules with C1 ≤ C2 ≤ . . . ≤ Cn. Then
we have:

Theorem 6.6 An optimal schedule always exists with Ci ≤ m + i − 1
for i = 1, . . . , n.

Proof: Consider an optimal schedule B with Ci ≤ m + i − 1 for i =
1, . . . , k − 1 and Ck > m + k − 1 where k is maximal.

k is at least two, because if we have an optimal schedule with C1 > m
and job 1 is scheduled in period t but not in period t − 1, then there
exists a (possibly empty) operation scheduled in period t − 1 and not
scheduled in period t. We exchange this operation with the operation of
job 1 scheduled in period t. The Ci-values do not increase because C1

is the smallest Ci-value. If we continue this process, we get an optimal
schedule with C1 = m.

Now let Ck = m+k + t, t ≥ 0. Let W be the set of all operations of jobs
i = 1, 2, . . . , k− 1, let X be the set of all operations scheduled after time
k + m + t in schedule B, and let Y be the set of operations of jobs i =
k+1, . . . , n which were scheduled by time k+m+ t in schedule B. These
sets are mutually exclusive and, with job k, are collectively exhaustive.

172 Shop Scheduling Problems

We construct a new schedule B′ by first scheduling all operations in
W ∪ X as in schedule B. Because Ci ≤ m + i − 1 for i = 1, . . . , k − 1
and no operations in X are scheduled before time k + m + t, there are
m different idle periods between time 1 and time k + m − 1 in which
we schedule job k. Thus Ck ≤ m + k − 1. We then assign machines
to the operations scheduled before time k + m + t such that there are
k+m+ t−k = m+ t empty time cells between time 1 and time k+m+ t
on each machine. Because |Y | ≤ (k+m+t)m−km = (m+t)m, it is also
possible to schedule the operations belonging to Y before m+k+t, and to
transform this schedule into a schedule of the open shop problem which
again is optimal, because the jobs j with operations of Y had a finishing
time Cj ≥ Ck = m + k + t. However, this contradicts the maximality of
k. �

The idea of the algorithm is to schedule the jobs in order of nondecreasing
due dates. To schedule the current job i, we first calculate a time limit
Ti. The processing periods of i are m time periods 1 ≤ t1 < t2 < . . . <
tm ≤ Ti with the smallest frequency values h(t). Details are given by the
following algorithm.

Algorithm O | pij = 1 | ∑
Ti

1. FOR t := 1 TO m + n − 1 DO h(t) := 0;
2. FOR i := 1 TO n DO

BEGIN
3. IF di < m + i − 1 THEN

BEGIN
4. Calculate the number z of time slots t = 1, . . . , di

with h(t) < m;
5. IF z ≥ m THEN Ti := di

6. ELSE Ti := di + m − z
END

7. ELSE Ti := m + i − 1;
8. Calculate time periods 1 ≤ t1 < t2 < . . . < tm ≤ Ti

with the m smallest h(t)-values;
9. FOR j := 1 TO m DO

BEGIN
10. Schedule job i in period [tj − 1, tj];
11. h(tj) := h(tj) + 1

END
END

6.2. Open Shop Problems 173

The algorithm can be implemented in such a way that its running time is
O(nm). To get an algorithm with this complexity, we schedule the jobs
such that after each step i the following invariance property holds: l1 ≥
l2 ≥ . . . ≥ lm exists with l1 ≤ Ti such that on machine Mj (j = 1, . . . , m)
all time slots 1, . . . , lj are occupied.

Clearly, the invariance property is initially satisfied with l1 = l2 = . . . =
lm = 0. Assume that the invariance property holds after step i−1. Then
we have Ti−1 ≤ Ti and schedule job i by filling time slots in the following
order

l1 + 1, . . . , Ti on M1,

l2 + 1, . . . , l1 on M2,
...

lm + 1, . . . , lm−1 on Mm.

We still have to prove the correctness of the algorithm.

Theorem 6.7 Algorithm O | pij = 1 | ∑
Ti calculates an optimal

schedule for the parallel machine problem corresponding with problem
O | pij = 1 | ∑

Ti.

Proof: We use interchange arguments to prove this theorem. According
to Lemma 6.5 and Theorem 6.6, an optimal schedule exists with C1 ≤
C2 ≤ . . . ≤ Cn and

Ci ≤ m + i − 1 for i = 1, . . . , n. (6.9)

Let B be an optimal schedule satisfying (6.9) with the property that jobs
1, . . . , k − 1 are scheduled in the same time slots as in the schedule A
constructed by Algorithm O | pij = 1 | ∑

Ti. Furthermore, assume that
B is chosen such that k is maximal.

Assume that Ck > Tk. Since job k is scheduled before Tk in A, a time
slot t ≤ Tk exists in which job k is not processed in B. Thus, in B this
time slot is either empty or it is occupied by a job r > k. If this time
slot is empty, we move the operation of k scheduled in time slot Ck to
this time slot. If job r is scheduled at time t but not at time Ck, then
we switch the operations of jobs k and r. If job r is scheduled at times t
and Ck, then either there is an empty slot at Cr + 1 or there must be a
job, say v, which is scheduled at time Cr + 1 but not scheduled at time
Ck. This must be possible since r and k are scheduled at time Ck but
not at time Cr + 1.

174 Shop Scheduling Problems

If there is an empty slot at Cr + 1, move job r from time t to Cr + 1 and
job k from time Ck to t. If there is no empty slot at Cr +1, we can move
r from t to Cr + 1, k from Ck to t, and v from Cr + 1 to Ck. Since Ck

must improve by at least one unit and Cr increases by at the most one
unit the new schedule is as good as the old one.

If we continue this process, we get an optimal schedule B′ with Ck ≤ Tk

in which jobs 1, . . . , k − 1 are scheduled as in A.

Now let h be the frequency vector for the partial schedule for jobs
1, . . . , k−1. Assume that h(t′) < h(t) and job k is scheduled in time slot
t but not in time slot t′ in B′. If in B′ a machine is idle at time t′, we
can move job k from time slot t to time slot t′. Otherwise a job r > k is
scheduled in time slot t′ but not in time slot t. We can move r to t and k
to t′ without increasing

∑
Ti because Ck ≤ Cr. Continuing in this way,

we reach an optimal schedule in which jobs 1, . . . , k are scheduled as in
A. This is a contradiction to the maximality of k. �

Again, the coloring algorithm of Gabow & Kariv [GK82] can be used to
provide an optimal solution for the open shop problem. This shows that
problem O | pij = 1 | ∑

Ui can be solved in O(nm log2(nm)) time.

6.3 Flow Shop Problems

The flow shop problem is a general shop problem in which

• each job i consists of m operations Oij with processing times pij

(j = 1, . . . , m) where Oij must be processed on machine Mj, and

• there are precedence constraints of the form Oij → Oi,j+1 (i =
1, . . . , m − 1) for each i = 1, . . . , n, i.e. each job is first processed
on machine 1, then on machine 2, then on machine 3, etc.

Thus, the problem is to find a job order πj for each machine j. We will
restrict our discussion to flow shop problems with Cmax-objective func-
tion. All other problems turn out to be NP-hard if we admit arbitrary
processing times.

6.3.1 Minimizing Makespan

Problem F2 ‖ Cmax is the only flow shop problem with Cmax-criterion
which is polynomially solvable if the processing times are arbitrary. A

6.3. Flow Shop Problems 175

corresponding algorithm has been developed by Johnson [120].

To find an optimal solution for problem F2 ‖ Cmax we may restrict our
attention to schedules in which the job sequence on both machines is the
same. This is an immediate consequence of the following lemma.

Lemma 6.8 For problem Fm ‖ Cmax an optimal schedule exists with
the following properties:

(i) The job sequence on the first two machines is the same.

(ii) The job sequence on the last two machines is the same.

Proof: The proof of (i) is similar to the proof of Theorem 3.5. The proof
of (ii) is symmetric to the proof of (i). �

A flow shop is called a permutation flow shop if solutions are restricted
to job sequences π1, . . . , πm with π1 = π2 = . . . = πm. Lemma 6.8 shows
that for two or three machines the optimal solution of the flow shop
problem is not better than that of the corresponding permutation flow
shop. This is not the case if there are more than three machines.

Next we will present Johnson’s algorithm for solving the two-machine
flow shop problem. We have to find a permutation

L : L(1), . . . , L(n)

of all jobs such that if all jobs are scheduled in this order on both ma-
chines, then the makespan is minimized.

An optimal order is constructed by calculating a left list T : L(1), . . . ,
L(t) and a right list R : L(t+1), . . . , L(n), and then concatenating them
to obtain L = T ◦R := L(1), . . . , L(n). The lists T and R are constructed
step by step.

At each step we consider an operation Oi∗j∗ with the smallest pi∗j∗-value.
If j∗ = 1, then we put job i∗ at the end of list T , i.e. we replace T by
T ◦ i∗. Otherwise we put i∗ at the beginning of list R, i.e. we replace R
by i∗ ◦R. Job i∗ and processing times pi∗1 and pi∗2 are then deleted from
consideration.

Algorithm F2 ‖ Cmax

1. X := {1, . . . , n}; T := φ; R := φ;
2. While X �= φ DO

176 Shop Scheduling Problems

��������

Machine j

Job i
pi1 pi2

1

2

3

4

5

4

3

3

1

8

8

3

4

4

7

T : 4, 3, 1 R : 5, 2

��� � �

(a)

�M2

M1
�

1 4 5 8 9 16 17 19 24 27

4 3 1 5 2

4 3 1 5 2

(b)

Figure 6.7: Application of Algorithm F2 ‖ Cmax

BEGIN
3. Find i∗, j∗ with pi∗j∗ = min{pij | i ∈ X; j = 1, 2};
4. If j∗ = 1 THEN T := T ◦ i∗ ELSE R := i∗ ◦ R;
5. X := X\{i∗}

END;
6. L := T ◦ R

The example in Figure 6.7 shows how Algorithm F2 ‖ Cmax works. The
schedule constructed in Figure 6.7(a) is shown in Figure 6.7(b). To prove
that Algorithm F2 ‖ Cmax is correct we need the following two lemmas.

Lemma 6.9 Let L := L(1), . . . , L(n) be a list constructed by Algorithm
F2 ‖ Cmax. Then

min{pi1, pj2} < min{pj1, pi2}
implies that job i appears before job j in L.

Proof: If pi1 < min{pj1, pi2}, then pi1 < pi2 implies that job i belongs

6.3. Flow Shop Problems 177

M2

M1

· · · i j · · ·
· · · i j · · ·

(a)

M2

M1

· · · i j · · ·
· · · i j · · ·

(b)

M2

M1

· · · i j · · ·
· · · i j · · ·

� �

x
(c)

Figure 6.8: Three possible cases if j is scheduled immediately after i.

to T . If j is added to R, we have finished. Otherwise j appears after i in
T because pi1 < pj1. If pj2 < min{pj1, pi2}, we argue in a similar way. �

Lemma 6.10 Consider a schedule in which job j is scheduled immedi-
ately after job i. Then

min{pj1, pi2} ≤ min{pi1, pj2} (6.10)

implies that i and j can be swapped without increasing the Cmax-value.

Proof: If j is scheduled immediately after i, then we have three possible
cases which are shown in Figure 6.8. Denote by wij the length of the
time period from the start of job i to the finishing time of job j in this
situation. We have

wij = max{pi1 + pj1 + pj2, pi1 + pi2 + pj2, x + pi2 + pj2}
= max{pi1 + pj2 + max{pj1, pi2}, x + pi2 + pj2}

Similarly, we have

wji = max{pj1 + pi2 + max{pi1, pj2}, x + pi2 + pj2}

178 Shop Scheduling Problems

if i is scheduled immediately after j.

Now (6.10) implies

max{−pi1,−pj2} ≤ max{−pj1,−pi2}.

Adding pi1 + pi2 + pj1 + pj2 to both sides of this inequality, we get

pj1 + pi2 + max{pi1, pj2} ≤ pi1 + pj2 + max{pj1, pi2},

which implies wji ≤ wij.

Thus, swapping i and j will not increase the Cmax-value. �

Now it is not difficult to prove the correctness of Algorithm F2 ‖ Cmax.

Theorem 6.11 The sequence L : L(1), . . . , L(n) constructed by Algo-
rithm F2 ‖ Cmax is optimal.

Proof: Let L be the set of all optimal sequences and assume that L /∈ L.
Then we consider a sequence R ∈ L with

L(ν) = R(ν) for ν = 1, . . . , s − 1 and i := L(s) �= R(s) =: j

where s is maximal. Then job i is a (not necessarily immediate) successor
of j in R. Let k be a job scheduled between job j and job i or k = j in
R. In L, job k is scheduled after job i. Thus, by Lemma 6.9 we must
have

min{pk1, pi2} ≥ min{pi1, pk2} (6.11)

(otherwise job i would follow job k in L).

(6.11) holds for each such job k. Applying Lemma (6.10) to R, we may
swap each immediate predecessor k of job i with i without increasing the
objective value. We finally get a sequence R ∈ L with R(ν) = L(ν) for
ν = 1, . . . , s which contradicts the maximality of s. �

6.4 Job Shop Problems

The job shop problem is a special case of the general shop problem
which generalizes the flow shop problem. We are given n jobs i = 1, . . . , n
and m machines M1, . . . , Mm. Job i consists of a sequence of ni operations

Oi1, Oi2, . . . , Oini

6.4. Job Shop Problems 179

which must be processed in this order, i.e. we have precedence constraints
of the form Oij → Oi,j+1 (j = 1, . . . , ni − 1). There is a machine μij ∈
{M1, . . . , Mm} and a processing time pij associated with each operation
Oij. Oij must be processed for pij time units on machine μij. The
problem is to find a feasible schedule which minimizes some objective
function depending on the finishing times Ci of the last operations Oi,ni

of the jobs. If not stated differently we assume that μij �= μi,j+1 for
j = 1, . . . , ni − 1.

In Sections 6.4.1 and 6.4.2 we will discuss job shop problems which are
polynomially solvable. In Section 6.4.3, a branch-and-bound method for
the general problem J ‖ Cmax will be developed. This method solves
the famous 10x10 problem given in Muth & Thompson [174] in less than
15 minutes. Section 6.4.4 is devoted to heuristics based on iterative
improvement.

6.4.1 Problems with Two Machines

There are only a few special job shop problems which can be solved
polynomially or pseudopolynomially.

J2 | ni ≤ 2 | Cmax

This two-machine job shop problem with at the most two operations per
job can be solved by a reduction to the two-machine flow shop problem.
To describe this reduction, it is convenient to divide the set of jobs into
the following subsets:

I1 jobs which are processed only on machine 1

I2 jobs which are processed only on machine 2

I1,2 jobs which are processed first on machine 1 and then on
machine 2

I2,1 jobs which are processed first on machine 2 and then on
machine 1

Note that jobs in I1 and I2 consist of only one operation.

To construct an optimal solution for problem J2 | ni ≤ 2 | Cmax we have
to apply the following steps.

1. Calculate an optimal sequence R1,2 for the flow shop problem with
job set I1,2.

180 Shop Scheduling Problems

2. Calculate an optimal sequence R2,1 for the flow shop problem with
job set I2,1.

3. On machine 1 first schedule I1,2 according to R1,2, then all jobs in
I1 in an arbitrary order, and, finally, I2,1 according to R2,1.

4. On machine 2 first schedule I2,1 according to R2,1, then all jobs in
I2 in an arbitrary order, and, finally, I1,2 according to R1,2.

We may assume that the schedule constructed in this way is active. Then
at least one machine processes the jobs without idle time. More specifi-
cally, if ∑

i∈I2,1

pi2 ≤
∑

i∈I1,2

pi1 +
∑

i∈I1

pi1

then there is no idle time on machine 1. Otherwise there is no idle time
on machine 2.

To prove that the schedule is optimal we assume w.l.o.g. that there is no
idle time on machine 1. If there is also no idle time on machine 2 or if

n
max
i=1

Ci =
∑

i∈I1,2∪I1∪I2,1

pi1,

then we have finished. Otherwise the solution value is equal to that of
the problem restricted to I1,2, which is also optimal.

A related problem is

J2 | pij = 1 | Lmax

Given are n jobs i = 1, . . . , n and two machines denoted by A and B.
Job i has ni unit time operations Oij, j = 1, . . . , ni. If operation Oij is
processed on machine A (B), then operation Oi,j+1 must be processed on
machine B (A) (j = 1, . . . , ni − 1). Thus, job i may be characterized by
the number ni of operations and the machine on which the first operation

must be processed. Let r =
n∑

i=1

ni be the total number of operations.

Again, assume that zero time is the earliest time an operation can be
started. Furthermore, let tmax be an upper bound for the latest starting
time of any operation. For example, we may choose tmax = r. Then a
schedule may be defined by two arrays A(t) and B(t) (t = 0, . . . , tmax)
where A(t) = Oij if operation Oij is to be processed on machine A at

6.4. Job Shop Problems 181

time t and A(t) = φ if machine A is idle during the time period from t
to t + 1. We call φ an empty operation. For each operation Oij to be
processed on machine A, there exists a time t with A(t) = Oij . B(t)
is defined similarly. A schedule is feasible if and only if A(t) = Oij

(B(t) = Oij) with 1 < j ≤ ni implies that Oi,j−1 = B(s) (Oi,j−1 = A(s))
for some s < t, and the first operation of each job is scheduled on the
right machine. A permutation of all operations is called a list. Given
a list L, a feasible schedule can be constructed in the following way.
Schedule the operations in the order given by L, where each operation is
scheduled as early as possible. Such a schedule is called a list schedule
corresponding to L.

The finishing time Ci of job i in a feasible schedule y = (A(t), B(t)) is
given by

Ci := max{t + 1 | A(t) or B(t) is an operation of job i}.

Given a due date di ≥ 0 associated with each job i, the problem we con-
sider in this section is to find a feasible schedule such that the maximum
lateness

max{Ci − di | i = 1, . . . , n}
is minimized.

The following algorithm solves this problem.

Algorithm 1 J2 | pij = 1 | Lmax

1. Associate with each operation Oij the label l(Oij) = di − ni + j;

2. Construct a list L of all operations ordered according to nonde-
creasing l(Oij)-values;

3. Find a list schedule corresponding to L.

This algorithm can be implemented in O(r log r) time. However, we will
use hash techniques (compare Section 4.2, 1 | prec; pj = 1 | Lmax) to
derive an O(r)-implementation of this algorithm.

As in Section 4.2, we may assume that di ≥ 0 for i = 1, . . . , n and
di = 0 for at least one job i. Otherwise, replace di by d′

i = di − d where
d = min{di | i = 1, . . . , n}.

182 Shop Scheduling Problems

Because Ci ≥ 1 for all i = 1, . . . , n and di = 0 for at least one i, we
have Li = Ci − di ≥ 1 for at least one i. Furthermore, we may assume
that Ci ≤ r. Thus, jobs with di > r − 1, i.e. with Li = Ci − di < 1
may be ignored. They do not contribute to the objective function maxLi

because Li ≥ 1 for some i. We may schedule these jobs after all others
in an arbitrary order. For the operations Oij of the remaining jobs we
have

−r + 1 ≤ l(Oij) = di − ni + j ≤ r − 1.

We put each of these operations in a corresponding bucket L(k) where
k = l(Oij) = di − ni + j (−r + 1 ≤ k ≤ r − 1). In a second step, we
schedule the operations according to increasing bucket numbers k where
operations from the same bucket may be scheduled in an arbitrary order.

Details are given by the following algorithm. In this algorithm T1 and T2
denote the first period t ≥ 0 where machines A and B, respectively, are
idle. LAST (i) denotes the finishing time of the last scheduled operation
of job i. Z denotes the set of jobs i with di ≥ r.

Algorithm 2 J2 | pij = 1 | Lmax

1. FOR k := −r + 1 TO r − 1 DO L(k) := φ; Z := φ;
2. FOR i := 1 TO n DO
3. IF di < r THEN
4. FOR j := 1 TO ni DO add Oij to L(di − ni + j)

ELSE
5. add job i to Z;
6. FOR i := 1 TO n DO LAST (i) := 0;
7. T1 := 0; T2 := 0;
8. FOR k := −r + 1 TO r − 1 DO
9. WHILE L(k) �= φ DO

BEGIN
10. Choose a task Oij from L(k);
11. L(k) := L(k)\{Oij};
12. Schedule Oij

END
13.WHILE Z �= φ DO

BEGIN
14. Choose job i from Z;
15. Z := Z\{i};
16. FOR j := 1 TO ni Schedule Oij

END

6.4. Job Shop Problems 183

The module Schedule Oij schedules operation Oij. It may be formulated
as follows.

Scheduled Oij

1. IF μij = A THEN DO
2. IF T1 < LAST (i) THEN

BEGIN
3. t := LAST (i);
4. A(t) := Oij

END
ELSE

BEGIN
5. t := T1;
6. A(t) := Oij;
7. WHILE A(T1) �= φ DO T1 := T1 + 1

END
ELSE {μij = B}

8. IF T2 < LAST (i) THEN
BEGIN

9. t := LAST (i);
10. B(t) := Oij

END
ELSE

BEGIN
11. t := T2;
12. B(t) := Oij;
13. WHILE B(T2) �= φ DO T2 := T2 + 1

END;
14. LAST (i) := t + 1

Clearly, the number of steps of Algorithm 2 J2 | pij = 1 | Lmax is bounded
by O(r).

To prove that Algorithm 2 J2 | pij = 1 | Lmax is correct we first have
to show that a feasible schedule is constructed. This is true if and only
if, before setting A(t) := Oij and B(t) := Oij in Steps 4 and 10 of the
module Schedule Oij, we have A(t) = φ and B(t) = φ, respectively.
Otherwise two different operations would be scheduled at the same time
on the same machine.

To show feasibility we first prove

184 Shop Scheduling Problems

Lemma 6.12 Let Y = (A(t), B(t)) be a list schedule with B(t) = φ
(A(t) = φ). Then for each s > t with B(s) = Oij (A(s) = Oij) we have
A(s − 1) = Oi,j−1 (B(s − 1) = Oi,j−1).

Proof: We show by induction on s that B(s) = Oij, s > t implies A(s−
1) = Oi,j−1. This is certainly true for s = t + 1 because if B(t + 1) = Oij

and A(t) does not belong to job i, then B(t) = φ implies that operation
Oij must be scheduled earlier in the list schedule.

Now, assume that Lemma 6.12 holds for all v with t < v < s and that
B(s) = Oij. Choose a maximal l with t ≤ l < s and B(l) = φ. By
the induction assumption, A(v − 1) and B(v) belong to the same job for
v = l + 1, . . . , s − 1. Suppose that A(s − 1) does not belong to job i.
Then for each v ∈ {l, l + 1, . . . , s − 1} operation A(v) does not belong
to job i for v = l, . . . , s − 1. Thus Oij can be processed at time l, which
contradicts the fact that Y is a list schedule. �

Theorem 6.13 Let Oij be the operation scheduled in Step 4 (Step 10)
of the module Schedule Oij and assume that t = LAST (i) > T1(T2).
Then A(t) = φ (B(t) = φ).

Proof: Assume that A(t) �= φ (B(t) �= φ). Because A(T1) = φ (B(T2) =
φ), the previous Lemma implies that A(t) and B(t−1) (B(t) and A(t−1))
are operations of the same job k. Because LAST (i) = t, we must have
k �= i. This is not possible because LAST (i) = t and μij = A(μij = B)
imply that B(t − 1) = Oi,j−1 (A(t − 1) = Oi,j−1). �

Finally, we show that the list schedule constructed by the algorithm is
optimal.

Lemma 6.14 If a schedule exists in which no job is late, then the sched-
ule Y = (A(t), B(t)) constructed by Algorithm 2 J2 | pij = 1 | Lmax has
this property.

Proof: We will show that if there is a late job in the schedule constructed
by Algorithm 2 J2 | pij = 1 | Lmax, then there is a late job in each
schedule.

If there is a late job in Y = (A(t), B(t)), then there exists an operation
A(t) or B(t) with l(A(t)) < t + 1 or l(B(t)) < t + 1. For example, this
inequality is true for the last operation in a late job. Choose a minimal
t with this property and assume that l(A(t)) < t + 1.

6.4. Job Shop Problems 185

Then we will prove that

l(A(v)) ≤ l(A(t)) for v = 1, . . . , t − 1

l(A(0)) ≤ l(A(t)) if A(0) �= φ.
(6.12)

Thus, in each schedule at least one late job must exist because A(0) �= φ
implies l(A(v)) < t + 1 for v = 0, . . . , t and we must schedule t + 1
operations in the time interval [0, t], which is impossible. If, on the other
hand, A(0) = φ, then all jobs start on machine B and t operations must
be processed in the time interval [1, t], which again is not possible.

To prove (6.12), note that (6.12) is true if A(t) is the first operation of a
job, for if

l(A(t)) < l(A(v)) for some v = 0 . . . , t − 1,

then the algorithm must schedule A(t) before A(v).

Now let

A(t) = Oi,j for some i and j > 1.

Then we have

Oi,j−1 = B(s) with s < t − 1

because s = t − 1 implies l(B(s)) = l(A(t)) − 1 < t = s + 1, which
contradicts the minimality of t. It follows that

l(A(v)) ≤ l(A(t)) for v = s + 1, . . . , t − 1

because otherwise A(t) must be scheduled earlier. Also

l(A(s)) ≤ l(A(s + 1))

because otherwise A(s + 1) should be scheduled at time s since A(s + 1)
and B(s) are operations of different jobs. If s = 0, we have already
proved (6.12). Otherwise let A(s) = Oi′,j′. If A(s) is the first operation
of a job, we have finished. Otherwise, if

Oi′,j′−1 = B(r) with r < s − 1,

we again have

l(A(v)) ≤ l(A(s)) for v = r, . . . , s − 1.

186 Shop Scheduling Problems

If, however, Oi′,j′−1 = B(s − 1), then we let r ≤ s − 1 be the smallest
integer with the property that B(v) and A(v+1) are successive operations
of the same job for v = r, . . . , s − 1. A(s + 1) does not belong to job i
and we again have l(A(v)) ≤ l(A(s + 1)) for v = r, . . . , s. If r = 0, we
have finished. If r > 0, we continue in the same way. �

Theorem 6.15 A schedule constructed by Algorithm 2 J2 | pij = 1 |
Lmax is optimal.

Proof: Let l be the maximum lateness of an optimal schedule. Then

n
max
i=1

L(i) =
n

max
i=1

{Ci − di} ≤ l,

which is equivalent to

n
max
i=1

{Ci − (di + l)} ≤ 0.

Due to Lemma 6.14, Algorithm 2 J2 | pij = 1 | Lmax applied to the
problem with due dates di + l yields an optimal schedule for the original
problem. Furthermore, this schedule is the same as the schedule we get
by applying Algorithm 2 J2 | pij = 1 | Lmax to the due dates di. �

Note that the algorithm, although fast, is not polynomial if we encode
the problem by the numbers ni and, for each job i, the machine number
on which the first operation of job i has to be processed. It is only a
pseudopolynomial algorithm. Timkovsky [199] and Kubiak et al. [130]
presented algorithms which are polynomial even for this encoding for the
special case with Cmax objective function. The following more general
result has been derived by Timkovsky [199]: J2 | pij = 1 | Lmax (and
symmetrically J2 | pij = 1; ri | Cmax) can be solved in O(n2) time. That
J2 | pij = 1 | ∑

Ci can be solved in O(n logn) time has been shown by
Kubiak & Timkovsky [131]. An O(n6)-algorithm for J2 | pij = 1

∑
Ui is

due to Kravchenko [126]. The problems J2 | pij = 1; ri |
∑

Ci, J2 | pij =
1 | ∑

wiCi, and J2 | pij = 1 | ∑
Ti are NP-hard.

6.4.2 Problems with Two Jobs. A Geometric Ap-

proach

Job shop problems with two jobs can be solved polynomially even with
objective functions f(C1, C2) which are regular, i.e. monotone nonde-
creasing functions of the finishing times C1 and C2 of both jobs. These

6.4. Job Shop Problems 187

F

J1M3M1M2M10

M1

M3

M2

J2

Figure 6.9: Graphical representation of a solution for a job shop problem
with 2 jobs.

problems can be reduced to shortest path problems in appropriate net-
works. First, we will derive this reduction for problem J | n = 2 | Cmax.
Later we will show how to modify the corresponding algorithm to solve
the general problem J | n = 2 | f with regular f .

J | n = 2 | Cmax

Problem J | n = 2 | Cmax may be formulated as a shortest path problem
in the plane with rectangular objects as obstacles (Akers & Friedman
[8]). Figure 6.9 shows a shortest path problem with obstacles which
corresponds to a job shop problem with two jobs with n1 = 4 and n2 = 3.
The processing times of the operations of job 1 (job 2) are represented
by intervals on the x-axis (y-axis) which are arranged in the order in
which the corresponding operations are to be processed. Furthermore,
the intervals are labeled by the machines on which the corresponding
operations must be processed. A feasible schedule corresponds to a path
from 0 to F . This path has the following properties:

(i) the path consists of segments which are either parallel to one of
the axes (an operation of only one job is processed) or diagonal
(operations of both jobs are processed in parallel);

188 Shop Scheduling Problems

(ii) the path has to avoid the interior of any rectangular obstacle of
the form I1 × I2, where I1 and I2 are intervals on the x-axis and
y-axis which correspond to the same machine. This follows from
the fact that two operations cannot be processed simultaneously
on the same machine and that preemption is not allowed;

(iii) the length of the path, which corresponds to the schedule length,
is equal to:

length of horizontal parts + length of vertical parts +
(length of diagonal parts)/

√
2.

In general, we have consecutive intervals Ix
ν (Iy

ν) of length p1ν(p2ν) where
ν = 1, . . . , n1(n2). Furthermore, the rectangles Ix

i × Iy
j are forbidden

regions if and only if μ1i = μ2j. Finally, define

a =

n1∑

ν=1

p1ν and b =

n2∑

ν=1

p2ν .

We have to find a shortest path from O = (o, o) to F = (a, b) which
has only horizontal, vertical, and diagonal segments and which does not
pass through the interior of any of the forbidden regions. We denote
this problem by Q. Next we will show that the problem can be reduced
to an unrestricted shortest path problem in an appropriate network N .
Furthermore, the unrestricted path problem will be solved in time which
is linear in the number of obstacles.

The network N = (V, A, d) is constructed as follows. The set of vertices
V consists of O, F , and the set of north-west corners (NW-corners) and
south-east corners (SE-corners) of all obstacles. O is considered as a
degenerate obstacle in which both the NW-corner and the SE-corner
coincide. Each vertex i ∈ V \{F} coincides with at the most two arcs
going out of i. To construct these arcs, we go from i diagonally in a
NE direction until we hit either the boundary of the rectangle defined
by O and F or the boundary of an obstacle. In the first case, F is the
only successor of i and arc (i, F) consists of the path which goes from
i diagonally to the boundary and continues along the boundary to F
(see Figure 6.10(b)). If we hit an obstacle D, then there are two arcs
(i, j) and (i, k) where j and k are the NW-corner and SE-corner of D,
respectively. The corresponding polygons are shown in Figure 6.10(a).
The length d(i, j) of an arc (i, j) is equal to the length of the vertical or

6.4. Job Shop Problems 189

D

i

j

k

F

i

(a) (b)

Figure 6.10: Successors of vertex i.

horizontal piece plus the length of the projection of the diagonal piece
on the x-axis (or equivalently, y-axis).

It is easy to see that an O − F -path (i.e. a path from O to F) in
N = (V, A, d) corresponds to a feasible schedule, and its length is equal to
the corresponding Cmax-value. The next theorem shows that an optimal
schedule corresponds with a shortest O − F -path in N .

Theorem 6.16 A shortest path from O to F in N = (V, A, d) corre-
sponds to an optimal solution of the shortest path problem with obstacles
(i.e. with an optimal solution of the corresponding job-shop scheduling
problem).

Proof: It is clear from the preceding discussion that an O−F -path in N
corresponds to a path p from O to F which avoids obstacles. p consists of
arcs, as shown in Figure 6.10. We have to prove that an optimal solution
of Q exists consisting of a sequence of arcs.

Consider an optimal solution p∗ with a longest starting sequence of arcs.
If p∗ is equal to this sequence, we have finished. Otherwise assume that
the last arc in this sequence ends at vertex i. Consider the situation
shown in Figure 6.11. Let D be the obstacle we hit at some point s
if we go diagonally from i in the NE-direction. Denote by l the line
through the SE-corner k of D which is parallel to the x-axis and by l′

the line through the NW-corner j of D which is parallel to the y-axis.
Furthermore, denote the SW-corner of D by u. Assume without loss of
generality that s is on l. Path p∗ crosses line l at some point t. If t = u

190 Shop Scheduling Problems

D

j

i
l′

u s k t l

Figure 6.11: Proof of Theorem 6.16.

and p∗ continues to k or if t is between u and k or t = k, then we may
replace the part of p∗ going from i to k by arc i, s, k without increasing
the length of p∗. If t is to the right of k, then we may replace the part of
p∗ between i and t by i, s, k, t without increasing the length of p∗. In both
cases we get an optimal path with a longer beginning sequence of arcs
which contradicts the maximality assumption. Finally, if t is to the left
of u, then p∗ crosses l′ at some point t′ above u and a similar argument
(but now using t′ and l′) leads to a contradiction. �

To find a shortest path from O to F in the network N = (V, A, d), we
first order the forbidden regions according to the lexicographic order of
their NW-corners (i.e. Di < Dj if for the corresponding NW-corners
(xi, yi) and (xj , yj) we have yi < yj or yi = yj, xi < xj).

Assume that we have r forbidden regions and that they are indexed such
that

D1 < D2 < . . . < Dr.

Then the following algorithm calculates the length d∗ of a shortest path
from O to F .

Algorithm J | n = 2 | Cmax

1. FOR ALL vertices i ∈ V DO d(i) := ∞;
2. FOR ALL successors j of O DO d(j) := d(O, j);
3. FOR i := 1 TO r DO

6.4. Job Shop Problems 191

BEGIN
4. FOR ALL successors j of the NW-corner k of Di

5. DO d(j) := min{d(j), d(k) + d(k, j)};
6. FOR ALL successors j of the SE-corner k of Di

7. DO d(j) := min{d(j), d(k) + d(k, j)}
END

8. d∗ := d(F)

Algorithm J | n = 2 | Cmax may be easily modified to find the shortest
path as well as the corresponding optimal schedule. Its complexity is
O(r).

Next we will show that the network N can be constructed in O(r log r)
steps. Thus, the total time to solve the job shop problem is O(r log r).
Note that r may be as large as O(n1 · n2). This is the case if we only
have two machines. If each job is only processed once on a machine, then
r = min{n1, n2}.
To construct the network N = (V, A, d) we apply a line sweep with the
SW-NE-line y − x = c. We move this line parallel to itself from north-
west to south-east. The sweep line intersects the obstacles creating an
ordered set of intervals. Let S be the corresponding set of obstacles,
together with the order induced by the intervals on the sweep line. We
keep track of changes in S during the sweep. There are two possible
events where changes occur.

(i) If the sweep line hits an NW-corner i of an obstacle Dl, then we
have to insert Dl into the ordered set S. If there is a next element
Dh in S, which has an NW-corner j and a SE-corner k, then the arcs
(i, j) and (i, k) must be inserted into A and we have to calculate
d(i, j) and d(i, k). Otherwise we have to insert (i, F) into A and
calculate d(i, F).

(ii) The sweep line hits a SE-corner i of an obstacle Dl. If there is
a next element Dh in S with an NW-corner j and a SE-corner
k, then we insert (i, j) and (i, k) into A and calculate d(i, j) and
d(i, k). Otherwise we have to insert (i, F) into A and calculate
d(i, F). Finally, Dl must be deleted from S.

The arcs (i, j), (i, k) and the distances d(i, j), d(i, k) can be calculated in
constant time. Furthermore, if we use a balanced tree, e.g. 2-3 tree (see

192 Shop Scheduling Problems

P1

P2

D1

D2 y − x = c

(a)

P2

P1

D2

D1 y − x = c

(b)

Figure 6.12: Ordering of intervals induced by obstacles on the sweep line.
Case x1 ≤ x2.

6.4. Job Shop Problems 193

P1

P2

P ∗

D1

D2

y − x = c

Figure 6.13: Ordering of intervals induced by obstacles on the sweep line.
Case x2 < x1.

Aho, Hopcroft, Ullman [4]), then the insert and delete operations can be
done in O(log r) time. Thus, N can be constructed in O(r log r) time.
When implementing this algorithm the following result is very useful.

Theorem 6.17 If we order the obstacles in S according to the (x + y)-
values of their NW-corners, this ordering is identical to the ordering
induced by the intervals on the corresponding sweep line.

Proof: Consider two different obstacles D1 and D2 intersecting the
sweep line y − x = c in I1 and I2. Furthermore, let P1 = (x1, y1)
and P2 = (x2, y2) be the NW-corners of D1 and D2. Assume without
loss of generality that y1 ≤ y2. If x1 ≤ x2, then we have the situation
shown in Figure 6.12. I1 is south-west of I2 as well as x1 + y1 < x2 + y2

(x1 + y1 = x2 + y2 is not possible because D1 and D2 are disjoint).

The claim also holds if x2 < x1. To see this assume that x2 + y2 ≥
x1 + y1 and that I2 is to the south-west of I1. Then we have y2 > y1.
Furthermore, there is a point P ∗ = (x0, y0) ∈ I2 with y0 < y1 (see Figure
6.13). However, this is a contradiction to the fact that different intervals
on the y-axis are not contained within each other. �

194 Shop Scheduling Problems

J | n = 2 | f
Now we will discuss how to modify Algorithm J | n = 2 | Cmax if we
replace Cmax by a regular objective function f(C1, C2). In this case the
optimal objective value depends on all points where paths from O to F
hit the boundary of the rectangle R, defined by O and F . If P is such a
point and P lies on the northern boundary of R, then the best solution
among all those represented by a path going through P has the value
f(d(P) + d(P, F), d(P)) where d(P) is the length of the shortest path
from O to P and d(P, F) is the length of the horizontal segment between
P and F . Similarly, if P lies on the eastern boundary of R, we get the
best solution value f(d(P), d(P) + d(P, F)).

These ideas lead to the following algorithm derived from Algorithm J |
n = 2 | Cmax in which the current best objective value d∗ is updated each
time we hit the boundary.

Algorithm J | n = 2 | f
1. FOR ALL vertices i ∈ V DO d(i) := ∞;
2. d∗ = ∞;
3. FOR ALL successors j of O DO
4. IF j = F THEN update (d∗, O)

ELSE d(j) := d(O, j);
5. FOR i := 1 TO r DO

BEGIN
6. FOR ALL successors j of the NW-corner k of Di DO

IF j = F THEN update (d∗, k)
ELSE d(j) := min{d(j), d(k) + d(k, j)};

7. FOR ALL successors j of the SE-corner k of Di DO
IF j = F THEN update (d∗, k)
ELSE d(j) := min{d(j), d(k) + d(k, j)}

END

Update (d∗, k) updates the current best objective value as described pre-
viously:

Update (d∗,k)
1. Calculate the distance l(k) between k and the point P where the

half-line starting in k and going in the NE-direction hits the
borderline;

6.4. Job Shop Problems 195

i

j

v
(a)

i

j

v
(b)

Figure 6.14: Successors of vertex v if preemption is allowed.

2. IF P lies on the northern borderline THEN
d∗ := min{d∗, f(d(k) + d(k, F), d(k) + l(k))}

ELSE {P lies on the eastern borderline}
d∗ := min{d∗, f(d(k) + l(k), d(k) + d(k, F))}

If the function f(C1, C2) can be evaluated in constant time, this algorithm
has the same complexity as the previous one.

Preemptive job shop problems with two jobs can be solved similarly.

J | n = 2;pmtn | f
If preemption is allowed in the previous problem, then we may go hor-
izontally or vertically through obstacles. For this reason, the network
N = (V, A, d) must be defined differently.

The vertex set is defined recursively by

(i) O is a vertex.

(ii) If v is a vertex and the half-line starting from v and going in a
NE-direction hits an obstacle, then v has the two successors i and
j shown in Figure 6.14(a) or (b).

(iii) If v is a vertex and the half-line starting from v and going in a
NE-direction hits the borderline given by the rectangle defined by
O and F , then F is the only successor of v.

We denote the modified network by N .

196 Shop Scheduling Problems

Arcs (i, j) and arc lengths d(i, j) are defined as before. If in Algorithm
J | n = 2 | f the “NW-corner” and “SE-corner” are replaced by “north
boundary point” and “east boundary point”, respectively, this modified
algorithm applied to N solves problem J | n = 2; pmtn | f . The running
time of this modified algorithm is bounded by O(n3

max) where nmax =
max{n1, n2}. This can be seen as follows.

Consider for each SE-corner or NW-corner v, which can be reached from
O, the unique path starting from v which avoids the boundaries of the
obstacles it hits. If such a path hits the SW-corner t of an obstacle (or
a boundary point t′ of the rectangle R, defined by O and F), this path
terminates in t (or in F). There are at most O(n1, n2) of these paths and
each has at the most n1 +n2 arcs. Furthermore, the set of all these paths
covers all arcs going through the interior of obstacles. Thus, the total
number of arcs which go through the interior of obstacles is bounded by
O(n3

max). Because the number of arcs not going through the interior of
obstacles is bounded by O(n1n2) and the total computation time of the
shortest path algorithm is proportional to the number of all arcs, we have
an O(n3

max)-algorithm.

Finally, we remark that all of the geometric methods also work if we drop
the assumption that μij �= μi,j+1 for all i and j = 1, . . . , ni − 1.

6.4.3 Job Shop Problems with Two Machines

In the previous section we showed that job shop problems with two jobs
are polynomially solvable. Sotskov & Shakhlevich [190] showed that the
problems J3 | n = 3 | Cmax and J3 | n = 3 | ∑

Ci are NP-hard.
Also J2 ‖ Cmax is NP-hard (Lenstra & Rinnooy Kan [153]). Thus,
the complexity of the job shop problem with two machines and a fixed
number k of jobs remains open. In this section we will show that problem
J2 | n = k | Cmax is polynomially solvable even if machine repetition is
allowed, i.e. if μij = μi,j+1 is possible for jobs i.

