
Scheduling in Distributed

Computing Systems
Analysis, Design & Models

(A Research Monograph)

Scheduling in Distributed

Computing Systems
Analysis, Design & Models

(A Research Monograph)

by

Deo Prakash Vidyarthi
Jawaharlal Nehru University

New Delhi, India

Biplab Kumer Sarker
Primal Fusion Inc.

Waterloo, Canada

Anil Kumar Tripathi
Banaras Hindu University

Varanasi, India

Laurence Tianruo Yang
St. Francis Xavier University

Antigonish, Canada

Authors:

Deo Prakash Vidyarthi
Jawaharlal Nehru University
School of Computer & Systems Sciences
New Mehrauli Road
New Delhi-110067
India
dpv@mail.jnu.ac.in

Biplab Kumer Sarker
Primal Fusion Inc.
Research and Development
7–258 King Street North
Waterloo, Ontario N2J 2Y9
Canada
biplab.sarker@gmail.com

Anil Kumar Tripathi
Banaras Hindu University
Institute of Technology
Department of Computer Engineering
Varanasi-221005
India
anilkt@bhu.ac.in

Laurence Tianruo Yang
St. Francis Xavier University
Dept. Computer Science
PO Box 5000
Antigonish NS B2G 2W5
Canada
ltyang@gmail.com

Library of Congress Control Number: 2008935404

ISBN-13: 978-0-387-74480-3 e-ISBN-13: 978-0-387-74483-4

 2009 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

springer.com

We would like to acknowledge all individual and institution that helped
in any form in the contribution of this book. It will not be out of place
to pay sincere thanks to Prof. V.V.Menon, (Retired Professor,
Department of Applied Mathematics, Institute of Technology, Banaras
Hindu University, Varanasi, India) for his nice suggestions and
accomplishments throughout our research activities. We would also
like to acknowledge Prof. A.N.Mantri (Ex- Head, Department of
Computer Science, Banaras Hindu University, Varanasi, India) for his
sincere advice towards our research. Our students Mr. Alok Singh, Mr.
Neeraj Asthana has provided technical support towards the completion
of this book.

Our sincere thanks to Mr. Lutfi M. Omer Khanbary, a Ph.D. student,
for typesetting the whole manuscript as per the specifications.

Finally, we would like to thank our family for their understanding and
support while writing this book.

ACKNOWLEDEGEMENT

PREFACE

 The rapid growth of network technologies, processor architecture and software

development has facilitated meaningful attempts to exploit the capabilities of a

collection of computers for speeding up computations and services. A distributed

system consists of various servers integrated in such a manner so as to appear as

one system, whereas a distributed computing system (DCS), also appearing as one

system to the user, aims at distributing the parts of a task submitted to it, to vari-

ous participating nodes of the system. Thus one may view a distributed computing

system as one that tries to minimize the execution time of tasks submitted to it by

exploiting as many computing nodes as possible and plausible. A distributed sys-

tem may also have computing nodes that may be known as compute servers, and

co-operatively execute various modules of tasks submitted; apart from the services

that it runs e.g. print, mail, name etc. In this book, distributed system has been

used quite frequently to refer to the distributed computing system, because the ob-

jective is scheduling of the computational load.

The distribution of a computation load across processing nodes, forming a DCS,

has been a challenging task. Many researchers have contributed to study of this

problem during the last two decades. The problem consists of allocation of task

modules to various processing nodes so as to incur as minimum as possible inter-

processor communication overhead and thereby obtaining good execution speed

as opposed to a single processor execution. Many a times the inter-processor

communication may be too substantive compared to the total execution time.

The approaches for task scheduling in operating system for a distributed comput-

ing system must consider the multiplicity of processing nodes with underlying in-

terconnection network unlike the case of a single processor system. In the case of

uniprocessor system, the objective is to make the processors busy executing jobs

all the time by insuring that it does not idle and this serves the purpose.

In a distributed computing system, the scheduling of various modules on particular

processing nodes may be preceded by appropriate allocation of modules of the dif-

ferent tasks to various processing nodes and then only the appropriate execution

characteristic can be obtained. Thus task allocation becomes the important most

and major activity in the task scheduling within the operating system of a DCS.

Various research papers have addressed this problem during the last two decades.

As the problem is quite difficult, most of the solutions proposed had simplifying

assumptions. The very first assumption has been: consideration of a single task

only, second no consideration of the status of processing nodes in terms of the

previously allocated modules of various tasks and third the capacity and capability

of the processing nodes. The solutions reported in the beginning even assume that

the precedence constraints amongst the modules of a task are non existent or neg-

ligible. Nevertheless many good algorithms were proposed for the purpose.

viii Scheduling in Distributed Computing Systems

This book consists of various proposed algorithms for task allocation as part of

scheduling in an operating system for DCS. It starts with analyzing the existing

propositions, considering the precedence constraint and improving the known al-

gorithms, proposing a solution for minimizing intermodule communication apart

from the main and important contribution, made in this book, in the form of the al-

location algorithms that aim at distribution of computational modules belonging to

multiple tasks onto the various processing nodes considering there status in terms

of previous allocations and capacity. As the problem is NP-Hard, the techniques of

A*, GA etc. have been purposefully used to propose the algorithmic solutions.

The meaningful contributions have been organized in the chapters as given below:

Chapter 1 discusses the possible performance improvement in computing system.

It also addresses how the distributed computing system has evolved over the years

and the issues in DCS research.

Chapter 2 briefs about the distributed computing system. It discusses various ar-

chitectural models of DCS. Transparency is one of the biggest issues in the design

of a DCS that gives the DCS a single system image. Chapter 2 points out transpar-

ency issues of the DCS. Fault tolerance and synchronization in the DCS has also

been briefed in chapter 2.

ixPreface

Chapter 3 defines the scheduling problem and identifies the characteristic parame-

ter for a scheduler. It indicates the task allocation issues. Assumptions and nota-

tion, used in this book, have been kept together at one place in chapter 3.

Chapter 4 addresses the load balancing problem in a DCS. It defines load distribu-

tion, load balancing methodology, migration and also the conflict between load

balancing and task allocation.

Chapter 5 briefs the earlier task allocation models. Propositions, which consider

the precedence amongst the modules of the task and multiprogramming of the in-

dividual nodes, have been proposed in section 5.3 of chapter 5 using list schedule.

In the same chapter an inter module communication reduction model is also pro-

posed (sec. 5.4), which incurs a heavy penalty in total turnaround time of any task.

Chapter 6 proposes a few Load Balancing Task Allocation (LBTA) models. It dis-

cusses the LBTA strategy and its solution for single and multiple tasks.

Chapter 7 uses the important search technique of GA in proposing two allocation

models, one, which incorporates problem specific knowledge for quick conver-

gence and the other to maximize the reliability of the DCS with allocation.

Chapter 8 considers the important proposition of multiple tasks allocation and

proposes a few models. In section 8.1, an allocation algorithm based on A* is pro-

posed and in section 8.2 a new and novel idea of cluster based allocation is pro-

posed. Cluster based allocation model avoids the priori requirement of execution

x Scheduling in Distributed Computing Systems

time of modules of the task on the processing nodes and thus can be proved to be

very useful model of task allocation. Sections 8.3 and 8.4 deal with the LBTA

strategy using A* and GA respectively.

Chapter 9 proposes few other approaches for task allocation models. These are

hybrid and object oriented models.

Computational Grid is an emerging form of distributed computing. Chapter 10

concentrates on Grid Computing systems and discusses the scheduling problem

for a computational grid. “What are the various issues in Scheduling for Grid

Computing systems?” finds place in chapter 10.

Finally concluding remarks are made in chapter 11. This chapter also discusses the

structure and place of a scheduler in a DCS.

xi Preface

TABLE OF CONTENTS

1 Introduction .. 1
1.1 Performance Improvement in Computing System....................................... 2
1.2 High Speed Computing and DCS .. 4
1.3 Evolution of the DCS... 6
1.4 Issues in DCS Research ... 9
1.5 Organization of the Book... 12
BIBLIOGRAPHY.. 15

2 An Overview of a Distributed System... 17
2.1 DCS Architecture Models.. 17
2.2 Transparency in DCS... 22
2.3 Introduction to Fault Tolerance ... 25
2.4 Synchronization ... 27
BIBLIOGRAPHY.. 29

3 Scheduling Problem ... 31
3.1 On Functioning of a DCS .. 32
3.2 Desirable Characteristics of a Scheduler ... 34
3.3 Scheduler as a Task Allocator ... 35
3.4 Task Allocation Issues in DCS .. 36
3.5 The Task Allocation Problem .. 38
3.6 Assumptions & Notation ... 42
BIBLIOGRAPHY.. 44

4 Load Balancing in DCS.. 47
4.1 Load Distribution in a DCS ... 47
4.2 Load Balancing Methodology ... 49
4.3 Task Migration... 52
4.4 Threads .. 55
4.5 Conflicts between TA and LB ... 55
BIBLIOGRAPHY.. 59

5 Known Task Allocation Models .. 61
5.1 Early Models.. 62
5.2 Limitations of Earlier Models.. 72
5.3 Precedence Constrained Task Allocation .. 74
5.4 IMC Cost Reduction using Fuzzy Logic ... 83
BIBLIOGRAPHY.. 87

PREFACE.. vii

6 Load Balancing Task Allocation (LBTA)...89
6.1 Known Load Balancing Strategies...89
6.2 Issues of LBTA Strategy..93
6.3 The LBTA Solution ...94
6.4 Loads in LBTA for Single Task...97
6.5 Loads in LBTA for Multiple Tasks..99
BIBLIOGRAPHY..101

7 GA Based Task Allocation Models..103
7.1 Task Allocation using Genetic Algorithm ...105
7.2 Maximizing Reliability of DCS with Task Allocation using GA113
BIBLIOGRAPHY..122

8 Allocation of Multiple Tasks in DCS ..125
8.1 Multiple Task Allocation ...126
8.2 Cluster-Based Load Partitioning and Allocation in DCS.........................146
8.3 The LBTA Strategy for Multiple Tasks Using A*...................................163
8.4 The LBTA Strategy for Multiple Tasks Using GA..................................203
BIBLIOGRAPHY..217

9 Other Approaches for Task Allocation...219
9.1 Comparative Analysis of TA Models ..221
9.2 A Hybrid Model...224
9.3 Object Allocation in Distributed Computing System231
BIBLIOGRAPHY..238

10 Scheduling in Computational Grid ...241
10.1 Need for Grid Computing ..243
10.2 Scalability for Global Computing ..243
10.3 Data and Computational Grids...245
10.4 Scheduling in Computational Grid ..246
10.5 Challenges in Grid Computing ..248
BIBLIOGRAPHY..251

11 Concluding Remarks..253
11.1 Summary of Findings...253
11.2 Structures and Place of Scheduler in DOS...258
11.3 Future Possibilities...261
BIBLIOGRAPHY..262
ABBREVIATIONS ...264
Appendix A..265
Appendix B..277
Index ..293

xiv Scheduling in Distributed Computing Systems

CHAPTER 1

Introduction

A Distributed Computing System (DCS) falls in the category of disjoint mem-

ory multiple processor architecture with an underlying processor-to-processor in-

terconnection network. Such a private memory-processor interconnection network

is known to constitute a multi-computer system only if the programmers need to

consider the multiplicity of the machines, in programming a solution to the prob-

lem. In case of a distributed computing system the entire system appears as a cen-

tralized system to the user submitting a task; meaning thereby that it is the respon-

sibility of the system to distribute the computational modules of the given task to

various processing nodes for their efficient execution unlike the case of multi-

computer system as stated above.

With the proliferation of large-scale inter-networks, the idea of distributed

computing system has been gaining importance. In a distributed computing system

various computational and informational resources are dispersed over a wide geo-

graphical area with appropriate servers maintaining them at locations and provid-

ing services to clients hooked onto these systems. The idea is that a distributed

computing system may receive a task that requires various named services from

various servers and in this case the job of the operating system is to provide the

appropriate connectivity and the service mechanism. In case of a computational

task, consisting of various modules, the requirement is that of identification of ap-

propriate computing nodes in the distributed computing system for scheduling the

executable modules of the task so as to achieve a good turnaround for such a task

and possibly an increase in the throughput of the computing system. This problem

has been studied as task scheduling or task allocation problem in the literature [1-

7]. This book deals with the problem of task scheduling/ allocation in a distributed

computing system.

The following section 1.1 reviews the various ways of performance improve-

ment in computing system including parallel computing with multiprocessors,

multi-computers and distributed computing environment for the sake of complete-

ness. Section 1.2 discusses the role of distributed computing system in high speed

computing. Section 1.3 takes a view how the DCS has evolved, as a computing

system, over the time. Section 1.4 deals with the research issues in distributed

computing systems. Final section 1.5, describes the organization of the book.

1.1 Performance Improvement in Computing System

Parallel processing has emerged as a key enabling technology in modern com-

puters, driven by the increasing demand for higher performance, lower cost and

sustained productivity in real-life applications. Concurrent events are taking place

2 Scheduling in Distributed Computing Systems

in today’s high performance computers due to common practice of multipro-

gramming, multiprocessing and multi-computing. Modern computers are equipped

with powerful hardware facilities driven by extensive software packages [8].

Parallel processing and distributed processing are closely related. In some cases

certain distributed techniques are used to achieve parallelism. As the communica-

tion technology advances progressively, the distinction between parallel and dis-

tributed processing becomes smaller and smaller. In this extended sense, we may

view distributed processing as a form of parallel processing in a special environ-

ment [9].

It has long been recognized that the concept of computer architecture is no

longer restricted to the structure of the bare machine hardware. It is an integrated

system of machine hardware, system software, application programs and user in-

terfaces. Depending on the nature of the problems, the solutions may require dif-

ferent computing resources. The rapid progress made in hardware technology has

significantly increased the economic feasibility of building a new generation of

computers adopting parallel processing. Two categories of parallel computers are

architecturally modeled. These physical models are distinguished by having a

shared common memory and unshared distributed memories. Multiprocessors are

called tightly coupled systems due to the high degree of resource sharing (includ-

ing memory). Symmetric multiprocessors are those in which all processors have

equal access to all peripheral devices. In such system, all the processors are

equally capable of running the executive programs, such as OS kernel and I/O ser-

31 Introduction

vice routines etc. In contrast to this, in an asymmetric multiprocessor system only

one or a subset of processors is of executive capable [8].

The distributed memory multi-computer consists of multiple computers, often

called nodes, interconnected by a message-passing network. Each node is an

autonomous computer consisting of a processor, local memory and sometimes at-

tached disks or I/O peripherals.

Distributed computing system falls in the category of distributed memory par-

allel architecture and is characterized by resource multiplicity and system trans-

parency. The advantage of the DCS is that they are capable of incremental

growth[5] i.e. it is possible to gradually extend the power and functionality of a

distributed computing system by simply adding additional resources (both hard-

ware and software) to the system as and when the need arises. For example, addi-

tional processors can be easily added to the system to handle the increased work-

load of an organization that might have resulted from its expansion. With the

rapidly increasing power and reduction in the price of microprocessors, DCS po-

tentially have a much better price performance ratio than a single large centralized

system. Moreover the existing microcomputers, minicomputers or even a work-

station can be added to the DCS for its better utilization.

1.2 High Speed Computing and DCS

4 Scheduling in Distributed Computing Systems

In practice, parallelism appears in various forms, such as look ahead, pipelin-

ing, vectorization, concurrency, simultaneity, data parallelism, partitioning, inter-

leaving, overlapping, multiplicity, replication, time sharing, space sharing, multi-

tasking, multiprogramming, multithreading and distributed computing at different

processing levels. All forms can be attributed to levels of parallelism, computa-

tional granularity, time complexities, communication latencies, scheduling poli-

cies and load balancing [10]. DCSs are naturally attractive as existing intercon-

nected computers can be used to assign them various parts of a computational task

to achieve parallelism.

The definition of high speed computing has undergone many changes in recent

years. Perhaps, the most notable development in the evolution from the industry,

dominated by vector mainframe architectures, to one in which massively parallel

computers have been the primary choice for solving computationally intensive

problems. As an alternative to massively parallel computers, increasing interest

has immerged in distributed computing in which networked collection of dedi-

cated or general purpose workstations are treated as a parallel computer. Although

this method has existed for many years, two developments have served as cata-

lysts to the rapid growth in the use of such cluster-based computing. First, high

performance workstations with microprocessors that challenge custom-made ar-

chitectures are widely available at relatively low cost. Second, several software

packages have been developed to assist the programmer in process management,

inter-process communication and program monitoring/debugging in a distributed

environment [11].

51 Introduction

 The researches in the area of parallel computing have been indicating the avail-

ability of immense computing power, for execution of properly distributed and

coordinated parts of jobs submitted to the system from time to time. The conflu-

ence of low-cost high performance processors and interconnection technologies

has spurred a great interest in the advancement of computer architectures. The of-

ten-cited advantages of these architectures include high performance, availability,

and extensibility at lower cost. As pointed out earlier, the computer architectures,

consisting of interconnected multiple processors are of two types:

(i) Multiprocessors, known as tightly coupled systems, allow sharing of

global memory by multiple processes running on their processors and

communication amongst the processes is actuated by use of the shared

variables. In such coupled systems, the number of processors that can be

usefully deployed is usually small and limited by the bandwidth of shared

memory.

(ii) Multicomputers and DCSs consist of a number of independent processors

with private memory units and the IPC is done by message passing mak-

ing use of the processors interconnection.

1.3 Evolution of the DCS

6 Scheduling in Distributed Computing Systems

The processors in a DCS may vary in the size and the functionality. They may in-

clude small microcomputers, workstations, minicomputers and large general pur-

pose computer systems. For a particular processor its own resources are local,

whereas the other processors and their resources are remote. Together, a processor

and its resources are usually referred to as a node or site or machine of the distrib-

uted computing systems. Resource sharing, computational speedup, reliability and

communication over distances are the main reasons for building the DCS [12].

DCSs have become more and more attractive in recent years due to the advance-

ment of VLSI and computer networking technologies. DCS not only provide the

facility for utilizing remote computer resources and data but also increase the

throughput by providing facilities for multiprogramming and parallel processing

[13]. Furthermore, modularity, flexibility and reliability of the DCS make them at-

tractive for many types of application.

The advent of time-sharing systems was the first step towards building the DCS

because it provides us with two important concepts used in DCS; the sharing of

computer resources simultaneously by many users and the accessing of computers

from the different places. The centralized time-sharing systems had a limitation

that their terminals/workstations could not be placed very far from the main com-

puter room/system (like in minicomputers) since ordinary cables were used to

connect the terminals to the main computer. But the advancement of computer

networking technologies LAN (Local Area Network) and WAN(Wide Area Net-

work) allow hundreds, even thousand of computers to be connected (may be resid-

71 Introduction

ing in different cities or countries or continents) in such a way that the small

amounts of information can be transferred between computers in a fraction of sec-

ond or so. Recently there has been another major advancement in networking

technology, the ATM (Asynchronous Transfer Mode) technology, which makes

very high speed networking possible in both LAN and WAN environments. The

availability of such high bandwidth networks allows DCSs to support a com-

pletely new class of distributed applications called multimedia applications that

deal with the handling of a mixture of information, including voice, video and or-

dinary data [14].

The operating systems commonly used for DCS can be broadly classified into two

types- Network Operating System (NOS) and Distributed Operating System

(DOS) [14].

In NOS, the users are aware of the multiplicity of the machine and can access the

resources either by logging into the appropriate remote machine or transferring the

data from the remote machine to their own machine. On the other hand, in DOS

the users would not be aware of the multiplicity of machines. It provides a single

system image to its users. Users access remote resources in the same manner as

they access local resources. A DOS dynamically and automatically allocates tasks

to the various machines of the system for its processing.

In NOS, each computer of the system has its own local operating system (the op-

erating systems of different computers may be the same or different) that functions

8 Scheduling in Distributed Computing Systems

independently of the other machines meaning thereby that each one makes inde-

pendent decisions about the creation and termination of their own processes and

management of local resources. Due to the possibility of difference in local oper-

ating systems, the system calls for different machines of the same DCS may be

different in this case. On the other hand, in DOS which is a single system wide

operating system and each machine of the DCS runs a part of this global operating

system. There is a single set of globally valid system calls available on all com-

puters of the DCS.

The fault tolerance capability of a DCS is usually very high as compared to that of

a networked system. If some computers fail in NOS, then several users are unable

to continue with their work. On the other hand, in case of a DOS, most of the users

can continue their work normally with only some percentage of loss in perform-

ance of the DCS.

1.4 Issues in DCS Research

The hardware issues of building a distributed computing system were fairly well

understood, the major stumbling block is the availability of adequate software for

making these systems easy to use and exploit its power fully. Therefore, since

1970, a significant amount of research work was carried out in the area of distrib-

uted operating system. Designing a distributed operating system is more difficult

than a centralized one mainly because of the non-availability of complete informa-

91 Introduction

tion about the system environment [4-7, 12, 14]. There is no common clock and

various resources are physically separated in DCS in contrast to a centralized sys-

tem. Despite these, the users of the DCS are to be provided all the advantages of

the system. To meet these challenges the researchers, in the DCS discipline, must

deal with several important issues. Some of these key issues are identified and dis-

cussed below.

The distributed computing system is designed in such a way that the collection

of various machines, connected by an interconnection network, appears as a vir-

tual uniprocessor system. Achieving complete transparency is a difficult task and

research is still continuing on this issue. Of the several transparency issues identi-

fied by the ISO Reference Model for Open Distributed Processing, location trans-

parency, migration transparency and concurrency transparency are very important

[6-7, 14].

The often-advocated advantage of the DCS, in comparison to the centralized

system, is the reliability due to the existence of multiple resources. However, only

the multiple instances of resources cannot increase the reliability of the DCS,

rather the various processes of the distributed operating system (viz. memory

manager, task scheduler etc.) must be designed properly to increase the reliability

by extracting the characteristic features of the DCS.

Another important issue is flexibility. It is more required for open distributed

system [4-5, 14].

10 Scheduling in Distributed Computing Systems

Performance improvement of an application running on the DCS than that of

single processor system is another desired feature. To achieve this though the

various components of the distributed operating system are taken into account, but

the most important role is that of a scheduler or task allocator. The turnaround and

throughput are the two important characteristic measures for the performance im-

provement.

Another issue in DCS research is scalability that refers to the capability of the

system to adapt to an increase in the service load. A distributed computing system

should be designed to cope with the growth of the processing nodes and the users

as well. How to design a system so that such growth should not cause any serious

disruption of services is very important research issue in the DCS.

Growth, in the number and types, of processing nodes introduces another di-

mension that is inevitable to have dissimilar hardware or software. Many users of-

ten prefer heterogeneity because it provides the flexibility of different computer

platforms for different applications. Designing heterogeneous system is far more

difficult than a homogeneous one.

In order that the users can trust the system, the various resources must be pro-

tected against destruction and unauthorized access. Enforcing security in a DCS is

another important research area and is much more difficult than in a centralized

one.

111 Introduction

 The book discusses one of the research issues that of task scheduling/allocation

thoroughly. The problem is as such an NP-Hard problem and thus various feasible

solutions are possible. The authors present and discuss all those task scheduling

models that have been proposed by the authors themselves.

1.5 Organization of the Book

The book is organized in ten chapters. The current chapter, which is the first

one, is an introductory chapter. Second chapter defines the task scheduling prob-

lem of the DCS. Chapter 2 takes a cursory look over the distributed system. What

is exactly expected out of scheduling and how it has been addressed in this work,

is detailed in chapter 3. Load balancing is an important aspect of the scheduling

problem and is pursued in the chapter 4. Some of the earlier task allocation mod-

els, their limitations and few proposed trivial models for task allocation have been

discussed in chapter 5. A precedence constrained task allocation model, in which

the emphasis is on the precedence of the modules [15] and that minimizes the

turn-around time of the given task is discussed in sec 5.3 of chapter 5. The effect

of already allocated modules of unrelated tasks, on the processing elements com-

prising the system, is considered (assuming round robin scheduling) in this model.

Communication amongst the modules adds to the cost of overall execution of

the task, for the allocation being considered, if its modules are to execute onto the

12 Scheduling in Distributed Computing Systems

distant processing nodes of the DCS. An IMC cost reduction model (section 5.4),

an aid in allocation algorithms, uses fuzzy logic to consider high and low commu-

nicating modules. The same fuzzy function is applied to determine near or distant

nodes of the DCS. This IMC cost reduction model can be introduced in any task

allocation algorithms at minimum cost [16].

Load balancing task allocation models find place in chapter 6. This chapter

considers load balancing strategies and discusses the LBTA solutions for both the

single and multiple task allocation.

As the task allocation problem is an NP-hard problem, Genetic Algorithms

(GA) is found to be suitable to solve it. Two task allocation models, based on GA,

have been proposed in chapter 7. First one aims at minimizing turn-around time of

a task (sec. 7.1) and the second (sec. 7.2) gives an allocation that maximizes the

reliability of the DCS as desired in some systems. The TA model proposed in sec-

tion 7.1 [17], is based on a finding that the incorporation of some problem specific

knowledge in construction of the GA, improves its performance and solution con-

verges quickly [18]. This algorithm considers the inclusion of all possible con-

straints in the model, and as suggested in [19] will converge quickly.

Task allocation models for maximizing reliability of a DCS have appeared in

the past [20-22]. We applied GA to maximize reliability of the DCS with task al-

location and the same is discussed in section 7.2. The algorithm not only gets the

advantage of GA for quick convergence but also produces better solutions in terms

131 Introduction

of allocation with improved reliability [23]. The result is compared with that of

Shatz [21] and it shown that the proposed model performs better. Many more in-

ferences are drawn.

The TA models, proposed by researchers in the past, have considered the mod-

ules of a single task and assume that processing nodes have enough memory to ac-

commodate unlimited modules. In a realistic situation multiple tasks arrive and at

any instance of time, the Processing Element (PE) has modules of earlier tasks al-

located and the memory occupied by it. In chapter 8, multiple tasks allocation in

DCS is deliberated. Multiple task allocation, using A*, appears in sec. 8.1 [24]. To

implement this, the concept of Global Table is introduced. Section 8.2 proposes a

new idea of cluster-based approach of load partitioning and allocation in DCS.

Cluster of the modules, based on communication requirement and cluster of PEs

based on interprocessor distance is formed. Allocation is decided from task cluster

to processor cluster. This model has the advantage that it does not require the pri-

ori knowledge of execution time of the modules of the tasks onto nodes of the

DCS. As the allocation algorithms, in this chapter, consider multiple tasks and

status of PEs due to previous allocations, these are not comparable with other

models proposed in the literature. Section 8.3 discusses the load balancing task al-

location for multiple tasks execution in DCS using A* and section 8.4 discusses

the same using GA.

14 Scheduling in Distributed Computing Systems

Chapter 9 makes a comparative analysis of scheduling models based on A* and

GA and proposes a hybrid model using both A* and GA. This chapter also dis-

cusses the object allocation as most of the system are going object oriented.

Grid Computing is another form of Parallel and Distributed Computing. Com-

putational grid is an emerging computing system so chapter 10 is dedicated to the

discussion on the scheduling in computational grid. This chapter details various

research issues in Grid scheduling.

Chapter 11 is the concluding chapter that summarizes the whole book. Struc-

ture and place of scheduler in Distributed Operating System is briefed in sec. 11.2

of this chapter.

The abbreviations used in the book are listed at one place for quick reference.

Finally, we have listed few programs written to carry out the experiments in the

appendix given is last.

BIBLIOGRAPHY

[1]V.Rajaraman, C.Siva Ram Murthy, Parallel Computer: Architecture and Programming, Pren-

tice Hall of India Ltd, 2000.
[2]M. Sasikumar, Dinesh Shikhare, P. Ravi Prakash, Introduction to Parallel Processing, Pren-

tice Hall of India Ltd, 2000.
[3]Sanjeev K. Setia, Mark S. Squillante, Satish K. Tripathi, “Analysis of Processor Allocation in

Distributed –Memory Parallel Processing Systems”, IEEE Trans. on Parallel & Distributed

Systems, Vol. 5, No. 4, April 1994, pp. 401-420.
[4]A.S.Tanenbaum, Distributed Operating Systems, Prentice-Hall, Englewood Cliffs, NJ, 1995.
[5]A.S.Tanenbaum, R. Van Ressen, “Distributed Operating Systems,” ACM Computing Surveys,

Vol. 7, No.4, 1985, pp. 419-470.

151 Introduction

[6]G.Colouris, J. Dollimore, T. Kindberg, Distributed Systems: Concepts and Design, Addison-
Wesley Publishers Ltd., 1994.

[7]G.Nutt, Operating Systems: A Modern Perspective, Addison Wesley, 2000.
[8]Kai Hwang, Parallel Computer Architecture, Mc-Graw Hill International Edition, 1995.
[9]Kai Hwang, F.A.Briggs, Computer Architecture and Parallel Processing, McGraw Hill Inter-

national Edition, 1995.
[10]Kai Hwang, Advanced Computer Architecture: Parallelism Scalability and Programmability,

Mc-graw Hill, 1993.
[11]M.Hamdi and C.K.Lee, “Dynamic Load Balancing of Image Processing Applications on

Clusters of Workstations,” Parallel Computing, 22(1997), pp.1477-1492.
[12]A.Silberschatz and P.B. Galvin, Operating Systems Concepts, Addison- Wesley, 1998.
[13]C.C.Shen and W.H.Tsai , “A Graph Matching Approach to Optimal Task Assignment

in Distributed Computing System Using a Minimax Criterion,” IEEE Trans. Computers,
Vol. c-34, no.3, March. 1985. pp. 197-203.

[14]P.K.Sinha, Distributed Operating Systems: Concepts and Design, Printice-Hall of India,
1997.

[15]D.P.Vidyarthi, A.K.Tripathi, “Precedence Constrained Task Allocation in Distributed Com-
puting System”, Int. J. of High Speed Computing, Vol. 8, No. 1, 1996, pp. 47-55.

[16]D.P.Vidyarthi, A.K.Tripathi, “ A Fuzzy IMC Cost Reduction Model for Task Allocation in
Distributed Computing Systems”, Proceedings of the Fifth International Symposium on

Methods and Models in Automation and Robotics, Vol. 2, Szczecin, Poland, August 1998, pp.
719-721.

[17]A.K.Tripathi, D.P.Vidyarthi, A.N.Mantri, “A Genetic Task Allocation Algorithm for Dis-
tributed Computing System Incorporating Problem Specific Knowledge”, International J. of

High Speed Computing, Vol.8, No.4, 1996, pp. 363-370.
[18]John J. Grefenstelle, "Incorporating Problem Specific Knowledge into Genetic Algorithm",

Genetic Algorithm and Simulated Annealing, Morgan Kaufrman Publisher, California, 1987.
[19]K.Efe, "Heuristic Models of Task Assignment Scheduling in Distributed Systems", IEEE

Computer, Vol. 15, June 1982, pp. 50-56.
[20]S.Kartik, C.S.Ram Murthy, “Task Allocation Algorithms for Maximizing Reliability of Dis-

tributed Computing Systems”, IEEE Trans. on Computers, Vol.46, No.6, June1997, pp. 719-
724.

[21]Sol.M.Shatz, Wang Goto, “Task Allocation for Maximizing Reliability of Distributed Com-
puting Systems”, IEEE Trans. on Computers, Vol.41, No.9, September 1992, pp. 1156-1168.

[22] Karthik, C. Siva Ram Murthy, “ Improved Task Allocation Algorithms to Maximize Reli-
ability of Redundant Distributed Systems”, IEEE Trans. on Reliability, Vol. 44, No. 4, Dec.
1995, pp. 575-586.

[23]D.P.Vidyarthi, A.K.Tripathi, “Maximizing Reliability of Distributed Computing Systems
with Task Allocation using Simple Genetic Algorithm”, J. of Systems Architecture, Vol. 47,
2001, pp. 549-554.

[24]D.P.Vidyarthi, A.K.Tripathi, B.K.Sarker, “Multiple Task Management in Distributed Com-
puting Systems”, The Journal of the CSI, Vol. 31, No. 1 Sep. 2000, pp. 19-25.

16 Scheduling in Distributed Computing Systems

CHAPTER 2

An Overview of a Distributed System

 This chapter takes a cursory view of a distributed system. It discusses various

architectural models of a distributed system and various types of transparencies

involved. It also discusses fault tolerant, one of the very important property of a

distributed system. A clock of the distributed system makes its computing nodes

independent. How the system will be synchronized, in spite of the distribution of

the clock, has been discussed in this chapter. The objective in this chapter is to in-

troduce briefly the important properties of a distributed system to its readers, be-

fore moving to the scheduling aspect in a distributed computing system. The dis-

cussion, in general, is on a distributed system as the distributed computing system

differs from the distributed system in its objective of handling the computational

load as mentioned at other places as well.

2.1 DCS Architecture Models

 Various models for the design of a distributed computing system have been

proposed. We discuss here few models.

2.1.1 Workstation model

 The workstation model is the simplest one and is consists of several worksta-

tions connected by a common communication network (Fig. 2.1). This is the most

popular model also as it uses the available legacy systems in designing a distrib-

uted computing system. It has been observed that not often all the workstation in

an organization are used all the time, whereas they are on and can be used for the

execution of the jobs belonging to the other user. Thus by connecting all the work-

station of an organization, all the workstation can be utilized fully and this will re-

sult in parallel execution of the jobs reducing the overall completion time.

 The issue may arise that what happens when a workstation was executing a

job of some other workstation. These issues have been addressed by Tanenbaum

[2].

A user logs onto his/her workstation and submits the job to be executed. This

job will be exploited for available parallelism and thus various concurrent mod-

ules of the job will be allocated onto any free workstation. This way the coopera-

tion amongst the workstation will result in the concurrent execution of the job.

18 Scheduling in Distributed Computing Systems

2.1.2 Minicomputer Model

 This model comprised of the minicomputers, in place of the workstations, and

is simple extension of the centralized timesharing system (Fig. 2.2). As usual, each

minicomputer may have several terminals attached and a user can fire the job for

execution from any of the terminals. The job can be executed on the minicom-

puter, from which it has been fired, or on any other minicomputer.

 This type of model is very much useful when resource sharing with remote

users is required. For example, sharing databases of different types, with each type

of the databases located on a different minicomputer.

 The early ARPAnet is an example of a distributed system based on the mini-

computer model.

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Communication

network

Fig. 2.1Workstation Model

192 An Overview of a Distributed System

2.1.3 Client-Server Model

 This model considers that the services of the system are concentrated over few

dedicated machines and these services can be accessed from various remote nodes.

These dedicated machines are referred as server and the machine accessing the

services are called client (Fig. 2.3). Basically, the clients are minimal machine

with less functionality. Servers are highly capable processors with one or more

functionality. User can log onto any of the client machine and can fire the job.

Normal computation can be performed on the client machine itself and the job re-

Mini-

computer

Mini-

computer

Mini-

computer

Mini-

computer

Mini-

computer

Mini-

computer

Communica-

tion network

Fig. 2.2.Minicomputer Model

20 Scheduling in Distributed Computing Systems

quiring specific services will be forwarded to the special server and will be exe-

cuted there.

The client machine may be even the diskless workstations and the servers may

be the minicomputers equipped with large, fast disks.

2.1.4 Hybrid Models

 In hybrid models all above models can be integrated into one. We may have

the nodes that can act as the server as well as the client as and when the need

arises. We can have the workstations, minicomputers, mainframe computers or

even the multiprocessor systems integrated into one to conceive a distributed

Mini-

computer

as Server

Mini-

computer

as Server

Mini-

computer

as Server

Communication

network

Workstation Workstation

Workstation

Workstation

Workstation

Fig. 2.3.Client-Server Model

212 An Overview of a Distributed System

computing system. This type of model introduces heterogeneity in the design of

the distributed system, but provides the possibility of integrating all types of com-

puting nodes for maximum utilization.

2.2 Transparency in DCS

 One of the main goals of the distributed computing system is the single sys-

tem image. This is possible by making the multiplicity of the machines invisible to

the user. The same is provided by adding transparency to the system. A true dis-

tributed system should have various types of transparencies so that user is unaware

of the distribution and one views it as a single system. Transparency issue has

been discussed in detail in the literature [1]. We brief here various types of trans-

parencies in DCS.

2.2.1 Location Transparency

 The location transparency is further divided in two. One, in which the name of

a resource does not reveal anything about its location in the network, is known as

Name transparency. The name transparency suggests that the name of a resource

should be independent of the topology of the network. Further, the movable re-

sources in the network are allowed to move across the network without any

change in their names.

The other one is in which user is allowed to use the resources from any of the

hosts without any change in the names of the resource. For example, a user can re-

fer a file with the same name independent to the question where from the user’s

log in. This is referred as user mobility.

22 Scheduling in Distributed Computing Systems

2.2.2 Replication Transparency

 Redundancy is a technique by which the reliability of a system is increased. It

is the property of a distributed system to introduce redundancy for reliability and

better performance. Replicated resources and activity should be transparent to the

user of a distributed system. The distributed system needs to handle the naming of

replicas so that various copies of the same replica can be addressed by the same

name. Replication control deals with how many of such replicas to be created,

when it should be deleted etc.

2.2.3 Migration Transparency

 Migration of the modules of a task is one of the important activities of the dis-

tributed system and has been addressed extensively in this book. The objective of

the migration transparency is to allow the migration of the object in a user trans-

parent manner. More discussion on the migration is in section 4.3 of chapter 4.

2.2.4 Access Transparency

 Access transparency suggests that it is invisible to the user that whether a re-

source is remote or local. So a distributed system allows a user to access even re-

mote resources in the same manner as the local ones.

2.2.5 Concurrency Transparency

232 An Overview of a Distributed System

 As the distributed system consists of number of nodes it allows the execution

of concurrent modules of a given task. The concurrency transparency suggests that

these modules can be executed concurrently invisible to the user. However, con-

currency control is an important issue, which must be addressed by the system de-

signer.

The concurrency transparency also indicates that users can execute the concur-

rent modules of their tasks, in parallel, as and when the nodes can be allowed to

execute so without the knowledge of the user.

2.2.6 Performance Transparency

 This requires from the system to configure it dynamically, as and when re-

quired, to improve the performance of the system. We, in this book, have pro-

posed a task allocation model in which the system is reconfigured to use it to the

maximum possible extent (sec. 8.2 chapter 8).

2.2.7 Failure Transparency

 This deals with allowing making the necessary changes in case of partial fail-

ure in the system. An often used term is graceful degradation that says to redis-

tribute the load of a failed processor to all other processor in such a manner that is

invisible to the user. Though, it is not possible to handle complete failure transpar-

ency, it is done to its maximum possible extent. Sometimes it is not possible to

hide the failure of the processor, even if the load is shared by all other because the

system will become slow and will be noticeable to the user. So a system having

full failure transparency is not justified also.

24 Scheduling in Distributed Computing Systems

2.2.8 Scaling Transparency

 This says that system is allowed to scale up and down without affecting the

users.

2.3 Introduction to Fault Tolerance

 A fault is a mechanical or algorithmic defect that may generate error [1]. Fail-

ure is the repercussion of a fault. System failures have been characterized into two

types. One, in which the system stops functioning after detecting a fault, is called

as the fail-stop failure. The second one, in which system continues to function and

produces wrong results even after detecting a fault, is referred as Byzantine fail-

ure. It is obvious that Byzantine failures are much more difficult to handle than the

fail-stop failure.

 Faults are handled by the methods of tolerance, avoidance and detection and

recovery.

2.3.1 Fault Tolerance

 Fault tolerant is the ability of a system to continue functioning even if the sys-

tem fails partially. The term is referred as the “graceful degradation” in which the

load of the failed node is given to the other nodes resulting in degraded perform-

ance. Fault tolerance is strongly related to dependable systems. Dependability re-

quires the following [2]:

• Availability

• Reliability

252 An Overview of a Distributed System

• Safety

• Maintainability

Availability is defined as the probability that the system is available at any

given moment to perform its function on behalf of its users. Highly available sys-

tem is one that will most likely be working at any given instant of time.

Reliability is defined in terms of the time interval in contrast to an instance in

time defined in availability. A highly reliable system is one that will continue

working for a long period of time. If a system goes down for one millisecond

every hour, it has more than 99 percent availability but is highly unreliable. Fur-

ther, if a system never crashes but is shutdown for two weeks in one year has high

reliability but only 96 percent availability.

Safety refers the situation in which the safety of the system is ensured so that it

can perform properly. For example, if a control system that send people in space

fails even for a brief moment, it could be disastrous. Safety of such systems is

very much required.

Maintainability expresses how the system can be maintained for the future ac-

tion i.e. if a system fails how easily and quickly the system can be repaired.

2.3.2 Fault Avoidance

 This deals with the component design that tries to minimize the faults. The

components whose failure rate is least are used to design a system and the system

eventually minimizes the fault occurrences. Both the hardware and software com-

ponents are taken care of this way.

26 Scheduling in Distributed Computing Systems

2.3.3 Fault Detection and Recovery

 This deals with mechanism of determining the occurrence of a failure and then

to correct it in order to work the system properly. The failure is notified by the

system and a corrective measure is taken to overcome the fault. Roll back is a

mechanism that is often used for the corrective measures.

The detection method should be able to detect all types of faults, be it node

failure, link failure or other software failure.

2.4 Synchronization

 Synchronization is very important activity in a distributed system as the dis-

tributed system is not having a global central clock. It is desired that synchroniza-

tion be done based on actual time. Many algorithms have been proposed in the lit-

erature that deals with synchronization of actual physical clocks [3-5].

It has been noted that sometimes only the relative ordering of the event is im-

portant than the ordering in absolute time. Logical clock synchronization deals

with the ordering aspects of the events rather than the physical clock synchroniza-

tion. We will discuss only the Lamport time stamping here that deals with logical

ordering [6-7].

Physical clock synchronization deals with how the two nodes of a distributed

system for which the time on physical clocks are different will be synchronized. It

is important also otherwise it may become catastrophic. For example, in a distrib-

uted system a job is being executed that compiles all the files belonging to that job

and then execute it. These files for the job may be located on different nodes of

the system. Suppose the owner of the job changes a file on any of the node. Before

execution of the job, it needs to check if any file has been modified and if so to

272 An Overview of a Distributed System

compile it afresh. Whether a file has been modified or not will be indicated by the

time of creation and execution only. Suppose the machine on which the file is be-

ing compiled gives more time than on which it has been modified, the modifica-

tion will not be noticed and the job will execute only the old version of the object

file. Thus there is a need to synchronize the physical clock. Christian algorithm is

a famous one for physical clock synchronization [3].

 For many purposes, it is sufficient that all machines agree on the same timings

of their clocks. It is not necessary that their clocks should have the real time. This

results in dealing with ordering of the events. This defines a logical clock. Lam-

port time stamping is very important move for the logical clocks.

2.4.1 Lamport Timestamps

 Lamport defined a relation called “happens before”. If all processes agree that

an event x happened before y, the same can be represented as x→y. This relation

is a transitive relation. If two events happen in different processes that do not ex-

change messages, then this relation does not hold. These events then said to be

concurrent [2].

A time value T(x) is assigned to the events to the events with the agreement of

all the processes. Thus, if x→y holds, then T(x) < T(y) i.e. if event x occurs be-

fore event y within the same process then T(x) < T(y). Similarly if x represent the

sending of the message and y receiving of the message then T(x) < T(y). Further,

the time value T must always advance.

 The processes running on different machines with their own clock on a dis-

tributed system must be synchronized. The clocks of the processors of the DCS

may have its own speed. The events can be synchronized using Lamport algo-

rithm. Lamport algorithm suggests that if a message has been delivered at time t

28 Scheduling in Distributed Computing Systems

on a machine A can not reach at time t-x on some other machine B. If it is ob-

served so, then the time of the machine B will be advanced as t+1. This way the

logical time stamping will be done.

For other synchronization mechanism the readers may refer [2].

BIBLIOGRAPHY

[1]Pradeep K. Sinha, Distributed Operating System: Concepts and Design, Prentice Hall of India,
1998.

