
Scheduling in Distributed

Computing Systems 
Analysis, Design & Models 

 
(A Research Monograph) 

 
 

 



Scheduling in Distributed

Computing Systems 
Analysis, Design & Models 

 
(A Research Monograph) 

 

 

by 

 
 

Deo Prakash Vidyarthi 
Jawaharlal Nehru University 

New Delhi, India 
 

Biplab Kumer Sarker 
Primal Fusion Inc. 

Waterloo, Canada 
 

Anil Kumar Tripathi 
Banaras Hindu University 

Varanasi, India 
 

Laurence Tianruo Yang 
St. Francis Xavier University 

Antigonish, Canada 

 

 
 



 
Authors: 

Deo Prakash Vidyarthi 
Jawaharlal Nehru University 
School of Computer & Systems Sciences 
New Mehrauli Road  
New Delhi-110067 
India 
dpv@mail.jnu.ac.in 
 

 
Biplab Kumer Sarker 
Primal Fusion Inc. 
Research and Development  
7–258 King Street North 
Waterloo, Ontario N2J 2Y9 
Canada 
biplab.sarker@gmail.com 

Anil Kumar Tripathi 
Banaras Hindu University 
Institute of Technology 
Department of Computer Engineering 
Varanasi-221005 
India 
anilkt@bhu.ac.in 

 

Laurence Tianruo Yang 
St. Francis Xavier University 
Dept. Computer Science 
PO Box 5000 
Antigonish NS  B2G 2W5  
Canada  
ltyang@gmail.com 

 
Library of Congress Control Number:   2008935404 

 
ISBN-13:  978-0-387-74480-3 e-ISBN-13:  978-0-387-74483-4 
 

 
 2009 Springer Science+Business Media, LLC. 
All rights reserved. This work may not be translated or copied in whole or in part 
without the written permission of the publisher (Springer Science+Business Media, 
LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in 
connection with reviews or scholarly analysis. Use in connection with any form of 
information storage and retrieval, electronic adaptation, computer software, or by 
similar or dissimilar methodology now known or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar 
terms, even if they are not identified as such, is not to be taken as an expression of 
opinion as to whether or not they are subject to proprietary rights. 
 
Printed on acid-free paper 
 
springer.com 



 

We would like to acknowledge all individual and institution that helped 
in any form in the contribution of this book. It will not be out of place 
to pay sincere thanks to Prof. V.V.Menon, (Retired Professor, 
Department of Applied Mathematics, Institute of Technology, Banaras 
Hindu University, Varanasi, India) for his nice suggestions and 
accomplishments throughout our research activities. We would also 
like to acknowledge Prof. A.N.Mantri (Ex- Head, Department of 
Computer Science, Banaras Hindu University, Varanasi, India) for his 
sincere advice towards our research. Our students Mr. Alok Singh, Mr. 
Neeraj Asthana has provided technical support towards the completion 
of this book. 
 
Our sincere thanks to Mr. Lutfi M. Omer Khanbary, a Ph.D. student, 
for typesetting the whole manuscript as per the specifications. 
 
Finally, we would like to thank our family for their understanding and 
support while writing this book. 
 
 

ACKNOWLEDEGEMENT 



PREFACE 

    The rapid growth of network technologies, processor architecture and software 

development has facilitated meaningful attempts to exploit the capabilities of a 

collection of computers for speeding up computations and services. A distributed 

system consists of various servers integrated in such a manner so as to appear as 

one system, whereas a distributed computing system (DCS), also appearing as one 

system to the user, aims at distributing the parts of a task submitted to it, to vari-

ous participating nodes of the system. Thus one may view a distributed computing 

system as one that tries to minimize the execution time of tasks submitted to it by 

exploiting as many computing nodes as possible and plausible. A distributed sys-

tem may also have computing nodes that may be known as compute servers, and 

co-operatively execute various modules of tasks submitted; apart from the services 

that it runs e.g. print, mail, name etc. In this book, distributed system has been 

used quite frequently to refer to the distributed computing system, because the ob-

jective is scheduling of the computational load. 

The distribution of a computation load across processing nodes, forming a DCS, 

has been a challenging task. Many researchers have contributed to study of this 

problem during the last two decades. The problem consists of allocation of task 

modules to various processing nodes so as to incur as minimum as possible inter-

processor communication overhead and thereby obtaining good execution speed 



as opposed to a single processor execution. Many a times the inter-processor 

communication may be too substantive compared to the total execution time.  

The approaches for task scheduling in operating system for a distributed comput-

ing system must consider the multiplicity of processing nodes with underlying in-

terconnection network unlike the case of a single processor system. In the case of 

uniprocessor system, the objective is to make the processors busy executing jobs 

all the time by insuring that it does not idle and this serves the purpose. 

In a distributed computing system, the scheduling of various modules on particular 

processing nodes may be preceded by appropriate allocation of modules of the dif-

ferent tasks to various processing nodes and then only the appropriate execution 

characteristic can be obtained. Thus task allocation becomes the important most 

and major activity in the task scheduling within the operating system of a DCS. 

Various research papers have addressed this problem during the last two decades. 

As the problem is quite difficult, most of the solutions proposed had simplifying 

assumptions. The very first assumption has been: consideration of a single task 

only, second no consideration of the status of processing nodes in terms of the 

previously allocated modules of various tasks and third the capacity and capability 

of the processing nodes. The solutions reported in the beginning even assume that 

the precedence constraints amongst the modules of a task are non existent or neg-

ligible. Nevertheless many good algorithms were proposed for the purpose. 
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This book consists of various proposed algorithms for task allocation as part of 

scheduling in an operating system for DCS. It starts with analyzing the existing 

propositions, considering the precedence constraint and improving the known al-

gorithms, proposing a solution for minimizing intermodule communication apart 

from the main and important contribution, made in this book, in the form of the al-

location algorithms that aim at distribution of computational modules belonging to 

multiple tasks onto the various processing nodes considering there status in terms 

of previous allocations and capacity. As the problem is NP-Hard, the techniques of 

A*, GA etc. have been purposefully used to propose the algorithmic solutions.  

The meaningful contributions have been organized in the chapters as given below: 

Chapter 1 discusses the possible performance improvement in computing system. 

It also addresses how the distributed computing system has evolved over the years 

and the issues in DCS research.   

Chapter 2 briefs about the distributed computing system. It discusses various ar-

chitectural models of DCS. Transparency is one of the biggest issues in the design 

of a DCS that gives the DCS a single system image. Chapter 2 points out transpar-

ency issues of the DCS. Fault tolerance and synchronization in the DCS has also 

been briefed in chapter 2. 
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Chapter 3 defines the scheduling problem and identifies the characteristic parame-

ter for a scheduler. It indicates the task allocation issues. Assumptions and nota-

tion, used in this book, have been kept together at one place in chapter 3. 

Chapter 4 addresses the load balancing problem in a DCS. It defines load distribu-

tion, load balancing methodology, migration and also the conflict between load 

balancing and task allocation.  

Chapter 5 briefs the earlier task allocation models. Propositions, which consider 

the precedence amongst the modules of the task and multiprogramming of the in-

dividual nodes, have been proposed in section 5.3 of chapter 5 using list schedule. 

In the same chapter an inter module communication reduction model is also pro-

posed (sec. 5.4), which incurs a heavy penalty in total turnaround time of any task. 

Chapter 6 proposes a few Load Balancing Task Allocation (LBTA) models. It dis-

cusses the LBTA strategy and its solution for single and multiple tasks.  

Chapter 7 uses the important search technique of GA in proposing two allocation 

models, one, which incorporates problem specific knowledge for quick conver-

gence and the other to maximize the reliability of the DCS with allocation. 

Chapter 8 considers the important proposition of multiple tasks allocation and 

proposes a few models. In section 8.1, an allocation algorithm based on A* is pro-

posed and in section 8.2 a new and novel idea of cluster based allocation is pro-

posed. Cluster based allocation model avoids the priori requirement of execution 
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time of modules of the task on the processing nodes and thus can be proved to be 

very useful model of task allocation. Sections 8.3 and 8.4 deal with the LBTA 

strategy using A* and GA respectively.  

Chapter 9 proposes few other approaches for task allocation models. These are 

hybrid and object oriented models.  

Computational Grid is an emerging form of distributed computing. Chapter 10 

concentrates on Grid Computing systems and discusses the scheduling problem 

for a computational grid. “What are the various issues in Scheduling for Grid 

Computing systems?” finds place in chapter 10. 

Finally concluding remarks are made in chapter 11. This chapter also discusses the 

structure and place of a scheduler in a DCS. 
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CHAPTER 1   

Introduction   

 

A Distributed Computing System (DCS) falls in the category of disjoint mem-

ory multiple processor architecture with an underlying processor-to-processor in-

terconnection network. Such a private memory-processor interconnection network 

is known to constitute a multi-computer system only if the programmers need to 

consider the multiplicity of the machines, in programming a solution to the prob-

lem. In case of a distributed computing system the entire system appears as a cen-

tralized system to the user submitting a task; meaning thereby that it is the respon-

sibility of the system to distribute the computational modules of the given task to 

various processing nodes for their efficient execution unlike the case of multi-

computer system as stated above. 

 

With the proliferation of large-scale inter-networks, the idea of distributed 

computing system has been gaining importance. In a distributed computing system 

various computational and informational resources are dispersed over a wide geo-

graphical area with appropriate servers maintaining them at locations and provid-

ing services to clients hooked onto these systems. The idea is that a distributed 

computing system may receive a task that requires various named services from 

various servers and in this case the job of the operating system is to provide the 



appropriate connectivity and the service mechanism. In case of a computational 

task, consisting of various modules, the requirement is that of identification of ap-

propriate computing nodes in the distributed computing system for scheduling the 

executable modules of the task so as to achieve a good turnaround for such a task 

and possibly an increase in the throughput of the computing system. This problem 

has been studied as task scheduling or task allocation problem in the literature [1-

7]. This book deals with the problem of task scheduling/ allocation in a distributed 

computing system. 

 

The following section 1.1 reviews the various ways of performance improve-

ment in computing system including parallel computing with multiprocessors, 

multi-computers and distributed computing environment for the sake of complete-

ness. Section 1.2 discusses the role of distributed computing system in high speed 

computing. Section 1.3 takes a view how the DCS has evolved, as a computing 

system, over the time. Section 1.4 deals with the research issues in distributed 

computing systems. Final section 1.5, describes the organization of the book. 

 

1.1 Performance Improvement in Computing System     

 
Parallel processing has emerged as a key enabling technology in modern com-

puters, driven by the increasing demand for higher performance, lower cost and 

sustained productivity in real-life applications. Concurrent events are taking place 
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in today’s high performance computers due to common practice of multipro-

gramming, multiprocessing and multi-computing. Modern computers are equipped 

with powerful hardware facilities driven by extensive software packages [8]. 

 

Parallel processing and distributed processing are closely related. In some cases 

certain distributed techniques are used to achieve parallelism. As the communica-

tion technology advances progressively, the distinction between parallel and dis-

tributed processing becomes smaller and smaller. In this extended sense, we may 

view distributed processing as a form of parallel processing in a special environ-

ment [9]. 

 

It has long been recognized that the concept of computer architecture is no 

longer restricted to the structure of the bare machine hardware. It is an integrated 

system of machine hardware, system software, application programs and user in-

terfaces. Depending on the nature of the problems, the solutions may require dif-

ferent computing resources. The rapid progress made in hardware technology has 

significantly increased the economic feasibility of building a new generation of 

computers adopting parallel processing. Two categories of parallel computers are 

architecturally modeled. These physical models are distinguished by having a 

shared common memory and unshared distributed memories. Multiprocessors are 

called tightly coupled systems due to the high degree of resource sharing (includ-

ing memory). Symmetric multiprocessors are those in which all processors have 

equal access to all peripheral devices. In such system, all the processors are 

equally capable of running the executive programs, such as OS kernel and I/O ser-
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vice routines etc. In contrast to this, in an asymmetric multiprocessor system only 

one or a subset of processors is of executive capable [8]. 

 

The distributed memory multi-computer consists of multiple computers, often 

called nodes, interconnected by a message-passing network. Each node is an 

autonomous computer consisting of a processor, local memory and sometimes at-

tached disks or I/O peripherals. 

 

Distributed computing system falls in the category of distributed memory par-

allel architecture and is characterized by resource multiplicity and system trans-

parency. The advantage of the DCS is that they are capable of incremental 

growth[5] i.e. it is possible to gradually extend the power and functionality of a 

distributed computing system by simply adding additional resources (both hard-

ware and software) to the system as and when the need arises. For example, addi-

tional processors can be easily added to the system to handle the increased work-

load of an organization that might have resulted from its expansion. With the 

rapidly increasing power and reduction in the price of microprocessors, DCS po-

tentially have a much better price performance ratio than a single large centralized 

system. Moreover the existing microcomputers, minicomputers or even a work-

station can be added to the DCS for its better utilization. 

1.2 High Speed Computing and DCS     
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In practice, parallelism appears in various forms, such as look ahead, pipelin-

ing, vectorization, concurrency, simultaneity, data parallelism, partitioning, inter-

leaving, overlapping, multiplicity, replication, time sharing, space sharing, multi-

tasking, multiprogramming, multithreading and distributed computing at different 

processing levels. All forms can be attributed to levels of parallelism, computa-

tional granularity, time complexities, communication latencies, scheduling poli-

cies and load balancing [10]. DCSs are naturally attractive as existing intercon-

nected computers can be used to assign them various parts of a computational task 

to achieve parallelism. 

 

The definition of high speed computing has undergone many changes in recent 

years. Perhaps, the most notable development in the evolution from the industry, 

dominated by vector mainframe architectures, to one in which massively parallel 

computers have been the primary choice for solving computationally intensive 

problems. As an alternative to massively parallel computers, increasing interest 

has immerged in distributed computing in which networked collection of dedi-

cated or general purpose workstations are treated as a parallel computer. Although 

this method has existed for many years, two developments have served as cata-

lysts to the rapid growth in the use of such cluster-based computing. First, high 

performance workstations with microprocessors that challenge custom-made ar-

chitectures are widely available at relatively low cost. Second, several software 

packages have been developed to assist the programmer in process management, 

inter-process communication and program monitoring/debugging in a distributed 

environment [11]. 
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 The researches in the area of parallel computing have been indicating the avail-

ability of immense computing power, for execution of properly distributed and 

coordinated parts of jobs submitted to the system from time to time. The conflu-

ence of low-cost high performance processors and interconnection technologies 

has spurred a great interest in the advancement of computer architectures. The of-

ten-cited advantages of these architectures include high performance, availability, 

and extensibility at lower cost. As pointed out earlier, the computer architectures, 

consisting of interconnected multiple processors are of two types: 

 

(i) Multiprocessors, known as tightly coupled systems, allow sharing of 

global memory by multiple processes running on their processors and 

communication amongst the processes is actuated by use of the shared 

variables. In such coupled systems, the number of processors that can be 

usefully deployed is usually small and limited by the bandwidth of shared 

memory.  

 

(ii) Multicomputers and DCSs consist of a number of independent processors 

with private memory units and the IPC is done by message passing mak-

ing use of the processors interconnection.  

1.3 Evolution of the DCS     
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The processors in a DCS may vary in the size and the functionality. They may in-

clude small microcomputers, workstations, minicomputers and large general pur-

pose computer systems. For a particular processor its own resources are local, 

whereas the other processors and their resources are remote. Together, a processor 

and its resources are usually referred to as a node or site or machine of the distrib-

uted computing systems. Resource sharing, computational speedup, reliability and 

communication over distances are the main reasons for building the DCS [12]. 

 

DCSs have become more and more attractive in recent years due to the advance-

ment of VLSI and computer networking technologies. DCS not only provide the 

facility for utilizing remote computer resources and data but also increase the 

throughput by providing facilities for multiprogramming and parallel processing 

[13]. Furthermore, modularity, flexibility and reliability of the DCS make them at-

tractive for many types of application.  

 

The advent of time-sharing systems was the first step towards building the DCS 

because it provides us with two important concepts used in DCS; the sharing of 

computer resources simultaneously by many users and the accessing of computers 

from the different places. The centralized time-sharing systems had a limitation 

that their terminals/workstations could not be placed very far from the main com-

puter room/system (like in minicomputers) since ordinary cables were used to 

connect the terminals to the main computer. But the advancement of computer 

networking technologies LAN (Local Area Network) and WAN(Wide Area Net-

work) allow hundreds, even thousand of computers to be connected (may be resid-
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ing in different cities or countries or continents) in such a way that the small 

amounts of information can be transferred between computers in a fraction of sec-

ond or so. Recently there has been another major advancement in networking 

technology, the ATM (Asynchronous Transfer Mode) technology, which makes 

very high speed networking possible in both LAN and WAN environments. The 

availability of such high bandwidth networks allows DCSs to support a com-

pletely new class of distributed applications called multimedia applications that 

deal with the handling of a mixture of information, including voice, video and or-

dinary data [14]. 

 

The operating systems commonly used for DCS can be broadly classified into two 

types- Network Operating System (NOS) and Distributed Operating System 

(DOS) [14].  

 

In NOS, the users are aware of the multiplicity of the machine and can access the 

resources either by logging into the appropriate remote machine or transferring the 

data from the remote machine to their own machine. On the other hand, in DOS 

the users would not be aware of the multiplicity of machines. It provides a single 

system image to its users. Users access remote resources in the same manner as 

they access local resources. A DOS dynamically and automatically allocates tasks 

to the various machines of the system for its processing. 

 

In NOS, each computer of the system has its own local operating system (the op-

erating systems of different computers may be the same or different) that functions 
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independently of the other machines meaning thereby that each one makes inde-

pendent decisions about the creation and termination of their own processes and 

management of local resources. Due to the possibility of difference in local oper-

ating systems, the system calls for different machines of the same DCS may be 

different in this case. On the other hand, in DOS which is a single system wide 

operating system and each machine of the DCS runs a part of this global operating 

system. There is a single set of globally valid system calls available on all com-

puters of the DCS. 

 

The fault tolerance capability of a DCS is usually very high as compared to that of 

a networked system. If some computers fail in NOS, then several users are unable 

to continue with their work. On the other hand, in case of a DOS, most of the users 

can continue their work normally with only some percentage of loss in perform-

ance of the DCS. 

1.4 Issues in DCS Research     

 
The hardware issues of building a distributed computing system were fairly well 

understood, the major stumbling block is the availability of adequate software for 

making these systems easy to use and exploit its power fully. Therefore, since 

1970, a significant amount of research work was carried out in the area of distrib-

uted operating system. Designing a distributed operating system is more difficult 

than a centralized one mainly because of the non-availability of complete informa-
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tion about the system environment [4-7, 12, 14]. There is no common clock and 

various resources are physically separated in DCS in contrast to a centralized sys-

tem. Despite these, the users of the DCS are to be provided all the advantages of 

the system. To meet these challenges the researchers, in the DCS discipline, must 

deal with several important issues. Some of these key issues are identified and dis-

cussed below. 

 

The distributed computing system is designed in such a way that the collection 

of various machines, connected by an interconnection network, appears as a vir-

tual uniprocessor system. Achieving complete transparency is a difficult task and 

research is still continuing on this issue. Of the several transparency issues identi-

fied by the ISO Reference Model for Open Distributed Processing, location trans-

parency, migration transparency and concurrency transparency are very important 

[6-7, 14]. 

 

The often-advocated advantage of the DCS, in comparison to the centralized 

system, is the reliability due to the existence of multiple resources. However, only 

the multiple instances of resources cannot increase the reliability of the DCS, 

rather the various processes of the distributed operating system (viz. memory 

manager, task scheduler etc.) must be designed properly to increase the reliability 

by extracting the characteristic features of the DCS. 

 

Another important issue is flexibility. It is more required for open distributed 

system [4-5, 14]. 
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Performance improvement of an application running on the DCS than that of 

single processor system is another desired feature. To achieve this though the 

various components of the distributed operating system are taken into account, but 

the most important role is that of a scheduler or task allocator. The turnaround and 

throughput are the two important characteristic measures for the performance im-

provement.  

 

Another issue in DCS research is scalability that refers to the capability of the 

system to adapt to an increase in the service load. A distributed computing system 

should be designed to cope with the growth of the processing nodes and the users 

as well. How to design a system so that such growth should not cause any serious 

disruption of services is very important research issue in the DCS. 

 

Growth, in the number and types, of processing nodes introduces another di-

mension that is inevitable to have dissimilar hardware or software. Many users of-

ten prefer heterogeneity because it provides the flexibility of different computer 

platforms for different applications. Designing heterogeneous system is far more 

difficult than a homogeneous one. 

 

In order that the users can trust the system, the various resources must be pro-

tected against destruction and unauthorized access. Enforcing security in a DCS is 

another important research area and is much more difficult than in a centralized 

one. 
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 The book discusses one of the research issues that of task scheduling/allocation 

thoroughly.  The problem is as such an NP-Hard problem and thus various feasible 

solutions are possible. The authors present and discuss all those task scheduling 

models that have been proposed by the authors themselves.  

1.5 Organization of the Book     

 
The book is organized in ten chapters. The current chapter, which is the first 

one, is an introductory chapter. Second chapter defines the task scheduling prob-

lem of the DCS. Chapter 2 takes a cursory look over the distributed system. What 

is exactly expected out of scheduling and how it has been addressed in this work, 

is detailed in chapter 3. Load balancing is an important aspect of the scheduling 

problem and is pursued in the chapter 4. Some of the earlier task allocation mod-

els, their limitations and few proposed trivial models for task allocation have been 

discussed in chapter 5. A precedence constrained task allocation model, in which 

the emphasis is on the precedence of the modules [15] and that minimizes the 

turn-around time of the given task is discussed in sec 5.3 of chapter 5. The effect 

of already allocated modules of unrelated tasks, on the processing elements com-

prising the system, is considered (assuming round robin scheduling) in this model.  

 

Communication amongst the modules adds to the cost of overall execution of 

the task, for the allocation being considered, if its modules are to execute onto the 
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distant processing nodes of the DCS. An IMC cost reduction model (section 5.4), 

an aid in allocation algorithms, uses fuzzy logic to consider high and low commu-

nicating modules. The same fuzzy function is applied to determine near or distant 

nodes of the DCS. This IMC cost reduction model can be introduced in any task 

allocation algorithms at minimum cost [16].  

 

Load balancing task allocation models find place in chapter 6. This chapter 

considers load balancing strategies and discusses the LBTA solutions for both the 

single and multiple task allocation. 

 

As the task allocation problem is an NP-hard problem, Genetic Algorithms 

(GA) is found to be suitable to solve it. Two task allocation models, based on GA, 

have been proposed in chapter 7. First one aims at minimizing turn-around time of 

a task (sec. 7.1) and the second (sec. 7.2) gives an allocation that maximizes the 

reliability of the DCS as desired in some systems. The TA model proposed in sec-

tion 7.1 [17], is based on a finding that the incorporation of some problem specific 

knowledge in construction of the GA, improves its performance and solution con-

verges quickly [18]. This algorithm considers the inclusion of all possible con-

straints in the model, and as suggested in [19] will converge quickly.  

 

Task allocation models for maximizing reliability of a DCS have appeared in 

the past [20-22]. We applied GA to maximize reliability of the DCS with task al-

location and the same is discussed in section 7.2. The algorithm not only gets the 

advantage of GA for quick convergence but also produces better solutions in terms 
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of allocation with improved reliability [23]. The result is compared with that of 

Shatz [21] and it shown that the proposed model performs better.  Many more in-

ferences are drawn.  

 

The TA models, proposed by researchers in the past, have considered the mod-

ules of a single task and assume that processing nodes have enough memory to ac-

commodate unlimited modules. In a realistic situation multiple tasks arrive and at 

any instance of time, the Processing Element (PE) has modules of earlier tasks al-

located and the memory occupied by it. In chapter 8, multiple tasks allocation in 

DCS is deliberated. Multiple task allocation, using A*, appears in sec. 8.1 [24]. To 

implement this, the concept of Global Table is introduced. Section 8.2 proposes a 

new idea of cluster-based approach of load partitioning and allocation in DCS. 

Cluster of the modules, based on communication requirement and cluster of PEs 

based on interprocessor distance is formed. Allocation is decided from task cluster 

to processor cluster. This model has the advantage that it does not require the pri-

ori knowledge of execution time of the modules of the tasks onto nodes of the 

DCS. As the allocation algorithms, in this chapter, consider multiple tasks and 

status of PEs due to previous allocations, these are not comparable with other 

models proposed in the literature. Section 8.3 discusses the load balancing task al-

location for multiple tasks execution in DCS using A* and section 8.4 discusses 

the same using GA. 
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Chapter 9 makes a comparative analysis of scheduling models based on A* and 

GA and proposes a hybrid model using both A* and GA. This chapter also dis-

cusses the object allocation as most of the system are going object oriented.  

 

Grid Computing is another form of Parallel and Distributed Computing. Com-

putational grid is an emerging computing system so chapter 10 is dedicated to the 

discussion on the scheduling in computational grid. This chapter details various 

research issues in Grid scheduling.  

 

Chapter 11 is the concluding chapter that summarizes the whole book. Struc-

ture and place of scheduler in Distributed Operating System is briefed in sec. 11.2 

of this chapter.  

 

The abbreviations used in the book are listed at one place for quick reference. 

Finally, we have listed few programs written to carry out the experiments in the 

appendix given is last. 
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CHAPTER 2 

 

An Overview of a Distributed System 

 

 
 

    This chapter takes a cursory view of a distributed system. It discusses various 

architectural models of a distributed system and various types of transparencies 

involved. It also discusses fault tolerant, one of the very important property of a 

distributed system.  A clock of the distributed system makes its computing nodes 

independent. How the system will be synchronized, in spite of the distribution of 

the clock, has been discussed in this chapter. The objective in this chapter is to in-

troduce briefly the important properties of a distributed system to its readers, be-

fore moving to the scheduling aspect in a distributed computing system. The dis-

cussion, in general, is on a distributed system as the distributed computing system 

differs from the distributed system in its objective of handling the computational 

load as mentioned at other places as well. 

2.1 DCS Architecture Models   

   
  Various models for the design of a distributed computing system have been 

proposed. We discuss here few models. 



2.1.1 Workstation model 

   
  The workstation model is the simplest one and is consists of several worksta-

tions connected by a common communication network (Fig. 2.1). This is the most 

popular model also as it uses the available legacy systems in designing a distrib-

uted computing system.  It has been observed that not often all the workstation in 

an organization are used all the time, whereas they are on and can be used for the 

execution of the jobs belonging to the other user. Thus by connecting all the work-

station of an organization, all the workstation can be utilized fully and this will re-

sult in parallel execution of the jobs reducing the overall completion time.  

 

  The issue may arise that what happens when a workstation was executing a 

job of some other workstation. These issues have been addressed by Tanenbaum 

[2].  

 

A user logs onto his/her workstation and submits the job to be executed. This 

job will be exploited for available parallelism and thus various concurrent mod-

ules of the job will be allocated onto any free workstation. This way the coopera-

tion amongst the workstation will result in the concurrent execution of the job. 
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2.1.2 Minicomputer Model   

   
  This model comprised of the minicomputers, in place of the workstations, and 

is simple extension of the centralized timesharing system (Fig. 2.2). As usual, each 

minicomputer may have several terminals attached and a user can fire the job for 

execution from any of the terminals.  The job can be executed on the minicom-

puter, from which it has been fired, or on any other minicomputer. 

 

  This type of model is very much useful when resource sharing with remote 

users is required. For example, sharing databases of different types, with each type 

of the databases located on a different minicomputer. 

 

  The early ARPAnet is an example of a distributed system based on the mini-

computer model. 
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2.1.3 Client-Server Model   

   
  This model considers that the services of the system are concentrated over few 

dedicated machines and these services can be accessed from various remote nodes. 

These dedicated machines are referred as server and the machine accessing the 

services are called client (Fig. 2.3). Basically, the clients are minimal machine 

with less functionality. Servers are highly capable processors with one or more 

functionality. User can log onto any of the client machine and can fire the job. 

Normal computation can be performed on the client machine itself and the job re-
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quiring specific services will be forwarded to the special server and will be exe-

cuted there.  

 

The client machine may be even the diskless workstations and the servers may 

be the minicomputers equipped with large, fast disks. 

 

   

   

   

 

 

 

 

2.1.4 Hybrid Models   

   
  In hybrid models all above models can be integrated into one. We may have 

the nodes that can act as the server as well as the client as and when the need 

arises. We can have the workstations, minicomputers, mainframe computers or 

even the multiprocessor systems integrated into one to conceive a distributed 
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computing system. This type of model introduces heterogeneity in the design of 

the distributed system, but provides the possibility of integrating all types of com-

puting nodes for maximum utilization.  

2.2 Transparency in DCS   

   
  One of the main goals of the distributed computing system is the single sys-

tem image. This is possible by making the multiplicity of the machines invisible to 

the user. The same is provided by adding transparency to the system. A true dis-

tributed system should have various types of transparencies so that user is unaware 

of the distribution and one views it as a single system. Transparency issue has 

been discussed in detail in the literature [1]. We brief here various types of trans-

parencies in DCS. 

2.2.1 Location Transparency   

   
  The location transparency is further divided in two. One, in which the name of 

a resource does not reveal anything about its location in the network, is known as 

Name transparency.  The name transparency suggests that the name of a resource 

should be independent of the topology of the network.  Further, the movable re-

sources in the network are allowed to move across the network without any 

change in their names. 

 

The other one is in which user is allowed to use the resources from any of the 

hosts without any change in the names of the resource. For example, a user can re-

fer a file with the same name independent to the question where from the user’s 

log in. This is referred as user mobility. 
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2.2.2 Replication Transparency   

   
  Redundancy is a technique by which the reliability of a system is increased. It 

is the property of a distributed system to introduce redundancy for reliability and 

better performance. Replicated resources and activity should be transparent to the 

user of a distributed system. The distributed system needs to handle the naming of 

replicas so that various copies of the same replica can be addressed by the same 

name.  Replication control deals with how many of such replicas to be created, 

when it should be deleted etc. 

2.2.3 Migration Transparency   

   
  Migration of the modules of a task is one of the important activities of the dis-

tributed system and has been addressed extensively in this book. The objective of 

the migration transparency is to allow the migration of the object in a user trans-

parent manner. More discussion on the migration is in section 4.3 of chapter 4. 

 

2.2.4 Access Transparency   

   
  Access transparency suggests that it is invisible to the user that whether a re-

source is remote or local. So a distributed system allows a user to access even re-

mote resources in the same manner as the local ones.  

   

2.2.5 Concurrency Transparency   
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  As the distributed system consists of number of nodes it allows the execution 

of concurrent modules of a given task. The concurrency transparency suggests that 

these modules can be executed concurrently invisible to the user. However, con-

currency control is an important issue, which must be addressed by the system de-

signer.  

 

The concurrency transparency also indicates that users can execute the concur-

rent modules of their tasks, in parallel, as and when the nodes can be allowed to 

execute so without the knowledge of the user. 

2.2.6 Performance Transparency 

   
  This requires from the system to configure it dynamically, as and when re-

quired, to improve the performance of the system. We, in this book, have pro-

posed a task allocation model in which the system is reconfigured to use it to the 

maximum possible extent (sec. 8.2 chapter 8). 

 

2.2.7 Failure Transparency   

   
  This deals with allowing making the necessary changes in case of partial fail-

ure in the system. An often used term is graceful degradation that says to redis-

tribute the load of a failed processor to all other processor in such a manner that is 

invisible to the user. Though, it is not possible to handle complete failure transpar-

ency, it is done to its maximum possible extent. Sometimes it is not possible to 

hide the failure of the processor, even if the load is shared by all other because the 

system will become slow and will be noticeable to the user. So a system having 

full failure transparency is not justified also. 

24 Scheduling in Distributed Computing Systems



2.2.8 Scaling Transparency   

   
  This says that system is allowed to scale up and down without affecting the 

users.  

2.3 Introduction to Fault Tolerance   

   
  A fault is a mechanical or algorithmic defect that may generate error [1]. Fail-

ure is the repercussion of a fault. System failures have been characterized into two 

types. One, in which the system stops functioning after detecting a fault, is called 

as the fail-stop failure. The second one, in which system continues to function and 

produces wrong results even after detecting a fault, is referred as Byzantine fail-

ure. It is obvious that Byzantine failures are much more difficult to handle than the 

fail-stop failure. 

 

  Faults are handled by the methods of tolerance, avoidance and detection and 

recovery. 

2.3.1 Fault Tolerance   

   
  Fault tolerant is the ability of a system to continue functioning even if the sys-

tem fails partially. The term is referred as the “graceful degradation” in which the 

load of the failed node is given to the other nodes resulting in degraded perform-

ance. Fault tolerance is strongly related to dependable systems. Dependability re-

quires the following [2]: 

 

• Availability 

• Reliability 

252    An Overview of a Distributed System



• Safety 

• Maintainability 

 

Availability is defined as the probability that the system is available at any 

given moment to perform its function on behalf of its users. Highly available sys-

tem is one that will most likely be working at any given instant of time. 

 

Reliability is defined in terms of the time interval in contrast to an instance in 

time defined in availability.  A highly reliable system is one that will continue 

working for a long period of time. If a system goes down for one millisecond 

every hour, it has more than 99 percent availability but is highly unreliable. Fur-

ther, if a system never crashes but is shutdown for two weeks in one year has high 

reliability but only 96 percent availability. 

 

Safety refers the situation in which the safety of the system is ensured so that it 

can perform properly. For example, if a control system that send people in space 

fails even for a brief moment, it could be disastrous. Safety of such systems is 

very much required. 

 

Maintainability expresses how the system can be maintained for the future ac-

tion i.e. if a system fails how easily and quickly the system can be repaired.  

2.3.2 Fault Avoidance   

   
  This deals with the component design that tries to minimize the faults. The 

components whose failure rate is least are used to design a system and the system 

eventually minimizes the fault occurrences. Both the hardware and software com-

ponents are taken care of this way. 
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2.3.3 Fault Detection and Recovery   

   
  This deals with mechanism of determining the occurrence of a failure and then 

to correct it in order to work the system properly. The failure is notified by the 

system and a corrective measure is taken to overcome the fault. Roll back is a 

mechanism that is often used for the corrective measures. 

 

The detection method should be able to detect all types of faults, be it node 

failure, link failure or other software failure.  

2.4 Synchronization   

   
  Synchronization is very important activity in a distributed system as the dis-

tributed system is not having a global central clock. It is desired that synchroniza-

tion be done based on actual time. Many algorithms have been proposed in the lit-

erature that deals with synchronization of actual physical clocks [3-5]. 

 

It has been noted that sometimes only the relative ordering of the event is im-

portant than the ordering in absolute time. Logical clock synchronization deals 

with the ordering aspects of the events rather than the physical clock synchroniza-

tion. We will discuss only the Lamport time stamping here that deals with logical 

ordering [6-7]. 

 

Physical clock synchronization deals with how the two nodes of a distributed 

system for which the time on physical clocks are different will be synchronized. It 

is important also otherwise it may become catastrophic. For example, in a distrib-

uted system a job is being executed that compiles all the files belonging to that job 

and then execute it. These files for the job may be located on different nodes of 

the system. Suppose the owner of the job changes a file on any of the node. Before 

execution of the job, it needs to check if any file has been modified and if so to 
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compile it afresh. Whether a file has been modified or not will be indicated by the 

time of creation and execution only. Suppose the machine on which the file is be-

ing compiled gives more time than on which it has been modified, the modifica-

tion will not be noticed and the job will execute only the old version of the object 

file. Thus there is a need to synchronize the physical clock. Christian algorithm is 

a famous one for physical clock synchronization [3]. 

   

  For many purposes, it is sufficient that all machines agree on the same timings 

of their clocks. It is not necessary that their clocks should have the real time. This 

results in dealing with ordering of the events. This defines a logical clock. Lam-

port time stamping is very important move for the logical clocks. 

2.4.1 Lamport Timestamps   

   
  Lamport defined a relation called “happens before”. If all processes agree that 

an event x happened before y, the same can be represented as x→y. This relation 

is a transitive relation. If two events happen in different processes that do not ex-

change messages, then this relation does not hold. These events then said to be 

concurrent [2]. 

 

A time value T(x) is assigned to the events to the events with the agreement of 

all the processes.  Thus, if x→y holds, then T(x) < T(y) i.e. if event x occurs be-

fore event y within the same process then T(x) < T(y). Similarly if x represent the 

sending of the message and y receiving of the message then T(x) < T(y). Further, 

the time value T must always advance. 

 

  The processes running on different machines with their own clock on a dis-

tributed system must be synchronized. The clocks of the processors of the DCS 

may have its own speed. The events can be synchronized using Lamport algo-

rithm. Lamport algorithm suggests that if a message has been delivered at time t 
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on a machine A can not reach at time t-x on some other machine B. If it is ob-

served so, then the time of the machine B will be advanced as t+1. This way the 

logical time stamping will be done.  

 

For other synchronization mechanism the readers may refer [2].  
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CHAPTER 3 

Scheduling Problem 

 
 

      The problem addressed in this book is concerned with the scheduling as-

pects of computations being submitted to a system that consists of distributed and 

properly networked collection of individual computing nodes. In other words, the 

main function of the scheduler of the operating system of such a computing infra-

structure has to be allocation of different parts of a given task to various process-

ing nodes of the computing system in such a way so as to be able to exploit effi-

ciently the computing resources of the system and improve execution 

characteristic of any given task compared to its execution on a single processor 

system. This problem has been addressed in the literature during the last two dec-

ades but the assumptions made in those work simplify the problem extensively. 

For example, most of the models assume (i) only one task and their modules; (ii) 

ignore the capacity and   status of processing elements etc. 

 

The scheduling policies of a single processor system have been developed 

keeping in mind the fullest exploitation of the underlying CPU of the given ma-

chine. The idea there was to achieve the best execution of given computational 

task by making the CPU busy all the time. In case of a distributed computing sys-

tem, multiple parts (modules) of a given task are allocated onto the various proc-



essing nodes so that they can execute in parallel (if possible) to produce better turn 

around time apart from utilizing the processing elements of the DCS. Hence the 

scheduling aspects of a DCS consists of two main functionalities: a) allocation of 

modules of any given task by selecting appropriate computing nodes of the DCS 

and b) the mechanism of execution of various modules of different tasks on a par-

ticular computing node of the DCS. 