We first show that J2 | n = k | Cmax can be reduced to a shortest path

problem in an acyclic network with O(rk) vertices where r =
n

max
i=1

ni.

Then we show that this network can be constructed in O(r2k) steps,
providing an overall complexity of O(r2k). Finally, we present a sim-
ple O(r4)-algorithm for problem J2 | n = 3 | Cmax with no machine
repetition.

6.4. Job Shop Problems 197

t0 = 0 t1 t2 t3 t4 t5 t6 t7 = T

Figure 6.15: Decomposition of a J2 | n = k | Cmax− schedule into blocks.

A shortest path formulation

In this section we will give a shortest path formulation for the two-
machine job shop problem with k jobs and makespan objective. The
corresponding network is acyclic and has at the most O(rk) vertices where

r =
k

max
i=1

ni. Thus, the job shop problem can be solved in O(r2k) steps

if the network is given. The two machines are denoted by A and B.
We consider only active schedules, i.e. schedules in which no operation
can be started earlier without violating feasibility. Each schedule can be
transformed into an active one without increasing the Cmax-value.

Given an active schedule S, we have a unique sequence

t0 = 0 < t1 < t2 < . . . < tq

of all times at which either two operations begin processing jointly on
both machines or one operation begins processing on one machine while
an idle period is starting on the other machine (see Figure 6.15). We
define tq+1 = T where T is the Cmax-value of the schedule.

Furthermore, we call the set Dν of operations scheduled in the interval
[tν , tν+1] (ν = 0, . . . , q) a block. For a block D, let DA(DB) be the
set of operations of D processed on machine A(B) and denote the sum
of processing times of all operations in DA(DB) by lAD(lBD). A block D
associated with the interval [ti, ti+1] has the property that

• all jobs in DA(DB) are scheduled in [ti, ti + lAD] ([ti, ti + lBD]),

• ti+1 = ti + max{lAD, lBD}, and

• one machine is idle in [min{lAD, lBD}, ti+1].

lD := max{lAD, lBD} = ti+1 − ti is called the length of block D.

198 Shop Scheduling Problems

It follows that a schedule is defined by a sequence of blocks and the
schedule length is the sum of the lengths of all blocks in that sequence.
To formulate problem J2 | n = k | Cmax as a shortest path problem in
some network N = (V, A, l), we characterize blocks in a different way.
For each job i, let jν(i) be the index of the last operation Oi,jν(i) which
is processed before tν and define jν := (jν(i))

k
i=1. Then Dν is defined by

jν and jν+1. Generally, blocks can be described by pairs (j,h) of index
tuples j = (j(i)), h = (h(i)) with 0 ≤ j(i) ≤ h(i) ≤ ni for i = 1, . . . , k.
However, not all pairs of index tuples (j,h) define blocks.

The network N = (V, A, l) is defined by

• the set V of all index tuples j = (j(i)) with 0 ≤ j(i) ≤ ni for
i = 1, . . . , k. The vertex s = j with j(i) = 0 for all i = 1, . . . , k
is called the initial vertex. The vertex t = j, with j(i) = ni for
i = 1, . . . , k, is called the terminal vertex,

• (u,v) ∈ A if and only if u < v and the set of operations

{Oi,j(i) | i = 1, . . . , k; u(i) < j(i) ≤ v(i)}
defines a block, and

• for each (u,v) ∈ A, its length l(u,v) is the length of the block
corresponding to (u,v).

In N , each s− t-path p corresponds to a feasible schedule and the length
of p is equal to the makespan of this schedule. We obtain this schedule
by scheduling the blocks corresponding to the arcs in p consecutively as
shown in Figure 6.15. Furthermore, there is an s− t-path corresponding
to an optimal schedule. Thus, to solve the job shop problem we have to
find a shortest s− t-path in N .

It remains to show that the network can be constructed in polynomial
time. This is the case if, for each vertex u ∈ V , all successors of ucan
be calculated in polynomial time. In the next section we will derive an
algorithm which does this in O(rk) time for each vertex. Thus, the total
time needed to construct the network is O(r2k).

Constructing the network N

In this section we will present an O(rk) algorithm which, for a given
vertex u, finds all arcs (u,v) which define a block. W.l.o.g. let u = s
where s is the starting vertex defined in the previous section.

6.4. Job Shop Problems 199

A block may be decomposed as shown in Figure 6.16.

s1 s2 t1 s3 s4 = t2 t3 t4 sr−1 sr tr−1 tr

O1

O2

O3

O4

· · ·
· · ·

Or−1

Or

Figure 6.16: Structure of a block.

This decomposition is defined by operations Oi(i = 1, . . . , r) with starting
times si and finishing times ti satisfying the following properties:

• s1 ≤ s2, tr−1 ≤ tr and si < ti−1 ≤ si+1 for i = 2, 3, . . . , r−1. Thus,
Oi and Oi+1 are processed on different machines and Oi overlaps
with Oi−1 and Oi+1.

• The time between t = 0 and the starting time s2 of O2 as well as the
time between the finishing time ti of Oi and the starting time si+2

of Oi+2 (i = 1, . . . , r− 2) is completely filled with other operations.

We call the partial schedule consisting of operation Oi and all operations
scheduled between Oi−2 and Oi a bar (see Figure 6.17). Let Bi be the
set of operations in this bar. Oi is called the main operation of Bi.

Oi−2

Oi−1

Oi

Oi+1

Bi

� �

Figure 6.17: Definition of a bar.

Next we will construct a graph G̃ = (Ṽ , Ã) with s ∈ Ṽ such that the
blocks correspond with paths in G̃ starting in s. The arcs in this graph
represent bars. More specifically, G̃ = (Ṽ , Ã) is defined by

• the set Ṽ = V ′∪{s}, where V ′ is the set of all pairs (j, h) of index-
tupels j = (j(i)) combined with an additional index h representing
the job of the main operation Oh,j(h) such that

tAj − ph,j(h) < tBj ≤ tAj (tBj − ph,j(h) < tAj ≤ tBj) (6.13)

200 Shop Scheduling Problems

if Oh,j(h) is processed on machine A(B). Here tAj (tBj) is the sum
of the processing times of all operations Oij (i = 1, . . . , k; j =
1, . . . , j(i)) which are processed on machine A(B). If tAj − ph,j(h) =
0 (tBj − ph,j(h) = 0), the strict inequality in condition (6.13) is
replaced by “≤”,

• (ũ, ṽ) with ũ = (u, h), ṽ = (v, l) ∈ V ′ is an arc if and only if (ũ, ṽ)
defines a bar, and

• (s, ṽ) with ṽ = (v, l) ∈ V ′ is an arc if and only if

v(j) =

{
1if j = l

0otherwise

for some job index l.

To construct all blocks, we have to find all paths in G̃ starting from s.
Because G̃ is acyclic and has at the most O(rk) vertices, this can be
done in O(r2k) time. However, the complexity can be reduced by adding
a single operation in each step of the search process. There are at the
most k operations which can be added. Thus, the total complexity is
O(krk) = O(rk) because k is fixed.

Problem J2 | n = 3 | Cmax with no machine repetition

In this section we will show that a simple O(r4)-algorithm for problem
J2 | n = 3 | Cmax with no machine repetition can be easily derived using
the concepts introduced previously.

As before, we denote the two machines by A and B. Furthermore, assume
that the three jobs denoted by 1,2,3 have operations Oij where i = 1, 2, 3
and j = 1, . . . , ni. pij is the processing time of operations Oij, which
must be processed on machine μij. We assume that

μij �= μi,j+1 for i = 1, 2, 3 and j = 1, . . . , ni − 1.

We use the algorithm presented in the previous section to solve this
problem. However, due to the fact that machine repetition is not allowed,
blocks containing at least two operations have a special structure which
may be characterized by the following two properties (see Figure 6.18):

6.4. Job Shop Problems 201

. . .
j i k j

i k j k

Figure 6.18: Block structure for J2 | n = 3 | Cmax.

(a) With the exception of a first and a last operation, each operation
in the block overlaps exactly two other operations.

(b) The job indices are repeated periodically, i.e. the operations or-
dered according to increasing starting times yield a sequence

Oir, Ojs, Okt, Oi,r+1, Oj,s+1, Ok,t+1, Oi,r+2, . . .

These properties follow from the fact that if two operations O and P
of jobs i and j with finishing times t1 and t2, respectively, overlap and
t1 < t2, then the first operation Q of job k scheduled at time t1 or later
in the same block must be processed starting at time t1. Furthermore,
the block ends at time t2 if the processing time of Q is not larger than
t2 − t1.

However, it is also possible that a block consists of exactly one operation.

For a block B there are at the most three one-element blocks which may
be a successor of B. In a successor block of B containing more than
one operation, two operations begin at the same time. Given these two
operations, there is a unique maximal block satisfying conditions (a) and
(b) and this maximal block can be constructed in O(r) time. Each initial
part of this maximal block may be a successor of B. Due to the fact that
there are only these two possibilities to start a successor block of B, it
follows that block B has at the most O(r) successors and these successors
can be constructed in O(r) time.

This implies that the network has at the most O(r4) arcs and can be
constructed in O(r4) time. Thus, we have an O(r4)-algorithm to solve
J2 | n = 3 | Cmax.

202 Shop Scheduling Problems

O41 O42

O31 O32 O33

0 ∗
O21 O22

O11 O12 O13

Figure 6.19: Disjunctive graph for a job shop problem with 4 jobs and 4
machines.

6.4.4 A Branch-and-Bound Algorithm

Carlier & Pinson [63] first solved the 10x10-job shop problem of Muth
& Thompson [174]. Their solution is based on a branch-and-bound
method combined with the concept of immediate selection. Other ef-
fective branch-and-bound methods have been developed by Applegate &
Cook [10] and Brucker, Jurisch, and Sievers [43].

In this section we present a branch-and-bound method based on concepts
from Brucker, Jurisch, and Sievers [43] and Brucker, Jurisch, and Krämer
[41].

Branch-and-Bound Algorithm

The most effective branch-and-bound methods are based on the disjunc-
tive graph model. We introduced this model in connection with the
general shop problem in Section 6.1. In a job shop problem, all opera-
tions of the same job are connected by a chain of conjunctive arcs and
we have disjunctive arcs between the operations to be processed on the
same machine. Figure 6.19 shows the disjunctive graph for a job shop
problem with four jobs to be processed on four machines.

The basic scheduling decision is to order the operations on each machine,
i.e. to fix precedence relations between these operations.

6.4. Job Shop Problems 203

O41 O42

O31 O32 O33

0 ∗
O21 O22

O11 O12 O13

Figure 6.20: Complete selection for the example presented in Figure 6.19.

In the disjunctive graph model this is done by turning undirected (dis-
junctive) arcs into directed ones. A set of these ”fixed” disjunctions is
called a selection. Obviously, a selection S defines a feasible schedule if
and only if

- every disjunctive arc has been fixed, and

- the resulting graph G(S) = (V, C ∪ S) is acyclic.

In this case we call the set S a complete selection. See Figure 6.20 for a
selection that defines a feasible schedule.

For a given schedule (i.e. a complete selection S), the maximal com-
pletion time of all jobs Cmax(S) is equal to the length of the longest
weighted path from the source 0 to the sink ∗ in the acyclic graph
G(S) = (V, C ∪ S). This path is usually called a critical path.

Next, a short description of a branch-and-bound algorithm for the job
shop scheduling problem will be given. The algorithm will be represented
by a search tree. Initially, the tree contains only one node, the root. No
disjunctions are fixed in this node, i.e. it represents all feasible solutions
to the problem. The successors of the root are calculated by fixing dis-
junctions. The corresponding disjunctive graph represents all solutions
to the problem respecting these disjunctions. After this, each successor
is handled recursively in the same way. The examination of a search tree

204 Shop Scheduling Problems

node stops if it represents only one solution (i.e. the set S of fixed dis-
junctive arcs is a complete selection), or it can be shown that the node
does not contain an optimal solution.

More precisely: A search tree node r corresponds to a graph G(Fr) =
(V, C ∪ Fr). Fr denotes the set of fixed disjunctive arcs in node r. The
node represents all solutions Y (r) respecting the partial order given by
Fr. Branching is done by dividing Y (r) into disjoint subsets Y (s1), ...,
Y (sq). Each Y (si) is the solution set of a problem with a graph G(Fsi

) =
(V, C ∪ Fsi

) where Fr ⊂ Fsi
, which means that G(Fsi

) is derived from
G(Fr) by fixing additional disjunctions. This branching creates immedi-
ate successors s1, ..., sq of node r in the branching tree which are treated
recursively. For each node r, a value LB(r), bounding from below the
objective values of all solutions in Y (r), is calculated. We set LB(r) = ∞
if the corresponding graph G(Fr) has a cycle. Furthermore, we have an
upper bound UB for the solution value of the original problem. UB is
updated whenever a new feasible solution is found which improves UB.

The following recursive procedure describes a branch-and-bound scheme
based on depth-first search. Initially, we set UB = ∞ and Fr = ∅.

PROCEDURE Branch-and-Bound (r)
1. Calculate a solution S ∈ Y (r) using heuristics;
2. IF Cmax(S) < UB THEN UB := Cmax(S);
3. WHILE there is a successor s of r which has not yet been examined

DO
4. IF LB(s) < UB THEN Branch-and-Bound (s)

To specify the branch-and-bound procedure in more detail we have to

(a) introduce a branching scheme, and

(b) discuss methods for calculating bounds.

The next sections are devoted to these issues.

A branching scheme

The branching scheme presented here is based on an approach used by
Grabowski et al. [107] in connection with single-machine scheduling with

6.4. Job Shop Problems 205

release dates and due dates. It is based on a feasible schedule which
corresponds with the graph G(S) = (V, C ∪ S). Let P be a critical path
in G(S). Let L(S) be the length of this critical path. A sequence u1, ..., uk

of successive nodes in P is called a block if the following two properties
are satisfied:

(a) The sequence contains at least two nodes.

(b) The sequence represents a maximal number of operations to be
processed on the same machine.

We denote the j’th block on the critical path by Bj . See Figure 6.21 for
blocks and conjunctive arcs on a critical path.

�0

� � � � � � � � �

�∗�
��� �

���

� � �
�

B1

�

B2

�

B3

Figure 6.21: Blocks on a critical path.

The following theorem is the basis of this section.

Theorem 6.18 Let S be a complete selection corresponding to some
solution of the job shop scheduling problem. If another complete selection
S ′ exists such that L(S ′) < L(S), then at least one operation of some
block B of G(S) has to be processed in S ′ before the first or after the
last operation of B.

Proof: Let P = (0, u1
1, u

1
2, ..., u

1
m1

, ..., uk
1, u

k
2, ..., u

k
mk

, ∗) be a critical path

in G(S) = (V, C ∪ S). uj
1, ..., u

j
mj

(j = 1, ..., k) denotes a maximal subse-
quence of operations to be processed on the same machine (i.e. a block if
mj > 1). Assume that there is a complete selection S ′ with L(S ′) < L(S)
and in S ′ no operation of any block of S is processed before the first or
after the last operation of its block.

Thus G(S ′) contains a path

(0, u1
1, v

1
2, ..., v

1
m1−1, u

1
m1

, ..., uk
1, v

k
2 , ..., v

k
mk−1, u

k
mk

, ∗)
where, for j = 1, ..., k, the sequence vj

2, ..., v
j
mj−1 is a permutation of

uj
2, ..., u

j
mj−1.

206 Shop Scheduling Problems

The length of the critical path in G(S ′) is not less than the length of this
path. We have:

L(S ′)≥
k∑

j=1

(

puj
1
+

mj−1∑

i=2

pvj
i
+ puj

mj

)

=
k∑

j=1

(

puj
1
+

mj−1∑

i=2

puj
i
+ puj

mj

)

=L(S)

which is a contradiction. �

The following fact is an immediate consequence of the previous theorem:

If there are two complete selections S, S ′ with L(S ′) < L(S), then at
least one of the two conditions (i) or (ii) holds.

(i) At least one operation of one block B in G(S), different from the
first operation in B, has to be processed before all other operations
of B in the schedule defined by G(S ′).

(ii) At least one operation of one block B in G(S), different from the
last operation in B, has to be processed after all other operations
of B in the schedule defined by G(S ′).

Now consider a node r of the search tree and a solution y ∈ Yr. Usually
y is calculated using some heuristic. Let S be the complete selection
corresponding to y. A critical path in G(S) defines blocks B1, ..., Bk. For
block Bj : uj

1, ..., u
j
mj

, the jobs in

EB
j := Bj \ {uj

1} and EA
j := Bj \ {uj

mj
}

are called before-candidates and after-candidates.

At least one of the candidates must be moved in order to improve S.

Furthermore, we define the arc-sets

Fj := {uj
1 −→ | = uj

2, ..., u
j
mj
}

Lj := { −→ uj
mj

| = uj
1, ..., u

j
mj−1}

for j = 1, ..., k and consider a permutation

R1, R2, ..., R2k (6.14)

6.4. Job Shop Problems 207

of all Fj and Lj.

Next we will describe a branching Y (s1), ..., Y (sq) of Yr which depends
on this permutation (6.14). We describe the sets Y (sν) by specifying the
arc sets to be joined with the arc-set Fr of Yr. They are constructed in
the following way:

• For each before-candidate ∈ EB
j (j = 1, ..., k) find the index

m = α() with Rm = Fj and define

SB
� := R1 ∪ R2 ∪ · · · ∪ Rm−1 ∪

{
 → i | i ∈ Bj \ {}

}
.

• For each after-candidate ∈ EA
j (j = 1, ..., k) find the index m =

α() with Rm = Lj and define

SA
� := R1 ∪ R2 ∪ · · · ∪ Rm−1 ∪

{
i → | i ∈ Bj \ {}

}
.

• Take R := R1 ∪ R2 ∪ · · · ∪ R2k.

This construction is illustrated in the following example.

Example 6.1

Consider a critical path with two blocks of the form.

P : �0 �1 �2 �3 �4 �5 �6 �7 �∗� � �� � � � �
�

B1

�

B2

If we take the permutation

R1 = F2, R2 = L1, R3 = L2, R4 = F1

we get the arc sets shown in Figure 6.22.

Note that SA
5 and SB

4 contain cycles. Cycles may also be created in
connection with the arcs in Fr which have been fixed previously. If cycles
are created, the corresponding sets Y (sν) of feasible solutions are empty.

�
It is advantageous to check the ”direct” cycles during the calculation of
the before– and after– candidates in a search tree node r. This means

208 Shop Scheduling Problems

SB
6 : �1 �2 �3 �4 �6 �5 �7

� �� �

SB
7 : �1 �2 �3 �4 �7 �5 �6

� �� �

SA
1 : �2 �3 �4 �1 �5 �6 �7

� � � �� � � �� �

SA
2 : �1 �3 �4 �2 �5 �6 �7

� � � �� � � �� �

SA
3 : �1 �2 �4 �3 �5 �6 �7

� � � �� �� �� �

SA
5 : �1 �2 �3 �4 �6 �7 �5

� � � �

� �

� � � �

� �

� �

SA
6 : �1 �2 �3 �4 �5 �7 �6

� �

� �

� � � �� � � �

SB
2 : �2 �1 �3 �4 �5 �6 �7

� � � �

� � � �

� �� �

� �

� �

SB
3 : �3 �1 �2 �4 �5 �6 �7

� �

� � � �

� � � �

� �

� �� �

SB
4 : �4 �1 �2 �3 �5 �6 �7

� � � �

� � � �

� � � �

� �

� �

� �

R : �1 �2 �3 �4 �5 �6 �7

� � � �

� � � �

� � � �

� �

� �

Figure 6.22: Branching for Example 6.1.

6.4. Job Shop Problems 209

that for the block B� : u�
1, ..., u

�
m�

if a disjunctive arc i → j (i, j ∈ B�) is
already fixed in the actual search tree node, then operation j (operation i)
is not inserted into the set EB

� (EA
�). The cycles in the preceding example

can be eliminated by this method. A complete cycle-check is done during
the computation of heads and tails which will be introduced in the next
section.

The resulting solution sets created by this branching rule are pairwise
disjoint. This can be seen as follows. If we have two sets SB

� and SB
�′ with

, ′ ∈ EB
j , then (, ′) ∈ SB

� and (′,) ∈ SB
�′ . Thus, the corresponding

sets Y (sν) have an empty intersection. The same reasoning applies if
we have sets SA

� and SA
�′ with , ′ ∈ EA

j . Note that these two cases
are characterized by the fact that α() = α(′). If, on the other hand, we
have two sets Sν

� and Sν′
�′ with α() < α(′), then if is a before-candidate

(after-candidate) in the block Bj , we have −→ uj
1 (uj

mj
−→) in Sν

�

but uj
1 −→ (−→ uj

mj
) in Sν′

�′ .

By Theorem 6.18, solutions associated with R do not improve the solution
S. Thus, the corresponding successor node of r will not be considered.

We have not yet specified how to choose the permutation R1, ..., R2k

of the sets Fj and Lj (j = 1, ..., k). The objective is to fix a large
number of disjunctive arcs as early as possible. Hence we arrange the
sets Fj and Lj (j = 1, ..., k) according to nonincreasing cardinalities of
the corresponding blocks. Additionally, we always take the set Lj as a
direct successor of the set Fj . More precisely, we choose

R2i−1 := Fπ(i), R2i := Lπ(i) (i = 1, ..., k)

where π is a permutation of 1, ..., k such that |Bπ(i)| ≥ |Bπ(j)| if i < j.

Now it is possible to formulate a branch-and-bound procedure based on
the branching rule introduced in this section.

PROCEDURE Branch-and-Bound (r)
1. Calculate a solution S ∈ Y (r) using heuristics;
2. IF Cmax(S) < UB THEN UB := Cmax(S);
3. Calculate a critical path P ;
4. Calculate the blocks of P ;
5. Calculate the sets EB

j and EA
j ;

6. WHILE an operation i ∈ Eν
j exists with j = 1, ..., k and

ν = A, B DO
BEGIN

210 Shop Scheduling Problems

7. Delete i from Eν
j ;

8. Fix disjunctions for the corresponding successor s;
9. Calculate a lower bound LB(s) for node s;
10. IF LB(s) < UB THEN Branch-and-Bound (s)

END

Note that the handling of a node s terminates if

• the lower bound LB(s) is greater than or equal to the best solution
value (this is the case if the corresponding disjunctive graph has
cycles, i.e. LB(s) = ∞) or

• the critical path of the heuristic solution calculated for S does not
contain any blocks or

• the sets EB
j and EA

j are empty for all blocks Bj .

We did not specify in which order the operations i ∈ Eν
j are chosen, i.e.

the order of the successors of a search tree node r. The following rule
seems to be promising. Sort the candidates according to nondecreasing
heads of before-candidates and tails of after-candidates and deal with
the successors of a search tree node in this order. Heads and tails are
explained below.

Heads and tails

With each operation i we may associate a head and a tail. Heads and
tails are important for lower bound calculations. They are also used in
heuristics.

A head ri of operation i is a lower bound for an earliest possible starting
time of i.

A tail qi of operation i is a lower bound for the time period between the
finishing time of operation i and the optimal makespan.

Calculations of heads and tails are based on all conjunctive arcs and the
fixed disjunctive arcs. Thus, they depend on the specific search tree node
r.

A simple way to get heads ri for operation i would be to calculate the
length of the longest weighted path from 0 to i in the disjunctive graph
G = (V, C ∪ Fr). Similarly, for each i the tail qi could be calculated as
the length of the longest weighted path from i to ∗ in G = (V, C ∪ Fr).

6.4. Job Shop Problems 211

A more sophisticated method for calculating heads is as follows.

If P (i) is the set of disjunctive predecessors of operation i in a search
tree node, the value

max
J⊆P (i)

{

min
j∈J

rj +
∑

j∈J

pj

}

defines a lower bound for the earliest possible starting time of operation
i. Using the head of the conjunctive predecessor h(i) of i, we get the
lower bound rh(i) + ph(i). Using these formulas, we may define the head
ri of an operation i recursively:

r0 :=0;

ri :=max

{

rh(i) + ph(i); max
J⊆P (i)

{

min
j∈J

rj +
∑

j∈J

pj

}}

The same ideas lead to a formula for the tails qi of all operations:

q∗ :=0;

qi :=max

{

pk(i) + qk(i); max
J⊆S(i)

{∑

j∈J

pj + min
j∈J

qj

}}

Here k(i) is the conjunctive successor of i, and S(i) denotes the set of
disjunctive successors of i.

The calculation of heads can be combined with a cycle-check. We call
an operation a labeled operation if its head is calculated. Furthermore,
we keep a set D of all operations which can be labeled next, i.e. all
unlabeled operations with the property that all their predecessors are
labeled. Initially, D = {0}. If we label an operation i ∈ D, then i is
eliminated from D and all successors of i are checked for possible insertion
into D. The procedure continues until D is empty. The disjunctive graph
G = (V, C ∪F) contains a cycle if and only if no head has been assigned
to the dummy operation ∗ by this procedure. It is not difficult to prove
this property which is a consequence of the special structure of G.

In the following sections we will see how to use heads and tails in different
parts of the branch-and-bound algorithm.

212 Shop Scheduling Problems

Immediate Selection

One of the objectives of the introduced branching scheme was to add
large numbers of fixed disjunctions to the set Fr when going from node
r to its successors. A fast increase of the sets of fixed disjunctions is
essential for the quality of a branch-and-bound algorithm because

• more successors s of r contain cycles in the disjunctive graph and
need not be inspected ,

• generally, the value of the lower bound increases because more fixed
disjunctive arcs have to be respected, and

• if we have the additional information that j succeeds i in a solution
which improves a current upper bound, then a heuristic will not
look for schedules where j is processed before i. Therefore, such a
heuristic generally calculates better solutions.

In this section we will present a method due to Carlier and Pinson [63]
which fixes additional disjunctive arcs between jobs belonging to a set
of operations to be processed on the same machine. The method, called
immediate selection, is independent of the branching process. It uses
an upper bound UB for the optimal makespan and simple lower bounds.
From now on we assume that I is the set of all operations to be processed
on a given machine. Furthermore, let n be the number of elements in I.

Let J ⊂ I and c ∈ I\J . If condition

min
j∈J∪{c}

rj +
∑

j∈J∪{c}
pj + min

j∈J
qj ≥ UB (6.15)

holds, then all operations j ∈ J must be processed before operation c if
we want to improve the current upper bound UB. This follows from the
fact that the left-hand side of (6.15) is a lower bound for all schedules
in which c does not succeed all jobs in J . Due to integrality, (6.15) is
equivalent to

min
j∈J∪{c}

rj +
∑

j∈J∪{c}
pj + min

j∈J
qj > UB − 1

or
min

j∈J∪{c}
rj +

∑

j∈J∪{c}
pj > max

j∈J
dj (6.16)

6.4. Job Shop Problems 213

where dj := UB − qj − 1.

(J, c) is called a primal pair if (6.15) or, equivalently, (6.16) holds. The
corresponding arcs j → c with j ∈ J are called primal arcs. Similarly,
(c, J) is called a dual pair and arcs c → j are called dual arcs if

min
j∈J

rj +
∑

j∈J∪{c}
pj > max

j∈J∪{c}
dj (6.17)

holds. In this case all operations j ∈ J must be processed after operation
c if we want to improve the current solution value UB.

If J is a one-element set, then (6.15) may be replaced by the weaker
condition

rc + pc + pj + qj ≥ UB (6.18)

which is equivalent to
pc + pj > dj − rc. (6.19)

If these conditions hold, then we can fix the disjunction j → c. The
corresponding arc is called a direct arc.

In (6.16), (6.17), and (6.19) the dj-values may be interpreted as deadlines.
Next we will present an algorithm for fixing all primal and dual arcs in
O(n2) time. This algorithm is based on a method for improving heads
and due dates.

Improving Heads and Deadlines

In this section we consider the problem of finding a feasible schedule for
a set I of n operations with processing times pk, heads rk, and deadlines
dk to be scheduled on one machine.

We assume that the corresponding problem with preemption has a fea-
sible solution. Such a solution can be found by calculating Jackson’s
Preemptive Schedule (JPS) (Carlier [62]). JPS is calculated from left
to right by applying the following rule: At each time t, which is given
by a head or a completion time of an operation, schedule an unfinished
operation i with ri ≤ t and di = min{dj|rj ≤ t; j is not finished}. Figure
6.23(a) shows an example for JPS. Note that the starting and restarting
times of the operations are always integer if rk, pk are integer. There
is a dual version of JPS which calculates a schedule from right to left
applying the following dual rule: At each time t, which is given by a
deadline or a starting time of an operation, schedule backwards a not

214 Shop Scheduling Problems

completely scheduled operation i with di ≥ t and ri = max{rj |dj ≥
t; j is not completely scheduled}. We call such a schedule Backwards
Jackson’s Preemptive Schedule (BJPS). It is not difficult to see that
JPS is feasible if and only if BJPS is feasible.

Now the objective is to improve the head rc of an operation c ∈ I in
the original problem without preemption. The idea is to compute a
lower bound sc for the completion time of operation c under the assump-
tion that release dates and deadlines are respected but preemptions at
integer times are allowed. We call this time sc the earliest possible
completion time of operation c. Clearly, sc is also a lower bound for
the finishing time of operation c with respect to nonpreemptive schedules
and rc may be improved to

r′c = sc − pc (6.20)

if rc < r′c. Next we present methods for calculating sc. We assume that

dn ≤ dn−1 ≤ . . . ≤ d1 = d and r = min
j∈I

rj .

sc may be calculated by

Algorithm Improving Heads

1. Calculate JPS up to rc;

2. Calculate BJPS without c in [rc, d] using the remaining processing
times p+

k ;

3. Schedule operation c from left to right using the earliest idle periods
in [rc, d]. Let sc be the completion time of operation c;

4. IF sc − pc > rc THEN rc := sc − pc

6.4. Job Shop Problems 215

i 1 2 3 4 5

ri 117 7 3 5

pi 4 2 3 5 3

di2019151210

�1 4 5 4 3 1 2
0 1 3 5 8 11 14 1617 19

(a)

Step 1: �1 4 5
0 1 7

�
r3

p+
1 = 2, p+

2 = 2, p+
4 = 3, p+

5 = 1

Step 2: �1 4 5 4 5 4 1 2 1
0 7 10 12 1617 1920

Step 3: �3 3
0 14

�
s3

(b)

�1 4 5 5 4 2 1
0 10 12 15 1920

(c)

Figure 6.23: Calculation of earliest completion times rc.

Figure 6.23(b) shows the results of the three steps of this algorithm ap-
plied to c = 3.

216 Shop Scheduling Problems

Theorem 6.19 (i) The schedule S calculated by Algorithm Improv-
ing Heads is feasible.

(ii) Algorithm Improving Heads provides a lower bound for the com-
pletion time of operation c under the assumption that preemption
at integer times is allowed.

Proof:

(i) We only need to consider the interval [rc, d].
By assumption JPS is feasible. Thus, we have a feasible preemptive
schedule in [rc, d] for the processing times p+

k and BJPS provides
such a feasible schedule even if c is included. Let f denote the
completion time of operation c in this BJPS. Then sc ≤ f ≤ dc and
thus operation c also respects its release time and deadlines in S.

(ii) We use simple exchange arguments.
Assume that a feasible schedule exists in which the finishing time
f1 of c is smaller than sc. Among all such schedules consider one
S1 coinciding with S as long as possible, i.e. S and S1 coincide on
[r, t] with t maximal. Due to the fact that we have to consider only
schedules with preemptions on integer times, such a t exists and is
integer. Suppose t < rc. If no operation in S is scheduled in [t, t+1],
then no operation can be scheduled in [t, t + 1] in S1, contradicting
maximality of t. Now assume that in S operation j is scheduled
in [t, t + 1] and in S1 operation k �= j is scheduled in [t, t + 1].
Then a time unit [t′, t′ + 1], t′ > t exists in which j is scheduled
in S1. Since dj ≤ dk, operations j and k may be exchanged in
S1. f1 does not change because t < rc implies k �= c and j �= c.
This again contradicts the maximality of t. Similarly, we have a
contradiction if in S1 no operation is scheduled in [t, t + 1]. Hence
S1 and S coincide at least in [r, rc]. With the same argument it
can be shown that a schedule S2 exists coinciding with S at least
on [r, rc] ∪ [sc, d] in which the finishing time f2 of c is smaller than
sc. Now the total remaining processing time of all operations to be
scheduled in [rc, sc] is exactly sc − rc because S has this property.
Only operation c may be scheduled in [sc − 1, sc]. So it must be
scheduled in [sc − 1, sc] which contradicts the fact that f2 < sc.

�

6.4. Job Shop Problems 217

The calculation of the earliest possible completion time sc for a given
operation c ∈ I can be simplified due to the following ideas.

To apply Step 3 of Algorithm Improving Heads we only need to know
the idle periods which are generated by BJPS in Step 2 of the algorithm.
These idle periods can also be calculated using the following modified
Step 2.

2. Starting from time d, schedule backwards in an order of nonin-
creasing deadlines the operations j ∈ I\{c} with processing times
p+

j without preemption.

It is easy to see that this algorithm generates the same idle periods as
BJPS. Figure 6.23(c) shows the resulting schedule after applying the
modified Step 2.

The deadlines can be improved (decreased) in a similar way. The cor-
responding procedures are symmetric to those derived for the release
times.

Fixing all Primal and Dual Arcs

The following simple procedure fixes all direct arcs associated with the
set I of n jobs in O(n2) time.

Procedure Select
1. FOR ALL c, j ∈ I, c �= j DO
2. IF pc + pj > dj − rc THEN
3. fix direct arc j → c;

Next we will prove that Procedure Select calculates all primal and dual
pairs associated with I if we replace the rj-values and dj-values by the
modified rj-values and dj-values, respectively (see previous section).

Let r′i and d′
i denote the release date and deadlines of operation i that

are improved by the procedure given in the last section (note that r′i ≥ ri

and d′
i ≤ di for i = 1, . . . , n).

We get the following

Theorem 6.20 Let I be a set of operations to be processed on one
machine with release dates ri, deadlines di, modified release dates r′i, and
modified deadlines d′

i for i = 1, . . . , n.

218 Shop Scheduling Problems

(a) For each primal pair (J, c) with J ⊂ I, c ∈ I\J we have

r′c + pc + pj > dj ≥ d′
j

for all j ∈ J .

(b) For each dual pair (c, J) with J ⊂ I, c ∈ I\J we have

r′j + pj + pc ≥ rj + pj + pc > d′
c

for all j ∈ J .

(a) means that we can calculate all disjunctive arcs associated with primal
arcs using Procedure Select with modified release dates r′i (i = 1, . . . , n).
The corresponding result for dual pairs is given by (b).

Proof: We will only prove (a). (b) can be proved similarly. Let (J, c) be
a primal pair, i.e.

min
j∈J∪{c}

rj +
∑

j∈J∪{c}
pj > max

j∈J
dj.

This implies that in all feasible preemptive schedules parts of c have to
be processed after max

j∈J
dj .

In the last section we calculated a feasible preemptive schedule in which
operation c finished as early as possible. We thereby obtained an earliest
possible finishing time sc for operation c and the modified release date
r′c = sc−pc. By the arguments given above, we have sc > dj for all j ∈ J
and

dj − r′c= dj − (sc − pc)

= (dj − sc) + pc

< pc

< pc + pj .

�

Combining the results of this section and the last section we get an O(n2)-
procedure for fixing all primal arcs and dual arcs for a set I of n jobs to
be processed on the same machine. The time bound can be reduced to
O(max{n log n, d}) (see Brucker et al. [41]) where d denotes the number
of arcs to be fixed by the algorithm.

6.4. Job Shop Problems 219

Application of Immediate Selection

The calculation of all disjunctive arcs by immediate selection is under-
taken before the computation of a heuristic solution. One may proceed
as follows:

(1) Calculation of all primal arcs for all machines.

(2) Calculation of new heads and deadlines.

(3) Calculation of all dual arcs for all machines.

(4) Calculation of new heads and deadlines.

In (1) and (3) we improve heads and deadlines, respectively, and apply
Procedure Select. The computation of new heads and deadlines in steps
(2) and (4) is undertaken because the additional arcs influence the heads
and deadlines of all operations. Steps (1) to (4) are repeated as long as
new disjunctive arcs are fixed.

Calculation of Lower Bounds

Let r be a search tree node with a set Fr of fixed disjunctive arcs. Based
on the arcs in Fr, a head ri and a tail qi is given for each operation i. A
lower bound LB(s) is calculated for each successor s of r. If this value
exceeds or is equal to the actual upper bound UB, then an inspection of
s is not necessary.

Different methods for calculating lower bounds have been tested. The
best strategy was to compute different lower bounds at different places
of the algorithm:

(1) Lower bound calculation during the computation of the sets EB
� and

EA
� : If operation i should be moved before block B, all disjunctive

arcs
{
i → j : j ∈ B \ {i}} are fixed. Thus the value

ri + pi + max

⎧
⎨

⎩
max

j∈B\{i}
(pj + qj);

∑

j∈B\{i}
pj + min

j∈B\{i}
qj

⎫
⎬

⎭

220 Shop Scheduling Problems

is a simple lower bound for the search tree node s. Similarly, the
value

max

⎧
⎨

⎩
max

j∈B\{i}
(rj + pj); min

j∈B\{i}
rj +

∑

j∈B\{i}
pj

⎫
⎬

⎭
+ pi + qi

is a lower bound for the node s if i should be moved after block B.

(2) Lower bound calculation during the computation of heads and tails:
If the value ri + pi + qi of an operation i exceeds the actual upper
bound, the node need not be inspected. Also the head r∗ of the
sink and the tail q0 of the source of the disjunctive graph are used
as lower bounds for all solutions in the search tree node s.

(3) Lower bound calculation after the computation of heads and tails:
The Jackson Preemptive Schedule is calculated for each machine.
The maximal makespan of these schedules gives a lower bound for
the search tree node s.

Note that the value of the lower bound LB(s) may increase if additional
disjunctions are fixed. Thus, it is advantageous to check LB(s) each time
additional disjunctive arcs are fixed.

The calculation of all these lower bounds is advantageous because ev-
ery time a lower bound exceeds or is equal to an upper bound, a time-
consuming part of the algorithm (e.g. the computation of heads and tails
or the fixation of disjunctions) is no longer necessary.

Calculation of heuristic solutions

The branching scheme we used was based on a heuristic solution of the
problem.

In connection with the 10×10-problem, a priority dispatching rule based
heuristic gave the best result (see Jurisch & Sievers [43]). The heuristic
successively calculates the operation to be scheduled next. This is done
in the following way:

• Calculate the set C of all operations which can be scheduled next,
i.e. C is the set of operations c with the property that all prede-
cessors of c are already scheduled. Initially, C contains the source
0 of the disjunctive graph.

6.4. Job Shop Problems 221

• Let u ∈ C be the operation with minimal value ru+pu, i.e. ru+pu =
min
c∈C

{rc+pc}. Let Mk be the machine which has to process operation

u. We define the set C̄ by

C̄ := {s ∈ C | rs < ru + pu; s has to be processed on Mk}.

• For each operation c ∈ C̄ we calculate a lower bound for the
makespan of the schedule if we schedule c next. We choose the
operation c̄ ∈ C̄ with minimal lower bound to be scheduled next.

• The set C is updated by inspecting all successors s of c̄. If all
predecessors of s have already been scheduled, we set C = C ∪{s}.
After this, c̄ is deleted from C and we start again.

Different methods to calculate lower bounds for the operations c ∈ C̄
have been tested. The bound which gave the best results was calculated
as follows.

Let T be the set of operations on machine Mk that are not yet scheduled
(note that C̄ is a subset of T). Take as a lower bound the solution value
of Jackson’s Preemptive Schedule for the set T assuming that c has to
be scheduled first.

6.4.5 Applying Tabu-Search to the Job Shop Prob-

lem

In this section we will describe how the Algorithm Tabu-Search presented
in Section 3.4.1 can be implemented for the job shop problem. Firstly,
several neighborhoods will be discussed. These neighborhoods can also
be used in connection with other local search methods. Then, following
Dell’Amico & Trubian [75], we will describe the organization of the tabu-
list and the aspiration criterion to be used. For a more detailed discussion
of the application of simulated annealing and tabu-search to the job shop
scheduling problem we refer to Van Laarhoven et al. [206] and Dell’Amico
& Trubian [75].

All processing times pij considered in this section are assumed to be
positive.

222 Shop Scheduling Problems

Neighborhood Structures

The quality of local search heuristics strongly depends on the neighbor-
hood used. In this section we will define neighborhoods that yield good
results for simulated annealing and tabu-search methods. Again we use
disjunctive graphs G = (V, C, D) for representing job shop scheduling
problems. Thus, solutions can be represented by complete selections. A
complete selection S induces the acyclic graph G(S) = (V, C ∪ S).

The following Lemma motivates the first neighborhood N1.

Lemma 6.21 Let S be a complete selection and let p be a longest path
in G(S). Let (v, w) be an arc of p such that v and w are processed on
the same machine. Then S ′ derived from S by reversing (v, w) is again
a complete selection.

Proof: We have to show that G(S ′) is acyclic. If G(S ′) is cyclic, then
(w, v) must be belong to a cycle c because G(S) has no cycles. (v, w) does
not belong to c. Thus, c contains at least three vertices. Furthermore,
v and w are the only vertices which belong to both c and p. If we now
replace the arc (v, w) in p by the subpath of c going from v to w, we have
in G(S) a path which is longer than p. This contradicts the fact that p
is a longest path in G(S). �

For a complete selection S we now denote by N1(S) the set of all complete
selections derived from S by reversing an arc (v, w) on a critical path in
G(S), where v and w are to be processed on the same machine. Thus,
the moves corresponding to N1 are reversals of certain critical arcs.

A neighborhood N is called opt-connected if, from each solution S,
some optimal solution can be reached by a finite sequence of moves, i.e.
there exists a sequence of complete selections S0, S1, . . . , Sk with S0 = S,
Sk is optimal, and Si+1 ∈ N(Si) for i = 0, 1, . . . , k − 1.

Connectivity is a desired property for local search methods, such as sim-
ulated annealing and tabu-search. In connection with simulated anneal-
ing and tabu-search, connected neighborhoods generally provide better
results.

Theorem 6.22 N1 is opt-connected.