[2]Andrew S. Tanenbaum, Marteen Van Steen, Distributed Systems: Principles and Paradigms,
Pearson Education, 2002

[3]Christian F., Probabilistic Clock Synchronization, Distributed Computing, Vol.3, 1989, pp.
146-158

[4]Drummond R., Babaoglu O., Low cost Clock Synchronization, Distributed Computing, Vol.
6, 1993, pp. 193-203

[5]Kopetz H., Ochsenreiter W., Clock Synchronization in Distributed Real Time Systems, IEEE
Trans. On Computers, Vol. C-87, No.8, Aug. 1987, pp. 933-940

[6]Lamport L., Time, Clocks and the Ordering of events in a distributed system, ACM Commu-
nications, Vol. 21, No. 7, July 1978, pp. 558-565

[7]Lamport L., Concurrent Reading and writing of Clocks, ACM Trans. On Computer Systems,
Vol. 8, No. 4, Nov. 1990, pp. 305-310

292 An Overview of a Distributed System

CHAPTER 3

Scheduling Problem

 The problem addressed in this book is concerned with the scheduling as-

pects of computations being submitted to a system that consists of distributed and

properly networked collection of individual computing nodes. In other words, the

main function of the scheduler of the operating system of such a computing infra-

structure has to be allocation of different parts of a given task to various process-

ing nodes of the computing system in such a way so as to be able to exploit effi-

ciently the computing resources of the system and improve execution

characteristic of any given task compared to its execution on a single processor

system. This problem has been addressed in the literature during the last two dec-

ades but the assumptions made in those work simplify the problem extensively.

For example, most of the models assume (i) only one task and their modules; (ii)

ignore the capacity and status of processing elements etc.

The scheduling policies of a single processor system have been developed

keeping in mind the fullest exploitation of the underlying CPU of the given ma-

chine. The idea there was to achieve the best execution of given computational

task by making the CPU busy all the time. In case of a distributed computing sys-

tem, multiple parts (modules) of a given task are allocated onto the various proc-

essing nodes so that they can execute in parallel (if possible) to produce better turn

around time apart from utilizing the processing elements of the DCS. Hence the

scheduling aspects of a DCS consists of two main functionalities: a) allocation of

modules of any given task by selecting appropriate computing nodes of the DCS

and b) the mechanism of execution of various modules of different tasks on a par-

ticular computing node of the DCS.

This chapter discusses about functioning of the DCS in section 3.1 and desir-

able characteristics of a scheduler in section 3.2. The job of the scheduling has

been defined as the allocation of the tasks. Section 3.3 discusses scheduler as a

task allocator. Issues in task allocation have been briefed in section 3.4. For the

purpose of clarity the task allocation problem is discussed in section 3.5. The nec-

essary assumptions, notation, and abbreviations used in the book, concludes the

chapter.

3.1 On Functioning of a DCS

 It will not be out of place to consider the functioning of a DCS, as the sched-

uling aspects are very much concerned with the way of functioning of these sys-

tems. Distributed computing system falls in the category of disjoint memory archi-

tecture. This type of system consists of multiple computing nodes that do not share

memory and clock. The participating nodes have their own private memory. These

nodes are connected in some fashion [1]. The nodes communicate with one an-

other using communication links of the interconnection network. There has been a

32 Scheduling in Distributed Computing Systems

continuous research for improving the communication performance of the inter-

connection networks [1-2].

 As has been said earlier, a distributed system consists of multiple processing

nodes that provide one or the other services to the users of the system. A user logs

onto the system as one interconnected unit and multiplicity of the participating

machines is hidden within the internals of the collection. When a substantive

computation load is submitted to the distributed computing system, the scheduler

must work out whether one or multiple number of computing nodes should be util-

ized to execute the computational work. In case of the possibility of providing the

service from the task-receiving-node itself, the work is simpler and the computa-

tion is scheduled there itself. In the event of this computation being a request for

some particular service, to be obtained from some other participating sites (nodes),

the appropriate assignment will have to be carried out. The job of the scheduler

becomes difficult if multiple computing nodes, for obtaining the best execution of

the submission, must share the computational load.

The method of communication, architecture of interconnection network, the

type of participating computing nodes, their capacities and the organization of ser-

vices of the operating system of the DCS are some important issues related to the

functionality of a DCS that affect the above said-the main and difficult most part

of the scheduling of tasks on the DCS [3].

Next section describes the important characteristics of a scheduler of the DCS.

333 Scheduling Problem

3.2 Desirable Characteristics of a Scheduler

 A scheduler must coordinate the execution of a given task by utilizing the

available computational resources for satisfying the execution characteristics ex-

pected. As detailed above, on receiving a task the scheduler must distinguish be-

tween the requirement of a general service (either from the receiving node or from

some remote server) and the requirement of distribution of the computational load

across multiple computing nodes of the system. It is a latter case of cooperative

execution of multiple modules of a computational task on various participating

nodes of the DCS that happens to be the main and difficult function of the sched-

uler in a distributed computing system. This function of the scheduler is known, in

the literature, as task allocation or task mapping in multi-computer / distributed

computing system [4-9]. It should be noted that multiple tasks from various users

are submitted on any nodes of the DCS from time to time. The scheduler must also

accommodate this multiplicity of the disjoint task. Three major aspects of schedul-

ing that are characteristic parameters for any scheduler are known to be turn-

around time, throughput and interactive response time. Turnaround time is a task-

oriented characteristic that considers the time duration between submission and

completion of a task. Obviously, it will be desirable to minimize this time. Simi-

larly, the throughput of the system is a characteristic that measures the number of

tasks successfully executed in unit time. This quantity must be maximized. The in-

teractive response talks about the requirement of interactive users during the exe-

cution of the tasks. One or some modules of a task may continue to reside on the

recipient node, whereas all other modules of a task that do not participate in the in-

34 Scheduling in Distributed Computing Systems

teractive communication may be allocated onto the multiple processing elements.

Reliability, with allocation, is also a characteristic parameter often required for a

real-time DCS though it is an added advantage for any DCS.

This way, a model of the scheduling activity must aim at maximization of

throughput by considering the inter module communication of the given task and

the interconnection pattern of the given DCS with appropriate task allocation

methodology. The various aspects of task scheduling in a DCS are considered by

making use of task graphs & processor graph to make appropriate allocation.

3.3 Scheduler as a Task Allocator

 The concept of scheduling has been very extensively explored in the context

of a single processor system, wherein the attention of the CPU is switched from

one job to another. This insures appropriate implementation of certain policies that

aim at providing fair share of CPU time to jobs. In a DCS, we have multiple proc-

essors and the idea of scheduling works on identification of CPUs for individual

components of a job so that the effect of parallelism is obtainable. This obvious

requirement considers the computational job in form of a task, consisting of num-

ber of modules that may execute concurrently and exchange messages as per re-

quirements of the computational jobs. This understanding defines the scheduler

whose main activity becomes allocation of various modules of individual tasks

onto the processing nodes available in the DCS. Thus, in this book, the terms

353 Scheduling Problem

scheduler and allocator have been used interchangeably to carry the same mean-

ing.

3.4 Task Allocation Issues in DCS

 The following are certain pertinent points that need consideration, as these

would affect the allocation activity:

• The criterion for allocation,

• Static vs. dynamic allocation,

• Single vs. multiple task allocation,

• Task migration, and

• Load balancing.

Given a task at hand, for allocation, the scheduler is to allocate it onto the proc-

essing nodes of the DCS. The job of the scheduler, as an allocator, can be divided

in two phases. First, that exploits the concurrency presents in the program and di-

vides the program into various concurrent modules. The second allocates these

modules onto the processing nodes.

Further, there are two ways to exploit concurrency. The programming lan-

guages designed for the DCS can support concurrency by providing the parallel

constructs in the programming languages of the DCS. Many available languages

for DCS provide such constructs viz. FORK-JOIN, Cobegin-Coend, Parfor etc.

These parallel constructs can be used to specify the parallel portion of the program

36 Scheduling in Distributed Computing Systems

by writing it in the program. On the other hand, the allocator can explore the con-

currency in the program by applying various methods (viz. Bernsteins conditions

etc.) [10].

Both the above said methods produce parallel executable modules of the pro-

gram. For the task allocation problem, it is assumed that a task is given in form of

the executable modules. The allocator allocates these modules to achieve im-

provement in one or more characteristic parameters (sec. 2.2). Normally the task

allocation algorithms optimize the COST (completion time) parameter out of the

allocation. Cost is defined as the sum of the processing cost of all the modules of a

task and the communication among the modules. The other often-used parameter,

to be optimized, is the reliability of the system that is defined as the probability of

the successful execution of a task on the system. The reliability is very important

characteristic parameter for the Real Time DCS.

Choice is also made between static and dynamic scheduling. In static schedul-

ing, the modules once allocated stick to the same node for their lifetime. This

seeks to optimize completion time of a finite set of tasks. To accomplish this goal,

the characteristics of all the tasks, including their sizes and service demands, must

be known in advance. Static scheduling is appropriate to a very specialized class

of systems including some real time systems in which this information is priori

available. Obviously, this limits the use of the DCS and consequently affects the

throughput of the system, but easier to implement as other unrelated tasks are not

going to affect the execution.

373 Scheduling Problem

Dynamic scheduling assumes a continuous stochastic stream of incoming tasks.

Very little parameters are known in advance for dynamic scheduling. Obviously, it

is more complex than static scheduling for implementation, but achieves better

throughput. Also it is the most desired because of the application demand.

Another concern is that of a single task versus multiple task allocation. As evi-

dent, single task allocator allocates only one task and concentrates only for its

completion. Multiple task allocator considers and handles more than one task for

execution. To maintain the track of the execution of the multiple tasks (with their

modules) and status of nodes a corresponding data structure is required.

To achieve the load balancing in the system, often the modules of the task mi-

grates from one node to the other from time to time. This activity is known as task

migration[25]. In dynamic allocation, task migration comes into effect for proper

load balancing. Several load balancing policies are suggested in the literature [7,

12-25].

3.5 The Task Allocation Problem

 The task allocation problem involves the development of a task allocation

model for the DCS. The model allocates the tasks among the processing nodes of

a given DCS to achieve the following [26]:

1) Allow specification of a large number of constraints,

38 Scheduling in Distributed Computing Systems

2) Optimize the cost function,

3) Balance the utilization of the processing nodes of the DCS.

The task allocation problem assumes a task consisting of computational mod-

ules mostly requires computation but in between these modules may communicate

with each other. The computational modules do not require any specific process-

ing node, in general, and may be allocated on any of the processing node. The ob-

jective of the allocation is to optimize some characteristic parameter as mentioned

in sec. 2.2. The word task has been used to refer it to process, job and other similar

entities, through out the book. Modules are further division of the task as men-

tioned earlier.

Thus the task allocation problem considers the task graph and a processor

graph. The task allocation model maps the task graph to processor graph.

m5 m7

m8

m6

m4
m3

m2

m0

m1
p1

p2 p3

mapping

Task Graph
Processor Graph

 Fig. 3.1Mapping of Task Graph to Processor Graph

393 Scheduling Problem

 Figure 3.1 shows a task graph consisting of nine modules (m0, m1, m2, m3, m4,

m5, m6, m7, m8) and the processor graph of three nodes (p1, p2, p3). The position of

the modules shows its precedence. Generally two types of task graph are possible.

One in which the edges between the modules shows the communication between

them. This is called Task Interaction Graph. The other, in which the edges show

the precedence between the modules, is known as Task Precedence Graph. We use

the task precedence graph in most of the models discussed in this book and call it

the task graph in general. Further, it is assumed that the communication among the

modules is given in an inter module communication matrix. The execution time

matrix shows the execution time of the modules of the task on the processing

nodes of the DCS. Example IMC and Execution time matrices are shown below.

 cij m0 m1 m2 m3 m4 m5 m6 m7 m8 eik p1 p2 p3

 m0 0 20 0 40 15 10 0 15 20 m0 10 20 30
 m1 20 0 5 30 10 0 15 20 10 m1 40 5 10
 m2 0 5 0 35 0 30 20 10 15 m2 70 50 80
 m3 40 70 35 0 10 35 20 10 12 m3 50 80 20
 m4 35 15 20 25 0 20 25 10 15 m4 20 30 20
 m5 20 25 0 20 15 0 10 35 12 m5 30 25 20
 m6 10 35 15 25 20 10 0 15 10 m6 20 20 20
 m7 20 30 25 0 15 20 10 0 0 m7 15 20 15

 m8 0 25 30 35 20 10 15 20 0 m8 20 25 20

 Inter Module Communication (IMC) Matrix Execution Time Matrix

The IMC matrix shows the communication among the modules of a task viz.

communication between the modules m0 and m1 is 20. Communication is meas-

ured in terms of data units transferred. Execution time matrix shows the execution

40 Scheduling in Distributed Computing Systems

time of the various modules of the task on the processing nodes of the DCS viz.

m0 takes 10 unit of time on p1. Execution time can be considered in terms of msec.

There are number of constraints which are to be met out for the task allocation

model. Precedence of the module of the task, memory limitation of the processing

nodes etc. is among the few [26].

Completion time of the task is one of the well-known criterions for allocation

and mostly the cost function considers the completion time of the job. Reliability

of the system is another important criterion considered in some allocation models

[27-31].

This book aims at the consideration of existing algorithms with their simplify-

ing assumptions for proposing better algorithms that consider the realistic situa-

tions of a DCS such as

(i) Precedence constraints,

(ii) The fact that multiple tasks, each consisting of a number of modules

are received by a DCS for execution,

(iii) The processing nodes of the DCS have certain capacities and they

may or may not be in a situation of accepting more work at any time

OR assigning more work to such nodes may degrade execution char-

acteristics of tasks.

413 Scheduling Problem

The chapter hereafter contain our proposed algorithms that make use of known

efficient search techniques like GA, A* etc. apart from the data structures required

for tackling the situation.

3.6 Assumptions & Notation

 As the task allocation problem remains to be NP-hard, various heuristic solu-

tions have been proposed with one or other assumptions. This work also makes

certain assumptions that are as follows.

1. Distributed Computing System imposes some limitations on the task al-

location. One of them is the limitation of memory. To simplify our prob-

lem we are making the assumption that the memory of the processors in

DCS is not limited in some of the models. Though this step can be easily

incorporated, in the problem, at the cost of few more steps.

2. Tasks are disjoint and have no inter-task communication. Only the mod-

ules within a task have interdependencies and communication require-

ments.

3. Execution and communication matrices for the task graph are assumed to

be given. Only one of the models proposed does not require the execution

time (sec. 8.2).

4. The assumption of the availability of interconnection graph accommo-

dates non-regular type of interconnection networks.

42 Scheduling in Distributed Computing Systems

5. Processing node, processing element, computing node, processor have

been used to refer to the same.

Few other assumptions, specific to particular TA models, are ascribed with the

corresponding models as depicted in the rest of the book.

Notation

T task: set of modules to be executed

m |T|: number of modules forming the task T

mi module i of task T

P set of processing nodes in the DCS

n |P|: number of processing nodes in P

Pk Processing node k in P

eik execution time for module mi running on processor Pk during the

execution

X m×n binary matrix corresponding to a task assignment

xik element of X;

cij IMC cost between mi and mj during the execution

 dkl distance between processing nodes Pk and Pl defined as the

number of links

nk number of modules already allocated on Pk at some instance of

time

q time quantum of the processor for round robin scheduling

Height(mi) position of module mi from the root

G(h) set of modules of height h

Mi amount of memory required by module mi





=
otherwise

Pocessortoassignedismuleif
x

ki
ik

0

Prmod1

433 Scheduling Problem

Sk memory capacity of processing node Pk

R(T,X) reliability of DCS when task T is allocated by the assignment X

Rk(T,X) reliability of processing node Pk

Rpq(T,X) reliability of link lpq

lpq link connecting node Pp and Pq

λk failure rate of node Pk

λpq failure rate of link lpq

Wpq transmission rate of link lpq

Cijh communication between modules mi and mj of task Th

eihk execution time of module mi of task Th on processing node Pk

xihk element of assignment matrix for multiple task allocation





=
otherwise

PocessortoassignedisTtaskofmuleif
x

khi
ihk

0

Prmod1

Mij memory requirement of module mi of task Tj

Lavg Load Average

Lmax. Load Maximum

eff Effiency

effmin Effiency Minimum

BIBLIOGRAPHY

[1]A.S. Tanenbaum, Computer Networks, Englewood cliff, NJ: Prentice-Hall, 1994.
[2]D.P.Bertsekas, J.H.Tsitsiklis, Parallel and Distributed Computation, Prentice Hall Interna-

tional, 1989.
[3]P. Krueger, T.H.Lai, V.A.Dixit-Radiya, “Job Scheduling is more Important than Processor Al-

location in Hypercube Computer”, IEEE Trans. on Parallel & Distributed Systems, Vol. 5,
No.5, May 1994, pp. 488-497.

[4]V.Rajaraman, C.Siva Ram Murthy, Parallel Computer: Architecture and Programming, Pren-
tice Hall of India Ltd, 2000.

[5]M. Sasikumar, Dinesh Shikhare, P. Ravi Prakash, Introduction to Parallel Processing, Pren-
tice Hall of India Ltd, 2000.

[6]Sanjeev K. Setia, Mark S. Squillante, Satish K. Tripathi, “Analysis of Processor Allocation in
Distributed –Memory Parallel Processing Systems”, IEEE Trans. on Parallel & Distributed

Systems, Vol. 5, No. 4, April 1994, pp. 401-420.

44 Scheduling in Distributed Computing Systems

[7]Pradeep K. Sinha, Distributed Operating System, IEEE Press, Prentice Hall of India Ltd.,
1998.

[8]G.Colouris, J. Dollimore, T. Kindberg, Distributed Systems: Concepts and Design, Addison-
Wesley Publishers Ltd., 1994.

[9]G.Nutt, Operating Systems: A Modern Perspective, Addison Wesley, 2000.
[10]A.Silberschatz, P.B. Galvin, Operating Systems Concepts, Addison-Wesley, 1998.
[11]A.Corradi, L.Leonardi, F. Zambonelli, “Diffusive Load Balancing Policies for Dynamic Ap-

plication”, IEEE Concurrency, January-March 1999, pp.22-31.
[12]D.J.Evans, W.U.N.Butt, “Dynamic Load Balancing Using Task-Transfer Probabilities,”

Parallel Computing, Vol.19, No.8, Aug. 1993, pp.897-916.
[13]D.L.Eager, E.D.Lazowska, J.Zahorjan, “Adaptive Load Sharing in Homogeneous Distrib-

uted Systems,” IEEE Trans. On Software Engg., Vol.12, No.5, May 1986, pp.662-675.
[14]E. Horowitz, S. Sahni, S. Rajasekaran, Computer Algorithms, W.H.Freeman and Company,

1997.
[15]F.C.Lin, R.M.Keller, “The Gradient Model Load Balancing Method”, IEEE Trans. On Soft-

ware Engg. Vol. SE-13, No.1, Jan.1988, pp.32-38.
[16]F.Muniz, E.Zaluska, “Parallel Load-Balancing: An Extension to the Gradient Model”, Paral-

lel Computing, Vol.21, 1987, pp. 287-301.
[17]L.M.Ni, C.W.Xu, T.B.Gendreau, “A Distributed Drafting Algorithm for Load Balancing”,

IEEE Trans. on Software Engineering, Vol. SE-13, No.10, October 1985, pp.1153-1161.
[18]M.Hamdi, C.K.Lee, “Dynamic Load Balancing of Image Processing Applications on Clus-

ters of Workstations”, Parallel Computing, No. 22, 1997, pp.1477-1492.
[19]M.H.Willebeek-LeMair, A.Reeves, “Strategies for Dynamic Load Balancing on Highly Par-

allel Computers”, IEEE Trans. on Parallel and Distributed Systems, Vol.4, 1993, pp.979-
993.

[20]P.H.Enslow Jr., “What is a “Distributed” Data Processing System”, IEEE Computer, Vol.11,
No.1, January 1978, pp.13-21.

[21]S.H.Bokhai, “Dual Processor Scheduling with Dynamic Reassignment”, IEEE Trans. on

Software Engg., Vol.SE-5, No.4, July 1979, pp.329-335.
[22]S.Zhou, “A Trace Driven Simulation Study of Dynamic Load Balancing”, IEEE Trans. On

Software Engg., Vol.14, No.9, Sept.1988, pp.1327-1341.
[23]T.C.K. Chou, J.A.Abraham, “Load Balancing in Distributed Systems”, IEEE Trans. On

Software Engg., Vol. SE-8, No.4, July 1982, pp.401-412.
[24]T.Kunz, “The Influence of Different Workload Descriptions on a Heuristic Load Balancing

Scheme”, IEEE Trans. on Software Engg., Vol.17, July 1991, pp.725-730.
[25]T.T.Y.Suen, J.S.K.Wong, “Efficient Task Migration Algorithm for Distributed System”,

IEEE Transaction on Parallel and Distributed System, Vol.3, No.4, July 1992, pp.484-499.
[26]D.P.Vidyarthi, A.K.Tripathi, “Precedence Constrained Task Allocation in Distributed Com-

puting System”, Int. J. of High Speed Computing, Vol. 8, No. 1, 1996, pp. 47-55.
[27]S.Kartik, C.S.Ram Murthy, “Task Allocation Algorithms for Maximizing Reliability of Dis-

tributed Computing Systems”, IEEE Trans. on Computers, Vol.46, No.6, June1997, pp. 719-
724.

[28]Sol.M.Shatz, Wang Goto, “Task Allocation for Maximizing Reliability of Distributed Com-
puting Systems”, IEEE Trans. on Computers, Vol.41, No.9, September 1992, pp. 1156-1168.

[29]S. Karthik, C. Siva Ram Murthy, “ Improved Task Allocation Algorithms to Maximize Reli-
ability of Redundant Distributed Systems”, IEEE Trans. on Reliability, Vol. 44, No. 4, Dec.
1995, pp. 575-586.

[30]A.K.Tripathi, D.P.Vidyarthi, A.N.Mantri, “A Genetic Task Allocation Algorithm for Dis-
tributed Computing System Incorporating Problem Specific Knowledge”, International J. of

High Speed Computing, Vol.8, No.4, 1996, pp. 363-370.
[31]D.P.Vidyarthi, A.K.Tripathi, “Maximizing Reliability of Distributed Computing Systems

with Task Allocation using Simple Genetic Algorithm”, J. of Systems Architecture, Vol. 47,
2001, pp. 549-554.

453 Scheduling Problem

CHAPTER 4

Load Balancing in DCS

 This chapter considers one very important proposition for the scheduling

problem in distributed computing system. This is load balancing aspect.

4.1 Load Distribution in a DCS

 Performance improvement is one of the most important issues in DCS. Obvi-

ous but expensive ways of achieving this goal are to increase the capacity of the

nodes and to add more nodes to the system. Adding more nodes or increasing the

capacity of some of the nodes may be required in the cases in which all of the

nodes in the system are overloaded. However, in many situations poor perform-

ance is due to uneven load distribution throughout the system. Sometimes, the

random arrival of tasks in such environment can cause some nodes to be heavily

loaded while other nodes are idle or lightly loaded. Load distribution improves the

performance by transferring tasks from heavily loaded nodes, where service is

poor, to lightly loaded nodes where the tasks can take advantages of computing

capacity that would otherwise go unused [1].

If workloads at some nodes are typically heavier than at others, or if some

nodes execute tasks more slowly than others, the situation of lightly loaded/ heav-

ily loaded/ moderately loaded nodes are likely to occur often. It is shown that even

in such a homogeneous DCS, at least one machine is likely to be idle while other

machines are heavily loaded because of the statistical fluctuations in the arrival of

tasks to the system and task service time requirements. Therefore, even in a ho-

mogeneous DCS, system performance can be potentially improved by the appro-

priate transfer of the workload from heavily loaded nodes (senders) to idle or

lightly loaded nodes (receivers). Meaning of performance here is the average re-

sponse time of tasks. The response time of a task is the time elapsed between its

initiation and its response. Minimizing the average response time is often the goal

of load distribution. The performance of the system can often be improved to an

acceptable level simply by redistributing the load among the nodes. Therefore,

load redistribution is a cost-effective way for the improved performance. The

problem of load redistribution in DCS is recognized as load balancing or load

sharing [2].

Load indices that have been studied and used include the length of the CPU

queue, the average CPU queue length over some period, the amount of available

memory, the context-switch rate, the system call rate, and CPU utilization. Re-

searchers have consistently found significant differences in the effectiveness of

such load indices and these simple load indices are particularly effective. For ex-

ample, in [3] it is found that the choice of a load index has considerable effect on

performance. The most effective of the indices, we have mentioned, is the CPU

queue length i.e. the number of tasks in a queue of a processor. Finally, no per-

48 Scheduling in Distributed Computing Systems

formance improvement is found over this simple measure when combinations of

all these load indices were used.

The main goal of load balancing algorithms is to balance the workload across

all the nodes of the system. A node's workload can be estimated on some measur-

able parameters [3-4] such as total number of processes on the node at the time of

load estimation, resources demand of these processes, architecture and speed of

the node's processor.

4.1.1Load Sharing (LS) versus Load Balancing (LB)

 Load sharing approach attempts to conserve the ability of the system to per-

form work by assuring that no node idles to which processes (tasks) wait for being

processed [3]. On the other hand, load balancing approach in which all the proc-

esses submitted by the users are distributed among the nodes of the system so as to

equalize the workload among the nodes. Some researchers differentiate load bal-

ancing from load sharing by their objective. The term load balancing is used if the

goal is to equalize certain performance measures such as the percentage of

server’s idle time, marginal job response time etc [3]. On the other hand, if the ob-

jective is to improve some performance measure such as average job response

time by redistributing the workload, it is called load sharing.

4.2 Load Balancing Methodology

494 Load Balancing in DCS

 The following is a brief account of the LB methodology wherein task migra-

tion happens to be an essential and important activity. The idea of the cost of Task

migration (TM) appears here. The abstract goal of load balancing can be stated as

follows [5]:

 “Given a collection of tasks comprising a computation and a set of

computers on which these tasks may be executed, find the mapping of

tasks to computers that results in each node having an approximately

equal amount of work.”

A mapping that balances the workload of the processors will typically increase

the overall efficiency of a computation. Increasing the overall efficiency will typi-

cally reduce the runtime of the computation. In considering the load balancing

problem, it is important to distinguish between problem decomposition and task

mapping. Problem decomposition involves the exploitation of concurrency in the

control and data access of an algorithm. The result of the decomposition is the set

of communicating tasks that solves the problem in parallel. These tasks, divided

into suitable modules, are mapped to the computing nodes in the manner that best

fits the problem. One concern in task mapping is that each node has a roughly

equal workload. This is the load balancing problem as stated above. In some cases,

computation time associated with a given task can be determined a priori. In such

circumstances, one can perform the task mapping before beginning the computa-

tion; this is called static load balancing. For an important and increasingly com-

50 Scheduling in Distributed Computing Systems

mon class of applications, the workload for a particular task may change over the

course of computation and can not be estimated beforehand. For these applica-

tions, the mapping of tasks to computing nodes must change dynamically during

the computation.

A practical approach to dynamic load balancing can be divided in five phases

[5]: load evaluation, profitability determination, work transfer vector calculation,

task selection and task migration.

4.2.1 Load Balance Initiation

For effective load balance one has to determine first when to balance the load.

Doing so is comprised of two phases: first to detect that a load imbalance exists

and secondly to determine if the cost of load balancing exceeds its possible bene-

fits.

The load balance of a computation is the ratio of the average processors’

load(Lavg) to the maximum processor load(Lmax), i.e. Efficiency eff= Lavg / Lmax. A

load balancing framework might, therefore, consider initiating load balancing

whenever the efficiency of a computation is below some user specified threshold

effmin. In applications where the total load is expected to remain fairly constant,

load balancing would be undertaken only in those cases where the load of some

nodes exceeds Lavg / effmin, where Lavg is calculated initially or provided by the

application [6-8].

514 Load Balancing in DCS

Even if a load imbalance exists, it may be better not to do load balance, simply

because the cost of load balancing would exceed the benefits of a better load dis-

tribution. The time required to load balance can be measured directly using avail-

able facilities. The expected reduction in run time due to load balancing can be es-

timated loosely by assuming that the efficiency will be increased to effmin or, more

precisely, by maintaining a history of the improvement in past load balancing

steps. If the expected improvement exceeds the cost of load balancing, the next

stage in the load balancing process should begin [9].

4.3 Task Migration

 A DCS may receive the number of tasks with the numbers of modules at dif-

ferent times. Similarly various modules of a task and various tasks with all their

modules may leave the DCS after completion or due to some other system policy

decisions. It should be noticeable that due to this situation some processor may

become lightly loaded from time to time whereas others may remain heavily

loaded. In such a situation an activity known as task (process) migration is initi-

ated to balance the load across the system.

A process (task) may be migrated either before it starts executing on its source

node or during the course of its execution. A process migration can be expressed

by the following steps [3, 10]:

1. Selection of a process that should be migrated

52 Scheduling in Distributed Computing Systems

2. Selection of the destination node to which the selected process should be

migrated

3. Actual transfer of the selected process to the destination node.

A process migration in DCS dynamically relocates running tasks (processes)

among the component machines. Such relocation can help cope with dynamic

fluctuations in loads and service needs, meet real time scheduling deadlines, bring

a process to a special device, or improve the system’s fault tolerance. Even suc-

cessful migration facilities are not common in DCS, due to largely the inherent

complexity of such facilities and the potential execution penalty if the migration

policy and mechanism are not tuned correctly. Not surprisingly, some DCS termi-

nate remote processes rather than rescue them by migration [11].

There are several reasons why migration is hard to design and implement. The

mechanism for moving tasks must reliably and efficiently detach a migrant proc-

ess from its source environment, transfer it with its context, and attach it to a new

environment on the destination machine. Migration may fail in case of nodes and

communication failures, but it should do so completely in that, the effect should

be as if the process were never migrated at all or, at worst, as if the process had

terminated due to machine failure [11].

4.3.1 Migration Overhead

534 Load Balancing in DCS

Migration overhead is a very important factor when process migration usually

takes place. Sometimes it can incur an overhead, which can adversely affect the

throughput of the system. For the following issues migration overhead should be

kept in mind while moving the tasks from one node to another:

• Data about the modules residing on particular nodes i.e. module name, size,

IPC request, number of threads,

• Threshold of processors in terms of modules and memory that it can support,

• The type of processor i.e. includes migrating a job to a node having a faster

CPU or to a node, at which it has minimum turnaround time,

• From processor to processor i.e. to migrate the tasks of a job to the different

nodes that consist of different processors of the system,

• Various kinds of processes need various I/O resources like printers, disk drivers

etc.

• Various software resources like databases, files etc.

• Copy or replication of critical processes to another node due to system reliabil-

ity, and

• Mixing I/0 and CPU bound processes on a global basis for increasing the

throughput of the system.

54 Scheduling in Distributed Computing Systems

4.4 Threads

 Modern programming languages and operating systems encourage the use of

threads to exploit concurrency and simplify program structure. A process consists

of an address space and one or more threads of control. Each thread of a process

has its own program counter, its own register states, and its own stack. Threads are

referred to as lightweight processes and traditional processes are referred to as

heavyweight processes. Threads can be used to improve application performance

through parallelism. Threads can also be used to minimize context switching time,

allowing the CPU to switch from one unit of computation to another unit of com-

putation with minimal overhead.

In this book, the thread can be treated as part of a module and the size of a

module can be considered to be as follows:

Size of a module = (Expected no. of threads in the modules ×

 Average size of thread)

Here, it is assumed that each module consists of at least one thread.

4.5 Conflicts between TA and LB

554 Load Balancing in DCS

 The main purpose of a single task allocation in a DCS is to reduce job turn-

around time. It is done by maximizing the utilization of resources while minimiz-

ing any communication between processing nodes. The benefits of task allocation

can make distributed processing desirable but several problems must be solved be-

fore they can be realized. For example, when the number of processors in a system

increases beyond a certain level, then throughput decreases. This is known as satu-

ration effect [12]. In reality, however, a lower processing speed results, caused by

such factors as control overheads, communication between processors, unbalanced

loading, queuing delays, and precedence order of the parts of task assigned to

separate processors. In order to eliminate or minimize saturation, these inhibiting

factors must also be eliminated. Dynamic allocation algorithm and proper load

distribution must be provided for a system as a means of balancing and minimiz-

ing both IPC, queuing delays and control overhead problem.

So a DCS has conflicting requirements [12]:

1) While minimizing IPC tends to assign the whole of a task to a single proces-

sor, load balancing tries to distribute the task evenly among the processing

nodes.

2) While a real-time constraint uses as many processors as maximize parallel

execution, the precedence relations limit parallel execution.

3) The saturation effect suggests the use of fewer processors since inefficiency

increases with the number of processors.

56 Scheduling in Distributed Computing Systems

Obviously, it is not possible to satisfy all these requirements simultaneously;

therefore a compromise must be made to find the optimal allocation policy with

load balancing for the tasks. We should attempt to achieve maximization of

throughput.

The algorithms, described as earlier work, in sec.5.1 are moderately well to

perform load balancing on network of workstations which are in most cases ho-

mogeneous DCS. In these algorithms some of the simplifying assumptions have

been taken into considerations including constant time or even free inter-task

communication, processors with the same instruction sets, uniformity of available

files and devices and existence of plentiful primary and secondary memory, which

are not always realistic.

The algorithms [12-17] also consider allocation of the modules of only a single

task to various processing nodes, whereas the number of tasks, for execution, is

usually substantive. In reality, a DCS facilitates concurrent execution of modules

belonging to various unrelated tasks. The modules of a particular task, having

IMC, do co-operatively execute and do not depend on the modules of the other

tasks. This leads us to conclude that a processing node may be assigned modules

belonging to various unrelated tasks i.e. multiple tasks.

The algorithms [3, 18-22] consider task migration but that always incur over-

head, which is not always meaningful in doing load balancing, and affects the

throughput of the system.

574 Load Balancing in DCS

So, the major factors that affect while allocating tasks in a heterogeneous DCS

with load balancing are speeds of processors, processor architecture, memory, dif-

ferent file spaces, and characteristics of operating systems and application soft-

ware. So the future support mechanisms will have to make this information avail-

able for allocation algorithms to fully utilize a large, heterogeneous DCS.

Consideration of all the above factors, in the following chapters, leads to de-

velopment of a model of “Load balancing Task Allocation (LBTA)” strategy in

this book. The model aims at minimization of turnaround time of tasks and prom-

ises possible better throughput. The results presented in the subsequent chapter

shows that by attempting to minimize the turnaround time of all the tasks up to the

possible extent within the constraints of the system in terms of the load already be-

ing shared by the processing nodes due to previous allocation of modules of tasks,

better throughput is achievable, as compared to existing task allocation algorithms

which can play a vital role as a task allocator in a DCS of heterogeneous nature by

considering the multiple tasks with their corresponding modules. A concept of

Global Table (GT) has been considered to keep track of allocation of multiple

tasks.

In this book and as in literature a) the terms ‘task’ and ‘process’, b) the terms

‘processing node’, ‘processor’, ‘machine’, ‘computer’ c) the term ‘allocation’ and

‘assignment’ have been used interchangeably.

58 Scheduling in Distributed Computing Systems

BIBLIOGRAPHY

[1]T. T. Y. Suen and J. S. K. Wong, “Efficient Task Migration Algorithm for Distributed Sys-
tem,” IEEE Transaction on Parallel and Distributed System, Vol.3, No.4, July 1992, pp.484-
499.

[2]H. C. Lin and C.S. Raghavendra, “A Dynamic Load Balancing Policy with Central Job Dis-
patcher (LBC),” IEEE Trans. On Software Engg. , Vol.18, No.2, Feb. 1992, pp.148-158.

[3]P. K. Sinha, Distributed Operating Systems: Concepts and Design, Printice-Hall of India,
1997.

[4]M. Hamdi and C. K. Lee, “Dynamic Load Balancing of Image Processing Applications on
Clusters of Workstations,” Parallel Computing, 22(1997), pp.1477-1492.

[5]J. Watts and S. Taylor, “A Practical Approach to Dynamic Load Balancing”, IEEE Trans. on

Parallel and Distributed Systems, Vol. 9, No.2, March 1998, pp. 235-248.
[6]F. C. Lin and R. M. Keller, “The Gradient Model Load Balancing Method,” IEEE Trans. On

Software Engg. Vol. SE-13, No.1, Jan. 1988, pp.32-38.
[7]F. Muniz and E. Zaluska, “Parallel Load-Balancing: An Extension to the Gradient Model”,

Parallel Computing, Vol.21, 1987, pp. 287-301.
[8]J. Ousterhout, D. Scelza, and P. Sindhu, “Medusa: An Experiment in Distributed Operating

System Structure”, Communication. of ACM, Vol.23, No.2, Feb. 1980, pp. 92-105.
[9]M. H. Willebeek-LeMair and A. Reeves, “Strategies for Dynamic Load Balancing on Highly

Parallel Computers”, IEEE Trans. Parallel and Distributed Systems, Vol.4, 1993, pp.979-
993.

[10]A. S. Tanenbaum, Distributed Operating Systems, Prentice-Hall, Englewood Cliffs, NJ,
1995.

[11]Y. Artsy and R. Finkel, “Designing a Process Migration Facility, The Charlotte Experience”,
IEEE Computer, Vol. 22, No.9, September 1989, pp.47-56.

[12]K. Efe, “Heuristic Models of Task Assignment Scheduling in Distributed Systems”, IEEE

Computer, Vol. 15, 1982, pp.50-56.
[13]A. K. Tripathi, D. P. Vidyarthi and A. N. Mantri, “A Genetic Task Allocation Algorithm for

Distributed Computing Systems Incorporating Problem Specific Knowledge,” International

Journal of High Speed Computing, Vol.8, No.4, 1996, pp.363-370.
[14]C. C. Shen and W. H. Tsai, “A Graph Matching Approach to Optimal Task Assignment

in Distributed Computing System Using a Minimax Criterion”, IEEE Trans. Computers,
Vol. C-34, No.3, March, 1985. pp. 197-203.

[15]D. P. Vidyarthi and A.K.Tripathi, “Precedence Constrained Task Allocation in Distributed
Computer Systems,” International Journal of High Speed Computing, Vol.8, No.1, 1996,
pp.47-55.

[16]P.Y.R.Richard Ma, E.Y.S.Lee and J. Tsuchiya, “A Task Allocation Model for Distributed
Computing Systems,” IEEE Trans. Computer, Vol. C-31, No.1, Jan.1982, pp. 41-47.

[17]W.W.Chu and M.T.Lan, “Task Allocation and Precedence Relations for Distributed Real-
Time Systems,” IEEE Trans. Computer, Vol.C-36, No.6, June 1987, pp. 667-679.

[18]A.B.Tucker, Jr., The Computer Science and Engineering Handbook, CRC Press, 1997.
[19]Edwind S.H. Hou, N. Ansari and H.Ren, “A Genetic Algorithm for Multiprocessor Schedul-

ing”, IEEE Trans. Parallel and Distributed Systems, Vol.5, 1994, pp.113.
[20]F.C.Lin and R.M.Keller, “The Gradient Model Load Balancing Method,” IEEE Trans. on

Software Engg. Vol. SE-13, No.1, Jan. 1988, pp.32-38.
[21]L.M.Ni, C.W.Xu and T.B.Gendreau, “A Distributed Drafting Algorithm for Load Balanc-

ing,” IEEE Trans. on Software Engg., Vol.SE-13, No.10, Oct. 1985, pp.1153-1161.
[22]T.C.K. Chou and J.A.Abraham, “Load Balancing in Distributed Systems,” IEEE Trans.

Software Engg., Vol. SE-8, No.4, July 1982, pp.401-412.

594 Load Balancing in DCS

CHAPTER 5

Known Task Allocation Models

This chapter contains some representative Task Allocation (TA) algorithms in

section 5.1 that have appeared in literature [1-5]. These algorithms had certain as-

sumptions that simplify the realistic DCS, such as the tasks have no or little prece-

dence etc. We proposed a TA algorithm in sec. 5.3 that gets rid of this assumption

and considers precedence constraint, as most of the tasks received by any DCS

shall have precedence constraint depicted in their task graphs [6].

Furthermore, a good task partitioning is a prerequisite for any TA method.

Though in this book we are concentrating only on the TA algorithms, nevertheless

in section 5.4 an IMC cost reduction model is proposed [7].

The researchers of the discipline have proposed various task allocation algo-

rithms for the distributed computing systems. These algorithms seek to assign the

modules of a task on the nodes of the DCS to achieve one or more characteristics.

Most of the models, proposed, minimize the turnaround time of the given task. Of-

ten advocated advantage of a Parallel/Distributed System is the fast work and that

can be achieved only by the minimization of the turnaround time of the task. This

turnaround time includes the communication time also which occurs between two

processes/modules situated on the different nodes. This is known as InterProcess

Communication (IPC)/InterModule Communication (IMC). Some of the algo-

rithms concentrate only on the minimization of IPC/IMC as it may result in heavy

turnaround. Few proposed models consider the reliability of the system with task

allocation. Whatsoever is the parameter of allocation, goal is to achieve high de-

gree of parallelism with proper load balancing of the system [8].

These goals may conflict with each other. For example, minimization of IMC

cost tends to assign all the modules of a task onto the same nodes of the DCS, as

the modules on the same node will incur zero IMC. Thus a proper load balancing

on the PEs of the DCS is also desired.

5.1 Early Models

 The task allocation model imposes various constraints. Precedence of the

modules of the task is very important constraint and an allocation algorithm is al-

most useless if this constraint is ignored in the model. Precedence is the priority of

the execution of modules of a task. Some modules may depend on the result of the

other module and thus the dependent module has less precedence over the module

from which it has to get some computed result.

A memory limitation of the processing nodes of the DCS is another constraint.

All the processing nodes have some fixed amount of the memory and thus can ac-

62 Scheduling in Distributed Computing Systems

commodate a certain number of modules. This constraint is also to be given due

consideration while allocating the task.

Some modules of the task may demand some specific service that is available

only on some specific processing node. Thus all the processing nodes cannot be

treated equal for all the modules. This is the functionality of the processors and is

to be considered while allocation.

The property of the interconnection network of the DCS plays a significant role

in allocation [9]. Two modules, which require heavy communication, are to be al-

located on to the same or the neighboring nodes.

Earlier proposed models consider very few constraints, listed above, in their

models. Some of the representative models are briefed below.

5.1.1 Heuristic Task Allocation Models for DCS

 Richard, Lee and Tsuchiya [1] have presented a task allocation model that al-

locates task, among processors in a DCS, satisfying

1) Minimum InterProcess Communication cost

2) Balanced utilization of each processor and

3) All engineering application requirements

635 Known Task Allocation Models

A cost function is formulated to measure the IPC and processing cost. In their

model, memory limitation constraint is imposed by limiting the memory at the

processing nodes of the DCS. Other allocation constraints, considered in their

model, are

a. Task Preference: a task is preferred to be allocated to a certain processor,

b. Task Exclusion: certain pair of tasks must not be assigned to the same proces-

sor, and

c. Task Redundancy: certain tasks must be assigned to two or more processors

Cost function is formulated as the sum of the IPC cost and the processing cost.

IPC cost is a function of both task coupling factors and interprocessor distances.

Coupling factor cij is the number of data units transferred from task i to task j. In-

terprocessor distance dkl is certain distance related communication cost associated

with one unit of data transferred from processor k to l.

Processing cost qik represents the cost to process task i on processor k. The as-

signment variable is defined as





=
otherwise

kocessortoassignedisitaskif
Xik

0

Pr1

The total cost for processing the task is stated as

))((jlikkl

l j

ij

l k

ikik XXdcXwq ∑∑∑∑ +

64 Scheduling in Distributed Computing Systems

The normalization constant w is used to scale the processing cost and the IPC

cost to account for any difference in measuring units.

The task allocation algorithm was derived from a Branch and Bound (BB)

method. To employ the BB technique, the allocation problem is represented by a

search tree. The allocation decision represents a branching at the node correspond-

ing to the given task. The algorithm was implemented for an Air Defense applica-

tion.

Chu and Lan [2] proposed an algorithm that considers Precedence Relation-

ship(PR), Inter Module Communication(IMC) and Accumulative Execution

Time(AET) to search for minimum bottleneck assignment. In their model, the

AET of a module running on a processor is the total execution time incurred by

this module running on that processor during the mission i.e. the product of the

number of times this module executes during the mission and the average time

units for each execution on that processor. The Inter Module Communication be-

tween two modules is the product of the number of times they communicate and

the average number of words exchanged, each time they communicate. They pro-

posed the model of task allocation for Real Time Systems. The processor with the

heaviest load, in a distributed system, is the one that causes the bottleneck. The

processor load consists of the loads due to program module execution and Inter

Module Communication. Therefore, both AET and IMC play important roles in

module assignment and influence task response time. In their model, the algorithm

consists of two phases. Phase I reduces J modules to G groups (G<J) which corre-

sponds to a much smaller assignment tree for phase II. Each group generated at

the end of phase I is a set of modules, which will be assigned as a single unit to a

655 Known Task Allocation Models

processor. In phase II these groups are assigned to the processors such that the

bottleneck (in the most heavily utilized processor) is minimized.

