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the issue of consolidation, scheduling, and replenishment decisions together 
with routing. They propose a methodology that supports decision making at 
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Preface

We are pleased to present this book that focuses on a key concept of 
industrial engineering that has received increased attention throughout 
the years—logistics. Starting from classical location and routing mod-
els, the concept of logistics has evolved through different application 
areas in the last two decades. Especially with the development of the 
party logistics (PL) concept due to different levels of outsourcing logis-
tic operations and with the increasing demand from industry, academic 
research interest in logistics has increased rapidly throughout the years. 
This book provides an outlet for recent developments in global logis-
tics. It clearly illustrates logistics problems encountered in many differ-
ent application areas and presents the state of the art of some classical 
applications.

We therefore believe that this book can create an awareness of the 
richness in the logistics applications of the industrial engineering 
discipline.
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xix

Introduction

Logistics is one of the key concepts of industrial engineering that has 
received increasing attention throughout the years. This book focuses 
on some recent developments in global logistics and will therefore 
provide some of the more exciting applications, developments, and 
implementations of classical operations research techniques on logis-
tics problems. This book contains 13 chapters on topics ranging from 
continuous location models to disaster relief logistics. Chapters 1 and 
2 are devoted to some variations and recent developments in the most 
classical logistic problem, the vehicle routing problem (VRP), fol-
lowed by analyses and discussions on various logistics problems of 
airline and marine systems. The book details a wide range of appli-
cation-oriented studies, ranging from a metropolitan bus routing 
problem to relief logistics. The problems encountered in continuous 
space deserve special attention and an overview of continuous loca-
tion problems is provided in Chapter 11. Finally, Chapters 12 and 
13 discuss the issue of consolidation, scheduling, and replenishment 
decisions together with routing.

In more detail, Chapter 1 focuses on a three-echelon logistics net-
work and proposes a methodology that supports decision making at 
a tactical and operational level associated with daily inventory man-
agement. The methodology also includes a new method for solving 
multi-depot VRPs.
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Especially with the growing interest in reverse logistics problems, 
the vehicle routing problem with simultaneous pick up and delivery 
(VRPSPD) has attracted more research interest. Chapter 2 presents a 
local search solution approach for this problem. The proposed approach 
is a hybrid version of simulated annealing and variable neighborhood 
descent methods and computationally outperformed the methods in 
the literature on benchmark instances.

Chapter 3 presents a novel approach for airline logistics including 
fare pricing and seat inventory control. Especially in today’s competi-
tive environment, market segmentation through differentiated pric-
ing is a common practice and Chapter 3 provides an analysis for the 
airline industry.

Chapter 4 focuses on the berth–crane allocation problem in con-
tainer terminals. Container terminal logistics became an active 
research area with the increasing trend in seaborne trade. The chapter 
proposes a decision support tool for simultaneous berth allocation and 
crane scheduling problems.

Another marine system logistics application is analyzed in 
Chapter 5 where Arctic transportation is being investigated. Espe
cially due to global warming, the Arctic Ocean is more navigable 
and Chapter 5 investigates ice navigation problems and proposes a 
model stating factors that affect ice navigation.

Chapter 6 considers the route design problem of a pharmaceuti-
cal warehouse. The chapter presents a good healthcare application 
of logistics problems over real data obtained from a pharmaceutical 
logistics company.

Another application in healthcare logistics is presented in 
Chapter 7 in which medical suppliers are evaluated through a fuzzy 
linguistic representation model.

Relief logistics is one of the leading research areas in logistics, due 
to its importance and challenges. Chapter 8 discusses logistics plan-
ning after major disasters. The chapter mainly focuses on connecting 
the underlying road network of a region so that relief materials can 
be transported. The chapter also provides a case study of the Istanbul 
highway network.

Chapter 9 represents a public downtown transportation system 
for one of the major cities of Turkey. The chapter discusses a real 
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data-driven simulation model that outputs a new shuttle system with 
fewer buses.

Another application-oriented study is discussed in Chapter 10 in 
which a relocation problem of a multinational electronics and electri-
cal engineering company is solved. Utilizing real material flows and 
departmental relationships, it develops new layout options.

Chapter 11 focuses on continuous facility location problems and 
provides a comprehensive review. The chapter details a synthesis 
based on objective functions, distance measures, problem types, and 
solution methodologies.

For applications involving consolidation, logistics problems often 
arise in connection with scheduling and/or lot sizing decisions. 
Chapter 12 discusses such an example and a model that integrates 
routing and batching problems.

Finally, Chapter 13 considers joint replenishment and transpor-
tation problems. Especially in cargo-handling logistics operations at 
seaports and container terminals, transportation costs have a differ-
entiable but nonlinear structure. Chapter 13 discusses such functions, 
which also have substitutable inputs, and provides an analysis utiliz-
ing dynamic and mixed integer formulations.
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2 Yoshiaki Shimizu

1.1  Introduction

Due to service innovation and pressures to improve agility and 
greenness, daily logistics optimization is becoming important in 
Japan, especially for small businesses like convenience stores and 
supermarkets. A recent review of articles published on supply chain 
management within the last decade has revealed a scarcity of models 
that capture dynamic aspects relevant to real-world applications and 
has underscored the need for extensive studies on this topic (Melo 
et al., 2009).

In view of these observations, in this chapter, we investigate three-
echelon logistic network optimization and provide a practical hybrid 
metaheuristic method. The model supports decision making at the tac-
tical level for daily planning and inventory management in the pres-
ence of demand deviation. To deal with this problem, we extend our 
strategic approach to include some decisions at the operational level. 
In particular, we consider the multivehicle routing problem (M-VRP) 
while taking into account inventory management issues.

By taking into account the dynamics of demand and warehouse 
inventory, we try to give a practical approach that can provide innova-
tive resolutions to daily planning problems. Then, to examine some 
effects of demand deviation on inventory condition, we carried out 
a parametric study regarding ordering points. The final aim of this 
study is to develop an integrated information and decision support 
system (DSS) that can dynamically manage appropriate databases of 
resources and product demand (see Figure 1.1). Additional work must 
be undertaken to realize this goal, such as the deployment of variants 
of the basic idea and the use of parallel computation to increase the 
speed of finding solutions and to enhance information retrieval and 
the visualization of results on a real map. We also describe our efforts 
along these lines in this chapter.

1.2  Problem Statements

1.2.1  Background of the Study

Noticing the growing importance of logistics network optimiza-
tion, as mentioned earlier, we have investigated specific problems and 
the overall framework for solving such problems by considering the 
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similarity of problem classes in logistics systems and production plan-
ning (Shimizu, 2011a). We noticed that logistics optimization problems 
are broadly classified as strategic (network design), tactical (distribution 
planning), and operational (operational planning), just as production 
planning problems are. We also find a similarity to design tasks for arti-
ficial products, which are classified into three levels: conceptual, basic, 
and detailed designs. By using this classification, we should be able 
to define the system boundary adequately and to provide the required 
information, which can be different for each level. Eventually, we will 
have a suite of ideas that can be used at each level as well as across the 
levels. Figure 1.2 illustrates a sort of family tree of techniques that we 
are attempting to realize. It should be comprehensive but involve some 
cutting-edge aspects to meet real-world interests as well. It becomes 
essential, therefore, to develop a general and systematic approach so 
that we can cope with a variety of problems in a similar manner and 
reach the desired goals without expending extra effort.

1.2.2  Brief Review of Related Studies

The strategic problem class described in the previous section has been 
studied for a long time. Problems in this class are often formulated 

Strategic

Family tree of logistics optimization

Production
planning

Multiobjective
Uncertainty

Risk management

Supply chain

Kind/quantity

Lot split
Pickup/SPD VRP

Low carbon

Multimodal

Risk evasion

VRP

Time window
Real time

Tactic

Operational

Pa
ra

lle
lis

m

Detailed design
(operational

planning,
scheduling)

Basic design
(distribution

planning)

En
vir

on
m

en
ta

lly

be
ni

gn

Conceptual design
(network design)

Inventory

Cooperative transport

Basic problem
(many studies)

Concrete problem
(a few studies)

Detailed problem
(considerable

studies)

Figure 1.2  Family tree of logistics optimization problems.
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mathematically as mixed-integer programming problems that are 
nondeterministic polynomial time hard (NP-hard). Hence, the 
number of studies is still growing by virtue of the outstanding 
advancements in both computer software and computer hardware. 
Nevertheless, hybrid methods have an advantage over these tech-
niques, because it is almost impossible to solve real-world problems 
by using commercial solvers. Moreover, we note that transportation 
cost accounting is reasonably described by a bilinear model of load-
ing weight and travel distance (Ton–Kilo or Weber basis).

There are also many studies belonging to the operational level. 
A popular problem studied at this level is named vehicle routing 
problem (VRP; Yeun et al., 2008). VRP is an NP-hard combinato-
rial optimization problem on minimizing the total distance traveled 
by a fleet of vehicles under various constraints. This transportation 
of goods from depots to all customers must be considered under the 
constraint that each vehicle must take a circular route with the depot 
as its starting point and destination.

Recent studies of VRP can be roughly classified in the following 
ways. One type is an extension from generic customer demand satis-
faction and vehicle payload limit conditions to include practical con-
cerns, such as customer availability or time windows (Hashimoto 
et al., 2006; Mester et al., 2007), pickups (Gribkovskaia et al., 2007), 
and split and mixed deliveries (Mota et al., 2007). These extensions 
are considered both separately and in combination (Zhong and 
Cole, 2005). The second type is known as the multidepot problem, 
in which deliveries can originate from multiple depots (Wu et al., 
2002; Chen et al., 2005; Crevier et al., 2007). The third type inves-
tigates multiobjective formulations of the single-depot and multide-
pot problems (Murata and Itai, 2005; Pasia et al., 2007; Jozefowiez 
et al., 2008; Geiger, 2010). Recently, many researchers have been 
interested in VRP with varying pickup and delivery configurations 
because this is the most practical and suitable way to consider reverse 
logistics (Min, 1989; Catay, 2010; Goksal et al., 2013). These stud-
ies can be classified into three categories (Nagy and Salhi, 2005): 
delivery first and pickup second, in which pickup happens only 
after delivery; mixed pickup and delivery (VRPMPD), in which 
delivery and pickup are permitted in any sequence along the routes; 
and simultaneous pickup and delivery (VRPSPD). The VRPSPD 
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problem reduces to the VRPMPD problem if only either pickup 
or delivery is required at each customer. Instances of the VRPSPD 
problem are frequently encountered in the distribution system of 
bottled drinks, groceries, liquid propane gas tanks, hotel laundry 
services, etc. Due to the difficulty of solving such problems, only 
small instances of VRP are solved to validate the effectiveness of the 
approaches. Moreover, it should be noted that those studies consider 
only distance (Kilo basis) to derive the route. To solve VRP in terms 
of the Ton–Kilo basis, we developed a hybrid approach composed 
of a modified saving method and modified tabu search (Shimizu, 
2011b,c).

Apart from those two classes of problem, there have been a few 
studies (Tuzun and Burke, 1999; Albareda-Sambola et al., 2005; 
Prins et al., 2006; Zhao et al., 2008) at the tactical level. At this level, 
it is necessary to consider connections to both the upper (strategic) 
level and the lower (operational) level. In such problems, decisions 
about allocations to the depot are considered in addition to VRP. 
Hence, we must take care to use consistent transport cost account-
ing. However, it is common to use the Ton–Kilo basis at the strategic 
level and the Kilo basis at the operational level. Moreover, each for-
mulated problem is NP-hard. Thus, it becomes necessary to resolve 
the inconsistency in cost accounting while coping with the inherent 
hardness of the problem.

1.3  Problem Formulation

For a global logistics network composed of major distribution cen-
ters (DCs), sub-DCs (i.e., depots) (RSs), and customers (REs), we 
wish to determine the available depots, paths from DCs to depots, 
and circular routes from every depot to its client customers (refer to 
Delivery section in Figure 1.1). The goal of this problem is to mini-
mize the total cost for daily logistics over planning horizon T. This 
problem is formulated as the following mixed-integer program-
ming problem under some mild assumptions: round-trip transport 
between DC and depot, unimodal transport, averaged time-
invariant unit costs and system parameters (except for demand and 
inventory), independence (separability) of decisions per planning 
period, and so forth.
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Variables
fij(t): Load from DC i to depot j at time t
gpp′v(t): Load of vehicle v on the path from p ∈ P to p′ ∈ P at time t
rj(t): Takeover inventory at depot j at time t
sj(t): Consumption quantity from inventory at depot j at time t
xj(t) = 1 if depot j is open at time t; otherwise 0
yv(t) = 1 if vehicle v is used at time t; otherwise 0
zpp′v(t) = 1 if vehicle v travels on the path from p ∈ P to p′ ∈ P at 

time t; otherwise 0

Parameters
Cij: Transportation cost per unit load per unit distance from 

DC i to depot j
cv: Transportation cost per unit load per unit distance of vehicle v
Dk(t): Demand of customer k at time t
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d1ij: Path distance between i ∈ I and j ∈ J
d2pp′: Path distance between p ∈ P and p′∈ P
Fv: Fixed cost for the working vehicle v
Haj: Handling cost per unit load at depot j
Hoj: Holding cost per unit load at depot j
Hpi: Shipping cost per unit load from DC i
Hsj: Shipping cost per unit load from depot j
M: Auxiliary constant (a large integer)
Pi

max: Maximum load available at DC i
Pi

min : Minimum load required to ship from DC i
qv: Unladen weight of vehicle v
Qj: Maximum capacity at depot j
Sj: Maximum inventory at depot j
Wv: Maximum capacity of vehicle v

Index set
I: DC
J: Depot
K: Customer
V: Vehicle
P = J ∪ K
T: Planning horizon
Ω: Subtour candidate

In (p.1), the objective function is composed of round-trip transporta-
tion costs between each DC and the opening depot (hereinafter just 
the depot); circular transportation costs for traveling to every customer; 
shipping costs at each DC; holding, handling, and shipping costs at 
each depot; and fixed costs for the working vehicles. Several constraints 
are applied: vehicles cannot visit a customer twice (Equation 1.1), a 
vehicle visiting a certain depot or customer must leave it (Equation 
1.2), no direct travel between DCs (Equation 1.3), material bal-
ance (Equation 1.4), upper-bound capacity at depot (Equation 1.5), 
upper-bound load capacity for a vehicle (Equation 1.6), each vehicle 
must travel on a certain path (Equation 1.7), vehicles return to the 
depot empty (Equation 1.8), customer demand is satisfied by a certain 
vehicle (Equation 1.9), the sum of incoming goods must be greater 
than the outgoing goods due to demand (Equation 1.10), each vehicle 
leaves only one depot and returns there (Equations 1.11 and 1.12), 
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subtour elimination constraint (Equation 1.13), the amount of goods 
available from DC is bounded (Equation 1.14), and the amount of 
inventory is bounded above (Equation 1.15). We also assume the fol-
lowing inventory control policy:

r t
r t r t R

S r t rj
j j j

j j
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

=
− − − − ≥

− − − −

1 1 1 1
1 1 1
ζ ζ

ζ ζ

if
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⎧
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(1.16)

Here, ζ (<1) and Rj are the fouling rate of unsold goods and the order-
ing point at depot j, respectively.

We know that it is almost impossible to solve this problem under 
realistic sizes using any currently available commercial software. 
Hence, we try to solve the problem in a hybrid manner that divides it 
into subproblems and applies a suitable method to each. Previously, we 
have combined tabu search (Glover, 1989) for the location subprob-
lem and a graph algorithm for the allocation subproblem to develop 
a method called hybrid tabu search (HybTS) (Shimizu and Wada, 
2004; Wada and Shimizu, 2006), and we have successfully used this 
approach to solve complicated logistics optimization problems arising 
from a variety of real-world situations. HybTS is a two-level solution 
method in which the upper-level subproblem optimizes the selection 
of available depots while the lower-level subproblem optimizes the 
paths from DCs to customers via depots in a way that minimizes the 
total cost. It is not only a practical and powerful method, but also 
flexible and suitable for dealing with a variety of extensions, as shown 
in Figure 1.2. Hence, we use a similar idea here to solve this problem 
in a way that is computationally effective (Shimizu and Fatrias, 2013).

1.4  Daily Decision Associated with Inventory Conditions

1.4.1  Multilevel Approach Incorporating Vehicle-Routing Problem

For daily logistics optimization, it is meaningful to take into account 
the inventory control at each depot. To make the hierarchical approach 
suitable for the present case, we have developed two new ideas and inte-
grated them into the framework of our hybrid method. To the best of 
our knowledge, such a global approach has not been reported elsewhere.
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In the first level, we choose the available depots by a modified tabu 
search. Then, in the second level, we obtain tentative round-trip paths 
from DCs to customers via depots by a graph algorithm for solving 
the minimum cost flow (MCF) problem. Using the customers thus 
allocated as the clients for each depot, we derive vehicle routes for 
every depot by using the modified savings method and modified tabu 
search. The obtained result is fed back to the first level to evaluate 
another candidate set of available depots. This procedure is repeated 
until a given convergence condition has been satisfied. The algorithm 
is illustrated in Figure 1.3.

In developing this algorithm, we need to obtain the MCF graph 
that takes into account the inventory at each depot. For example, the 
case where |I| = |J| = |K| = 2 is illustrated in Figure 1.4. In Table 1.1, 
we summarize the information required for the edges and nodes 
in the graph. In terms of the MCF graph thus derived, we can 
solve the original allocation problem extremely quickly by a graph 
algorithm such as RELAX4 (http://mit.edu/dimitrib/www/home.
html) together with its sensitivity analysis. The sensitivity analysis 
allows the problem to be repeatedly solved with slightly different 
parameters. At the end of this procedure, we can efficiently allocate 
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Figure 1.3  Flow chart of the solution procedure.
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Table 1.1  Labeling on the Edges of an MCF Graph

EDGE (FROM–TO) COST CAPACITY CASE IN FIGURE 1.4 

Source–∑(Dummy node) −M ∑ ∈i I iPmin #1–#2

Source–DC i 0 P Pi i
max min− #1–#3, #1–#4

∑–DC i 0 Pi
min #2–#3, #2–#4

DC i–RS j Cijd1ij + Hpi Pi
max #3–#5, #3–#6, etc.

Between double nodes of RS j Hsj Qj #5–#7, #6–#8
Stock–RS j Haj Sj #11–#5, #12–#6
Source–Stock j 0 2Sj #1–#11, #1–#12
Stock j–Sink Hoj Sj #11–#13, #12–#13
RS j–Customer k cvd2jk Dk #7–#9, #7–#10, etc.
Customer k–Sink 0 Dk #9–#13, #10–#13

Q : Upper capacity
S : Inventory

[D1+D2+S1+S2]

[D1+D2+S1+S2] D : Demand

Pmax : Upper supply
Pmin : Lower supply
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Figure 1.4  Example of an MCF graph. Note: Each digit refers to suffix in Table 1.1.
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the client customers to each depot on the Ton–Kilo basis. In other 
words, the original M-VRP has now been turned into multiple ordi-
nary VRPs.

To derive the initial solution of each VRP with consistent transport 
cost accounting, we apply the modified savings method whose algo-
rithm is outlined as follows:

Step 1: Create round-trip routes from the depot to all customers. 
Compute the savings value sij = (d0j − d0i − dij)Dj + (d0j + di0 − dij)qv, 
where Dj, qv, and dij denote the demand at location j, the 
unladen weight of the vehicle v, and the distance between 
locations i and j, respectively (refer to Figure 1.5).

Step 2: Order these pairs in descending order of savings value.
Step 3: Merge the path, following the order obtained from 

Step 2 as long as it is feasible and the savings value is greater 
than −Fv/cv, where Fv denotes the fixed operational cost of 
vehicle v. Here, we note that the inclusion of fixed opera-
tional costs for the working vehicles in practical economic 
evaluations is a new idea.

However, since the modified savings method derives only an approxi-
mate solution, we apply the modified tabu search to update such a solu-
tion. The modified tabu search is a variant that probabilistically accepts 
even a degraded candidate in its local search, where a neighboring 
solution is generated from a randomly selected insert, swap, or two-
opt operation. For this purpose, we applied the Maxwell–Boltzmann 
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Figure 1.5  Illustrative steps to derive savings value.
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probability function used in simulated annealing (Kirkpatrick et al., 
1983). Here, we emphasize that the advantage of this approach is that 
transport cost accounting is on the same Ton–Kilo basis for the proce-
dures at the upper levels (first and second) and the lower level (third) 
in Figure 1.3.

1.4.2  Analysis of Inventory Level on Demand Variation

It is commonly known that too much inventory lowers economic effi-
ciency while the stock-out condition or opportunity loss will hap-
pen in the opposite case. For daily logistics, therefore, it is of special 
importance to correctly estimate the demand and properly manage 
the inventory. Generally speaking, although estimating demand cor-
rectly is almost impossible in many cases, it is possible to give a rough 
estimate of the variability from prior experience.

Under such circumstances, it is relevant and practical to try to dis-
cern the relation between demand variability and inventory level by 
a parametric approach. Through such analyses, we can set up a reli-
able inventory level to maintain economically efficient logistics while 
avoiding the stock-out state. Though such considerations are able to 
reveal many prospects for robust and reliable logistic systems, it has 
not been used much until now in the network optimization of logis-
tics due to computational difficulties.

1.5  Numerical Experiments

1.5.1  Setup of Test Problem

To examine the performance of the proposed method, we considered 
several benchmark problems of different problem sizes (i.e., different 
specifications of {|I|, |J|, |K|}). Every system parameter is set ran-
domly within a prescribed interval, as summarized in Table 1.2. The 
location of every member is also generated randomly, and distances 
between them are given by the Euclidian distance.

1.5.2  Results for the Reference Conditions

We randomly changed the demand to an amount within (100 ± ρ)% 
of the demand on the previous day. Unsold goods at each depot are 
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stored as inventory, and it is possible to use them in the following days. 
However, it is assumed that up to the rate (ζ) of the goods are spoiled 
at random and that goods are restocked to the upper limit when the 
inventory level falls below the prescribed safety level (Rj = σ Sj), which 
is equivalent to adopting a fixed-order-quantity policy.

First, we solved smaller problems, such as those characterized by 
|I| = 3, |J| = 10, and |K| = 100 over 30 days and |I| = 5, |J| = 20, and 
|K| = 200 over 10  days. Parameters ρ, σ, and ζ are set at 0.3, 0.5, 
and 0.1, respectively. Figures 1.6 and 1.7 illustrate the changes in 
demand and inventory during the planning horizon. Under these con-
ditions, we derive the optimal cost, which broadly changes in accord 
with demand fluctuation, as shown in Figure 1.8. In Figure 1.9, we 
can see that the change in the number of active depots is moderated 
and kept nearly constant (around 60%). However, the activity rates of 

Table 1.2  Notes on Parameter Setup

MEMBER ITEM RANGE REMARKS 

DC Hp: Shipping cost 100 × [0.2, 0.8] <3>
P max: Available (max) 1000 × [0, 1] + P min <5>, Total P max > Total capacity of RS
P min: Available (min) 1000 × [0.2, 0.8] <5>, Total P min > Total demand

RS Hs: Shipping cost 100 × [0.2, 0.8] <3>
Ha: Handling cost 50 × [0.2, 0.8] <3>
Ho: Holding cost 100 × [0.2, 0.8] <5>
Q: Capacity p × [0.2, 0.8] <5>, p = 100 × |K |/|J |
S: Allowable inventory x × [0.5, 0.7] <3>, Varying at each time

RE D: Demand 100 × [0.2, 0.8] <3>, Total demand < Total capacity 
of RSa

Note:	 Cij = 3, cv = 1, Wv = 500, Fv = 50,000, and qv = 10; <n> multiple of n.
a	 Under this condition, the stock-out status will not occur.
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Figure 1.6  Variation of demand.
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each depot differ greatly, as shown in Figure 1.10. At the next stage 
of logistical restructuring, the depots that have a low activity rate may 
be merged with those that have higher rates.

We solved some larger problems to examine the necessary 
computation time. Fixing the planning horizon at 1, and fixing 
|I| = 10 and |J| = 30, we solved the problems given by |K| = {250, 500, 
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1000, 1500, 2000, 2500}. As expected a priori, the required CPU 
time increases exponentially with the size, as shown in Figure 1.11. 
Even for these larger problems, however, we can obtain the result 
within a reasonable time of around several hours.

From the convergence profile for the largest problem, shown in 
Figure 1.12, we can confirm that sufficient convergence is obtained. 
From all of these results, we can claim that the proposed method is 
significant and computationally effective.

1.5.3  Results over a Wide Range of Deviations

To analyze the effect of demand variation on the inventory condi-
tion, we carried out a parametric study varying the ordering points 
in a small model such as |I| = 2, |J| = 5, and |K| = 100 over 30 days. 
We solved every problem for each pairing of five different ordering 
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points (σ = {0.1, 0.2, 0.3, 0.4, 0.5}) and four different ranges of demand 
variation (ρ = {0.2, 0.3, 0.4, 0.5}). In all, 600 optimization problems 
were solved under the same conditions as before. The results are 
shown in Figures 1.13 and 1.14.

Figure 1.13 shows the total cost for ranges of demand deviation 
and ordering point. Due to the nondeterministic parameter setting, a 
complicated profile is found. However, the overall shape is plausible 
since the region of minimum cost moves to a higher ordering point as 
the deviation increases. This suggests that, in terms of cost manage-
ment, it is important to control the ordering point or inventory level 
according to the demand variation. When we separate the inventory 
cost from the total cost, its changes are rather simple, as shown in 
Figure 1.14. Since a higher stock level incurs a greater holding cost, 
the cost increases proportionally with the ordering point regardless of 
the variability of demand.

Finally, from these parametric studies, we claim that the applied 
model behind the mathematical formulation is adequate. The plau-
sibility of the results supports the viability of the approach if it were 
used in a real-world optimization with actual parameters.

1.6  Prospects for Further Applications

1.6.1  Variants of the Modified Savings Method

We can generalize the foregoing Weber basis by introducing the power 
model of weight and distance. For this generalized Weber basis, the 
savings value for delivery is given by
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Figure 1.12  Profile of convergence.
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where
α and β denote the elastic coefficients for weight and distance, 

respectively
γ is a constant

When α = β = γ = 1, this expression refers to the ordinary Weber basis.
Moreover, it is common to consider pickup problems instead of 

delivery ones in reverse logistics. Here, every vehicle visits the pickup 
points and returns to the depot directly. Letting Pd be pickup demand, 
we can derive the savings value as follows (refer to Figure 1.15):
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The previous idea can be extended to the case where vehicles stop at 
an intermediate destination before returning to the depot. This is the 
case, for example, when a vehicle visits a disposal site to dump waste 
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Figure 1.14  Inventory cost for various demand deviations and ordering points.
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or a remanufacturing facility to deliver used products. In this case, we 
can modify this equation as follows:
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where the subscript R denotes the intermediate destination.
Similarly, we have the following expression in the case of VRPSPD 

(refer to Figure 1.16):
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Just by applying these formulas to derive the initial solution of the 
respective VRP, we can simply follow the overall procedure described 
earlier to obtain the respective final solutions.

1.6.2  Application of Parallel Computing Techniques

Unlike conventional studies, our method can cope with large-scale 
problems in a practical and flexible manner. However, there still exists 
a great need for solving problems more quickly and efficiently in order 
to make responsive decisions in global markets. For such require-
ments, it is natural to develop a parallel implementation for logistics 
optimization. In a special issue of Parallel Computing, Laporte and 
Musmanno (2003) emphasized the importance of parallel computing 
in logistics not only due to the large scale of these problems but also 
because of real-time applications arising in the delivery of emergency 
services and in courier or dial-a-ride services.

To make our hybrid approach suitable for parallel optimization, 
we developed a binary particle swarm optimizer (PSO) and sub-
stituted it for the modified tabu search used in the previous proce-
dure. Compared with an individual search such as tabu search, the 
population-based PSO algorithm is well suited to implementing a 
parallel computation (Shimizu and Ikeda, 2010). The first application 
considered a rather simplified formulation for strategic problems using 
master–worker parallelism, as illustrated in Figure 1.17. Then, more 
complicated configurations were examined. For these, a novel paral-
lel procedure similar to the island model used in genetic algorithms 
was developed, employing multithreading techniques so that the idle 
time for the parallel computation becomes very small. Moreover, the 
effect of the topology of subpopulations (Figure 1.18) and the manner 
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Figure 1.16  Scheme to derive savings value for VRPSPD.
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of information exchange between subpopulations were analyzed. 
Finally, we showed that such an approach can solve huge problems 
with more than 20,000 customers while maintaining high efficiency 
of the parallelization, as shown in Figure 1.19.

1.6.3  Enhancement for Practical Use

To realize the planning system illustrated in Figure 1.1, it is essential to 
provide a user-friendly interface to manage the system. In the planning 
section on the production side, this goal is closely related to data han-
dling and visualization of the circumstances at hand. For this, we can 
effectively utilize some software developed for the Google Maps appli-
cation programming interface (API). We have developed the following 
stepwise procedure by using JavaScript and appropriate free software:

Step 1: Collect the addresses of locations in an Excel spread 
sheet or text file.

Step 2: Add longitude and latitude information for every loca-
tion in the sheet.

Step 3: Calculate the distance between every pair of locations by 
using the Google geocoding API.

Step 4: Solve the optimization problem by the proposed method.
Step 5: Display the routes obtained from Step 4 in Google Maps.

Figure 1.20 shows some results for an illustrative problem, in which 
every depot has a single route, |I| = 1, |J| = 3, and |K| = 17. In this figure, 
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for simplicity, the routing paths from only depot 1 are shown. Marks 
for locations (A–B–…–K–A) and dotted arrows are superimposed 
to help visualize the actual circular route. We can see that this kind 
of visual information is very helpful for some tasks at an operational 
level. However, there still remain many possibilities to add more and 
valuable service information from geographical information system 
(GIS) applications and the Google Maps API.

1.7  Conclusion

We have described a hierarchical approach to optimize daily logis-
tics including inventory control at depots and vehicle routing for 
customer delivery. For this purpose, we have extended our existing 

Figure 1.20  A part of the display of a result (Route from depot 1 [marked as A]).
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two-level method, using the modified savings method and the 
modified HybTS together with a graph algorithm that solves the 
MCF problem. Through this approach, we can evaluate transpor-
tation costs both practically and consistently in terms of the Ton–
Kilo basis.

By means of numerical experiments, we have shown that the pro-
posed method can solve complicated and varied problems that have 
not been previously solvable within a reasonable computation time. In 
addition, it is straightforward to apply the method to variants of VRP 
just by replacing the savings value in the procedure. To enhance the 
solution speed for larger problems, we can apply parallel computing 
techniques. It is also possible to use the Google Maps API to enhance 
practical usability.

Future studies should be devoted to relaxing the conditions 
assumed here. Multiobjective optimization could also be integrated 
into the system development, as illustrated in Figure 1.1. Eventually, 
we aim to establish a complete DSS for daily optimization associated 
with low-carbon logistics.

Abbreviations
API	 Application programming interface
CPU	 Central processing unit
DC	 Distribution center
DSS	 Decision support system
GIS	 Geographical information system
HybTS	 Hybrid tabu search
MCF	 Minimum cost flow
M-VRP	 Multivehicle routing problem
NP-hard	 Nondeterministic polynomial time hard
PSO	 Particle swarm optimization
RS	 Relay station of DC, or depot
RE	 Retailer, or customer
RELAX4	 Software name for MCF problem
VRP	 Vehicle routing problem
VRPSPD	 VRP with simultaneous pickup and delivery
VRPMPD	 VRP with mixed pickup and delivery
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2.1  Introduction

Over the last century, continuing increase in energy consumption and 
emissions of greenhouse gases, which mainly stems from industrial 
activities, has brought about serious environmental problems such as 
global warming and climate change. Consequently, global awareness 
on environmental issues has increased rapidly in recent years, mak-
ing the reverse logistics activities more important. The activities in 
the context of reverse logistics cover recycling and reusing operations 
that require bidirectional flow of goods. As a result, the design of the 
transportation systems requiring both pickup and delivery services 
becomes crucial for companies to minimize transportation costs.

If the distribution and collection activities are operated separately, 
the transportation costs of the companies increase substantially. 
Besides, the operations aiming to reduce energy consumption may 
cause extra damage to the environment and yield no significant bene-
fit. Therefore, all these conditions necessitate the integration of pickup 
and delivery operations. The vehicle routing problem with simulta-
neous pickup and delivery (VRPSPD) covers many reverse logistics 
systems containing bidirectional flow of goods. The problem can be 
encountered in a distribution/collection system involving a set of cus-
tomers requiring delivery and pickup services simultaneously.

The VRPSPD can be formally defined as follows: let G = (V, A) 
be a graph, where V = {v0, v1, …, vn} is the set of vertices in which 
v0 represents the central depot at which homogeneous vehicles are 
located and the other vertices represent the clients. A = {(vi, vj): vi, 
vj ∈ V, i ≠ j} is the arc set, and each arc {i, j} ∈ A has a nonnegative cost 
cij. Each client {n1, n2, …, nn} has a nonnegative demand quantity di 
and a nonnegative pickup quantity pi. The objective of the VRPSPD 
is to determine a set of routes minimizing the cost and satisfying the 
following constraints: (1) every route starts and finishes at the central 
depot, (2) each client must be visited exactly once by exactly one vehi-
cle, and (3) the total amount of goods to be carried by a vehicle can-
not exceed the vehicle capacity. Mathematical models developed for 
the VRPSPD can be found in Dethloff (2001), Montané and Galvão 
(2006), and Nagy and Salhi (2005).

The VRPSPD can arise in many practical applications of reverse 
logistics, and constructing an effective solution strategy to the problem 
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is one of the most critical issues for designing the transportation sys-
tem effectively. In the bottled drinks industry, for example, full bottles 
are delivered, and empty ones that are used for recycling are collected 
simultaneously from the customers. Another practical application of 
the VRPSPD occurs on the collection of used materials such as car 
parts, industrial equipments, and computers for remanufacturing or 
dissembling operations (Zachariadis et al. 2009). Moreover, the prob-
lem can be seen at grocery stores where pallets or boxes can be col-
lected and reused for transportation (Dethloff 2001).

From the theoretical point of view, the VRPSPD is known to be 
NP-hard because it is a variant of the classical VRP, which is a well-
known NP-hard problem. Large-scale real-life problem instances 
cannot be solved efficiently by exact solution methods. Thus, heuris-
tic and metaheuristic solution approaches have been generally imple-
mented as a solution method for the VRPSPD since these solution 
methods are capable of generating high-quality solutions to this type 
of problems within a reasonable computation time.

In this study, we develop a local search algorithm for solving the 
VRPSPD. The applied methodology is constructed by hybridizing a 
simulated annealing (SA)–inspired algorithm with variable neighbor-
hood descent (VND) algorithm. The SA-inspired algorithm enables 
the search process to explore different search regions in the search 
space, while VND is implemented to generate high-quality solu-
tions from the examined regions. One of the most important features 
of the developed algorithm is that it is free from parameter tuning, 
which makes the implementation of the algorithm easier. The pro-
posed methodology is tested on well-known VRPSPD benchmark 
instances derived from the literature. The computational results show 
that the proposed algorithm generates competitive results with the 
most sophisticated algorithms developed so far, for the VRPSPD.

The remainder of this chapter is organized as follows: in 
Section 2.2, the studies related to the VRPSPD in the literature 
are reviewed. In Section 2.3, we give detailed information about our 
solution methodology. In Section 2.4, the computational results of 
the proposed algorithm obtained from the benchmark instances are 
presented. Finally, concluding remarks and future research are pre-
sented in Section 2.5.
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2.2  Literature Review

Over the last decade, VRPSPD has become an interesting topic for 
researchers because of its applicability on reverse logistic systems 
containing distribution and collection of goods. In this section, we 
review the exact and heuristic solution approaches proposed for the 
VRPSPD.

The VRPSPD is first introduced by Min (1989). In this study, a 
book distribution and collection problem from a central library to 
22 remote libraries is handled. In order to solve the problem, cus-
tomers are clustered first and then the traveling salesman problem is 
solved for each cluster. Dethloff (2001) developed an insertion-based 
heuristic algorithm consisting of four different insertion criteria: 
traveling distance, residual capacity, radial surcharge, and combina-
tion. Furthermore, the author presented a mathematical model for 
the problem and discussed the relationship between the VRPSPD 
and other VRP variants. Nagy and Salhi (2005) proposed an inte-
grated heuristic approach for the VRPSPD. The algorithm comprises 
of various routines used for feasibility and improvement. The first 
exact algorithm for the VRPSPD has been developed by Dell’Amico 
et al. (2006). In this study, two different strategies, exact dynamic 
programming and state space relaxation, are used for sub pricing 
problem. The algorithm can solve instances up to 40 customers opti-
mally. Gajpal and Abad (2010) presented saving-based heuristics for 
the VRPSPD. In these heuristics, two existing routes are merged 
in order to create a new route. The feasibility of the new route is 
checked by employing a cumulative net-pickup approach. Another 
exact solution approach has been suggested by Subramanian et al. 
(2011). The authors developed a branch-and-cut algorithm for the 
VRPSPD. The algorithm finds improved lower bounds and several 
new optimal solutions.

Metaheuristic algorithms have been widely implemented for the 
VRPSPD. Especially, single-solution-based algorithms based on 
tabu search (TS) have been commonly used. Crispim and Brandão 
(2005) are the first researchers to use a metaheuristic algorithm for 
the VRPSPD. In their study, an algorithm constructed by hybrid-
izing TS and VND has been developed. Chen and Wu (2005) pre-
sented another hybrid metaheuristic algorithm consisting of TS and 
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record-to-record travel algorithm. In this algorithm, initial solution is 
constructed by using an insertion-based algorithm, and subsequently 
2-exchange, swap, shift, 2-opt, and or-opt neighborhood generation 
mechanisms are used to improve the initial solution. Montané and 
Galvão (2006) developed a TS-based heuristic approach in which 
shift, cross, and 2-opt routines are employed.

Bianchessi and Righini (2007) proposed constructive and local 
search heuristics and a TS algorithm that contains variable neigh-
borhood structures. Wassan et al. (2008) developed a reactive TS 
algorithm for the VRPSPD. The developed algorithm consists of two 
phases: generating an initial solution and improving on it. A mod-
ified sweep algorithm is used to obtain an initial solution and the 
neighborhood structures that are shift, swap, local shift, and reverse, 
respectively, used for improvement. The authors also constructed a 
mechanism that dynamically controls the tabu list size to provide an 
effective balance between the intensification and diversification of 
the search. Zachariadis et al. (2009) presented a hybrid metaheuristic 
algorithm that combines TS and guided local search (GLS) heuris-
tics. In this study, an initial solution is generated by a saving-based 
constructive heuristic, and then the solution is improved by the hybrid 
TS–GLS methodology with the neighborhood structures that are 
customer relocation, customer exchange, route interchange I, and 
route interchange II, respectively.

Zachariadis et al. (2010) suggested a heuristic algorithm based 
on adaptive memory methodology. The heuristic algorithm collects 
properties of good solutions found during the search process. New 
solutions are generated by combining these properties, and subse-
quently an improvement procedure based on TS is applied. Moreover, 
an additional memory mechanism has been proposed to provide 
appropriate diversification in the search. Zachariadis and Kiranoudis 
(2011) presented a local search algorithm that is capable of explor-
ing rich solution neighborhoods effectively. In order to examine 
these neighborhood types, the authors use an algorithmic concept, 
called Static Move Descriptor (SMD), which statically encodes ten-
tative moves. To diversify the search efficiently, another algorithmic 
framework, called promises concept, which is a variation of the aspi-
ration criteria of TS, has been used. Ropke and Pisinger (2006) pro-
posed a large neighborhood search (LNS) algorithm for some VRP 
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variants involving the VRPSPD. A parallel algorithm is developed 
by Subramanian et al. (2010). The algorithm is embedded with a 
multistart heuristic that comprises VND procedure integrated in an 
iterated local search (ILS) framework. The developed algorithm auto-
matically calibrates some parameters, which makes it self-adaptive, 
avoiding the need of manual tuning. Furthermore, the algorithm has 
the ability of exploring the high level of parallelism inherent to recent 
multicore clusters.

Recently, population-based algorithms have been also applied for 
the VRPSPD. Ai and Kachitvichyanukul (2009) proposed a particle 
swarm optimization (PSO) algorithm for solving the VRPSPD. In 
this study, a random key-based encoding and decoding method is 
applied, and 2-opt and a heuristic approach based on the cheapest 
insertion are implemented for improvement. Gajpal and Abad (2009) 
developed an ant colony optimization (ACO) algorithm for the prob-
lem. The authors used the nearest-neighbor heuristic to construct an 
initial solution by means of which the trail intensities and parameters 
are initialized. Then, the trail intensities are used to generate an ant 
solution for each ant. After that, a local search consisting of 2-opt, 
customer insertion/interchange, and sub-path exchange is imple-
mented on each ant solution, and elitist ants and trail intensities are 
updated.

Another heuristic approach based on ACO is suggested by Çatay 
(2010). In this study, a new saving-based visibility function and pher-
omone updating rule are proposed. The nearest-neighbor heuristic is 
implemented to generate an initial solution, and a local search con-
sisting of four routines, namely, intra-move, intra-swap, inter-move, 
and inter-swap, is performed to improve the solutions. Tasan and Gen 
(2012) presented a metaheuristic approach based on genetic algorithm. 
In this algorithm, a permutation-based representation is used. Initial 
population is constructed randomly, and genetic operators, crossover, 
and mutation are implemented on the members of the population. As 
a selection rule, the roulette wheel selection is applied. Goksal et al. 
(2013) proposed a hybrid metaheuristic algorithm based on PSO in 
which VND algorithm is implemented for local search. In the hybrid 
algorithm, PSO is performed to explore good solutions in the solu-
tion space, and VND is used to improve random solutions selected 
from the population in each iteration of the algorithm. In addition, an 
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annealing-like strategy is applied so as to preserve the swarm diver-
sity of the PSO. To represent a solution, the authors use the giant tour 
representation; by this way, the splitting procedure proposed by Prins 
(2004) is adapted for obtaining a feasible solution from the giant tour 
for the VRPSPD.

The related literature of the VRPSPD involves powerful heuristic 
methods, which are successfully applied to the problem. However, 
many of them suffer from parameter tuning. Thus, this study proposes 
a simple adaptive local search algorithm that does not need param-
eter setting because it is developed by hybridizing two parameter-free 
algorithms, which are an SA-inspired algorithm, self-adaptive local 
search (SALS), and VND.

2.3  Proposed Solution Methodology

In this section, our proposed solution methodology for the VRPSPD 
is introduced. Firstly, we give information about the SALS and the 
VND algorithms that constitute our hybridized solution method. After 
that, we describe the details of the developed solution methodology.

2.3.1  Self-Adaptive Local Search

SALS is an SA-inspired metaheuristic algorithm proposed by Alabas-
Uslu and Dengiz (2011). The algorithm involves a nonmonotone 
threshold accepting function with only one generic parameter called 
acceptance parameter. The parameter is adjusted automatically dur-
ing the search process according to the information received from the 
problem and performance measure of the algorithm. The main feature 
of the algorithm is that it never requires a parameter tuning, which 
simplifies its application to the optimization problems.

As we mentioned earlier, SA is a stochastic search method that has 
a threshold function used to escape from local optima. For a minimi-
zation problem, the search begins from an initial solution, x; it then 
generates a new candidate solution, x′, with a specified neighbor gen-
eration method. The difference between the objective function values, 
Δ = f(x′) − f(x), is calculated. If Δ is nonpositive, then the candidate 
solution is accepted as a new current solution. Otherwise, it is accepted 
with a probability value, exp−Δ/T, where T is a control parameter that 
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corresponds to the temperature of the annealing schedule. T generally 
starts from a high value and monotonically decreases throughout the 
search. The algorithm is terminated when T reaches a predetermined 
value, called final temperature.

In a similar fashion with SA, starting from an initial solution, x, 
SALS generates a new solution, x′, with a neighbor generation pro-
cedure at each iteration. Whether the generated solution is accepted 
or not is determined according to the following acceptance condi-
tion: if f(x′) ≤ t. f(x), then x ← x′. In this situation, t represents the 
self-adaptive parameter of SALS. When the candidate solution is 
accepted, the algorithm proceeds to the next iteration. Otherwise, 
a new candidate solution is generated. The value of t is increased by 
the equation of t = t + a1 · a2 when the number of consecutive rejected 
solutions is equal to the neighborhood size of the current solution 
(Alabas-Uslu and Dengiz 2011). The only parameter of SALS, t, is 
updated during the search according to two criteria: the number of 
improved solutions obtained during the search process and the ratio 
of the best solution to current solution at each iteration. Therefore, 
two performance indicators that are obtained from the following 
equations are used to manipulate t:

	
a

f x
f x

1
b=

( )
( )

	 (2.1)

	
a

C
i

2
i= 	 (2.2)

In these equations, Ci represents the number of improved solutions 
found through the search, and xb and x represent the best solution 
and the current solution at iteration i, respectively. Parameter t is cal-
culated throughout the search process by Equation 2.3. Whenever a 
new improved solution is found, a1 decreases while a2 increases. The 
value of Ci gives information about the search space structure. High 
values of Ci indicate that the search space has many local optimum 
points. On the other hand, when the search space is smooth, Ci takes 
low values:

	 t 1 a a1 2= + ⋅ 	 (2.3)
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2.3.2  Variable Neighborhood Descent

VND is a deterministic version of the variable neighborhood search, 
which is a well-known local search algorithm proposed by Mladenović 
and Hansen (1997). The algorithm is commonly integrated with other 
metaheuristic algorithms in order to increase the intensification of 
the search. The main idea of the algorithm is to explore the search 
region by using different neighborhood structures successively. At the 
beginning of the algorithm, VND executes the local search with the 
first neighborhood structure k = 1 until no improved solutions can be 
found. Then, the local search continues with the second neighbor-
hood structure k = 2. If an improvement has been found with the sec-
ond neighborhood structure, VND returns to the first neighborhood 
structure to restart the search. Otherwise, it proceeds to the third 
structure, and so on. If the last neighborhood structure k = kmax yields 
no improved solutions, VND is finished and the obtained solution 
is considered as a local optimum with respect to all neighborhood 
structures.

2.3.3  Hybridization of SALS with VND (hybrid_SALS)

As mentioned earlier, SALS is a parameter-free algorithm, and this 
special feature makes its integration with other heuristic methods 
easier. The use of a threshold function that starts from a high value 
diversifies the search process and allows the algorithm to explore dif-
ferent regions in the search space. Besides, the nonmonotone nature 
of the threshold function makes it easier to escape from local minima 
at the end of the search. Although SALS provides sufficient diversi-
fication to the search, it may require more intensification as the algo-
rithm encounters different search regions. Thus, hybridizing SALS 
with another local search heuristic that leads to an intensification 
effect enables the solution method to obtain more qualified solutions 
from the search regions examined. Therefore, this chapter proposes a 
solution strategy based on SALS and VND. SALS is integrated with 
VND in a way that whenever a new improved solution is found by 
SALS, VND is implemented on the solution to obtain a more quali-
fied solution. In the developed algorithm, we apply SALS for discov-
ering different search regions in the search space, whereas VND is 
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used to increase the intensification of the search process. Thus, SALS 
is employed as our global search technique, and VND is used as our 
regional search method. The main steps of the first stage of the algo-
rithm are given in Figure 2.1, where xlb represents the best solution 
obtained from SALS and xgb represents the global best solution found 
after applying VND. The neighbor solutions are obtained by apply-
ing each neighborhood structure, which will be described in Section 
2.3.5. Whenever xlb is updated, our VND algorithm, which will be 
described in Section 2.3.6, is triggered for improvement. The algo-
rithm is terminated when the total number of consecutive iterations 
without improvement, m1, reaches a predetermined value that is rep-
resented as iter_sals in Figure 2.1.