Proof: We have to show that we can get from an arbitrary complete
selection S to an optimal selection by a finite sequence of moves. This is

6.4. Job Shop Problems 223

accomplished by the following procedure which is guided by an arbitrary
but given optimal selection Sopt.

1. i = 0; Si := S;
2. WHILE Si is not optimal DO

BEGIN
3. Find (v, w) ∈ Si on a critical path in G(Si) such that

(v, w) does not belong to Sopt;
4. Si+1 := (Si\{(v, w)}) ∪ {(w, v)};
5. i := i + 1

END

In Step 3 of this procedure we can always find an arc (v, w) on a critical
path with respect to Si which does not belong to Sopt. Otherwise all
arcs on a critical path in G(Si) belong to Sopt which implies Cmax(Si) ≤
Cmax(Sopt) and Si must be optimal, too. Thus the procedure must reach
Sopt after a finite number of steps unless some Si �= Sopt is optimal. �

A disadvantage of N1 is that for all (v, w) on a critical path where v and w
belong to the same block and neither v is the first operation in the block
nor w is the last operation in the block, the move which corresponds to
(v, w) does not improve the Cmax-value. Thus, generally several moves
are necessary to improve the objective value. To decrease this number of
moves, N1 can be extended in the following way.

Let (v, w) be on a critical path with respect to S, where v and w are to
be processed on the same machine, and denote by PM(v) (SM(w)) the
immediate disjunctive predecessor (successor) of v(w), if it exists. Instead
of the reversal of (v, w), we consider as moves all possible permutations of
{PM(v), v, w} and {v, w, SM(w)} in which arc (v, w) is inverted. Denote
this neighborhood by N2. Then we clearly have N1(S) ⊆ N2(S) for all
complete selections S. Thus, N2 is also opt-connected.

Another alternative would be to consider the neighborhood N3 defined
by all moves shifting an operation of some block at the beginning or the
end of the block. Such moves are not defined if the resulting selections are
not complete, i.e. contain cycles. Unfortunately, it is an open question
whether N3 is opt-connected.

N3 can be extended to a neighborhood N4 which is opt-connected by
defining neighbors S ′ of S in the following way.

Let p be a critical path in G(S). Then S ′ is derived from S by moving
one operation of a block B of p, which is different from the first (last)

224 Shop Scheduling Problems

operation j in B, before (after) all other operations in B if the resulting
selection is feasible. Otherwise j is moved to the position inside block B
closest to the first (last) position of B such that the resulting schedule is
feasible. Note that N3(S) ⊆ N4(S) for all complete selections S.

Theorem 6.23 N4 is opt-connected.

Proof: Let Sopt be an optimal solution and, for an arbitrary complete se-
lection S, denote by n(S) the number of disjunctive arcs fixed in different
directions in S and Sopt.

If S is not optimal, then according to Theorem 6.18 a block B exists in
a critical path of S such that at least one operation j in B is processed
before or after all other operations of B in Sopt. Assume w.l.o.g. that
j has to be processed before all other operations of B. Then we move
j to the position closest to the beginning of B such that the resulting
schedule S ′ is feasible. This is one of the moves in N4. Note that due
to Lemma 6.21 it is always possible to move j to the position of its
immediate predecessor in B. Furthermore, n(S ′) < n(S). �

Organization of the Tabu-List

The main components of a tabu-search algorithm are memory structures,
in order to have a trace of the evolution of the search, and strategies for
using the memory information in the best possible way.

The fundamental memory structure is a so-called tabu list, which stores
attributes characterizing solutions that should not be considered again
for a certain length of time. Usually a first-in-first-out (FIFO) strategy
is applied to the list. Old attributes are deleted as new attributes are
inserted.

In connection with the job shop scheduling problem and the neighbor-
hoods N1 to N4, disjunctive arcs (i, j) reversed by recent moves will be
used as attributes. A solution S is defined to be tabu if an arc belonging
to the attribute set is contained in S.

As a supporting data structure we may use a square matrix A = (aij) with
a dimension equal to the maximum number of operations. aij contains
the count of the iteration in which arc (i, j) was last reversed. We forbid
the swapping of arc (i, j) if the previous aij-value aold

ij plus the length l of
the tabu list is greater than the count anew

ij of the current iteration, i.e.

6.4. Job Shop Problems 225

l > anew
ij − aold

ij . Thus, a solution is not considered again after less than l
iterations.

Dell’Amico & Trubian [75] suggest using a variable length l for the tabu
list, defined according to the following rules:

• if the current objective function value is less than the best value
found before, then set l = 1.

• if we are in an improving phase of the search (i.e. the value of the
objective function of the current solution is less than the value at
the previous iteration) and the length of the list is greater than a
threshold MIN, then decrease the list length by one unit.

• if we are not in an improving phase of the search (i.e. the value
of the objective function of the current solution is greater than or
equal to the value at the previous iteration) and the length of the
list is less than a given MAX, then increase the length by one unit.

Such a tabu list is called dynamic.

Finally, we note that A is usually sparse and can be stored in a compact
way if its dimension is large.

Aspiration Criterion

An aspiration criterion is introduced as a condition for cancelling the
effect of tabu status on a move. A basic condition for allowing a forbidden
move from solution S to solution S ′ is:

An estimation estim(S, S ′) for the solution value S ′ which depends on
S is less than the value of the best solution found before the current
iteration.

One may define estim(S, S ′) as follows. Let B(S, S ′) be the set of all
operations j such that (i, j) or (j, i) is reversed by the move from S to
S ′. Furthermore, for each operation i, let ri(r

′
i) be the length of the

longest path from 0 to i in G(S) (G(S ′)) and let qi(q
′
i) be the length of

the longest path from i to � in G(S) (G(S ′)). Then we set

estim(S, S ′) = max{r′j + pj + q′j | j ∈ B(S, S ′)}. (6.21)

The values r′j and q′j can be calculated using the rj- and qj-values. The
rj- and qj-values are found by longest path calculations in G(S) (see
Dell’Amico & Trubian [75]).

226 Shop Scheduling Problems

The idea behind such an aspiration criterion is that we are interested in
moving to a solution S ′ which improves the best previous solution even
if the corresponding move is tabu. To check whether S ′ is an improving
solution we have to calculate the value Cmax(S

′). Since this may be
too time-consuming, an alternative is to replace Cmax(S

′) by an estimate
estim(S, S ′) for Cmax(S

′). Estim(S, S ′) defined by (6.21) is a lower bound
for Cmax(S

′) which can be easily calculated.

A more recent and improved tabu-search implementation is described in
Nowicki & Smutnicki [177]. Dorndorf & Pesch [77] apply genetic algo-
rithms to the job shop problem. Genetic algorithms are generalizations
of local search methods. A detailed computational study of local search
methods for shop scheduling problems can be found in Aarts et al. [1].

6.5 Mixed Shop Problems

In this section we consider mixed shop problems, denoted by the symbol
X. The mixed shop is a combination of the job shop problem and the
open shop problem. Thus, we have open shop jobs and job shop jobs.
As before, the number of operations of job i is denoted by ni. nJ and nO

are bounds on the number of job shop and open shop jobs, respectively.

6.5.1 Problems with Two Machines

Due to the complexity of job shop scheduling problems, only problems
with two machines, in which the number of jobs is fixed or each job shop
job has at the most two operations, can be expected to be polynomially
solvable. Strusevich [192] has shown that both problems X2 | ni ≤
2 | Cmax and X2 | pmtn; ni ≤ 2 | Cmax can be solved in O(n logn)
steps. His approach consists of a complicated case analysis. He considers
thirteen cases which depend on the operations and their processing times.
For each case he describes an optimal schedule. For details we refer to
Strusevich [192]. Shaklevich et al. [184] present an O(r3 + n)-algorithm
for problem X2 | nJ = 2; pmtn | Cmax and show that X2 | nJ = k; nO =
l | Cmax can be solved in O(r3nJ2nO) time by using techniques similar to
those presented in Section 6.4.3.

6.5. Mixed Shop Problems 227

6.5.2 Problems with Two Jobs

Shakhlevich & Sotskov [183] have shown that the problems X | n =
2 | Cmax and X | n = 2 | ∑

Ci are NP-hard. They also suggested an
O(r)-algorithm for the preemptive problem consisting of one open shop
job and one job shop job with an arbitrary regular objective function
f(C1, C2). As before, r is the maximum number of operations of both
jobs. This algorithm will be presented in this section.

Assume that we have two jobs, J1 and J2. Let J1 be a job shop job
with operations O1j (j = 1, . . . , n1). O1j has the processing time p1j and
is to be processed on machine μj ∈ {M1, . . . , Mm}. Job J2 is an open
shop job with operations O2j (j = 1, . . . , n2 = m), where O2j has the
processing time p2j and must be processed on Mj . The order in which
the operations O2j are processed is arbitrary.

Let ti =
ni∑

j=1

pij be the total processing time of Ji (i = 1, 2). We consider

the two cases t2 ≤ t1 and t1 < t2.

Case: t2 ≤ t1

We assume that an index l (1 ≤ l < n1) exists with
l∑

j=1

p1j = t2. Other-

wise we split an operation of J1 into two operations.

For each k = 1, . . . , m we define

sk = p2k +
∑

μj=Mk

j≤l

p1j

and set s = sk∗ :=
n

max
k=1

sk.

We consider two subcases.

Subcase: s ≤ t2

We will construct a schedule with C1 = t1 and C2 = t2 which is optimal.

It is sufficient to show that for the truncated problem obtained by re-
placing J1 by O11, . . . , O1l a schedule S exists which finishes at time t2.
If, additionally, the remaining operations O1,l+1, . . . , O1,n1 are processed

228 Shop Scheduling Problems

J2:

J1:

M1 M2 M3 M4

M1 M2 M1 M3 M2 M4

6 1 3 4

3 2 2 2 5 7

Figure 6.24: Two jobs.

from time t2 without interruption, then we get a schedule with C1 = t1
and C2 = t2.

To construct S we first solve the two-job open shop problem with pro-
cessing times

p1k =
∑

μj=Mk

j≤l

p1j and p2k = p2k for k = 1, . . . , m.

Because for open shops there is a complete symmetry between jobs and
machines, this can be done by using the algorithm described in Section
6.2.1. Because p1k + p2k ≤ t2, all operations can be scheduled in [0, t2].
To illustrate this step we consider the following example.

Example 6.2

Consider two jobs represented by Figure 6.24.

We have t2 = 14 < t1 = 21.

We truncate this problem by eliminating the last operation of J1. The
corresponding two-job open shop problem is defined by the following pij-
values

i 1 2 3 4

ai 5 7 2 0

bi 6 1 3 4

Applying the algorithm given in Section 6.2.1, we get I = {1, 3, 4}, J =
{2}, 5 = a1 = max{max{5, 2, 0}, 1} and the schedule shown in Figure
6.25. �

6.5. Mixed Shop Problems 229

J2

J1

M1 M3 M4 M2

M3 M2 M1

�

r
�

I\{r}
�

J

� �
I\{r}

� �
J

� �
r

Figure 6.25: Application of the algorithm form Section 6.2.1.

The final step is to cut the schedule along the operations of J1 into
slices and to reschedule these slices in such a way that we get a pre-
emptive schedule for the truncated original problem in [0, t2]. Adding
the operations of J1 scheduled after t2, we get an optimal solution for
X | n = 2; pmtn | f (see Figure 6.26).

J2

J1

M4 M1 M4M2 M1 M1 M3

M1 M2 M1 M3 M2 M4

t2 t1

Figure 6.26: Optimal schedule for an instance of X | n = 2; pmtn | f .

The open shop problem can be solved in O(m) time. Furthermore, the
number of “slices” we have to rearrange in the last step of the algo-
rithm is at the most n1. Thus, the computational time is bounded by
O(max{m, n1}). Note that we have at the most n1 preemptions of J2-
operations.

Subcase: s = sk∗ > t2

No schedule exists with Ci = ti for i = 1, 2 because if C2 = t2, then at
least one operation O1j with μj = Mk∗ and j ≤ l must finish later than
time t2. This implies that J1 may finish later than t1 (see Figure 6.27(c)).

230 Shop Scheduling Problems

J2

J1

t1 t∗2

machine 1 machine 2 machine 3

(a)

J2

J1

t
(1)
2

(b)

J2

J1

t2 t∗1
(c)

Figure 6.27: An example for Subcase s > t2 of Case t2 ≤ t1.

To avoid excessive formalism, we will use the example in Figure 6.27 to
explain how to proceed in this case. In the example, k∗ = 1. We first
consider the two extreme cases in which

(1) C1 = t1 and C2 is minimized (see Figure 6.27(a)) or

(2) C2 = t2 and C1 is minimized (see Figure 6.27(c)).

Denote the minimal C2-value in Case (1) by t∗2 and the minimal C1-value
in Case (2) by t∗1 .

For each t2 ≤ t ≤ t∗2 define

f(t) = min{f(s, t) | t1 ≤ s ≤ t∗1}.

Then f(t∗) = min{f(t) | t2 ≤ t ≤ t∗2} is the optimal solution of the
problem. To calculate t∗ we need to consider at the most n1 different
t-values which can be calculated in O(n1) time. This can be explained
as follows using Figure 6.27.

6.5. Mixed Shop Problems 231

We start with the optimal schedule for t = t∗2 shown in Figure 6.27(a).
The only way to decrease t is to increase s from t1 to t∗2. To minimize
f(s, t) for fixed s = t∗2 in Figure 6.27(a) we move the last processing
period of J1 on machine 1 t∗2 − t1 time units to the right and shift the
last processing period of J2 on machine 1 as far as possible to the left.
The resulting new schedule is shown in Figure 6.27(b). Let t

(1)
2 be the

new finishing time of J2. Then

f(t
(1)
2) = min{f(t) | t

(1)
2 ≤ t < t∗2}.

To decrease t = t
(1)
2 we need to move the last M1-processing period of

J1 to the right in such a way that it finishes at time t
(1)
2 . Also shifting

the last M1-block of J2 to the left yields the schedule of Figure 6.27(c)
in which the new finishing time of J2 is equal to t2. Thus, a further
decrease of the finishing time of J2 is not possible and we have f(t∗) =

min{f(t∗2), f(t
(1)
2), f(t2)}.

It is not difficult to write a procedure which solves the general problem in
O(n1) time if the objective function f(s, t) can be evaluated in constant
time for given (s, t).

Next we consider the

Case: t1 < t2

We define

sk =
∑

μj=Mk

p1j + p2k for k = 1, . . . , m.

If s = max sk ≤ t1, then, as in the previous case, a schedule exists with
Ci = ti for i = 1, 2 which is optimal.

Therefore, we assume that sk > t1 for some k. If sk ≤ t2, then again a
schedule exists with Ci = ti for i = 1, 2 (see Figure 6.28).

J2

J1

t1 sk t2

Figure 6.28: Schedule with Ci = ti for i = 1, 2

232 Shop Scheduling Problems

Finally, let sk > t2. In this case we proceed as in the previous second
subcase. For an example, see Figure 6.29.

J2

J1

t1

J2

J1

J2

J1

t2

Figure 6.29: Schedule for Subcase sk > t2 of Case t1 < t2.

6.6 Complexity of Shop Scheduling Prob-

lems

In this section we will give a survey on complexity results for shop
scheduling problems.

Complexity results for open shop problems are summarized in Tables 6.1
to 6.3. We have to add O(nm log2 nm), the complexity for the color-
ing procedure, to get the complexities of the open shop problems P in
Table 6.1.

Table 6.4 shows that problem F2 ‖ Cmax is the only nontrivial flow
shop problem without preemptions which is polynomially solvable if the
processing times are arbitrary. Similar results hold for preemptive flow
shop scheduling problems. Flow shop problems with m stages and unit
processing times are closely related to corresponding problems with m
identical parallel machines and unit processing times.

Tables 6.6 to 6.8 present complexity results for job shop scheduling prob-
lems. f is an arbitrary regular objective function.

Note that r = max{ni, . . . , nn} is the maximum number of operations of
the jobs.

6.6. Complexity of Shop Scheduling Problems 233

Tables 6.9 and 6.10 present complexity results for mixed shop problems.
Again f is an arbitrary regular function and r = max{n1, . . . , nk}. We
assume that f(C1, C2) can be evaluated in constant time.

234 Shop Scheduling ProblemsShop Scheduling Problems

Problem P Problem P̂ Complexity of P̂
O | pij = 1; ri | Cmax P | ri; pmtn | Cmax Horn [115]

O(n2)
Gonzales & Johnson [103]
O(nm)

O | pij = 1; tree | Cmax P | tree; pmtn | Cmax Muntz & Coffman [173]
O(n2)
Gonzales & Johnson [103]
O(n log m)

O2 | pij = 1; prec | Cmax P2 | prec; pmtn | Cmax Muntz & Coffman [172]
Gonzales & Johnson [103]
(nr)

O | pij = 1; ri; di | − P | ri; di; pmtn | − Horn [115]
(n3)

O | pij = 1 | Lmax P | pmtn | Lmax Horn [115]
(n2)
Gonzales & Johnson [103]
O(nm)

O | pij = 1; ri | Lmax P | ri; pmtn | Lmax Labetoulle et al. [133]
O(n3 min{n2, log n

+ log maxj pj})
O | pij = 1; intree | Lmax P | intree; pi = m; pmtn | Lmax Garey & Johnson [96]

O(nm log nm)
Monma [169]
O(nm)

2 | pij = 1; prec | Lmax P2 | prec; pmtn | Lmax Lawler [139]
O(n2)

O2 | pij = 1; ri; prec | Lmax P2 |; ri; prec; pmtn | Lmax Lawler [139]
O(n6)
Garey & Johnson [96]
O(n3m3)

O | pij = 1 | ∑
wiCi P | pi = m; pmtn | ∑

wiCi Mc Naughton [165]
(n log n)

O | pij = 1 | ∑
Ti P | pi = m; pmtn | ∑

Ti Liu & Bulfin [161]
O(nm + n log n)

O | pij = 1 | ∑
Ui P | pi = m; pmtn | ∑

Ui Liu & Bulfin [161]
O(nm + n log n)

Table 6.1: Complexities of transformed problems P̂ .

6.6. Complexity of Shop Scheduling Problems 235

O | pij = 1; tree | Cmax Bräsel et al. [31] O(nm)
O2 ‖ Cmax 6.2.1 Gonzalez & Sahni [104] O(n)
O | pij = 1; intree | Lmax 6.2.2 Brucker et al. [40], O(mn log2 mn)
O | pij = 1; ri | Lmax Brucker et al. [40] Networkflow-

problem
O | ri; pmtn | Lmax Cho & Sahni [66] lin. progr.
O2 | pij = 1; prec; ri | Lmax Brucker et al. [40]

Lawler [139] O(n6)
O | pij = 1; chains; ri | Lmax Baptiste et al. [21] O(n9)
O | pij = 1; outtree | ∑

Ci Bräsel et al. [32] O(nm)
O | pij = 1; outtree; ri | Cmax Lushchakova [163]
O2 | pij = 1; prec | ∑

Ci Coffman et al. [68] O(n)
Om | pij = 1; ri |

∑
Ci Tautenhahn O(n2m6m)

& Wöginger [196]
O | pij = 1; ri |

∑
Ci Brucker& Kravchenko [51] lin. progr.

O | pij = 1 | ∑
wiCi 6.2.2 Brucker et al. [40]

Tanaev et al. [194] O(mn + n log n)
O | pij = 1 | ∑

Ui 6.2.2 Liu & Bulfin [161] O(n2m)
Om | pij = 1; ri |

∑
wiUi Baptiste [15] O(n4m2−m+10)

O | pij = 1 | ∑
Ti 6.2.2 Liu & Bulfin [161] O(nm log2(mn))

Table 6.2: Polynomially solvable open shop problems.

236 Shop Scheduling Problems

O3 ‖ Cmax Gonzalez & Sahni [104]
O | n = 3 | Cmax Gonzalez & Sahni [104]

∗O ‖ Cmax Lenstra [150]
∗O | pij = 1; outtree; ri | Cmax Timkovsky [202]
∗O | pij = 1; prec | Cmax Timkovsky [202]
∗O2 | chains | Cmax Tanaev et al. [194]
∗O2 | chains; pmtn | Cmax Lenstra [150]
∗O2 | ri | Cmax Lawler et al. [143],[144]
∗O | pij = 1; outtree | Lmax Timkovsky [202]
∗O2 ‖ Lmax Lawler et al. [143],[144]
∗O2 ‖ ∑

Ci Achugbue & Chin [2]
O2 | pmtn | ∑

Ci Du & Leung [83]
∗O3 | pmtn | ∑

Ci Liu & Bulfin [160]
∗O2 | ri; pmtn | ∑

Ci Sriskandarajah & Wagneur [191]
∗O2 | chains; pmtn | ∑

Ci Lenstra [150]
∗Om | pij = 1; chains | ∑

wiCiTimkovsky [202]
for each m ≥ 2

∗O2 | pmtn | ∑
wiCi Lenstra [150]

∗O2 | pmtn | ∑
Ui Lawler et al. [143],[144]

∗O | pij = 1; ri |
∑

Ui Kravchenko [127]
∗Om | pij = 1; chains | ∑

Ui Timkovsky [202]
for each m ≥ 2

∗Om | pij = 1; chains | ∑
T i Timkovsky [202]

for each m ≥ 2

Table 6.3: NP-hard open shop problems.

6.6. Complexity of Shop Scheduling Problems 237

F2 | pij = 1; prec; ri |
∑

Ci Baptiste & Timkowsky [23]
Fm | pij = 1; intree | ∑

Ci Averbakh etal.[11]
F | pij = 1; outtree; ri | Cmax Bruno et al. [60] O(n2)
F | pij = 1; tree | Cmax Bruno et al.[60] O(n)
F2 ‖ Cmax Johnson [120] O(n log n)

6.2.1
F2 | pmtn | Cmax Gonzales & Sahni [105] O(n log n)
F | pij = 1; intree | Lmax Bruno et al. [60] O(n2)
F2 | pij = 1; prec; ri | Lmax Bruno et al. [60] O(n3 log n)
F | pij = 1; outtree; ri |

∑
Ci Brucker & Knust [44] O(n log n)

F2 | pij = 1; prec | ∑
Ci Brucker & Knust [44] O(nlog 7)

F | pij = 1; ri |
∑

wiUi Single machine problem O(n3)
F | pij = 1; ri |

∑
wiTi Single machine problem O(n3)

Table 6.4: Polynomially solvable flow shop problems.

238 Shop Scheduling Problems

∗ F | pij = 1; intree; ri | Cmax Brucker & Knust [44]
∗ F | pij = 1; prec | Cmax Leung et al. [156]
∗ F2 | chains | Cmax Lenstra et al. [155]
∗ F2 | chains; pmtn | Cmax Lenstra [150]
∗ F2 | ri | Cmax Lenstra et al. [155]
∗ F2 | ri; pmtn | Cmax Gonzales & Sahni [105]
∗ F3 ‖ Cmax Garey et al. [100]
∗ F3 | pmtn | Cmax Gonzales & Sahni [105]
∗ F | pij = 1; outtree | Lmax Brucker & Knust [44]
∗ F2 ‖ Lmax Lenstra et al. [155]
∗ F2 | pmtn | Lmax Gonzales & Sahni [105]
∗ F2 ‖ ∑

Ci Garey et al. [100]
∗ F2 | pmtn | ∑

Ci Du & Leung [83]
∗ Fm | pij = 1; chains | ∑

wiCi Tanaev et al. [194]
∗ Fm | pij = 1; chains | ∑

Ui Brucker & Knust [44]
for each m ≥ 2

∗ Fm | pij = 1; chains | ∑
Ti Brucker & Knust [44]

for each m ≥ 2

Table 6.5: NP-hard flow shop problems.

6.6. Complexity of Shop Scheduling Problems 239

J2 | ni ≤ 2 | Cmax Jackson [119] O(n log n)
6.4.1

J2 | pij = 1 | Cmax Timkovsky [198] O(n log(nr))
J2 | pij = 1; ri | Cmax Timkovsky [200] O(n2)
J2 | n = k | Cmax Brucker [34]] O(r2k)
J2 | pij = 1 | Lmax Timkovsky [199] O(n2)
J | prec; pij = 1; ri;n = k | fmax Brucker & Krämer [49] O(k22kmrk+1)
J2 | pij = 1 | ∑

Ci Kubiak & Tim- O(n log n)
kovsky [131]

J2 | pij = 1 | ∑
Ui Kravchenko [126] O(n6)

J2 | n = k | f Brucker et al. [54] O(r1.5(k2+k))
J | prec; ri;n = 2 | f Sotskov [189], O(r2 log r)

Brucker [33]
6.4.2

J | prec; ri;n = 2; pmtn | f Sotskov [189] O(r3)
6.4.2

J | prec; pij = 1; ri;n = k | ∑
fi Brucker & Krämer [46] O(k22kmrk+1)

Table 6.6: Polynomially solvable job shop problems.

J | prec; ri;n = k | ∑
wiUi Middendorf & Timkovsky [167]

J2 | pij = 1 | ∑
wiUi Kravchenko [127]

J | prec; ri;n = k | ∑
wiTi Middendorf & Timkovsky [167]

J | prec; ri;n = k; pmtn | ∑
wiUi Middendorf & Timkovsky [167]

J | prec; ri;n = k; pmtn | ∑
wiTi Middendorf & Timkovsky [167]

Table 6.7: Pseudopolynomially solvable job shop problems.

240 Shop Scheduling Problems

∗J2 | pij ∈ {1, 2} | Cmax Lenstra & Rinnooy Kan [153]
∗J2 | chains; pij = 1 | Cmax Timkovsky [198]
∗J2 | pmtn | Cmax Lenstra & Rinnooy Kan [153]
J2 | n = 3; pmtn | Cmax Brucker et al. [55]

∗J3 | pij = 1 | Cmax Lenstra & Rinnooy Kan [153]
J3 | n = 3 | Cmax Sotskov & Shakhlevich [190]

∗J2 || ∑
Ci Garey et al. [100]

∗J2 | chains; pij = 1 | ∑
CiTimkovsky [199]

J2 | pij = 1; ri |
∑

Ci Timkovsky [199]
∗J2 | pmtn | ∑

Ci Lenstra [150]
J2 | n = 3; pmtn | ∑

Ci Brucker et al.[55]
J3 | n = 3 | ∑

Ci Sotskov & Shakhlevich [190]
∗J3 | pij = 1 | ∑

Ci Lenstra [150]
J2 | pij = 1 | ∑

wiCi Timkovsky [199]
∗J2 | pij = 1; ri |

∑
wiCi Timkovsky [199]

J2 | pij = 1; ri |
∑

Ui Timkovsky [202]
J2 | pij = 1 | ∑

wiUi Kravchenko [126]
J2 | pij = 1 | ∑

Ti Timkovsky [199]
∗J2 | pij = 1 | ∑

wiTi Timkovsky [199]

Table 6.8: NP-hard job shop problems.

6.6. Complexity of Shop Scheduling Problems 241

X2 | ni ≤ 2 | Cmax Strusevich [192]
O(n log n)

X2 | ni ≤ 2; pmtn | Cmax Strusevich [192]
O(n log n)

X2 | nJ = 2; pmtn | Cmax Shakhlevich et al. [184]
O(r3 + n)

X2 | nJ = k;nO = l | Cmax Shakhlevich et al. [184]
O(r3nJ 2nO)

Xm | nJ ≤ 2;nO = l | Cmax Shakhlevich et al. [184]
O((r2 log r)nOm+1(nOm)!)

X | nJ = 1; pmtn | Cmax Shakhlevich et al. [184]
O(nm(min{nm,m2} + m log n) + r)

X2 | nJ = 1;nO = 1; pmtn | f 6.5.2 Shakhlevich& Sotskov [183]
O(r)

Table 6.9: Polynomially solvable mixed shop problems.

∗X2 | nO = 0; pij ∈ {1, 2} | Cmax Lenstra & Rinnooy Kan [153]
∗X | nJ = 1;nO = 1 | Cmax Shakhlevich & Sotskov [183]
∗X2 | nJ = 1 | Cmax Shakhlevich et al. [184]
X2 | nJ = 3;nO = 0; pmtn | CmaxBrucker et al. [54]
X3 | nJ = 3;nO = 0 | Cmax Shakhlevich & Sotskov [183]
X3 | nJ = 2;nO = 1; pmtn | CmaxShakhlevich et al. [184]

∗X | nJ = 1;nO = 1 | ∑
Ci Shakhlevich & Sotskov [183]

Table 6.10: NP-hard mixed shop problems.

Chapter 7

Due-Date Scheduling

New production technologies like “just-in-time” production lead to spe-
cial scheduling problems involving due dates di. Contrary to classical
scheduling problems where the objective function simply involves late-
ness Li = Ci − di or tardiness Ti = max{0, Ci − di} penalties, earliness
Ei = max{0, di−Ci} is now also of importance. Objective functions such
as

∑
wi | Li | and

∑
wiL

2
i are typical of “just-in-time” situations. Note

that Li = Ti + Ei and L2
i = T 2

i + E2
i . From the practical and theoretical

point of view, situations in which all due dates are equal are of impor-
tance. This due date d may be a given parameter of the problem or it
may be a variable, i.e. we are interested in an optimal due date dopt with
respect to the objective function. To indicate these special situations we
add d or dopt to the job characteristics of the problem. If the due date
is a variable, then we may add due-date assignment costs wd · d to the
objective function.

Another objective function considered in the literature in connection with
single-machine problems is

∑
wi | Lσ(i) |, where σ : σ(1), . . . , σ(n) de-

notes the sequence in which the jobs are processed on the machine. In
this case the weights wi do not correspond with the jobs but with the
positions in which the jobs are scheduled.

In this chapter we will present polynomial and pseudo-polynomial algo-
rithms for such due-date scheduling problems. In general, we will restrict
ourselves to the one-machine case. Furthermore, we assume that there
are no precedence constraints between jobs and that preemption is not
allowed.

In the next sections we show that the dopt-version of the problem with

244 Due-Date Scheduling

objective function
∑

wi | Lσ(i) | can be solved efficiently.

7.1 Problem 1 | dopt |
∑

wi|Lσ(i)| + w0 · d
Given non-negative weights wi (i = 0, . . . , n), we have to schedule jobs
with processing times pi (i = 1, . . . , n) on one machine and find a common
due date dopt such that

n∑

i=1

wi | Cσ(i) − dopt | +w0dopt (7.1)

is minimized. σ(i) denotes the job scheduled in position i on the machine.
Thus, the weights are position weights rather than weights associated
with the jobs.

Next we will derive properties of an optimal schedule for this problem.

Lemma 7.1 An optimal schedule exists in which the machine is not idle
between the processing of jobs.

Proof: Assume that we have an optimal schedule where the machine is
idle between the processing of jobs i and j as shown in Figure 7.1.

t s

i j

Figure 7.1: Idle period between jobs i and j.

Thus, we have t < s for the completion time t of i and the starting time
s of j. If dopt < t, we move job j and the jobs scheduled after j′ by an
amount of � = s − t units to the left without increasing the objective
value. If dopt > s, we may move job i and the jobs scheduled before i by
the same amount of units to the right without increasing the objective
value. If t ≤ dopt ≤ s, we may move i with its predecessors to the right
and j with its successors to the left such that i finishes at time dopt and
j starts at time dopt without increasing the objective value. After at
the most n − 1 such steps we get an optimal schedule without idle time
between the jobs. �

7.1. Problem 1 | dopt |
∑

wi|Lσ(i)| + w0 · d 245

We may assume that the first job starts at time 0 in an optimal schedule.
If this is not the case, i.e. if the first job starts at time t �= 0, replace dopt

and the starting times xi of all jobs i = 1, . . . , n by dopt − t and xi − t
without changing the objective value.

It is convenient to introduce a dummy job 0 with processing time p0 = 0
and weight w0 which is always scheduled at time 0, i.e. we define σ(0) =
0. Then the objective function is

n∑

i=0

wi | Cσ(i) − dopt | . (7.2)

We conclude that an optimal schedule is given by a sequence σ(0),
σ(1), . . . , σ(n) with σ(0) = 0.

Theorem 7.2 Let k be a median for the sequence w0, w1, . . . , wn, i.e.

k−1∑

j=0

wj ≤
n∑

j=k

wj and

k∑

j=0

wj ≥
n∑

j=k+1

wj. (7.3)

Then dopt =
k∑

i=0

pσ(i) for some optimal sequence σ.

Proof: We first show that in an optimal solution dopt is the finishing
time of some job.

Consider a solution σ, d with Cσ(i) < d < Cσ(i+1) and let Z be the corre-
sponding objective value. Define x := d−Cσ(i) and y := Cσ(i+1) − d. Let
Z ′ and Z ′′ be the objective value for d = Cσ(i) and d = Cσ(i+1).

Then

Z ′ = Z + x

n∑

j=i+1

wj − x

i∑

j=0

wj = Z + x(

n∑

j=i+1

wj −
i∑

j=0

wj) (7.4)

and

Z ′′ = Z − y

n∑

j=i+1

wj + y

i∑

j=0

wj = Z − y(

n∑

j=i+1

wj −
i∑

j=0

wj) (7.5)

(see Figure 7.2).

Thus, we have Z ′ ≤ Z if
n∑

j=i+1

wj −
i∑

j=0

wj ≤ 0 and Z ′′ < Z otherwise.

246 Due-Date Scheduling

σ :

Cσ(i)

d
Cσ(i+1)

� �
x

� �
y

Figure 7.2: A solution with Cσ(i) < d < Cσ(i+1).

Cσ(k−1) dopt = Cσ(k)

� �
x

(a)

dopt = Cσ(k) Cσ(k+1)

� �
y

(b)

Figure 7.3: A solution with dopt = Cσ(k).

This implies that an optimal solution exists in which dopt is equal to the
completion time of some job σ(k).

To prove that k satisfies (7.3), assume that dopt = Cσ(k), where σ is an
optimal sequence. Let Z be the optimal solution value. Applying (7.4)
and (7.5) to the situation shown in Figures 7.3(a) and 7.3(b), respectively,
we conclude that

k∑

j=0

wj −
n∑

j=k+1

wj ≥ 0 and

n∑

j=k

wj −
k−1∑

j=0

wj ≥ 0.

�

A job sequence σ : σ(1), . . . , σ(n) is called V-shaped with respect to
the pi-values if no three indices i < j < k exist with pσ(i) < pσ(j) > pσ(k).
It is not difficult to see that a sequence is V -shaped if and only if

pσ(1) ≥ pσ(2) ≥ . . . ≥ pσ(k) and pσ(k) ≤ pσ(k+1) ≤ . . . ≤ pσ(n) (7.6)

for some 1 ≤ k ≤ n.

If k = 1, then σ is a SPT-sequence. If k = n, then σ is a LPT-sequence.

Theorem 7.3 An optimal sequence exists which is V -shaped with re-
spect to the pi-values.

Proof: Let σ : σ(1), . . . , σ(n) and dopt = Cσ(k) be an optimal solution

7.2. Problem 1|dopt|wE

∑
Ei+wT

∑
Ti + w0d 247

such that (7.3) is satisfied. For the corresponding objective value we have

k∑

j=0

wj(Cσ(k) − Cσ(j)) +
n∑

j=k+1

wj(Cσ(j) − Cσ(k)) =
k∑

j=0

wj

k∑

ν=j+1

pσ(ν)

+
n∑

j=k+1

wj

j∑

ν=k+1

pσ(ν) =
k∑

ν=1

pσ(ν)(
ν−1∑

j=0

wj) +
n∑

ν=k+1

pσ(ν)(
n∑

j=ν

wj).

=
n∑

j=1

pσ(j)λj

with

λj =

⎧
⎪⎪⎨

⎪⎪⎩

j−1∑

ν=0

wν for j = 1, . . . , k

n∑

ν=j

wν for j = k + 1, . . . , n.
(7.7)

Because λ1 ≤ λ2 ≤ . . . ≤ λk and λk+1 ≥ λk+2 ≥ . . . ≥ λn, the ob-
jective value does not increase if we reorder σ in such a way that in

the sum
n∑

j=1

pσ(j)λj the smallest pi-values are assigned to the largest λj-

values. This yields a sequence which is V -shaped with respect to the
pi-values. �

To solve problem 1 | dopt | ∑
wi | Lσ(i) | +w0d, we first calculate k

according to (7.3) and the corresponding λj-values. Using the λj-values,

an optimal sequence σ is constructed and dopt =
k∑

j=1

pσ(j) is calculated.

σ is constructed by matching the smallest pi-values with the largest λj .
More specifically, we compare λk and λk+1. If λk ≥ λk+1, then a job with
the smallest processing time is scheduled in position k and λk is replaced
by λk−1. Otherwise such a job is scheduled in position k + 1, and λk+1 is
replaced by λk+2, etc.

The computational complexity of this algorithm is O(n log n).

7.2 Problem 1|dopt|wE

∑
Ei+wT

∑
Ti + w0d

In “just-in-time” production models we have to consider a penalty not
only if a job is late but also if a job is early with respect to a given
due date d. A simple objective function modeling such a situation is
wE

∑
Ei + wT

∑
Ti + w0d, where Ei = max{0,−Li} = max{0, di − Ci},

Ti = max{0, Li} = max{0, Ci − di}, and wE , wT > 0. Problem 1 | dopt |

248 Due-Date Scheduling

wE

∑
Ei + wT

∑
Ti + w0d can be solved using techniques described in

the last section.

This is due to the fact that each solution of problem 1 | dopt | wE

∑
Ei +

wT

∑
Ti +w0d is a solution of problem 1 | dopt |

∑
wi | Lσ(i) | +w0d with

special weights (namely w0 for the dummy job, wE for each of the first
jobs which is early, and wT for each of the last jobs which is late).

Again, if we have an optimal solution, there is no idle time between two

jobs and dopt is equal to the finishing time of some job. If dopt =
k∑

ν=1

pσ(ν),

then the following inequalities hold

w0 + (k − 1)wE ≤ (n − k + 1)wT (7.8)

w0 + kwE ≥ (n − k)wT (7.9)

(compare (7.3) and the proof of Theorem 7.2).

Inequalities (7.8) and (7.9) are equivalent to

nwT − w0

wE + wT

≤ k ≤ nwT − w0

wE + wT

+ 1. (7.10)

We have to find an integer k satisfying (7.10). If nwT−w0

wE+wT
is not integer,

then

k :=

⌈
nwT − w0

wE + wT

⌉

(7.11)

is the only k satisfying (7.10). Otherwise we have two solutions k and

k +1 where k is given by (7.11). In this case, each d with
k∑

ν=1

pσ(ν) ≤ d ≤
k+1∑

ν=1

pσ(ν) provides the same objective value. This can be seen as follows.

Let Z(σ, d) be the objective value for the sequence σ : σ(1), . . . , σ(n) and

the due-date d. Then for d∗ = Cσ(k) :=
k∑

j=1

pσ(ν) we have

Z(σ, d∗) = wE

k∑

j=1

| Cσ(j) − d∗ | +wT

n∑

j=k+1

| Cσ(j) − d∗ | +w0d
∗.

7.3. Problem 1 | d | ∑
wi|Lσ(i)| 249

Replacing d∗ by d∗ + � with 0 ≤ � ≤ pσ(k+1) yields

Z(σ, d∗ + �)= Z(σ, d∗) + wEk �−wT (n − k) � +w0�
= Z(σ, d∗) + �(k(wE + wT) + w0 − nwT)

= Z(σ, d∗) + � · (nwT−w0

wE+wT
(wE + wT) + w0 − nwT)

= Z(σ, d∗).

Therefore, regardless of whether k is integer or not, we may choose k as
defined by (7.11). However, for large w0 this value may be negative. In
this case, we have to replace k by

k := max

{

0,

⌈
nwT − w0

wE + wT

⌉}

. (7.12)

Given k, for the corresponding λj-values we have

λj =

{
wE(j − 1) + w0 for 1 ≤ j ≤ k

wT (n − j + 1) for k + 1 ≤ j ≤ n
(7.13)

(see (7.7)).

Using (7.12) and (7.13), an optimal solution for problem 1 | dopt |
wE

∑
Ei +wT

∑
Ti +w0d can be found using the algorithm described at

the end of Section 7.2. The corresponding algorithm was first formulated
by Panwalkar et al. [179].

If we set wE = wT = 1 and w0 = 0, we get problem 1 | dopt |
∑ | Li |.

Our algorithm also solves this problem if we set

k :=
⌈n

2

⌉

and

λj =

{
j − 1 for 1 ≤ j ≤ k

n − j + 1 for k + 1 ≤ j ≤ n

(see Kanet [123]).

Finally, we mention that problem P2 | dopt |
∑ | Li | is NP-hard.

7.3 Problem 1 | d | ∑
wi|Lσ(i)|

If in problem 1 | dopt |
∑ | Lσ(i) | we replace dopt by d, i.e. if the due

date is given and a job cannot start before time t = 0, then the problem
becomes NP-hard (Kahlbacher [122]).

250 Due-Date Scheduling

σopt :

S

. . . i j k . . .

d

Figure 7.4: A schedule with Ci < d < Cj .

In this section we will derive a pseudo-polynomial algorithm for the prob-
lem 1 | d | ∑

wi | Lσ(i) | with positive wi-values and given due date d.
Such an algorithm is based on the fact that an optimal schedule exists
with the following properties:

• the machine is not idle between jobs, and

• the schedule is V -shaped with respect to the pi-values.

The first property follows as in Section 7.1. It implies that an optimal
schedule is characterized by a sequence σ of all jobs and the starting time
of the first job. Next we will prove the second property.

Theorem 7.4 For problem 1 | d | ∑
wi | Lσ(i) | an optimal schedule

exists which is V -shaped with respect to the pi-values.

Proof: All jobs which finish not later than the given due date d can
be ordered according to nonincreasing processing times in an optimal
schedule. This follows from a simple interchange argument. Similarly, all
jobs starting not earlier than d can be ordered according to nondecreasing
processing times.

Thus, if in an optimal schedule the finishing time of a job is equal to
its due date d we have finished. Otherwise we have to show that job
j overlapping with d, its immediate predecessor i, and its immediate
successor k builds a V -shaped subsequence.

Assume that this is not the case, i.e. that we have Ci < d < Cj and
pi < pj > pk. Let S := Ci and denote by σopt the optimal sequence (see
Figure 7.4).