Ramakrisnan et al.[10] presented a refinement of the A* algorithm that can be

used either to find optimal mappings or the final approximate mappings. The algo-

rithm uses several heuristics based on the sum of communication costs for a task,

the task’s estimated mean processing cost, a combination of communication cost

and the difference between the minimum and maximum processing costs for a

task.

Price and Salama [11] describe heuristic for assigning precedence-constrained

tasks to a network of identical processors with the first heuristic; the tasks are

sorted in increasing order of communication and are interactively assigned so as to

minimize total communication time. The second heuristic creates pairs of tasks

that communicate, sorts the pairs in decreasing order of communication, and then

groups the pairs into clusters. In third method, simulated annealing starts with a

mapping and uses probability based functions to move towards an optimal map-

ping.

5.1.2 Graph Matching Approach to Allocation

 Shen and Tsai [4] proposed a graph matching approach to solve the task allo-

cation problem of a DCS. A cost function is proposed for evaluating the effective-

ness of allocation. A new optimization criterion, called the minimax criterion, is

also proposed based on which both minimization of IPC and balance of processor

loading is achieved. Graphs are used to represent the module relationship of a

66 Scheduling in Distributed Computing Systems

given task and the processor structure of a distributed computing system. Module

assignment to system processors is transferred into a type of graph matching,

called weak homomorphism. The search of optimal task assignment is formulated

as a state space search problem. It is then solved by the well-known A* algorithm,

with proper heuristic information for speeding up the search.

The cost function is total turnaround time that is the sum of execution time and

the communication time.

Although some constraints are included in the model, but some important con-

straints are ignored. DCS is assumed to be heterogeneous. The most important

precedence relationship among the modules does not figure in their model.

5.1.3 Reliability Oriented Task Allocation

 Reliability oriented task allocation model in redundant distributed system is

proposed by Shatz and Wang [5]. Reliability oriented DCS are often desired for

Real Time DCS, though reliability is an added advantage for any type of DCS.

Hardware redundancy is a common technique to achieve reliability. Redundancy

of different levels for both processors and links is considered in their model.

A Redundant Distributed System (RDS) of redundant level r can be thought of

as being obtained from a non-redundant distributed system in the following man-

675 Known Task Allocation Models

ner. At every processing node “r” identical processors, processing the same job

simultaneously, replace the single processor; and every link is replaced by “r”

identical links.

Each module of a task executes on one of the processing nodes (therefore, exe-

cutes on every one of the r processors at that node) and communicates with other

modules of the task. The task allocation problem for an RDS can be stated as fol-

lows. Given a task consisting of m modules and an RDS with n processing nodes,

allocate each of the m modules to one of the n processing nodes such that an ap-

propriate objective function is optimized subject to constraints imposed by the en-

vironment.

Reliability of the DCS is defined as the probability that the task T can run suc-

cessfully on the RDS during the mission under task assignment X.

The reliability expression of processing node Pk is derived as below.

)1.5..(....................)exp(),(
1
∑

=

−=
m

i

ikikkk exXTR λ

λk is failure rate of node Pk

xik is value of assignment matrix X

eik is the Accumulative Execution Time (AET) of module mi on node Pk

Similarly the reliability of link lpq is

68 Scheduling in Distributed Computing Systems

)2.5(..........)........./'exp(),(
1

1

1

),,,(pqqpjicpqpq wXTr
m

ji

m

j

∑∑−=
+=

−

=
λ

λ′pq is failure rate of link lpq

c(i,j,p,q) is a measure of IPC.

wpq is transmission rate of link lpq.

Thus the system reliability is

∏∏ −−=
= lpq

pq

n

k

k
r

rXTrrbrXTRrbXTR)3.5........().........),,(;1inf()),,(;1inf(),(
1

binf() is the binomial function. The reliability function (5.3) is optimized in the

model.

The RDS is heterogeneous, but other constraints such as memory, precedence

are overlooked.

5.1.4 Load Balancing Task Allocation

 Aloson and Cova [12] proposed a double-threshold policy called the ‘high -

low policy’ for load balancing. The high -low policy uses two threshold values

called ‘high mark’ and ‘low mark’, which divide the space of possible load states

of a node into the three regions: over-loaded above the high-mark and low-mark

values; normal-above the low-mark value and below the high-mark value and un-

der loaded-below both values. The high-low policy guarantees a predefined level

of performance to the node owners. It accounts for the overhead that the load bal-

695 Known Task Allocation Models

ancing algorithm may incur in transferring and receiving a remote process. A

process will not be transferred to another node unless it is worthwhile, and a re-

mote process will not be accepted unless there is enough excess capacity to handle

it.

Gao et. al. [13] proposed a class of load balancing algorithms for systems con-

sisting of identical processors. It assumes that each processor periodically informs

all other processors of its load. Based on this load estimate, the job dispatcher on

each processor may decide for migration of some tasks to other processors. Gao's

algorithm balances either the average arrival rate or the amount of unfinished

work on each host. This scheme has a high overhead because the load estimation

step requires extensive mathematical calculations and the precise numerical load

of each processor has to be sent to every other processor in the network.

Ni .et al. [14] proposed a drafting algorithm for task migration. It is observed

that the processors do not need to communicate precise numerical load measure-

ments for a dynamic load balancing scheme to be effective. Therefore, a 3-level

(heavy, normal and light) system is used. A processor communicates only with a

group of processors called the candidate processors. A lightly loaded processor re-

quests a heavily loaded candidate processor to send a bid for task migration. A

task is migrated from the heavily loaded processor after the lightly loaded proces-

sor has sent a select message to it. Since broadcasting the load at every change in

load level may create too much communication traffic (and hence a longer re-

sponse time), piggybacking is recommended to reduce the number of messages.

However, unless a processor has every other processor in the system as its candi-

date processor, a lightly loaded processor may not notice the existence of some

heavily loaded processor. Therefore, this scheme guarantees that every possible

70 Scheduling in Distributed Computing Systems

task migration will be carried out only when all load messages are broadcasted to

every other processor in the system.

Lin and Keller [15] proposed a gradient model for load balancing algorithm for

a class of large diameter multiprocessor systems. Task migration from heavily

loaded processors is governed by a pressure gradient indirectly established by re-

quests from nearby idle processors. Global balance is achieved by successive mi-

gration of tasks to underutilized processors. However, a task may be migrated

many times without making progress as the load of the processors in the system

changes.

Bryant and Finkel [12] proposed the method pairing policy for load balancing

to reduce the variance of loads only between pairs of nodes of the system. In this

method, two nodes that differ greatly in load are temporarily paired with each

other and the load balancing operation is carried out between the nodes belonging

to the same pair by migrating one or more processes from the more heavily loaded

node to the other node. Several node pairs may exist simultaneously in the system.

A node only tries to find a partner if it has at least two processes, otherwise migra-

tion from this node is never reasonable. This kind of algorithm makes great migra-

tion delay and IPC costs.

Woldspurger et al [16] proposed policy for load balancing by bidding process

where each node in the network is responsible for two roles: the manager and the

contractor. The manager represents a node having a process in need of a location

to execute, and the contractor represents a node that is able to accept remote proc-

esses. Here a single node takes on both these roles and no nodes are strictly man-

agers or contractors alone. To select a node for its process, the manager broadcasts

a request-for-bids message to all other nodes in the system. Upon receiving this

715 Known Task Allocation Models

message, the contractor nodes return bids to the manager node. The main two

drawbacks of bidding algorithms are that they create a great deal of communica-

tion overhead and it is very difficult to decide a good pricing policy. Both factors

call for a proper choice of the amount and type of information exchanged during

bidding.

The paper [17] indicates that the goal of solution is to balance the load among

the processors in the system in some way. The solution actually fits into the static,

optimal and queuing theoretic class. It minimizes the execution of the entire pro-

gram to maximize performance and the algorithm is derived from results in

Markov decision theory.

5.2 Limitations of Earlier Models

 Many other models in the literature are more or less of the same nature as dis-

cussed above. These models suffer due to one or more realistic limitations that do

not allow these models to be implemented in the design of the Distributed Operat-

ing System. The model presented in the section 5.1.1, considers the memory limi-

tations at each processing node. It considers other application specific constraints

viz. task preference, task exclusion and task redundancy. These models lack some

very important constraints e.g. precedence of the modules, maximum no. of mod-

ules that can be assigned to each processing nodes etc.

Model quoted in section 5.1.2 incorporates some realistic assumptions, though

it assumes no precedence relationship among the modules of the task to avoid

72 Scheduling in Distributed Computing Systems

processor idleness. They have used the graph matching approach to map the task

graph onto the processor graph. A heuristic is used to find a weak homomorphism

from task graph to processor graph. Their lower bound estimate h(n) has chances

of further improvement[19].

Reliability oriented task allocation, as stated in section 5.1.3, is advocated for

such distributed computing system where reliability is of prime concern. Such sys-

tems are often required in missile projection or other real time systems. Though

the model presented does not consider the real time distributed computing sys-

tems, yet it incorporates some realistic constraints. It includes constraints of mem-

ory, processing capacity and bounds for completion time, but the precedence is

overlooked again. It takes AET (Accumulative Execution Time) in their model,

which is just difficult to estimate. Their cost function is based on reliability com-

putation, which is an easy expression to compute.

A number of load balancing task allocation models, discussed in sec. 5.1.4, do

suffer with one or more limitations. In fact, it is very difficult to consider all the

constraints to furnish a realistic model of task allocation. Thus the task allocation

problem has to simplify the assumptions and is to find an optimal solution in pres-

ence of all the constraints.

We have developed some realistic models, considering the existing models and

their simplifying assumptions, which take up the realistic constraints into consid-

eration for the purpose of the task allocation in this book.

735 Known Task Allocation Models

5.3 Precedence Constrained Task Allocation

 The following proposition considers the precedence, an important characteris-

tic of time relationship among the modules of a task, apart from round-robin

scheduling on the individual processing nodes [6].

The task allocation policies for the DCS aim mostly at minimizing the turn-

around time of a task. The following parameters impose constraints under which

the algorithms have to work. First of all, the participating nodes of the DCS must

be evenly loaded during the course of execution of the tasks. The modules of a

task may require different amount of memory and demand varying execution time,

and hence the time quantum chosen for round robin scheduling of processes are

important candidate for consideration. The interconnection topology of the DCS

also plays an important role as communicating modules must reside on the nodes

that are connected and at the same time communication distance of these nodes

must not be large because of the obvious reasons. In case of heterogeneous DCS

the functional limitations of the nodes need also to be considered.

The precedence relationship among the modules of the task can be analyzed to

identify such modules that may coexist on one and the same node as the sequential

execution of concurrent module sets may allow this [2].

74 Scheduling in Distributed Computing Systems

The model proposed here considers the precedence relationship along with the

round robin scheduling of individual processors, and provides a solution for allo-

cation as shown by some examples.

 5.3.1 The Allocation Model

To prepare a mathematical model, the following parameters are relevant

i) The cost function,

ii) The constraints, and

iii) An algorithm that looks for an optimal cost allocation

The cost function is in terms of time unit and is the sum of the module execu-

tion time and InterModule Communication time (IMC). Processing cost eij repre-

sent the execution time to execute module mi on processor pj. The Inter Module

Communication at the node pk can be calculated as

∑ ∑
l j

jlikklij xxdc)4.5...(....................)*(

Where cij is the total communication between module mi and mj, Xik is the as-

signment matrix and xik (element of Xik) is defined as





=
;0

,mod1

otherwise

pnodetoassignedismuleif
x

ki

ik

dkl is the distance between the processing nodes pk and pl Obviously if pk = pl

then dkl = 0 and IMC cost becomes zero.

755 Known Task Allocation Models

 The total cost for processing a task on a DCS will become

)5.5....(....................))*(**(∑∑ ∑∑+
i k l j

jlikklijikik xxdcxew

The normalization constant w is used to scale processing cost and the IPC cost

to adjust the difference in measuring units. The abovesaid formula has been men-

tioned by Richard, Lee & Tsuchilya [1].

We have modified the formulae considering the individual processing node

scheduling and have incorporated it in the cost function. It assumes that the proc-

essors of the DCS are scheduled in a round-robin fashion of time quantum q. For

an incoming module mi on processor pk at any time the turnaround will be

nk×q + eik

Where nk is the number of modules already allocated on processor pk.

Thus the total allocation cost of a module mi on processor pk will become

)6.5........(....................)*(*** ∑∑++
l j

jlikklijikikk xxdcxewqn

While allocating a module on processing nodes this cost function will be con-

sidered.

76 Scheduling in Distributed Computing Systems

5.3.2 Constraints

 The constraint introduced in this model is memory limitation of the processing

nodes. The other constraint, precedence is being considered in the beginning itself

and it limits the allocation.

If Mi is the amount of memory required by module mi and Sk represents the

memory capacity of processor pk then allocation of any new module must satisfy

the following constraint.

∑
+

=

≤
1

1

n

i

kiki SxM

 n modules are already allocated on Pk

5.3.3 The Algorithm Derivation

 Some crucial issues in deriving the algorithm are the priority of the modules

and their (module's) arrangement.

Priority

 The modules will have the priority of their execution according to their prece-

dence. Root node of the task graph will have the highest priority. The priority of

other nodes in the graph will be calculated according to their level in the graph.

Ties have to be resolved for the nodes of the same level. Murthy, Murthy &

775 Known Task Allocation Models

Sreenivas suggested that the node with the highest value of MAX (incident edges)

should get the highest priority [20].

Modules Arrangement

 The modules of the task graph are arranged in a list according to their priority.

The highest priority module (i.e. root node of the task graph) will be at the front of

the list. This scheduling is known as list scheduling and has been discussed in

[21]. The updation of the list will take place during the allocation. In beginning

the list will be of maximum length, subsequently will be reduced and finally be

empty. The empty list indicates the complete task allocation.

Each processing node needs to maintain a process table (job table), which is to

be referred to obtain the earlier allocation. After the allocation, the process table is

to be modified (updated). Maintenance of process table is very important for the

purpose of execution as per allocation.

5.3.4 Algorithm

1. Compute priority of the modules.

2. Order modules in a list with the highest priority module in front.

3. While (list is not empty) do

 begin

78 Scheduling in Distributed Computing Systems

 get a module mi from front of the list

 for each processor pk do

Calculate cost of assignment of mi on pk and arrange it in a list

COST with processor index.

 Sort the list COST in descending order.

CHECK: The front of COST is min(COST) allocation.

 If it satisfies memory requirement of module on the processor

 then

 assign it;

 otherwise

 begin

 remove it from COST;

 go to CHECK;

 end;

 Modify the Status table of processors.

 Remove the module from the list.

 end.

5.3.5 Examples

 Number of examples for the different network topologies has been illustrated,

using above algorithm. These examples give the view of allocation and load bal-

ancing. The time quantum of round robin scheduling, of the processing nodes, is

assumed to be unity.

795 Known Task Allocation Models

Example1

 In our first example, we have taken 4 modules of a task and three processing

nodes. The processor graph and task graph are given in fig. 5.1.

The IMC and execution time matrices are as follows.

 cij 1 2 3 4 eik A B C
 1 0 20 0 40 1 10 20 30
 2 20 0 5 70 2 40 5 10
 3 0 5 0 35 3 70 50 80
 4 40 70 35 0 4 50 80 20

After executing the algorithm the assignment is as follows

 1 → A
 2 → C
 3 → B
 4 → C

Turn-around time comes to be 95 time unit, whereas on sequential machine the

average turn-around time is 152.

4

2 3

1

C A

B

Task Graph Processor Graph

Fig. 5.1. Task and Processor Graphs

80 Scheduling in Distributed Computing Systems

Example 2

 For the same task graph (same IMC) but different processor graph with execu-

tion time matrix

 eik A B C D
 1 0 20 30 25
 2 40 5 10 15
 3 50 10 75 20
 4 30 40 25 40

and topology

The assignment is

 1 → A
 2 → B
 3 → B
 4 → B

The turn-around time in this case is 80 time unit. On sequential machine the

average turn-around time is 109.

Example 3

 D

B

C

A

Fig. 5.2. Processor Graph

815 Known Task Allocation Models

 In another example we have changed the topology to be STAR but with the

same IMC and execution time matrix, the assignment remains the same (the turn-

around also remains the same).

Example 4

In the last example we expanded the task graph to study the real impact of our

algorithm on task allocation. The network topology for the example is SQUARE.

Fig.5.3. Processor Graph

D

B

C

A 1 → A
2 → B
3 → B

4 → B

F

E

D

B C

A

Fig. 5.4.Processor Graph

4 3

2 1

Task Graph Processor Graph

82 Scheduling in Distributed Computing Systems

To keep the allocation simple, we assumed the execution time of each module

on each processor as well the communication among the module to be the same.

 eik = 5, cij =5 , i ≠j.

The allocation that took place is

 A, B, C → 1
 F → 2
 D, E → 3

It is evident that a dense task graph (i.e. consisting of more number of modules

with precedence) utilizes all the processors and allocation appears to be more

meaningful.

Given a set of task graphs for allocation, by this algorithm, a good utilization of

all the nodes of a DCS can be made as multiprogramming of the processors has

also been considered.

5.4 IMC Cost Reduction using Fuzzy Logic

 All the reported TA algorithms assume that a meaningful and proper partition-

ing of the task has created the modules of a given task [7]. The following proposi-

tion shows a method of meaningful partitioning of a given task into modules hav-

ing as its objective the reduction of IMC, as IMC is the main contributor to the

time taken by a task when executed on a system.

 Inter Module Communication in distributed computing systems is performed

by the communication links directly or through intermediate nodes. A sizeable

835 Known Task Allocation Models

fraction of the total time is experienced in intermodule communication. Commu-

nication penalty (CP), experienced by the network, is defined as the ratio [22]

CP = Ttotal / Tcomp

 Where Ttotal is the time required by the algorithm to solve the given problem

and Tcomp is the time attributed to computation. If Tcomn is the time involved in

communication among different modules of the task, then

 Ttotal = Tcomp + Tcomn

As obvious, less communication will reduce the communication penalty.

The model proposed below discusses the reduction in communication cost us-

ing fuzzy logic.

5.4.1 The Fuzzy Approach

 Fuzzy approach is based on the premise that the key elements in human think-

ing are not numbers but can be approximated to tables of fuzzy sets, in which the

transition from membership to nonmembership is gradual rather than abrupt.

Much of the logic behind human reasoning is not the traditional two valued or

even multivalued logic but logic with fuzzy rules of inference.

 Fuzzy set introduces vagueness by eliminating the sharp boundary dividing

members of the class from nonmembers. A fuzzy set can be defined mathemati-

cally by assigning to each possible individual in the universe of discourse a value

84 Scheduling in Distributed Computing Systems

representing its grade of membership in the fuzzy set. This grade corresponds to

the degree to which that individual is similar to or compatible with the concept

represented by the fuzzy set. These membership grades are represented by real

values ranging in the closed interval between 0 and 1 [23].

5.4.2 The Cost Reduction Model

 Communication between the modules of the task that are allocated on the dis-

tant nodes will increase the communication cost. Obviously, the modules that are

allocated on the same node will incur zero communication cost. This requirement

may allocate all the modules of the task on the same node to reduce overall com-

munication cost, which will result in load imbalance. The object is to only allocate

highly communicating module on the same or neighbor nodes. To determine high

communicating and low communicating modules, fuzzy concept is explored.

A set of samples whose membership values are known may be used to test the

function in question. This set may constitute the ideal element or the prototype.

The proposed model considers that there is a prototype or an ideal element for a

class, and the degree of membership of each element is directly related to the simi-

larity of the element to the ideal.

 Let d(X,C) be the distance of an element with feature vector X=[x1,x2,…xN]

from the prototype vector C=[c1,c2,…cN] of a class, where d(X,C)≥0.

855 Known Task Allocation Models

 Two simple forms of membership functions are [24]

)8.5....(..........
)),(exp(

1

)7.5......(..........
),(1

1

CXd

CXd

=

+
=

µ

µ

 The communication cost for the task allocation in DCS is cij*dkl, where cij is

the communication between modules mi and mj and dkl is the distance between

processors pk and pl. The cost is effective if mi and mj are allocated on pk and pl re-

spectively.

 The fuzzyfication can be applied on both cij and dkl by considering how large

cij and how long dkl is. The prototype for cij is the largest possible communication

between any two modules. Diameter of the network is the prototype for applying

the membership function on dkl.

 For our model, the maximum communication C, between any two modules, is

the ideal element. Membership function for the communication is

)9.5.....(
),(1

1
)(

Ccdiff
c

ij

ij

+
=µ

 Where diff (cij,C) = | cij-C |

86 Scheduling in Distributed Computing Systems

 Similarly D, the diameter of the network, is the ideal element for the nodal

distance. The membership function for the distance is

)10.5.....(
),(1

1
)(

Dddiff
d

kl

kl

+
=µ

 Where diff (dkl,D) = | dkl - D |

 The other membership fuzzy equations (5.8) can also be applied in (5.9) and

(5.10).

 Thus, this chapter discusses some representative models and their limitations

in sec. 5.1 and 5.2 respectively. A precedence constrained task allocation model is

proposed in sec. 5.3. Precedence is an essential requirement of a task and is to be

given due consideration, that has been ignored in earlier models (sec. 5.1).

 Furthermore an IMC cost reduction model is proposed in section 5.4. This is a

prerequisite for any TA models and can be incorporated easily in any model.

BIBLIOGRAPHY

[1]Pereng-yi RICHARD MA, Edward Y.S.LEE, Masahiro TSUCHIYA, "A Task Allocation
Model for Distributed Computing Systems", IEEE Trans. on Computer, Vol.C-31, No. 1,
January 1982, pp. 41-47.

[2]W.W.Chu, M.T.Lan, “Task Allocation and Precedence Relations for Distributed Real-Time
Systems”, IEEE Trans. on Computer, Vol. C-36, No.6, June 1987, pp. 667-679.

[3]C.C.Price, S. Krishnaprasad, “Software Allocation Model for Distributed Computing Sys-
tems”, Proceedings of 4

th
 Int. Conference Distributed Computing Systems, May 1984, pp.40-

48.
[4]Chien-Chung Shen, Wen-Hsiang Tsai, "A Graph Matching Approach to Optimal Task As-

signment in Distributed Computing Systems using a Minimax Criterion", IEEE Trans. on

Computers, Vol. C-34, No.3, March 1985, pp. 197-203.

875 Known Task Allocation Models

[5]Sol. M. Shatz, Jia-Ping Wang, "Models & Algorithm for Reliability-Oriented Task alloca-
tion in Redundant Distributed Computer Systems", IEEE Trans. on Parallel and Distributed

Systems, Vol.38, No. 1, April 1989, pp. 16-27.
[6]D.P.Vidyarthi, A.K.Tripathi, “Precedence Constrained Task Allocation in Distributed Com-

puting System”, Int. J. of High Speed Computing, Vol. 8, No. 1, 1996, pp. 47-55.
[7]D.P.Vidyarthi, A.K.Tripathi, “ A Fuzzy IMC Cost Reduction Model for Task Allocation in

Distributed Computing Systems”, Proceedings of the Fifth International Symposium on

Methods and Models in Automation and Robotics, Vol. 2, Szczecin, Poland, August 1998, pp.
719-721.

[8]T.C.K. Chou, J.A.Abraham, “Load Balancing in Distributed Systems”, IEEE Trans. on Soft-

ware Engg., Vol. SE-8, No.4, July 1982, pp.401-412.
[9]A.S. Tanenbaum, Computer Networks, Englewood cliff, NJ: Prentice-Hall, 1994.
[10]S.Ramakrishnan, I.H.Cho and L.Dunning, “A Close Look at Task Assignment in Distributed

Systems”, INFOCOM’91, IEEE, April 1991, pp.806-812.
[11]C.C.Price and M.A.Salama, “Scheduling of Precedence-constrained Tasks on multiproces-

sors”, The Computer Journal, Vol. 33, March 1990, pp. 219-229.
[12]R.Aloson and L.L.Cova, “Sharing Jobs among Independently owned Processors”, Proceed-

ings of the 8
th

 International Conference Systems, IEEE, New York, June 1988, pp.282-288.
[13]C.Gao, J.W.S.Liu and M.Railey, “Load Balancing Algorithms in Homogeneous Distributed

Systems”, Proceedings of the 1984 International Conference on Parallel Processing, CRC
Press, Bocaraton, Fl, August 1984, pp.302-306.

[14]L.M.Ni, C.W.Xu and T.B.Gendreau, “A Distributed Drafting Algorithm for Load Balanc-
ing,” IEEE Trans. on Software Engg., Vol.SE-13, No.10, October1985, pp.1153-1161.

[15]F.C.Lin and R.M.Keller, “The Gradient Model Load Balancing Method”, IEEE Trans. on

Software Engg. Vol. SE-13, No.1, Jan. 1988, pp.32-38.
[16]R.M.Bryant and R.A. Finkel, “A Stable distributed Scheduling Algorithm”, Proceedings of

the 2
nd

 International Conference on Distributed Computing Systems, IEEE, New York, April
1981, pp.314-323.

[17]C.A.Waldspurger, T.Hogg, A.B.Huberman, J.O.Kephart and W.S.Stonetta, “Spawn: A Dis-
tributed Computational Economy”, IEEE Trans. on Software Engg., Vol.18, No.2, Feb.1992,
pp.103-117.

[18]T.C.K. Chou and J.A.Abraham, “Load Balancing in Distributed Systems”, IEEE Trans. on

Software Engg., Vol. SE-8, no.4, July 1982, pp.401-412.
[19]E. Horowitz, S. Sahni, S. Rajasekaran, Computer Algorithms, W.H.Freeman and Company,

1997.
[20]C. Siva Ram Murthy, K.N.Balsubramaniya Murthy, A.Sreenivas, "Scheduling of Prece-

dence-Constrained Parallel Program Tasks on Multiprocessors", Microprocessing and

Microprogramming, Vol. 36, 1992/93, pp. 93-104.
[21]C.Siva Ram Murthy, V. Rajaraman, "Task Assignment in Multiprocessor Systems", Micro-

processing and Microprogramming, Vol.26, 1989, pp. 63-71.
[22]D.P.Bertsekas, J.H.Tsitsiklis, Parallel and Distributed Computation, Prentice Hall Interna-

tional, 1989.
[23]G.J.Klir, T.A.Folger, Fuzzy sets: Uncertainty and Information, Prentice Hall International,

1997.
[24]Sankar K. Pal, Dwijesh K. Dutta Majumdar, Fuzzy Mathematical Approach to Pattern Rec-

ognition, Wiley Eastern Limited, 1986.

88 Scheduling in Distributed Computing Systems

CHAPTER 6

Load Balancing Task Allocation (LBTA)

This Chapter discusses briefly the various existing load balancing strategies

and proposes the model of Load Balancing Task Allocation (LBTA) strategy. The

LBTA strategy, incurs little communication and no migration overhead in nature.

Issues in considering and designing of LBTA strategy for a single task have been

presented. The “load” of a processing node for a single task has been presented.

Issues considering multiple tasks and their implications for a DCS have been

identified. The “load” of each processing node for LBTA strategy, considering

multiple tasks for a DCS has been formulated and discussed in this chapter. A

data structure called Global Table (GT) is used for the multiple tasks to keep track

of allocation and load on each processing node. Some known load balancing

strategies have been presented in sec.6.1. Researchers have studied “Load Balanc-

ing” and “Task Allocation” problem separately. We have considered here a com-

bined approach with a new strategy namely “Load balancing Task allocation

(LBTA)”. This strategy ensures better performance characteristics of a DCS like

maximization of throughput. The model of the LBTA strategy has been elaborated

from Sec. 6.2 onwards.

6.1 Known Load Balancing Strategies

 Load balancing strategies in DCS fall into two categories: static and dynamic.

Static load balancing computes information such as execution time, execution

cost etc. from the task before load distribution. Dynamic load balancing uses little

or almost nil priori task information and must satisfy changing requirements by

making task distribution decisions during runtime. For certain tasks, dynamic load

balancing is preferable because then the problem’s variable behavior matches

more closely with available heterogeneous computational resources. But dynamic

load balancing incurs communication and migration overhead because of its het-

erogeneous topology dependent architecture [1]. Researchers have proposed sev-

eral load balancing strategies. We present a brief description of the strategies in

the following section. Our “Load Balancing (Task Allocation)” strategy follows

this discussion.

1) The Gradient model

 In this strategy each processing node interacts only with its immediate

neighbors. A lightly loaded processor informs of its state to other processors in

the DCS. The overloaded nodes respond by sending a portion of their load to the

nearest lightly loaded processor in the system. In DCS when execution begins,

every processor computes its total load. This strategy uses double threshold policy

with three regions; lightly, heavily or moderately loaded. A processing node hav-

ing a total load below the low water mark is considered lightly loaded. One that

exceeds the high water mark is heavily and one where the total load is in between

is moderately loaded [2].

90 Scheduling in Distributed Computing Systems

2) The Sender-Initiated (SI) Strategy

 Here, an overloaded processing node (sender) trying to send a task to an un-

der-loaded processing node called receiver to initiate load distribution. In [1],

there are three fully distributed sender-initiated strategies discussed. The differ-

ence in these strategies is the policy used in locating the processing nodes to

transfer or receive tasks. In the first strategy, the network simply transfers a task

to a randomly selected processor without any information exchange between the

processors aiding the decision. The second strategy is similar but with the intro-

duction of a threshold value to prevent tasks from being transferred to an over-

loaded processor. In the third strategy, the network polls a number of randomly

selected processing nodes and compare their load sizes. The network then trans-

fers the task to a processor with the smallest load.

3) The Receiver Initiated (RI) Strategy

 The RI strategy is like the converse of the SI strategy. Here, receiver initiates

the load balancing rather than sender in SI. An under-loaded (receiver) node tries

to get tasks from an overloaded node (sender). In this strategy, the network identi-

fies, as the receiver, a node whose load size falls below the threshold value. Then

it either broadcasts a message indicating its willingness to receive processes for

executing or randomly probes the other nodes one by one to find a heavily loaded

node that can send one or more of its tasks to it. A node is able to transfer one of

its tasks only if it does not reduce its load below the threshold value. In the broad-

cast method, a suitable node is found as soon as the receiver node receives reply

message from the other nodes. Otherwise a random probing continues until either

916 Load Balancing Task Allocation (LBTA)

a node is found from which a tasks can be obtained or the number of probes con-

tinues up to a limit [1].

4) The Central Task Dispatcher Strategy

 In this strategy, a processing node acts as a central job dispatcher, which

makes load balancing decisions based on global state information. The strategies

discussed above which use local state information are different from this strategy.

The dispatcher keeps all the information containing the number of waiting tasks in

each processor. The central task dispatcher keeps the information whenever a task

arrives or departs from a node. Each node notifies the task dispatcher whenever its

state changes, rather than the job dispatcher collecting such information periodi-

cally [3]. According to this information the most heavily loaded processor are re-

quested to transfer loads for the requesting lightly loaded nodes. The amount of

overhead depends on the way the global information is collected.

5) The Prediction Based Strategy

 This strategy uses some predicted process requirements for achieving load

balancing. In the prediction based strategy proposed in [4], some predictions have

been demonstrated like prediction of CPUs, memory and I/O requirements of a

process, before its execution. Statistical pattern–recognition method has been used

for this purpose. However, even though the predicted values are close to the ac-

tual ones, this strategy incurs significant computation overheads. Other research-

ers have proposed a strategy that uses task transfer probabilities to predict a proc-

92 Scheduling in Distributed Computing Systems

essor’s load requirements [4]. Here the network can estimate a processor’s load at

any time without querying that node.

We have proposed the following strategy for load balancing.

6.2 Issues of LBTA Strategy

 The main goal of this strategy is to assign tasks to different nodes so that it is

almost evenly distributed amongst the node. Tasks are partitioned into modules

and the modules of different multiple tasks can be allocated to the different nodes

of the given DCS by minimizing the turn around time of the task. This LBTA

strategy incurs a little communication and no migration overhead.

In a DCS, the nodes may share some specified load according to their memory

capacity constraints considering the arrival of multiple tasks. Most of the algo-

rithms proposed in the literature considered task allocation and load balancing as

a separate issue. But, in this strategy, we have considered both (multiple task allo-

cation that keeps balancing the load across the processing nodes) together. An ar-

rival of tasks (multiple disjoint tasks) with their modules can be accepted by indi-

vidual nodes of the DCS with their memory capacities. Factually the task

allocation problem must consider the load balancing as its own essential feature.

A body of literature [2, 5-9] has been proposed that discusses the load balancing

problem separately.

Another related area is the task migration that actuates movements of tasks

across the processing nodes to achieve balance of the load. An alternative solution

may provide task allocation taking into consideration the existing allocation and

as and when the modules of tasks finish off and leave the DCS, the load balancing

936 Load Balancing Task Allocation (LBTA)

activity may be initiated by the system. But it may cause unnecessarily migration

overhead, which may impact adversely in maximizing throughput of a DCS.

The LBTA problem in a DCS is defined as the mapping of the task graph to

the processor graph so as to optimize some characteristic parameters. A real

LBTA strategy has to consider various issues while mapping task graph to proces-

sor graph. The issues are:

a) Precedence constraints among the modules of the task,

b) Communication among the modules,

c) Functionality of the processing nodes of DCS,

d) Interconnection networks of DCS,

e) Entry and exit of the tasks in a dynamic fashion,

f) Balancing the load of the processors while allocating the tasks, and

g) Use the concept of a Global Table (GT) to keep track the updated infor-

mation of allocation.

6.3 The LBTA Solution

 A task consists of number of modules and is represented by a Task Graph

(TG). The TG depicts the precedence and communication requirements amongst

the modules. The interconnection of nodes in a DCS is represented by another

graph known as Processor Graph (PG). The problem of allocation is to map TG

onto PG [10].

 A task submitted into a DCS is partitioned into the suitable modules and then

these modules are allocated to the processors [10]. Each task can be represented

94 Scheduling in Distributed Computing Systems

by a Task Graph TG=(Vt, Et), where (1) Vt is a set of vertices, each of which

represents a module of the task { m1, m2,.….mn } and (2) Et ⊆ Vt×Vt is a set of

edges each of which represents the IMC between the two modules at the end of

the edge. We can also represent the network of processors { p1, p2, ,….. pn } in a

DCS as a Processor Graph PG=(Vp, Ep); where vertices represent the processors

and the edges represent the communication links between processors.

The goal is to allocate task graph (TG) to a network of processors in a DCS

(i.e. to PG) to achieve the minimum turn-around time of a task. This problem can

be considered as mapping problem [10] using relaxed assumptions -such that as

arbitrary computation and task-graph communication requirements and a network

of heterogeneous processors connected by an arbitrary topology.

Fig. 6.1.Mapping of TG to PG

mapping

m4

m3 m2

m1

Task Graph (TG)

p1

p2 p3

Processor Graph (PG)

 TG = (Vt, Et) PG = (Vp, Ep)

 Vt = {m1, m2, m3, m4} Vp = {p1, p2, p3}

 })3p,1p(,)2p, 1p({= pE})4m,3m(,)4m ,2m(,)3m, 1m(,)2m, 1m({= t E

956 Load Balancing Task Allocation (LBTA)

If there are m modules, 1≤ i ≤ m in a task and n processing nodes 1≤ p≤ n, in a

DCS, a n by m matrix M which is called assignment matrix, can be used to repre-

sent the mapping, where





=
. otherwise0

, node processingto assignedismoduleif1 pm
Mip

i

We can execute a module mi of the task from the set Vt on any one of the proc-

essing nodes. Each module has an associated execution cost, where Xip is the exe-

cution cost of module mi of the task on processor p.

Thus, the total execution cost of all the modules assigned to processing node p

is

6.1
1
∑
=

m

i

ipip M.X

Two modules, mi and mj, executing on two different processing nodes, incur a

communication cost when they need to exchange data. Let L be the interconnec-

tion configuration of the processing nodes in a DCS which is represented by an

n×n link matrix, where





=
. otherwise0

, connecteddirectlyareand node processingif1 qp
L pq

Task mapping will assign two communicating modules to the same processors

or to two different connected processors. A matrix represents communication

among concurrent modules of a task, if they reside on two different processing

nodes. Let Cij be an m by m matrix representing the IMC cost of modules of a

task.

96 Scheduling in Distributed Computing Systems

 Thus, the total communication cost for all the modules of a task in processing

node p is [11]

() 2.6...
1 1 1
∑∑∑
≠
= =

≠
=

n

pq
q

m

i

m

ij
j

pqjpipij LMMC

Here, in the above equation, Mjq indicates that whether module mj is assigned

to processing node q.

6.4 Loads in LBTA for Single Task

 A processor's load comprises of all the execution and communication costs

associated with its assigned modules [11]. The LBTA problem must find a map-

ping of the set of m modules of a task to n processors that will minimize the turn

around time of a task.

The following equation then gives the ‘load’ on processor p for a single task:

()∑ ∑∑∑
= =

≠
=

≠
=

+
m

i

m

i

m

ij
j

pqjqipij

n

pq
q

ipip L.M.M.CM.X
1 1 11

6.3

 The first part of the equation is the total execution cost of the modules allo-

cated to pi. The second part is the communication overhead on p. Mip and Mjq in-

976 Load Balancing Task Allocation (LBTA)

dicate that module mi and mj are assigned to two different processors (p and q),

and Lpq indicates the connectivity of the processors p and q.

 To allocate the modules optimally so that no processor becomes overloaded,

we need to compute the load on each of the n processing nodes. Here we assume

that the matrix C & X are for a task and for every task these matrices will be dif-

ferent.

 Several task allocation algorithms for DCSs have been reported in the litera-

ture [10-17]. These algorithms consider the execution time of different modules of

a single task, executing on different processing nodes. The assignment problem

must actually try to maximize the throughput of the system by allocating modules

onto processing nodes so as to minimize the time taken, considering the IPC

overhead. The assumptions of fixed execution time of a module on a particular

processor can be valid if only one module is assigned to a particular processing

node. The number of tasks is usually substantive, but these algorithms consider

assignment of the modules of a single task to various processing nodes. In reality,

a DCS facilitates concurrent execution of modules belonging to various unrelated

tasks. The modules of any particular task, having IMC, do cooperatively execute

and do not depend on the modules of the other tasks. This leads to the situation

wherein a processing node may be assigned modules belonging to different tasks.

It is to mention that the real issue of task allocation must not ignore the possibility

of multiple module assignment of various tasks to the processing nodes in a dy-

namic fashion. So the task allocation problem must be reformulated. It is very

much essential to do so because finally these task allocation algorithms are to be

integrated to become a part of the distributed operating system.

98 Scheduling in Distributed Computing Systems

6.5 Loads in LBTA for Multiple Tasks

 It is to mention that the real model of LBTA must not ignore the possibility of

module assignment of multiple tasks to the processing nodes of a DCS, in a dy-

namic fashion. We hereby wish to assert that the problem, solved by the methods

proposed in the literature, must be reformulated to accommodate certain real is-

sues as discussed above. It may be true that consideration of all the issues, in their

entirety, may not be feasible. The newer models may include one or two impor-

tant issues to begin with. It is very much essential to do so because finally these

task allocation algorithms have to get integrated to become a part of the distrib-

uted computing systems.

We have modified the equation 6.3 for the multiple tasks. The LBTA problem

must find a mapping of the set of m modules of k tasks to n processors that will

minimize turn around time of all the tasks taken together.

 Let, there be a set of n processing nodes in a DCS i.e. P={ p1, p2,…..,pn },

 a set of k tasks T={ T1, T2,…..,Tk },

every task Ti has a set of modules mi={m1,m2,…..,m mi }

where, mi is the number of elements in the set mi.

and the total number of modules of all the k tasks be

∑
=

=
k

i

imm
1

 where, miis the number of modules of ith task.

 Task mapping, or assignment to processors, is given by a matrix M, where

996 Load Balancing Task Allocation (LBTA)





=
otherwise0

 node processing to assigned is task ofmoduleif1 plmi
Milp

The following equation then gives the ‘load’ on processor p for multiple tasks:

∑∑ ∑∑ ∑∑
= = = =

≠
=

≠
=

+
k

l

m

i

k

l

m

i

m

ij
j

pqjlqilpijl

n

pq
q

ilpilp

i i

L.M.M.CM.X
1 1 1 1 11

6.4

 The first part of the equation 3.4 is the total execution cost of the modules of

task l allocated to p. The second part is the communication overhead on p. Milp

and Mjlq indicate that modules mi and mj of task l are assigned to two different

processors (p and q), and Lpq indicates the connectivity of the processors p and q.

 To allocate the modules optimally so that no processor becomes overloaded,

the load on each of the n processing nodes needs to be computed. By finding the

processor with heaviest load, the optimal assignment out of all possible assign-

ments will allot the minimum load to the heaviest loaded processor. Here, it is as-

sumed that the matrix C & X are for task l and for every task these matrices may

be different.

A DCS receives a number of tasks, each consisting of various modules, from

time to time. Similarly various modules of a task or the whole task itself with all

their modules, may quit the DCS after successful completion or due to various

other system policy decisions. It should be noticeable that due to these frequent

ins and outs some nodes may become lightly loaded whereas others may remain

heavily loaded. Thus a fundamental problem of DCS is the effective allocation of

tasks onto nodes in order to achieve a balanced performance. Load balancing ad-

dresses this problem directly, providing a self-scheduling mechanism, by which

100 Scheduling in Distributed Computing Systems

the DCS can allocate a large number of tasks onto multiple nodes automatically

and efficiently. The purpose of load balancing is to promote better processor utili-

zation, greater throughput and faster response times [18].

BIBLIOGRAPHY

[1]P.K.K.Loh, W.J.Hsu, C Wentong and N. Sriskanthan, “How Network Topology Affects Dy-
namic Load Balancing,” IEEE Parallel and Distributed Technology, Fall 1996, pp. 25-35.

[2]F.C.Lin and R.M.Keller, “The Gradient Model Load Balancing Method,” IEEE Trans. Soft-

ware Engg. Vol. SE-13, No.1, Jan. 1988, pp.32-38.
[3]H.C.Lin and C.S. Raghavendra, “A Dynamic Load Balancing Policy with Central Job Dis-

patcher (LBC),” IEEE Trans. Software Engg. , Vol.18, No.2, February 1992, pp.148-158.
[4]K.K.Goswami, M.Devarakonda, and R.K.Iyer, “Prediction Based Dynamic Load Sharing

Heuristics ,” IEEE Trans. Parallel and Distributed Systems, Vol.4, No.6, June 1993, pp. 638-
648.

[5]A.B.Tucker, Jr., The Computer Science and Engineering Handbook, CRC Press, 1997.
[6]Edwind S.H. Hou, N. Ansari and H.Ren, “A Genetic Algorithm for Multiprocessor Schedul-

ing,” IEEE Trans. Parallel and Distributed Systems, Vol.5, 1994, pp.113.
[7]L.M.Ni, C.W.Xu and T.B.Gendreau, “A Distributed Drafting Algorithm for Load Balancing,”

IEEE Trans. on Software Engg., Vol.SE-13, No.10, October1985, pp.1153-1161.
[8]P.K.Sinha, Distributed Operating Systems: Concepts and Design, Printice-Hall of India,

1997.
[9]T.C.K. Chou and J.A.Abraham, “Load Balancing in Distributed Systems,” IEEE Trans. Soft-

ware Engg., Vol. SE-8, No.4, July 1982, pp.401-412.
[10]C.C.Shen and W.H.Tsai , “A Graph Matching Approach to Optimal Task Assignment

in Distributed Computing System Using a Minimax Criterion,” IEEE Trans. Computers,
Vol. c-34, No.3, Mar. 1985. pp. 197-203.

[11]M.Kafil and I.Ahmed, “Optimal Task Assignment in Heterogeneous Distributed Comput-
ing System,” IEEE Concurrency, July - September 1998, pp. 42-51.

[12]A.K.Tripathi, D.P.Vidyarthi and A.N.Mantri, “A Genetic Task Allocation Algorithm for
Distributed Computing Systems Incorporating Problem Specific Knowledge,” International

Journal of High Speed Computing, Vol.8, No.4, 1996, pp.363-370.
[13]D.P.Vidyarthi and A.K.Tripathi, “Precedence Constrained Task Allocation in Distributed

Computer Systems,” International Journal of High Speed Computing, Vol.8, No.1,1996,
pp.47-55.