Figure 2.1  Main steps of hybrid_SALS.
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Two slight modifications are applied to the original version of 
SALS algorithm. The first modification is implemented on the 
threshold function. Instead of using the objective function value of 
the current solution, xlb is employed. Preliminary tests show that this 
modification produces better results than the original version. The 
second modification is to decrease the total number of rejected can-
didate solutions before increasing the value of t. In order to make the 
search process more sensible to the number of consecutive rejected 
neighbors, we increase the value of t when the total number of rejected 
solutions is equal to the number of neighborhood structures instead 
of the neighborhood size of the current solution. This modification 
increases the diversification of the search.

2.3.4  Solution Representation

A solution representation is given for a problem with nine custom-
ers and two vehicles in Figure 2.2. A solution x for the VRPSPD 
is represented as a vector that consists of a sequence of nodes, with 
dimension D = n + m + 1, where n is the number of customers and 
m is the number of vehicles. Node 0 represents the depot, and the 

x = [0 1 2 3 4 0 5 6 7 8 9 0]

Depot

1

7

8

6

5

9

3
2

4

Figure 2.2  Solution representation.
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other nodes represent customers. The solution x is represented as 
x = [0 1 2 3 4 0 5 6 7 8 9 0], where the first route starts from the depot 
and visits customers 1, 2, 3, and 4, respectively, and returns to the 
depot. Similarly, the second route, which is initiated and terminated 
at the depot, services customers 5, 6, 7, 8, and 9, respectively.

2.3.5  Neighborhood Structures

Ten neighborhood structures that are widely used for the VRP are 
applied in SALS and VND. Five of them are inter-route movements 
while others are intra-route ones. Figures 2.3 and 2.4 illustrate the 
intra-route and inter-route neighborhood structures, respectively.

2.3.5.1  Adjacent Swap  The first intra-route neighborhood structure, 
Adjacent Swap, exchanges the positions of two adjacent nodes. In 
Figure 2.3a, the positions of adjacent nodes 2 and 3 are exchanged.

2.3.5.2  General Swap  The second structure, General Swap, exchanges 
the positions of any node pair located in the same route. In Figure 
2.3b, the positions of nodes 1 and 3 are exchanged.

2.3.5.3  Single Insertion  In this structure, a node is removed and 
inserted between two adjacent nodes located in the same route. 
In Figure 2.3c, node 1 is removed and inserted between nodes 4 
and 5.

2.3.5.4  Block Insertion  The fourth intra-route structure, Block 
Insertion, removes two adjacent nodes and inserts them between 
another adjacent node pair. In Figure 2.3d, the adjacent nodes 1 and 
2 are inserted between nodes 4 and 5.

2.3.5.5  2-Opt  The final intra-route structure, 2-opt, replaces a 
nonadjacent arc pair with a new one, which reverses the location of 
nodes lying between these new arcs. In Figure 2.3e, the nonadjacent 
arcs (2,3) and (5,0) are deleted while the arcs (2,5) and (3,0) are 
inserted.
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Figure 2.3  Intra-route neighborhood structures: (a) adjacent swap, (b) general swap, (c) single 
insertion, (d) block insertion, and (e) 2-opt.
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2.3.5.6  Shift(1,0)  The first inter-route structure, Shift(1,0), removes 
a customer from its current route and inserts it at a location in another 
route. In Figure 2.4a, node 9 is removed and inserted between adja-
cent nodes 3 and 4.

2.3.5.7  Swap(1,1)  In this structure, the positions of any node pair 
located in different routes are exchanged. In Figure 2.4b, the posi-
tions of nodes 4 and 8 are exchanged.

2.3.5.8  Shift(2,0)  This structure removes an adjacent node pair and 
transfers them to another route. In Figure 2.4c, adjacent nodes 5 and 
6 are removed and inserted between nodes 4 and 0.

2.3.5.9  Swap(2,1)  This structure exchanges the positions of two 
adjacent customers with a customer from a different route. In Figure 
2.4d, adjacent nodes 7 and 8 are exchanged with node 4.

2.3.5.10  Swap(2,2)  This structure exchanges the positions of two 
adjacent node pairs from different routes. In Figure 2.4e, adjacent 
nodes 1 and 2 are exchanged with adjacent nodes 8 and 9.

2.3.6  Applied VND Algorithm (p_VND)

VND algorithm is employed at both stages of the algorithm to inten-
sify the search process. The basic steps of the algorithm are illustrated 
in Figure 2.5. We utilize five inter-route neighborhood structures, 
Swap(1,1), Shift(1,0), Swap(2,1), Shift(2,0), and Swap(2,2), for 
VND. Whenever a new improved solution is obtained, the procedure 
VND_intra is implemented on the routes modified by the current 
inter-route structure to further improve the quality of the solution. 
When the procedure is called, four intra-route neighborhood struc-
tures, General Swap, 2-opt, Single Insertion, and Block Insertion, 
are exhaustively applied to the modified routes. The strategy of using 
intra-route structures after obtaining an improvement by implement-
ing inter-route ones can be seen in Subramanian et al. (2010) and 
Goksal et al. (2013). The order of the neighborhood structures that 
influences the performance of the algorithm is determined based on 
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our preliminary experiments. The order of the inter-route structures 
is determined as follows: Swap(1,1) is used as the first structure, and 
Shift(1,0), Shift(2,0), Swap(2,1), and Swap(2,2) are implemented 
after Swap(1,1), respectively.

2.4  Numerical Study

The proposed algorithm is coded in MATLAB® 7.8.0 and executed 
on a 3.00 GHz Pentium 4 computer. In order to test the performance 
of the algorithm for the VRPSPD, the benchmark instances presented 
by Dethloff (2001) are used. The dataset that consists of 40 problems 
with 50 customers is classified according to two different geographical 
scenarios and labeled as either SCA or CON. In SCA instances, the 
coordinate values of the customers are uniformly distributed within 
[0, 100]. In CON datasets, half of the customers are scattered in a 
similar way with SCA, while the coordinates of the other half are 
uniformly distributed in [100/3, 200/3]. Thus, the scenario CON rep-
resents urban areas where a big portion of the population is located in 
small regions. The delivery amount of customer i (di) is distributed in 
[0, 100]. The pickup amount of each customer is determined by the 
equation of pi = (0.5 + ri) · di, where ri is a random number uniformly 
distributed over the interval [0, 1]. The vehicle capacities are gener-
ated from the equation of C = ∑i ∈ Jdi/μ, where μ represents the mini-
mum number of vehicles required. In the instance descriptor, the digit 
after the letters for the geographical scenario in Table 2.1 represents 
the respective value of μ, which is chosen to be 3 or 8 (Dethloff 2001).

Figure 2.5  Main steps of the applied VND algorithm.
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2.4.1  Computational Results

The proposed hybrid_SALS is run 10 times for each benchmark prob-
lem. A statistical analysis for the dataset is also conducted by apply-
ing a paired-t test at a significance level of α = 0.05 to reveal whether 
there exists significant differences between hybrid_SALS and other 
methods in terms of solution quality or not. Thus, we set up the null 
hypothesis as H0 = μhybrid_SALS − μCA = 0 and a two-sided alternative 
hypothesis as H1 = μhybrid_SALS − μCA ≠ 0. The symbols μhybrid_SALS and 
μCA represent the population mean for hybrid_SALS and the com-
pared algorithm, respectively.

We terminate the algorithm after 1000 successive iterations with-
out any improvement. We compare our algorithm with the following 
best-known algorithms available in the literature:

•	 R&P: LNS (Ropke and Pisinger 2006)
•	 G&A: Ant colony system (Gajpal and Abad 2009)
•	 SDBOF: Parallel ILS (Subramanian et al. 2010)
•	 ZTK: Adaptive memory methodology (Zachariadis et al. 2010)
•	 GKA: Hybrid discrete PSO (Goksal et al. 2013)

Table 2.1 shows the computational results of the proposed algorithm 
for the VRPSPD instances. For hybrid_SALS, we report the best solu-
tion and the average solution observed from each instance. For other 
algorithms, only the best found solutions are reported because the 
average results are not reported in all studies. Additionally, the number 
of best-known solutions (BKS) found and the average deviations from 
BKS (avg. dev.) are reported in last two rows. Bold numbers indicate 
that the algorithm has reached the best solution. As seen from the table, 
hybrid_SALS produces 38 BKS out of 40 problem instances. While 
hybrid_SALS fails to find the best solutions for two instances, the 
solutions obtained from these instances are so close to the best results 
that the average deviation of obtained solutions from the best results 
is 0.0001. Results of the paired-t test for the corresponding dataset are 
presented in Table 2.2. As seen from the table, while hybrid_SALS is 
statistically significantly different from R&P, there is no statistically 
significant difference between hybrid_SALS and other algorithms. 
This outcome shows that our proposed algorithm performs as good as 
the most sophisticated methods proposed for the VRPSPD.
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A fair comparison of the solution methods in terms of the compu-
tational time cannot be made because of different influencing factors 
such as software, hardware, and coding. However, our computational 
experiments indicate that the proposed hybrid_SALS provides its 
ultimate solution in less than 3 min for all instances. This result indi-
cates that the developed algorithm is effective in solving the VRPSPD 
in reasonable computation time.

2.5  Conclusion

In this study, we deal with a variant of the classical VRP that is the 
VRPSPD arising mainly in reverse logistic systems that include both 
distribution and collection operations. The VRPSPD has gained 
increased importance in recent years since the integration of pickup 
and delivery operations has become a vital task for companies to mini-
mize costs.

In order to solve the problem, we have developed a local search 
algorithm (hybrid_SALS) that is constructed by hybridizing an 
SA-inspired algorithm with VND. The applied SA-inspired algo-
rithm, SALS, is a parameter-free metaheuristic whose nonmono-
tonic threshold function provides the required diversification to the 
search. On the other hand, the VND algorithm, which is a well-
known local search method, has been implemented to intensify 
the search process. Since hybrid_SALS has been developed using 
parameter-free algorithms, it does not need any parameter setting, 
which consequently makes its implementation to the optimization 
problems much easier.

The performance of hybrid_SALS is tested by using well-known 
benchmark instances for the VRPSPD. The computational results 
indicate that the hybrid_SALS generates high-quality solutions for 

Table 2.2  Results of Paired-t Test for the VRPSPD Benchmark Instances of Dethloff (2001)

PAIRS (HYBRID_SALS—COMPARED ALGORITHM) MEAN DIFFERENCE P-VALUE 

hybrid_SALS—GKA 0.063 0.241
hybrid_SALS—SDBOF 0.063 0.241
hybrid_SALS—ZTK 0.063 0.241
hybrid_SALS—G&A −0.035 0.720
hybrid_SALS—R&P −2.465 0.001
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the instances and performs as well as the most sophisticated methods 
proposed for the VRPSPD up to date. Moreover, given its simplicity, 
hybrid_SALS has the advantage of being a parameter-free algorithm 
in comparison with the existing algorithms.
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3
Optimal Fencing in 

Airline Industry with 
Demand Leakage

S Y E D  A S I F  R A Z A  A N D  M I H A E L A  T U R I AC

3.1  Introduction

Four decades from its beginning in the airline industry, revenue man-
agement (RM) practice evolved rapidly to complex systems with appli-
cability in many industries and gained researchers’ attention. McGill 
and Ryzin (1999) and more recently Chiang et al. (2007) presented 
in detail an overview of RM research. After the 1983 US Airline 
Deregulation Act, considered as one of the most important applica-
tions of management science and operations research (Bell, 1998), 
two essential features remained in RM practice: demand segmen-
tation (which for an airline means managing the set of fare classes) 
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and fare classes availability management. In particular, airline RM 
research has focused on four categories: forecasting, overbooking, 
quantity/inventory (booking) control and pricing; however, as noticed 
in Cote et al. (2003), integration of pricing and quantity controls is 
expected to improve the firm’s revenue. The tactics and strategies of 
RM are applied in general in business that has a fixed or perishable 
resource like the flight seats in airline business or the hotels’ rooms.

As noticed in Anon (n.d.), the general RM practices are classi-
fied into quantity-based RM and price-based RM. A quantity-based 
RM problem is designed as a revenue optimization model in which 
the resource allocation can be adjusted efficiently for predetermined 
prices. This practice is well applied in airline industry and is usually 
addressed as seat inventory control problem. The price-based RM 
is applied to maximize the revenue by optimizing the pricing when 
the available resource is fixed. Such typical business frame is com-
monly observed in retail industry where the simplest form of RM has 
been identified in the Newsvendor (Newsboy) problem, considered 
by Petruzzi and Dada (1999) as a building block in stochastic inven-
tory control and an excellent tool for examining how operational and 
marketing issues interact in the decision-making process.

Pricing is one of the main cores of yield management, also known as 
RM practice. The fundamental concept is to segment the market into 
multiple market segments using a differentiation price, which will offer 
potentially a different price or sale condition. One real-life example of 
price differentiation practice can be observed in the sale tickets offered 
by airlines to passengers who are willing to pay in advance and accept 
penalties for changing or canceling tickets, while for the late-arriving 
passengers who are less price sensitive and more willing to pay for their 
tickets less restrictive, the airline reserves part of its capacity. In airline 
RM, this tactic is usually referred to as fare price differentiation and 
is among the principal strategy used to segment the demand from one 
fare class to multiple fare classes. As RM tactic, pricing is applied also 
by hotels that often set higher prices for weekdays’ room rates expected 
to be reserved by business customers, compared to weekend rates, 
which are more desirable for leisure customers. Similar to airlines, 
hotels do apply several penalties such as cancellation restrictions, fees 
for changes in reservation, or nonrefundable lower-priced room rates 
to achieve buy-down. Another example of how price differentiation 
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which leads customers to different channels is the online versus retail 
store sales, where a firm may offer discounted prices for online sales 
with no option of touch and feel, and higher prices for retail store sale 
due to the option of interacting with sales staff or with products.

Integration of pricing and seat allocation in airline RM began with 
Weatherford (1997), who considered normally distributed customers’ 
demand with mean as a linear function of price. Feng and Xiao (2001) 
studied the integration of capacity and pricing decisions for perish-
able assets in a comprehensive model with stochastic demand. Cote 
et al. (2003) developed a bilevel mathematical programming approach 
for joint determination of fare price and seat allocation. Raza and 
Akgunduz (2008) proposed a game theoretic model for an integrated 
approach of fare pricing duopoly competition with seat allocation and 
extended their work in Raza and Akgunduz (2010) to a cooperative 
game setting using bargain solution.

Many research studies (see Anon, n.d.; Philips, 2005) reported that 
market segmentation from price differentiation augments profitabil-
ity; however, different prices for distinct market segments often cause 
customers’ cannibalization, referred also as demand leakage from 
one market segment to another. The effects of market segmentation 
with demand leakage on a firm’s pricing and inventory decisions were 
studied in Zhang and Bell (2007). To mitigate cannibalization and 
maintain the fences that differentiate the market segments, one com-
mon practice is to improve the fences by introducing restrictions that 
would prevent customers from migrating between market segments. 
A fence can be referred as a device designed to preserve the market 
segments formed after price differentiation. Among such devices com-
monly observed are early purchase, prolong processing time, return 
penalties, channel of purchase, etc. An overview and taxonomy of 
price fencing in RM practice can be found in Zhang and Bell (2010). 
Li (2001) investigated pricing of nonstorable perishable goods in a 
deterministic demand case with imperfect market segmentation and 
purchase restriction with an application to airline fare pricing. The 
interest on fencing led earlier researchers to identify that maintaining 
appropriate fences is very essential for an efficient RM (see Hanks 
et al., 2002; Kimes, 2002; Zhang et al., 2010). However, there are 
still many concerns on fencing as a business practice especially in the 
context of airline industry, such as How can an airline control demand 
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leakage through investment in fencing, and what will be the optimal 
investment? How profitable is to integrate the pricing, seat inventory 
control, and fencing investment decisions for an airline?

A related study was conducted by Zhang et al. (2010) for an unca-
pacitated pricing and fencing investment decision problem of a firm. 
Noticeably, airline RM modeling is significantly different from a typi-
cal firm; however, both problems can resemble newsvendor problem 
(see Philips [2005] for details on newsvendor problem and RM rela-
tionship). In airline RM, the demand arrival is assumed sequential, 
and therefore, the lower fare price class demand is observed prior to 
the respective higher fare class. In response to this, the airline exercises 
a nested control that reserves certain seats for passengers willing to pay 
a higher fare price and arrive later to purchase tickets. This control is 
referred in airline RM literature as nested booking control (McGill 
and Ryzin, 1999; Chiang et al., 2007). Furthermore, in airline RM, 
unlike the uncapacitated firm’s problem, there is a limited capacity rep-
resented by the cabin seats. Lastly, in airline RM, the costs incurred in 
relation to seat inventory and related flight services are often ignored 
in most of the airline RM models, with no exception in this study. 
Thus, the focus of this study is to revisit the problem of RM with 
demand leakages and fencing investments in the airline context. We 
first present the model for an airline RM with no fencing investment 
to mitigate the demand leakage, and then we extend the problem with 
fencing improvement decision for the airline to mitigate or augment the 
demand leakage through additional investment. Later, the models are 
analyzed, and the optimal fare pricing, seat inventory control (nested 
booking control), and fencing decisions are determined. Finally, a 
numerical experimentation study is presented to highlight the impact 
of some significant problem-related factors such as demand variabil-
ity and leakage rate onto the airline’s RM decision. Additionally, the 
fencing investment decision is also studied numerically to determine 
the airline’s decision toward demand leakage control.

3.2  Model Development

We propose a single-leg RM model for an airline that exercises an 
optimal integrated control on fare pricing, seat inventory control, and 
fencing investment. The airline activates in monopoly and segments 
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the market into two segments using differentiated prices strategy. The 
market segmentation is assumed imperfect; thus, the customers can-
nibalize from the full fare class to discounted fare class. In order to 
mitigate demand leakage, a fencing investment is proposed to improve 
the airline’s market fences. Assuming stochastic demand, the airline 
performs a nested control over the single-resource capacity following 
Littlewood’s (1972) rule for customers’ sequential arrival. Let c denote 
the capacity of the airplane cabin. The airline offers seats in the cabin 
for two adjacent fare classes: class 1, designated for business travelers 
willing to pay full fare price p1, and class 2, for leisure travelers willing 
to pay a discounted fare price p2, where p1 ≥ p2. Like many other stud-
ies from RM literature (see Choi, 1996; Chiang and Monahan, 2005; 
Zhang et al., 2010), we assume a linear price-dependent demand, 
which, in a riskless perfect market segmentation case, is given by [αi −
βipi ]+, where αi,βi > 0, ∀i = {1,2}. After the price differentiation strategy, 
the market segments created are assumed imperfect, and the airline 
observes γ proportion of passengers cannibalizing from full fare to 
discounted fare class. To model this behavior, we use a liner function 
given by γ(p1 − p2), where γ ≥ 0 represents leakage rate. If γ = 0, then 
the airline is considered to have a perfect fence. Thus, the determin-
istic linear demand curves influenced by demand leakage would be

	
y p p p p p1 1 2 1 1 1 1 2( ), , ( )γ α β γ= − − − 	 (3.1)

	
y p p p p p2 1 2 2 2 2 1 2( ), , ( )γ α β γ= − + − 	 (3.2)

The stochastic demand Di, for fare class i, ∀i = {1,2}, is modeled from 
deterministic demand yi and a random factor ξi, where ξi has price-
independent probability distribution fi(ξi) and cumulative probability 
distribution Fi(ξi), both continuous, twice differentiable, invertible, 
and following an increasing failure rate. Moreover, ξi is assumed in 
[ , ]ξ ξi i  with mean μi and standard deviation σi. This study follows 
Mostard et al. (2005); in this study, we have assumed ξ σ σi ∈ −[ , ].3 3  
Following Petruzzi and Dada (1999), an additive approach is assumed 
for Di, ∀i = {1,2}, such that

	
D y y ii i i i i, , { , }ξ ξ( ) = + ∀ = 1 2 	 (3.3)

A list of notations relevant to the model is presented in Table 3.1.
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3.2.1  No Fencing Investment

As specified earlier, Di ∀i = {1,2} is assumed with sequential arrivals 
so that the airline observes discounted fare class demand prior to the 
full fare class demand. Thus, the airline’s revenue from offering two 
fare classes to its passengers while performing a nested control of the 
inventory capacity would be given as:

	
ˆ min min , , min ,π = + { }{ }+ { }p x x D D p x D1 1 2 2 1 2 2 2

	 (3.4)

The revenue function from this equation can be simplified as in the 
following equation (see Appendix):
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Table 3.1  Model Parameters and Notations

PARAMETERS

c Inventory capacity
αi Maximum perceived demand in fare class i, ∀i = {1,2}
βi Price sensitivity of deterministic demand in fare class i, ∀i = {1,2}
yi = yi(p1,p2,γ) Deterministic demand in fare class i, ∀i = {1,2}

ξ ξ ξi i i∈[ ], Stochastic demand factor for fare class i, ∀i = {1,2}

fi(ξi) Probability distribution function of stochastic factor ξi , ∀i = {1,2}
Fi(ξi) Cumulative probability distribution of stochastic factor ξi , ∀i = {1,2}
Di = Di(p1,p2,γ,ξi) Price-dependent stochastic demand in fare class i, ∀i = {1,2}
≠̂ Revenue without fencing investment

E(π) Revenue with fencing investment
G(γ) Cost of fencing
G0 Initial cost of fencing

* Optimal of a decision control parameter

DECISION VARIABLES

pi Price in fare class i, ∀i = {1,2}
xi Capacity allocation for fare class i, ∀i = {1,2}
γ Demand leakage factor, 0 ≤ ≤γ γ
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The first two terms in Equation 3.5 represent the deterministic risk-
less profit; the third term is the expression of revenue gain from 
nested capacity control mainly due to price differential (p1 > p2), where 
expected demand F d

x y

2 2 2
2

2 2

( )ξ ξ
ξ

−

∫  is protected from discounted fare 

class 2 and reserved for full fare class 1. The last term represents the 
loss in revenue due to an observed demand for full fare class, which 

is lower than the actual capacity allocated x F d
x y

1 2 2 2
2

2 2

+
−

∫ ( ) .ξ ξ
ξ

 The 
airline problem in this case is formulated as follows:

	
P

p p x x
:

, , ,
Max

1 2 1 2
≠̂ 	 (3.6)

	
subject to : x x c1 2+ ≤ 	 (3.7)

3.2.2  With Fencing Investment

Given that the price differentiation strategy results in imperfect fences 
and hence, in demand leakage, the airline’s problem extends to dimin-
ishing the customers’ shifting from full fare class to discounted fare 
class. Without loss of generality, we presume that the airline decides 
to increase fencing levels through an investment of specific costs. 
Suppose that for reaching γ leakage, the airline must bear a cost, G(γ), 
assumed nonnegative, continuous and monotonically decreasing in γ. 
Thus, the revenue function from Equation 3.5 is adjusted by the fenc-
ing cost G(γ), and the airline problem is formulated now as a con-
straint nonlinear optimization problem, P′:

	

ʹ = −P G
p p x x

: ( )
, , , ,
Max

1 2 1 2 γ
π π γˆ  	 (3.8)

	
subject to : x x c1 2+ ≤ 	 (3.9)

The optimal expected revenue when fencing investment decisions are 
taken would be π γ*( * , * , * , * , * )p p x x1 2 1 2 , and the airline’s problem is to 
determine the optimal integrated decisions on fare prices p p1 2* * , and  
seat inventory control x x1 2* * , and  and investment G(γ*) for demand 
leakage γ*. It is important to notice here that the optimality of reve-
nue, ˆ ,≠  from P would be an upper bound on the optimal total expected 
revenue, π, from P′, when the airline decides on fencing investment.
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3.3  Model Analysis

We address first the airline’s optimization problem, P, to jointly deter-
mine the fare pricing and seat inventory control. Due to computational 
complexity in structural properties analysis of the revenue function, we 
provide two approaches to solve the model: sequential (hierarchical) 
optimization and joint optimization. In hierarchical optimization, the 
decision control parameters are optimized sequentially such that the 
airline determines first the optimal fare prices, p1* and p2* , and later, 
the optimal inventory control decisions, x1* and x2* . In problem P′, an 
additional decision parameter γ is considered to determine the fencing 
investment, achieved also by sequential optimization. This approach 
of addressing inventory control and pricing decisions has been applied 
in several studies (see Smith et al., 2007; Zhang et al. 2010).

3.3.1  Hierarchical Optimization

To apply the sequential approach, we consider problem P, and we use 
a hierarchical optimization procedure while demand leakage rate, γ, is 
fixed, thus, no investment assumed to control the fencing via demand 
leakage rate. In our pursuit to determine the fare pricing, while ignor-
ing the seat inventory control decisions x1 and x2, and since pricing 
decisions are mostly dependent on the price-dependent deterministic 
demands, yi, ∀i = {1,2}, we formulate a deterministic version of prob-
lem, P, as problem, DP. Given that demand uncertainties are ignored, 
the stochastic demands D1 and D2 are approximated with the expec-
tations, z1 = y1 + μ1 and z2 = y2 + μ2, respectively. Thus, the deterministic 
problem, DP, of the airline would be

	
DP p z p z

p p

d:
,

Max
1 2

1 1 2 2π = + 	 (3.10)

	
subject to : z z c1 2+ ≤ 	 (3.11)

For DP, we can determine the optimal fare prices, p p1 2* * , and  as out-
lined in Proposition 3.1.

Proposition 3.1  In DP, the following holds:

	 1.	The optimal prices pi* ,  ∀i = {1,2} are determined by solving 
the following system of nonlinear equations:
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α β γ γ λβ μ1 1 1 2 1 12 2 0− + + + + =( )p p 	 (3.12)

	
α β γ γ λβ μ2 2 2 1 2 22 2 0− + + + + =( )p p 	 (3.13)

	
c p p− +( ) + + − +( ) =α α β β μ μ1 2 1 1 2 2 1 2 0 	 (3.14)

	 2.	πd is jointly concave in pi, ∀i = {1,2}.

Proof: See Appendix.

Now, we reconsider problem P with no fencing investment while the 
stochastic demand assumption with sequential arrivals holds. We 
create the stochastic problem for the airline as:

	

P p x p x p p F d

p F

p p x x

x y

:
, , ,
Max

1 2 1 2
2

2 2

1 1 2 2 1 2 2 2 2

1

π ξ ξ
ξ

ˆ = + + −( )

−

( )
−

∫

11 1 1

1

2 2
2

2 2
11

ξ ξ
ξ

ξ
ξ

( )
∫+ −

−

∫ d

x F y
x y

( )

	 (3.15)

	
subject to : x x c1 2+ ≤ 	 (3.16)

In P, the optimal expected revenue would be given by ˆ *( * , * ,≠ p p1 2  
x x1 2* , * ),  where p p1 2* * and  are the optimal fare prices, and x x1 2* * , and  
are the optimal seat inventory controls of full fare and discounted fare 
class, respectively. The constraint in Equation 3.16 is the flight cabin 
limitation. In this problem, the optimal fare prices, p p1 2* * , and  are 
first obtained from Proposition 3.1, and the expected total revenue 
function, ˆ ,≠  in Equation 3.15 can be optimized to determine the opti-
mal seat inventory controls x x1 2* * , and  as outlined in Proposition 3.2.

Proposition 3.2  In problem P, the following holds:

	 1.	Given that the optimal fare prices p1 and p2 are fixed, the 
optimal booking limit x2* is such that x y2 2 3* .= + σ
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	 2.	≠̂ is jointly concave in booking limits x1 and x2 if p1Φ1 – 

( ) 0, where 1 2p p− ≥
⎛

⎝
⎜

⎞

⎠
⎟= + −

−

∫Φ1 1 1 2 2 1
2

2 2

F x F y
x y

( )ξ
ξ

 and Φ2 = 

F x y2 2 2( ).−

Proof: See Appendix.

3.3.2  Joint Optimization

In this section, we extend the optimization procedure approached 
earlier for problem P. Proposition 3.3 outlines the procedure to deter-
mine the joint optimal control for problem P. The decision controls 
here are the optimal fare prices p p1 2* * and  and the optimal seat inven-
tory controls x x1 2* * . and  Due to the complex structure of the revenue 
function, ˆ ,≠  mainly contributed from demand uncertainty, sequential 
demand arrival (nested control), and price-dependent demand leak-
age, proving the joint concavity in all decision variable could be a 
prohibitive task and it is not explored in this study. However, joint 
concavity of ≠̂ is shown in seat inventory control for fixed fare prices 
and vice versa. These results may be found more restrictive in terms of 
a more general condition for joint concavity of ˆ ,≠  but again, given that 
the complex structure of the revenue function, an analytical frame-
work to derive a less-restrictive condition seems limiting.

Proposition 3.3  In problem P′, the following holds for the joint 
optimization:

	 1.	For a fixed set of inventory control xi, ∀i = {1,2}, π is jointly 
concave in fare prices pi, ∀i = {1,2}, as long as p1ϕ1t1t2−
(β2 + 2γ + γ(β2 + γ)t3) ≥ 0, where t1 = β1 + γ(1−Φ2), t2 = Φ2β2−​
γ(1−Φ2),  t3 = p1Φ1−(p1−p2), and t1, t2, t3 ≥ 0.

	 2.	The optimal fare prices p p1 2* * and , seat inventory controls 
x x1 2* * and , and demand leakage γ*  are determined by solving 
the following system of nonlinear equations:

	
p p p p p1 1 2 2 1 1 1 21 0−Φ − Φ Φ − −( ) + ( )( ) = 	 (3.17)

	 x I I p p p1 1 2 1 2 2 1 1 1 21 0− − − Φ γ − Φ β γ −Φ+ +( ) =( ) ( ) 	 (3.18)
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x I p p p2 2 1 2 22 2 1 1 2 2 21 0− − Φ β γ − Φ β Φ − γ −Φ+ ( ) +( ) ( )( ) =

(3.19)

	

−Φ − − Φ − −Φ −
γ

2 1 2
2

1 1 1 2 21 0p p p p p
G( ) ( )( ) ∂
∂

= 	 (3.20)

	 c x x− − =1 2 0 	 (3.21)

Next, we study problem P′, which includes also the cost of fencing. 
A similar study in a firm’s context with no capacity constraints has been 
reported in Zhang et al. (2010). There are two types of fencing cost 
models considered here: linear fencing cost and nonlinear fencing cost.

3.3.2.1  Linear Fencing Cost  For a linear fencing cost approach, the 
cost function of the fencing investment is linearly linked to the leak-
age rate, γ. We define the linear cost function considering the range 
of leakage as G(γ) = G0−(G0/K)γ, where G0 > 0 is the cost of null leak-
age, when the perfect fence is achieved (γ = 0), and K > 0 is the maxi-
mum leakage level when there is no initiative to invest in fencing and 
G(γ) = 0.

Proposition 3.4  Given, xi, pi,  ∀i = {1,2} and a linear fencing cost, 
G(γ) = G0 − (G0/K)γ, the following hold in the problem, P′:

	 1.	The revenue, π is quasi-concave (unimodal) in γ, if ϕ2(p1 − p2) − 
p1(ϕ1 (1−Φ2)2 + Φ1(1 – ϕ2)) ≤ 0. 

	 2.	The optimal leakage rate, γ* can be determined by solving, 
(p1 − p2)(Φ2(p1 − p2) + p1Φ1(1 − Φ2)) + =

G
K

0 0.

Proof: See Appendix.

3.3.2.2  Nonlinear Fencing Cost  In the case of nonlinear fencing cost, 
it is assumed that for a small leakage rate the cost of fence grows 
rapidly and then slowly when leakage rate reaches high levels. This 
behavior is more realistic than the case of linear fencing cost func-
tion. We define the nonlinear function under similar considerations 
on leakage rate so that a representative function is G(γ) = G0/(K + γ), 
where G0/K is the cost of perfect fence (γ = 0), and G0 > 0, K ≥ 0.
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3.4  Numerical Experimentation

In this section, a numerical study is presented to examine the impact 
of demand leakage rate, γ, and demand variability, σ, on an airline’s 
optimal strategy for fare pricing, seat inventory control, and fenc-
ing cost investment. The model-related parameters are adopted from 
the related numerical study presented in Zhang et al. (2010) in an 
illustrative example, but these parameters are customized as per the 
authors’ best guess and the additional parameter of airline’s cabin 
capacity, c. Thus, α1 = 80, β1 = 0.2,  α2 = 180, β2 = 0.8, μ1 = μ2 = 0, and 
c = 100. For simplicity, σi,  i = {1,2} are assumed equal for each fare 
class segment, thus, σ  = σi and σ = {2,5,10,15}. In addition to this and 
consistent with Mostard et al. (2005), the random factor is assumed 
ξ σ σi U∈ −[ , ]3 3 . In a complex problem like the one formulated 
here, the numerical experimentations are conducted with uniformly 
distributed price-dependent stochastic demand only (see Zhang et al. 
2010). The benefits of fare class creation and differentiated fare pric-
ing are compared with the revenue from the corresponding single fare 
class, which has a cumulative (equivalent of two fare classes) price-
dependent deterministic demand, 260−p, and an equivalent single fare 
class stochastic demand factor ξ ξ ξ σ σ∼ = −tri tri[ , ] [ , ]2 2 6 6  with 
triangular distribution from the convolution of the two uniformly dis-
tributed demands (see Zhang et al. 2010). The corresponding single 
fare class optimal revenues (1)π*  at demand variability σ = {2,5,10,15} 
are 15,959.93, 15,745.19, 15,379.58, and 15,010.36, respectively.

A numerical experimentation from the hierarchical optimiza-
tion approach suggested previously for problem P is presented in 
Table 3.2. The table reports the optimal decision control parameters, 
p p x1 2 2* * *, ,  and  which are prices in each fare class and seat inventory 
allocation for the discounted fare class segment; notice here that the 
optimal seat inventory would be simply x c x1 2* *= −  and therefore not 
presented in the table. The airline’s revenue from the two fare classes 
for σ = 2 is 17,025.81 at no demand leakage (perfect market segmenta-
tion), which is about 6.7% superior to the corresponding optimal sin-
gle segment revenue. Whereas at a higher demand variability and no 
demand leakage, the revenue gain from two fare classes is noticed about 
4.8% superior to the corresponding single fare class revenue. Now, at 
demand leakage rate of γ = 1, and a low demand variability, σ = 2, the 
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airline’s revenue from two fare classes is noticed only 0.39% superior 
to the corresponding optimal single fare class revenue. Similarly, at 
a higher demand variability, σ = 15, the optimal revenue gains of the 
airline offering two fare classes are only 0.38% superior to the corre-
sponding optimal single fare class revenue. This clearly leads us to the 
conclusion that an increase in demand leakage rate, γ, causes a signifi-
cant effect on the airline’s revenue while using market segmentation 
based on two fare classes compared to a single fare class. The higher 
demand variability also impacts toward diminishing the revenue gains 
to an airline, as it can be clearly noticed from the same Table 3.2.

Table 3.3 reports a numerical experimentation with similar findings 
noticed earlier in sequential optimization approach for problem P. 
A comparative study of the two methodologies is presented in Figure 3.1, 
where it can be clearly noticed that both demand leakage rate and 
demand variability have significant impact on the airline’s profitability. 
In the joint optimization, at σ = 2, with no demand leakage, the airline 

Table 3.2  Numerical Experimentation with 
Hierarchical Optimization Procedure

σ γ x2
* p1* p2* ≠̂* 

2

0 92.79 230.00 142.50 17,025.81
0.25 86.75 187.32 153.17 16,315.83
0.5 98.86 176.97 155.76 16,143.71
0.75 99.65 172.31 156.92 16,066.16
1 69.97 169.66 157.59 16,022.04

5

0 76.63 230.00 142.50 16,727.04
0.25 96.46 187.32 153.17 16,072.50
0.5 76.26 176.97 155.76 15,913.82
0.75 81.11 172.31 156.92 15,842.33
1 99.15 169.66 157.59 15,801.65

10

0 87.98 230.00 142.50 16,229.07
0.25 99.22 187.32 153.17 15,666.94
0.5 94.61 176.97 155.76 15,530.67
0.75 98.66 172.31 156.92 15,469.27
1 84.55 169.66 157.59 15,434.34

15

0 98.45 230.00 142.50 15,731.11
0.25 99.00 187.32 153.17 15,261.39
0.5 98.45 176.97 155.76 15,147.52
0.75 99.01 172.31 156.92 15,096.21
1 99.00 169.66 157.59 15,067.02
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improves its profitability from 17,025.81 to 17,068.45, which yields 
about 0.27% revenue increase if the joint optimization procedure is 
used. However, when demand leakage rate increases to γ = 1, with a 
low demand variability of σ = 2, the optimal revenue of the airline 
is 16,022.04 in the sequential optimization, while the profitabil-
ity achieved using the joint optimization is 16,033.27, which is only 
0.07% revenue improvement from the sequential framework. At a 
high demand variability, σ = 15, and a perfect market segmentation, 
γ = 0, the airline’s optimal revenue using sequential optimization would 
be 15,731.11, which is improved with 1.46% to 15,950.36 through 
the joint optimization approach. Similar to an observation with low 
demand variability, σ = 2, when both demand leakage rate and demand 
variability are higher, γ = 1 and σ = 15, the revenue gain from the joint 
optimization framework compared to sequential optimization reduces 
to only 0.28%. Thus, we can conclude here that the sequential optimiza-
tion procedure is quite competitive to the joint optimization procedure.

Table 3.3  Numerical Experimentation with Joint 
Optimization Procedure

σ γ x2
* p1* p2* ≠̂* 

2

0 92.26 231.04 144.19 17,068.45
0.25 74.23 188.17 154.40 16,334.95
0.5 68.47 177.79 156.84 16,158.04
0.75 99.60 173.12 157.93 16,078.49
1 82.69 170.47 158.54 16,033.27

5

0 92.17 232.11 146.46 16,823.91
0.25 83.35 189.08 155.97 16,114.38
0.5 73.20 178.69 158.19 15,944.67
0.75 80.38 174.02 159.17 15,868.58
1 72.52 171.37 159.73 15,825.40

10

0 97.49 232.73 149.65 16,396.15
0.25 78.88 189.74 157.98 15,735.01
0.5 79.24 179.46 159.85 15,579.25
0.75 90.22 174.84 160.66 15,509.78
1 98.79 172.21 161.12 15,470.46

15

0 98.94 232.11 152.22 15,950.36
0.25 86.01 189.59 159.41 15,345.90
0.5 86.51 179.50 160.94 15,205.82
0.75 93.45 174.99 161.60 15,143.68
1 86.88 172.44 161.97 15,108.61
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We consider next the extended problem, P′, which enables the 
airline to mitigate or enhance demand leakage rate, γ, between the 
two fare classes at an additional investment given by G(γ). In a study 
reported in Zhang et al. (2010), we have noticed that the linear fenc-
ing, G(γ), resulted the firm’s optimal decision to either fully control 
the demand leakage, γ, to zero, or to not invest in fencing. This is due 
to the fact that the revenue function, π, in problem P′ is convex in γ. 
Alternatively, the nonlinear fencing cost G(γ) = G0/(K + γ) is reported 
in the same study to have a concave revenue function for a firm. 
Noticeably, when K = 0, it is prohibitive for an airline to stop the demand 
leakage, regardless of its investment, limγ→0G(γ) = limγ→0(G0/γ)→∞. 
In this study, we have considered the nonlinear fencing cost to opti-
mize the airline’s joint decisions on p1, p2, x1, x2, and γ. The fencing 
cost function used is given by G(γ) = (100/γ).

Next, we study the airline’s optimal decision of a joint control on 
p1, p2, x1, x2, and γ, at various demand variability and with a non-
linear fencing control. In Table 3.4, optimal fencing decision γ is 

1 fare class, s=2
2 fare classes, sequential s=2
2 fare classes, joint s=2
1 fare class, s=15
2 fare classes, sequential s=15
2 fare classes, joint s=15
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Figure 3.1  Impact of demand leakage and demand variability.
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determined by a numerical optimal procedure in MATLAB® and 
Global Optimization Toolbox (The MathWorks, 2013). GlobalSearch 
procedure from the toolbox with default settings is utilized. It is obvi-
ous to notice here that with higher demand variability, an airlines 
optimal decision on fencing investment would be to keep an increased 
demand leakage rate.

Figure 3.2a through c illustrate the impact of demand variability, 
σ, and the optimal fencing decision of the airline. It is obvious to 
notice here that, with an increase in the demand variability, an air-
line’s optimal investment decision on fencing would be to diminish it 

Table 3.4  Optimal Fencing Decision

σ p1* p2* x2* γ*  π*  

2 180.22 156.27 98.67 0.42 15,959.93
5 180.01 157.91 82.60 0.45 15,745.19

10 178.36 160.04 85.15 0.55 15,379.58
15 175.25 161.56 93.37 0.73 15,010.36
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Figure 3.2  (a)–(c) Impact of optimal fencing decision.
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as the demand variability increases. Naturally, it will lead to an airline 
to increase the optimal demand leakage rate, γ*.

3.5  Conclusions

In this research, an integrated approach to optimal fare pricing and 
seat inventory control is presented for an airline that experiences 
demand leakage. The fences that segment the market demand are 
considered imperfect. Due to imperfect market segmentation, the air-
line observes demand leakage from full fare class to the discounted 
fare class. The research provides models of RM for an airline in the 
situation when it experiences stochastic price-dependent demands. 
The models are analyzed to determine an integrated optimal control 
to fare pricing, seat inventory control and fencing cost decisions.

Numerical experimentations are carried out to underline the 
impact of both market segmentation and fencing efforts onto the air-
line’s profitability.

The future work directions include investigating the optimal invest-
ment strategies in regard to different types of consumer behaviors 
or specific product features in order to keep the airline immune to 
demand leakage effects. The present analysis has considered the firm in 
monopoly only; an interesting avenue, therefore, would be to consider 
a game theoretic approach to this problem in duopoly or oligopoly.

Appendix 3.A

3.A.1 Derivation of the Revenue Function

E p x x x D D p x D[ ] min min , , min ,π̂ = + − { }{ }+ { }1 1 2 2 2 1 2 2 2 	 (3.22)

Notice that min{a,b} = a − [a − b] + = b− [b − a] + , where a, b ∈ R and 
[a] + = max{a,0}. Also, [a − b] + = (a − b)−[b − a] +  (see Gallego and Moon, 
1993; Chen et al., 2004; AlFares and Elmorra, 2005 for details). 
Furthermore, E D z y ii i i i iξ μ( ) , { , }.= = + ∀ = 1 2 Thus, we obtain min 
{ , } [ ] min{ min{ , }, }D x x E x D x x x D D2 2 2 2 2 1 2 2 2 12= + =+− − −ξ  and  
x E x D E x E x D D1 2 2 1 2 2 12 1 2+ ++ + +

ξ ξ ξ− − − −[ ] [ [ ] ] , and therefore, the 
revenue from Equation 3.22 becomes:
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Using earlier studies (see Yao, 2002; Yao et al., 2006) in Equation 
3.23, we have E x D F d
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Substituting these expressions in Equation 3.23 yields the following 
revenue function:
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Proof of Proposition 3.1

	 1.	Applying Karush Kuhn Tucker (KKT) optimality conditions, 
the Lagrangian function associated to problem DP is:

	
L p p p z p z c z z1 2 1 1 2 2 1 2, ,λ λ( ) = + + − −( ) 	 (3.25)

where
z1 = α1−β1p1−γ(p1−p2) + μ1

z2 = α2−β2p2 + γ(p1−p2) + μ2
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The first-order optimality conditions (FOCs) are
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∂
∂

= − − ≥ ≥ − −( ) =
L

c z z c z z
λ

λ λ1 2 1 20 0 0, , 	 (3.28)

where
(∂z1/∂p1) = −(β1 + γ)
(∂z1/∂p2) = (∂z2/∂p1) = γ
(∂z2/∂p2) = −(β2 + λ)

	 Since c−z1−z2 = 0 must be satisfied, therefore, λ > 0. After the 
simplification, the KKT optimality conditions become

	 α β γ γ λβ μ1 1 1 2 1 12 2 0− +( ) + + + =p p 	 (3.29)

	 α β γ γ λβ μ2 2 2 1 2 22 2 0− +( ) + + + =p p 	 (3.30)

	
c p p− + + + − + =( ) ( )α α β β μ μ1 2 1 1 2 2 1 2 0 	 (3.31)

	 2.	To prove the joint concavity in p1 and p2 of πd, from DP, we 
explore the Hessian matrix H:

	

H =

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2

1
2

2

1 2

2

1 2

2

2
2

π π

π π

d d

d d

p p p

p p p

	 (3.32)

	 Notice here that ( ) ( ) , ( )∂ ∂ = − + ≤ ∂ ∂ =2
1
2

1
2

2
22 0π β γ πd dp p/ /  

− + ≤2 02( )β γ  and (∂2πd/∂p1∂p2) = 2γ ≥ 0.
	 Now, H is given by

	

H =
− +( )

− +( )
⎡

⎣
⎢

⎤

⎦
⎥

2 2
2 2

1

2

β γ γ

γ β γ
	 (3.33)
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In order to prove the joint concavity of πd in p1 and p2, the two first prin-
cipal minors ( )∂ ∂2

1
2πd p/  and ( )∂ ∂2

2
2πd p/  must be nonpositive, and the 

second principal minor H = ∂ ∂ ∂ ∂ − ∂ ∂ ∂( )( ) ( )2
1
2 2

2
2 2

1 2
2π π πd d dp p p p/ / /  

must be nonnegative. Form Equation 3.33, it can be clearly noticed 
that both principal minors are negative, and |H| = 4(β1γ + β2γ + β1β2) ≥ 0. 
This proves the joint concavity of πd in p1 and p2.