Let σji(σkj) be the sequence derived from σopt by swapping i and j (j
and k). Furthermore, denote by Z(σ) the objective value associated with
σ. If job i is on position p in σopt, then we have

Z(σji) − Z(σopt) = wp(| S − pi + pj − d | − | S − d |) ≥ 0

Z(σkj) − Z(σopt) = wp+1(| S + pk − d | − | S + pj − d |)≥ 0

7.3. Problem 1 | d | ∑
wi|Lσ(i)| 251

because σopt is optimal. This implies

| S − pi + pj − d |≥ d − S (7.14)

| S + pk − d | ≥ S + pj − d (7.15)

because S < d < S + pj.

We must have S−pi+pj−d ≥ 0 because otherwise (7.14) is equivalent to
−S +pi−pj +d ≥ d−S, i.e. pi ≥ pj, which is a contradiction. Similarly,
due to (7.15), we must have S + pk − d ≤ 0. Thus, (7.14) and (7.15) can
be written in the form

S − pi + pj − d≥ d − S (7.16)

−S − pk + d ≥ S + pj − d. (7.17)

Adding inequalities (7.16) and (7.17) gives pi + pk ≤ 0, which implies
pi = pk = 0. Thus we can swap i with j or i with k without increasing
the objective value. If we continue this process, we get a V -shaped
sequence. �

Let d∗ be the optimal due date for the corresponding problem 1 | dopt |∑
wi | Lσ(i) |. We may assume that the optimal schedule of this problem

starts at time t = 0. Let σ∗ be the optimal sequence of the jobs.

If d ≥ d∗, then the starting time d−d∗ and σ∗ define an optimal schedule
for our problem 1 | d | ∑

wi | Lσ(i) |. If d < d∗, then we can show that
an optimal schedule starts at time t = 0. However, finding an optimal
sequence is NP-hard. We solve this problem by dynamic programming.

We assume that the jobs are indexed according to nondecreasing pro-
cessing time, i.e. that

p1 ≤ p2 ≤ . . . ≤ pn

holds. Since an optimal solution exists which is V -shaped, we may as-
sume that in an optimal solution jobs 1, . . . , k(1 ≤ k ≤ n) are scheduled
as a contiguous block.

Let S(k, i, e) be an optimal schedule for jobs 1, . . . , k with positional
weights wi, wi+1, . . . , wi+k−1 and due date e starting at time 0. Let
σ(k, i, e) be the corresponding sequence and let Z(k, i, e) be the cor-
responding objective value.

We will now derive a recursion for the Z(k, i, e)-values and corresponding
sequences σ(k, i, e), where 1 ≤ k ≤ n, 1 ≤ i ≤ n − k + 1, and 0 ≤ e ≤ d.

252 Due-Date Scheduling

Clearly, we have

Z(1, i, e)= wi | p1 − e |
σ(1, i, e) = 1

for all 1 ≤ i ≤ n, 0 ≤ e ≤ d.

We get an optimal sequence for the jobs 1, . . . , k by adding k to the be-
ginning or the end of an optimal sequence for jobs 1, . . . , k−1. Therefore,
we have to consider two cases.

Case 1: k is scheduled at the beginning.

The costs for scheduling k are wi | pk − e |. The costs for the remaining

jobs 1, . . . , k − 1 scheduled in [pk,
k∑

j=1

pj] with due date e are the same as

the costs for scheduling them in [0,
k−1∑

j=1

pj] with due date e − pk. If the

corresponding positional weights are wi+1, . . . , wi+k−1, then these costs
are given by Z(k−1, i+1, e−pk). Thus, the costs for scheduling 1, . . . , k
are given by

Z1(k, i, e) = wi | pk − e | +Z(k − 1, i + 1, e − pk).

Case 2: k is scheduled at the end.

The scheduling costs for k are wi+k−1 |
k∑

j=1

pj − e |. The remaining cost

are for scheduling 1, . . . , k − 1 in [0,
k−1∑

j=1

pj] with due date e and weights

wi, . . . , wi+k−2. They are given by Z(k−1, i, e). Thus, the total costs are

Z2(k, i, e) = wi+k−1 |
k∑

j=1

pj − e | +Z(k − 1, i, e).

Combining both cases, we get

Z(k, i, e)= min{Z1(k, i, e), Z2(k, i, e)}
= min{wi | pk − e | +Z(k − 1, i + 1, e − pk),

wi+k−1 |
k∑

j=1

pj − e | +Z(k − 1, i, e)}

and

σ(k, i, e) =

{
k ◦ σ(k − 1, i + 1, e − pk) if Z1(k, i, e) ≤ Z2(k, i, e)

σ(k − 1, i, e) ◦ k otherwise.

7.3. Problem 1 | d | ∑
wi|Lσ(i)| 253

We have to calculate Z(k, i, e) for k = 1, . . . , n, i = 1, . . . , n− k + 1, and
e = 0, . . . , d.

σ(n, 1, d) is an optimal sequence and Z(n, 1, d) is its solution value.

To evaluate Z(k, i, e) we need the value Z(k − 1, i + 1, e − pk), which
may have a negative argument e − pk. However, for negative e we have
σ(k, i, e) : 1, 2, . . . , k. Thus, in this case

Z(k, i, e) =

k∑

ν=1

wi+ν−1

ν∑

j=1

pj − e

k∑

ν=1

wi+ν−1. (7.18)

The values

G(k, i) :=

k∑

ν=1

wi+ν−1

ν∑

j=1

pj

and

W (k, i) :=

k∑

ν=1

wi+ν−1

for all k = 1, . . . , n; i = 1, . . . , n − k + 1 can be calculated during a
preprocessing step in 0(n2) time. Using these values, (7.18) becomes

Z(k, i, e) = G(k, i) − eW (k, i).

Summarizing these results, we get the following algorithm.

Algorithm 1 | d | ∑
wi | Lσ(i) |

1. Choose the job indices such that p1 ≤ p2 ≤ . . . ≤ pn;
2. Calculate an optimal due date d∗ and an optimal sequence σ∗ for the

problem 1 | dopt |
∑

wj | Lσ(j) |;
3. IF d ≥d∗ THEN
4. BEGIN s := d − d∗; σ := σ∗ END

ELSE
BEGIN

5. s := 0;
6. IF d ≤ 0 THEN σ := SPT-sequence

ELSE
BEGIN

7. FOR k := 1 TO n DO
8. FOR i := 1 TO n − k + 1 DO
9. Calculate G(k, i) and W (k, i);

254 Due-Date Scheduling

10. FOR i := 1 TO n DO
11. FOR e := −p2 TO d DO
12. BEGIN Z(1, i, e) := wi | p1 − e |; σ(1, i, e) := 1 END;
13. FOR k := 2 TO n DO
14. FOR i := 1 TO n − k + 1 DO
15. FOR e := −pk+1 TO d DO

BEGIN
16. IF e < 0 THEN Z(k, i, e) := G(k, i) − eW (k, i)

ELSE
BEGIN

17. Z1(k, i, e) := Z(k − 1, i + 1, e − pk)
+wi | pk − e |;

18. Z2(k, i, e) := Z(k − 1, i, e) + wi+k−1

|
k∑

j=1

pj − e |;
19. IF Z1(k, i, e) ≤ Z2(k, i, e) THEN

BEGIN
20. Z(k, i, e) := Z1(k, i, e);
21. σ(k, i, e) := k ◦ σ(k − 1, i + 1, e − pk)

END
ELSE

BEGIN
22. Z(k, i, e) := Z2(k, i, e);
23. σ(k, i, e) := σ(k − 1, i, e) ◦ k

END
END

END;
24. σ := σ(n, 1, d)

END
END

The computational complexity of this algorithm is O(n2d).

We developed this algorithm for the case that jobs can be scheduled only
in [0, +∞[. If we allow jobs to be scheduled in] − ∞, +∞[, then the
solution is much easier. We solve 1 | dopt |

∑
wi | Lσ(i) | by calculating

an optimal due date d∗ for an optimal schedule starting at s = 0 and
an optimal sequence σ∗. Then we schedule the jobs according to this
sequence starting at time d − d∗.

7.4. Problem 1 | d | wE

∑
Ei + wT

∑
Ti 255

7.4 Problem 1 | d | wE

∑
Ei + wT

∑
Ti

For this problem an optimal schedule also exists with no idle time between
jobs which is V -shaped with respect to the pi-values. The proof for this
is nearly identical to the corresponding proof in the previous section.

To construct an optimal schedule we may proceed as in the previous
section. However, due to the special objective function, the dynamic
programming can be made more efficient. Instead of considering states
defined by the three variables i, k, e, we only need the two variables k
and e. More specifically, we again assume p1 ≤ p2 ≤ . . . ≤ pn and
for each k = 1, . . . , n and each due date e, we define σ(k, e) to be an
optimal sequence for jobs 1, . . . , k and due date e ≤ d. Let Z(k, e) be
the objective value of a corresponding optimal schedule starting at time
s = 0.

We have

σ(1, e) = 1

Z(1, e)=

{
wE(e − p1) if p1 ≤ e ≤ d

wT (p1 − e) if e < p1

as initial conditions.

Furthermore, if k is scheduled before an optimal sequence for the jobs
1, . . . , k − 1, then we have

Z1(k, e) = wE(e − pk)
+ + wT (pk − e)+ + Z(k − 1, e − pk)

(for arbitrary numbers x we define x+ = max{0, x}).
If k is scheduled after an optimal sequence for the jobs 1, . . . , k− 1, then
we have

Z2(k, e) = wE(e −
k∑

j=1

pj)
+ + wT (

k∑

j=1

pj − e)+ + Z(k − 1, e).

Thus we get

Z(k, e) = min{Z1(k, e), Z2(k, e)}
and

σ(k, e) =

{
k ◦ σ(k − 1, e − pk) if Z1(k, e) ≤ Z2(k, e)

σ(k − 1, e) ◦ k otherwise.

256 Due-Date Scheduling

These recursions hold for k = 2, . . . , n and 0 ≤ e ≤ d. If e < 0, then the
SPT-sequence is optimal and we have

Z(k, e) = wT (
k∑

ν=1

ν∑

j=1

pj − ke).

If all values

G(k) :=

k∑

ν=1

ν∑

j=1

pj k = 1, 2, . . . , n

are calculated during a preprocessing step, then each value

Z(k, e) = wT (G(k) − k · e)
can be calculated in constant time. The preprocessing can be done in
O(n) time.

It is not difficult to formulate the algorithm along the lines of the previous
section.

Algorithm 1 | d | wE

∑
Ei + wT

∑
Ti

1. Choose the job indices such that p1 ≤ p2 ≤ . . . ≤ pn;
2. Calculate an optimal due date d∗ and an optimal sequence σ∗ for

the corresponding problem 1 | dopt | wE

∑
Ei + wT

∑
Ti;

3. IF d ≥d∗ THEN
4. BEGIN s := d − d∗; σ := σ∗ END

ELSE
BEGIN

5. s := 0;
6. IF d ≤ 0 THEN σ := SPT-sequence

ELSE
BEGIN

7. FOR k = 1 TO n DO calculate G(k);
8. FOR e := −p2 TO d DO

BEGIN
9. σ(1, e) = 1;
10. IF e < p1 THEN Z(1, e) := wT (p1 − e)

ELSE Z(1, e) := wE(e − p1);
END;

11. FOR k := 2 TO n DO
12. FOR e := −pk+1 TO d DO

7.5. Problem 1 | d | |Li|max and 1 | dopt | |Li|max 257

BEGIN
13. IF e < 0 THEN Z(k, e) := wT (G(k) − ke)

ELSE
BEGIN

14. Z1(k, e) := wE(e − pk)
+ + wT (pk − e)+

+Z(k − 1, e − pk);

15. Z2(k, e) := wE(e −
k∑

j=1

pj)
+ + wT (

k∑

j=1

pj − e)+

+Z(k − 1, e);
16. IF Z1(k, e) ≤ Z2(k, e) THEN

BEGIN
17. Z(k, e) := Z1(k, e);
18. σ(k, e) := k ◦ σ(k − 1, e − pk)

END
ELSE

BEGIN
19. Z(k, e) := Z2(k, e);
20. σ(k, e) := σ(k − 1, e) ◦ k

END
END

END;
21. σ := σ(n, d)

END
END

The complexity of this algorithm is O(n log n + nd).

7.5 Problem 1 |d | |Li|max and 1 |dopt | |Li|max

We now consider the objective function
n

max
i=1

| Ci − d | (Kahlbacher

[122]). As before, for variable and fixed d there exists an optimal schedule
without idle time between jobs.

We first consider problem 1 | d | | Li |max. If σ(1) is the first job and this
job starts at time s, then the objective value can be written in the form

| Li |max=
n

max
i=1

| Ci−d |= max{| s+pσ(1) −d |, | s+

n∑

i=1

pi−d |} (7.19)

258 Due-Date Scheduling

The next theorem shows that σ(1) can always be chosen to be the longest
job.

Theorem 7.5 An optimal sequence exists in which a longest job is
scheduled at the first position.

Proof: Let pl =
n

max
i=1

pi. Then due to (7.19) it is sufficient to show that

max{| s + pl − d |, | s +
n∑

i=1

pi − d |}

≤ max{| s + pi − d |, | s +

n∑

i=1

pi − d |} (7.20)

holds for all i = 1, . . . , n. We consider the following two cases.

Case 1: s + pl > d

Then

max{| s + pl − d |, | s +

n∑

i=1

pi − d |} = s +

n∑

i=1

pi − d

≤ max{| s + pi − d |, | s +
n∑

i=1

pi − d |}

for all i = 1, . . . , n.

Case 2: s + pl ≤ d

Then |s + pl − d| = d − s − pl ≤ d − s − pi = |s + pi − d|, which implies
(7.20) for all i = 1, . . . , n. �

Due to this theorem, the objective function can be written as follows

f(s) = max{| s + pl − d |, | s +
n∑

j=1

pj − d |} with pl =
n

max
j=1

pj. (7.21)

f is minimized if we choose s∗ = d− 1
2
(

n∑

j=1

pj + pl) (see Figure 7.5). If s∗

is negative, we have to replace s∗ by 0. We have

7.6. Problem 1 | dopt |
∑

wi|Li| 259

d −
n∑

j=1

pj s∗ d − pl

| s +
n∑

j=1

pj − d | | s + pl − d |

f(s)

Figure 7.5: Function f .

Theorem 7.6 Any schedule which starts with a job l with a largest
processing time at time

t := max{0, d − 1

2
(

n∑

j=1

pj + pl)}

and processes the other jobs without idle time after l in an arbitrary
sequence is optimal for problem 1 | d | | Li |max. �

Note that such an optimal schedule can be found in O(n) time.

To solve problem 1 | dopt | | Li |max, we have to find a value d∗ which
minimizes (7.21). We may assume that s = 0. In other words, we get
a solution for problem 1 | dopt | | Li |max if we set d = 0 and s = −d in
(7.21). This leads to

Theorem 7.7 An optimal solution for problem 1 | dopt | | Li |max is
obtained by scheduling a longest job l as the first job starting at time
s = 0 and setting

dopt =
1

2
(

n∑

j=1

pj + pl).

�

7.6 Problem 1 | dopt |
∑

wi|Li|
In this problem we assume that all wj-values are positive integers. Hall &
Posner [109] have shown that problem 1 | dopt |

∑
wi | Li | is NP-hard.

260 Due-Date Scheduling

We will develop two pseudo-polynomial algorithms for this problem. One

has complexity O(n
n∑

i=1

pi), the other has complexity O(n
n∑

i=1

wi). The fol-

lowing theorems are the basis for these algorithms. Again, it is sufficient
to consider only schedules without idle time between jobs in which the
first job starts at time 0. We have to find an optimal sequence σ∗ and
an optimal due date d∗.

Theorem 7.8 Given a sequence σ(1), . . . , σ(n), a corresponding optimal
due date is given by the finishing time Cσ(r) of a job σ(r). Moreover,

r−1∑

j=1

wσ(j) ≤
n∑

j=r

wσ(j) and

r∑

j=1

wσ(j) ≥
n∑

j=r+1

wσ(j).

Proof: Similar to the proof of Theorem 7.2. �

The next theorem states that an optimal sequence exists which is V -
shaped with respect to the ratios pi/wi.

Theorem 7.9 An optimal sequence exists in which the early jobs are
sequenced according to nonincreasing (pi/wi)-values and the late jobs
are sequenced according to nondecreasing (pi/wi)-values.

Proof: By a simple exchange argument (see also Smith’s ratio rule in
Section 4.3.1). �

Again, we use dynamic programming approaches to solve problem 1 |
dopt |

∑
wi | Li |. We assume that the jobs are numerated such that

p1/w1 ≤ p2/w2 ≤ . . . ≤ pn/wn.

In the first approach, we define for each k = 1, . . . , n and integer p with

0 ≤ p ≤
k∑

i=1

pi the optimal value Z(k, p) for scheduling jobs 1, . . . , k under

the condition that the total processing time of all early jobs, i.e. the due
date, equals p.

For k = 1 we set

Z(1, p) =

{
0 if p ∈ {0, p1, . . . , pn}
∞ otherwise .

Now assume that Z(k − 1, p) is known for each p. We get an optimal
sequence for jobs 1, . . . , k by adding job k either at the beginning or at

7.6. Problem 1 | dopt |
∑

wi|Li| 261

the end of the optimal sequence for the jobs 1, . . . , k−1. In the first case
we have

Z1(k, p) = Z(k − 1, p − pk) + wk(p − pk).

In the second case we get

Z2(k, p) = Z(k − 1, p) + wk(

k∑

i=1

pi − p).

Combining both cases yields the recursion

Z(k, p)= min{Z1(k, p), Z2(k, p)}
= min{Z(k − 1, p − pk) + wk(p − pk),

Z(k − 1, p) + wk(
k∑

i=1

pi − p)}

which holds for k = 2, . . . , n and 0 ≤ p ≤
k∑

i=1

pi.

Note that Z(k, p) is finite only if p =
∑

i∈E

pi for some set E of (early) jobs.

The optimal solution value is given by

Z∗ = min{Z(n, p) | p = 0, . . . ,

n∑

i=1

pi}.

Clearly, the computational time needed to calculate Z∗ is O(n
n∑

i=1

pi).

The second approach is based on the fact that, given an optimal sequence

σ and an optimal due date d =
r∑

i=1

pσ(i), the objective value can be written

as follows

pσ(2)wσ(1) + pσ(3)(wσ(1) + wσ(2)) + . . . + pσ(r)

r−1∑

i=1

wσ(i)+

pσ(r+1)

n∑

i=r+1

wσ(i) + . . . + pσ(n)wσ(n).

For each k = n, n − 1, . . . , 1 and integer 0 ≤ w ≤
n∑

i=k

wi, let Z(k, w) be

the optimal objective value for scheduling jobs k, k + 1, . . . , n under the
condition that the total weight of all early jobs equals w.

262 Due-Date Scheduling

For k = n we set

Z(n, w) =

{
0 if w ∈ {0, w1, . . . , wn}
∞ otherwise.

We get an optimal sequence for jobs k . . . , n from an optimal sequence
for jobs k +1, . . . , n by considering k as either the last early job or as the
first late job. In the first case we have

Z1(k, w) = Z(k + 1, w − wk) + pk(w − wk).

In the second case we get

Z2(k, w) = Z(k + 1, w) + pk(

n∑

i=k

wi − w).

Combining both yields

Z(k, w) = min{Z1(k, w), Z2(k, w)}.

The optimal solution value is given by

Z∗ = min{Z(1, w) | w = 0, . . . ,

n∑

i=1

wi}

and can be calculated in O(n
n∑

i=1

wi) time.

Notice the close relationship and high symmetry between both approa-
ches.

7.7 Problem 1 | d | ∑
wi|Li|

Contrary to problem 1 | dopt |
∑

wi | Li |, for problem 1 | d | ∑
wi | Li |

there need not exist an optimal solution which is V -shaped with respect
to the (pi/wi)-values, as the following example shows.

Example 7.1: Consider a problem with 3 jobs where p1 = 4, p2 = 5, p3 =
2, w1 = 5, w2 = 7, w3 = 3, and d = 7.5. Then p1/w1 > p2/w2 > p3/w3,
but σ∗ : 2, 1, 3 is the only optimal solution. �
However, we have the following result.

7.7. Problem 1 | d | ∑
wi|Li| 263

Theorem 7.10 An optimal sequence exists in which all jobs finishing
not later than time d are scheduled according to nonincreasing (pi/wi)-
values and all jobs starting not earlier than time d are scheduled according
to nondecreasing (pi/wi)-values.

Proof: By an exchange argument (see Smith’s rule in Section 4.3.1). �

Thus, one job at the most starts before and finishes after d which, to-
gether with its predecessors and successor, violates the V -shape property.
We call this job a d-job.

We solve the problem again by dynamic programming, assuming that

p1/w1 ≥ p2/w2 ≥ . . . ≥ pn/wn.

We consider two cases.

Case 1: An optimal solution exists in which d is the finishing time or
the starting time of a job.

Then the corresponding optimal sequence is V -shaped. In this case we
denote, by F (k, t) for each integer 0 ≤ t ≤ d and k = 1, . . . , n the optimal
solution value for the problem of scheduling jobs n − k + 1, . . . , n in the
interval

[d − t, d − t +
n∑

i=n−k+1

pi],

i.e. starting at time d − t.

We define

F (k, t) =

{
0 if t = 0, k = 0

∞ otherwise.

The recursion is

F (k, t)= min{F (k − 1, t − pn−k+1) + wn−k+1(t − pn−k+1),

F (k − 1, t) + wn−k+1 |
n∑

i=n−k+1

pi − t |} (7.22)

for k = 1, 2, . . . , n and 0 ≤ t ≤ d.

In (7.22) the minimum is taken from the optimal solution value if job
n − k + 1 is scheduled first, and the optimal solution value if n − k + 1
is scheduled at the end.

The optimal solution value for scheduling all jobs is given by

F ∗ =
d

min
t=0

F (n, t).

264 Due-Date Scheduling

It can be calculated in O(nd) time.

If in an optimal solution the first job starts later than time t = 0, then
we must have Case 1. To prove this, consider the optimal due date d∗

for problem 1 | dopt | ∑
wi | Li |. If d∗ = d, we have finished (see

Theorem 7.8). Otherwise we may improve the objective value by moving
the starting time of the first job, which is a contradiction.

Case 2: The first job in an optimal schedule starts at time 0.

Under the assumption that job h is the d-job for k = 1, . . . , n and 0 ≤
t ≤ d, let G(h, k, t) be the optimal solution value for scheduling the jobs
in {1, . . . , k}\{h} in the intervals

[0, t] and [t +
n∑

i=k
i�=h

pi + ph,
n∑

i=1

pi].

We define

G(h, k, t) =

{
0 if t = 0, k = 0

∞ otherwise.

To derive a recursion formula for G(h, k, t), we consider two cases.

(a) Job k is scheduled as the last job in [0, t]. Then the G(h, k, t)-value
is

G1(h, k, t) = G(h, k − 1, t − pk) + wk(d − t).

(b) Job k is scheduled as the first job in [t +
n∑

i=k+1
i�=h

pi + ph,
n∑

i=1

pi]. Then

the G(h, k, t)-value is

G2(h, k, t) = G(h, k − 1, t) + wk | t +

n∑

i=k
i�=h

npi + ph − d | .

Note that if t < pk, then only case (b) can occur and if
n∑

i=1

pi− t−
n∑

i=k
i�=h

pi−

ph < pk, then only case (a) can occur. Finally, we have G(h, h, t) =

7.7. Problem 1 | d | ∑
wi|Li| 265

G(h, h − 1, t). Summarizing, we get

G(h, k, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G(h, k − 1, t) if k = h

G1(h, k, t) if
n∑

i=1

pi − t −
n∑

i=k
i�=h

pi−ph <pk

G2(h, k, t) if t < pk

min{G1(h, k, t), G2(h, k, t)} otherwise

for h = 1, . . . , n, k = 1, . . . , n, 0 ≤ t ≤ d.

Finally,

G∗(h) = min{G(h, n, t) + wh(t + ph − d) | d − ph ≤ t ≤ d}

is the optimal solution value under the constraint that h is a d-job and

G∗ =
n

min
h=1

G∗(h)

is the optimal value in Case 2.

G∗ can be calculated in 0(n2d) time.

If we combine Case 1 and Case 2, we get the overall optimal solution
value

H∗ = min{F ∗, G∗}
in O(n2d) time.

Chapter 8

Batching Problems

Batching means that sets of jobs which are processed on the same ma-
chine must be grouped into batches. A batch is a set of jobs which must
be processed jointly. The finishing time of all jobs in a batch is defined to
be equal to the finishing time of the last job in the batch. There is a set-
up time s for each batch, which is assumed to be the same for all batches.
A batching problem is to group the jobs on each machine into batches
and to schedule these batches. Depending on the calculation of the length
of a batch, two types of batching problems have been considered. For s-
batching (p-batching) problems the length is the sum (maximum) of the
processing times of the jobs in the batch. Batching problems have been
identified by adding the symbol “s-batch” or “p-batch” to the β-field of
our classification scheme.

In the next two sections we discuss single machine s-batching and p-
batching problems. Section 8.3 presents some complexity results for such
batching problems.

8.1 Single Machine s-Batching Problems

In Section 2.7 we discussed single machine s-batching problems with
objective function

∑
wiCi. We have shown that, given a sequence of n

jobs, an optimal partitioning of this sequence into s-batches can be found
by solving a special shortest path problem in O(n) time. Furthermore, we
showed that for the problems 1 | s−batch | ∑

Ci and 1 | pi = p; s−batch |∑
wiCi optimal sequences can be found by ordering the jobs according to

268 Batching Problems

nondecreasing processing times and nonincreasing weights, respectively.
Similarly, the problem 1 | prec; pi = p; s − batch | ∑

Ci can be solved:
Find a sequence which is compatible with the precedence constraints and
calculate an optimal partitioning for this sequence. The first step can be
done in O(n2) time by sorting the jobs topologically.

Next we will present two dynamic programming algorithms for the prob-
lem 1 | s − batch | ∑

wiUi which lead to polynomial algorithms for the
special cases in which pi = p or wi = 1 for all jobs i.

1 | s − batch | ∑
wiUi

Before presenting the two dynamic programming algorithms, we derive
some properties of an optimal schedule for problem 1 | s−batch | ∑

wiUi.
The first property is that we can put all late jobs into one batch scheduled
after all other “early” batches. In the following, we assume that the jobs
are enumerated such that

d1 ≤ d2 ≤ . . . ≤ dn (8.1)

holds and that for at least one i we have s + pi ≤ di. Then we have

Lemma 8.1 For 1 | s− batch | ∑
wiUi there exists an optimal schedule

S with the property: if i belongs to batch Bl, job j belongs to batch Bt,
both are early, and Bl is scheduled before Bt, then i < j.

Proof: Consider an optimal schedule for which the property of Lemma
8.1 does not hold, i.e. we have batch Bl scheduled before batch Bt with
i ∈ Bl, j ∈ Bt, and i > j. Then dj ≤ di. Furthermore, because j ∈ Bt

and all jobs in Bt are early, the finishing time of batch Bt is not greater
than dj. Thus, if we move job i from Bl to Bt, we get a schedule in which
the early batches remain early. Continuing this exchange process we get
an optimal schedule with the desired properties. �

For the first dynamic programming algorithm we assume that all weights
wi are integer. We define Cj(w, d) to be the minimal completion time of
the last early job in a schedule S for jobs 1, . . . , j, which has the following
properties:

• the
∑

wiUi-value of S is w, and

• the earliest due date in the last early batch of S is equal to d.

8.1. Single Machine s-Batching Problems 269

To derive a recursion for the Cj(w, d) -values we consider the following
cases.

Case 1: In a schedule defining Cj(w, d), job j is late. Then

Cj(w, d) = Cj−1(w − wj, d). (8.2)

Case 2: In a schedule defining Cj(w, d), job j is scheduled early jointly
with at least one other job in the last early batch. In this case we have
Cj−1(w, d) + pj ≤ d and

Cj(w, d) = Cj−1(w, d) + pj . (8.3)

Case 3: In a schedule defining Cj(w, d), job j is the only job scheduled
in the last early batch. Then we must have d = dj and

Cj(w, d) =
j−1

min
ν=1

Cj−1(w, dν) + s + pj . (8.4)

Combining (8.2), (8.3), and (8.4) yields the recursion

Cj(w, d) = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cj−1(w − wj, d)

Cj−1(w, d) + pj if Cj−1(w, d) + pj ≤ d

and Cj−1(w, d) > 0

K if d = dj

(8.5)

where

K = min{Cj−1(w, dν)+s+pj | Cj−1(w, dν)+s+pj ≤ d; ν = 1, . . . , j−1}.

As initial conditions, we first set

Cj(w, d) = ∞ for all j = 1, . . . , n, w ∈ {−wmax,−wmax + 1, . . . ,
n∑

j=1

wj}

and d ∈ {d1, . . . , dn}, where wmax =
n

max
j=1

wj, and then we set

C0(0, d) = 0 for all d ∈ {d1, . . . , dn}.

270 Batching Problems

To solve problem 1 | s − batch | ∑
wjUj for j = 1, 2, . . . , n we calculate

Cj(w, d) for all w ∈ {0, 1, . . . ,
n∑

j=1

wj} and d ∈ {d1, . . . , dn} using the

recursion (8.5). Finally,

w∗ = min{w | Cn(w, d) < ∞, 0 ≤ w ≤
n∑

j=1

wj, d ∈ {d1, . . . , dn}}

is the optimal value.

Clearly, for each j, all values Cj(w, d) can be calculated by (8.5) in

O(n
n∑

j=1

wj) time. Thus, the problem can be solved in O(n2
n∑

j=1

wj) time.

If we set wj = 1 for j = 1, . . . , n, we have an O(n3) algorithm which
solves problem 1 | s − batch | ∑

Uj .

For the second dynamic programming approach, which is due to Hoch-
baum & Landy [112], the roles of the weights and the processing times
are interchanged. Thus, we assume that all processing times are inte-
ger. Furthermore, instead of forward dynamic programming backward
dynamic programming is applied.

We define Fj(t, d) to be the minimum cost of scheduling jobs j, j +
1, . . . , n, starting at time t, given that d is the earliest due date of a
job in the last early batch of a partial schedule for jobs 1, . . . , j − 1.
Again, we have three cases.

Case 1: Job j is scheduled late. Then

Fj(t, d) = Fj+1(t, d) + wj . (8.6)

Case 2: Job j is part of the last early batch of the partial schedule for
jobs 1, . . . , j − 1. This is only possible if t + pj ≤ d and in this case we
have

Fj(t, d) = Fj+1(t + pj , d). (8.7)

Case 3: Job j starts a new early batch. This is only possible if t+s+pj ≤
dj and in this case we have

Fj(t, d) = Fj+1(t + s + pj , dj). (8.8)

Combining (8.6), (8.7), and (8.8), we get

Fj(t, d) = min

⎧
⎪⎨

⎪⎩

Fj+1(t, d) + wj

Fj+1(t + pj , d) if t + pj ≤ d

Fj+1(t + s + pj, dj)if t + s + pj ≤ dj .

(8.9)

8.2. Single Machine p-Batching Problems 271

To solve problem 1 | s − batch | ∑
wjUj , we calculate for j = n, n −

1, . . . , 1 the Fj(t, d)-values for all 0 ≤ t ≤
n∑

j=1

pj +ns and d ∈ {d1, . . . , dj}
using recursion (8.9) and the initial conditions

Fn+1(t, d) = 0 for all 0 ≤ t ≤
n∑

j=1

pj + ns and d ∈ {d1, . . . , dn}.

This can be done in O(n2(
n∑

j=1

pj + ns)) time.

The optimal solution value is given by

n

min
j=1

{Fj+1(s + pj, dj) +

j−1∑

ν=1

wν}

which can be calculated in O(n) time given the Fj(t, d)-values. Thus, we

have an algorithm with overall complexity O(n2(
n∑

j=1

pj + ns)).

If pi = p for all i = 1, . . . , n, then the relevant t-values have the form

as + bp with a, b ∈ {1, . . . , n},

i.e. we have to consider at the most O(n2) t-values, which leads to an
O(n4) algorithm for problem 1 | pi = p; s − batch | ∑

wiUi.

8.2 Single Machine p-Batching Problems

In this section we will discuss single machine p-batching problems, i.e.
batching problems where the batch length is the maximum of the pro-
cessing times of the jobs in a batch. The machine is called a batching
machine. It can handle up to b job simultaneously. We analyze two
variants: the unbounded model, where b ≥ n (Section 8.2.1); and the
bounded model, where b < n (Section 8.2.2). In connection with p-
batching problems it is easy to deal with batch set-up times s. We have
to add s to each processing time and to solve the corresponding problem
without set up. Therefore, in this section we assume that s = 0. To de-
scribe the bounded case we add b < n to the β-field of the α|β|γ-notation.

272 Batching Problems

8.2.1 The Unbounded Model

In this section we assume that b ≥ n and hence that the batching machine
can process any number of jobs at the same time. The problem 1 |
p − batch | Cmax of minimizing the makespan is solved easily by putting
all jobs into one batch.

For the remainder of this section we assume that the jobs are indexed
according to the shortest processing time (SPT) rule so that p1 ≤ p2 ≤
. . . ≤ pn. The algorithms for the unbounded model are based on the
following observation.

Lemma 8.2 For minimizing any regular objective function, there exists
an optimal schedule B1, B2, . . . , Br where Bν = {iν , iν + 1, . . . , iν+1 − 1}
and 1 = i1 < i2 < . . . < ir < ir+1 = n + 1.

Proof: Consider an optimal schedule σ : B1, B2, . . . , Br with k ∈ Bl,
j ∈ Bq, l < q and pk > pj. If we move job j from batch Bq to batch Bl,
the length of both batches will not increase. Since the objective function
is regular the new schedule is also optimal. A finite number of repetitions
of this procedure yields an optimal schedule of the required form. �

We call a schedule described in Lemma 8.2 an SPT-batch schedule.

Next we present a forward dynamic programming algorithm which solves
the problem of minimizing an arbitrary regular objective function
n∑

i=1

fi(Ci).

1 | p− batch | ∑
fi

Let Fj(t) be the minimum objective value for SPT -batch schedules con-
taining jobs 1, 2, . . . , j subject to the condition that the last batch is
completed at time t. Due to Lemma 8.2 there exists a schedule corre-
sponding to Fj(t) in which the last batch has the form {i+1, . . . , j} with
i < j. Thus, we have the following recursion

Fj(t) = min
0≤i≤j−1

{Fi(t − pj) +

j∑

k=i+1

fk(t)} (8.10)

with

F0(t) =

{
0 if t = 0

∞otherwise.

8.2. Single Machine p-Batching Problems 273

To solve the problem we evaluate (8.10) for j = 1, . . . , n and t = pj, . . . ,
j∑

k=1

pk. The optimal solution value is equal to min{Fn(t) | pn ≤ t ≤ P}

where P =
n∑

k=1

pk.

To implement the algorithm efficiently, the partial sums
j∑

k=1

fk(t) are

evaluated and stored for j = 1, . . . , n and t = pj , . . . ,
j∑

k=1

pk in a pre-

processing step in O(nP) time. Then each application of the recursion
equation (8.10) requires O(n) time. Thus, the dynamic programming
algorithm requires O(n2P) time and O(nP) space.

1 | p − batch | ∑
Ui

To solve this problem in polynomial time we use the objective value as
the state variable and the makespan as the value of a state. Furthermore,
we build the schedule by adding single jobs instead of complete batches
and fix the last job to be scheduled in the current batch.

More specifically, we define a schedule for jobs 1, 2, . . . , j to be in state
(j, u, k) where u ≤ j ≤ k if it contains exactly u tardy jobs. Additionally,
the last batch, if completed, contains the additional jobs j+1, . . . , k which
are contained in the same batch, and this batch has processing time pk.
Let Fj(u, k) be the minimum makespan for SPT -batch schedules in state
(j, u, k). A schedule in state (j, u, k) with value Fj(u, k) is created by
taking one of the following decisions in a previous state:

• add job j so that it does not start the last batch.

In this case j − 1 and j belong to the last batch with processing
time pk. This processing time contributes to the makespan of the
previous state, which is Fj−1(u, k) or Fj−1(u − 1, k) depending on
whether j is on time or tardy. If Fj−1(u, k) ≤ dj, then we consider
(j − 1, u, k) as a previous state in which j is scheduled on time
and Fj(u, k) = Fj−1(u, k). If Fj−1(u − 1, k) > dj, then j must be
tardy. Thus, (j − 1, u − 1, k) is considered as a previous state and
Fj(u, k) = Fj−1(u − 1, k).

• add job j so that it starts the last batch.

274 Batching Problems

The previous batch ends with job j − 1 and the processing time
of the new batch is pk. After adding the contribution from the
previous state, the makespan becomes Fj−1(u, j−1)+pk or Fj−1(u−
1, j − 1) + pk, depending on whether j is on time or tardy. If
Fj−1(u, j − 1) + pk ≤ dj, then we consider (j − 1, u, j − 1) as a
previous state (the last batch ends with j − 1) with j scheduled
to be on time. If Fj−1(u − 1, j − 1) + pk > dj , then we consider
(j−1, u−1, j−1) as a previous state with j scheduled to be tardy.

Summarizing, we have the recursion for j = 1, . . . , n, u = 0, . . . , j, and
k = j, . . . , n:

Fj(u, k) = min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Fj−1(u, k), if Fj−1(u, k) ≤ dj

Fj−1(u − 1, k), if Fj−1(u − 1, k) > dj

Fj−1(u, j − 1) + pk, if Fj−1(u, j − 1) + pk ≤ dj

Fj−1(u − 1, j − 1) + pk, if Fj−1(u − 1, j − 1) + pk > dj

∞, otherwise.

The initialization is

F0(u, k) =

{
0, if u = 0 and k = 0

∞,otherwise.

The minimum number of tardy jobs is then equal to the smallest value u
for which Fn(u, n) < ∞. The algorithm requires O(n3) time and O(n3)
space.

1 | p− batch | ∑
wiCi

To solve this problem we apply backward dynamic programming. Let Fj

be the minimum total weighted completion time for SPT -batch schedules
containing the last n−j+1 jobs j, j+1, . . . , n. Processing of the first batch
in the schedule starts at zero time. Furthermore, whenever a new batch is
added to the beginning of this schedule, there is a corresponding delay to
the processing of all batches. Suppose that a batch {j, . . . , k− 1}, which
has processing time pk−1, is inserted at the start of a schedule for jobs
k, . . . , n. The total weighted completion time of jobs k, . . . , n increases by

pk−1

n∑

ν=k

wν , while the total weighted completion time for jobs j, . . . , k−1

8.2. Single Machine p-Batching Problems 275

is pk−1

k−1∑

ν=j

wν . Thus, the overall increase in total weighted completion

time is pk−1

n∑

ν=j

wν .

The dynamic programming recursion can now be formulated as follows.
The initialization is

Fn+1 = 0

and for j = n, n − 1, . . . , 1 we have

Fj = min
j<k≤n+1

{Fk + pk−1

n∑

ν=j

wν}.

The optimal solution value is equal to F1.

Fj can be interpreted as the length of a shortest path from j to n+1 in a
network with vertices 1, . . . , n + 1, arcs (j, k) with j < k and arc lengths

cjk = pk−1

n∑

ν=j

wν .

The arc lengths cjk satisfy the product property

cjl − cjk = (pl−1 − pk−1)

n∑

ν=j

wν = h(k, l)f(j), j < k < l

with h(k, l) ≥ 0 and f(j) nonincreasing. Thus, all values Fj(j = n,
n − 1, . . . , 1) can be calculated in O(n) time (see Section 2.7) if the jobs
are enumerated according to nondecreasing pi-values. Therefore, the
problem can be solved in time O(n log n).

1 | p − batch | Lmax

Again, we apply backward dynamic programming. Let Fj be the mini-
mum value for the maximum lateness for SPT -batch schedules containing
jobs j, . . . , n, where processing starts at zero time. If batch {j, . . . , k−1},
which has processing time pk−1, is inserted at the start of a schedule for
jobs k, . . . , n, then the maximum lateness of jobs k, . . . , n increases by
pk−1, while the maximum lateness for jobs j, . . . , k is max

j≤ν≤k−1
(pk−1 − dν).

276 Batching Problems

We are now ready to give the dynamic programming recursion. The
initialization is

Fn+1 = −∞,

and the recursion for j = n, n − 1, . . . , 1 is

Fj = min
j<k≤n+1

max{Fk + pk−1, max
j≤ν≤k−1

{pk−1 − dν}}.

The optimal solution is then equal to F1. Clearly, the algorithm requires
O(n2) time and O(n) space.

Next we will show that this algorithm for the Lmax-problem can be used
as a subroutine for solving the fmax-problem.

1 | p− batch | fmax

Let fmax =
n

max
i=1

fi(Ci), where each fi is a nondecreasing function of the

finishing time of job i. We assume that the optimal solution value of the
problem is an integer whose logarithm is polynomially bounded in the
size of the input. Then 1 | p − batch | fmax can be solved polynomially
if, for any integer k, there is a polynomial algorithm which solves the
decision problem P (k): Does there exist a solution with fmax ≤ k?

Such an algorithm for solving P (k) can be obtained as follows. A sched-
ule satisfies the condition fmax ≤ k if and only if fj(Cj) ≤ k for all
j = 1, . . . , n. The condition fj(Cj) ≤ k induces a deadline dj on the
completion time of job j which can be determined in O(log P) time by

binary search over the P +1 possible completion times where P :=
n∑

ν=1

pν .

Once the deadlines have been determined, we can use the algorithm for
minimizing Lmax to find out if there is a solution with fj(Cj) ≤ k by
checking the condition Lmax ≤ 0. Hence, the question “is fmax ≤ k?”
can be answered in O(n2 + n log P) time.

This is almost as far as we can get with polynomial algorithms because
the problems 1 | p− batch | ∑

wiUi and 1 | p− batch | ∑
wiTi have been

shown to be NP -hard.

8.2.2 The Bounded Model

It is easy to show that 1 | p − batch; b < n | Cmax can be solved in
O(n logn) time: We assume that n is a multiple of b. If this is not the

8.3. Complexity Results for Single Machine Batching Problems 277

case, we add dummy jobs with zero processing times. Now the batches
are constructed as follow. Assign the b jobs with smallest processing
times to the first batch B1, then b jobs with the next smallest processing
times to B2, and so on, until all jobs are assigned. An easy exchange
argument shows that this must be optimal.