[14]Kai Hwang, Advanced Computer Architecture: Parallelism Scalability and Programmabil-

ity, Mc-graw Hill, 1993.
[15]P.Y.R.Richard Ma, E.Y.S.Lee and J. Tsuchiya, “A Task Allocation Model for Distributed

Computing Systems,” IEEE Trans. Computer, Vol. C-31, No.1, pp. 41-47, Jan.1982.
[16]S.M.Shatz, J.P.Wang and M.Goto, “Task Allocation for Maximizing Reliability of Dis-

tributed Computer Systems,” IEEE Trans. on Computer, Vol. 41, No. 9,1992, pp. 1156.
[17]W.W.Chu, M.T.Lan, “Task Allocation and Precedence Relations for Distributed Real-Time

Systems,” IEEE Trans. Computer, Vol.c-36, No.6, June 1987, pp. 667-679.
[18]B.K.Sarker, A.K.Tripathi and N.Kumar, “Some Observations on Load Balancing in Dis-

tributed Computing Systems,” Proceedings of National Seminar on Applied Systems Engg.

and Soft Computing, Agra, 4-5 March, 2000, pp. 167-171.

1016 Load Balancing Task Allocation (LBTA)

CHAPTER 7

GA Based Task Allocation Models

 The task allocation (TA) problem, as quoted earlier, is an NP-Hard problem

and various heuristics are applied to solve this problem [1]. Genetic Algorithm

(GA) has been proved to be useful for the optimization problems [2]. We have ex-

plored the GA and have used it to solve task allocation problem of the DCS. In

this chapter, two propositions of task allocation algorithms are proposed. In sec-

tion 7.1, a GA based TA model is proposed in which some problem specific

knowledge is incorporated [3]. This is aimed to minimize the turn-around time of

a task and is based on a finding that the incorporation of problem specific knowl-

edge in GA, converge the solution quickly. Section 7.2 discusses GA based TA

model to maximize reliability of the DCS. This algorithm not only gets the advan-

tage of GA for quick convergence but also produces better solutions in terms of al-

location with improved reliability [4].

Genetic Algorithms are stochastic algorithms whose search methods model

some natural phenomena: genetic inheritance and Darwinian strife for survival.

The idea behind genetic algorithms is to do what nature does [2]. The interest in

heuristic search algorithms with underpinning in natural and physical processes

began as early as the 1970s, when Holland first proposed GA. Kirkpatric, Gelatt

and Vecchi’s simulated annealing technique rekindled this interest in 1983. Simu-

lated Annealing is based on the thermodynamic considerations, with annealing in-

terpreted as an optimization procedure [5].

In nature, individuals best suited to competition for scanty resources survive.

Adapting to a changing environment is essential for the survival of individuals of

each species. Competition among individuals for scant resources such as food and

space and for mates results in the fittest individuals dominating over weaker ones.

Only the fittest individuals survive and reproduce, with a natural phenomenon

called “the survival of the fittest”. Hence, the genes of the fittest survive, while the

genes of weaker individuals die out. The reproduction process generates diversity

in the gene pool. The exchange of genetic material (chromosomes) is called cross-

over. Repeated selection and crossover cause the continuous evolution of the gene

pool and the generation of the individuals [6].

Essential to the GAs working is a population of binary strings. Each string of 0s

and 1s is the encoded version of a solution to the optimization problem. Using ge-

netic operators, crossover and mutation, the algorithm creates the subsequent gen-

eration from the strings of the current population. This generational cycle is re-

peated until a desired termination criterion is reached. The simple structure of the

GA is as below.

 GA ()

{ Initialize population;

 Evaluate population;

104 Scheduling in Distributed Computing Systems

 While termination criterion not reached

 { select solutions for next population;

 perform crossover & mutation;

 evaluate population; }

 }

 The above GA shows the following components:

• A population of binary strings

• Control parameters

• A Fitness function

• Genetic operators (crossover and mutation)

• A selection mechanism

• A mechanism to encode the solutions as binary strings

 We have applied Genetic Algorithm on the task scheduling problem of the

DCS.

7.1 Task Allocation using Genetic Algorithm

 Genetic Algorithm has successfully been used to solve various optimization

problems [6]. GA is parallel in nature and so, it suits better to the task allocation

problem of the DCS [7]. The various phases of the GA can be performed on the

various processing nodes of the DCS in parallel [8]. So the GA based scheduling

model is well suited for its natural parallel execution in DCS.

1057 GA Based Task Allocation Models

A GA based task allocation model for multiprocessors has been proposed by

Hou, Ansari & Ren[9]. We present a Genetic Task Allocation Algorithm for DCS,

wherein we have considered the underlying interconnection networks of the proc-

essors, communication requirements among modules of the tasks apart from the

precedence relation of the task graph that has been considered in [9] also. Multi-

programming at every processing node with related characteristic values has also

been considered. We have, purposefully, made use of the finding [10] that the in-

corporation of the problem specific knowledge in construction of GA improves

the initial population structures. The model and algorithm proposed [11] is suffi-

ciently simple and adequately usable for the purpose of simulation experiments

and its possible incorporation in future operating systems of the DCS. Incorporat-

ing problem specific knowledge into GA improves its performance, though it

should be done carefully as GA is notoriously opportunistic and may converge

quickly to a local optimum [10]. It is easy to formulate a good initial structure by

incorporating some knowledge in the task allocation problem of DCS.

7.1.1 The Problem

 The task in our problem is a group of number of modules, communicating

with each other. The problem is to assign these modules to processing nodes of the

DCS so that the precedence relations are maintained at the minimum cost. Cost in-

cludes execution time of the modules as well as intermodule communication, if

any.

106 Scheduling in Distributed Computing Systems

 The task graph TG = (V, E) where V, vertices, is the set of modules and E the

set of edges connecting the modules.

Further any module mi is a predecessor of mj and mj is successor of mi if eij εE.

 We define two sets of modules:

PRED (mi) - the set of predecessors of mj, and SUCC (mi) - the set of succes-

sors of mj.

The height function conveys the precedence of the modules, as shown in Fig.

7.1.

 Height of the various modules of the task graph on Fig.7.1 is as below.

 Height(m0) = 0,

Height(m1) = Height(m2) = 1,

m8

m7 m6

m4

m2

m0

m1

m3

m5

Fig. 7.1.Task Graph

1077 GA Based Task Allocation Models

Height(m3) = Height(m4) = 2,

Height(m5) = Height(m6) = Height(m7) = 3,

Height(m8) = 4,

 Each module has execution time eij i.e. execution time of module mi on proc-

essor pj. The communication matrix cij gives the amount of communication be-

tween modules mi and mj.

The processor graph P = (V, E),

 where V = set of processing nodes (processors) & E = set of edges connecting

the nodes.

Each module has some execution time and it varies from one processor to an-

other.

Thus in this problem we have two matrices; the execution time matrix and the

communication matrix.

7.1.2 GA for Task Allocation

 Genetic algorithms are available, as solutions, to the number of problems for

which little prior knowledge is available. Grefenstelle[11] has discussed GA for

TSP in which he has incorporated problem specific knowledge in GA. He is

successfully able to infer that incorporating problem specific knowledge in ini-

108 Scheduling in Distributed Computing Systems

tialization of strings not only produces good strings but also enables quick conver-

gence, though it is to be done carefully to avoid premature convergence.

 We made use of the findings of [10] and incorporated some problem specific

knowledge in the initialization as well as in the crossover operations for the prob-

lem of task allocation in DCS [11]. The various phases of GA for TA are as fol-

lows.

 Initial Population

 Genetic Algorithm uses the notion of survival of the fittest by passing "good"

genes to the next generation of strings and combining different strings to explore

new search points. At the cost of few steps, some problem specific knowledge is

introduced in generating the initial population. Thus the good initial structure is

generated and the algorithm converges quickly. The steps involved in initialization

are as follows.

INITIALIZE()

(1) Compute height for every modules in TG and set I=0.

(2) Partition the modules into different sets G(h) according to their height h.

 (3) Allocate the modules of G(I) [modules of height 0] onto different proc-

essor randomly.

(4) Repeat step (5) & (6) for all G(h).

1097 GA Based Task Allocation Models

(5) If IMC of allocated modules with modules in group G(I+1) is large

enough, allocate it on the same processor otherwise allocate it on any different

processor. Do it for all the modules of G(I+1).

(6) Set I=I+1.

Fitness Function

 The fitness function of the string, in this problem, is the total cost that is the

sum of IMC cost and the execution cost. The communication cost, cij, is the num-

ber of data units exchanged between module mi to mj and dkl is the inter processor

distance, as earlier. If the module mi is assigned to the processor pk and the mod-

ule mj is assigned to pl then communication cost is cij*dkl. If k=l then dkl=0 and

IMC cost reduces to zero i.e. the modules have been assigned onto the same proc-

essor. We have considered that the individual processors in DCS are multipro-

grammed and the total cost of allocation of task is[9]

)1.7()(jlik

l j

klijikikk xxdcxeqn ∑∑ ×++×

The elements of the assignment matrix





=
;0

mod1 ,

otherwise

pprocessortoassignedismuleif
x

ki

ik

Crossover Operation

110 Scheduling in Distributed Computing Systems

 The major consideration while performing the crossover is that, the strings

generated after the crossover should be legal. Hou, Ansari, and Ren[9] have

proved that if the crossover site is selected such as

(a) The height of the modules next to the crossover sites are different, and

(b) The height of all the modules immediately in front of the crossover sites are

the same then the new strings generated will always be legal.

Grefenstelle showed that incorporating problem specific knowledge in cross-

over operator improves the strings generated [10]. Crossover for TA is as follows.

 CROSSOVER()

 1. {Selection of crossover sites}

 Do for all the processors

 (a) Pick some crossover sites in both the strings such that the modules fol-

lowing and preceding the site have different height and height of the preceding

module is same for all the processors.

 (b) Define a communication distribution over these sites.

 (c) Select one site based on the above distribution for all the strings.

 (If both following and preceding modules are having much of communica-

tion then it is not a good crossover site)

1117 GA Based Task Allocation Models

 2. Using the crossover sites exchange the bottom halves of strings A and B for

each processors.

 Steps 1(b) and 1(c) are introduced to reduce IMC as highly communicating

modules should be on the same processor.

 Mutation

 Genetic algorithms are not well suited for fine tuning structures which are

very close to optimal solutions [10]. The mutation operator is applied to avoid the

danger of getting caught in local minima. The probability of applying mutation is

often very less. The routine for mutation has been summarized as below.

 MUTATION ()

 For each of the strings perform the following:

(1) Randomly pick a module mi.

(2) Search the string for a module mj of the same height.

(3) Generate a new string by exchanging mi and mj.

Complete GA for Task Allocation

 All above routines have been grouped to complete the GA for DCS.

(1) Call INITIALIZE() n times and store the strings in InitPop.

112 Scheduling in Distributed Computing Systems

 (calling n times to get n strings for crossover)

(2) Repeat steps (3) to (5) until algorithm converges.

(3) Compute the fitness value of strings in InitPop. BestString is the string with

low fitness value. (Object is to minimize cost).

(4) Perform CROSSOVER(). Put the new strings in NewPop.

 (Probability of crossover is 1).

(5) For each of the string in NewPop, perform MUTATION() with the prob-

ability ProbMute. Put again the new strings in InitPop.

(6) Best String is the string with lowest fitness value.

 Termination criterion can be chosen if the fitness value does not change after

few iterations. The above TA model is based on a finding that the incorporation of

problem specific knowledge in construction of GA improves its performance and

solution converges quickly.

7.2 Maximizing Reliability of DCS with Task Allocation using

GA

 Reliability is one of the very important characteristic of the distributed com-

puting system (DCS) and articles on task allocation to maximize reliability of

DCS have appeared in the past [4, 12-15]. We have studied the effect of various

parameters on reliability with allocation of a DCS [13]. Here, a TA model is pro-

posed in which a simple genetic algorithm is used to optimize reliability of a DCS

1137 GA Based Task Allocation Models

with task allocation. The various phases of the algorithm are summarized in the

following sections.

7.2.1 Reliability Expression

 The reliability of a DCS of n processing nodes (which is always better than a

uniprocessor system as failure of some processors does not bring the system to a

grinding halt) during the mission when a task (of m modules) is allocated, by the

assignment X, can be expressed as [13]:

∏∏
=

=
lpq

pq

n

k

k XTRXTRXTR)2.7(),(),(),(
1

Where Rk (T, X) is the reliability of the processing node Pk and Rpq(T,X) is the

reliability of the link lpq(connecting node Pp and Pq). This is the probability that

unit Pk and lpq is operational for time T under assignment X.

)4.7(exp(),(/
1

pqjqipijpqpq WxxcXTR
m

ji

m

j

∑∑−=
≠=

λ

 Where λk and λpq is failure rates of the processing node Pk and link lpq respec-

tively, eik is the execution time of module mi on node Pk, cij is the communica-

tion(in bytes transferred) between mi and mj, Wpq is transmission rate of link lpq

and xik is the element of the assignment matrix X i.e.





=
;0

mod1 ,

otherwise

Ptoassignedismuleif
x

ki

ik

)3.7()exp(),(
1

∑
=

−=
m

i

ikikkk exXTR λ

114 Scheduling in Distributed Computing Systems

7.2.2 The Proposed Algorithm

 A genetic algorithm makes use of some fitness function to identify candidate

solutions of the next generation. In the proposed algorithm eqn. 7.2, as given

above, is used as the fitness function. The following are the various parts of the

GA based Task Allocation Algorithm.

Initial Schedule ()

{

Compute height for each module in the task graph.

Keep modules of the same height (h) in the same group G (h).

Assign the modules of the same height from the same group G (h) onto the dif-

ferent processors. If some modules are unassigned again assign it from the first

processors in the same order. The assignment is to satisfy the system constraints.

Assign the modules of the G (h+1) in the same order of the Processors as in 3.

}

 A number of populations are generated by applying the Initial_Schedule() and

changing the order of the processors.

Crossover ()

 {

Two modules of different height are chosen for crossover site in a generated

population, and the portion of the strings is swapped.

} // Length of strings should not change

Mutation ()

{ Randomly alter 0 to 1 and 1 to 0 by keeping no. of 0 and 1 same }

1157 GA Based Task Allocation Models

 // The probability of mutation is very less as it is an escape for premature con-

vergence.

Reproduction ()

 {

Use the fitness function of eqn. 7.2. Choose the few best strings (with good fit-

ness value)

}

 Apply Crossover (), Mutation () and Reproduction () repeatedly, unless the

solution converges.

7.2.3 Experimental Results

 The algorithm, implemented in ‘C’ language, was applied on some representa-

tive cases that demonstrate the desirable allocations. Some results are as below

[4].

7.2.3.1 Algorithm is executed for the same task (consisting of four modules)

and the processor graph (shown in Fig. 7.2) as that of Shatz [13]. Node failure rate

are shown in figure and the link failure rate are .0003 between P1 and P2, .0001

between P2 and P3 and .0002 between P2 and P4.

 Fig. 7.2.Processor graph with node failure rate

P1
.0002

P3
.0003

P4
.0002

P2
.0001

116 Scheduling in Distributed Computing Systems

The table for execution time and intermodule communication are shown in ta-

ble 7.1 and 7.2 respectively

.

The result for both the models are shown as below.

Reliability in Shatz Algorithm = 0.9953

Allocation in Shatz Algorithm = P1←Nil,

P2←M1, M2,

P3←M3, M4,

P4←Nil

Reliability in Proposed Algorithm = 0.996705

 P1 P2 P3 P4

M1 5 3 ∞ 4

M2 3 4 5 6

M3 4 ∞ 2 5

M4 3 4 5 2

 M1 M2 M3 M4

M1 - 12 5 6

M2 12 - 8 0

M3 5 8 - 3

M4 6 0 3 -

Table 7.1.Execution time matrix

Table 7.2.IMC Matrix

1177 GA Based Task Allocation Models

Allocation in Proposed Algorithm = P1←Nil,

P2←M1, M2, M3,

P3←M4,

P4←Nil

7.2.3.2 Further a random task graph and processor graph is generated. Various

parameters, generated randomly, for the experiment are as below.

Link failure rates are in the range of 0.00010-0.00085

Node failure rates are in the range of 0.00010-0.00045

IMC are in the range of 0-15

AET are in the range of 1-11

The results obtained from the experiment are:

No. of iterations = 4

Reliability = 0.953448

Allocation P1←M5, P2←Nil, P3←M1, M3, M4, P4←M2, M6, M7

The experiment is further conducted for same task graph and processor graph

but limiting the no. of modules on each processing node to two. This is to observe

that how load balancing is achieved. The results are as below.

Reliability = 0.995311

118 Scheduling in Distributed Computing Systems

Allocation P1←Nil, P2←M1, M2, P3←M3, M4, P4←Nil

7.2.3.3 Effect of load balancing is observed also by keeping the failure rate of a

particular link (l24 in the PG and TG of Fig. 7.3) minimum to 0.0001. The pa-

rameters are listed below.

Link failure rate in the range of 0.00040-0.00090

Node failure rate in the range of 0.00010-0.00045

IMC in the range of 1-15

AET in the range of 1-10

The output observed is:

No. of iterations = 5

Reliability = 0.973945

Allocation P1←Nil, P2←M3, M5, M6, M7, P3←Nil, P4←M1,M2,M4,M8

 P4

P3

P2

P1

PG

m8

m5

m7

m6

m3
m4 m2

m1

TG

Fig. 7.3.Processor and Task Graphs

1197 GA Based Task Allocation Models

7.2.3.4 Further experiment observes the result by limiting the number of mod-

ules on the processor and making the failure rate of a processor minimum. We

kept the maximum number of modules on the processing node to 3 and the failure

rate of the processing node P3 minimum (0.0001) in the TG of Fig. 7.3 and PG of

Fig. 7.4. The input parameters are:

Link failure rate in the range of 0.00011-0.00065

Node failure rate uniformly 0.00040

IMC in the range of 1-15

AET in the range of 1-10

The output of the experiment is as below.

No. of iterations = 6

Reliability = 0.959887

Allocation P1←M2, M4, M7 P3←Nil P2←M1, M5, M8 P4←M3,M6

Fig. 7.4.Processor Graph

P3

P1

P2

P4

120 Scheduling in Distributed Computing Systems

7.2.4 Conclusion

 In the experiment 7.2.3.1 it is observed that the proposed algorithm performs

better than of Shatz because not only the reliability is increased but better load

balance is also achieved.

Result of the experiment 7.2.3.2 shows balanced load with better reliability. As

the processing nodes have their own capacity to carry modules, we confined the

maximum number of modules in this experiment. Result seems to be very good.

To observe how the modules will concentrate towards some node if some link

are more reliable. Experiment 7.2.3.3 shows that most of the modules are concen-

trated on P2 and P4 as the failure rate of the link connecting these two nodes are

minimum.

Experiment 7.2.3.4 does both i.e. limits the number of modules and considers

the failure rate of a processor to minimum. Conspicuous is that though P3 has low

failure rate still modules are not allocated on it. The reason observed is may be it

is because P3 is not well connected with other processing nodes.

The above results show that GA based TA model to maximize reliability of a

DCS are well suited for this problem as it provides better reliability and balanced

allocation.

1217 GA Based Task Allocation Models

This chapter discusses two GA based models. In sec. 7.1 finding of [10] is used

which says that incorporation of some problem specific knowledge in GA im-

proves its performance and leads to quick convergence. In sec. 7.2, GA is used in

TA model to maximize the reliability of a DCS with allocation. The fitness func-

tion used in sec. 7.2 is the reliability expression. Result is compared with that of

one earlier proposed model for the same [13] and it shows an improvement in reli-

ability.

BIBLIOGRAPHY

[1]K.Efe, "Heuristic Models of Task Assignment Scheduling in Distributed Systems", IEEE

Computer, Vol. 15, June 1982, pp. 50-56.
[2]Zbigniew Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,

Springer-Verlag, Berlin, 1992.
[3]A.K.Tripathi, D.P.Vidyarthi, A.N.Mantri, “A Genetic Task Allocation Algorithm for Distrib-

uted Computing System Incorporating Problem Specific Knowledge”, International J. of

High Speed Computing, Vol.8, No.4, 1996, pp. 363-370.
[4]D.P.Vidyarthi, A.K.Tripathi, “Maximizing Reliability of Distributed Computing Systems with

Task Allocation using Simple Genetic Algorithm”, J. of Systems Architecture, Vol. 47, 2001,
pp. 549-554.

[5]M. Srinivas, L.M.Patnaik, “Genetic Algorithms: A survey”, IEEE Computer, June 1994, pp.
17-26.

[6]J.L.R.Filho, P.C.Treleaven, C.Alippi, “Genetic Algorithm Programming Environments”,
IEEE Computer, June 1994, pp. 29-42.

[7]Albert Y. Zomaya, Chris Word, Ben Macey, “Genetic Scheduling for Parallel Processor Sys-
tems: Comparative studies and Performance Issues”, IEEE Trans. on Parallel & Distributed

Systems, Vol. 10, No. 8, Aug. 1999, pp. 795-811.
[8]D.P.Vidyarthi, A.K.Tripathi, “Exploiting Parallelism in Genetic Task Allocation Algorithm”,

Int. J. of Information and Computing Science, Vol. 4 No. 1, June 2002, pp. 22-26
[9]Edwin S.H.Hou, Nirwan Ansari, Hong Ren, "A Genetic Algorithm for Multiprocessor Sched-

uling", IEEE Trans. on Parallel and Distributed Systems, Vol. 5, No. 2, Feb 1994, pp. 113-
120.

[10]John J. Grefenstelle, "Incorporating Problem Specific Knowledge into Genetic Algorithm",
Genetic Algorithm and Simulated Annealing, Morgan Kaufrman Publisher, California, 1987.

[11]A.K.Tripathi, D.P.Vidyarthi, A.N.Mantri, “A Genetic Task Allocation Algorithm for Dis-
tributed Computing System Incorporating Problem Specific Knowledge”, International J. of

High Speed Computing, Vol.8, No.4, 1996, pp. 363-370.
[12]S.Kartik, C.S.Ram Murthy, “Task Allocation Algorithms for Maximizing Reliability of Dis-

tributed Computing Systems”, IEEE Trans. on Computers, Vol.46, No.6, June1997, pp. 719-
724.

[13]Sol.M.Shatz, Wang Goto, “Task Allocation for Maximizing Reliability of Distributed Com-
puting Systems”, IEEE Trans. on Computers, Vol.41, No.9, September 1992, pp. 1156-1168.

122 Scheduling in Distributed Computing Systems

[14]S. Karthik, C. Siva Ram Murthy, “ Improved Task Allocation Algorithms to Maximize Reli-
ability of Redundant Distributed Systems”, IEEE Trans. on Reliability, Vol. 44, No. 4, Dec.
1995, pp. 575-586.

[15]D.P.Vidyarthi, A.K.Tripathi, “Studies on Reliability with Task Allocation of Redundant Dis-
tributed Systems”, IETE J. of Research, Vol. 44, No. 6, Nov-Dec. 1998, pp. 279-285.

1237 GA Based Task Allocation Models

CHAPTER 8

Allocation of Multiple Tasks in DCS

 This chapter consists of four propositions of TA algorithms: first of these ad-

dresses the realistic consideration of multiple tasks in a DCS whereas earlier pro-

posed algorithms (Sec. 5.3 and 7.1) consider only one task at a time; the second

proposition, a cluster based algorithm, does not require the priori knowledge of

execution time of modules of a given task, as it is difficult to estimate the same,

for allocation purposes. These propositions appear in sections 8.1 and 8.2 respec-

tively. Section 8.3 and 8.4 deals with the LBTA strategies for multiple tasks using

A* and using GA respectively.

The task allocation models & algorithms, discussed in previous chapters, con-

centrated on improvement of execution characteristics of an individual task, con-

sisting of a number of modules, submitted to the DCS. A DCS, in fact, keeps on

receiving multiple tasks from time to time. This calls for consideration of all the

tasks for allocation, simultaneously, to the processing nodes of the DCS. Such an

allocation would be able to aim at a good throughput of the system apart from im-

provement in the turn around time of the individual task. The idea of multiple task

allocation is elaborated in section 8.1.

The major problem of the allocation techniques is the assumption that the exe-

cution time of the modules of the task on the PEs of the DCS and the communica-

tion among them are available priori. The execution time on the PEs of a DCS,

prior to its execution, is just difficult to estimate. The allocation method that may

work with other parameters, without prior knowledge of execution time, is desir-

able. The allocation model proposed in section 8.2 considers the inter module

communication for grouping modules into the clusters and at the same time clus-

tering of PEs are done based on the inter-processor distances. This cluster-based

algorithm for the task allocation can make assignments by consideration of similar

clustering of processing nodes for matching and mapping of module clusters onto

these node clusters. Section 8.3 and 8.4 concentrates on LBTA strategy, as dis-

cussed in chapter 4, for multiple task allocation.

8.1 Multiple Task Allocation

Several task allocation algorithms for distributed computing systems have been

reported in the literature [1-13]. These algorithms consider the execution time of

the different modules, of a single task, executing on different processing nodes.

The assignment problem, in these, optimizes some characteristic parameter by al-

locating modules onto the processing nodes, considering the Inter Module Com-

munication (IMC) overhead. The number of tasks for execution is usually substan-

tive, but these algorithms consider assignment of the modules of a single task to

various processing nodes. In reality, a DCS facilitates concurrent execution of

126 Scheduling in Distributed Computing Systems

modules belonging to various unrelated tasks [15]. The modules of any particular

task, having IMC, do cooperatively execute and do not depend on the modules of

the other tasks. This leads to the situation wherein, a processing node may be as-

signed modules belonging to the different tasks. It is to mention that the real issue

of task allocation must not ignore the possibility of multiple module assignment of

various tasks to the processing nodes in a dynamic fashion.

Some assessments for multiple task allocation in a Distributed Computing Sys-

tems has been pointed out in section 8.1.1 [15].

8.1.1 Issues of Multiple Tasks Allocation (MTA)

Some important issues of MTA are as follows:

a) A DCS must consider execution of modules of different unrelated tasks.

The modules of a particular task do cooperatively execute and do not de-

pend on the modules of the other tasks.

b) The execution time of a particular module on a particular node will de-

pend on the number of modules already executing on that particular node

as per some chosen scheduling policy (Round Robin etc.).

c) While assigning modules of multiple tasks onto the processing nodes,

IMC plays vital role in terms of speed and capability of the processing

node besides memory constraints.

d) The task allocation models must consider the load on channels while con-

sidering IMC. It is because of the queuing up of multiple modules on the

processing node ends to make use of the channel.

1278 Allocation of Multiple Tasks in DCS

e) The existing task allocation algorithms may cause either deadlock or

starvation because of remote possibility of certain events at the time of

allocation of the modules to the processing nodes that are already heavily

loaded.

Considering these real issues the task allocation problem, proposed in the lit-

erature so far, needs to be reformulated. It is very much essential to do so because

ultimately these task allocation algorithms are to be integrated as a part of the dis-

tributed operating system. Four models for multiple tasks assignment in a DCS

have been presented in this chapter. A cost function, which considers effect of

multiple tasks, is also presented.

8.1.2 Global Table

We propose a data structure, called Global Table, to manage the multiple tasks

execution in a DCS. It is a table having many columns (as shown in Table 8.1)

taking care of whole allocation. The memory capacity of the processing node de-

termines if a module is to be accommodated onto the node or not. So, in the table,

a column indicates the available memory of the processors. Modules of the proc-

essor will be represented by mijk i.e. module mi of task Tj allocated on processor Pk.

While partitioning the task into modules, we assume that the memory require-

ments of the modules are also calculated by Mij (memory requirement of module

mi of task Tj). After the allocation of this module onto the processing node, the

memory of the node will reduce to

128 Scheduling in Distributed Computing Systems

 M = M - Mij, if M be the available memory of the processing

node

While allocating the next module of any task on this node, the memory M will

be compared with the required memory. The 2-D Global Table (G) will be like

This is a dynamic table, which keeps the information of remaining memory of

nodes and the modules allocated on the nodes. Whenever a new task arrives, this

table (G) is to be consulted and to be modified. The implementation of G will in-

cur an overhead in the algorithm but this is essential to maintain the track of mul-

tiple tasks execution in DCS [15].

8.1.3 Cost Function of MTA in DCS

To exploit effective parallelism in a DCS, tasks must be properly allocated to

the processing nodes. A task allocation algorithm seeks an assignment that opti-

mizes a certain cost-function, e.g. maximum throughput or minimum turnaround

time. However, most of the reported algorithms yield sub-optimal solutions. In

general, optimal solutions can be found through an exhaustive search, but as there

Processor Memory

Capacity

Modules Assigned Remaining Memory

P1 M m1j1 m3j1 … M- (M1j+M3j)

P2 M m2j2 m1i2 m2i2 … M- (M2j+M1i+M2i)

P3

.

.

M

.

.

m3i3

.

.

…

.

.

...

.

.

M- M3i

.

.

Pn M … … … M

Table 8.1.Global Table

1298 Allocation of Multiple Tasks in DCS

is ways in which m modules can be assigned to n processing nodes, an exhaus-

tive search is often not possible. Thus, optimal solution algorithms exist only for

restricted cases or very small problems. The other possibility is to use an informed

search to reduce the state space [7].

The cost function of task allocation is formulated as the sum of the IMC cost

and the execution cost [12]. IMC cost is a function of communication cost be-

tween two modules of task Th and Inter-Processor distances onto which these two

modules are assigned. Communication cost cijh represents the communication, in

terms of bytes transferred, between the module mi and mj of the task Th. The dis-

tance between processing node Pk to processing node Pl is denoted by dkl. If mod-

ules mi and mj are assigned to processing nodes Pk and Pl respectively, the IMC

cost is (cijh×dkl). If modules are assigned to the same processing node then dkl=0

and effectively IMC cost becomes zero.

Execution cost eihk represents the cost to execute a module mi of task Th on

processing node Pk. The assignment is given by,

The cost function for processing the task Th, which consists of n modules, on

the DCS is

)1.8(.).(.
1 11











+∑ ∑∑

= +==

n

i

n

ij

jhlihkklijhihkihk

n

i

xxdcxe









=
otherwise,0

PprocessortoassignedisTtaskofmmodulesif,1
x

khi

ihk

n
m

130 Scheduling in Distributed Computing Systems

 The execution of a module mi of the other unrelated task Tm on the processing

node Pk may affect the assignment of task Th on the same processing node Pk. The

various modules, allocated on the processing node Pk, may be allowed to execute

as per some chosen scheduling policy (Round robin).

So, the cost function to assign a module mi of task Th on processing node Pk is

The third term in the equation signifies the effect of the other tasks Tm on the

task Th.

So, the total cost for assigning the task Th is stated as

The total cost of allocation on the DCS of k nodes is

8.1.4 Task Allocation Algorithms

The work assumes that the Task Precedence Graph (TPG) and the processor

graph of a DCS are given. For Task Interaction Graph (TIG), a communication

)2.8(..).(.
1 1
∑ ∑ ∑

= +=
≠

++
n

i

n

ij
hm

i

imkimkjhlihkklijhihkihk xexxdcxe

)3.8(..).(.
1 11 
















++∑ ∑ ∑∑
= +=

≠
=

n

i

n

ij
hm

i

imkimkjhlihkklijhihkihk

n

i

xexxdcxe

)4.8(..).(.
1 11

∑ ∑ ∑ ∑∑
































++
= +=

≠
=k

n

i

n

ij
hm

i

imkimkjhlihkklijhihkihk

n

i

xexxdcxe

1318 Allocation of Multiple Tasks in DCS

matrix is given. The execution times of all the modules of the task are given in

Execution Matrix.

A heuristic approach is applied to solve multiple tasks allocation problem. The

famous A* of Artificial Intelligence and the Uniform Cost Search algorithm have

been used for multiple tasks allocation problem [16].

The A*

A* is a best-first search algorithm, which has been used extensively in artificial

intelligence problem solving [16]. Programmers can use this algorithm to search a

tree or graph. For a tree search, it starts from the root, called the start node (usu-

ally a null solution of the problem). Intermediate tree nodes represent the partial

solutions, and leaf nodes represent the complete solution or goal. A cost function f

computes each node's associated cost. The value of f for a node n, which is the es-

timated cost of the cheapest solution through n, is computed as in equation 8.5.

where g(n) is the search-path cost from the start node to the current node and

h(n) is a lower-bound estimate of the path cost from current node to the goal

node(solution), using any heuristic information available. The g(n) is equal to the

cost of assigning the module according to equation 8.2. The h(n), in this case, is

the communication cost of all the unassigned modules communicating with the as-

signed module, i.e.

)5.8()()()(nhngnf +=

132 Scheduling in Distributed Computing Systems

∑ ×=
ulesunassignedallfor

xikcijnh
mod

)6.8()(

To expand a node means to generate all of its successors or children and to

compute the f value for each of them. The nodes are ordered for search according

to the cost; that is the algorithm first selects the node with the minimum expansion

cost. The algorithm maintains a sorted list, called OPEN, of nodes (according to

their f values) and always selects a node with the best expansion cost. Because the

algorithm always selects the best-cost node, it guarantees an optimal solution.

For the task allocation problem under consideration for a single task

• The search space is a tree;

• The initial node (the root) is a null-assignment node, i.e. no modules are as-

signed yet;

• Intermediate nodes are partial-assignment nodes, i.e. only some modules are

assigned;

• A solution (goal) node is a complete-assignment node i.e. all the modules of

the task are assigned.

The Uniform Cost Search

The heuristic function h(n) in the above equation can be defined by several dif-

ferent approaches. The simplest way is to set h(n)=0 for all n and the resulting

search is a uniform-cost search [17].

Uniform Cost Search Algorithm for Task Allocation

1338 Allocation of Multiple Tasks in DCS

(1) Calculate the status of the Global Table (G) for each processor in terms of

available memory (M) and the modules that are assigned to it.

(2) Order a list Tj of all modules of incoming tasks according to their precedence.

 //from the Task Precedence Graph(TPG)

(3) repeat (for all the modules of Tj in order)

(4) for the first module(mij) of Tj

 do

 select the node Pk with the smallest f value

 // f value is the cost function of eqn.. (8.5)

(5) if memory (Mij) > Mk // Mk is available memory of Pk , Mij is memory

 then requirement of module mi of task Tj

 choose next smaller f value; // memory requirement of the module

 goto (5) exceeds the available memory of the node

(6) Update G by adding the assigned module and update memory by Mk = Mk - Mij

(7) Until (Tj is empty) // goal node is reached

134 Scheduling in Distributed Computing Systems

A* Algorithm for Task Allocation

(1) Calculate the status of the Global Table (G) for each processing node in terms

of the available memory (M) and the modules that are assigned to it.

(2) Order a list Tj of all modules of incoming task according to their precedence.

 // from the Task Precedence Graph(TPG)

(3) Put the initial node k=0 on a list called OPEN, and set f(k)=0 where f is a cost

function given in equation 8.5.

(4) Remove from OPEN the node n with a smallest f value and put it on a list

called CLOSED.

(5) If n satisfies the goal state, report the solution. Modify the Global Table G by

adding the assigned module, update memory by Mk = Mk-Mij and Stop.

Otherwise continue.

(6) Expand node n and compute the value f(n) = g(n') + h(n') as explained earlier.

// n' is the successors of n

g(n) is calculated as in eqn. (8.2)

h(n) is calculated as in eqn. (8.5)

Put all the successors of n on OPEN.

1358 Allocation of Multiple Tasks in DCS

(7) Go to step (4).

It is assumed that the outgoing module will inform the allocator process to

modify the Global Table (G) accordingly i.e. the number of modules belonging to

the outgoing tasks and the memory occupied by the modules of this task will be

freed in global table. This algorithm has been proposed considering multiple tasks

allocation in a DCS. It is observed that the tasks arrive, for the execution, in a dy-

namic fashion. A task, will invoke the algorithm. The status of the Global Table is

dynamic and the algorithm will include the modification in the table (G) with ref-

erence to a particular task. To ensure proper working, the code of allocator that

modifies the Global Table is to be treated as critical section.

8.1.5 Illustrated Examples

Two simple examples have been illustrated below using the above A* algo-

rithm for the task allocation problem and the cost function 8.2 [18].

EXAMPLE 1

We Consider four tasks (and their modules), that arrive for the execution, in a

DCS consisting of four processing nodes as shown in fig. 8.1. The Execution Time

Matrix and the Communication Matrices are assumed to be given as below in ma-

trices. The memory requirement of the modules is also given.

136 Scheduling in Distributed Computing Systems

 P1 P2 P3

m11 7 8 9

m21 4 5 6

m31 1 2 3

m41 7 5 2

 Execution Time Matrix T1

 P1 P2 P3

m12 4 5 6

m22 1 2 3

m32 9 6 3

 Execution Time Matrix T2

m31

m21 m41

m11

Task Graph T1

m2

2
m32

m12

Task Graph T2

m23 m33

m13

Task Graph T3 m54

m24

m44

m34

m14

Task Graph T4

p3 p2

p1

Processor Graph T4

Fig. 8.1.Task Graph and Processor Graph

1378 Allocation of Multiple Tasks in DCS

 P1 P2 P3

m13 6 5 2

m23 4 7 1

m33 7 8 9

 Execution Time Matrix T3

 P1 P2 P3

m14 15 11 9

m24 14 12 8

m34 16 13 6

m44 05 04 03

m54 10 09 07

 Execution Time Matrix T4

 m11 m21 m31 m41

m11 0 4 5 6

m21 4 0 0 2

m31 5 0 0 3

m41 6 2 3 0

 InterModule Communication T1

 m12 m22 m32

m12 0 7 8

m22 7 0 9

m32 8 9 0

 InterModule Communication T2

 m13 m23 m33

m13 0 7 8

m23 7 0 9

m33 8 9 0

 InterModule Communication T3

 m14 m24 m34 m44 m54

m14 0 8 0 0 7

m24 8 0 6 0 0

m34 0 6 0 5 4

m44 0 0 5 0 0

m54 7 0 4 0 0

 InterModule Communication T4

138 Scheduling in Distributed Computing Systems

m11 m12 m13 m14 m12 m22 m32 m13 m23 m33

1 2 3 1 1 1 1 2 1 1

m14 m24 m34 m44 m54

2 1 1 2 1

 Memory requirements of the modules (in MB)

The algorithm is applied for these tasks. Below are the tables showing modules

assigned to the various processing nodes and the remaining memory of the nodes.

Task T1 has been allocated as

Processor Memory Capacity
in M.B.

Modules Assigned Remaining Memory

P1 8 m41 7 M.B.

P2 8 m21 6 M.B.

P3 8 m11 , m31 4 M.B.

Task T2 has been allocated as

Processor Memory Capacity
in M.B.

Modules Assigned Remaining Memory

P1 8 m41 , m32 6 M.B.

P2 8 m21 6 M.B.

P3 8 m11 , m31 , m12 , m22 2 M.B.

Task T3 is allocated as

Processor Memory Capacity
in M.B.

Modules Assigned Remaining Memory

P1 8 m41 , m32 , m33 5 M.B.

P2 8 m21 , m13 , m23 3 M.B.

P3 8 m11 ,m31 , m12 , m22 2 M.B.

1398 Allocation of Multiple Tasks in DCS

Task T4 has been allocated as

The above table also shows the final status of the allocation.

EXAMPLE 2

In this five tasks are considered for allocation as shown below in fig 8.2. The

relevant data follows the figures.

Proc-
essor

Memory Ca-
pacity in M.B.

Modules As-
signed

Remaining Mem-
ory

P1 8 m41 , m32 , m33

, m34 , m44 , m54
1M.B.

P2 8 m21 , m13 , m23 ,
m14

1 M.B.

P3 8 m11 , m31 , m12

, m22 , m24
1 M.B.

140 Scheduling in Distributed Computing Systems

Fig. 8.2.Task Graphs and Processor Graphs

m51

m41

m31

m21

m11

Task T1

m12
m32

m42

m22

Task T2

m33

m43

m23

m13

Task T3

m74

m64 m54 m44

m34 m14 m24

Task T4

m35

m75

m85

m45

m65

m55

m25

m15

Task T5

P5

P4

P3

P2

P1

Task T6

Processor Graph (PG)

1418 Allocation of Multiple Tasks in DCS

The Different Matrices are as follows:

 p1 p2 p3 p4 p5

m11 10 20 5 25 5

m21 35 10 15 15 10

m31 10 15 25 10 20

m41 20 35 20 5 25

m51 10 5 10 5 10

Execution Time Matrix T1

 p1 p2 p3 p4 p5

m12 20 5 35 10 5

m22 10 10 10 10 10

m32 15 10 20 15 15

m42 10 15 20 15 30

Execution Time Matrix T2

 p1 p2 p3 p4 p5

m13 15 25 15 10 10

m23 30 40 25 20 5

m33 20 5 10 15 10

m43 10 5 5 15 20

Execution Time Matrix T3

 p1 p2 p3 p4 p5

m14 5 10 25 20 30

m24 10 25 5 5 5

m34 25 10 5 10 25
m44 5 10 15 25 25

m54 10 15 20 25 30

m64 5 10 10 10 10

m74 5 10 10 20 20
Execution Time Matrix T4

 p1 p2 p3 p4 p5

m15 5 10 6 3 2
m25 7 8 10 3 1

m35 6 5 15 10 20

m45 8 10 12 14 16

m55 11 10 12 5 6

142 Scheduling in Distributed Computing Systems

m65 5 10 12 8 6

m75 6 8 10 11 12

m85 8 9 2 3 1

Execution Time Matrix T5

 m11 m21 m31 m41 m51

m11 0 10 20 20 5

m21 10 0 10 0 20

m31 20 10 0 0 10

m41 20 0 0 0 20

m51 5 20 10 20 0

InterModule Communication T1

 m12 m22 m32 m42

m12 0 5 10 10

m22 5 0 0 0

m32 10 0 0 5

m42 10 0 5 0

InterModule Communication T2

 m13 m23 m33 m43

m13 0 5 15 10

m23 5 0 10 5

m33 15 10 0 0

m43 10 5 0 0

InterModule Communication T3

 m14 m24 m34 m44 m54 m64 m74

m14 0 5 10 15 15 15 20

m24 5 0 0 10 0 0 15

m34 10 0 0 0 0 5 10

m44 15 10 0 0 10 15 5

m54 15 0 0 10 0 5 5

m64 15 0 5 15 5 0 5

m74 20 15 10 5 5 5 0

InterModule Communication T4

1438 Allocation of Multiple Tasks in DCS

 m15 m25 m35 m45 m55 m65 m75 m85

m15 0 5 10 10 15 20 40 45

m25 5 0 0 5 10 15 35 40

m35 10 0 0 0 0 0 0 10

m45 10 5 0 0 0 0 10 15

m55 15 10 0 0 0 5 25 30

m65 20 15 0 0 5 0 20 25

m75 40 35 0 10 25 20 0 5

m85 45 40 10 15 30 25 5 0

InterModule Communication T5

m11 m21 m31 m41 m51 m12 m22 m32 m42 m13 m23 m33 m4

3

m14

1 1 1 1 2 1 1 1 2 1 1 1 1 2

m24 m34 m44 m54 m64 m74 m15 m25 m35 m45 m55 m65 m7

5

m85

1 1 1 2 1 1 1 2 1 1 1 1 1 1

 Memory requirement of the modules in MB

Again using the proposed algorithm the result is as follows

Task T1 has been allocated as

Processor Memory Capacity
in M.B.

Modules Assigned Remaining Memory

P1 8 8 M.B.

P2 8 m31 , m41 5 M.B.

P3 8 m11 , m51 6 M.B.

P4 8 8 M.B.

P5 8 m21 7 M.B.

Task T2 has been allocated as

Processor Memory Capacity
in M.B.

Modules Assigned Remaining Memory

P1 8 m42 6 M.B.

P2 8 m31 , m41 ,m12, m22 3 M.B.

P3 8 m11 , m51 6 M.B.

P4 8 8 M.B.

P5 8 m21 , m32 6 M.B.

144 Scheduling in Distributed Computing Systems

Task T3 has been allocated as

Processor Memory Capacity
in M.B.

Modules Assigned Remaining Memory

P1 8 m42 , m43 5 M.B.

P2 8 m31 , m41 , m12 ,
m22 , m33

2 M.B.

P3 8 m11 , m51,m13 , m23 4 M.B.

P4 8 8 M.B.

P5 8 m21 , m32 6 M.B.

Task T4 has been allocated as

Processor Memory Capacity
in M.B.

Modules Assigned Remaining Memory

P1 8 m42, m43, m64, m74 3 M.B.

P2 8 m31 , m41 , m12
, m22 , m33

2 M.B.

P3 8 m11 , m51 , m13 ,
m23 , m14

1 M.B.

P4 8 m34 7 M.B.

P5 8 m21 , m32 , m24 ,
m44 , m54

2 M.B.

Task T5 has been allocated as (Final Table)

Processor Memory Capacity
in M.B.

Modules Assigned Remaining Memory

P1 8 m42 , m43,m64 , m74
, m85

2 M.B.

P2 8 m31 , m41 ,m12, m22
, m33 , m55

1 M.B.

P3 8 m11 , m51 , m13
, m23 , m14 ,

1 M.B.

P4 8 m34 , m25 ,m35, m45
, m65 , m75

1 M.B.

P5 8 m21 , m32 ,m24,m44 ,
m54 , m15

2 M.B.

The final table shows that all the processors are being utilized for the purpose

of execution. Further the tables show that the load of the DCS is well balanced.