 

This chapter discusses about functioning of the DCS in section 3.1 and desir-

able characteristics of a scheduler in section 3.2. The job of the scheduling has 

been defined as the allocation of the tasks. Section 3.3 discusses scheduler as a 

task allocator. Issues in task allocation have been briefed in section 3.4. For the 

purpose of clarity the task allocation problem is discussed in section 3.5. The nec-

essary assumptions, notation, and abbreviations used in the book, concludes the 

chapter. 

3.1 On Functioning of a DCS   

  It will not be out of place to consider the functioning of a DCS, as the sched-

uling aspects are very much concerned with the way of functioning of these sys-

tems. Distributed computing system falls in the category of disjoint memory archi-

tecture. This type of system consists of multiple computing nodes that do not share 

memory and clock. The participating nodes have their own private memory. These 

nodes are connected in some fashion [1]. The nodes communicate with one an-

other using communication links of the interconnection network. There has been a 
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continuous research for improving the communication performance of the inter-

connection networks [1-2]. 

  As has been said earlier, a distributed system consists of multiple processing 

nodes that provide one or the other services to the users of the system. A user logs 

onto the system as one interconnected unit and multiplicity of the participating 

machines is hidden within the internals of the collection. When a substantive 

computation load is submitted to the distributed computing system, the scheduler 

must work out whether one or multiple number of computing nodes should be util-

ized to execute the computational work. In case of the possibility of providing the 

service from the task-receiving-node itself, the work is simpler and the computa-

tion is scheduled there itself. In the event of this computation being a request for 

some particular service, to be obtained from some other participating sites (nodes), 

the appropriate assignment will have to be carried out. The job of the scheduler 

becomes difficult if multiple computing nodes, for obtaining the best execution of 

the submission, must share the computational load. 

 
The method of communication, architecture of interconnection network, the 

type of participating computing nodes, their capacities and the organization of ser-

vices of the operating system of the DCS are some important issues related to the 

functionality of a DCS that affect the above said-the main and difficult most part 

of the scheduling of tasks on the DCS [3]. 

Next section describes the important characteristics of a scheduler of the DCS. 
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3.2 Desirable Characteristics of a Scheduler 

  A scheduler must coordinate the execution of a given task by utilizing the 

available computational resources for satisfying the execution characteristics ex-

pected. As detailed above, on receiving a task the scheduler must distinguish be-

tween the requirement of a general service (either from the receiving node or from 

some remote server) and the requirement of distribution of the computational load 

across multiple computing nodes of the system. It is a latter case of cooperative 

execution of multiple modules of a computational task on various participating 

nodes of the DCS that happens to be the main and difficult function of the sched-

uler in a distributed computing system. This function of the scheduler is known, in 

the literature, as task allocation or task mapping in multi-computer / distributed 

computing system [4-9]. It should be noted that multiple tasks from various users 

are submitted on any nodes of the DCS from time to time. The scheduler must also 

accommodate this multiplicity of the disjoint task. Three major aspects of schedul-

ing that are characteristic parameters for any scheduler are known to be turn-

around time, throughput and interactive response time. Turnaround time is a task-

oriented characteristic that considers the time duration between submission and 

completion of a task. Obviously, it will be desirable to minimize this time. Simi-

larly, the throughput of the system is a characteristic that measures the number of 

tasks successfully executed in unit time. This quantity must be maximized. The in-

teractive response talks about the requirement of interactive users during the exe-

cution of the tasks. One or some modules of a task may continue to reside on the 

recipient node, whereas all other modules of a task that do not participate in the in-
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teractive communication may be allocated onto the multiple processing elements. 

Reliability, with allocation, is also a characteristic parameter often required for a 

real-time DCS though it is an added advantage for any DCS. 

 

This way, a model of the scheduling activity must aim at maximization of 

throughput by considering the inter module communication of the given task and 

the interconnection pattern of the given DCS with appropriate task allocation 

methodology. The various aspects of task scheduling in a DCS are considered by 

making use of task graphs & processor graph to make appropriate allocation. 

3.3 Scheduler as a Task Allocator 

  The concept of scheduling has been very extensively explored in the context 

of a single processor system, wherein the attention of the CPU is switched from 

one job to another. This insures appropriate implementation of certain policies that 

aim at providing fair share of CPU time to jobs. In a DCS, we have multiple proc-

essors and the idea of scheduling works on identification of CPUs for individual 

components of a job so that the effect of parallelism is obtainable. This obvious 

requirement considers the computational job in form of a task, consisting of num-

ber of modules that may execute concurrently and exchange messages as per re-

quirements of the computational jobs. This understanding defines the scheduler 

whose main activity becomes allocation of various modules of individual tasks 

onto the processing nodes available in the DCS. Thus, in this book, the terms 
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scheduler and allocator have been used interchangeably to carry the same mean-

ing. 

3.4 Task Allocation Issues in DCS 

  The following are certain pertinent points that need consideration, as these 

would affect the allocation activity: 

• The criterion for allocation, 

• Static vs. dynamic allocation, 

• Single vs. multiple task allocation, 

• Task migration, and 

• Load balancing. 

 

Given a task at hand, for allocation, the scheduler is to allocate it onto the proc-

essing nodes of the DCS. The job of the scheduler, as an allocator, can be divided 

in two phases. First, that exploits the concurrency presents in the program and di-

vides the program into various concurrent modules. The second allocates these 

modules onto the processing nodes. 

 

Further, there are two ways to exploit concurrency. The programming lan-

guages designed for the DCS can support concurrency by providing the parallel 

constructs in the programming languages of the DCS. Many available languages 

for DCS provide such constructs viz. FORK-JOIN, Cobegin-Coend, Parfor etc. 

These parallel constructs can be used to specify the parallel portion of the program 
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by writing it in the program. On the other hand, the allocator can explore the con-

currency in the program by applying various methods (viz. Bernsteins conditions 

etc.) [10]. 

 

Both the above said methods produce parallel executable modules of the pro-

gram. For the task allocation problem, it is assumed that a task is given in form of 

the executable modules. The allocator allocates these modules to achieve im-

provement in one or more characteristic parameters (sec. 2.2). Normally the task 

allocation algorithms optimize the COST (completion time) parameter out of the 

allocation. Cost is defined as the sum of the processing cost of all the modules of a 

task and the communication among the modules. The other often-used parameter, 

to be optimized, is the reliability of the system that is defined as the probability of 

the successful execution of a task on the system. The reliability is very important 

characteristic parameter for the Real Time DCS. 

 

Choice is also made between static and dynamic scheduling. In static schedul-

ing, the modules once allocated stick to the same node for their lifetime. This 

seeks to optimize completion time of a finite set of tasks. To accomplish this goal, 

the characteristics of all the tasks, including their sizes and service demands, must 

be known in advance. Static scheduling is appropriate to a very specialized class 

of systems including some real time systems in which this information is priori 

available. Obviously, this limits the use of the DCS and consequently affects the 

throughput of the system, but easier to implement as other unrelated tasks are not 

going to affect the execution. 
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Dynamic scheduling assumes a continuous stochastic stream of incoming tasks. 

Very little parameters are known in advance for dynamic scheduling. Obviously, it 

is more complex than static scheduling for implementation, but achieves better 

throughput. Also it is the most desired because of the application demand. 

 

Another concern is that of a single task versus multiple task allocation. As evi-

dent, single task allocator allocates only one task and concentrates only for its 

completion. Multiple task allocator considers and handles more than one task for 

execution. To maintain the track of the execution of the multiple tasks (with their 

modules) and status of nodes a corresponding data structure is required. 

 

To achieve the load balancing in the system, often the modules of the task mi-

grates from one node to the other from time to time. This activity is known as task 

migration[25]. In dynamic allocation, task migration comes into effect for proper 

load balancing. Several load balancing policies are suggested in the literature [7, 

12-25]. 

3.5 The Task Allocation Problem 

  The task allocation problem involves the development of a task allocation 

model for the DCS. The model allocates the tasks among the processing nodes of 

a given DCS to achieve the following [26]: 

1) Allow specification of a large number of constraints, 
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2) Optimize the cost function, 

3) Balance the utilization of the processing nodes of the DCS. 

The task allocation problem assumes a task consisting of computational mod-

ules mostly requires computation but in between these modules may communicate 

with each other. The computational modules do not require any specific process-

ing node, in general, and may be allocated on any of the processing node. The ob-

jective of the allocation is to optimize some characteristic parameter as mentioned 

in sec. 2.2. The word task has been used to refer it to process, job and other similar 

entities, through out the book. Modules are further division of the task as men-

tioned earlier. 

Thus the task allocation problem considers the task graph and a processor 

graph. The task allocation model maps the task graph to processor graph. 
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               Fig. 3.1Mapping of Task Graph to Processor Graph 
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  Figure 3.1 shows a task graph consisting of nine modules (m0, m1, m2, m3, m4, 

m5, m6, m7, m8) and the processor graph of three nodes (p1, p2, p3). The position of 

the modules shows its precedence. Generally two types of task graph are possible. 

One in which the edges between the modules shows the communication between 

them. This is called Task Interaction Graph. The other, in which the edges show 

the precedence between the modules, is known as Task Precedence Graph. We use 

the task precedence graph in most of the models discussed in this book and call it 

the task graph in general. Further, it is assumed that the communication among the 

modules is given in an inter module communication matrix. The execution time 

matrix shows the execution time of the modules of the task on the processing 

nodes of the DCS. Example IMC and Execution time matrices are shown below. 

 
 
 
 cij  m0  m1  m2  m3  m4  m5  m6  m7   m8                                       eik   p1   p2   p3 
     

      m0 0   20    0    40    15  10   0    15  20                                        m0 10   20   30 
      m1 20   0    5    30   10    0    15   20  10                                       m1 40    5    10 
      m2 0     5    0    35    0    30   20   10  15                                       m2 70   50   80 
      m3 40 70   35    0    10    35  20   10  12                                       m3 50    80  20 
      m4 35 15   20   25    0     20   25   10  15           m4  20   30   20 
      m5  20 25   0     20   15    0   10    35  12           m5  30   25   20 
      m6 10  35   15   25   20   10   0    15  10           m6  20   20   20 
      m7 20  30   25   0     15   20  10    0     0           m7  15   20   15 

 m8  0   25  30   35    20   10  15   20    0           m8  20   25   20 
 
  Inter Module Communication (IMC) Matrix           Execution Time Matrix 
 
The IMC matrix shows the communication among the modules of a task viz. 

communication between the modules m0 and m1 is 20. Communication is meas-

ured in terms of data units transferred. Execution time matrix shows the execution 
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time of the various modules of the task on the processing nodes of the DCS viz. 

m0 takes 10 unit of time on p1. Execution time can be considered in terms of msec. 

 

There are number of constraints which are to be met out for the task allocation 

model. Precedence of the module of the task, memory limitation of the processing 

nodes etc. is among the few [26]. 

 

Completion time of the task is one of the well-known criterions for allocation 

and mostly the cost function considers the completion time of the job. Reliability 

of the system is another important criterion considered in some allocation models 

[27-31]. 

 

This book aims at the consideration of existing algorithms with their simplify-

ing assumptions for proposing better algorithms that consider the realistic situa-

tions of a DCS such as 

(i) Precedence constraints, 

(ii) The fact that multiple tasks, each consisting of a number of modules 

are received by a DCS for execution, 

(iii) The processing nodes of the DCS have certain capacities and they 

may or may not be in a situation of accepting more work at any time 

OR assigning more work to such nodes may degrade execution char-

acteristics of tasks. 
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The chapter hereafter contain our proposed algorithms that make use of known 

efficient search techniques like GA, A* etc. apart from the data structures required 

for tackling the situation. 

3.6 Assumptions & Notation   

  As the task allocation problem remains to be NP-hard, various heuristic solu-

tions have been proposed with one or other assumptions. This work also makes 

certain assumptions that are as follows. 

 

1. Distributed Computing System imposes some limitations on the task al-

location. One of them is the limitation of memory. To simplify our prob-

lem we are making the assumption that the memory of the processors in 

DCS is not limited in some of the models. Though this step can be easily 

incorporated, in the problem, at the cost of few more steps.  

2. Tasks are disjoint and have no inter-task communication. Only the mod-

ules within a task have interdependencies and communication require-

ments. 

3. Execution and communication matrices for the task graph are assumed to 

be given. Only one of the models proposed does not require the execution 

time (sec. 8.2). 

4. The assumption of the availability of interconnection graph accommo-

dates non-regular type of interconnection networks. 
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5. Processing node, processing element, computing node, processor have 

been used to refer to the same. 

 

Few other assumptions, specific to particular TA models, are ascribed with the 

corresponding models as depicted in the rest of the book. 

Notation 

T         task: set of modules to be executed 

m        |T|: number of modules forming the task T 

mi        module i of task T 

P         set of processing nodes in the DCS 

n         |P|: number of processing nodes in P 

Pk        Processing node k in P 

eik            execution time for module mi running on  processor Pk during the 

execution 

X        m×n binary matrix corresponding to a task assignment 

xik        element  of X; 

 

                   

cij        IMC cost between mi and mj during the execution 

   dkl       distance between processing nodes Pk and Pl defined as the 

number of links 

nk        number of modules already allocated on Pk at some instance of 

time 

q         time quantum of the processor for round robin scheduling 

Height(mi)  position of module mi from the root 

G(h)        set of modules of height h 

Mi  amount of memory required by module mi 





=
otherwise

Pocessortoassignedismuleif
x

ki
ik

0

Prmod1

433    Scheduling Problem



Sk  memory capacity of processing node Pk 

R(T,X) reliability of DCS when task T is allocated by the assignment X 

Rk(T,X) reliability of processing node Pk 

Rpq(T,X) reliability of link lpq 

lpq   link connecting node Pp and Pq 

λk  failure rate of node Pk 

λpq  failure rate of link lpq 

Wpq  transmission rate of link lpq 

Cijh  communication between modules mi and mj of task Th 

eihk  execution time of module mi of task Th on processing node Pk 

xihk  element of assignment matrix for multiple task allocation 

  





=
otherwise

PocessortoassignedisTtaskofmuleif
x

khi
ihk

0

Prmod1
 

Mij  memory requirement of module mi of task Tj 

Lavg   Load Average 

Lmax.  Load Maximum 

eff  Effiency 

effmin  Effiency Minimum 
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CHAPTER 4 

Load Balancing in DCS     

 
 
  This chapter considers one very important proposition for the scheduling 

problem in distributed computing system. This is load balancing aspect. 

4.1 Load Distribution in a DCS   

  Performance improvement is one of the most important issues in DCS. Obvi-

ous but expensive ways of achieving this goal are to increase the capacity of the 

nodes and to add more nodes to the system. Adding more nodes or increasing the 

capacity of some of the nodes may be required in the cases in which all of the 

nodes in the system are overloaded. However, in many situations poor perform-

ance is due to uneven load distribution throughout the system. Sometimes, the 

random arrival of tasks in such environment can cause some nodes to be heavily 

loaded while other nodes are idle or lightly loaded. Load distribution improves the 

performance by transferring tasks from heavily loaded nodes, where service is 

poor, to lightly loaded nodes where the tasks can take advantages of computing 

capacity that would otherwise go unused [1]. 

If workloads at some nodes are typically heavier than at others, or if some 

nodes execute tasks more slowly than others, the situation of lightly loaded/ heav-



ily loaded/ moderately loaded nodes are likely to occur often. It is shown that even 

in such a homogeneous DCS, at least one machine is likely to be idle while other 

machines are heavily loaded because of the statistical fluctuations in the arrival of 

tasks to the system and task service time requirements. Therefore, even in a ho-

mogeneous DCS, system performance can be potentially improved by the appro-

priate transfer of the workload from heavily loaded nodes (senders) to idle or 

lightly loaded nodes (receivers). Meaning of performance here is the average re-

sponse time of tasks. The response time of a task is the time elapsed between its 

initiation and its response. Minimizing the average response time is often the goal 

of load distribution. The performance of the system can often be improved to an 

acceptable level simply by redistributing the load among the nodes. Therefore, 

load redistribution is a cost-effective way for the improved performance. The 

problem of load redistribution in DCS is recognized as load balancing or load 

sharing [2]. 

Load indices that have been studied and used include the length of the CPU 

queue, the average CPU queue length over some period, the amount of available 

memory, the context-switch rate, the system call rate, and CPU utilization. Re-

searchers have consistently found significant differences in the effectiveness of 

such load indices and these simple load indices are particularly effective. For ex-

ample, in [3] it is found that the choice of a load index has considerable effect on 

performance. The most effective of the indices, we have mentioned, is the CPU 

queue length i.e. the number of tasks in a queue of a processor. Finally, no per-
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formance improvement is found over this simple measure when combinations of 

all these load indices were used.  

The main goal of load balancing algorithms is to balance the workload across 

all the nodes of the system. A node's workload can be estimated on some measur-

able parameters [3-4] such as total number of processes on the node at the time of 

load estimation, resources demand of these processes, architecture and speed of 

the node's processor.  

4.1.1Load Sharing (LS) versus Load Balancing (LB)   

  Load sharing approach attempts to conserve the ability of the system to per-

form work by assuring that no node idles to which processes (tasks) wait for being 

processed [3]. On the other hand, load balancing approach in which all the proc-

esses submitted by the users are distributed among the nodes of the system so as to 

equalize the workload among the nodes. Some researchers differentiate load bal-

ancing from load sharing by their objective. The term load balancing is used if the 

goal is to equalize certain performance measures such as the percentage of 

server’s idle time, marginal job response time etc [3]. On the other hand, if the ob-

jective is to improve some performance measure such as average job response 

time by redistributing the workload, it is called load sharing.   

4.2 Load Balancing Methodology   
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     The following is a brief account of the LB methodology wherein task migra-

tion happens to be an essential and important activity. The idea of the cost of Task 

migration (TM) appears here. The abstract goal of load balancing can be stated as 

follows [5]: 

 “Given a collection of tasks comprising a computation and a set of 

computers on which these tasks may be executed, find the mapping of 

tasks to computers that results in each node having an approximately 

equal amount of work.” 

A mapping that balances the workload of the processors will typically increase 

the overall efficiency of a computation. Increasing the overall efficiency will typi-

cally reduce the runtime of the computation. In considering the load balancing 

problem, it is important to distinguish between problem decomposition and task 

mapping. Problem decomposition involves the exploitation of concurrency in the 

control and data access of an algorithm. The result of the decomposition is the set 

of communicating tasks that solves the problem in parallel. These tasks, divided 

into suitable modules, are mapped to the computing nodes in the manner that best 

fits the problem. One concern in task mapping is that each node has a roughly 

equal workload. This is the load balancing problem as stated above. In some cases, 

computation time associated with a given task can be determined a priori. In such 

circumstances, one can perform the task mapping before beginning the computa-

tion; this is called static load balancing. For an important and increasingly com-
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mon class of applications, the workload for a particular task may change over the 

course of computation and can not be estimated beforehand. For these applica-

tions, the mapping of tasks to computing nodes must change dynamically during 

the computation.     

A practical approach to dynamic load balancing can be divided in five phases 

[5]: load evaluation, profitability determination, work transfer vector calculation, 

task selection and task migration. 

4.2.1 Load Balance Initiation   

For effective load balance one has to determine first when to balance the load.  

Doing so is comprised of two phases: first to detect that a load imbalance exists 

and secondly to determine if the cost of load balancing exceeds its possible bene-

fits.  

The load balance of a computation is the ratio of the average processors’ 

load(Lavg) to the maximum processor load(Lmax), i.e. Efficiency eff= Lavg / Lmax. A 

load balancing framework might, therefore, consider initiating load balancing 

whenever the efficiency of a computation is below some user specified threshold 

effmin. In applications where the total load is expected to remain fairly constant, 

load balancing would be undertaken only in those cases where the load of some 

nodes exceeds Lavg / effmin, where Lavg is calculated initially or provided by the 

application [6-8]. 
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Even if a load imbalance exists, it may be better not to do load balance, simply 

because the cost of load balancing would exceed the benefits of a better load dis-

tribution. The time required to load balance can be measured directly using avail-

able facilities. The expected reduction in run time due to load balancing can be es-

timated loosely by assuming that the efficiency will be increased to effmin or, more 

precisely, by maintaining a history of the improvement in past load balancing 

steps. If the expected improvement exceeds the cost of load balancing, the next 

stage in the load balancing process should begin [9].    

4.3 Task Migration     

  A DCS may receive the number of tasks with the numbers of modules at dif-

ferent times. Similarly various modules of a task and various tasks with all their 

modules may leave the DCS after completion or due to some other system policy 

decisions. It should be noticeable that due to this situation some processor may 

become lightly loaded from time to time whereas others may remain heavily 

loaded. In such a situation an activity known as task (process) migration is initi-

ated to balance the load across the system. 

A process (task) may be migrated either before it starts executing on its source 

node or during the course of its execution. A process migration can be expressed 

by the following steps [3, 10]: 

1.  Selection of a process that should be migrated 
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2.  Selection of the destination node to which the selected process should be 

migrated 

3.  Actual transfer of the selected process to the destination node. 

A process migration in DCS dynamically relocates running tasks (processes) 

among the component machines. Such relocation can help cope with dynamic 

fluctuations in loads and service needs, meet real time scheduling deadlines, bring 

a process to a special device, or improve the system’s fault tolerance. Even suc-

cessful migration facilities are not common in DCS, due to largely the inherent 

complexity of such facilities and the potential execution penalty if the migration 

policy and mechanism are not tuned correctly. Not surprisingly, some DCS termi-

nate remote processes rather than rescue them by migration [11]. 

There are several reasons why migration is hard to design and implement. The 

mechanism for moving tasks must reliably and efficiently detach a migrant proc-

ess from its source environment, transfer it with its context, and attach it to a new 

environment on the destination machine. Migration may fail in case of nodes and 

communication failures, but it should do so completely in that, the effect should 

be as if the process were never migrated at all or, at worst, as if the process had 

terminated due to machine failure [11].   

4.3.1 Migration Overhead   

534    Load Balancing in DCS



Migration overhead is a very important factor when process migration usually 

takes place. Sometimes it can incur an overhead, which can adversely affect the 

throughput of the system. For the following issues migration overhead should be 

kept in mind while moving the tasks from one node to another:   

• Data about the modules residing on particular nodes i.e. module name, size, 

IPC request, number of threads, 

• Threshold of processors in terms of modules and memory that it can support, 

• The type of processor i.e. includes migrating a job to a node having a faster 

CPU or to a node, at which it has minimum turnaround time, 

•    From processor to processor i.e. to migrate the tasks of a job to the different 

nodes that consist of different processors of the system, 

• Various kinds of processes need various I/O resources like printers, disk drivers 

etc. 

• Various software resources like databases, files etc. 

• Copy or replication of critical processes to another node due to system reliabil-

ity, and 

• Mixing I/0 and CPU bound processes on a global basis for increasing the 

throughput of the system.   
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4.4 Threads   

  Modern programming languages and operating systems encourage the use of 

threads to exploit concurrency and simplify program structure. A process consists 

of an address space and one or more threads of control. Each thread of a process 

has its own program counter, its own register states, and its own stack. Threads are 

referred to as lightweight processes and traditional processes are referred to as 

heavyweight processes. Threads can be used to improve application performance 

through parallelism. Threads can also be used to minimize context switching time, 

allowing the CPU to switch from one unit of computation to another unit of com-

putation with minimal overhead.  

In this book, the thread can be treated as part of a module and the size of a 

module can be considered to be as follows: 

Size of a module = (Expected no. of threads in the modules × 

                               Average size of thread) 

Here, it is assumed that each module consists of at least one thread.   

4.5 Conflicts between TA and LB 
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 The main purpose of a single task allocation in a DCS is to reduce job turn-

around time. It is done by maximizing the utilization of resources while minimiz-

ing any communication between processing nodes. The benefits of task allocation 

can make distributed processing desirable but several problems must be solved be-

fore they can be realized. For example, when the number of processors in a system 

increases beyond a certain level, then throughput decreases. This is known as satu-

ration effect [12]. In reality, however, a lower processing speed results, caused by 

such factors as control overheads, communication between processors, unbalanced 

loading, queuing delays, and precedence order of the parts of task assigned to 

separate processors. In order to eliminate or minimize saturation, these inhibiting 

factors must also be eliminated. Dynamic allocation algorithm and proper load 

distribution must be provided for a system as a means of balancing and minimiz-

ing both IPC, queuing delays and control overhead problem. 

So a DCS has conflicting requirements [12]: 

 

1) While minimizing IPC tends to assign the whole of a task to a single proces-

sor, load balancing tries to distribute the task evenly among the processing 

nodes. 

 

2) While a real-time constraint uses as many processors as maximize parallel 

execution, the precedence relations limit parallel execution. 

   

3) The saturation effect suggests the use of fewer processors since inefficiency 

increases with the number of processors. 
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Obviously, it is not possible to satisfy all these requirements simultaneously; 

therefore a compromise must be made to find the optimal allocation policy with 

load balancing for the tasks. We should attempt to achieve maximization of 

throughput.  

The algorithms, described as earlier work, in sec.5.1 are moderately well to 

perform load balancing on network of workstations which are in most cases ho-

mogeneous DCS. In these algorithms some of the simplifying assumptions have 

been taken into considerations including constant time or even free inter-task 

communication, processors with the same instruction sets, uniformity of available 

files and devices and existence of plentiful primary and secondary memory, which 

are not always realistic. 

The algorithms [12-17] also consider allocation of the modules of only a single 

task to various processing nodes, whereas the number of tasks, for execution, is 

usually substantive. In reality, a DCS facilitates concurrent execution of modules 

belonging to various unrelated tasks. The modules of a particular task, having 

IMC, do co-operatively execute and do not depend on the modules of the other 

tasks. This leads us to conclude that a processing node may be assigned modules 

belonging to various unrelated tasks i.e. multiple tasks. 

The algorithms [3, 18-22] consider task migration but that always incur over-

head, which is not always meaningful in doing load balancing, and affects the 

throughput of the system. 
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So, the major factors that affect while allocating tasks in a heterogeneous DCS 

with load balancing are speeds of processors, processor architecture, memory, dif-

ferent file spaces, and characteristics of operating systems and application soft-

ware. So the future support mechanisms will have to make this information avail-

able for allocation algorithms to fully utilize a large, heterogeneous DCS.  

Consideration of all the above factors, in the following chapters, leads to de-

velopment of a model of “Load balancing Task Allocation (LBTA)” strategy in 

this book. The model aims at minimization of turnaround time of tasks and prom-

ises possible better throughput. The results presented in the subsequent chapter 

shows that by attempting to minimize the turnaround time of all the tasks up to the 

possible extent within the constraints of the system in terms of the load already be-

ing shared by the processing nodes due to previous allocation of modules of tasks, 

better throughput is achievable, as compared to existing task allocation algorithms 

which can play a vital role as a task allocator in a DCS of heterogeneous nature by 

considering the multiple tasks with their corresponding modules. A concept of 

Global Table (GT) has been considered to keep track of allocation of multiple 

tasks. 

In this book and as in literature a) the terms ‘task’ and ‘process’, b) the terms 

‘processing node’, ‘processor’, ‘machine’, ‘computer’ c) the term ‘allocation’ and 

‘assignment’ have been used  interchangeably.  
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CHAPTER 5   

Known Task Allocation Models   

 
 

   

This chapter contains some representative Task Allocation (TA) algorithms in 

section 5.1 that have appeared in literature [1-5]. These algorithms had certain as-

sumptions that simplify the realistic DCS, such as the tasks have no or little prece-

dence etc. We proposed a TA algorithm in sec. 5.3 that gets rid of this assumption 

and considers precedence constraint, as most of the tasks received by any DCS 

shall have precedence constraint depicted in their task graphs [6]. 

 

Furthermore, a good task partitioning is a prerequisite for any TA method. 

Though in this book we are concentrating only on the TA algorithms, nevertheless 

in section 5.4 an IMC cost reduction model is proposed [7]. 

 

The researchers of the discipline have proposed various task allocation algo-

rithms for the distributed computing systems. These algorithms seek to assign the 

modules of a task on the nodes of the DCS to achieve one or more characteristics. 

Most of the models, proposed, minimize the turnaround time of the given task. Of-

ten advocated advantage of a Parallel/Distributed System is the fast work and that 

can be achieved only by the minimization of the turnaround time of the task. This 

turnaround time includes the communication time also which occurs between two 



processes/modules situated on the different nodes. This is known as InterProcess 

Communication (IPC)/InterModule Communication (IMC). Some of the algo-

rithms concentrate only on the minimization of IPC/IMC as it may result in heavy 

turnaround. Few proposed models consider the reliability of the system with task 

allocation. Whatsoever is the parameter of allocation, goal is to achieve high de-

gree of parallelism with proper load balancing of the system [8]. 

   

These goals may conflict with each other.  For example, minimization of IMC 

cost tends to assign all the modules of a task onto the same nodes of the DCS, as 

the modules on the same node will incur zero IMC. Thus a proper load balancing 

on the PEs of the DCS is also desired. 

5.1 Early Models   

   
  The task allocation model imposes various constraints. Precedence of the 

modules of the task is very important constraint and an allocation algorithm is al-

most useless if this constraint is ignored in the model. Precedence is the priority of 

the execution of modules of a task. Some modules may depend on the result of the 

other module and thus the dependent module has less precedence over the module 

from which it has to get some computed result. 

   

A memory limitation of the processing nodes of the DCS is another constraint. 

All the processing nodes have some fixed amount of the memory and thus can ac-
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commodate a certain number of modules. This constraint is also to be given due 

consideration while allocating the task. 

 

Some modules of the task may demand some specific service that is available 

only on some specific processing node. Thus all the processing nodes cannot be 

treated equal for all the modules. This is the functionality of the processors and is 

to be considered while allocation. 

 

The property of the interconnection network of the DCS plays a significant role 

in allocation [9]. Two modules, which require heavy communication, are to be al-

located on to the same or the neighboring nodes. 

 

Earlier proposed models consider very few constraints, listed above, in their 

models. Some of the representative models are briefed below. 

5.1.1 Heuristic Task Allocation Models for DCS   

   
  Richard, Lee and Tsuchiya [1] have presented a task allocation model that al-

locates task, among processors in a DCS, satisfying 

1) Minimum InterProcess Communication cost 

2) Balanced utilization of each processor and 

3) All engineering application requirements 
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A cost function is formulated to measure the IPC and processing cost. In their 

model, memory limitation constraint is imposed by limiting the memory at the 

processing nodes of the DCS. Other allocation constraints, considered in their 

model, are 

   

a. Task Preference: a task is preferred to be allocated to a certain processor, 

b. Task Exclusion: certain pair of tasks must not be assigned to the same proces-

sor, and 

c. Task Redundancy: certain tasks must be assigned to two or more processors 

   

Cost function is formulated as the sum of the IPC cost and the processing cost. 

IPC cost is a function of both task coupling factors and interprocessor distances. 

Coupling factor cij is the number of data units transferred from task i to task j. In-

terprocessor distance dkl is certain distance related communication cost associated 

with one unit of data transferred from processor k to l. 

   

Processing cost qik represents the cost to process task i on processor k. The as-

signment variable is defined as  





=
otherwise
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The total cost for processing the task is stated as 
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The normalization constant w is used to scale the processing cost and the IPC 

cost to account for any difference in measuring units. 

   

The task allocation algorithm was derived from a Branch and Bound (BB) 

method. To employ the BB technique, the allocation problem is represented by a 

search tree. The allocation decision represents a branching at the node correspond-

ing to the given task. The algorithm was implemented for an Air Defense applica-

tion.  

 

Chu and Lan [2] proposed an algorithm that considers Precedence Relation-

ship(PR), Inter Module Communication(IMC) and Accumulative Execution 

Time(AET) to search for minimum bottleneck  assignment. In their model, the 

AET of a module running on a processor is the total execution time incurred by 

this module running on that processor during the mission i.e. the product of the 

number of times this module executes during the mission and the average time 

units for each execution on that processor. The Inter Module Communication be-

tween two modules is the product of the number of times they communicate and 

the average number of words exchanged, each time they communicate. They pro-

posed the model of task allocation for Real Time Systems. The processor with the 

heaviest load, in a distributed system, is the one that causes the bottleneck. The 

processor load consists of the loads due to program module execution and Inter 

Module Communication. Therefore, both AET and IMC play important roles in 

module assignment and influence task response time. In their model, the algorithm 

consists of two phases. Phase I reduces J modules to G groups (G<J) which corre-

sponds to a much smaller assignment tree for phase II. Each group generated at 

the end of phase I is a set of modules, which will be assigned as a single unit to a 
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processor. In phase II these groups are assigned to the processors such that the 

bottleneck (in the most heavily utilized processor) is minimized. 

   

Ramakrisnan et al.[10] presented a refinement of the A* algorithm that can be 

used either to find optimal mappings or the final approximate mappings. The algo-

rithm uses several heuristics based on the sum of communication costs for a task, 

the task’s estimated mean processing cost, a combination of communication cost 

and the difference between the minimum and maximum processing costs for a 

task.  

   

Price and Salama [11] describe heuristic for assigning precedence-constrained 

tasks to a network of identical processors with the first heuristic; the tasks are 

sorted in increasing order of communication and are interactively assigned so as to 

minimize total communication time. The second heuristic creates pairs of tasks 

that communicate, sorts the pairs in decreasing order of communication, and then 

groups the pairs into clusters. In third method, simulated annealing starts with a 

mapping and uses probability based functions to move towards an optimal map-

ping. 

5.1.2 Graph Matching Approach to Allocation   

   
  Shen and Tsai [4] proposed a graph matching approach to solve the task allo-

cation problem of a DCS. A cost function is proposed for evaluating the effective-

ness of allocation. A new optimization criterion, called the minimax criterion, is 

also proposed based on which both minimization of IPC and balance of processor 

loading is achieved. Graphs are used to represent the module relationship of a 
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given task and the processor structure of a distributed computing system. Module 

assignment to system processors is transferred into a type of graph matching, 

called weak homomorphism. The search of optimal task assignment is formulated 

as a state space search problem. It is then solved by the well-known A* algorithm, 

with proper heuristic information for speeding up the search. 

   

The cost function is total turnaround time that is the sum of execution time and 

the communication time. 

 

Although some constraints are included in the model, but some important con-

straints are ignored. DCS is assumed to be heterogeneous. The most important 

precedence relationship among the modules does not figure in their model. 

5.1.3 Reliability Oriented Task Allocation   

   
  Reliability oriented task allocation model in redundant distributed system is 

proposed by Shatz and Wang [5]. Reliability oriented DCS are often desired for 

Real Time DCS, though reliability is an added advantage for any type of DCS. 

Hardware redundancy is a common technique to achieve reliability. Redundancy 

of different levels for both processors and links is considered in their model. 

 

A Redundant Distributed System (RDS) of redundant level r can be thought of 

as being obtained from a non-redundant distributed system in the following man-

675    Known Task Allocation Models



ner. At every processing node “r” identical processors, processing the same job 

simultaneously, replace the single processor; and every link is replaced by “r” 

identical links. 

 

Each module of a task executes on one of the processing nodes (therefore, exe-

cutes on every one of the r processors at that node) and communicates with other 

modules of the task. The task allocation problem for an RDS can be stated as fol-

lows. Given a task consisting of m modules and an RDS with n processing nodes, 

allocate each of the m modules to one of the n processing nodes such that an ap-

propriate objective function is optimized subject to constraints imposed by the en-

vironment. 

 

Reliability of the DCS is defined as the probability that the task T can run suc-

cessfully on the RDS during the mission under task assignment X. 

 

The reliability expression of processing node Pk is derived as below. 
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λk is failure rate of node Pk 

xik is value of assignment matrix X 

eik is the Accumulative Execution Time (AET) of module mi on node Pk 

Similarly the reliability of link lpq is 
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λ′pq is failure rate of link lpq 

c(i,j,p,q) is a measure of IPC. 

wpq is transmission rate of link lpq. 

   

Thus the system reliability is  
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binf( ) is the binomial function. The reliability function (5.3) is optimized in the 

model. 

 

The RDS is heterogeneous, but other constraints such as memory, precedence 

are overlooked. 

5.1.4 Load Balancing Task Allocation    

   
  Aloson and Cova [12] proposed a double-threshold policy called the ‘high -

low policy’ for load balancing. The high -low policy uses two threshold values 

called ‘high mark’ and ‘low mark’, which divide the space of possible load states 

of a node into the three regions: over-loaded above the high-mark and low-mark 

values; normal-above the low-mark value and below the high-mark value and un-

der loaded-below both values. The high-low policy guarantees a predefined level 

of performance to the node owners. It accounts for the overhead that the load bal-
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ancing algorithm may incur in transferring and receiving a remote process. A 

process will not be transferred to another node unless it is worthwhile, and a re-

mote process will not be accepted unless there is enough excess capacity to handle 

it. 

 

Gao et. al. [13] proposed a class of load balancing algorithms for systems con-

sisting of identical processors. It assumes that each processor periodically informs 

all other processors of its load. Based on this load estimate, the job dispatcher on 

each processor may decide for migration of some tasks to other processors. Gao's 

algorithm balances either the average arrival rate or the amount of unfinished 

work on each host. This scheme has a high overhead because the load estimation 

step requires extensive mathematical calculations and the precise numerical load 

of each processor has to be sent to every other processor in the network. 

 

Ni .et al. [14] proposed a drafting algorithm for task migration. It is observed 

that the processors do not need to communicate precise numerical load measure-

ments for a dynamic load balancing scheme to be effective. Therefore, a 3-level 

(heavy, normal and light) system is used. A processor communicates only with a 

group of processors called the candidate processors. A lightly loaded processor re-

quests a heavily loaded candidate processor to send a bid for task migration. A 

task is migrated from the heavily loaded processor after the lightly loaded proces-

sor has sent a select message to it. Since broadcasting the load at every change in 

load level may create too much communication traffic (and hence a longer re-

sponse time), piggybacking is recommended to reduce the number of messages. 