On the other hand, problems of type 1 | p−batch; b = 1 | f are equivalent
to the corresponding single machine problems. Thus, NP -hardness re-
sults for single machine problems are also valid for p-batching problems
with bounded batch size. Furthermore, 1 | p − batch; b = 2 | Lmax is
strongly NP -hard.

8.3 Complexity Results for Single Machine

Batching Problems

Tables 8.1 and 8.2 present complexity results for single machine s-bat-
ching problems. Several problems are NP-hard because the correspond-
ing single machine problem without batching (i.e. with s = 0) are NP-
hard.

Tables 8.3 and 8.4 contain complexity results for single machine p-bat-
ching problems. Note that we have shown that 1 | p−batch | ∑

fi can be
solved in time O(n2P). Serial batching problems and bounded parallel
batching problems with constant processing times, release dates, and
the objective function

∑
wiCi,

∑
wiUi,

∑
Ti can be solved polynomially

using a dynamic programming approach related to the one discussed in
Section 4.6.

Complexity results for some bounded parallel batching problems with
constant processing times are derived from the fact that these prob-
lems are equivalent to corresponding problems with identical parallel
machines.

278 Batching Problems

1 | prec; s − batch | Lmax Ng et al. [176] O(n2)

1 | prec; pi = p; s − batch | ∑
Ci8.1 Albers & Brucker [9] O(n2)

1 | s − batch |∑Ci 2.7 Coffman et al. [71] O(n log n)

1 | pi = p; s − batch | ∑
wiCi 2.7 Albers & Brucker [9] O(n log n)

1 | pi = p; s − batch; ri |
∑

wiCi Baptiste [16] O(n14)

1 | s − batch | ∑
Ui 8.1 Brucker & Kovalyov [46] O(n3)

1 | pi = p; s − batch | ∑
wiUi 8.1 Hochbaum & Landy [112]O(n4)

1 | pi = p; s − batch; ri |
∑

wiUi Baptiste [16] O(n14)

1 | pi = p; s − batch; ri |
∑

Ti Baptiste [16] O(n14)

Table 8.1: Polynomially solvable serial batching problems.

∗1 |ri; s−batch |Lmax Lenstra et al. [151]

1 |chains; s−batch |∑ Ci Albers & Brucker [9]

∗1 |prec; s−batch |∑Ci Lawler [137]

∗1 |ri; s−batch |∑ Ci Lenstra et al. [151]

∗1 |s−batch |∑ wiCi Albers & Brucker [9]

∗1 |chains; pi = 1; s−batch |∑ wiCiAlbers & Brucker [9]

∗1 |chains; pi = 1; s−batch |∑ Ui Lenstra & Rinnooy Kan [154]

1 |s−batch |∑ wiUi Karp [124]

1 |s−batch |∑ Ti Du & Leung [81]

∗1 |chains; pi = 1; s−batch |∑ Ti Leung & Young [158]

Table 8.2: NP-hard serial batching problems.

8.3. Complexity Results for Single Machine Batching Problems 279

1 | p − batch | Cmax 8.2.1 Brucker et al. [36]
O(n)

1 | outtree; pi = p; p − batch; ri; b < n | Cmax Brucker et al. [35]
O(n)

1 | p − batch; b < n | Cmax 8.2.1 Brucker et al. [36]
O(n log n)

1 | tree; pi = p; p − batch; b < n | Cmax Hu [116]
O(n)

1 | p − batch | Lmax 8.2.1 Brucker et al. [36]
O(n log n)

1 | chains; pi = 1; p − batch; ri; b < n | Lmax Parallel machine problem
1 | intree; pi = p; p − batch; b < n | Lmax Brucker et al. [35]

O(n)
1 | outtree; pi = 1; p − batch; ri; b < n | ∑

Ci Brucker et al. [38]
O(n2)

1 | tree; pi = p; p − batch; b < n | ∑
Ci Parallel machine problem

1 | p − batch | ∑
wiCi 8.2.1 Brucker et al. [36]

O(n log n)
1 | pi = p; p − batch; ri; b < n | ∑

wiCi Baptiste [16]
O(n8)

1 | p − batch | ∑
Ui 8.2.1 Brucker et al. [36]

O(n3)
1 | pi = p; p − batch; ri; b < n | ∑

wiUi Baptiste [16]
O(n8)

1 | prec; pi = p; p − batch | ∑
wiUi Earliest Start Schedule

O(n2)
1 | pi = p; p − batch; ri; b < n | ∑

Ti Baptiste [16]
O(n8)

1 | pi = 1; p − batch; ri; b < n | ∑
wiTi Network flow problem

1 | pi = p; p − batch; b < n | ∑
wiTi Network flow problem

1 | pi = p; p − batch; ri; |
∑

wiUi Baptiste et al. [21]
O(n11)

1 | prec; pi = p; p − batch | ∑
wiTi Earliest Start Schedule

O(n2)

Table 8.3: Polynomially solvable parallel batching problems.

280 Batching Problems

∗1 | intree; pi = 1; p − batch; ri; b < n | Cmax Brucker et al. [35]

∗1 | p − batch; ri; b < n | Cmax Brucker et al. [36]

∗1 | prec; pi = 1; p − batch; b < n | Cmax Ullman [203]

∗1 | outtree; pi = 1; p − batch; b < n | Lmax Brucker et al. [35]

∗1 | p − batch; b = 2 | Lmax Brucker et al. [36]

∗1 | intree; pi = 1; p − batch; ri; b < n | ∑
Ci Lenstra [150]

∗1 | p − batch; ri; b < n | ∑
Ci Lenstra et al. [151]

∗1 | prec; pi = 1; p − batch; b < n | ∑
Ci Lenstra & Rinnooy

Kan [152]

∗1 | chains; pi = 1; p − batch; b < n | ∑
wiCi Timkovsky [202]

∗1 | chains; pi = 1; p − batch; b < n | ∑
Ui Lenstra & Rinnooy

Kan [154]

1 | p − batch | ∑
wiUi Brucker et al. [36]

∗1 | chains; pi = 1; p − batch; b < n | ∑
Ti Leung & Young [157]

1 | p − batch | ∑
wiTi Brucker et al. [36]

Table 8.4: NP-hard parallel batching problems.

Chapter 9

Changeover Times and
Transportation Times

In this chapter we consider scheduling problems in which the set I of all
jobs or all operations (in connection with shop problems) is partitioned
into disjoint sets I1, . . . , Ir called groups, i.e. I = I1 ∪ I2 ∪ . . . ∪ Ir and
If ∩ Ig = φ for f, g ∈ {1, . . . , r}, f �= g. Let Nj be the number of jobs
in Ij . Furthermore, we have the additional restrictions that for any two
jobs (operations) i, j with i ∈ If and j ∈ Ig to be processed on the same
machine Mk, job (operation) j cannot be started until sfgk time units
after the finishing time of job (operation) i, or job (operation) i cannot
be started until sgfk time units after the finishing time of job (operation)
j. In a typical application, the groups correspond to different types of
jobs (operations) and sfgk may be interpreted as a machine dependent
changeover time. During the changeover period, the machine cannot
process another job. We assume that sfgk = 0 for all f, g ∈ {1, . . . , r},
k ∈ {1, . . . , m} with f = g, and that the triangle inequality holds:

sfgk + sghk ≥ sfhk for all f, g, h ∈ {1, . . . , r}, k ∈ {1, . . . , m}. (9.1)

Both assumptions are realistic in practice.

If we consider single machine problems or if the changeover times are ma-
chine independent, we replace sfgk by sfg. If the changeover times do not
depend on both groups If and Ig, but only on the group Ig to which the
job to be processed next belongs, then we replace sfg by sg. In the latter
case, the changeover times are called sequence independent, contrary
to the general case in which they are called sequence dependent. If

282 Changeover Times and Transportation Times

sfg = s for all f, g = 1, . . . , r, then we have constant changeover times.

To indicate problems with changeover times, we add β7 ∈ {sfgk, sfg, sg, s}
to the β-part of our general classification scheme.

In Section 9.1, single machine problems with changeover times will be
discussed. Section 9.2 describes some results on parallel machine prob-
lems with changeover times, while in the last section, shop problems with
changeover and/or transportation times are introduced.

9.1 Single Machine Problems

While problems 1 | sfg | Cmax and 1 | sg | Lmax are NP-hard (Bruno
& Downey [59]), problem 1 | sg | Cmax can be solved polynomially by
scheduling the jobs group by group in any order.

Next we will present dynamic programming procedures for the problems
1 | sfg | Lmax, 1 | sfg | ∑

wiCi, and 1 | sfg | ∑
wiUi, which are due

to Monma & Potts [170]. The following theorem is the basis for these
procedures.

Theorem 9.1 (a) For problem 1 | sfg | ∑
wiUi, there exists an opti-

mal schedule where the early jobs within each group are ordered
according to nondecreasing due dates.

(b) For problem 1 | sfg | ∑
wiCi, there exists an optimal schedule

where the jobs within each group are ordered according to nonde-
creasing pi/wi-values.

(c) For problem 1 | sfg | Lmax, there exists an optimal schedule where
the jobs within each group are ordered according to nondecreasing
due dates.

Proof: Consider a schedule of the form D, j, E, i, F , where jobs i and
j are from the same group and D, E, F represent arbitrary blocks, i.e.
partial sequences of jobs. Due to the triangle inequality (9.1), the total
changeover times will not increase if D, j, E, i, F is replaced by D, E, i, j,
F or D, i, j, E, F . We have to show that if di < dj for early jobs i, j, or
pi/wi < pj/wj, or di < dj , then

∑
wiUi, or

∑
wiCi, or the Lmax-value

will not increase when moving from the sequence D, j, E, i, F to one of
the two sequences D, E, i, j, F or D, i, j, E, F .

9.1. Single Machine Problems 283

(a) If we have the objective function
∑

wiUi, then the fact that i is
early in D, j, E, i, F implies that i, j are early in D, E, i, j, F be-
cause di < dj.

(b) Consider the objective function
∑

wiCi and let pi/wi < pj/wj.

It is convenient to replace changeover times by set-up jobs with pro-
cessing time equal to the changeover time and zero weight. Further-
more, we assume that all set ups after j and before i in D, j, E, i, F
are included in the partial sequence E. Define

p(E) =
∑

i∈E

pi and w(E) =
∑

i∈E

wi.

Then an easy calculation shows that job j and block E can be
swapped without increasing the objective value if pj/wj > p(E)/
w(E). Similarly, i and E can be swapped if p(E)/w(E) > pi/wi.
In the first case we first swap j and E and then j and i with-
out increasing the objective value. This provides the sequence
D, E, i, j, F . If pj/wj ≤ p(E)/w(E), then pi/wi < p(E)/w(E)
and we get D, i, j, E, F after two swaps.

(c) Consider the objective function Lmax and let di < dj. Again,
changeover times are replaced by set-up jobs with the changeover
time as the processing time and a very large due date. To see the
effect of swapping a job j scheduled before a block E = ir, ir−1, . . . ,
i1, we replace E by a job with processing time pir ,ir−1,...,i1 = p(E)
and a due date dir,ir−1,...,i1, where dir,ir−1,...,i1 is calculated by the
recursion

diϑ+1,...,i1 = min{diϑ,...,i1, diϑ+1
+

ϑ∑

k=1

pik} for ϑ = 1, 2, . . . , r − 1.

This follows by induction using the fact that, for two jobs i and j
with finishing times Cj and Ci = Cj − pj , we have

max{Cj − dj, Cj − pj − di} = Cj − min{dj, di + pj}.
Now we can proceed as in Part (b). If dj > dE := dir ,ir−1,...,i1, then
we can first swap j and E and then j and i without increasing the
objective value. Otherwise, we have di < dj ≤ dE and we can first
swap i and E and then j and i. �

284 Changeover Times and Transportation Times

For the following dynamic programming algorithms, we assume that the
jobs in each group are ordered according to Theorem 9.1. We first derive
an algorithm for problem 1 | sfg | ∑

wiCi.

We define C(n1, n2, . . . , nr, t, h) to be the minimum cost of a partial
schedule containing the first nj jobs of group Ij (j = 1, . . . , r), where
the last job scheduled comes from group Ih and is completed at time t.
We have

0 ≤ nj ≤ Nj for j = 1, . . . , r

and

0 ≤ t ≤ T :=
∑

i∈I

pi +
r∑

j=1

Nj max{sfj | 1 ≤ f ≤ r}.

The recursion is

C(n1, n2, . . . , nr, t, h)

= min{C(n′
1, n

′
2, . . . , n

′
r, t

′, f) + wh
nh

t | 1 ≤ f ≤ r} (9.2)

where n′
j = nj for j �= h, n′

h = nh − 1, t′ = t− ph
nh

− sfh, and wh
nh

and ph
nh

are the weight and processing time of the nh-th job in group Ih.

Initially, we set C(0, 0, . . . , 0, 0, 0) = 0 and all other C-values to infinity.

The optimal schedule cost is found by selecting the smallest value of the
form C(N1, . . . , Nr, t, h) for some schedule completion time 0 ≤ t ≤ T
and some group Ih to which the final job belongs.

Because the number of states is bounded by O(rnrT) and (9.2) can be
calculated in O(r) steps, we have an O(r2nrT)-algorithm.

Alternatively, we can replace the state variable t by variables tfh (f, h =
1, . . . , r) representing the number of set ups from group f to group h.
Note that t is readily computed from the state variables using

t =

r∑

f,h=1

tfhsfh +

r∑

h=1

nh∑

ν=1

ph
ν .

The complexity of this version is O(r2nr+s), where s is the number of
different values for changeover times. Note that s ≤ r2 in general and
s ≤ r in the case of sequence-independent changeover times. If the
number of groups is fixed, we have a polynomial algorithm.

9.1. Single Machine Problems 285

Similarly, we solve problem 1 | sfg | Lmax. In this case (9.2) is replaced
by

C(n1, n2, . . . , nr, t, h)

= min{max{C(n′
1, n

′
2, . . . , n

′
r, t

′, f), t − dh
nk
} | 1 ≤ f ≤ r}. (9.3)

The problem with the weighted number of late jobs is solved differently.
By Theorem 9.1(a), we only know an order for early jobs; those jobs that
are late must also be determined by the algorithm. The late jobs may
be appended in any order to the schedule of on-time jobs.

We define C(n1, n2, . . . , nr, t, h) to be the minimum weighted number of
late jobs for the partial schedule containing the first nj jobs of group
Ij (j = 1, . . . , r), where the last on-time job comes from group Ih and is
completed at time t. We have

0 ≤ nj ≤ Nj for j = 1, . . . , r

and

0 ≤ t ≤ T := min{max
i∈I

di,
∑

i∈I

pi +
r∑

j=1

Nj max{sfj | 1 ≤ f ≤ r}}.

The recursion is

C(n1, n2, . . . , nr, t, h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{ min
1≤f≤r

C(n′
1, n

′
2, . . . , n

′
r, t

′, f),

C(n′
1, n

′
2, . . . , n

′
r, t, h) + wh

nh
} if t ≤ dh

nh

C(n′
1, n

′
2, . . . , n

′
r, t, h) + wh

nh
if t > dh

nh

(9.4)
where n′

j = nj if j �= h, n′
h = nh − 1, t′ = t − ph

nh
− sfh.

The initial values are

C(n1, n2, . . . , nr, 0, 0) =
r∑

j=1

nj∑

ν=1

wj
ν

for 0 ≤ nj ≤ Nj , where j = 1, . . . , r. All other initial values are set to
infinity.

The minimum weighted number of late jobs is found by selecting the
smallest value of the form C(N1, N2, . . . , Nr, t, h) for some completion

286 Changeover Times and Transportation Times

time of on-time jobs, where 0 ≤ t ≤ T , and for some group Ih containing
the final on-time job.

The complexity is O(r2nrT). Again, it may be desirable to eliminate the
state variable t from the recursion. To achieve this, we switch the state
variable t with the objective function value as follows.

Define C(n1, n2, . . . , nr, w, h) to be the minimum completion time of on-
time jobs for a partial schedule containing the first nj jobs of each group
Ij, where the weighted number of late jobs is equal to w, and the last
on-time job comes from group Ih. The initial values are C(n1, n2, . . . , nr,

w, 0) = 0, where w =
r∑

j=1

nj∑

ν=1

wj
ν for 0 ≤ nj ≤ Nj (j = 1, . . . , r), and all

other values are set to infinity.

The recursion is

C(n1, n2, . . . , nr, w, h) = min{ min
1≤f≤r

{C(n′
1, n

′
2, . . . , n

′
r, w, f) + p′fh |

C(n′
1, n

′
2, . . . , n

′
r, w, f) + p′fh ≤ dh

nh
}, C(n′

1, n
′
2, . . . , n

′
r, w

′, h)}

where n′
j = nj if j �= h, n′

h = nh − 1, p′fh = ph
nh

+ sfh and w′ = w − wh
nh

.

As in (9.4), the first term in the minimization chooses the nh-th job in
group Ih to be scheduled on time, if possible, and chooses the previous
on-time job from group If ; the second term selects the nh-th job of group
Ih to be late.

The minimum weighted number of late jobs is found by selecting the
smallest w for which min

0≤h≤r
C(N1, N2, . . . , Nr, w, h) is finite.

The complexity is O(r2nrW), where W =
∑

i∈I

wi. It reduces to O(r2nr+1)

for the total number of late jobs problem.

9.2 Problems with Parallel Machines

In this section we consider changeover times in connection with parallel,
identical (uniform, unrelated) machines. For unrelated machines, we
have machine dependent changeover times sfgk. In the case of uniform
machines, the changeover time depends on the speed rk of machine k,
more specifically sfgk = sfg/rk.

We saw in the last section that even in the one machine case, problems
with sequence dependent changeover times are NP-hard in all but trivial

9.2. Problems with Parallel Machines 287

cases. Therefore, we restrict ourselves to parallel machine problems with
sequence independent changeover times sgk, sgk = sg/rk, or sg for unre-
lated, uniform, or identical machines. As before, there are r job groups
I1, . . . , Ir, where Nj is the number of jobs in group Ij.

The two problems P2 | pj = 1; sg = 1 | Cmax and Q | pj = 1; sg = 1; Nj =
h | Cmax are NP-hard (Brucker et al. [47]). Thus, we can only expect
polynomial algorithms in special situations.

One such problem is P | pj = p; sg = p; Nj = h | Cmax, i.e. a problem
with identical parallel machines where all groups have equal sizes and all
processing and changeover times are equal to p.

Let P (y) be the problem of finding a schedule for P | pj = p; sg = p; Nj =
h | Cmax with Cmax ≤ y if such a schedule exists. P (y) can be solved by
applying Mc Naughton’s Wrapping Around Rule: Schedule the groups
one after the other in the interval [0, y] by filling this interval for each
machine, one machine after the other. Continue to schedule a group
on the next machine if the group cannot be completed on the current
machine.

Theorem 9.2 Problem P (y) has a solution if and only if all jobs can be
scheduled by applying the Wrapping Around Rule.

Proof: Consider a feasible schedule. Assume that all groups scheduled
completely on M1 are scheduled at the beginning of the interval [0, y].
Let i be the first group not completely scheduled on M1 and assume that
the i-jobs, i.e. the jobs belonging to group i, are scheduled immediately
after the last complete group on M1. Let c be the completion time of
the last i-job.

There exists a machine, say M2, on which other i-jobs are scheduled.
Assume that on M2 all i-jobs are scheduled at the beginning of [0, y] and
that the last i-job on M2 finishes at time a. Then we consider three cases.

Case 1: y − c < 2p

If y − c < p, no further job can be scheduled on M1. If y − c ≥ p, then
we move one i-job from M2 to M1.

Case 2: y − c ≥ 2p and a ≤ y − c

We exchange the jobs (including set-up jobs) scheduled on M1 in the
interval [c, c + a] with the i-jobs and the set-up job scheduled on M2 in
[0, a] as shown in Figures 9.1(a) and 9.1(b).

288 Changeover Times and Transportation Times

i i · · ·
· · · i i ∗ ∗

M2

M1

(a)

� �
a

� �
(y − c)

∗ ∗
i i i i

M2

M1

y
(b)

Figure 9.1: Extending group of i-job on M1: Case 2.

Case 3: y − c ≥ 2p and a > y − c

We have the situation as shown in Figure 9.2(a) and transform this sched-
ule into the one in Figure 9.2(b).

i i i · · ·
· · · i i ∗ ∗

M2

M1

(a)

∗ ∗
· · · i i i i i

M2

M1

(b)
y

Figure 9.2: Extending group of i-job on M1: Case 3.

The whole process is repeated until after a finite number of steps we get
a schedule with the desired properties.

Due to the fact that all job groups have equal sizes and all machines are
identical, the wrapping around rule creates a feasible schedule. �

9.2. Problems with Parallel Machines 289

The computation time of the Wrapping Around Algorithm is bounded
by O(m). To find an optimal Cmax-value C∗, we exploit the following
facts:

• L := � r(h+1)
m

p is a lower bound for C∗, and

• L+p is an upper bound for C∗ (the Wrapping Around schedule for
y = L + p is always feasible because the extra p-value allows for an
additional set up on each machine).

Thus, we only need to solve the two problems P (L) and P (L + p). This
provides us with O(m)-algorithm.

Mc Naughton’s Wrapping Around Rule solves the problem even if the
changeover time is a multiple of the processing time p, i.e. if pj = p
and sg = lp where l is an arbitrary positive integer. The interchange
arguments in the proof of Theorem 9.2 are almost the same.

If we replace the identical machines by uniform machines, then the ex-
change arguments of Theorem 9.2 are still valid. However, Mc Naugh-
ton’s Wrapping Around Rule does not solve the corresponding problem
Q | pj = p; sg = lp; Nj = h; dj = y | −. The reason for this is that the
Wrapping Around Rule depends on the order of the uniform machines.
To solve the problem we may apply the Wrapping Around Rule to each
of the m! possible orders which yields an O(mm!)-algorithm. This algo-
rithm is polynomial if m is fixed.

Finally, note that the O(m)-algorithm which solves P (y) by applying
the Wrapping Around Rule is not a polynomial one. Next, an O(log m)-
algorithm will be presented which solves problem P (y). This algorithm
can be described as follows.

Let s = lp. In the interval [0, Y] with Y = (hp+s)�y/(hp+s)� we schedule
as many groups as possible without splitting them into subgroups. If
all groups can be scheduled, we have finished. Otherwise each of the
remaining groups is divided into subgroups including U := �(y−Y −s)/p�
jobs, except possibly the last subgroups including Q < U jobs. We
schedule the subgroups with U jobs without splitting them on the m
available machines. If all of these subgroups are scheduled and Q = 0,
we have finished. If the number r of these subgroups is greater than
m or r = m and Q > 0, no feasible schedule exists. Otherwise, we set
m′ = m − r, y′ = y − Y, p′ = p, h′ = Q and apply the same procedure
recursively to the problem specified by m′, y′, p′, h′.

290 Changeover Times and Transportation Times

Note that we may assume that r > �m
2
�, because otherwise all batches

with Q jobs can be scheduled in [Y, y] on the remaining m′ = m−r > �m
2
�

machines and we have finished. Thus, the number of recursive calls is
at the most O(log m). In each recursive step the corresponding schedule
can be calculated in constant time.

Using the interchange techniques described in the proof of Theorem 9.2,
it can be shown that an optimal schedule exists with the described struc-
ture. This leads to

Theorem 9.3 Problem P | pj = p; sg = lp; Nj = h | Cmax can be solved
in time O(log m).

9.3 General Shop Problems

In connection with general shop problems, we may have changeover times
and transportation times. For changeover times, we have a partition of
the set I = {1, . . . , t} of operations of all jobs into disjoint sets I1, . . . , Ir.
Again, we call these sets groups. If, on a specific machine Mk, an op-
eration i from group Ih is processed immediately after an operation j
from group Il, a changeover time tlhk occurs between i and j. In the
disjunctive graph model we can take care of the changeover time from
operation j to operation i by labeling the fixed disjunctive arc (j, i) with
tlhk. Furthermore, the length of a path in the corresponding network is
now equal to the sum of all vertex labels and arc labels on the path.
Using these concepts, it is possible to generalize the branch-and-bound
method presented in Section 6.4.3 to this more general situation (see
Brucker & Thiele [57]).

If in the general shop model we replace “sets of operations to be processed
on the same machine” by “sets of operations belonging to the same job”
and introduce a changeover time tlhi if an operation of job i belonging to
group Il is processed immediately before an operation of job i belonging
to group Ih, then we get a model which is mathematically equivalent to
the previous one. If group Ik is the set of operations to be processed on
machine Mk, then tlhi may be interpreted as the time to transport job i
from machine Ml to machine Mh. Due to the equivalence of both models,
an algorithm which solves the general shop problem with changeover
times solves the general shop problem with transportation times. It
should be noted that in the transportation model we assume that there

9.3. General Shop Problems 291

is sufficient transportation capacity to handle all jobs to be transported
simultaneously.

We can go a step further by considering problems with both changeover
times and transportation times.

Chapter 10

Multi-Purpose Machines

In a multi-purpose machine (MPM) model there is a set of machines
μi(μij) ⊆ {M1, . . . , Mm} associated with a job Ji (operation Oij).
Ji(Oij) has to be processed by one machine in the set μi(μij). Thus,
scheduling problems with multi-purpose machines combine assignment
and scheduling problems: we have to schedule each job Ji (operation
Oij) on exactly one machine from the set μi(μij).

If we have single operation jobs and the multi-purpose machines have
identical (uniform) speeds, we denote the corresponding situation by
PMPM (QMPM). Note that P (Q) is the special case of PMPM
(QMPM) in which all machine sets μi contain all m machines. Fur-
thermore, PMPM is a special case of QMPM . We also may introduce
RMPM to denote MPM problems with unrelated machines which gen-
eralize QMPM problems. However in combination with regular objec-
tive functions RMPM is equivalent to R because we may set pij = ∞ if
Mj /∈ μi.

Shop problems with MPM are defined similarly. In a general shop with
MPM , denoted by GMPM , there is a machine set μij associated with
each operation. The MPM job shop problem, denoted by JMPM , is the
corresponding special case of GMPM . For MPM flow shop problems
and MPM open shops, denoted by FMPM and OMPM , respectively,
we need special definitions. For the MPM flow shop problem, each job Ji

has exactly r operations Oij (j = 1, . . . , r) and there is the same machine
set μj associated with the j-th operation of each job. r is called the
number of stages of the problem. Furthermore, all machine sets are
assumed to be different, i.e. μj �= μk for j �= k. As in the classical case

294 Multi-Purpose Machines

for j = 2, . . . , r, Oij cannot start before Oi,j−1 is completed.

MPM open shop problems are defined like MPM flow shop problems.
However, there are no precedence constraints between the operations of
an MPM open shop. In connection with FMPM problems and OMPM
problems, r is called the number of stages. Shop problems are MPM
shop problems with one-element machine sets μij.

To describe and classify MPM problems, we combine PMPM , QMPM ,
GMPM , JMPM , etc. with the other symbols used for the classification
of scheduling problems.

In Section 10.1, MPM problems with identical and uniform machines
will be discussed. Section 10.2 is devoted to MPM shop problems.

10.1 MPM Problems with Identical and

Uniform Machines

Problem RMPM‖∑
Ci is equivalent to problem R‖∑

Ci. This problem
can be formulated as a weighted matching problem in a bipartite graph
and can be solved in O(n3) time.

All other problems with arbitrary processing times and parallel multi-
purpose machines are NP-hard because P2‖Cmax and P2‖∑

wiCi are
NP-hard (Garey and Johnson [99] and Bruno et al. [58]).

Now let us consider problems with unit processing times.

Problems QMPM | pi = 1 | ∑
wiUi(

∑
wiTi)

Again, we reduce the problems to minimum cost bipartite matching prob-
lems. Consider first problem QMPM | pi = 1 | ∑

wiUi. The correspond-
ing bipartite graph is (V1 ∪ V2, A), where

• V1 is the set of jobs,

• V2 is the set of all pairs (j, t), where j represents Mj and t represents
unit-time period [(t − 1)/sj, t/sj] (j = 1, . . . , m; t = 1, . . . , n),

• for each t = 1, . . . , n an arc from i to (j, t) exists if Mj ∈ μi, and

• the cost associated with the arc from i to (j, t) is given by wi if
t/sj > dj and 0 otherwise.

10.1. MPM Problems with Identical and Uniform Machines 295

Problem QMPM | pi = 1 | ∑
wiTi can be solved in the same way if we

replace the cost associated with the arc from i to (j, t) by

wi · max{0, t/sj − di}.

Problems PMPM | pi = 1; ri |
∑

wiUi(
∑

wiTi)

These problems are also formulated as minimum cost matching problems
in bipartite graphs which are nearly identical with those defined above.
The main difference is that the time slots t = 1, . . . , n have to be replaced
by different time slots t1, t2, . . . , tn, which are the earliest possible time
slots for scheduling n unit-time jobs with release times r1, . . . , rn on one
machine. Furthermore, we have to set sj = 1 for j = 1, . . . , m.

Problems PMPM2 | pi = 1; chains | Cmax

Surprisingly, problem PMPM 2 | pi = 1; chains | Cmax is NP-hard.
This follows from an NP-hardness proof for problem PMPT 2 | pi =
1; chains | Cmax given by Hoogeveen et al. [113].

Now let us consider

QMPM- and PMPM Problems with Preemption

Problem PMPM | pmtn | ∑
Ci

We will show that every schedule with a finite number of preemptions can
be transformed into a nonpreemptive one without increasing the objective
value. Thus, the problem can be solved in O(n3) time by applying the
algorithm for R||∑Ci.

Theorem 10.1 Any schedule for problem PMPM | pmtn | ∑
Ci can

be transformed into a nonpreemptive one without increasing the objective
value.

Proof: Consider an arbitrary schedule S for an instance of problem
PMPM | pmtn | ∑

Ci with a finite number of preemptions. Since the
claim clearly holds for single machine problems, it suffices to transform
this schedule into a preemptive one where every job is processed by only
one machine.

296 Multi-Purpose Machines

Mk

Ml j0 j0

j0

ti−1 ti Cj0

Figure 10.1: Parts of job j0 are scheduled on Mk and Ml.

Let t1 < t2 < . . . < tr denote a sequence which contains all starting,
preemption, restarting, and completion times of jobs in S.

If each job is processed by only one machine, we have finished. Otherwise,
consider a maximal value i such that there exists a job j that is processed
in [ti−1, ti] on machine Mν and also processed later than ti on a machine
other than Mν .

Let J be the set of jobs of this type, i.e. J = {j|j is processed in [ti−1, ti]
and later than ti on different machines}.
Let M denote the set of machines used by the jobs of J in [ti−1, ti] and
let M ′ denote the set of machines used by the jobs of J later than ti.

If M ⊆ M ′, then M = M ′ and we reassign the jobs in [ti−1, ti] such that
each job uses the same machine as it uses later. Thus, the maximal value
i with the above property is reduced by at least one.

Otherwise if M � M ′, a machine Mk ∈ M\M ′ exists. Let j0 denote the
job that is processed on Mk in [ti−1, ti]. Let Ml denote the machine on
which the later parts of job j0 are scheduled. This situation is depicted
in Figure 10.1.

Let Lk = ti − ti−1 and let Ll be the sum of the lengths of all parts of job
j0 processed later than ti. Let Fk denote the number of jobs finished on
machine Mk later than ti and let Fl denote the number of jobs finished
on machine Ml later than Cj0.

If Fl < Fk, we may schedule the part of job j0 scheduled on Mk on
Ml during the time interval [Cj0, Cj0 + Lk], shift the jobs scheduled on
Ml later than Cj0 by Lk units to the right, and shift the jobs scheduled
on Mk later than ti by Lk units to the left. The resulting schedule is
feasible because after the shifts no job processed in [ti−1, ti] on machine
Mk is processed on any other machine in the same time period because
Mk �∈ M ′. Furthermore, the objective value does not increase because
(Fl + 1)Lk − FkLk ≤ 0.

10.1. MPM Problems with Identical and Uniform Machines 297

Conversely, if Fl ≥ Fk, we may schedule the parts of job j0 scheduled
later than ti on Ml in [ti, ti + Ll] on Mk, shift the jobs scheduled on
Mk later than ti by Ll units to the right, and shift the remaining jobs
scheduled on Ml later than ti as far to the left as possible. Due to the
maximality of i, the resulting schedule is feasible. The objective value
does not increase because FkLl − FlLl ≤ 0.

Thus, we have reduced the set J by one element. This process can be
repeated until the set J is empty. Hence the maximal value i with the
above property is again reduced by at least one. �

P 2 | pmtn | ∑
wiCi is NP-hard since for problem P | pmtn | ∑

wiCi

preemptive schedules do not yield a smaller optimal objective value than
nonpreemptive schedules (see Theorem 5.6) and P 2 || ∑

wiCi is NP-
hard (Bruno et al. [58]).

QMPM and PMPM Problems with Preemption and Release
Dates

Problem R | pmtn; ri | Lmax can be formulated as a linear program
(see Section 5.1.3). This implies that QMPM | pmtn; ri | L max is
polynomially solvable. However, this is as far as we can get because
PMPM2 | pmtn; ri | ∑

Ci and PMPM2 | pmtn; ri | ∑
Ui are NP-

hard. These NP-hardness results are a consequence of the fact that the
corresponding parallel machine problems are NP-hard (Du et al. [85],
Du et al. [84]).

In this section we will derive an ε-approximation algorithm for problem
PMPM | pmtn; ri | Lmax which is based on network flow concepts.

For a given threshold value L, we consider the decision problem of whe-
ther a feasible solution exists with Lmax ≤ L. Because Lmax ≤ L is
equivalent to

Ci ≤ dL
i := di + L for i = 1, . . . , n

this problem is equivalent to the time window problem: Given release
times ri and deadlines di for each job, does there exist a feasible schedule
with

Ci ≤ di for i = 1, . . . , n?

To solve the time window problem, we generalize the network flow ap-
proach described in Section 5.1.1.

Let t1, t2, . . . , tp+1 be a sequence of the release times ri and the due dates

298 Multi-Purpose Machines

di such that tj < tj+1 for j = 1, . . . , p. The sequence t1, t2, . . . , tp+1 defines
time intervals Ij = [tj , tj+1] of length Tj = tj+1− tj (j = 1, . . . , p). Using
these time intervals, we define the following network N = (V, A).

The set V consists of

• a source s,

• job-nodes Ji (i = 1, . . . , n),

• job-interval-nodes JiIj (i = 1, . . . , n; j = 1, . . . , p),

• interval-machine-nodes IjMk (j = 1, . . . , p; k = 1, . . . , m), and

• a sink t.

��

��

s

��

��

J1

��

��

J2

��

��

Ji

��

��

Jr

�

�

�

�
JiI1

�

�

�

�
JiIj

�

�

�

�
JiIp

�

�

�

�
IjM1

�

�

�

�
IjMk

�

�

�

�
IjMm

��

��

t

�
�

�
�
�

�
�

�
��

�
�

�
�

���

�
pi

�
�

�
�

���

�
���

����

�
���

����

�
�

�
�

���

�
Tj

�
�

�
�

���

�����
���

�
���

����

�
�

�
�

���

�
∞

�
�������

�
�
�
�
�
���

�
�

�
�

���
�

Tj

�
�

�
�

���

�
�
�
�
�
���

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 10.2: Network for problem PMTM | pmtn; ri; di | −.

A denotes the set of arcs with restricted capacities. A contains

10.1. MPM Problems with Identical and Uniform Machines 299

• arcs (s, Ji) with capacity pi (i = 1, . . . , n),

• arcs (Ji, JiIj) with capacity Tj if Ji can be processed in time interval
Ij , i.e. ri ≤ tj and di ≥ tj+1 (i = 1, . . . , n; j = 1, . . . , p),

• arcs (JiIj, IjMk) with infinite capacity if Mk ∈ μi (i = 1, . . . , n;
j = 1, . . . , p; k = 1, . . . , m), and

• arcs (IjMk, t) with capacity Tj (j = 1, . . . , p; k = 1, . . . , m).

Figure 10.2 shows a part of the resulting network.

We have the following

Theorem 10.2 For a given instance of PMPM |pmtn; ri; di|−, there ex-
ists a feasible schedule if and only if there exists a flow from s to t in the

corresponding network N = (V, A) with flow value
r∑

i=1

pi.

Proof: First assume that there exists a feasible flow x = (x(i, j) :

(i, j) ∈ A) with flow value P :=
r∑

i=1

pi. For all job-nodes Ji (i =

1, . . . , n) we have x(s, Ji) = pi because P =
r∑

i=1

pi. A feasible sched-

ule of PMPM |pmtn; ri; di|− can be defined as follows.

(i) If x(Ji, JiIj) = l, then we schedule l time units of Ji in time interval
Ij . This is possible because x(Ji, JiIj) ≤ Tj .

(ii) If x(JiIj, IjMk) = l, then we schedule l time units of Ji in time
interval Ij on machine Mk. Because x(IjMk, t) ≤ Tj , machine Mk

is busy for at the most Tj time units during time interval Ij .

We obtain a classical open shop problem O|pmtn|Cmax in each time in-
terval Ij by defining

pik := x(JiIj, IjMk) (i = 1, . . . , n; k = 1, . . . , m).

Because of (i) we have

Ai :=

m∑

k=1

pik ≤ Tj (i = 1, . . . , n; j = 1, . . . , p).

300 Multi-Purpose Machines

Moreover, because of (ii) we have

Bk :=

r∑

i=1

pik ≤ Tj (k = 1, . . . , m; j = 1, . . . , p).

As shown in Section 2.4, the optimal solution value of the open shop

problem is given by max{ n
max
i=1

Ai,
m

max
k=1

Bk} ≤ Tj . Therefore, we can

schedule x(JiIj, IjMk) time units of job Ji on machine Mk in time in-
terval Ij without violating any capacity constraints. By combining the
schedules obtained in all time intervals, we get a feasible schedule for
PMPM |pmtn; ri; di|−.

Now let there be a feasible schedule for a given instance of PMPM
|pmtn; ri; di|−. Using (i) and (ii), it is easy to define a feasible flow

x = (x(i, j) : (i, j) ∈ A) with flow value P =
r∑

i=1

pi based on this

schedule. �

To find a solution with an objective value that differs from the optimal
objective value by at the most ε time units, we do binary search on the
set of values Llow + iε(i = 1, . . . , �Lup−Llow

ε
), where Llow(Lup) is a lower

(upper) bound for the optimal Lmax-value.

10.2 MPM Problems with Shop Charac-

teristics

In this section we study job shop, flow shop, and open shop problems
with multi-purpose machines. In Section 10.2.1, problems with arbitrary
processing times are discussed. Section 10.2.2 is devoted to problems
with unit-processing times.

10.2.1 Arbitrary Processing Times

Job shop, flow shop, and open shop problems without preemption are
investigated first. Then preemptive open shop scheduling problems are
analyzed.

10.2. MPM Problems with Shop Characteristics 301

MPM Job Shop Problems

First we consider job shop problems with a fixed number of jobs to be
processed on multi-purpose machines. Contrary to the classical job shop
problem, the MPM job shop problem with two machines and three jobs
is already NP-hard. On the other hand, the geometrical approach de-
scribed in Section 6.4.2 can be extended to problem JMPM | n = 2 |
Cmax. This can be seen as follows.

Assume that we have two jobs J1 and J2, and that μ assigns a machine
μ(Oij) to each of the operations Oij of both jobs. For a fixed assignment
μ, the problem may be formulated as a shortest path problem in the
plane with rectangular objects as obstacles. The obstacles are of the form
I1i × I2j with μ(O1i) = μ(O2j), where I1i(I2j) are consecutive intervals
of length p1i(p2j) on the x-axis (y-axis). The path goes either diagonally
or parallel to the axes and has to avoid the interior of the obstacles (see
Figure 6.9).

As shown in Section 6.4.2, this shortest path problem can be reduced to
the problem of finding a shortest path from an origin to some destination
in a network N(μ) = (V (μ), A(μ), l(μ)), where

(i) V (μ) = {O, F}∪{ north-west corners of obstacles}
∪{ south-east corners of obstacles}.

(ii) Each vertex i has at the most two immediate successors which are
calculated as follows. Assume R is the obstacle we hit first if we
go diagonally starting in i. Then the north-west corner and south-
east corner of R are immediate successors of i. If we do not hit any
obstacle, then F is the immediate successor of i.

(iii) O is the origin and F is the destination.

(vi) The length lij(μ) = lij of arc (i, j) is defined by lij = max{px
ij, py

ij},
where px

ij and py
ij are the lengths of the two projections of the line

segment connecting i and j.

N(μ) can be constructed in O(r2 log r) time, where r = max{n1, n2}.
Let A be the set of all possible assignments μ. Then we define the network
N = (V, A, l) by setting

V =
⋃

μ∈A
V (μ), A =

⋃

μ∈A
A(μ).

302 Multi-Purpose Machines

lij is defined as before.

Theorem 10.3 A shortest path from O to F in N corresponds to an
optimal solution of the MPM job shop problem.

Proof: If μ∗ is an optimal assignment, then an optimal solution of the
problem corresponds with some path from O to F in N(μ∗). Furthermore,
if we have an arbitrary path p from O to F in N, then an assignment μ
can be defined such that p is a path in N(μ). To see this, let (i, j) be an
arc in p and assume that i is a north-west corner of an obstacle and j
is a south-east corner of an obstacle with respect to some assignment μ′.
This situation is shown in Figure 10.3.

�

�
J2

J1

� j

�i

O1r O1k

O2,t−1

O2t

O2l

O2,l+1

R

R′

�

�
�

�
�

�
�

�
�

�
�

�

Figure 10.3: Arc (i, j) in p.

Then we set μ(O1ν) = μ′(O1ν) for ν = r, r+1, ..., k and μ(O2ν) = μ′(O2ν)
for ν = t, t+1, ..., l. All other cases are treated similarly. The assignment
μ is well defined and has the desired property. �

10.2. MPM Problems with Shop Characteristics 303

The set V consists of all north-west and south-east corners of potential
obstacles. A potential obstacle is a rectangle I1i × I2j with μ1i ∩μ2j �=
∅. O and F are regarded as degenerate potential obstacles where the
north-west and south-east corner coincide. There are at the most n1 · n2

potential obstacles which can be found in time s1 · s2, where

si =

ni∑

ν=1

|μiν| (i = 1, 2).