The resultant allocation infers that the modules of a particular task are also dis-

1458 Allocation of Multiple Tasks in DCS

tributed among the processing nodes of the DCS. To observe the turn around time

of tasks, this is to be implemented on a real DCS platform. The implementation of

G will incur an overhead but this is inevitable for the management of the multiple

tasks execution.

This work considers the realistic approach of multiple tasks, coming for the

execution in DCS, dynamically. The proposed work can be a significant move to-

wards the processor scheduling aspects of the Operating System of DCS.

8.2 Cluster-Based Load Partitioning and Allocation in DCS

 A new workload partitioning and assignment algorithm is proposed for the

tasks in large heterogeneous DCS, which attempts to find an assignment of task to

processors that result in a feasible schedule. The aim of the contributions lies in:

1. its scalability to very large systems by taking advantage of dynamic cluster-

ing,

2. its ability of handling arbitrary-topology heterogeneous systems and,

3. its use of a fuzzy based clustering heuristics which tends to increase feasible

processor utilization bounds.

To overcome the scalability limitations, heuristic approaches[19-21] have been

proposed for larger instances of the problem. Based on their performance meas-

146 Scheduling in Distributed Computing Systems

ures, these approaches can be classified as schedulability-based[20, 21] or com-

munication based[22, 23]. One common way to reduce the allocation search space

is to cluster tasks into larger units of allocation, then allocating the resulting mod-

ule clusters, not individual modules, to available processors. Different flavor of

these are proposed in [22, 23]. In general, clustering heuristics, such as those in

[22], typically require the knowledge of module execution times and inter module

communication overhead. Computing these values, which depend on processor

speed and link bandwidth, requires a priori knowledge of task to processor as-

signment. Since the assignment is not known in advance, these heuristics are usu-

ally applicable only to homogeneous systems. For large distributed applications,

parts of which may span several heterogeneous platforms, this is a serious limita-

tion [24]. The approach here differs from other clustering approaches in three re-

spects. First, while in existing approaches, clustering is done only once, followed

by the allocation stage; we use a more scalable dynamic approach, which itera-

tively refines the solution. Second, the clustering algorithm can handle heteroge-

neous systems efficiently. And finally, we use the clustering, which is solely based

on the communication aspects of the task and the system. This avoids the priori

knowledge of task execution on the processors of the DCS.

8.2.1 Problem Formulation

We assume that the workload is composed of a set of tasks Ti, each of which is

characterized by a set of modules mi ∈ Ti. Each module mi has a worst case com-

putation requirement ej measured in processor cycles (or in terms of other units)

1478 Allocation of Multiple Tasks in DCS

independent of processor speed. A module mi may exchange messages with an-

other module mj of the same task. The hardware platform on which the application

is to be executed is an arbitrary-topology distributed computing system, possibly

composed of several dedicated and shared links. Links may be dedicated (point-to-

point) or multiple access (e.g. an FDDI ring). A processor may have access to

more than one link. The processors of distributed systems are on the same LAN or

many LANs are connected through routers and gateways.

The modules of a single task are related and their relation is depicted by the

task graph. The task graph considers the precedence and the Inter Module Com-

munication among the modules (IMC matrix). A task that enters into the DCS is

equipped with the following information

a) IMC between mi and mj of task T(cij).

b) Precedence among the modules of the task graph.

With these given parameters our object is to find an assignment of modules to

processors, in a distributed computing system, for which feasible schedule is

likely to be found by finding a suitable clustering and assignment.

148 Scheduling in Distributed Computing Systems

8.2.2 Cluster Based Task Allocation

In a DCS, a sizable fraction of the total time is experienced in the inter-module

communication. Communication penalty experienced by the system is defined as

[25].

Where Ttotal is the time required by the algorithm to solve the given problem

and Tcomp is the time attributed to computation. If Tcomn is the time involved in

communication among different modules of the task, then

As obvious less communication overhead will reduce the communication pen-

alty.

Factors that affect the communication in the system are as follows:

1) Bandwidth: It is defined as the number of bytes transferred in unit time.

2) Distance: It is inter processor distance in terms of links.

3) Connection: direct or through intermediate nodes.

4) Links: Time-shared or dedicated.

5) Communication devices: Gateways, routers etc.

The aim in the formation of the clusters (both task and processor) is to consider

the above aspect of the communication and clusters are to be formed so as to re-

duce the communication penalty.

Cluster based task allocation involves the following steps

1) Divide the DCS (processor graph) into clusters of processors.

2) Divide the tasks into clusters of modules.

comp

total

T

T
CP =

comncomptotal TTT +=

1498 Allocation of Multiple Tasks in DCS

3) Map the clusters of modules onto the clusters of processors.

4) Dynamically reconfigure the cluster of processors as and when required.

8.2.3 Dynamic Formation of Clusters

The DCS can be partitioned into different subsystems, known as clusters. The

formation of the cluster uses a heuristic. There are different possibilities of the

cluster formation that depends on the network organization of the DCS. Some of

the cluster formations have been depicted in figs. 8.3 and 8.4.

Cluster 1 Cluster 2

 Fig. 8.3.Hypercube structure

Processor Router

150 Scheduling in Distributed Computing Systems

We need to consider two points while forming the cluster of processors. First,

the connection among the processors (i.e. if the processors are directly connected,

it is better to keep them in the same cluster) and second the placement of commu-

nication devices (routers and gateways). These devices delay the communication

and so it is better to separate them out in the formation of the clusters.

There are two types of the processor cluster formation. One, in which once the

cluster formed will be fixed during its operation. This is called static cluster for-

mation. As the different clusters (group of processors) are connected with each

other there are possibilities in which the structure of the cluster may change ac-

cording to the need and availability of the processors. This is dynamic cluster for-

mation. The examples given in Fig. 8.5 and 8.6 elaborate the dynamic cluster for-

mation.

Cluster 1 Cluster 2

 Fig. 8.4.Tree structure

Processor Router

Cluster 3

1518 Allocation of Multiple Tasks in DCS

Similarly clusters of modules of a task can be formed. Usually these clusters

will be fixed throughout their execution.

Fig. 8.5.Dynamic cluster formation at time T for nonregular network of nodes

Cluster 1

Cluster 2

Cluster 3

Fig. 8.6.Dynamic cluster formation at time T+ t for nonregular network of nodes

Cluster 1

Cluster 2

Cluster 3

Cluster 4

152 Scheduling in Distributed Computing Systems

 Processor Clustering

Processor clustering attempts to identify group of processors, which can be

treated as a single unit. These groups of processors are clustered together. In the

present work, the attempt is to form cluster of processors based on the architecture

of DCS and the application demand. The clusters may change dynamically de-

pending on application. Usually number of processor clusters should be equal to

the number of module clusters so that one to one mapping may result. Though it is

not always possible as the different applications may demand different number of

clusters.

The aim, to have the clustering of processors, is to reduce the communication

overhead to its maximum possible extent. Thus while forming the clusters, the I/O

speed of the processors and the bandwidth of the connecting links are to be con-

sidered. Abdelzer and shin[24] have defined the attraction force (Bij / µi+µj) for

the clustering of the processors. Here Bij is the bandwidth of the link connecting

two processors Pi and Pj of µi and µj speed respectively.

This work considers another aspect for the formation of the processor cluster.

The communication between two processors, which are not directly connected, in-

curs more overhead than the communication between two directly connected

processors. The more the distance the larger is the communication overhead.

1538 Allocation of Multiple Tasks in DCS

A fuzzy logic is applied to define the membership of the processors and is sub-

sequently used to form the clusters of the processors. The fuzzy function will try

to keep those processors in the same cluster that are directly connected or at little

distance. Membership function is defined as follows:

Using the above membership function each processor of the DCS will get a

membership value, which lies between 0 and 1. This membership value will help

in the formation of the processor clusters.

Processors on different LANs are interconnected via routers gateways etc.

These devices delay the communication. Thus as far as possible these devices

should be excluded in cluster formation.

Module Clustering

Modules of the tasks are clustered based on their communication requirement.

Highly communicating modules are clustered together to reduce communication

delays. We have applied the same fuzzy function to grade the high and low com-

municating modules.

Thus each module of the task will receive a membership value, which will help

()

network theofdiameter the

andprocessorsbetweendistancethe

),(

)7.8(
),(1

1

=
=

−=

+
=

D

PPd

DdDddiffwhere

Dddiff
d

lkkl

klkl

kl
klµ

()

modules any twobetween ion communicat possible maximum the

 and modules ebetween thion communicatthe

),(

)8.8(
),(1

1

 i

=
=

−=

+
=

C

mmc

CcCcdiffwhere

Ccdiff
c

jij

ijij

ij

ijµ

154 Scheduling in Distributed Computing Systems

in the module cluster formation.

8.2.4 Cluster Allocation

Cluster allocation takes place after the clustering phase. Tasks clusters fit to the

processor clusters according to four scheduling policies described below

a) Best Fit: Module cluster is placed in a processor cluster in which it fits almost

exactly i.e. it tries to map one to one onto between module cluster and proces-

sor cluster as far as possible.

b) First Fit: Module cluster is placed in any available processor cluster, which

can accommodate it.

c) Worst Fit: Module cluster is placed in the processor cluster, which leaves the

maximum number of unused processor in the processor cluster.

d) Reverse Fit: This mapping is unlike to above three. Here, the number of

modules in the module cluster is more than the number of processors in the

processor cluster.

Obviously worst fit is of no use. Choice is to be made among the Best fit, First

fit or Reverse fit as required.

Two more techniques are to be discussed in connection with the dynamic clus-

ter formation of the processors.

1558 Allocation of Multiple Tasks in DCS

i) Merge: If the no. of modules in the module cluster, exceeds the number of

processors in a processor cluster, merging of the neighbor processor clusters may

take place depending on the availability of the processors in the neighboring clus-

ter.

ii) Split: Similarly the processor cluster may be split if the no. of processors in

a processor cluster (P) is more than the number of modules in a module cluster

(Tm) assigned. The whole cluster can be split into two parts with the unused proc-

essor in one cluster and the rest in the other. Obviously, these excluded processors

may eventually merge with the other neighboring processors.

8.2.5 The Allocation Algorithm

The mapping of the module clusters to processor cluster takes place according

to the following algorithm.

1) MODULE_CLUSTER(); // form the clusters of modules of a task

2) PROCESSOR_CLUSTER(); // form the clusters of processors of the DCS

3) Map the module clusters to the processor clusters using the scheduling poli-

cies:

 BEST FIT

 or FIRST FIT

 or REVERSE FIT

4) if

156 Scheduling in Distributed Computing Systems

 BEST FIT

 then EXECUTE()

 else if

 FIRST FIT

 then SPLIT();

 else if

 REVERSE FIT

 then MERGE();

Different functions used in the algorithm are as below.

MODULE_CLUSTER()

{

a) Estimate the fuzzy membership value for all the modules of the task in re-

spect of IMC starting with the first module.

b) Cluster those modules which lie in the same membership value. Do it for

all remaining modules. If any qualifying module is already clustered, ex-

clude that module in the current cluster.

 }

PROCESSOR_CLUSTER ()

{

a) Estimate the fuzzy membership value for all the processors with other

processors starting with the first processor

b) Cluster those processors, which lie in the same membership value.

1578 Allocation of Multiple Tasks in DCS

c) If there is a communicating device in between two processors, exclude

the next processor from the cluster.

d) Do step b) and c) for all the remaining processors and if any qualifying

processor is already clustered, exclude that processor in the current clus-

ter.

 }

SPLIT()

{

Exclude (P-Tm) processors from the processor cluster;

EXECUTE();

}

MERGE()

{

 Look for close to (Tm-P) free neighbor processors;

 Join these processors in the same processor cluster;

 EXECUTE();

 if none free (Tm-P) neighbor processors

 then allocate (Tm-P) modules on the same processors of the cluster

 EXECUTE();

}

EXECUTE()

{

158 Scheduling in Distributed Computing Systems

 Execute all the modules of the clusters and quit the DCS;

 }

8.2.6 An Example

An example is given to illustrate the algorithm. The task graph and processor

graph are chosen at random and is given in fig. 8.7 and 8.9. The Inter Module

Communication matrix is also assumed to be given. The relevant data is available

below.

 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
m1 0 1 1 1 1 2 2 2 4 4

m2 1 0 1 2 3 1 2 3 3 4

m3 1 1 0 1 2 2 1 2 2 3

m4 1 2 1 0 1 3 2 1 3 2
m5 1 3 2 1 0 3 2 1 3 2

m6 2 1 2 3 3 0 1 2 2 3

m7 2 2 1 2 2 1 0 1 1 2

m8 2 3 2 1 1 2 1 0 2 1

m9 4 3 2 3 3 2 1 2 0 3

m10 4 4 3 2 2 3 2 1 3 0

 IMC requirements of the modules

 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

m1 0.2 0.25 0.25 0.25 0.25 0.33 0.33 0.33 1 1

m2 0.25 0.2 0.25 0.33 0.5 0.25 0.33 0.5 0.5 1

m3 0.25 0.25 0.2 0.25 0.33 0.33 0.25 0.33 0.33 0.5

m4 0.25 0.33 0.25 0.2 0.25 0.5 0.33 0.25 0.5 0.33

m5 0.25 0.5 0.33 0.5 0.2 0.5 0.33 0.25 0.5 0.33

m6 0.33 0.25 0.33 0.5 0.5 0.2 0.25 0.33 0.33 0.5

m7 0.33 0.33 0.25 0.33 0.33 0.25 0.2 0.25 0.25 0.33

m8 0.33 0.5 0.5 0.25 0.25 0.33 0.25 0.2 0.33 0.25

1598 Allocation of Multiple Tasks in DCS

m9 1 0.5 0.33 0.5 0.5 0.33 0.25 0.33 0.2 0.5

m10 1 1 0.5 0.33 0.33 0.5 0.33 0.25 0.5 0.2

 Corresponding membership values of the modules

 P1 P2 P3 P4 P5 P6 P7 P8

P1 0.25 0.33 0.33 0.33 0.5 0.5 0.5 0.5

P2 0.33 0.25 0.33 0.5 0.33 0.33 0.5 0.5

P3 0.33 0.33 0.25 0.5 0.5 0.5 0.33 0.33
P4 0.33 0.5 0.5 0.25 1 1 1 0.33

P5 0.5 0.33 0.5 1 0.25 0.5 1 1

P6 0.5 0.33 0.5 1 0.5 0.25 1 1

P7 0.5 0.5 0.33 1 1 1 0.25 0.5
P8 0.5 0.5 0.33 0.33 1 1 0.5 0.25

Corresponding membership values of processors

According to the algorithm (section 8.2.5), the following module clusters of the

task have been formed as shown in Fig. 8.8.

Tm_cluster_1 : m1, m2, m3, m4, m5

Tm_cluster_2: m6, m7

Tm_cluster_3: m8, m10

Tm_cluster_4: m9

m2

m9

m8

m10

m7
m6

m5
m4 m3

m1

Fig. 8.7.Task graph with corresponding modules

160 Scheduling in Distributed Computing Systems

According to the algorithm (section 8.2.5) the following processor clusters

have been formed (Fig. 8.10).

P_cluster_1 : P1, P2, P4

P_cluster_2 : P5

P_cluster_3 : P6

P_cluster_4 : P3, P7,P8

m2

m9

m8

m10

m7
m6

m5
m4

m3

m1

Fig. 8.8.Cluster formation of modules

P8
P2

P5

P3

P4

P7

P6

P1

Fig. 8.9.Processor graph

1618 Allocation of Multiple Tasks in DCS

As per the allocation algorithm, the module clusters are mapped onto the proc-

essor clusters as follows

Tm_cluster_1 P_cluster_1

Tm_cluster_2 P_cluster_4

Tm_cluster_3 P_cluster_2

Tm_cluster_4 P_cluster_3

Finally P_cluster_4 splits one processor from its cluster. P_cluster_1 merge

with that processor and the other P_clusters remain as it is.

Cluster based load partitioning and assignment is used for real-time applica-

tions. The proposed approach has the potential for scalability and support for sys-

tem heterogeneity. Scalability is achieved by Merge and Split cluster formation of

the processors. The approach considers the communication aspect in the cluster

formation as it incurs more overheads. This is also a realistic approach as the other

algorithms, based on the same, uses the priori knowledge of the execution of the

P8

P2

P5

P3

P4

P7
P6

P1

Fig. 8.10.Cluster formation of processors

162 Scheduling in Distributed Computing Systems

modules of the task on the processors of the DCS. The communication bandwidth

is already known while designing the system, so it is not difficult to measure the

IMC time for the modules of the task. A new fuzzy approach is applied to form

the clusters. Examples illustrate the algorithm.

8.3 The LBTA Strategy for Multiple Tasks Using A*

In this section, an algorithm has been developed for the LBTA strategy for

multiple tasks. A heuristic approach to solve LBTA problem for multiple tasks us-

ing A* technique has been presented. The load on a processing node for multiple

tasks proposed in the chapter 6 has been used as a cost function for the algorithm

in this chapter. An illustrative example has been worked out using the algorithm.

Few examples have been worked out using the software implementation of the al-

gorithm. Finally the GT shows the corresponding allocation of the tasks, which

achieves balanced load among the processing nodes of a DCS.

A DCS is a network of workstations, personal computers and/or other comput-

ing systems. Such a system may be heterogeneous in the sense that the computing

nodes may have different architectural capabilities as well as different speeds and

memory capacities. A DCS accepts tasks from users and executes different mod-

ules of these tasks on various nodes of the system. Various modules of a task have

a precedence relation depicted by its task graph and their communicational re-

quirements are given by the IMC matrix. A good number of task allocation algo-

1638 Allocation of Multiple Tasks in DCS

rithms have been proposed in the literature. These algorithms allocate a given task

on to the DCS nodes and aim to minimize the turn around time of the given task

and do not consider the multiple task allocation in a DCS. Such algorithms do not

consider (both) the number of modules that can be accepted by the individual

computing nodes and the memory capacity of the nodes. Factually, in a DCS the

nodes may share some specified load within their memory capacity constraints.

Further, the above mentioned algorithms consider only one given task. In this

work, we have considered the number of modules that can be accepted by individ-

ual nodes along with their memory capacities and arrival of multiple disjoint tasks

(there are no inter task communication among tasks) to the DCS from time to

time. The algorithm proposed here, attempts to allocate modules of a task on to

such processing nodes that takes minimum possible time for execution of the con-

cerned modules. It is only when such a processing node, that requires smaller time

for the concerned module, will become overloaded because of this assignment; the

concerned module is allocated to a processing node that may take more time to

execute. Such an arrangement obtains the minimization of turn around time up to

the possible extend for the concerned task. Finally the resultant possible minimum

possible turn around times of all the tasks will ensure enhancement of throughput.

It will not be out of place to mention that an allocation that overloads processors

looking only at the execution time and IMC matrix of concerned task will cer-

tainly increase the turn around times of the task and result in a poor throughput.

To exploit effective parallelism on a DCS, tasks must be properly allocated to

the processing nodes. The task assignment problem is well known to be NP-Hard.

164 Scheduling in Distributed Computing Systems

A task allocation algorithm seeks an assignment that optimizes a certain cost-

function, for example maximum throughput or minimum turnaround time. How-

ever, most of the reported algorithms yield sub-optimal solutions. In general, op-

timal solutions can be found through an exhaustive search, but as there is nm ways

in which m modules can be assigned to n processing nodes, an exhaustive search

is often not possible. Thus, optimal solution algorithms exist only for restricted

cases or very small problems. The other possibility is to use an informed search to

reduce the state space [3].

Like other NP-hard problems, there are three common ways to get a solution of

the problem [17]:

• Relaxation: some of the requirements can be relaxed or restrict the problem.

• Enumerative optimization: to compromise with the solution’s optimality

enumerative methods such as dynamic programming and branch-and-bound

can be used.

• Approximate optimization: heuristics can be used to solve the problem while

aiming for near optimal or good solution.

8.3.1 The Proposed Algorithm

Though a plethora of algorithms have been proposed, most of them have not

taken the realistic view that only a finite number of modules can be allocated to a

1658 Allocation of Multiple Tasks in DCS

processor, depending upon the architectural capability of the processors. Secondly,

earlier algorithms [3, 26] have continued to assume that all the modules will be

eventually allocated without considering the status of the system in terms of re-

maining memory and the additional no. of modules that the individual processors

can accept as per the allocations that have already been made for the previous

tasks. These algorithms do not consider the requirement of allocation of modules

of multiple tasks. All the algorithms give the solution to single task allocation

case.

In the proposed algorithm, we have shed off these unrealistic assumptions and

make use of a data structure STATUS associated with every processor, which has

two fields showing:

a) The maximum no. of modules that can be allocated to this processor and

b) The memory capacity of the processor.

Whenever a module is chosen for allocation onto a processor, the STATUS is

checked and it is ascertained whether the processor can accommodate the module

at hand. If not, another processor is chosen if available. The consequence might be

that a certain task is not allocated at all. STATUS is of the type

 Struct{

 int no_of_modules;

 int mem_capacity;

 } STATUS;

A matrix Li

pq which indicates whether two processors are directly connected or

not (i.e. Li
 is an adjacency matrix). Let us have a coefficient matrix Cf that has n

166 Scheduling in Distributed Computing Systems

entries. The ith entry corresponds to communication between two processors via i

links. While calculating the load of a processor, as in section 6.5, when the 2nd ex-

pression in R.H.S. of equation 6.5 amounts to zero and p is not the same as q (i.e.

Processors p and q are not directly connected), we find out L2, multiply it by Cf2

(2nd
 field of Cf), and check whether this comes out to be non-zero; if it does, we

replace L1 in equation 3.4 with this; if not we find out L3 and multiply it with Cf3

and check whether the product comes out to be non-zero. We continue like this

until we find a non-zero value and then replace L
i in equation 3.4 with this (it

should be noted that we’ll find a non-zero value within n multiplications, where n

is the no. of processing nodes). In section 8.3.5 (case 1), an illustrative example

elaborates the use of Li
pq and Cfi. Thus we modify equation 6.5 as following, which

is ‘load’ in a processor p.

Where, CCpq = Cfi . L
i
pq

Xilp = Execution cost of module i of task l on processor p

 Cijl = Communication cost between ith

 and jth module of task l

 L

i
pq = Connection matrix of two processors p and q, describing the links

(direct/ one indirect/ two indirect etc.) of connection paths

among the processing nodes in Processor Graph(PG).

∑∑ ∑∑∑∑
= = = =

≠
=

+

≠
=

+=
k

l

m

i

k

l

m

i

m

ij
j

jlqilppqijl

n

pq
q

ilpilp

i i

M.M.CCCM.XLoad
1 1 1 1 11

8.9)()(





=
.otherwise0

 node processingtoassigned is task ofmoduleif1 ,plm
M

i

ilp

1678 Allocation of Multiple Tasks in DCS

 Cfi = Coefficient matrix which has n entries describing the IPC costs for the

links of connection paths among the processing nodes.

For example, Cf1=5(for direct connection between the proces-

sors), Cf2=10 (for processors which are indirectly connected by

one link), Cf3= 20(for processors which are indirectly con-

nected by two links) etc.

The work assumes that task graphs and processor graph of a DCS are given.

Communication matrices are given for IMC among modules of tasks. It is also as-

sumed that the execution times of all the modules of the task are given in Execu-

tion Matrix.

A heuristic approach is applied to solve LBTA problem for multiple tasks. In

the proposed algorithm, we have considered the above factors and have applied

the well-known A* algorithm. A* is a best-first search heuristic technique for a

larger search space [3].

8.3.2 The A*

In the A* algorithm [3], for a tree search, it starts from the root, called the start

node (usually a null solution of the problem). Intermediate tree nodes represent the

partial solutions, and leaf nodes represent the complete solution or goal. A cost

function f computes each node's associated cost. The value of f for a node n, which

is the estimated cost of the cheapest solution through n, is computed as





=
.otherwise0

, node processingtoassigned is task ofmoduleif1 qlm
M

j

jlq

168 Scheduling in Distributed Computing Systems

Where g(n) is the search-path cost from the start node to the current node and

h(n) is a lower-bound estimate of the path cost from current node to the goal

node(solution), using any heuristic information available. To expand a node means

to generate all of its successors or children and to compute the f value for each of

them. The nodes are ordered for search according to cost; that is, the algorithm

first selects the node with the minimum expansion cost. The algorithm maintains a

sorted list, called OPEN, of nodes (according to their f values) and always selects

a node with the best expansion cost. Because the algorithm always selects the

best-cost node, it guarantees an optimal solution.

For the task allocation problem under consideration:

• the search space is a tree,

• the initial node (the root) is a null-assignment node, that is no modules are as-

signed as yet,

• intermediate nodes are partial-assignment nodes, that is only some modules

are assigned,

• a solution (goal) node is a complete-assignment node, that is all the modules

of the tasks are assigned.

To compute the cost function, g(n) is the cost of partial assignment at node n-

the load on the heaviest loaded (pi); this can be done using the equation 8.8. For

the computation of h(n), two sets Ap (the set of modules that are assigned to the

heaviest loaded p) and U (the set of modules that are unassigned at this stage of

the search and have one or more communication link with any module in set Ap)

are defined. Each module mi in U will be assigned either to p or any other proces-

)()()(nhngnf +=

169

(8.10)

8 Allocation of Multiple Tasks in DCS

sor q that has a direct or indirect communication link with p. So, two kinds of

costs with each mi’s assignment can be associated: either Xilp (the execution cost of

mi of task l on p) or with the sum of communication costs of all the modules in set

Ap that have a link with mi. This implies that to consider mi’s assignment, it is de-

cided whether mi should go to p or not (by taking the minimum of these two cases’

cost).

8.3.3 Control Abstraction of the LBTA for Multiple Tasks

1. Calculate the status of the global Table (GT) for each processor in terms of

available memory (M) and the modules that are already assigned to it.

2. Maintain a list S of unallocated tasks with all modules (all tasks are in S at

the beginning) and a list OPEN, empty at the beginning.

3. Take one Task ta from S and put it in another list V and reset OPEN (i.e.

OPEN is empty now).

4. If allocation of modules in V is possible using the A*(equation 8.9) algorithm

and verifying STATUS, then allocate the modules; if allocation is not possi-

ble, de-allocate the allocated modules of the task and move onto the next task,

modifying the STATUS in between and update the Global Table(GT).

 /* The Pseudocode for step 4 is given below */

5. If S is not empty yet, go to step 2.

6. Stop (end of allocation).

Pseudocode for step 4

while(V!=NULL) {

 ma=V;

170 Scheduling in Distributed Computing Systems

 ma = V→ next;

if((STATUS[P].no_of_modules!=0) &&

(STATUS[P].mem_capacity<

MEMORY[ta][ma]))

 {

 flag=1;

 /* flag is supposed to have been initialized to zero.

*/

 MODIFY_OPEN();

 /* This function includes the node under consideration

i.e. ma in OPEN */

 FIND_LOAD();

 /* This function finds out the Load [eqn. 8.8] at every

processor and stores them in an array

*/

 FIND_COST();

 /* This function finds out the Cost f(n) for the processor

with heaviest load [equation 8.8] */

 }

 if (flag = = 0)

{

 DE-ALLOCATE_TASK();

/* This function de-allocates the partially allocated

modules under consideration and moves onto the

next task */

 MODIFY_STATUS();

1718 Allocation of Multiple Tasks in DCS

/* This function modifies the STATUS of each proces-

sor to which the modules of the task, most re-

cently moved to V, had been allocated, by incre-

menting the fields of STATUS corresponding to

the particular module. Thus de-allocation is com-

pleted */

 }

 FIND_LEAST_COST();

/* This function finds out the least value stored in the

array in

 (i) above. */

 MODIFY_STATUS();

 /* This function modifies the status of each processing node

according to the allocated modules and used mem-

ory */

 MODIFY_OPEN();

 /* This function removes the least cost from OPEN */

}

The complexity of the algorithm is O(p
2
m

3
) where p is the no. of processing

nodes and m is the total no. of modules of all the tasks, although optimal task as-

signment, like many other graph matching problem, needs exponential time in

worst case [3]. The complexity of the algorithm is calculated by analyzing the

step counts in pseudo-code. The corresponding code of void allocation() can be

referred to for ascertaining the step counts [appendix-A]. The proof has been

given in sec 8.3.7.

172 Scheduling in Distributed Computing Systems

8.3.4 An Illustrated Example

The following example illustrate the operation of allocation of the algorithm

using A* technique for the LBTA problem. A task with its modules {m11, m21, m31,

m41, m51} and a set of three processing nodes in a DCS {P0, P1, P2} are given in

fig. 8.11. The execution and IMC matrix are assumed to be given in units of time.

The resulting search tree is shown in the Figure. 8.12.

m51

m41
m31

m21

m11

p1 p2

p0

Task Graph

Processor Graph

Fig. 8.11.Task graph and Processor graph

1738 Allocation of Multiple Tasks in DCS

XXXXX
(0)

1XXXX
(30)

21XXX
(35)

20XXX
(37)

22XXX
(36)

12XXX
(31)

11XXX
(42)

10XXX
(37)

02XXX
(31)

01XXX
(35)

00XXX
(48)

212XX
(51)

211XX
(54)

210XX
(46)

122XX
(43)

 121XX
(60)

120XX
(41)

 022XX
 (38)

021XX
(38)

020XX
(41)

 222XX
(40)

221XX
(38)

220XX
(41)

202XX
(51)

 201XX
(42)

200XX
(59)

 012XX
(36)

011XX
(54)

010XX
(67)

 01222
(47)

 01221
(64)

 01220
(53)

 0122X
(30)

 0121X
(52)

 0120X
(49)

 1 2

3

4

6 7

8

9

11 12

15 16

0XXXX
(34)

2XXXX
(28)

5

18

10

Fig. 8.12.Search tree for the example 8.3.4 (continued on next page)

174 Scheduling in Distributed Computing Systems

 p0 p1 p2

m11 17 13 11

m21 16 14 10
m31 18 15 8

m41 7 6 5

m51 12 11 9
 Execution Time Matrix of the modules

 m11 m21 m31 m41 m51

m11 0 9 0 0 8
m21 9 0 7 0 0

m31 0 7 0 6 5

m41 0 0 6 0 0

m51 8 0 5 0 0
 IMC cost matrix

A search node includes partial allocation of modules of the task to processing

nodes and the value of f, which is the cost of the partial assignment. A partial allo-

10XXX
(37)

101XX
(60)

 100XX
(59)

102XX
(36)

 0212X
(47)

 2210X
(23)

2211X
(33)

0211X
(38)

0210X
(49)

 2212X
(49)

 12

021XX
(38)

221XX
(38)

 022XX
(38)

 15 16 18

 1021X
(44)

1020X
(55)

1022X
(30)

 13

14

10220
(67)

10221
(48)

10222
(47)

0220X
(49)

0221X
(22)

0222X
(42)

17

 02220
(53)

02211
(54)

 02212
(60)

 22100
(48)

22101
(62)

22102
(52)

22111
(52)

22112
(47)

22110
(35)

19 20

21

Fig. 8.12.Search tree for the example 8.3.4 (63 nodes generated, 21 nodes expanded)

1758 Allocation of Multiple Tasks in DCS

cation means that some modules are unassigned. The value X indicates that i
th

module has not been assigned yet. The allocation of the module to a processing

node replaces an X value in the allocation string with some processing node’s

number. Node expansion means adding a new module assignment to the partial

assignment.

The root node includes the set of all unassigned modules XXXXX. Next, for

example, in figure 8.12, it is considered, the allocation of m11 to p0(0XXXX), m11

to p1(1XXXX) and m11 to p2(2XXXX), by determining the assignment costs at the

tree’s first level and verifying the STATUS to see whether the corresponding allo-

cation is possible. Allocating m11 to p0 (0XXXX) results in the total cost f(n) that

is equal to 34. The g(n), is this case, according to the equation 8.8, equals to 17,

which is the cost of executing m11 on p0. The h(n) is equal to 17, which is the sum

of the minimum execution or the communication costs of m21 and m51(the mod-

ules communicating with m11). Similarly, the costs of assigning m11 to p1(30) and

m11 to p2(28) is calculated. The algorithm inserts these three nodes into the list

OPEN. 28 is the minimum among the costs. So the algorithm selects the node

2XXXX for expansion. Further the algorithm expands node 2XXXX in the fol-

lowing manner.

Now the algorithm will consider m21 for assignment and 20XXX, 21XXX and

22XXX are three possible assignments after verifying STATUS. The value of f(n)

for 20XXX is 37 and it is computed as follows: first the processing node with

heaviest load is selected, which is p0 in this case. g(n) is equal to 30, which is the

cost of executing m21 on p0(16) plus the cost of communication between m21 and

m11(14), because they are assigned to two different processing nodes, where the

IMC is 9 and the minimum communication cost between the processing nodes by

direct link (Cf1=5) is 5. h(n) is equal to 7, which is the minimum execution or

communication cost of m31 (the only unassigned module communicating with m21).

176 Scheduling in Distributed Computing Systems

Similarly the values of f(n) for 21XXX(35) and 22XXX(36) are calculated. At this

point, nodes 0XXXX(34), 1XXXX(30), 20XXX(37), 21XXX(35) and

22XXX(36) are in the OPEN list. The 1XXXX(30) has the minimum node cost,

the algorithm expands it next.

Here, in the following order 10XXX, 11XXX and 12XXX, the nodes are ex-

panded. The numbers in the circles attached to some of the nodes show the se-

quence in which nodes are selected for expansion. Bold lines shows the edges

connecting the nodes that lead to an optimal assignment. Here, in the example, we

assumed that the Inter processor Communication (IPC) cost for Cf1
 =5(for direct

link), Cf2 =10(for one indirect link) and Cf3 =20 (for two indirect links) in units of

time.

The descriptions of the OPEN are as follows:

OPEN_1 : 0XXXX(34), 1XXXX(30), 2XXXX(28) .
 1

2XXXX(28) is the minimum cost node. So, it is expanding. And it is removed

from the OPEN. The underlined nodes with numbers show the order of expansion.

OPEN_2 : 0XXXX(34), 1XXXX(30), 20XXX(37), 21XXX(35), 22XXX(36) .
 2

OPEN_3: 0XXXX(34), 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37),
11XXX(42), 12XXX(31) .

 3

OPEN_4: 0XXXX(34), 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37),

 4
11XXX(42), 120XX(41), 121XX(60), 122XX(43) .

OPEN_5 : 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37), 11XXX(42),

120XX(41), 121XX(60), 122XX(43), 00XXX(41), 01XXX(35),
02XXX(31) .

 5

1778 Allocation of Multiple Tasks in DCS

OPEN_6 : 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37), 11XXX(42),
 6

120XX(41), 121XX(60), 122XX(43), 00XXX(41), 01XXX(35),
020XX(41), 021XX(38), 022XX(38) .

OPEN_7 : 20XXX(37), 22XXX(36), 10XXX(37), 11XXX(42), 120XX(41),

121XX(60), 122XX(43), 00XXX(41), 01XXX(35), 020XX(41),
 7

021XX(38), 022XX(38) .

OPEN_8 : 20XXX(37), 22XXX(36), 10XXX(37), 11XXX(42), 120XX(41),

 8
121XX(60), 122XX(43), 00XXX(41), 020XX(41), 021XX(38),

022XX(38), 010XX(67), 011XX(54), 012XX(36) .

OPEN_9 : 20XXX(37), 10XXX(37), 11XXX(42), 120XX(41), 121XX(60),

122XX(43), 00XXX(41), 020XX(41), 021XX(38), 022XX(38),
010XX(67), 011XX(54), 012XX(36), 220XX(41), 221XX(38),

 9

222XX(40) .

OPEN_10 : 20XXX(37), 10XXX(37), 11XXX(42), 120XX(41), 121XX(60),

122XX(43), 00XXX(41), 020XX(41), 021XX(38), 022XX(38),
010XX(67), 011XX(54), 220XX(41), 221XX(38), 222XX(40),
0120X(49), 0121X(52), 0122X(30) .

 10

OPEN_11: 20XXX(37), 10XXX(37), 11XXX(42), 120XX(41), 121XX(60),
 11

122XX(43), 00XXX(41), 020XX(41), 021XX(38),
022XX(38), 010XX(67), 011XX(54), 220XX(41), 221XX(38),
222XX(40), 0120X(49), 0121X(52), 01220(53), 01221(64),
01222(47) .

OPEN_12: 10XXX(37), 11XXX(42), 120XX(41), 121XX(60), 122XX(43),

 12

178 Scheduling in Distributed Computing Systems

00XXX(41), 020XX(41), 021XX(38), 022XX(38), 010XX(67),
011XX(54), 220XX(41), 221XX(38), 222XX(40), 0120X(49),
0121X(52), 01220(53), 01221(64), 01222(47), 200XX(59),
201XX(42), 202XX(51) .

OPEN_13: 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),

020XX(41), 021XX(38), 022XX(38), 010XX(67), 011XX(54),
220XX(41), 221XX(38), 222XX(40), 0120X(49), 0121X(52),
01220(53), 01221(64), 01222(47), 200XX(59), 201XX(42),
202XX(51), 100XX(59), 101XX(60), 102XX(36) .

 13

OPEN_14 : 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),

020XX(41), 021XX(38), 022XX(38), 010XX(67), 011XX(54),
220XX(41), 221XX(38), 222XX(40), 0120X(49), 0121X(52),
01220(53), 01221(64), 01222(47), 200XX(59), 201XX(42),
202XX(51), 100XX(59), 101XX(60), 1020X(55), 1021X(44),
1022X(30) .

 14

OPEN_15 : 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),

020XX(41), 021XX(38), 022XX(38), 010XX(67),
011XX(54), 15

220XX(41), 221XX(38), 222XX(40), 0120X(49),

0121X(52), 01220(53), 01221(64), 01222(47), 200XX(59),
201XX(42), 202XX(51), 100XX(59), 101XX(60), 1020X(55),
1021X(44), 10220(67), 10221(48), 10222(47) .

OPEN_16 : 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),

020XX(41), 022XX(38), 010XX(67), 011XX(54),
220XX(41), 16

221XX(38), 222XX(40), 0120X(49), 0121X(52), 01220(53),

01221(64), 01222(47), 200XX(59), 201XX(42), 202XX(51),
100XX(59), 101XX(60), 1020X(55), 1021X(44), 10220(67),
10221(48), 10222(47), 0210X(49), 0211X(38), 0212X(47).

1798 Allocation of Multiple Tasks in DCS

OPEN_17 : 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),
020XX(41), 010XX(67), 011XX(54), 220XX(41), 221XX(38),
222XX(40), 0120X(49), 0121X(52), 01220(53), 01221(64),
01222(47), 200XX(59), 201XX(42), 202XX(51), 100XX(59),
101XX(60), 1020X(55), 1021X(44), 10220(67), 10221(48),
10222(47), 0210X(49), 0211X(38), 0212X(47), 0220X(49),
0221X(22), 0222X(42) .

 17

OPEN_18 : 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),

020XX(41), 010XX(67), 011XX(54), 220XX(41), 221XX(38),
 18

 222XX(40), 0120X(49), 0121X(52), 01220(53), 01221(64),
01222(47), 200XX(59), 201XX(42), 202XX(51), 100XX(59),
101XX(60), 1020X(55), 1021X(44), 10220(67), 10221(48),
10222(47), 0210X(49), 0211X(38), 0212X(47), 0220X(49),
0222X(42), 02210(53), 02211(54), 02212(60) .

OPEN_19 : 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),

020XX(41), 010XX(67), 011XX(54), 220XX(41), 222XX(40),
0120X(49), 0121X(52), 01220(53), 01221(64), 01222(47),
200XX(59), 201XX(42), 202XX(51), 100XX(59), 101XX(60),
1020X(55), 1021X(44), 10220(67), 10221(48), 10222(47),
0210X(49), 0211X(38), 0212X(47), 0220X(49), 0222X(42),
02210(53), 02211(54), 02212(60), 2210X(23), 2211X(33),

 19
2212X(45) .

OPEN_20 : 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),

020XX(41), 010XX(67), 011XX(54), 220XX(41), 222XX(40),
0120X(49), 0121X(52), 01220(53), 01221(64), 01222(47),
200XX(59), 201XX(42), 202XX(51), 100XX(59), 101XX(60),
1020X(55), 1021X(44), 10220(67), 10221(48), 10222(47),
0210X(49), 0211X(38), 0212X(47), 0220X(49), 0222X(42),
02210(53), 02211(54), 02212(60), 2211X(33) , 2212X(45),

 20

22100(48), 22101(62), 22102(52).

OPEN_21 : 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),

020XX(41), 010XX(67), 011XX(54), 012XX(36), 220XX(41),
222XX(40), 0120X(49), 0121X(52), 01220(53), 01221(64),

180 Scheduling in Distributed Computing Systems

01222(47), 200XX(59), 201XX(42), 202XX(51), 100XX(59),
101XX(60), 1020X(55), 1021X(44), 10220(67), 10221(48),
10222(47), 0210X(49), 0211X(38), 0212X(47), 0220X(49),
0222X(42), 02210(53), 02211(54), 02212(60), 2212X(45),

 22100(48), 22101(62), 22102(52), 22110(35), 22111(52),
 21

22112(47) .

The search continues and expands nodes until the node with the complete as-

signment (22110) is selected. This is the goal node because the node has a com-

plete assignment (22110) i.e. all the modules of the task have been allocated ac-

cording to the minimum costs. So, this is a goal node. Figure 8.12 shows the order

in which the algorithm considers the modules for assignment. During the search

for an optimal solution, 63 nodes are generated and 21 nodes are expanded.

8.3.5 Implementation

The software for the above algorithm is developed in C and the studies have

been carried out by using few examples cited below to judge the efficiency of the

algorithm. Here, we assume that the IMC matrices, the execution time matrices

and the adjacency matrices of processing nodes (connectivity of the processing

nodes) are given for every module of each task in units of time. Tasks with their

corresponding modules are presented as Task Graphs (TG) and processing nodes

of a DCS are presented as Processor Graph (PG).

The algorithm has been applied to work out allocation for the tasks and proces-

sors interconnection graph given below. Here, we have considered three different

cases. The first field of STATUS represents the maximum number of modules that

can be allocated to the processing node and the second field represents the mem-

1818 Allocation of Multiple Tasks in DCS

ory capacity of the processing node. The Global Table (GT) shows the present

status of the processing nodes of the DCS after allocating each task.

Case 1

Given a set of three tasks with their corresponding modules T1(m11, m21, m31,

m41), T2(m21, m22, m32), T3(m13, m22, m33) and a set of four processors {p1, p2, p3, p4}

(fig.8.13).

m41

m31
m21

m11

Task Graph (T1)

m33

m23

m13

Task Graph (T3)

Fig. 8.13.Task Graphs and Processor Graph

Processor Graph (PG)

p2

p4

p1

p3

m12

m22
m32

Task Graph (T2)

182 Scheduling in Distributed Computing Systems

 p1 p2 p3 p4

m11 10 20 5 25

m21 35 10 15 15

m31 10 15 25 10

m41 20 35 20 5

 Execution Cost of Modules of the task T1

 p1 p2 p3 p4

m12 20 5 35 10

m22 10 10 10 10

m32 15 10 20 15

Execution Cost of Modules of the task T2

 p1 p2 p3 p4

m13 15 25 15 10

m23 30 40 25 20

m33 20 5 10 15

Execution Cost of Modules of the task T3

 m11 m21 m31 m41

m11 0 10 50 20

m21 10 0 10 50

m31 50 10 0 50

m41 20 50 50 0

IMC Cost of Modules task T1

 m12 m22 m32

m12 0 5 10

m22 5 0 60

m32 10 60 0

IMC Cost of Module of the task T2

 m13 m23 m33

m13 0 5 40

m23 5 0 10

m33 40 10 0

IMC Cost of Modules of the task T3

1838 Allocation of Multiple Tasks in DCS

 p1 p2 p3 p4

p1 0 1 1 1

p2 1 0 0 1

p3 1 0 0 1

p4 1 1 1 0

Adjacency Matrix of Processors L1
pq

 p1 p2 p3 p4

p1 0 1 1 1

p2 1 0 1 1

p3 1 1 0 1

p4 1 1 1 0

Adjacency Matrix of Processors L2
pq

m11 m21 m31 m41 m12 m22 m32 m13 m23 m33

5 3 2 4 3 2 1 4 2 3

Memory Requirement of Modules in Units

STATUS[1] = [4, 10]

STATUS[2] = [3, 8]

STATUS[3] = [4, 9]

STATUS[4] = [5, 12]

The above STATUS indicates that the maximum number of modules that can

be allocated to first processing node is 4 and the memory capacity of the first

processing node is 10 in units. The other STATUS also indicates the present status

of the second, third and fourth processing nodes respectively.