However, unless a processor has every other processor in the system as its candi-

date processor, a lightly loaded processor may not notice the existence of some 

heavily loaded processor. Therefore, this scheme guarantees that every possible 
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task migration will be carried out only when all load messages are broadcasted to 

every other processor in the system. 

 

Lin and Keller [15] proposed a gradient model for load balancing algorithm for 

a class of large diameter multiprocessor systems. Task migration from heavily 

loaded processors is governed by a pressure gradient indirectly established by re-

quests from nearby idle processors. Global balance is achieved by successive mi-

gration of tasks to underutilized processors. However, a task may be migrated 

many times without making progress as the load of the processors in the system 

changes. 

 

Bryant and Finkel [12] proposed the method pairing policy for load balancing 

to reduce the variance of loads only between pairs of nodes of the system. In this 

method, two nodes that differ greatly in load are temporarily paired with each 

other and the load balancing operation is carried out between the nodes belonging 

to the same pair by migrating one or more processes from the more heavily loaded 

node to the other node. Several node pairs may exist simultaneously in the system. 

A node only tries to find a partner if it has at least two processes, otherwise migra-

tion from this node is never reasonable. This kind of algorithm makes great migra-

tion delay and IPC costs. 

 

Woldspurger et al [16] proposed policy for load balancing by bidding process 

where each node in the network is responsible for two roles: the manager and the 

contractor. The manager represents a node having a process in need of a location 

to execute, and the contractor represents a node that is able to accept remote proc-

esses. Here a single node takes on both these roles and no nodes are strictly man-

agers or contractors alone. To select a node for its process, the manager broadcasts 

a request-for-bids message to all other nodes in the system. Upon receiving this 
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message, the contractor nodes return bids to the manager node. The main two 

drawbacks of bidding algorithms are that they create a great deal of communica-

tion overhead and it is very difficult to decide a good pricing policy. Both factors 

call for a proper choice of the amount and type of information exchanged during 

bidding. 

 

The paper [17] indicates that the goal of solution is to balance the load among 

the processors in the system in some way. The solution actually fits into the static, 

optimal and queuing theoretic class. It minimizes the execution of the entire pro-

gram to maximize performance and the algorithm is derived from results in 

Markov decision theory. 

5.2 Limitations of Earlier Models   

   
  Many other models in the literature are more or less of the same nature as dis-

cussed above. These models suffer due to one or more realistic limitations that do 

not allow these models to be implemented in the design of the Distributed Operat-

ing System. The model presented in the section 5.1.1, considers the memory limi-

tations at each processing node. It considers other application specific constraints 

viz. task preference, task exclusion and task redundancy. These models lack some 

very important constraints e.g.  precedence of the modules, maximum no. of mod-

ules that can be assigned to each processing nodes etc. 

   

Model quoted in section 5.1.2 incorporates some realistic assumptions, though 

it assumes no precedence relationship among the modules of the task to avoid 
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processor idleness. They have used the graph matching approach to map the task 

graph onto the processor graph. A heuristic is used to find a weak homomorphism 

from task graph to processor graph. Their lower bound estimate h(n) has chances 

of further improvement[19]. 

 

Reliability oriented task allocation, as stated in section 5.1.3, is advocated for 

such distributed computing system where reliability is of prime concern. Such sys-

tems are often required in missile projection or other real time systems. Though 

the model presented does not consider the real time distributed computing sys-

tems, yet it incorporates some realistic constraints. It includes constraints of mem-

ory, processing capacity and bounds for completion time, but the precedence is 

overlooked again. It takes AET (Accumulative Execution Time) in their model, 

which is just difficult to estimate. Their cost function is based on reliability com-

putation, which is an easy expression to compute. 

 

A number of load balancing task allocation models, discussed in sec. 5.1.4, do 

suffer with one or more limitations. In fact, it is very difficult to consider all the 

constraints to furnish a realistic model of task allocation. Thus the task allocation 

problem has to simplify the assumptions and is to find an optimal solution in pres-

ence of all the constraints. 

 

We have developed some realistic models, considering the existing models and 

their simplifying assumptions, which take up the realistic constraints into consid-

eration for the purpose of the task allocation in this book.   
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5.3 Precedence Constrained Task Allocation   

  The following proposition considers the precedence, an important characteris-

tic of time relationship among the modules of a task, apart from round-robin 

scheduling on the individual processing nodes [6]. 

 

The task allocation policies for the DCS aim mostly at minimizing the turn-

around time of a task. The following parameters impose constraints under which 

the algorithms have to work.  First of all, the participating nodes of the DCS must 

be evenly loaded during the course of execution of the tasks. The modules of a 

task may require different amount of memory and demand varying execution time, 

and hence the time quantum chosen for round robin scheduling of processes are 

important candidate for consideration. The interconnection topology of the DCS 

also plays an important role as communicating modules must reside on the nodes 

that are connected and at the same time communication distance of these nodes 

must not be large because of the obvious reasons. In case of heterogeneous DCS 

the functional limitations of the nodes need also to be considered. 

 

The precedence relationship among the modules of the task can be analyzed to 

identify such modules that may coexist on one and the same node as the sequential 

execution of concurrent module sets may allow this [2]. 
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The model proposed here considers the precedence relationship along with the 

round robin scheduling of individual processors, and provides a solution for allo-

cation as shown by some examples.     

  5.3.1 The Allocation Model   

To prepare a mathematical model, the following parameters are relevant 

i) The cost function, 

ii) The constraints, and 

iii) An algorithm that looks for an optimal cost allocation 

 

The cost function is in terms of time unit and is the sum of the module execu-

tion time and InterModule Communication time (IMC).  Processing cost eij repre-

sent the execution time to execute module mi on processor pj. The Inter Module 

Communication at the node pk can be calculated as  
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Where cij is the total communication between module mi and mj, Xik is the as-

signment matrix and xik (element of Xik) is defined as 
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dkl is the distance between the processing nodes pk and pl  Obviously if pk = pl 

then dkl = 0 and IMC cost becomes zero. 

755    Known Task Allocation Models



      The total cost for processing a task on a DCS will become  
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The normalization constant w is used to scale processing cost and the IPC cost 

to adjust the difference in measuring units. The abovesaid formula has been men-

tioned by Richard, Lee & Tsuchilya [1]. 

 

We have modified the formulae considering the individual processing node 

scheduling and have incorporated it in the cost function. It assumes that the proc-

essors of the DCS are scheduled in a round-robin fashion of time quantum q. For 

an incoming module mi on processor pk at any time the turnaround will be  

nk×q + eik 

Where nk is the number of modules already allocated on processor pk. 

 

Thus the total allocation cost of a module mi on processor pk will become 
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While allocating a module on processing nodes this cost function will be con-

sidered. 
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5.3.2 Constraints   

  The constraint introduced in this model is memory limitation of the processing 

nodes. The other constraint, precedence is being considered in the beginning itself 

and it limits the allocation. 

 

If Mi is the amount of memory required by module mi and Sk represents the 

memory capacity of processor pk then allocation of any new module must satisfy 

the following constraint. 

∑
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  n modules are already allocated on Pk 

5.3.3 The Algorithm Derivation   

  Some crucial issues in deriving the algorithm are the priority of the modules 

and their (module's) arrangement. 

Priority   

 
  The modules will have the priority of their execution according to their prece-

dence. Root node of the task graph will have the highest priority. The priority of 

other nodes in the graph will be calculated according to their level in the graph. 

Ties have to be resolved for the nodes of the same level. Murthy, Murthy & 
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Sreenivas suggested that the node with the highest value of MAX (incident edges) 

should get the highest priority [20]. 

Modules Arrangement   

 
  The modules of the task graph are arranged in a list according to their priority. 

The highest priority module (i.e. root node of the task graph) will be at the front of 

the list.  This scheduling is known as list scheduling and has been discussed in 

[21].  The updation of the list will take place during the allocation. In beginning 

the list will be of maximum length, subsequently will be reduced and finally be 

empty. The empty list indicates the complete task allocation. 

 

Each processing node needs to maintain a process table (job table), which is to 

be referred to obtain the earlier allocation. After the allocation, the process table is 

to be modified (updated). Maintenance of process table is very important for the 

purpose of execution as per allocation.  

 

5.3.4 Algorithm   

     
1. Compute priority of the modules. 

2.  Order modules in a list with the highest priority module in front. 

3. While ( list is not empty ) do 

   begin 
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     get a module mi  from front of the list 

         for each processor pk  do 

Calculate cost of assignment of mi on pk and arrange it in a list 

COST with    processor index. 

        Sort the list COST in descending order. 

CHECK: The front of COST is min(COST) allocation. 

       If  it  satisfies  memory requirement of  module  on  the processor  

       then 

            assign it; 

       otherwise 

             begin  

              remove it from COST; 

              go to CHECK; 

              end; 

       Modify the Status table of processors. 

       Remove the module from the list. 

   end.  

5.3.5 Examples 

  Number of examples for the different network topologies has been illustrated, 

using above algorithm. These examples give the view of allocation and load bal-

ancing. The time quantum of round robin scheduling, of the processing nodes, is 

assumed to be unity.   
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Example1   

   
  In our first example, we have taken 4 modules of a task and three processing 

nodes. The processor graph and task graph are given in fig. 5.1. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The IMC and execution time matrices are as follows. 
 
  cij    1   2    3   4                         eik   A   B   C 
   1    0   20   0   40                       1   10   20  30 
   2   20   0    5   70                       2   40    5   10 
   3    0   5     0   35                       3   70   50  80 
   4   40  70   35   0                       4   50   80  20 
 
After executing the algorithm the assignment is as follows 
 
                        1 → A 
                        2 → C 
                        3 → B 
                        4 → C 
 
Turn-around time comes to be 95 time unit, whereas on sequential machine the 

average turn-around time is 152. 

 
 

4 

2 3 

1 

C A 

B 

Task Graph Processor Graph 

Fig. 5.1. Task and Processor Graphs 
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Example 2   

   
  For the same task graph (same IMC) but different processor graph with execu-

tion time matrix 

 

 

     
                 eik   A   B   C   D 
                 1     0  20  30  25 
                 2    40   5  10  15 
                 3    50  10 75  20 
                 4    30  40 25  40  
 
and topology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The assignment is 
 
                             1 → A 
                             2 → B 
                             3 → B 
                             4 → B 
 
The turn-around time in this case is 80 time unit. On sequential machine the 

average turn-around time is 109. 

   

Example 3   

  D 

B 

C 

A 

Fig. 5.2. Processor Graph 
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  In another example we have changed the topology to be STAR but with the 

same IMC and execution time matrix, the assignment remains the same (the turn-

around also remains the same). 

 

 

      
 

 

 

Example 4 

   
In the last example we expanded the task graph to study the real impact of our 

algorithm on task allocation. The network topology for the example is SQUARE. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.3. Processor Graph 
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C 

A 1 → A 
2 → B 
3 → B 

4 → B 

F 

E 

D 

B C 

A 

Fig. 5.4.Processor Graph 
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To keep the allocation simple, we assumed the execution time of each module 

on each processor as well the communication among the module to be the same. 

 
       eik = 5,      cij =5 ,     i ≠j. 
 
The allocation that took place is 
 
                          A, B, C → 1 
                          F           → 2 
                          D, E      → 3 
 
It is evident that a dense task graph (i.e. consisting of more number of modules 

with precedence) utilizes all the processors and allocation appears to be more 

meaningful. 

 

Given a set of task graphs for allocation, by this algorithm, a good utilization of 

all the nodes of a DCS can be made as multiprogramming of the processors has 

also been considered. 

5.4 IMC Cost Reduction using Fuzzy Logic 

  All the reported TA algorithms assume that a meaningful and proper partition-

ing of the task has created the modules of a given task [7]. The following proposi-

tion shows a method of meaningful partitioning of a given task into modules hav-

ing as its objective the reduction of IMC, as IMC is the main contributor to the 

time taken by a task when executed on a system. 

 

  Inter Module Communication in distributed computing systems is performed 

by the communication links directly or through intermediate nodes. A sizeable 
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fraction of the total time is experienced in intermodule communication. Commu-

nication penalty (CP), experienced by the network, is defined as the ratio [22]   

 

CP = Ttotal / Tcomp 

   

  Where Ttotal   is the time required by the algorithm to solve the given problem 

and Tcomp is the time attributed to computation. If Tcomn is the time involved in 

communication among different modules of the task, then 

  Ttotal = Tcomp + Tcomn 

As obvious, less communication will reduce the communication penalty. 

The model proposed below discusses the reduction in communication cost us-

ing fuzzy logic. 

5.4.1 The Fuzzy Approach   

  Fuzzy approach is based on the premise that the key elements in human think-

ing are not numbers but can be approximated to tables of fuzzy sets, in which the 

transition from membership to nonmembership is gradual rather than abrupt. 

Much of the logic behind human reasoning is not the traditional two valued or 

even multivalued logic but logic with fuzzy rules of inference. 

   

  Fuzzy set introduces vagueness by eliminating the sharp boundary dividing 

members of the class from nonmembers. A fuzzy set can be defined mathemati-

cally by assigning to each possible individual in the universe of discourse a value 
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representing its grade of membership in the fuzzy set. This grade corresponds to 

the degree to which that individual is similar to or compatible with the concept 

represented by the fuzzy set. These membership grades are represented by real 

values ranging in the closed interval between 0 and 1 [23]. 

5.4.2 The Cost Reduction Model   

   
  Communication between the modules of the task that are allocated on the dis-

tant nodes will increase the communication cost. Obviously, the modules that are 

allocated on the same node will incur zero communication cost. This requirement 

may allocate all the modules of the task on the same node to reduce overall com-

munication cost, which will result in load imbalance. The object is to only allocate 

highly communicating module on the same or neighbor nodes. To determine high 

communicating and low communicating modules, fuzzy concept is explored. 

   

A set of samples whose membership values are known may be used to test the 

function in question. This set may constitute the ideal element or the prototype. 

The proposed model considers that there is a prototype or an ideal element for a 

class, and the degree of membership of each element is directly related to the simi-

larity of the element to the ideal. 

   

  Let d(X,C) be the distance of an element with feature vector X=[x1,x2,…xN] 

from the prototype vector C=[c1,c2,…cN] of a class, where d(X,C)≥0. 
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     Two simple forms of membership functions are [24]   
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  The communication cost for the task allocation in DCS is cij*dkl, where cij is 

the communication between modules mi and mj and dkl is the distance between 

processors pk and pl. The cost is effective if mi and mj are allocated on pk and pl re-

spectively.    

   

  The fuzzyfication can be applied on both cij and dkl by considering how large 

cij and how long dkl is. The prototype for cij is the largest possible communication 

between any two modules. Diameter of the network is the prototype for applying 

the membership function on dkl.  

   

  For our model, the maximum communication C, between any two modules, is 

the ideal element. Membership function for the communication is 

)9.5.....(
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1
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c

ij

ij

+
=µ  

  Where diff (cij,C) = | cij-C | 
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  Similarly D, the diameter of the network, is the ideal element for the nodal 

distance. The membership function for the distance is 

)10.5.....(
),(1

1
)(

Dddiff
d

kl

kl

+
=µ  

   

  Where diff (dkl,D) = | dkl - D | 

  The other membership fuzzy equations (5.8) can also be applied in (5.9) and 

(5.10). 

   
  Thus, this chapter discusses some representative models and their limitations 

in sec. 5.1 and 5.2 respectively.  A precedence constrained task allocation model is 

proposed in sec. 5.3. Precedence is an essential requirement of a task and is to be 

given due consideration, that has been ignored in earlier models (sec. 5.1). 

   

  Furthermore an IMC cost reduction model is proposed in section 5.4. This is a 

prerequisite for any TA models and can be incorporated easily in any model. 
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CHAPTER 6      

 

Load Balancing Task Allocation (LBTA)   

   

   

This Chapter discusses briefly the various existing load balancing strategies 

and proposes the model of Load Balancing Task Allocation (LBTA) strategy. The 

LBTA strategy, incurs little communication and no migration overhead in nature. 

Issues in considering and designing of LBTA strategy for a single task have been 

presented. The “load” of a processing node for a single task has been presented. 

Issues considering multiple tasks and their implications for a DCS have been 

identified. The “load” of each processing node for LBTA strategy, considering 

multiple tasks for a DCS has been formulated and discussed in this chapter. A 

data structure called Global Table (GT) is used for the multiple tasks to keep track 

of allocation and load on each processing node. Some known load balancing 

strategies have been presented in sec.6.1. Researchers have studied “Load Balanc-

ing” and “Task Allocation” problem separately. We have considered here a com-

bined approach with a new strategy namely “Load balancing Task allocation 

(LBTA)”. This strategy ensures better performance characteristics of a DCS like 

maximization of throughput. The model of the LBTA strategy has been elaborated 

from Sec. 6.2 onwards.  

6.1   Known Load Balancing Strategies   

 



  Load balancing strategies in DCS fall into two categories: static and dynamic. 

Static load balancing computes information such as execution time, execution 

cost etc. from the task before load distribution. Dynamic load balancing uses little 

or almost nil priori task information and must satisfy changing requirements by 

making task distribution decisions during runtime. For certain tasks, dynamic load 

balancing is preferable because then the problem’s variable behavior matches 

more closely with available heterogeneous computational resources. But dynamic 

load balancing incurs communication and migration overhead because of its het-

erogeneous topology dependent architecture [1]. Researchers have proposed sev-

eral load balancing strategies. We present a brief description of the strategies in 

the following section. Our “Load Balancing (Task Allocation)” strategy follows 

this discussion. 

1) The Gradient model   

 
  In this strategy each processing node interacts only with its immediate 

neighbors. A lightly loaded processor informs of its state to other processors in 

the DCS. The overloaded nodes respond by sending a portion of their load to the 

nearest lightly loaded processor in the system. In DCS when execution begins, 

every processor computes its total load. This strategy uses double threshold policy 

with three regions; lightly, heavily or moderately loaded. A processing node hav-

ing a total load below the low water mark is considered lightly loaded. One that 

exceeds the high water mark is heavily and one where the total load is in between 

is moderately loaded [2]. 
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2) The Sender-Initiated (SI) Strategy     

   
  Here, an overloaded processing node (sender) trying to send a task to an un-

der-loaded processing node called receiver to initiate load distribution. In [1], 

there are three fully distributed sender-initiated strategies discussed. The differ-

ence in these strategies is the policy used in locating the processing nodes to 

transfer or receive tasks. In the first strategy, the network simply transfers a task 

to a randomly selected processor without any information exchange between the 

processors aiding the decision. The second strategy is similar but with the intro-

duction of a threshold value to prevent tasks from being transferred to an over-

loaded processor. In the third strategy, the network polls a number of randomly 

selected processing nodes and compare their load sizes. The network then trans-

fers the task to a processor with the smallest load.  

3) The Receiver Initiated (RI) Strategy   

 
  The RI strategy is like the converse of the SI strategy. Here, receiver initiates 

the load balancing rather than sender in SI. An under-loaded (receiver) node tries 

to get tasks from an overloaded node (sender). In this strategy, the network identi-

fies, as the receiver, a node whose load size falls below the threshold value. Then 

it either broadcasts a message indicating its willingness to receive processes for 

executing or randomly probes the other nodes one by one to find a heavily loaded 

node that can send one or more of its tasks to it. A node is able to transfer one of 

its tasks only if it does not reduce its load below the threshold value. In the broad-

cast method, a suitable node is found as soon as the receiver node receives reply 

message from the other nodes. Otherwise a random probing continues until either 
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a node is found from which a tasks can be obtained or the number of probes con-

tinues up to a limit [1]. 

4) The Central Task Dispatcher Strategy   

   
  In this strategy, a processing node acts as a central job dispatcher, which 

makes load balancing decisions based on global state information. The strategies 

discussed above which use local state information are different from this strategy. 

The dispatcher keeps all the information containing the number of waiting tasks in 

each processor. The central task dispatcher keeps the information whenever a task 

arrives or departs from a node. Each node notifies the task dispatcher whenever its 

state changes, rather than the job dispatcher collecting such information periodi-

cally [3]. According to this information the most heavily loaded processor are re-

quested to transfer loads for the requesting lightly loaded nodes. The amount of 

overhead depends on the way the global information is collected.  

5) The Prediction Based Strategy   

 
  This strategy uses some predicted process requirements for achieving load 

balancing. In the prediction based strategy proposed in [4], some predictions have 

been demonstrated like prediction of CPUs, memory and I/O requirements of a 

process, before its execution. Statistical pattern–recognition method has been used 

for this purpose. However, even though the predicted values are close to the ac-

tual ones, this strategy incurs significant computation overheads. Other research-

ers have proposed a strategy that uses task transfer probabilities to predict a proc-
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essor’s load requirements [4]. Here the network can estimate a processor’s load at 

any time without querying that node. 

We have proposed the following strategy for load balancing. 

6.2   Issues of LBTA Strategy   

   
  The main goal of this strategy is to assign tasks to different nodes so that it is 

almost evenly distributed amongst the node. Tasks are partitioned into modules 

and the modules of different multiple tasks can be allocated to the different nodes 

of the given DCS by minimizing the turn around time of the task. This LBTA 

strategy incurs a little communication and no migration overhead. 

 

In a DCS, the nodes may share some specified load according to their memory 

capacity constraints considering the arrival of multiple tasks. Most of the algo-

rithms proposed in the literature considered task allocation and load balancing as 

a separate issue. But, in this strategy, we have considered both (multiple task allo-

cation that keeps balancing the load across the processing nodes) together. An ar-

rival of tasks (multiple disjoint tasks) with their modules can be accepted by indi-

vidual nodes of the DCS with their memory capacities. Factually the task 

allocation problem must consider the load balancing as its own essential feature. 

A body of literature [2, 5-9] has been proposed that discusses the load balancing 

problem separately.  

 

Another related area is the task migration that actuates movements of tasks 

across the processing nodes to achieve balance of the load. An alternative solution 

may provide task allocation taking into consideration the existing allocation and 

as and when the modules of tasks finish off and leave the DCS, the load balancing 
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activity may be initiated by the system. But it may cause unnecessarily migration 

overhead, which may impact adversely in maximizing throughput of a DCS.  

 

The LBTA problem in a DCS is defined as the mapping of the task graph to 

the processor graph so as to optimize some characteristic parameters. A real 

LBTA strategy has to consider various issues while mapping task graph to proces-

sor graph. The issues are: 

 

a) Precedence constraints among the modules of the task, 

b) Communication among the modules, 

c) Functionality of the processing nodes of DCS, 

d) Interconnection networks of DCS, 

e) Entry and exit of the tasks in a dynamic fashion, 

f) Balancing  the load of the processors while allocating the tasks, and 

g) Use the concept of a Global Table (GT) to keep track the updated infor-

mation of allocation. 

6.3   The LBTA Solution   

 
  A task consists of number of modules and is represented by a Task Graph 

(TG). The TG depicts the precedence and communication requirements amongst 

the modules. The interconnection of nodes in a DCS is represented by another 

graph known as Processor Graph (PG). The problem of allocation is to map TG 

onto PG [10].   

 

  A task submitted into a DCS is partitioned into the suitable modules and then 

these modules are allocated to the processors [10]. Each task can be represented 
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by a Task Graph TG=(Vt, Et), where (1) Vt is a set of vertices, each of which 

represents a module of the task { m1, m2,.….mn } and  (2) Et ⊆ Vt×Vt is a set of 

edges each of which represents the IMC between the two modules at the end of 

the edge. We can also represent the network of processors   { p1, p2, ,….. pn } in a 

DCS as a Processor Graph PG=(Vp, Ep); where vertices represent the processors 

and the edges represent the communication links between processors.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The goal is to allocate task graph (TG) to a network of processors in a DCS 

(i.e. to PG) to achieve the minimum turn-around time of a task. This problem can 

be considered as mapping problem [10] using relaxed assumptions -such that as 

arbitrary computation and task-graph communication requirements and a network 

of heterogeneous processors connected by an arbitrary topology. 

 

Fig. 6.1.Mapping of TG to PG 

mapping 

m4 

m3 m2 

m1 

Task Graph (TG) 

p1 

p2 p3 

 

Processor Graph (PG) 

 

 TG = (Vt, Et)           PG = (Vp, Ep) 

 Vt = {m1, m2, m3, m4}        Vp = {p1, p2, p3} 

 })3p,1p(, )2p, 1p({=  pE}          )4m,3m(, )4m ,2m(, )3m, 1m(, )2m, 1m({= t E 
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If there are m modules, 1≤ i ≤ m in a task and n processing nodes 1≤ p≤ n, in a 

DCS, a n by m matrix M which is called assignment matrix, can be used to repre-

sent the mapping, where 

 





=
. otherwise0

,  node processingto assignedismoduleif1 pm
Mip

i   

We can execute a module mi of the task from the set Vt on any one of the proc-

essing nodes. Each module has an associated execution cost, where Xip is the exe-

cution cost of module mi of the task on processor p. 

 

Thus, the total execution cost of all the modules assigned to processing node p 

is 

6.1                                                                     
1
∑
=

m

i

ipip M.X  

Two modules, mi and mj, executing on two different processing nodes, incur a 

communication cost when they need to exchange data. Let L be the interconnec-

tion configuration of the processing nodes in a DCS which is represented by an 

n×n link matrix, where 





=
. otherwise0

, connecteddirectlyareand node processingif1 qp
L pq

 

Task mapping will assign two communicating modules to the same processors 

or to two different connected processors. A matrix represents communication 

among concurrent modules of a task, if they reside on two different processing 

nodes. Let Cij be an m by m matrix representing the IMC cost of modules of a 

task. 
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 Thus, the total communication cost for all the modules of a task in processing 

node p is [11] 

( ) 2.6...
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Here, in the above equation, Mjq indicates that whether module mj is assigned 

to processing node q. 

6.4   Loads in LBTA for Single Task 

  A processor's load comprises of all the execution and communication costs 

associated with its assigned modules [11]. The LBTA problem must find a map-

ping of the set of m modules of a task to n processors that will minimize the turn 

around time of a task.  

 

The following equation then gives the ‘load’ on processor p for a single task: 
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6.3 
 

  The first part of the equation is the total execution cost of the modules allo-

cated to pi. The second part is the communication overhead on p. Mip and Mjq in-
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dicate that module mi and mj are assigned to two different processors (p and q), 

and Lpq indicates the connectivity of the processors p and q.  

 

  To allocate the modules optimally so that no processor becomes overloaded, 

we need to compute the load on each of the n processing nodes. Here we assume 

that the matrix C & X are for a task and for every task these matrices will be dif-

ferent. 

  

    Several task allocation algorithms for DCSs have been reported in the litera-

ture [10-17]. These algorithms consider the execution time of different modules of 

a single task, executing on different processing nodes. The assignment problem 

must actually try to maximize the throughput of the system by allocating modules 

onto processing nodes so as to minimize the time taken, considering the IPC 

overhead. The assumptions of fixed execution time of a module on a particular 

processor can be valid if only one module is assigned to a particular processing 

node. The number of tasks is usually substantive, but these algorithms consider 

assignment of the modules of a single task to various processing nodes. In reality, 

a DCS facilitates concurrent execution of modules belonging to various unrelated 

tasks. The modules of any particular task, having IMC, do cooperatively execute 

and do not depend on the modules of the other tasks. This leads to the situation 

wherein a processing node may be assigned modules belonging to different tasks. 

It is to mention that the real issue of task allocation must not ignore the possibility 

of multiple module assignment of various tasks to the processing nodes in a dy-

namic fashion. So the task allocation problem must be reformulated. It is very 

much essential to do so because finally these task allocation algorithms are to be 

integrated to become a part of the distributed operating system. 
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6.5 Loads in LBTA for Multiple Tasks   

 
  It is to mention that the real model of LBTA must not ignore the possibility of 

module assignment of multiple tasks to the processing nodes of a DCS, in a dy-

namic fashion. We hereby wish to assert that the problem, solved by the methods 

proposed in the literature, must be reformulated to accommodate certain real is-

sues as discussed above. It may be true that consideration of all the issues, in their 

entirety, may not be feasible. The newer models may include one or two impor-

tant issues to begin with. It is very much essential to do so because finally these 

task allocation algorithms have to get integrated to become a part of the distrib-

uted computing systems. 

 

We have modified the equation 6.3 for the multiple tasks. The LBTA problem 

must find a mapping of the set of m modules of k tasks to n processors that will 

minimize turn around time of all the tasks taken together.  

 

  Let, there be a set of n processing nodes in a DCS  i.e. P={ p1, p2,…..,pn }, 

  a set of k tasks  T={ T1, T2,…..,Tk },  

every task Ti has a set of modules mi={m1,m2,…..,m mi } 

where, mi is the number of elements in the set mi. 

and the total number of modules of all the k tasks be  

∑
=

=
k

i

imm
1

 

  where, miis the number of modules of ith task. 

 

  Task mapping, or assignment to processors, is given by a matrix M, where  
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



=
otherwise0

 node  processing to assigned is  task ofmoduleif1 plmi
Milp

 

The following equation then gives the ‘load’ on processor p for multiple tasks:
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6.4  

  The first part of the equation 3.4 is the total execution cost of the modules of 

task l allocated to p. The second part is the communication overhead on p. Milp 

and Mjlq indicate that modules mi and mj  of task l are assigned to two different 

processors (p and q), and Lpq indicates the connectivity of the processors p and q. 

 

  To allocate the modules optimally so that no processor becomes overloaded, 

the load on each of the n processing nodes needs to be computed. By finding the 

processor with heaviest load, the optimal assignment out of all possible assign-

ments will allot the minimum load to the heaviest loaded processor. Here, it is as-

sumed that the matrix C & X are for task l and for every task these matrices may 

be different. 

 

A DCS receives a number of tasks, each consisting of various modules, from 

time to time. Similarly various modules of a task or the whole task itself with all 

their modules, may quit the DCS after successful completion or due to various 

other system policy decisions. It should be noticeable that due to these frequent 

ins and outs some nodes may become lightly loaded whereas others may remain 

heavily loaded. Thus a fundamental problem of DCS is the effective allocation of 

tasks onto nodes in order to achieve a balanced performance. Load balancing ad-

dresses this problem directly, providing a self-scheduling mechanism, by which 
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the DCS can allocate a large number of tasks onto multiple nodes automatically 

and efficiently. The purpose of load balancing is to promote better processor utili-

zation, greater throughput and faster response times [18]. 
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CHAPTER 7   

GA Based Task Allocation Models  

 
  

   
  The task allocation (TA) problem, as quoted earlier, is an NP-Hard problem 

and various heuristics are applied to solve this problem [1]. Genetic Algorithm 

(GA) has been proved to be useful for the optimization problems [2]. We have ex-

plored the GA and have used it to solve task allocation problem of the DCS. In 

this chapter, two propositions of task allocation algorithms are proposed. In sec-

tion 7.1, a GA based TA model is proposed in which some problem specific 

knowledge is incorporated [3]. This is aimed to minimize the turn-around time of 

a task and is based on a finding that the incorporation of problem specific knowl-

edge in GA, converge the solution quickly. Section 7.2 discusses GA based TA 

model to maximize reliability of the DCS. This algorithm not only gets the advan-

tage of GA for quick convergence but also produces better solutions in terms of al-

location   with improved reliability [4]. 

 

Genetic Algorithms are stochastic algorithms whose search methods model 

some natural phenomena: genetic inheritance and Darwinian strife for survival. 

The idea behind genetic algorithms is to do what nature does [2]. The interest in 

heuristic search algorithms with underpinning in natural and physical processes 

began as early as the 1970s, when Holland first proposed GA. Kirkpatric, Gelatt 



and Vecchi’s simulated annealing technique rekindled this interest in 1983. Simu-

lated Annealing is based on the thermodynamic considerations, with annealing in-

terpreted as an optimization procedure [5]. 

In nature, individuals best suited to competition for scanty resources survive. 

Adapting to a changing environment is essential for the survival of individuals of 

each species. Competition among individuals for scant resources such as food and 

space and for mates results in the fittest individuals dominating over weaker ones. 

Only the fittest individuals survive and reproduce, with a natural phenomenon 

called “the survival of the fittest”. Hence, the genes of the fittest survive, while the 

genes of weaker individuals die out. The reproduction process generates diversity 

in the gene pool. The exchange of genetic material (chromosomes) is called cross-

over. Repeated selection and crossover cause the continuous evolution of the gene 

pool and the generation of the individuals [6]. 

 

Essential to the GAs working is a population of binary strings. Each string of 0s 

and 1s is the encoded version of a solution to the optimization problem. Using ge-

netic operators, crossover and mutation, the algorithm creates the subsequent gen-

eration from the strings of the current population. This generational cycle is re-

peated until a desired termination criterion is reached. The simple structure of the 

GA is as below. 

  GA ( ) 

{ Initialize population; 

 Evaluate population; 
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 While termination criterion not reached 

 {           select solutions for next population; 

    perform crossover & mutation; 

    evaluate population;      } 

  } 

  The above GA shows the following components: 

•   A population of binary strings 

• Control parameters 

• A Fitness function 

• Genetic operators (crossover and mutation) 

• A selection mechanism 

• A mechanism to encode the solutions as binary strings 

 

  We have applied Genetic Algorithm on the task scheduling problem of the 

DCS. 

7.1 Task Allocation using Genetic Algorithm   

   
  Genetic Algorithm has successfully been used to solve various optimization 

problems [6].  GA is parallel in nature and so, it suits better to the task allocation 

problem of the DCS [7]. The various phases of the GA can be performed on the 

various processing nodes of the DCS in parallel [8]. So the GA based scheduling 

model is well suited for its natural parallel execution in DCS.  
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A GA based task allocation model for multiprocessors has been proposed by 

Hou, Ansari & Ren[9]. We present a Genetic Task Allocation Algorithm for DCS, 

wherein we have considered the underlying interconnection networks of the proc-

essors, communication requirements among modules of the tasks apart from the 

precedence relation of the task graph that has been considered in [9] also. Multi-

programming at every processing node with related characteristic values has also 

been considered. We have, purposefully, made use of the finding [10] that the in-

corporation of the problem specific knowledge in construction of GA improves 

the initial population structures. The model and algorithm proposed [11] is suffi-

ciently simple and adequately usable for the purpose of simulation experiments 

and its possible incorporation in future operating systems of the DCS. Incorporat-

ing problem specific knowledge into GA improves its performance, though it 

should be done carefully as GA is notoriously opportunistic and may converge 

quickly to a local optimum [10].  It is easy to formulate a good initial structure by 

incorporating some knowledge in the task allocation problem of DCS. 

7.1.1 The Problem   

   
  The task in our problem is a group of number of modules, communicating 

with each other. The problem is to assign these modules to processing nodes of the 

DCS so that the precedence relations are maintained at the minimum cost. Cost in-

cludes execution time of the modules as well as intermodule communication, if 

any. 
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 The task graph TG = (V, E)    where V, vertices, is the set of modules and E the 

set of edges connecting the modules. 

 

Further any module mi is a predecessor of mj and mj is successor of mi if eij εE. 

 

  We define two sets of modules: 

PRED (mi) - the set of predecessors of mj, and SUCC (mi) - the set of succes-

sors of mj. 

The height function conveys the precedence of the modules, as shown in Fig. 

7.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Height of the various modules of the task graph on Fig.7.1 is as below. 

  Height(m0 ) = 0, 

Height(m1) = Height(m2) = 1, 

m8 

m7 m6 

m4 

m2 

m0 

m1 

m3 

m5 

Fig. 7.1.Task Graph 
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Height(m3) = Height(m4) = 2, 

Height(m5) = Height(m6) = Height(m7) = 3, 

Height(m8) = 4, 

  Each module has execution time eij i.e. execution time of module mi on proc-

essor pj. The communication matrix cij gives the amount of communication be-

tween modules mi and mj. 

 

The processor graph P = (V, E), 

  where V = set of processing nodes (processors) & E = set of edges connecting 

the nodes. 

 

Each module has some execution time and it varies from one processor to an-

other. 

 

Thus in this problem we have two matrices; the execution time matrix and the 

communication matrix. 

7.1.2 GA for Task Allocation 

  Genetic algorithms are available, as solutions, to the number of problems for 

which little prior knowledge is available. Grefenstelle[11]  has  discussed  GA  for  

TSP  in  which  he  has incorporated problem specific knowledge in GA. He is 

successfully able to infer that incorporating problem specific knowledge in ini-
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tialization of strings not only produces good strings but also enables quick conver-

gence, though it is to be done carefully to avoid premature convergence. 

 

  We made use of the findings of [10] and incorporated some problem specific 

knowledge in the initialization as well as in the crossover operations for the prob-

lem of task allocation in DCS [11]. The various phases of GA for TA are as fol-

lows. 

   

    Initial Population 

  Genetic Algorithm uses the notion of survival of the fittest by passing "good" 

genes to the next generation of strings and combining different strings to explore 

new search points. At the cost of few steps, some problem specific knowledge is 

introduced in generating the initial population. Thus the good initial structure is 

generated and the algorithm converges quickly. The steps involved in initialization 

are as follows. 

 

INITIALIZE() 

(1)  Compute height for every modules in TG and set I=0. 

(2)  Partition the modules into different sets G(h) according  to  their height h. 

  (3)  Allocate the modules of G(I) [modules of  height  0]  onto different proc-

essor randomly.        

(4)  Repeat step (5) & (6) for all G(h). 
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(5)  If IMC of allocated modules with modules in group G(I+1) is large 

enough, allocate it on the same  processor otherwise  allocate  it on any different 

processor. Do it for all the modules of G(I+1). 

(6)  Set I=I+1. 

   

Fitness Function 

  The fitness function of the string, in this problem, is the total cost that is the 

sum of IMC cost and the execution cost. The communication cost, cij, is the num-

ber of data units exchanged between module mi to mj and dkl is the inter processor 

distance, as earlier. If the module mi is assigned to the processor pk and the mod-

ule mj is assigned to pl then communication cost is cij*dkl. If k=l then dkl=0 and 

IMC cost reduces to zero i.e. the modules have been assigned onto the same proc-

essor. We have considered that the individual processors in DCS are multipro-

grammed   and the total cost of allocation of task is[9] 

  

)1.7()( jlik

l j

klijikikk xxdcxeqn ∑∑ ×++×
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Crossover Operation 
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  The major consideration while performing the crossover is that, the strings 

generated after the crossover should be legal. Hou, Ansari, and Ren[9] have 

proved that if the crossover site is selected such as 

 

(a) The height of the modules next to the crossover sites are different, and 

(b) The height of all the modules immediately in front of the crossover sites are 

the same then the new strings generated will always be legal. 