To construct A we have to find the set S(i) of all immediate successors for
each vertex i. Assume that i is the north-west corner of some potential
obstacle R. Then we have to find the first unavoidable obstacle R’
with respect to i, i.e. a potential obstacle R′ with the property that

• an assignment μ exists such that R′ is hit first by the diagonal line
l starting in i, and

• the length of the line segment s between i and the point at which
l hits R′ is as long as possible.

Let R = I1r × I2,t−1 and R′ = I1k × I2,l+1. Then S(i) consists of all
north-west and south-east corners of potential obstacles I1i × I2j that
correspond to the overlapping intervals I1i and I2j having the additional
property that μ1i ∩ μ2j �= ∅ (see Figure 10.4.).

�

�

J1

J2

I1r I1k

I2t I2,t+1 I2,l+1

Figure 10.4: First unavoidable obstacle R′ with respect to i.

Thus it is easy to find all immediate successors of i if the first unavoidable
obstacle is known.

If i is a south-east corner of some potential obstacle R, then R′ and S(i)
are defined similarly.

Notice that each vertex i has at the most O(r) successors. Therefore, the
network N has at the most O(r3) arcs.

304 Multi-Purpose Machines

�

�

J1

J2

A,B A,B,C,E/ / / B/

A,B C A,D E B

Figure 10.5: Forward scan.

We now describe a procedure for finding the first unavoidable obstacle
if we start at some vertex i. Assume without loss of generality that i
is the north-west corner of I1r × I2,t−1 (see Figure 10.3). Then we scan
the intervals Iij shown in Figure 10.4 in order of nondecreasing finishing
times of the corresponding operations Oij. During this scan the following
operations are applied to the intervals Iij .

– If i = 1 (i = 2) and μij contains only one machine M , then M
is deleted from all sets μ2k (μ1k) with the property that I2k (I1k)
overlaps Iij.

– If μij = ∅, then Iij , together with the first interval Ilk with Iij∩Ilk �=
∅ and |μlk| = 1, defines the first unavoidable obstacle.

Figure 10.5 shows an example of this forward scan.

Applying the forward scan, we proceed from a vertex i of an obstacle R
to the next unavoidable obstacle R′. The new sets μij after the scan are
called modified sets. A (partial) assignment which enables us to get
from i to R′ diagonally may be constructed by a backward scan using
the modified sets μ′

ij.

Starting with I2l or I1,k−1 (see Figure 10.3), we scan the intervals Iij of
Figure 10.4 in nonincreasing order of the finishing times of the corre-
sponding operations Oij. During the scan the following operations are
applied to the intervals Iij .

– If i = 1 (i = 2) and μ′
ij contains only one machine M , then M

is deleted from all sets μ2k (μ1k) with the property that I2k (I1k)
overlaps Iij. Furthermore, we set μ(Oij) := M.

– If μ′
ij contains more than one machine, we arbitrarily choose one

machine M ∈ μ′
ij and set μ(Oij) := M.

10.2. MPM Problems with Shop Characteristics 305

If we apply the backward scan to the modified sets in Figure 10.5, we get
the assignment shown by the encircled machines in Figure 10.6.

�

�

J1

J2

�A ,B/ �A B/

�BA,/ �C �DA,/ �E B

Figure 10.6: Backward scan applied to modified sets in Figure 10.5.

Note that we may get stuck if we try to construct an assignment by a
forward scan through the modified sets. This is demonstrated in Figure
10.7 .

�

�

J1

J2

�A, B A/ B/

�A ,B/ C A,D E B

Figure 10.7: A forward scan through modified sets may fail to find a
feasible assignment.

To prove that the backward scan always works, we have to show that
the deletion of additional machines during the scan never results in an
empty set.

Assume that during the backward scan we reach a situation in which
we have two overlapping intervals I1i and I2j with μ′

1i = μ′
2j = {M}.

Furthermore, assume that I1i is scanned before I2j . In this case, I2j was
scanned before I1i during the forward scan and so M must have been
deleted from the set μ′

1i, which is a contradiction.

The algorithm can now be summarized as follows.

1. Construct the network N = (V, A, l);

2. Calculate a shortest path p from O to F in N ;

306 Multi-Purpose Machines

3. Calculate an assignment corresponding to p by backward scanning
through p.

Steps 1 and 2 can be combined. Starting from O, we may construct only
that part of the network which is relevant while simultaneously doing the
shortest path calculation. This is possible since N is acyclic. If we do
not count the work for doing operations on the sets μij, the complexity
of the algorithm is O(r3).

A further generalization leads to an O(max{n1, n2}5)-algorithm for
JMPM | n = 2; prec; ri | Lmax (Jurisch [121]). Multi-purpose machine
problems with 3 jobs are NP-hard even if the number of machines is
restricted to 2 (Brucker et al. [42]).

MPM Flow Shop and Open Shop Problems

Proceeding as for problem JMPM2|n = 3|Cmax, FMPM |n = 3|Cmax

and OMPM |n = 3|Cmax can be shown to be NP-hard. If we fix the num-
ber of machines, even the simplest problems FMPM2|stages = 1|Cmax

and OMPM2|stages = 1|Cmax are also NP-hard since they generalize
problem P2||Cmax. Here stage = 1 indicates that we have only one stage.

Next we consider open shop problems where preemption is allowed. We
will show that the decision version of OMPM |pmtn|Cmax for a thresh-

old value T is solvable in O((m +
n∑

i=1

ni)
3 + (min{m, n})4) time. This

yields an ε-approximation algorithm for problem OMPM |pmtn|Cmax.
Furthermore, an ε-approximation algorithm is presented for problem
OMPM |pmtn, ri|Lmax.

OMPM|pmtn|Cmax

Let there be a given threshold value T . We denote the corresponding de-
cision problem by OMPM |pmtn; Ci ≤ T |−. To answer the question of
whether there exists a feasible schedule for an instance of OMPM |pmtn;
Ci ≤ T |− with makespan less than or equal to T , we consider the follow-
ing network NT = (V, A).

V , the set of vertices, consists of different types of nodes:

• a source s,

10.2. MPM Problems with Shop Characteristics 307

��

��

s

��

��

J1

��

��

J2

��

��

Ji

��

��

Jn

��

��

Oi1

��

��

Oij

��

��

Oini

��

��

M1

��

��

M2

��

��

Mk

��

��

Mm

��

��

t

�
�
�
�

�
�
�

�
��

�
�

�
�

���

�T

�
�

�
�

���

�
����

�
�

���

�
pij

�
�

���

�
����

�

����

�����

�
�

�
�

���

�
∞

�
�

�
���

�

����

�

�
�

�
�

���
�T

�
�

�
�

���

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 10.8: Network for problem OMPM | pmtn; Ci ≤ T | −.

• job-nodes Ji (i = 1, . . . , n),

• operation-nodes Oij (i = 1, . . . , n; j = 1, . . . , ni),

• machine-nodes Mj (j = 1, . . . , m), and

• a sink t.

A denotes the set of arcs with restricted capacities. A contains

• arcs (s, Ji) with capacity T (i = 1, . . . , n),

• arcs (Ji, Oij) with capacity pij (i = 1, . . . , n; j = 1, . . . , ni),

• arcs (Oij, Mk) with capacity ∞ (i = 1, . . . , n; j = 1, . . . , ni; Mk ∈
Mij), and

• arcs (Mk, t) with capacity T (k = 1, . . . , m).

Figure 10.8 shows a part of the resulting network.

308 Multi-Purpose Machines

We will show that there exists a solution of a given instance of OMPM
|pmtn|Cmax with makespan less than or equal to T if and only if there
exists a feasible flow from s to t in the corresponding network NT with

flow value
n∑

i=1

ni∑

j=1

pij.

First assume that for a given instance of OMPM |pmtn|Cmax there exists
a feasible schedule y with makespan less than or equal to T . We obtain

a feasible flow x from s to t in NT with value P =
n∑

i=1

ni∑

j=1

pij as follows:

• x(s, Ji) =
ni∑

j=1

pij (i = 1, . . . , n).

• x(Ji, Oij) = pij (i = 1, . . . , n; j = 1, . . . , ni).

• Define x(Oij , Mk) to be the time during which operation Oij is
processed on Mk in schedule y (i = 1, . . . , n; j = 1, . . . , ni; k =
1, . . . , m).

• Define x(Mk, t) to be the length of all parts of operations which are
processed on Mk in y (k = 1, . . . , m).

Because no machine has to work for more than T time units (Cmax ≤ T),
the flow x is a feasible flow from s to t in NT with flow value P .

Now assume that there is a feasible flow x from s to t in NT with flow
value P . We obtain a classical open-shop problem by defining

pik =

ni∑

j=1

x(Oij , Mk) (i = 1, . . . , n; k = 1, . . . , m).

As shown in Section 2.4, this problem has a solution with makespan less
than or equal to T . This solution defines a feasible schedule for the given
instance of O MPM |pmtn|Cmax.

The max-flow problem in NT can be solved with time complexity O((n+

m+
n∑

i=1

ni)
3) (e.g. Malhotra, Kumar, Maheshwari [164]). The calculation

of a feasible schedule by solving the classical open-shop problem needs
O((min{n, m})4) (Gonzalez [102]). Thus, we obtain an overall complexity

of O((m +
n∑

i=1

ni)
3 + (min{m, n})4) to decide if a feasible schedule exists

and to calculate such a schedule.

10.2. MPM Problems with Shop Characteristics 309

Of course, the solution of OMPM |pmtn; di = T |− can be used for an ε-
approximation algorithm for OMPM |pmtn|Cmax. To find a solution for
OMPM |pmtn|Cmax which differs from the optimal objective value by at
the most ε time units, we do binary search on the set of values

Clow + iε (i = 1, . . . , �Cup − Clow

ε
),

where Clow(Cup) is a lower (upper) bound for the optimal Cmax-value.

OMPM|pmtn; ri|Lmax

Now we will present an ε-approximation algorithm for O MPM |pmtn;
ri|Lmax.

For a given threshold value T we consider the decision problem of whe-
ther there exists a feasible solution with Lmax ≤ T . This problem is
equivalent to the time window problem: Given release dates ri and due
dates di for each job, does there exist a feasible schedule with Ci ≤ di for
i = 1, . . . , n? The time window problem is denoted by OMPM |pmtn; ri;
di|−. It can be solved by linear programming.

Let t1, . . . , tp+1 be a sequence of release dates and due dates such that
tl < tl+1 for l = 1, . . . , p. The sequence t1, . . . , tp+1 defines time intervals
Il = [tl, tl+1] of length Tl = tl+1 − tl for l = 1, . . . , p.

We use a linear program with variables

xijkl (i = 1, . . . , n; (job indices)

j = 1, . . . , ni; (operation indices)

k = 1, . . . , m;(machine indices)

l = 1, . . . , p (time-interval indices)).

The 4-tuple (i, j, k, l) is called feasible if and only if Oij can be processed
on Mk in time interval Il, i.e. if

• Mk ∈ Mij, and

• ri ≤ tl and di ≥ tl+1.

310 Multi-Purpose Machines

We consider the following linear program

max − s.t.
(I)

∑

k,l
(i,j,k,l)
feasible

xijkl =pij (i = 1, . . . , n; j = 1, . . . , ni)

(II)
∑

j,k
(i,j,k,l)
feasible

xijkl≤Tl (i = 1, . . . , n; l = 1, . . . , p)

(III)
∑

i,j
(i,j,k,l)
feasible

xijkl≤Tl (k = 1, . . . , m; l = 1, . . . , p)

xijkl≥0 ((i, j, k, l) feasible).

We will show that for a given instance of OMPM |pmtn; ri; di|− there
exists a feasible schedule if and only if there exists a feasible solution of
the corresponding linear program.

First we will show that a feasible solution of the linear program defines
a feasible solution of OMPM |pmtn; ri; di|−.

If xijkl = t, then t time units of operation Oij are processed on Mk in time
interval Il. By fulfilling equations (I), all operations are processed for pij

time units. Because of inequalities (II), the sum of the processing times
of all operations of one job in one time interval is not greater than the
length of the interval. Due to inequalities (III), the sum of the processing
times of all operations on one machine in one time interval is not greater
than the length of the interval. Thus, due to the results in Section 2.4,
each operation Oij can be processed on machine Mk in time interval Il for
xijkl time units without violating any capacity constraints. By combining
the resulting schedules of all time intervals, we get a feasible solution of
OMPM |pmtn; ri; di|−.

Using these ideas, it is easy to define a feasible solution x = (xijkl) of the
linear program based on a given feasible schedule for OMPM |pmtn; ri;
di|−.

Again, for OMPM |pmtn; ri|Lmax we obtain a solution which differs from
the optimal objective value by at the most ε time units if we do binary
search on the set of values Llow + iε (i = 1, . . . , �Lup−Llow

ε
).

10.2. MPM Problems with Shop Characteristics 311

10.2.2 Unit Processing Times

In this section we show that some MPM shop problems with unit pro-
cessing times can be formulated as shortest path problems in suitable
networks.

MPM Job Shop Problems

We generalize an approach of Meyer [166] for problem J MPM | pij =
1; n = k|Cmax.

JMPM | pij = 1; ri;prec;n = k|max fi (
∑

fi)

Here fi denotes a monotonic nondecreasing function of the completion
time of job i.

To solve this problem, we first determine time slots t1, . . . , tl (l =
k∑

i=1

ni)

which are sufficient to schedule all jobs in some active schedule for the
problem. To calculate such time slots we may assume ri < rj whenever
i precedes j, and schedule jobs with processing time ni (i = 1, . . . , k)
on one machine in order of nondecreasing release dates ri. t1, . . . , tl are
defined by all the time slots occupied by this schedule.

Now the original problem will be formulated as the problem of finding
a shortest path from some initial vertex to some terminal vertex in the
following network N = (V, A, l). In this network each path from the
initial vertex to the terminal vertex corresponds to a feasible schedule.

• The set V of vertices consists of (k + 1)-tupels (tj , i1, . . . , ik) for
j = 1, . . . , l and 0 ≤ iν ≤ nν(ν = 1, . . . , k). Such a vertex represents
a partial schedule for the interval [0, tj], where iν indicates the last
operation of job ν which is already scheduled. We also have an ini-
tial vertex (t1−1, 0, . . . , 0) and a terminal vertex (tl+1, n1, . . . , nk).

• We have arcs between vertices (tj , i1, . . . , ik) and (tj+1, i
′
1, . . . , i

′
k)

representing the operations scheduled in time slot tj+1. Thus, we
have an arc between two vertices if a k-tupel (x1, . . . , xk) ∈ {0, 1}k

exists with i′ν = iν + xν , ν = 1, . . . , k such that:

– the operations of S = {Oν,iν+1|xν = 1} can be processed in
parallel, i.e. a feasible assignment of the operations of S to

312 Multi-Purpose Machines

the machines exists. This can be checked by constructing a bi-
partite graph in O(km) time and finding a maximal matching
in O(m2.5) time (Even & Kariv [88]),

– the release dates are respected, i.e. Oν,iν+1 ∈ S implies rν <
tj+1, and

– the precedences are respected, i.e. if job μ precedes job ν and
xν = 1, the value of iμ must equal nμ.

• The arcs are weighted with the maximum (sum) of all fν(tj+1)-
values of jobs finishing exactly at time tj+1, i.e. jobs ν with xν = 1
and iν + xν = nν . If no job finishes at time tj+1, the arc weight is
set to −∞(0).

Each feasible schedule corresponds to a path from the initial vertex to
the terminal vertex and vice versa. The corresponding objective value
is given by the length of the path, which is the maximum (sum) of all
arc values. Thus, we only need to find a shortest path which takes

O((km + m2.5)2k
k∑

i=1

ni

k∏

i=1

ni) time since we have O(
k∑

i=1

ni

k∏

i=1

ni) vertices

and O(2k) arcs incident at each vertex. Thus we obtain O(2k
k∑

i=1

ni

k∏

i=1

ni)

arcs. Since the inspection of an arc takes O(km + m2.5) time, we get the
given complexity.

MPM Flow Shop Problems

First we consider the flow shop problem

FMPM | pij = 1; stages = r | ∑
wiCi

We may assume w1 ≥ w2 ≥ . . . ≥ wn. Then there always exists an
optimal schedule in which job i finishes not later than job j if i < j.

We define a network as follows.

The set V of vertices consists of (2r + 2)-tupels (i, i0, . . . , ir, j1, . . . , jr)
for i = 1, . . . , nr, ik = 0, . . . , n (k = 0, . . . , r), and jk = 0, . . . , m (k =

1, . . . , r). Additionally, we assume
r∑

n=0

ik = n and jk ≤ ik for all k =

1, . . . , r.

10.2. MPM Problems with Shop Characteristics 313

A vertex represents a partial schedule for the interval [0, i]. Here ik
indicates the number of jobs which are finished up to stage k. The entry
jk denotes the number of jobs of this partial schedule which are processed
in stage k in [i − 1, i]. We consider only vertices such that j1 operations
of stage 1, j2 operations of stage 2, . . . , and jr operations of stage r can

be processed in parallel, i.e. a feasible assignment of the
r∑

k=1

jk operations

to the m machines exists. This can be checked in O(mr + m2.5) time by
constructing a bipartite graph and finding a maximal matching (Even &
Kariv [88]).

Note that ir equals the number of jobs which are completely finished.
Additionally, we have an initial vertex (0, n, 0, . . . , 0). The vertex (nr +
1, 0, . . . , 0, ir, 0, . . . , 0) with ir = n is defined as the terminal vertex.

The set A of arcs consists of two different types of arcs. Arcs of the
first type are between vertices (i, i0, . . . , ir, j1, . . . , jr) and (i, i′0, . . . , i

′
r, j

′
1,

. . . , j′r) belonging to the same time i. They represent the processing
of a job in stage k in interval [i − 1, i]. Hence we have an arc if i′k =
ik + 1, i′k−1 = ik−1 − 1, j′k = jk + 1 and i′ν = iν , j

′
ν = jν otherwise. This

arc is weighted with 0 if k < r. If k = r, a job is finished and this arc
is weighted with iwir+1. Arcs of the second type are between vertices
(i, i0, . . . , ir, j1, . . . , jr) and (i + 1, i0, . . . , ir, 0, . . . , 0). In this situation no
operation is scheduled. Hence these arcs are weighted with 0.

Now each schedule in which the jobs are finished in order of nonincrea-
sing weights corresponds to a path from the initial vertex to the terminal
vertex. The objective value is given by the length of the path. Conversely,
from each such path a schedule with objective value equal to the length
of the path can be constructed. Note that we may always construct a
permutation flow-shop schedule, i.e. a schedule in which the job order
for each stage is the same.

The network has O(nrnrmr) vertices since ir is uniquely determined by
i0, . . . , ir−1. Hence the network has O(r2mrnr+1) arcs. Calculating a
maximal matching for each vertex takes O(rm + m2.5) time. Inspecting
an arc takes O(r) time since a vertex has O(r) entries, implying that O(r)
binary symbols are needed to encode a vertex. Thus, it takes O((r2 +
rm + m2.5)r ·mr · nr+1) time to construct the network and to calculate a
shortest path, i.e. an optimal schedule.

By modifying this approach as described in Section 11.3, FMPM | pij =
1; stages = r | ∑

Ti(
∑

wiUi) and FMPM | pij = 1; stages = r; ri |

314 Multi-Purpose Machines

∑
Ci(Cmax) can be solved in O(r(r2 + rm + m2.5)mrnr+1) time.

Recall that a fixed number of machines induces a bounded number of
stages of a flow shop problem. Thus, the problems FMPM m | pij =
1 | f for f ∈ {∑ wiCi,

∑
Ti,

∑
wiUi} and FMPM m | pij = 1; ri | f for

f ∈ {Cmax,
∑

Ci} are also solvable in polynomial time.

MPM Open Shop Problems

In an open shop problem, the tasks of a job might be processed in an ar-
bitrary order. By prespecifying for each possible order the number of jobs
which have to be processed according to this order, we obtain a schedul-
ing problem which can be solved by generalizations of the approaches for
flow shop problems presented in the last section.

In such a problem each job is processed according to one of the C = r!
possible (stage) orders π1, . . . , πC . Thus each schedule defines a C-tupel
(n1, . . . , nC), where ni denotes the number of jobs which are processed ac-
cording to πi. Hence we have to calculate all different tupels (n1, . . . , nC)

with 0 ≤ ni ≤ n for all i = 1, . . . , C and
C∑

i=1

ni = n, and solve for each

such tupel the corresponding optimization problem. Then the best sched-
ule of all these subproblems gives the optimal schedule of the open-shop
problem.

Based on these ideas, but using more complicated networks (see Section
11.3), problems OMPM | pij = 1; stages = r | f for f ∈ {∑ wiCi,

∑
Ti,∑

wiUi} and OMPM | pij = 1; stages = r; ri | f for f ∈ {Ci, Cmax} can
be solved polynomially. These networks have O(r·mr ·nr!r+1) vertices and
O(r!r) arcs incident at each vertex. The consideration of arcs and the
feasibility check takes O(m2.5+mr!r) time per arc. Hence these problems
can be solved in O(r2 · r!(mr!r + m2.5)mr · nr!r+1) time. Similar to the
flow shop situation, we conclude that problem OMPM m | pij = 1 | f
for f ∈ {∑uiCi,

∑
Ti,

∑
wiUi} and OMPM m | pij = 1; ri | f for

f ∈ {Cmax,
∑

Ci} are also solvable in polynomial time.

10.3. Complexity Results 315

10.3 Complexity Results

Table 10.1 summarizes the polynomially solvable problems discussed in
Section 10.1. The corresponding results for Section 10.2 can be found
in Table 10.2 in which we denote max{n1, n2} by nmax. The follow-
ing problems are binary NP-hard: PMPM2 | chains; pi = 1 | Cmax,
FMPM | n = 3 | Cmax (Brucker et al. [42]), and JMPM2 | n = 3 | Cmax

(Meyer [166]). Furthermore, since parallel machine problems and shop
scheduling problems are special cases of their MPM-counterparts, the
MPM-problems corresponding to the problems in Tables 5.3, 5.6, 6.3,
6.5, 6.8 are NP-hard as well.

R | pmtn; ri | Lmax 5.1.3 Brucker et al. [42]

lin. prog.

R ‖ ∑
Ci 5.1.3 Bruno et al. [58]

O(mn3)

PMPM | pmtn | ∑
Ci 10.1 Brucker et al. [42]

O(n3)

RMPM | pmtn | ∑
Ci 5.1.3 Brucker et al. [42]

lin. prog.

PMPM | pi = 1; ri |
∑

wiUi 10.1 Brucker et al. [42]

O(n2m(n + log m))

QMPM | pi = 1 | ∑
wiUi 10.1 Brucker et al. [42]

O(n2m(n + log m))

PMPM | pi = 1; ri |
∑

wiTi 10.1 Brucker et al. [42]

O(n2m(n + log m))

QMPM | pi = 1 | ∑
wiTi 10.1 Brucker et al. [42]

O(n2m(n + log m))

Table 10.1: Polynomially solvable MPM-problems with identical and
uniform machines.

316 Multi-Purpose Machines

FMPMm | ri; pij = 1; stages = r | Cmax Brucker et al. [42]

O(r(r2 + rm + m2.5)mrnr+1)

FMPMm | ri; pij = 1; stages = r | ∑
Ci Brucker et al. [42]

O(r(r2 + rm + m2.5)mrnr+1)

FMPMm | pij = 1; stages = r | ∑
wiCi Brucker et al. [42]

O(r(r2 + rm + m2.5)mrnr+1)

FMPMm | pij = 1; stages = r | ∑
wiUi Brucker et al. [42]

O(r(r2 + rm + m2.5)mrnr+1)

FMPMm | pij = 1; stages = r | ∑
Ti Brucker et al. [42]

O(r(r2 + rm + m2.5)mrnr+1)

JMPM | m = 2 | Cmax Brucker & Schlie [56]

O(n3
max)

JMPM | prec; ri; n = 2 | Lmax Jurisch [121]

O(n5
max)

JMPM | prec; ri; pij = 1; n = k | ∑
wiUi Brucker et al. [42]

O((km + m2.5)2k
k∑

i=1

ni

k∏

i=1

ni)

JMPM | prec; ri; pij = 1; n = k | ∑
wiTi Brucker et al. [42]

O((km + m2.5)2k
k∑

i=1

ni

k∏

i=1

ni)

OMPMm | ri; pij = 1; stages = r | Cmax Brucker et al. [42]

O(r2r!(mr!r + m2.5)mrnr!r+1)

OMPMm | ri; pij = 1; stages = r | ∑
Ci Brucker et al. [42]

O(r2r!(mr!r + m2.5)mrnr!r+1)

OMPMm | pij = 1; stages = r | ∑
wiCi Brucker et al. [42]

O(r2r!(mr!r + m2.5)mrnr!r+1)

OMPMm | pij = 1; stages = r | ∑
wiUi Brucker et al. [42]

O(r2r!(mr!r + m2.5)mrnr!r+1)

OMPMm | pij = 1; stages = r | ∑
Ti Brucker et al. [42]

O(r2r!(mr!r + m2.5)mrnr!r+1)

Table 10.2: Polynomially solvable shop problems with multipurpose ma-
chines.

Chapter 11

Multiprocessor Tasks

Contrary to the scheduling problems discussed thus far in which each job
(or task) is processed by at the most one machine (processor) at a time,
in a system with multiprocessor tasks (MPT) tasks require one or
more processors at a time.

More specifically, we have m different processors M1, . . . , Mm and n tasks
i = 1, . . . , n. Each task i requires during a processing period pi all
processors belonging to a subset μi ⊆ {M1, . . . , Mm}. Tasks requiring
the same processor cannot be processed simultaneously. Such tasks are
called incompatible. Otherwise they are called compatible.

The general shop problem with multiprocessor tasks is defined
similarly. Each job i consists of ni multiprocessor tasks Oi1, . . . , Oi,ni

with processing times pij and processor sets μij ⊆ {M1, . . . , Mm}. During
the processing period pij , Oij requires each processor in the set μij. The
multiprocessor task job shop problem is a special case of the general
shop problem with MPT in which each job consists of a chain of tasks.
The flow shop problem with MPT is a special case of the job shop
problem with MPT in which ni = r for i = 1, . . . , n. Furthermore, we
assume that μij = μj ⊆ {M1, . . . , Mm} for stages j = 1, . . . , r and μj �= μl

for j �= l.

Open shop problems with MPT are defined as flow shop problems
with MPT but without precedence constraints between tasks. However,
no pair of tasks of the same job can be processed simultaneously.

To describe different types of multiprocessor task scheduling problems,
we modify the α-field of the α|β|γ-notation introduced in Chapter 1.
We set α = MPT if we have a task system with an arbitrary number

318 Multiprocessor Tasks

of processors. Shop problems with multiprocessor tasks are denoted by
GMPT, JMPT, FMPT, OMPT . If the number of processors is fixed,
we add the symbol m after the symbol MPT .

11.1 Multiprocessor Task Systems

In this section we consider the problem of scheduling a set of multipro-
cessor tasks. MPT2 ‖ Cmax is the simplest problem of this type. Due to
the fact that there are only two processors, we have only three types of
tasks: bi-processor tasks and two types of single-processor tasks. Clearly,
we get an optimal schedule by first scheduling each single-processor task
on its processor without causing idle time.

This, however, is as far as we can get with polynomial algorithms for mul-
tiprocessor task systems with arbitrary processing times. Hoogeveen et
al. [113] have shown that the following problems are NP-hard: MPT3 ‖
Cmax, MPT2 ‖ ∑

Ci, MPT2 | ri | Cmax.

The situation is different if we consider task systems with unit processing
times. Blazewicz & Ecker [26] have shown that MPTm | pi = 1 | Cmax

can be solved in time which is linear in the number of jobs. The more
general problem MPTm | pi = 1; ri | Cmax, as well as MPTm | pi =
1; ri |

∑
Ci, had open complexity status (Hoogeveen et al. [113]).

We will show that these and other related open problems can be solved
polynomially by reductions to shortest (or longest) path problems. We
show this reduction for problem MPTm | pi = 1 | ∑

wiCi. Reduc-
tions for the problems mentioned above and for the additional problems
PMPTm | pi = 1 | ∑

Ti and MPTm | pi = 1 | ∑
wiUi are very similar

and will be explained later.

MPTm | pi = 1 | ∑
wiCi

We have n multiprocessor tasks i = 1, . . . , n with unit processing times.
Associated with task i is a set μi of processors which are all needed to
process task i. The set μi defines the type of task i. Let R ≤ 2m−1 be the
number of different types in the system and denote by Ij(j = 1, . . . , R)
the set of all tasks of type j. Let nj be the number of tasks in Ij. By
exchange arguments one can show that there exists an optimal schedule S
such that the following property holds for each j = 1, . . . , R (see Section

11.1. Multiprocessor Task Systems 319

4.3): The tasks in Ij are processed in order of nonincreasing weights wi.

For each Ij , let
j1, j2, . . . , jnj

be an ordered sequence of all tasks from Ij . For technical reasons we add
a dummy task j0 at the beginning of the sequence. Next we show that
problem MPTm | pi = 1 | ∑

wiCi can be formulated as a shortest path
problem in some network N = (V, A, l). This network is defined by:

• The set V of vertices consisting of (R+1)-tuples (t; i1, . . . , iR) where
0 ≤ t ≤ n and 0 ≤ ij ≤ nj . (t; i1, . . . , iR) represents a partial
schedule consisting of all tasks jν with 1 ≤ j ≤ R and 1 ≤ ν ≤ ij
scheduled in the time interval [0, t]. (0; 0, . . . , 0) is the initial vertex
and (n; n1, . . . , nR) is the terminal vertex.

• The immediate successors of vertex u = (t; i1, . . . , iR) are given by
all v = (t + 1; i1 + x1, . . . , iR + xR) where x1, . . . , xR satisfy the
following conditions:

– xν ∈ {0, 1} for ν = 1, . . . , R

– during one time period, exactly one task from each set Iν with
xν = 1 can be scheduled, i.e. for each pair (ν, α) with ν �= α
and xν = xα = 1, tasks from Iν and Iα are compatible.

• The cost l(u, v) associated with arc (u, v) is given by

∑

i∈S

wi(t + 1) (11.1)

where S = {jiν+1 | xν = 1; 1 ≤ ν ≤ R}.

Clearly, a feasible schedule corresponds to a path in N from (0; 0, . . . , 0)
to (n; n1, . . . , nR) and vice versa. The shortest such path provides an
optimal solution of the problem.

In a preprocessing step, all feasible (x1, . . . , xR)-tupels are calculated.

The number of vertices is bounded by n
R∏

j=1

nj ≤ nR+1 and each vertex

has at the most 2R successors. Thus, the network has at the most 2RnR+1

arcs, which means that a shortest path can be calculated in O(R2RnR+1)
time where R ≤ 2m −1. The factor R takes care of the calculation of arc
weights.

320 Multiprocessor Tasks

MPTm | pi = 1 | ∑
Ti

To solve this problem we have to order the tasks in each set Ij according
to nondecreasing due dates. Furthermore, the cost (11.1) is replaced by

∑

i∈S

max{0, t + 1 − di}.

MPTm | pi = 1; ri | Cmax and MPTm | pi = 1; ri |
∑

Ci

To solve these problems the tasks are ordered according to nondecreasing
release times ri in each set Ij (see Sections 4.2 and 4.3). Furthermore, we
may restrict the schedule to a set of at the most n time periods [t− 1, t].
Let T be the set of corresponding t-values (see Section 4.1.2). The set
V of vertices is given by all (R + 1)-tuples (t; i1, . . . , iR) with t ∈ T and
rij ≤ t − 1 for j = 1, . . . , R. In the definition of the terminal vertex, n
must be replaced by n∗ = maxT . In the definition of successors of some
vertex (t; i1, . . . , iR), the first component t + 1 must be replaced by the
smallest number s ∈ T which is greater than t.

For the
∑

Ci-problem the costs are given by (11.1) with wi = 1 for all
i = 1, . . . , n.

For the Cmax-problem, the cost associated with an arc (u, v), where u =
(t; i1, . . . , iR) and v = (s; i1 + x1, . . . , iR + xR), is equal to zero if iν = nν

for ν = 1, . . . , R. Otherwise the cost is equal to s − t.

MPTm | pi = 1 | ∑
wiUi

To solve this problem we need to determine a feasible schedule for the on-
time tasks such that the sum of the weights of the late tasks is minimal.
Late tasks can be scheduled at the end of the schedule in an arbitrary
order. We may assume that an optimal schedule for the on-time tasks ex-
ists in which tasks of the same type are finished in order of nondecreasing
due dates. Thus, let

Jj1, Jj2, . . . , Jjnj

be a sequence of all tasks in Ij ordered according to nondecreasing due
dates. We define the network N = (V, A, l) as follows:

• The set V of vertices consists of (R + 1)-tupels (t; i1, . . . , iR) for
t = 0, . . . , n and ij = 0, . . . , nj . A vertex represents a partial

11.1. Multiprocessor Task Systems 321

schedule in which the first ij tasks of the set Ij for j = 1, . . . , R are
either scheduled late or in time interval [0, t]. We define (0; . . . , 0)
to be the initial vertex and (n; n1, . . . , nR) to be the terminal vertex.

• We have two different types of arcs. Arcs of the first type are
between vertices u = (t; i1, . . . , iR) and v = (t + 1; i1 + x1, . . . , iR +
xR). They are defined as in problem MPTm | pi = 1 | sumwiCi

but under the additional restriction that the scheduled tasks are
on time, i.e. djij+1

≥ t + 1 if xj = 1 for j = 1, . . . , R. These arcs
have zero weight since they represent tasks which are on time.

The arcs of the second type are between vertices belonging to the
same time t. They represent the tasks which are scheduled late, i.e.
we have arcs from (t; i1, . . . , ij, . . . , iR) to (t; i1, . . . , ij + 1, . . . , iR)
with weight wjij+1

for all j = 1, . . . , R.

Each schedule in which the on-time tasks of the same type are finished
according to nondecreasing due dates corresponds to a path from the
starting vertex to the terminal vertex. The length of the path denotes
the corresponding objective value. On the other hand, each path defines
a feasible schedule for the on-time tasks. Thus, by calculating a shortest
path we obtain the optimal objective value and a corresponding schedule
in O(R2RnR+1) steps if the feasible tupels (x1, . . . , xR) are calculated in
a preprocessing step.

If the number m of processors is small, more efficient algorithms can be
given. This is illustrated by the following two examples.

MPT2 | pi = 1 | ∑
Ci Simple exchange arguments show that an optimal

schedule for this problem can be constructed by first scheduling the single
processor tasks and then all bi-processor tasks.

MPT2 | pi = 1; ri | Cmax and MPMPT2 | pi = 1 | Lmax

To solve problem MPT2 | pi = 1; ri | Cmax, all bi-processor tasks are first
scheduled according to nondecreasing ri-values. Then, on each processor,
we schedule the corresponding single-processor tasks again in an order
of nondecreasing ri-values using the idle time slots left by bi-processor
tasks.

Problem MPT2 | pi = 1 | Lmax can be solved similarly.

322 Multiprocessor Tasks

MPT-Problems with Preemption

Concerning the preemptive case, Kubale [128] has shown that MPM |
pmtn | Cmax is strongly NP-hard. On the other hand, MPTm | pmtn |
Cmax can be solved polynomially using linear programming (Bianco et al.
[24]). For MPT2 | pmtn | Lmax a linear time algorithm exists (Bianco
et al. [25]). MPT2 | pmtn | ∑

Ci can be solved by a reduction to the
single-machine problem 1 | chains | ∑

Ci (Cai et al. [61]). This can be
seen as follows.

Let M1 and M2 be the two machines. Then we have three types of tasks:
M1-tasks, M2-tasks, and bi-processor tasks.

Lemma 11.1 An optimal schedule exists with the following properties.

(a) There is no idle time on processor M1(M2) before the completion
time of the last M1-task (M2-task).

(b) The M1-tasks (M2-tasks) are sequenced according to the shortest
processing time (SPT) rule. The bi-processor tasks are sequenced
according to the SPT rule.

(c) None of the bi-processor tasks is preempted by other jobs.

Proof:

(a) If there is idle time on M1(M2) before the completion time of the
last M1-task (M2-task), we shift this task to the left.

(b) If two Mi-tasks are not sequenced according to the SPT rule, elim-
inate both tasks and reschedule them in the created slot according
to the SPT rule.

(c) Apply transformation to bi-processor tasks which is similar to the
one described in (b).

None of the transformations described in (a), (b), and (c) increase the∑
Ci-value. Thus, there exists an optimal schedule with the described

properties. �

Lemma 11.2 In any optimal schedule if a bi-processor task is not the
first task, its starting time must be equal to the completion time of some
other tasks.

11.2. Shop Problems with MPT : Arbitrary Processing Times 323

Proof: Assume that some bi-processor task J starts at time t and t is
not the finishing time of some task. Then at time t at least one task is
preempted and if only one task is preempted on one processor at time t,
then the other processor has an idle interval finishing at time t. Moving
J slightly to the left will decrease the

∑
Ci-value. Thus, an optimal

schedule has the described properties. �

Due to Lemmas 11.1 and 11.2, an optimal schedule can be constructed
by first scheduling the M1-tasks and M2-tasks in SPT -order on their
corresponding processors. Then we have to insert the bi-processor tasks,
again in SPT -order, starting at the finishing times of the single-processor
tasks. This insertion problem may be solved by solving a corresponding
problem 1 | chains | ∑

Ci which is constructed in the following way.

Let t1 < t2 < . . . < tq be the time instances where a task finishes in the
SPT -schedule for the M1-tasks and M2-tasks. Define two chains of jobs.
The first chain consists of q tasks

J ′
1 → J ′

2 → . . . → J ′
q

where J ′
i has the processing time ti − ti−1 and t0 = 0.

The second chain
J ′′

1 → J ′′
2 → . . . → J ′′

r

contains the bi-processor tasks ordered according to the SPT -rule. Con-
sider the 1 | chains | ∑

Ci problem which is provided by these two
chains.

11.2 Shop Problems with MPT :Arbitrary

Processing Times

In this section we will discuss polynomial algorithms for open shop, flow
shop, and job shop problems with multiprocessor tasks with arbitrary
processing times.

Open Shop Problems

We will first discuss the complexity of MPT open shop problems with
an arbitrary number of machines and Cmax-criterion. The complexity
depends on the compatibility structure of the stages of the problem.

324 Multiprocessor Tasks

Stage 3:

Stage 2:

Stage 1:

(a) (b) (c) (d)

�

�

�

�

�

�

�

�

�

�

�

�

��

��

Figure 11.1: Four types of compatibility graphs.

Stages i and j are called compatible if the corresponding machine sets
μi and μj are disjoint. Otherwise they are called incompatible. The
compatibility structure of a system with r stages can be described by
a corresponding compatibility graph G = (V, E). G is an undirected
graph with the r stages as vertices. There is an edge between two vertices
i and j (i �= j) if and only if the stages i and j are incompatible.

Now consider an open shop problem with two stages. If these two stages
are incompatible, then the problem is easy since no tasks can be processed
simultaneously. Thus, the tasks can be scheduled one after the other in
any order. Otherwise, if the stages are compatible, then the problem
reduces to its classical counterpart O2 ‖ Cmax, which can be solved in
O(n) time (see Section 6.2.1). We have the following

Theorem 11.3 OMPT | stages = 2 | Cmax can be solved in O(n) time.

For a system with three stages, we essentially have the four types of
compatibility graphs shown in Figure 11.1.

Using these graphs we may formulate the following

Theorem 11.4 OMPT | stages = 3 | Cmax can be solved in O(n) time
if its compatibility graph is given by Figure 11.1(a), 11.1(b) or 11.1(c).
Otherwise it is NP-hard.

Proof: The problem defined by Figure 11.1(a) is again trivial. Consider
the problem of Figure 11.1(b). All tasks of Stage 2 are incompatible with
all other tasks. Thus w.l.o.g. they can be processed at the beginning of
any feasible schedule. Because the tasks in Stage 1 are compatible with
the tasks in Stage 3, the problem reduces to O2 ‖ Cmax.

11.2. Shop Problems with MPT : Arbitrary Processing Times 325

For a problem given by Figure 11.1(c) we proceed as follows. We con-
catenate Stages 1 and 2 to one stage, where the processing time of a job
in this stage is given by the sum of its processing times of Stage 1 and
Stage 2. Thus, we obtain the classical problem O2 ‖ Cmax where, addi-
tionally, one special preemption per job is allowed. Since any solution
of the problem O2 | pmtn | Cmax can be transformed into one without
preemption without increasing the makespan (Gonzalez & Sahni [104]),
this additional condition may be dropped.

The classical problem O3 ‖ Cmax is represented by the graph in Figure
11.1(d). Thus, this case is NP-hard (Gonzalez & Sahni [104]). �

A consequence of Theorems 11.3 and 11.4 is that OMPT2 ‖ Cmax can
be solved in O(n) time. If we have three stages, the compatibility graph
is given by Figure 11.1(b) and Theorem 11.4 applies. If there are two
stages, Theorem 11.3 applies.

The following problems are NP-hard since the corresponding problems
without multiprocessor tasks are NP-hard: OMPT2 | ri | Cmax,
OMPT2 ‖ Lmax, OMPT3 ‖ Cmax, OMPT2 ‖ ∑

Ci, OMPT2 | tree |
Cmax, OMPT | n = 3 | Cmax.

If the number of machines is fixed, then the number of possible stages
is also fixed. Thus, the general problems OMPTm | n = k; prec; ri |∑

wiUi and OMPTm | n = k; prec; ri |
∑

wiTi are solvable in constant
time.

Flow Shop Problems

Again, we classify MPT flow shop problems according to the compati-
bility structure of the stages.

Similar to the MPT open shop problem, the MPT flow shop problem
with two stages is either trivial or it reduces to problem F2 ‖ Cmax, which
can be solved in O(n logn) time (see Section 6.3).

Theorem 11.5 FMPT | stages = 2 | Cmax can be solved in O(n log n)
time.

The possible compatibility graphs for MPT flow shop problems with
three stages are shown in Figure 11.2.