Proof of Proposition 3.2

	 1.	 π̂ ξ ξ

ξ ξ

ξ

ξ

ξ

= + + −( ) ( )

− ( )

−

+

∫p x p x p p F d

p F d

x y

x F

1 1 2 2 1 2 2 2 2

1 1 1 1

2

2 2

1 2 2

1

(( )−
−

∫

∫
y

x y
1

2 2

2ξ

	 (3.34)

	 The revenue function from this equation 3.34 is simplified 
using the following notations: I F d

x y

2 2 2 2
2

2 2

=
−

∫ ( )ξ ξ
ξ

 and 

I F d
x F y

x y

1 1 1 1
1

2
1 2 2 1

2 2

=
∫+ −

−

∫ ( ) ,
( )

ξ ξ
ξ

ξ
ξ  where y1(p1,p2,γ) = α1−β1 

p1 − γ(p1 − p2) and y2(p1,p2,γ) = α2 − β2p2 + γ(p1 − p2), so that

	
π̂ = + + −( ) −p x p x p p I p I1 1 2 2 1 2 2 1 1 	 (3.35)

	 The FOCs w.r.t. xi, i = {1,2}, are

	

∂
∂

= −
∂
∂

π̂
x

p p
I
x1

1 1
1

1

	 (3.36)

	

∂
∂

= + −( ) ∂
∂

−
∂
∂

π̂
x

p p p
I
x

p
I
x2

2 1 2
2

2
1

1

2

	 (3.37)

	 In these Equations 3.36 and 3.37, (∂I1/∂x1) = Φ1, (∂I1/∂x2) = 
Φ1Φ2, (∂I2/∂x1) = 0, and (∂I2/∂x2) = Φ2, where Φ1 = F1 

x F y
x y

1 2 2 1
2

2 2

+
⎛

⎝
⎜

⎞

⎠
⎟∫ ( ) ,ξ −

ξ

−

 Φ2 = F2 (x2−y2) and φ
ξ

1 1 1
2

2 2

=
⎛

⎝
⎜ +

−

∫f x
x y

 

F y f x y2 2 1 2 2 2 2( ) , ( ).ξ φ− = −
⎞

⎠
⎟  Thus, from Equation 3.36,
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we have p1(1−Φ1) = 0, and from Equation 3.37, p1Φ2(1−Φ1) + 
p2(1−Φ2) = 0. Substituting p1(1−Φ1) = 0 in Equation 3.37, we 
obtain p2(1−Φ2) = 0. Furthermore, it is obvious to notice that 
p2  >  0, which yields the optimality condition such that Φ2 = 1. 
This translates into F2(x2−y2) = 1 and since ξ σi = 3 , which 
will result, F2

1 1 3− =( ) ,σ  and thus optimal seat allocation for 
discounted fare class would be x y2 2 3* .= + σ

	 2.	The joint concavity of ≠̂ in x x1 2 and  is satisfied if the Hessian 
matrix H is negative semidefinite:

	

H =

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2

1
2

2

1 2

2

1 2

2

2
2

ˆ ˆ

ˆ ˆ

π π

π π

x x x

x x x

	 (3.38)

	 The first principal minor conditions for the joint concavity 
of ≠̂ are ( ) ( ) (∂ ∂ = − ≤ ∂ ∂ =2

1
2

1 1
2

2
2

2 1 10π πφ −φ Φ −ˆ ˆand / /x p x p   
( )) ,p p p1 2 1 1 2

2 0− − φ Φ ≤  given p1Φ1−(p1−p2) ≥ 0. Next, the 
second principal minor is H = ∂ ∂ ∂ ∂ − ∂( )( ) (2

1
2 2

2
2 2π π πˆ ˆ ˆ/ / /x x  

∂ ∂x x1 2
2) , where ( ) ,∂ ∂ ∂ =2

1 2 1 1 2π − φ Φˆ / x x p  and therefore, 
|H| = p1ϕ1ϕ2(p1Φ1−(p1−p2)). To prove the joint concavity of ≠̂ 
w.r.t. capacity allocations xi, ∀i = {1,2}, the condition for sec-
ond principal minor p1ϕ1ϕ2(p1Φ1−(p1−p2)) ≥ 0 must be sat-
isfied, which implies a similar condition established for the 
principal minors of H, that is, p1Φ1−(p1−p2) ≥ 0.

Proof of Proposition 3.3

	 1.	Joint concavity of π w.r.t. p1 and p2 is satisfied if H is negative 
semidefinite, where

	

H =

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2

1
2

2

1 2

2

1 2

2

2
2

π π

π π

p p p

p p p

	 (3.39)

	 The first-order derivatives of π from Equation 3.8 w.r.t. p1 and 
p2 are

	

∂
∂

= + + −( ) ∂
∂

− −
∂
∂

=
π
p

x I p p
I
p

I p
I
p1

1 2 1 2
2

1
1 1

1

1
0 	 (3.40)
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∂
∂

= − + −( ) ∂
∂

−
∂
∂

=
π
p

x I p p
I
p

p
I
p2

2 2 1 2
2

2
1

1

2
0 	 (3.41)

	 Using the previous relations,

	
∂

∂
= − +( ) ∂

∂
=
∂

∂
=

∂

∂
= − +( )y

p
y
p

y
p

y
p

1

1
1

1

2

2

1

2

2
2β γ γ β γ, , and

	 and the derivatives

	

∂
∂

= + ( )( ) ∂
∂

= ( )( )

∂
∂

= +

I
p

I
p

I
p

1

1
1 1 2

1

2
1 2 2 2

2

2
2 2

1 1Φ β γ −Φ Φ β Φ − γ −Φ

Φ β γ

,

(( ) ∂
∂

=,
I
p

2

1
2−Φ γ

	 we can write Equations 3.40 and 3.41 as

	

∂
∂

= ( ) + ( )( ) + =
π

− − Φ γ − Φ β γ −Φ −
p

x p p p I I
1

1 1 2 2 1 1 1 2 1 21 0 	

(3.42)

	

∂
∂

= + ( ) +( )

( )( ) =

π
− − Φ β γ

− Φ β Φ − γ −Φ

p
x I p p

p

2
2 2 1 2 2 2

1 1 2 2 21 0
	

(3.43)

	 Hessian’s first principal minors are given by

	

∂
∂

=
∂
∂

+ −( ) ∂
∂

−
∂
∂

−
∂
∂

2

1
2

2

1
1 2

2
2

1
2

1

1
1

2
1

1
22 2

π
p

I
p

p p
I

p
I
p

p
I

p
	 (3.44)

	

∂
∂

= −
∂
∂

+ −( ) ∂
∂

−
∂
∂

2

2
2

2

2
1 2

2
2

2
2 1

2
1

2
22

π
p

I
p

p p
I

p
p

I
p

	 (3.45)

	 And, the partial derivative is

	

∂
∂ ∂

=
∂
∂

−
∂
∂

+ −( ) ∂
∂ ∂

−
∂
∂

−
∂
∂

2

1 2

2

2

2

1
1 2

2
2

1 2

1

2
1

2
1

1

π
p p

I
p

I
p

p p
I

p p
I
p

p
I

p ∂∂p2

	

(3.46)
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	 where the partial second-order derivatives of Ii, ∀i = {1,2}, 
w.r.t. pi, ∀i = {1,2} are:

	

∂
∂

= + + ( )( )

∂
∂

= +( ) +

2
1

1
2 1 2

2
1 1 2

2

2
1

2
2 1 2 2

2
1 2 2

1
I

p

I
p

Φ φ γ φ β γ −Φ

Φ φ β γ φ Φ β −− γ −Φ

φ β γ −Φ β Φ − γ −Φ

−Φ φ γ β

1

1 1

2
2

2
1

1 2
1 1 2 2 2 2

1 2

( )( )

∂
∂ ∂

= + ( )( ) ( )( )I
p p

22

2
2

2
2 2 2

2
2

2

1
2 2

2
2

2

1 2
2 2

+( )
∂
∂

= +( ) ∂
∂

=
∂
∂ ∂

= +

γ

φ β γ φ γ −φ γ β γ
I

p
I

p
I

p p
, , (( )

	 For further simplification, we use the following notations: 
t1 = β1 + γ(1−Φ2),  t2 = Φ2β2−γ(1−Φ2), and  t3 = p1Φ1−(p1−p2). It 
is obvious to notice that t1 ≥ 0, and with the findings from 
Proposition 3.2, we find that t3 ≥ 0. To further simplify, we 
assume that t2 ≥ 0. This yields t1, t2, and t3 ≥ 0. Thus, Equations 
3.44 through 3.46 can be reduced using t1,t2, and t3 notations 
to the following expressions:

	

∂
∂

= + ( ) + ( )( )

+ +

2

1
2 2 1 2 2

2
1 1 2

1 1 2
2

1 1

2 2 1

1

π
− Φ γ − φ γ − Φ β γ −Φ

− Φ φ γ φ β γ

p
p p

p −−Φ

− Φ γ − Φ − φ − φ γ

2
2

2 1 1 1 1 1
2

2
2

32 2

( )( )( )
= t p t t 	(3.47)

	

∂
∂

= +( ) + ( ) +( )

+( ) +

2

2
2 2 2 1 2 2 2

2

1 1 2 2
2

1 2 2

2
π

− Φ β γ − φ β γ

− Φ φ β γ φ Φ β − γ

p
p p

p 11

2

2
2

2 2 1 1 2
2

2 2
2

3

−Φ

− Φ β γ − φ − φ β γ

( )( )( )
= +( ) +( )p t t 	(3.48)
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∂
∂ ∂

= +( ) + +( )( )

( )( )

2

1 2
2 2 2 2 2 1 2

1 2 2 21

π
Φ β γ Φ γ − φ γ β γ −

−Φ β Φ − γ −Φ

−

p p
p p

p11 1 1 2 2 2 2

1 2 2

2 2 1

1 1

2

φ β γ −Φ β Φ − γ −Φ

−Φ φ γ β γ

Φ β γ −Φ

+ ( )( ) ( )( )

+( ))
= +( )

(

t22 1 1 1 2 2 2 3− φ φ γ β γp t t t+ +( )

	

(3.49)

	 It is clear to notice from Equations 3.47 and 3.48 that the first 
principal minors are both nonpositive. Now, we need to show 
the second principal minor sign is positive; therefore, we need 
to prove

	

| |H =
∂
∂

∂
∂

−
∂
∂ ∂

⎛

⎝
⎜

⎞

⎠
⎟ ≥

2

1
2

2

2
2

2

1 2

2

0
π π π

p p p p

	 where |H| is determined after some simplification as

	

| |

( )

H = + + +( )( )

× + + +

p t t t

p t t

1 1 1
2

2
2

3 2 1 1

1 1 2
2

2 2
2

3 2 2

2

2

φ φ γ Φ γ Φ

φ φ β γ Φ β ++( )( )

+( ) + +( ) +( )( )

γ

− Φ β γ φ γ β γ − Φ φ2 2 2 2 3 1 2 1 1 1 2
2

2 t t p t t
	

(3.50)

	 Given that p1, Φ1, ϕ1, p2, Φ2, ϕ2, t1, t2, t3 ≥ 0, we can achieve a 
lower bound on |H| established in Equation 3.50 by ignoring 
some positive terms. While simplifying the rest of the terms, 
we obtain the following reduced form:

	 | |H ≥ ( )( ) − + + +( )( )p t p t t1 1 1
2

1 1 2
2

2 2 3
2

2φ φ β γ γ β γ 	 (3.51)

	 Therefore, the condition for joint concavity will be

	
p t p t t1 1 1

2
1 1 2

2
2 2 3

2
2 0φ φ β γ γ β γ( )( ) − + + +( )( ) ≥ 	 (3.52)
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	 which can be further written as

	

p t t t

p t t t

1 1 1 2 2 2 3

1 1 1 2 2 2 3

2

2

φ β γ γ β γ

φ β γ γ β γ

+ + + +( )( )( )
× ( − + + +( )( )) ≥ 00 	 (3.53)

	 Finally, the necessary condition for joint concavity of π will be 
p1ϕ1t1t2−(β2 + 2γ + γ(β2 + γ)t3) ≥ 0. There can be other possibili-
ties that may also guarantee the joint concavity of π; however, 
this chapter only focuses on the single possibility presented in 
this proof.

	 2.	The Lagrangian function of nonlinear problem P′ is

	

L x x p p p x p x p p I p I G

c x x

1 2 1 2 1 1 2 2 1 2 2 1 1

1 2

, , , , , ( )γ λ γ

λ

( ) = + + −( ) − −

+ − −( ))

	 The KKT optimality conditions are

	

∂
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= ( ) =
L
x

p
1

1 11 0−Φ −λ 	 (3.54)

	

∂
∂

= + ( ) =
L
x

p p p p
2

2 1 2 2 1 1 2 0− Φ − Φ Φ −λ 	 (3.55)

	

∂
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= + ( )

+ ( )( ) =

L
p

x I I p p

p

1
1 1 2 1 2 2

1 1 1 21 0

− − − Φ γ

− Φ β γ −Φ 	 (3.56)

	

∂
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= + ( ) +( )

( )( ) =

L
p

x I p p

p

2
2 2 1 2 2 2

1 1 2 2 21 0

− − Φ β γ

− Φ β Φ − γ −Φ
	

(3.57)
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= ( ) ( )( )

∂
∂

=

L
p p p p p

G

γ
−Φ − − Φ − −Φ

−
γ
γ

2 1 2
2

1 1 1 2 21

0
( )

	 (3.58)
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∂
∂

= − − =
L

c x x
λ

1 2 0 	 (3.59)

	 Recalling for Equations 3.54 through 3.58, the notations are

	

Φ ξ − Φ −
ξ

−

ξ

−

1 1 1 2 2 1 2 2 2 2

2

2

2 2

2

2 2

= + ( )
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

= ( )

=

∫F x F y F x y

I

x y

x y

,

∫∫ ∫( ) =

∫

( )

+ ( )

F d I F d

x F y
x y

2 2 2 1 1 1

1

1 2 2 1
2

2 2

ξ ξ ξ ξ
ξ

ξ −
ξ

−

,

	 Therefore, to determine the optimal solution ( *, *, *, *, * ),x x p p1 2 1 2 γ  
we will have to solve the following system of nonlinear 
equations:

	
p p p p p1 1 2 2 1 1 1 21 0−Φ − Φ Φ − −( ) + ( )( ) = 	 (3.60)

	
x I I p p p1 1 2 1 2 2 1 1 1 21 0− − − Φ γ− Φ β γ −Φ+ ( ) + ( )( )= 	 (3.61)

	
x I p p p2 2 1 2 2 2 1 1 2 2 21 0− − Φ β γ − Φ β Φ − γ −Φ+ ( ) +( ) ( )( ) =

	
(3.62)

	

−Φ − − Φ − −Φ −
γ

2 1 2
2

1 1 1 2 21 0p p p p p
G( ) ( )( ) ∂
∂

= 	 (3.63)

	 c x x− − =1 2 0 	 (3.64)

Proof of Proposition 3.4
We consider the linear fencing cost function G(γ) = G0−(G0/K)γ, 
where G0 > 0, K > 0, and G0 is the cost of null leakage when perfect 
fences are achieved so that γ = 0. When there is no initiative to invest 
in fencing, G(γ) = 0. The rate of change in G(γ) w.r.t. γ is (∂G/∂γ) = 
−(G0/K) and (∂2G/∂γ2) = 0 due to linear G(γ). Notice here that 
G(γ = 0) = G0 and G(γ = K) = 0.
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	 1.	Recalling the revenue function, π, from Equation 3.8

	
π γ γx p p x p x p p I p I Gi i, , ( )( ) = + + −( ) − −1 1 2 2 1 2 2 1 1

	 The partial derivatives of π w.r.t. γ are
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∂
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∂
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	 (3.65)
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� (3.66)

where
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⎞
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	 From Equation 3.65, we can determine γ* by solving 
(p1−p2)​(Φ2(p1−p2) + p1Φ1(1−Φ2)) + (G0/K) = 0, given that pi, xi, 
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∀i = {1,2} are known. Notice from Equation 3.65 that the total 
expected revenue, π, is nonincreasing in leakage rate, γ, as 
(∂π/∂γ) ≤ 0 for 0 ≤ γ ≤ K. From Equation 3.66, π is quasicon-
cave in γ if ϕ2(p1 − p2) − p1(ϕ1(1 − Φ2)2 + Φ1(1 – ϕ2)) ≤ 0.

Acknowledgment
This publication was made possible by NPRP grant # 5-023-05-
006 from the Qatar National Research Fund (a member of Qatar 
Foundation). The statements made herein are solely the responsibility 
of the authors.

References
AlFares, H. and Elmorra, H. (2005). The distribution-free newsboy problem: 

Extensions to the shortage penalty case, International Journal of Production 
Economics 93/94, 465–477.

Anon. (n.d.). The theory and practice of revenue management [online]. Available 
at: http://www.springer.com/business+&+management/operations+​
research/book/978-1-4020-7701-2 (accessed January 26, 2014).

Bell, P.C. (1998). Revenue management: That’s the ticket, OR/MS Today, 25(2).
Chen, F.Y., Yan, H., and Yao, Y. (2004). A newsvendor pricing game, IEEE 

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 
34(4), 450–456.

Chiang, W.C., Chen, J.C.H., and Xu, X. (2007). An overview of research on 
revenue management: Current issues and future research, International 
Journal of Revenue Management 1(1), 97–128.

Chiang, W.K. and Monahan, G.E. (2005). Managing inventories in a two-
echelon dualchannel supply chain, European Journal of Operational 
Research 162(2), 325–341.

Choi, S.C. (1996). Pricing competition in a duopoly common retailer channel, 
Journal of Retailing 72(2), 117–134.

Cote, J.P., Marcotte, P., and Savard, G. (2003). A bilevel modelling approach 
to pricing and fare optimisation in the airline industry, Journal of Revenue 
Management and Pricing 2, 23–36.

Feng, Y. and Xiao, B. (2001). A dynamic airline seat inventory control model 
and its optimal policy, Operations Research 49, 939–949.

Gallego, G. and Moon, I. (1993). The distribution free newsboy problem: Review 
and extensions, Journal of Operational Research Society 44, 825–834.

Hanks, R., Cross, R., and Noland, P. (2002). Discounting in the hotel industry, 
Cornell Hotel and Restaurant Administration Quarterly 43, 94–103.

Kimes, S.E. (2002). Perceived fairness of yield management, Cornell Hotel and 
Restaurant Administration Quarterly 43, 21–30.



81Optimal Fencing in Airline Industry

Li, M.Z.F. (2001). Pricing non-storable perishable goods by using a purchase 
restriction with an application to airline fare pricing, European Journal of 
Operational Research 134(3), 631–647.

Littlewood, K. (1972). Forecasting and control of passenger booking. AGIFORS 
12th Annual Symposium Proceedings, Nathanya, Israel.

McGill, J.I. and Van Ryzin, G.J. (1999). Revenue management: Research over-
view and prospects, Transportation Science 33, 233–256.

Mostard, J., Koster, R., and Teunter, R. (2005). The distribution-free news-
boy problem with resalable returns, International Journal of Production 
Economics 97, 329–342.

Petruzzi, N.C. and Dada, M. (1999). Pricing and the news vendor problem: A 
review with extensions, Operations Research 47, 183–194.

Philips, R.L. (2005). Pricing and Revenue Optimization Stanford, CA: Stanford 
University Press.

Raza, S.A. and Akgunduz, A. (2008). An airline revenue management fare 
pricing game with seats allocation, International Journal of Revenue 
Management 2(1), 42–62.

Raza, S.A. and Akgunduz, A. (2010). The impact of fare pricing cooperation in 
airline revenue management, International Journal of Operational Research 
7(3), 277–296.

Smith, N.R., Martinez-Flores, J.L., and Cardenas-Barron, L.E. (2007). 
Analysis of the benefits of joint price and order quantity optimisation 
using a deterministic profit maximization model, Production Planning and 
Control 18(4), 310–318.

MATLAB and Global Optimization Toolbox R. (2013a). The MathWorks, 
Inc., Natick Massachusetts, United States, Software available at http://
www.mathworks.com/products/matlab/

Weatherford, L.R. (1997). Using prices more realistically as decision variables in 
perishable-asset revenue management problems, Journal of Combinatorial 
Optimization 1, 277–304.

Yao, L. (2002). Supply Chain Modeling: Pricing, Contracts and Coordination. The 
Chinese University of Hong Kong, Shatin, Hong Kong.

Yao, L., Chen, Y.F., and Yan, H. (2006). The newsvendor problem with pricing: 
Extension, International Journal of Management Science and Engineering 
Management 1(1), 3–16.

Zhang, M. and Bell, P. (2010). Price fencing in the practice of revenue man-
agement: An overview and taxonomy, Journal of Revenue and Pricing 
Management 11(2), 146–159.

Zhang, M. and Bell, P.C. (2007). The effect of market segmentation with 
demand leakage between market segments on a firm’s price and inventory 
decisions, European Journal of Operational Research 182(2), 738–754.

Zhang, M., Bell, P.C., Cai, G., and Chen, X. (2010). Optimal fences and joint 
price and inventory decisions in distinct markets with demand leakage, 
European Journal of Operational Research 204, 589–596.





83

4
Bi-Objective Berth–Crane 

Allocation Problem in 
Container Terminals

D E N I Z  O Z D E M I R  A N D  E V R I M  U R S AVA S

4.1  Motivation

Transportation via sea continues to rise as a result of the increas-
ing demand due to its advantages over other transportation modes 
in terms of cost and security. Actually, as of 2013, seaborne trade 
accounted for 80% of global trade in terms of volume (UNCTAD, 
2013), and since 2006, it counts for 70.1% in terms of value (Rodrigue 
et al., 2009). Due to this trend toward sea transportation, efficient 
port management has become a major issue for port owners and ship-
ping companies. Typical operations in a port consist of allocation of 
berths to arriving vessels, allocation of cranes to docked vessels at 
the quayside, routing of internal transportation vehicles, storage space 
assignment, and gantry crane deployment at the yard side. Berth allo-
cation problem (BAP) consists of assigning berth spaces to the incom-
ing vessels. Crane allocation problem (CAP) is the determination of 

Contents

4.1	 Motivation	 83
4.2	 Related Work	 85
4.3	 Model Description	 87

4.3.1	 Assumptions	 88
4.3.2	 Notation	 88
4.3.3	 Model	 89

4.4	 Solution Methodology	 92
4.5	 Case Study	 94
4.6	 Conclusions and Further Research Directions	 102
Acknowledgment	 103
References	 103



84 Deniz Ozdemir and Evrim Ursavas

the assignment sequence of cranes to a container ship. Both problems 
on the quayside have received significant attention from researchers 
(Bierwirth and Meisel, 2010). More often, these two problems are 
studied separately in the literature, resulting in suboptimal solutions. 
To find more realistic solutions, researchers offer solutions that com-
bine the two problems.

Port operations involve multiple parties such as ship owners, crane 
operators, port management, and government officers. By its nature, 
each party has its own concerns and requirements that need to be 
addressed in a decision-making process. Hence, the berth allocation 
and crane scheduling problem requires that the decision makers con-
sider multiple objectives at a time, which, again, adds to the com-
plexity of the problem. An essential concern to deliberate is the fact 
that objectives such as minimizing vessel service time and maximiz-
ing crane utilizations frequently conflict with each other. That is, the 
decision maker is forced to attain a balance among those conflicting 
objectives. However, recent literature on the berth and crane schedul-
ing problem does not provide adequate support to resolve the issue.

With those in mind, this study attempts to simultaneously deter-
mine the berthing and crane allocations under multiple objectives. In 
principle, with the existence of more than one objective, we would 
expect to have a set of optimal solutions instead of a single optimal 
solution. Therefore, our approach will be to determine these set of 
solutions, also referred as Pareto optimal solutions, in order to deter-
mine Pareto efficient frontier. Following this multisolution approach 
offers the decision maker the flexibility of adjusting the balance within 
conflicting objectives.

We may depict the contributions of this chapter as twofold. First, 
we extend the existing literature by embracing more practical assump-
tions to better represent the real-world implementation. Second, we 
formulate a bi-objective integer problem and propose an ε-constraint 
method-based solution algorithm to acquire the nondominated berth–
crane assignments and schedules as Pareto optimal front.

The structure of the remaining part of the chapter is as follows: 
the following section is dedicated to the related studies in the litera-
ture. Section 4.3 is devoted to the mathematical model description 
of the problem. Section 4.4 puts forward our solution methodology 
based on ε-constraint method. Section 4.5 reports the computational 
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experiments via a case study. Finally, Section 4.6 concludes the study 
and states future research directions.

4.2  Related Work

BAPs and CAPs aim to display the berthing position and service 
sequence of all the vessels; hence, it denotes an assignment and sched-
uling problem structure. In most of the studies in literature, crane 
allocation is planned after berthing the ship, which results in subop-
timal solutions. Our focus in this review process will put an emphasis 
on studies that simultaneously tackle both problems.

Work by Zhou and Kang (2008) has used the genetic algorithm 
to search through the solution space and compared it with the greedy 
algorithm for the BAP and CAP with stochastic arrival and handling 
times. The genetic algorithm proposed has significantly improved the 
greedy algorithm solutions so as to minimize the average waiting time 
of containerships in terminal. Zhang et al. (2010) use the subgradient 
optimizations technique to solve the problem with the aim of mini-
mizing the weighted sum of the handling costs of containers. Review 
work provided by Bierwirth and Meisel (2010) as well as Carlo et al. 
(2014) presents state-of-the-art research on the topic that jointly tack-
les berth allocation and crane scheduling.

Recent studies that maintain a multiobjective approach can be 
summarized as follows: Imai et al. (2007) address the problems with 
a bi-objective approach that considers the minimization of delay of 
ships’ departure and minimization of the total service time. They use 
the weighting method that combines all objectives into a single one by 
assigning weights and by changing the weights in a systematic fash-
ion. They so form the noninferior solution set. Golias et al. (2009) use 
the multiobjective approach to differentiate the service level given to 
customers with different priorities. Total service time minimization is 
realized separately for different levels of customer preferences. Their 
solution approach is by the use of evolutionary algorithms. In their 
latter work, they propose a nonnumerical ranking preference method 
to select the efficient berth schedule (Golias et al., 2010). Cheong 
et al. (2010a) model the BAP so as to minimize the three objectives 
of makespan, waiting time, and degree of deviation from a prede-
termined priority schedule. They use a multiobjective evolutionary 
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algorithm to find the Pareto efficient frontier. However, studies dis-
cussed here do not tackle the CAP, and the solution set they provide 
is not guaranteed to be optimal.

Cheong et al. (2010b) extend the literature by incorporating the 
crane scheduling problem. They design their problem to solve the two 
objectives of waiting time and handling time of ships. They as well use 
the multiobjective evolutionary algorithm approach to model the port 
conditions at the Pasir Panjang container terminal.

The most related work to our study belongs to Liang et al. (2011). 
In their bi-objective crane and berth allocation model, they propose a 
hybrid genetic algorithm to minimize the sum of the handling time 
of containers and the number of crane movements concurrently. Their 
computational experiments are realized by a real-world case study of 
Shanghai container terminal.

In this chapter, we approach the berth–crane scheduling problem 
concurrently, while considering two objectives of total service time 
minimization and crane setup minimization. Our crane-related objec-
tive differs from the work of Liang et al. (2011), in that their approach 
aims to avoid the probable crane splits among berths. However, there 
is no cost incurred for a vessel to be served by crane j at time t, then 
crane j′ at time t + 1 and crane j again at time t + 2 as long as the 
cranes are at the same berth. We, in turn, by minimizing the crane 
setups for each vessel, incorporate the potential cost of crane split-
ting together with their setup cost, giving a more detailed analysis of 
crane activities. Moreover, we lead the former work in the perspective 
of real-world representation. In our model, cranes differ in terms of 
their technical specifications regarding their container handling rates. 
Hence, particular cranes may be favored to another in convenient 
cases. Berth length restrictions and vessel length compatibility issues 
are also reflected in our model. To the best of our knowledge, this is 
the first attempt to provide the optimum Pareto efficient frontier for 
the considered problem.

As to the exact methods for the solution of multiobjective combi-
natorial optimization problems, several scalarization techniques may 
be used. The most popular is by the use of the weighted sum approach 
where different objectives are aggregated through weighted sums. 
Although the efficient solutions found by the technique may be valid 
for linear programming problems, due to the discrete structure of the 
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combinatorial problems, the results may not compromise the whole 
efficient solution set for the considered problem. The consideration of 
these nonsupported efficient solutions, which are not optimal for any 
weighted sum of the objectives, becomes crucial when there are more 
than one sum objective in contrast to cases where at most one sum 
objective is present and the others are bottleneck objectives. Another 
approach followed is the compromise solution method, where the dis-
tance to a reference point is minimized. The reference point is defined 
by the separate minima of each objective. Obviously, for conflicting 
objectives, it is not possible to obtain the minimum limits simultane-
ously. For bi-objective problems, the use of ranking methods is popu-
lar. As required by the technique, the computation of nadir point is 
difficult to obtain when there are more than two objectives. For the 
comprehensive description of the available methods, readers may refer 
to Ehrgott and Gandibleux (2002). For the case of two objectives, 
the two-phase method is described as a general framework. In two-
phase method, the supported efficient solutions are found by the use 
of scalarization methods in the first phase, and then the nonsupported 
efficient solutions are found by problem-specific techniques in the sec-
ond phase.

The solution approach we use to solve our bi-objective integer prob-
lem is an iterative algorithm incorporating the branch-and-cut solu-
tion embedded in ε-constraint method. ε-Constraint method is one 
of the well-known techniques to solve multiobjective optimization 
problems. In ε-constraint method, instead of combining the objec-
tives with weights, only one of the original objectives is minimized 
while the others are rearranged as constraints. An extensive discus-
sion of the method can be found in Ehrgott (2005).

4.3  Model Description

This study attempts to simultaneously determine the berthing and 
crane allocations under two objectives. The wharf is modeled to be 
discrete, that is, it represents a collection of partitioned sections. 
Different types of cranes with different handling rates are considered. 
Handling time and the number of cranes to be assigned to the ship are 
not known in advance. Handling time depends on the type and the 
number of cranes allocated to a vessel, which is dynamic throughout 
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the service time. For instance, a vessel can start to be served by only 
one crane and end up being served by three cranes. Therefore, the 
ships do not have to wait until a specified number of cranes are avail-
able. This prevents suboptimal solutions resulting from misleading 
crane unavailability assumption.

We now present the bi-objective optimization model for solv-
ing simultaneous berth–vessel–crane allocation problem. The basic 
assumptions of the model can be summarized as follows.

4.3.1  Assumptions

	 1.	There are discrete berths with specified lengths. A vessel may 
be assigned to any of the available berths as long as the vessel 
length fits to the berth length.

	 2.	There are cranes with different technology that give service 
with varying handling rates.

	 3.	Some of the cranes are mobile, in a sense that cranes can be 
assigned to any berth and any vessel in any order.

	 4.	Crane allocation is dynamic throughout the handling period 
of a vessel. The number and the type of cranes assigned are 
flexible, and vessel handling time is dependent on crane 
allocations.

	 5.	A vessel cannot be given service before its arrival.
	 6.	Each different crane allocation incurs a cost.
	 7.	There are a maximum allowable number of cranes that can be 

assigned to a vessel.

The indices, parameters, decision variables, and the integer linear pro-
gramming model are defined as follows.

4.3.2  Notation

Indices

i = (1, …, I) set of vessels
j = (1, …, J) set of cranes, where first p cranes are static and last 

J–p cranes are assumed to be portable
k = (1, …, K) set of berths
t = (1, …, T) time periods
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Input Parameters

li: Vessel length including the safety margin for the vessel
Qk: Length of berth k
ai: Arrival time of vessel i
Ni0: Number of containers initially on the vessel
U: Maximum number of cranes that can be assigned to a vessel 

simultaneously
Rj: Container handling rate of jth crane

For modeling purposes, we define two constants:

M: Large constants
m: Constant 0 ≤ m ≤ 1

Decision Variables

yijtk: 1 if crane j is allocated to vessel i at time t at berth k and 0 
otherwise

BVitk: 1 if vessel i is assigned to berth k at time t
Nit: Total number of containers on vessel i at time t
Δik: 1 if vessel i is assigned to berth k
YHit: 1 if vessel i is served at time t
PHit: 1 if vessel i has remaining containers at time t
CRijt: 1 if crane j will start serving vessel i at time t + 1
TempHit: Auxiliary variable that realizes the logical connection 

between yijtk and YHit

4.3.3  Model
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The first objective f1 minimizes the total time the vessels spend at 
the port. When all the containers are handled, the handling time is 
calculated by summing the total number of assignments in the time 
horizon. To calculate the total time, waiting time of the vessels on 
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the bay is also considered. The second objective f2 minimizes the total 
number of crane setups.

Constraint set (4.1) ensures that the allocation of a vessel does 
not exceed the quay length. Constraint set (4.2) implies that a 
vessel can be assigned to at most one berth. Constraint set (4.3) 
does not allow any crane to be allocated to more than one vessel at 
multiple berths at time t. Constraint set (4.4) implies that a single 
vessel can be served by a certain crane at any given time. Constraint 
set (4.5) ensures that all arriving vessels are served. Constraint set 
(4.6) guarantees that the total number of cranes allocated in a time 
period exceeds the maximum number of cranes that can be allo-
cated to a vessel. By constraint set (4.7), the number of vessels allo-
cated to a berth at a given time is limited to 1. Constraint set (4.8) 
ensures that the value of BVitk at the considered berth–vessel pair 
is set to 1 if a vessel is given service at the dock at a given time. 
In constraint set (4.9), crane setup indicators are updated. By con-
straint set (4.10), a vessel’s PHit value is set to 1, if the vessel has 
arrived and there are remaining containers. In constraint set (4.11), 
the number of containers to be handled in each vessel is decreased 
by the crane handling rate at each period. Constraint set (4.12) 
ensures that all the containers on the vessel are handled. The logi-
cal connection between PHit and YHit is secured by constraint set 
(4.13). Constraint sets (4.14) through (4.17) formulate the equa-
tions for solving the total handling time of each vessel. If an yijtk 
assignment exists for a vessel at a given time, the vessel handling 
time variable, YHit, is set to 1. Constraint sets (4.18) through (4.21) 
ensure that a vessel is docked at a single berth. Constraint set (4.22) 
handles the crane passing constraints for static cranes. If a crane j is 
serving a vessel at berth k, then no other crane with a larger crane id 
can serve a vessel at any berth that is positioned to its right. In the 
next section, our solution approach will be discussed.

4.4  Solution Methodology

The solution approach that we propose for solving the integrated 
BAP and CAP problems with multiobjectives relies on an itera-
tive algorithm consisting of a branch-and-cut solver embedded in 
the ε-constraint method. ε-Constraint method is a well-recognized 
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technique to solve multicriteria optimization problems (Ehrgott, 
2005). Figure 4.1 illustrates our solution algorithm. The ε-constraint 
method does not aggregate the multiple objectives into one criterion 
as done in a weighted sum method, but minimizes one of the original 
objectives and transforms the others into constraints. For bi-objective 
model, values a and b shown in Figure 4.1 give the range for the 
objective criteria f2.

A general multiobjective problem with O objectives may be substi-
tuted by the ε-constraint method as follows:

Start

a = min f2;  b = max f2
v = (f1, f2)

Make ε = b

Optimize the MIP model with a
solver

Add to v

Check if ε = a 

Yes

Get Pareto front from v

End

No

ε = ε – 1

Figure 4.1  Flow chart diagram of the solution algorithm.
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Here, the choice of the criteria that will be selected to be treated 
as constraint depends on the problem structure. For our problem, 
this transformation has been implemented by selecting f1(time) as 
objective function and f2(setup) as constraint. This is mainly due to 
the highly esteemed customer service levels that are related to time 
considerations. This transformation is also suitable for the optimiza-
tion structure as the integer values of the setup parameters allow the 
parameter ε to be changed by one unit in each subsequent iteration. 
Additionally, the range for the objective criteria is again appropri-
ate considering the number of iterations that would be required in 
case of a wider range. Although this range is actually dependent on 
the instance data examined, nevertheless, the range for time criteria is 
expected to be broader than of the setup criteria. Therefore, we would 
anticipate having the number of iterations that needs to be realized as 
higher in the case where objective f1(time) was selected to be treated 
as constraint.

Due to the conflicting nature of both objective criteria, we expect 
to have the lowest values of one criterion while the other one takes its 
highest values. This fact allows for the solution algorithm where we 
may reduce the values of parameter ε for the objective function treated 
as constraint, to be reduced iteratively, after the selection of one of the 
criterion as the main objective. To retrieve the interval where param-
eter ε varies, we solve each problem with a single objective. We expect 
to have the highest setup cost values when the objective function f1 is 
optimized.

4.5  Case Study

Based on the real data obtained from the port of Shanghai container 
terminal, the model proposed is used to optimize the simultaneous 
assignment of berths and cranes to the incoming container vessels. 
The problem has previously been demonstrated by Liang et al. (2009). 
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Note that, as the same dataset has later been studied by Han et al. 
(2010) and Liang et al. (2011), the real case problem might be used 
as a benchmark. The arrival time, the total number of containers in 
TEU, and due dates for each vessel are given in Table 4.1.

We represent a 24 h day by 24 equal time intervals and convert all 
the times in Table 4.1 accordingly. Figure 4.2 illustrates the time scale 
used for modeling the problem. The same scaling is used for each day.

The berth structure is discrete, and the whole quay area is partitioned 
into four berths. Since berth lengths are not indicated in the benchmark 
problem, physical length restrictions are not reflected. There are seven 
quay cranes, with a handling rate equal to 40 TEUs/h. Due to the lack 
of available accurate data, the cranes are taken as identical in terms of 
their handling rates. That, in fact, is a generalization of our model struc-
ture, as we allow for variable quay crane handling rate specification. 
With more realistic crane specifications, our model can be used much 
more efficiently. The maximum allowable number of cranes assigned to 
a vessel is 4. In order to show the impact of portable and static cranes, 
crane ids 6 and 7 are assumed to be portable, that is, move among the 
berths, while five of the seven cranes are assumed to be static.

Table 4.1  Input for the Computational Study

SHIP 
NAME 

ARRIVAL 
TIME 

ARRIVAL TIME 
(IMPLEMENTED) 

DUE 
TIME 

TOTAL NUMBER OF 
LOADING/UNLOADING 

CONTAINER (TEU) 

1 MSG 9:00 10 20:00 428
2 NTD 9:00 10 21:00 455
3 CG 0:30 2 13:00 259
4 NT 21:00 22 23:50 172
5 LZ 0:30 2 23:50 684
6 XY 8:30 10 21:00 356
7 LZI 7:00 8 20:30 435
8 GC 11:30 13 23:50 350
9 LP 21:30 23 23:50 150

10 LYQ 22:00 23 23:50 150
11 CCG 9:00 10 23:50 333

(00:00–00:59) (01:00–01:59) (02:00–02:59) (22:00–22:59) (23:00–23:59)
t = 1 t = 2 t = 3 t = 23 t = 24...

Figure 4.2  Time implementation frame.
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The model is coded in GAMS 22.5 and solved with GUROBI 
solver for solving integer problems. The preliminary computational 
experimentation is conducted on NEOS server in January 2012 
(Gropp and More, 1997; Czyzyk et al. 1998; Dolan, 2001). The imple-
mented model has 8058 constraints and 3950 variables of which 3749 
of them are discrete. The execution of the solver for each instance is 
reported to have less than 1 CPU s. However, the observed real time 
is between 5 min (for corner points) and 2 h (for points lying in the 
center of the Pareto frontier).

The summary results of Pareto solutions are provided in Table 
4.2, whereas Figure 4.3 illustrates the optimum Pareto efficient 
frontier.

Table 4.2  Summary of the Solutions

SOLUTION ID 

F1: TOTAL 
SERVICE 
TIME (H) 

F2: TOTAL 
NUMBER OF 

CRANE SETUP 

NONDOMINATED 
SOLUTION (✓ IF 
NONDOMINATED) 

1 39 42 𝟀
2 39 41 ✓
3 40 38 𝟀
4 40 37 𝟀
5 40 36 ✓
6 41 35 ✓
7 42 34 𝟀
8 42 33 ✓
9 43 32 ✓

10 44 31 ✓
11 45 30 ✓
12 46 29 ✓
13 47 28 ✓
14 48 27 ✓
15 50 26 ✓
16 52 25 ✓
17 53 24 ✓
18 56 23 ✓
19 59 22 ✓
20 63 21 ✓
21 68 20 ✓
22 72 19 ✓
23 80 18 ✓
24 89 18 𝟀
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Note that not all of our computed solutions contribute to the 
Pareto efficient frontier, since some of our solutions are dominated 
by the others. As in the case of solutions #3 and #4, both with total 
service time equal to 40 min, while total number of crane setups are 
38 and 39 respectively, are dominated by solution #5 with exactly 
same total service time but with less total number of crane setups. 
Finally, we obtain 19 nondominated solutions out of 24 solutions to 
form the Pareto efficient frontier. In the study by Liang et al. (2009), 
the Pareto efficient frontier that is provided has seven solutions. With 
19 nondominated solutions, we have further developed the decision 
support tool by offering an extended number of alternatives to the 
decision maker.

The second solution in Table 4.2 gives the Pareto optimal solution, 
which minimizes the service time of the vessels. The relative compu-
tational results for the solution are given in Figure 4.4 and Table 4.3. 
The service time is the difference between the departure time and 
the arrival time of a vessel. The waiting time is defined as the time 
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Figure 4.3  Pareto efficient frontier.
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a vessel spends in the bay before being berthed; that is, the berthing 
time minus the arrival time. Handling time is the time vessel spends 
at the port. Delay is the due date minus departure time of the vessel. 
Note that time scale is converted into minutes for benchmark pur-
poses with earlier studies in literature. In this solution, total service 
time is 2165, handling time is 1555, waiting time is 610, and delay 
time is 0. The number of crane setups is 40.

The last nondominated solution in Table 4.2 (solution 23) gives the 
Pareto optimal solution, which minimizes the quay crane setups. The 
relative computational results, presented in a similar fashion for this 
solution, are given in Figure 4.5 and Table 4.4. In solution 23, total 
service time is 4396, handling time is 3880, waiting time is 516, 
and delay time is 0. The number of crane setups is 18. Note that this 
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Figure 4.4  The Gantt chart of solution 2.
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Table 4.3  Decomposition of the Objectives for Solution 2

SHIP 
NAME 

ASSIGNED 
BERTH 

WAITING 
TIME [1] 

(MIN) 

HANDLING 
TIME [2] 

(MIN) 

SERVICE 
TIME ([1] 

+ [2]) 

TOTAL 
DELAY 
(MIN) 

NUMBER 
OF CRANE 
SETUPS 

1 MSG 2 177 161 338 0 4
2 NTD 2 338 171 509 0 4
3 CG 2 0 130 130 0 3
4 NT 2 0 65 65 0 4
5 LZ 1 0 257 257 0 4
6 XY 3 73 134 207 0 4
7 LZI 4 0 163 163 0 4
8 GC 1 17 175 250 0 3
9 LP 4 0 75 75 0 3

10 LYQ 3 5 57 62 0 4
11 CCG 1 0 167 167 0 3
Total 610 1555 2165 0 40
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Figure 4.5  The Gantt chart of solution 23.



100 Deniz Ozdemir and Evrim Ursavas

solution belongs to an extreme point in the optimal Pareto efficient 
frontier. It is, therefore, foreseeable to have service time increased by a 
large extent, though it is interesting to see that the solution still does 
not cause any delays with respect to the due date given.

To provide an additional example, in Figure 4.6 and Table 4.5, 
computational results for solution 16 are reported. Here, total service 
time is 2842, handling time is 2578, waiting time is 264, and delay 
time is 0. The number of crane setups is 25.

No delay times have been encountered for the given solutions. The 
minimum total service time found in Liang et al. (2009) is reported 
as 2165 min for all vessels. Han et al. (2010) have demonstrated the 
minimum total service time as approximately 36 h for the case where 
the maximum allowable number of cranes for a vessel is set to 4. Our 
solution with 2165 min for the Pareto optimal solution, which mini-
mizes the service time of the vessels, is equal to the value found by 
Liang et al. (2009). Consequently, our study proves the optimality of 
this solution by implementing an exact algorithm approach.

In both studies by Liang et al. (2009) and Han et al. (2010), crane 
movements are defined for movements among berths. In our formula-
tion, however, we also take into account the movement among vessels, 
as the setup cost of a crane to serve a vessel is not neglected (LALB 
Harbor Safety Committee, 2012). Moreover, in their formulation, 

Table 4.4  Decomposition of the Objectives for Solution 23

SHIP 
NAME 

ASSIGNED 
BERTH 

WAITING 
TIME [1] 

(MIN) 

HANDLING 
TIME [2] 

(MIN) 

SERVICE 
TIME ([1] 

+ [2]) 

TOTAL 
DELAY 
(MIN) 

NUMBER 
OF CRANE 
SETUPS 

1 MSG 1 3 321 324 0 2
2 NTD 4 0 342 342 0 2
3 CG 3 0 389 389 0 1
4 NT 2 0 129 129 0 2
5 LZ 1 0 513 513 0 2
6 XY 3 0 534 534 0 1
7 LZI 2 0 653 653 0 1
8 GC 1 171 273 444 0 2
9 LP 3 0 113 113 0 2

10 LYQ 1 0 113 113 0 2
11 CCG 4 342 500 842 0 1
Total 516 3880 4396 0 18
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Figure 4.6  The Gantt chart of solution 16.

Table 4.5  Decomposition of the Objectives for Solution 16

SHIP 
NAME 

ASSIGNED 
BERTH 

WAITING 
TIME [1] 

(MIN) 

HANDLING 
TIME [2] 

(MIN) 

SERVICE 
TIME ([1] 

+ [2]) 

TOTAL 
DELAY 
(MIN) 

NUMBER 
OF CRANE 
SETUPS 

1 MSG 1 148 387 535 0 2
2 NTD 2 116 342 458 0 2
3 CG 3 0 195 195 0 2
4 NT 2 0 129 129 0 2
5 LZ 1 0 342 342 0 3
6 XY 4 0 178 178 0 3
7 LZI 2 0 236 236 0 3
8 GC 4 0 263 263 0 2
9 LP 3 0 113 113 0 2

10 LYQ 1 0 113 113 0 2
11 CCG 3 0 280 280 0 2
Total 264 2578 2842 0 25
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cranes are assumed as identical, and the information as to which spe-
cific crane is assigned to a vessel cannot be retrieved from the solution, 
and this decision is left to the decision maker. We, in turn, also sup-
port the decision maker by specifying the crane identities.

From the numerical results, one can conclude that when quay crane 
setup costs are ignored, the total service time of vessels decreases. A 
decision maker might choose to prefer a solution closer to the left-
hand side of the Pareto efficient frontier in Figure 4.3, if the setup 
costs are not so significant. On the other hand, in case of extreme 
setup costs of quay cranes, the decision maker is directed toward the 
solutions in the right-hand side. The Pareto efficient frontier in this 
case may be used as an efficient decision support tool for decision 
makers.

4.6  Conclusions and Further Research Directions

Port management is often faced with many challenging problems that 
require the decision makers to consider numerous issues all at a time. 
Involvement of multiple parties in the activities associated with con-
tainer terminal operations makes the port management problem even 
more complex. The presence of such complications necessitates the use 
of a decision support tool.