 

Grefenstelle showed that incorporating problem specific knowledge in cross-

over operator improves the strings generated [10]. Crossover for TA is as follows. 

 

  CROSSOVER( ) 

  1.  {Selection of crossover sites} 

       Do for all the processors 

     (a) Pick some crossover sites in both the strings such that the modules fol-

lowing and preceding the site have different height and height of the preceding 

module is same for all the processors. 

     (b) Define a communication distribution over these sites. 

     (c) Select one site based on the above distribution for all the strings. 

       (If both following and preceding modules are having much of communica-

tion then it is not a good crossover site) 
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  2. Using the crossover sites exchange the bottom halves of strings A and B for 

each processors. 

      

  Steps 1(b) and 1(c) are introduced to reduce IMC as highly communicating 

modules should be on the same processor.           

 

  Mutation 

  Genetic algorithms are not well suited for fine tuning structures which are 

very close to optimal solutions [10].  The mutation operator is applied to avoid the 

danger of getting caught in local minima. The probability of applying mutation is 

often very less. The routine for mutation has been summarized as below. 

 

  MUTATION ( ) 

       For each of the strings perform the following: 

(1) Randomly pick a module mi. 

(2) Search the string for a module mj of the same height. 

(3) Generate a new string by exchanging mi and mj. 

 

Complete GA for Task Allocation 

   
  All above routines have been grouped to complete the GA for DCS. 

   

(1) Call INITIALIZE( ) n times and store the strings in InitPop. 
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     (calling n times to get n strings for crossover) 

(2) Repeat steps (3) to (5) until algorithm converges. 

(3) Compute the fitness value of strings in InitPop.  BestString is the string with 

low fitness value. ( Object  is  to minimize cost). 

(4) Perform CROSSOVER( ). Put the new strings in NewPop. 

     (Probability of crossover is 1). 

(5) For each of the string in NewPop, perform MUTATION( ) with the prob-

ability ProbMute. Put again the new strings in InitPop. 

(6) Best String is the string with lowest fitness value. 

 

  Termination criterion can be chosen if the fitness value does not change after 

few iterations. The above TA model is based on a finding that the incorporation of 

problem specific knowledge in construction of GA improves its performance and 

solution converges quickly. 

7.2 Maximizing Reliability of DCS with Task Allocation using 

GA 

  Reliability is one of the very important characteristic of the distributed com-

puting system (DCS) and articles on task allocation to maximize reliability of 

DCS have appeared in the past [4, 12-15]. We have studied the effect of various 

parameters on reliability with allocation of a DCS [13]. Here, a TA model is pro-

posed in which a simple genetic algorithm is used to optimize reliability of a DCS 
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with task allocation. The various phases of the algorithm are summarized in the 

following sections. 

7.2.1 Reliability Expression   

   
  The reliability of a DCS of n processing nodes (which is always better than a 

uniprocessor system as failure of some processors does not bring the system to a 

grinding halt) during the mission when a task (of m modules) is allocated, by the 

assignment X, can be expressed as [13]: 

∏∏
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=
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Where Rk (T, X) is the reliability of the processing node Pk and Rpq(T,X) is the 

reliability of the link lpq(connecting node Pp and Pq). This is the probability that 

unit Pk and lpq is operational for time T under assignment X. 
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  Where λk and λpq is failure rates of the processing node Pk and link lpq respec-

tively, eik is the execution time of module mi on node Pk, cij is the communica-

tion(in bytes transferred) between mi and mj, Wpq is transmission rate of link lpq   
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7.2.2 The Proposed Algorithm   

   
  A genetic algorithm makes use of some fitness function to identify candidate 

solutions of the next generation. In the proposed algorithm eqn. 7.2, as given 

above, is used as the fitness function. The following are the various parts of the 

GA based Task Allocation Algorithm. 

Initial Schedule ( ) 

{ 

Compute height for each module in the task graph. 

Keep modules of the same height (h) in the same group G (h). 

Assign the modules of the same height from the same group G (h) onto the dif-

ferent processors. If some modules are unassigned again assign it from the first 

processors in the same order. The assignment is to satisfy the system constraints. 

Assign the modules of the G (h+1) in the same order of the Processors as in 3. 

} 

  A number of populations are generated by applying the Initial_Schedule() and 

changing the order of the processors. 

Crossover ( ) 

  { 

Two modules of different height are chosen for crossover site in a generated 

population, and the portion of the strings is swapped. 

}      // Length of strings should not change 

Mutation ( ) 

{ Randomly alter 0 to 1 and 1 to 0 by keeping no. of 0 and 1 same } 
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  // The probability of mutation is very less as it is an escape for premature con-

vergence.   

Reproduction ( ) 

  { 

Use the fitness function of eqn. 7.2. Choose the few best strings (with good fit-

ness value) 

} 

  Apply Crossover ( ), Mutation ( ) and Reproduction ( ) repeatedly, unless the 

solution converges. 

7.2.3 Experimental Results    

   
  The algorithm, implemented in ‘C’ language, was applied on some representa-

tive cases that demonstrate the desirable allocations. Some results are as below 

[4]. 

 

7.2.3.1 Algorithm is executed for the same task (consisting of four modules) 

and the processor graph (shown in Fig. 7.2) as that of Shatz [13]. Node failure rate 

are shown in figure and the link failure rate are .0003 between P1 and P2, .0001 

between P2 and P3 and .0002 between P2 and P4.  

 
 
 
 
 
 
 
 Fig. 7.2.Processor graph with node failure rate 

 

P1 
.0002 

P3 
.0003 

P4 
.0002 

P2 
.0001 
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The table for execution time and intermodule communication are shown in ta-

ble 7.1 and 7.2 respectively 

. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 

The result for both the models are shown as below.  

Reliability in Shatz Algorithm = 0.9953 

Allocation in Shatz Algorithm = P1←Nil,   

P2←M1, M2,  

P3←M3, M4,  

P4←Nil 

Reliability in Proposed Algorithm = 0.996705                                   

 P1 P2 P3 P4 

M1 5 3 ∞ 4 

M2 3 4 5 6 

M3 4 ∞ 2 5 

M4 3 4 5 2 

 M1 M2 M3 M4 

M1 - 12 5 6 

M2 12 - 8 0 

M3 5 8 - 3 

M4 6 0 3 - 

Table 7.1.Execution time matrix 

 

Table 7.2.IMC Matrix 
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Allocation in Proposed Algorithm = P1←Nil,   

P2←M1, M2, M3,  

P3←M4,  

P4←Nil      

 

7.2.3.2   Further a random task graph and processor graph is generated. Various 

parameters, generated randomly, for the experiment are as below. 

 

Link failure rates are in the range of 0.00010-0.00085               

Node failure rates are in the range of 0.00010-0.00045               

IMC are in the range of 0-15       

AET are in the range of 1-11  

 

The results obtained from the experiment are:               

No. of iterations = 4 

Reliability = 0.953448 

Allocation  P1←M5, P2←Nil, P3←M1, M3, M4, P4←M2, M6, M7  

 

The experiment is further conducted for same task graph and processor graph 

but limiting the no. of modules on each processing node to two. This is to observe 

that how load balancing is achieved. The results are as below. 

 

Reliability = 0.995311                          
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Allocation  P1←Nil, P2←M1, M2, P3←M3, M4, P4←Nil 

 

7.2.3.3 Effect of load balancing is observed also by keeping the failure rate of a 

particular link (l24 in the PG and TG of Fig. 7.3) minimum to 0.0001. The pa-

rameters are listed below. 

 

Link failure rate in the range of 0.00040-0.00090               

Node failure rate in the range of 0.00010-0.00045               

IMC in the range of 1-15 

AET in the range of 1-10  

The output observed is: 

No. of iterations = 5 

Reliability = 0.973945 

Allocation P1←Nil, P2←M3, M5, M6, M7, P3←Nil, P4←M1,M2,M4,M8 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 P4 

P3 

P2 

P1 

PG 

m8 

m5 

m7 

m6 

m3 
m4 m2 

m1 

TG 

Fig. 7.3.Processor and Task Graphs 
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7.2.3.4   Further experiment observes the result by limiting the number of mod-

ules on the processor and making the failure rate of a processor minimum. We 

kept the maximum number of modules on the processing node to 3 and the failure 

rate of the processing node P3 minimum (0.0001) in the TG of Fig. 7.3 and PG of 

Fig. 7.4. The input parameters are: 

 

Link failure rate in the range of 0.00011-0.00065               

Node failure rate uniformly 0.00040                        

IMC in the range of 1-15       

AET in the range of 1-10  

The output of the experiment is as below.                                    

No. of iterations = 6 

Reliability = 0.959887 

Allocation P1←M2, M4, M7   P3←Nil    P2←M1, M5, M8  P4←M3,M6 

Fig. 7.4.Processor Graph 

P3 

P1 

P2 

P4 
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7.2.4 Conclusion   

   
  In the experiment 7.2.3.1 it is observed that the proposed algorithm performs 

better than of Shatz because not only the reliability is increased but better load 

balance is also achieved. 

 

Result of the experiment 7.2.3.2 shows balanced load with better reliability. As 

the processing nodes have their own capacity to carry modules, we confined the 

maximum number of modules in this experiment. Result seems to be very good. 

 

To observe how the modules will concentrate towards some node if some link 

are more reliable. Experiment 7.2.3.3 shows that most of the modules are concen-

trated on P2 and P4 as the failure rate of the link connecting these two nodes are 

minimum. 

 

Experiment 7.2.3.4 does both i.e. limits the number of modules and considers 

the failure rate of a processor to minimum. Conspicuous is that though P3 has low 

failure rate still modules are not allocated on it. The reason observed is may be it 

is because P3 is not well connected with other processing nodes. 

 

The above results show that GA based TA model to maximize reliability of a 

DCS are well suited for this problem as it provides better reliability and balanced 

allocation. 
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This chapter discusses two GA based models. In sec. 7.1 finding of [10] is used 

which says that incorporation of some problem specific knowledge in GA im-

proves its performance and leads to quick convergence. In sec. 7.2, GA is used in 

TA model to maximize the reliability of a DCS with allocation. The fitness func-

tion used in sec. 7.2 is the reliability expression. Result is compared with that of 

one earlier proposed model for the same [13] and it shows an improvement in reli-

ability. 
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CHAPTER 8 

Allocation of Multiple Tasks in DCS  
 

    
 

 
  This chapter consists of four propositions of TA algorithms: first of these ad-

dresses the realistic consideration of multiple tasks in a DCS whereas earlier pro-

posed algorithms (Sec. 5.3 and 7.1) consider only one task at a time; the second 

proposition, a cluster based algorithm, does not require the priori knowledge of 

execution time of modules of a given task, as it is difficult to estimate the same, 

for allocation purposes. These propositions appear in sections 8.1 and 8.2 respec-

tively. Section 8.3 and 8.4 deals with the LBTA strategies for multiple tasks using 

A* and using GA respectively. 

The task allocation models & algorithms, discussed in previous chapters, con-

centrated on improvement of execution characteristics of an individual task, con-

sisting of a number of modules, submitted to the DCS. A DCS, in fact, keeps on 

receiving multiple tasks from time to time. This calls for consideration of all the 

tasks for allocation, simultaneously, to the processing nodes of the DCS.  Such an 

allocation would be able to aim at a good throughput of the system apart from im-

provement in the turn around time of the individual task. The idea of multiple task 

allocation is elaborated in section 8.1. 



The major problem of the allocation techniques is the assumption that the exe-

cution time of the modules of the task on the PEs of the DCS and the communica-

tion among them are available priori. The execution time on the PEs of a DCS, 

prior to its execution, is just difficult to estimate. The allocation method that may 

work with other parameters, without prior knowledge of execution time, is desir-

able. The allocation model proposed in section 8.2 considers the inter module 

communication for grouping modules into the clusters and at the same time clus-

tering of PEs are done based on the inter-processor distances. This cluster-based 

algorithm for the task allocation can make assignments by consideration of similar 

clustering of processing nodes for matching and mapping of module clusters onto 

these node clusters.  Section 8.3 and 8.4 concentrates on LBTA strategy, as dis-

cussed in chapter 4, for multiple task allocation. 

8.1 Multiple Task Allocation   

 
Several task allocation algorithms for distributed computing systems have been 

reported in the literature [1-13]. These algorithms consider the execution time of 

the different modules, of a single task, executing on different processing nodes. 

The assignment problem, in these, optimizes some characteristic parameter by al-

locating modules onto the processing nodes, considering the Inter Module Com-

munication (IMC) overhead. The number of tasks for execution is usually substan-

tive, but these algorithms consider assignment of the modules of a single task to 

various processing nodes. In reality, a DCS facilitates concurrent execution of 
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modules belonging to various unrelated tasks [15]. The modules of any particular 

task, having IMC, do cooperatively execute and do not depend on the modules of 

the other tasks. This leads to the situation wherein, a processing node may be as-

signed modules belonging to the different tasks.  It is to mention that the real issue 

of task allocation must not ignore the possibility of multiple module assignment of   

various tasks to the processing nodes in a dynamic fashion.  

Some assessments for multiple task allocation in a Distributed Computing Sys-

tems has been pointed out in section 8.1.1 [15]. 

8.1.1 Issues of Multiple Tasks Allocation (MTA)   

Some important issues of MTA are as follows: 

a) A DCS must consider execution of modules of different unrelated tasks. 

The modules of a particular task do cooperatively execute and do not de-

pend on the modules of the other tasks. 

b) The execution time of a particular module on a particular node will de-

pend on the number of modules already executing on that particular node 

as per some chosen scheduling policy (Round Robin etc.). 

c) While assigning modules of multiple tasks onto the processing nodes, 

IMC plays vital role in terms of speed and capability of the processing 

node besides memory constraints. 

d) The task allocation models must consider the load on channels while con-

sidering IMC. It is because of the queuing up of multiple modules on the 

processing node ends to make use of the channel. 
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e) The existing task allocation algorithms may cause either deadlock or 

starvation because of remote possibility of certain events at the time of 

allocation of the modules to the processing nodes that are already heavily 

loaded. 

 

Considering these real issues the task allocation problem, proposed in the lit-

erature so far, needs to be reformulated. It is very much essential to do so because 

ultimately these task allocation algorithms are to be integrated as a part of the dis-

tributed operating system. Four models for multiple tasks assignment in a DCS 

have been presented in this chapter. A cost function, which considers effect of 

multiple tasks, is also presented. 

8.1.2 Global Table   

We propose a data structure, called Global Table, to manage the multiple tasks 

execution in a DCS. It is a table having many columns (as shown in Table 8.1) 

taking care of whole allocation. The memory capacity of the processing node de-

termines if a module is to be accommodated onto the node or not. So, in the table, 

a column indicates the available memory of the processors. Modules of the proc-

essor will be represented by mijk i.e. module mi of task Tj allocated on processor Pk. 

While partitioning the task into modules, we assume that the memory require-

ments of the modules are also calculated by Mij (memory requirement of module 

mi of task Tj). After the allocation of this module onto the processing node, the 

memory of the node will reduce to  
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  M = M - Mij, if M be the available memory of the processing 

node 

While allocating the next module of any task on this node, the memory M will 

be compared with the required memory. The 2-D Global Table (G) will be like 

 

 

 

This is a dynamic table, which keeps the information of remaining memory of 

nodes and the modules allocated on the nodes. Whenever a new task arrives, this 

table (G) is to be consulted and to be modified. The implementation of G will in-

cur an overhead in the algorithm but this is essential to maintain the track of mul-

tiple tasks execution in DCS [15]. 

8.1.3 Cost Function of MTA in DCS 

To exploit effective parallelism in a DCS, tasks must be properly allocated to 

the processing nodes. A task allocation algorithm seeks an assignment that opti-

mizes a certain cost-function, e.g. maximum throughput or minimum turnaround 

time. However, most of the reported algorithms yield sub-optimal solutions. In 

general, optimal solutions can be found through an exhaustive search, but as there 

Processor Memory 

Capacity 

Modules Assigned Remaining Memory 

P1 M m1j1 m3j1 … M- (M1j+M3j) 

P2 M m2j2 m1i2 m2i2 … M- (M2j+M1i+M2i) 

P3 

. 

. 

M 

. 

. 

m3i3 

. 

. 

… 

. 

. 

... 

. 

. 

M- M3i 

. 

. 

Pn M … … … M 

Table 8.1.Global Table 
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is  ways in which m modules can be assigned to n processing nodes, an exhaus-

tive search is often not possible. Thus, optimal solution algorithms exist only for 

restricted cases or very small problems. The other possibility is to use an informed 

search to reduce the state space [7]. 

 

The cost function of task allocation is formulated as the sum of the IMC cost 

and the execution cost [12]. IMC cost is a function of communication cost be-

tween two modules of task Th and Inter-Processor distances onto which these two 

modules are assigned. Communication cost cijh represents the communication, in 

terms of bytes transferred, between the module mi and mj of the task Th. The dis-

tance between processing node Pk to processing node Pl is denoted by dkl. If mod-

ules mi and mj are assigned to processing nodes Pk and Pl respectively, the IMC 

cost is (cijh×dkl). If modules are assigned to the same processing node then dkl=0 

and effectively IMC cost becomes zero.  

 

Execution cost eihk represents the cost to execute a module mi of task Th on 

processing node Pk. The assignment is given by,  

 

  

The cost function for processing the task Th, which consists of n modules, on 

the DCS is 
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                    The execution of a module mi of the other unrelated task Tm on the processing 

node Pk may affect the assignment of task Th on the same processing node Pk. The 

various modules, allocated on the processing node Pk, may be allowed to execute 

as per some chosen scheduling policy (Round robin). 

So, the cost function to assign a module mi of task Th on processing node Pk is  

 

The third term in the equation signifies the effect of the other tasks Tm on the 

task Th. 

So, the total cost for assigning the task Th is stated as 

  

The total cost of allocation on the DCS of k nodes is  

 

8.1.4 Task Allocation Algorithms 

The work assumes that the Task Precedence Graph (TPG) and the processor 

graph of a DCS are given. For Task Interaction Graph (TIG), a communication 
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matrix is given. The execution times of all the modules of the task are given in 

Execution Matrix. 

 

A heuristic approach is applied to solve multiple tasks allocation problem. The 

famous A* of Artificial Intelligence and the Uniform Cost Search algorithm have 

been used for multiple tasks allocation problem [16]. 

 

The A*  

A* is a best-first search algorithm, which has been used extensively in artificial 

intelligence problem solving [16]. Programmers can use this algorithm to search a 

tree or graph. For a tree search, it starts from the root, called the start node (usu-

ally a null solution of the problem). Intermediate tree nodes represent the partial 

solutions, and leaf nodes represent the complete solution or goal. A cost function f 

computes each node's associated cost. The value of f for a node n, which is the es-

timated cost of the cheapest solution through n, is computed as in equation 8.5.  

 

 

where g(n) is the search-path cost from the start node to the current node and 

h(n) is a lower-bound estimate of the path cost from current node to the goal 

node(solution), using any heuristic information available. The g(n) is equal to the 

cost of assigning the module according to equation 8.2. The h(n), in this case, is 

the communication cost of all the unassigned modules communicating with the as-

signed module, i.e. 

)5.8()()()( nhngnf +=
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To expand a node means to generate all of its successors or children and to 

compute the f value for each of them. The nodes are ordered for search according 

to the cost; that is the algorithm first selects the node with the minimum expansion 

cost. The algorithm maintains a sorted list, called OPEN, of nodes (according to 

their f values) and always selects a node with the best expansion cost. Because the 

algorithm always selects the best-cost node, it guarantees an optimal solution.  

 

For the task allocation problem under consideration for a single task 

• The search space is a tree; 

• The initial node (the root) is a null-assignment node, i.e. no modules are as-

signed yet; 

• Intermediate nodes are partial-assignment nodes, i.e. only some modules are 

assigned;  

• A solution (goal) node is a complete-assignment node i.e. all the modules of 

the task are assigned. 

 

The Uniform Cost Search  

The heuristic function h(n) in the above equation can be defined by several dif-

ferent approaches. The simplest way is to set h(n)=0 for all n and the resulting 

search is a uniform-cost search [17].  

   

Uniform Cost Search Algorithm for Task Allocation 
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(1) Calculate the status of the Global Table (G) for each processor in terms of 

available memory (M) and the modules that are assigned to it.  

 

(2) Order a list Tj of all modules of incoming tasks according to their precedence.

       

                                                                  //from the Task Precedence Graph(TPG) 

 

(3) repeat (for all the modules of Tj in order) 

 

(4) for the first module(mij) of Tj 

                do  

        select the node Pk with the smallest f value    

                                                   // f value is the cost function of eqn.. (8.5) 

 

(5) if memory (Mij) > Mk                // Mk is available memory of Pk , Mij is  memory  

                then                                                requirement of module mi of task Tj 

    choose next smaller f value;          // memory requirement of the module           

        goto (5)                               exceeds the available memory of the node 

    

 

(6) Update G by adding the assigned module and update memory by Mk = Mk  - Mij 

 

(7) Until (Tj  is empty)                                    // goal node is reached 
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A* Algorithm for Task Allocation 

(1) Calculate the status of the Global Table (G) for each processing node in terms 

of the available memory (M) and  the modules that are assigned to it. 

 

(2) Order a list Tj of all modules of incoming task according to their precedence.

      

                                                                  // from the Task Precedence Graph(TPG) 

 

(3) Put the initial node k=0 on a list called OPEN, and set f(k)=0 where f is a cost 

function given in equation 8.5.   

 

(4) Remove from OPEN the node n with a smallest f value and put it on a list 

called CLOSED. 

 

(5) If n satisfies the goal state, report the solution. Modify the Global Table G by 

adding the assigned module, update memory by Mk = Mk-Mij and Stop. 

Otherwise continue. 

 

(6) Expand node n and compute the value f(n) = g(n') + h(n') as explained earlier. 

// n' is the successors of n 

g(n) is calculated as in eqn. (8.2) 

h(n) is calculated as in eqn. (8.5) 

                                     

Put all the successors of n on OPEN.         
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(7) Go to step (4).  

        

It is assumed that the outgoing module will inform the allocator process to 

modify the Global Table (G) accordingly i.e. the number of modules belonging to 

the outgoing tasks and the memory occupied by the modules of this task will be 

freed in global table. This algorithm has been proposed considering multiple tasks 

allocation in a DCS.  It is observed that the tasks arrive, for the execution, in a dy-

namic fashion. A task, will invoke the algorithm. The status of the Global Table is 

dynamic and the algorithm will include the modification in the table (G) with ref-

erence to a particular task. To ensure proper working, the code of allocator that 

modifies the Global Table is to be treated as critical section.   

8.1.5 Illustrated Examples   

 
Two simple examples have been illustrated below using the above A* algo-

rithm for the task allocation problem and the cost function 8.2 [18]. 

EXAMPLE 1 

We Consider four tasks (and their modules), that arrive for the execution, in a 

DCS consisting of four processing nodes as shown in fig. 8.1. The Execution Time 

Matrix and the Communication Matrices are assumed to be given as below in ma-

trices. The memory requirement of the modules is also given. 
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 P1 P2 P3 

m11 7 8 9 

m21 4 5 6 

m31 1 2 3 

m41 7 5 2 

    Execution Time Matrix T1 

 

 P1 P2 P3 

m12 4 5 6 

m22 1 2 3 

m32 9 6 3 

    Execution Time Matrix T2 

 

m31 

m21 m41 

m11 

Task Graph T1 

m2

2 
m32 

m12 

Task Graph T2 

m23 m33 

m13 

Task Graph T3 m54 

m24 

m44 

m34 

m14 

Task Graph T4 

p3 p2 

p1 

Processor Graph T4 

Fig. 8.1.Task Graph and Processor Graph 
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 P1 P2 P3 

m13 6 5 2 

m23 4 7 1 

m33 7 8 9 

    Execution Time Matrix T3 

 
 
 P1 P2 P3 

m14 15 11 9 

m24 14 12 8 

m34 16 13 6 

m44 05 04 03 

m54 10 09 07 

    Execution Time Matrix T4 

 

 m11 m21 m31 m41 

m11  0  4  5  6 

m21  4  0  0  2 

m31  5  0  0  3 

m41  6  2  3  0 

    InterModule Communication T1 

 

 

 m12 m22 m32 

m12  0  7  8 

m22  7  0  9 

m32  8  9  0 

    InterModule Communication T2 

 
 m13 m23 m33 

m13  0  7  8 

m23  7  0  9 

m33  8  9  0 

    InterModule Communication T3 

 

 

 m14 m24 m34 m44 m54 

m14  0  8  0  0  7 

m24  8  0  6  0  0 

m34  0  6  0  5  4 

m44  0  0  5  0  0 

m54  7  0  4  0  0 

    InterModule Communication T4 
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m11 m12 m13 m14 m12 m22 m32 m13 m23 m33 

1 2 3 1  1   1  1 2  1 1 

m14 m24 m34 m44 m54      

2 1 1 2 1      

    Memory requirements of the modules (in MB) 

 
The algorithm is applied for these tasks. Below are the tables showing modules 

assigned to the various processing nodes and the remaining memory of the nodes.  

   

Task T1 has been allocated as  

Processor Memory Capacity 
in M.B. 

Modules Assigned  Remaining Memory 

P1            8      m41                7 M.B. 

P2            8      m21                6  M.B. 

P3            8              m11  ,    m31                4 M.B. 

 

 
Task T2 has been allocated as 
 

Processor Memory Capacity 
in M.B. 

Modules Assigned Remaining Memory 

P1            8   m41  ,   m32   6 M.B. 

P2            8 m21 6  M.B. 

P3            8          m11  , m31 ,   m12  ,   m22   2  M.B. 

 
 
Task T3 is allocated as 

 

Processor Memory Capacity 
in M.B. 

Modules Assigned Remaining Memory 

P1            8     m41 ,    m32  ,    m33 5 M.B. 

P2            8 m21   ,   m13  ,  m23 3  M.B. 

P3            8          m11 ,m31 , m12 ,   m22   2  M.B. 
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Task T4 has been allocated as 

 
The above table also shows the final status of the allocation. 
 

EXAMPLE 2 

 
In this five tasks are considered for allocation as shown below in fig 8.2. The 

relevant data follows the figures. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Proc-
essor 

Memory Ca-
pacity in M.B. 

Modules As-
signed 

Remaining Mem-
ory 

P1            8 m41  ,   m32  ,  m33   

,  m34 ,   m44 ,  m54 
1M.B. 

P2            8 m21 ,  m13  ,  m23 , 
m14 

1  M.B. 

P3            8         m11  ,  m31  ,   m12   

,   m22  ,  m24 
1  M.B. 
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Fig. 8.2.Task Graphs and Processor Graphs 
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m41 

m31 

m21 

m11 

Task T1 

m12 
m32 

m42 

m22 

Task T2 

m33 

m43 

m23 

m13 

Task T3 

m74 

m64 m54 m44 

m34 m14 m24 

Task T4 

m35 

m75 

m85 

m45 

m65 

m55 

m25 

m15 

Task T5 

P5 

P4 

P3 

P2 

P1 

Task T6 

Processor Graph (PG) 
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The Different Matrices are as follows: 
 

 p1  p2 p3 p4 p5 

m11 10 20 5 25 5 

m21 35 10 15 15 10 

m31 10 15 25 10 20 

m41 20 35 20 5 25 

m51 10 5 10 5 10 

Execution Time Matrix T1 
 

 p1 p2 p3 p4 p5 

m12 20 5 35 10 5 

m22 10 10 10 10 10 

m32 15 10 20 15 15 

m42 10 15 20 15 30 

Execution Time Matrix T2  
 

 p1  p2 p3 p4 p5 

m13 15 25 15 10 10 

m23 30 40 25 20 5 

m33 20 5 10 15 10 

m43 10 5 5 15 20 

Execution Time Matrix T3 
 

 p1 p2 p3 p4 p5 

m14 5 10 25 20 30 

m24 10 25 5 5 5 

m34 25 10 5 10 25 
m44 5 10 15 25 25 

m54 10 15 20 25 30 

m64 5 10 10 10 10 

m74 5 10 10 20 20 
Execution Time Matrix T4 
 
 

 p1 p2 p3 p4 p5 

m15 5 10 6 3 2 
m25 7 8 10 3 1 

m35 6 5 15 10 20 

m45 8 10 12 14 16 

m55 11 10 12 5 6 
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m65 5 10 12 8 6 

m75 6 8 10 11 12 

m85 8 9 2 3 1 

Execution Time Matrix T5 
  

 m11 m21 m31 m41 m51 

m11 0 10 20 20 5 

m21 10 0 10 0 20 

m31 20 10 0 0 10 

m41 20 0 0 0 20 

m51 5 20 10 20 0 

InterModule Communication T1 

 

 m12 m22 m32 m42 

m12 0 5 10 10 

m22 5 0 0 0 

m32 10 0 0 5 

m42 10 0 5 0 

InterModule Communication T2 
 

 m13 m23 m33 m43 

m13 0 5 15 10 

m23 5 0 10 5 

m33 15 10 0 0 

m43 10 5 0 0 

InterModule Communication T3 
 
 

 m14 m24 m34 m44 m54 m64 m74 

m14 0 5 10 15 15 15 20 

m24 5 0 0 10 0 0 15 

m34 10 0 0 0 0 5 10 

m44 15 10 0 0 10 15 5 

m54 15 0 0 10 0 5 5 

m64 15 0 5 15 5 0 5 

m74 20 15 10 5 5 5 0 

InterModule Communication T4 
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 m15 m25 m35 m45 m55 m65 m75 m85 

m15 0 5 10 10 15 20 40 45 

m25 5 0 0 5 10 15 35 40 

m35 10 0 0 0 0 0 0 10 

m45 10 5 0 0 0 0 10 15 

m55 15 10 0 0 0 5 25 30 

m65 20 15 0 0 5 0 20 25 

m75 40 35 0 10 25 20 0 5 

m85 45 40 10 15 30 25 5 0 

InterModule Communication T5 

 

m11 m21 m31 m41 m51 m12 m22 m32 m42 m13 m23 m33 m4

3 

m14 

1 1 1 1 2 1 1 1 2 1 1 1 1 2 

m24 m34 m44 m54 m64 m74 m15 m25 m35 m45 m55 m65 m7

5 

m85 

1 1 1 2 1 1 1 2 1 1 1 1 1 1 

 Memory requirement of the modules in MB 
 
Again using the proposed algorithm the result is as follows 

 
Task T1 has been allocated as  

Processor Memory Capacity 
in M.B. 

Modules Assigned  Remaining Memory 

P1            8      8  M.B. 

P2            8      m31 ,   m41  5  M.B. 

P3            8      m11  ,   m51 6  M.B. 

P4            8  8  M.B. 

P5            8              m21 7  M.B. 

Task T2 has been allocated as 

Processor Memory Capacity 
in M.B. 

Modules Assigned  Remaining Memory 

P1            8     m42   6  M.B. 

P2            8 m31 , m41 ,m12,   m22 3  M.B. 

P3            8 m11  ,   m51   6  M.B. 

P4            8  8  M.B. 

P5            8             m21  ,    m32   6  M.B. 
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Task T3 has been allocated as 

Processor Memory Capacity 
in M.B. 

Modules Assigned  Remaining Memory 

P1            8       m42   ,  m43 5  M.B. 

P2            8 m31  ,   m41  ,  m12  ,   
m22  ,   m33 

2 M.B. 

P3            8 m11 , m51,m13 ,  m23 4  M.B. 

P4            8  8  M.B. 

P5            8           m21  ,    m32 6  M.B. 

 
Task T4 has been allocated as 

Processor Memory Capacity 
in M.B. 

Modules Assigned  Remaining Memory 

P1            8  m42, m43, m64,   m74 3  M.B. 

P2            8   m31  ,   m41   ,   m12  
,   m22  ,  m33 

2 M.B. 

P3            8 m11   ,   m51  ,   m13  ,   
m23  ,  m14 

1  M.B. 

P4            8   m34 7  M.B. 

P5            8         m21  ,  m32  , m24 ,   
m44  ,  m54 

2  M.B. 

 
Task T5 has been allocated as (Final Table) 

Processor Memory Capacity 
in M.B. 

Modules Assigned  Remaining Memory 

P1            8 m42 , m43,m64 , m74  
,   m85   

2  M.B. 

P2            8 m31 , m41 ,m12,   m22  
,   m33  ,   m55 

1 M.B. 

P3            8  m11   ,   m51  ,   m13  
,   m23  ,   m14  ,            

1  M.B. 

P4            8  m34 , m25 ,m35,  m45  
,   m65  ,   m75 

1  M.B. 

P5            8          m21 , m32 ,m24,m44  ,   
m54  ,   m15 

2  M.B. 

 

 

The final table shows that all the processors are being utilized for the purpose 

of execution. Further the tables show that the load of the DCS is well balanced. 

The resultant allocation infers that the modules of a particular task are also dis-
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tributed among the processing nodes of the DCS. To observe the turn around time 

of tasks, this is to be implemented on a real DCS platform. The implementation of 

G will incur an overhead but this is inevitable for the management of the multiple 

tasks execution.  

 

This work considers the realistic approach of multiple tasks, coming for the 

execution in DCS, dynamically. The proposed work can be a significant move to-

wards the processor scheduling aspects of the Operating System of DCS. 

8.2 Cluster-Based Load Partitioning and Allocation in DCS   

 
  A new workload partitioning and assignment algorithm is proposed for the 

tasks in large heterogeneous DCS, which attempts to find an assignment of task to 

processors that result in a feasible schedule. The aim of the contributions lies in:  

 

1. its scalability to very large systems by taking advantage of dynamic cluster-

ing, 

2. its ability of handling arbitrary-topology heterogeneous systems and, 

3. its use of a fuzzy based clustering heuristics which tends to increase feasible 

processor utilization bounds. 

   

To overcome the scalability limitations, heuristic approaches[19-21] have been 

proposed for larger instances of the problem. Based on their performance meas-
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ures, these approaches can be classified as schedulability-based[20, 21] or com-

munication based[22, 23]. One common way to reduce the allocation search space 

is to cluster tasks into larger units of allocation, then allocating the resulting mod-

ule clusters, not individual modules, to available processors. Different flavor of 

these are proposed in [22, 23]. In general, clustering heuristics, such as those in 

[22], typically require the knowledge of module execution times and inter module 

communication overhead. Computing these values, which depend on processor 

speed and link bandwidth, requires a priori knowledge of task to processor as-

signment. Since the assignment is not known in advance, these heuristics are usu-

ally applicable only to homogeneous systems. For large distributed applications, 

parts of which may span several heterogeneous platforms, this is a serious limita-

tion [24]. The approach here differs from other clustering approaches in three re-

spects. First, while in existing approaches, clustering is done only once, followed 

by the allocation stage; we use a more scalable dynamic approach, which itera-

tively refines the solution. Second, the clustering algorithm can handle heteroge-

neous systems efficiently. And finally, we use the clustering, which is solely based 

on the communication aspects of the task and the system. This avoids the priori 

knowledge of task execution on the processors of the DCS. 

8.2.1 Problem Formulation 

We assume that the workload is composed of a set of tasks Ti, each of which is 

characterized by a set of modules mi ∈ Ti. Each module mi has a worst case com-

putation requirement ej measured in processor cycles (or in terms of other units) 
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independent of processor speed. A module mi may exchange messages with an-

other module mj of the same task. The hardware platform on which the application 

is to be executed is an arbitrary-topology distributed computing system, possibly 

composed of several dedicated and shared links. Links may be dedicated (point-to-

point) or multiple access (e.g. an FDDI ring). A processor may have access to 

more than one link. The processors of distributed systems are on the same LAN or 

many LANs are connected through routers and gateways.  

 

The modules of a single task are related and their relation is depicted by the 

task graph. The task graph considers the precedence and the Inter Module Com-

munication among the modules (IMC matrix). A task that enters into the DCS is 

equipped with the following information 

 

a) IMC between mi and mj of task T(cij). 

b) Precedence among the modules of the task graph. 

 

With these given parameters our object is to find an assignment of modules to 

processors, in a distributed computing system, for which feasible schedule is 

likely to be found by finding a suitable clustering and assignment.  
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8.2.2 Cluster Based Task Allocation 

In a DCS, a sizable fraction of the total time is experienced in the inter-module 

communication. Communication penalty experienced by the system is defined as 

[25]. 

Where Ttotal is the time required by the algorithm to solve the given problem 

and Tcomp  is the time attributed to computation. If Tcomn is the time involved in 

communication among different modules of the task, then 

As obvious less communication overhead will reduce the communication pen-

alty. 

Factors that affect the communication in the system are as follows: 

1) Bandwidth: It is defined as the number of bytes transferred in unit time. 

2) Distance: It is inter processor distance in terms of links.  

3) Connection: direct or through intermediate nodes. 

4) Links: Time-shared or dedicated. 

5) Communication devices: Gateways, routers etc. 

The aim in the formation of the clusters (both task and processor) is to consider 

the above aspect of the communication and clusters are to be formed so as to re-

duce the communication penalty.  

Cluster based task allocation involves the following steps 

1) Divide the DCS (processor graph) into clusters of processors.  

2) Divide the tasks into clusters of modules. 

comp

total

T

T
CP =

comncomptotal TTT +=
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3) Map the clusters of modules onto the clusters of processors.  

4) Dynamically reconfigure the cluster of processors as and when required. 

8.2.3 Dynamic Formation of Clusters   

 
The DCS can be partitioned into different subsystems, known as clusters. The 

formation of the cluster uses a heuristic. There are different possibilities of the 

cluster formation that depends on the network organization of the DCS. Some of 

the cluster formations have been depicted in figs. 8.3 and 8.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster 1 Cluster 2 

 Fig. 8.3.Hypercube structure 

 
 

Processor Router   
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We need to consider two points while forming the cluster of processors. First, 

the connection among the processors (i.e. if the processors are directly connected, 

it is better to keep them in the same cluster) and second the placement of commu-

nication devices (routers and gateways). These devices delay the communication 

and so it is better to separate them out in the formation of the clusters.  