So, the present status of the Global Table is as follows:

184 Scheduling in Distributed Computing Systems

 I II III IV V VI

Processor Max. no.
of

Modules*

Memory
Capacity

Modules
Assigned

Remaining
No. of
Modules**

Remaining
Memory

 p1 4 10 4 10

 p2 3 8 3 8

 p3 4 9 4 9

 p4 5 12 5 12

*The column III represents the maximum number of modules that can be allo-

cated to a processing node.

**The column V represents the remaining number of modules that can be allo-

cated to a processing node after some modules have been assigned to the process-

ing node.

Now applying the software in Pentium 100 MHz, the following results have

been obtained.

Here, in the results, “Task 1 has been allocated as : 4141” indicates that the

four modules(m11, m12, m13, m14) of the task T1 have been allocated onto the proc-

essing node p4, p1, p4, p1 respectively. “The cost of allocation for processing node

no. 1 is 55” means the execution and communication costs of the modules of tasks

by this allocation onto the processing node 1 by the allocation is 55 in units of

time. “The status of the processing node 1 is 1” indicates that after allocation has

been completed, the remaining number of modules that can be allocated to the

processing node p1 is 1 and remaining number of memory that is available in the

processing node p1 is 1 in units.

1858 Allocation of Multiple Tasks in DCS

Results:

Task 1 has been allocated as: 4141

Task 2 has been allocated as: 212

Task 3 has been allocated as: 323

The cost of allocation for processing node no. 1 is 55

The status of the processing node 1 is 1 1

The cost of allocation for processing node no. 2 is 120

The status of the processing node 2 is 0 2

The cost of allocation for processing node no. 3 is 180

The status of the processing node 3 is 2 2

The cost of allocation for processing node no. 4 is 145

The status of the processing node 4 is 3 5

Total cost of allocation is 500

Time required by the algorithm was: 0.06 seconds

The modules of task T1 has been allocated as

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of
Modules

Remaining
Memory

 p1 4 10 m21 m41 4 3

 p2 3 8 3 8
 p3 4 9 4 9

 p4 5 12 m11 m31 3 5

The modules of task T2 has been allocated as

186 Scheduling in Distributed Computing Systems

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of
Modules

Remaining
Memory

 p1 4 10 m21 m41

m22
1 1

 p2 3 8 m12 m32 1 4

 p3 4 9 4 9

 p4 5 12 m11 m31 3 5

The modules of task T3 has been allocated as

Table 8.2.Final status of the GT of all the tasks for case 1

The above table (8.2) shows the final status of the Global Table. The table de-

scribes the status of allocation of every module of each task of DCS. It also shows

that a balanced load is obtained.

Case 2

Given a set of three tasks (fig. 8.14) with their corresponding modules T1(m11,

m21, m31, m41, m51), T2(m12, m22, m32, m42), T3(m13, m23, m33, m43), T4(m14, m24, m34,

m44, m54, m64, m74), T5(m15, m25, m35, m45, m55, m65, m75, m85) and a set of five proc-

essing nodes (p1, p2, p3, p4, p5).

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of

Modules

Remaining
Memory

 p1 4 10 m21 m41

m22
1 1

 p2 3 8 m12 m32
m23

0 2

 p3 4 9 m13 m33 2 2

 p4 5 12 m11 m31 3 5

1878 Allocation of Multiple Tasks in DCS

 p1 p2 p3 p4 p5

m11 10 20 5 25 5

m21 35 10 15 15 10

m31 10 15 25 10 20

m41 20 35 20 5 25

m51 10 5 10 5 10

Execution Time Matrix of T1

Fig. 8.14.Task graphs and Processor graph

m51

m41

m31

m21

m11

Task T1

m32

m42

m22

m12

Task T2

m33

m43

m23

m13

Task T3

p5

Processor Graph (PG)

p2

p4

p1
p3

m54

m74

m14

m64 m44

m34
m24

Task T4

m51

m35

m85

m25

m55

m65

m45

m75

Task T5

188 Scheduling in Distributed Computing Systems

 p1 p2 p3 p4 p5

m12 20 5 35 10 5

m22 10 10 10 10 10

m32 15 10 20 15 15

 m42 10 15 20 15 30

Execution Time Matrix of T2

 p1 p2 p3 p4 p5

m13 15 25 15 10 10

m23 30 40 25 20 5

m33 20 5 10 15 10

m43 10 5 5 15 20

Execution Time Matrix of T3

 P1 p2 p3 p4 p5

m14 5 10 25 20 30

m24 10 25 5 5 5

m34 25 10 5 10 25

m44 5 10 15 25 25

m54 10 15 20 25 30
m64 5 10 10 10 10

m74 5 10 10 20 20

Execution Time Matrix of T4

 p1 p2 p3 p4 p5

m15 5 10 6 3 2

m25 7 8 10 3 1

m35 6 5 15 10 20

m45 8 10 12 14 16

m55 11 10 12 5 6

m65 5 10 12 8 6

m75 6 8 10 11 12
m85 8 9 2 3 1

Execution Time Matrix of T5

 m11 m21 m31 m41 m51

m11 0 10 20 20 5

m21 10 0 10 50 20

m31 20 10 0 50 10

1898 Allocation of Multiple Tasks in DCS

m41 20 50 50 0 20

m51 5 20 10 20 0

IMC cost T1

 m12 m22 m32 m42

m12 0 5 10 10

m22 5 0 60 60

m32 10 60 0 5

m42 10 60 5 0

IMC cost of T2

 m13 m23 m33 m43

m13 0 5 15 10

m23 5 0 10 5

m33 15 10 0 70

m43 10 5 70 0

IMC cost of T3

 m14 m24 m34 m44 m54 m64 m74

m14 0 5 10 15 15 15 20

m24 5 0 80 10 80 80 15

m34 10 80 0 80 80 5 10

m44 15 10 80 0 10 15 5

m54 15 80 80 10 0 5 5

m64 15 80 5 15 5 0 5

m74 20 15 10 5 5 5 0

IMC cost of T4

 m15 m25 m35 m45 m55 m65 m75 m85

m15 0 5 10 10 15 20 40 45

m25 5 0 90 5 10 15 35 40

m35 10 90 0 90 90 90 90 10

m45 10 5 90 0 90 90 10 15

m55 15 10 90 90 0 5 25 30

m65 20 15 90 90 5 0 20 25

m75 40 35 90 10 25 20 0 5

m85 45 40 10 15 30 25 5 0

IMC cost of T5

190 Scheduling in Distributed Computing Systems

 p1 p2 p3 p4 p5

p1 0 1 1 1 1

p2 1 0 0 1 0

p3 1 0 0 1 0

p4 1 1 1 0 1

p5 1 0 0 1 0

Adjacency Matrix of Processors L1
pq

 p1 p2 p3 p4 p5

p1 0 1 1 1 1

p2 1 0 1 1 1

p3 1 1 0 1 1

p4 1 1 1 0 1

p5 1 1 1 1 0

Adjacency Matrix of Processors L2
pq

Memory requirement of the modules of the tasks (in units) are given.

m11 m21 m31 m41 m51 m12 m22 m32 m42 m13 m23 m33 m43 m14

6 3 5 2 4 1 6 3 5 2 4 1 4 5

m24 m34 m44 m54 m64 m74 m15 m25 m35 m45 m55 m65 m75 m85

 6 3 2 1 2 3 4 2 3 1 2 4 3 1

STATUS[1] = [10, 50]

STATUS[2] = [9, 40]

STATUS[3] = [7, 35]

STATUS[4] = [6, 30]

STATUS[5] = [4, 10]

Results:

Task 1 has been allocated as : 41421

Task 2 has been allocated as : 1231

1918 Allocation of Multiple Tasks in DCS

Task 3 has been allocated as : 2311

Task 4 has been allocated as : 1213411

Task 5 has been allocated as : 42535352

The cost of allocation for processing node no. 1 is 263

The status of the processing node 1 is 0 19

The cost of allocation for processing node no. 2 is 300

The status of the processing node 2 is 3 21

The cost of allocation for processing node no. 3 is 343

The status of the processing node 3 is 2 21

The cost of allocation for processing node no. 4 is 365

The status of the processing node 4 is 2 14

The cost of allocation for processing node no. 5 is 314

The status of the processing node 5 is 2 12

Total cost of allocation is 1585

Time required by the algorithm was: 0.17 seconds

192 Scheduling in Distributed Computing Systems

The modules of task T1 has been allocated as

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of
Modules

Remaining
Memory

 p1 10 50 m21 m51 8 43

 p2 9 40 m41 8 38

 p3 7 35 7 35

 p4 6 30 m11 m3 4 19

p5 4 10 4 10

The modules of task T2 has been allocated as

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of
Modules

Remaining
Memory

 p1 10 50 m21 m51

m12 m42
6 37

 p2 9 40 m41 m22 7 32

 p3 7 35 m32 6 32
 p4 6 30 m11 m31 4 19

p5 4 10 4 10

The modules of task T3 has been allocated as

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of
Modules

Remaining
Memory

 p1 10 50 m21 m51

m12 m42

 m33 m43

4 32

 p2 9 40 m41 m22

m13
6 30

 p3 7 35 m32 m23 5 28

 p4 6 30 m11 m31 4 19
p5 4 10 4 10

The modules of task T4 has been allocated as

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of
Modules

Remaining
Memory

 p1 10 50 m21 m51

m12 m42
 0 19

 p2 9 40 m41 m22 5 24

1938 Allocation of Multiple Tasks in DCS

 p3 7 35 m32 4 26

 p4 6 30 m11 m31 3 18

p5 4 10 4 10

The modules of task T5 has been allocated as

Table 8.3.Final status of the GT after allocation of all the tasks for case 2

 The table shown above (Table 8.3) describes the status of allocation of every

module of each task of DCS. It also shows that a balanced load is obtained.

8.3.6 Conclusive Observations

The TA algorithms that consider the only modules of a single task do not con-

sider the limitation of the memory or the number of modules that can be assigned

to a particular processor. This is so because these algorithms are not meant for as-

Processor Max.
no. of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No.of
Modules

Remaining
Memory

p1 10 50 m21 m51

m12 m42

m33 m43

m14 m34

m64 m74

 0 19

p2 9 40 m41 m22

m13 m24

 m25 m85

 3 21

p3 7 35 m32 m23

m44 m45

 m65

 2 21

p4 6 30 m11 m31

m54 m15
 2 14

p5 4 10 m35 m55
m75

 1 2

194 Scheduling in Distributed Computing Systems

signment of modules belonging to multiple disjoint tasks. Such a single task as-

signment problem is easier to solve because of this reason.

Our algorithms consider the case of multiple tasks with the possibility of one or

more tasks being submitted simultaneously. Apart from this, the memory capacity

and the no. of modules that can be assigned to a particular processor as constraints

are also considered on possible allocations.

Most of the algorithms, except few reported in [18, 27] have dealt with only a

single task assignment over DCS. Therefore, no known algorithms to compare

with the model discussed in this section.

We can execute the Single Task Allocation (STA)algorithm [3] multiple times

ones for each task using the global table data structure to record the status of allo-

cation and the system as done in our multiple task allocation algorithm. Now we

may compare the execution time requirement of this method and our multiple task

allocation algorithms.

The STA based on A* [3] referred to as EA* in the subsequent discussion has

been executed multiple times and the run times have been obtained. The graphs in

figures 8.15, 8.16, 8.17 shows the comparative results using our algorithm pro-

posed in sec. 8.3 and earlier algorithm (EA*) proposed in [3].

So in the experiment, we have executed the tasks one by one for the cases 1, 2

and 3 without considering the processor connectivity (how the processor are con-

nected i.e. with direct connection / indirect connection etc.) for the EA* as de-

scribed in the algorithm of [3]. In the work [26], another modified version of EA*

1958 Allocation of Multiple Tasks in DCS

is proposed but it was also developed for single task allocation and their modules

by using the same idea of [3]. So, here we did not use the idea of [26] for our

comparison purpose.

Running t ime required by OA* and EA* for Case 1

0
0.2
0.4

0.6
0.8

1
1.2

1.4
1.6
1.8

OA* EA*

T
im

e
in

 S
ec

o
n

d
s

Fig. 8.15.Running time required by Our Algorithm using A* (OA*) and EA* for case 1

Running t ime required by our OA* and EA* for Case 2

0

0.5

1

1.5

2

2.5

OA* EA*

T
im

e
in

 S
ec

o
n

d
s

Fig. 8.16.Running time required by OA* and EA* for case 2

196 Scheduling in Distributed Computing Systems

If we look at the results shown in the tables 8.4, 8.5, 8.6 for allocation of tasks

using EA* for the cases 1, 2 and 3 respectively, it is observed that balanced load

allocation can not be achieved. In all the cases presented below, some processing

nodes are overloaded as per the Vth column of the GT considering their existing

architectural capabilities. Thus it is justified that the EA*, in the form reported in

[3, 26], can not be used for the allocation of the multiple tasks.

Running time required by OA* and EA* for Case 3

0

0.5

1

1.5

2

2.5

OA* EA*

T
im

e
in

 S
ec

o
n

d
s

Fig. 8.17.Running time required by OA* and EA* for case 3

1978 Allocation of Multiple Tasks in DCS

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of

Modules

Remaining
Memory

p1 4 10 m21 m41

m22 m32
m23 m33

-2 1

p2 3 8 m12 m13 1 2

p3 4 9 4 2

p4 5 12 m11 m31 3 5

Processor Max. no.
of
Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of

Modules

Remaining
Memory

p1 10 50 m21 m51

m12 m42

m23 m43

m14 m34

m25 m85

m74

-1 19

p2 9 40 m41 m22

m13 m24

m55

4 21

p3 7 35 m32 m33

m44 m45

m65

2 21

p4 6 30 m11 m31

m54
2 14

p5 4 10 m15 m64
m75

1 2

Table 8.5.The final status of the GT by using EA* for case 2

Table 8.4.The final status of the GT by using EA* for case 1

198 Scheduling in Distributed Computing Systems

8.3.7 Proof of the Algorithm

An algorithm consists of steps that are carried out one or more number of times

depending on the loops that may enclose these steps. The following theorem de-

scribes the method [28].

Theorem : If A(n) = amn
m
 + …+ a1n + a0 is a polynomial of degree m then

A(n) = O(n
m
)

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of

Modules

Remaining
Memory

p1 10 70 m11 m21

m41 m52
m13 m33
m63 m14
m34 m44

m15 m55
m16 m46
m66 m17
m47 m18
m48 m58

-10 35

p2 8 50 m31 m23
m24 m35
m26 m27

m38

1 23

p3 6 40 m53 m36
m37 m38

2 20

p4 7 35 m43 m25
m45 m56

3 16

p5 6 40 m32 2 22

p6 6 33 m12 m22
m42

3 8

Table 8.6.The final status of the GT by using EA* for case3

1998 Allocation of Multiple Tasks in DCS

Where, if some ai =0, then the corresponding term ni does not appear in the step

counts for any of the steps.

What this theorem says is the complexity of the algorithm is defined by the

most expensive part of the algorithm. In our LBTA for multiple tasks, the alloca-

tion part is the most expensive one as it contains the maximum number of nested

for loops. The skeleton structure of the allocation part of the algorithm can be de-

picted as follows:

void allocation()

{

1 for i= 1 to k tasks

 {

 2 for j =1 to mi modules of i-th task

 {

 3 for k = 1 to p processors

 {

 // Calculate hp by using find_heaviest_load()

 {

4 for x= 1 to p processors

 {

 // Calculate load on processors using the load()

 5 for y = 1 to k tasks

{

200 Scheduling in Distributed Computing Systems

 6 for x= 1 to mi modules of i-th task

{

 }

 }

 7 for e = 1 to k tasks

{

 8 for f = 1 to mi modules of i-th task

 {

 9 for g = 1 to mj module of i-th task

{

 }

 }

}

}

 }

 }

 }

 }

11 for p1= 1 to p processors

{

2018 Allocation of Multiple Tasks in DCS

Call to load as in loop numbered 5

}

}

The skeleton shown above has three nested for loops numbered 1, 2 and 3 and

the loop no. 3 has calls to the find_heaviest_proc() and the load(). The load()

contains two nested for loops numbered 5, 6 followed by another set of nested

loops numbered 7, 8 and 9 .

For loop 5 and 6, there are to execute all the modules of the multiple tasks and

hence the combined execution of the loops iterates m times. The execution of

nested loops 7 and 8 similarly give m iterations and for every iteration out of m,

the loop numbered 9 takes m iterations. And hence, the number of iterations for

the function load is equal to m2.

The call to find_heaviest_proc() contains the for loop 4 in which call to the

function load() appears. The loop no. 4 will have p iterations and hence the com-

plexity of the find_heaviest_proc() becomes pm
2.

The similar arguments will give the complexity of the block of consisting of

loops numbered 2 and 3 as O(m.p.pm
2
) or O(p

2
m

3
).

The complexity of loop numbered 11 is pm
2.

202 Scheduling in Distributed Computing Systems

The loop numbered 1 will have execution complexity as polynomial

((pm
2
+p

2
m

3) + pm
2) which is O(p

2
m

3
) as per the theorem stated above.

So, the complexity of allocation () is O(p
2
m

3
).

8.4 The LBTA Strategy for Multiple Tasks Using GA

For the LBTA problem with multiple tasks allocation, we define the following

assumptions:

1) The proposed algorithm makes use of a data structure for “chromosome” to de-

scribe allocations. It is an array of positive integers showing the index of the

processing node to which a particular module is assigned. It has as many ele-

ments as the total number of modules of all tasks.

2) Initially all the elements are zero indicating that none of the modules are allo-

cated to any of the processing node.

3) A data structure STATUS associated with every processing node, which has

two fields showing; the maximum no. of modules that can be allocated to the

processing node and the maximum memory capacity of the processor.

Whenever a module is chosen for allocation onto a processing node, the

STATUS is checked and it is ascertained whether the processing node can ac-

commodate the module at hand. If not another processing node is chosen, if avail-

able.

2038 Allocation of Multiple Tasks in DCS

8.4.1 The Fitness Function

The fitness function, in our problem, is the inverse of the load (the sum of loads

on all the processors corresponding to a chromosome) described in the equation

8.8.

8.4.2 The Proposed Algorithm

1) Randomly generate five chromosomes, verify STATUS and take one chromo-

some with maximum fitness value.

/* This fitness value is our threshold limit. Any chromosome below the

threshold will be rejected and not included in the population. */

2) Generate an initial population of 50 chromosomes above the threshold limit.

3) SELECT: probability of selection of parents is linearly dependent on the fit-

ness value [37]. /* i.e. ax+b, where x is the fitness value, a and b are arbi-

trary.*/

4) Perform crossover with probability Pc at a randomly chosen point.

5) If

Total no. of Chromosome(generated) < 100

goto

 SELECT

6) Pick up ten chromosomes randomly, using the probability of selection as in

SELECT.

Take out the one(chromosome) with maximum fitness.

204 Scheduling in Distributed Computing Systems

/* This represents the allocation. */

Here, the complexity of the algorithm is O(pm
2
) where p is the no. of process-

ing nodes and m is the total no. of modules of all the tasks . The complexity is de-

rived in the same manner as described in sec 8.3.7 and obtained from the most ex-

pensive gen50()[appendix B] and threshold() code [appendix-B]. This simple GA

based model uses crossover without mutation and the population size of 50 to pro-

vide good results for the allocation.

8.4.3 Description of SELECT

To effectuate the probability of selection, we would produce several copies of

the same chromosome. The idea is to take out chromosomes with their best fitness

values randomly from all the chromosomes (included copies).

Let there be Pa copies of chromosome a, where a=1…n and Pb copies of chro-

mosome b, where, b=1…m.

Generate a random number (chromosome) r and find out, to which chromo-

some (a or b) this chromosome belongs. This can be done by the following ex-

pression i.e.

then the r belongs to chromosome b i.e. chromosome r is a copy of chromo-

some b.

=T

.,P,
b

i

i chromosomebth thebewouldrIf
1

∑<
=

b

m

b

n

a

a PP,if ∑∑
==

<
11

2058 Allocation of Multiple Tasks in DCS

However, this method would require memory for each copy of every chromo-

some. To save memory we could instead attach a field with each new chromosome

generated. In this field, we store an ‘integer number’ directly proportional to the

fitness value of chromosome. Thus the chromosome represents ‘Xi’ copies of the

chromosome, where ‘Xi’ is the number in its field and i=1,2,…n.

When a chromosome is to be randomly selected, a random number is generated

in the range of 1 to ∑(X1+X2+…+Xn), where Xi is the number in the field associ-

ated with the i
th chromosome. Let us say, the number generated is Y and

X1+X2+…+Xk < Y < X1+X2+…+Xk+1.

Thus the chromosome selected is Xk+1
th chromosome. This can be explained

elaborately by the following example.

For example, let the following chromosome have the corresponding fitness val-

ues as follows:

Chromosome 1 : fitness value = 10

Chromosome 2 : “ “ = 12

Chromosome 3 : “ “ = 15

Chromosome 4 : “ “ = 8

Let the probability of selection be (a * (fitness value) + b), where a & b are ar-

bitrary. Here, a=10, b=0 and X1=10.

Let us generate 100 copies of chromosome 1(X1=100), 120 copies of chromo-

some 2 (i.e. X2=120)…. and so on.

Thus total number of chromosome (X1+X2+X3+X4) = 100+120+150+80 = 450.

206 Scheduling in Distributed Computing Systems

We generate a random number = 230

Now, 100 + 120 < 230 < 100 + 120 + 150

 X1 X2 X1 X2 X3

Hence, the 230th chromosome will be a copy of chromosome 3 i.e. X3. It is easy

to see that the probability of selection in this case is proportional to the fitness

value.

8.4.4 An Illustrative Example

Given a set of three tasks with their corresponding modules T1(m11, m21, m31,

m41), T2(m21, m22, m32), T3 (m13, m22, m33) and a set of 3 processors { p1, p2, p3 } .

So, the total number of modules of all tasks is 10.

The initial status of each processing node is as follows:

 STATUS [1] = [4, 40]

 STATUS [2] = [4, 50]

 STATUS [3] = [3, 30]

The first field of STATUS represents the maximum number of modules that

can be allocated onto the processing node and the second field represents the

memory capacity of the processing node.

The Threshold Value and the Initial Population:

2078 Allocation of Multiple Tasks in DCS

Step 1: randomly generate 5 chromosomes and check whether they satisfy

status of each processing node. Let us assume that memory required by each mod-

ule, satisfies the existing memory of each processing node.

Let the chromosome generated be

 1) 1132311231: status of processing node 1 is not satisfied, because

processing node 1 can only take 4 modules. So, it is discarded. (Here, each num-

ber in the chromosome represents the number of processing node).

 2) 2113221231: status of every processing node is satisfied, so it is

accepted.

 3) 1323213312: status of processing node 3 is not satisfied, so it is not

accepted.

 4) 3123132123: status of processing node 4 is not satisfied, so it is not ac-

cepted.

 5) 1123311232: status of every processing node is satisfied, so it is accepted.

Then fitness of all the chromosomes is found out by the equation described in

8.3.1 and the maximum of these fitness values is taken as the threshold value. Any

chromosome above the threshold will be accepted and included in the population.

Crossover:

Let us assume that 50 chromosomes have been generated as the initial popula-

tion. Each chromosome is associated with a field that gives the frequency of selec-

tion as discussed in section 8.4.3.

Label: Let, two chromosomes are selected for reproduction. They be

 2113221231 and 1323321121

208 Scheduling in Distributed Computing Systems

Then crossover takes place as follows:

First a random point of crossover is found; say it comes out to be 4. Thus

crossover will take place after 4th bit i.e. the offspring are

 2113---321121 and 1323---221231

It is now verified whether the offspring are

 a) satisfying the status and

 b) identical to an existing chromosome of the population.

If none of the above is true, crossover is completed and the chromosomes are

included in the population and their fitness values being calculated.

In the above example, the first offspring is invalid (it does not satisfy the status

of processing node 1; hence crossover begins all over from label. Let the new

chromosomes selected be

 2113122133 and 1132113222

Let the point of crossover be 5.

Thus the offspring are 21131---13222 and 11321---22133

Both of these satisfy the status of all three processors, hence are acceptable, if

they do not already have an identical copy in the population.

If total no. of crossovers performed is less than 100, again a new crossover oc-

curs (step label). Then pick up ten chromosomes randomly from the new popula-

2098 Allocation of Multiple Tasks in DCS

tion, find out the fitness value of each and take out one (chromosome) with maxi-

mum fitness value which represents the allocation

8.4.5 Implementation

The software for the above algorithm is developed in C. Applying the software

in a Pentium 100 MHz machine, the following studies have been carried out by

using the given task graphs, processor graphs, IMC matrices, execution matrices

etc. for case 1, case 2, and case 3 of sec 8.3.5 to judge the efficiency of the algo-

rithm.

Case 1

Given a set of three tasks with their corresponding modules T1(m11, m21, m31,

m41), T2(m21, m22, m32), T3(m13, m22, m33) and a set of four processors {p1, p2, p3, p4}

fig. 8.13. Further, the inputs are provided from case 1 of sec 8.3.5 and the follow-

ing results are obtained.

Here, in the results, “Selected Chromosome is 3234241134” represents the total

number of modules of all the tasks that have been allocated onto the correspond-

ing processing node. “Task 1 has been allocated as : 3234” indicates that the four

modules(m11, m12, m13, m14) of the task T1 have been allocated onto the processing

node p3, p2, p3, p4 respectively. “The cost at the processing node no. 1 is 20 ”

means the execution and communication costs of the modules of tasks on the proc-

essing node 1 by the allocation is 55 in time units. “ The status of the processing

node 1 is 2 5” indicates that after allocation has been completed the remaining

number of modules that can be allocated to the processing node p1 is 2 and re-

210 Scheduling in Distributed Computing Systems

maining number of memory that is available in the processing node p1 is 5 in

units.

Results for Case 1

Selected Chromosome is 3234241134

Task 1 has been allocated as: 3234

Task 2 has been allocated as: 241

Task 3 has been allocated as: 134

The cost at the processing node no. 1 is 20

The status of the processing node 1 is 2 5

The cost at the processing node no. 2 is 25

The status of the processing node 2 is 1 2

The cost at the processing node no. 3 is 50

The status of the processing node 3 is 1 0

The cost at the processing node no. 4 is 25

The status of the processing node 4 is 2 3

Total cost at all the processing nodes is 120

Time required by the algorithm was: 18 seconds

2118 Allocation of Multiple Tasks in DCS

The modules of task T1 have been allocated as

 I II III IV V VI

Processor Max. no. of

Modules*

Memory

Capacity

Modules

Assigned

Remaining

No. of

 Modules**

Remaining

Memory

 p1 4 10 4 10

 p2 3 8 m21 2 5

 p3 4 9 m11 m31 2 2

 p4 5 12 m41 4 8

*The column III represents the maximum number of modules that can be allocated

to a processing node.

**The column V represents the remaining number of modules that can be allo-
cated to a processing node after some modules have been assigned to the proc-
essing node.

The modules of task T2 have been allocated as

Processor Max. no. of

Modules

Memory

Capacity

Modules

Assigned

Remaining

No. of

 Modules

Remaining

Memory

p1 4 10 m32 3 9

p2 3 8 m21 m12 1 2
p3 4 9 m11 m31 2 2

p4 5 12 m41 m22 3 6

The modules of task T3 have been allocated as

 The table 8.7 describes the status of allocation of every module of each task of

DCS. It also shows that a balanced load is obtained.

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of

Modules

Remaining
Memory

p1 4 10 m32 m13 2 5

p2 3 8 m21 m12 1 2

p3 4 9 m11 m31
m23

1 0

p4 5 12 m41 m22
m33

2 3

Table 8.7.Final status of the GT after the allocation of all tasks for case 1

212 Scheduling in Distributed Computing Systems

Case 2

Given, a set of five tasks with their corresponding modules T1(m11, m21, m31,

m41, m51), T2(m12, m22, m32, m42), T3(m13, m23, m33, m43), T4(m14, m24, m34, m44, m54,

m64, m47), T5(m15, m25, m35, m45, m55, m65, m75, m85) and a set of five processors (p1,

p2, p3, p4, p5) (fig.8.14). Further, the following inputs are provided from case 2 of

sec 8.3.5 and the following results are obtained.

Results for Case 2

Selected Chromosome is 1244223231523134113142134125

The chromosome represents the total number of modules of all the tasks that

have been allocated on to the corresponding processing node i.e.

Task 1 has been allocated as: 12442

Task 2 has been allocated as: 2323

Task 3 has been allocated as: 1523

Task 4 has been allocated as: 1341131

Task 5 has been allocated as: 42134125

The cost at the processing node no. 1 is 61

The status of the processing node 1 is 2 24

The cost at the processing node no. 2 is 51

2138 Allocation of Multiple Tasks in DCS

The status of the processing node 2 is 2 23

The cost at the processing node no. 3 is 62

The status of the processing node 3 is 1 11

The cost at the processing node no. 4 is 33

The status of the processing node 4 is 1 14

The cost at the processing node no. 5 is 6

The status of the processing node 5 is 2 5

Total cost at all the processing nodes is 213

Time required by the algorithm was: 167 seconds

The modules of task T1 have been allocated as

Processor Max. no. of

Modules*

Memory

Capacity

Modules

Assigned

Remaining

No. of

 Modules**

Remaining

Memory

p1 10 50 m11 9 44

p2 9 40 m21 m51 7 33
p3 7 35 7 35

p4 6 30 m31 m41 4 23

p5 4 10 4 10

The modules of task T2 have been allocated as

Processor Max. no. of

Modules

Memory

Capacity

Modules

Assigned

Remaining

No. of

 Modules

Remaining

Memory

p1 10 50 m11 9 44

p2 9 40 m21 m51

m12 m32
 5 29

p3 7 35 m22 m42 5 24

p4 6 30 m31 m41 4 23

p5 4 10 4 10

214 Scheduling in Distributed Computing Systems

The modules of task T3 have been allocated as

Processor Max. no. of

Modules

Memory

Capacity

Modules

Assigned

Remaining

No. of

 Modules

Remaining

Memory

p1 10 50 m11 m13 8 42

p2 9 40 m21 m51

m12 m32

m33

 4 28

p3 7 35 m22 m42
m43

 4 20

p4 6 30 m31 m41 4 23

p5 4 10 m23 3 6

The modules of task T4 have been allocated as

Processor Max. no. of

Modules

Memory

Capacity

Modules

Assigned

Remaining

No. of

 Modules

Remaining

Memory

p1 10 50 m11 m13

m14 m44
m54 m74

 4 31

p2 9 40 m21 m51

m12 m32

m33

 4 28

p3 7 35 m22 m42
m43 m64

m24

 2 12

p4 6 30 m31 m41

m34
 3 20

p5 4 10 m23 3 6

The modules of task T5 have been allocated as

2158 Allocation of Multiple Tasks in DCS

The table describes the status of allocation of every module of each task of

DCS. It also shows that a balanced load is obtained.

This chapter proposes four realistic allocation models. In one (sec. 8.1) a uni-

form cost search and A* techniques are applied for multiple tasks allocation in a

DCS. All the previous models consider only a single task, though the DCS is

meant for execution of multiple tasks dynamically arriving and leaving the system.

In second (sec. 8.2), a cluster-based approach is proposed. This has the greatest

advantage of avoiding the priori requirement of execution time of modules on

Processor Max. no.
of

Modules

Memory
Capacity

Modules
Assigned

Remaining
No. of

Modules

Remaining
Memory

p1 10 50 m11 m13

m14 m44
m54 m74
m35 m65

2 24

p2 9 40 m21 m51

m12 m32

m33 m25
m75

2 23

p3 7 35 m22 m42
m43 m64

m24 m45

1 11

p4 6 30 m31 m41

m34 m15

m55

1 14

p5 4 10 m23 m85 2 5

Table 8.8.Final status of GT after the allocation of all the tasks for case 2

216 Scheduling in Distributed Computing Systems

PEs, as required in other models. This algorithm can be tested on a real DCS plat-

form and will be of great help in implementation of the scheduler of the DCS.

Section 8.3 and 8.4 proposes the LBTA strategy for multiple tasks based on A*

and GA.

 BIBLIOGRAPHY

[1]Pereng-yi RICHARD MA, Edward Y.S.LEE, Masahiro TSUCHIYA, "A Task Allocation
Model for Distributed Computing Systems", IEEE Trans. on Computers, Vol.C-31, No. 1,
January 1982, pp. 41-47.

[2]D.P.Vidyarthi, A.K.Tripathi, “Precedence Constrained Task Allocation in Distributed Com-
puting System”, Int. J. of High Speed Computing, Vol. 8, No. 1, 1996, pp. 47-55.

[3]Chien-Chung Shen, Wen-Hsiang Tsai, "A Graph Matching Approach to Optimal Task As-
signment in Distributed Computing Systems using a Minimax Criterion", IEEE Trans. on

Computers, Vol. C-34, No.3, March 1985, pp. 197-203.
[4]Sol. M. Shatz, Jia-Ping Wang, "Models & Algorithm for Reliability-Oriented Task alloca-

tion in Redundant Distributed Computer Systems", IEEE Trans. on Parallel and Distributed

Systems, Vol.38, No. 1, April 1989, pp. 16-27.
[5]Wesley W Chu, Lance M.T.Lan, "Task Allocation and Precedence Relations for Distributed

Real Time Systems", IEEE Trans. on Computers, Vol. C-36, No.6, June 1987, pp. 667-679.
[6]C. Siva Ram Murthy, K.N.Balsubramaniya Murthy, A.Sreenivas, "Scheduling of Precedence-

Constrained Parallel Program Tasks on Multiprocessors", Microprocessing and Micropro-

gramming, Vol. 36, 1992/93, pp. 93-104.
[7]Edwin S.H.Hou, Nirwan Ansari, Hong Ren, "A Genetic Algorithm for Multiprocessor Sched-

uling", IEEE Trans. on Parallel and Distributed Systems, Vol. 5, No. 2, Feb 1994, pp. 113-
120.

[8]D.P.Vidyarthi, A.K.Tripathi, “Exploiting Parallelism in Genetic Task Allocation Algorithm”,
Int. J. of Information and Computing Science, Vol. 4 No. 1, June 2002, pp. 22-26

[9]S.Kartik, C.S.Ram Murthy, “Task Allocation Algorithms for Maximizing Reliability of Dis-
tributed Computing Systems”, IEEE Trans. on Computers, Vol.46, No.6, June1997, pp. 719-
724.

[10]Sol.M.Shatz, Wang Goto, “Task Allocation for Maximizing Reliability of Distributed Com-
puting Systems”, IEEE Trans. on Computers, Vol.41, No.9, September 1992, pp. 1156-1168.

[11]S. Karthik, C. Siva Ram Murthy, “ Improved Task Allocation Algorithms to Maximize Reli-
ability of Redundant Distributed Systems”, IEEE Trans. on Reliability, Vol. 44, No. 4, Dec.
1995, pp. 575-586.

[12]A.K.Tripathi, D.P.Vidyarthi, A.N.Mantri, “A Genetic Task Allocation Algorithm for Dis-
tributed Computing System Incorporating Problem Specific Knowledge”, International J. of

High Speed Computing, Vol.8, No.4, 1996, pp. 363-370.
[13]D.P.Vidyarthi, A.K.Tripathi, “Maximizing Reliability of Distributed Computing Systems

with Task Allocation using Simple Genetic Algorithm”, J. of Systems Architecture, Vol. 47,
2001, pp. 549-554.

2178 Allocation of Multiple Tasks in DCS

[13]C.Siva Ram Murthy, V. Rajaraman, "Task Assignment in Multiprocessor Systems", Micro-

processing and Microprogramming, Vol.26, 1989, pp. 63-71.
[15]D.P.Vidyarthi, A.K.Tripathi, B.K.Sarker, “Allocation Aspects in Distributed Computing

System”, IETE Technical Review, Vol. 18, No. 6, Nov.-Dec. 2001, pp.279-285.
[16]N.J.Nilson, Problem Solving Methods in Artificial Intelligence, McGraw Hill International

Edition, New York, 1971.
[17]M.Kafil, I.Ahmed, "Optimal Task Assignment in Heterogeneous Distributed Computing

System", IEEE Concurrency, July - September 1998, pp. 42-51.
[18]D.P.Vidyarthi, A.K.Tripathi, B.K.Sarker, “Multiple Task Management in Distributed Com-

puting Systems”, The Journal of the CSI, Vol. 31, No. 1 Sep. 2000, pp. 19-25.
[19]C.J.Hou, K.G.Shin, “Replication and Allocation of Task Modules in Distributed Real Time

Systems”, Proc. 24
th
 IEEE Symp. Fault Tolerant Computing Systems, June 1994, pp. 26-35.

[20]S.B.Shukla, D.P.Agrawal, “A Framework for Mapping Periodic Real Time Applications on
Multicomputers”, IEEE Transaction on Parallel and Distributed Systems, Vol.5, No.7, July
1994, pp. 778-784.

[21]Y.Oh, S.H.Son, “Scheduling Hard Real-Time Tasks with Tolerance to Multiple Processor
Failures”, Multiprocessing and Multiprogramming, Vol. 40, 1995, pp.193-206.

[22]T.S.Tia, J.W.S. Liu, “Assigning Real Time Tasks and Resources to Distributed Systems”, In-

ternational Journal of Mini and Microcomputer, Vol. 17, No. 1, 1995, pp.18-25.
[23]S.S.Wu, D.Sweeping, “Heuristic Algorithms for Task Assignment and Scheduling in a Proc-

essor Network”, Parallel Computing, Vol.20, 1994, pp. 1-14.
[24]T.F.Abdelzaher, K.G.Shin, “Period–Based Load Partitioning and Assignment for Large

Real-Time Applications”, IEEE Transaction on Computers, Vol. 49, No.1, January 2000, pp.
81-87.

[25]D.P.Vidyarthi, A.K.Tripathi, “ A Fuzzy IMC Cost Reduction Model for Task Allocation in
Distributed Computing Systems”, Proceedings of the Fifth International Symposium on

Methods and Models in Automation and Robotics, Vol. 2, Szczecin, Poland, August 1998, pp.
719-721.

[26]A.B.Tucker, Jr., The Computer Science and Engineering Handbook, CRC Press, 1997.
[27]A.K.Tripathi, B.K.Sarker, N.Kumar and D.P.Vidyarthi, “Multiple Task Allocation with Load

Considerations,” International Journal of Information and Computing Science, vol.3, no.1,
June 2000, pp. 36-44.

[28]E. Horowitz, S. Sahni and S. Rajasekaran, Computer Algorithms, W.H.Freeman and Com-
pany, 1997.

218 Scheduling in Distributed Computing Systems

CHAPTER 9

Other Approaches for Task Allocation

This book is aimed to consider applicability of load balancing and task alloca-

tion strategies aimed at proper distribution of computational loads in a DCS. A

good deal of research work on both a) load balancing [1-6] and b) task allocation

[7-12] in DCS is available in the literature. The purpose of task allocation in a

DCS is to reduce turnaround time of a task. This is done by maximizing the utili-

zation of resources while minimizing the communication among processing nodes.

While minimizing IPC tends to assign the whole task to a single processing node,

load balancing tries to distribute the program modules of a task almost evenly

among the processing nodes. So, the idea was to consider whether a combined ap-

proach (load balancing task allocation) can promise a better performance charac-

teristic of a DCS such as throughput, compared to separate applications of “Load

Balancing” and “Task Allocation” strategies. In our proposed LBTA strategy we

tried to make compromise between these two criterions.

The work was started with consideration of existing load balancing techniques

(strategies) and identification of other possible and promising strategies for the

purpose. It has been identified that the task migration, because of its significant

overhead, can be one of the major factors in decreasing the throughput of a DCS.

The most of the existing algorithms described in chapter 5 consider allocation of

the modules of only a single task to various processing nodes whereas the number

of tasks, for execution, is usually substantive. So, the idea of multiple tasks have

been proposed in the work and incorporated in the proposed LBTA strategy,

which is described in chapter 8.

Nodes of the heterogeneous DCS may be lightly loaded or heavily loaded be-

cause of incoming various tasks from time to time to it and due to various archi-

tectural capabilities of the nodes. So, it has been tried to combine load balancing

while tasks are allocated to the DCS. For this purpose, a concept of Global Table

(GT) has been introduced in chapter III that keeps track of each and every module

of different tasks. The table shows the possibility of allocation or assignment of

incoming modules of different tasks according to the memory constraints and

modules (Max. no. of modules a processing node can accommodate) constraints.

From this table, the present status of the DCS is easily informed, such as presently

allocated modules of different tasks, the load of every processing nodes etc. so

that the DCS further does not attempt to allocate any module of tasks to the proc-

essing nodes which are already heavily loaded or to the processing nodes those are

not able to accept more modules for executing according to its architectural capa-

bilities.

Further The LBTA strategy has been implemented using well-known A* algo-

rithm and Genetic Algorithm (GA). The load of multiple tasks has been used as a

cost function for the purpose. An algorithm has been developed using A* tech-

nique in chapter 8. A heuristic search space technique is employed to find an op-

timal solution path in the state space after expanding fewer nodes during the

search. Such a heuristic search algorithm can speed up the search of an optimal so-

lution, which is usually, time consuming for graphs with large numbers of vertices

and edges. It minimizes IPC and optimizes load balancing by minimizing the task

turn around time. Comparative results with the earlier work are shown for the pur-

pose which justifies that our algorithm performs better.

220 Scheduling in Distributed Computing Systems

Another approach of LBTA strategy for multiple tasks using Genetic Algo-

rithm has been proposed in the thesis in chapter 8. An algorithm has been devel-

oped using the GA technique. Genetic Algorithm can run in parallel on several

processing nodes at a time. For this nature, GA technique has been considered in

our LBTA strategy for multiple tasks for a DCS. GA has been successfully used to

solve various task allocation problems. These earlier works have mainly concen-

trated on single task allocation using GA. In this case inverse of load on a proces-

sor (equation 8.8) is the fitness function for the GA. Illustrated examples also

show a good balanced load situation in the results (sec. 8.4). Comparative results

with A* algorithm (sec 8.2) using A* have been presented in the present chapter.

The results show that the GA based algorithm performs better than A* in terms of

allocation and total cost (execution and communication) of allocation.

9.1 Comparative Analysis of TA Models

 The following figures (9.1, 9.2 and 9.3) shows the time required by the algo-

rithms using A* and GA technique for all the cases (1, 2 and 3) respectively.

0

5

10

15

20

Time
(Seconds)

Running Time required for A* and GA for Case 1

A*
GA

Fig. 9.1.Running time required by the algorithms using A* and GA for case 1

2219 Other Approaches for Task Allocation

From the figures 9.1, 9.2, 9.3, it is found that:

 The running time taken by A* technique (our algorithm) for implementing the

algorithm with the given example is much smaller than the time taken by the algo-

rithm using GA. This is because GA is using several hundred invocations of the

0

50

100

150

200

Time
(Seconds)

Running Time required by A* and GA for Case 2

A*
GA

 Fig. 9.2.Running time required by the algorithms using A* and GA for case 2

0

100

200

300

400

 Time
(Seconds)

Running Time required by A* and GA for Case 3

A*
GA

Fig. 9.3.Running time required by the algorithms using A* and GA for case 3

222 Scheduling in Distributed Computing Systems

‘random’ function, which has a constant complexity. This increases the run time

of GA.

The following figure 9.4 shows the comparisons among the results of the ear-

lier algorithm (EA*) used in [8] and our algorithms using A*(OA*) presented in

sec. 8.3 and the algorithm using GA technique (sec. 8.4).

Total cost(communication and execution) required for case 1

0

100

200

300

400

500

600

OA* EA* GA

T
im

e
in

 U
n

it
s

Fig. 9.4.Total cost required by OA*, EA* and GA for case 1

Fig. 9.5.Total cost required by OA*, EA* and GA for case 2

Total cost(communication and execution cost) required for case2

0

200
400

600
800

1000
1200

1400
1600

1800

OA* EA* GA

T
im

e
in

 u
n

it
s

2239 Other Approaches for Task Allocation

 From the figures 9.4, 9.5 and 9.6, it is observed that

a) The cost (communication and execution) by the allocation for tasks using GA

technique is less than the cost using OA* technique (our algorithm) and

EA*(earlier algorithm proposed in [8]) .

b) GA gives a better allocation than A*. According to the Vth column of the final

status of GT using A* technique (chap. 8, table 8.1, 8.2 and 8.3) and the final

status of the GT using GA (chap. 8, table 8.7, 8.8 and 8.9) for all the cases (1,

2 and 3), it is observed that GA shows balanced load allocation than A*.