In this study, we propose a decision support tool for the simultane-
ous berth allocation and crane scheduling problem in consideration 
of the multiple objectives that need to be satisfied. We first extend 
the literature by better reflecting practical considerations. We then 
formulate this problem by bi-objective integer programming. To solve 
the problem, we follow an ε-constraint method–based solution algo-
rithm to acquire the nondominated berth–crane assignments and 
schedules as the Pareto optimal frontier. The decision makers may 
use the obtained optimal Pareto frontier as a decision aid tool. As 
an insight, we may say that the decisions will be made toward the 
left-hand side of the frontier if crane setup costs are not so substan-
tial. Conversely, with extreme crane costs, the decision makers are 
directed toward the solutions in the right-hand side. With this multi-
solution approach, decision maker is offered the flexibility of adjusting 
the balance within conflicting objectives.
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We would like to emphasize the fact that this study is part of 
an ongoing work. We aim to implement our model to other ports 
of the world to further examine practical considerations that may 
be required. We will work toward the potential to incorporate our 
solution procedure with in-house-developed optimization tech-
niques. As a further future work, we believe that the framework we 
have presented here may further be extended to capture more real-
istic implementations incorporating issues such as the uncertainty 
residing in the arrival time of vessels and handling time of cranes. 
Furthermore, objectives of the model may be analyzed in detail and 
restructured in parallel to the needs of the decision makers.

As last words, it should be kept in mind that this model is a deci-
sion tool that can help decision makers to understand the situation 
better, rather than finding the optimum design. By adjusting param-
eters or assigning priorities to different objectives, it is possible to 
obtain a number of satisfactory solutions; however, the ultimate deci-
sion always lies with the decision maker.
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5
Route Selection 

Problem in the Arctic 
Region for the Global 

Logistics Industry

B E K I R  S A H I N

5.1  Introduction

Logistics is a process of distribution network management and opti-
mization of the flow of resources. Therefore, logistics management 
benefits from using optimal product transportation. The transpor-
tation locations of the economic world are undergoing a dramatic 
change with the emergence of new Arctic seaways (Wilson et al. 
2004). The melting of sea ice in the northern hemisphere is being 
observed with great attention. As a result of both greenhouse effects 
and seasonal fluctuations of long-term average temperatures, a his-
torical opportunity presents itself to extend maritime transport over 
the Arctic region. For instance, the Northern Sea route shortens the 
Yokohama–London distance via the Suez Canal from 11.447 to 7.474 
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nautical miles. Figure 5.1 illustrates the Arctic Sea routes that shorten 
the traditional routes.

The possibility of a shipping route over the Arctic region will sig-
nificantly lessen time and energy spent on long transportations on a 
regular basis. However, because the possible shipping routes are still 
covered by floating ice (i.e., open ice, closed ice), the Arctic routing 
is facing an ongoing debate with its highly technical circumstances. 
Navigational track (route) optimization, entry into the ice field, and 
route selection are some challenges in this field. Among these debates, 
route selection is the main concern of this chapter and it depends on a 
number of factors such as the dimensions and the physical conditions 
of the route.

Arctic navigation is a new concept with a short literature including 
track optimization among other aspects (Thomson and Sykes 1988; 
Ari et al. 2013). Once a navigational route is selected, various stud-
ies can improve the navigational quality in terms of time, structural 
stress, and fuel consumption. However, route selection is the primary 
problem, which is not discussed in earlier studies.

The route selection problem can be categorized into static route 
selection and dynamic route selection. The static route selection 
approach is based on instant inputs of indicators while assuming 
that ice field and weather conditions are stationary over the intended 

Suez Route

Shekou

Qingdao
Porsgrunn

Narvik

Northern Sea Route

Figure 5.1  Overview on the Northern Sea Route and the Suez Route. (Adapted from Schøyen, H. 
and Bråthen, S., J. Transp. Geogr., 19, 977, 2011.)
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navigational sea field. In the case of the dynamic approach, the ice 
field and weather may have variations over the region and the size and 
direction of the vectors may change over time.

As an introduction to the problem, this chapter deals with the static 
route selection approach from the perspective of subjective judgments 
of shipmasters. It is certain that these field experts have enough expe-
rience and knowledge on ice navigation operations and winterization. 
The problem is investigated by using the fuzzy analytical hierarchy 
process (F-AHP). The reasons behind the selection of F-AHP are 
twofold: first, AHP is very useful for handling both quantitative and 
subjective matters and, second, fuzzy extension facilitates the process 
for subjects in the survey by using linguistic representations. Decision 
makers’ (DMs’) uncertainty is a common case and, based on the draw-
backs of uncertainty, fuzzy transformations help the moderator (i.e., 
researcher) to collect a span of data rather than a single crisp number 
with an unknown degree of certainty.

5.2  Route Selection Problem in the Arctic Region

Logistics activities in the Arctic region are regularly conducted by 
ferries, big roll-on/roll-off (RO-Ros), and icebreaker convoys. These 
powerful vessels leave their tracks. Therefore, recent tracks are pref-
erable for navigation in ice-covered sea regions. Figure 5.2 is an 
empirical image which shows an objective vessel and previous tracks 
opened by icebreakers or other vessels. Ice navigation becomes hard in 
such an environment, and route selection management requires field 
experience.

For vessels traveling from one point to another in ice, it is impor-
tant to detect the optimal routes that reduce travel time, fuel con-
sumption, and getting stuck in ice. Seafarers gather route information 
from various sources such as radar (e.g., automatic radar plotting aids, 
ARPA), satellite images, infrared cameras, visual recognition, and 
charts. After many continuous observations, available paths are drawn 
as shown in Figure 5.3. There are three different possible routes con-
necting the starting point to the final destination.

The average route width (ARW), slot availability (S), maximum 
width along with the track (Max), minimum width along with the 
track (Min), ice concentration (IC), route length (RL), sea depth (SD), 



108 Bekir Sahin

Objective ship

Figure 5.2  A ship prepares to navigate in ice-covered sea regions.

Objective ship

Figure 5.3  Routes for the ship navigation in ice-covered sea regions (tracks 1, 2, and 3 from 
left to right).
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and sharp bend (SB) are the eight selective parameters that affect ice 
navigation based on time, oil consumption, expenditure, and safety. 
We assume that this platform is static and that floes are constant. 
In this approach, IC (Figure 5.4), which is calculated at a ratio of 
one-tenth, roughly corresponds to an average ice concentration on the 
selected tracks.

In a narrow and straight track, if a ship meets a big piece of fast ice 
that is broken off and acts like a fender, there is a great risk of collision 
(Buysee 2007). In this research, all floes are static and we assume that 
there are no obstacles in the tracks. However, when two vessels are 
in a crossing situation, the safest way is to stop just outside the track, 
which we call a “slot” (see Figure 5.5). If there is an available slot, the 
safer method is to use the slot for clearing the track and the vessel 
drifts into slot till the track is cleared. Once the vessel has passed, one 
can easily get unstuck by an astern maneuver.

Open water <1/10

1–3/10

4–6/10

7–8/10

9/10

9+/10

10/10

Ice concentration

Very open drift

Very close pack

Very close pack

Open drift

Close pack

Compact/consolidated ice

Figure 5.4  Ice concentration diagram.
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Sea depth is crucial for the vessels’ keels, hulls, and propellers. Hard 
ice may damage the vessel physically and stop the maneuverability 
of the vessel. Engaging an SB is another navigational challenge in 
ice-covered waters. This maneuvering technique requires special skill 
and experience (see Figure 5.6). The motor vessel’s speed should be 
reduced to half 5 cables ahead (185 × 5 m), and the vessel should be 
steered to the left and then given the command of full astern.

5.3  Methodology

5.3.1  Linguistic Variable

In a natural or artificial language, a linguistic variable is, for example, 
weather, and the values are expressed as fuzzy words or sentences such 
as hot, very hot, cold, and very cold instead of numbers (Bellman and 
Zadeh 1977).

A linguistic variable has an approximation character, which is 
either too complex or unclear to be described in quantitative terms. 
Linguistic variables are commonly applied in humanistic systems such 

Figure 5.5  Track meet of two vessels and slot availability.
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as human decision processes, artificial intelligence, pattern recogni-
tion, law, medical realms, economy, and related areas (Zadeh 1975).

5.3.2  Fuzzy Sets and Triangular Fuzzy Numbers

A fuzzy set was first developed by Zadeh (1965) and introduced by 
Bellman and Zadeh (1977). A triangular fuzzy number is a convex 
and normalized fuzzy set �A and � x( )Aµ  is the continuous linear func-
tion, which is a membership function of �A.

The definition of a triangular fuzzy number �A l m u= ( , , ) is
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where
l and u are, respectively, the lower (smallest possible value) and 

upper (most promising value) bounds of the fuzzy number
�A and m is the midpoint

Figure 5.6  Engaging a sharp bend.
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A triangular fuzzy number is shown in Figure 5.7.
Consider two positive triangular fuzzy numbers (l1,m1,u1) and 

(l2,m2,u2); then

	 l m u l m u l l m m u u1 1 1 2 2 2 1 2 1 2 1 2, , , , ,,( ) +( ) = + + +( )

	 l m u l m u l l m m u u1 1 1 2 2 2 1 2 1 2 1 2, , , , ,,( ) ⋅( ) = ⋅ ⋅ ⋅( )

	
l m u

u m l
1 1 1

1

1 1 1

1 1 1
, , , ,( ) ≈

⎛

⎝
⎜

⎞

⎠
⎟

−

	 l m u k l m uk k k1 1 1 1 1 1, , , ,( ) ⋅ = ( )⋅ ⋅ ⋅

where k is a positive number.
The vertex method is used to calculate the distance between two 

triangular fuzzy numbers (Chen 2000):

	
d m n l l m m u uv � �,( ) = − + −( ) + −( )⎡

⎣
⎤
⎦( )1

3
1 2

2
1 2

2
1 2

2

5.3.3  Fuzzy Analytic Hierarchy Process

Saaty (1980) proposed the first AHP as a decision-making tool. This 
method is widely used by researchers (Weck et al. 1997; Lee et al. 1999; 
Leung and Cao 2000). The main purpose of AHP is to use the experts’ 
knowledge; however, the classical AHP does not reflect the human 
thinking style (Chang 1996) because it uses the exact values when 

M2 M1

u2 u1d

V(M2 ≥ M1)

l2 m2 m1l10

Figure 5.7  The intersection between M1 and M2.
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comparing the criteria with alternatives (Cakir and Canpolat 2008). 
There has been a lot of criticism regarding the classical AHP because 
of its unbalanced scale, uncertainty, and imprecision of pairwise com-
parisons (Kahraman et al. 2004). F-AHP is more accurate and has 
been developed to handle these shortcomings. Laarhoven and Pedrycz 
(1983) proposed the first F-AHP by the comparisons of fuzzy ratios. 
Buckley (1985) worked on trapezoidal fuzzy numbers to evaluate the 
alternatives with respect to the criteria. For the pairwise comparisons, 
Chang (1996) used the extent analysis method to calculate the syn-
thetic extent values.

The steps of the extent synthesis method are as follows.
Let X = {x1, x2, …, xn} be an object set and G = {g1, g2, …, gn} be a 

goal set. Each object is taken, and an extent analysis is performed for 
each goal. Therefore, m extent analysis values for each object can be 
obtained:

	 M M M i ng g g
m

i i i
1 2, , , , , , ,… = …1 2 	 (5.2)

where all M g
j  (  j = 1, 2, …, m) are triangular fuzzy numbers.

Step 1: For the ith object, the value of the fuzzy synthetic extent 
is defined as

	
S M Mi g

j

j

m

g
j

j

m

i

n

i i

= ==

−

∑ ∑∑⊗
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥1 11

1

	 (5.3)

Obtaining M g
j

j
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i=∑ 1
 the fuzzy addition operation of m 

extent analysis values for a particular matrix is performed:
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The fuzzy addition operation of M g
j
i
 ( j = 1, 2, …, m) values is 

performed:
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The inverse of the vector in Equation 5.3 is computed:
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Step 2: The height of a fuzzy set hgt(A) is the maximum of the 
membership grades of A, hgt(A) = supx∈X μA(x).
The degree of possibility of M2 = (l2, m2, u2) ≥ M1 = (l1, m1, u1) 

is defined as follows:

	
V M M x y

y x
M M2 1 1 2≥( ) = ( )⎢⎣ ⎥⎦

≥

sup min ( ), ( )μ μ 	 (5.7)

and can also be expressed as
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(5.8)

Figure 5.8 illustrates that d is the y-axis value of the highest 
intersection point D between 1Mµ  and .M2µ

Both V(M1 ≥ M2) and V(M2 ≥ M1) should be known for the 
comparison of M1 and M2.

1

1

Aμ~(x)

A1
~ A2

~ A3
~ A4

~ A5
~

3 5 7 9

Figure 5.8  Fuzzy number of linguistic variable set.
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Step 3: The degree of possibility for a convex fuzzy number to be 
greater than k convex fuzzy numbers Mi (i = 1, 2, …) can be 
defined by 

V(M ≥ M1, M2, …, Mk) = V[(M ≥ M1), (M ≥ M2), …, 
(M ≥ Mk)] = min V(M ≥ Mi), i = 1, 2, 3, …, k.	 (5.9)

Assume that d(Ai) = min V(Si ≥ Sk) for k = 1, 2, …, n; k ≠ i. Then 
the weight vector is given by

	 ʹ = ʹ( ) ʹ( ) … ʹ( )( )W d A d A d An
T

1 2, , , 	 (5.10)

where Ai (i = 1, 2, …, n) are n elements.
Step 4: Normalization and normalized weight vectors are

	 W d A d A d An
T

= ( ) ( ) ( )( )1 2, , ,… 	 (5.11)

where W is a nonfuzzy number.

The nonnumerical values are expressed as fuzzy linguistic variables, 
which help the DM to describe the pairwise comparison of each cri-
terion with its alternative, as reflected in Saaty’s (1977) nine-point 
fundamental scale (see Figure 5.9).

The assigned linguistic comparison terms (Chiclana 1998; Chan 
et al. 2000; Cakir and Canpolat 2008; Gumus 2009) and their equiv-
alent fuzzy numbers considered in this chapter are given in Table 5.1.

For solving the current problem, an individual aggregation matrix 
is conducted by expert prioritization, which is called the lambda 
coefficient.

Let A = (aij)n × n, where aij > 0 and aij × aji = 1, be a judgment matrix. The 
prioritization method denotes the process of acquiring a priority vector.

w = (w1, w2,  …, wn)T where wi ≥ 0 and wi
i

n
=

=∑ 1
1

, from the 
judgment matrix A.

Let D = {d1, d2, …, dm} be the set of experts, and λ = {λ1, λ2, …, λm} 
be the weight vector of the DMs, where λk > 0, k = 1, 2, …, m, and 

λk
k

m
=

−∑ 1
1

.

Let E = {e1, e2, …, em} be the set of the experience in the professional 
career (in years for this chapter) for each expert, and λk for each expert 
is defined by
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Decision making
for Arctic route

selection

Definition of the
objective

Determination of the alternatives
for the Arctic route selection

problem

Determination of the criteria for
the Arctic route selection problem

Structure of the decision
hierarchy for the Arctic route

selection problem

Data collection and pairwise
comparisons

Is the model acceptable?
CCI < 0.37

Consistency check loop

Yes

Data analysis and evaluation of
the alternative

Selection of the best alternative
for the Arctic route problem

GF-AHP

AHP

Expert
consultation
by survey
method

No

Figure 5.9  GF-AHP procedure.



117Route Selection Problem in the Arctic

	

λk
k

k
k

m

e

e
=

=∑ 1

	 (5.12)

Let A k aij
k

n n( ) ( )( )= ×  be the judgment matrix that is gathered by the 
DM dk.

wi
k( ) is the priority vector of criteria for each expert calculated by
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The individual priority aggregation is defined by
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where wi
w( ) is the aggregated weight vector. Then the extent synthesis 

method (Chang 1996) is applied for the consequent selection. A pair-
wise comparison between the alternatives i and j for criterion C is 
defined by

	
a

A
A

ij
C r

i

r
j= 	 (5.15)

where Ar
i is the rank valuation set of alternative i. By the final con-

sistency control, the procedure of generic fuzzy AHP (GF-AHP) is 

Table 5.1  Membership Function of Linguistic Scale

FUZZY 
NUMBER LINGUISTIC SCALES 

MEMBERSHIP 
FUNCTION INVERSE 

�A1
Equally important (1, 1, 1) (1, 1, 1)

�A2
Moderately important (1, 3, 5) (1/5, 1/3, 1)

�A3
More important (3, 5, 7) (1/7, 1/5, 1/3)

�A4
Strongly important (5, 7, 9) (1/9, 1/7, 1/5)

�A5
Extremely important (7, 9, 9) (1/9, 1/9, 1/7)
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achieved. Consistency control and centric consistency index (CCI) for 
F-AHP applications are described in the following section.

5.3.4  Centric Consistency Index

According to Saaty’s approach, all DMs’ matrix should be consistent 
to analyze the selection problem (Saaty and Vargas 1987). For the 
consistency control of the F-AHP method, Duru et al. (2012) pro-
posed a CCI based on the geometric consistency index (Crawford and 
Williams 1985; Aguarón and Moreno-Jimenez 2003). The calculation 
of the CCI algorithm is as follows:

	

CCI A
n n

a a a

W W W

i j

Lij Mij Uij

Li Mi

( ) =
− −

+ +⎛

⎝
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−
+ +

<
∑2

1 2 3( )( )
log

log UUi Lj Mj UjW W W
3 3

2

log+
+ + ⎞

⎠
⎟

	
(5.16)

When CCI(A) is 0, A is fully consistent. Aguarón also expresses the 
thresholds ( )GCI  as ( )GCI  = 0.31 for n = 3, ( )GCI  = 0.35 for n = 4, and 
( )GCI  = 0.37 for n > 4. When CCI(A) < ( ),GCI  it means that this matrix 
is sufficiently consistent.

5.4  GF-AHP Design and Application for Track Selection

GF-AHP is a novel extended form of conventional methods of 
F-AHP (Bulut et al. 2012). GF-AHP is applied to our intended prob-
lem because of its many novel contributions over traditional AHP 
methods. First, GF-AHP is able to execute uncertain consultations. 
Second, GF-AHP proposes a DM weighting algorithm to combine 
with the F-AHP. Third, GF-AHP is improved for direct numerical 
inputs. Fourth, GF-AHP proposes a consistency check index method. 
The GF-AHP procedure consists of these superior qualities.

Arrangement of the hierarchy is important when using GF-AHP. 
The determination of the objectives, criteria, and alternatives are 
placed in a hierarchical structure (Figure 5.10). By a presurvey method, 
all criteria are determined. The main criteria such as the ARW, S, 
Max, Min, IC, RL, SD, and SB are analyzed for their impact on the 
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alternatives. Then the survey is applied to 12 DM. Seven of them are 
master mariners, three of them are company representatives, and two 
of them are academicians. Figure 5.10 shows the corresponding hier-
archical design of the track selection problem.

The F-AHP approach is employed to determine the weights of cri-
teria and alternative components of the decision hierarchies. In the 
application of the AHP approach, a pairwise comparison table is 
formed.

As a first step in the application of the F-AHP approach, for each 
criterion, weights and priorities are compared pairwise using a fuzzy 
extension of Saaty’s 1–9 scale (Table 5.1).

The F-AHP approach is also applied to calculate weights of alter-
natives for each criterion (Table 5.2). Table 5.3 shows the alternatives 
for the track selection and their symbols.

For the decision-making process, a pairwise comparison survey was 
conducted and reported as follows. The individual fuzzy judgment 

Track selection

ARW Max

T1 T2 T3

Min IC RL SD SBS

Figure 5.10  Hierarchy of the track selection process.

Table 5.2  Criteria for the Model of Track Selection and Their Symbols

CRITERIA 
SYMBOLS OF EACH 

CRITERION 

Average route width ARW
Slot availability S
Maximum width alongside the track Max
Minimum width alongside the track Min
Ice concentration IC
Route length RL
Sea depth SD
Sharp bend SB
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matrices, which assess criteria-to-criteria comparison, are presented 
in Table 5.4. Lambda (λ) is the expertise priority of the DM based on 
the time spent for this industry.

Table 5.5 shows the individual fuzzy priority vector and aggregated 
weight vector. Each DM usually finds that ARW is the most impor-
tant factor with its 0.34 value (midpoint) and S is the second crucial 
indicator (0.27). Other aggregated weight coefficients that contribute 
to the final outcome are 0.18, 0.17, 0.11, 0.10, and 0.07.

The mean aggregated weight (MAW) is calculated for each crite-
rion as 0.27, 0.22, 0.09, 0.16, 0.10, 0.15, 0.10, and 0.07, respectively 
(Table 5.6). The aggregated weight vector is computed by the expert 
priority vector of DMs (λ) and the individual priority vector of each 
DM. The result is consistent as the CCI is 0.01 less than the threshold 
of 0.37.

The extent synthesis is performed for the Arctic route selection 
problem as follows:

SARW = (8.81, 19.81, 30.01) ⊗ (1/45.84, 1/86.31, 1/132.89) = (0.07, 
0.23, 0.65)

SS = (7.68, 17.28, 26.41) ⊗ (1/52.64, 1/100.22, 1/153.81) = (0.06, 
0.20, 0.58)

SMax = (4.20, 5.82, 8.88) ⊗ (1/52.64, 1/100.22, 1/153.81) = (0.03, 
0.07, 0.19)

SMin = (6.77, 13.24, 20.38) ⊗ (1/52.64, 1/100.22, 1/153.81) = (0.05, 
0.15, 0.44)

SIC = (4.71, 6.97, 11.27) ⊗ (1/52.64, 1/100.22, 1/153.81) = (0.04, 
0.08, 0.25)

SRL = (6.49, 11.26, 16.40) ⊗ (1/52.64, 1/100.22, 1/153.81) = (0.05, 
0.13, 0.36)

SSD = (4.04, 7.59, 10.93) ⊗ (1/52.64, 1/100.22, 1/153.81) = (0.03, 
0.09, 0.24)

Table 5.3  Alternatives for the Model of Track 
Selection and Their Symbols

ALTERNATIVES SYMBOLS OF EACH ALTERNATIVE 

Track 1 T1

Track 2 T2

Track 3 T3
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SB = (3.13, 4.34, 8.63) ⊗ (1/52.64, 1/100.22, 1/153.81) = (0.02, 
0.05, 0.19)

V(SARW ≥ SS) = V(SARW ≥ SMax) = V(SARW ≥ SMin) = V(SARW ≥ SIC) = 
V(SARW ≥ SRL) = V(SARW ≥ SSD) = V(SARW ≥ SB) = 1

V (S S ≥ SA RW) = V (S S ≥ S M in)  = V (S S ≥ S IC)  = V (S S ≥ S R L)  = 
V(SS ≥ SSD) = V(SS ≥ SB) = 1

V(SS ≥ SMax) = (0.07 − 0.23)/(0.20 − 0.58) − (0.23 − 0.07) = 0.95
V(SMax ≥ SARW) = 0.47, V(SMax ≥ SS) = 0.52, V(SMax ≥ SMin) = 0.63, 

V(SMax ≥ SIC) = 0.92
V(SMax ≥ SRL) = 0.69, V(SMax ≥ SSD) = 0.91, V(SMax ≥ SB) = 1
V(SMin ≥ SARW) = 0.86, V(SMin ≥ SS) = 0.91, V(SMin ≥ SMax) = 

V(SMin ≥ SIC) = V(SMin ≥ SRL) = V(SMin ≥ SSD) = V(SS ≥ SB) = 1
V(SIC ≥ SARW) = 0.57, V(SIC ≥ SS) = 0.63, V(SIC ≥ SMax) = 0.73, 

V(SIC ≥ SMin) = 0.73, V(SIC ≥ SRL) = 0.79, V(SIC ≥ SSD) = 0.99, 
V(SIC ≥ SB) = 1

V(SRL ≥ SARW) = 0.79, V(SRL ≥ SS) = 0.85, V(SRL ≥ SMax) = 0.94, 
V(SRL ≥ SMin) = 0.94, V(SRL ≥ SIC) = V(SRL ≥ SSD) = V(SRL ≥ SB) = 1

V(SSD ≥ SARW) = 0.54, V(SSD ≥ SS) = 0.60, V(SSD ≥ SMax) = 0.71, 
V(SSD ≥ SMin) = 0.71, V(SSD ≥ SIC) = 1, V(SSD ≥ SRL) = 0.77, 
V(SSD ≥ SB) = 1

V(SB ≥ SARW) = 0.40, V(SB ≥ SS) = 0.46, V(SB ≥ SMax) = 0.55, 
V(SB ≥ SMin) = 0.55, V(SB ≥ SIC) = 0.80, V(SB ≥ SRL) = 0.60, 
V(SB ≥ SSD) = 0.80

Calculation of the priority weights for criteria is completed by using 
Equation 5.7:

d′(ARW) = min(1, 1, 1, 1, 1, 1, 1) = 1
d′(S) = min(0.95, 1, 1, 1, 1, 1, 1) = 0.95
d′(Max) = min(0.47, 0.52, 0.63, 0.92, 0.69, 0.91, 1) = 0.47
d′(Min) = min(0.86, 0.91, 1, 1, 1, 1, 1) = 0.86
d′(IC) = min(0.57, 0.63, 0.73, 0.73, 0.79, 0.99, 1) = 0.79
d′(RL) = min(0.79, 0.85, 0.94, 0.94, 1, 1, 1) = 0.79
d′(SD) = min(0.54, 0.60, 0.71, 0.71, 1, 0.77, 1) = 0.54
d′(B) = min(0.40, 0.46, 0.55, 0.55, 0.80, 0.60, 0.80) = 0.40

If it is normalized, the priority weight is computed as d(C) = (0.18, 
0.17, 0.08, 0.15, 0.10, 0.14, 0.10, 0.07).
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Then, similar steps are followed for the alternatives. Table 5.7 
indicates the aggregated fuzzy judgment matrix under each criterion, 
which is calculated from the DMs’ individual fuzzy judgment 
matrices.

Table 5.8 presents the final outputs of the route selection problem. 
Track 3 is found to be the most feasible route by the AHP expert 

Table 5.7  Aggregated Fuzzy Judgment Matrix for Alternatives of Track Selection under 
Each Criterion

CRITERIA T1 T2 T3 MAW 

ARW T1 (1, 1, 1) (0.33, 0.60, 1.09) (0.30, 0.45, 0.70) 0.19
T2 (0.91, 1.67, 3.01) (1, 1, 1) (0.30, 0.35, 0.47) 0.26
T3 (1.43, 2.23, 3.34) (2.12, 2.86, 3.39) (1, 1, 1) 0.55

GCI = 0.03
Slot T1 (1, 1, 1) (0.53, 0.68, 0.97) (0.50, 0.71, 1.04) 0.26

T2 (1.03, 1.48, 1.90) (1, 1, 1) (0.45, 0.55, 0.79) 0.31
T3 (0.96, 1.40, 1.98) (1.27, 1.83, 2.22) (1, 1, 1) 0.44

GCI = 0.08
Max T1 (1, 1, 1) (0.23, 0.36, 075) (0.30, 0.49, 0.98) 0.19

T2 (1.34, 2.81, 4.41) (1, 1, 1) (0.32, 0.43, 0.66) 0.32
T3 (1.02, 2.06, 3.29) (1.53, 2.33, 3.15) (1, 1, 1) 0.49

GCI = 0.06
Min T1 (1, 1, 1) (0.39, 0.52, 0.82) (0.35, 0.44, 0.62) 0.20

T2 (1.22, 1.91, 2.59) (1, 1, 1) (0.65, 0.79, 0.98) 0.36
T3 (1.61, 2.29, 2.84) (1.03, 1.27, 1.54) (1, 1, 1) 0.44

GCI = 0.01
IC T1 (1, 1, 1) (0.45, 0.64, 1.06) (0.39, 0.51, 0.76) 0.22

T2 (0.94, 1.57, 2.23) (1, 1, 1) (0.67, 0.99, 1.24) 0.36
T3 (1.32, 1.98, 2.58) (0.81, 1.01, 1.50) (1, 1, 1) 0.41

GCI = 0.05
RL T1 (1, 1, 1) (0.36, 0.57, 0.99) (0.37, 0.50, 0.75) 0.21

T2 (1.01, 1.75, 2.76) (1, 1, 1) (0.37, 0.51, 0.74) 0.30
T3 (1.33, 2.01, 2.70) (1.34, 1.98, 2.74) (1, 1, 1) 0.49

GCI = 0.03
SD T1 (1, 1, 1) (0.41, 0.61, 1.04) (0.39, 0.51, 0.77) 0.23

T2 (0.97, 1.64, 2.43) (1, 1, 1) (0.59, 0.92, 1.28) 0.36
T3 (1.30, 1.95, 2.59) (0.78, 1.09, 1.68) (1, 1, 1) 0.41

GCI = 0.04
SB T1 (1, 1, 1) (0.36, 0.57, 0.99) (0.36, 0.58, 0.95) 0.22

T2 (1.01, 1.75, 2.76) (1, 1, 1) (0.32, 0.47, 0.71) 0.29
T3 (1.05, 1.73, 2.81) (1.41, 2.12, 3.11) (1, 1, 1) 0.49

GCI = 0.03
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consultation. Superiority of the selected route is quite explicit as the 
difference between the first and second selection is 0.17.

5.5  Conclusion

In the traditional approach, the shortest sea route is usually pre-
ferred as the cost aversion drives DMs, especially for ice naviga-
tion because less time can be spent in ice. On the other hand, the 
safety of the route is a subjective factor that cannot be directly 
measured and evaluated. By using the F-AHP method, the safety 
risk is indirectly embedded into the decision-making process by 
consulting with experts. Navigational safety in the Arctic region 
is mostly related with the dimensional limitations of route. The 
empirical results exposed an opposite ranking rather than the tra-
ditional expectations. The shortest sea route (track 1) is the last 
optimum while the longest route (track 3) is the best among three 
alternatives.

It is clear that the shortest navigational route does not guarantee 
the safety of navigation and the group of experts in the field also 
agreed on the objective of this study by defining a difference between 
the length of the route and other dimensions.
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6
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6.1  Introduction

İstanbul Ecza Deposu was established in 1989 as a logistics company 
that makes daily medicine distribution to pharmacies. Company 
has 4000 contractual pharmacies and 14 warehouses, which have 
their own serving regions. In this study, central warehouse located 
in Bahçelievler, Istanbul, is addressed. Currently, it has 22 predeter-
mined routes serving to contractual pharmacies. While a new phar-
macy is added to the system, its route assignment is done according to 
its physical location and the capacity of each route.
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When the number of pharmacies increases, the timing of the orders 
may be problematic and the customers could be dissatisfied if the route 
assignments are done inefficiently. The profitability of the specified 
routes depends on the demands of each pharmacy. In addition, the 
variability in the specified delivery time negatively affects the firm’s 
customers. Hence, the route design is an important factor that affects 
both profitability and customer experience. In this study, the problem 
is to efficiently determine the route assignment for each pharmacy 
while maximizing the profitability and minimizing the lateness in the 
delivery time. Therefore, it is a type of vehicle routing problem (VRP) 
without any capacity restrictions and distinct vehicle types.

Supply chain is a network of facilities and distribution alterna-
tives that manage the functionality of supplement of materials, the 
planning issues related to production, and the distribution of finished 
goods to the customer (Cooper et al., 1997). In supply chain, the 
logistics cost constitutes considerable part of the total supply chain 
costs. Therefore, efficiently planning the logistics issues will improve 
the overall performance of a supply chain.

The VRP is the well-known logistics planning problem that tries 
to find the optimal distribution routes for available vehicles. The main 
components of VRP are drivers, depots, customers, and vehicles. It 
is a combinatorial optimization problem widely studied in literature. 
Eksioglu et al. (2009) gave a taxonomic review of  VRPs.

One of the bus network design problems was dealt by Szeto and 
Wu (2011). Their study’s main objective is to develop the current bus 
services by lowering the transfers and total travel time of the pas-
sengers. In solution methodology, a genetic programming heuristic 
procedure had been used to overcome frequency setting and route 
design problem. Another article that investigated a VRP model is 
recently published by Liu et al. (2013). The intelligent-van approach 
to Telematics system is the problem considered in that study. This 
system is responsible for distributing pharmaceutical materials such 
as drugs, from their depot to specified pharmacies through delivery 
routes without predetermining the assigned pharmacies.

In VRP models, first obtaining clusters of customers and then 
optimizing the routes based on that clusters is one of the in-use solu-
tion methods. Cluster analysis distinguishes a heterogeneous group of 
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records into more homogenous classes (Nispet et al., 2009). The aim 
of the clustering is to find the objects that are similar to one another 
and different from the objects in other groups. The major similarities 
with a group and the major contradistinction between groups allow 
better or more distinct clustering (Kumar et al., 2006). Özdamar and 
Demir (2012) described a hierarchical clustering and a routing method 
(HOGCR) for large-scale disaster relief logistics planning. They used 
a multilevel clustering algorithm in which demand nodes are divided 
into compact clusters in all planning steps. After clustering, the rout-
ing problem was defined by network flow models and solved on a 
platform that makes parallel computing. In another study, a capaci-
tated location-routing problem is solved by a greedy clustering method 
(Mehrjerdi and Nadizadeh, 2013). As customers have fuzzy demands, 
a fuzzy chance-constrained programming model is proposed to solve 
the mentioned problem. The efficiency of the new approach is tested 
on a number of numerical experiments. Yücenur and Demirel (2011) 
offered a new geometric shape-based genetic clustering algorithm in 
order to solve a multidepot VRP model. When the performance of the 
proposed approach is compared with the nearest neighbor algorithm, 
the model is better in terms of total distances and computational times.

In this study, two mathematical models are established to plan a 
pharmaceutical company’s medicine distribution. First, a mathemati-
cal model is developed for clustering the pharmacies according to 
location similarity, and another model is developed to optimize the 
transportation of drugs from a pharmaceutical warehouse to the con-
tractual pharmacies depending on their daily demands. By using the 
data obtained from the company, the routes are reorganized while 
satisfying restrictions and optimizing its objectives. The developed 
model is solved by using GAMS software (Brooke et al., 1998) and 
CPLEX solver (ILOG, 2012). The results are compared with the cur-
rent situation, and different scenario analyses are performed.

6.2  Problem Definition

Currently, Ecza Koop provides services from 1 head office and 
13 branches, which are located in Istanbul. In this project, head 
office’s distribution problem is studied. Company’s head office is 
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currently using 22 basic routes to provide drugs to their pharmacies 
in Istanbul. There are a total of 576 pharmacies in this region. The 
company has 19 vehicles. Orders are given to company by phar-
macies according to the quantity determined the daily periodical 
agreements. Orders are transferred by drivers usually in the morn-
ing, and determinations of the routes are based on drivers’ deci-
sions. Moreover, when the number of pharmacies increases, they are 
included in the currents routes, and the route cycle time is affected. 
Therefore, the planning and routing become problematic and should 
be optimized.

6.3  Proposed Mathematical Models

This study covers two mathematical models for clustering and vehicle 
routing.

6.3.1  Mathematical Model for Clustering

Cluster analysis is a comprehensive concept that is used to obtain 
groups of pharmacies that are close to each other. Clustering model 
is formulated to obtain groups of pharmacies that are close to each 
other. There are two index set in the clustering model:

i,j = pharmacies  (i,j = 1,…,I)
k = clusters (k = 1,…,K)

The following parameters are used in the proposed clustering 
model:

ei: latitude of pharmacy i
bi: longtitude of pharmacy  i
pi: profit of pharmacy i (TL)
Pmax: maximum profit for each cluster  (TL)
disij: distance between pharmacy i and pharmacy j (km)

The distance between pharmacy i and pharmacy j is calculated by 
using the following equation:

	
dis e e b bij i j i j= −( ) + −( )2 2 	 (6.1)
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The model’s decision variables are listed as follows:

Dmax = maximum  diameter  of  constructed  clusters  (km)
Dk = diameter  of  cluster  k  (km)

X
i k

ik =
⎧
⎨
⎩

1
0

,

,

if pharmacy is in cluster  

otherwise

Nmax = maximum  number  of  pharmacies  in  a  cluster
Nk = number  of  pharmacies  in  cluster  k
TPk = total  profit  of  cluster  k

The following mathematical model is developed to obtain the clusters 
of pharmacies:

	 min max maxz D N= + 	 (6.2)

subject to

	 D dis X X i j kk ij ik jk≥ ⋅ + −( ) ∀1 , , 	 (6.3)

	
X iik

k

= ∀∑ 1 	 (6.4)

	 D D kk ≤ ∀max 	 (6.5)

	
X N kik k

i

= ∀∑ 	 (6.6)

	 N N kk ≤ ∀max 	 (6.7)

	
TP p X kk i ik

i

= ⋅ ∀∑ 	 (6.8)

	 TP P kk ≤ ∀max 	 (6.9)

	 D Nmax max, ≥ 0 	 (6.10)

	 D TP N kk k k, , ≥ ∀0 	 (6.11)

	 X i kik ∈{ } ∀0 1, , 	 (6.12)
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In this model, objective function given in Equation 6.2 is defined as 
minimizing the total of the maximum diameter of constructed clusters 
and the maximum number of pharmacies in each cluster. Constraint 
(6.3) ensures that if two pharmacies j and k are in the same cluster, the 
distance between them should be lower than the maximum diameter 
of that cluster. Constraint (6.4) shows that each pharmacy should be 
assigned to a single cluster. The maximum diameter of overall clus-
ters is calculated by using Equation 6.5. Equation 6.6 calculates the 
total number of pharmacies in each cluster. The maximum number of 
pharmacies in constructed clusters is obtained by using Equation 6.7. 
Equation 6.8 calculates the profit of each one of the clusters. Equation 
6.9 gives the maximum profit restriction to each one of the clusters. 
Equations 6.10 through 6.12 give the integrality and nonnegativity of 
the decision variables.

6.3.2  Mathematical Model for Vehicle Routing

The VRP defines routes for available vehicles. The main components 
of VRP are drivers, customers, and vehicles. The main purpose of 
using VRP in this study is to find the optimal routes for distribution 
while maximizing total profit. The following indices and parameters 
are used in the proposed mathematical model.

i, j: pharmacies (i,j = 1,…,I)
dij: distance from node i to node j (m)
pi: monthly average profit of node i (TL)
fcw: monthly fixed cost of workers (TL)
fcv: monthly fixed cost of vehicles (TL)
vcv: variable cost of vehicles (TL/m)
ttl: travel time limit for each route (min)
nt: number of tours for each vehicle per day
nd: number of days serviced in a month
nr: total number of routes
s: average speed of vehicles (m/min)
M: a large number

h
i j

ij =
1
0
,
,

if pharmacy and pharmacy are in the same cluster
otherwisee

⎧
⎨
⎩
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The model’s decision variables are listed as follows:

	
X

j i
ij =

⎧
⎨
⎩

1
0
,
,

if pharmacy is visited after pharmacy
otherwise

	 Ai = arrival time of vehicle to pharmacy i (min)

The model of the VRP is as follows:

	
maxz p nr fcw fcv X d vcv nt ndi ij

jii

ij= − ∗ + − ∗ ∗ ∗ ∗∑∑∑ ( ) 	

(6.13)

	
h X j j j Iij ij

i

∗ = ∀ ≠ ≠∑ 1 1: , 	 (6.14)

	
h X i i i Iij ij

j

∗ = ∀ ≠ ≠∑ 1 1: , 	 (6.15)

	
h X nri I i I

i

, ,∗ =∑ 	 (6.16)

	
h X nrj j

j

1 1, ,∗ =∑ 	 (6.17)

	 A1 0= 	 (6.18)

	
A A

d
s

M X i jj i
ij

ij≥ + − − ∀( ) ,1 	 (6.19)

	
A

d
s

ttl i i Ii
i I+ ≤ ∀ ≠, : 	 (6.20)

	 A ii ≥ ∀0 	 (6.21)

	 X i jij ∈{ } ∀0 1, , 	 (6.22)

In this model, the objective function given in Equation 6.13 is to 
maximize the total profit. Equation 6.14 denotes that for each phar-
macy, there must be exactly one incoming arc which originates from 
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the warehouse or another pharmacies. Equation 6.15 denotes that 
there must be exactly one outgoing arc for each pharmacy, which goes 
to other pharmacies or the warehouse.

Equations 6.16 and 6.17 ensure that the total number of incom-
ing and outgoing arcs to and from the warehouse should be equal to 
the total number of roads, respectively. Equation 6.18 shows that the 
arrival time of the warehouse is 0. Equation 6.19 is used to calculate 
the arrival time of each location. Equation 6.20 ensures that the total 
traveling time of each vehicle has to be equal or less than the maxi-
mum duration of a vehicle trip. Equations 6.21 and 6.22 give the 
integrality and nonnegativity of decision variables.

6.4  Computational Results

This study is implemented by using the real data obtained from 
İstanbul Ecza Koop. Among the current routes, three neighbor 
routes of them are problematic. Therefore, the pharmacies that exist 
in those routes are considered in the models. There are 71 phar-
macies that should be clustered, and new sequence of visits should 
be determined. The necessary coordinates of the pharmacies and 
distance calculations are performed by the help of Google Earth 
software.

6.4.1  Results of Clustering Model

The developed mathematical models are solved by GAMS software 
(Brooke et al., 1998) and CPLEX solver (ILOG, 2012). The opti-
mal solution of the models gives that there are 23 pharmacies in 
Cluster 1, 24 pharmacies in Cluster 2, and 24 pharmacies in Cluster 3. 
The diameter, number of pharmacies, and profit for each cluster are 
shown in Table 6.1.

Table 6.1  Diameter, Number of Pharmacies, and Profit for 
Each Cluster

ITEMS CLUSTER 1 CLUSTER 2 CLUSTER 3 

Number of pharmacies 23 24 24
Diameter (km) 0.099 0.082 0.084
Profit (TL) 251,216 370,943 369,531
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6.4.2  Results of VRP

The main purpose of using VRP in this study is to find the optimal 
routes for distribution while maximizing total profit. The following 
assumptions are considered for VRP model:

•	 The company has single vehicle dedicated to each route.
•	 Monthly average profits for the year 2012 are used.
•	 The number of tours per day of each vehicle is assumed as 4.
•	 The total number of days serviced in a month is 22.
•	 Average speed of vehicles is assumed as 50 km/h.
•	 For each tour, maximum time limit is 45 min.
•	 Fixed costs of vehicles and drivers are taken as 933 and 

1800 TL, respectively.
•	 Service time is negligible.

The proposed VRP model is solved by using GAMS software (Brooke 
et al., 1998) and CPLEX 12.0 solver (ILOG, 2012), and the optimal 
routes are determined. The proposed mathematical model is solved 
for three different scenarios. At each scenario, different traveling time 
limit is used for the constructed routes. Table 6.2 gives the result of 
these scenarios and the comparison of the current and proposed solu-
tions. For each scenario, traveling time for each cluster is lower than 
the current solution’s traveling time values. Moreover, the total profit is 
better than the current solution as the visiting sequences of the phar-
macies are optimized. Therefore, using the proposed mathematical 
models will improve the drug distribution system and increase profits.

Furthermore, the characteristics of the proposed mathematical 
models are given in Table 6.3. As it is seen, the computational times 
are considerably low, and the optimal solutions are obtained in a very 
short amount of time.

Table 6.2  Comparison of Current and Proposed Solutions

COMPARISONS 

PROPOSED SOLUTION CURRENT PLAN 

ROUTE 1 ROUTE 2 ROUTE 3 ROUTE 1 ROUTE 2 ROUTE 3

Number of pharmacies 24 24 23 24 24 23
Traveling time (limit: 40 min) 33.71 28.74 26.86 80 90 90
Traveling time (limit: 50 min) 40.45 34.49 32.23 80 90 90
Traveling time (limit: 60 min) 50.56 43.11 40.29 80 90 90
Total profit (TL) 958,813 938,778
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6.5  Conclusion

The logistic planning problem of a pharmaceutical warehouse is stud-
ied as an optimization problem. The problem is taken from İstanbul 
Ecza Koop, a pharmaceutical warehouse that distributes medicines to 
the contracted pharmacies. As the number of pharmacies increases, 
the timing of the orders may be problematic, and the customers could 
be dissatisfied if the route assignments are done inefficiently. The 
profitability of the specified routes depends on the demands of each 
pharmacy and the distribution-related costs. In addition, the variabil-
ity in the specified delivery time negatively affects the firm’s custom-
ers. Hence, the route design is an important factor that affects both 
profitability and customer experience.

Therefore, in order to find an optimal solution for this problem, 
two mathematical models are proposed: clustering and vehicle rout-
ing models. The main objective of the clustering model is to minimize 
the total of the maximum diameter of constructed clusters and the 
maximum number of pharmacies in each cluster. In clustering model, 
coordinates of pharmacies are used as an input data. As a result, three 
clusters are determined with approximately equal number of pharma-
cies in each cluster.

According to the results of clustering, VRP model defines routes 
for available vehicles. While maximizing the profits of the firm, VRP 
model is constructed by using company’s required constraints and 
suitable variables. When the results are observed, the efficiency of the 
proposed solution is observed by comparing the profits.

As a result, pharmaceutical warehouse should optimize their dis-
tribution routes in order to decrease their transportation costs and 
increase their profits. This study shows the positive effect of a system-
atic approach on a real-life problem of a logistics firm.

Table 6.3  Characteristics of the Proposed Mathematical Models

ITEMS CLUSTER MODEL VRP MODEL 

Number of binary variables 213 5547
Number of continuous variables 12 5329
Number of constraints 15,210 74
Number of iterations 10,827 1986
Computational time (CPUs) 0.421 0.717
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7
Integrated Decision 
Model for Medical 

Supplier Evaluation

M E H TA P  D U R S U N ,  Z E Y N E P  S E N E R , 
A N D  E .  E R T U G R U L  K A R S A K

7.1  Introduction

Supply chain is composed of a complex sequence of processing stages, 
ranging from raw material supplies, parts manufacturing, compo-
nents, and end products assembling to the delivery of end products. In 
the context of supply chain management, supplier selection decision is 
considered as one of the key issues faced by operations and purchas-
ing managers to remain competitive. A well-selected set of suppliers 
make a strategic difference to an organization’s ability to reduce costs 
and improve the quality of its end products. Supplier selection and 
management can be applied to a variety of suppliers throughout a 
product’s life cycle from initial raw material acquisition to end-of-life 
service providers. Thus, the breadth and diversity of suppliers make 
the process even more cumbersome (Bai and Sarkis, 2010).
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Supplier selection is a strategic decision process that determines 
the long viability of a company, especially when purchasing costs con-
stitute a significant portion of the operating costs (Hammami et al., 
2014). According to the vast literature on supplier selection, the fol-
lowing properties need to be considered while resolving the supplier 
selection problem (Chen et al., 2006). First, the supplier selection pro-
cess requires considering multiple conflicting criteria. Second, several 
decision makers are oftentimes involved in the decision process. Third, 
decision making is often influenced by uncertainty in practice. Thus, 
supplier selection that requires considering multiple conflicting criteria 
incorporating vagueness and imprecision with the involvement of a 
group of experts is an important multicriteria group decision-making 
problem. The fuzzy set theory is a viable decision aid that enables to 
account for the inherent imprecision and vagueness in criteria values. 
In the literature, there are a number of studies that use various fuzzy 
decision-making techniques to evaluate suppliers. Several authors have 
used fuzzy mathematical programming approaches (Kumar et al., 2006; 
Wu et al., 2010; Ahmady et al., 2013; Nazari-Shirkouhi et al., 2013). 
A number of studies have focused on the use of fuzzy multiattribute 
decision-making techniques for supplier selection process (Bottani and 
Rizzi, 2005; Wang, 2010; Shemshadi et al., 2011; Shen et al., 2013). 
Lately, a few researchers have employed quality function deployment 
(QFD) in supplier selection (Bevilacqua et al., 2006; Amin and Razmi, 
2009; Alinezad et al., 2013; Dursun and Karsak, 2013).