 

There are two types of the processor cluster formation. One, in which once the 

cluster formed will be fixed during its operation. This is called static cluster for-

mation. As the different clusters (group of processors) are connected with each 

other there are possibilities in which the structure of the cluster may change ac-

cording to the need and availability of the processors. This is dynamic cluster for-

mation. The examples given in Fig. 8.5 and 8.6 elaborate the dynamic cluster for-

mation. 

Cluster 1 Cluster 2 

 Fig. 8.4.Tree structure 

 
 

Processor Router   

Cluster 3 
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Similarly clusters of modules of a task can be formed. Usually these clusters 

will be fixed throughout their execution. 

Fig. 8.5.Dynamic cluster formation at time T for nonregular network of nodes 

Cluster 1 

Cluster 2 

Cluster 3 

Fig. 8.6.Dynamic cluster formation at time T+ t for nonregular network of nodes 

 

Cluster 1 

Cluster 2 

Cluster 3 

Cluster 4 
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 Processor Clustering   

Processor clustering attempts to identify group of processors, which can be 

treated as a single unit. These groups of processors are clustered together. In the 

present work, the attempt is to form cluster of processors based on the architecture 

of DCS and the application demand. The clusters may change dynamically de-

pending on application. Usually number of processor clusters should be equal to 

the number of module clusters so that one to one mapping may result. Though it is 

not always possible as the different applications may demand different number of 

clusters. 

 

The aim, to have the clustering of processors, is to reduce the communication 

overhead to its maximum possible extent. Thus while forming the clusters, the I/O 

speed of the processors and the bandwidth of the connecting links are to be con-

sidered. Abdelzer and shin[24] have defined the attraction force (Bij / µi+µj ) for 

the clustering of the processors. Here Bij is the bandwidth of the link connecting 

two processors Pi and Pj of µi and µj speed respectively.  

 

This work considers another aspect for the formation of the processor cluster. 

The communication between two processors, which are not directly connected, in-

curs more overhead than the communication between two directly connected 

processors. The more the distance the larger is the communication overhead. 

 

1538    Allocation of Multiple Tasks in DCS



A fuzzy logic is applied to define the membership of the processors and is sub-

sequently used to form the clusters of the processors. The fuzzy function will try 

to keep those processors in the same cluster that are directly connected or at little 

distance. Membership function is defined as follows: 

Using the above membership function each processor of the DCS will get a 

membership value, which lies between 0 and 1. This membership value will help 

in the formation of the processor clusters. 

Processors on different LANs are interconnected via routers gateways etc. 

These devices delay the communication. Thus as far as possible these devices 

should be excluded in cluster formation. 

Module Clustering   

Modules of the tasks are clustered based on their communication requirement. 

Highly communicating modules are clustered together to reduce communication 

delays. We have applied the same fuzzy function to grade the high and low com-

municating modules. 

Thus each module of the task will receive a membership value, which will help 
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in the module cluster formation.  

8.2.4 Cluster Allocation 

 
Cluster allocation takes place after the clustering phase. Tasks clusters fit to the 

processor clusters according to four scheduling policies described below   

a) Best Fit: Module cluster is placed in a processor cluster in which it fits almost 

exactly i.e. it tries to map one to one onto between module cluster and proces-

sor cluster as far as possible. 

b) First Fit: Module cluster is placed in any available processor cluster, which 

can accommodate it. 

c) Worst Fit: Module cluster is placed in the processor cluster, which leaves the 

maximum number of unused processor in the processor cluster. 

d) Reverse Fit: This mapping is unlike to above three. Here, the number of 

modules in the module cluster is more than the number of processors in the 

processor cluster. 

Obviously worst fit is of no use. Choice is to be made among the Best fit, First 

fit or Reverse fit as required. 

 

Two more techniques are to be discussed in connection with the dynamic clus-

ter formation of the processors. 
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i) Merge: If the no. of modules in the module cluster, exceeds the number of 

processors in a processor cluster, merging of the neighbor processor clusters may 

take place depending on the availability of the processors in the neighboring clus-

ter. 

ii) Split:  Similarly the processor cluster may be split if the no. of processors in 

a processor cluster (P) is more than the number of modules in a module cluster 

(Tm) assigned. The whole cluster can be split into two parts with the unused proc-

essor in one cluster and the rest in the other. Obviously, these excluded processors 

may eventually merge with the other neighboring processors. 

8.2.5 The Allocation Algorithm   

 
The mapping of the module clusters to processor cluster takes place according 

to the following algorithm. 

 

1) MODULE_CLUSTER( );             // form the clusters of modules of a task 

2) PROCESSOR_CLUSTER( );      // form the clusters of processors of the DCS 

3) Map the module clusters to the processor clusters using the scheduling poli-

cies: 

          BEST FIT 

       or FIRST FIT  

        or REVERSE FIT 

4)  if 
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     BEST FIT 

     then EXECUTE( )  

    else if  

             FIRST FIT 

             then  SPLIT( ); 

    else if   

            REVERSE FIT 

            then MERGE( ); 

 

Different functions used in the algorithm are as below. 

MODULE_CLUSTER( ) 

{ 

a) Estimate the fuzzy membership value for all the modules of the task in re-

spect of IMC starting with the first module. 

b) Cluster those modules which lie in the same membership value. Do it for 

all remaining modules. If any qualifying module is already clustered, ex-

clude that module in the current cluster. 

 } 

 

PROCESSOR_CLUSTER ( ) 

{ 

a) Estimate the fuzzy membership value for all the processors with other 

processors starting with the first processor  

b) Cluster those processors, which lie in the same membership value. 
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c) If there is a communicating device in between two processors, exclude 

the next processor from the cluster. 

d) Do step b) and c) for all the remaining processors and if any qualifying   

processor is already clustered, exclude that processor in the current clus-

ter. 

 } 

   

SPLIT( ) 

{  

Exclude (P-Tm) processors from the processor cluster; 

EXECUTE( ); 

} 

MERGE( ) 

{ 

    Look for close to (Tm-P) free neighbor processors; 

    Join these processors in the same processor cluster; 

               EXECUTE( );   

               if  none free (Tm-P) neighbor processors  

               then allocate (Tm-P) modules on the same processors of the cluster 

               EXECUTE( ); 

} 

 

EXECUTE( ) 

{ 
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         Execute all the modules of the clusters and quit the DCS; 

 } 

8.2.6 An Example   

 
 
An example is given to illustrate the algorithm. The task graph and processor 

graph are chosen at random and is given in fig. 8.7 and 8.9. The Inter Module 

Communication matrix is also assumed to be given. The relevant data is available 

below. 

 

            m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 
m1 0 1 1 1 1 2 2 2 4 4 

m2 1 0 1 2 3 1 2 3 3 4 

m3 1 1 0 1 2 2 1 2 2 3 

m4 1 2 1 0 1 3 2 1 3 2 
m5 1 3 2 1 0 3 2 1 3 2 

m6 2 1 2 3 3 0 1 2 2 3 

m7 2 2 1 2 2 1 0 1 1 2 

m8 2 3 2 1 1 2 1 0 2 1 

m9 4 3 2 3 3 2 1 2 0 3 

m10 4 4 3 2 2 3 2 1 3 0 

              IMC requirements of the modules  
 
 

 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 

m1 0.2 0.25 0.25 0.25 0.25 0.33 0.33 0.33 1 1 

m2 0.25 0.2 0.25 0.33 0.5 0.25 0.33 0.5 0.5 1 

m3 0.25 0.25 0.2 0.25 0.33 0.33 0.25 0.33 0.33 0.5 

m4 0.25 0.33 0.25 0.2 0.25 0.5 0.33 0.25 0.5 0.33 

m5 0.25 0.5 0.33 0.5 0.2 0.5 0.33 0.25 0.5 0.33 

m6 0.33 0.25 0.33 0.5 0.5 0.2 0.25 0.33 0.33 0.5 

m7 0.33 0.33 0.25 0.33 0.33 0.25 0.2 0.25 0.25 0.33 

m8 0.33 0.5 0.5 0.25 0.25 0.33 0.25 0.2 0.33 0.25 

1598    Allocation of Multiple Tasks in DCS



m9 1 0.5 0.33 0.5 0.5 0.33 0.25 0.33 0.2 0.5 

m10 1 1 0.5 0.33 0.33 0.5 0.33 0.25 0.5 0.2 

                       Corresponding membership values of the modules 
 

 P1 P2 P3 P4 P5 P6 P7 P8 

P1 0.25 0.33 0.33 0.33 0.5 0.5 0.5 0.5 

P2 0.33 0.25 0.33 0.5 0.33 0.33 0.5 0.5 

P3 0.33 0.33 0.25 0.5 0.5 0.5 0.33 0.33 
P4 0.33 0.5 0.5 0.25 1 1 1 0.33 

P5 0.5 0.33 0.5 1 0.25 0.5 1 1 

P6 0.5 0.33 0.5 1 0.5 0.25 1 1 

P7 0.5 0.5 0.33 1 1 1 0.25 0.5 
P8 0.5 0.5 0.33 0.33 1 1 0.5 0.25 

Corresponding membership values of processors 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

According to the algorithm (section 8.2.5), the following module clusters of the 

task have been formed as shown in Fig. 8.8. 

Tm_cluster_1 : m1, m2, m3, m4, m5 

Tm_cluster_2:  m6, m7 

Tm_cluster_3:  m8, m10 

Tm_cluster_4:  m9  

m2 

m9 

m8 

m10 

m7 
m6 

m5 
m4 m3 

m1 

Fig. 8.7.Task graph with corresponding modules 
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According to the algorithm (section 8.2.5) the following processor clusters 

have been formed (Fig. 8.10). 

P_cluster_1 : P1, P2, P4 

P_cluster_2 : P5 

P_cluster_3 : P6 

P_cluster_4 : P3, P7,P8 

m2 

m9 

m8 

m10 

m7 
m6 

m5 
m4 

m3 

m1 

Fig. 8.8.Cluster formation of modules 

P8 
P2 

P5 

P3 

P4 

P7 

P6 

P1 

Fig. 8.9.Processor graph 
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As per the allocation algorithm, the module clusters are mapped onto the proc-

essor clusters as follows 

 

Tm_cluster_1         P_cluster_1 

Tm_cluster_2         P_cluster_4 

Tm_cluster_3         P_cluster_2 

Tm_cluster_4         P_cluster_3 

 

Finally P_cluster_4 splits one processor from its cluster. P_cluster_1 merge 

with that processor and the other P_clusters remain as it is.  

Cluster based load partitioning and assignment is used for real-time applica-

tions. The proposed approach has the potential for scalability and support for sys-

tem heterogeneity. Scalability is achieved by Merge and Split cluster formation of 

the processors. The approach considers the communication aspect in the cluster 

formation as it incurs more overheads. This is also a realistic approach as the other 

algorithms, based on the same, uses the priori knowledge of the execution of the 

P8 

P2 

P5 

P3 

P4 

P7 
P6 

P1 

Fig. 8.10.Cluster formation of processors 
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modules of the task on the processors of the DCS. The communication bandwidth 

is already known while designing the system, so it is not difficult to measure the 

IMC time for the modules of the task. A new fuzzy approach is applied to form 

the clusters. Examples illustrate the algorithm.  

8.3 The LBTA Strategy for Multiple Tasks Using A*   

 
In this section, an algorithm has been developed for the LBTA strategy for 

multiple tasks. A heuristic approach to solve LBTA problem for multiple tasks us-

ing A* technique has been presented. The load on a processing node for multiple 

tasks proposed in the chapter 6 has been used as a cost function for the algorithm 

in this chapter. An illustrative example has been worked out using the algorithm. 

Few examples have been worked out using the software implementation of the al-

gorithm. Finally the GT shows the corresponding allocation of the tasks, which 

achieves balanced load among the processing nodes of a DCS. 

      

A DCS is a network of workstations, personal computers and/or other comput-

ing systems. Such a system may be heterogeneous in the sense that the computing 

nodes may have different architectural capabilities as well as different speeds and 

memory capacities. A DCS accepts tasks from users and executes different mod-

ules of these tasks on various nodes of the system. Various modules of a task have 

a precedence relation depicted by its task graph and their communicational re-

quirements are given by the IMC matrix. A good number of task allocation algo-
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rithms have been proposed in the literature. These algorithms allocate a given task 

on to the DCS nodes and aim to minimize the turn around time of the given task 

and do not consider the multiple task allocation in a DCS. Such algorithms do not 

consider (both) the number of modules that can be accepted by the individual 

computing nodes and the memory capacity of the nodes. Factually, in a DCS the 

nodes may share some specified load within their memory capacity constraints. 

Further, the above mentioned algorithms consider only one given task. In this 

work, we have considered the number of modules that can be accepted by individ-

ual nodes along with their memory capacities and arrival of multiple disjoint tasks 

(there are no inter task communication among tasks) to the DCS from time to 

time. The algorithm proposed here, attempts to allocate modules of a task on to 

such processing nodes that takes minimum possible time for execution of the con-

cerned modules. It is only when such a processing node, that requires smaller time 

for the concerned module, will become overloaded because of this assignment; the 

concerned module is allocated to a processing node that may take more time to 

execute. Such an arrangement obtains the minimization of turn around time up to 

the possible extend for the concerned task. Finally the resultant possible minimum 

possible turn around times of all the tasks will ensure enhancement of throughput. 

It will not be out of place to mention that an allocation that overloads processors 

looking only at the execution time and IMC matrix of concerned task will cer-

tainly increase the turn around times of the task and result in a poor throughput. 

 

To exploit effective parallelism on a DCS, tasks must be properly allocated to 

the processing nodes. The task assignment problem is well known to be NP-Hard. 
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A task allocation algorithm seeks an assignment that optimizes a certain cost-

function, for example maximum throughput or minimum turnaround time. How-

ever, most of the reported algorithms yield sub-optimal solutions. In general, op-

timal solutions can be found through an exhaustive search, but as there is nm ways 

in which m modules can be assigned to n processing nodes, an exhaustive search 

is often not possible. Thus, optimal solution algorithms exist only for restricted 

cases or very small problems. The other possibility is to use an informed search to 

reduce the state space [3]. 

 

Like other NP-hard problems, there are three common ways to get a solution of 

the problem [17]: 

 

• Relaxation: some of the requirements can be relaxed or restrict the problem. 

• Enumerative optimization: to compromise with the solution’s optimality 

enumerative methods such as dynamic programming and branch-and-bound 

can be used. 

• Approximate optimization: heuristics can be used to solve the problem while 

aiming for near optimal or good solution.  

 

8.3.1 The Proposed Algorithm   

 
Though a plethora of algorithms have been proposed, most of them have not 

taken the realistic view that only a finite number of modules can be allocated to a 
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processor, depending upon the architectural capability of the processors. Secondly, 

earlier algorithms [3, 26] have continued to assume that all the modules will be 

eventually allocated without considering the status of the system in terms of re-

maining memory and the additional no. of modules that the individual processors 

can accept as per the allocations that have already been made for the previous 

tasks. These algorithms do not consider the requirement of allocation of modules 

of multiple tasks. All the algorithms give the solution to single task allocation 

case.  

 

In the proposed algorithm, we have shed off these unrealistic assumptions and 

make use of a data structure STATUS associated with every processor, which has 

two fields showing: 

 

a) The maximum no. of modules that can be allocated to this processor and 

b) The memory capacity of the processor. 

 

Whenever a module is chosen for allocation onto a processor, the STATUS is 

checked and it is ascertained whether the processor can accommodate the module 

at hand. If not, another processor is chosen if available. The consequence might be 

that a certain task is not allocated at all. STATUS is of the type 

   
 Struct{ 

   int no_of_modules; 

   int mem_capacity; 

   } STATUS; 

 
 
A matrix Li

pq which indicates whether two processors are directly connected or 

not (i.e. Li
 is an adjacency matrix). Let us have a coefficient matrix Cf that has n 
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entries. The ith entry corresponds to communication between two processors via i 

links. While calculating the load of a processor, as in section 6.5, when the 2nd ex-

pression in R.H.S. of equation 6.5 amounts to zero and p is not the same as q (i.e. 

Processors p and q are not directly connected), we find out L2, multiply it by Cf2 

(2nd
 field of Cf), and check whether this comes out to be non-zero; if it does, we 

replace L1 in equation 3.4 with this; if not we find out L3 and multiply it with Cf3 

and check whether the product comes out to be non-zero. We continue like this 

until we find a non-zero value and then replace L
i in equation 3.4 with this (it 

should be noted that we’ll find a non-zero value within n multiplications, where n 

is the no. of processing nodes). In section 8.3.5 (case 1), an illustrative example 

elaborates the use of Li
pq and Cfi. Thus we modify equation 6.5 as following, which 

is ‘load’ in a processor p.  

          

            

Where,          CCpq = Cfi . L
i
pq  

Xilp =   Execution cost of module i of task l on processor p 

 

 

 
 Cijl   =   Communication cost between ith

 and jth module of task l 

 
      L

i
pq  =  Connection matrix of  two processors p and q, describing the     links 

(direct/ one indirect/ two indirect etc.) of connection paths 

among the processing nodes in Processor Graph(PG). 
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      Cfi    =  Coefficient matrix which has n entries describing the IPC costs for the 

links of connection paths among the processing nodes. 

For example, Cf1=5(for direct connection between the proces-

sors), Cf2=10 (for processors which are indirectly connected by 

one link), Cf3= 20(for processors which are indirectly con-

nected by two links) etc. 

 

       
The work assumes that task graphs and processor graph of a DCS are given. 

Communication matrices are given for IMC among modules of tasks. It is also as-

sumed that the execution times of all the modules of the task are given in Execu-

tion Matrix.  

 

A heuristic approach is applied to solve LBTA problem for multiple tasks. In 

the proposed algorithm, we have considered the above factors and have applied 

the well-known A* algorithm. A* is a best-first search heuristic technique for a 

larger search space [3].  

8.3.2   The A*  

In the A* algorithm [3], for a tree search, it starts from the root, called the start 

node (usually a null solution of the problem). Intermediate tree nodes represent the 

partial solutions, and leaf nodes represent the complete solution or goal. A cost 

function f computes each node's associated cost. The value of f for a node n, which 

is the estimated cost of the cheapest solution through n, is computed as  

 





=
.otherwise0
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Where g(n) is the search-path cost from the start node to the current node and 

h(n) is a lower-bound estimate of the path cost from current node to the goal 

node(solution), using any heuristic information available. To expand a node means 

to generate all of its successors or children and to compute the f value for each of 

them. The nodes are ordered for search according to cost; that is, the algorithm 

first selects the node with the minimum expansion cost. The algorithm maintains a 

sorted list, called OPEN, of nodes (according to their f values) and always selects 

a node with the best expansion cost. Because the algorithm always selects the 

best-cost node, it guarantees an optimal solution.  

 

For the task allocation problem under consideration: 

• the search space is a tree, 

• the initial node (the root) is a null-assignment node, that is no modules are as-

signed as yet, 

• intermediate nodes are partial-assignment nodes, that is only some modules 

are assigned,  

• a solution (goal) node is a complete-assignment node, that is all the modules 

of the tasks are assigned. 

 

To compute the cost function, g(n) is the cost of partial assignment at node n-

the load on the heaviest loaded (pi); this can be done using the equation 8.8. For 

the computation of h(n), two sets Ap (the set of modules that are assigned to the 

heaviest loaded p) and U (the set of modules that are unassigned at this stage of 

the search and have one or more communication link with any module in set Ap) 

are defined. Each module mi in U will be assigned either to p or any other proces-

)()()( nhngnf +=
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sor q that has a direct or indirect communication link with p. So, two kinds of 

costs with each mi’s assignment can be associated: either Xilp (the execution cost of 

mi of task l on p) or with the sum of communication costs of all the modules in set 

Ap that have a link with mi. This implies that to consider mi’s assignment, it is de-

cided whether mi should go to p or not (by taking the minimum of these two cases’ 

cost).  

8.3.3   Control Abstraction of the LBTA for Multiple Tasks 

1. Calculate the status of the global Table (GT) for each processor in terms of 

available memory (M) and the modules that are already assigned to it. 

2. Maintain a list S of unallocated tasks with all modules (all tasks are in S at 

the beginning) and a list OPEN, empty at the beginning. 

3. Take one Task ta   from S and put it in another list V and reset OPEN (i.e. 

OPEN is empty now). 

4. If allocation of modules in V is possible using the A*(equation 8.9) algorithm 

and verifying STATUS, then allocate the modules; if allocation is not possi-

ble, de-allocate the allocated modules of the task and move onto the next task, 

modifying the STATUS in between and update the  Global Table(GT).  

     /* The Pseudocode for step 4 is given below */ 

 

5. If S is not empty yet, go to step 2. 

6. Stop (end of allocation). 

 

Pseudocode for step 4 

while(V!=NULL)  { 

 ma=V;  
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               ma = V→ next; 

if((STATUS[P].no_of_modules!=0) &&  

(STATUS[P].mem_capacity< 

MEMORY[ta][ma])) 

  { 

    flag=1; 

    /* flag is supposed to have been initialized to zero.   

*/  

        MODIFY_OPEN( ); 

                    /* This function includes the node under consideration 

i.e. ma     in OPEN */      

                     FIND_LOAD( );      

                                      /*  This function finds out the Load [eqn. 8.8] at every 

processor and stores them in an array     

*/ 

        FIND_COST( ); 

                                /*   This function finds out the Cost f(n) for the processor 

with      heaviest load [equation 8.8]     */ 

   } 

            if ( flag = = 0)  

{ 

     DE-ALLOCATE_TASK( ); 

/*  This function de-allocates the partially allocated 

modules under consideration  and moves onto the 

next task     */ 

                    

    MODIFY_STATUS( ); 
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/*  This function modifies the STATUS of each proces-

sor to    which the modules of the task, most re-

cently moved to V, had been allocated, by incre-

menting the fields of  STATUS corresponding to 

the particular module. Thus de-allocation is com-

pleted    */ 

     } 

                FIND_LEAST_COST(); 

/* This function finds out the least value stored in the 

array in   

   ( i ) above. */ 

                       MODIFY_STATUS( ); 

                                   /* This function modifies the status of each processing node     

according to the allocated modules and used mem-

ory */ 

               MODIFY_OPEN( ); 

                       /*  This function removes the least cost from OPEN */ 

} 

The complexity of the algorithm is O(p
2
m

3
) where p is the no. of processing 

nodes and m is the total no. of modules of all the tasks, although optimal task as-

signment, like many other graph matching problem, needs exponential time in 

worst case [3].  The complexity of the algorithm is calculated by analyzing the 

step counts in pseudo-code. The corresponding code of void allocation( ) can be 

referred to for ascertaining the step counts [appendix-A]. The proof has been 

given in sec 8.3.7.  
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8.3.4 An Illustrated Example 

The following example illustrate the operation of allocation of the algorithm 

using A* technique for the LBTA problem. A task with its modules {m11, m21, m31, 

m41, m51} and a set of three processing nodes in a DCS {P0, P1, P2} are given in 

fig. 8.11. The execution and IMC matrix are assumed to be given in units of time. 

The resulting search tree is shown in the Figure. 8.12. 
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Fig. 8.11.Task graph and Processor graph 
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Fig. 8.12.Search tree for the example 8.3.4    (continued on next page) 
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   p0  p1  p2 

m11   17  13 11 

m21   16  14 10 
m31   18   15   8 

m41    7   6    5 

m51   12  11   9 
       Execution Time Matrix of the modules 

 m11  m21 m31 m41 m51  

m11    0   9    0   0   8  
m21    9   0   7   0   0 

m31    0   7   0   6   5 

m41    0   0   6   0   0 

m51    8   0   5   0   0 
           IMC cost matrix 

A search node includes partial allocation of modules of the task to processing 

nodes and the value of f, which is the cost of the partial assignment. A partial allo-
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Fig. 8.12.Search tree for the example 8.3.4 (63 nodes generated, 21 nodes expanded)   
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cation means that some modules are unassigned. The value X indicates that i
th

 

module has not been assigned yet. The allocation of the module to a processing 

node replaces an X value in the allocation string with some processing node’s 

number. Node expansion means adding a new module assignment to the partial 

assignment. 

The root node includes the set of all unassigned modules XXXXX. Next, for 

example, in figure 8.12, it is considered, the allocation of m11 to p0(0XXXX), m11 

to p1(1XXXX) and m11 to p2(2XXXX), by determining the assignment costs at the 

tree’s first level and verifying the STATUS to see whether the corresponding allo-

cation is possible. Allocating m11 to p0 (0XXXX) results in the total cost f(n) that 

is equal to 34. The g(n), is this case, according to the equation 8.8, equals to 17, 

which is the cost of executing m11 on p0. The h(n) is equal to 17, which is the sum 

of the minimum execution  or the communication costs of m21 and m51( the mod-

ules communicating with m11). Similarly, the costs of assigning m11 to p1(30) and 

m11 to p2(28) is calculated. The algorithm inserts these three nodes into the list 

OPEN. 28 is the minimum among the costs. So the algorithm selects the node 

2XXXX for expansion. Further the algorithm expands node 2XXXX in the fol-

lowing manner.  

Now the algorithm will consider m21 for assignment and 20XXX, 21XXX and 

22XXX are three possible assignments after verifying STATUS. The value of f(n) 

for 20XXX is 37 and it is computed as follows: first the processing node with 

heaviest load is selected, which is p0 in this case. g(n) is equal to 30, which is the 

cost of executing m21 on p0(16) plus the cost of communication between m21 and 

m11(14), because they are assigned to two different processing nodes, where the 

IMC is 9 and the minimum communication cost between the processing nodes by 

direct link (Cf1=5) is 5. h(n) is equal to 7, which is the minimum execution or 

communication cost of m31 (the only unassigned module communicating with m21). 
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Similarly the values of f(n) for 21XXX(35) and 22XXX(36) are calculated. At this 

point, nodes 0XXXX(34), 1XXXX(30), 20XXX(37), 21XXX(35) and 

22XXX(36) are in the OPEN list. The 1XXXX(30) has the minimum node cost, 

the algorithm expands it next.  

Here, in the following order 10XXX, 11XXX and 12XXX, the nodes are ex-

panded. The numbers in the circles attached to some of the nodes show the se-

quence in which nodes are selected for expansion. Bold lines shows the edges 

connecting the nodes that lead to an optimal assignment. Here, in the example, we 

assumed that the Inter processor Communication (IPC) cost for Cf1
 =5(for direct 

link), Cf2 =10(for one indirect link) and Cf3 =20 (for two indirect links) in units of 

time.   

The descriptions of the OPEN are as follows: 

OPEN_1 : 0XXXX(34), 1XXXX(30), 2XXXX(28) .  
          1 

2XXXX(28) is the minimum cost node. So, it is expanding. And it is removed 

from the OPEN. The underlined nodes with numbers show the order of expansion. 

 
OPEN_2 : 0XXXX(34), 1XXXX(30), 20XXX(37), 21XXX(35), 22XXX(36) . 
                                                2 
       

OPEN_3: 0XXXX(34), 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37), 
11XXX(42), 12XXX(31) . 

             3               
 
OPEN_4: 0XXXX(34), 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37),    

          4 
11XXX(42), 120XX(41), 121XX(60), 122XX(43) . 

 
OPEN_5 :   20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37), 11XXX(42), 

120XX(41), 121XX(60), 122XX(43), 00XXX(41), 01XXX(35), 
02XXX(31) . 

                                 5 
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OPEN_6 : 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37), 11XXX(42),  
              6 

120XX(41), 121XX(60), 122XX(43), 00XXX(41), 01XXX(35),   
020XX(41), 021XX(38), 022XX(38) . 

 
 
OPEN_7 : 20XXX(37), 22XXX(36), 10XXX(37), 11XXX(42), 120XX(41), 

121XX(60), 122XX(43), 00XXX(41), 01XXX(35), 020XX(41),  
                                                                                         7 

021XX(38), 022XX(38) . 
       

 
OPEN_8 : 20XXX(37), 22XXX(36), 10XXX(37), 11XXX(42), 120XX(41),  

                                          8 
121XX(60), 122XX(43), 00XXX(41), 020XX(41), 021XX(38), 

022XX(38), 010XX(67), 011XX(54), 012XX(36) . 
 

 
OPEN_9 : 20XXX(37), 10XXX(37), 11XXX(42), 120XX(41), 121XX(60),  

122XX(43), 00XXX(41), 020XX(41), 021XX(38), 022XX(38),  
010XX(67), 011XX(54), 012XX(36), 220XX(41), 221XX(38),  

                  9 

222XX(40)  . 
                          
 
OPEN_10 :  20XXX(37), 10XXX(37), 11XXX(42), 120XX(41), 121XX(60), 

122XX(43), 00XXX(41), 020XX(41), 021XX(38), 022XX(38), 
010XX(67), 011XX(54),  220XX(41), 221XX(38), 222XX(40),  
0120X(49), 0121X(52), 0122X(30)  . 

                    10 

 
 
OPEN_11: 20XXX(37), 10XXX(37), 11XXX(42), 120XX(41), 121XX(60),        
                           11 

122XX(43), 00XXX(41), 020XX(41), 021XX(38), 
022XX(38), 010XX(67), 011XX(54), 220XX(41), 221XX(38), 
222XX(40),  0120X(49), 0121X(52), 01220(53), 01221(64),  
01222(47) . 

 
 
OPEN_12: 10XXX(37), 11XXX(42), 120XX(41), 121XX(60), 122XX(43),  

                     12 
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00XXX(41), 020XX(41), 021XX(38), 022XX(38), 010XX(67), 
011XX(54), 220XX(41), 221XX(38), 222XX(40),  0120X(49), 
0121X(52), 01220(53), 01221(64),  01222(47), 200XX(59), 
201XX(42), 202XX(51) . 

 
 
OPEN_13: 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),  
 

020XX(41), 021XX(38), 022XX(38), 010XX(67), 011XX(54),  
220XX(41), 221XX(38), 222XX(40), 0120X(49), 0121X(52), 
01220(53), 01221(64),  01222(47), 200XX(59), 201XX(42), 
202XX(51), 100XX(59), 101XX(60), 102XX(36)  . 

                          13 

 
OPEN_14 :  11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),    

020XX(41), 021XX(38), 022XX(38), 010XX(67), 011XX(54),  
220XX(41), 221XX(38), 222XX(40), 0120X(49), 0121X(52), 
01220(53), 01221(64),  01222(47), 200XX(59), 201XX(42), 
202XX(51), 100XX(59), 101XX(60), 1020X(55), 1021X(44), 
1022X(30)  . 

       14      

 
OPEN_15 : 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41),  
 

020XX(41), 021XX(38), 022XX(38), 010XX(67), 
011XX(54),                15 

      
220XX(41), 221XX(38), 222XX(40), 0120X(49), 

0121X(52), 01220(53), 01221(64),  01222(47), 200XX(59), 
201XX(42),  202XX(51), 100XX(59), 101XX(60), 1020X(55), 
1021X(44), 10220(67), 10221(48), 10222(47)  . 

 
 
OPEN_16 : 11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41), 

020XX(41), 022XX(38), 010XX(67), 011XX(54), 
220XX(41),                 16 

     

 
221XX(38), 222XX(40), 0120X(49), 0121X(52), 01220(53), 

01221(64), 01222(47), 200XX(59), 201XX(42), 202XX(51), 
100XX(59), 101XX(60), 1020X(55), 1021X(44), 10220(67), 
10221(48), 10222(47), 0210X(49), 0211X(38), 0212X(47). 
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OPEN_17 :  11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41), 
020XX(41), 010XX(67), 011XX(54), 220XX(41), 221XX(38), 
222XX(40), 0120X(49), 0121X(52), 01220(53), 01221(64), 
01222(47), 200XX(59), 201XX(42), 202XX(51), 100XX(59), 
101XX(60), 1020X(55), 1021X(44), 10220(67), 10221(48), 
10222(47), 0210X(49), 0211X(38), 0212X(47), 0220X(49), 
0221X(22), 0222X(42) . 

       17 

 
OPEN_18 :  11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41), 

020XX(41), 010XX(67), 011XX(54), 220XX(41), 221XX(38),  
                                                                                                              18 

                     222XX(40), 0120X(49), 0121X(52), 01220(53), 01221(64), 
01222(47), 200XX(59), 201XX(42), 202XX(51), 100XX(59), 
101XX(60), 1020X(55), 1021X(44), 10220(67), 10221(48), 
10222(47), 0210X(49), 0211X(38), 0212X(47), 0220X(49), 
0222X(42), 02210(53), 02211(54), 02212(60) . 

                                  
 
OPEN_19 :  11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41), 

020XX(41), 010XX(67), 011XX(54),  220XX(41), 222XX(40), 
0120X(49), 0121X(52), 01220(53), 01221(64), 01222(47), 
200XX(59), 201XX(42), 202XX(51), 100XX(59), 101XX(60), 
1020X(55), 1021X(44), 10220(67), 10221(48), 10222(47), 
0210X(49), 0211X(38), 0212X(47), 0220X(49), 0222X(42), 
02210(53), 02211(54), 02212(60), 2210X(23), 2211X(33), 

                                                                                   19 
2212X(45) . 

 
 
OPEN_20 :  11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41), 

020XX(41), 010XX(67), 011XX(54), 220XX(41), 222XX(40), 
0120X(49), 0121X(52), 01220(53), 01221(64), 01222(47), 
200XX(59), 201XX(42), 202XX(51), 100XX(59), 101XX(60), 
1020X(55), 1021X(44), 10220(67), 10221(48), 10222(47), 
0210X(49), 0211X(38), 0212X(47), 0220X(49), 0222X(42), 
02210(53), 02211(54), 02212(60), 2211X(33) , 2212X(45), 

                                                                                      20 

 
22100(48), 22101(62), 22102(52). 

 
 
OPEN_21 :  11XXX(42), 120XX(41), 121XX(60), 122XX(43), 00XXX(41), 

020XX(41), 010XX(67), 011XX(54), 012XX(36), 220XX(41), 
222XX(40), 0120X(49), 0121X(52), 01220(53), 01221(64), 
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01222(47), 200XX(59), 201XX(42), 202XX(51), 100XX(59), 
101XX(60), 1020X(55), 1021X(44), 10220(67), 10221(48), 
10222(47), 0210X(49), 0211X(38), 0212X(47), 0220X(49), 
0222X(42), 02210(53), 02211(54), 02212(60), 2212X(45),  

      22100(48), 22101(62), 22102(52), 22110(35), 22111(52),  
          21 

22112(47) .  

                

The search continues and expands nodes until the node with the complete as-

signment (22110) is selected. This is the goal node because the node has a com-

plete assignment (22110) i.e. all the modules of the task have been allocated ac-

cording to the minimum costs. So, this is a goal node. Figure 8.12 shows the order 

in which the algorithm considers the modules for assignment. During the search 

for an optimal solution, 63 nodes are generated and 21 nodes are expanded. 

8.3.5 Implementation   

 
The software for the above algorithm is developed in C and the studies have 

been carried out by using few examples cited below to judge the efficiency of the 

algorithm. Here, we assume that the IMC matrices, the execution time matrices 

and the adjacency matrices of processing nodes (connectivity of the processing 

nodes) are given for every module of each task in units of time. Tasks with their 

corresponding modules are presented as Task Graphs (TG) and processing nodes 

of a DCS are presented as Processor Graph (PG).  

 

The algorithm has been applied to work out allocation for the tasks and proces-

sors interconnection graph given below. Here, we have considered three different 

cases. The first field of STATUS represents the maximum number of modules that 

can be allocated to the processing node and the second field represents the mem-
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ory capacity of the processing node.  The Global Table (GT) shows the present 

status of the processing nodes of the DCS after allocating each task.   

 

Case 1 

Given a set of three tasks with their corresponding modules T1(m11, m21, m31, 

m41), T2(m21, m22, m32), T3(m13, m22, m33) and a set of four processors {p1, p2, p3, p4} 

(fig.8.13).  
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Fig. 8.13.Task Graphs and Processor Graph 
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 p1  p2 p3 p4 

m11 10 20 5 25 

m21 35 10 15 15 

m31 10 15 25 10 

m41 20 35 20 5 

 Execution Cost of Modules of the task T1  
 

 p1 p2 p3 p4 

m12 20 5 35 10 

m22 10 10 10 10 

m32 15 10 20 15 

Execution Cost of Modules of the task T2  
 

 p1 p2 p3 p4 

m13 15 25 15 10 

m23 30 40 25 20 

m33 20 5 10 15 

Execution Cost of Modules of the task T3  
 

 m11 m21 m31 m41 

m11 0 10 50 20 

m21 10 0 10 50 

m31 50 10 0 50 

m41 20 50 50 0 

IMC Cost of Modules task T1 
 

 m12 m22 m32 

m12 0 5 10 

m22 5 0 60 

m32 10 60 0 

IMC Cost of Module of the task T2 

 
 m13 m23 m33 

m13 0 5 40 

m23 5 0 10 

m33 40 10 0 

IMC Cost of Modules of the task T3 
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 p1 p2 p3 p4 

p1 0 1 1 1 

p2 1 0 0 1 

p3 1 0 0 1 

p4 1 1 1 0 

Adjacency Matrix of Processors L1
pq 

 
 
 p1 p2 p3 p4 

p1 0 1 1 1 

p2 1 0 1 1 

p3 1 1 0 1 

p4 1 1 1 0 

Adjacency Matrix of Processors L2
pq 

 
m11 m21 m31 m41 m12 m22 m32 m13 m23 m33 

5 3 2 4 3 2 1 4 2 3 

Memory Requirement of Modules in Units 
 
 
STATUS[1] = [ 4, 10 ] 

STATUS[2] = [ 3, 8 ] 

STATUS[3] = [ 4, 9 ] 

STATUS[4] = [ 5, 12 ] 

The above STATUS indicates that the maximum number of modules that can 

be allocated to first processing node is 4 and the memory capacity of the first 

processing node is 10 in units. The other STATUS also indicates the present status 

of the second, third and fourth processing nodes respectively.  