9.2 A Hybrid Model

Fig. 9.6.Total cost required by OA*, EA* and GA for case 3

Total cost(communication and execution) required for case 3

0

200

400

600

800

1000

1200

1400

1600

OA* EA* GA

T
im

e
in

 u
n

it
s

224 Scheduling in Distributed Computing Systems

 The A* algorithm, an informed search algorithm guarantees an optimal solu-

tion but does not work for large problems because of its high time and space com-

plexities [13]. One can obtain awareness of high time and space requirements of

the A* algorithm by making use of some initial solution to prune a good number

of nodes from a state space tree [13]. By making use of this idea and keeping in

mind to reduce the search space we have proposed another algorithm in this chap-

ter. This idea can be implemented to improve the performance of our proposed al-

gorithm using A*(sec. 8.3) as it shows inferior results compared with the results of

GA. The algorithm proposed below, first generates a random solution, and prunes

all the nodes with higher than this solution during the optimal solution search.

This is because the optimal solution cost will never be higher than this random-

solution cost. By pruning unnecessary nodes not only saves memory, but also

saves the time required by reducing the search space [13].

9.2.1 The Proposed Algorithm

1) Calculate the status of the global Table (GT) for each processing node in

terms of available memory (M) and the modules that are assigned to it.

2) Generate a random solution. Let Rsol be the cost of the solution.

3) Maintain a list S of unallocated tasks with all modules (all tasks are in S at

the beginning) and a list OPEN, empty at the beginning.

4) Take one task ta from S and put it in another list V and reset OPEN as empty

state.

2259 Other Approaches for Task Allocation

5) If allocation of the modules in V is possible using the f(n)=g(n)+h(n) of A*

algorithm(sec.4.1.1) then check whether f(n) ≤ Rsol.

6) If f(n) ≤ Rsol

 then goto step 7

 else discard the node from OPEN.

7) Verify the STATUS and allocate the modules; if allocation is not possible, de-

allocate the allocated modules of the task and move onto the next task, modi-

fying the STATUS in between and update the Global Table.

8) If S is not empty yet, go to step 2.

9) Stop (end of allocation).

9.2.2 An Illustrated Example

 As per the algorithm in sec. 9.2.1, the given example in sec. 4.2 has been

worked out in the following. In our example, the cost of random solution is 38.

Therefore, all nodes with a cost greater than 38 are discarded. Fig. 9.7 shows the

search tree.

226 Scheduling in Distributed Computing Systems

 The description of the OPEN is as follows:

OPEN_1: 2XXXX(28), 1XXXX(30), 0XXXX(34).
 1

2XXXX(28) is the minimum cost. So, it is expanded.

OPEN_2: 1XXXX(30), 0XXXX(34), 20XXX(37), 21XXX(35), 22XXX(36).
 2

OPEN_3: 0XXXX(34), 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37),
 3

 12XXX(31)
 X

12XXX(31) is the minimum, but the cost of its expanding nodes are greater

than the random solution (38), so the nodes are not considered. The next expand-

13

(Goal)

XXXXX
(0)

0XXXX
(34)

1XXXX
(30)

2XXXX
(28)

22XXX
(36)

10XXX
(37)

 02XXX
(31)

01XXX
(35)

022XX
(38)

 021XX
(38)

221XX
(38)

 012XX
(36)

1 2 3

4 5 6 8

11

102XX
(36)

 2211X
(33)

 1022X
(30)

 22110
(35)

 12XXX
(31)

 20XXX
(37)

21XXX
(35)

0122X
(30)

 0211X
(38)

 0221X
(22)

 2210X
(23)

7 10 9

14

12

Fig. 9.7. Search tree for the example 9.2.2 using Random Solution (22 nodes generated,
14 nodes expanded)

2279 Other Approaches for Task Allocation

ing node is 0 XXXX (34) according to the minimum cost. Here, “X” indicates that

the node will not be considered further in the OPEN.

OPEN_4: 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37), 01XXX(35),

02XXX(31).

 4

OPEN_5: 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37), 01XXX(35),
 X 5

 021XX(38), 022XX(38).

21XXX(35) is the minimum, but the cost of its expanding nodes are greater

than the random solution (38), so the nodes are not considered. The next expand-

ing node is 01XXXX(35).

OPEN_6: 20XXX(37), 22XXX(36), 10XXX(37), 021XX(38), 022XX(38),
 6
 012XX(36).

OPEN_7: 20XXX(37), 10XXX(37), 021XX(38), 022XX(38), 012XX(36),
 7
 221XX(38).

OPEN_8: 20XXX(37), 10XXX(37), 021XX(38), 022XX(38), 221XX(38),
 X 8

 0122X(30) .
 X

0122X(30) is the minimum, but the cost of expanding nodes are greater than

the random solution (38), so the nodes are not considered. 20XXX(37) is next

minimum cost node, but it is not also considered for the same reason. Then, the

next expanding node is 10XXX(37).

228 Scheduling in Distributed Computing Systems

OPEN_9: 021XX(38), 022XX(38), 221XX(38), 102XX(36).
 9

OPEN_10: 021XX(38), 022XX(38), 221XX(38), 1022X(30) .
 10 X

1022X(30) is the minimum cost, but the costs of expanding nodes are greater

than the random solution (38). Then, the next expanding node is 021XX(38).

OPEN_11: 022XX(38), 221XX(38), 0211X(38).
 11

OPEN_12: 221XX(38), 0211X(38), 0221X(22).
 12 X

0221X(22) is the minimum cost, but the costs of expanding nodes are greater

than the random solution (38). Then, the next expanding node is 221XX(38).

OPEN_13: 0211X(38), 2210X(23), 2211X(33).
 X 13
2210X(33) is the minimum cost, but the costs of expanding nodes are greater

than the random solution (38). Then, the next expanding node is 2211X(33).

OPEN_14: 0211X(38), 22110(35) .
 14

22110(35) is the minimum cost node. But there is node to expand. So, this is

the Goal State.

The algorithm described above, generates a random solution, and prunes all the

nodes with costs higher than this solution during the optimal solution search. This

is because the optimal solution cost will never be higher than this random solution

2299 Other Approaches for Task Allocation

cost [13]. Pruning unnecessary nodes not only save memory but also save the time

required to insert the nodes into OPEN.

The idea of generation of initial population in GA can be used to find a random

solution [sec. 5.3]. In our example, the cost of random solution was 38. Therefore,

all nodes with a cost greater than 38 are discarded. As a result, in fig. 9.7, only 22

nodes are generated and 14 nodes are expanded while the earlier solution reported

in sec. 8.3.4 (in fig. 8.12) produced 63 generated nodes and 21 expanded nodes for

the same optimal solution 22110 which shows a balanced load is obtained among

the processing nodes. It is to mention that this algorithm’s efficiency depends on

the initial solution’s quality [13]. It may incur more cost for generating the good

quality of the initial solution. This cost is to be added with the total cost of the al-

location.

The results demonstrates that the random solution approach can also be a

meaningful approach to improve the performance of the algorithm using A*

(sec. 8.3) with the LBTA strategy for multiple tasks.

As the existing task Allocation algorithms consider only single task, the com-

plexity and performance of these algorithms are not comparable with that of algo-

rithms, proposed in this thesis, based on LBTA strategy for multiple tasks. As the

algorithms proposed in chapters IV, V, VI of this thesis do balance the load also

during the allocation process, the complexity of these algorithms involves cubic

term for the no. of modules (m3) as opposed to square term (m2) in the case of sin-

gle task allocation algorithms reported in the literature[14].

It is assumed that the allocator will come to know when the modules of the

tasks leave the system. The allocator maintains information regarding which mod-

230 Scheduling in Distributed Computing Systems

ules are present in the system including the new arrivals and the departures of

modules in the system and updates the GT accordingly. These algorithms have

been proposed considering LBTA strategy for multiple task allocation in a DCS. It

is observed that the tasks arrive, for the execution, in a dynamic fashion. An in-

coming task will be invoking the algorithms. The status of Global Table is dy-

namic and the algorithm in its execution for a particular task will incorporate the

modification in the table (GT) with reference to that particular task.

9.3 Object Allocation in Distributed Computing Systems

 Object Oriented Programming, in recent, has become exceedingly popular. It

is realized that the problem of real world can exactly map the object and thus ob-

ject-oriented view came into existence. Software engineering stream is now com-

pletely moved towards object and most of the software is now being developed us-

ing the features of object-oriented technology. Compiler writers also rushed and

many object oriented programming languages came into existence (e.g. Object

Pascal, C++, JAVA etc.). Object oriented languages have many features. Method

and data hiding, Inheritance, Polymorphism is to name a few [14].

Distributed Computing Systems (DCS) is characterized by the distribution of

memory and clock to all the processing elements of the system. It has the possibil-

ity of keeping the processing sites at a large geographical distance. The processing

site of the system is also known as the node. One of the very useful features of the

DCS is scalability. This type of system is well suited for the present environment

of computing.

Object based distributed computing is a technique for constructing large het-

erogeneous computing and communication system based on the concept of ob-

2319 Other Approaches for Task Allocation

jects. Object based allocation, in DCS, brings new challenges and opportunities

for the use and development of formal methods.

9.3.1 The Object Model

 Previous allocation strategies, proposes the allocation of computing task to

optimize one or more characteristic parameters [7-9, 12, 15, 16-19]. The allocation

model, presented in this section, is based on the objects. Each object is character-

ized by the typical structure formed by the state and the operations, and also em-

bodies independent execution facilities [20]. This facility is useful for dynamically

adopting the allocation of a parallel application. In order to affect the state or even

determine the state of an object, one must perform an appropriate operation on it.

The identity of the objects is derived from the set of operations for that object. The

combination of the operations with their internally defined data structures and

computations represents an object instantiations [21].

Objects in a DCS

 The objects in a DCS (hardware, programs or data) are generalizations of ab-

stract data types. This refers to the objects’ representation. They are, first, data

structures and, second, operations on the data structures. The data structures repre-

sent executable modules, interprocess communications, and hardware resources

etc., which are viewed as an object, with a fixed set of operations that defines its

context within the system.

 The objects are represented as singular entities. Objects may be active (proc-

ess object) or passive (data object). The structure of objects differs from system to

system, but they are all exhibiting the same basic components; an external part and

232 Scheduling in Distributed Computing Systems

an internal part. The external part provides the operations allowable. The internal

part is comprised of the internal specification (data types etc.)

 In a DCS, objects operating on one host may require to invoke an operation in

an object on another host. The object model requires constructing a communica-

tion object to control and carry out Inter Object Communications (IOC).

9.3.2 The Allocation Problem

 The allocation of a task deals with the assignment of its parallel components

to the resources of the DCS. The allocation is static if it is decided before execu-

tion. It is dynamic if it is decided during execution [22]. Parallel objects of an ap-

plication are created dynamically and thus allocation is to be decided at run time.

The application needs of execution and communication resources are decided

statically at the beginning and dynamic allocation takes place during execution.

There are two main requirements of the allocation problem of DCS, both in

static and dynamic case:

1. the user should be unaware of the allocation for a given architecture, and

2. the allocation must tend to optimize the characteristic parameters.

The parallel object environment assumes parallel objects and exploits this par-

allelism in two forms. Inter object parallelism is based on the execution of inde-

pendent parallel objects. Intra object parallelism permits multiple execution thread

within the same object. Communication, among the objects, is carried through

message passing. Thus inter object parallelism is achieved among the independent

objects by allowing the communication among them as and when required. Intra

object parallelism is achieved by the introduction of the multiple threads within

2339 Other Approaches for Task Allocation

the same object. In this, an object can serve more than one request in parallel by

allowing each thread to serve one.

9.3.3 Capabilities in the Object

 Controlled use of objects is essential to provide logical, efficient and accurate

use of the system. To guarantee this, objects are allowed access only for those ob-

jects that are authorized to access that.

The external part is the part accessible to the outside world; the internal part is

protected one. Users can request services but cannot actively process the object’s

internals. However, only the structure of an object does not guarantee the integrity

of an object. A concept “protection domain” is introduced to make this control. An

object operates within a protection domain, which specifies what resources and

rights to it an object may access. Each domain defines a set of objects and the op-

erations on it that can be invoked. These rights associated with an object provide

its protection from unwanted objects. All objects, within that domain, have the

rights to objects controlled by it. The matrix showing the access right is known as

Access matrix.

The structure of the access matrix is shown below.

File1

File2

Port1

 D1 READ EXECUTE READ/WRITE

 D2 - READ/WRITE -
 D3 READ/EXECUTE - WRITE

Typically in these systems access list is used, as access matrix is sparse.

 Access list

Object
 Domain

234 Scheduling in Distributed Computing Systems

 File /list
 Domain 1; Read
 Domain N; Write
End list

Quite often an alternative is used in object based system design. Instead of as-

sociating columns of the access matrix with the objects as an access list, we asso-

ciate each row with its domain. This provides to the domain the list of objects it

can access and the operations it can perform on them. This new association is

called a capability list. An object is represented by a physical address called the

capability. The user must acquire capability in order to use it.

9.3.4. Object Allocator

Object allocator deals with the creation, execution, and destruction of objects in

the object based DCS. The nodes of the DCS must posses a capability manager for

object creation, operation, destruction, synchronization, communication etc. All

the nodes have a capability manager that maintains the capabilities for the objects

that exist on it. Only the Capability Manager (CM) has the rights to change the

state of capabilities of its objects.

 Creation of objects implies bringing them into the system and making their

existence known to all who requires it. The object creation may be local or remote.

The object scheduled to execute on the node is given control of the node. After

completion it leaves its control.

Allocation manager is responsible for object allocation in its node. It can direct

the creation manager for object creation locally. It may contact another allocation

manager on other node for remote object creation. It can also decide the allocation

of components of distributed objects.

2359 Other Approaches for Task Allocation

Monitoring manager monitors the application i.e. no. of objects allocated in the

node, no. of threads in object etc (Fig. 9.8).

The allocator provides some synchronization primitives for the synchronization

of objects. Signal/wait primitive or mailbox does this. The communication be-

tween distributed objects is in the form of shared data objects, message objects or

control interactions. Communication may be synchronous or asynchronous.

 Thus the object allocation is comprised of the following jobs.

• Creation of objects

• Operations on objects

• Scheduling of objects

• Deletion of objects

• Communication among objects

The allocation manager receives the request such as

Monitoring

Manager

Allocation
Manager

Other node

Fig. 9.8.Interaction of managers for object allocation

Creation
Manager

236 Scheduling in Distributed Computing Systems

Run A;

Create A;
Abort A;
Send A, B;
Receive A, B;
Fork;
Join;

9.3.5 Communication Manager

 A communication manager object provides communication facility among

communicating objects, as shown in figure 9.8. An object can invoke any other

object on the system by sending it a request message. Only the name of the object

is enough to route any message as the rest is taken care by the communication

manager. Generally the following operations are included.

 SEND(OBJ,OPR,MSG)

RECEIVE(OBJ,OPR,MSG)

Sometime a request primitive is used for a particular service.

REQUEST(OBJ,OPR,MSG)

A typical use of communication is shown (fig. 9.10) in which communication

is being done through port object A.

Run
Create Fork
Send Join

Fig. 9.9.Object interface

 Send

Port Object A

 Receive

Sender Receiver

Fig. 9.10.Communication in Objects

2379 Other Approaches for Task Allocation

Objects are created and destroyed dynamically in the system. Every newly cre-

ated object may create another object in turn and may send request to it. More-

over the presence of multiple execution activities i.e. threads designed to support

concurrency, imposes another problem in object allocation. In view of these, ob-

ject allocation is possible by the variations of abovementioned method. It is diffi-

cult to measure the characteristic of object allocator as it is possible only by its ac-

tual implementation and testing in a real object oriented distributed system

environment. The prototype for object oriented distributed systems are being de-

veloped by the researchers of the discipline [23].

BIBLIOGRAPHY

[1]A.B.Tucker, Jr., The Computer Science and Engineering Handbook, CRC Press, 1997.
[2]Edwind S.H. Hou, N. Ansari and H.Ren, “A Genetic Algorithm for Multiprocessor Schedul-

ing ” IEEE Trans. Parallel and Distributed Systems, Vol.5,1994, pp.113.
[3]F.C.Lin and R.M.Keller, “The Gradient Model Load Balancing Method”, IEEE Trans. Soft-

ware Engg. Vol. SE-13, No.1, Jan., 1988, pp.32-38.
[4]L.M.Ni, C.W.Xu and T.B.Gendreau, “A Distributed Drafting Algorithm for Load Balancing”

IEEE Trans. , Software Engg., Vol.SE-13, No.10, October1985, pp.1153-1161.
[5]P.K.Sinha, Distributed Operating Systems, Concepts and Design, Printice-Hall of India, 1997.
[6]T.C.K. Chou and J.A.Abraham, “Load Balancing in Distributed Systems”, IEEE Trans. Soft-

ware Eng., Vol. SE-8, No.4, July 1982, pp.401-412.
[7]A.K.Tripathi, D.P.Vidyarthi and A.N.Mantri, “A Genetic Task Allocation Algorithm for Dis-

tributed Computing Systems Incorporating Problem Specific Knowledge”, International

Journal of High Speed Computing, Vol.8, No.4,1996, p.363-370.
[8]C.C.Shen and W.H.Tsai, “A Graph Matching Approach to Optimal Task Assignment in Dis-

tributed Computing System Using a Minimax Criterion”, IEEE Trans. Computers, Vol. c-34,
No.3, March, 1985. pp. 197-203.

[9]D.P.Vidyarthi and A.K.Tripathi, “Precedence Constrained Task Allocation in Distributed
Computer Systems”, International Journal of High Speed Computing, Vol.8, No.1,1996,
pp.47-55.

[10]K.Efe, “Heuristic Models of Task Assignment Scheduling in Distributed Systems”, IEEE

Computer, Vol.15,1982, p.50-56.
[11]P.Y.R.Richard Ma, E.Y.S.Lee and J. Tsuchiya, “A Task Allocation Model for Distributed

Computing Systems”, IEEE Trans. Computer, Vol. C-31, No.1, pp. 41-47, Jan.1982.
[12]W.W.Chu, M.T.Lan, “Task Allocation and Precedence Relations for Distributed Real-Time

Systems” IEEE Trans. Computer, Vol.c-36, No.6, June 1987, pp. 667-679.
[13]M.Mitchell, An Introduction to Genetic Algorithms, Prentice-Hall of India Private Limited,

India, 1998.
[14]Timothy Budd, An Introduction to Object Oriented Programming, Addison-Wesley, 1991,

pp 1-15.

238 Scheduling in Distributed Computing Systems

[15]Sol. M. Shatz, Jia-Ping Wang, "Models & Algorithm for Reliability-Oriented Task alloca-
tion in Redundant Distributed Computer Systems", IEEE Trans. on Parallel and Distributed

Systems, Vol.38, No. 1, April 1989, pp. 16-27.
[16]C. Siva Ram Murthy, K.N.Balsubramaniya Murthy, A.Sreenivas, "Scheduling of Prece-

dence-Constrained Parallel Program Tasks on Multiprocessors", Microprocessing and

Microprogramming, Vol. 36, 1992/93, pp. 93-104.
[17]Sol.M.Shatz, Wang Goto, “Task Allocation for Maximizing Reliability of Distributed Com-

puting Systems”, IEEE Trans. on Computers, Vol.41, No.9, September 1992, pp. 1156-1168.
[18]S. Karthik, C. Siva Ram Murthy, “ Improved Task Allocation Algorithms to Maximize Reli-

ability of Redundant Distributed Systems”, IEEE Trans. on Reliability, Vol. 44, No. 4, Dec.
1995, pp. 575-586.

[19]D.P.Vidyarthi, A.K.Tripathi, “Maximizing Reliability of Distributed Computing Systems
with Task Allocation using Simple Genetic Algorithm”, J. of Systems Architecture, Vol. 47,
2001, pp. 549-554.

[20]Antonio Corradi, Letizia Leonardi, Franco Zambonelli, “Parallel Object Migration: A Fine
Grained Approach to Load Distribution”, Journal of Parallel & Distributed Computing, Vol.
60, 2000, pp 48-71.

[21]Paul J. Fortier, Design of Distributed Operating System, Mc-Graw Hill International Edi-
tions, 1988, pp 154-191.

[22]Antonio Corradi, Letizia Leonardi, Franco Zambonelli, “High Level Management of Alloca-
tion in a Parallel Objects Environment”, Vol. 45, 1998, pp 47-63.

[23]Didier Buchs and Nicolas Guelfi, “A Formal Specification Framework for Object-Oriented
Distributed System”, IEEE Trans. on Software Engineering, Vol. 26, No. 7, July 2000, pp.
635-652.

2399 Other Approaches for Task Allocation

CHAPTER 10

Scheduling in Computational Grid

 During the past few years grid computing has emerged as an effective com-

puting environment for data and compute intensive operations. There are issues

and challenges in grid computing discipline and are to be addressed by the re-

search community before the environment is in widespread use. In this chapter, an

overview is sought over the grid computing with the benefits and challenges of the

grid architecture from scheduling point of view.

 Future of computer system design lies in High Performance Computing

(HPC) systems. In various applications, demand for increasing performance is

persuasive argument. Besides other benefits (e.g. resource sharing, scalability etc.)

compute intense jobs demand parallel execution by exploiting parallelism in the

jobs.

 “As computer networks become cheaper and more powerful, a new computing

paradigm is poised to transform the practice of science and engineering”- Ian

Foster

 Grid is a type of parallel and distributed system that enables the sharing, se-

lection, and aggregation of geographically distributed "autonomous" resources dy-

namically at runtime depending on their availability, capability, performance, cost,

and user’s quality-of-service requirements [1]. Grid aims at exploiting synergies

that result from cooperation--ability to share and aggregate distributed computa-

tional capabilities and deliver them as service. The autonomous resources in the

Grid can span across a single or multiple organizations. The key distinction be-

tween clusters and grids mainly lie in the way resources are managed. In case of

clusters, a centralized resource manager performs the resource allocation and all

the nodes cooperatively work together as a single unified resource. In case of a

Grid, each node has its own resource manager and do not aims for providing a

single system view [1, 12].

Grid technology takes Cluster computing to the next level by providing a dis-

tributed architecture that delivers compute and data resources over the web in

much the same manner the electricity is delivered over the power grid - making

resources available to users when and where they are needed. Grid computing is

one of the fastest-growing trends in high-end scientific and engineering comput-

ing. By utilizing a flexible computing architecture based on clusters, organizations

can develop and tailor grids to continually match changing requirements. Grids

can be designed in any shape and size and deliver the flexibility to harness the

power of any available resource, regardless of whether it is a desktop machine or a

campus supercomputer [2].

242 Scheduling in Distributed Computing Systems

10.1 Need for Grid Computing

 Grid Computing delivers the potential in the growth and abundance of network

connected systems and bandwidth: computation, collaboration and communication

over the advanced web. At the heart of Grid computing is an infrastructure that

provides dependable, consistent, pervasive and inexpensive access to computa-

tional capabilities. By pooling federated assets into a virtual system, a grid pro-

vides a single point of access to powerful distributed resources.

Researchers working to solve many of the most difficult scientific problems have

long understood the potential of such shared distributed computing systems. De-

velopment teams focused on technical products, e.g. semiconductors, are using

Grid computing to achieve higher throughput. Likewise, the business community

is beginning to recognize the importance of distributed systems in applications

such as data mining and economic modeling.

With a grid, networked resources - desktops, servers, storage, databases, even sci-

entific instruments - can be combined to deploy massive computing power wher-

ever and whenever it is needed most. Users can find resources quickly, use them

efficiently, and scale them seamlessly.

10.2 Scalability for Global Computing

24310 Scheduling in Computational Grid

 No two grids are alike, and no size fits all. Organizations can create and recreate

grids to exactly match changing requirements by utilizing a flexible computing ar-

chitecture based on clusters systems and software that manage the work on the

distributed systems. Grids can scale from single systems to supercomputer-class

clusters by utilizing thousands of processors. Grids can be classified based on the

scalability as below.

Cluster Grids

 Cluster grids are the most popular and simplest form of a grid. Cluster grid con-

sists of one or more systems, working together, to provide a single point of access

to users. Cluster grid meets the need of most of the organizations. Typically used

by a team of users such as a single project or a department, a cluster grid supports

both high throughput and better performance for the jobs.

Campus Grids

 Campus grids enable multiple projects or departments to share computing re-

sources in a cooperative way. It is also referred as the cooperative grid. Campus

grids may consist of dispersed workstations and servers, as well as centralized re-

sources located in multiple administrative domains, in departments, or across the

enterprise.

244 Scheduling in Distributed Computing Systems

Global Grids

 When application needs exceed the capacity of a campus grid, organizations can

tap partner resources through a global grid. Designed to support and address the

needs of multiple sites and organizations, global grids provide the power of dis-

tributed resources to users anywhere in the world for computing and collaboration.

Individuals or organizations sending overflow work to a grid provider or by multi-

ple companies working together and sharing data - crossing organizational

boundaries with ease can use the global grid.

10.3 Data and Computational Grids

 The Grid infrastructure in which the emphasis is given on the computation is

refereed as computational grid. In this, the large computing problem is divided

into sub-problems and then solved over the nodes of the grid independently. Large

scale problems in Science and Engineering are being solved on the computational

grid. This not only allows the sharing of the resources but also reduces the execu-

tion time. The computing power need is analogous to the electrical power need of

the early 90s making the electrical power grid a reality. The computing environ-

ment of a computational grid provides a demand driven, reliable, powerful and yet

an inexpensive power for its customers [10]. Thus a computational grid environ-

ment consist of one or more hardware and software enabled environments that

provide dependable, consistent, pervasive and inexpensive access to high end

computational capabilities [9].

24510 Scheduling in Computational Grid

In data grid, the emphasis is over the management of the data that is being held

in a variety of data storage facilities in geographically dispersed locations. The

data sources may be databases, file systems and storage devices. The grid must

also provide data virtualization services to satisfy various transparency issues e.g.

transparency for data access, integration, and processing. Security and privacy is

very important requirements of data in grid system and is very complex [10].

10.4 Scheduling in Computational Grid

 Being able to submit a job from a networked client to a job submission service

requires that the placement of such jobs can be optimized over available grid re-

sources. This takes place through a 'super-scheduler' that matches the job to the re-

source’s capabilities and constraints. Such a scheduling framework is being ad-

dressed by the research community and under development with many grid

centers as middleware. Problems of scheduling in the distributed computing sys-

tem persist in grid computing also and are to be resolved. The author had worked

over the problem of scheduling in the distributed computing systems and is now

extending the same for the computational grids [3-8].

The requirement of most of the compute intense jobs is parallel/concurrent exe-

cution of their subjobs (modules) on the nodes of the computing system so that the

overall time for execution is minimized. Besides, the system offers other advan-

246 Scheduling in Distributed Computing Systems

tages in terms of resource sharing, fault tolerant execution, high throughput, scal-

ability, use of commodity systems, better price performance ratio etc. We discuss

the distribution of compute intense jobs onto a grid system.

Most important consideration of compute intense jobs is to how to distribute

the computational loads amongst the nodes of the system. This distribution has

different characteristic requirement in different systems. In distributed computing

system, the objective is how quickly the submitted job completes the execution by

exploiting both the available hardware and software. In cluster, the objective is

enhanced availability besides the performance. In grid it is often desired to utilize

the available resources, available anywhere but connected by the commodity net-

work, whenever more computing power is required.

In a distributed computing system, all the computing nodes do participate in

computation as per their capabilities. Number of nodes in a DCS interacts with the

user and the user can submit his job at any node. Submitted job is partitioned in

modules and as per the policy of the load distribution these modules are allocated

onto the computing nodes of a DCS. Once a load is distributed, more or less it is

fixed. Some DCS allows the user of the system to specify the load distribution, but

mostly the allocator of the DCS with some predefined policy decides it.

24710 Scheduling in Computational Grid

User’s job can be exploited for the existence of parallel/concurrent modules

and these modules are allocated onto the computing nodes of the grid. The objec-

tive of this allocation can be the decrease in completion time of the job, increase in

fault tolerant execution or some other characteristic. The distribution of the com-

pute job will often be on the neighbor nodes so that the result obtained from allo-

cated modules can be reproduced quickly. The distribution will usually consider

just one aspect; what nodes in the neighbor are free or relatively less loaded. Op-

timization of any other characteristic, as considered in the distributed computing

system, is absent in the grid and this will make the allocation relatively easy. It is

assumed that all the processing nodes are capable enough to execute computa-

tional jobs. So the computing grids are utilized as and when there is the require-

ment of computing. Load distribution in case of the grid is never fixed.

Job super scheduler architecture has been proposed by Shan et. al.[11]. In this

the job scheduling is conducted via autonomous local schedulers that cooperate

through a superscheduler using grid middleware. The superscheduler is responsi-

ble for discovering grid resources, monitoring system utilization, and migrating

load to the local queues of the distributed resource centre.

10.5 Challenges in Grid Computing

 Increased network bandwidth, more powerful computers, and the acceptance of

the internet have driven the ongoing demand for new and better ways to compute.

248 Scheduling in Distributed Computing Systems

Commercial enterprises, academic institutions, and research organizations alike

continue to take advantage of these advancements, and constantly seek new tech-

nologies and practices that enable them to reinvent the way they conduct business.

However, many challenges still remain and are to be resolved. Increasing pressure

on development and research costs, faster time-to-market, greater throughput, and

improved quality and innovation are always foremost in the minds of administra-

tors - while computational needs are outpacing the ability of organizations to de-

ploy sufficient resources to meet growing workload demands.

On top of these challenges is the need to handle dynamically changing workloads.

Flexibility is the most desired criterion and is the key. In a world with rapidly

changing markets, both research institutions and enterprises need to quickly pro-

vide compute power where it is needed most. Indeed, if systems could be dynami-

cally created when they are needed, teams could harness these resources to in-

crease innovation and better achieve their objectives. Few pertinent questions are:

• How hard is it to build a grid?

 Sony Devices Europe created a Sun grid in just two days.

• How capable are grids?

 The Durham University Cosmology Engine performs 465 billion arith-

metic operations per second on a Sun Cluster Grid.

• Is Grid computing real?

 Sun has a grid of over 7,500 total CPUs across three U.S sites; with over

98 percent CPU utilization executing over 50,000 EDA jobs a day [2].

24910 Scheduling in Computational Grid

10.6 Research Issues in Grid Scheduling

 Schedulers are responsible for management of jobs amongst the nodes of the

grid, such as allocation of resources needed for any specific application, job parti-

tioning to allow parallel execution, event correlation, and service level manage-

ment. The jobs submitted to a grid for the execution are evaluated based on their

requirements and allocated to the node accordingly. So the services provided by

the scheduler for the computational grid must include:

• Resource determination (reservation)

• Task and resource policy management for better turnaround or any other

characteristics

• Monitoring the status of the task execution

• Rescheduling for load balancing

• Task migration

• Security and authentication on the grid nodes for scheduling

All the above points are very important for a computational grid scheduler and

require the attention of research communities specially working for grid scheduler.

Given a job for the execution over the grid, how to determine the resources be-

comes the first and foremost activity. Problem, being the NP-Hard, perpetuate

various possibilities for the resource determination. How to achieve better turn-

around is one of the objectives of the grid systems. Proper resource utilization for

better turnaround is a key research problem of computational grid. Status monitor-

250 Scheduling in Distributed Computing Systems

ing of the job execution, so that the migration may take place, as and when re-

quired, is also very important. Load balancing, as has been discussed in chapter 4,

finds place in the grid scheduler also and is very important research issue. Task

migration is the repercussion of the load balancing. Security for scheduling is ex-

clusively most important research issue and requires a great attention of the re-

search community. As the task execution activity is transparent, how to allow only

an authentic job becomes very important aspect of the secure scheduling.

All these research issues are being addressed by the researchers of this disci-

pline.

BIBLIOGRAPHY

[1]http://www.gridcomputing.com
[2]http://www.sun.com
[3]D.P.Vidyarthi, A.K.Tripathi, “Precedence Constrained Task Allocation in Distributed Com-

puting System”, Int. J. of High Speed Computing, Vol. 8, No. 1, 1996, pp. 47-55.
[4]A.K.Tripathi, D.P.Vidyarthi, A.N.Mantri, “A Genetic Task Allocation Algorithm for Distrib-

uted Computing System Incorporating Problem Specific Knowledge”, International J. of

High Speed Computing, Vol.8, No.4, 1996, pp. 363-370.
[5]D.P.Vidyarthi, A.K.Tripathi, “Maximizing Reliability of Distributed Computing Systems with

Task Allocation using Simple Genetic Algorithm”, J. of Systems Architecture, Vol. 47, 2001,
pp. 549-554.

[6]D.P.Vidyarthi, A.K.Tripathi, “Studies on Reliability with Task Allocation of Redundant Dis-
tributed Systems”, IETE J. of Research, Vol. 44, No. 6, Nov-Dec. 1998, pp. 279-285.

[7]D.P.Vidyarthi, A.K.Tripathi, B.K.Sarker, “Multiple Task Management in Distributed Com-
puting Systems”, The Journal of the CSI, Vol. 31, No. 1 Sep. 2000, pp. 19-25.

[8]D.P.Vidyarthi, A.K.Tripathi, B.K.Sarker, “Allocation Aspects in Distributed Computing Sys-
tem”, IETE Technical Review, Vol. 18, No. 6, Nov.-Dec. 2001, pp.279-285.

[9]Ian Foster, Carl Kesselman, The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 2004.

[10]Joseph J., Fellenstein C., Grid Computing, Pearson Education, 2004.
[11]Shan H., Oliker L., Biswas R., “Job Superscheduler Architecture and Performance in Com-

putational Grid Environments”, Proceedings of the ACM/IEEE SC2003 Conference.

25110 Scheduling in Computational Grid

[12]D.P.Vidyarthi, “Some observations on HPC Capabilities of Grid, Cluster and Distributed
Computing Systems”, COMSOMATH, Magazine on Computing, Social Science and Mathe-

matics, Special Issue, May 2005.

252 Scheduling in Distributed Computing Systems

CHAPTER 11

Concluding Remarks

 This book aims at consideration of existing task allocation models with their

simplifying assumptions for proposing better TA algorithms that consider the real-

istic situations of a task and DCS i.e. the precedence of the execution among the

modules of the task, consideration of more than one tasks for execution, functional

limitations of processing elements of DCS etc. The work is being summarized in

the next section. In section 11.2, we have briefed the structure and place of sched-

uler in distributed operating system. Future possibilities have been explored and

pointed out in section 11.3.

11.1 Summary of Findings

 Distributed Computing System is emerging as a future computing system be-

cause of its certain useful characteristics. Reliability, throughput, scalability are to

name a few. DCS has taken a lead as a future computing system in comparison to

Tightly Coupled Multiprocessor.

Task scheduling (allocation) is very important phase in the development of op-

erating system of a DCS and this work deals mainly with the task allocation prob-

lem of the DCS. A task, consisting of the modules, is given to the DCS for execu-

tion. The execution of this task takes place under various constraints imposed by

the task and the system as well. The execution has to satisfy certain characteristic

parameters to prove it to be a good allocation. Before allocation, the task is to be

divided in modules (subtasks). Thus the task execution requires two steps: parti-

tioning and allocation.

Partitioning exploits the parallelism present in the task to its maximum possible

extent and based on that, modules are created. There are many techniques for task

partitioning. Our proposal of task partitioning using Genetic Algorithm appears in

[1], though this book does not address the task partitioning problem and it requires

an exclusive discussion in its entirety.

The problem of allocation of tasks in a DCS has been thoroughly discussed in

this book by identifying various relative factors: (i) precedence amongst the mod-

ules of a task (ii) reliability with task allocation of a DCS (iii) completion time (iv)

limitations and capabilities of the processing nodes (v) multiplicity of tasks (vi)

balanced load and (vii) migration. Factors (i), (ii), (iii) & (iv) are related to “Single

Task Allocation” models whereas all the factors (i to vii) have been dealt with

keeping in mind the relative situation that the number of tasks in DCS is usually

substantive (not one as considered in previous models reported in the literature).

254 Scheduling in Distributed Computing Systems

After a brief discussion over the distributed computing system and the schedul-

ing problem in distributed computing system in beginning chapters, the Load Bal-

ancing aspect has been thoroughly discussed in chapter 4. The chapter 4 also

briefs the various other issues related with the task scheduling, in general and load

balancing in particular. It discusses the task migration and threads. It also explores

the conflicts that may occur for the allocation of a task due to load balancing or

imbalancing.

The precedence relation, amongst the modules of the task, can be analyzed to

identify such modules that may coexist on one and the same node, as the sequen-

tial execution of concurrent modules sets may allow this. A precedence con-

strained task allocation is proposed in chapter 5; section 5.3, in which the empha-

sis is on the precedence of the modules [2]. This model minimizes the turn-around

time of the given tasks, but at the same time considers the precedence constraint of

the modules of the task. The earlier models discussed in section 5.1 do not con-

sider the precedence of the modules of a task. Moreover the effect of already allo-

cated modules of other tasks on processing elements comprising the system is

considered (assuming round robin scheduling). This consideration has not been

there in earlier models. As models proposed by us make considerations that are es-

sential, the other models discussed herein, sec 5.1, (without these aforesaid con-

sideration) are not comparable.

Communication among the modules, adds the cost of allocation if these com-

municating modules are executing on distant processing nodes of the DCS. This

25511 Concluding Remarks

problem has been considered and IMC cost reduction model using fuzzy logic is

proposed in the same chapter 5, section 5.4, of the book [3]. This IMC cost reduc-

tion model can be introduced in any task allocation algorithms at minimum cost.

Load Balancing Task Allocation (LBTA) has been discussed in chapter 6. This

chapter not only discusses the LBTA strategy and issues, it also proposes LBTA

solution. This also proposes a load measure for a single task as well multiple tasks.

Genetic Algorithms (GA), based on the Darwin’s theory “Survival of the fit-

test”, is emerging as a successful tool for the optimization problem [4]. As the task

allocation problem is an NP-Hard problem, GA is found to be quite suitable to

solve task allocation problem. GA is parallel in nature so it is well suited to TA

problem of DCS. The various activities of GA based task allocation can be per-

formed in parallel on various processing nodes of DCS [19]. We applied GA for

task allocation with many variations. In one, a problem specific knowledge is in-

corporated in GA. The TA model proposed in section 7.1 is based on a finding

that the incorporation of some problem specific knowledge in construction of GA

improves its performance and solution converges quickly [5]. GA is also used to

maximize reliability of DCS with task allocation in section 7.2. The algorithm not

only gets the advantage of GA for quick convergence but also produces better so-

lutions in terms of allocation with improved reliability [6]. The result is compared

with that of Shatz and it shows better one. Many more inferences are drawn.

So far, most of the literature shows an allocation policy for a single task. We

have proposed multiple task allocation in DCS, which considers the allocation

256 Scheduling in Distributed Computing Systems

based on the dynamic nature of task arrival and departure in the DCS. To achieve

this, the concept of Global Table is introduced [7]. A heuristic task allocation al-

gorithm for multiple task allocation appears in chapter 8, section 8.1 of the thesis.

The result shows that all the processors are being utilized for the purpose of exe-

cution. The resultant allocation infers that the modules of a particular task are also

distributed among the processing nodes of the DCS. The implementation of global

table will incur an overhead but this is inevitable for the management of the multi-

ple tasks execution. In this chapter, allocation algorithms that consider multiple

tasks and status of PEs due to previous allocations are given and hence these are

not comparable with other models proposed in the literature.

A cluster based load partitioning and allocation in DCS is discussed in chapter

8, section 8.2. Cluster is formed of the modules of the task and processing nodes

as well. Allocation is decided from task cluster to processor cluster. Cluster based

load partitioning and assignment is used for real-time applications. The proposed

approach has the potential for scalability and support for system heterogeneity.

Scalability is achieved by Merge and Split cluster formation of the processors. The

approach considers the communication aspect in the cluster formation as it in-

volves more overheads. This is also a realistic approach as the other algorithms,

based on the same, uses the priori knowledge of the execution of the modules of

the task on the processors of the DCS. The communication bandwidth is already

known while designing the system, so it is not difficult to measure the IMC time

for the modules of the task. A new fuzzy approach is applied to form the clusters.

Examples illustrate the algorithm.

25711 Concluding Remarks

 The idea of multiple tasks and global table caters to the needs of all types of

DCS and tasks. It may accommodate single task situation as well. The problem is

NP-Hard as such. The algorithms (and models), proposed, have similar complexi-

ties. These methodologies promise to be candidates for implementation.

Various task allocation models & algorithms are proposed in this book. These

models use a number of search techniques e.g. list schedule, A*, GA etc. Obvi-

ously the model that uses GA or A* will have better execution efficiency than that

of list schedule. GA based TA algorithms has the potential of parallel execution on

DCS [8]. The models discussed in chapter 8 and 9, which considers multiple tasks

execution, are more realistic than the models discussed in previous chapters. De-

pending on the DCS architecture and other requirements (minimization of turn-

around time, improvement in reliability etc.) the model can be chosen for its im-

plementation in distributed operating system.

11.2 Structures and Place of Scheduler in DOS

 Any Operating System for a Distributed Computing System consists of ele-

ments to manage network communications, process operations, device manage-

ment, I/O management, and memory management as shown in the figure below.

The scheduler comes under the process management part of the Distributed

Operating System.

258 Scheduling in Distributed Computing Systems

In a single local computer, all these managers reside on the same system, as

there is no other choice [9]. The place of the scheduler in DOS is little difficult to

decide as it leaves many possibilities with its advantages and disadvantages. The

effective place to decide the place of scheduler is an open research problem.

The simplest choice is that of Master/Slave in which the scheduler resides on

one of the nodes, called master, and sticks to that node till its lifetime. In this or-

ganization the task submitted for execution goes to the master first and it decides

how the modules are given to the other nodes for execution. The result produced

by the individual nodes is given back to the master, which after reassembling pro-

duces it to the users [10].

 Kernel

 Process Manager

Comn. Memory
Manager Manager

Device Manager I/O Manager

Kernel

Fig. 11.1.Structure of Distributed Operating System

25911 Concluding Remarks

This type of scheme is simple but inefficient as the master node may be a bot-

tleneck in case of failure.

Another scheme proposes to allow the scheduler to float from one node to the

other from time to time. Whenever the scheduler process is to be migrated, all the

relevant data are also to be moved. Thus the movement of scheduler process in-

curs an overhead if the size of the scheduler is big enough. This overhead is

added if the relevant data are large [11].

The third and efficient scheme is to divide the scheduler process in modules

and allocate these modules onto the different available nodes of the DCS. In this

case, the scheduler process will be treated as other users’ process with more prior-

ity. The various modules of the scheduler often have to cooperate on various is-

sues. This type of scheme is better but poses extra burden, as every module of the

scheduler must know the whereabouts of the other modules.

Master

Slave

Slave

Slave

Fig. 11.2.Master-Slave design of DOS

260 Scheduling in Distributed Computing Systems

Scheduler (Task Allocator) can be structured according to any of the scheme

discussed above and can be incorporated in the operating system of the DCS.

11.3 Future Possibilities

 The problem of task scheduling i.e. allocation has been considered in this

book and various models for the same are proposed. As the technology in software

and hardware is growing fast, it is necessary that all the functionalities of the op-

erating system also adapt to the new technology. So the work that remains from

this book have been pointed out in this section.

Most of the algorithms, proposed in the literature and discussed in the book as

well, are based on some priori knowledge (execution time, communication time

etc.). In practice it is very difficult to estimate these times (at least execution

time). So a good piece of research work is to how estimate these times with some

other available information. Specifically, how much time a particular module

takes on a particular computing node is to be determined. Speed of the processing

node and size of the modules are generally available and the execution time is to

be determined from this information. Similarly communication among modules is

also to be determined by tracing the program. Precedence among modules is an-

other research issue that is to be taken further.

26111 Concluding Remarks

With the introduction of the new hardware technology a new multicontext

CPUs are being developed in which there may be more than one program counter

for multiple independent executions. This type of CPUs supports the threading in

the hardware. This amounts to having more than one processor on a single chip

with a shared set of registers. Similarly with new software technology concept of

multithreading is being introduced. Thus another dimension for future research is

that how these task allocation models can adapt to the DCS consisting of multi-

context computing nodes and how the thread allocation can be made. Threads are

the finer execution entities. Obviously the thread allocation will improve the exe-

cution characteristics of the task for execution.

Prototype for the object oriented distributed computing systems are also being

introduced [17] and future computing systems are to be object based. Of course

the execution entity on such systems will be objects not processes (tasks) as con-

sidered in conventional distributed computing systems. How the object allocation

on object oriented distributed computing systems will be done, is another research

work for the future [12-18].