The objective of this study is to propose a fuzzy multicriteria group 
decision-making methodology integrating 2-tuple fuzzy linguistic 
representation model, decision-making trial and evaluation laboratory 
(DEMATEL) method, and QFD. A house of quality (HOQ ) matrix, 
which translates purchased product features into supplier assess-
ment criteria, is built using the weights obtained by the DEMATEL 
approach to determine the desired levels of supplier assessment criteria. 
Finally, supplier alternatives are ranked by a distance-based method.

The rest of this chapter is organized as follows: the following section 
presents the basic concepts of QFD. In Section 7.3, the DEMATEL 
method is briefly introduced. Sections 7.4 and 7.5 delineate the fusion 
of fuzzy information approach and 2-tuple fuzzy linguistic repre-
sentation model, respectively. Section 7.6 presents the developed 
decision-making approach and provides its stepwise representation. 
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The implementation of the proposed framework for evaluating medi-
cal suppliers of a private hospital in Istanbul is provided in Section 7.7. 
Concluding remarks are given in the last section.

7.2  Quality Function Deployment

QFD is a customer-oriented design tool for developing new products 
to increase customer satisfaction. QFD is also a tool for analyzing 
and improving manufacturing systems. The basic concept of QFD 
is to translate the desires of customers into design requirements, and 
subsequently into parts characteristics, process plans, and production 
requirements (Karsak, 2004). In order to establish these relation-
ships, QFD usually requires four matrices, each corresponding to a 
stage of the product development cycle, namely, product planning, 
part deployment, process planning, and production/operation plan-
ning matrices. The product planning matrix translates customer needs 
(CNs) into technical attributes (TAs), the part deployment matrix 
translates important TAs into product/part characteristics, the pro-
cess planning matrix translates important product/part characteristics 
into manufacturing operations, and the production/operation plan-
ning matrix translates important manufacturing operations into day-
to-day operations and controls (Shillito, 1994).

The first of the four matrices, also called the HOQ  , is the most 
recognized and widely used matrix in QFD. It translates customer 
requirements, based on marketing research and benchmarking data, 
into an appropriate number of engineering targets. Basically, it is 
the nerve center and the engine that drives the entire QFD pro-
cess. Relationships between CNs and TAs and among the TAs are 
defined by answering a specific question corresponding to each cell 
in HOQ.

The elements of the HOQ can be briefly described as follows:

	 1.	CNs: They are also known as voice of the customer, customer 
attributes, customer requirements, or demanded quality. 
The initial steps in constructing a HOQ include specifying 
the CNs. As the initial input for the HOQ, they highlight the 
product characteristics that should be paid attention to. The 
CNs can include the requirements of retailers or the needs of 
vendors.
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	 2.	TAs: TAs are also named as design requirements, product 
features, engineering attributes, engineering characteristics, 
or substitute quality characteristics. They are the product 
requirements that relate directly to the customer require-
ments. TAs describe the product in the language of the engi-
neer; therefore, they are sometimes referred to as the voice of 
the company. They are used to determine how well the com-
pany satisfies the CNs (Karsak et al., 2003).

	 3.	Importance of CNs: Since the collected and organized data 
from the customers usually contain too many needs to deal 
with simultaneously, they must be rated. The company should 
trade off one benefit against another and work on the most 
important needs while eliminating relatively unimportant 
ones (Karsak et al., 2003).

	 4.	Relationships between CNs and TAs: The relationship matrix 
indicates to what extent each TA affects each CN and is 
placed in the body of the HOQ (Alptekin and Karsak, 2011). 
In this chapter, linguistic variables are used to denote the 
relationships between CNs and TAs.

	 5.	Competitive assessment matrix: Understanding how customers 
rate the competition can be a tremendous competitive advan-
tage. The information needed can be obtained by asking the 
customers to rate the performance of the company’s and its 
competitors’ products for each CN using a predetermined scale.

	 6.	Inner dependence among the TAs: The HOQ’s roof matrix is 
used to specify the inner dependencies among TAs. This 
enables to account for the correlations between TAs, which in 
turn facilitates informed trade-offs.

	 7.	Overall priorities of the TAs and additional goals: Here, the 
results obtained from preceding steps are used to calculate a 
final rank order of TAs.

7.3  DEMATEL Method

The DEMATEL method was intended to study and resolve the com-
plicated and intertwined problem group. This method could improve 
understanding of the specific issue, the cluster of intertwined prob-
lems, and contribute to the identification of workable solutions by a 
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hierarchical structure. Four major steps of the DEMATEL method 
can be summarized as follows (Tzeng et al., 2010):

Step 1: Compute the average matrix.
	 Respondents are asked to indicate the direct influence that 

they believe each factor i exerts on each factor j of the oth-
ers, as indicated by aij. From any group of direct matrices of 
respondents, it is possible to derive an average matrix A. The 
diagonal elements of the average matrix are all set to zero, 
which means no influence is given by itself.

Step 2: Calculate the normalized initial direct-relation matrix.
	 The normalized initial direct-relation matrix D can be 

obtained as D = ξA, where
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Step 3: Calculate the total relation matrix.
	 The total relation matrix T is defined as T = D(I−D)−1, where I is 

the identity matrix. Define f and c as n × 1 and 1 × n vectors 
representing the sum of rows and sum of columns of the total 
relation matrix T, respectively. Suppose fi be the sum of ith 
row in matrix T, then fi summarizes both direct and indirect 
effects given by factor i to the other factors. If cj denotes the 
sum of jth column in matrix T, then cj shows both direct and 
indirect effects by factor j from the other factors. When j = i, 
the sum (fi + cj) shows the total effects given and received by 
factor i. Thus, (fi + cj) indicates the degree of importance for 
factor i in the entire system. On the contrary, the difference 
(fi − cj) represents the net effect that factor i contributes to 
the system. Specifically, if (fi − cj) is positive, factor i is a net 
cause, whereas factor i is a net receiver or result if (fi − cj) is 
negative.

Step 4: Set up a threshold value to obtain the digraph.
	 In order to explain the structural relation among the factors 

while keeping the complexity of a system to a manageable 
level, it is necessary to set a threshold value to filter out some 
negligible effect in the total relation matrix.
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7.4  Fusion of Fuzzy Information

Fusion approach of fuzzy information is proposed by Herrera et al. 
(2000) to carry out the aggregation step of a decision process in a 
group decision-making problem defined using nonhomogeneous 
information.

This approach consists of obtaining a collective performance profile 
on the alternatives according to the individual performance profiles. It 
is performed in two phases (Herrera et al., 2000):

	 1.	Making the information uniform
	 2.	Aggregating individual preference values

7.4.1  Making the Information Uniform

The nonhomogeneous information will be unified into a specific lin-
guistic domain, called basic linguistic term set (BLTS) denoted as ST, 
chosen so as not to impose useless precision to the original evaluations 
and to allow an appropriate discrimination of the initial performance 
values. The process of unifying the information involves the compari-
son between fuzzy sets. These comparisons are usually carried out by 
means of a measure of comparison.

The transformation function is defined as follows (Herrera et al., 
2000).

Let Ω = {l0,l1,…,lH} and ST = {s0,s1,…,sG} be two linguistic term sets, 
such that G ≥ H. Then, the transformation function, τAST , is defined as
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where
F(ST) is the set of fuzzy sets defined in ST

y( )lhµ  and y( )sgµ  are the membership functions of the fuzzy sets 
associated with the terms lh and sg, respectively
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The transformation function is also appropriate to convert the stan-
dardized fuzzy assessments into a BLTS (Chuu, 2009). The max–min 
operation has been chosen in the definition of the transformation 
function since it is a classical tool to set the matching degree between 
fuzzy sets (Herrera et al., 2000).

7.4.2  Aggregating Individual Preference Values

The input information, which was denoted by means of fuzzy sets, is 
expressed on a BLTS by the earlier-mentioned transformation func-
tion. Then, in order to obtain a collective preference value for each 
alternative, an aggregation function is used. This collective perfor-
mance value is a new fuzzy set defined on a BLTS.

This chapter employs ordered weighted averaging (OWA) operator, 
initially proposed by Yager (1988), as the aggregation operator. This 
operator provides aggregations that lie between two extreme cases of 
MCDM problems that lead to the use of and and or operators to com-
bine the criteria function. OWA operator encompasses several opera-
tors since it can implement different aggregation rules by changing 
the order weights.

The OWA operator provides a unified framework for decision 
making under uncertainty, in which different decision criteria such as 
maximax, maximin, equally likely (Laplace), and Hurwicz’s criteria 
are characterized by different OWA operator weights. To apply the 
OWA operator for decision making, a crucial issue is to determine its 
weights, which can be accomplished as follows.

Let A = {a1,a2,…,an} be a set of values to be aggregated, then OWA 
operator F is defined as

	
F a a a w bn
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=
∑wb 	 (7.3)

where w = {w1,w2,…,wn} is a weighting vector, such that wi ∈ [0,1] and 
wi

i∑ = 1, and b is the associated ordered value vector where bi ∈ b is 
the ith largest value in A.
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The weights of the OWA operator are calculated using fuzzy lin-
guistic quantifiers, which for a nondecreasing relative quantifier Q are 
given by
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The nondecreasing relative quantifier, Q, is defined as (Herrera et al., 
2000)
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with a,b,y ∈ [0,1] and Q(y) indicating the degree to which the propor-
tion y is compatible with the meaning of the quantifier it represents. 
Some nondecreasing relative quantifiers identified by terms most, at 
least half, and as many as possible, with parameters (a,b) are (0.3,0.8), 
(0,0.5), and (0.5,1), respectively.

7.5  2-Tuple Fuzzy Linguistic Representation Model

The 2-tuple linguistic model, composed of a linguistic term and a 
real number, presented by Herrera and Martínez (2000a) is based on 
the concept of symbolic translation. It can be denoted as (sg,α), where 
sg represents the linguistic label of the predefined linguistic term set 
ST , and α is a numerical value representing the symbolic translation. 
Since the 2-tuple linguistic model can express any counting of infor-
mation in the universe of discourse and avoid the loss of information, 
it has been widely employed in decision making. This model is well 
suited to deal with uniformly and symmetrically distributed linguistic 
term sets. Moreover, the results of the Herrera and Martínez model 
can match the elements in the initial linguistic term set.

The process of comparison between linguistic 2-tuples is carried 
out according to an ordinary lexicographic order as follows (Herrera 
and Martínez, 2001).
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Let r1 = (sc,α1) and r2 = (sd,α2) be two linguistic variables represented 
by 2-tuples:

•	 If c < d, then r1 is smaller than r2.
•	 If c = d, then

•	 If α1 = α2, then r1 and r2 represent the same information.
•	 If α1 < α2, then r1 is smaller than r2.
•	 If α1 > α2, then r1 is bigger than r2.

In the following, we define a computational technique to operate with 
the 2-tuples without loss of information.

Definition 7.1 (Herrera and Martínez, 2000b)  Let L = (γ0,γ1,…,γG) 
be a fuzzy set defined in ST. A transformation function χ that trans-
forms L into a numerical value in the interval of granularity of ST,[0,G] 
is defined as
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where F(ST) is the set of fuzzy sets defined in ST .

Definition 7.2 (Herrera and Martínez, 2000a)  Let S = {s0,s1,…,sG} 
be a linguistic term set and β∈[0,G] a value supporting the result of 
a symbolic aggregation operation, then the 2-tuple that expresses the 
equivalent information to β is obtained from the following function:
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where
round is the usual round operation
sg has the closest index label to β
α is the value of the symbolic translation
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Proposition 7.1 (Herrera and Martínez, 2000a)  Let S = {s0,s1,…,sG} 
be a linguistic term set and (sg,α) be a 2-tuple. There is a Δ−1 func-
tion such that from a 2-tuple, it returns its equivalent numerical value 
β∈ ⊂ ℜ[ , ] .0 G  This function is defined as
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Definition 7.3 (Herrera-Viedma et al., 2004)  Let x = {(s1,α1),…, 
(sG,αG)} be a set of linguistic 2-tuples and W = {w1,…,wG} be their asso-
ciated weights. The 2-tuple weighted average x w is computed as
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Definition 7.4 (Herrera-Viedma et al., 2004; Wang, 2010)  Let 
x = {(s1,α1),…,(sG,αG)} be a set of linguistic 2-tuples and 
W w ww

G G
w= {( , ), ,( , )}1 1α α…  be their linguistic 2-tuple-associated 

weights. The 2-tuple linguistic weighted average xl
w is calculated by 

the following function:
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with βg = Δ−1(sg,αg) and β αw g g
w

g w= −Δ 1( , ).

7.6  MCDM Model for Supplier Evaluation

In this section, a fuzzy multicriteria group decision-making 
approach integrating 2-tuple fuzzy linguistic representation model, 
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DEMATEL method, and QFD is proposed. In traditional QFD 
applications, the company has to identify its customers’ expectations 
and their relative importance to determine the design characteristics 
for which resources should be allocated. When the HOQ is used in 
supplier selection, the company starts with the features that the out-
sourced product/service must possess to meet certain requirements 
that the company has established and then tries to identify which of 
the suppliers’ attributes have the greatest impact on the achievement 
of its established objectives. The stepwise representation of the fuzzy 
MCDM framework is as follows:

Step 1: Construct a decision-makers committee of Z (z = 1, 
2, …, Z) experts. Identify the characteristics that the prod-
uct being purchased must possess (CNs) in order to meet the 
company’s needs and the criteria relevant to supplier assess-
ment (TAs).

Step 2: Construct the decision matrices for each decision maker 
that denote the direct influence matrix among CNs, the fuzzy 
assessment to determine the CN–TA relationship scores, the 
degree of dependencies among TAs, and the ratings of each 
potential supplier with respect to each TA.

Step 3: Let the fuzzy value assigned as the CN e exerts on CN 
i (i = 1, 2, …, m), relationship score between the ith CN and 
jth TA ( j = 1, 2, …, n), degree of dependence of the kth TA 
on the jth TA, and rating of the pth supplier (p = 1, 2, …, P) 
with respect to the jth TA for the zth decision maker be 
�w w w weiz eiz eiz eiz= ( , , ),1 2 3

 �x x x xijz ijz ijz ijz= ( , , ),1 2 3
 �r r r rkjz kjz kjz kjz= ( , , ),1 2 3

and �y y y ypjz pjz pjz pjz= ( , , ),1 2 3  respectively. Convert �weiz into the 
basic linguistic scale ST. The importance weight vector on ST, 
which is denoted as F weiz( ),�  can be represented as

	 F w w s w s w s i zeiz eiz eiz eiz� � � … �( )= ( ) ( ) ( )( ) ∀γ γ γ, , , , , , , ,0 1 8  	 (7.11)

		  In this study, the label set given in Table 7.1 is used as the 
BLTS (Jiang et al., 2008).

Step 4: Aggregate F weiz( )�  using OWA operator.
Step 5: Compute β values of F weiz( )�  and calculate the importance 

weights of CNs by employing the DEMATEL method.
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Step 6: Aggregate �xijz , �rkjz , and �y pjz using arithmetic mean 
operator.

Step 7: Calculate the normalized fuzzy relationships for α = 0 and 
α = 1 as
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	 where t, s, qik, and uik are decision variables.

Table 7.1  Label Set

LABEL SET FUZZY NUMBER 

s0 (0, 0, 0.12)
s1 (0, 0.12, 0.25)
s2 (0.12, 0.25, 0.37)
s3 (0.25, 0.37, 0.50)
s4 (0.37, 0.50, 0.62)
s5 (0.50, 0.62, 0.75)
s6 (0.62, 0.75, 0.87)
s7 (0.75, 0.87, 1)
s8 (0.87, 1, 1)



157Integrated Decision Model

Step 8: Calculate the weight of each criteria �ψ ψ ψ ψj j j j= ( , , )1 2 3  
for α = 0 and α = 1 employing
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	 where λ and vi are decision variables.
Step 9: Calculate distances from the ideal and the anti-ideal 

solutions (Dp* and Dp
− , respectively) for each alternative as
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Step 10: Calculate the ranking index (RI) of the pth supplier:

	
RI

D

D D
p

p

p p

=
+

−

− *
	 (7.18)

Step 11: Rank the suppliers according to RIp values in descend-
ing order. Identify the alternative with the highest RIp as the 
best supplier.

7.7  Case Study

Over the past two decades, parallel to the upsurge in the number 
and complexity of medical devices, the medical device industry has 
become intensively competitive with an increase in the number of 
manufacturing companies. Selecting the best medical device supplier 
among multiple alternatives has become one of the most critical deci-
sions faced by purchasing managers in medical device supply chain. 
The performance of suppliers has a key role on cost, quality, and ser-
vice in achieving customer satisfaction in the health-care industry.

In order to demonstrate the application of the proposed decision-
making method to medical device supplier selection, an evaluation 
for epidural catheter suppliers is presented. The case study is con-
ducted in a private hospital at the Asian side of Istanbul. The hospital 
operates with all major departments while including facilities such 
as clinical laboratories, emergency service, intensive care units, and 
operating room.

First, a HOQ is constructed that demonstrates the relationships 
between the features that epidural catheters must possess and sup-
plier assessment criteria as well as the interactions among supplier 
assessment criteria. As a result of discussions with experts from the 
purchasing department of the hospital, nine fundamental charac-
teristics required of epidural catheters purchased from medical sup-
pliers (CNs) are determined. These can be listed as cost (CN1 ), kink 
resistant (CN2 ), friction (CN3 ), high tensile strength (CN4 ), atraumatic 
tip design (CN5 ), easy to thread and remove (CN6 ), easy to anchor with 
the catheter connector (CN7 ), good flow characteristics (CN8 ), and shear 
resistant (CN9 ).

Nine criteria relevant to supplier assessment are identified as prod-
uct volume (TA1 ), delivery (TA2 ), payment method (TA3 ), supply variety 
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(TA4 ), reliability (TA5 ), experience in the sector (TA6 ), earlier business 
relationship (TA7 ), management (TA8 ), and geographical location (TA9 ). 
There are 12 suppliers who are in contact with the hospital.

The evaluation of the direct influence matrix among CNs is con-
ducted by a committee of six decision makers (DM1, DM2, DM3, 
DM4, DM5, DM6). DM1, DM2, and DM3 used the linguistic term set 
definitely low (DL), very low (VL), low (L), moderate (M), high (H), very 
high (VH), and definitely high (DH) as shown in Figure 7.1, whereas 
the remaining three decision makers, namely DM4, DM5, and DM6, 
preferred to use a different linguistic term set with very low (VL), 
low (L), moderate (M), high (H), and very high (VH) as depicted in 
Figure 7.2.

The β values of the direct influence matrix among CNs are given 
in Table 7.2.

1.0
DL

VL L M VHH

DH

0.16 0.33 0.5 1.00.66 0.83
χ

0

(x)µ

Figure 7.1  A linguistic term set where DL (0, 0, 0.16), VL (0, 0.16, 0.33), L (0.16, 0.33, 0.50), 
M (0.33, 0.50, 0.66), H (0.50, 0.66, 0.83), VH (0.66, 0.83, 1), and DH (0.83, 1, 1).

VL

1.0

L M H

0 0.25 0.5 0.75 1.0

VH

µ(x)

χ

Figure 7.2  A linguistic term set where VL (0, 0, 0.25), L (0, 0.25, 0.5), M (0.25, 0.5, 0.75), H (0.5, 
0.75, 1), and VH (0.75, 1, 1).
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By employing the DEMATEL method, the weights of CNs are 
determined as 0.1598, 0.1337, 0.1138, 0.0993, 0.1130, 0.1130, 0.0583, 
0.0709, and 0.1382, respectively. The data related to supplier selection 
that are provided in Table 7.3 consist of assessments of three decision 
makers employing linguistic variables defined in Figure 7.1.

Using Equations 7.12 through 7.15, the weights of each TA are 
calculated as in Table 7.4.

The distances from the ideal and the anti-ideal solutions for each 
alternative and the ranking index of each alternative are computed 
employing Equations 7.16 through 7.18 as in Table 7.5.

The rank order of the suppliers is Sup 7 ≻ Sup 1 ≻ Sup 4 ≻ Sup 2 ≻ 
Sup 3 ≻ Sup 6 ≻ Sup 9 ≻ Sup 8 ≻ Sup 11 ≻ Sup 5 ≻ Sup 10 ≻ Sup 12. 
According to the results of the analysis, supplier 7 is determined as 
the most suitable supplier, which is followed by supplier 1, supplier 4, 
and supplier 2. Suppliers 10 and 12 are ranked at the bottom due to 
late delivery time and inadequate product volume.

7.8  Conclusion

Considering the global challenges in manufacturing environment, 
organizations are forced to optimize their business processes to remain 
competitive. In order to reach this aim, firms must work with its sup-
ply chain partners to improve the chain’s total performance. Supplier’s 
performance has a key role on cost, quality, delivery, and service in 
achieving the objectives of a supply chain. Hence, supplier selection is 
considered as one of the most critical activities of purchasing manage-
ment in a supply chain.

Table 7.2  β Values of the Direct Influence Matrix among CNs

CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 

CN1 0.000 6.642 6.311 6.391 6.294 7.281 6.521 6.534 7.434
CN2 7.281 0.000 6.714 6.899 6.679 7.434 1.083 4.789 7.434
CN3 7.380 7.327 0.000 2.192 6.910 7.380 1.421 0.437 6.342
CN4 6.968 6.279 3.482 0.000 2.731 2.296 0.054 6.642 7.242
CN5 7.281 5.910 6.285 0.958 0.000 7.434 2.024 0.726 6.279
CN6 7.434 6.971 6.082 1.167 6.210 0.000 1.110 0.264 6.142
CN7 6.899 0.000 0.085 0.000 2.677 1.330 0.000 0.264 5.892
CN8 7.434 3.998 0.057 5.696 0.759 0.000 0.000 0.000 3.760
CN9 7.434 6.642 6.024 6.968 5.639 4.742 6.575 4.007 0.000
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In a medical device supply chain, identifying the most appropriate 
supplier among multiple alternatives is of outmost importance. In this 
study, a fuzzy multicriteria group decision-making algorithm is pre-
sented for medical supplier evaluation and selection. The methodology 
developed in this study considers QFD planning as a fuzzy multicri-
teria group decision tool. It enables to consider not only the impacts 
of relationships among the purchased product features and supplier 
selection criteria, but also the inner dependencies among supplier 
selection criteria for achieving higher satisfaction to meet company’s 
requirements. Applying the decision framework presented here to real-
world group decision-making problems in other disciplines that can be 
represented using HOQ matrices will be the subject of future studies.

Table 7.5  Ranking of Suppliers

SUPPLIERS Dp
* Dp

− RIP RANK 

Sup 1 0.3116 0.9437 0.7518 2
Sup 2 0.3470 0.9035 0.7225 4
Sup 3 0.3568 0.8813 0.7118 5
Sup 4 0.3275 0.9273 0.7390 3
Sup 5 0.4916 0.7248 0.5959 10
Sup 6 0.3823 0.8593 0.6921 6
Sup 7 0.2761 0.9945 0.7827 1
Sup 8 0.4438 0.7814 0.6378 8
Sup 9 0.4326 0.7898 0.6461 7
Sup 10 0.5056 0.7074 0.5832 11
Sup 11 0.4801 0.7427 0.6074 9
Sup 12 0.6291 0.5762 0.4781 12

Table 7.4  Weights of each TA

TAs IMPORTANCE WEIGHTS  

TA1 (0.0434, 0.0708, 0.1122)
TA2 (0.0848, 0.1192, 0.1648)
TA3 (0.0648, 0.0952, 0.1381)
TA4 (0.0800, 0.1122, 0.1561)
TA5 (0.1050, 0.1369, 0.1740)
TA6 (0.1079, 0.1391, 0.1776)
TA7 (0.0984, 0.1355, 0.1730)
TA8 (0.0972, 0.1328, 0.1731)
TA9 (0.0334, 0.0584, 0.0981)
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8
Arc Selection and 

Routing for Restoration 
of Network Connectivity 

after a Disaster

AY Ş E  N U R  A S A LY  A N D  F.  S I B E L  S A L M A N

8.1  Introduction and Problem Definition

Disaster management involves taking actions before and after a disas-
ter to minimize its destructive effects. After a disaster, it is critical to 
reach affected areas to provide relief operations, such as search and 
rescue, medical services, aid delivery, and establishment of tempo-
rary shelter. Furthermore, routes should be provided for evacuation, 

Contents

8.1	 Introduction and Problem Definition	 165
8.2	 Literature Review	 169
8.3	 Complexity Analysis	 171
8.4	 Mathematical Model	 174

8.4.1	 Sets, Indices, and Input Parameters	 175
8.4.2	 Decision Variables	 175
8.4.3	 Objective Function	 176
8.4.4	 Vehicle Balance Equations	 176
8.4.5	 Constraints That Relate Variables xij and zij	 176
8.4.6	 Flow Balance Equations	 177
8.4.7	 Constraints That Relate Variables fij and xij	 178
8.4.8	 Component Connectivity Constraints	 178
8.4.9	 Constraints That Define the Variables	 178

8.5	 Data Acquisition and Generation	 179
8.6	 Computational Experiments and Results	 188
8.7	 Conclusions	 192
References	 193



166 aYŞe nur asalY and f. sibel salman

and major gateways in the transportation system, such as airports and 
ports, should be accessible.

One of the outcomes of a high-impact disaster is the disruption of 
transportation systems, which cripples postdisaster emergency and 
relief activities. In the 2013 Bohol earthquake and Typhoon Haiyan, 
rescue workers struggled to reach ravaged towns and villages in the 
central Philippines (Mogato and Ng 2013). Relief operations were 
hampered because roads, airports, and bridges had been destroyed 
or were covered in wreckage. After the 2011 devastating earth-
quake and the resulting tsunami in northeast Japan, almost 4000 
road segments, 78 bridges, and 29 railway locations were reported 
to be damaged (BBC News and National Police Agency of Japan 
2012). Accumulated debris in the downtown of Kamaishi City, Iwate 
Prefecture, and a damaged arterial road (National Highway 45) vir-
tually isolated the community from rescue efforts. About 76% of the 
highways in the area were closed due to damage.

This study focuses on logistics planning to ensure connectivity of 
road networks in the immediate disaster response stage. As experi-
enced in many cases worldwide, roads can be severely damaged in 
a natural disaster. For instance, in a high-magnitude earthquake, 
(1) some parts of the roads may be affected as follows: blocked by 
building, lamppost, tree, and car debris, and deformed, distorted, 
and ruptured due to ground failure and liquefaction; and (2) vulner-
able structures such as bridges and viaducts may collapse. Damage to 
other infrastructure networks, such as natural gas or drainage sys-
tems, may also cause dysfunctionality in the roads. As a result, traffic 
is blocked at various links of the road network, and some nodes may 
become unreachable.

Some of the damaged roads can be cleared or restored in a short 
time, whereas it may take many hours, days, or months to eliminate 
other types of damage. For example, after the 2011 earthquake and 
tsunami in Japan, Japanese road administrators immediately launched 
an emergency road restoration operation with the cooperation of local 
construction companies. The efforts concentrated on 16 routes, to 
establish first the vertical artery, followed by east–west routes. The 
operation was completed after 9 days. In general, the emergency res-
toration goal is to ensure connectivity of the road network and pro-
vide accessibility between people in different areas as fast as possible. 
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For this purpose, first, the road conditions are assessed, and time to 
clear/open the roads is estimated. The tasks that take too long are 
postponed to later stages. Then, among the remaining tasks, a subset 
that enables connectivity should be selected, and a fleet of machinery 
or vehicles routed to conduct them in the shortest time. Since some 
people will want to evacuate the disaster area, while others will be 
coming in for help, strong connectivity of the network is required.

Recently, several studies focused on upgrading a road network or 
improving accessibility after a disaster situation. These studies are 
reviewed in Section 8.2. To the best of our knowledge, the restora-
tion of the roads after a disaster by routing a fleet of vehicles in order 
to ensure strong connectivity of a network has not been addressed in 
the literature. In this study, we define a new network optimization 
problem to address this topic. Since the problem combines arc routing 
and network design elements, it is called Arc Routing for Connectivity 
Problem (ARCP).

Before we define ARCP formally, some definitions may be useful. 
A connected graph contains a directed path from a node i to another 
node j or a directed path from j to i for every pair of nodes i and j. 
Otherwise, the graph is disconnected. A graph is strongly connected if 
it contains a directed path from i to j and a directed path from j to i 
for every pair of nodes i and j. Otherwise, the graph is disconnected in 
the strong sense. We define ARCP on a directed, strongly connected, 
and simple graph G = (V, A) with nonnegative arc costs. After a natu-
ral disaster, speed of transportation is highly dependent on road and 
extraordinary traffic conditions, as also stated in Nolz et al. (2011). 
Therefore, costs are calculated in terms of estimated time instead of 
distance. Traversal time on an unblocked (i.e., not blocked initially) 
or a blocked arc after it has been unblocked (i.e., opened) is equal to 
cij, where (i, j) represents the arc. We refer to the fleet of emergency 
response machineries (including possibly lighting, drainage pump, 
and satellite communication vehicles) that move together as a single 
vehicle, which is located initially at a node d, for example, its depot or 
an emergency response facility. Moreover, a subset B of arcs, which 
are determined to be blocked according to postdisaster information 
on road conditions, are given such that GB = (V, A\B) is disconnected 
in the strong sense. The set B consists of all blocked arcs, and the set 
R, a subset of B, represents the arcs that will be traversed and cleared 
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by the vehicle in order to restore strong connectivity of the graph. 
The set R is not known in advance, and its selection is a decision in 
the problem. The solution identifies R and constructs a walk for the 
vehicle that starts at its depot. We want the walk in the solution to 
cover arcs in R. In other words, the arcs in the set A\B∪R   should 
induce a connected graph, GR, on the set V.

We assume that there are |Q| disconnected components in GB, 
where Q is the set of disconnected components, in the strong sense. 
Each component in Q consists of strongly connected nodes. We parti-
tion Q into three classes: (1) components within which the nodes are 
strongly connected and which require at least one incoming and one 
outgoing arc in order to be strongly connected to the remaining graph, 
(2) components that require at least one outgoing but no incoming arc 
to be unblocked in order to be strongly connected to the remaining 
graph, and (3) components that require at least one incoming but no 
outgoing arc to be unblocked in order to be strongly connected to the 
remaining network. Moreover, unblocking, that is, passing through 
a blocked arc for the first time, results in work time in addition to 
its traversal time. More formally, we define the additional time of 
unblocking arc (i, j) as bij where bij ≥ 0. In a walk, cij time units elapse 
each time an arc is traversed, and in addition, bij units elapse once for 
each blocked arc that is unblocked during the walk. In other words, 
a blocked arc is unblocked by a vehicle in its first traversal of that arc. 
We assume that traffic cannot flow in both directions after a blocked 
road is unblocked in one direction by a vehicle. Considering that 
allowing traffic in the reverse direction would slow down response 
activities, this is a reasonable assumption.

The objective is to minimize the time at which the graph becomes 
strongly connected. That is, by definition, there must be a path from 
each vertex to every other vertex in the network. In order to connect 
all the disconnected components, at least two arcs in opposite direc-
tions within the cutset of a component must be unblocked. Otherwise, 
the network cannot be strongly connected. Since we are interested 
in minimizing the time when the graph becomes connected, return 
of the vehicle to its depot is not considered. Therefore, the walk is 
open. We can define the objective function as min c(W) + b(W), where 
W is walk of the vehicle; c(W) is traversal time, and c(W) is calculated 
by summing up the traversal time of arcs (in terms of cij) that are 
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traversed by the vehicle; b(W) is the total additional time (in terms of 
bij) of unblocking for the vehicle.

The aim of this study is to develop a solution method to the con-
nectivity problem that generates a solution in a short time. We formu-
late ARCP and observe for which cases it can be solved in reasonably 
short time by numerical tests. Our tests are performed on instances 
generated considering Istanbul road network at a macro level and its 
vulnerability to a potential earthquake. Our analysis of the solutions 
over a set of scenarios provides some insights for preparedness.

The organization of this study is as follows: Section 8.2 reviews 
relevant studies in the literature. Section 8.3 gives computational 
complexity proof of the ARCP. In Section 8.4, a mixed integer pro-
gramming (MIP) model for ARCP is given. Section 8.5 presents the 
data related to Istanbul highway network, and Section 8.6 gives the 
computational results. Finally, in Section 8.7, we conclude the study 
with a summary, some comments, and directions for future research.

8.2  Literature Review

Arc routing problems have attracted the interest of researchers for a 
long time and have many application areas such as delivery services 
and snow plowing. The problem addressed in this study falls into the 
class of arc routing problems. The main goal of this section is to intro-
duce problems closely related to ARCP.

In rural postman problem (RPP), a given subset of arcs is required 
to be traversed at least once by a closed walk. The objective is to 
minimize the total travel time. RPP is NP-hard on an undirected 
or directed graph (Lenstra and Rinnooy Kan 1976). If the arc costs 
satisfy the triangle inequality, there exists a 3/2-approximation algo-
rithm (Frederickson 1979). From this point on, the heuristic algo-
rithm that Frederickson presents will be addressed as Frederickson’s 
heuristic. Fernandez et al. (2003) give formulations and compare them 
with the former formulations from the literature. They also propose 
a heuristic method that is based on Frederickson’s heuristic. A local 
search approach is applied to RPP by Groves and van Vuuren (2005). 
Another heuristic method is a constructive algorithm that performs 
local postoptimization in each step (Ghiani et al. 2006). Based on 
Frederickson’s heuristic, Holmberg (2010) proposes heuristics using 
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Minimum Spanning Tree solution and postprocessing techniques. 
A detailed review of work before the early 1990s can be found in 
Eiselt et al. (1995). Akoudad and Jawab (2013) provide a recent survey 
that presents some variations and applications of RPP.

A variation of RPP is studied by Araoz et al. (2009). In this prob-
lem, there is no required edge to be traversed. A profit function is 
defined on the edges that must be taken into account for only the first 
time an edge is traversed. The objective is to maximize the net profit 
after the cost of traversing edges is deducted. They solve a relaxed 
model and propose a heuristic method that is based on the 3T heuris-
tic method used in Fernandez et al. (2003).

Araoz et al. (2006) studied privatized RPP on an undirected graph 
and analyzed several linear systems of inequalities. In this problem, 
the edge profit function is similar to unblocking time in ARCP. There 
is a cost of traversing an edge that is paid each time the edge is tra-
versed. Profit is collected only the first time an edge is traversed. The 
aim is to find a closed walk starting and ending at a depot, traversing 
some edges in order to maximize the total profit.

ARCP differs from the literature in several ways. In ARCP, strong 
connectivity is the main concern. Most of the other studies do not 
aim to ensure strong connectivity of the network. ARCP is similar 
to RPP, but in our problem, the set of required arcs are not known 
in advance, and there is no requirement for the walks to be closed. 
Moreover, in ARCP, after the first traversal of a blocked arc, the tra-
versal cost changes.

In the disaster context, recently, several studies modeled upgrad-
ing the road network or improving accessibility after a disaster with-
out considering routing. They focus on the selection of road segments 
that are to be upgraded or repaired. One such study is by Duque and 
Sörensen (2011). They investigate the case where there is a budget 
constraint, and there are a number of nonoperative roads that need to 
be repaired after a disaster situation. They assign weights to the rural 
towns depending on the importance of the towns. Their objective is to 
minimize the weighted sum of time to travel from each rural town to 
its closest regional center (Duque and Sörensen 2011). They find the 
roads to be repaired in order to have the shortest paths between node 
pairs. Another study is by Campbell et al. (2006), which focuses on 
determining the number of edges to be upgraded before a catastrophe 
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while minimizing the maximum travel time between any source–
terminal/origin–destination (s–t) pair. They use heuristic methods to 
solve the problem.

Only few recent studies have addressed debris removal operations in 
terms of selecting the order in which unblocking of the edges should be 
conducted. Stilp et al. (2011) model debris management as a multipe-
riod network expansion problem and propose efficient heuristics. Sahin 
et al. (2013) aim at visiting critical disaster-affected districts as quickly 
as possible, taking into account priority levels, traversing (if necessary) 
along blocked arcs by carrying out unblocking operations. They model 
a multiperiod mixed integer program and solve a case study. Aksu and 
Ozdamar (2014) consider a dynamic path-based model to identify the 
order of blocked links to be restored during a given time limit. The 
objective is to maximize the total weighted earliness of all paths’ res-
toration completion times. ARCP differs from these problems in its 
objective of ensuring connectivity in shortest time.

8.3  Complexity Analysis

The problem defined in this study, namely, ARCP, is new to the arc 
routing literature. Therefore, we analyze the computational complex-
ity of ARCP.

Theorem 8.1  ARCP is NP-hard.

Proof: In order to prove this theorem, we consider another NP-hard 
problem, RPP. We reduce RPP to ARCP.

Definition 8.1  Undirected rural postman problem (RPP).
Let G = (V, E) be an undirected graph, where V is the vertex set, 

E is the edge set, cij(≥0) is the cost of traversing edge (i, j) ∈ E, and 
R ⊆ E is the set of required edges. The RPP is to determine a least 
cost closed walk starting from and ending at a depot, traversing each 
edge of R at least once. The RPP is known to be NP-hard (Lenstra 
and Rinnooy Kan 1976).

Now, let us consider ARCP.
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Definition 8.2  Arc routing for connectivity problem (ARCP).
Let H = (N, A) be a directed strongly connected graph, where N 

is the vertex set, A is the arc set, and B ⊆ A is the set of blocked arcs. 
The graph induced by A\B is disconnected (in the strong sense). cij 
is the traversal time on an open arc (i, j) ∈ A, and bij is the time of 
unblocking edge (i, j) ∈ B in addition to traversal time cij. ARCP finds 
a walk starting from its depot, traversing some of the blocked arcs in 
B to unblock them at the first traversal in order to connect the net-
work. The travel time of the walk is minimized, such that the result-
ing graph is strongly connected. For this proof, we take an instance I 
of RPP and construct an instance II of ARCP by a polynomial trans-
formation τ between them.

Definition 8.3  Transformation τ.
We define a directed and strongly connected graph H from G as 

follows. We replace every edge (i, j) in E\R with two arcs in both 
directions with traversal times. We take G = (V, E), delete the edges in 
the set R and for each (i, j) ∈ R, add three new nodes i′, j′, and p. We 
define blocked arcs (i, i′), (i′, i), (  j, j′), and (  j′, j) all with traversing 
and additional unblocking time of 0. Moreover, between i and j, new 
blocked arcs (i, p), (p, i), (  j, p), and (p, j) with traversal and additional 
unblocking time cij/2 and 0, respectively, are defined.

In order to transform a closed walk in I to an open walk in II, we add 
a dummy depot d′, which is connected to the original depot d of I in 
the ARCP instance with two arcs in both directions, one of them 
blocked. Traversal and additional unblocking time on this blocked 
arc from d to d′ is zero. The arc (d′, d) that is not blocked has a high 
traversal time, say M. By assigning a high traversal time to this arc, we 
enforce the vehicle to visit d′ last. The vehicle, located at d, first tra-
verses other arcs in its walk, and then to ensure a strongly connected 
graph, it visits d′ as the last node in its walk. It does not visit it in the 
early stages of its walk because then it will continue its walk to con-
nect the remaining nodes by traversing the arc (d′, d), which increases 
the objective value highly.

Instances I, II, and the transformation are illustrated in Figure 8.1.
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Lemma 8.1  Transformation τ from I to II runs in polynomial time 
in terms of the size of the instance I of RPP.

Proof: For every edge in set R in I, we delete one edge and add three 
nodes and eight arcs. Moreover, for the depot node, one dummy depot 
and two arcs are added. The edges that are not required to be tra-
versed are doubled into arcs.

Now, we need to show that we can obtain an optimal solution to 
I when ARCP is solved on II. The nodes i′, j′, p, and d′ need to be 
visited in order to make the graph strongly connected. No matter 
from which direction the vehicle comes (from i to j or from j to i), 
it unblocks the arcs (i, i′) and ( j, j′) to reach i′ or j′. Due to the 
definition of ARCP, for connectivity, arcs (i′, i) and ( j′, j) have to 
be unblocked as well. Moreover, node p has to be connected to the 
network, and unblocking one arc going out of node p and one arc 
coming into it is sufficient in order to ensure strong connectivity of p 
to the network. Possible routes for the arc segment that corresponds 
to a required edge can be i−i′−i−p−j−j′−j or i−i′−i−p−i−⋯−j–j′−j 
and the reverse. In all cases, travel time of these route segments is cij. 
If the vehicle needs to pass through nodes i and j, it does not visit i′ 
and j′ not to increase its travel time unnecessarily. These route seg-
ments can be converted to the edge (i, j) in the RPP. Consequently, 

Instance /
+
+
+
+

+ + + + + +

– – –– – ––
–
–

Instance //

d

d

Cij/2 / 0

Cij

Cij/2 / 0 Cij/2 / 0

Cij/2 / 0
i

i

j

j

i′ j′
d′

0/0 M
0/0

p

0/0 0/0 0/0

Figure 8.1  Instance I, instance II, and transformation.
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the required edge (i, j) is traversed. In each traversal of (i, p) and (  j, p) 
(or reverse) together, the cost of the required edge, cij, is paid. Since 
the vehicle starts its walk in d and visits d′ as the last stop for con-
nectivity purpose, the resulting walk can be transformed to a closed 
walk starting and ending in the depot node d by omitting the dummy 
node d′ and the corresponding arcs. At the end, the solution of RPP 
on I is reached by solving ARCP on II.

Since RPP is NP-hard and τ runs in polynomial time, the ARCP 
is at least as hard as the RPP.

8.4  Mathematical Model

This section presents a mathematical programming formulation of 
ARCP. Some properties of a feasible solution of ARCP are given as 
follows:

•	 It is necessary that arcs in a subset R of B are unblocked. The 
arcs in the cutsets of components are candidates to be in R. 
However, additional arcs may also be unblocked to reach one 
of these arcs in shorter time.

•	 In order to ensure connectivity of the graph, the total 
number of blocked arcs, which are unblocked in cutsets of 
all components has to be greater than or equal to 2(|Q| − 1). 
Otherwise, connectivity cannot be ensured. In other words, 
in each component’s cutset, at least two arcs that are in oppo-
site directions must be open. This property is necessary for a 
solution to be feasible, but it is not sufficient for optimality.

In order to ensure connectivity and continuity of the walk, we define 
flow variables fij for each arc. For the depot, there is an amount of 
supply depending on the number of nodes that are visited by the 
vehicle. Similarly, for each component, there is unit demand so that 
each component can receive flow and the graph becomes connected 
at the end. Then, to prevent flows on an arc that is not traversed, we 
relate flow variables with xij, which shows the number of times an arc 
(i, j) is traversed. Flow variables are defined as real numbers, however, 
due to unimodularity property; they take integer values because flow 
variables in the constraints have integer coefficients. Moreover, we 
add a dummy sink node and force the vehicle to end its tour at this 
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sink node (n + 1). For connectivity, we include cutset constraints. The 
details can be seen in the upcoming paragraphs.