Obviously, the problems described by Figures 11.2(c) and 11.2(d) (Fi-
gures 11.2(e) and 11.2(f)) are symmetric to each other.

326 Multiprocessor Tasks

Stage 3:

Stage 2:

Stage 1:

(a) (b) (c) (d) (e) (f) (g) (h)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

Figure 11.2: Compatibility graphs for MPT flow shop problems with
three stages.

Theorem 11.6 FMPT | stages = 3 | Cmax can be solved in O(n logn)
time if its compatibility graph is given by Figure 11.2(a), 11.2(c), 11.2(d),
11.2(e) or 11.2(f). In all other cases the problem is NP-hard.

Proof: The problem defined by Figure 11.2 (a) is again easy and can be
solved in linear time.

Similarly, as the problems in Figure 11.2(b) or 11.2(c) reduce to O2 ‖
Cmax, problems in Figure 11.2(c), 11.2(d), 11.2(e) or 11.2(f) reduce to
F2 ‖ Cmax. Note that for problem F2 ‖ Cmax, the optimal values for the
preemptive and nonpreemptive case are again the same.

Figure 11.2(h) shows the compatibility graph of F3 ‖ Cmax, which is NP-
hard (Garey & Johnson [99]). An NP-hardness proof for the problems
given by Figures 11.2(b) and 11.2(g) can be found in Brucker & Krämer
[48]. �

Problems FMPT2 ‖ Cmax with a compatibility graph given by Figure
11.2(b) are NP-hard, which implies that FMPT2 ‖ Cmax is NP-hard.
FMPT2 ‖ ∑

Ci is NP-hard because F2 ‖ ∑
Ci is NP-hard (Garey

& Johnson [97]). Finally, FMPTm | n = k; prec; ri | ∑
wiUi and

FMPTm | n = k; prec; ri |
∑

wiTi are solvable in constant time.

Job Shop Problems

Problem JMPT2 | pij = 1 | Cmax is NP-hard (Brucker & Krämer [48]),
contrary to the fact that J2 | pij = 1 | Cmax is polynomially solvable
(Timkovsky [198]).

Also, JMPT3 | n = 3 | Cmax and JMPT3 | n = 3 | ∑
Ci are NP-hard

because the classical counterparts are NP-hard (Sotskov & Shakhlevich
[190]).

11.2. Shop Problems with MPT : Arbitrary Processing Times 327

However, it is possible to extend the other known polynomial time algo-
rithms for the classical job shop problem to the MPT case.

Theorem 11.7 The following job shop problems with MPT are poly-
nomially solvable:

(a) JMPT2 | ni ≤ 2 | Cmax,

(b) JMPT | n = 2 | f if f is regular, and

(c) JMPT2 | n = k | Cmax.

Proof: (a) If the first (last) task of a job requires both processors, it
can be moved to the beginning (end) of the schedule without changing
the schedule length. Thus, the problem is equivalent to scheduling the
single-processor tasks, which is equivalent to the classical problem J2 |
ni ≤ 2 | Cmax. Because the classical problem can be solved in O(n log n)
time (Jackson [119]), JMPT2 | ni ≤ 2 | Cmax can be solved with the
same complexity.

(b) Like the classical problem J | n = 2 | f , problem JMPT | n = 2 | f
can be formulated as a shortest path problem. It can be solved by the
methods developed in Section 6.4.2.

(c) As in Section 6.4.3, we reduce JMPT2 | n = k | Cmax to a shortest
path problem in an acyclic network N = (V, A, l). The construction of
N can be described as follows.

The two processors are denoted by A and B. We consider only active
schedules , i.e. schedules in which no task can be started earlier without
violating feasibility. Given an active schedule, we have a unique sequence

t0 = 0 < t1 < t2 < . . . < tq

of times at which one of the following conditions holds:

• two single-processor tasks start to be processed jointly on both
processors,

• a bi-processor task starts, or

• a single-processor task starts to be processed on one processor and
on the other processor an idle period starts (see Figure 11.3).

328 Multiprocessor Tasks

t0 t1 t2 t3 t4 t5 t6

Figure 11.3: Structure of a JMPT2 | n = k | Cmax-schedule.

In addition, let tq+1 denote the makespan.

We call the set Dμ of tasks scheduled in the interval [tμ, tμ+1] (μ =
0, . . . , q) a block. A block consists either of one bi-processor task or one
or more single-processor tasks. lμ = tμ+1 − tμ is the length of block Dμ.

The network N = (V, A, l) is defined by:

• The set V of all index tuples v= (v(i))k
i=1 with 0 ≤ v(i) ≤ ni for

i = 1, . . . , k. The vertex s= (0)k
i=1 is called the initial vertex. The

vertex t= (ni)
k
i=1 is called the terminal vertex. Vertices define the

end or start of a block.

• (u,v)∈ A if and only if u<v, where the set of tasks

{Oi,j(i) | i = 1, . . . , k; u(i) < j(i) ≤ v(i)}

defines a block.

• For each (u,v)∈ A, l(u,v) is the length of the block corresponding
to (u,v).

Note that a set of tasks defines a block if the tasks can be scheduled
without idle times between the tasks scheduled on each processor and
only the first tasks on processor A and B start at the same time.

In N , each s-t-path corresponds to a feasible schedule. Furthermore,
there is an s-t-path corresponding to an optimal schedule. Thus, to
solve the MPT job shop problem we have to find a shortest s-t-path.

The network has O(rk) vertices, where r =
k

max
i=1

ni. Therefore, an optimal

schedule can be found in O(r2k) time if the network N is given.

As shown in Section 6.4.3, we need O(r2k) time to construct the network.
This provides an O(r2k)-algorithm. �

11.3. Shop Problems with MPT : Unit Processing Times 329

11.3 Shop Problems with MPT: Unit Pro-

cessing Times

Job Shop Problems

We consider a job shop problem with a fixed number of jobs consisting
of unit time tasks. The algorithm we will present is a straightforward
generalization of an algorithm for the problem without multiprocessor
tasks due to Meyer [166]. This algorithm can be applied to the general
objective functions max fi and

∑
fi where fi denotes a monotonous non-

decreasing function of the completion time of job i. Furthermore, we
may have release times and precedence constraints between jobs.

JMPT | pij = 1;prec; ri;n = k | max fi (
∑

fi)

To solve this problem we first determine time slots t1, . . . , tl (l =
k∑

i=1

ni)

which are sufficient for some active schedule for the problem. Then the
problem will be formulated as a shortest path problem in a suitable
network.

We may assume ri < rj whenever i precedes j. If we assume that all
tasks must be processed on the same processor, we obtain the time slots
t1, . . . , tl by scheduling the k jobs in order of nondecreasing release dates
with processing times ni.

A feasible schedule defines a path in the following network N = (V, A, d)
from some initial vertex to a terminal vertex:

• The set V of vertices consists of (k + 1)-tupels (tj , i1, . . . , ik) for
j = 1, . . . , l and 0 ≤ iν ≤ nν(ν = 1, . . . , k). Such a vertex rep-
resents a partial schedule for the interval [0, tj] where iν indicates
the last task of job ν which is already scheduled. Additionally,
we have an initial vertex (t1 − 1, 0, . . . , 0) and a terminal vertex
(tl + 1, n1, . . . , nk).

• We have arcs between nodes (tj , i1, . . . , ik) and (tj+1, i
′
1, . . . , i

′
k) rep-

resenting the tasks scheduled in time slot tj+1. There is an arc
between two vertices if a k-tupel (x1, . . . , xk) ∈ {0, 1}k exists with
i′ν = iν + xν , ν = 1, . . . , k such that:

330 Multiprocessor Tasks

– the tasks of S = {Oν,iν+1 | xν = 1} can be processed in
parallel,

– the release dates are respected, i.e. Oν,iν+1 ∈ S implies rν <
tj+1, and

– the precedences are respected, i.e. if job μ precedes job ν and
xν = 1, then the value of iμ must equal nμ.

• The arcs are weighted with the maximum (sum) of all fν(tj+1)-
values of jobs finishing exactly at time tj+1, i.e. jobs ν with xν = 1
and iν + xν = nν . If no job finishes at time tj+1, the arc weight is
set to −∞(0).

Each feasible schedule corresponds to a path from the initial vertex to
the terminal vertex and vice versa. The corresponding objective value
is given by the length of the path, where the length of a path is the
maximum (sum) of all arc values. Thus, we only need to find a shortest

path which takes O(k2km
k∑

i=1

ni

k∏

i=1

ni) time since we have O(
k∑

i=1

ni

k∏

i=1

ni)

vertices, O(2k) arcs incident at each vertex, and the inspection of an arc
takes O(km) time.

Flow Shop Problems

We solve different flow shop problems with multiprocessor unit time tasks
and a fixed number of stages.

FMPT | pij = 1; stages = r | ∑
wiCi

We may assume w1 ≥ w2 . . . ≥ wn. Then there always exists an optimal
schedule in which job i finishes before job j if i < j.

We define the network as follows:

• The set V of vertices consists of (r + 2)-tupels (i, i0, . . . , ir) for

i = 1, . . . , nr and 0 ≤ ik ≤ n (k = 0, . . . , r) with
r∑

k=0

ik = n. It

represents a partial schedule for the interval [0, i] where ik indicates
the number of jobs that are finished up to stage k. Thus, ir equals
the number of jobs that are completely finished. We have an initial

11.3. Shop Problems with MPT : Unit Processing Times 331

vertex (0, n, 0, . . . , 0). The vertex (nr, 0, . . . , 0, n) is defined to be
the terminal vertex.

• The arcs between vertices (i, i0, . . . , ir) and (i + 1, i′0, . . . , i
′
r) repre-

sent the tasks scheduled in time slot i + 1. Hence we have an arc
between two nodes if an r-tupel (x1, . . . , xr) ∈ {0, 1}r, representing
the stages processed in time slot i + 1, exists such that

– the processor requirements of the stages, i.e. the sets μj with
xj = 1, are pairwise disjoint,

– a job is processed in stage k only if at least one job was pro-
cessed up to stage k − 1, i.e. xk = 1 only if ik−1 > 0, and

– i′k equals the sum of the number of jobs already processed up
to stage k in [0, i] and the number of jobs which are processed
in stage k in [i, i + 1] minus the number of jobs which are
processed in stage k + 1 in [i, i + 1], i.e. i′k = ik + xk − xk+1

for all k = 1, . . . , r − 1, i′0 = i0 − x1 and i′r = ir + xr.

• The arcs have zero weight if xr = 0. If xr = 1, the weight equals
(i+1)wir+1 because we may assume that job ir +1 is now finished.

Each schedule in which the jobs are finished in order of nonincreasing
weights corresponds to a path from the initial vertex to the terminal
vertex. The objective value is given by the length of the path. Conversely,
from each such path, a schedule with objective value equal to the length
of the path can be constructed as follows. For each arc (x1, . . . , xr) of
the shortest path ending at a node (i + 1, i′0, . . . , i

′
r), schedule for xj = 1

job (i′j + . . . + i′r) in stage j in time slot [i, i + 1]. Note that the resulting
schedule is always a permutation flow shop schedule, i.e. a schedule in
which the job order for each stage is the same.

In a preprocessing step we calculate all feasible (x1, . . . , xr)-tupels in
O(2r(r + m)) steps. The network has O(nrnr) vertices since the value
of ir is uniquely determined by i0, . . . , ir−1, and hence O(r2rnr+1) arcs.
Inspection of an arc takes O(r) steps. Thus, it takes O(r22rnr+1 +2r(r+
m)) time to calculate a shortest path, i.e. an optimal schedule.

Using similar techniques, FMPT | pij = 1; stages = r | ∑
Ti and

FMPT | pij = 1; stages = r; ri |
∑

Ci(Cmax) can be solved in O(r22r

nr+1 +2r(r +m)) time. For the latter, we may assume that jobs are pro-
cessed in order of nondecreasing release dates. Furthermore, time slots

332 Multiprocessor Tasks

are calculated as described for problem JMPT | pij = 1; prec; ri; n = k |
maxfi by computing an earliest possible starting schedule. Then the net-
work can be defined as for problem FMPT | pij = 1; stages = r | ∑

wiCi

with the following additional restriction. Arcs with x1 = 1 are only al-
lowed to end at a node (tj+1, i

′
0, . . . , i

′
r) if rn−i′0 ≤ tj+1 − 1. Here we

assume that r1 ≤ r2 ≤ . . . ≤ rn.

FMPT | pij = 1; stages = r | ∑
wiUi

We proceed in a similar way as for problem MPTm | pi = 1 | ∑
wiUi.

We are interested in finding a feasible schedule for the on-time jobs. We
assume that d1 ≤ . . . ≤ dn since the on-time jobs can be finished in order
of nondecreasing due dates. The network is defined as follows:

• The set V of vertices consists of (r + 2)-tupels (i, i0, . . . , ir) for

i = 1, . . . , nr and 0 ≤ ik ≤ n (k = 0, . . . , r) with
r∑

k=0

ik = n.

Furthermore, we have vertices (0, n − i, 0, . . . , 0, i) for i = 0, . . . , n.
A vertex represents a partial schedule for the on-time jobs scheduled
in interval [0, i] and the late jobs scheduled in [dn,∞[. Here ik
(k = 0, . . . , r − 1) indicates the number of jobs which have been
processed up to stage k. The value of ir indicates the number of
jobs which are either finished on time in [0, i] or scheduled late.
(0, n − i, 0, . . . , 0, i) indicates that the first i jobs are scheduled
late. The vertex (0, n, 0, . . . , 0) is defined as the initial vertex while
(nr, 0, . . . , 0, n) is the terminal vertex.

• The arcs are defined as in problem FMPT | pij = 1; stages =
r | ∑

wiCi under the restriction that arcs with xr = 1 are only
allowed to end at a vertex (i + 1, i′0, . . . , i

′
r) with di′r ≥ i + 1. These

arcs have zero weight since they represent jobs which are on time.
Additionally, we have arcs between vertices belonging to the same
time slot i. They represent the jobs which are scheduled late, i.e.
for i0 > 0 we have arcs from (i, i0, . . . , ir) to (i, i0 − 1, . . . , ir + 1)
with weight wir+1.

Each schedule in which the on-time jobs are finished according to non-
decreasing due dates corresponds to a path from the initial vertex to the
terminal vertex. The length of the path denotes the corresponding objec-
tive value. On the other hand, each path defines a feasible schedule for the

11.3. Shop Problems with MPT : Unit Processing Times 333

on-time jobs. Thus, by calculating a shortest path we obtain the optimal
objective value and a corresponding schedule in O(r22rnr+1 +2r(r +m))
time.

Recall that a fixed number of processors induces a bounded number of
stages of a flow shop problem. Thus, the problems FMPTm | pij = 1 |∑

wiCi, FMPTm | pij = 1 | ∑
Ti, FMPTm | pij = 1; ri |

∑
Ci(Cmax),

and FMPTm | pij = 1 | ∑
wiUi are also solvable in polynomial time.

Open Shop Problems with Multiprocessor Tasks

In an open shop problem, tasks of a job might be processed in an arbitrary
order. By prespecifying for each possible order the number of jobs which
have to be processed according to this order, we obtain a scheduling
problem which can be solved by generalizations of the approaches for
flow shop problems presented in the last section.

OMPT | pij = 1; stages = r | ∑
wiCi

In this problem each job is processed according to one of the C = r!
possible (stage) orders π1, . . . , πC . Thus, each schedule defines a C-tupel
(n1, . . . , nC), where ni denotes the number of jobs which are processed ac-
cording to πi. Hence, we have to calculate all different tupels (n1, . . . , nC)

with 0 ≤ ni ≤ n for all i = 1, . . . , C and
C∑

i=1

ni = n, and solve the cor-

responding optimization problem for each such tupel. Then the best
schedule of all these subproblems gives the optimal schedule of the open
shop problem.

We may assume w1 ≥ . . . ≥ wn. Then an optimal schedule exists with
C1 ≤ . . . ≤ Cn. We generalize the definition of the network for problem
FMPT | pij = 1; stages = r | ∑

wiCi as follows:

• The vertices are (1 + C(r + 1) + r)-tupels (i, i1,0, . . . , i1,r, i2,0,
. . . , iC,r, j1, . . . , jr) for i = 0, . . . , nr − 1, 0 ≤ iμ,ν ≤ nμ (μ =
1, . . . , C;ν = 0, . . . , r) and jk ∈ {0, 1} (k = 1, . . . , r). Furthermore,

we assume
r∑

ν=0

iμ,ν = nμ for μ = 1, . . . , C. A vertex represents a

partial schedule for the interval [0, i + 1], where iμ,ν indicates the
number of jobs which have to be scheduled according to πμ and
have been processed up to stage πμ(ν). The entry jk denotes the

334 Multiprocessor Tasks

number of tasks processed in stage k in [i, i + 1]. The initial vertex
is given by (0, i1,0, . . . , i1,r, i2,0, . . . , iC,r, j1, . . . , jr) with jk = 0 for
k = 1, . . . , r, iμ,0 = nμ for μ = 1, . . . , C, and iμ,ν = 0 for ν �= 0.
The vertex (nr, i1,0, . . . , i1,r, i2,0, . . . , iC,r, j1, . . . , jr) with jk = 0 for
k = 1, . . . , r, iμ,r = nμ for μ = 1, . . . , C, and iμ,ν = 0 for ν �= r is
defined as the terminal vertex.

• The set A consists of two different types of arcs. Arcs of the
first type are between vertices (i, . . . , iμ,ν , . . . , j1, . . . , jr) and (i, . . . ,
i′μ,ν , . . . , j

′
1, . . . , j

′
r) belonging to the same time i. They represent the

scheduling of a task in stage πq(s) in [i, i + 1]. Hence, we have an
arc if i′q,s = iq,s + 1, i′q,s−1 = iq,s−1 − 1 and i′μ,ν = iμ,ν otherwise.
Furthermore, we have j′πq(s) = jπq(s) + 1 and j′k = jk otherwise. We
must ensure that no processor is required more than once. This
check takes O(r) time if we assume a preprocessing as in the flow
shop section. These arcs have zero weight if no job is finished, i.e.

s < r. Otherwise we may assume that jobs 1, 2, . . . ,
C∑

μ=1

iμ,r are al-

ready finished in [0, i+1]. Hence, the job
C∑

μ=1

iμ,r +1 finishes at time

i + 1 and the weight of the arc equals (i + 1)wPC
μ=1 iμ,r+1. Arcs of

the second type are between vertices (i, . . . , iμ,ν , . . . , iC,r, j1, . . . , jr)
and (i + 1, . . . , iμ,ν , . . . , iC,r, 0, . . . , 0). In this situation no task is
scheduled. Thus they have zero weight.

Thus, by calculating a shortest path we get an optimal schedule for
the subproblem. All O(nr!) subproblems have a total of O(nrnr!r2r) =
O(r2rnr!r+1) nodes. At the most O(r!r) arcs start from each node and
the inspection of an arc takes O(rr!) time. As in the flow shop section,
we calculate all feasible (j1, . . . , jr)-tupels in O(2r(r + m)) time in a pre-
processing step. Thus, problem OMPT | pij = 1; stages = r | ∑

wiCi

can be solved in O(r3(r!)22rnr!r+1 + 2r(r + m)) time.

Now observe that the subproblems of the open shop problems with ob-
jective function

∑
Ti,

∑
wiUi and

∑
Ci(Cmax) with release dates can be

solved by similar generalizations of the corresponding flow shop prob-
lems. Hence, we conclude that OMPT | pij = 1; stages = r | ∑

Ti,
OMPT | pij = 1; stages = r; ri | ∑

Ci(Cmax) and OMPT | pij =
1; stages = r | ∑

wiUi can also be solved in O(r3(r!)22rnr!r+1+2r(r+m))
time.

11.4. Multi-Mode Multiprocessor-Task Scheduling Problems 335

Similar to the flow shop situation, we conclude that the problems
OMPTm | pij = 1 | ∑

wiCi, OMPTm | pij = 1 | ∑
Ti, OMPTm |

pij = 1; ri | ∑
Ci(Cmax) and OMPTm | pij = 1 | ∑

wiUi are also
solvable in polynomial time.

We are interested in classifying shop problems with multiprocessor tasks
and unit processing times with respect to their complexity status. Thus,
we remark that open shop problems with 2 jobs and unit processing time
tasks, i.e. OMPT | pij = 1; n = 2 | Cmax, can be reduced to a matching
problem in a bipartite graph G = (V ∪ W, A) as follows. Each task of
job 1 (job 2) corresponds to a vertex of V (W). An edge between a
vertex of V and a vertex of W exists if the represented tasks can be
processed in parallel. An optimal schedule for the open shop problem
corresponds to a maximal matching in the graph G and vice versa. Thus
it can be calculated in O(r2.5) time (Even & Kariv [88]), where r denotes
the number of stages. Note that this approach can be generalized in a
straightforward way to solve OMPT | pij = 1; ri; n = 2 | maxfi (

∑
fi)

in O(r2.5) time if the fi are monotonic nondecreasing.

11.4 Multi-Mode Multiprocessor-Task

Scheduling Problems

In a multi-mode multiprocessor-task scheduling problem (MMPT -pro-
blem) there is set Ai = {A1

i , . . . , A
mi
k }(Aij = {A1

ij, . . . , A
mij

ij }) of machine
sets Aν

i (A
ν
ij) and corresponding processing times pν

i (p
ν
ij) associated with

each task i (operation Oij). We have to assign a set Aν
i (A

ν
ij) to each

task i (operation Oij). If Aν
i (A

ν
ij) is assigned to i (Oij), then task i

(operation Oij) occupies all processors in the set Aν
i (A

ν
ij) for pν

i (p
ν
ij) time

units. Thus, after the assignment we have a multiprocessor task problem.
The MMPT -problem consists of finding an assignment and scheduling
the tasks (operations) on the assigned machines such that some objec-
tive function is minimized. In the α|β|γ-notation, MMPT -problems
are characterized by α1 ∈ {MMPT, MGMPT, MJMPT, MFMPT,
MOMPT}. The sets Ai(Aij) may be restricted. For example, we may
assume that each task requires a fixed number q of processors. Then
Ai is the set of all subsets of processors of size q. In this case we usu-
ally assume that the processing time depends only on this number of
processors. To indicate such a model we add “sizei” to the β-field. In

336 Multiprocessor Tasks

connection with models for parallel computing other restrictions are pos-
sible (see Blazewicz et al. [27]). Next we will briefly discuss known
complexity results for MMPT -problems.

Problem MMPT2 ‖ Cmax is NP-hard because the NP-hard problem
P2 ‖ Cmax is a special case of this problem. However, it can be solved

with complexity O(nT) where T =
n∑

i=1

pmin(i) is the sum of minimal

processing times

pmin(i) =
mi

min
ν=1

pν
i

of tasks i. The special case of MMPT3 ‖ Cmax in which only two ma-
chines are involved in the bi-machine sets can also be solved pseudopoly-
nomially with complexity O(nT 2) (see Chen & Lee [64]).

In the remaining part of this section we discuss polynomial algorithms
for “sizei”-problems. Firstly, two-processor problems are considered. In
this case we have 1-tasks and 2-tasks depending on the number of
processors needed. Denote by n1 and n2 the number of 1-tasks and 2-
tasks, respectively.

MPT2 | ri;pi = p; sizei | Cmax

It can be easily shown by exchange arguments that the following algo-
rithm solves this problem.

Algorithm MPT2 | ri;pi = p; sizei | Cmax

1. t :=
n

min
r=1

rν ;

2. WHILE not all tasks are scheduled DO
BEGIN

3. IF an unscheduled 2-task j with rj ≤ t exists THEN schedule
j at time t

4. ELSE schedule a largest possible number of 1-tasks j with
rj ≤ t at time t;

5. t := max{t + p; min{rν | ν is unscheduled }
END

The multiprocessor tasks problem

11.4. Multi-Mode Multiprocessor-Task Scheduling Problems 337

MPT2 | ri;pi = 1; sizei |
∑

Ci

can be solved by a similar algorithm. All we have to do is to replace
Statements 3 and 4 by the following statement:

If at least two 1-tasks are available at time t, then assign any two such
tasks for processing from time t. Otherwise, assign any available 2-task
for processing, or, if there is no such 2-task available, assign any available
1-task for processing.

Theorem 11.8 Any schedule constructed by the algorithm above is op-
timal.

Proof: Let Cj be the completion times in a schedule S constructed by
the algorithm above, and let S∗ be an optimal schedule. Let t be the
first point in time where these two schedules differ. We will show by an
interchange argument that in this case S∗ can be converted to an optimal
schedule S̄ that coincides with S at least up to point t + 1.

Note that, since S and S∗ coincide up to the point t, any task j that is
processed in schedule S in the interval [t, t + 1] satisfies

rj ≤ t ≤ Cj(S
∗).

Suppose that according to S two 1-tasks j1 and j2 are processed in the
interval [t, t + 1]. If Cj1(S

∗) = Cj2(S
∗), then S̄ can be obtained by

swapping j1 and j2 with tasks processed in schedule S∗ in the interval
[t, t + 1]. If Cj1(S

∗) < Cj2(S
∗), we first swap j2 with a task processed

in parallel with j1, and then again swap j1 and j2 with tasks processed
in schedule S∗ in the interval [t, t + 1]. Suppose that only one task j is
processed in schedule S in the interval [t, t+1]. Observe that in this case
due to the construction of S exactly one task must be processed in this
interval in the optimal schedule S∗. Moreover, if sizej = 1, then this
task is also a 1-task. Hence, S̄ can be obtained from S∗ by swapping j
and the task processed in the interval [t, t + 1]. It is easy to see that

n∑

j=1

Cj(S
∗) =

n∑

j=1

C̄j(S
∗),

in each case and the optimality of S follows by a simple inductive argu-
ment. �

338 Multiprocessor Tasks

MPT2 | pi = p; sizei |
∑

Ui

Task j is early in some schedule S if Cj(S) ≤ di, otherwise this task is
late. By simple interchange arguments it is easy to prove the following.

Lemma 11.9 There is an optimal schedule such that

• all late tasks are scheduled (in any order) after all early tasks,

• all early tasks with the same size are scheduled according to non-
decreasing due dates and 1-tasks precede 2-tasks with the same due
date, and

• if a 1-task j is late, then all 2-tasks with due dates less than or
equal to dj are also late.

The following algorithm constructs an optimal schedule which has the
properties of Lemma 11.9.

Algorithm MPT2 | pi = p; sizei |
∑

Ui

1. Calculate a list L in which the tasks are ordered according to
non-decreasing due dates. If 1-tasks and 2-tasks have the same
due date then place the 1-tasks before the 2-tasks;

2. WHILE L is not empty DO
BEGIN

3. Select the first task j in L;
4. IF task j is a 2-task THEN
5. IF j late if added to the partial schedule of early tasks THEN

add j to the set of late tasks
ELSE schedule j;

6. IF task j is a 1-task which can be scheduled on time THEN insert
j into the partial schedule of early tasks in the first time slot
ELSE

7. IF the partial schedule of early tasks contains a 2-task THEN
eliminate the 2-task k scheduled last among all 2-tasks, add
it to the set of late tasks, move all early tasks scheduled after
k one unit to the left, and schedule task j
ELSE add j to the set of late tasks

END

11.4. Multi-Mode Multiprocessor-Task Scheduling Problems 339

Using two lists (a doubly-linked one for the current partial schedule of
early tasks and another list containing the early 2-tasks from right to left)
and storing the first free time periods for 1- and 2-tasks in the current
partial schedule respectively, the algorithm can be implemented in such a
way that it runs in O(n log n) time. To show that this algorithm provides
an optimal schedule, let S be a schedule for early tasks constructed by
the algorithm and let S∗ be an optimal schedule satisfying Lemma 11.9
which coincides with S in the interval [0, t], where t is maximal. We
consider two cases.

Case 1: In S two 1-tasks i and j are scheduled at time t. Then for all
1-tasks l in S∗ with starting time greater than or equal to t we must have
max {di, dj} ≤ dl, since otherwise l must have been scheduled at or before
time t in S. If in S∗ a 2-task k is scheduled at time t and i or j is scheduled
as a late task, then we replace k by i and j and schedule k as a late task.
If both i and j are scheduled early, then we may assume that both are
scheduled at the same time and we swap i, j and k. After this swap i, j
and k will be early in the resulting schedule because max {di, dj} ≤ dk

which can be seen as follows. Assume that dk < di. Then k must have
been deleted from S. Because dk < di all 1-tasks h with starting times
≥ t in S must belong to S∗ (otherwise we may replace k by h in S∗ and
we have Case 2 which will be considered later). Let l be the 1-task which
eliminates k from S. Then all tasks scheduled before l in S as well as
k belong to S∗ which contradicts the fact that k is eliminated in S. In
each case we have a contradiction to the maximality of t because after
these modifications the schedule derived remains optimal. If in S∗ one
or two 1-tasks are scheduled, then again we can swap tasks such that i
and j will be scheduled at time t.

Case 2: In S a 2-task j is scheduled at time t. If in S∗ a 2-task k
with dj ≤ dk is scheduled at time t, then j and k can be swapped. If
in S∗ a 2-task k with dk < dj is scheduled, then in S task k must have
been eliminated by some 1-task l and as in Case 1 we may assume that
all 1-tasks scheduled before l as well as k belong to S∗ which again is a
contradiction. If in S∗ one or two 1-tasks are scheduled at time t and j
is scheduled early, then these 1-tasks and j can be swapped. Otherwise,
j is scheduled late and we consider the first time t′ > t where a 2-task l
is scheduled early in S∗ (if no such 2-task exists, let t′ be the completion
time of the last early task in S∗). Let T be the set of tasks scheduled
in S∗ in the time interval [t, t′]. If we now eliminate l from S∗, schedule
all tasks in T one time unit later, and schedule j at time t, we then get

340 Multiprocessor Tasks

another optimal schedule, because no rescheduled task in T is late. This
can be seen as follows. In S, after scheduling the 2-task j, no 1-task will
be scheduled late. Because S and S∗ coincide up to time t, all tasks in T
are scheduled early in S after time t + 1. Thus, they are also scheduled
early in S∗ if moved one time unit to the right.

MPT2 | pi = p; sizei |
∑

Ti

We consider the case pi = 1. Problems with pi = p are solved similarly.
Because the functions Ti(t) = max{0, t − dj} are non-decreasing, in an
optimal schedule all tasks are processed within [0, Cmax] where

Cmax :=
⌈n1

2

⌉
+ n2.

Assume that i1, . . . , in1 is a sequence of all 1-tasks and j1, . . . , jn2 is a se-
quence of all 2-tasks, each ordered according to non-decreasing due dates.
It can be shown by exchange arguments that in an optimal schedule the
1-tasks and 2-tasks are scheduled in these orders. Thus, we only have to
merge these two sequences into a single sequence specifying the order in
which the tasks should be allocated for processing. We will show that
this can be accomplished by a dynamic programming procedure.

Let t = Cjk
the finish time of the 2-task jk in some optimal schedule S∗.

Then αk(t) := min{2(t−k), n1} 1-tasks are processed in the interval [0, t].
If in S∗ task jk−1 finishes at time t′ and jk finishes at time t > t′ then
αk(t) − αk−1(t

′) 1-tasks are scheduled in the interval [t′, t] in the given
order. The corresponding costs for scheduling these 1-tasks are denoted
by ηk(t

′, t).

For t = Cjk
where 1 ≤ k ≤ n2 and k ≤ t ≤ Cmax − (n2 − k) denote

by Fk(t) the minimal costs associated with the tasks processed in the
interval [0, t] when 2-task jk finishes at time t.

All relevant Fk(t)-values can be calculated by the following recursion.

Initialization

F1(1) = Tj1(1)

F1(t) = Tj1(t) +

α1(t)∑

ν=1

Tiν

(⌈ν

2

⌉)
for 1 < t ≤ Cmax − (n2 − 1)

11.4. Multi-Mode Multiprocessor-Task Scheduling Problems 341

Iteration

Fk(t) = min
t′<t

{Fk−1(t
′) + ηk(t

′, t) + Tjk
(t)}

for 2 ≤ k ≤ n2 and k ≤ t ≤ Cmax − (n2 − k).

The optimal solution value is given by

min
η2≤t≤Cmax

Fn2(t) + ηn2(t, Cmax).

It is easy to see that the computational complexity of the whole procedure
is O(n3).

MPT2 | prec; pi = p; sizei | Cmax

Lloyd [162] has shown that the procedure for solving the identical par-
allel machine problem P2 | prec; pi = 1 | Cmax can be adapted to solve
the corresponding multiprocessor-task scheduling problem with “size”-
characteristic.

Finally, we consider problems of type

MPTm | pi = p; sizei | f
with f ∈ {∑ wiCi,

∑
wiUi,

∑
Ti}. These problems can be reduced to the

corresponding multiprocessor task scheduling problems with m dedicated
processors as follows. Let nk be the number of tasks i with sizei = k ∈
{1, . . . , m}. There are

(
m
k

)
possibilities to assign k processors to each of

these nk tasks. Thus, the number of all possible assignments for the set of

all tasks i with sizei = k is certainly bounded by n
(m

k)
k . This implies that

the number of all possible assignments for the set of all tasks 1, . . . , n is
bounded by

m∏

k=1

n
(m

k)
k ≤

m∏

k=1

n(m
k) ≤ n2m

.

Furthermore, the size problem can be solved by solving all these possi-
ble multiprocessor task scheduling problems. Due to these observations,
problems MPTm | pi = 1, sizei | γ with γ ∈ {∑ wiCi,

∑
wiUi,

∑
Ti}

are polynomially solvable since the corresponding multiprocessor task
problems with dedicated processors are polynomially solvable. Although

342 Multiprocessor Tasks

these problems are polynomially solvable for a fixed number m, the
complexity of the corresponding algorithms grows exponentially with m.

11.5 Complexity Results

Tables 11.1 to 11.3 show complexity results for multiprocessor-task sche-
duling problems with dedicated processors. In Tables 11.1 and 11.2 poly-
nomially solvable and NP-hard problems for single stage problems are
listed. Table 11.3 contains multi-stage problems which are polynomially
solvable. There is no table for corresponding NP-hard multi-stage prob-
lems which are NP-hard because most of these problems can be found
in Tables 6.3, 6.5 and 6.8. Additionally, in Krämer [48] it is shown that
FMPT | n = 3 | Cmax is NP-hard and proofs that FMPT2 ‖ Cmax and
JMPT2 | pij = 1 | Cmax are strongly NP-hard can be found in Brucker
& Krämer [48].

Table 11.4 contains multiprocessor-task scheduling problems of type
“sizei” which are polynomially solvable. Table 11.5 contains corres-
ponding NP-hard problems. NP-hard parallel scheduling problems, i.e.
problems with sizei = 1 for all jobs i, are not listed in Table 11.5.

11.5. Complexity Results 343

MPT2 | Cmax 11.1 Hoogeveen et al. [113] O(n)

MPTm | ri; pi = 1 | Cmax 11.1 Brucker & Krämer [49] O(R2RnR+1)

MPTm | ri; pi = 1 | ∑
Ci 11.1 Brucker & Krämer [49] O(R2RnR+1)

MPTm | pi = 1 | ∑
wiCi 11.1 Brucker & Krämer [49] O(R2RnR+1)

MPTm | pi = 1 | ∑
wiUi 11.1 Brucker & Krämer [49] O(R2RnR+1)

MPTm | pi = 1 | ∑
Ti 11.1 Brucker & Krämer [49] O(R2RnR+1)

MPT2 | pmtn | Lmax Bianco et al. [25] O(n)

MPT2 | pmtn | ∑
Ci Cai et al. [61] O(n log n)

MPTm | pmtn | Cmax Bianco et al. [24] lin. progr.

Table 11.1: Polynomially solvable multiprocessor-tasks problems with
dedicated processors.

∗ MPT | pi = 1 | Cmax Hoogeveen et al. [113]

∗ MPT2 | chains; pi = 1 | Cmax Blazewicz et al. [28]

∗ MPT2 || ri | Cmax Hoogeveen et al. [113]

∗ MPT3 ‖ Cmax Hoogeveen et al. [113]

∗ MPT2 ‖ Lmax Hoogeveen et al. [113]

∗ MPT | pi = 1 || ∑
Ci Hoogeveen et al. [113]

∗ MPT2 ‖ ∑
Ci Hoogeveen et al. [113]

∗ MPT2 | chains; pi = 1 | ∑
Ci Blazewicz et al. [28]

Table 11.2: NP-hard multiprocessor-tasks problems with dedicated pro-
cessors.

344 Multiprocessor Tasks

FMPTm | n = k; prec; ri |
∑

wiUi Krämer [48]

FMPTm | n = k; prec; ri |
∑

wiTi Krämer [48]

FMPT | pij = 1; stages = r | f 11.3 Brucker & Krämer [49]
with f ∈ {∑ wiCi,

∑
Ti,

∑
wiUi} O(r22rnr+1 + 2r(r + m))

FMPT | pij = 1; stages = r; ri | f 11.3 Brucker & Krämer [49]
with f ∈ {Cmax,

∑
Ci} O(r22rnr+1 + 2r(r + m))

JMPT2 | ni ≤ 2 | Cmax 11.2 Brucker & Krämer [48]
O(n log n)

JMPT | n = 2 | f 11.2 Brucker & Krämer [48]
with f regular O(r2 log r)
JMPT2 | n = k | Cmax 11.2 Brucker & Krämer [48]

O(r2k)
JMPT | pij = 1; prec; ri; n = k | f 11.3 Brucker & Krämer [49]

with f ∈ {max fi,
∑

fi} O

(

k2km
k∑

i=1
ni

k∏

i=1
ni

)

OMPT2 ‖ Cmax 11.2 Brucker & Krämer [48]
O(n)

OMPTm | n = k; prec; ri |
∑

wiUi Krämer [48]

OMPTm | n = k; prec; ri |
∑

wiTi Krämer [48]

OMPT | pij = 1; stages = r | f 11.3 Brucker & Krämer [49]
with f ∈ {∑ wiCi,

∑
Ti,

∑
wiUi} O(r3(r!)22rnr!r+1 + 2r(r + m))

OMPT | pij = 1; stages = r; ri | f 11.3 Brucker & Krämer [49]
with f ∈ {Cmax,

∑
Ci} O(r3(r!)22rnr!r+1 + 2r(r + m))

OMPT | pij = 1; ri; n = 2 | f 11.3 O(r2.5)
with f ∈ {max fi,

∑
fi} and

with fi regular

Table 11.3: Polynomially solvable shop scheduling problems with multi-
processor-tasks and dedicated processors.

11.5. Complexity Results 345

MPT2 | prec; pi = p; sizei | Cmax Lloyd [162]

O(nlog 7)

MPT2 | ri; pi = p; sizei | Cmax 11.4 Lee & Cai [148]

O(n log n)

MPT2 | ri; pi = 1; sizei |
∑

Ci 11.4 Brucker et al. [45]

O(n log n)

MPT2 | pi = p; sizei |
∑

Ui 11.4 Brucker et al. [45]

O(n log n)

MPT2 | pi = p; sizei |
∑

T i 11.4 Brucker et al. [45]

O(n3)

MPTm | pi = p; sizei | f

with f ∈ {∑wiCi,
∑

wiUi,
∑

Ti} 11.4 Brucker et al. [45]

Table 11.4: Polynomially solvable multiprocessor-tasks problems of type
“sizei”.

∗ MPT | pi = 1; sizei | Cmax Lloyd [162]

∗ MPT2 | chains; ri; pi = 1; sizei | Cmax Brucker et al. [45]

∗ MPT2 | ri; sizei | Cmax Lee & Cai [148]

∗ MPT3 | chains; pi = 1; sizei | Cmax Blazewicz & Liu [29]

∗ MPT5 | sizei | Cmax Du & Leung [80][1989]

∗ MPT2 | chains; pi = 1; sizei | Lmax Brucker et al. [45]

∗ MPT2 | sizei | Lmax Lee & Cai [148]

MPT2 | sizei |
∑

Ci Lee & Cai [148]

∗ MPT | pi = 1; sizei |
∑

Ci Drozdowski & Dell’ Olmo [79]

∗ MPT2 | prec; pi = 1; sizei |
∑

Ci Brucker et al. [45]

∗ MPT2 | sizei |
∑

wiCi Lee & Cai [148]

Table 11.5: NP-hard multiprocessor-tasks scheduling problems of type
“sizei”.

Bibliography

[1] E.H.L. Aarts, P.J.M. van Laarhoven, J.K. Lenstra, and N.L.J. Ul-
der. A computational study of local search algorithms for job shop
scheduling. ORSA Journal on Computing, 6(2):118–125, 1994.

[2] J.O. Achugbue and F.Y. Chin. Scheduling the open shop to min-
imize mean flow time. SIAM Journal on Computing, 11:709–720,
1982.

[3] D. Adolphson and T.C. Hu. Optimal linear ordering. SIAM Journal
of Applied Mathematics, 25:403–423, 1973.

[4] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis
of computer algorithms. Adisson-Wesley, Reading, Mass., 1974.

[5] R.K. Ahuja, A.V. Goldberg, J.B. Orlin, and R.E. Tarjan. Finding
minimum-cost flows by double scaling. Mathematical Programming,
Ser. A, 53(3):243–266, 1992.

[6] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Pren-
tice Hall, Englewood Cliffs, 1993.

[7] R.K. Ahuja, J.B. Orlin, and R.E. Tarjan. Improved time bounds
for the maximum flow problem. SIAM Journal on Computing,
18(5):939–954, 1989.

[8] S.B. Akers and J. Friedman. A non-numerical approach to produc-
tion scheduling problems. Operations Research, 3:429–442, 1955.

[9] S. Albers and P. Brucker. The complexity of one-machine batch-
ing problems. Discrete Applied Mathematics. Combinatorial Algo-
rithms, Optimization and Computer Science, 47(2):87–107, 1993.

348 Bibliography

[10] D. Applegate and W. Cook. A computational study of the job-shop
scheduling problem. ORSA Journal on Computing, 3(2):149–156,
1991.

[11] I. Averbakh, O. Berman, and I. Chernykh. The m machine flowshop
problem with unit-time operations and precedence constraints. Op-
erations Research Letters, 33(3):263–266, 2005.

[12] K.R. Baker. Introduction to Sequencing and Scheduling. John Wi-
ley & Sons, New York, 1974.