BIBLIOGRAPHY

[1]D.P.Vidyarthi, A.K.Tripathi, A.N.Mantri, “Task Partitioning using Genetic Algorithm”, Pro-

ceedings of International Conference on Cognitive Systems, Vol. 1, Dec. 1997, New Delhi,
pp. 248-254.

[2]D.P.Vidyarthi, A.K.Tripathi, “Precedence Constrained Task Allocation in Distributed Com-
puting System”, Int. J. of High Speed Computing, Vol. 8, No. 1, 1996, pp. 47-55.

[3]D.P.Vidyarthi, A.K.Tripathi, “ A Fuzzy IMC Cost Reduction Model for Task Allocation in
Distributed Computing Systems”, Proceedings of the Fifth International Symposium on

Methods and Models in Automation and Robotics, Vol. 2, Szczecin, Poland, August 1998, pp.
719-721.

262 Scheduling in Distributed Computing Systems

[4]J.L.R.Filho, P.C.Treleaven, C.Alippi, “Genetic Algorithm Programming Environments”,
IEEE Computer, June 1994, pp. 29-42.

[5]John J. Grefenstelle, "Incorporating Problem Specific Knowledge into Genetic Algorithm",
Genetic Algorithm and Simulated Annealing, Morgan Kaufrman Publisher, California, 1987.

[6]D.P.Vidyarthi, A.K.Tripathi, “Maximizing Reliability of Distributed Computing Systems with
Task Allocation using Simple Genetic Algorithm”, J. of Systems Architecture, Vol. 47, 2001,
pp. 549-554.

[7]D.P.Vidyarthi, A.K.Tripathi, B.K.Sarker, “Multiple Task Management in Distributed Com-
puting Systems”, The Journal of the CSI, Vol. 31, No. 1 Sep. 2000, pp. 19-25.

[8]D.P.Vidyarthi, A.K.Tripathi, “Exploiting Parallelism in Genetic Task Allocation Algorithm”,
Int. J. of Information and Computing Science, Vol. 4 No. 1, June 2002, pp. 22-26

[9]A.Silberschatz, P.B. Galvin, Operating Systems Concepts, Addison-Wesley, 1998.
[10]Kai Hwang, F.A.Briggs, Computer Architecture and Parallel Processing, McGraw Hill In-

ternational Edition, 1995.
[11]Kai Hwang, Parallel Computer Architecture, Mc-Graw Hill International Edition,1995.
[12]Timothy Budd, An Introduction to Object Oriented Programming, Addison-Wesley, 1991.
[13]Antonio Corradi, Letizia Leonardi, Franco Zambonelli, “Parallel Object Migration: A Fine

Grained Approach to Load Distribution”, Journal of Parallel & Distributed Computing, Vol.
60, 2000, pp. 48-71.

[14]Paul J. Fortier, Design of Distributed Operating System, Mc-Graw Hill International Edi-
tions, 1988.

[14]Antonio Corradi, Letizia Leonardi, Franco Zambonelli, “High Level Management of Alloca-
tion in a Parallel Objects Environment”, Journal of Systems Architecture, Vol. 45, 1998, pp.
47-63.

[15]D.T.Peng, K.G.Shin, “Static Allocation of Periodic Task with Precedence”, Proceedings of

the Int’l Conf. Distributed Computing Systems, June 1989, pp.190-198.
[16]Didier Buchs, Nicolas Guelfi, “A Formal Specification Framework for Object-Oriented Dis-

tributed System”, IEEE Trans. on Software Engineering, Vol. 26, No. 7, July 2000, pp. 635-
652.

[17]K.Mani Chandy, Adam Rifkin, “Systematic Composition of Distributed Objects: Processes
and Sessions”, The Computer Journal, Vol. 40, No. 8, 1997, pp. 465-478.

[18]D.P.Vidyarthi, A.K.Tripathi, “Exploiting Parallelism in Genetic Task Allocation Algorithm”,
Int. J. of Information and Computing Science, Vol. 4 No. 1, June 2002, pp. 22-26

26311 Concluding Remarks

ABBREVIATIONS

DCS Distributed Computing System

CPU Central Processing Unit

PE Processing Element

RDS Redundant Distributed System

TA Task Allocation

IPC Inter Process Communication

IMC Inter Module Communication

AET Accumulative Execution Time

GA Genetic Algorithm

TG Task Graph

PG Processor Graph

TIG Task Interaction Graph

TPG Task Precedence Graph

DOS Distributed Operating System

TSP Traveling Salesperson Problem

MTA Multiple Task Allocation

LAN Local Area Networks

CP Communication Penalty

OS Operating System

VLSI Very Large Scale Integration

WAN Wide Area Network

ATM Asynchronous Transfer Mode

NOS Network Operating System

ISO International Standard Organization

LS Load Sharing

LB Load Balancing

LBTA Load Balancing Task Allocation

TM Task Migration

GT Global Table

Appendix A

This appendix has a listing of a program using the algorithm in sec.8.3. The

program has been written in C language under Windows 98 operating system in

Turbo C++ environment.

ASTAR.C

#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<iostream.h>
#include<dos.h>
#include<string.h>
#define max_proc 10
#define max_task 10
#define max_mod 10
struct st{
 int mod_cap_present;

int mem_cap;
 }status[max_proc];/* Status of processing nodes*/

struct open{
 int fx;
 char string[max_proc];
 open()
 {
 strcpy(string,"XXXXXXXXX");
 }/*structure for OPEN list as in sec.4.2 */

 struct open *next;
 }*open_list;
int load(int);
/* To find the load on each processing node according to equation 4.1 */

int check_status(int,int,int);
/* It checks STATUS of processors according to the available no. of modules

and available memory */

int find_heaviest_proc();
/* To find the heaviest loaded processor using equ. 4.1*/
int heur_cost(int);
/* To find the cost h(n) according to equ.4.2 */

int min_cost_IPC(int,int,int);
int min(int,int);
/*Minimum between the two costs*/

void insert_open(int,int,int,charstr[max_proc]);
/* This function insert the cost into OPEN as explained in sec. 4.2 */

void modify_mod_at_proc(int,int,char*);
/* This function insets ‘X’ for no allocation as in sec 4.2 */

void allocation();
/* This function allocates the modules onto the processors according to mini-

mum cost using the algorithm (sec.4.1.2)*/

void modify_status(int,int);
/* This function modifies the STATUS of each processor*/

char * remove_min_from_open();
/* This function selects the minimum cost node from OPEN, expand it and re-

move it after expanding nodes */

int no_of_proc,no_of_modules[max_task],no_of_tasks;

int X[max_mod][max_task][max_proc];
/* Execution cost of the modules of tasks onto a processing node */

int M[max_mod][max_task][max_proc];
/*Assignment of the modules to a processor*/

int C[max_mod][max_task][max_proc];
/* Communication cost between the two modules of the task */

int CC[max_proc][max_proc];
/*IPC cost among between the processing nodes */

int mod_at_proc[max_mod][max_task];
/* The module of a task */

int L[max_proc][max_proc];
/* Connection matrix of two processing nodes direct link*/

266 Scheduling in Distributed Computing Systems

int L1[max_proc][max_proc];
/* Connection matrix of two processing nodes by one indirect link */

int L2[max_proc][max_proc];
/* Connection matrix of two processing nodes by two indirect link */

int mem_req[max_task][max_mod];
/* Memory required by each module */

int cf0,cf1,cf2;
/* Cost for the link matrix L */

int load(int proc)
{

 int p,n,k,i,j,ex_cost,q,comm_cost;
 p=proc;
 ex_cost=0;
 comm_cost=0;
 n=no_of_proc;
 for(k=1;k<=no_of_tasks;k++){
 for (i=1;i<=no_of_modules[k];i++){
 if(mod_at_proc[k][i]==p)M[i][k][p]=1;
 ex_cost+=X[i][k][p] * M[i][k][p];
 }
 }
 for (k=1;k<=no_of_tasks;k++){
 for(i=1;i<=no_of_modules[k];i++){
 /* q is the proc on which j is executing*/
 for(j=1,q=1;j<=no_of_modules[k] && q<n;j++,q++){
 if(i!=j && p!=q){
 comm_cost= M[i][k][p] * M[j][k][q]

* (C[i][k][j] + CC[p][q]);
 }
 }
 }
 }
 return(ex_cost + comm_cost);
}
void allocation()
{
 int k,i,j,p,hp,gx,hx,fx,l,xx,xxx,i1,p1;
 char *str,*str1;
 for(k=1;k<=no_of_tasks;k++){
 open_list=NULL;

267Appendix A

 strcpy(str,"XXXXXXXXX");
 i1=0;
 for(i=1;i<=no_of_modules[k];i++){
 for(p=1;p<=no_of_proc;p++){
 if(check_status(p,i,k)==1){
 mod_at_proc[i][k]=p;
 hp=find_heaviest_proc();
 gx=load(hp);
 hx=heur_cost(p);
 fx= gx + hx;
 insert_open(i,p,fx,str);
 }
 }
// find_min_fx_open();
 strcpy(str1,str);
 str=remove_min_from_open();
 xx=0;

 while(str[xx+1]<60)xx++;

// if(i<i1){
 for(xxx=1;xxx<=i;xxx++){

 status[str1[xxx]].mod_cap_present+=1;

 status[str1[xxx]].mem_cap+=mem_req[k][xxx];

 }
// }
 i=xx;
 for(i1=1;i1<=xx;i1++){
 modify_mod_at_proc(i1,k,str);
 modify_status(i1,k);
 }
 }
 printf("\n\n Task %d has been allocated as : ",k);
 for(l=1;l<=no_of_modules[k];l++)printf("%d",str[l]);
 }
 int m,m1;
 m=0;
 for (p1=1;p1<=no_of_proc;p1++){
 m1=load(p1);
 printf("\nThe cost at the processing node %d is %d",p1,m1);

268 Scheduling in Distributed Computing Systems

 printf("\nThe status of processing node %d is %d %d",p1,
status[p1].mod_cap_present,status[p1].mem_cap);

 m+=m1;
 }
 printf("\n\nTotal cost at all the processing nodes is %d",m);
}

int heur_cost(int p)
{
 int k,i,j,local_var,heur;
 heur=0;
 for(k=1;k<=no_of_tasks;k++){
 for(i=1;i<=no_of_modules[k];i++){
 if(mod_at_proc[i][k]==p){
 /*ith module of kth task is on proc p then we are proceeding*/
 for(j=1;j<=no_of_modules[k];j++){
 /*checking if jth module communicates with ith

mod. */
 if(C[i][j]>0){
/* if ith mod is the same as jth, then C[i][j]==0, if no comm is there, C[i][j]==-

1*/
 if(mod_at_proc[j][k]==0){
/* we have checked that if jth module has yet been allocated, 0 shows it hasn't

*/
 lo-

cal_var=min_cost_IPC(j,k,p);//local_var gives the processor onto which j can be
allocated &CC[p][loc..] is min

 heur+=min(X[j][k][p],(C[i][k][j]+local_var));

 }
 }
 }
 }
 }
 }
 return(heur);
}
int min_cost_IPC(int mod,int task ,int proc)
{
 int i,aa,flag;
 for(i=1;i<no_of_proc;i++){
 if(i!=proc){
 aa=check_status(mod,task,i);

269Appendix A

 if(aa==1 && CC[proc][i]==cf0)return(cf0); //IPC is min. possible

 else if(aa==1 && CC[proc][i]==cf1)flag+=0;
 else flag+=0;
 }
 if (flag>0)return(cf1);
 else return(cf2);
 }
}
int min(int value1, int value2)
{
 return ((value1 < value2) ? value1 : value2);
}

int check_status(int proc,int module,int task)
{
 if(status[proc].mod_cap_present>0 && status[proc].mem_cap >

mem_req[task][module])return(1);
 else return(0);
}
void modify_status(int module,int task)
{
 int proc;
 proc=mod_at_proc[module][task];
 status[proc].mod_cap_present-=1;
 status[proc].mem_cap-=mem_req[task][module];
}
int find_heaviest_proc()
{
 int p,max,return_value;
 for(p=1;p<=no_of_proc;p++){
 if(p==1){
 max=load(p);
 return_value=p;
 }
 else
 if(max<load(p)){
 max=load(p);
 return_value=p;
 }
 }
 return(return_value);
}
void insert_open(int module_no, int proc, int fx,char str[max_proc])
{

270 Scheduling in Distributed Computing Systems

 struct open *temp, *temp1;
 temp= open_list;
 temp1=new open;
 strcpy(temp1->string,str);
 temp1->string[module_no]=proc; /*remember to reset open after each

task*/
 temp1->fx=fx;
 if(open_list==NULL){
 open_list=temp1;
 open_list->next=NULL;
 }
 else{
 temp= open_list;
 while(temp->next!=NULL)temp=temp->next;
 temp->next=temp1;
 temp->next->next=NULL;
 }

}
char * remove_min_from_open()
//remember to remove from open that node which lies latest in the list if two or

more fx's are equal
{
 struct open *temp, *temp1;
 int mini,flag=0;
 temp=open_list;
 if(temp==NULL)return("empty_lst");
 mini=temp->fx;
//finding the minimum fx
 while(temp->next!=NULL){
 temp=temp->next;
 if(mini>= temp->fx)mini=temp->fx;
 }
//removing the corresponding node
 temp=open_list;
 while(temp->fx != mini){
 flag=1;
 temp1=temp;
 temp = temp->next;
 }
 if(flag==0){
 open_list=temp->next;
 return(temp->string);
 }
 else{

271Appendix A

 temp1->next=temp->next;
 return(temp->string);
 }
//modifying mod_at_proc
/* for(i=0;i<no_of_proc;i++){
 if(temp->string!='X')
 */

}
void modify_mod_at_proc(int module,int task, char* str)
{
 int i;
 for(i=1;i<=no_of_modules[task];i++){
 if(str[i]!='X')
 mod_at_proc[i][task]=str[i];
// else mod_at_proc[module][task]=0;
 }
}
void input(void)
{
 int i,j,k,j1,c,p1,p,q,x;
 clrscr();
 printf("INPUT THE NO OF PROCESSORS\n");
 scanf("%d",&no_of_proc);
 printf("INPUT THE NO OF TASKS \n");
 scanf("%d",&no_of_tasks);
 for(k=1;k<=no_of_tasks;k++){
 printf("ENTER THE NO OF MODULES OF TASK %d\t",k);
 scanf("%d",& no_of_modules[k]);
 }
 clrscr();
 for(k=1;k<=no_of_tasks;k++){
 clrscr();
 printf("INPUT THE EXECUTION MATRIX FOR TASK

%d\n",k);
 for(p=1;p<=no_of_proc;p++){
 gotoxy(8*(p),5);
 printf("P%d",p);
 }

 for(j=1;j<=no_of_modules[k];j++){
 gotoxy(2,5+j);
 printf("m%d%d\t",k,j);
 for(p=1;p<=no_of_proc;p++){

272 Scheduling in Distributed Computing Systems

 gotoxy(8*p,5+j);
 scanf("%d",&X[j][k][p]);
 }
 }
 }
//INTER MOD COMM COST
 for(k=1;k<=no_of_tasks;k++){
 clrscr();
 printf("INPUT THE INTER-MODULE COMMUNICATION

MATRIX FOR TASK %d\n",k);
 for(j1=1;j1<=no_of_modules[k];j1++){
 gotoxy(8*(j1),5);
 printf("m%d%d",k,j1);
 }

 for(j=1;j<=no_of_modules[k];j++){
 gotoxy(2,5+j);
 printf("m%d%d\t",k,j);
 for(j1=1;j1<=no_of_modules[k];j1++){
 gotoxy(8*j1,5+j);
 if(j==j1)printf("0");
 else scanf("%d",&C[j][k][j1]);
 }
 }
 }
 clrscr();
 printf("INPUT THE ADJACENCY MATRIX FOR THE

PROCESSORS\n");
 for(p=1;p<=no_of_proc;p++){
 gotoxy(8*(p),5);
 printf("P%d",p);
 }
 for(p=1;p<=no_of_proc;p++){
 gotoxy(2,5+p);
 printf("P%d\t",p);
 for(p1=1;p1<=no_of_proc;p1++){
 gotoxy(8*p1,5+p);
 if(p!=p1){ while(1){
 c=getch();
 if(c==48 ||c==49)break;
 }
 if(c=='1'){
 L[p][p1]=1;
 printf("1");

273Appendix A

 }
 else{
 L[p][p1]=0;
 printf("0");
 }
 }
 else{
 printf("0");
 L[p][p1]=0;
 }
 }
 }
//MAKING THE SQUARE AND CUBE OF ADJACENCY MATRIX
 /*FUNCTION TO MULTIPLY TO MATRICES*/

 for(x=1;x<=no_of_proc;x++){
 for(p=1;p<=no_of_proc;p++){
 L1[x][p]=0;
 }
 }
 for(x=1;x<=no_of_proc;x++){
 for(p=1;p<=no_of_proc;p++){
 for(q=1;q<=no_of_proc;q++){
 L1[x][p]=L1[x][p]+L[x][q]*L[q][p];
 }
 if(L1[x][p]!=0)L1[x][p]=1;
 }
 }
 for(x=1;x<=no_of_proc;x++){
 for(p=1;p<=no_of_proc;p++){
 L2[x][p]=0;
 }
 }
 for(x=1;x<=no_of_proc;x++){
 for(p=1;p<=no_of_proc;p++){
 for(q=1;q<=no_of_proc;q++){
 L2[x][p]=L2[x][p]+L1[x][q]*L[q][p];
 }
 if(L2[x][p]!=0)L2[x][p]=1;
 }
 }

//INPUTTING STATUS
 printf("\n\nINPUT THE STATUS OF PROCESSORS : MODULE

CAPACITY & MEMORY CAPACITY\n");

274 Scheduling in Distributed Computing Systems

 for(p=1;p<=no_of_proc;p++){
 printf("STATUS[%d] = ",p);
 scanf("%d %d",&status[p].mod_cap_present,

&status[p].mem_cap);
 }
 // INPUTTING THE COEFF. FOR INTER PROCESSOR COMM.
 printf("\nenter the adjacency coeff. for direct link between proc : ");
 scanf("%d",&cf0);
 printf("\nenter the adjacency coeff. for one indirect link between proc :

");
 scanf("%d",&cf1);
 printf("\nenter the adjacency coeff. for two indirect links between proc :

");
 scanf("%d",&cf2);
 printf("\n\nENTER THE MEMORY REQUIREMENTS OF

MODULES\n");
 for(k=1;k<=no_of_tasks;k++){
 for(j=1;j<=no_of_modules[k];j++){
 printf("\tm%d%d : ",k,j);
 scanf("%d",&mem_req[k][j]);
 }
 }

 for(x=1;x<=no_of_proc;x++){
 for(p=1;p<=no_of_proc;p++){
 if(x!=p){
 if(L[x][p]==1)CC[x][p]=cf0;
 else if(L1[x][p]==1)CC[x][p]=cf1;
 else if(L2[x][p]==1)CC[x][p]=cf2;
 }
 }
 }
}

void main()
{

 struct time *time;
 unsigned long time1,time2;
input();
 gettime(time);
 time1 = time->ti_hour*60*60*100 + time->ti_min*60*100 + time-

>ti_sec*100 + time->ti_hund;
allocation();

275Appendix A

 gettime(time);
 time2 = time->ti_hour*60*60*100 + time->ti_min*60*100 + time-

>ti_sec*100+ time->ti_hund;
 printf("\nTime Reqd. was :0.%2d seconds\n" , time2 - time1);
// cout << endl << "Time Reqd. was : " << time2 - time1;

//getch();
}

276 Scheduling in Distributed Computing Systems

Appendix B

This appendix has a listing of a program using the algorithm in sec.5.3. The

program has been written in C language under Windows 98 operating system in

Turbo C++ environment. There are some common functions, which are used in

both the ASTAR.CPP (appendix A) and the GA.CPP. So, Descriptions are not

given here for those functions.

GA.CPP

#include<iostream.h>

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<conio.h>

#include<string.h>

#include<dos.h>

#define max_proc 10

#define max_task 10

#define max_mod 10

#define MFACTOR 1000

/* It’s a multiplicative factor */

#define NULL 0

#define NO_OF_GEN 50

/* Generate initial population 50*/

#define NO_OF_CROSSOVER 100

struct st

{

 int mod_cap_present;

 int mem_cap;

}status[max_proc],resetstate[max_proc];

struct String

{

 float fx;

 char str;

 struct String *next;

 int freq;

};

int load(int);

/* This function calculates the load according to equ. 5.1 */
int check_status();

/* It checks STATUS of processors according to the available no. of modules
and available memory */
int find_heaviest_proc();

int heur_cost(int);

int min_cost_IPC(int,int,int);

int min(int,int);

void crossover(float thresh);

/* This function do crossover as described in

sec.5.3.2 */

void insert_open(int,int,int,char str[max_proc]);

void modify_mod_at_proc(char *);

/* This function just sees which processor has been

mapped with which module of which task. */

int allocation();

void modify_status(int,int);

char *remove_min_from_open();

struct String * open_list_50;

void gen50chrom(float bstfx);

/* This function generates 50 chromosomes as initial

population */

void crossover(int bst);

/* This function do crossover as described in

sec.5.3.2 */

struct String * open_list;

float minimum;

int no_of_proc;

int no_of_modules[max_task];

int no_of_tasks;

int chrom_size;

int X[max_mod][max_task][max_proc];

int M[max_mod][max_task][max_proc];

int C[max_mod][max_task][max_proc];

int CC[max_proc][max_proc];

int mod_at_proc[max_mod][max_task];

int L[max_proc][max_proc];

int L1[max_proc][max_proc];

int L2[max_proc][max_proc];

int mem_req[max_task][max_mod];

int cf0,cf1,cf2;

unsigned long no_of_chrom;

void input(void)

278 Scheduling in Distributed Computing Systems

{

 int i,j,k,j1,c,p1,p,q,x;

 clrscr();

 printf("INPUT THE NO OF PROCESSORS\n");

 scanf("%d",&no_of_proc);

 printf("INPUT THE NO OF TASKS \n");

 scanf("%d",&no_of_tasks);

 for(k=1;k<=no_of_tasks;k++)

 {

 printf("ENTER THE NO OF MODULES OF TASK

%d\t",k);

 scanf("%d",& no_of_modules[k]);

 }

 for(j=1;j<=no_of_tasks;j++)

 {

 chrom_size+=no_of_modules[j];

 }

 clrscr();

 for(k=1;k<=no_of_tasks;k++)

 {

 clrscr();

 printf("INPUT THE EXECUTION MATRIX FOR TASK

%d\n",k);

 for(p=1;p<=no_of_proc;p++)

 {

 gotoxy(8*(p),5);

 printf("P%d",p);

 }

 for(j=1;j<=no_of_modules[k];j++)

 {

 gotoxy(2,5+j);

 printf("m%d%d\t",k,j);

 for(p=1;p<=no_of_proc;p++)

 {

 gotoxy(8*p,5+j);

 scanf("%d",&X[j][k][p]);

// X[j][k][p] = pow(-1,j)*10 + 10*j;

 }

 }

 }

//INTER MOD COMM COST

 for(k=1;k<=no_of_tasks;k++)

 {

 clrscr();

279Appendix B

 printf("INPUT THE INTER-MODULE COMMUNICATION

MATRIX FOR TASK %d\n",k);

 for(j1=1;j1<=no_of_modules[k];j1++)

 {

 gotoxy(8*(j1),5);

 printf("m%d%d",k,j1);

 }

 for(j=1;j<=no_of_modules[k];j++)

 {

 gotoxy(2,5+j);

 printf("m%d%d\t",k,j);

 for(j1=1;j1<=no_of_modules[k];j1++)

 {

 gotoxy(8*j1,5+j);

 if(j==j1)printf("0");

 else

 scanf("%d",&C[j][k][j1]);

// C[j][k][j1] = pow(-2,j*j1)*5 + 15*j1;

 }

 }

 }

 clrscr();

 printf("INPUT THE ADJACENCY MATRIX FOR THE

PROCESSORS\n");

 for(p=1;p<=no_of_proc;p++)

 {

 gotoxy(8*(p),5);

 printf("P%d",p);

 }

 for(p=1;p<=no_of_proc;p++)

 {

 gotoxy(2,5+p);

 printf("P%d\t",p);

 for(p1=1;p1<=no_of_proc;p1++)

 {

 gotoxy(8*p1,5+p);

 if(p!=p1)

 {

 while(1)

 {

 c=getch();

// c = '1';

 if(c==48 ||c==49)break;

 }

280 Scheduling in Distributed Computing Systems

 if(c=='1')

 {

 L[p][p1]=1;

 printf("1");

 }

 else

 {

 L[p][p1]=0;

 printf("0");

 }

 }

 else

 {

 printf("0");

 L[p][p1]=0;

 }

 }

 }

//MAKING THE SQUARE AND CUBE OF ADJACENCY MATRIX

 /*FUNCTION TO MULTIPLY TO MATRICES*/

 for(x=1;x<=no_of_proc;x++){

 for(p=1;p<=no_of_proc;p++){

 L1[x][p]=0;

 }

 }

 for(x=1;x<=no_of_proc;x++){

 for(p=1;p<=no_of_proc;p++){

 for(q=1;q<=no_of_proc;q++){

 L1[x][p]=L1[x][p]+L[x][q]*L[q][p];

 }

 if(L1[x][p]!=0)L1[x][p]=1;

 }

 }

 for(x=1;x<=no_of_proc;x++){

 for(p=1;p<=no_of_proc;p++){

 L2[x][p]=0;

 }

 }

 for(x=1;x<=no_of_proc;x++){

 for(p=1;p<=no_of_proc;p++){

 for(q=1;q<=no_of_proc;q++){

 L2[x][p]=L2[x][p]+L1[x][q]*L[q][p];

281Appendix B

 }

 if(L2[x][p]!=0)L2[x][p]=1;

 }

 }

//INPUTTING STATUS

 printf("\n\nINPUT THE STATUS OF PROCESSORS :

MODULE CAPACITY & MEMORY CAPACITY\n");

 for(p=1;p<=no_of_proc;p++)

 {

 printf("STATUS[%d] = ",p);

 scanf("%d %d",&status[p].mod_cap_present,

&status[p].mem_cap);

// status[p].mod_cap_present = 2*p;

 // status[p].mem_cap = 50*p;

 resetstate[p].mod_cap_present =

status[p].mod_cap_present;

 resetstate[p].mem_cap = status[p].mem_cap;

 }

 // INPUTTING THE COEFF. FOR INTER PROCESSOR COMM.

 printf("\nenter the adjacency coeff. for direct

link between proc : ");

 scanf("%d",&cf0);

// cf0 = 1;

 printf("\nenter the adjacency coeff. for one in-

direct link between proc : ");

 scanf("%d",&cf1);

// cf1 = 2;

 printf("\nenter the adjacency coeff. for two in-

direct links between proc : ");

 scanf("%d",&cf2);

// cf2 = 3;

 printf("\n\nENTER THE MEMORY REQUIREMENTS OF

MODULES\n");

 for(k=1;k<=no_of_tasks;k++)

 {

 for(j=1;j<=no_of_modules[k];j++)

 {

 printf("\tm%d%d : ",k,j);

 scanf("%d",&mem_req[k][j]);

// mem_req[k][j] = 10*(j+k-1);

 }

 }

 for(x=1;x<=no_of_proc;x++){

282 Scheduling in Distributed Computing Systems

 for(p=1;p<=no_of_proc;p++){

 if(x!=p){

 if(L[x][p]==1) CC[x][p]=cf0;

 else

if(L1[x][p]==1)CC[x][p]=cf1;

 else

if(L2[x][p]==1)CC[x][p]=cf2;

 }

 }

 }

}

void init(char * str, int no)

{

 while(no)

 {

 *(str+no) = '\0';

 no--;

 }

}

char * Random(void)

{

 char *str;

 int i,j = 0;

 int gen = 0;

 int state = 0;

 str = (char *)malloc(chrom_size + 1);

 if(str == '\0')

 {

 // cout << "Error";

 exit(0);

 }

 init(str,chrom_size+1);

 while(j < chrom_size)

 {

 for(i = 0; i < random(100); i = i + random(10)

+ 1)

 {

 gen += random(i);

 }

 state = abs(gen % (no_of_proc+1));

 if(state == 0)

 continue;

 str[j] = char(state + '0');

283Appendix B

 j++;

 }

 return str;

}

void modify_mod_at_proc(char* str)

{

 int i,j,k=0;

 for(j=1;j<=no_of_tasks;j++)

 for(i=1;i<=no_of_modules[j];i++)

 {

 mod_at_proc[i][j] = str[k] - '0';

 k++;

 }

}

int check_status()

{

 int i,j;

 for(i=1;i<=no_of_proc;i++){

 status[i].mod_cap_present = reset-

state[i].mod_cap_present;

 status[i].mem_cap = resetstate[i].mem_cap ;

 }

 for(i=1;i <= no_of_tasks;i++)

 for(j=1;j<=no_of_modules[i];j++)

 {

 if((--

status[mod_at_proc[j][i]].mod_cap_present) < 0)

 return 0;

 if((status[mod_at_proc[j][i]].mem_cap

-= mem_req[i][j]) < 0)

 return 0;

 }

 return(1);

}

int load(int proc)

{

 int p,n,k,i,j,ex_cost,q,comm_cost;

 p=proc;

 ex_cost=0;

 comm_cost=0;

 n=no_of_proc;

284 Scheduling in Distributed Computing Systems

 for(k=1;k<=no_of_tasks;k++)

 for (i=1;i<=no_of_modules[k];i++)

 M[i][k][p]=0;

 for(k=1;k<=no_of_tasks;k++)

 {

 for (i=1;i<=no_of_modules[k];i++)

 {

 if(mod_at_proc[i][k]==p) M[i][k][p]=1;

 ex_cost+=X[i][k][p] * M[i][k][p];

 }

 }

 for (k=1;k<=no_of_tasks;k++)

 {

 for(i=1;i<=no_of_modules[k];i++)

 {

 /* q is the proc on which j is exe-

cuting*/

 for(j=1,q=1;j<=no_of_modules[k] &&

q<n;j++,q++)

 {

 if(i!=j && p!=q)

 {

 comm_cost= M[i][k][p] *

M[j][k][q] * (C[i][k][j] + CC[p][q]);

 }

 }

 }

 }

 return(ex_cost + comm_cost);

}

float threshold()

/* To find a suitable threshold value, so that only

chromosomes having fitness value above that threshold

are included in the population. */

{

 char *str;

 float max=0;

 int i=5,j;

 int totload=0;

 float fx;

 minimum=32768.00;

 while(i)

 {

285Appendix B

 str=Random();

 modify_mod_at_proc(str);

 if (check_status() == 0)

 continue;

 for(j=1;j<=no_of_proc;j++)

 totload+=load(j);

 fx = (float)(1/(totload+0.1)*100*MFACTOR);

 if(max < fx)

 max=fx;

 // if(minimum > fx)

 // minimum=fx;

 free(str);

 i--;

 }

 // cout << "minimum value is :" << minimum;

 return max;

}

int identical(char *str ,struct String * list)

{

 while(list)

 {

 if (strcmp(str,list->str) == 0)

 return 1;

 list=list->next;

 }

 return 0;

}

void gen50(float thresh)

{

 struct String * temp;

 int i= NO_OF_GEN,j;

 int totload=0;

 open_list=NULL;

 while(i)

 {

 temp=(struct String*)malloc(sizeof(struct

String));

 temp->next=NULL;

 temp->str=Random();

 modify_mod_at_proc(temp->str);

 if(check_status() ==0 || identical(temp-

>str,open_list)==1)

 {

286 Scheduling in Distributed Computing Systems

 free(temp->str);

 free(temp);

 continue;

 }

 totload=0;

 for(j=1;j<=no_of_proc;j++)

 totload+=load(j);

 temp->fx=float(1/(totload+0.1)*100*MFACTOR);

 temp->freq=int(temp->fx) - thresh;

 if(temp->fx < thresh)

 {

 free(temp->str);

 free(temp);

 continue;

 }

 no_of_chrom+=temp->freq;

 temp->next=open_list;

 //cout << endl<< temp->str << "\t" << temp->fx <<

"frequency is" << temp->freq;

 open_list=temp;

 i--;

 }

}

void main()

{

 struct time *time;

 unsigned long time1,time2;

 float thresh;

 input();

 gettime(time);

 time1 = time->ti_hour*60*60 + time->ti_min*60 +

time->ti_sec;

 thresh=threshold();

 gen50(thresh);

 crossover(thresh);

 gettime(time);

 time2 = time->ti_hour*60*60 + time->ti_min*60 +

time->ti_sec;

 printf("\nTime Required by the algorithm was :0.%2d

seconds\n" , time2 - time1);

 int m,m1,p1;

 m=0;

 for (p1=1;p1<=no_of_proc;p1++){

 m1=load(p1);

287Appendix B

 printf("\nThe cost at the processing node

%d is %d",p1,m1);

 printf("\nThe status of proc %d is %d

%d",p1, status[p1].mod_cap_present,status[p1].mem_cap);

 m+=m1;

 }

 printf("\n\nTotal cost at all the processing

nodes is %d",m);

}

void crossover(float thresh)

{

 struct String *parent1 ,*parent2,*temp;

 int p1;

 int p2;

 int state1;

 int state2;

 int crosspoint;

 int i=NO_OF_CROSSOVER,j;

 char temp1;

 int totload;

 int number,k;

 long int max_iter = 300000;

 long int select;

 float max;

 //cout << " crossover begins";

 while(i)

 {

 p1=random(no_of_chrom);

 p2=random(no_of_chrom);

 if(p1 == p2)

 continue;

 max_iter --;

 state1=state2=0;

 temp=open_list;

 parent1=(struct String*)malloc(sizeof(struct

String));

 if (parent1 == NULL)

 {

 cout << " unable to allocate memory";

 return;

 }

 parent1->str= (char *)malloc(chrom_size +1);

 if (parent1->str == NULL)

288 Scheduling in Distributed Computing Systems

 {

 cout << " unable to allocate memory";

 return;

 }

 parent1->next=NULL;

 parent2=(struct String*)malloc(sizeof(struct

String));

 if (parent2 == NULL)

 {

 cout << " unable to allocate memory";

 return;

 }

 parent2->str= (char *)malloc(chrom_size +1);

 if (parent2->str == NULL)

 {

 cout << " unable to allocate memory";

 return;

 }

 parent2->next=NULL;

 while(temp)

 {

 if(p1 > temp->freq)

 p1 -= temp->freq;

 else

 {

 strcpy(parent1->str,temp->str);

 p1 += no_of_chrom;

 state1=1;

 }

 if(p2>temp->freq)

 p2-=temp->freq;

 else

 {

 strcpy(parent2->str,temp->str);

 p2+=no_of_chrom;

 state2=1;

 }

 temp=temp->next;

 if((state1==1) && (state2==1))

 break;

 } //end while(temp)

289Appendix B

 crosspoint=random(chrom_size);

 for(j=0;j<crosspoint;j++)

 {

 temp1=parent1->str[j];

 parent1->str[j]=parent2->str[j];

 parent2->str[j]=temp1;

 }

 modify_mod_at_proc(parent1->str);

 state1=0;

 totload=0;

 if(check_status()==1 && !identical(parent1-

>str,open_list))

 {

 for(j=1;j<=no_of_proc;j++)

 totload+=load(j);

 parent1-

>fx=float(1/(totload+0.1)*100*MFACTOR);

 parent1->freq=int(parent1->fx)-thresh;

 if (parent1 -> fx < thresh)

 {

 free(parent1->str);

 free(parent1);

 }

 else

 {

 state1=1;

 no_of_chrom+=parent1->freq;

 }

 }

 else

 {

 free(parent1->str);

 free(parent1);

 }

 if(state1==1)

 {

 parent1->next=open_list;

 open_list=parent1;

 // cout << endl <<" fitness is " << parent1-

>fx << " frequency is "<< parent1->freq;

 }

 modify_mod_at_proc(parent2->str);

 state2=0;

 totload=0;

290 Scheduling in Distributed Computing Systems

 if(check_status()==1 && !identical(parent2-

>str,open_list))

 {

 for(j=1;j<=no_of_proc;j++)

 totload+=load(j);

 parent2->fx=float(1/(totload+0.1)*100*MFACTOR);

 parent2->freq=int(parent2->fx) - thresh;

 if (parent2 -> fx < thresh)

 {

 free(parent2->str);

 free(parent2);

 }

 else

 {

 state2=1;

 no_of_chrom+=parent2->freq;

 }

 }

 else

 {

 free(parent2->str);

 free(parent2);

 }

 if(state2==1)

 {

 parent2->next=open_list;

 open_list=parent2;

 // cout << endl << " fitness is " << parent2-

>fx << " frequency is " << parent2->freq;

 }

 if(state1==1 || state2==1)

 // {

 i--;

 // if(state1==1)

 // {

 // parent1->next=open_list;

 // open_list=parent1;

 // cout << endl << "chromosome fr parent1

is " << parent1->str << " fitness is " << parent1->fx;

 // }

 // if(state2==1)

 // {

 // parent2->next=open_list;

 // open_list=parent2;

291Appendix B

 // cout << endl << "chromosome fr parent2

is " << parent2->str << " fitness is " << parent2->fx;

 // }

 // }

 if(max_iter < 0)

 {

 cout << endl << "Unable to find in 300000 itera-

tion";

 break;

 }

 }//end while

 k=10;

 max=0;

 number=0;

 char chromosome[25];

 while(k)

 {

 select = random(no_of_chrom);

// cout << endl << "select = " << select;

 temp=open_list;

 while(temp)

 {

 if(select > number)

 {

 number+=temp->freq;

 temp=temp->next;

 }

 else

 {

 // cout << endl << "temp -> fx = " << temp ->

fx;

 if(max < temp->fx)

 {

 max=temp->fx;

 strcpy(chromosome,temp -> str);

 }

 break;

 }

 }

 k--;

 }

 cout<<"Best fitness value is " << max;

 cout << endl << "Chromosom : " << chromosome;

 cout << endl << "no_of_chrom = " << no_of_chrom;

}//end crossover;

292 Scheduling in Distributed Computing Systems

Index

A

A*, 15, 44, 70, 71, 131, 138, 141, 143,
170, 175, 177, 180, 202, 204,
225, 229, 230, 232, 234, 235,
240, 267

ARPAnet, 21
ATM, 8

B
Branch and Bound, 69

C
central task, 97
Central Task Dispatcher, 97
centralized system, 1, 5, 10
Client-Server, 22
clustering, 132, 153, 154, 155, 160
Clustering, 159, 161
complexity, 56, 179, 208, 210, 211, 213,

232, 240
computing nodes, 2, 19, 24, 33, 34, 35, 36,

53, 170, 171, 256, 257, 271
CPU, 33, 37, 50, 57, 58, 97, 259, 271, 273
crossover, 109, 110, 114, 116, 117, 118,

212, 217, 218
Crossover, 121, 216
Crossover Operation, 116

D
distributed computing system, 2, 7, 10, 11,

12, 19, 20, 24, 65, 77, 118, 252,
256, 272

Distributed computing system, 4, 34
Distributed Computing System, 1, 241,

262, 268, 273
distributed processing, 3, 59
Distributed Processing, 11
DOS, 9, 10, 268

E
edundant distributed system, 71
efficiency, 53, 55, 60, 188, 218, 240, 267
Efficiency, 54

F
Fault Avoidance, 28
Fault Detection, 29
fault tolerance, 10, 56
Fault Tolerance, 27
Fitness, 115, 212
fitness function, 120, 121, 127, 230
Fitness function, 110
fuzzy logic, 14, 89, 160, 264

Fuzzy Logic, 88

G
genetic algorithm, 119, 120
Genetic algorithm, 114, 117
Genetic Algorithm, 108, 110, 114, 229,

230, 263, 265, 274
Genetic Algorithm(GA), 14
Global Computing, 253
global table, 202, 267
global Table, 177, 235
Global Table, 15, 62, 94, 99, 135, 140,

141, 142, 189, 192, 229, 236,
240, 266

Global Table(GT), 134
gradient model, 75
Gradient model, 95
grid computing, 250, 255
Grid computing, 251, 259
Grid Computing, 16, 252, 258

H
High Speed Computing, 5
Hybrid, 23

I
IMC, 14, 42, 43, 61, 65, 66, 69, 79, 80, 85,

86, 88, 92, 100, 101, 103, 115,
117, 123, 124, 126, 132, 133,
136, 155, 164, 166, 169, 175,
183, 188, 191, 218, 273

cost, 197, 264
cost matrix, 182
matrix, 170, 180
time, 267

initial population, 212, 217, 239
Initial Population, 216
IPC, 57, 59, 65, 66, 68, 69, 71, 73, 75, 80,

103, 174, 184, 228, 229, 273

L
Lamport, 29, 30, 31
LAN, 8
LBTA, 14, 62, 94, 98, 99, 102, 104, 131,

132, 170, 175, 177, 180, 208,
211, 225, 228, 229, 230, 240,
265, 274

limitations, 44, 78, 79, 153, 262, 263
Limitations, 76
load balancing, 50, 51, 52, 54, 55, 59, 60,

61, 66, 74, 75, 78, 84, 94, 95,
96, 97, 98, 106, 124, 228, 229,
260, 264

Load balancing, 62, 105, 260
Load Balancing, 49, 73, 263, 274
load distribution, 50, 55, 59, 94, 95, 257
Load Distribution, 49
load partitioning, 15, 169, 266
Load Partitioning, 153
Load sharing, 52
Load Sharing, 51, 274

M
machine hardware, 3
memory, 1

disjoint memory multiple processor, 1
global memory, 6
local memory, 4
memory capacity, 98, 134, 171, 173,

202, 211, 216
memory limitation, 66
memory limitations, 76
primary and secondary, 61
private memory, 7
shared memory, 7

Minicomputer, 21
minicomputers, 7, 8, 21, 23, 24
MTA, 274
multi-computer system, 1
Multicomputers, 7
multi-computing, 3
multiple processor, 1, 6
multiprocessors

asymmetric, 4
Symmetric, 4

multiprogramming, 3, 5, 88
Multiprogramming, 111
mutation, 109, 110, 213
Mutation, 117, 121
MUTATION, 118

N
Network Operating System, 9
NP-hard, 44
NP-Hard, 171, 260, 267
NP-hard problem, 14
NP-Hard problem, 13, 108, 265

O
object allocation, 16, 245, 246, 247, 272
Object Allocation, 241
operating system, 2, 9

P
parallel processing, 8
Parallel processing, 3
Parallel Processing, 47, 93, 272
precedence relationship, 71, 77, 79
Precedence Relationship, 69
Prediction Based, 97

R
redundancy, 71, 77
Redundancy, 25, 68
Redundant Distributed System, 72
Redundant Distributed System(RDS), 273
reliability, 7, 8, 11, 15, 25, 39, 57, 66, 72,

108, 119, 126, 127, 263, 265,
267

Reliability, 28, 37, 43, 71, 77, 118, 123,
124, 262

reproduction, 109, 217
Reproduction, 121
round robin, 13, 46, 78, 79, 84, 264
Round robin, 137

S
scheduler, 11, 16, 33, 34, 35, 36, 38, 225,

255, 258, 260, 262, 268, 270
Scheduler, 259, 268
scheduling, 2, 5, 13, 34, 36, 39, 40, 46, 56,

78, 80, 82, 106, 152, 161, 163,
258, 262, 263, 270

models, 16
Scheduling, 33, 246, 250, 255, 259
synchronization, 30, 31, 245
Synchronization, 29

T
TA, 273
task allocation, 2, 13, 14, 15, 26, 34, 36,

37, 39, 40, 43, 44, 46, 59, 66,
69, 70, 72, 77, 78, 82, 87, 90,
92, 98, 103, 104, 111, 114, 131,
133, 134, 135, 136, 139, 143,
156, 170, 171, 173, 176, 230,
262, 263, 264, 267, 271

multiple, 266
task Allocation, 240
Task Allocation, 38, 41, 62, 65, 67, 71, 73,

94, 95, 108, 110, 114, 118, 120,
137, 140, 141, 155, 202, 228,
265, 273

task migration, 61, 74, 98, 228, 264
Task migration, 260
Task Migration, 55, 274
threads, 243, 245, 247
Threads, 58, 271
tightly coupled systems, 4, 6
transparency, 27, 255
Transparency, 24, 25, 26

V
vector mainframe architectures, 5
VLSI, 7

W
WAN, 8

294 Scheduling in Distributed Computing Systems

workstations, 5, 6, 8, 20, 21, 23, 24, 61, 170, 253

295Index

	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	back-matter.pdf