8.4.1  Sets, Indices, and Input Parameters

i, j: Indices of the vertices
n + 1: Index of the dummy sink node
V: Set of vertices: 1, …, n
A: Set of arcs
B: Set of blocked arcs
d: Index for the depot
D: Set of possible depots
q: Index of the components
Q: Set of disconnected components
S: Set of all subsets of components within which the nodes are 

strongly connected
s: Index of elements of S
Y+ : Set of all subsets of components that require at least one out-

going arc but no incoming arc to be unblocked in order to be 
strongly connected to the remaining graph

Y−: Set of all subsets of components that require at least one 
incoming arc but no outgoing arc to be unblocked in order to 
be strongly connected to the remaining graph

y: Index of the components
M: A nonnegative scalar with large enough value

8.4.2  Decision Variables

xij: Number of times that the vehicle traverses arc (i, j)
zij: Binary variable indicating if blocked arc (i, j) is unblocked
fij: Flow variable on arc (i, j)
vi: Number of times the vehicle visits node i

The MIP model for ARCP determines an open walk such that the dis-
connected components in the network are connected after unblocking 
a subset of the blocked arcs. The walk traverses a subset of the arcs in 
B, say R, so that the graph G′ = (V, A\B∪ R) is connected. The model 
that solves ARCP gives a strongly connected graph. We explain the 
objective function and constraints group by group as follows.
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8.4.3  Objective Function

Constraint (8.1) represents the objective function that minimizes the 
total time spent by the vehicle until the network becomes strongly 
connected:

	

Minimize
( , ) ( , )i j A

ij ij

i j B

ij ijc x b z
∈ ∈
∑ ∑+ 	 (8.1)

8.4.4  Vehicle Balance Equations

Constraints (8.2) through (8.5) are vehicle balance equations. 
Constraint (8.2) ensures that the vehicle starts the tour at the depot 
vertex where it is positioned. Constraint (8.3) balances arrivals and 
departures for a nondepot node i. Constraint (8.4) forces the walk 
to end in the sink node. There is only one visit to the sink node and 
no return. The latter case is satisfied by constraint (8.5). The vehicle 
leaves the depot and its component, and does not return there if it will 
not visit another disconnected component by passing through its own 
component:

	 j V n

dj jdx x d D
∈ ∪ +
∑ −( ) = ∈

{( )}

,
1

1 	 (8.2)

	 j V n

ij jix x i V D
∈ ∪ +
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{( )}

, \
1

0 	 (8.3)

	

x j n

j V

( )+

∈

=∑ 1 1 	 (8.4)

	
x i Vn i( ) ,+ = ∀ ∈1 0 	 (8.5)

8.4.5  Constraints That Relate Variables xij and zij

Constraint (8.6) shows for a blocked arc that if it is unblocked, then 
it is also traversed. We assume a blocked arc becomes open in both 
directions whenever the vehicle unblocks it in one direction. This 
assumption can be meaningful because in disaster situations, roads 
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have to be used in both directions in order to reach disaster areas 
and deliver aid. Constraint (8.7) prevents the vehicle traversing a 
blocked arc if it is not unblocked. If an arc (i, j) is unblocked, it 
can be traversed by the vehicle at most 2(|Q| − 1) times. The vehi-
cle connects one component each time it traverses the same arc by 
unblocking one arc going out of the subset of component and one 
arc coming into it. Therefore, we multiply this value by 2. Except 
the component that it is deployed, there are (|Q| − 1) components 
in total to be connected; thus, the scalar in this constraint takes the 
value of 2(|Q| − 1):

	
x z i j Bij ij≥ ∀ ∈, ( , ) 	 (8.6)

	
x Q z i j Bij ij≤ − ∀ ∈2 1(| | ) , ( , ) 	 (8.7)

8.4.6  Flow Balance Equations

For connectivity of the nodes in the vehicle’s walk, we define flow 
variables fij or each arc that it passes through. For the depot vertex, the 
net flow into it is the total number of visits to all vertices except the 
depot (as seen in constraint [8.8]). For the other vertices, it is equal to 
the number of visits to the corresponding node (as seen in constraint 
[8.9]). In other words, the vehicle leaves one unit of flow each time it 
visits a node. Constraint (8.10) prevents backward flow from the sink 
node to any other node. Constraint (8.11) requires that the walk ends 
in sink node by sending one unit of flow to the sink node:
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f j Vn j( ) ,+ = ∀ ∈1 0 	 (8.10)

	

f j n

j V

( )+

∈

=∑ 1 1 	 (8.11)



178 aYŞe nur asalY and f. sibel salman

8.4.7  Constraints That Relate Variables fij and xij

Constraint (8.12) does not allow flow on an arc unless it is traversed. 
Constraint (8.13) shows that if an arc is traversed, then there must be 
a positive amount of flow passing through it:

	
f Mx i j A i j V nij ij≤ ∀ ∈ ∈ ∪ +, ( , ) , { , } {( )}1 	 (8.12)

	
f x i j A i j V nij ij≥ ∀ ∈ ∈ ∪ +, ( , ) , { , } {( )}1 	 (8.13)

8.4.8  Component Connectivity Constraints

For component connectivity, (8.14) and (8.15) require at least one arc 
into and one arc out of each subset of components within which the 
nodes are strongly connected to be unblocked. Similarly, with con-
straints (8.16) and (8.17), for connectivity of the components in sets 
Y +  and Y−, at least one arc into and one arc out of each subset are 
unblocked. As a result, the graph becomes strongly connected:

	 ( , ) ( )

,
i j s

ijz s S
∈ +
∑ ≥ ∀ ⊂

δ

1 	 (8.14)

	 ( , ) ( )

,
i j s

ijz s S
∈ −
∑ ≥ ∀ ⊂

δ

1 	 (8.15)

	 ( , ) ( )

,
i j y

ijz y Y
∈

+

+
∑ ≥ ∀ ⊂
δ

1 	 (8.16)

	 ( , ) ( )

,
i j y

ijz y Y
∈

−

−
∑ ≥ ∀ ⊂

δ

1 	 (8.17)

8.4.9  Constraints That Define the Variables

Constraints (8.18) through (8.20) are integrality constraints, whereas 
constraints (8.21) are binary constraints. Constraints (8.22) state that 
flow variables are nonnegative real numbers:

	
x x i j A i j Vij ji, , , { , },∈ ∀( )∈ ∈+Z 	 (8.18)
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x i Vi n( ) ,+ +∈ ∀ ∈1 Z 	 (8.19)

	
v i Vi ∈ ∀ ∈+Z , 	 (8.20)

	
z i j Bij ∈ ∀ ∈B, ( , ) 	 (8.21)

	
f f i j Aij ji, , ( , )∈ ∀ ∈+R 	 (8.22)

8.5  Data Acquisition and Generation

For computational experiments, we constructed a network of Istanbul 
that is obtained by considering province centers and real road dis-
tances. By using Google Maps, we identified strategically important 
locations such as province centers and provinces that have hospitals, 
disaster coordination centers, ports, airports, bus terminals, and 
bridges. Possible depot points are given in Table 8.1. Depot points 
are determined according to the locations related to highway main-
tenance, the locations that may have machinery, for example, cranes 
and trucks. There are 74 nodes including 38 province centers and 
34 populated districts (see Figure 8.2). In total, there are 360 links 
(720 arcs) (see Figure 8.3). Arcs are created between neighbors, and 
arc traversal times are determined by using road distances given in 
Table 8.2, which are calculated using Google Maps. We converted 
road distances into time (in hours) assuming an average 50  km/h 
speed for the vehicle.

Table 8.1  Possible Locations of Depots

PROVINCE NODE 

Disaster Coordination Center Kağıthane 23
GDH Division of Machinery Supply Maltepe 29
GDH Division of Road Maintenance and Repair Kartal 32
GDH Division of Road Maintenance and Repair Edirnekapı/Eyüp 15
GDH Regional Division of Maintenance and Operations Kavacık 27
GDH Regional Division of Maintenance and Operations Kurtköy/Pendik 36
General Directorate of Highways (GDH) Kağıthane 23
Istanbul Metropolitan Municipality Fatih 19
Istanbul Metropolitan Municipality—additional building Merter/Güngören 17
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Ten scenarios with different sets of blocked roads are generated by 
referring to the latest earthquake risk map of Istanbul reported by the 
Japan International Cooperation Agency and Istanbul Metropolitan 
Municipality in a 2002 study (The Japan International Cooperation 
Agency [JICA]; Istanbul Metropolitan Municipality 2002). We clas-
sified the roads into three based on the earthquake risk map: high-risk 
roads (see Table 8.3 for high-risk roads), low-risk roads (see Table 8.4 for 
low-risk roads), and the remaining ones. More roads are picked to be 
blocked in high-risk area than in low-risk area, but within each risk level, 
blocked roads are selected randomly. In this way, three to six discon-
nected components are formed. The number of disconnected components 
and the number of blocked roads in each scenario are given in Table 8.5.

For each scenario, two instances with high and low unblocking 
times are generated. Unblocking time of an arc is set proportional to 
its traversal time, that is, bij = α cij. The factor α is generated randomly 
as follows. First, blocked roads are classified into high-, medium-, and 
low-damage groups randomly with probabilities listed in Table 8.6. 
In high–unblocking time case, high-damage roads are more likely 
and low-damage roads are less likely. For example, around 60% of 
the blocked arcs would have high damage, while 10% would have 
low damage. The factor α has a uniform distribution and takes values 
between (10, 50), (5, 10), and (2, 5) for high-, medium-, and low-
damage groups, respectively.

Figure 8.2  Nodes on Istanbul map from Google Earth.
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8.6  Computational Experiments and Results

Effects of the following parameters on computational performance 
and objective value are analyzed: (1) degree of damage (i.e., high 
and low bij cases) and (2) location of the depot. To solve the models, 
CPLEX 12.5 was run as a multithreaded application (using GAMS 
24.0 and a computer with two 3.30 GHz processors, 32 GB RAM 
under 64-bit operating system).

The results of high and low blocking time cases (with 23 as the 
depot node) can be seen in Table 8.7. All scenarios are solved to opti-
mality in a short time (at most 114 s and in less than a minute for all 

Table 8.3  High-Risk Roads

EUROPE ASIA 

I J I J

3 5 25 30
5 8 25 69
8 9 25 64
8 40 25 66
9 11 29 32
9 40 30 71

10 11 32 33
10 17 32 36
10 16 32 71
10 46 33 36
16 46 33 63
16 19 36 63
16 74 36 37
19 73 37 63
19 72 64 68
19 20 64 65
20 22 64 66
40 45 64 69
40 11 65 68
45 10 65 29
72 20 66 29
72 73 66 30

66 69
68 66
68 29
71 33



189Arc Selection and Routing

Table 8.4  Low-Risk Roads

EUROPE ASIA 

I J I J I J I J I J I J I J 

1 3 13 47 21 50 43 41 52 51 61 24 26 67
1 2 13 18 23 61 43 9 52 56 61 60 26 69
2 4 14 13 23 50 44 16 53 55 61 59 27 28
2 3 14 18 23 21 44 74 53 54 62 24 27 70
3 39 15 74 38 27 44 15 53 20 62 58 28 31
4 7 15 21 38 57 44 48 54 52 62 38 28 35
4 39 15 49 39 7 47 44 54 22 74 19 31 35
6 7 17 16 39 6 47 18 55 22 74 46 31 30
6 42 17 74 39 5 47 48 55 54 31 69
6 5 17 44 41 40 47 12 55 20 31 34
6 8 17 47 41 11 48 15 56 22 34 33
6 3 17 16 41 12 48 49 57 56 34 71
7 42 18 49 41 17 48 18 58 57 34 30
7 43 18 44 41 9 49 23 58 38 35 34
7 14 20 55 42 41 49 21 59 57 67 31

11 17 21 20 42 43 50 51 59 60 67 30
12 11 21 55 42 9 50 59 59 62 67 69
12 10 21 54 43 14 50 61 59 58 70 28
12 17 21 52 43 12 51 59 60 24 70 67
13 12 21 51 43 13 52 59 60 62 70 26

Table 8.5   Scenarios

SCENARIOS NUMBER OF BLOCKED ARCS 
NUMBER OF DISCONNECTED 

COMPONENTS 

1 30 3
2 32 3
3 40 4
4 42 3
5 52 4
6 60 4
7 76 5
8 80 6
9 82 6

10 84 5
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but one). This shows that for problems with the tested size, the goal of 
solving the problem very quickly is achieved. Low–unblocking time 
case gives 23% higher runtime on average, compared to the high–
unblocking time case. As the number of components and blocked 
arcs increases, the effect of damage level on runtime can be observed 
better. We can conclude that when unblocking times decrease, 
solution time increases since the decision of which arcs to unblock 
gets more difficult, and both connectivity and routing decisions affect 
the solution value strongly.

In order to evaluate the effect of the location of the depot on the 
runtime and objective value, we picked several different nodes as the 
depot and solved the model with high unblocking times. Nodes 15 
and 23 located in European side of Istanbul and nodes 27, 29, and 32 
in Asian side are picked one by one as the depot. It is possible to con-
sider other nodes, but we picked these for demonstration purposes. 
Table 8.8 shows the results for all scenarios. When the depot is at 
node 15, 27, 29, or 32, all scenarios are solved even faster, and the 

Table 8.6  Damage Level, Probabilities, α, Classification of Blocked Roads

DAMAGE 

HIGH–UNBLOCKING TIME CASE LOW–UNBLOCKING TIME CASE 

HIGH MEDIUM LOW HIGH MEDIUM LOW 

Probability 0.6 0.3 0.1 0.1 0.3 0.6
Distribution of α U(10, 50) U(5, 10) U(2, 5) U(10, 50) U(5, 10) U(2, 5)

Table 8.7  Effect of Degree of Damage and Computational Results

SCENARIOS 

NUMBER OF 
BLOCKED 

ARCS 

NUMBER OF 
DISCONNECTED 
COMPONENTS 

HIGH COST LOW COST 

OBJECTIVE 
(H)

LB 
(H)

TIME 
(S)

OBJECTIVE 
(H)

LB 
(H)

TIME 
(S)

1 30 3 4.5 4.5 39.0 2.5 2.5 30.0
2 32 3 3.0 3.0 8.0 2.4 2.4 10.0
3 40 4 8.5 8.5 8.0 5.1 5.1 9.0
4 42 3 6.4 6.4 6.0 3.4 3.4 9.0
5 52 4 3.3 3.3 8.0 2.7 2.7 8.0
6 60 4 6.1 6.1 13.0 3.4 3.4 9.0
7 76 5 7.3 7.3 50.0 5.5 5.5 114.0
8 80 6 11.2 11.2 27.0 5.9 5.9 27.0
9 82 6 9.1 9.1 23.0 5.9 5.9 17.0

10 84 5 8.2 8.2 14.0 3.5 3.5 21.0
1. Average 6.7 6.7 19.6 4.0 4.0 25.4
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Table 8.8  Effect of Location of the Depot on the Solution

SCENARIOS OBJECTIVE (H) LB (H) TIME (S) OBJECTIVE (H) LB (H) TIME (S) 

Depot ID: 15 Depot ID: 23

1 4.3 4.3 10.0 4.5 4.5 39.0
2 2.8 2.8 6.0 3.0 3.0 8.0
3 8.6 8.6 8.0 8.5 8.5 8.0
4 6.2 6.2 6.0 6.4 6.4 6.0
5 3.2 3.2 6.0 3.3 3.3 8.0
6 5.9 5.9 9.0 6.1 6.1 13.0
7 7.2 7.2 22.0 7.3 7.3 50.0
8 11.1 11.1 29.0 11.2 11.2 27.0
9 8.9 8.9 13.0 9.1 9.1 23.0

10 8.2 8.2 11.0 8.2 8.2 14.0
Average 6.6 6.6 12.0 6.7 6.7 19.6

Depot ID: 27 Depot ID: 29
1 4.5 4.5 15.0 4.0 4.0 6.0
2 3.2 3.2 9.0 2.7 2.7 5.0
3 8.6 8.6 8.0 8.4 8.4 8.0
4 7.7 7.7 12.0 7.0 7.0 6.0
5 3.5 3.5 8.0 3.0 3.0 6.0
6 6.3 6.3 15.0 6.1 6.1 8.0
7 7.4 7.4 32.0 6.5 6.5 8.0
8 11.2 11.2 39.0 10.4 10.4 11.0
9 9.3 9.3 13.0 8.8 8.8 11.0

10 8.2 8.2 14.0 7.8 7.8 9.0
Average 7.0 7.0 16.5 6.5 6.5 7.8

Depot ID: 32
1 4.1 4.1 7.0
2 2.9 2.9 6.0
3 8.5 8.5 8.0
4 7.1 7.1 6.0
5 3.1 3.1 6.0
6 5.9 5.9 19.0
7 6.3 6.3 9.0
8 10.3 10.3 12.0
9 9.0 9.0 18.0

10 8.4 8.4 11.0
Average 6.6 6.6 10.2
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objective value does not change much. Choosing node 29 as the depot 
seems rational since it gives a better solution in terms of objective 
value and runtime. The reason for this performance may be explained 
as follows. The network has a rectangular shape, and node 29 resides 
in bottom-right corner. Node 32 has a similar position. The other 
depots are in a more central position with respect to the layout of the 
network. Starting from a central location may result in traversals back 
and forth to the component in the center. Therefore, the travel time 
may be longer.

8.7  Conclusions

In this study, we introduced the ARCP, which is applicable for 
restoring network connectivity after a disaster. The aim is to make 
the disconnected graph strongly connected in the shortest time by 
unblocking some of the blocked roads. The responsible team leaves 
the depot and unblocks selected roads with an unblocking time that 
is spent only for the first time the blocked road is traversed. We show 
that ARCP is NP-hard and develop an MIP formulation that can be 
solved quickly for instances with realistic size. This can be contributed 
to the fact that arc routing part of the problem is handled efficiently 
by sending flows. To the best of our knowledge, this is new in the arc 
routing literature.

To generate test data, Istanbul highway network is used. Ten differ-
ent scenarios with differing blocked arcs are constructed by selecting 
links in high-risk areas in existing earthquake scenarios. Two levels of 
damage are defined, and unblocking times are calculated accordingly, 
leading to 20 test instances. While MIP is solved in at most 2 min in 
all of 20 instances, we observe that high–unblocking time cases are 
easier to solve than low–unblocking time cases. Changing the loca-
tion of the depot does not affect the objective value and runtime much 
in our instances. We expect the solution of larger instances to take 
longer. However, having a single fleet traverse a wide area with many 
arcs will not provide an efficient solution. Instead, covering an area by 
multiple teams would be the way to go in a disaster situation.

In order to analyze the computational performance of the model, 
a more extensive numerical study would be required. Here, we have 
used only a single network with 20 postdisaster scenarios. Instead of 
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the Istanbul map, a smaller network can be used. For example, dif-
ferent provinces in Istanbul can be taken, and a more detailed road 
network with shorter distances can be generated for each one. Then, 
having a single vehicle or fleet responsible from each region would 
reduce the completion time for connectivity of the larger network.

When the network gets larger, having multiple vehicles becomes 
necessary. The timing of the vehicles becomes an issue since a vehicle 
may need to wait while another works on an arc. A heuristic approach 
to solve the multivehicle case quickly can be by partitioning the graph 
and solving the ARCP exactly for each partition. Clearly, the quality 
of the solutions would depend on the partitioning step.

This line of research can be extended in several directions in future 
research. The problem can be defined on an undirected graph. If con-
necting the entire network takes too long time, connectivity to certain 
nodes such as supply points, hospitals, and airports can be prioritized. 
The objective would change to connecting given origin–destination 
pairs. This modification can be handled by multicommodity flows for 
connectivity.
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9
Feasibility Study of 
Shuttle Services to 

Reduce Bus Congestion 
in Downtown Izmir

E R D İ N Ç  Ö N E R ,  M A H M U T  A L İ  G Ö K Ç E , 
H A N D E  Ç A K I N ,  AY L İ N  Ç A L I Ş K A N , 

E Z G İ  K I N AC I ,  G Ü R K A N  M E R C A N , 
E Z E L  İ L K YA Z ,  A N D  B E R İ L  S Ö Z E R

9.1  Introduction

Experiencing traffic congestion becomes inevitable for most people 
living in large cities, especially during rush hours. The growth of pop-
ulation and employment, especially in city centers, is the main reason 
behind this traffic congestion.

According to the 2012 Urban Mobility Report for United 
States prepared by Texas Transportation Institute of Texas A&M 
University, the estimated annual travel delay is increasing drastically. 
The annual travel delay was 1.1 billion hours in 1982 and reached 
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5.5 billion hours in 2011. Moreover, it was recorded that while the 
amount of CO2 produced during congestion was 10 million lb in 
1982, it increased to 47 million lb in 2000 and then to 56 million lb 
in 2011 (Schrank et al., 2012). An efficient public transport system 
can smooth traffic, reduce people’s travel time, and help reduce envi-
ronmental pollution. Based on the 2012 Urban Mobility Report, 
extending public transportation has significant savings. While its 
contribution to savings in yearly travel delay was 409 million hours 
in 1982, it increased to 865 million hours in 2011. In addition, the 
use of public transportation resulted in an annual congestion cost 
saving of $8.0 billion in 1982 and $20.8 billion in 2011.

9.1.1  Statement of the Problem

Izmir is the third most crowded city with a population of 4.1 million, 
and it also has the second largest port in Turkey. Public bus trans-
portation activities in Izmir are managed by ESHOT (Izmir Public 
Transportation Authority) in five main districts (Figure 9.1). ESHOT 
launched Smart Ticketing system for public bus transportation on 
March 15, 1999. Following that progress, smart ticketing system was 
also integrated to the subway, suburban railway, and sea transpor-
tations. ESHOT provides free transit within alternative modes of 

Figure 9.1  Bus operation districts of ESHOT.
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public transportation for passengers when they use their smart tickets 
within 90 min of first use.

In Izmir city center, the area between Halkapınar Connection 
Centre, Kemer Connection Centre and Konak Connection Centre 
is known as the prestige location of Izmir. It has high concentration 
of businesses and shopping centers and historical structures. Figure 
9.2 shows this area, which is also referred to as the triangle area 
throughout this study. As presented in Table 9.1, the high number of 
public buses that go in and out of the triangle area shows the poten-
tial congestion problem caused by these buses. Numbers show that 
approximately half of the ESHOT bus fleet actively performs in this 
area, and considering that the total surface area of Izmir province 
is 12,007 km2 and city center’s is approximately 816 km2, the buses 

Figure 9.2  Triangle area in Izmir downtown.

Table 9.1  Facts of the Triangle Area

Number of bus lines in the triangle area Total number of bus lines in Izmir Percentage
90 317 0.29

Number of active buses in the triangle area Total number of active buses in Izmir Percentage
651 1408 0.46

Total bus exits and entrances in morning rush 
hours to the triangle area in a day (3 h)

Total bus exits and entrances to the 
triangle area in a day (18 h)

Percentage

2418 9480 0.26
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have high density in the city center. Besides, comparison between 
total bus exits and entrances to the triangle area during rush hours 
and whole day shows that just 3 h morning rush hour period gener-
ates approximately one-fourth of the entire day’s entrances and exits. 
Therefore, traffic congestion caused by public buses in the triangle 
area during rush hours results in higher congestion costs than any 
other period of time during the day.

As a result of traffic congestion, bus travel time increases in the tri-
angle area. This means that the total transit time of passengers is too 
long compared to the distance of route in the triangle area. For instance, 
while the total traveling time of line 169 from Balçova to Halkapınar 
varies in the range of 54–60 min, it takes 26–32 min between Konak 
and Halkapınar, which means that almost half of the total time is spent 
in the triangle area while the triangle area’s route length is approxi-
mately quarter of total route length of line 169 (Figure 9.3).

9.1.2  Objectives of the Study

In this study, a shuttle service system is proposed replacing the cur-
rent bus routes and schedules in the triangle area of Izmir to solve 
the congestion problem. Figure 9.4 presents the proposed transfer 
hubs and the shuttle system for the triangle area. First, the simulation 
model of the current bus transportation system in the triangle area 
was developed, verified, and validated. Then, the expected benefits of 
the proposed shuttle system were determined through an experimen-
tal design using the simulation model.

18 km

5 km

Konak AKM
station HalkapinarBalçova

60 min

32 min

Figure 9.3  Example of time spent vs. distance traveled in the triangle area by buses.
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Eight different lines of shuttle services with different routes were 
planned to operate in the triangle area. Routes were based on work 
done jointly with ESHOT’s transportation planning department. 
Some of the bus stations that were not frequently used in the current 
system were eliminated while determining shuttle services’ routes. 
Expected outcomes of the proposed shuttle system were as follows:

•	 Decreasing average traveling and waiting time for passengers 
in the triangle area

•	 Decreasing the number of buses traveling in the triangle area
•	 Minimizing the simultaneous arrival of buses to bus stations 

(trailing)
•	 Decreasing total CO2 emission

9.2  Literature Review

Many of the metropolitan cities suffer from higher traffic congestion 
in city centers. The factors behind this problem are numerous. The 
high number of business and entertainment centers can be counted as 
the first reason for the crowdedness. A great number of people travel 
into this region during the same few hours each morning and eve-
ning, called as peak periods; therefore, roads and public transportation 
systems do not have enough capacity for simultaneous arrival/exit of 
everyone who wants to use them (Downs, 2004).

Figure 9.4  Proposed transfer hubs and shuttle system for the triangle area.
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On the other hand, according to Rosenbloom (1978), although 
traffic congestion is inevitable in metropolitan cities, there are some 
ways at least to decrease its intensity. These can be divided into two 
groups, as changing the demand for road system capacity and chang-
ing the system capacity itself. Under the first title, reorienting travel 
to less-congested alternative routes or reducing the number of vehicles 
while increasing vehicle occupancy can be counted. For the second 
choice, the solution is constructing additional roadway or adding 
lanes to existing routes. However, according to Parry, even when the 
highway capacity is increased, increase in the growth of vehicle miles 
traveled will be higher. As a result, congestion has grown steadily 
worse (Parry, 2002). In his study, some statistics is given to support 
this statement by using the Department of Transportation database. 
As an example, while vehicle miles traveled in urban areas increased 
by 289% between 1960 and 1991, total road capacity in urban areas 
increased by only 75%.

Improvements to decrease congestion can be increasing frequency 
and operating hours, improving coordination among different modes, 
providing real-time information to customers (GIS), or designing ser-
vices that serve for particular travel needs, such as express commuter 
buses, special event service, and various types of shuttle services 
according to Transportation Demand Management Encyclopedia 
(Victoria Transport Policy Institute, 2013).

Other improvement suggestions for public transportation can be 
viewed in Boll’s (2008) thesis in detail under the title of physical pri-
ority to buses. Grade-separated right of way, median bus ways, and 
contra-flow lanes built on one-way streets are some of the exam-
ples implemented worldwide for physical priority to buses. A video 
enforcement system can be implemented to control adherence to the 
rules when these systems are implemented.

Another group of methods to improve public transportation can 
be through incentives of using different modes of public transporta-
tion. A good example of this kind of incentive is the linked transport 
from Izmir, Turkey, which gives the chance of free ride to custom-
ers within 90 min after the first ride (ESHOT General Directorate). 
Madrid has also provided incentives to promote public transporta-
tion. Intermodal exchange stations for connections between urban 
and suburban transportation modes were built in Madrid to promote 
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public transportation within the city. In the study of Vassallo et al. 
(2012), effects of this implementation was analyzed in terms of users, 
public transportation operators, infrastructure managers, the govern-
ment, the abutters, and other citizens.

However, there is no universal measurement to analyze the effec-
tiveness of any suggestions that are given earlier since congested traffic 
is a relative term. “In common sense, the traffic of any given artery can 
be considered congested when it is moving at speeds below the artery’s 
designed capacity because drivers are unable to go faster” (Downs, 
2004). Based on this concept, Texas Transportation Institute and the 
Federal Highway Administration developed some measures of con-
gestion that includes the travel time index. This index is calculated as a 
ratio of the total travel time during rush hours to the total travel time 
during nonrush hours for the same route.

Simulation is a powerful tool to analyze all improvement sugges-
tions given earlier and reach such an index, since it is possible to study 
detailed relations that might be lost in analytical or numerical studies. 
“The reasons to use simulation in the field of traffic are the same as in 
all simulation: the difficulty in solving the problem analytically; the 
need to test, evaluate and demonstrate a proposed course of action 
before implementation; to make research (to learn) and to train peo-
ple” (Pursula, 1999). Also, Boxill and Yu (2000) claim that because of 
stable and unstable states, chaotic and stochastic behaviors of traffic, 
simulation is a useful method.

Olstam and Tapani (2011) define each step of developing a traffic 
simulation in detail. They state that firstly, aim and scope of the study 
should be determined before collecting necessary data. Following 
these steps, the simulation model can be constructed; however, it 
needs also verification, calibration, and validation. Thereafter, it is 
ensured that the model represents reality in a reasonable way, alterna-
tive scenarios should be tried, and each of them should be analyzed. 
They asserted that the final step should be documentation. According 
to Balci (1990), representation of reality in a reasonable way does not 
mean an absolute accuracy. He claims in his study that while in some 
cases 60% level of confidence is enough for the aim of the study, oth-
ers can require 90% level of confidence.

Boxill and Yu (2000) categorize traffic simulation into three fields 
that are microscopic, macroscopic, and mesoscopic. While microscopic 
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models focus on behaviors of individual vehicles such as speed and 
location or characteristics of drivers, macroscopic models aim to 
evaluate traffic flow or density as a continuum (Oner, 2004). On the 
other hand, a mesoscopic model integrates characteristics of these two 
approaches by considering individual vehicles’ behavior and also gen-
eral traffic flow.

9.3  Solution Method

In this section, the data collection and analysis and the developed 
simulation model are explained here.

9.3.1  Data Collection and Analysis

The main sources of data used in this study are the ESHOT smart 
ticketing system, GPS bus tracking database, and ESHOT transpor-
tation planning database.

Bus lines that perform in the triangle area were determined using 
ArcGIS, which is a complete system for designing and managing 
solutions through the application of geographic knowledge. Ninety 
bus lines that go through the triangle and all stations in the triangle 
area were determined. Entrance and exit points within the trian-
gle area and all stations in the triangle area were identified for the 
90 bus lines. Bus routes in the triangle area were identified from 
ESHOT’s website. Distances between bus stations were retrieved 
from ESHOT’s database in km.

ESHOT’s smart ticket database keeps the information (date, time, 
direction) of each boarding passenger for each bus line. The October 
2011 data were selected to be used since it is the most crowded month 
of that year. Rush hours were selected since a minor improvement in 
rush hour would definitely improve nonrush hours. Data for morn-
ing (06:00–09:00) and evening rush (16:00–20:00) hours were used. 
Three- and four-hour datasets were used instead of hourly datasets. 
The Kolmogorov–Smirnov two-sample test showed no statistically 
significant difference between using either way.

The travel time between consecutive stations on a line for each of 
the buses was fitted into a distribution using ARENA Input Analyzer. 
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The travel times between the bus stations can be generated in the 
simulation model using these distributions.

By using smart ticketing system database, arrival of each bus line 
to each station and the number of passengers that were accumu-
lated between two consecutive arrivals of the buses were recorded. 
Assuming a steady flow of passengers to the stations, dividing 
time difference between two consecutive arrivals by the number of 
accumulated passengers shows the interarrival time of passengers. 
Interarrival times of passengers were calculated using Excel macro, 
and input analyzer was used for generating passenger interarrival 
time distributions. Data collection was made for every bus stop in 
the triangle area for each bus line. Data of passengers dropped off 
at each bus stop were provided by ESHOT, which was based on an 
estimate.

The smart ticketing system database was also used to identify the 
number of passengers for each line’s first bus stop, namely, the Konak, 
Kemer, and Halkapınar bus stations.

9.3.2  Simulation Model

ARENA simulation software by Rockwell Automation was used to 
simulate both current system and proposed shuttle system. Although 
there were 90 bus lines that run through the triangle area, all of them 
were not included in the simulation model. Instead, these bus lines 
were grouped based on their entrance points to the triangle area, and 
then all three groups were scaled down to one-third. The resulting 
scaled-down bus lines were as follows:

•	 Konak entrance point: Lines 8, 12, 169, 300, 554, 42, 44, 45, 
46, and 269

•	 Kemer entrance point: Lines 37, 38, 39, 42.44, 45, and 46
•	 Halkapınar entrance point: Lines 131, 140, 147, 148, 63, 576, 

986, 886, 79, 70, and 169

Performance parameters of these models are representatives of all 
90 bus lines.

The model starts by creating the passengers and the buses. When 
the bus arrives to station, first passengers are dropped off and then the 
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passengers waiting for the particular bus line are picked up. Finally, 
the bus moves to the next station.

Because of capacity restrictions, picking up and dropping of pro-
cesses require some additional decision blocks in the model. These 
can be seen in detail in Figure 9.5, which shows the main logic of bus 
station events.

In this study, two different performance measures are given. These 
are as follows:

•	 Average waiting time of passenger at bus stations within the 
triangle

•	 Average traveling time of passenger in the triangle

9.3.2.1  Average Waiting Time at Bus Station  After passengers are cre-
ated according to identified passenger interarrival time distributions 
by CREATE block, they arrive in stations’ queues by using HOLD 
block in ARENA model. Passengers arrive in stations at different 
times, and when they get into the buses, average waiting time is calcu-
lated. Logic of this calculation is explained as follows:

Arrival of bus at
the station

Determining the
number of

passengers to be
dropped off = X

Drop off X
number of
passengers
randomly

Drop off all
passengers

Bus capacity
> number in

queue

YES

Pick up all

Pick up
until full

Bus moves to
the next
station

Number in bus
> number to be

dropped off

NO

YES

NO

Figure 9.5  Flowchart of the simulation model for bus station events.



205Feasibility Study of Shuttle Services

	

Average waiting time of passengers at eachstation

arrivanow
i

n

T
=

∑
1

ll of bus tothestation

arrival of the passenger to the stanow

( )(

=
−T i ttion

Total number of passengers gets into bus at station

( ))
( )i n

	

(9.1)

Then, average waiting time of passengers for each line was calculated 
as follows:
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9.3.2.2  Average Traveling Time  Traveling time defines the duration 
of passenger between getting into bus and getting out of bus. It is 
calculated as follows:
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The simulation model developed in ARENA was verified by compar-
ing the number of buses created and the number of passengers picked 
up and dropped off at the bus stations with the data obtained from 
ESHOT for the current system.
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9.4  Experimental Design and Results

After constructing the simulation model for shuttle services system, 
three parameters are selected to analyze the proposed system under 
different conditions. The three parameters are the expected percentage 
of passenger transfers to different transportation modes, frequency of 
shuttle services during rush hours, and expected % decrease in travel 
time due to the reduced number of buses in the triangle area. Each 
design parameter having three levels resulted in a total of 27 scenar-
ios. Table 9.2 shows the experimental design parameters and theirs 
levels used in this study. Each scenario is run with 30 replications, and 
results from the scenarios are recorded.

The first parameter is the expected percentage of passenger trans-
fers to different transportation modes such as ferry and subway. This 
transfer takes place when the passengers arrive at the shuttle service 
transfer hubs at the entrances of the triangle area. Three different lev-
els for these parameters are selected as 10%, 15%, and 20%. These lev-
els are estimated based on the passenger information from the smart 
ticketing system for different modes of transportation by ESHOT 
Transportation Planning Department. Different frequencies of the 
shuttle buses are selected as the second parameter and determined 
for each hour of the morning rush hours. First level of the shuttle bus 
frequencies is assigning shuttle buses in every 5 min between 6:00 
and 7:00, in every 2 min between 7:00 and 08:00, and in every 4 min 
between 8:00 and 9:00. Other levels are scheduling shuttles in every 
10, 5, 6 and 6, 4, 5  min between 6:00 and 7:00, 7:00 and 08:00, 
and 08:00 and 09:00, respectively. The frequency of the shuttle bus 
services varies during the 3 h period (morning rush hours) based on 
smart ticketing system data of the triangle area bus stations.

Table 9.2  Experimental Design Parameters and Their Levels

PARAMETERS

EXPECTED PERCENTAGE 
OF PASSENGERS’ 

TRANSFER TO DIFFERENT 
TRANSPORTATION MODES

DIFFERENT SCHEDULES FOR 
SHUTTLES BETWEEN 06:00 

AND 07:00, 07:00 AND 08:00, 
AND 08:00 AND 09:00 (MIN)

PERCENTAGE OF 
EXPECTED DECREASE IN 
TIME PASS BETWEEN TWO 
CONSECUTIVE STATIONS

Levels 10 5, 2, 4 2
15 6, 4, 5 4
20 10, 5, 6 6
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Third parameter is the expected decrease in bus travel time in the 
triangle area. Proposed shuttle service system decreases the number of 
buses used in the triangle area. Therefore, it is expected that the traffic 
congestion will be reduced, which might be reflected by decreased bus 
travel times. This reduction is shown in ARENA model by reducing 
the time between stations. Three levels for this parameter are 2%, 4%, 
and 6% reduction in bus travel time.

Each of eight shuttle lines are compared with current active buses 
on those routes and scenarios in terms of average passenger traveling 
time in the triangle area and average waiting time of passengers at 
bus stations.

Average travel time in the triangle and average waiting time at the 
bus stations for the current system are compared with the best- and 
worst-case scenarios of each shuttle line of the proposed system in 
Tables 9.3 and 9.4, respectively. In these tables, buses are grouped 
according to their routes and matched with shuttle system’s lines. It is 
observed that even with the worst scenarios, almost all shuttle lines 
outperformed the current system.

The individual effects of the experimental design parameters, which 
make up the scenarios, can be better observed by plotting all of the 
scenarios and their improvements in two performance measures at the 

Table 9.3  Comparison of Average Traveling Time of Passengers in the Triangle Area for the 
Current System with the Best- and Worst-Case Scenarios of the Proposed Shuttle System

SHUTTLE 
LINE 

CURRENT BEST WORST 

BUS GROUPS

BUS GROUP 
AVERAGE 

TRAVELING TIME 
OF PASSENGERS 

(S)

SHUTTLE 
AVERAGE 

TRAVELING TIME 
OF PASSENGERS 

(S)

% 
IMPROVEMENT 

OF BEST

SHUTTLE 
AVERAGE 

TRAVELING TIME 
OF PASSENGERS 

(S)

% 
IMPROVEMENT 

OF WORST

1 724.7 482.19 33.46 555.38 23.36
2 764.691 664.17 8.35 720.72 0.55
3 572.08 511.11 29.47 673.05 7.13
4 393.2 314.5 56.60 344.69 52.44
5 613.41 358.37 50.55 427.87 40.96
6 585.23 513.8 29.10 596.91 17.63
7 753.08 509.11 29.75 671.05 7.40
8 603.88 394.16 45.61 414.59 42.79
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same time. Figure 9.6 shows the percentage improvements in average 
waiting time and average travel time for all 27 scenarios for shuttle 
line 1. Percentage improvements in Figure 9.6 clearly show three 
clusters. Upon closer examination, we found out that the clusters are 
almost perfectly formed based on the level of the second parameter, 

Table 9.4  Comparison of Average Waiting Time of Passengers at the Bus Stations for the 
Current System with the Best- and Worst-Case Scenarios of the Proposed Shuttle System

SHUTTLE 
LINE 

CURRENT BEST WORST 

BUS GROUPS

BUS GROUP 
AVERAGE 

WAITING TIME 
OF PASSENGERS 

(S)

SHUTTLE 
AVERAGE 

WAITING TIME 
OF PASSENGERS 

(S)

% 
IMPROVEMENT 

OF BEST

SHUTTLE 
AVERAGE 

WAITING TIME 
OF PASSENGERS 

(S)

% 
IMPROVEMENT 

OF WORST

1 430.14 152.09 79.01 312.74 56.85
2 469.85 145.34 79.94 956.13 −31.93
3 339.94 106.75 85.27 366.24 49.46
4 343.81 107.36 85.19 234.52 67.64
5 400.28 135.55 81.30 257.48 64.47
6 552.26 136.81 81.12 655.6 9.53
7 403.94 103.75 85.68 363.24 49.88
8 326.81 112.69 84.45 250.23 65.47

First number shows level of parameter 1
Second number shows level of parameter 2
Third number shows level of parameter 3
For example, 1-1-1 is 10% expected percentage of passengers’ transfer to
different transportation modes: 5, 2, and 4 min between buses: 2%
Percentage of expected decrease in time pass between two consecutive stations
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Figure 9.6  Shuttle line 1 travel time and station waiting time % improvements.
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which is the shuttle bus frequency during the morning rush hour. 
Although the other two parameters also do affect the performance 
measures, bus frequency schedules seem to have the highest impact. 
Plots for the other shuttle lines show a similar trend.

With the reduction of the number of buses in the triangle area, 
CO2 emission is also expected to decrease. In Table 9.5, results of 
CO2 emission of current bus lines, which has the same routes with 
shuttle lines, are given. As it can be seen in Table 9.5, CO2 emission 
tones/year can be approximately reduced to half even with the worst-
case scenario. According to the UK Department for Environment, 
Food, and Rural Affairs (2012 DEFRA Database) database, the aver-
age CO2 emission for local buses is 0.11195  kg/km. The total dis-
tance traveled within the triangle area is calculated, and the expected 
reduction for the CO2 emission is estimated.

9.5  Conclusions and Future Work

Traffic congestion and its results are significant for many metropolitan 
cities around the world. Izmir is no exception. In this study, the focus 
was traffic congestion in Izmir city center due to the large number of 
public buses, especially during rush hours. An alternative shuttle sys-
tem was proposed, which prevents the entrance of large public buses 
into the city center, called as the triangle area. In the proposed sys-
tem, passengers transfer to either newly designed shuttle buses or to 
the alternative modes of public transportation system while traveling 
through the triangle.

Average passenger traveling times and average passenger waiting 
times at the bus stations were determined as performance indicators 
to compare current system with the proposed system. For each shut-
tle line, 27 different scenarios were generated based on three design 
parameters, and results were compared with current bus lines that 
give service on the same routes. Results of these scenarios showed sig-
nificant improvements in performance measures, even for the worst-
case scenarios. As an added benefit, the proposed shuttle system also 
had less CO2 emissions due to the reduced number of buses in the 
triangle area.

Although, extra transfers made by passengers seem counterin-
tuitive, our results prove that a well-designed system will improve 
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passenger experience and benefit the city as a whole. We believe, 
where the conditions are similar, simulation can be used efficiently 
to experiment with new system designs for public transportation 
systems.

Improvement on some of the estimation procedures is planned for 
future work. The estimates of the percentage of passengers transfer-
ring to other transportation modes and reduction in travel times in 
the triangle area due to the less number of buses were used in experi-
mentation for evaluating alternative scenarios. In addition, although 
the passengers boarding at the stations were known due to the smart 
ticketing system, passenger destinations had to be estimated. More 
data on the passenger travel habits and traffic flow pattern in the tri-
angle area with the use of a microsimulation package will improve the 
accuracy of the results of this study.
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10.1  Introduction

Facility layout and design are an important issue for any business 
entity’s overall operations, in terms of both maximizing the effective-
ness of production processes and meeting the employee needs and/or 
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desires. Facility layout is defined by Weiss and Gershon (1993) as “the 
physical arrangement of everything needed for the product or service, 
including machines, personnel, raw materials, and finished goods. 
The criteria for a good layout necessarily relate to people (personnel 
and customers), materials (raw, finished, and in processes), machines, 
and their interactions.”

Business owners need to consider many operational factors when 
building or renovating a facility for maximum layout effective-
ness. These factors include the following: future expansion or pos-
sible changes of facility, land use, workflows, material movements, 
transportation and procurement needs, output requirements, ease of 
communication and support, employee morale and job satisfaction, 
promotional values, and safety. In order not to continuously redesign 
the facility, the facility layout problem should be handled very care-
fully. There are many goals in facility design such as keeping the mate-
rial movement at a minimum level, avoiding bottlenecks, minimizing 
machine interventions, enhancing employee morale and security, and 
providing flexibility.

There are three basic types of layouts: product, process, and fixed 
position. Three hybrid types of layouts are also used: cellular, flexible 
manufacturing systems, and mixed-model assembly lines. Essentially, 
two distinct types of layout (product and process) are widely imple-
mented. Product layout mainly affects the assembly line arrangement 
and is very much concerned with the products produced. Process lay-
out, on the other hand, is established according to the production 
processes that are used to generate the products. Product layout is 
principally applied to high-volume repetitive operations, while pro-
cess layout is applied to low-volume make-to-order operations.

Carefully planning the layout of a facility can have significant 
long-term benefits for the company’s manufacturing and distribution 
activities. Creating a sustainable growth plan is an essential key to 
develop this plan. Many issues (production process routings and flows, 
material handling methods and equipment requirements, product mix 
and volumes, etc.) must be considered while developing this plan.

Basic purpose of layout is to ensure a smooth flow of work, mate-
rial, and information through the system. However, a lot of objectives 
are considered to achieve that: minimization of material handling 
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costs; efficient utilization of space and labor; elimination of bottle-
necks; facilitation of communication and interaction between work-
ers, between workers and their supervisors, and/or between workers 
and customers; reduction of manufacturing cycle time and customer 
service time; elimination of wasted or redundant movement; facilita-
tion of the entry and exit; placement of material, products, and people; 
incorporation of safety and security measures; promotion of product 
and service quality; encouragement of proper maintenance activities; 
providing a visual control of operations or activities; and providing 
flexibility to adapt to changing conditions.

In designing process layouts, the most significant objective is to 
minimize material handling costs. This implies that departments that 
incur the most interdepartmental movement should be located closest 
to one another. For this purpose, two main approaches are widely used 
to design layouts, which are algorithmic and procedural approaches 
(Yang et al., 2000). Algorithmic approaches consider only quantita-
tive factors and do not consider any qualitative factors, whereas proce-
dural approaches can use both. Algorithmic approaches can efficiently 
generate alternative layout designs with often oversimplified objec-
tives (Yang and Hung, 2007). They can be computationally complex 
and prohibitive. That is why systematic layout planning (SLP) was 
adopted in industries as a viable approach in the past few decades 
(Han et al., 2012). Therefore, a procedural layout design approach—
SLP—is preferred in this chapter to solve the facility relocation 
problem of an electronics and electrical company. Furthermore, the 
performance of the preferred method is compared to those of Nadler’s 
ideal systematic approach (another procedural approach) and delta-
hedron (a graph theoretic-based heuristic algorithm), by use of linear 
weighting in factor analysis. After giving the facility layout problem 
definition and literature survey results along with the introduction of 
the techniques used in the study, details of the application are given 
in the following sections.

10.2  Facility Layout Problem

The placement of facilities on the plant site is often known as 
facility layout problem. This activity has a significant influence 
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on manufacturing costs, operation processes, lead times, and 
productivity. A suitable placement of facilities contributes to the 
overall efficiency of the plant and reduces the operating expenses 
up to 50% (Tompkins et al., 1996). Simulation studies are usu-
ally carried out to measure the benefits and performance of given 
layouts (Aleisa and Lin, 2005). Since layout problems are known 
to be complex and generally NP-hard (Garey and Johnson, 1979), 
numerous research studies were conducted in this area during the 
past decades.

As researchers have taken into consideration various ideas in 
their studies, they could not agree on a standard and exact defi-
nition of layout problems. A facility layout is an arrangement of 
everything needed for the production of goods or delivery of ser-
vices. A facility is an entity that facilitates the performance of 
any job. It may be a machine tool, a work center, a manufactur-
ing cell, a machine shop, a department, a warehouse, etc. (Heragu, 
1997). Koopmans and Beckmann (1957) defined the facility layout 
problem as a common industrial problem where the objective is to 
configure facilities in a way to minimize the cost of transporting 
materials between them. Azadivar and Wang (2000) reported that 
the facility layout problem is the determination of the relative loca-
tions for a given number of facilities and allocation of the available 
space among those facilities. According to Lee and Lee (2002), the 
facility layout problem consists in arranging unequal-area facilities 
of different sizes within a given total space, which can be bounded 
to the length or width of site area so as to minimize the total mate-
rial handling and slack area costs. Shayan and Chittilappilly (2004) 
defined the facility layout problem as an optimization problem that 
tries to make layouts more efficient by considering various interac-
tions among facilities and material handling systems while design-
ing layouts.

Drira et al. (2007) stated that the problems addressed in research 
works differ depending on such factors as follows:

Workshop characteristics impacting the layout: Products variety and 
volume, facility shapes and dimensions, material handling 
systems, multifloor layout, backtracking and bypassing, and 
pickup and drop-off locations.
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Static versus dynamic layout problems (formulation of layout prob-
lems): Discrete formulation, continual formulation, fuzzy 
formulation, multiobjective layout problems, and simultane-
ous solving of different problems.

Resolution approaches: Exact approaches and approximated 
approaches.

Above all, recent papers rest on complex and realistic features of the 
manufacturing systems studied. Facility layout is taken into consider-
ation together with typical parameters such as pickup/deposit points, 
corridors, and complex geometric constraints, when formulating the 
layout design problem. A lot of research contains restrictive assump-
tions that are not adapted to the complexity of many manufacturing 
system facilities. This is an outdated approach and certainly an impor-
tant issue that should be considered (Benjaafar et al., 2002). However, 
research is still needed. Designing a plant using a third dimension as a 
recent approach necessitates more research, such as to select and opti-
mize resources related to the vertical transportation of parts between 
different floors.

Researchers have preferred mostly to deal with static layout prob-
lems rather than dynamic ones. However, considering the changing 
conditions of operation systems, it is clear that the static approaches 
are unable to follow up these changes. The dynamic approaches 
have been developed against these changing business conditions in 
the future and are sometimes seen as good alternatives. Also, fuzzy 
methods may offer possibilities to assess uncertainty. Meanwhile, as 
already noted by Benjaafar et al. (2002), research is still needed for 
suggesting or improving methods to design (1) robust and adaptive 
layouts, (2) sensitivity measures and analysis of layouts, and (3) sto-
chastic models used to evaluate solutions.

When methods used in the solution of layout problems are 
concerned, it is seen that the metaheuristic methods have been 
widely used in facility layout studies dealing with problems in a 
larger size and taking into account constraints in a more realistic 
way. Evolutionary algorithms seem to be among the most popu-
lar approaches. Solution methods are also hybridized (integrated) 
to solve complex problems or to develop more realistic solutions. 
The studies based on artificial intelligence are now rarely published. 
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On the other hand, due to the difficulty in solving any problem 
without the use of expert systems, hybrid methods, capable of opti-
mizing the layout, are likely to be still needed while taking into 
account the available expert knowledge.