[13] K.R. Baker, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Preemptive scheduling of a single machine to minimize maximum
cost subject to release dates and precedence constraints. Operations
Research, 31:381–386, 1983.

[14] P. Baptiste. An 0(n4) algorithm for preemptive scheduling of a
single machine to minimize the number of late jobs. Operations
Research Letters, 24:175–180, 1999.

[15] P. Baptiste. Polynomial time algorithms for minimizing the
weighted number of late jobs on a single machine with equal pro-
cessing times. Journal of Scheduling, 2:245–252, 1999.

[16] P. Baptiste. Batching identical jobs. Mathematical Methods of
Operations Research, 53(3):355–367, 2000.

[17] P. Baptiste. Preemptive scheduling of identical machines. Technical
Report 2000-314, Universite de Technologie de Compiegne, France,
2000.

[18] P. Baptiste. Scheduling equal-length jobs on identical parallel ma-
chines. Discrete Applied Mathematics, 103(1):21–32, 2000.

[19] P. Baptiste. On preemption redundancy. BM research report, 2002.

[20] P. Baptiste and P. Brucker. Scheduling equal processing time jobs:
a survey. In J. Y.-P. Leung, editor, Handbook of Scheduling, pages
14.1–14.37. Chapman & Hall/CRC, New York, 2004.

[21] P. Baptiste, P. Brucker, S. Knust, and V.G. Timkovsky. Fourteen
notes on equal-processing-times scheduling. OSM Reihe P, Heft
246, Universität Osnabrück, Fachbereich Mathematik/Informatik,
2002.

Bibliography 349

[22] P. Baptiste, P. Brucker, S. Knust, and V.G. Timkovsky. Ten notes
on equal-execution-times scheduling. 4 OR, 2:111–127, 2004.

[23] P. Baptiste and V.G. Timkovsky. Shortest path to nonpreemp-
tive schedules of unit-time jobs on two identical parallel machines
with minimum total completion time. Math. Methods Oper. Res.,
60(1):145–153, 2004.

[24] L. Bianco, J. Blazewicz, P. Dell’Olmo, and M. Drozdowski.
Scheduling preemptive multiprocessor tasks on dedicated proces-
sors. Performance Evaluation, 20(4):361–371, 1994.

[25] L. Bianco, J. Blazewicz, P. Dell’Olmo, and M. Drozdowski. Lin-
ear algorithms for preemptive scheduling of multiprocessor tasks
subject to minimal lateness. Discrete Applied Mathematics, 72(1-
2):25–46, 1997.

[26] J. Blazewicz and K. Ecker. A linear time algorithm for restricted
bin packing and scheduling problems. Operations Research Letters,
2:80–83, 1983.

[27] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz.
Scheduling computer and manufacturing processes. Springer Verlag,
Berlin, 1996.

[28] J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan. Schedul-
ing subject to resource constraints: classification and complexity.
Discrete Applied Mathematics, 5(1):11–24, 1983.

[29] J. Blazewicz and Z. Liu. Scheduling multiprocessor tasks with chain
constraints. European Journal of Operational Research, 94(2):231–
241, 1996.

[30] P.V.E. Boas. Preserving order in a forest in less than logarith-
mic time. In 16th Annual Symposium of Foundations of Computer
Science, pages 75–84, Long Beach, 1978. IEEE Computer Society.

[31] H. Bräsel, D. Kluge, and F. Werner. A polynomial algorithm for the
[n/m/0, tij = 1, tree/Cmax] open shop problem. European Journal
of Operational Research, 72(1):125–134, 1994.

350 Bibliography

[32] H. Bräsel, D. Kluge, and F. Werner. A polynomial algorithm for an
open shop problem with unit processing times and tree constraints.
Discrete Applied Mathematics, 59(1):11–21, 1995.

[33] P. Brucker. An efficient algorithm for the job-shop problem with
two jobs. Computing, 40(4):353–359, 1988.

[34] P. Brucker. A polynomial algorithm for the two machine job-shop
scheduling problem with a fixed number of jobs. Operations Re-
search Spektrum, 16(1):5–7, 1994.

[35] P. Brucker, M.R. Garey, and D.S. Johnson. Scheduling equal-length
tasks under treelike precedence constraints to minimize maximum
lateness. Mathematics of Operations Research, 2(3):275–284, 1977.

[36] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts,
T. Tautenhahn, and S.L. van de Velde. Scheduling a batching
machine. Journal of Scheduling, 1(1):31–54, 1998.

[37] P. Brucker, S. Heitmann, and J. Hurink. How useful are preemptive
schedules? Operations Research Letters 31, 31:129–136, 2003.

[38] P. Brucker, J. Hurink, and S. Knust. A polynomial algorithm for
P |pj = 1, rj, outtree|∑Cj. Mathematical Methods of Operations
Research, 56:407–412, 2002.

[39] P. Brucker, J. Hurink, and W. Kubiak. Scheduling identical jobs
with chain precedence constraints on two uniform machines. Math-
ematical Methods of Operations Research, 49(2):211–219, 1999.

[40] P. Brucker, B. Jurisch, and M. Jurisch. Open shop problems with
unit time operations. Zeitschrift für Operations Research. Methods
and Models of Operations Research, 37(1):59–73, 1993.

[41] P. Brucker, B. Jurisch, and A. Krämer. The job-shop problem and
immediate selection. Annals of Operations Research, 50:73–114,
1994.

[42] P. Brucker, B. Jurisch, and A. Krämer. Complexity of schedul-
ing problems with multi-purpose machines. Annals of Operations
Research, 70:57–73, 1997.

Bibliography 351

[43] P. Brucker, B. Jurisch, and B. Sievers. A branch and bound algo-
rithm for the job-shop scheduling problem. Discrete Applied Math-
ematics, 49(1-3):107–127, 1994.

[44] P. Brucker and S. Knust. Complexity results for single-machine
problems with positive finish-start time-lags. Computing, 63:299–
316, 1999.

[45] P. Brucker, S. Knust, D. Roper, and Y. Zinder. Scheduling UET
task systems with concurrency on two parallel identical proces-
sors. Mathematical Methods of Operations Research, 53(3):369–387,
2000.

[46] P. Brucker and M.Y. Kovalyov. Single machine batch scheduling to
minimize the weighted number of late jobs. Mathematical Methods
of Operations Research, 43(1):1–8, 1996.

[47] P. Brucker, M.Y. Kovalyov, Y.M. Shafransky, and F. Werner.
Batch scheduling with deadlines on parallel machines. Annals of
Operations Research, 83:23–40, 1998.

[48] P. Brucker and A. Krämer. Shop scheduling problems with mul-
tiprocessor tasks on dedicated processors. Annals of Operations
Research, 57:13–27, 1995.

[49] P. Brucker and A. Krämer. Polynomial algorithms for resource-
constrained and multiprocessor task scheduling problems. Euro-
pean Journal of Operational Research, 90:214–226, 1996.

[50] P. Brucker and S.A. Kravchenko. Preemption can make parallel
machine scheduling problems hard. OSM Reihe P, Heft 211, Uni-
versität Osnabrück, Fachbereich Mathematik/Informatik, 1999.

[51] P. Brucker and S.A. Kravchenko. of mean flow time
scheduling problems with release dates. OSM Reihe P, Heft 251,
Universität Osnabrück, Fachbereich Mathematik/Informatik, 2004.

[52] P. Brucker and S.A. Kravchenko. Scheduling jobs with equal pro-
cessing times and time window on identical parallel machine. OSM
Reihe P, Heft 257, Universität Osnabrück, Fachbereich Mathe-
matik/Informatik, 2004.

Complexity

352 Bibliography

[53] P. Brucker and S.A. Kravchenko. Scheduling jobs with release
times on parallel machines to minimize total tardiness. OSM
Reihe P, Heft 258, Universität Osnabrück, Fachbereich Mathe-
matik/Informatik, 2005.

[54] P. Brucker, S.A. Kravchenko, and Y.N. Sotskov. On the com-
plexity of two machine job-shop scheduling with regular objective
functions. Operations Research Spektrum, 19(1):5–10, 1997.

[55] P. Brucker, S.A. Kravchenko, and Y.N. Sotskov. Preemptive job-
shop scheduling problems with a fixed number of jobs. Mathemat-
ical Methods of Operations Research, 49(1):41–76, 1999.

[56] P. Brucker and R. Schlie. Job-shop scheduling with multi-purpose
machines. Computing, 45(4):369–375, 1990.

[57] P. Brucker and O. Thiele. A branch & bound method for the
general-shop problem with sequence dependent setup-times. Oper-
ations Research Spektrum, 18(3):145–161, 1996.

[58] J. Bruno, E.G. Coffman, Jr., and R. Sethi. Scheduling independent
tasks to reduce mean finishing time. Communications of the ACM,
17:382–387, 1974.

[59] J. Bruno and P. Downey. Complexity of task sequencing with dead-
lines, set-up times and changeover costs. SIAM Journal on Com-
puting, 7:393–403, 1978.

[60] J. Bruno, J.W. Jones, III, and K. So. Deterministic scheduling with
pipelined processors. IEEE Transactions on Computers, 29(4):308–
316, 1980.

[61] X. Cai, C.-Y. Lee, and C.-L. Li. Minimizing total completion
time in two-processor task systems with prespecified processor
allocations. Naval Research Logistics. An International Journal,
45(2):231–242, 1998.

[62] J. Carlier. The one-machine sequencing problem. European Journal
of Operational Research, 11:42–47, 1982.

[63] J. Carlier and E. Pinson. An algorithm for solving the job-shop
problem. Management Science, 35(2):164–176, 1989.

Bibliography 353

[64] J. Chen and C.-Y. Lee. General multiprocessor task scheduling.
Naval Research Logistics, 46(1):57–74, 1999.

[65] J. Cheriyan and S.N. Maheshwari. Analysis of preflow push algo-
rithms for maximum network flow. SIAM Journal on Computing,
18(6):1057–1086, 1989.

[66] Y. Cho and S. Sahni. Preemptive scheduling of independent jobs
with release and due times on open, flow and job shops. Operations
Research, 29(3):511–522, 1981.

[67] V. Chvatal. Linear programming. W. H. Freeman and Company,
New York - San Francisco, 1983.

[68] E. G. Coffman, Jr., J. Sethuraman, and V.G. Timkovsky. Ideal pre-
emptive schedules on two processors. Technical report, Columbia
University, 2002.

[69] E.G. Coffman, Jr. Scheduling in Computer and Job Shop Systems.
J.Wiley, New York, 1976.

[70] E.G. Coffman, Jr. and R.L. Graham. Optimal scheduling for two-
processor systems. Acta Informatica, 1:200–213, 1971/1972.

[71] E.G. Coffman, Jr., M. Yannakakis, M.J. Magazine, and C. Santos.
Batch sizing and job sequencing on a single machine. Annals of
Operations Research, 26(1-4):135–147, 1990.

[72] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of Schedul-
ing. Addison Wesley, Reading, Mass., USA, 1967.

[73] S.A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Com-
puting, pages 151–158. ACM-Press, 1971.

[74] G.B. Dantzig. Application of the simplex method to a transporta-
tion problem. In T.C. Koopmans, editor, Activity analysis of pro-
duction and allocation, pages 359–373. John Wiley & Sons, Inc.,
1951.

[75] M. Dell’Amico and M. Trubian. Applying tabu search to the job-
shop scheduling problem. Annals of Operations Research, 41(1-
4):231–252, 1993.

354 Bibliography

[76] M.I. Dessouky, B.J. Lageweg, J.K. Lenstra, and S.L. van de Velde.
Scheduling identical jobs on uniform parallel machines. Statistica
Neerlandica, 44(3):115–123, 1990.

[77] U. Dorndorf and E. Pesch. Evolution based learning in a job
shop scheduling environment. Computers & Operations Research,
22(1):25–40, 1995.

[78] M. Dror, W. Kubiak, and P. Dell’Olmo. Strong-weak chain con-
strained scheduling. Ricerca Operativa, 27:35–49, 1998.

[79] M. Drozdowski and P. Dell’ Olmo. Scheduling multiprocessor tasks
for mean flow time criterion. Technical Report RA-003/98, Insti-
tute of Computing Science, Poznan University of Technology, 1998.

[80] J. Du and J.Y.-T. Leung. Complexity of scheduling parallel task
systems. SIAM Journal on Discrete Mathematics, 2(4):473–487,
1989.

[81] J. Du and J.Y.-T. Leung. Minimizing total tardiness on one ma-
chine is NP-hard. Mathematics of Operations Research, 15(3):483–
495, 1990.

[82] J. Du and J.Y.-T. Leung. Minimizing the number of late jobs on
unrelated machines. Operations Research Letters, 10(3):153–158,
1991.

[83] J. Du and J.Y.-T. Leung. Minimizing mean flow time in two-
machine open shops and flow shops. Journal of Algorithms,
14(1):24–44, 1993.

[84] J. Du, J.Y.-T. Leung, and C.S. Wong. Minimizing the number of
late jobs with release time constraint. Journal of Combinatorial
Mathematics and Combinatorial Computing, 11:97–107, 1992.

[85] J. Du, J.Y.-T. Leung, and G.H. Young. Minimizing mean flow
time with release time constraint. Theoretical Computer Science,
75(3):347–355, 1990.

[86] J. Du, J.Y.-T. Leung, and G.H. Young. Scheduling chain-
structured tasks to minimize makespan and mean flow time. In-
formation and Computation, 92(2):219–236, 1991.

Bibliography 355

[87] J. Edmonds and R.M. Karp. Theoretical improvements in algorith-
mic efficiency for network flow problems. Journal of the Association
for Computing Machinery, 19:248–264, 1972.

[88] S. Even and O. Kariv. An o(n2.5) algorithm for maximum matching
in general graphs. In Proceedings of the 16th Annual Symposium
of Foundations of Computer Science, pages 100–112, Long Beach,
1975. IEEE Computer Society.

[89] A. Federgruen and H. Groenevelt. Preemptive scheduling of uni-
form machines by ordinary network flow techniques. Management
Science, 32:341–349, 1986.

[90] M.J. Fischer and A.R. Meyer. Boolean matrix multiplication and
transitive closure. In Proceedings Twelfth Annual Symposium on
Switching and Automata Theory, pages 129–137, East Lansing,
Mich., 1971.

[91] L.R.jun. Ford and D.R. Fulkerson. Maximal flow through a net-
work. Canadian Journal of Mathematics, 8:399–404, 1956.

[92] G.N. Frederickson. Scheduling unit-time tasks with integer release
times and deadlines. Information Processing Letters, 16:171–173,
1983.

[93] S. French. Sequencing and scheduling: an introduction to the math-
ematics of the job- shop. Ellis Horwood Limited, New York, 1982.

[94] D.R. Fulkerson. An out-of-kilter method for minimal-cost flow
problems. SIAM Jouranl of Applied Mathematics, 9:18–27, 1961.

[95] H.N. Gabow and O. Kariv. Algorithms for edge coloring bipartite
graphs and multigraphs. SIAM Journal on Computing, 11:117–129,
1982.

[96] M.R. Garey and D.S. Johnson. Scheduling tasks with nonuniform
deadlines on two processors. Journal of the Association for Com-
puting Machinery, 23:461–467, 1976.

[97] M.R. Garey and D.S. Johnson. Two-processor scheduling with
start-times and deadlines. SIAM Journal on Computing, 6(3):416–
426, 1977.

356 Bibliography

[98] M.R. Garey and D.S. Johnson. “Strong” NP-completeness results:
motivation, examples, and implications. Journal of the Association
for Computing Machinery, 25(3):499–508, 1978.

[99] M.R. Garey and D.S. Johnson. Computers and intractability. A
guide to the theory of NP-completeness. W. H. Freeman and Com-
pany, San Francisco, 1979.

[100] M.R. Garey, D.S. Johnson, and R. Sethi. The complexity of flow-
shop and jobshop scheduling. Mathematics of Operations Research,
1(2):117–129, 1976.

[101] A.V. Goldberg and R.E. Tarjan. Finding minimum-cost circula-
tions by successive approximation. Mathematics of Operations Re-
search, 15(3):430–466, 1990.

[102] T. Gonzalez. A note on open shop preemptive schedules. IEEE
Transactions on Computers C-28, pages 782–786, 1979.

[103] T. Gonzalez and D.B. Johnson. A new algorithm for preemptive
scheduling of trees. Journal of the Association for Computing Ma-
chinery, 27(2):287–312, 1980.

[104] T. Gonzalez and S. Sahni. Open shop scheduling to minimize fin-
ish time. Journal of the Association for Computing Machinery,
23(4):665–679, 1976.

[105] T. Gonzalez and S. Sahni. Flowshop and jobshop schedules: com-
plexity and approximation. Operations Research, 26(1):36–52,
1978.

[106] T. Gonzalez and S. Sahni. Preemptive scheduling of uniform pro-
cessor systems. Journal of the Association for Computing Machin-
ery, 25:92–101, 1978.

[107] J. Grabowski, E. Nowicki, and S. Zdrzalka. A block approach
for single-machine scheduling with release dates and due dates.
European Journal of Operational Research, 26:278–285, 1986.

[108] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and
scheduling: A survey. Annals of Discrete Mathematics, 5:287–326,
1979.

Bibliography 357

[109] N.G. Hall and M.E. Posner. Earliness-tardiness scheduling prob-
lems. I: Weighted deviation of completion times about a common
due data. Operations Research, 39(5):836–846, 1991.

[110] P. Hall. On representatives of subsets. Journal of the London
Mathematical Society, 10:26–30, 1935.

[111] L.A. Herrbach and J.Y.-T. Leung. Preemptive scheduling of equal
length jobs on two machines to minimize mean flow time. Opera-
tions Research, 38(3):487–494, 1990.

[112] D.S. Hochbaum and D. Landy. Scheduling with batching: mini-
mizing the weighted number of tardy jobs. Operations Research
Letters, 16(2):79–86, 1994.

[113] J.A. Hoogeveen, S.L. van de Velde, and B. Veltman. Complexity
of scheduling multiprocessor tasks with prespecified processor allo-
cations. Discrete Applied Mathematics. Combinatorial Algorithms,
Optimization and Computer Science, 55(3):259–272, 1994.

[114] J.E. Hopcroft and R.M. Karp. A n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on Computing,
2:225–231, 1973.

[115] W.A. Horn. Some simple scheduling algorithms. Naval Research
Logistics Quarterly, 21:177–185, 1974.

[116] T.C. Hu. Parallel sequencing and assembly line problems. Opera-
tions Research, 9:841–848, 1961.

[117] E. Ignall and L. Schrage. Apllications of the branch and bound
technique to some flow-shop scheduling problems. Operations Re-
search, 13:400–412, 1965.

[118] J.R. Jackson. Scheduling a production to minimize maximum tar-
diness. Research Report 43, Management Science Research Project,
University of California at Los Angeles, 1955.

[119] J.R. Jackson. An extension of johnson’s results on job lot schedul-
ing. Naval Research Logistic Quaterly, 3:201–203, 1956.

358 Bibliography

[120] S.M. Johnson. Optimal two-and-three-stage production schedules
with set-up times included. Naval Research Logistic Quaterly, 1:61–
68, 1954.

[121] B. Jurisch. Lower bounds for the job-shop scheduling problem on
multi-purpose machines. Discrete Applied Mathematics. Combina-
torial Algorithms, Optimization and Computer Science, 58(2):145–
156, 1995.

[122] H. Kahlbacher. Termin- und Ablaufplanung - ein analytischer Zu-
gang. PhD thesis, University Kaiserslautern, 1992.

[123] J.J. Kanet. Minimizing the average deviation of job completion
times about a common due date. Naval Research Logistic Quaterly,
28:643–651, 1981.

[124] R.M. Karp. Reducibility among combinatorial problems. In Com-
plexity of computer computations (Proc. Sympos., IBM Thomas J.
Watson Res. Center, Yorktown Heights, N.Y., 1972), pages 85–
103. Plenum, New York, 1972.

[125] L.G. Khachiyan. A polynomial algorithm in linear programming.
Doklasy Akademii Nauk SSSR, 244:1093–1096, 1979.

[126] S.A. Kravchenko. Minimizing the number of late jobs for the two-
machine unit-time job-shop scheduling problem. Discrete Applied
Mathematics, 98(3):209–217, 1999.

[127] S.A. Kravchenko. On the complexity of minimizing the number of
late jobs in unit time open shops. Discrete Applied Mathematics,
100(2):127–132, 1999.

[128] M. Kubale. Preemptive scheduling of two processor tasks on ded-
icated processors. Zeszyty Naukowe Politechnik: Ślaskiej, Seria:
Automatyka Z. 100, 1082:145–153, 1990.

[129] W. Kubiak. Exact and approximate algorithms for scheduling
unit time tasks with tree-like precedence constraints. In Abstracts
EURO IX - TIMS XXVIII Paris, 195, 1988.

[130] W. Kubiak, S. Sethi, and C. Sriskandarajah. An efficient algorithm
for a job shop problem. Annals of Operations Research, 57:203–216,
1995.

Bibliography 359

[131] W. Kubiak and V.G. Timkovsky. A polynomial-time algorithm for
total completion time minimization in two-machine job-shop with
unit-time operations. European Journal of Operational Research,
94:310–320, 1996.

[132] H.W. Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics, 2, 1955.

[133] J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Preemptive scheduling of uniform machines subject to release
dates. In Progress in combinatorial optimization (Waterloo, Ont.,
1982), pages 245–261. Academic Press, Toronto, Ont., 1984.

[134] B.J. Lageweg, J.K. Lenstra, E.L. Lawler, and A.H.G. Rinnooy Kan.
Computer-aided complexity classification of combinatorial prob-
lems. Communications of the ACM, 25:817–822, 1982.

[135] E.L. Lawler. Optimal sequencing of a single machine subject to
precedence constraints. Management Science, 19:544–546, 1973.

[136] E.L. Lawler. A “pseudopolynomial” algorithm for sequencing jobs
to minimize total tardiness. Annals of Discrete Mathematics,
1:331–342, 1977.

[137] E.L. Lawler. Sequencing jobs to minimize total weighted comple-
tion time subject to precedence constraints. Annals of Discrete
Mathematics, 2:75–90, 1978.

[138] E.L. Lawler. Preemptive scheduling of uniform parallel machines
to minimize the weighted number of late jobs. Report BW 105,
Centre for Mathematics and Computer Science, Amsterdam, 1979.

[139] E.L. Lawler. Preemptive scheduling of precedence-constrained
jobs on parallel machines. In M.A.H. Dempster, J.K. Lenstra,
and A.H.G. Rinnooy Kan, editors, Deterministic and stochastic
scheduling, Proceedings of the NATO Advanced Study and Research
Institute on Theoretical Approaches to Scheduling Problems held in
Durham, July 6–17, 1981, volume 84 of NATO Advanced Study In-
stitute Series C: Mathematical and Physical Sciences, pages 101–
123, Dordrecht, 1982. D. Reidel Publishing Co.

360 Bibliography

[140] E.L. Lawler. Recent results in the theory of machine scheduling.
In A. Bachem, M. Groetschel, and B. Korte, editors, Mathematical
programming: the state of the art (Bonn, 1982), pages 202–234.
Springer, Berlin, 1983.

[141] E.L. Lawler. A dynamic programming algorithm for preemptive
scheduling of a single machine to minimize the number of late jobs.
Annals of Operations Research, 26(1-4):125–133, 1990.

[142] E.L. Lawler and J. Labetoulle. On preemptive scheduling of un-
related parallel processors by linear programming. Journal of the
Association for Computing Machinery, 25(4):612–619, 1978.

[143] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Minimizing
maximum lateness in a two-machine open shop. Mathematics of
Operations Research, 6(1):153–158, 1981.

[144] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Erra-
tum: “Minimizing maximum lateness in a two-machine open shop”
[Math. Oper. Res. 6 (1981), no. 1, 153-158]. Mathematics of Oper-
ations Research, 7(4):635, 1982.

[145] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys.
Sequencing and Scheduling: Algorithmus and Complexity, vol-
ume 4 of Handbook in Operations Research and Managment Sci-
ence. North-Holland, Amsterdam, 1993.

[146] E.L. Lawler and C.U. Martel. Preemptive scheduling of two uni-
form machines to minimize the number of late jobs. Operations
Research, 37(2):314–318, 1989.

[147] E.L. Lawler and J.M. Moore. A functional equation and its applica-
tion to resource allocation and sequencing problems. Management
Science, 16:77–84, 1969.

[148] C.-Y. Lee and X. Cai. Scheduling one and two-processor tasks
on two parallel processors. IIE Transactions on Scheduling and
Logistics, 31:445–455, 1999.

[149] H.W. Lenstra, Jr. Integer programming with a fixed number of
variables. Mathematics of Operations Research, 8:538–548, 1983.

[150] J.K. Lenstra. Not published.

Bibliography 361

[151] J.K. Lenstra. Sequencing by enumerative methods. Mathematical
Centre Tracts. 69, 1977.

[152] J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity of scheduling
under precedence constraints. Operations Research, 26(1):22–35,
1978.

[153] J.K. Lenstra and A.H.G. Rinnooy Kan. Computational complexity
of discrete optimization problems. Annals of Discrete Mathematics,
4:121–140, 1979.

[154] J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity results for
scheduling chains on a single machine. European Journal of Oper-
ational Research, 4(4):270–275, 1980.

[155] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity
of machine scheduling problems. Annals of Discrete Mathematics,
1:343–362, 1977.

[156] J.Y.-T. Leung, O. Vornberger, and J.D. Witthoff. On some vari-
ants of the bandwidth minimization problem. SIAM Journal on
Computing, 13(3):650–667, 1984.

[157] J.Y.-T. Leung and G.H. Young. Minimizing total tardiness on
a single machine with precedence constraints. ORSA Journal on
Computing, 2(4):346–352, 1990.

[158] J.Y.-T. Leung and G.H. Young. Preemptive scheduling to minimize
mean weighted flow time. Information Processing Letters, 34(1):47–
50, 1990.

[159] L.A. Levin. Universal sorting problems. Problemy Peredachi In-
formatsii, 9:265–266, 1973.

[160] C.Y. Liu and R.L. Bulfin. On the complexity of preemptive open-
shop scheduling problems. Operations Research Letters, 4(2):71–74,
1985.

[161] C.Y. Liu and R.L. Bulfin. Scheduling open shops with unit execu-
tion times to minimize functions of due dates. Operations Research,
36(4):553–559, 1988.

362 Bibliography

[162] E.L. Lloyd. Concurrent task systems. Operations Research. The
Journal of the Operations Research Society of America, 29(1):189–
201, 1981.

[163] I. Lushchakova. Two machine preemptive scheduling problem with
release dates, equal processing times and precedence constraints.
European J. Oper. Res., 171(1):107–122, 2006.

[164] V.M. Malhotra, M.P. Kumar, and S.N. Maheshwari. An O(|V |3)
algorithm for finding maximum flows in networks. Information
Processing Letters, 7:277–278, 1978.

[165] R. McNaughton. Scheduling with deadlines and loss functions.
Management Science, 6:1–12, 1959/1960.

[166] W. Meyer. Geometrische Methoden zur Lösung von Job-Shop Prob-
lemen und deren Verallgemeinerungen. PhD thesis, Universität
Osnabrück, Fachbereich Mathematik/Informatik, 1992.

[167] M. Middendorf and V.G. Timkovsky. Transversal graphs for par-
tially ordered sets: sequencing, merging and scheduling problems.
Journal of Combinatorial Optimization, 3(4):417–435, 1999.

[168] G.J. Minty. Monotone networks. Proceedings of the London Math-
ematical Society, 257:194–212, 1960.

[169] C.L. Monma. Linear-time algorithms for scheduling on parallel
processors. Operations Research, 30:116–124, 1982.

[170] C.L. Monma and C.N. Potts. On the complexity of scheduling with
batch setup times. Operations Research, 37(5):798–804, 1989.

[171] J.M. Moore. An n job, one machine sequencing algorithm for min-
imizing the number of late jobs. Management Science, 15:102–109,
1968.

[172] R.R. Muntz and E.G. Coffman, Jr. Optimal preemptive scheduling
on two-processor systems. IEEE Transactions on Computers, pages
1014–1020, 1969.

[173] R.R. Muntz and E.G. Coffman, Jr. Preemptive scheduling of real-
time tasks on multiprocessor systems. Journal of the Association
for Computing Machinery, 17:324–338, 1970.

Bibliography 363

[174] J.F. Muth and G.L. Thompson. Industrial Scheduling. Wiley, New
York, 1963.

[175] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial opti-
mization. Wiley, New York, 1988.

[176] C.T. Ng, T.C.E. Cheng, and J.J. Yuan. A note on the single ma-
chine serial batching scheduling problem to minimize maximum
lateness with precedence constraints. Operations Research Letters,
30:66–68, 2002.

[177] E. Nowicki and C. Smutnicki. A fast tabu search algorithm for the
job shop problem. Management Science, 42(6):797–813, 1996.

[178] J.B. Orlin. A faster strongly polynomial minimum cost flow algo-
rithm. Operations Research, 41(2):338–350, 1993.

[179] S.S. Panwalkar, M.L. Smith, and A. Seidmann. Common due date
assignment to minimize total penalty for the one machine schedul-
ing problem. Operations Research, 30:391–399, 1982.

[180] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice
Hall, Englewood Cliffs N.J., 1995.

[181] A.H.G. Rinnooy Kan. Machine Scheduling Problems: Classifica-
tion, Complexity and Computations. Martinus Nijhoff, The Hague,
1976.

[182] A. Schrijver. Theory of linear and integer programming. Wiley,
Chichester, 1986.

[183] N.V. Shakhlevich and Yu.N. Sotskov. Scheduling two jobs with
fixed and nonfixed routes. Computing, 52(1):17–30, 1994.

[184] N.V. Shakhlevich, Yu.N. Sotskov, and F. Werner. Shop scheduling
problems with fixed and non-fixed machine orders of jobs. Annals
of Operations Research, 92:281–304, 1999.

[185] B. Simons. A fast algorithm for single processor scheduling. In 19th
Annual Symposium on Foundations of Computer Science (Ann Ar-
bor, Mich., 1978), pages 246–252. IEEE, Long Beach, Calif., 1978.

364 Bibliography

[186] B. Simons. Multiprocessor scheduling of unit-time jobs with arbi-
trary release times and deadlines. SIAM Journal on Computing,
12(2):294–299, 1983.

[187] R.A. Sitters. Two NP-hardness results for preemptive minisum
scheduling for unreleated parallel machines. In Proc. 8th Interna-
tional IPCO Conference, volume 2081 of Lecture Notes in Com-
puter Science, pages 396–405. Springer, 2001.

[188] W.E. Smith. Various optimizers for single-stage production. Naval
Research Logistics Quarterly, 3:59–66, 1956.

[189] Y.N. Sotskov. The complexity of shop-scheduling problems with
two or three jobs. European Journal of Operational Research,
53(3):326–336, 1991.

[190] Y.N. Sotskov and N.V. Shakhlevich. NP-hardness of shop-
scheduling problems with three jobs. Discrete Applied Mathemat-
ics, 59(3):237–266, 1995.

[191] C. Sriskandarajah and E. Wagneur. On the complexity of preemp-
tive openshop scheduling problems. European Journal of Opera-
tional Research, 77(3):404–414, 1994.

[192] V.A. Strusevich. Two-machine super-shop scheduling problem.
Journal of the Operational Research Society, 42(6):479–492, 1991.

[193] V.S. Tanaev, V.S. Gordon, and Y.M. Shafransky. Scheduling the-
ory. Single-stage systems. Vol. 1. Kluwer Academic Publishers.,
Dordrecht, 1994.

[194] V.S. Tanaev, Y.N. Sotskov, and V.A. Strusevich. Scheduling the-
ory. Multi-stage systems, volume 285 of Mathematics and its Ap-
plications. Kluwer Academic Publishers Group, Dordrecht, 1994.
Translated and revised from the 1989 Russian original by the au-
thors.

[195] T. Tautenhahn. Open-shop-Probleme mit Einheitsbearbeitungszei-
ten. PhD thesis, Fakultät für Mathematik, Otto-von-Guericke-Uni-
versität Magdeburg, 1993.

Bibliography 365

[196] T. Tautenhahn and G.J. Woeginger. Minimizing the total comple-
tion time in a unit-time open shop with release times. Operations
Research Letters, 20(5):207–212, 1997.

[197] Z. Tian, C.T. Ng, and T.C.E. Cheng. An O(n2) algorithm for
scheduling equal-length preemptive jobs on a single machine to
minimze total tardiness. Journal of Scheduling, 9(4):343–364, 2006.

[198] V.G. Timkovsky. On the complexity of scheduling an arbitrary sys-
tem. Soviet Journal of Computer and Systems Sciences, 23(5):46–
52, 1985.

[199] V.G. Timkovsky. The complexity of unit-time job-shop schedul-
ing. Technical Report 93-09, Department of Computer Science and
Systems, McMaster Univ. Hamilton, 1993.

[200] V.G. Timkovsky. A polynomial-time algorithm for the two-machine
unit-time release-date job-shop schedule-length problem. Discrete
Applied Mathematics. Combinatorial Algorithms, Optimization and
Computer Science, 77(2):185–200, 1997.

[201] V.G. Timkovsky. Identical parallel machines vs. unit-time shops,
preemptions vs. chains, and other offsets in scheduling complexity.
Technical Report, Department of Computer Science and Systems,
McMaster Univ. Hamilton, 1998.

[202] V.G. Timkovsky. Is a unit-time job shop not easier than identical
parallel machines? Discrete Applied Mathematics. Combinatorial
Algorithms, Optimization and Computer Science, 85(2):149–162,
1998.

[203] J.D. Ullman. NP-complete scheduling problems. Journal of Com-
puter and System Sciences, 10:384–393, 1975.

[204] J.D. Ullman. Complexity of sequencing problems. In J.L. Bruno,
E.G. Coffman, Jr., R.L. Graham, W.H. Kohler, R. Sethi, K. Stei-
glitz, and J.D. Ullman, editors, Computer and Job/Shop Scheduling
Theory. John Wiley & Sons Inc., New York, 1976.

[205] P.J.M. van Laarhoven and E.H.L. Aarts. Simulated annealing: the-
ory and applications. D. Reidel Publishing Company, Dordrecht,
1987.

366 Bibliography

[206] P.J.M. van Laarhoven, E.H.L. Aarts, and J.K. Lenstra. Job
shop scheduling by simulated annealing. Operations Research,
40(1):113–125, 1992.

[207] M.A. Yakovleva. A problem on minimum transportation cost. In
Applications of mathematics in economic research, pages 390–399.
Izdat. Social’no - Ekon Lit., Moscow, 1959.

Index

MMPT -problem, 335
MPT , 317
V -shaped, 246, 250, 255, 260
NP, 40
NP-complete, 44
NP-complete in the strong sense,

47
NP-hard, 46
P, 39
p-batching problem, 4
s-t-path, 29
s-batch, 33
s-batching problem, 4, 34
1-tasks, 336
2-tasks, 336
3-DIMENSIONAL MATCHING, 41
3-SATISFIABILITY, 45

absolute deviation, 7
active, 157
active schedule, 7, 180, 197
acyclic graph, 156
adjacency matrix, 23, 62
after-candidates, 206
agreeable weights, 94
allowed modifications, 52
arc coloring, 22, 161
aspiration criterion, 55, 225
assignment, 18
assignment problem, 18, 135, 137
augmenting path algorithm, 14

backward calculation, 28

backward scan, 304
backwards Jackson’s preemptive sched-

ule, 214
bar, 199
barrier, 114
barrier list, 114
barrier-correct, 115
batch, 4
batching, 267
batching problem, 4
before-candidates, 206
binary linear program, 12
bipartite graph, 14, 18, 20, 22, 161
bipartite matching, 14
block, 64, 89, 111, 197, 205, 328
Boolean variable, 45
bottleneck objective, 6
branch-and-bound algorithm, 56, 202
branching, 56
branching scheme, 204
branching tree, 56
bucket sorting, 72, 86

certificate, 40
chains, 4
changeover time, 281, 290
circulation problem, 13
classification, 1
clause, 45
CLIQUE, 42
clique, 42
compatibility graph, 324

368 Index

compatible stages, 324
compatible tasks, 317
complete selection, 156, 203
complexity of single machine prob-

lems, 104
computational problem, 37
conflict resolution procedure, 24
conjunctive arc, 156
constant changeover time, 282
cost, 6
cost function, 3
crisis job, 114
crisis subroutine, 114
critical path, 203, 205
cycle, 29
cyclic list schedule, 112

deadline, 4
decision problem, 39, 41
decomposition tree, 80
dedicated machine, 2
degree, 23
demand, 12
direct arc, 213
discrete optimization problem, 51
disjunctive arc, 156
disjunctive graph, 156
disjunctive graph model, 202
dual arc, 213
dual pair, 213
due date, 3
due date modification, 140
due date scheduling, 243
dynamic programming, 26, 29, 98,

282
dynamic tabu list, 225

earliest possible completion time, 214
earliness, 7, 243
early set of jobs, 165

EDD rule, 67, 70, 88
expanded network, 131

feasible B-schedule, 116
feasible flow, 13
feasible solution, 11
feasible with respect to the time win-

dows, 129
finishing time, 6
fixed arc, 156
flexible manufacturing, 2
flow graph, 13
flow shop, 5
flow shop problem, 174, 232
flow shop problem with MPT , 317
flow shop with MPT , 325, 330
flow-shop problem, 58
forward scan, 304
frequency vector, 164

Gantt chart, 1
general shop, 5
general shop problem, 155, 290
general shop problem with multi-

processor tasks, 317
geometric approach, 186

HAMILTON CIRCUIT, 42
head, 71, 210
head-tail problem, 71

identical machines, 107
identical parallel machine, 28
identical processing times, 98
immediate predecessor, 68, 139
immediate selection, 212
immediate successor, 139
incompatible stages, 324
incompatible tasks, 317
initial vertex, 198

Index 369

input length, 37
integer linear program, 12
intree, 3, 77, 140
invariance property, 83
iterative improvement, 52

Jackson’s preemptive schedule, 213
Jackson’s scheduling rule, 67
job, 1
job characteristics, 3
job shop, 5
job shop problem with MPT , 317
job shop scheduling problem, 178,

232
job shop with MPT , 326, 329
job shop with machine repetition, 5
just-in-time production, 243

lateness, 7, 243
Lawler’s algorithm, 135
length of a path, 29
length of block, 197
level, 125
level algorithm, 125
linear program, 11, 12, 137
linear programming formulation, 14,

18
list, 112
literals, 45
local minimum, 52
local search, 51
lower bound, 56
LPT-sequence, 246

machine, 1
machine environment, 3, 5
machine repetition, 196
machine-dedicated, 5
machine-identical parallel, 5
machine-uniform parallel, 5

machine-unrelated parallel, 5
main operation, 199
makespan, 6
matching, 14, 15, 18
maximum flow algorithm, 38
maximum flow problem, 13, 109
maximum lateness, 7, 67
Mc Naughton’s wrapping around rule,

287
mean flow time, 22
median, 245
minimax criterion, 62
minimum coloring, 22
minimum-cost circulation problem,

38
mixed integer linear program, 12
mixed shop, 6
mixed shop problem, 226, 233
modification of due dates, 68
modification of release times, 63
modified due date, 145
modified sets, 304
modified Smith’s rule, 78
Monge array, 20
MSPCLASS, 49
multi-mode multiprocessor-task sche-

duling problem, 335
multi-purpose machine, 2, 5
multiprocessor task, 2
multiprocessor tasks, 317

neighborhood, 52
neighborhood graph, 52
neighborhood structure, 52, 222
network simplex method, 13
number of operations, 2
number problem, 46

occupied cells, 23
open shop, 5

370 Index

open shop problem, 138, 158, 232
open shop problems with MPT , 317
open shop with MPT , 323, 333
opt-connected, 222
optimality criterion, 3, 6
out-of-kilter algorithm, 13
outtree, 3, 73, 140

parallel composition, 4
parallel jobsets, 73
parallel machines, 2, 107
parallel uniform machines, 124
PARTITION, 41
path, 29
permutation flow shop, 6, 175
polynomially solvable, 38
potential obstacle, 303
precedence relations, 3
predecessor, 29
preemption, 3
preemptive open shop problem, 15
primal arc, 213
primal pair, 213
procedure select, 217
processing requirement, 2
product property, 31
pseudopolynomial, 39
pseudopolynomial reduction, 47
pseudopolynomially solvable, 39, 46
pull job, 114

reduction, 41
reduction graph, 48
regular objective functions, 7
release date, 2
restricted set, 114

SATISFIABILITY, 45
satisfied, 45
schedule, 1

schedule-feasible, 3
schedule-jobs, 7
schedule-optimal, 3
scheduling problem, 6
search tree, 203
selection, 156, 203
semiactive schedule, 7
sequence dependent changeover time,

281
sequence independent changeover time,

281
sequence of batch sizes, 34
series composition, 4
series-parallel graph, 4, 79
set of machines, 2
set-up time, 267
shop problems with MPT , 323
shop scheduling problem, 155
shortest path algorithm, 29, 32
shortest path problem, 187, 198, 318
shortest paths to s, 30
simplex algorithm, 12
simulated annealing, 53
single machine batching problem, 34
single machine problem, 19
single machine scheduling, 26, 61
sink, 156
sink vertex, 13
sizei, 335
Smith’s ratio rule, 78
Smith’s rule, 78
source, 156
source vertex, 13
speed-of machine, 5
SPT-rule, 134
SPT-sequence, 246
squared deviation, 7
successor, 29
sum objective, 6

Index 371

supply, 12

tabu-list, 54, 224
tabu-search, 55, 221
tail, 71, 210
tardiness, 7, 243
terminal vertex, 198
threshold, 39
threshold acceptance method, 54
time window problem, 297
time windows, 109
tool, 2
topological enumeration, 29
total flow time, 6
total weighted completion time, 73
total weighted tardiness, 93
transportation network, 12
transportation time, 290
transshipment problem, 12
truth assignment, 45
type of task, 318

unary encoding, 39
unavoidable obstacle, 303
unbounded problem, 12
unit penalty, 7
unit processing requirement, 4
unrelated machines, 136
upper bound, 56

VERTEX COVER, 41
vertex cover, 41

weight, 3
weighted flow time, 7, 34
weighted number of late jobs, 84