 

So, the present status of the Global Table is as follows: 
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      I   II        III            IV     V        VI 

Processor Max. no. 
of       

Modules* 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 
Modules** 

Remaining 
Memory 

       p1         4       10                  4             10 

       p2         3        8                 3             8 

       p3         4        9               4             9 

       p4         5       12                                  5            12 

 

*The column III represents the maximum number of modules that can be allo-

cated to a   processing node. 

 

**The column V represents the remaining number of modules that can be allo-

cated to a processing node after some modules have been assigned to the process-

ing node. 

   

Now applying the software in Pentium 100 MHz, the following results have 

been obtained.  

   

Here, in the results, “Task 1 has been allocated as : 4141” indicates that the 

four modules(m11, m12, m13, m14) of the task T1 have been allocated onto the proc-

essing node p4, p1, p4, p1 respectively.  “The cost of allocation for processing node 

no. 1 is 55” means the execution and communication costs of the modules of tasks 

by this allocation onto the processing node 1 by the allocation is 55 in units of 

time. “The status of the processing node 1 is 1” indicates that after allocation has 

been completed, the remaining number of modules that can be allocated to the 

processing node p1 is 1 and remaining number of memory that is available in the 

processing node p1 is 1 in units. 
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Results: 

Task 1 has been allocated as: 4141 

Task 2 has been allocated as: 212 

Task 3 has been allocated as: 323 

 

The cost of allocation for processing node no. 1 is 55 

The status of the processing node 1 is  1 1 

 

The cost of allocation for processing node no. 2 is 120 

The status of the processing node 2 is  0 2 

 

The cost of allocation for processing node no. 3 is 180 

The status of the processing node 3 is  2 2 

 

The cost of allocation for processing node no. 4 is 145 

The status of the processing node 4 is  3 5 

 

Total cost of allocation is 500 

Time required by the algorithm was: 0.06 seconds 

The modules of task T1 has been allocated as 

Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 
Modules 

Remaining 
Memory 

       p1         4       10  m21  m41                4             3 

       p2         3        8                 3             8 
       p3         4        9               4             9 

       p4         5       12   m11  m31                 3            5 
 

 

The modules of task T2 has been allocated as 
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Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 
Modules 

Remaining 
Memory 

       p1         4       10  m21 m41  

m22 
1 1 

       p2         3        8   m12  m32 1 4 

       p3         4        9   4 9 

       p4         5       12 m11  m31 3 5 

 
The modules of task T3 has been allocated as 

 

Table 8.2.Final status of the GT of all the tasks for case 1 

 

 
 

The above table (8.2) shows the final status of the Global Table. The table de-

scribes the status of allocation of every module of each task of DCS. It also shows 

that a balanced load is obtained.  

 
 

Case  2 

 
Given a set of three tasks (fig. 8.14) with their corresponding modules T1(m11, 

m21, m31, m41, m51), T2(m12, m22, m32, m42), T3(m13, m23, m33, m43), T4(m14, m24, m34, 

m44, m54, m64, m74), T5(m15, m25, m35, m45, m55, m65, m75, m85) and a set of five proc-

essing nodes (p1, p2, p3, p4, p5). 

 

Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 

Modules 

Remaining 
Memory 

       p1         4       10 m21  m41  

m22 
1 1 

       p2         3        8 m12  m32  
m23 

0 2 

       p3         4        9 m13  m33 2 2 

       p4         5       12 m11  m31 3 5 
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 p1  p2 p3 p4 p5 

m11 10 20 5 25 5 

m21 35 10 15 15 10 

m31 10 15 25 10 20 

m41 20 35 20 5 25 

m51 10 5 10 5 10 

Execution Time Matrix of T1 

 

Fig. 8.14.Task graphs and Processor graph 

m51 
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m31 
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Task T1 
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m12 
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p5 

Processor Graph (PG) 

p2 

p4 

p1 
p3 

m54 

m74 

m14 

m64 m44 

m34 
m24 

Task T4 

m51 

m35 

m85 

m25 

m55 

m65 
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Task T5 
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 p1  p2 p3 p4 p5 

m12 20 5 35 10 5 

m22 10 10 10 10 10 

m32 15 10 20 15 15 

 m42 10 15 20 15 30 

Execution Time Matrix of T2  
 

 p1  p2 p3 p4 p5 

m13 15 25 15 10 10 

m23 30 40 25 20 5 

m33 20 5 10 15 10 

m43 10 5 5 15 20 

Execution Time Matrix of T3 

 
 

 P1 p2 p3 p4 p5 

m14 5 10 25 20 30 

m24 10 25 5 5 5 

m34 25 10 5 10 25 

m44 5 10 15 25 25 

m54 10 15 20 25 30 
m64 5 10 10 10 10 

m74 5 10 10 20 20 

Execution Time Matrix of T4 

 

 p1 p2 p3 p4 p5 

m15  5 10  6  3  2 

m25  7  8 10  3  1 

m35  6  5 15 10 20 

m45  8 10 12 14 16 

m55 11 10 12  5  6 

m65 5 10 12  8  6 

m75  6  8 10 11 12 
m85  8  9  2  3  1 

Execution Time Matrix of T5 

 

 m11 m21 m31 m41 m51 

m11 0 10 20 20 5 

m21 10 0 10 50 20 

m31 20 10 0 50 10 
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m41 20 50 50 0 20 

m51 5 20 10 20 0 

IMC cost T1 
 

 m12 m22 m32 m42 

m12 0 5 10 10 

m22 5 0 60 60 

m32 10 60 0 5 

m42 10 60 5 0 

IMC cost of T2 
 
 

 m13 m23 m33 m43 

m13 0 5 15 10 

m23 5 0 10 5 

m33 15 10 0 70 

m43 10 5 70 0 

IMC cost of T3 

 
 m14 m24 m34 m44 m54 m64 m74 

m14 0 5 10 15 15 15 20 

m24 5 0 80 10 80 80 15 

m34 10 80 0 80 80 5 10 

m44 15 10 80 0 10 15 5 

m54 15 80 80 10 0 5 5 

m64 15 80 5 15 5 0 5 

m74 20 15 10 5 5 5 0 

IMC cost of T4 

 

 m15 m25 m35 m45 m55 m65 m75 m85 

m15 0 5 10 10 15 20 40 45 

m25 5 0 90 5 10 15 35 40 

m35 10 90 0 90 90 90 90 10 

m45 10 5 90 0 90 90 10 15 

m55 15 10 90 90 0 5 25 30 

m65 20 15 90 90 5 0 20 25 

m75 40 35 90 10 25 20 0 5 

m85 45 40 10 15 30 25 5 0 

IMC cost of T5 
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 p1 p2 p3 p4 p5 

p1 0 1 1 1 1 

p2 1 0 0 1 0 

p3 1 0 0 1 0 

p4 1 1 1 0 1 

p5 1 0 0 1 0 

Adjacency Matrix of Processors L1
pq 

 

 p1 p2 p3 p4 p5 

p1 0 1 1 1 1 

p2 1 0 1 1 1 

p3 1 1 0 1 1 

p4 1 1 1 0 1 

p5 1 1 1 1 0 

Adjacency Matrix of Processors L2
pq 

 
Memory requirement of the modules of the tasks (in units) are given. 

 

m11 m21 m31 m41 m51 m12 m22 m32 m42 m13 m23 m33 m43 m14 

6 3  5  2  4  1  6  3 5  2  4 1 4  5 

m24 m34 m44 m54 m64 m74 m15 m25 m35 m45 m55 m65 m75 m85 

 6 3  2   1  2  3  4 2 3  1  2  4  3  1 

 
 
STATUS[1] = [ 10, 50 ] 
 
STATUS[2] = [ 9, 40 ] 
 
STATUS[3] = [ 7, 35 ] 
 
STATUS[4] = [ 6, 30 ] 

 
STATUS[5] = [ 4, 10 ] 

Results: 

 

Task 1 has been allocated as : 41421 

 

Task 2 has been allocated as : 1231 
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Task 3 has been allocated as : 2311 

 

Task 4 has been allocated as : 1213411 

 

Task 5 has been allocated as : 42535352 

The cost of allocation for processing node no. 1 is 263 

The status of the processing node 1 is  0 19 

 

The cost of allocation for processing node no. 2 is 300 

The status of the processing node 2 is  3 21 

 

The cost of allocation for processing node no. 3 is 343 

The status of the processing node 3 is  2 21 

 

The cost of allocation for processing node no. 4 is 365 

The status of the processing node 4 is  2 14 

 

The cost of allocation for processing node no. 5 is 314 

The status of the processing node 5 is  2 12 

 

Total cost of allocation is 1585 

Time required by the algorithm was: 0.17 seconds 
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The modules of task T1 has been allocated as 

Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 
Modules 

Remaining 
Memory 

       p1         10       50 m21  m51 8 43 

       p2         9        40 m41 8 38 

       p3         7        35  7 35 

       p4         6       30 m11  m3 4 19 

p5 4 10  4 10 

 
The modules of task T2 has been allocated as 

Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 
Modules 

Remaining 
Memory 

       p1 10 50 m21  m51  

m12  m42 
6 37 

       p2 9 40 m41  m22 7 32 

       p3 7 35 m32 6 32 
       p4 6 30 m11  m31 4 19 

p5 4 10  4 10 

 
 
The modules of task T3 has been allocated as 

Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 
Modules 

Remaining 
Memory 

       p1 10 50  m21  m51  

m12  m42 

 m33   m43 

4 32 

       p2 9 40  m41  m22  

m13 
6 30 

       p3 7 35  m32  m23 5 28 

       p4 6 30  m11  m31 4 19 
p5 4 10  4 10 

 
The modules of task T4 has been allocated as 
 
 

Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 
Modules 

Remaining 
Memory 

       p1 10 50 m21  m51  

m12  m42 
            0            19 

       p2 9 40 m41  m22             5           24 
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       p3 7 35 m32             4           26 

       p4 6 30 m11  m31             3           18 

p5 4 10              4           10 

 
The modules of task T5 has been allocated as 
 

Table 8.3.Final status of the GT after allocation of all the tasks for case 2 

 
  The table shown above (Table 8.3) describes the status of allocation of every 

module of each task of DCS. It also shows that a balanced load is obtained. 

 

8.3.6   Conclusive Observations 

The TA algorithms that consider the only modules of a single task do not con-

sider the limitation of the memory or the number of modules that can be assigned 

to a particular processor. This is so because these algorithms are not meant for as-

Processor Max. 
no. of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No.of 
Modules 

Remaining 
Memory 

p1         10       50 m21  m51  

m12  m42 

m33   m43  

m14  m34 

m64  m74 

            0            19 

p2          9       40  m41  m22  

m13  m24 

 m25  m85   

            3           21 

p3          7       35 m32  m23  

m44   m45  

 m65  

            2           21 

p4          6       30  m11  m31  

m54  m15 
            2           14 

p5          4       10  m35  m55  
m75 

            1            2 

194 Scheduling in Distributed Computing Systems



signment of modules belonging to multiple disjoint tasks. Such a single task as-

signment problem is easier to solve because of this reason.  

 

Our algorithms consider the case of multiple tasks with the possibility of one or 

more tasks being submitted simultaneously. Apart from this, the memory capacity 

and the no. of modules that can be assigned to a particular processor as constraints 

are also considered on possible allocations. 

 

Most of the algorithms, except few reported in [18, 27] have dealt with only a 

single task assignment over DCS. Therefore, no known algorithms to compare 

with the model discussed in this section.  

 

We can execute the Single Task Allocation (STA)algorithm [3] multiple times 

ones for each task using the global table data structure to record the status of allo-

cation and the system as done in our multiple task allocation algorithm. Now we 

may compare the execution time requirement of this method and our multiple task 

allocation algorithms.   

 

The STA based on A* [3] referred to as EA* in the subsequent discussion has 

been executed multiple times and the run times have been obtained.  The graphs in 

figures 8.15, 8.16, 8.17 shows the comparative results using our algorithm pro-

posed in sec. 8.3 and earlier algorithm (EA*) proposed in [3].   

 

So in the experiment, we have executed the tasks one by one for the cases 1, 2 

and 3 without considering the processor connectivity (how the processor are con-

nected i.e. with direct connection / indirect connection etc.) for the EA* as de-

scribed in the algorithm of [3]. In the work [26], another modified version of EA* 
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is proposed but it was also developed for single task allocation and their modules 

by using the same idea of [3]. So, here we did not use the idea of [26] for our 

comparison purpose. 
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Fig. 8.15.Running time required by Our Algorithm using A* (OA*) and EA* for case 1 

 

Running t ime required by our OA* and EA* for Case 2
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Fig. 8.16.Running time required by OA* and EA* for case 2 
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If we look at the results shown in the tables 8.4, 8.5, 8.6 for allocation of tasks 

using EA* for the cases 1, 2 and 3 respectively, it is observed that balanced load 

allocation can not be achieved. In all the cases presented below, some processing 

nodes are overloaded as per the Vth column of the GT considering their existing 

architectural capabilities. Thus it is justified that the EA*, in the form reported in 

[3, 26], can not be used for the allocation of the multiple tasks.  

 

 

 

 

 

 

 

Running time required by OA* and EA* for Case 3
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Fig. 8.17.Running time required by OA* and EA* for case 3 
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Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 

Modules 

Remaining 
Memory 

p1 4 10 m21 m41  

m22 m32  
m23      m33 

-2 1 

p2 3 8  m12  m13 1 2 

p3 4 9   4 2 

p4 5 12  m11  m31  3 5 

Processor Max. no. 
of       
Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 

Modules 

Remaining 
Memory 

p1 10 50 m21 m51  

m12  m42 

m23   m43  

m14  m34 

m25  m85 

m74 

-1 19 

p2 9 40 m41  m22  

m13  m24 

m55 

4 21 

p3 7 35 m32  m33  

m44   m45 

m65 

2 21 

p4 6 30 m11  m31  

m54 
2 14 

p5 4 10 m15  m64  
m75 

1 2 

Table 8.5.The final status of the GT by using EA* for case 2 

Table 8.4.The final status of the GT by using EA* for case 1 
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8.3.7 Proof of the Algorithm 

An algorithm consists of steps that are carried out one or more number of times 

depending on the loops that may enclose these steps. The following theorem de-

scribes the method [28].  

Theorem : If A(n) = amn
m
 + …+ a1n + a0 is a polynomial of degree m then  

A(n) = O(n
m
) 

Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 

Modules 

Remaining 
Memory 

p1 10 70 m11 m21  

m41   m52  
m13  m33  
m63 m14  
m34  m44 

m15 m55 
m16 m46 
m66 m17 
m47 m18  
m48  m58 

-10 35 

p2 8 50 m31  m23  
m24 m35 
m26 m27 

m38 

1 23 

p3 6 40 m53  m36 
m37 m38 

2 20 

p4 7 35 m43  m25  
m45 m56 

3 16 

p5 6 40 m32 2 22 

p6 6 33 m12  m22  
m42 

3 8 

Table 8.6.The final status of the GT by using EA* for case3 

1998    Allocation of Multiple Tasks in DCS



Where, if some ai =0, then the corresponding term ni does not appear in the step 

counts for any of the steps.  

What this theorem says is the complexity of the algorithm is defined by the 

most expensive part of the algorithm. In our LBTA for multiple tasks, the alloca-

tion part is the most expensive one as it contains the maximum number of nested 

for loops. The skeleton structure of the allocation part of the algorithm can be de-

picted as follows: 

 

void allocation( ) 

{ 

 --- 

1  for i= 1 to k tasks 

  { 

 2 for j =1 to mi  modules of i-th task  

 { 

 3 for k = 1 to p processors 

 { 

 --- 

                     // Calculate hp by using find_heaviest_load( ) 

     { 

      --- 

4 for x= 1 to p processors 

                                                                    --- 

     { 

 // Calculate  load on processors using the load( ) 

 5 for y = 1 to k tasks  

{ 
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      6 for x= 1 to mi modules of i-th task 

{ 

   --- 

      } 

   } 

             7 for e = 1 to k tasks  

{ 

 8 for f = 1 to mi modules of i-th task 

   { 

 9 for g = 1 to mj module of i-th task 

{   

--- 

   } 

                           } 

} 

} 

 } 

--- 

     --- 

  } 

  --- 

  } 

  --- 

    } 

     --- 

11 for p1= 1 to p processors 

{ 
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--- 

Call to load as in loop numbered 5  

--- 

--- 

} 

} 

 

The skeleton shown above has three nested for loops numbered 1, 2 and 3 and 

the loop no. 3  has calls to the find_heaviest_proc( ) and the load( ). The load( )  

contains two nested for loops numbered 5, 6  followed by another set of nested 

loops numbered 7, 8 and 9 .  

 

For loop 5 and 6, there are to execute all the modules of the multiple tasks and 

hence the combined execution of the loops iterates m times. The execution of 

nested loops 7 and 8 similarly give m iterations and for every iteration out of m, 

the loop numbered 9 takes m iterations. And hence, the number of iterations for 

the function load is equal to m2.  

 

The call to find_heaviest_proc( ) contains the for loop 4 in which call to the 

function load( ) appears. The loop no. 4 will have p iterations and hence the com-

plexity of the find_heaviest_proc( ) becomes pm
2. 

 

The similar arguments will give the complexity of the block of consisting of 

loops numbered 2 and 3 as O(m.p.pm
2
) or O(p

2
m

3
).  

 

The complexity of loop numbered 11 is pm
2. 

 

202 Scheduling in Distributed Computing Systems



The loop numbered 1 will have execution complexity as polynomial 

((pm
2
+p

2
m

3) + pm
2) which is O(p

2
m

3
) as per the theorem stated above. 

  

So, the complexity of allocation ( ) is O(p
2
m

3
). 

 

8.4 The LBTA Strategy for Multiple Tasks Using GA   

 
For the LBTA problem with multiple tasks allocation, we define the following 

assumptions: 

 

1) The proposed algorithm makes use of a data structure for “chromosome” to de-

scribe allocations. It is an array of positive integers showing the index of the 

processing node to which a particular module is assigned. It has as many ele-

ments as the total number of modules of all tasks.   

 

2)  Initially all the elements are zero indicating that none of the modules are allo-

cated to any of the processing node.  

 

3)  A data structure STATUS associated with every processing node, which has 

two fields showing; the maximum no. of modules that can be allocated to the 

processing node and the maximum memory capacity of the processor. 

 

Whenever a module is chosen for allocation onto a processing node, the 

STATUS is checked and it is ascertained whether the processing node can ac-

commodate the module at hand. If not another processing node is chosen, if avail-

able. 
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8.4.1    The Fitness Function   

 
The fitness function, in our problem, is the inverse of the load (the sum of loads 

on all the processors corresponding to a chromosome) described in the equation 

8.8.  

8.4.2    The Proposed Algorithm   

1) Randomly generate five chromosomes, verify STATUS and take one chromo-

some with maximum fitness value.  

/* This fitness value is our threshold limit. Any chromosome below the 

threshold will be rejected and not included in the population. */  

 

2) Generate an initial population of 50 chromosomes above the threshold limit. 

 

3) SELECT: probability of selection of parents is linearly dependent on the fit-

ness value [37].   /* i.e. ax+b, where x is the fitness value, a and b are arbi-

trary.*/ 

 

4) Perform crossover with probability Pc at a randomly chosen point. 

 

5) If 

Total no. of Chromosome(generated) < 100 

goto   

     SELECT 

 

6) Pick up ten chromosomes randomly, using the probability of selection as in 

SELECT. 

Take out the one(chromosome) with maximum fitness.  
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/* This represents the allocation. */ 

 

Here, the complexity of the algorithm is O(pm
2
) where p is the no. of process-

ing nodes and m is the total no. of modules of all the tasks . The complexity is de-

rived in the same manner as described in sec 8.3.7 and obtained from the most ex-

pensive gen50( )[appendix B] and threshold( ) code [appendix-B]. This simple GA 

based model uses crossover without mutation and the population size of 50 to pro-

vide good results for the allocation. 

8.4.3    Description of SELECT   

 
To effectuate the probability of selection, we would produce several copies of 

the same chromosome. The idea is to take out chromosomes with their best fitness 

values randomly from all the chromosomes (included copies).  

 

Let there be Pa copies of chromosome a, where a=1…n and Pb copies of chro-

mosome b, where, b=1…m. 

Generate a random number (chromosome) r and find out, to which chromo-

some (a or b) this chromosome belongs. This can be done by the following ex-

pression i.e.  

 

then the r belongs to chromosome b i.e. chromosome r is a copy of chromo-

some b.  
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.,P,
b
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However, this method would require memory for each copy of every chromo-

some. To save memory we could instead attach a field with each new chromosome 

generated. In this field, we store an ‘integer number’ directly proportional to the 

fitness value of chromosome. Thus the chromosome represents ‘Xi’ copies of the 

chromosome, where ‘Xi’ is the number in its field and i=1,2,…n.  

 

When a chromosome is to be randomly selected, a random number is generated 

in the range of 1 to ∑(X1+X2+…+Xn), where Xi is the number in the field associ-

ated with the i
th chromosome. Let us say, the number generated is Y and 

X1+X2+…+Xk < Y < X1+X2+…+Xk+1. 

 

Thus the chromosome selected is Xk+1
th chromosome. This can be explained 

elaborately by the following example. 

 

For example, let the following chromosome have the corresponding fitness val-

ues as follows: 

 

Chromosome 1  : fitness value = 10 

Chromosome 2  :    “          “    = 12 

Chromosome 3  :    “          “    = 15 

Chromosome 4  :    “          “    =  8 

 

Let the probability of selection be (a * (fitness value) + b), where a & b are ar-

bitrary. Here,  a=10, b=0 and X1=10. 

 

Let us generate 100 copies of chromosome 1(X1=100), 120 copies of chromo-

some 2 (i.e. X2=120)…. and so on. 

 

Thus total number of chromosome (X1+X2+X3+X4) = 100+120+150+80 = 450. 
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We generate a random number = 230 

 

Now, 100 + 120 < 230 < 100 + 120 + 150 

            X1     X2                  X1      X2      X3 

 

Hence, the 230th chromosome will be a copy of chromosome 3 i.e. X3. It is easy 

to see that the probability of selection in this case is proportional to the fitness 

value. 

8.4.4   An Illustrative Example   

 
Given a set of three tasks with their corresponding modules T1(m11, m21, m31, 

m41), T2(m21, m22, m32), T3 (m13, m22, m33) and a set of 3 processors { p1, p2, p3 } .  

 

So, the total number of modules of all tasks is 10. 

The initial status of each processing node is as follows: 

 

    STATUS [1] = [4, 40] 

    STATUS [2] = [4, 50] 

    STATUS [3] = [3, 30] 

 

The first field of STATUS represents the maximum number of modules that 

can be allocated onto the processing node and the second field represents the 

memory capacity of the processing node.  

 

The Threshold Value and the Initial Population:  
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Step 1: randomly generate 5 chromosomes and check whether they satisfy 

status of each processing node. Let us assume that memory required by each mod-

ule, satisfies the existing memory of each processing node.  

Let the chromosome generated be 

        1) 1132311231: status of processing node 1 is not satisfied, because                            

processing node 1 can only take 4 modules. So, it is discarded. (Here, each num-

ber in the chromosome represents the number of processing node).  

      2) 2113221231: status of every processing node is satisfied, so it is                            

accepted.   

           3) 1323213312:  status of processing node 3 is not satisfied, so it is not         

accepted. 

           4) 3123132123: status of processing node 4 is not satisfied, so it is not ac-

cepted. 

        5) 1123311232: status of every processing node is satisfied, so it is accepted. 

 

Then fitness of all the chromosomes is found out by the equation described in 

8.3.1 and the maximum of these fitness values is taken as the threshold value. Any 

chromosome above the threshold will be accepted and included in the population. 

 

Crossover: 

Let us assume that 50 chromosomes have been generated as the initial popula-

tion. Each chromosome is associated with a field that gives the frequency of selec-

tion as discussed in section 8.4.3.  

 

Label: Let, two chromosomes are selected for reproduction. They be  

 

         2113221231 and 1323321121 
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Then crossover takes place as follows: 

 

First a random point of crossover is found; say it comes out to be 4. Thus 

crossover will take place after 4th bit i.e. the offspring are 

         

             2113---321121 and   1323---221231 

 

It is now verified whether the offspring are 

 

        a) satisfying the status and 

        b) identical to an existing chromosome of the population. 

 

If none of the above is true, crossover is completed and the chromosomes are 

included in the population and their fitness values being calculated. 

 

In the above example, the first offspring is invalid (it does not satisfy the status 

of processing node 1; hence crossover begins all over from label. Let the new 

chromosomes selected be 

 

        2113122133      and     1132113222 

 

Let the point of crossover be 5. 

 

Thus the offspring are 21131---13222 and 11321---22133 

Both of these satisfy the status of all three processors, hence are acceptable, if 

they do not already have an identical copy in the population. 

 

If total no. of crossovers performed is less than 100, again a new crossover oc-

curs (step label). Then pick up ten chromosomes randomly from the new popula-
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tion, find out the fitness value of each and take out one (chromosome) with maxi-

mum fitness value which represents the allocation 

 

8.4.5    Implementation 

The software for the above algorithm is developed in C. Applying the software 

in a Pentium 100 MHz machine, the following studies have been carried out by 

using the given task graphs, processor graphs, IMC matrices, execution matrices 

etc. for case 1, case 2, and case 3 of sec 8.3.5 to judge the efficiency of the algo-

rithm.  

 

Case 1 

Given a set of three tasks with their corresponding modules T1(m11, m21, m31, 

m41), T2(m21, m22, m32), T3(m13, m22, m33) and a set of four processors {p1, p2, p3, p4} 

fig. 8.13. Further, the inputs are provided from case 1 of sec 8.3.5 and the follow-

ing results are obtained. 

 

Here, in the results, “Selected Chromosome is 3234241134” represents the total 

number of modules of all the tasks that have been allocated onto the correspond-

ing processing node. “Task 1 has been allocated as : 3234” indicates that the four 

modules(m11, m12, m13, m14) of the task T1 have been allocated onto the processing 

node p3, p2, p3, p4 respectively.  “The cost at the processing node no. 1 is 20 ” 

means the execution and communication costs of the modules of tasks on the proc-

essing node 1 by the allocation is 55 in time units. “ The status of the processing 

node 1 is 2    5” indicates that after allocation has been completed the remaining 

number of modules that can be allocated to the processing node p1 is 2 and re-
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maining number of memory that is available in the processing node p1 is 5 in 

units. 

 

Results for Case 1 

 

Selected Chromosome is 3234241134 

 

Task 1 has been allocated as: 3234 

 

Task 2 has been allocated as: 241 

 

Task 3 has been allocated as: 134 

The cost at the processing node no. 1 is 20 

The status of the processing node 1 is 2    5 

 

The cost at the processing node no. 2 is 25 

The status of the processing node 2 is 1    2 

 

The cost at the processing node no. 3 is 50 

The status of the processing node 3 is 1    0 

 

The cost at the processing node no. 4 is 25 

The status of the processing node 4 is 2    3 

 

Total cost at all the processing nodes is 120 

 

Time required by the algorithm was: 18 seconds 
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The modules of task T1 have been allocated as 
 
     I     II         III                  IV                 V                   VI 

Processor Max. no. of       

Modules* 

Memory 

Capacity 

Modules  

Assigned 

Remaining 

No. of   

    Modules** 

Remaining 

Memory 

 p1         4       10               4  10 

 p2         3        8 m21              2  5 

  p3         4        9 m11 m31             2  2 

 p4         5       12 m41             4  8 

 
*The column III represents the maximum number of modules that can be allocated 

to a   processing node. 

**The column V represents the remaining number of modules that can be allo-
cated to   a processing node after some modules have been assigned to the proc-
essing node.  

The modules of task T2 have been allocated as 

Processor Max. no. of       

Modules 

Memory 

Capacity 

Modules  

Assigned 

Remaining 

No. of   

    Modules 

Remaining 

Memory 

p1         4       10  m32             3             9 

p2         3        8  m21 m12             1            2 
p3         4        9  m11 m31             2            2 

p4         5       12  m41 m22             3            6 

 
The modules of task T3 have been allocated as 

 

 

  The table 8.7 describes the status of allocation of every module of each task of 

DCS. It also shows that a balanced load is obtained.  

Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 

Modules 

Remaining 
Memory 

p1 4 10 m32 m13 2 5 

p2 3 8 m21 m12 1 2 

p3 4 9 m11 m31 
m23 

1 0 

p4 5 12 m41 m22 
m33 

2 3 

Table 8.7.Final status of the GT after the allocation of all tasks for case 1 
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Case 2 

 
Given, a set of five tasks with their corresponding modules T1(m11, m21, m31, 

m41, m51), T2(m12, m22, m32, m42), T3(m13, m23, m33, m43), T4(m14, m24, m34, m44, m54, 

m64, m47), T5(m15, m25, m35, m45, m55, m65, m75, m85) and a set of five processors (p1, 

p2, p3, p4, p5) (fig.8.14). Further, the following inputs are provided from case 2 of 

sec 8.3.5 and the following results are obtained. 

 

Results for Case 2  

Selected Chromosome is 1244223231523134113142134125 

 

The chromosome represents the total number of modules of all the tasks that 

have been allocated on to the corresponding processing node i.e.  

 

Task 1 has been allocated as: 12442 

 

Task 2 has been allocated as: 2323 

 

Task 3 has been allocated as: 1523 

 

Task 4 has been allocated as: 1341131 

 

Task 5 has been allocated as: 42134125 

 

The cost at the processing node no. 1 is 61 

The status of the processing node 1 is 2    24 

 

The cost at the processing node no. 2 is 51 
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The status of the processing node 2 is 2    23  

 

The cost at the processing node no. 3 is 62 

The status of the processing node 3 is 1    11 

 

The cost at the processing node no. 4 is 33 

The status of the processing node 4 is 1    14 

 

The cost at the processing node no. 5 is 6 

The status of the processing node 5 is 2    5 

 

Total cost at all the processing nodes is 213 

Time required by the algorithm was: 167 seconds 

The modules of task T1 have been allocated as 
 

Processor Max. no. of       

Modules* 

Memory 

Capacity 

Modules  

Assigned 

Remaining 

No. of   

   Modules** 

Remaining 

Memory 

p1         10       50  m11               9            44 

p2          9       40  m21 m51             7           33 
p3          7       35               7           35 

p4          6       30  m31 m41             4           23 

p5          4       10              4           10 

 
The modules of task T2 have been allocated as 

Processor Max. no. of       

Modules 

Memory 

Capacity 

Modules  

Assigned 

Remaining 

No. of   

   Modules 

Remaining 

Memory 

p1         10       50  m11              9            44 

p2          9       40  m21 m51 

m12 m32 
            5           29 

p3          7       35  m22 m42             5           24 

p4          6       30  m31 m41             4           23 

p5          4       10              4           10 
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The modules of task T3 have been allocated as 

Processor Max. no. of       

Modules 

Memory 

Capacity 

Modules  

Assigned 

Remaining 

No. of   

   Modules 

Remaining 

Memory 

p1         10       50  m11 m13             8            42 

p2          9       40  m21 m51 

m12 m32 

m33 

            4           28 

p3          7       35  m22 m42 
m43 

            4           20 

p4          6       30  m31 m41             4           23 

p5          4       10  m23             3            6 

 
The modules of task T4 have been allocated as 

Processor Max. no. of       

Modules 

Memory 

Capacity 

Modules  

Assigned 

Remaining 

No. of   

   Modules 

Remaining 

Memory 

p1         10       50  m11 m13 

m14 m44  
m54  m74 

            4            31 

p2          9       40  m21 m51 

m12 m32  

m33 

            4           28 

p3          7       35  m22 m42 
m43 m64 

m24 

            2           12 

p4          6       30  m31 m41 

m34 
            3           20 

p5          4       10 m23             3            6 

 
 
The modules of task T5 have been allocated as 
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The table describes the status of allocation of every module of each task of 

DCS. It also shows that a balanced load is obtained.  

 
This chapter proposes four realistic allocation models. In one (sec. 8.1) a uni-

form cost search and A* techniques are applied for multiple tasks allocation in a 

DCS. All the previous models consider only a single task, though the DCS is 

meant for execution of multiple tasks dynamically arriving and leaving the system. 

 

In second (sec. 8.2), a cluster-based approach is proposed. This has the greatest 

advantage of avoiding the priori requirement of execution time of modules on 

Processor Max. no. 
of       

Modules 

Memory 
Capacity 

Modules 
Assigned 

Remaining 
No. of 

Modules 

Remaining 
Memory 

p1 10 50 m11 m13 

m14 m44 
m54  m74 
m35 m65 

2 24 

p2 9 40 m21 m51 

m12 m32 

m33 m25 
m75 

2 23 

p3 7 35 m22 m42 
m43 m64 

m24  m45 

1 11 

p4 6 30 m31 m41 

m34 m15 

m55 

1 14 

p5 4 10 m23 m85 2 5 

Table 8.8.Final status of GT after the allocation of all the tasks for case 2 
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PEs, as required in other models. This algorithm can be tested on a real DCS plat-

form and will be of great help in implementation of the scheduler of the DCS. 

 

Section 8.3 and 8.4 proposes the LBTA strategy for multiple tasks based on A* 

and GA. 
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CHAPTER 9   

Other Approaches for Task Allocation 
 

   

   
This book is aimed to consider applicability of load balancing and task alloca-

tion strategies aimed at proper distribution of computational loads in a DCS. A 

good deal of research work on both a) load balancing [1-6] and b) task allocation 

[7-12] in DCS is available in the literature. The purpose of task allocation in a 

DCS is to reduce turnaround time of a task. This is done by maximizing the utili-

zation of resources while minimizing the communication among processing nodes. 

While minimizing IPC tends to assign the whole task to a single processing node, 

load balancing tries to distribute the program modules of a task almost evenly 

among the processing nodes. So, the idea was to consider whether a combined ap-

proach (load balancing task allocation) can promise a better performance charac-

teristic of a DCS such as throughput, compared to separate applications of “Load 

Balancing” and “Task Allocation” strategies. In our proposed LBTA strategy we 

tried to make compromise between these two criterions.  

 

The work was started with consideration of existing load balancing techniques 

(strategies) and identification of other possible and promising strategies for the 

purpose. It has been identified that the task migration, because of its significant 

overhead, can be one of the major factors in decreasing the throughput of a DCS. 

The most of the existing algorithms described in chapter 5 consider allocation of 

the modules of only a single task to various processing nodes whereas the number 

of tasks, for execution, is usually substantive. So, the idea of multiple tasks have 



been proposed in the work and incorporated in the proposed LBTA strategy, 

which is described in chapter 8.  

 

Nodes of the heterogeneous DCS may be lightly loaded or heavily loaded be-

cause of incoming various tasks from time to time to it and due to various archi-

tectural capabilities of the nodes. So, it has been tried to combine load balancing 

while tasks are allocated to the DCS. For this purpose, a concept of Global Table 

(GT) has been introduced in chapter III that keeps track of each and every module 

of different tasks. The table shows the possibility of allocation or assignment of 

incoming modules of different tasks according to the memory constraints and 

modules (Max. no. of modules a processing node can accommodate) constraints. 

From this table, the present status of the DCS is easily informed, such as presently 

allocated modules of different tasks, the load of every processing nodes etc. so 

that the DCS further does not attempt to allocate any module of tasks to the proc-

essing nodes which are already heavily loaded or to the processing nodes those are 

not able to accept more modules for executing according to its architectural capa-

bilities. 

 

Further The LBTA strategy has been implemented using well-known A* algo-

rithm and Genetic Algorithm (GA). The load of multiple tasks has been used as a 

cost function for the purpose. An algorithm has been developed using A* tech-

nique in chapter 8. A heuristic search space technique is employed to find an op-

timal solution path in the state space after expanding fewer nodes during the 

search. Such a heuristic search algorithm can speed up the search of an optimal so-

lution, which is usually, time consuming for graphs with large numbers of vertices 

and edges. It minimizes IPC and optimizes load balancing by minimizing the task 

turn around time. Comparative results with the earlier work are shown for the pur-

pose which justifies that our algorithm performs better.   
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Another approach of LBTA strategy for multiple tasks using Genetic Algo-

rithm has been proposed in the thesis in chapter 8. An algorithm has been devel-

oped using the GA technique. Genetic Algorithm can run in parallel on several 

processing nodes at a time. For this nature, GA technique has been considered in 

our LBTA strategy for multiple tasks for a DCS. GA has been successfully used to 

solve various task allocation problems. These earlier works have mainly concen-

trated on single task allocation using GA. In this case inverse of load on a proces-

sor (equation 8.8) is the fitness function for the GA. Illustrated examples also 

show a good balanced load situation in the results (sec. 8.4). Comparative results 

with A* algorithm (sec 8.2) using A* have been presented in the present chapter. 

The results show that the GA based algorithm performs better than A* in terms of 

allocation and total cost (execution and communication) of allocation. 

9.1 Comparative Analysis of TA Models 

  The following figures (9.1, 9.2 and 9.3) shows the time required by the algo-

rithms using A* and GA technique for all the cases (1, 2 and 3) respectively. 
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Fig. 9.1.Running time required by the algorithms using A* and GA for case 1 

2219    Other Approaches for Task Allocation



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
   

 

 

 

 

 

 

 

 

 

 

 

  

From the figures 9.1, 9.2, 9.3, it is found that: 

  The running time taken by A* technique (our algorithm) for implementing the 

algorithm with the given example is much smaller than the time taken by the algo-

rithm using GA. This is because GA is using several hundred invocations of the 
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 Fig. 9.2.Running time required by the algorithms using A* and GA for case 2 
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Fig. 9.3.Running time required by the algorithms using A* and GA for case 3 
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‘random’ function, which has a constant complexity. This increases the run time 

of GA. 

The following figure 9.4 shows the comparisons among the results of the ear-

lier algorithm (EA*) used in [8] and our algorithms using A*(OA*) presented in 

sec. 8.3 and the algorithm using GA technique (sec. 8.4). 
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   From the figures 9.4, 9.5 and 9.6, it is observed that 

a) The cost (communication and execution) by the allocation for tasks using GA 

technique is less than the cost using OA* technique (our algorithm) and 

EA*(earlier algorithm proposed in [8]) . 