Most of the published research has focused on the determination 
of plant layout. However, in practice, this problem is often addressed 
with other design issues like the selection of production or transpor-
tation source, the design of cells, and the determination of capac-
ity resources. These problems are generally dependent on each other, 
for example, selection of a material handling conveyor as a means 
of transportation induces the selection criteria of automated guided 
vehicles. Therefore, during the plant design, research is needed to 
bring solutions to a variety of problems addressed simultaneously 
rather than sequentially. Such studies are promising in solving prob-
lems toward development and improvement of plant layout. This 
approach will indeed direct the researchers to focus on workshop 
design problems rather than being concentrated only on facility loca-
tion problems.

10.3  Literature Search

Facility layout design approaches in the literature are commonly 
categorized as algorithmic and procedural approaches (Yang et al., 
2000). Algorithmic approaches can efficiently generate alterna-
tive layout designs with often oversimplified objectives (Yang and 
Hung, 2007). In these approaches, quantitative use of material 
handling distances and loads are used to develop layout alternative 
with minimum total material handling cost. Since these approaches 
take the flow distance, either measured in Euclidean or rectilinear 
distance, which may not represent the physical flow distance, they 
simplify both design constraints and objectives in order to achieve 
surrogate objective function for attaining the solution. When quali-
tative design criteria are concerned, these approaches cause lack of 
functionality and credence for a quality solution. The shortcoming 
of qualitative approaches comes out when all qualitative factors are 
aggregated into one criterion. These approaches can generate better 
results when commercial software is available. The basic limitation 
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of these approaches is that they consider only quantitative fac-
tors and do not consider any qualitative factors. Some additional 
approaches in this category used the flow distance as the surrogate 
function to solve the layout design problem by utilizing mixed-inte-
ger programming formulation (Heragu and Kusiak, 1991; Peters 
and Yang, 1997; Yang et al., 2005; Chan et al., 2006), but they 
were often computationally prohibitive. Heuristics, metaheuristics, 
neural network, and fuzzy logic were also utilized in generating 
layout alternatives as well as exact procedures (Singh and Sharma, 
2006). The majority of the existing literature reports on algorithmic 
approaches (Heragu, 1997).

On the other hand, procedural approaches can incorporate both 
qualitative and quantitative objectives in the design process, which 
is divided into several steps that are then solved sequentially (Han 
et al., 2012). These approaches rely on experts’ experience (Yang 
et al., 2000). An effective and most famous method in this category is 
known as SLP procedure (Muther, 1973). SLP is widely used among 
enterprises and the academic world. The practical applications in a 
traditional SLP require intricate steps that can lead to lack of sta-
bility in results, if not applied properly. Since algorithmic approach 
requires for advanced training in mathematical modeling techniques, 
SLP was adopted in industries as a viable approach in the past few 
decades (Han et al., 2012). Chien (2004) proposed new concepts and 
several algorithms to modify procedures and enhance practicality in 
traditional SLP. In order to solve a factory layout design problem, 
Yang et al. (2000) applied the SLP as infrastructure and then the 
AHP for evaluating the design alternatives. Considering the hygienic 
factors, Van Donk and Gaalman (2004) utilized SLP in planning the 
layout of food industry. Based on SLP and AHP, a cellular manu-
facturing layout design was applied to an electronic manufacturing 
service plant (Nagapak and Phruksaphanrat, 2011). Mu-jing and 
Gen-gui (2005) combined SLP and the genetic algorithm to solve 
facility layout problem. As different from the earlier studies, Han 
et al. (2011) proposed parametric layout design for a flexible manu-
facturing system.

The SLP method proposed in this study is a practical approach for 
new layout designs that do not require deep mathematical knowledge. 
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Its performance is compared in this work to those of graph theoretic-
based deltahedron heuristic and procedure-based Nadler’s approaches. 
All three approaches are shortly described in the next section.

10.4  SLP, Deltahedron, and Nadler’s Approaches

The SLP procedure (Muther, 1973) uses sequential steps in solving 
the layout problem. It is based on the input data and an understand-
ing of the roles and relationships between activities. In the first step, 
a material flow analysis (from–to chart) and an activity relationship 
analysis (activity relationship chart) are performed. From these analy-
ses, a relationship diagram is developed to be used as the foundation 
of the procedure. The next two steps involve the determination of the 
amount of space to be assigned to each activity, and the allocation 
of the total space to the departments, considering the relationship 
diagram. The criterion (objective measurement) for the positioning of 
departments is the department adjacency or some other user-defined 
metrics. Irrelevant adjacencies are reflected by zero scores, while rel-
evant adjacencies are demonstrated by relationship/adjacency scores 
determined as the number of interdepartmental material flows. Based 
on modifying considerations and practical limitations, a number of 
layout alternatives are developed and evaluated. The preferred alterna-
tive is then recommended.

Deltahedron heuristic was developed by Foulds and Robinson 
(1978) to construct a maximal planar adjacency graph by a sequence 
of insertions of a new vertex and three edges into a triangular face. It 
starts with a complete graph on four vertices (K4). Input requirements 
are the initial K4 and the insertion order in which the vertices will 
be processed. Each vertex is successively inserted into the face of the 
triangulation that results in the largest increase in edge score (Giffin 
et al., 1995). The objective is maximizing relationship (adjacency) 
scores. Once the adjacency graph has been obtained, a corresponding 
block layout is then constructed.

Nadler’s ideal system approach (Nadler, 1961) is one of the pro-
cedural approaches to facility layout planning and is based on the 
following hierarchical steps: (1) aim for the theoretical ideal system, 
(2) conceptualize the ultimate ideal system, (3) design the technologically 
workable ideal system, and (4) install the recommended system.
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10.5  Case Study

10.5.1  Company

The case company is a global powerhouse in electronics and electri-
cal engineering, operating in manufacturing, energy, and health-care 
sectors. It has operations in almost 190 countries including Turkey 
and owns approximately 285 production and manufacturing facilities 
with nearly 470,000 employees around the world. The company has 
operation facilities in Istanbul as well and is already producing vari-
ous products in its Kartal plant. The range of products in Kartal plant 
varies in 14 main categories from middle voltage panels to protection 
systems. Around 2500 employees are hired in Kartal plant.

10.5.2  Problem

Among its production divisions, the power transmission and distribu-
tion (PTD) division has achieved the highest growth rates in the past 
years. Since it has reached to its full capacity, an urgent facility revi-
sion was needed for the division. The assembly and the tooling areas, 
as well as the preproduction, preassembly, and storage areas were not 
sufficient to meet new demands. Factory management decided to con-
duct a research on relocating the PTD division in another separate 
area. For this purpose, a project team was established to carry out the 
project.

The new facility area was taking place in Gebze, a district of 
Kocaeli city, and was more than two times larger than the existing 
facility area in Kartal. The current facility area was about 9,000 m2, 
while the new area was almost 20,000 m2. Because of this fact, an 
entirely different and current layout-centric new facility placement 
was necessary for the plant. The new facility would also include a 
new department called voltage circuit breaker (VCB). The products of 
VCB department were formerly being outsourced, but due to quality 
and transportation cost reasons, the company decided to establish this 
department within the company. One of the most important prob-
lems was the placement of the quality control (QC) department as it 
was outside the main area. In addition, the dispatching department 
was experiencing a shortage of place. Though all of the departments 
(except VCB) were taking place under the same roof in the current 
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facility, the available site was not sufficient to meet the increasing 
customer demand due to unexpected high growth rates. Therefore, 
instead of redesigning the existing layout in regard to the needs of 
QC, VCB, and dispatching departments, they were transferred to a 
particular production area outside the plant as an urgent solution. In 
this way, additional places of production adjacent to the main location 
were provided. However, in the meantime, material handling costs 
increased and also waste of time became an important matter because 
of different production places. Thus, a new settlement (relocation) of 
the division was considered unavoidable.

According to the research and forecasts, the current production 
capacity was almost full, and the existing production area would not 
be adequate in the coming 3 years. Hence, the relocation of the pro-
duction site has become a matter of priority for the company. This 
issue was addressed in a project that would include various alterna-
tive layouts for the new area. The problem was not only changing 
the current layout, but it was more than that. A relocation plan of 
the production facility would be established with a brand-new design. 
After all alternative layouts were prepared, they would be compared 
in terms of effectiveness scores, and the layout best to solve the prob-
lem would be chosen.

10.5.3  Methodology

While solving the relocation problem, the machine and equipment 
costs were ignored; the material flow and the departmental needs 
were taken into account. The figures about the sizes of areas required 
for the new project were attained from the previous research projects. 
In designing the layout plans, SLP technique was used. The SLP 
technique was based on the quantitative data as well as the identi-
fication of the roles and relationships between production activities. 
A material flow analysis (from–to chart) and an activity relationship 
analysis (activity relationship chart) were constructed. The relation-
ship diagram positioned activities spatially. Proximities were typi-
cally used to reflect the relationship between pairs of activities. The 
next step involved the determination of the amount of space to be 
assigned to each activity. The SLP procedure, which depends on the 
relationship scores between the departments, was used to develop 
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first a block layout and then a detailed layout regarding each depart-
ment. If two departments’ borderlines are touching each other, the 
score was calculated; otherwise, it was considered “0”. All the inter-
departmental relationships were quantified according to this prin-
ciple. After preparing the relationship diagram, three alternative 
layout solutions (rectangular and L shapes) were developed. Two 
more layout solutions were also generated by using graph theoretic-
based deltahedron heuristic and Nadler’s ideal system approach, for 
performance comparison of the techniques. All of the alternative 
layout solutions were compared by use of linear weighting on the 
basis of the criteria of relationship/adjacency, waiting time, flexibil-
ity, safety, and ease of supervision. Three alternative layouts were 
developed. Depending on the results, the performances of the tech-
niques were evaluated comparatively, and the most effective solution 
was recommended.

10.5.4  Relocating the PTD Division

10.5.4.1  Production Capacity, Departments, and Their Abbreviations in 
PTD Division  In the middle voltage product range of the company, 
there are three main kinds of products: BT panels, BK panels, and 
Simoprime. BT panels have also three subgroups identified as 8BT1, 
8BT2, and 8BT3. Hence, the total number of product groups is five 
(8BT1, 8BT2, 8BT3, 8BK20, and Simoprime). Production capacities 
as to the groups of products are given in Table 10.1.

In PTD division, 13 departments are operating. The names of those 
departments and their abbreviations used in the proceeding sections 
are given in line with the process flow in Table 10.2.

Table 10.1  Production Capacities

NO. PRODUCT 
PRODUCT 

QUANTITY/3 YEAR 
MONTHLY 
AVERAGE PIE% 

1 8BT1 74 3 2
2 8BT2 954 27 16
3 8BT3 160 5 3
4 8BK20 1887 53 32
5 Simoprime 2841 79 47
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The minimum space requirement of each department in PTD divi-
sion is determined as given in Table 10.3.

The activity relationships represented by codes indicating which 
activities are in relation to each other are given in Table 10.4.

The annual number of material flows between departments is called 
as score. The closeness (adjacency) rating as to the scores is determined 
with respect to the maximum score of 958 as given in Table 10.5.

Table 10.2  Departments and Their Abbreviations In Line with the Process Flow

NO. DEPARTMENT ABBREVIATION NO. DEPARTMENT ABBREVIATION 

1 Warehouse WH 8 Voltage circuit 
breaker

VCB

2 Trumatic (Punching) TR 9 Truck assembly TA
3 Bending B 10 Main assembly MA
4 Welding W 11 Quality control QC
5 Painting P 12 Crash area CA
6 Logistic center LC 13 Dispatch D
7 Low-volt panel assemb. LV

Table 10.4  Activity Relationships

WH TR B W P LC LV VCB TA MA QC CA D 

A TR — — — MA VCB MA TA — — D — —
E — — — P — — — MA MA — — — —
I — — W, P — — — — — — QC — — —
O — B — MA — LV — — — — — — —
U — — — — TA TA, MA — — — — CA — —

Table 10.3  Minimum Space Requirements of the Departments

NO. DEPT. SPACE (M2) NO. DEPT. SPACE (M2) NO. DEPT. SPACE (M2) 

1 WH 900 6 LC 1300 11 QC 1,700
2 TR 700 7 LV 1700 12 CA 600
3 B 800 8 VCB 700 13 D 1,500
4 W 700 9 TA 700 Total 16,000
5 P 1600 10 MA 3000

Table 10.5  Closeness Rating as to the Scores

A (ABSOLUTELY 
NECESSARY) 

E (ESPECIALLY 
IMPORTANT) I (IMPORTANT) O (ORDINARY) U (UNIMPORTANT) 

766.4–958 574.8–766.4 383.2–574.8 191.6–383.2 0–191.6
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The relationships between departments (from–to chart) are given 
in Figure 10.1, in terms of the corresponding scores and closeness 
ratings.

10.5.4.2  Analysis of the Existing Layout  The current block layout of the 
PTD division is shown in Figure 10.2. The interdepartmental close-
ness ratings as to the scores and the total score attained for the exist-
ing layout are given in Table 10.6.

10.5.4.3  Alternative Layouts  Based on the current layout input, five 
new alternative layouts were generated for the PTD division to be 
established in the new plant area in Gebze region. The first three 
layout alternatives were generated by the use of SLP approach, while 
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Figure 10.1  From–to chart with closeness ratings.
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the fourth and the fifth alternative layouts were generated by the use 
of deltahedron and Nadler’s approaches, respectively. Three of these 
layout alternatives are of rectangular shape, and the remaining two 
are of L shape. These layouts and their corresponding total scores are 
given in Figures 10.3 through 10.7 and Tables 10.7 through 10.11. 
Adjacency was adopted as the definition of closeness. If two activities 
had a common border, they were judged to be close; otherwise, they 
were not.

Detailed drawings of the current and alternative/candidate layouts 
were generated by the use of AutoCAD software. Alternative config-
urations with varying placements of departments were tested several 
times in order to find the best settlement.

10.5.5  Evaluation of Alternative Layouts

The alternative layouts developed in this study differed from each 
other with respect to the relationship scores. When only relationship 

Table 10.6  Relations and Scores for the Existing Layout

DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS 

LV–MA 833 B–TR 294 CA–D 0
LV–TA 0 B–W 512 QC–LV 0
MA–LC 146 TR–W 0 QC–MA 542
MA–P 958 TR–WH 786 D–LV 0
MA–TA 622 W–WH 0 B–P 480
LC–P 0 QC–CA 36 TA–P 0
LC–B 0 QC–D 940 Total 6149

QC

D CA LV

LC

WH

P

TA

WTR

MA B

Figure 10.2  Existing block layout (Kartal).
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scores are considered, the second SLP alternative seems to provide 
the best solution with its highest score of 9531. The other alternatives 
take place in a descending order by score as Nadler’s (8124), delta-
hedron (7761), SLP1 (7559), and SLP3 (6539). The best solution is 
of rectangular type, but the second one is of L shape. Deltahedron 
took the third row with its block design. Though SLP has generated 
the best solution with its block diagram (SLP2), it has also generated 
the worst one with its L-shape diagram (SLP3). It seems that proce-
dural approaches of SLP and Nadler’s have provided good solutions 
by taking the first two rows in the list. The graph theoretic-based 
deltahedron approach could have taken only the third row. When 

QC

VCB MA

P LC

TA

WH

TR

W

B

LV
CA

D

Figure 10.3  Alternative layout 1.

VCB LC
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P
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W

B

D
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Figure 10.4  Alternative layout 2.
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the first three layout alternatives were regarded, the SLP method 
seemed superior to others.

Though the relationship score is an objective measurement for lay-
out planning, it is not usually sufficient to select the proper layout and 
should be supported with some other criteria that are also influen-
tial in decision-making process. In our case, four more criteria were 
taken into consideration along with the relationship (adjacency) score 
in order to select the appropriate layout. These additional criteria were 

VCBLCWHTR

W

B

P TA

QC

D

CA

MA

LV

Figure 10.5  Alternative layout 3.

VCB

TA W WH TR

MALC P B CA

QC
LV

D

Figure 10.6  Deltahedron layout (layout 4).



229Relocation of the PTD Division

Table 10.7  Relations and Scores for Alternative Layout 1

DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS 

WH–P 0 VCB–MA 727 LC–MA 146
WH–TR 786 QC–D 940 TA–MA 622
TR–B 294 QC–MA 542 TA–LV 0
TR–P 0 CA–LV 0 CA–TA 0
B–W 512 CA–QC 36 MA–P 958
B–P 480 CA–D 0 W–P 723
W–VCB 0 LC–P 0 MA–CA 0
W–MA 308 LC–TA 182 Total 7559
VCB–QC 0 LC–LV 303

Table 10.8  Relations and Scores for Alternative Layout 2

DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS 

TR–WH 786 LC–TA 0 MA–W 308
B–WH 0 LC–MA 0 LV–CA 0
B–W 512 P–MA 958 LV–QC 0
B–P 480 P–QC 0 QC–CA 36
W–P 723 TA–QC 0 QC–D 940
WH–LC 0 TA–MA 622 CA–D 0
WH–P 0 MA–VCB 727 TA–VCB 880
LC–LV 303 MA–LV 833 Total 9531
LC–VCB 881 MA–QC 542

CALV

MALC QC D

WHTR

W

B
P

VCB

TA

Figure 10.7  Nadler’s layout (layout 5).
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Table 10.10  Relations and Scores for Deltahedron Layout

DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS 

TR–WH 786 LC–TA 182 MA–P 958
B–WH 294 LC–MA 146 LV–CA 0
B–TR 0 VCB–TA 880 LV–QC 0
B–P 480 P–QC 0 QC–CA 36
W–P 723 TA–QC 0 QC–D 940
WH–LC 0 TA–MA 622 CA–D 0
WH–P 0 MA–VCB 0 Total 7761
LC–P 0 MA–LV 833
LC–VCB 881 MA–QC 0

Table 10.11  Relations and Scores for Nadler’s Layout

DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS 

TR–WH 786 LC–MA 146 QC–CA 36
TR–B 294 P–LC 0 CA–D 0
B–WH 0 TA–VCB 880 QC–D 940
W–B 512 P–TA 69 QC–MA 542
B–P 480 VCB–P 0 TA–QC 0
W–P 723 MA–LV 833 VCB–QC 0
WH–LC 0 MA–TA 622 Total 8124
WH–P 0 MA–P 958
LC–LV 303 LV–CA 0

Table 10.9  Relations and Scores for Alternative Layout 3

DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS DEPARTMENTS WEIGHTS 

TR–WH 786 LC–TA 182 MA–CA 0
B–WH 0 LC–MA 146 LV–CA 0
B–W 512 P–TA 69 LV–QC 0
B–P 480 P–QC 0 QC–CA 36
W–P 723 TA–QC 0 QC–D 0
WH–LC 0 TA–MA 622 CA–D 0
WH–P 0 MA–VCB 727 Total 6539
LC–P 0 MA–LV 833
LC–VCB 881 MA–QC 542
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flexibility, safety, waiting time, and ease of supervision. Flexibility 
criterion in designing the facility layout was concerned with taking 
into account the changes over short and medium terms in the produc-
tion process and manufacturing volumes. Safety criterion was con-
cerned with safety level in the movement of materials and personnel 
workflow. Waiting time criterion referred the elapsed time during 
the workflow. Ease of supervision was related to the complexity of the 
workflow. Factor analysis technique by linear weighting was applied to 
the selection criteria that have impact on the facility layout decision. 
First, appropriate weights were assigned by the plant experts to each 
criterion on the relative importance of each. Later, alternative layouts 
were assessed one by one on the basis of those four criteria. Scores 
over 100 were assigned to each layout alternative with respect to the 
criteria identified (Table 10.12). While assigning scores to the criteria 
for each layout alternative, experts took into account several inputs, 
like minimum movement of people, material, and resources; space 
allocation and free space area; complexity and density of the layout; 
and interdepartmental disconnection distances. After normalization 
of the scores, total weight for each layout alternative was computed, 
and the one with the highest score was selected as the best alternative 
(Table 10.13).

Table 10.13  Normalized Scores and Total Weights of the Layout Alternatives

METHODS 
RELATIONSHIP 
SCORE (0.70) 

FLEXIBILITY 
(0.15)  

SAFETY 
(0.08) 

WAITING 
TIME (0.05) 

EASE OF 
SUP (0.02) 

TOTAL 
WEIGHT 

SLP1 0.19 0.07 0.20 0.21 0.12 0.1724
SLP2 0.24 0.14 0.31 0.29 0.18 0.2319
SLP3 0.16 0.25 0.16 0.14 0.25 0.1743
Deltahedron 0.20 0.18 0.25 0.25 0.15 0.2025
Nadler’s 0.21 0.36 0.08 0.11 0.30 0.2189

Table 10.12  Scores of the Layout Alternatives as to the Criteria

METHODS RELATIONSHIP SCORE FLEXIBILITY SAFETY WAITING TIME EASE OF SUP 

SLP1 7559 20 50 60 40
SLP2 9531 40 75 80 60
SLP3 6539 70 40 40 80
Deltahedron 7761 50 60 70 50
Nadler’s 8124 100 20 30 100
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When we look at Table 10.13, it is seen that the relationship score 
was given the highest weight of 0.70, while the other criteria took 
weights in between 0.15 and 0.02. This implies that the plant experts 
had selected the relationship criterion as the most important one 
affecting the layout decision. According to the total weights, the lay-
out alternatives took place in a descending order by weight as SLP2 
(0.2319), Nadler’s (0.2189), deltahedron (0.2025), SLP3 (0.1743), and 
SLP1 (0.1724). Though this is quite consistent with the ordering of 
layouts with respect to relationship scores, only the SLP1 layout was 
negatively affected from flexibility and ease of supervision criteria 
when compared to other alternatives and took the last row instead of 
the forth row. Hence, SLP2 layout alternative has proved to be supe-
rior to Nadler’s and deltahedron alternatives and has been selected as 
the best one. If we think that the relationship score of the existing 
layout is 6149, then the relationship score of the layout selected is 
about 55% better than the existing layout with its relationship score 
of 9531. Even if it cannot be easily measured, we may expect a quite 
high overall efficiency by implementing the selected layout in the 
PTD division.

These five alternative layouts bring nearly optimal solutions. 
Theoretically, it is possible to find better solutions as well. But when 
we regard the applicability (building limitations, etc.) of those solu-
tions, the proposed alternative layouts stand out feasible compared to 
the others.

10.6  Conclusion

The most important cause of high material handling costs is the lack 
of strategic facility planning. In an effective layout, material handling 
costs can be reduced by 10%–30%. This situation affects the cost of 
production directly.

This research was conducted in line with the expectations and 
needs of a multinational company to find an urgent appropriate solu-
tion to the relocation problem of one of its production divisions, 
namely, PTD. The PTD division was incurring high amount of han-
dling costs that necessitated an urgent layout revision. On the way 
to solve the problem, first, the needs of the division were defined 
later; the solution was reached easily by the use of SLP, Nadler’s, and 
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deltahedron methodologies, and the linear weighting for criteria com-
parisons. SLP is found to be the most effective and widely used alter-
native method in this kind of relocation problems. In our application, 
five alternative layouts were generated including the most effective 
one. Of course, several other methods could be used in such problems 
too. It is expected that the handling cost was reduced about 50% at 
PTD division after relocation.

Each layout design application is unique in nature, that is, there 
are different attributes associated with different applications; thus, the 
success of the present study has no guarantee for its applicability to 
other applications. Judicious use of a design method is advised in solv-
ing a specific application.

The project implementation given in this chapter focuses on manu-
facturing system applications. In fact, layout design problems exist in 
almost every type of system, such as manufacturing, hospitals, hotels, 
ports, and supermarkets. However, advances made in the specific 
areas of manufacturing may lead to positive influences on designing 
the layouts for other systems.

Finally, we should refer to commercial software tools available on 
the market developed for assisting in the design of manufacturing 
layout problems. Though these tools have been developed considering 
the manufacturing systems, they are limited in number. Therefore, 
additional software tools with generic solution approaches are needed 
in order to bring easy and quick solutions to every type of layout 
design problems.
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11
Location Problems 

with Demand Regions

D E RYA  D İ N L E R , 
M U S TA FA  K E M A L  T U R A L ,  A N D 

C E M  İ Y İ G Ü N

11.1  Introduction

Facility location problems involve strategic decisions requiring large 
investments and long-term plannings. They have been extensively 
studied by researchers from a variety of disciplines, like geographers 
and marketing and supply chain specialists.
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The facility location problem is to locate q serving facilities for 
m demanding entities and to allocate the demanding entities to the 
facilities so as to optimize a certain objective such as minimizing 
transportation cost or the distance to the farthest entity. Most facil-
ity location problems are combinatorial in nature and challenging to 
solve to optimality. Locations of warehouses, hospitals, retail outlets, 
radar beams, and exploratory oil wells are some of the application 
areas of the facility location problems. These problems can differ in 
several ways including the objective aimed, the number of facilities 
to locate, and the solution space in which the problem is defined. 
The facility location problem is called as a discrete facility location 
problem if there are a finite number of candidate facility locations. 
If the facilities can be placed anywhere in some continuous region, 
then the problem is called as a continuous facility location problem. 
When q is equal to 1, the problem is called as a single-facility loca-
tion problem; otherwise, it is called multiple-facility location prob-
lem. More details about facility location problems particularly about 
their classification can be found in [17,19,20].

In location theory, customers are generally assumed as fixed points 
in space. When the sizes of the customers are relatively small with 
respect to the distances between facilities and customers, this assump-
tion can be justified. Otherwise, it would be better to treat customers 
as groups of points or regions with density functions or distributions 
representing the demand over the regions.

Here, we restrict ourselves to the case where each demanding entity 
is represented by a region. It would be more appropriate to represent a 
demanding entity as a region instead of a fixed point, when

	 1.	The size of the demanding entity is not negligible with respect 
to the distances in the problem

	 2.	The location of the demanding entity follows a bivariate dis-
tribution on the plane

	 3.	The number of demanding entities is so large that they may be 
clustered into regions instead of treating each one separately

The concept of demand spreading over an area appears in several appli-
cations. For example, first consider the problem of locating a fire station 
that will serve forests. If each forest is represented as a point by its cen-
ter and a fire bursts out at an area far from the center, it may take more 
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than the estimated time for the firefighters to reach the fire area. In 
such cases, representing forests as demand areas would be more mean-
ingful as in case (1). Second, consider establishing mobile headquarters 
or mobile health centers. The location of each unit will follow a bivari-
ate distribution. The decision of where to place a facility to serve these 
units should consider each as a region along with a density function 
that represents the likelihood of the presence of the unit as in case (2). 
Third, consider the problem of waste collection from many districts. 
Waste collection center should be located by treating each district as 
groups of demand points (private residences) or regions as in case (3).

In this chapter, we consider continuous facility location problems 
where the demanding entities are represented as regions in the plane. 
The chapter is organized as follows. In Section 11.2, we introduce 
two solution approaches for continuous facility location problems 
with demand points that are commonly used in solving the problems 
with demand regions. In Section 11.3, we model 12 continuous loca-
tion problems with demand regions. We focus on one of the problems 
and discuss several solution approaches. We provide a brief literature 
review on some of the remaining problems.

11.2  Location Problems with Demand Points

The Weber problem is a well-known continuous facility location 
problem [25]. It is to find a center (x*, y*) so as to minimize the sum of 
weighted Euclidean distances between this center and m fixed points 
(demand points) with given coordinates (ai, bi ), i = 1, 2, …, m. Each 
point i is associated with a positive weight wi. The problem can be 
formulated as follows:

	
Minimizex y i i

i

m

W x y w d x y, ( , ) ( , ),=
=
∑

1

	 (11.1)

where

	
d x y x a y bi i i( , ) .= −( ) + −( )2 2 	 (11.2)

A common approach to solve the Weber problem is the Weiszfeld proce-
dure [28]. It is an iterative method that expresses and updates the facil-
ity location as a convex combination of the locations of the customers.
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Another important continuous facility location problem is the loca-
tion allocation (LA) problem, which is a generalization of the Weber 
problem to the case of multiple facilities. Given the location of a set of m 
demand points, LA problem is to find the locations of q facilities and to 
allocate the demand points to the facilities while minimizing the total 
distance between the demand points and the facilities they are allo-
cated to. The alternate location allocation (ALA) heuristic developed 
by Cooper [12] for the LA problem is one of the most commonly used 
schemes in the multifacility location literature. ALA heuristic mainly 
depends on two simple problems: (1) given the facility locations, deter-
mine the allocations of the demand points, and (2) given the allocations 
of the points, find the locations of the facilities. These problems can be 
solved in an iterative manner that starts with a set of initial facility loca-
tions and generates q subsets of demand points by allocating each point 
to one of the facilities. Then, for each subset, a single-facility location 
problem is solved, and each demand point is allocated to the nearest 
facility hence generating new subsets of demand points. Iterations are 
repeated until a stopping criterion is achieved.

11.3  Location Problems with Demand Regions

When demand regions are in consideration, an important aspect is 
the way of measuring the distance between a demand region and a 
facility. Usually, there are three ways to define the distance [22]:

	 1.	Maximum distance
	 2.	Minimum distance
	 3.	Average distance

Using one of these distance measures, a facility location problem can 
be modeled with several objectives. Here, we consider four differ-
ent objectives: (1) minimize the sum of distances, (2) minimize the 
maximum distance, (3) maximize the sum of distances, and (4) maxi-
mize the minimum distance. In total, there are 12 possible problems. 
Assuming each demand region has a finite number of demand points, 
all these problems are formulated using the following notation:

•	 q ≥ 1: number of facilities
•	 m ≥ 1: number of demand regions
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•	 xi ∈ℜ
2: location of the ith facility, i = 1, …, q

•	 kj ≥ 1: number of demand points in the jth demand region, 
j = 1, …, m

•	 K kj j: { , , }= 1 … , j = 1, …, m
•	 s j

k ∈ℜ2: location of the kth demand point of the jth demand 
region, j = 1, …, m, k ∈ Kj

•	 wj > 0: weight of the jth demand region, j = 1, …, m
•	 d: a distance metric on ℜ2 that measures the distance between 

any two points is ℜ2

The maximum, minimum, and average distances from the jth demand 
region to the closest facility denoted, respectively, by d dj j

max min, , and d j
avg 

are calculated as

	
d d s xj

i q k K
j
k

i
j

max
, ,

min max , ,= ( ){ }= ∈1 …
	 (11.3)

	
d d s xj

i q k K
j
k

i
j

min
, ,

min min , ,= ( ){ }= ∈1 …
	 (11.4)

	
d

k
d s xj

i q j
j
k

i

k

k j

avg = ( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

=
∑min , .

, ,1
1

1
…

	 (11.5)

All of the 12 possible problems are summarized in Table 11.1.
The single-facility versions of problems 2, 8, and 9 are equivalent 

to known problems with demand points [18]. The same does not hold 
for the multiple-facility versions of these problems. The single-facility 
version of problem 11 is equivalent to a single-facility location prob-
lem where the objective is to maximize a weighted sum of the dis-
tances between the facility and all demand points.

Selected solution approaches from the literature for some problems 
in Table 11.1 will be reviewed in the following sections. Our aim is 
not to completely review the related literature. We will explain some 
problems in more detail while giving less or no attention to some 
others.
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Table 11.1  Classification of Problems

NO. OBJECTIVE OBJECTIVE FUNCTION 

Problems with maximum distance

1 Minimize the sum of maximum distances Minimize max

1

w dj j

j

m

=
∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2 Minimize the maximum of maximum distances Minimize max 1, , max{ { }}j m j
jw d= …

3a Maximize the sum of maximum distances Maximize max

1

w dj j

j

m

=
∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

4a Maximize the minimum of maximum distances Maximize min 1, , max{ { }}j m j
jw d= …

Problems with minimum distance

5 Minimize the sum of minimum distances Minimize min

1

w dj j

j

m

=
∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

6 Minimize the maximum of minimum distances Minimize max 1, , min{ { }}j m j
jw d= …

7a Maximize the sum of minimum distances Maximize min

1

w dj j

j

m

=
∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

8a Maximize the minimum of minimum distances Maximize min 1, , min{ { }}j m j
jw d= …

Problems with average distance

9 Minimize the sum of average distances Minimize avg

1

w dj j

j

m

=
∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

10 Minimize the maximum of average distances Minimize max 1, , avg{ { }}j m j
jw d= …

11a Maximize the sum of average distances Maximize avg

1

w dj j

j

m

=
∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

12a Maximize the minimum of average distances Maximize min 1, , avg{ { }}j m j
jw d= …

a	 The solution space of these problems should be restricted, as otherwise they would not have a 
finite optimal objective function value.
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11.3.1  Problems with Maximum Distance

For the problems where the worst-case scenarios are important such 
as the location of emergency facilities, for example, fire stations, 
police stations, and hospitals, the maximum distance is commonly 
used. In such problems, the demand regions can be taken as closed 
convex polygons as the farthest point will occur at a corner of the con-
vex hull of the demand points in a region (in cases with finitely many 
demand points). The problems having regions with an infinite number 
of demand points, for example, ellipsoids, can be handled by approxi-
mating the regions with polygons. In this subsection, the regions are 
all assumed to be closed convex polygons.

11.3.1.1  Single-Facility Minisum Problem with Euclidean Maximum 
Distance  The single-facility version of this problem with the 
Euclidean norm can be modeled as a second-order cone program-
ming (SOCP) problem [16]. It can be solved in the worst case in time 
O(m2N 3/2), where m is the number of demand regions and N is the 
total number of corners in all the regions. Note that the problems 
including closed circular regions in addition to polygonal ones can 
also be directly handled (without a polygonal approximation) by an 
SOCP formulation. SOCP problems can be solved in polynomial 
time [1,23], and several efficient software packages have been devel-
oped to solve such problems [14].

Jiang and Yuan [21] studied the same problem considering closed 
convex polygonal and circular demand regions. The difficulty of 
solving this problem is the discontinuity of the farthest points. They, 
therefore, partitioned the plane into polygonal fixed regions in such 
a way that within the interior of each fixed region, there is a single 
farthest point of each demand region. So, the problem is turned 
into a set of Weber problems with the additional constraint that 
the facility has to be confined within a certain polygon. Solving 
such constrained Weber problems, they find the optimal solution. 
Weaknesses of this approach are twofold: constructing the fixed 
regions and possibility of solving a large number of constrained 
Weber problems. Even in the case with r rectangular regions, the 
number of fixed regions can be as large as 2r2 + r + 1, see [21]. The 
authors proposed an approach to discard some of the fixed regions 
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without solving the associated constrained Weber problem. Since 
the computational time of this algorithm is highly dependent on the 
starting fixed region, the authors also proposed a heuristic for the 
initialization.

Drezner and Wesolowsky [18] proposed another approach for the 
same problem. They did not explicitly construct the fixed regions. 
Instead, they dealt with the discontinuity of the farthest points by 
an algorithm whose iterations use the Weiszfeld procedure repeatedly 
together with golden section search as needed.

All three methods explained so far solve the problem to optimality. 
SOCP formulation is very easy to implement and can be used to solve 
small- or medium-size instances. As there has not been any compu-
tational comparison of the aforementioned methods, it is not known 
which one would perform the best for large-size instances.

11.3.1.2  Other Minisum Problems with Maximum Distance  In [18], 
authors also studied a single-facility minisum problem with maxi-
mum distance using rectilinear norm. They showed that the problem 
can be formulated as a linear programming problem.

In [22], Jiang and Yuan considered a multiple-facility version of the 
problem in [21], that is, problem 1 with the Euclidean norm. They 
developed an ALA heuristic. In the location step, they solved con-
strained Weber problems as in [21]. Since the number of constrained 
Weber problems to solve may be too large, the authors proposed a 
version of Barzilai–Borwein gradient method and proved its con-
vergence. In the allocation step, each region is assigned to the clos-
est facility. They demonstrated the efficiency of their method with a 
numerical study.

In [15], authors considered a multiple-facility version of the prob-
lem using the squared Euclidean norm. They modeled the prob-
lem as a mixed-integer SOCP problem. Since this formulation is 
weak, they proposed three heuristics applicable to general polygons. 
Two of them are ALA heuristics. Differently, the third one uses a 
smoothing strategy to turn the problem into an unconstrained non-
linear problem that is then solved with a quasi-Newton algorithm. 
The authors also proposed a special heuristic for the case where the 
demand regions are of rectangular shape with sides parallel to the 
standard coordinate axes.
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11.3.2  Problems with Minimum Distance

For the problems where the flow from/to the facilities will enter/leave 
the given demand area at the closest point (i.e., drop-off and take-off 
points), the minimum distance is commonly used. The internal dis-
tribution costs within the demand area are usually not considered in 
such problems.

11.3.2.1  Minisum Problems with Minimum Distance  The single-facility 
version of this problem with closed convex demand regions (not nec-
essarily polygonal regions) is studied in [7]. They proposed an iterative 
algorithm starting with an arbitrary initial facility. In each iteration, 
the closest point for each demand region is found, and those points 
are treated as fixed points replacing the associated demand regions. 
The resulting Weber problem is solved with the Weiszfeld algorithm. 
Convergence properties of the algorithm and modifications in some 
special cases are discussed in detail in [7].

In [5], authors considered both the regional demands and 
regional facilities. Their objective was to locate a facility in order 
to minimize the sum of the distances from the closest point in the 
facility to the closest point in the demand areas. They proved that 
when the demand regions and the facility are closed convex regions, 
the distance is a convex function of a defined center of the facil-
ity for any norm. Therefore, objective function of the problem is 
convex, and a classical descent method to find global optimum can 
be used. However, authors stated that the calculations of step size 
and descent directions are not easy because of the discontinuity in 
derivatives and unobtainability of the closest distance in an explicit 
form. They overcame these difficulties in some special cases by using 
the rectilinear norm. They presented a solution approach for the case 
where both the demand and the facility regions are of rectangular 
shape. The results obtained for the single-facility case with rect-
angular regions and facility were extended to the multiple-facility 
case.

In [26], authors represented the demanding entities as convex sets of 
points. The objective is to minimize an increasing convex function of 
the minimum distances between the facility and the demand regions. 
The single-facility minisum problem with minimum Euclidean 
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distances is a special case of the considered problem. The geomet-
rical characterization of the set of optimal solutions is presented by 
using tools from convex analysis. Moreover, a constructive approach 
is developed for the case with polyhedral norms.

11.3.2.2  Minimax Problems with Minimum Distance  The single-facility 
minimax problem with Euclidean minimum distance is also a special 
case of the problem considered in [26]. Same problem with some dis-
tance measures was also studied in [6]. They developed a procedure 
based on the iso-contours. It was shown that the proposed methodol-
ogy can lead to efficient solution methods in some special cases, for 
example, rectangular regions with rectilinear distance.

11.3.3  Problems with Average Distance

For the problems where the distances from the facility to each 
demand point in the region are important, the average distance is 
commonly considered. It is also generally used in problems where the 
demand points are represented as random vectors. Average distance 
has been more extensively used in the literature than the other dis-
tance definitions.

Problems with average distances generally require evaluation 
of complex integral expressions. In [27], Stone gave the explicit 
expressions and approximate power series for four common cases, 
namely, rectangular and circular demand regions with both rec-
tilinear norm and Euclidean norm. For each case, expressions for 
the average distance between the demand region and the facil-
ity at the center, interior or exterior of the demand regions, are 
presented.

11.3.3.1  Minisum Problems with Average Distance  Love [24] consid-
ered the situation in which the number of demand points is too large 
to treat each of them separately. He grouped the demand points into 
rectangular regions. His objective was to find the location of a facil-
ity so as to minimize total expected Euclidean distances between the 
rectangular regions and the facility. He developed a response surface 
technique utilizing a gradient reducing process.
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In [3], the authors extended Love’s study [24]. They replaced the 
demand regions, which are not necessarily rectangular and uniformly 
distributed, with the centroids of the regions. Their method can be 
used for demand regions having a geometric shape with an easily 
found centroid. Comparing with the study in [24], they computation-
ally showed that their method is faster for the rectangular regions 
with uniformly distributed demand.

In [13], the location of each demanding entity is assumed to be 
a random variable having a bivariate normal distribution with zero 
correlation. The author aimed to locate a single facility to minimize 
the sum of the expected Euclidean distances between the demanding 
entities and the facility. It was proven that the objective function of 
the problem is strictly convex and an iterative algorithm for the prob-
lem was proposed.

In [2], the problem of locating one or more facilities to serve existing 
rectangular regions was studied where the rectilinear norm was used. 
The authors proposed a gradient-free direct search method for the 
problem and a heuristic for the initialization. Their method converged 
experimentally, but no formal proof of the convergence was given.

Carrizosa et al. [8] discussed the similarities and differences 
between a generalized Weber problem with demanding entities 
represented by density functions and its point version. They showed 
that when the probability distributions of the demanding entities 
are absolutely continuous, gradient descent algorithms can be used 
instead of evaluating complex expectations. The authors also proved 
that the problem has a unique optimal solution in some special 
cases.

In [9], the authors approximated demand regions with simpler 
regions while keeping an approximation error under control. For 
example, an elliptical region can be approximated by an n-sided poly-
gon where the approximation error gets smaller with larger values 
of n. For polygonal approximations, the triangles constructed with the 
corners of the polygons are used to calculate the expected distances. 
Using this idea, they proposed an algorithm whose running time 
increases with the number of sides of the approximation polygons. 
However, they obtained promising results even when the number of 
sides of the approximation polygon is not too large.
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Chen [11] proposed a Weiszfeld-like iterative approach to locate a 
single facility that serves circular demand regions using the Euclidean 
norm. He recommended taking a weighted average of the centers of 
the circular demand regions as a starting point for the approach.

Cavalier et al. [10] studied the problem of minimizing the sum 
of weighted expected distances between convex polygonal demand 
regions having uniform demand and a single facility (or multiple 
ones). For the single-facility case, an iterative algorithm that uses the 
Weiszfeld technique was developed and the convergence of the algo-
rithm was proven. For the multiple-facility case, an ALA heuristic 
was presented. This algorithm was also convergent, but the global 
optimality was not guaranteed.

11.3.3.2  Minimax Problems with Average Distance  In [18], authors also 
studied a single-facility minimax problem with average distance using 
the Euclidean norm. An Elzinga–Hearn-type algorithm was proposed.

11.3.4  Problems on Networks

All the papers mentioned until now studied location problems where 
both the demanding entities and the facilities lie on the plane. In [4], the 
authors studied location problems on a network. They investigated nine 
different problems (as in Table 11.1 except problems 3, 7, and 11) where 
the demand points are clustered into groups. For each problem, a set of 
potential locations of the facility(s) are derived. For the multiple-facility 
case, heuristics (tabu search and simulated annealing) were proposed.

11.4  Conclusions

Classical location problems with demand points have been studied 
for a long time. Recently, new variants of facility location problems 
with demand regions have attracted the researchers. In this chapter, 
several facility location problems with demand regions are reviewed 
and selected solution approaches from the literature are discussed. 
The papers reviewed are summarized in terms of the type of the 
problems studied, number of facilities located, type of the demand-
ing entities, distance measure used, and the solution approaches, and 
presented in Table 11.2.
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12.1  Introduction

Production and distribution are two important processes in supply 
chain. In the recent two decades, many works have been done on inte-
grated production–distribution models in strategic and tactical plan-
ning fields (Bilgen and Ozkarahan, 2004, Chen, 2004, Goetschalcks 
et al., 2002). These articles consider inventory decisions to link these 
two parts of supply chain in decision problems. Contrary to this, inte-
grated production and distribution scheduling problem has come into 
consideration, recently. For having a global optimal solution for our 
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scheduling problem in production and distribution parts of supply 
chain, we must consider these two parts integrated. It is very impor-
tant in make-to-order products because for this kind of products like 
time-sensitive products, we should find an optimal solution to have 
on-time delivery with the minimum cost. Formerly, scheduling of 
production and distribution parts was done consecutively, in other 
words, the output of production scheduling decision was an input of 
distribution scheduling part. It has been shown that this sequential 
approach has suboptimal solution (Chen and Vairaktarakis, 2005, 
Pundoor and Chen, 2005). Thus, integrated production–distribution 
scheduling is optimal and more beneficial.

Moreover, the integrated approach for scheduling can reduce total 
cost and increase the customer service level due to lead time reduc-
tion. We can also estimate lead time or due date more accurately if 
considering delivery and production schedules integrated.

Production and distribution scheduling problems can be seen sepa-
rately in many articles in the past decades (Ball et al., 1995, Pinedo, 
2002). By considering production and distribution integrative for 
scheduling, we have a relatively new area that has been studied in the 
past decade. This stream of literature can be called integrated pro-
duction and outbound distribution scheduling (IPODS) problems 
(Chen, 2010).

The rest of the chapter is organized as follows. In Section 12.2, 
we review related literature and existing models in IPODS area. 
Notation and description of our specific problem in real world are 
given in Section 12.3. In Section 12.4, after modeling our problem 
mathematically, the detailed solution method is presented. Numerical 
results for evaluating our proposed solution method and for gaining 
insights are presented in Section 12.5. Conclusions are provided in 
Section 12.6.

12.2  Literature Review

Zhi-Long Chen (2010) proposed a five-field notation, α|β|π|δ|γ, 
to represent most IPODS models. In this notation, α describes the 
machine configuration in the production part, β specifies restrictions 
about orders, and γ describes the objective function. These three fac-
tors are used in production scheduling models (Lawler et al., 1993, 
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Pinedo, 2002). Values that can be taken for α and β are presented in 
Tables 12.1 and 12.2, respectively. γ shows the objective functions 
like customer service level, total cost, and total revenue.

There are two other factors in the notation proposed by Chen 
(2010), π and δ, which specify the delivery process and the number of 
customers, respectively. The first factor, π, shows the features of vehi-
cles by V(x,y) (number and capacity of vehicles) and delivery method, 
that is, there are two parameters in this notation. The value of each 
parameter can be seen in Table 12.3. Most of existing models consider 
homogeneous vehicles, and this notation shows these models only.

The second factor, δ, defines the number of customers, and it is 
1 (one customer), k (k customers who are fixed in each scheduling 
horizons), or n (different number of customers in different scheduling 
horizons).

Table 12.1  Types of Machine Configuration (α)

VALUE DESCRIPTION 

1 Single machine
Pm Parallel machine
Fm Flow shop
Bm Bundling
F(m1,m2) Two-stage flexible flow shop
MP Multiple plants

Table 12.2  Restrictions and Constraints on Order Parameters (β)

VALUE DESCRIPTION 

rj Orders have unequal release dates
dj ≡ d Orders have a common due date d

dj Each order j has a deadline

[aj, bj] Order j must be delivered to its customer within this time window
fdj Each order j has a fixed delivery time
sij There are sequence-dependent setup times between different orders
Prec Orders have precedence constraints between them
Pmtn Order processing can be preempted and resumed later
Pickup Orders must be picked up from the customer before they can be processed
No wait Each order should be processed without idle time from one machine to the next
r-a One machine has a known unavailable period of time

D Dj 0∑ ≤ Total delivery time of the orders cannot exceed a specified deadline
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Table 12.4 reviews the recent articles considering IPODS 
models.