 

b) GA gives a better allocation than A*. According to the Vth column of the final 

status of GT using A* technique (chap. 8, table 8.1, 8.2 and 8.3) and the final 

status of the GT using GA (chap. 8, table 8.7, 8.8 and 8.9) for all the cases (1, 

2 and 3), it is observed that GA shows balanced load allocation than A*. 

   

9.2   A Hybrid Model   

 

Fig. 9.6.Total cost required by OA*, EA* and GA for case 3 
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  The A* algorithm, an informed search algorithm guarantees an optimal solu-

tion but does not work for large problems because of its high time and space com-

plexities [13].  One can obtain awareness of high time and space requirements of 

the A* algorithm by making use of some initial solution to prune a good number 

of nodes from a state space tree [13].  By making use of this idea and keeping in 

mind to reduce the search space we have proposed another algorithm in this chap-

ter. This idea can be implemented to improve the performance of our proposed al-

gorithm using A*(sec. 8.3) as it shows inferior results compared with the results of 

GA. The algorithm proposed below, first generates a random solution, and prunes 

all the nodes with higher than this solution during the optimal solution search. 

This is because the optimal solution cost will never be higher than this random-

solution cost. By pruning unnecessary nodes not only saves memory, but also 

saves the time required by reducing the search space [13]. 

   

9.2.1 The Proposed Algorithm   

   
1)   Calculate the status of the global Table (GT) for each processing node in 

terms of available memory (M) and the modules that are assigned to it. 

 

2) Generate a random solution. Let Rsol be the cost of the solution.  

 

3) Maintain a list S of unallocated tasks with all modules (all tasks are in S at 

the beginning) and a list OPEN, empty at the beginning. 

 

4) Take one task ta from S and put it in another list V and reset OPEN as empty 

state. 
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5) If allocation of the modules in V is possible using the f(n)=g(n)+h(n) of A* 

algorithm(sec.4.1.1) then check whether f(n) ≤ Rsol. 

 

6) If   f(n) ≤ Rsol  

      then  goto step 7 

         else discard the node from OPEN. 

 

7) Verify the STATUS and allocate the modules; if allocation is not possible, de-

allocate the allocated modules of the task and move onto the next task, modi-

fying the STATUS in between and update the Global Table. 

 

8) If S is not empty yet, go to step 2. 

 

9)  Stop (end of allocation). 

   

9.2.2   An Illustrated Example   

 
  As per the algorithm in sec. 9.2.1, the given example in sec. 4.2 has been 

worked out in the following. In our example, the cost of random solution is 38. 

Therefore, all nodes with a cost greater than 38 are discarded. Fig. 9.7 shows the 

search tree. 
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 The description of the OPEN is as follows: 

 

OPEN_1: 2XXXX(28), 1XXXX(30), 0XXXX(34). 
                        1  

 
2XXXX(28) is the minimum cost. So, it is expanded. 

 

OPEN_2: 1XXXX(30), 0XXXX(34), 20XXX(37), 21XXX(35), 22XXX(36). 
                         2 
 

OPEN_3: 0XXXX(34), 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37),  
              3                        
                 

      12XXX(31)  
                           X 
 

12XXX(31) is the minimum, but the cost of its expanding nodes are greater 

than the random solution (38), so the nodes are not considered. The next expand-
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Fig. 9.7. Search tree for the example 9.2.2 using Random Solution  (22 nodes generated, 
14 nodes expanded) 
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ing node is 0 XXXX (34) according to the minimum cost. Here, “X” indicates that 

the node will not be considered further in the OPEN.  

 

OPEN_4: 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37), 01XXX(35),       
 

02XXX(31). 

                                4 

 
OPEN_5: 20XXX(37), 21XXX(35), 22XXX(36), 10XXX(37), 01XXX(35),  
                         X                                                              5 

 
                 021XX(38), 022XX(38). 
 

21XXX(35) is the minimum, but the cost of its expanding nodes are greater 

than the random solution (38), so the nodes are not considered. The next expand-

ing node is 01XXXX(35). 

 

OPEN_6: 20XXX(37), 22XXX(36), 10XXX(37), 021XX(38), 022XX(38),  
                         6   
                012XX(36).  

 

OPEN_7: 20XXX(37), 10XXX(37), 021XX(38), 022XX(38), 012XX(36),  
                    7 
                 221XX(38). 

 

OPEN_8: 20XXX(37), 10XXX(37), 021XX(38), 022XX(38), 221XX(38),  
            X                     8  

                   
       0122X(30) . 
                      X 

0122X(30) is the minimum, but the cost of expanding nodes are greater than 

the random solution (38), so the nodes are not considered. 20XXX(37) is next 

minimum cost node, but it is not also considered for the same reason. Then, the 

next expanding node is 10XXX(37). 
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OPEN_9:  021XX(38), 022XX(38), 221XX(38), 102XX(36). 
                       9 

 
OPEN_10:  021XX(38), 022XX(38), 221XX(38), 1022X(30) . 
                         10                                                          X   
 

1022X(30) is the minimum cost, but the costs of expanding nodes are greater 

than the random solution (38). Then, the next expanding node is 021XX(38). 

 
OPEN_11:  022XX(38), 221XX(38), 0211X(38). 
                11 

 
OPEN_12:  221XX(38), 0211X(38), 0221X(22). 
               12               X 
 

0221X(22) is the minimum cost, but the costs of expanding nodes are greater 

than the random solution (38). Then, the next expanding node is 221XX(38). 

 
OPEN_13:  0211X(38), 2210X(23), 2211X(33). 
            X                13 
2210X(33) is the minimum cost, but the costs of expanding nodes are greater 

than the random solution (38). Then, the next expanding node is 2211X(33). 

 

OPEN_14:  0211X(38), 22110(35) . 
         14 
 

22110(35) is the minimum cost node. But there is node to expand. So, this is 

the Goal State. 

 

The algorithm described above, generates a random solution, and prunes all the 

nodes with costs higher than this solution during the optimal solution search. This 

is because the optimal solution cost will never be higher than this random solution 

2299    Other Approaches for Task Allocation



cost [13]. Pruning unnecessary nodes not only save memory but also save the time 

required to insert the nodes into OPEN. 

 

The idea of generation of initial population in GA can be used to find a random 

solution [sec. 5.3]. In our example, the cost of random solution was 38. Therefore, 

all nodes with a cost greater than 38 are discarded. As a result, in fig. 9.7, only 22 

nodes are generated and 14 nodes are expanded while the earlier solution reported 

in sec. 8.3.4 (in fig. 8.12) produced 63 generated nodes and 21 expanded nodes for 

the same optimal solution 22110 which shows a balanced load is obtained among 

the processing nodes. It is to mention that this algorithm’s efficiency depends on 

the initial solution’s quality [13]. It may incur more cost for generating the good 

quality of the initial solution. This cost is to be added with the total cost of the al-

location. 

 

The results demonstrates that the random solution approach can also be a 

meaningful approach to improve the performance of the algorithm using A* 

(sec. 8.3) with the LBTA strategy for multiple tasks.   

 

As the existing task Allocation algorithms consider only single task, the com-

plexity and performance of these algorithms are not comparable with that of algo-

rithms, proposed in this thesis, based on LBTA strategy for multiple tasks. As the 

algorithms proposed in chapters IV, V, VI of this thesis do balance the load also 

during the allocation process, the complexity of these algorithms involves cubic 

term for the no. of modules (m3) as opposed to square term (m2) in the case of sin-

gle task allocation algorithms reported in the literature[14]. 

 

It is assumed that the allocator will come to know when the modules of the 

tasks leave the system. The allocator maintains information regarding which mod-
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ules are present in the system including the new arrivals and the departures of 

modules in the system and updates the GT accordingly. These algorithms have 

been proposed considering LBTA strategy for multiple task allocation in a DCS. It 

is observed that the tasks arrive, for the execution, in a dynamic fashion. An in-

coming task will be invoking the algorithms. The status of Global Table is dy-

namic and the algorithm in its execution for a particular task will incorporate the 

modification in the table (GT) with reference to that particular task.  

9.3 Object Allocation in Distributed Computing Systems   

   
  Object Oriented Programming, in recent, has become exceedingly popular. It 

is realized that the problem of real world can exactly map the object and thus ob-

ject-oriented view came into existence. Software engineering stream is now com-

pletely moved towards object and most of the software is now being developed us-

ing the features of object-oriented technology. Compiler writers also rushed and 

many object oriented programming languages came into existence (e.g. Object 

Pascal, C++, JAVA etc.). Object oriented languages have many features. Method 

and data hiding, Inheritance, Polymorphism is to name a few [14]. 

 

Distributed Computing Systems (DCS) is characterized by the distribution of 

memory and clock to all the processing elements of the system. It has the possibil-

ity of keeping the processing sites at a large geographical distance. The processing 

site of the system is also known as the node. One of the very useful features of the 

DCS is scalability. This type of system is well suited for the present environment 

of computing. 

 

Object based distributed computing is a technique for constructing large het-

erogeneous computing and communication system based on the concept of ob-

2319    Other Approaches for Task Allocation



jects. Object based allocation, in DCS, brings new challenges and opportunities 

for the use and development of formal methods. 

9.3.1 The Object Model   

 
  Previous allocation strategies, proposes the allocation of computing task to 

optimize one or more characteristic parameters [7-9, 12, 15, 16-19]. The allocation 

model, presented in this section, is based on the objects. Each object is character-

ized by the typical structure formed by the state and the operations, and also em-

bodies independent execution facilities [20]. This facility is useful for dynamically 

adopting the allocation of a parallel application. In order to affect the state or even 

determine the state of an object, one must perform an appropriate operation on it. 

The identity of the objects is derived from the set of operations for that object. The 

combination of the operations with their internally defined data structures and 

computations represents an object instantiations [21]. 

   

Objects in a DCS   

  The objects in a DCS (hardware, programs or data) are generalizations of ab-

stract data types. This refers to the objects’ representation. They are, first, data 

structures and, second, operations on the data structures. The data structures repre-

sent executable modules, interprocess communications, and hardware resources 

etc., which are viewed as an object, with a fixed set of operations that defines its 

context within the system. 

   

    The objects are represented as singular entities. Objects may be active (proc-

ess object) or passive (data object). The structure of objects differs from system to 

system, but they are all exhibiting the same basic components; an external part and 
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an internal part. The external part provides the operations allowable. The internal 

part is comprised of the internal specification (data types etc.)  

 

  In a DCS, objects operating on one host may require to invoke an operation in 

an object on another host. The object model requires constructing a communica-

tion object to control and carry out Inter Object Communications (IOC). 

9.3.2 The Allocation Problem   

   

  The allocation of a task deals with the assignment of its parallel components 

to the resources of the DCS. The allocation is static if it is decided before execu-

tion. It is dynamic if it is decided during execution [22]. Parallel objects of an ap-

plication are created dynamically and thus allocation is to be decided at run time. 

The application needs of execution and communication resources are decided 

statically at the beginning and dynamic allocation takes place during execution. 

   

There are two main requirements of the allocation problem of DCS, both in 

static and dynamic case: 

 

1. the user should be unaware of the allocation for a given architecture, and 

2. the allocation must tend to optimize the characteristic parameters. 

   

The parallel object environment assumes parallel objects and exploits this par-

allelism in two forms. Inter object parallelism is based on the execution of inde-

pendent parallel objects. Intra object parallelism permits multiple execution thread 

within the same object. Communication, among the objects, is carried through 

message passing. Thus inter object parallelism is achieved among the independent 

objects by allowing the communication among them as and when required. Intra 

object parallelism is achieved by the introduction of the multiple threads within 
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the same object. In this, an object can serve more than one request in parallel by 

allowing each thread to serve one. 

9.3.3 Capabilities in the Object   

 
  Controlled use of objects is essential to provide logical, efficient and accurate 

use of the system. To guarantee this, objects are allowed access only for those ob-

jects that are authorized to access that. 

 

The external part is the part accessible to the outside world; the internal part is 

protected one. Users can request services but cannot actively process the object’s 

internals. However, only the structure of an object does not guarantee the integrity 

of an object. A concept “protection domain” is introduced to make this control. An 

object operates within a protection domain, which specifies what resources and 

rights to it an object may access. Each domain defines a set of objects and the op-

erations on it that can be invoked. These rights associated with an object provide 

its protection from unwanted objects. All objects, within that domain, have the 

rights to objects controlled by it. The matrix showing the access right is known as 

Access matrix. 

 
The structure of the access matrix is shown below. 
 

                   
 

 
File1 

 
File2 

 
Port1 

     D1 READ EXECUTE READ/WRITE 

     D2 - READ/WRITE - 
     D3 READ/EXECUTE - WRITE 

 
Typically in these systems access list is used, as access matrix is sparse.  
 

  Access list  

Object 
 Domain      
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  File /list 
 Domain 1; Read 
 Domain N; Write 
End list 
 
Quite often an alternative is used in object based system design. Instead of as-

sociating columns of the access matrix with the objects as an access list, we asso-

ciate each row with its domain. This provides to the domain the list of objects it 

can access and the operations it can perform on them. This new association is 

called a capability list. An object is represented by a physical address called the 

capability. The user must acquire capability in order to use it. 

9.3.4. Object Allocator   

Object allocator deals with the creation, execution, and destruction of objects in 

the object based DCS. The nodes of the DCS must posses a capability manager for 

object creation, operation, destruction, synchronization, communication etc. All 

the nodes have a capability manager that maintains the capabilities for the objects 

that exist on it. Only the Capability Manager (CM) has the rights to change the 

state of capabilities of its objects. 

 

  Creation of objects implies bringing them into the system and making their 

existence known to all who requires it. The object creation may be local or remote. 

The object scheduled to execute on the node is given control of the node. After 

completion it leaves its control. 

 

Allocation manager is responsible for object allocation in its node. It can direct 

the creation manager for object creation locally. It may contact another allocation 

manager on other node for remote object creation. It can also decide the allocation 

of components of distributed objects. 
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Monitoring manager monitors the application i.e. no. of objects allocated in the 

node, no. of threads in object etc (Fig. 9.8). 

 

The allocator provides some synchronization primitives for the synchronization 

of objects. Signal/wait primitive or mailbox does this. The communication be-

tween distributed objects is in the form of shared data objects, message objects or 

control interactions. Communication may be synchronous or asynchronous. 

 
 
 

 

 

 

 

 

 

 

  Thus the object allocation is comprised of the following jobs. 

 

• Creation of objects 

• Operations on objects 

• Scheduling of objects 

• Deletion of objects 

• Communication among objects 

 

The allocation manager receives the request such as  

 

 

 

 

 
 

                                                                                                                                                       
Monitoring 

Manager 

Allocation 
Manager 

Other node 

Fig. 9.8.Interaction of managers for object allocation 

 

Creation 
Manager 
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Run A; 
 
Create A; 
Abort A;                                          
Send A, B; 
Receive A, B; 
Fork; 
Join; 
 
 

9.3.5 Communication Manager   

  A communication manager object provides communication facility among 

communicating objects, as shown in figure 9.8. An object can invoke any other 

object on the system by sending it a request message. Only the name of the object 

is enough to route any message as the rest is taken care by the communication 

manager. Generally the following operations are included. 

 

  SEND(OBJ,OPR,MSG) 

RECEIVE(OBJ,OPR,MSG) 

Sometime a request primitive is used for a particular service. 

REQUEST(OBJ,OPR,MSG) 

A typical use of communication is shown (fig. 9.10) in which communication 

is being done through port object A. 

   

   

           

 
 
 
 
 

Run 
Create         Fork 
Send            Join 

Fig. 9.9.Object interface 

 
 
 
 
 
         
 

       Send 

 
 

Port Object A 

 
 
 
 
 
 
 
   Receive 

Sender Receiver 

Fig. 9.10.Communication in Objects 
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Objects are created and destroyed dynamically in the system. Every newly cre-

ated object may create another object in turn and may send request to it.  More-

over the presence of multiple execution activities i.e. threads designed to support 

concurrency, imposes another problem in object allocation. In view of these, ob-

ject allocation is possible by the variations of abovementioned method. It is diffi-

cult to measure the characteristic of object allocator as it is possible only by its ac-

tual implementation and testing in a real object oriented distributed system 

environment. The prototype for object oriented distributed systems are being de-

veloped by the researchers of the discipline [23]. 
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CHAPTER 10   

Scheduling in Computational Grid 

 

   
   

  During the past few years grid computing has emerged as an effective com-

puting environment for data and compute intensive operations. There are issues 

and challenges in grid computing discipline and are to be addressed by the re-

search community before the environment is in widespread use. In this chapter, an 

overview is sought over the grid computing with the benefits and challenges of the 

grid architecture from scheduling point of view. 

 

  Future of computer system design lies in High Performance Computing 

(HPC) systems. In various applications, demand for increasing performance is 

persuasive argument. Besides other benefits (e.g. resource sharing, scalability etc.) 

compute intense jobs demand parallel execution by exploiting parallelism in the 

jobs.  

 

  “As computer networks become cheaper and more powerful, a new computing 

paradigm is poised to transform the practice of science and engineering”- Ian 

Foster 

 



  Grid is a type of parallel and distributed system that enables the sharing, se-

lection, and aggregation of geographically distributed "autonomous" resources dy-

namically at runtime depending on their availability, capability, performance, cost, 

and user’s quality-of-service requirements [1]. Grid aims at exploiting synergies 

that result from cooperation--ability to share and aggregate distributed computa-

tional capabilities and deliver them as service. The autonomous resources in the 

Grid can span across a single or multiple organizations. The key distinction be-

tween clusters and grids mainly lie in the way resources are managed. In case of 

clusters, a centralized resource manager performs the resource allocation and all 

the nodes cooperatively work together as a single unified resource. In case of a 

Grid, each node has its own resource manager and do not aims for providing a 

single system view [1, 12]. 

 

Grid technology takes Cluster computing to the next level by providing a dis-

tributed architecture that delivers compute and data resources over the web in 

much the same manner the electricity is delivered over the power grid - making 

resources available to users when and where they are needed. Grid computing is 

one of the fastest-growing trends in high-end scientific and engineering comput-

ing. By utilizing a flexible computing architecture based on clusters, organizations 

can develop and tailor grids to continually match changing requirements. Grids 

can be designed in any shape and size and deliver the flexibility to harness the 

power of any available resource, regardless of whether it is a desktop machine or a 

campus supercomputer [2]. 
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10.1 Need for Grid Computing    

   
  Grid Computing delivers the potential in the growth and abundance of network 

connected systems and bandwidth: computation, collaboration and communication 

over the advanced web. At the heart of Grid computing is an infrastructure that 

provides dependable, consistent, pervasive and inexpensive access to computa-

tional capabilities. By pooling federated assets into a virtual system, a grid pro-

vides a single point of access to powerful distributed resources. 

 

Researchers working to solve many of the most difficult scientific problems have 

long understood the potential of such shared distributed computing systems. De-

velopment teams focused on technical products, e.g. semiconductors, are using 

Grid computing to achieve higher throughput. Likewise, the business community 

is beginning to recognize the importance of distributed systems in applications 

such as data mining and economic modeling. 

 

With a grid, networked resources - desktops, servers, storage, databases, even sci-

entific instruments - can be combined to deploy massive computing power wher-

ever and whenever it is needed most. Users can find resources quickly, use them 

efficiently, and scale them seamlessly. 

10.2 Scalability for Global Computing    

   

24310    Scheduling in Computational Grid



  No two grids are alike, and no size fits all. Organizations can create and recreate 

grids to exactly match changing requirements by utilizing a flexible computing ar-

chitecture based on clusters systems and software that manage the work on the 

distributed systems. Grids can scale from single systems to supercomputer-class 

clusters by utilizing thousands of processors. Grids can be classified based on the 

scalability as below. 

Cluster Grids   

   
  Cluster grids are the most popular and simplest form of a grid. Cluster grid con-

sists of one or more systems, working together, to provide a single point of access 

to users. Cluster grid meets the need of most of the organizations. Typically used 

by a team of users such as a single project or a department, a cluster grid supports 

both high throughput and better performance for the jobs. 

Campus Grids   

   
    Campus grids enable multiple projects or departments to share computing re-

sources in a cooperative way. It is also referred as the cooperative grid. Campus 

grids may consist of dispersed workstations and servers, as well as centralized re-

sources located in multiple administrative domains, in departments, or across the 

enterprise. 
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Global Grids   

   
  When application needs exceed the capacity of a campus grid, organizations can 

tap partner resources through a global grid. Designed to support and address the 

needs of multiple sites and organizations, global grids provide the power of dis-

tributed resources to users anywhere in the world for computing and collaboration. 

Individuals or organizations sending overflow work to a grid provider or by multi-

ple companies working together and sharing data - crossing organizational 

boundaries with ease can use the global grid. 

10.3 Data and Computational Grids  

   
  The Grid infrastructure in which the emphasis is given on the computation is 

refereed as computational grid. In this, the large computing problem is divided 

into sub-problems and then solved over the nodes of the grid independently. Large 

scale problems in Science and Engineering are being solved on the computational 

grid. This not only allows the sharing of the resources but also reduces the execu-

tion time. The computing power need is analogous to the electrical power need of 

the early 90s making the electrical power grid a reality. The computing environ-

ment of a computational grid provides a demand driven, reliable, powerful and yet 

an inexpensive power for its customers [10]. Thus a computational grid environ-

ment consist of one or more hardware and software enabled environments that 

provide dependable, consistent, pervasive and inexpensive access to high end 

computational capabilities [9]. 

24510    Scheduling in Computational Grid



In data grid, the emphasis is over the management of the data that is being held 

in a variety of data storage facilities in geographically dispersed locations. The 

data sources may be databases, file systems and storage devices. The grid must 

also provide data virtualization services to satisfy various transparency issues e.g. 

transparency for data access, integration, and processing. Security and privacy is 

very important requirements of data in grid system and is very complex [10]. 

10.4 Scheduling in Computational Grid    

   
  Being able to submit a job from a networked client to a job submission service 

requires that the placement of such jobs can be optimized over available grid re-

sources. This takes place through a 'super-scheduler' that matches the job to the re-

source’s capabilities and constraints. Such a scheduling framework is being ad-

dressed by the research community and under development with many grid 

centers as middleware. Problems of scheduling in the distributed computing sys-

tem persist in grid computing also and are to be resolved. The author had worked 

over the problem of scheduling in the distributed computing systems and is now 

extending the same for the computational grids [3-8]. 

 

The requirement of most of the compute intense jobs is parallel/concurrent exe-

cution of their subjobs (modules) on the nodes of the computing system so that the 

overall time for execution is minimized. Besides, the system offers other advan-
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tages in terms of resource sharing, fault tolerant execution, high throughput, scal-

ability, use of commodity systems, better price performance ratio etc. We discuss 

the distribution of compute intense jobs onto a grid system. 

 

Most important consideration of compute intense jobs is to how to distribute 

the computational loads amongst the nodes of the system. This distribution has 

different characteristic requirement in different systems. In distributed computing 

system, the objective is how quickly the submitted job completes the execution by 

exploiting both the available hardware and software. In cluster, the objective is 

enhanced availability besides the performance. In grid it is often desired to utilize 

the available resources, available anywhere but connected by the commodity net-

work, whenever more computing power is required. 

 

In a distributed computing system, all the computing nodes do participate in 

computation as per their capabilities. Number of nodes in a DCS interacts with the 

user and the user can submit his job at any node. Submitted job is partitioned in 

modules and as per the policy of the load distribution these modules are allocated 

onto the computing nodes of a DCS. Once a load is distributed, more or less it is 

fixed. Some DCS allows the user of the system to specify the load distribution, but 

mostly the allocator of the DCS with some predefined policy decides it.  
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User’s job can be exploited for the existence of parallel/concurrent modules 

and these modules are allocated onto the computing nodes of the grid. The objec-

tive of this allocation can be the decrease in completion time of the job, increase in 

fault tolerant execution or some other characteristic. The distribution of the com-

pute job will often be on the neighbor nodes so that the result obtained from allo-

cated modules can be reproduced quickly. The distribution will usually consider 

just one aspect; what nodes in the neighbor are free or relatively less loaded. Op-

timization of any other characteristic, as considered in the distributed computing 

system, is absent in the grid and this will make the allocation relatively easy. It is 

assumed that all the processing nodes are capable enough to execute computa-

tional jobs. So the computing grids are utilized as and when there is the require-

ment of computing. Load distribution in case of the grid is never fixed.   

 

Job super scheduler architecture has been proposed by Shan et. al.[11]. In this 

the job scheduling is conducted via autonomous local schedulers that cooperate 

through a superscheduler using grid middleware. The superscheduler is responsi-

ble for discovering grid resources, monitoring system utilization, and migrating 

load to the local queues of the distributed resource centre. 

10.5 Challenges in Grid Computing    

   
  Increased network bandwidth, more powerful computers, and the acceptance of 

the internet have driven the ongoing demand for new and better ways to compute. 
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Commercial enterprises, academic institutions, and research organizations alike 

continue to take advantage of these advancements, and constantly seek new tech-

nologies and practices that enable them to reinvent the way they conduct business. 

However, many challenges still remain and are to be resolved. Increasing pressure 

on development and research costs, faster time-to-market, greater throughput, and 

improved quality and innovation are always foremost in the minds of administra-

tors - while computational needs are outpacing the ability of organizations to de-

ploy sufficient resources to meet growing workload demands. 

 

On top of these challenges is the need to handle dynamically changing workloads. 

Flexibility is the most desired criterion and is the key. In a world with rapidly 

changing markets, both research institutions and enterprises need to quickly pro-

vide compute power where it is needed most. Indeed, if systems could be dynami-

cally created when they are needed, teams could harness these resources to in-

crease innovation and better achieve their objectives. Few pertinent questions are: 

• How hard is it to build a grid? 

 Sony Devices Europe created a Sun grid in just two days. 

• How capable are grids? 

 The Durham University Cosmology Engine performs 465 billion arith-

metic operations per second on a Sun Cluster Grid. 

• Is Grid computing real? 

 Sun has a grid of over 7,500 total CPUs across three U.S sites; with over 

98 percent CPU utilization executing over 50,000 EDA jobs a day [2]. 
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10.6 Research Issues in Grid Scheduling     

   
  Schedulers are responsible for management of jobs amongst the nodes of the 

grid, such as allocation of resources needed for any specific application, job parti-

tioning to allow parallel execution, event correlation, and service level manage-

ment. The jobs submitted to a grid for the execution are evaluated based on their 

requirements and allocated to the node accordingly.  So the services provided by 

the scheduler for the computational grid must include: 

 

• Resource determination (reservation) 

• Task and resource policy management for better turnaround or any other 

characteristics 

• Monitoring the status of the task execution 

• Rescheduling for load balancing 

• Task migration 

• Security and authentication on the grid nodes for scheduling 

 

All the above points are very important for a computational grid scheduler and 

require the attention of research communities specially working for grid scheduler. 

Given a job for the execution over the grid, how to determine the resources be-

comes the first and foremost activity. Problem, being the NP-Hard, perpetuate 

various possibilities for the resource determination. How to achieve better turn-

around is one of the objectives of the grid systems. Proper resource utilization for 

better turnaround is a key research problem of computational grid. Status monitor-
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ing of the job execution, so that the migration may take place, as and when re-

quired, is also very important. Load balancing, as has been discussed in chapter 4, 

finds place in the grid scheduler also and is very important research issue. Task 

migration is the repercussion of the load balancing. Security for scheduling is ex-

clusively most important research issue and requires a great attention of the re-

search community. As the task execution activity is transparent, how to allow only 

an authentic job becomes very important aspect of the secure scheduling. 

 

All these research issues are being addressed by the researchers of this disci-

pline.  
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CHAPTER 11   

Concluding Remarks 

 

 
 

  This book aims at consideration of existing task allocation models with their 

simplifying assumptions for proposing better TA algorithms that consider the real-

istic situations of a task and DCS i.e. the precedence of the execution among the 

modules of the task, consideration of more than one tasks for execution, functional 

limitations of processing elements of DCS etc. The work is being summarized in 

the next section. In section 11.2, we have briefed the structure and place of sched-

uler in distributed operating system. Future possibilities have been explored and 

pointed out in section 11.3. 

11.1 Summary of Findings   

   
  Distributed Computing System is emerging as a future computing system be-

cause of its certain useful characteristics. Reliability, throughput, scalability are to 

name a few. DCS has taken a lead as a future computing system in comparison to 

Tightly Coupled Multiprocessor. 

 



Task scheduling (allocation) is very important phase in the development of op-

erating system of a DCS and this work deals mainly with the task allocation prob-

lem of the DCS. A task, consisting of the modules, is given to the DCS for execu-

tion. The execution of this task takes place under various constraints imposed by 

the task and the system as well. The execution has to satisfy certain characteristic 

parameters to prove it to be a good allocation. Before allocation, the task is to be 

divided in modules (subtasks). Thus the task execution requires two steps: parti-

tioning and allocation.  

 

Partitioning exploits the parallelism present in the task to its maximum possible 

extent and based on that, modules are created. There are many techniques for task 

partitioning. Our proposal of task partitioning using Genetic Algorithm appears in 

[1], though this book does not address the task partitioning problem and it requires 

an exclusive discussion in its entirety. 

 

The problem of allocation of tasks in a DCS has been thoroughly discussed in 

this book by identifying various relative factors: (i) precedence amongst the mod-

ules of a task (ii) reliability with task allocation of a DCS (iii) completion time (iv) 

limitations and capabilities of the processing nodes (v) multiplicity of tasks (vi) 

balanced load and (vii) migration. Factors (i), (ii), (iii) & (iv) are related to “Single 

Task Allocation” models whereas all the factors (i to vii) have been dealt with 

keeping in mind the relative situation that the number of tasks in DCS is usually 

substantive (not one as considered in previous models reported in the literature). 
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After a brief discussion over the distributed computing system and the schedul-

ing problem in distributed computing system in beginning chapters, the Load Bal-

ancing aspect has been thoroughly discussed in chapter 4. The chapter 4 also 

briefs the various other issues related with the task scheduling, in general and load 

balancing in particular. It discusses the task migration and threads. It also explores 

the conflicts that may occur for the allocation of a task due to load balancing or 

imbalancing. 

 

The precedence relation, amongst the modules of the task, can be analyzed to 

identify such modules that may coexist on one and the same node, as the sequen-

tial execution of concurrent modules sets may allow this. A precedence con-

strained task allocation is proposed in chapter 5; section 5.3, in which the empha-

sis is on the precedence of the modules [2]. This model minimizes the turn-around 

time of the given tasks, but at the same time considers the precedence constraint of 

the modules of the task. The earlier models discussed in section 5.1 do not con-

sider the precedence of the modules of a task. Moreover the effect of already allo-

cated modules of other tasks on processing elements comprising the system is 

considered (assuming round robin scheduling). This consideration has not been 

there in earlier models. As models proposed by us make considerations that are es-

sential, the other models discussed herein, sec 5.1, (without these aforesaid con-

sideration) are not comparable. 

 

Communication among the modules, adds the cost of allocation if these com-

municating modules are executing on distant processing nodes of the DCS. This 

25511    Concluding Remarks



problem has been considered and IMC cost reduction model using fuzzy logic is 

proposed in the same chapter 5, section 5.4, of the book [3]. This IMC cost reduc-

tion model can be introduced in any task allocation algorithms at minimum cost. 

Load Balancing Task Allocation (LBTA) has been discussed in chapter 6. This 

chapter not only discusses the LBTA strategy and issues, it also proposes LBTA 

solution. This also proposes a load measure for a single task as well multiple tasks. 

 

Genetic Algorithms (GA), based on the Darwin’s theory “Survival of the fit-

test”, is emerging as a successful tool for the optimization problem [4]. As the task 

allocation problem is an NP-Hard problem, GA is found to be quite suitable to 

solve task allocation problem. GA is parallel in nature so it is well suited to TA 

problem of DCS. The various activities of GA based task allocation can be per-

formed in parallel on various processing nodes of DCS [19]. We applied GA for 

task allocation with many variations. In one, a problem specific knowledge is in-

corporated in GA. The TA model proposed in section 7.1 is based on a finding 

that the incorporation of some problem specific knowledge in construction of GA 

improves its performance and solution converges quickly [5]. GA is also used to 

maximize reliability of DCS with task allocation in section 7.2. The algorithm not 

only gets the advantage of GA for quick convergence but also produces better so-

lutions in terms of allocation with improved reliability [6]. The result is compared 

with that of Shatz and it shows better one.  Many more inferences are drawn. 

 

So far, most of the literature shows an allocation policy for a single task. We 

have proposed multiple task allocation in DCS, which considers the allocation 
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based on the dynamic nature of task arrival and departure in the DCS. To achieve 

this, the concept of Global Table is introduced [7]. A heuristic task allocation al-

gorithm for multiple task allocation appears in chapter 8, section 8.1 of the thesis. 

The result shows that all the processors are being utilized for the purpose of exe-

cution. The resultant allocation infers that the modules of a particular task are also 

distributed among the processing nodes of the DCS. The implementation of global 

table will incur an overhead but this is inevitable for the management of the multi-

ple tasks execution. In this chapter, allocation algorithms that consider multiple 

tasks and status of PEs due to previous allocations are given and hence these are 

not comparable with other models proposed in the literature. 

 

A cluster based load partitioning and allocation in DCS is discussed in chapter 

8, section 8.2. Cluster is formed of the modules of the task and processing nodes 

as well. Allocation is decided from task cluster to processor cluster. Cluster based 

load partitioning and assignment is used for real-time applications. The proposed 

approach has the potential for scalability and support for system heterogeneity. 

Scalability is achieved by Merge and Split cluster formation of the processors. The 

approach considers the communication aspect in the cluster formation as it in-

volves more overheads. This is also a realistic approach as the other algorithms, 

based on the same, uses the priori knowledge of the execution of the modules of 

the task on the processors of the DCS. The communication bandwidth is already 

known while designing the system, so it is not difficult to measure the IMC time 

for the modules of the task. A new fuzzy approach is applied to form the clusters. 

Examples illustrate the algorithm.  
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 The idea of multiple tasks and global table caters to the needs of all types of 

DCS and tasks. It may accommodate single task situation as well. The problem is 

NP-Hard as such. The algorithms (and models), proposed, have similar complexi-

ties. These methodologies promise to be candidates for implementation. 

 

Various task allocation models & algorithms are proposed in this book. These 

models use a number of search techniques e.g. list schedule, A*, GA etc. Obvi-

ously the model that uses GA or A* will have better execution efficiency than that 

of list schedule. GA based TA algorithms has the potential of parallel execution on 

DCS [8]. The models discussed in chapter 8 and 9, which considers multiple tasks 

execution, are more realistic than the models discussed in previous chapters. De-

pending on the DCS architecture and other requirements (minimization of turn-

around time, improvement in reliability etc.) the model can be chosen for its im-

plementation in distributed operating system. 

11.2 Structures and Place of Scheduler in DOS 

  Any Operating System for a Distributed Computing System consists of ele-

ments to manage network communications, process operations, device manage-

ment, I/O management, and memory management as shown in the figure below. 

The scheduler comes under the process management part of the Distributed 

Operating System. 
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In a single local computer, all these managers reside on the same system, as 

there is no other choice [9]. The place of the scheduler in DOS is little difficult to 

decide as it leaves many possibilities with its advantages and disadvantages. The 

effective place to decide the place of scheduler is an open research problem. 

 

The simplest choice is that of Master/Slave in which the scheduler resides on 

one of the nodes, called master, and sticks to that node till its lifetime. In this or-

ganization the task submitted for execution goes to the master first and it decides 

how the modules are given to the other nodes for execution. The result produced 

by the individual nodes is given back to the master, which after reassembling pro-

duces it to the users [10]. 
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Fig. 11.1.Structure of Distributed Operating System 
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This type of scheme is simple but inefficient as the master node may be a bot-

tleneck in case of failure. 

 

Another scheme proposes to allow the scheduler to float from one node to the 

other from time to time. Whenever the scheduler process is to be migrated, all the 

relevant data are also to be moved. Thus the movement of scheduler process in-

curs an overhead if the size of the scheduler is big enough.  This overhead is 

added if the relevant data are large [11]. 

 

The third and efficient scheme is to divide the scheduler process in modules 

and allocate these modules onto the different available nodes of the DCS. In this 

case, the scheduler process will be treated as other users’ process with more prior-

ity. The various modules of the scheduler often have to cooperate on various is-

sues. This type of scheme is better but poses extra burden, as every module of the 

scheduler must know the whereabouts of the other modules.  

Master 

 
Slave 

 
Slave 

 
Slave 

Fig. 11.2.Master-Slave design of DOS 
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Scheduler (Task Allocator) can be structured according to any of the scheme 

discussed above and can be incorporated in the operating system of the DCS. 

11.3 Future Possibilities   

   
  The problem of task scheduling i.e. allocation has been considered in this 

book and various models for the same are proposed. As the technology in software 

and hardware is growing fast, it is necessary that all the functionalities of the op-

erating system also adapt to the new technology. So the work that remains from 

this book have been pointed out in this section. 

 

Most of the algorithms, proposed in the literature and discussed in the book as 

well, are based on some priori knowledge (execution time, communication time 

etc.). In practice it is very difficult to estimate these times (at least execution 

time). So a good piece of research work is to how estimate these times with some 

other available information. Specifically, how much time a particular module 

takes on a particular computing node is to be determined. Speed of the processing 

node and size of the modules are generally available and the execution time is to 

be determined from this information. Similarly communication among modules is 

also to be determined by tracing the program. Precedence among modules is an-

other research issue that is to be taken further. 
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With the introduction of the new hardware technology a new multicontext 

CPUs are being developed in which there may be more than one program counter 

for multiple independent executions. This type of CPUs supports the threading in 

the hardware. This amounts to having more than one processor on a single chip 

with a shared set of registers. Similarly with new software technology concept of 

multithreading is being introduced. Thus another dimension for future research is 

that how these task allocation models can adapt to the DCS consisting of multi-

context computing nodes and how the thread allocation can be made. Threads are 

the finer execution entities. Obviously the thread allocation will improve the exe-

cution characteristics of the task for execution. 

 

Prototype for the object oriented distributed computing systems are also being 

introduced [17] and future computing systems are to be object based. Of course 

the execution entity on such systems will be objects not processes (tasks) as con-

sidered in conventional distributed computing systems. How the object allocation 

on object oriented distributed computing systems will be done, is another research 

work for the future [12-18]. 
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ABBREVIATIONS 

 
DCS  Distributed Computing System 

CPU  Central Processing Unit 

PE  Processing Element 

RDS  Redundant Distributed System 

TA  Task Allocation 

IPC  Inter Process Communication 

IMC  Inter Module Communication 

AET  Accumulative Execution Time 

GA  Genetic Algorithm 

TG  Task Graph 

PG  Processor Graph 

TIG  Task Interaction Graph 

TPG  Task Precedence Graph 

DOS  Distributed Operating System 

TSP  Traveling Salesperson Problem 

MTA  Multiple Task Allocation 

LAN  Local Area Networks 

CP   Communication Penalty 

OS   Operating System 

VLSI  Very Large Scale Integration 

WAN  Wide Area Network 

ATM  Asynchronous Transfer Mode 

NOS  Network Operating System  

ISO  International Standard Organization 

LS   Load Sharing 

LB   Load Balancing 

LBTA  Load Balancing Task Allocation 

TM   Task Migration 

GT   Global Table 



Appendix A 

This appendix has a listing of a program using the algorithm in sec.8.3. The 

program has been written in C language under Windows 98 operating system in 

Turbo C++ environment.    

ASTAR.C 

#include<stdio.h> 
#include<stdlib.h> 
#include<conio.h> 
#include<iostream.h> 
#include<dos.h> 
#include<string.h> 
#define max_proc 10 
#define max_task 10 
#define max_mod 10 
struct st{ 
   int mod_cap_present; 

 
    

int mem_cap; 
     }status[max_proc];/* Status of processing nodes*/ 
 
struct open{ 
   int fx; 
   char string[max_proc]; 
   open() 
   { 
    strcpy(string,"XXXXXXXXX"); 
   }/*structure for OPEN list as in sec.4.2 */ 
 
   struct open *next; 
  }*open_list; 
int load(int);  
/* To find the load on each processing node according to equation 4.1 */ 
 
int check_status(int,int,int); 
/* It checks STATUS of processors according to the available no. of modules 

and available memory */ 
   



int find_heaviest_proc(); 
/* To find the heaviest loaded processor using equ. 4.1*/ 
int heur_cost(int);  
/* To find the cost h(n) according to equ.4.2 */ 
 
int min_cost_IPC(int,int,int); 
int min(int,int); 
/*Minimum between the two costs*/ 
 
void insert_open(int,int,int,charstr[max_proc]); 
/* This function insert the cost into OPEN as explained in sec. 4.2 */  
 
void modify_mod_at_proc(int,int,char*); 
/* This function insets ‘X’ for no allocation as in sec 4.2 */ 
 
void allocation(); 
/* This function allocates the modules onto the processors according to mini-

mum cost using the algorithm (sec.4.1.2)*/ 
 
void modify_status(int,int); 
/* This function modifies the STATUS of each processor*/  
 
char * remove_min_from_open(); 
/* This function selects the minimum cost node from OPEN, expand it and re-

move it after expanding nodes */ 
 
int no_of_proc,no_of_modules[max_task],no_of_tasks; 
 
int X[max_mod][max_task][max_proc]; 
/* Execution cost of the modules of tasks onto a processing node */ 
 
int M[max_mod][max_task][max_proc]; 
/*Assignment of the modules to a processor*/  
 
int C[max_mod][max_task][max_proc];  
/* Communication cost between the two modules of the task */ 
 
int CC[max_proc][max_proc]; 
/*IPC cost among between the processing nodes */ 
 
int mod_at_proc[max_mod][max_task]; 
/* The module of a task */ 
 
int L[max_proc][max_proc]; 
/* Connection matrix of two processing nodes direct link*/ 
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int L1[max_proc][max_proc]; 
/* Connection matrix of two processing nodes by one indirect link */ 
 
int L2[max_proc][max_proc]; 
/* Connection matrix of two processing nodes by two indirect link */ 
 
int mem_req[max_task][max_mod]; 
/* Memory required by each module */ 
 
int cf0,cf1,cf2; 
/* Cost for the link matrix L */ 
 
int load(int proc) 
{ 
 
 int p,n,k,i,j,ex_cost,q,comm_cost; 
 p=proc; 
 ex_cost=0; 
 comm_cost=0; 
 n=no_of_proc; 
 for(k=1;k<=no_of_tasks;k++){ 
  for (i=1;i<=no_of_modules[k];i++){ 
   if(mod_at_proc[k][i]==p)M[i][k][p]=1; 
   ex_cost+=X[i][k][p] * M[i][k][p]; 
  } 
 } 
 for (k=1;k<=no_of_tasks;k++){ 
  for(i=1;i<=no_of_modules[k];i++){ 
   /* q is the proc on which j is executing*/ 
   for(j=1,q=1;j<=no_of_modules[k] && q<n;j++,q++){ 
    if(i!=j && p!=q){ 
     comm_cost=  M[i][k][p] * M[j][k][q] 

* (    C[i][k][j] + CC[p][q]); 
    } 
   } 
  } 
 } 
 return(ex_cost + comm_cost); 
} 
void allocation() 
{ 
 int k,i,j,p,hp,gx,hx,fx,l,xx,xxx,i1,p1; 
 char *str,*str1; 
 for(k=1;k<=no_of_tasks;k++){ 
  open_list=NULL; 
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  strcpy(str,"XXXXXXXXX"); 
  i1=0; 
  for(i=1;i<=no_of_modules[k];i++){ 
   for(p=1;p<=no_of_proc;p++){ 
    if(check_status(p,i,k)==1){ 
     mod_at_proc[i][k]=p; 
     hp=find_heaviest_proc(); 
     gx=load(hp); 
     hx=heur_cost(p); 
     fx= gx + hx; 
     insert_open(i,p,fx,str); 
    } 
   } 
//   find_min_fx_open(); 
   strcpy(str1,str); 
   str=remove_min_from_open(); 
   xx=0; 
 
   while(str[xx+1]<60)xx++; 
 
 
//   if(i<i1){ 
    for(xxx=1;xxx<=i;xxx++){ 
    

 status[str1[xxx]].mod_cap_present+=1; 
    

 status[str1[xxx]].mem_cap+=mem_req[k][xxx]; 
 
    } 
//   } 
   i=xx; 
   for(i1=1;i1<=xx;i1++){ 
   modify_mod_at_proc(i1,k,str); 
   modify_status(i1,k); 
   } 
  } 
  printf("\n\n Task %d has been allocated as : ",k); 
  for(l=1;l<=no_of_modules[k];l++)printf("%d",str[l]); 
 } 
 int m,m1; 
 m=0; 
 for (p1=1;p1<=no_of_proc;p1++){ 
  m1=load(p1); 
  printf("\nThe cost at the processing node %d is %d",p1,m1); 
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  printf("\nThe status of processing node %d is %d   %d",p1,   
status[p1].mod_cap_present,status[p1].mem_cap); 

  m+=m1; 
  } 
 printf("\n\nTotal cost at all the processing nodes is %d",m); 
} 
 
 
int heur_cost(int p) 
{ 
 int k,i,j,local_var,heur; 
 heur=0; 
 for(k=1;k<=no_of_tasks;k++){ 
  for(i=1;i<=no_of_modules[k];i++){ 
   if(mod_at_proc[i][k]==p){ 
  /*ith module of kth task is on proc p then we are proceeding*/ 
    for(j=1;j<=no_of_modules[k];j++){ 
    /*checking if jth module communicates with ith 

mod. */ 
     if(C[i][j]>0){ 
/* if ith mod is the same as jth, then C[i][j]==0, if no comm is there, C[i][j]==-

1*/ 
      if(mod_at_proc[j][k]==0){ 
/* we have checked that if jth module has yet been allocated, 0 shows it hasn't 

*/ 
       lo-

cal_var=min_cost_IPC(j,k,p);//local_var gives the processor onto which j can be 
allocated &CC[p][loc..] is min 

      
 heur+=min(X[j][k][p],(C[i][k][j]+local_var)); 

      } 
     } 
    } 
   } 
  } 
 } 
 return(heur); 
} 
int min_cost_IPC(int mod,int task ,int proc) 
{ 
 int i,aa,flag; 
 for(i=1;i<no_of_proc;i++){ 
  if(i!=proc){ 
   aa=check_status(mod,task,i); 

269Appendix A



 
 if(aa==1 && CC[proc][i]==cf0)return(cf0);   //IPC is min. possible 

   else if(aa==1 && CC[proc][i]==cf1)flag+=0; 
   else flag+=0; 
  } 
  if (flag>0)return(cf1); 
  else return(cf2); 
 } 
} 
int min(int value1, int value2) 
{ 
   return ( (value1 < value2) ? value1 : value2); 
} 
 
int check_status(int proc,int module,int task) 
{ 
 if(status[proc].mod_cap_present>0 && status[proc].mem_cap > 

mem_req[task][module])return(1); 
 else return(0); 
} 
void modify_status(int module,int task) 
{ 
 int proc; 
 proc=mod_at_proc[module][task]; 
 status[proc].mod_cap_present-=1; 
 status[proc].mem_cap-=mem_req[task][module]; 
} 
int find_heaviest_proc() 
{ 
 int p,max,return_value; 
 for(p=1;p<=no_of_proc;p++){ 
  if(p==1){ 
   max=load(p); 
   return_value=p; 
  } 
  else 
  if(max<load(p)){ 
   max=load(p); 
   return_value=p; 
  } 
 } 
 return(return_value); 
} 
void insert_open(int module_no, int proc, int fx,char str[max_proc]) 
{ 
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 struct open *temp, *temp1; 
 temp= open_list; 
 temp1=new open; 
 strcpy(temp1->string,str); 
 temp1->string[module_no]=proc; /*remember to reset open after each 

task*/ 
 temp1->fx=fx; 
 if(open_list==NULL){ 
  open_list=temp1; 
  open_list->next=NULL; 
 } 
 else{ 
  temp= open_list; 
  while(temp->next!=NULL)temp=temp->next; 
  temp->next=temp1; 
  temp->next->next=NULL; 
 } 
 
} 
char * remove_min_from_open() 
//remember to remove from open that node which  lies latest in the list if two or 

more fx's are equal 
{ 
 struct open *temp, *temp1; 
 int  mini,flag=0; 
 temp=open_list; 
 if(temp==NULL)return("empty_lst"); 
 mini=temp->fx; 
//finding the minimum fx 
 while(temp->next!=NULL){ 
  temp=temp->next; 
  if(mini>= temp->fx)mini=temp->fx; 
 } 
//removing the corresponding node 
 temp=open_list; 
 while(temp->fx != mini){ 
  flag=1; 
  temp1=temp; 
  temp = temp->next; 
 } 
 if(flag==0){ 
  open_list=temp->next; 
  return(temp->string); 
 } 
 else{ 
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  temp1->next=temp->next; 
  return(temp->string); 
 } 
//modifying mod_at_proc 
/* for(i=0;i<no_of_proc;i++){ 
  if(temp->string!='X') 
  */ 
 
} 
void modify_mod_at_proc(int module,int task, char* str) 
{ 
 int i; 
 for(i=1;i<=no_of_modules[task];i++){ 
  if(str[i]!='X') 
       mod_at_proc[i][task]=str[i]; 
//  else mod_at_proc[module][task]=0; 
 } 
} 
void input(void) 
{ 
 int i,j,k,j1,c,p1,p,q,x; 
 clrscr(); 
 printf("INPUT THE NO OF PROCESSORS\n"); 
 scanf("%d",&no_of_proc); 
 printf("INPUT THE NO OF TASKS \n"); 
 scanf("%d",&no_of_tasks); 
 for(k=1;k<=no_of_tasks;k++){ 
  printf("ENTER THE NO OF MODULES OF TASK %d\t",k); 
  scanf("%d",& no_of_modules[k]); 
 } 
 clrscr(); 
 for(k=1;k<=no_of_tasks;k++){ 
  clrscr(); 
  printf("INPUT THE EXECUTION MATRIX FOR TASK 

%d\n",k); 
  for(p=1;p<=no_of_proc;p++){ 
   gotoxy(8*(p),5); 
   printf("P%d",p); 
  } 
 
 
  for(j=1;j<=no_of_modules[k];j++){ 
   gotoxy(2,5+j); 
   printf("m%d%d\t",k,j); 
   for(p=1;p<=no_of_proc;p++){ 
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    gotoxy(8*p,5+j); 
    scanf("%d",&X[j][k][p]); 
   } 
  } 
 } 
//INTER MOD COMM COST 
 for(k=1;k<=no_of_tasks;k++){ 
  clrscr(); 
  printf("INPUT THE INTER-MODULE COMMUNICATION 

MATRIX FOR TASK %d\n",k); 
  for(j1=1;j1<=no_of_modules[k];j1++){ 
   gotoxy(8*(j1),5); 
   printf("m%d%d",k,j1); 
  } 
 
 
  for(j=1;j<=no_of_modules[k];j++){ 
   gotoxy(2,5+j); 
   printf("m%d%d\t",k,j); 
   for(j1=1;j1<=no_of_modules[k];j1++){ 
    gotoxy(8*j1,5+j); 
    if(j==j1)printf("0"); 
    else scanf("%d",&C[j][k][j1]); 
   } 
  } 
 } 
 clrscr(); 
 printf("INPUT THE ADJACENCY MATRIX FOR THE 

PROCESSORS\n"); 
 for(p=1;p<=no_of_proc;p++){ 
  gotoxy(8*(p),5); 
  printf("P%d",p); 
 } 
 for(p=1;p<=no_of_proc;p++){ 
  gotoxy(2,5+p); 
  printf("P%d\t",p); 
  for(p1=1;p1<=no_of_proc;p1++){ 
   gotoxy(8*p1,5+p); 
   if(p!=p1){ while(1){ 
      c=getch(); 
      if(c==48 ||c==49)break; 
     } 
     if(c=='1'){ 
      L[p][p1]=1; 
      printf("1"); 
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     } 
     else{ 
       L[p][p1]=0; 
       printf("0"); 
     } 
   } 
   else{ 
     printf("0"); 
     L[p][p1]=0; 
   } 
  } 
 } 
//MAKING THE SQUARE AND CUBE OF ADJACENCY MATRIX 
 /*FUNCTION TO MULTIPLY TO MATRICES*/ 
 
  for(x=1;x<=no_of_proc;x++){ 
   for(p=1;p<=no_of_proc;p++){ 
    L1[x][p]=0; 
   } 
  } 
 for(x=1;x<=no_of_proc;x++){ 
  for(p=1;p<=no_of_proc;p++){ 
   for(q=1;q<=no_of_proc;q++){ 
    L1[x][p]=L1[x][p]+L[x][q]*L[q][p]; 
   } 
   if(L1[x][p]!=0)L1[x][p]=1; 
  } 
 } 
 for(x=1;x<=no_of_proc;x++){ 
  for(p=1;p<=no_of_proc;p++){ 
   L2[x][p]=0; 
  } 
 } 
 for(x=1;x<=no_of_proc;x++){ 
  for(p=1;p<=no_of_proc;p++){ 
   for(q=1;q<=no_of_proc;q++){ 
    L2[x][p]=L2[x][p]+L1[x][q]*L[q][p]; 
   } 
   if(L2[x][p]!=0)L2[x][p]=1; 
  } 
 } 
 
//INPUTTING STATUS 
 printf("\n\nINPUT THE STATUS OF PROCESSORS : MODULE 

CAPACITY & MEMORY CAPACITY\n"); 
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 for(p=1;p<=no_of_proc;p++){ 
  printf("STATUS[%d] = ",p); 
  scanf("%d %d",&status[p].mod_cap_present, 

&status[p].mem_cap); 
 } 
 // INPUTTING THE COEFF. FOR INTER PROCESSOR COMM. 
 printf("\nenter the adjacency coeff. for direct link between proc : "); 
 scanf("%d",&cf0); 
 printf("\nenter the adjacency coeff. for one indirect link between proc : 

"); 
 scanf("%d",&cf1); 
 printf("\nenter the adjacency coeff. for two indirect links between proc : 

"); 
 scanf("%d",&cf2); 
 printf("\n\nENTER THE MEMORY REQUIREMENTS OF 

MODULES\n"); 
 for(k=1;k<=no_of_tasks;k++){ 
  for(j=1;j<=no_of_modules[k];j++){ 
   printf("\tm%d%d : ",k,j); 
   scanf("%d",&mem_req[k][j]); 
  } 
 } 
 
 for(x=1;x<=no_of_proc;x++){ 
  for(p=1;p<=no_of_proc;p++){ 
   if(x!=p){ 
    if(L[x][p]==1)CC[x][p]=cf0; 
    else if(L1[x][p]==1)CC[x][p]=cf1; 
    else if(L2[x][p]==1)CC[x][p]=cf2; 
   } 
  } 
 } 
} 
 
void main() 
{ 
 
 struct time *time; 
 unsigned long time1,time2; 
input(); 
 gettime(time); 
   time1 = time->ti_hour*60*60*100 + time->ti_min*60*100 + time-

>ti_sec*100 + time->ti_hund; 
allocation(); 
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 gettime(time); 
   time2 = time->ti_hour*60*60*100 + time->ti_min*60*100 + time-

>ti_sec*100+ time->ti_hund; 
   printf("\nTime Reqd. was :0.%2d seconds\n" , time2 - time1); 
//   cout << endl << "Time Reqd. was : " << time2 - time1; 
 
//getch(); 
} 
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Appendix B 

This appendix has a listing of a program using the algorithm in sec.5.3. The 

program has been written in C language under Windows 98 operating system in 

Turbo C++ environment. There are some common functions, which are used in 

both the ASTAR.CPP (appendix A) and the GA.CPP. So, Descriptions are not 

given here for those functions. 

 

GA.CPP 

#include<iostream.h> 

#include<stdio.h> 

#include<stdlib.h> 

#include<math.h> 

#include<conio.h> 

#include<string.h> 

#include<dos.h> 

 

#define max_proc 10 

#define max_task 10 

#define max_mod 10 

#define MFACTOR 1000 

/* It’s a multiplicative factor */ 

#define NULL 0 

#define NO_OF_GEN 50 

/* Generate initial population 50*/ 

#define NO_OF_CROSSOVER 100 

 

 

struct st 

{ 

 int mod_cap_present; 

 int mem_cap; 

}status[max_proc],resetstate[max_proc]; 

struct String 

{ 

   float fx; 

   char str; 

   struct String *next; 

   int freq; 

}; 



int load(int); 

/* This function calculates the load according to equ. 5.1 */ 
int check_status(); 

/* It checks STATUS of processors according to the available no. of modules 
and available memory */ 
int find_heaviest_proc(); 

int heur_cost(int); 

int min_cost_IPC(int,int,int); 

int min(int,int); 

void crossover(float thresh); 

/* This function do crossover as described in 

sec.5.3.2 */ 

void insert_open(int,int,int,char str[max_proc]); 

void modify_mod_at_proc(char *); 

/* This function just sees which processor has been 

mapped with which module of which task. */ 

int allocation(); 

void modify_status(int,int); 

char *remove_min_from_open(); 

struct String * open_list_50; 

void gen50chrom(float bstfx); 

/* This function generates 50 chromosomes as initial 

population */ 

void crossover(int bst ); 

/* This function do crossover as described in 

sec.5.3.2 */ 

struct String * open_list; 

float minimum; 

int no_of_proc; 

int no_of_modules[max_task]; 

int no_of_tasks; 

int chrom_size; 

int X[max_mod][max_task][max_proc]; 

int M[max_mod][max_task][max_proc]; 

int C[max_mod][max_task][max_proc]; 

int CC[max_proc][max_proc]; 

int mod_at_proc[max_mod][max_task]; 

int L[max_proc][max_proc]; 

int L1[max_proc][max_proc]; 

int L2[max_proc][max_proc]; 

int mem_req[max_task][max_mod]; 

int cf0,cf1,cf2; 

unsigned long no_of_chrom; 

 

void input(void) 
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{ 

 int i,j,k,j1,c,p1,p,q,x; 

 clrscr(); 

 printf("INPUT THE NO OF PROCESSORS\n"); 

 scanf("%d",&no_of_proc); 

 printf("INPUT THE NO OF TASKS \n"); 

 scanf("%d",&no_of_tasks); 

 for(k=1;k<=no_of_tasks;k++) 

 { 

    printf("ENTER THE NO OF MODULES OF TASK 

%d\t",k); 

    scanf("%d",& no_of_modules[k]); 

 } 

 

 for(j=1;j<=no_of_tasks;j++) 

 { 

    chrom_size+=no_of_modules[j]; 

 } 

 clrscr(); 

 for(k=1;k<=no_of_tasks;k++) 

 { 

   clrscr(); 

   printf("INPUT THE EXECUTION MATRIX FOR TASK 

%d\n",k); 

   for(p=1;p<=no_of_proc;p++) 

   { 

  gotoxy(8*(p),5); 

  printf("P%d",p); 

   } 

  for(j=1;j<=no_of_modules[k];j++) 

  { 

      gotoxy(2,5+j); 

      printf("m%d%d\t",k,j); 

      for(p=1;p<=no_of_proc;p++) 

      { 

  gotoxy(8*p,5+j); 

  scanf("%d",&X[j][k][p]); 

//  X[j][k][p] = pow(-1,j)*10 + 10*j; 

      } 

  } 

      } 

//INTER MOD COMM COST 

 for(k=1;k<=no_of_tasks;k++) 

 { 

      clrscr(); 
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      printf("INPUT THE INTER-MODULE COMMUNICATION 

MATRIX FOR TASK %d\n",k); 

      for(j1=1;j1<=no_of_modules[k];j1++) 

      { 

  gotoxy(8*(j1),5); 

  printf("m%d%d",k,j1); 

      } 

 

      for(j=1;j<=no_of_modules[k];j++) 

      { 

  gotoxy(2,5+j); 

  printf("m%d%d\t",k,j); 

  for(j1=1;j1<=no_of_modules[k];j1++) 

  { 

      gotoxy(8*j1,5+j); 

      if(j==j1)printf("0"); 

      else 

      scanf("%d",&C[j][k][j1]); 

//      C[j][k][j1] = pow(-2,j*j1)*5 + 15*j1; 

  } 

     } 

 } 

 clrscr(); 

 printf("INPUT THE ADJACENCY MATRIX FOR THE 

PROCESSORS\n"); 

 for(p=1;p<=no_of_proc;p++) 

 { 

  gotoxy(8*(p),5); 

  printf("P%d",p); 

 } 

 for(p=1;p<=no_of_proc;p++) 

 { 

   gotoxy(2,5+p); 

   printf("P%d\t",p); 

   for(p1=1;p1<=no_of_proc;p1++) 

   { 

  gotoxy(8*p1,5+p); 

  if(p!=p1) 

  { 

         while(1) 

         { 

     c=getch(); 

//     c = '1'; 

     if(c==48 ||c==49)break; 

         } 
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         if(c=='1') 

         { 

     L[p][p1]=1; 

     printf("1"); 

         } 

         else 

         { 

     L[p][p1]=0; 

     printf("0"); 

         } 

   } 

   else 

   { 

        printf("0"); 

        L[p][p1]=0; 

   } 

      } 

   } 

//MAKING THE SQUARE AND CUBE OF ADJACENCY MATRIX 

 /*FUNCTION TO MULTIPLY TO MATRICES*/ 

 

  for(x=1;x<=no_of_proc;x++){ 

   for(p=1;p<=no_of_proc;p++){ 

    L1[x][p]=0; 

   } 

  } 

 for(x=1;x<=no_of_proc;x++){ 

  for(p=1;p<=no_of_proc;p++){ 

   for(q=1;q<=no_of_proc;q++){ 

   

 L1[x][p]=L1[x][p]+L[x][q]*L[q][p]; 

   } 

   if(L1[x][p]!=0)L1[x][p]=1; 

  } 

 } 

 for(x=1;x<=no_of_proc;x++){ 

  for(p=1;p<=no_of_proc;p++){ 

   L2[x][p]=0; 

  } 

 } 

 for(x=1;x<=no_of_proc;x++){ 

  for(p=1;p<=no_of_proc;p++){ 

   for(q=1;q<=no_of_proc;q++){ 

   

 L2[x][p]=L2[x][p]+L1[x][q]*L[q][p]; 
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   } 

   if(L2[x][p]!=0)L2[x][p]=1; 

  } 

 } 

 

//INPUTTING STATUS 

 printf("\n\nINPUT THE STATUS OF PROCESSORS : 

MODULE CAPACITY & MEMORY CAPACITY\n"); 

 for(p=1;p<=no_of_proc;p++) 

 { 

     printf("STATUS[%d] = ",p); 

     scanf("%d %d",&status[p].mod_cap_present, 

&status[p].mem_cap); 

//     status[p].mod_cap_present = 2*p; 

 //    status[p].mem_cap = 50*p; 

     resetstate[p].mod_cap_present = 

status[p].mod_cap_present; 

     resetstate[p].mem_cap =  status[p].mem_cap; 

 } 

 // INPUTTING THE COEFF. FOR INTER PROCESSOR COMM. 

 printf("\nenter the adjacency coeff. for direct 

link between proc : "); 

 scanf("%d",&cf0); 

// cf0 = 1; 

 printf("\nenter the adjacency coeff. for one in-

direct link between proc : "); 

 scanf("%d",&cf1); 

// cf1 = 2; 

 printf("\nenter the adjacency coeff. for two in-

direct links between proc : "); 

 scanf("%d",&cf2); 

// cf2 = 3; 

 printf("\n\nENTER THE MEMORY REQUIREMENTS OF 

MODULES\n"); 

 for(k=1;k<=no_of_tasks;k++) 

 { 

  for(j=1;j<=no_of_modules[k];j++) 

  { 

   printf("\tm%d%d : ",k,j); 

   scanf("%d",&mem_req[k][j]); 

//   mem_req[k][j] = 10*(j+k-1); 

  } 

 } 

 

 for(x=1;x<=no_of_proc;x++){ 
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  for(p=1;p<=no_of_proc;p++){ 

   if(x!=p){ 

    if(L[x][p]==1) CC[x][p]=cf0; 

    else 

if(L1[x][p]==1)CC[x][p]=cf1; 

    else 

if(L2[x][p]==1)CC[x][p]=cf2; 

   } 

  } 

 } 

} 

 

void init(char * str, int no) 

{ 

 while(no) 

  { 

  *(str+no) = '\0'; 

  no--; 

 } 

} 

 

char * Random(void) 

{ 

   char *str; 

   int i,j = 0; 

   int gen = 0; 

   int state = 0; 

 str = (char *)malloc(chrom_size + 1); 

 if(str == '\0') 

 { 

  // cout << "Error"; 

  exit(0); 

 } 

   init(str,chrom_size+1); 

   while(j < chrom_size) 

   { 

 for( i = 0;  i < random(100); i = i + random(10) 

+ 1) 

 { 

  gen += random(i); 

 } 

 state = abs(gen % (no_of_proc+1)); 

 if(state == 0 ) 

    continue; 

 str[j] = char(state + '0'); 
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 j++; 

   } 

   return str; 

} 

 

void modify_mod_at_proc(char* str) 

{ 

 int i,j,k=0; 

 for(j=1;j<=no_of_tasks;j++) 

     for(i=1;i<=no_of_modules[j];i++) 

     { 

  mod_at_proc[i][j] = str[k] - '0'; 

  k++; 

     } 

} 

 

int check_status() 

{ 

 int i,j; 

 for(i=1;i<=no_of_proc;i++){ 

  status[i].mod_cap_present = reset-

state[i].mod_cap_present; 

  status[i].mem_cap = resetstate[i].mem_cap ; 

 } 

 for(i=1;i <= no_of_tasks;i++) 

  for(j=1;j<=no_of_modules[i];j++) 

  { 

   if((--

status[mod_at_proc[j][i]].mod_cap_present  ) < 0 ) 

    return 0; 

   if((status[mod_at_proc[j][i]].mem_cap 

-= mem_req[i][j]) < 0) 

    return 0; 

  } 

 return(1); 

} 

 

int load(int proc) 

{ 

 int p,n,k,i,j,ex_cost,q,comm_cost; 

 p=proc; 

 ex_cost=0; 

 comm_cost=0; 

 n=no_of_proc; 
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 for(k=1;k<=no_of_tasks;k++) 

   for (i=1;i<=no_of_modules[k];i++) 

       M[i][k][p]=0; 

 

 for(k=1;k<=no_of_tasks;k++) 

 { 

    for (i=1;i<=no_of_modules[k];i++) 

    { 

  if(mod_at_proc[i][k]==p) M[i][k][p]=1; 

  ex_cost+=X[i][k][p] * M[i][k][p]; 

     } 

 } 

 for (k=1;k<=no_of_tasks;k++) 

 { 

     for(i=1;i<=no_of_modules[k];i++) 

     { 

   /* q is the proc on which j is exe-

cuting*/ 

  for(j=1,q=1;j<=no_of_modules[k] && 

q<n;j++,q++) 

  { 

   if(i!=j && p!=q) 

   { 

         comm_cost=  M[i][k][p] * 

M[j][k][q] * ( C[i][k][j] + CC[p][q]); 

   } 

   } 

       } 

 } 

 return(ex_cost + comm_cost); 

} 

 

float threshold() 

/* To find a suitable threshold value, so that only 

chromosomes having fitness value above that threshold 

are included in the population. */ 

{ 

   char *str; 

   float max=0; 

   int i=5,j; 

   int totload=0; 

   float fx; 

   minimum=32768.00; 

   while(i) 

   { 
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       str=Random(); 

       modify_mod_at_proc(str); 

       if ( check_status() == 0) 

  continue; 

       for(j=1;j<=no_of_proc;j++) 

     totload+=load(j); 

       fx = (float)(1/(totload+0.1)*100*MFACTOR); 

       if(max < fx ) 

  max=fx; 

      // if(minimum > fx) 

     //  minimum=fx; 

       free(str); 

       i--; 

   } 

 // cout << "minimum value is :" << minimum; 

   return max; 

} 

int identical(char *str ,struct String * list) 

{ 

     while(list) 

     { 

 if ( strcmp(str,list->str) == 0 ) 

     return 1; 

 list=list->next; 

     } 

     return 0; 

} 

 

void gen50(float thresh) 

{ 

    struct String * temp; 

    int i= NO_OF_GEN,j; 

    int totload=0; 

    open_list=NULL; 

 

    while(i) 

    { 

 temp=(struct String*)malloc(sizeof(struct 

String)); 

 temp->next=NULL; 

 temp->str=Random(); 

 modify_mod_at_proc(temp->str); 

 if(check_status() ==0 || identical(temp-

>str,open_list)==1) 

 { 
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    free(temp->str); 

    free(temp); 

    continue; 

 } 

 totload=0; 

 for(j=1;j<=no_of_proc;j++) 

   totload+=load(j); 

 temp->fx=float(1/(totload+0.1)*100*MFACTOR); 

 temp->freq=int(temp->fx) - thresh; 

 

 if(temp->fx < thresh ) 

 { 

    free(temp->str); 

    free(temp); 

    continue; 

 } 

 no_of_chrom+=temp->freq; 

 temp->next=open_list; 

 //cout << endl<< temp->str << "\t" << temp->fx << 

"frequency is" << temp->freq; 

 open_list=temp; 

 i--; 

    } 

} 

void main() 

{ 

   struct time *time; 

   unsigned long time1,time2; 

   float thresh; 

   input(); 

   gettime(time); 

   time1 = time->ti_hour*60*60 + time->ti_min*60 + 

time->ti_sec; 

   thresh=threshold(); 

   gen50(thresh); 

   crossover(thresh); 

   gettime(time); 

   time2 = time->ti_hour*60*60 + time->ti_min*60 + 

time->ti_sec; 

  printf("\nTime Required by the algorithm was :0.%2d 

seconds\n" , time2 - time1); 

 int m,m1,p1; 

 m=0; 

 for (p1=1;p1<=no_of_proc;p1++){ 

  m1=load(p1); 
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  printf("\nThe cost at the processing node 

%d is %d",p1,m1); 

  printf("\nThe status of proc %d is %d   

%d",p1, status[p1].mod_cap_present,status[p1].mem_cap); 

  m+=m1; 

  } 

 printf("\n\nTotal cost at all the processing 

nodes is %d",m); 

 

} 

void crossover(float thresh) 

{ 

   struct String *parent1 ,*parent2,*temp; 

   int p1; 

   int p2; 

   int state1; 

   int state2; 

   int crosspoint; 

   int i=NO_OF_CROSSOVER,j; 

   char temp1; 

   int totload; 

   int number,k; 

   long int max_iter = 300000; 

   long int select; 

   float max; 

   //cout << " crossover begins"; 

 

   while(i) 

   { 

      p1=random(no_of_chrom); 

      p2=random(no_of_chrom); 

      if(p1 == p2) 

       continue; 

      max_iter --; 

      state1=state2=0; 

      temp=open_list; 

      parent1=(struct String*)malloc(sizeof(struct 

String)); 

      if ( parent1 == NULL) 

      { 

 cout << " unable to allocate memory"; 

 return; 

      } 

      parent1->str= (char *)malloc(chrom_size +1); 

      if ( parent1->str == NULL) 
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      { 

 cout << " unable to allocate memory"; 

 return; 

      } 

 

      parent1->next=NULL; 

      parent2=(struct String*)malloc(sizeof(struct 

String)); 

      if ( parent2 == NULL) 

      { 

 cout << " unable to allocate memory"; 

 return; 

      } 

 

      parent2->str= (char *)malloc(chrom_size +1); 

      if ( parent2->str == NULL) 

      { 

 cout << " unable to allocate memory"; 

 return; 

      } 

 

      parent2->next=NULL; 

 

      while(temp) 

      { 

     if(p1 > temp->freq) 

  p1 -= temp->freq; 

     else 

     { 

        strcpy(parent1->str,temp->str); 

        p1 += no_of_chrom; 

        state1=1; 

     } 

     if(p2>temp->freq) 

        p2-=temp->freq; 

     else 

     { 

  strcpy(parent2->str,temp->str); 

    p2+=no_of_chrom; 

    state2=1; 

     } 

     temp=temp->next; 

     if((state1==1) && (state2==1)) 

    break; 

      } //end while(temp) 
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      crosspoint=random(chrom_size); 

      for(j=0;j<crosspoint;j++) 

      { 

    temp1=parent1->str[j]; 

    parent1->str[j]=parent2->str[j]; 

    parent2->str[j]=temp1; 

      } 

      modify_mod_at_proc(parent1->str); 

      state1=0; 

      totload=0; 

      if(check_status()==1 && !identical(parent1-

>str,open_list)) 

      { 

    for(j=1;j<=no_of_proc;j++) 

      totload+=load(j); 

    parent1-

>fx=float(1/(totload+0.1)*100*MFACTOR); 

    parent1->freq=int(parent1->fx)-thresh; 

    if ( parent1 -> fx < thresh ) 

    { 

        free(parent1->str); 

        free(parent1); 

    } 

    else 

    { 

       state1=1; 

       no_of_chrom+=parent1->freq; 

    } 

      } 

      else 

      { 

  free(parent1->str); 

  free(parent1); 

      } 

      if(state1==1) 

      { 

  parent1->next=open_list; 

  open_list=parent1; 

       //  cout << endl <<" fitness is " << parent1-

>fx << " frequency is "<< parent1->freq; 

        } 

     modify_mod_at_proc(parent2->str); 

     state2=0; 

     totload=0; 

290 Scheduling in Distributed Computing Systems



     if(check_status()==1 &&  !identical(parent2-

>str,open_list) ) 

     { 

   for(j=1;j<=no_of_proc;j++) 

   totload+=load(j); 

   parent2->fx=float(1/(totload+0.1)*100*MFACTOR); 

   parent2->freq=int(parent2->fx) - thresh; 

   if ( parent2 -> fx < thresh ) 

   { 

       free(parent2->str); 

       free(parent2); 

   } 

   else 

  { 

       state2=1; 

       no_of_chrom+=parent2->freq; 

  } 

     } 

     else 

     { 

  free(parent2->str); 

  free(parent2); 

     } 

     if(state2==1) 

     { 

 parent2->next=open_list; 

 open_list=parent2; 

      // cout << endl << " fitness is " << parent2-

>fx << " frequency is " << parent2->freq; 

     } 

 

     if(state1==1 || state2==1) 

  //   { 

 i--; 

    // if(state1==1) 

      // { 

    //    parent1->next=open_list; 

   //    open_list=parent1; 

   //    cout << endl << "chromosome fr parent1 

is " << parent1->str << " fitness is " << parent1->fx; 

    // } 

   // if(state2==1) 

    // { 

     //    parent2->next=open_list; 

      //    open_list=parent2; 
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       //    cout << endl << "chromosome fr parent2 

is " << parent2->str << " fitness is " << parent2->fx; 

      // } 

    // } 

     if(max_iter < 0) 

     { 

 cout << endl << "Unable to find in 300000 itera-

tion"; 

 break; 

     } 

  }//end while 

  k=10; 

  max=0; 

  number=0; 

  char chromosome[25]; 

  while(k) 

  { 

      select = random(no_of_chrom); 

//      cout << endl << "select = " << select; 

       temp=open_list; 

      while(temp) 

      { 

   if(select > number) 

   { 

       number+=temp->freq; 

       temp=temp->next; 

   } 

   else 

   { 

 //     cout << endl << "temp -> fx = " << temp -> 

fx; 

      if(max < temp->fx) 

      { 

   max=temp->fx; 

   strcpy(chromosome,temp -> str); 

      } 

      break; 

   } 

     } 

     k--; 

  } 

  cout<<"Best fitness value is " << max; 

  cout << endl << "Chromosom : " << chromosome; 

  cout << endl << "no_of_chrom = " << no_of_chrom; 

}//end crossover; 
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