12.3  Problem Description

In this part, we want to model a problem in a company. We consider 
each 30 minutes, to be one time scale. Thus, there are 16 time units 
per day, as the time horizon of scheduling. In our case study, orders 
need to be processed on a single machine (α = 1). Each customer has 
a time window such as [ai, bi] for the delivery of their demands. If 
the delivery is received earlier (delivery time < ai) or later (delivery 
time > bi), a penalty cost for per unit of time delay is considered. So 
orders have specific time window for delivery (β = [ai, bi]). In this 
problem, there are three vehicles of two different types with dif-
ferent capacities, so they have different transportation costs. The 
specific notation assignment for different vehicles is not mentioned 
by Chen (2010). We can show it as V1(1,Q  1), V2(2,Q  2). A routing 
method for the delivery of our orders is used, as this method can 

Table 12.3  Delivery Characteristics (π)

PARAMETER VALUE DESCRIPTION WHAT IT SHOWS 

X 1 Single-delivery vehicle Number of vehicles
υ Number of available vehicles is finite or limited
∞ There are sufficient number of vehicles or 

infinite
Y 1 Each shipment can deliver only one unit of 

product
Capacity of vehicles

c Each shipment can deliver up to c orders 
(orders have an equal size)

∞ Each shipment can deliver infinite number of 
order

Q Each shipment can deliver at most Q units 
(orders have different sizes)

iid Individual and immediate delivery Methods of 
distribution

direct Batch delivery by direct shipping
routing Batch delivery with routing
fdep Shipping with fixed delivery departure date
split An order can be split to be delivered in multiple 

shipments 



257Synchronizing Production and Distribution

Ta
bl

e 
12

.4
 

IP
OD

S 
M

od
el

s 
in

 E
xis

tin
g 

Ar
tic

le
s

RE
FE

RE
NC

ES
 

α
β 

π 
δ 

γ
SO

LU
TI

ON
 M

ET
HO

D 

Ch
en

 a
nd

 P
un

do
or

 (2
00

9)
1

d j
V(

∞
,Q

), 
di

re
ct

, s
pl

it
1

TC
He

ur
is

tic
 a

lg
or

ith
m

Ch
en

 a
nd

 L
ee

 (2
00

8)
1

V(
∞

,c
), 

di
re

ct
k

w
D

TC
j

j
∑

+
Po

lyn
om

ia
l-t

im
e 

al
go

rit
hm

Zh
on

g 
et

 a
l. 

(2
00

7)
1

V(
1,

Q)
, d

ire
ct

1
D m

ax
He

ur
is

tic
 a

lg
or

ith
m

Li
 a

nd
 O

u 
(2

00
7)

M
P

V(
∞

,c
), 

di
re

ct
1

D
TC

j
∑

+
He

ur
is

tic
 a

lg
or

ith
m

Av
er

ba
kh

 a
nd

 X
ue

 (2
00

7)
1

r j,
pm

tn
V(

∞
,∞

), 
di

re
ct

1,
k

D
TC

j
∑

+
On

lin
e 

al
go

rit
hm

Li
 a

nd
 V

ai
ra

kt
ar

ak
is

 (2
00

7)
B2

V(
∞

,c
), 

di
re

ct
/ro

ut
in

g
k

D
TC

j
∑

+
He

ur
is

tic
 a

lg
or

ith
m

, P
ol

yn
om

ia
l-t

im
e 

ap
pr

ox
im

at
io

n 
sc

he
m

e
Ji 

et
 a

l. 
(2

00
7)

1
V(

∞
,∞

), 
di

re
ct

1
w

D
TC

j
j

∑
+

Po
lyn

om
ia

l-t
im

e 
ex

ac
t a

lg
or

ith
m

He
 e

t a
l. 

(2
00

6)
1

V(
1,

Q)
, d

ire
ct

1
D m

ax
He

ur
is

tic
 a

lg
or

ith
m

Da
wa

nd
e 

et
 a

l. 
(2

00
6)

1
s ij

V(
∞

,1
), 

iid
k

αC
m

ax
 +

 (1
 −

 α
)L

m
ax

Ex
ac

t a
lg

or
ith

m
Ch

en
 a

nd
 P

un
do

or
 (2

00
6)

M
P

V(
∞

,c
), 

di
re

ct
1

D
TC

P
C

j
∑

+
+

He
ur

is
tic

 a
lg

or
ith

m

Pu
nd

oo
r a

nd
 C

he
n 

(2
00

5)
1

V(
∞

,c
), 

di
re

ct
k

L m
ax

 +
 TC

He
ur

is
tic

 a
lg

or
ith

m
Li

 a
nd

 O
u 

(2
00

5)
1

pi
ck

up
V(

1,
c)

, d
ire

ct
1

D m
ax

He
ur

is
tic

 a
lg

or
ith

m
W

an
g 

an
d 

Le
e 

(2
00

5)
1

d j
V(

∞
,1

), 
iid

N
TC

Ex
ac

t a
lg

or
ith

m

Ch
en

 a
nd

 V
ai

ra
kt

ar
ak

is
 (2

00
5)

Pm
V(

∞
,c

), 
di

re
ct

1
D m

ax
 +

 TC
He

ur
is

tic
 a

lg
or

ith
m

Ch
en

 a
nd

 V
ai

ra
kt

ar
ak

is
 (2

00
5)

Pm
s ij

, d
j

V(
∞

,c
), 

ro
ut

in
g

k
D m

ax
 +

TC
He

ur
is

tic
 a

lg
or

ith
m

Li
 e

t a
l. 

(2
00

5)
1

V1
,c

), 
ro

ut
in

g
k

D
j

•
Po

lyn
om

ia
l s

ol
va

bl
e

(C
on

tin
ue

d)



258 e. ghorbani-totkaleh et al.

Ta
bl

e 
12

.4
 (C

on
tin

ue
d)

 
IP

OD
S 

M
od

el
s 

in
 E

xis
tin

g 
Ar

tic
le

s

RE
FE

RE
NC

ES
 

α
β

π 
δ 

γ 
SO

LU
TI

ON
 M

ET
HO

D 

Ga
rc

ia
 a

nd
 L

oz
an

o 
(2

00
5)

Pm
[a

j,b
j]

V(
υ,

1)
, i

id
n

R
j

•
Ta

bu
 s

ea
rc

h

Ch
an

g 
an

d 
Le

e 
(2

00
4)

1
V(

1,
Q)

, d
ire

ct
/ro

ut
in

g
1,

 2
D m

ax
He

ur
is

tic
 a

lg
or

ith
m

Ga
rc

ia
 e

t a
l. 

(2
00

4)
M

P
fd

j
V(

υ,
1)

, i
id

n
R

TC
j

∑
−

He
ur

is
tic

 a
lg

or
ith

m

Ga
rc

ia
 a

nd
 L

oz
an

o 
(2

00
4)

Pm
fd

j
V(

∞
,1

), 
iid

n
R

j
•

M
in

 c
os

t n
et

wo
rk

 fl
ow

M
as

tro
lil

li 
(2

00
3)

1,
Pm

r j
V(

∞
,1

), 
iid

n
D m

ax
Po

lyn
om

ia
l-t

im
e 

ap
pr

ox
im

at
io

n 
sc

he
m

e
Ka

m
in

sk
y (

20
03

)
Fm

r j
V(

∞
,1

), 
iid

n
D m

ax
He

ur
is

tic
 a

lg
or

ith
m

Ha
ll 

an
d 

Po
tts

 (2
00

3)
1

V(
∞

,∞
), 

di
re

ct
k

U
TC

j
∑

+
Or

di
na

ry
 N

P-
ha

rd

Gh
ar

bi
 a

nd
 H

ao
ua

ri 
(2

00
2)

Pm
r j

V(
∞

,1
), 

iid
n

D m
ax

Br
an

ch
-a

nd
-b

ou
nd

-b
as

ed
 e

xa
ct

 a
lg

or
ith

m
Li

u 
an

d 
Ch

en
g 

(2
00

2)
1

r j,
s j,

 p
m

tn
V(

∞
,1

), 
iid

n
D m

ax
Po

lyn
om

ia
l-t

im
e 

ap
pr

ox
im

at
io

n 
sc

he
m

e
Ga

rc
ia

 e
t a

l. 
(2

00
2)

Pm
fd

j
V(

υ,
1)

, i
id

n
R

j
•

He
ur

is
tic

 a
lg

or
ith

m

Le
e 

an
d 

Ch
en

 (2
00

1)
1

V(
υ,

c)
, d

ire
ct

1
D m

ax

W
an

g 
an

d 
Ch

en
g 

(2
00

0)
Pm

V(
∞

,∞
), 

di
re

ct
1

D
TC

j
∑

+
Po

lyn
om

ia
l-t

im
e 

ex
ac

t a
lg

or
ith

m

Va
n 

Bu
er

 e
t a

l. 
(1

99
9)

1
s ij

, d
j

V(
∞

,Q
), 

ro
ut

in
g

n
TC

 +
 VC

He
ur

is
tic

 a
lg

or
ith

m
W

oe
gi

ng
er

 (1
99

8)
1

s j
V(

∞
,1

), 
iid

n
D m

ax
Po

lyn
om

ia
l-t

im
e 

ap
pr

ox
im

at
io

n 
sc

he
m

e
Ch

en
g 

et
 a

l. 
(1

99
6)

1
V(

∞
,∞

), 
di

re
ct

1
w

E
TC

j
j

∑
+

Ex
ac

t a
lg

or
ith

m

W
oe

gi
ng

er
 (1

99
4)

Pm
V(

∞
,1

), 
iid

n
D m

ax
He

ur
is

tic
 a

lg
or

ith
m

Ha
ll 

an
d 

Sh
m

oy
s 

(1
99

2)
1

r j,
pr

ec
V(

∞
,1

), 
iid

n
D m

ax
He

ur
is

tic
 a

lg
or

ith
m



259Synchronizing Production and Distribution

save transportation costs. In each time horizon, there are a number 
of different customers (δ = n). We need to detect the time of starting 
production as well as the time of dispatching each vehicle in order to 
minimize total cost including the travel cost and tardiness and earli-
ness penalty costs. The model can be written as follows:

	
1 11 1 2 2a b V Q V 2 Q routing n VC E Tj j i i i i,⎡⎣ ⎤⎦ ( ) ( ) + +∑, , , , ( )α β

Our innovation in this chapter is to solve a real problem in a company, 
and our goal is to minimize company’s tardiness and earliness penalty 
costs and its transfer costs.

For modeling this problem, some assumptions need to be made as 
follows to relax the problem:

	 1.	Each region is considered as a customer, that is, we calculate 
the total demand of one region and program to send its demand 
in the best time to minimize the transfer and penalty costs.

	 2.	We relax the service time in the time window, that is, if the 
service time takes one unit of time and time window is [a,b], 
then we consider it as [a – 1, b – 1].

	 3.	The total demand of each region is not over the capacity of 
all of the vehicles, and thus, at least one vehicle is enough to 
transfer goods to destinations.

	 4.	All vehicles are in the depot at time zero. Moreover, they do 
not return to the depot after finishing their job. So each vehi-
cle is available once in each horizon.

The problem is characterized by the following sets and parameters:

•	 Sets
C = {1,2, …, n} set of customers in scheduling horizon (1 day)
Z = {0,1,2, …, s} set of region zones
V = {1,2, …, m} set of vehicles

•	 Decision variables
xjkk′ binary decision variable, taking a value of 1 if vehicle j is 

used for transporting from region k to k′ and 0 otherwise
t j

s dispatching time of vehicle j from depot
tkp´ production start time for demands of region k′
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•	 Nondecision variables and parameters
Capj capacity for vehicle j
[ai,bi] delivery time window for ith customer
cjkk′ cost of traveling from k to k′ by vehicle j′
qk volume of the demands of region k
α penalty per unit time of tardiness
β penalty per unit time of earliness
tkk′ travel time between k and k′
pk production time for demands of region k
Drk time arriving at region k in the rth order
τik binary variable, taking a value of 1 if customer i is in the 

region k and 0 otherwise
Ti tardiness of delivery to customer i
Ei earliness of delivery to customer i

The mixed-integer nonlinear programming (MINLP) model is for-
mulated as follows:

	
min x c T E

j

m

k

s

k

s

jkk jkk

i

i i

= = ʹ=

ʹ ʹ

∀
∑∑∑ ∑+ ( )

1 0 1

α β+ 	 (12.1)

	
s.t. x mj0k

k =1

s

j=1

m

ʹ∑́∑ ≤ 	 (12.2)

	
x 1j0k

k =1

s

j=1

m

ʹ∑́∑ ≥ 	 (12.3)

	
x 1 k {1, ,s}jkk

k =1

s

j=1

m

ʹ∑́∑ ≤ ∈ … 	 (12.4)

	
x 1 k {1, ,s}jkk

k=0

s

j=1

m

ʹ∑∑ = ʹ∈ … 	 (12.5)
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j 1

m
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s
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a E D  i C i i rk ik

r=1

s

k =1

s

+ ≥ ∀ ∈ʹ ʹ

ʹ
∑∑ τ 	 (12.14)

	 x {0,1} , k 0, ,s, k ,r 1, ,s , k kjkkʹ ∈ ʹ ʹ= = ≠… … 	 (12.15)

j = 1, …, m, i = 1, …, n
The objective function (12.1) minimizes the total cost including the 
travel cost, tardiness and earliness penalty costs. Constraints (12.2) 
and (12.3) specify that the number of all vehicles, which are traveled 
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from depot to all regions, should be limited in the range of [1, vehicle 
number]. Constraint (12.4) shows that we cannot send over one vehi-
cle from each region, while constraint (12.5) ensures that every region 
is only serviced once. Constraints (12.6) through (12.8) show that we 
enter into and exit from all regions by the same vehicle, and we can-
not change the vehicle in regions. It should be noted that we con-
sider these three constraints because in our case study, we have three 
vehicles. Constraint (12.9) controls the vehicle capacity. Constraint 
(12.10) calculates t j

s for each vehicle. Constraints (12.11) and (12.12) 
calculate the service time for all regions by considering the order of 
serving. Constraints (12.13) and (12.14) represent tardiness and earli-
ness ranges.

12.4  Solution Approach

In this section, we propose an exact and a heuristic method to solve 
the problem. Our case study has a small and medium size, so we can 
solve our problem exactly. However, as Karp (1972) proved that the 
traveling salesman problem (TSP) is strongly NP-hard, we propose a 
heuristic algorithm for solving some large size of such problems.

12.4.1  Exact Solution

For solving and testing this model, we identify 20 experiments of the 
company from 20 days. This company is active in furniture industry. 
We consider the warehouse of this company as a main depot for pro-
duction and distribution. The scheduling horizon is assumed to be a 
working day, starting from 8:00 AM to 4:00 PM. By dividing this 
time window into 16 parts, each time unit will be 30 min. We con-
sider the process of assembly, disassembly, and packing of the products 
as manufacturing process. A team of workers do these works together, 
and can be considered as a single machine. Three different vehicles do 
the job of transferring products to the customer’s place. Each vehicle 
has a different capacity and different transporting cost, but they have 
the same speed. Customers can specify their delivery time window. 
We try to schedule the manufacturing and delivery process to mini-
mize the sum of transportation cost and the penalty of tardiness and 
earliness of deliveries.
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We coded this mathematical model in Microsoft visual studio 2010 
and then used its text output for Lingo 11.0, and from all experi-
ments, we can get best answer by the branch-and-bound solver. It is 
important that for bigger sizes of problems, this exact method cannot 
give any answer in a reasonable time, so we have to use a heuristic 
algorithm.

12.4.2  Proposed Algorithm

A heuristic algorithm is proposed for solving the problem, because 
this routing problem with multiple customers contains the strongly 
NP-hard TSP (Karp, 1972). As mentioned before, our case study 
problem is small and medium, and can be solved by the exact method. 
The proposed algorithm is then appropriate for solving the other cases 
with larger sizes.

In this algorithm, we use genetic algorithm (GA) because expe-
riences show that population-based algorithms have better pro-
ficiency for solving routing and batching problems like our case. 
After generation and improvement with GA, this algorithm starts 
local improvement phase by using simulated annealing (SA). After 
a specific iteration, the algorithm stops and gives the best answer 
over all iterations. Figure 12.1 shows the flowchart of the proposed 
algorithm.

To explain the proposed algorithm, some important steps are given 
as follows:

	 1.	Define chromosomes as can be seen in Figure 12.2.
	 2.	Use partially mapped crossover as shown in Figure 12.3.

		  As you can see in Figure 12.3, this operator randomly 
specifies two points of each parent. From the first parent, 
the specific part will be copied to the child exactly, and 
another part of child will come from the second parent 
randomly.

	 3.	Use replacement operator for mutation. You can see an exam-
ple of this operator in Figure 12.4.

	 4.	For determining the initial temperature in SA part of the 
algorithm, we define a linear connection between T0 and 
number of regions (s): T0 = θ·s; where θ is a constant number.
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	 5.	Use geometric approach for the cooling of initial temperature: 
Ti = αi·T0; where 0.5 ≤ α ≤ 0.99.

	 6.	Neighborhood creation is done by using inversion operator for 
sequence array and insertion operator for allocation array (see 
Figures 12.5 and 12.6).

For parameter tuning, factorial design is used and three levels of three 
important parameters in the algorithm are tested. Table 12.5 shows 
these levels of experiment. By running all 33 = 27 tests, best levels are 
as determined as follows:

Number of initial population: 60, probability of crossover: 0.6, and 
ratio of initial temperature: 1.

Start:
Generation of

initial
population

End:
Give the best

solution that is
found

Improvement of
generated population

Is this algorithm
finished?

Checking finished
condition

Find the best solution
in this iteration

Execution of SA
algorithm

Send improved
population for local

search

No

Yes

Figure 12.1  Flowchart of solution algorithm.

Vehicles
(allocation array)

Regions
(sequence array) 5 4 3 1 2 6

2 1 3 2 3 1

Figure 12.2  A sample of chromosomes in the proposed algorithm.
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First parent

Child

2 3 6 5

6 5

4 1

Second parent

5 4 3 1 2

4 3 1 2

6

5 4 3 1 2 6

2 1 3 2 3 1

1 6 5 4

1 2 6 5 4 3

Figure 12.3  Crossover operator in the solution algorithm.

(b)

2 5 4 1 6 3

3 1 1 3 2 2

(a)

2 6 4 1 5 3

3 1 1 3 2 2

Figure 12.4  Mutation operator in the proposed algorithm: (a) before mutation and (b) after 
mutation.

2 4 5 3

2 6

6

3 5 4 1

1

Figure 12.5  Neighborhood creation by inversion operator for sequence array.

3 3 1 1

2 1

2

2 3 1 2

2

Figure 12.6  Neighborhood creation by insertion operator for allocation array.
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12.5  Numerical Study

Twenty test problems which are taken from 20 working days are solved 
by the exact method and heuristic algorithm. All examples were tested 
on a personal computer with an Intel Core i5 CPU, 2.66 GHz, 4 GB 
RAM. Solutions of exact method and the proposed heuristic algorithm 
are compared with real practice. Table 12.6 shows results for 20 test 
problems. Values in this table show the value of the objective function 
in three methods, and improvement in 85% of tests is achieved.

Table 12.5  Parameter Tuning

PARAMETER INDEX OF LEVELS LEVELS 

Initial 
population

1 60
2 80
3 100

Probability of 
crossover

1 0.6
2 0.7
3 0.8

Ratio of initial 
temperature

1 1
2 2
3 3

Table 12.6  Results of Test Problems

PROBLEM NUMBER 1 2 3 4 5 

Real practice 21 17 20 27 23
Exact method 17 10 19 25 21
Proposed algorithm 17 10 19 26 21

PROBLEM NUMBER 6 7 8 9 10 
Real practice 20 19 26 14 16
Exact method 17 15 19 14 13
Proposed algorithm 17 15 21 14 13

PROBLEM NUMBER 11 12 13 14 15 
Real practice 10 17 28 18 16
Exact method 8 10 20 18 8
Proposed algorithm 8 10 22 18 8

PROBLEM NUMBER 16 17 18 19 20 
Real practice 17 8 15 8 12
Exact method 13 7 11 6 12
Proposed algorithm 15 7 11 6 12
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The exact method gives us the best solutions in all the experiences 
because our problems are small and medium, but for large problems, 
this exact method might not be able to answer, so we should try a heu-
ristic algorithm for large-size problems. Our algorithm gives the best 
answer 80% of times. This proposed algorithm can solve the problems 
in an average of 0.7 s, while the exact method solves them in an aver-
age of 43 s, so it shows that for large-size problems, this reduced solv-
ing time is better.

The graphical comparison between the exact method, the proposed 
algorithm, and real-world case, in terms of total cost, is demonstrated 
in Figure 12.7. As you see in this figure, the exact method reduces the 
objective function value in 17 problems (85% of problems), and in 3 
problems, total cost is equal in all methods.

12.6  Conclusions

Our method shows that our model might be useful for many compa-
nies that hope to reduce their transfer costs and increase the satisfac-
tion of their customers. For large problems, we propose the heuristic 
algorithm.

Our goal for working on this problem was to decrease hidden costs, 
which were created by dissatisfaction of customers from late or soon 
delivery, although we should consider the best and minimum costs 

1 2

30

25

20

15

10

5
3 4 5 6 7 8 9 10

Index of experience

Co
st

11 12 13 14 15 16 17 18 19 20

Exact method
Proposed algorithm
Real practice

Figure 12.7  Comparison between exact method, proposed algorithm, and real-world case, 
in terms of total cost.
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for transferring costs. For our considered problem, which has small 
and medium sizes, proposed algorithm is efficient; however, this algo-
rithm should be tested for large-size problems.

In this chapter, we have successfully formulated the IPODS prob-
lem as a mixed-integer nonlinear programming model with different 
vehicles, time windows, and routing method of distribution. A heu-
ristic algorithm, which is a combination of GA and SA, is proposed 
to solve the research problem. We solved 20 real problems by exact 
method with Lingo 11.0 and compared the results with the solutions 
of proposed heuristic algorithm and real-world cases. Computational 
results showed that our solution method is effective and efficient. It can 
reduce 20% of costs, which is equal to 1035 units of costs, and our pro-
posed algorithm can calculate the best solution for 80% of problems.

For the future research, we suggest improving and using the 
proposed solution method as software for enterprises, which takes 
data from users and gives the best solution of the sequencing and 
scheduling problem for each horizon.
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13
An Integrated 

Replenishment and 
Transportation Model

Computational Performance Assessment

R A M E Z  K I A N ,  E M R E  B E R K ,  A N D 
Ü L K Ü  G Ü R L E R

13.1  Introduction

Transformation processes with multiple inputs typically exhibit non-
linearities in their output with respect to input usages. They have been 
traditionally modeled via production functions in the microeconomics 
literature (Heathfield and Wibe, 1987). One of the most common pro-
duction functions is the Cobb–Douglas (C–D) production function. 
This production function assumes that multiple (n) inputs (also called 
factors or resources) are needed for output, Q, and they may be substi-
tuted to take advantage of the marginal cost differentials. In general, 
it has the form Q A x i

i

n i

,= ⎡
⎣

⎤
⎦

( )
=∏

α

1
 where A represents the total factor 

productivity of the process given the technology level, x(i) denotes the 
amount of input i used, and αi > 0 is the input elasticity. The total 
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 may be greater than (smaller than) 

or equal to 1 depending on whether there is diminishing (increasing) 
returns to resources, resulting in convex (concave) operational costs. 
The C–D production function was first introduced to model the labor 
and capital substitution effects for the US manufacturing industries 
in the early twentieth century (Cobb and Douglas, 1928). Despite its 
macroeconomic origins, since then, it has been widely applied to indi-
vidual transformation processes at the microeconomic level, as well. 
For example, the C–D production function was employed to model 
production processes in the steel and oil industries by Shadbegian and 
Gray (2005) and in agriculture by Hatirli et al. (2006). Logistics activi-
ties associated with shipment preparation, transportation/delivery, and 
cargo handling also use, directly and/or indirectly, multiple resources 
such as labor, capital, machinery, materials, energy, and information 
technology. Therefore, it is not surprising that there is a growing lit-
erature on the successful applications of the C–D-type production 
functions to model the operations in the logistics and supply chain 
management context. Chang’s (1978) work seems to be the earliest 
to construct a C–D production function to analyze the productivity 
and capacity expansion options of a seaport. Rekers et al. (1990) esti-
mate a C–D production function for port terminals and specifically 
model cargo handling service. In a similar vein, Tongzon (1993) and 
Lightfoot et al. (2012) consider cargo handling processes at container 
terminals for their production functions. In a recent work, Cheung 
and Yip (2011) analyze the overall port output via a C–D production 
function. Studies on technical efficiency in cargo handling and port 
operations provide additional support for the C–D-type functional 
relationships, where output is typically measured in volume of traf-
fic (in terms of twenty-foot equivalent unit—TEUs) and inputs may 
be as diverse as number or net usage time of cranes, types of cranes, 
number of tug boats, number of workers or gangs, length and surface 
of the terminals, berth usage, volume carried by land per berth, and 
energy (e.g., Notteboom et al. 2000, Cullinane 2002, Estache et al. 
2002, Cullinane et al. 2002, 2006, Cullinane and Song 2003, 2006, 
Tongzon and Heng 2005). Comprehensive surveys can be found in 
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Maria Manuela Gonzalez and Lourdes Trujillo (2009), Trujillo and 
Diaz (2003), Tovar et al. (2007), and Gonzalez and Trujillo (2009). 
For land transportation, we may cite the evidence from Williams 
(1979) and for supply chain management, Ingene and Lusch (1999) 
and Kogan and Tapiero (2009).

Although multi-input activities in the area of logistics have 
received the attention of researchers for economic modeling and effi-
ciency measurements, this body of knowledge has been only partially 
incorporated into decision making at the operational level. As Lee 
and Fu (2014) observed, the most commonly used transportation cost 
structures are tapering rates, proportional rates, and blanket rates 
(Lederer 1994, Taaffe et al. 1996, Ballou 2003, Coyle et al. 2008). 
Hence, scale economies are the most frequently made assumption. 
(See also Xu [2013] in a location context.) However, we believe that 
this assumption ignores the fundamental economic fact that output 
is typically nonincreasing in the input usage. That is, a C–D produc-
tion function with total input elasticities being less than unity results 
in optimal input usage with usage costs being convex in the output 
level. Our work has been motivated by that the existing literature 
on the dynamic joint replenishment and transportation models lacks 
incorporation of the economic production functions. Incorporation 
of such functions of transportation/delivery activities into the exist-
ing logistics management models yields interesting theoretical and 
practical insights. First, these empirically supported functions, typi-
cally, result in the models to be nonlinear and convex in the deci-
sion variables for certain parameter settings. For such settings, the 
theoretical findings of the classical models do not hold any longer. 
Hence, these new settings are of theoretical interest. Second, the 
solution methodologies suitable and satisfactory for the classical 
models become less useful and, in some cases, even unusable. This 
necessitates the development of novel heuristics. (For a detailed dis-
cussion of both aspects in a dynamic lot-sizing framework, see Kian 
et al. 2014.) In this work, we focus on the suitability of the existing 
generic solvers and their computational performance for a logistics 
model with convex costs.

We envision a firm that produces a single product and delivers 
the production quantity to its vendor-managed inventory warehouse. 
We consider the dynamic joint replenishment and transportation 
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problem for this integrated two-stage inventory system where the 
delivery times of the items from the production site to the ware-
house and from the warehouse to a customer’s site are negligible, 
but the logistical operations associated with shipment prepara-
tion, transportation/delivery, and cargo handling are nonlinear in 
the shipment quantity. In particular, we assume that the quantity 
transported requires multiple inputs whose usage is expressed by a 
C–D-type production function so that the resulting transportation 
costs are convex. Therefore, our work differs greatly from the existing 
models on replenishment and inbound/outbound logistics. Among 
the significant works in this area, we may cite Lippman (1969), Lee 
(1989), Pochet and Wolsey (1993), Lee et al. (2003), Jaruphongsa 
et al. (2005), Berman and Wang (2006), Van Vyve (2007), Hwang 
(2009), and Hwang (2010). Integrated replenishment and transporta-
tion problems have close similarity with the dynamic lot-sizing mod-
els in mathematical structure and analytical properties. A dynamic 
lot-sizing model with convex cost functions of a power form has been 
studied recently by Kian et al. (2014). It was shown that replenish-
ment is possible even with positive on-hand inventory (contrary to 
the classical Wagner–Whitin model in Wagner and Whitin [1958]), 
and thereby, a forward solution algorithm does not exist. In lieu of 
the optimal solution, heuristics were designed and approximate solu-
tions were investigated. For the related literature and the analytical 
intricacies of the particular lot-sizing model, we refer the reader to 
the aforementioned work.

The rest of the chapter is organized as follows. In Section 13.2, 
we present the assumptions of the model and provide three formula-
tions. In Section 13.3, we provide a numerical study and discuss our 
findings.

13.2  Model

13.2.1  Assumptions

We consider a single item. The problem is of finite horizon length, T. 
The demand amount in period t is denoted by dt(t  =  1,…,T). All 
demands are nonnegative and known, but may be different over 
the planning horizon. No shortages are allowed. The amount of 
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replenishment (production) in period t is denoted by qt and is unca-
pacitated. Replenishment in any period t incurs a fixed cost (of setup) 
Kt (≥0) and unit variable cost, pt. All units replenished in a period are 
transported to the warehouse; that is, dispatch quantity in a period 
is the same as the production quantity. Fixed costs associated with 
shipments are assumed negligible (or, equivalently may be viewed as 
subsumed in the fixed replenishment cost under the assumed dispatch 
policy). Each unit shipped in period t incurs a cost of τt. Additionally, 
the transportation and delivery use m (≥1) inputs with unit acquisi-
tion cost of input i in period t being at

i( ) for 1 ≤ i ≤ m. It is assumed 
that there are no economies of scale in the acquisition of the inputs 
and that unit acquisition costs are nonspeculative over the problem 
horizon. These assumptions dictate that a lot-for-lot acquisition pol-
icy is optimal for the inputs needed. (A similar set of assumptions 
are implicitly made for the ingredients/raw materials needed for the 
replenishment that involves actual manufacturing.) The input usage 
for transporting qt units of the item in period t is determined through 
a stationary C–D function as q xt t

i

i

m i

= ⎡
⎣

⎤
⎦

( )
=∏

α

1
 with αi ≥ 0 for all i. 

The stationarity of the function parameters are realistic in that the 
planning problem considered herein would be of very short term com-
pared to the timeframe required for technological changes that would 
impact the values of the elasticity and total factor productivity param-
eters. The inventory on hand at the end of period t at the warehouse is 
denoted by It; each unit of ending inventory in the period is charged 
a unit holding cost of ht. Without loss of generality, the initial inven-
tory level, I0, is assumed to be zero. Given that the short-term nature 
of the decisions, no discounting is assumed over the horizon although 
it can easily be incorporated into the model. The objective is to find a 
joint replenishment and transportation plan that determines the tim-
ing and amount of production and delivery (qt) such that total costs 
over the horizon are minimized.

Before we proceed with the formulations of the problem, a few 
remarks are in order about the particulars of our problem setting. 
(1) In the presence of zero fixed costs of shipment, the assumed dis-
patch policy is optimal. However, with nonzero fixed costs, it would 
be suboptimal. This particular fixed cost structure has been studied 
by Jaruphongsa et al. (2005) with zero unit variable costs. Under 
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nonspeculative (fixed and unit) costs, it has been established that the 
replenishment quantity in any period k needs to be either zero or equal 
to the sum of a number of future dispatch quantities. In our setting, 
we chose fixed shipment costs to be zero for the impact of the special 
nature of the variable costs to be brought to the foreground. (2) Since 
Lippman (1969), the shipments have taken into account cargo capacity 
of individual vehicles and considered stepwise cost structures. Again, 
for better exposition of the special cost function we assume herein, 
we ignore this aspect. Thus, our results may be viewed as a relaxation 
of this cargo capacity constraint. (3) The dynamic lot-sizing problems 
are special cases of the joint replenishment and transportation prob-
lems and, thereby, show close affinity with them under certain cost 
structures and policies. This is true in our setting, as well. The charac-
teristics of the model herein are similar to those of Kian et al. (2014), 
and the two-echelon inventory system may be reduced to the single 
location lot-sizing model studied in the mentioned work. Therefore, 
in this work, we focus on the computational issues.

13.2.2  Formulations

We first formulate the problem as a mixed-integer nonlinear program-
ming (MINLP) problem. We will consider two equivalent variants. In 
the first formulation, PT

1, the decision variables are the replenishment 
(and shipment) quantities qt, the binary variables yt for replenishment 
setup, the input quantities xt

i( ) for i = 1, … ,m with the intermediate 
inventory variables It for 1 ≤ t ≤ T. The objective function is linear 
in the variables, but the constraints contain the nonlinear produc-
tion function that relates the inputs to the replenishment/shipment 
quantity. In the second formulation, PT

2 , we first determine the opti-
mal input usage for any replenishment/shipment quantity (which may 
be viewed as preprocessing) and incorporate the production function 
relationship into the objective function rendering the problem into a 
form with a nonlinear objective function with only linear constraints. 
In PT

2 , the decision variables are the replenishment (and shipment) 
quantities qt, the binary variables yt for replenishment setup with the 
intermediate inventory variables It for 1 ≤ t ≤ T.

We state the first formulation PT
1, which acts as a building block for 

the second formulation, formally as follows:
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where M is a sufficiently large positive number. The first set of con-
straints (13.1b) ensures that setups are performed only in the periods 
in which replenishment is positive, (13.1c) gives the evolution of on-
hand inventories, (13.1d) represents the production function relating 
the inputs and the transported quantity, and (13.1e) are binary and 
nonnegativity constraints. We assume that the initial inventory is zero 
and these demands are net demands. The second formulation PT

2 is 
obtained from PT

1 by first deriving the optimal input allocations for a 
given shipment quantity. To this end, consider the subproblem where 
the input acquisition costs in period t are minimized given qt  =  Q. As 
the input usage is uncapacitated, the first-order conditions imply that, 
for any i and j, j ∈ {1, … ,m},

	

x Q
a

a
x Qt

i i t
j

j t
i t

j( )
( )

( )
( )( ) = ( )* *

α

α
	 (13.2)

where x Qt
i( ) ( ) *  is the optimal usage of input i to transport Q units of 

the item. Hence, for 1 ≤ i ≤ m,
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(For details, see Heathfield and Wibe 1987.) Correspondingly, for a 
shipment quantity Q, the minimum transportation cost in period t, 
C Qt

* ( ), becomes
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The expression of C* (Q) enables us to rewrite the MINLP formula-
tion as PT

2 as follows:

	

min *( )
t

T

t t t t t t t tK y p q C q h I
=
∑ + + +⎡
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1

s.t. 	 (13.5a)

	
My q t Tt t≥ ∈ { , , }1 … 	 (13.5b)

	
I I q d t Tt t t t= + − ∈−1 1{ , , }… 	 (13.5c)

	
y q i m t Tt t∈{ } ≥ ∈{ } ∈0 1 0 1 1, , , , , , { , , }… … 	 (13.5d)

where M is as defined before. The constraints (13.5b), (13.5c), and 
(13.5d) perform the same function as in PT

1, but we have been able 
to eliminate the input variables and to render all constraints linear at 
the expense of nonlinearizing the objective function. Clearly, the sec-
ond formulation is more compact and has computational advantages 
as demonstrated in our numerical study. We can also formulate the 
problem as a dynamic programming (DP) problem. Define J It

T
t( ) 

as the minimum total cost under an optimal joint replenishment and 
transportation plan for periods t through T, where It is the ending 
inventory as defined before in the recursions (13.1c) or (13.5c). Then,
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0 1
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{ , , }1 …
	

(13.6)

where 1 0{ }qt>  indicates the existence of a setup in period t, with the 
boundary condition in period T being J IT

T
T( ) = 0 for any IT ≥ 0. 

The optimal solution is found using the earlier recursion, and J T
0 0( ) 

denotes the minimum cost over the problem horizon.
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The main difficulty with this formulation is its high dimensionality. 
The memory requirements and the system state size become prohibitively 
large, and the solution times are too long. It is not suitable for problems 
of large sizes in terms of horizon lengths and/or demand values. For 
our work, this formulation is important in that it provides a guaranteed 
optimal solution and serves as the benchmark in our numerical study.

13.3  Numerical Study

For our numerical study, we constructed our experiment set in line 
with Kian et al. (2014).

We considered a problem horizon of T = 100 periods. Period 
demands are generated randomly from three normal distributions 
with respective coefficients of variation, cov = 0.8, 0.4, and 0.2 and 
standard deviation σ (=40) where negative demand values have been 
replaced with zero demands. We denote the three demand patterns 
by D1, D2, and D3, respectively. All other system parameters are 
stationary. Noting that unit replenishment cost pt and unit trans-
portation cost τt can be subsumed into ht by simple transformations 
through inventory recursions, we assume them to be negligible over 
the entire problem horizon. We set unit holding cost rate, ht = h = 1, 
and setup cost is selected as a function of the mean demand rate, 
Kt = K = [ J2/2]μ, where J may be viewed as a proxy for the average 
size of a replenishment quantity under the simple EOQ formula. 
We have J ∈ {2, 3, 4, 5}. We considered r = 1.5. This corresponds to 
the C–D-type economic production function with convex costs. To 
select the parameters for the nonlinear transportation/delivery com-
ponent, we used the formulation PT

2  as the base. For this formula-
tion, we set wt  =  w and considered the variable cost of transportation 
per unit when a dispatched quantity equals the average demand per 
period, w where w  =  [wμr]/μ = wμr−1. Letting a h w,= /  we have w =  
hμ/(aμr) with a ∈ {0.02,0.05,0.1} so that the resulting variable cost 
for a shipment quantity of q units is given by [hμ/a](q/μ)r. Note that 
w is decreasing in a. The same sets of 10 demand realizations gen-
erated for each demand distribution were used for all experiment 
instances throughout the study. Overall, we have 120 = (4 × 3 × 10) 
experiment instances for PT

2 . As part of our study, we also tested the 
efficacy of formulation PT

2 , which is structurally different from PT
2 . 
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For consistency, we selected the parameters for this formulation as 
follows. We considered three values of number of iso-elastic inputs, 
m = 1, 2, 5 and αi = α for 1 ≤ i ≤ m with mα = 1/r. (All other parameters 
were selected as for PT

2.) Overall, we have 360 = (3 × 4 × 3 × 10) experi-
ment instances for PT

2 . The optimal plan has been obtained by the DP 
algorithm discussed earlier. We tested the solvers AlphaECP, Baron, 
Bonmin, Couenne, LINDOGlobal, and KNITRO available online 
at the NEOS server (http://www.neos-server.org/neos/solvers/index.
html). The server’s goal has been described as specifying and solving 
optimization problems with minimal user input (Dolan et al. 2002). 
The solver defaults/options were set at their defaults except that the 
time limits on all have been set to 1500 s since lower time resources 
resulted in too many interrupts in preliminary tests.

In our numerical study, (1) we considered an overall assessment of 
the computational performances of the two formulations with respect 
to the demand patterns and the number of inputs using different opti-
mizers, and  (2) focusing on the formulation PT

2 , we used the ANalysis 
Of VAriance (ANOVA) to identify the factors that have statistically 
significant impact on the solution quality.

13.3.1  Overall Assessment

The performance measures are (1) the number of instances in which a 
feasible solution has been obtained by a solver, and (2) the percentage 
deviation from the optimal solution for the obtained solutions aver-
aged over all 120 experiment instances for a particular demand distri-
bution. Note that in the latter computation, the experiment instances 
in which a solver failed have been excluded.

We begin our analysis with our findings on formulation PT
1. The 

overall performance summary with m = 1, 2, 5 for the entire experi-
ment set for this formulation is presented in Table 13.1, where # 
denotes the first performance measure and % denotes the second. For 
the cases when no feasible solution was obtained, an m-dash (—) has 
been used to denote the unavailable second measure.

AlphaECP failed to obtain a solution in all experiment instances, 
whereas LINDOGlobal was able to obtain a solution in all experiment 
instances except for the demand distribution D2. However, for that 
pattern, it also resulted in a solution in the most number of instances. 
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Bonmin has low performance in obtaining a solution, but the qual-
ity of the obtained solution is very good (optimal in many instances). 
Regardless of the number of inputs in the system, it was able to get a 
near-optimal solution for D1. The distribution D2 seems to present the 
most difficulty for given m and other parameters except for Bonmin.

For LINDOGlobal, the number of inputs in the problem setting 
has a negative impact on the quality of the obtained solutions. For 
other solvers, the behavior may not be monotone (e.g., KNITRO, 
Bonmin). However, in a very general qualitative sense, we get the 
impression that solver performance (in both criteria) tends to worsen 
as the number of inputs increases in the problem setting. This obser-
vation has motivated us to construct the second formulation, PT

2. For 
PT

2 , the performances of all solvers have improved significantly in 
terms of the number of instances for which a feasible solution was 
obtained; none of the solvers failed across the entire experimental 
bed. Also, the solution quality for all solvers except LINDOGlobal 
(for m = 1 case) has increased. These indicate that the formulation PT

2 
is more amenable to use on the available solvers.

13.3.2  ANOVA Assessment

The overall assessment presented earlier was based on the perfor-
mances of the two formulations and the solvers in an aggregate sense. 
Next, we focus on the formulation PT

2 and use the formal statistical 
tool ANOVA to identify the factors that impact the solution quality 
significantly in a statistical sense.

We considered a three-way ANOVA where the factors are (1) K 
(representing the fixed replenishment cost) considered in four levels Ki, 
i = 1,…, 4; (2) W (representing the transportation cost coefficient, w) 
considered in three levels, Wj, j  =  1, 2, 3 as given earlier in the experi-
mental bed; and (3) the different solvers denoted by S with six levels, 
Sk, k  =  1,…,6 corresponding to the solvers in the order given earlier 
with n = 10 replications (corresponding to the demand realizations) at 
each experimental instance. The response variables yijkl, i  =  1,…,4;  j  =  
1,2,3;  k  =  1,…,6; and l  =  1,…,10 are taken as the percentage devia-
tions of the solutions provided by the solvers from the optimal solu-
tion, which is obtained by DP. The ANOVA study was conducted for 
each demand distribution separately.
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The ANOVA tables for the three distributions are given in Tables 
13.2 through 13.4. The performance statistics for each factor level 
computed across the other experiment parameters are tabulated in 
Table 13.5 for each demand distribution. Finally, the interaction 
effects of the factor levels are provided in Figures 13.1 through 13.3 
for the each distribution, respectively. The inspection of these results 
reveals the following findings.

Firstly, all the factors and the interactions have significant impact 
on the solution quality, which is indicated by very large F values and 
correspondingly very small P-values, implying that the hypothesis 
that states that all factor levels have the same effect on the response 
variable is rejected for all three distributions. A closer inspection of the 
results provides further information regarding (1) the relative impact 
of the factors, (2) direction of the factor-level impact, and (3) the 
interaction effect. We treat each demand distribution separately.

Table 13.3  ANOVA for D2

SOURCE DF SEQ SS ADJ SS ADJ MS F P 

K 3 640.025 640.025 213.342 754.86 0
W 2 542.101 542.101 271.051 959.05 0
S 5 1020.997 1020.997 204.199 722.52 0
K *W 6 1163.260 1163.26 193.877 685.99 0
K *S 15 134.743 134.743 8.983 31.78 0
W *S 10 120.064 120.064 12.006 42.48 0
K *W *S 30 347.503 347.503 11.583 40.99 0
Error 648 183.140 183.14 0.283
Total 719 4151.832

Table 13.2  ANOVA for D1

SOURCE DF SEQ SS ADJ SS ADJ MS F P 

K 3 18285.12 18285.12 6095.04 1246.5 0
W 2 4611.81 4611.81 2305.9 471.58 0
S 5 17151.57 17151.57 3430.31 701.54 0
K *W 6 12221.28 12221.28 2036.88 416.56 0
K *S 15 7259.13 7259.13 483.94 98.97 0
W *S 10 2259.74 2259.74 225.97 46.21 0
K *W *S 30 6201.09 6201.09 206.7 42.27 0
Error 648 3168.54 3168.54 4.89
Total 719 71158.26



284 Ramez Kian et al.

Consider Table 13.2. Comparing the F values, we observe that 
the most important factors are, respectively, K, S, W, and the two-
way KW interaction. From Table 13.5, we see that K4, W3, and S2 
(Solver Baron) result in the worst solution quality on average. Next, 
inspecting the impact of average effect of different levels of factors 
from Table 13.5, we see that the largest deviation from the optimal 
results is observed when fixed cost is highest at K4 level, when W 
is at the W3 level, and the solver S2 is used. From Figure 13.1, we 
observe that the differential effect as K increases depends on the 
level of W implying a significant interaction of K and W with the 
worst performance occurring at K4W3 combination. Although not 
as significant, there is also some interaction of K with the solvers. 
As K level changes from 3 to 4, the performance deteriorates sig-
nificantly with solvers S5 (LINDOGlobal) and S6 (KNITRO). A 
similar relation also holds regarding the interaction between W and 
the solvers.

Similar analysis for D2 and D3 reveals the following. For D2, 
the factors with the highest F values are ordered as W, K, S, and the 
two-way interaction KW. Table 13.5 shows that there are less dras-
tic differences between the average solution quality corresponding to 
different levels of the factors. Figure 13.2 shows that the KW inter-
action is still significant, and the difference between the levels of K 
is highest for W3, where the interaction of solvers with K and W is 
reduced. The ordering of solver performances is similar to that of D1. 
For D3, we note that the factors with the highest F values are ordered 
as W, K, KW, and S. We again observe that the average solution qual-
ity corresponding to different factor levels generally becomes closer 

Table 13.4  ANOVA for D3

SOURCE DF SEQ SS ADJ SS ADJ MS F P 

K 3 451.116 451.116 150.372 3136.61 0
W 2 353.541 353.541 176.771 3687.26 0
S 5 86.901 86.901 17.38 362.53 0
K *W 6 855.188 855.188 142.531 2973.06 0
K *S 15 82.740 82.74 5.516 115.06 0
W *S 10 63.062 63.062 6.306 131.54 0
K *W *S 30 218.256 218.256 7.275 151.75 0
Error 648 31.066 31.066 0.048
Total 719 2141.870
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to each other, while the KW interaction is still emphasized and the 
interactions with the solvers become less emphasized.

From the earlier analysis, we see that the solvers’ performances 
get more and more closer to each other as the coefficient of variation 
of the demand distribution gets smaller and the worst performances 

Interaction plot for RESP
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Figure 13.2  Factor interaction for D2.
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Figure 13.1  Factor interaction for D1.
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are observed for the K4W3 large fixed cost and low transportation 
cost coefficient combination. Furthermore, S1, S3, and S4 (Solvers 
AlphaECP, Bonmin, and Couenne, respectively) are always among 
the best three performing solvers (although their ordering may 
change), whereas the worst performer is S2 in all three demand 
distributions. We observe that solver performances depend dras-
tically on problem formulations as well as cost parameters. We 
should also mention that they may as well depend on possible user 
interventions such as initial point selections that were not imposed 
in our study.
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