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Preface

This book grew out a number of distribution and logistics graduate courses we
have taught over the last ten years. In the first few years, the emphasis was on very
basic models such as the traveling salesman problem, and on the seminal papers
of Haimovich and Rinnooy Kan (1985), which analyzed a simple vehicle routing
problem, and Roundy (1985), which introduced power-of-two policies and proved
that they are effective for the one warehouse multi-retailer distribution system. At
that time, few results existed for more complex, realistic distribution problems,
stochastic inventory problems or the integration of these issues.

In the last few years however, there has been renewed interest in the area of
logistics among both industry and academia. A number of forces have contributed
to this shift. First, industry has realized the magnitude of savings that can be
achieved by better planning and management of complex logistics systems. In-
deed, a striking example is Wal-Mart’s success story which is partly attributed to
implementing a new logistics strategy, called cross-docking. Second, advances in
information and communication technologies together with sophisticated decision
support systems now make it possible to design, implement and control logistics
strategies that reduce system-wide costs and improve service level. These decision
support systems, with their increasingly user-friendly interfaces, are fundamentally
changing the management of logistics systems.

These developments have motivated the academic community to aggressively
pursue answers to logistics research questions. Indeed, in the last five years consid-
erable progress has been made in the analysis and solution of logistics problems.

This progress was achieved, in many cases, using an approach whose purpose is
to ascertain characteristics of the problem or of an algorithm that are independent
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of the specific problem data. That is, the approach determines characteristics of the
solution or the solution method that are intrinsic to the problem and not the data.
This approach includes the so-called worst-case and average-case analyses which,
as illustrated in the book, help not only to understand characteristics of the problem
or solution methodology, but also provide specific guarantees of effectiveness. In
many case, the insights obtained from these analyses can then be used to develop
practical and effective algorithms for specific complex logistics problems. Our
objective in writing this book is to describe these tools and developments.

Of course, the work presented in this book is not necessarily an exhaustive
account of the current state of the art in logistics. The field is too vast to be
properly covered here. In addition, the practitioner may view some of the models
discussed as simplistic and the analysis presented as complex. Indeed, this is the
dilemma one is faced with when analyzing very complex, multi-faceted, real-world
problems. By focusing on simple yet rich models that contain important aspects
of the real-world problem, we hope to glean important aspects of the problem that
might be overlooked by a more detail-oriented approach.

The book is written for graduate students, researchers and practitioners inter-
ested in the mathematics of logistics management. We assume the reader is familiar
with the basics of linear programming and probability theory and, in a number of
sections, complexity theory and graph theory, although in many cases these can
be skipped without loss of continuity. The book provides:

• A thorough treatment of performance analysis techniques including worst-
case analysis, probablistic analysis and linear programming based bounds.

• An in-depth analysis of a variety of vehicle routing models focusing on new
insights obtained in recent years.

• A detailed, easy-to-follow analysis of complex inventory models.

• A model that integrates inventory control and transportation policies and
explains the observed effectiveness of the cross-docking strategy.

• A description of a decision support system for planning and managing im-
portant aspects of the logistics system.

Parts of this book are based on work we have done either together or with others.
Indeed, some of the chapters originated from papers we have published in jour-
nals such as Mathematics of Operations Research, Mathematical Programming
Operations Research, and IIE Transactions. We rewrote most of these, trying to
present the results in a simple yet general and unified way. However, a number
of key results, proofs and discussions are reprinted without substantial change.
Of course, in each case this was done by providing the appropriate reference and
by obtaining permission of the copyright owner. In the case of Operations Re-
search and Mathematics of Operations Research, it is the Institute for Operations
Research and Management Science.
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1
Introduction

1.1 What Is Logistics Management?

Fierce competition in today’s global markets, the introduction of products with
short life cycles and the heightened expectation of customers have forced manu-
facturing enterprises to invest in and focus attention on their logistics systems. This,
together with changes in communications and transportation technologies, for ex-
ample, mobile communication and overnight delivery, has motivated continuous
evolution of the management of logistics systems.

In these systems, items are produced at one or more factories, shipped to ware-
houses for intermediate storage and then shipped to retailers or customers. Con-
sequently, to reduce cost and improve service levels, logistics strategies must take
into account the interactions of these various levels in this logistics network. This
network consists of suppliers, manufacturing centers, warehouses, distribution cen-
ters and retailer outlets, as well as raw materials, work-in-process inventory and
finished products that flow between the facilities; see Figure 1.1.

The goal of this book is to present the state-of-the-art in the science of logistics
management. But what exactly is logistics management? According to the Council
of Logistics Management, a nonprofit organization of business personnel, it is

the process of planning, implementing, and controlling the efficient,
effective flow and storage of goods, services, and related information
from point of origin to point of consumption for the purpose of con-
forming to customer requirements.

This definition leads to several observations. First, logistics management takes
into consideration every facility that has an impact on system effectiveness and
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plays a role in making the product conform to customer requirements; from sup-
plier and manufacturing facilities through warehouses and distribution centers to
retailers and stores. Second, the goal in logistics management is to be efficient
and cost effective across the entire system; the objective is to minimize system-
wide costs, from transportation and distribution to inventory of raw material, work
in process and finished goods. Thus, the emphasis is not on simply minimizing
transportation cost or reducing inventories, but rather on a systems approach to
logistics management. Finally, because logistics management evolves around plan-
ning, implementing and controlling the logistics network, it encompasses many of
the firm’s activities, from the strategic level through the tactical to the operational
level.

Indeed, following Hax and Candea’s (1984) treatment of production-inventory
systems, logistical decisions are typically classified in the following way.

• The strategic level deals with decisions that have a long-lasting effect on the
firm. This includes decisions regarding the number, location and capacities
of warehouses and manufacturing plants, or the flow of material through the
logistics network.

• The tactical level typically includes decisions that are updated anywhere
between once every quarter and once every year. This includes purchasing
and production decisions, inventory policies and transportation strategies
including the frequency with which customers are visited.

• The operational level refers to day-to-day decisions such as scheduling,
routing and loading trucks.

1.2 Examples

In this section we introduce some of the logistics management issues that form the
basis of the problems studied in the first four parts of the book. These issues span
a large spectrum of logistics management decisions, at each of the three levels
mentioned above. Our objective here is to briefly introduce the questions and the
tradeoffs associated with these decisions.

Distribution Network Configuration

Consider the situation where several plants are producing products serving a set
of geographically dispersed retailers. The current set of warehouses is deemed to
be inappropriate, and management wants to reorganize or redesign the distribu-
tion network. This may be due, for example, to changing demand patterns or the
termination of a leasing contract for a number of existing warehouses. In addition,
changing demand patterns may entail a change in plant production levels, a se-
lection of new suppliers and, in general, a new flow pattern of goods throughout



4 1. Introduction

the distribution network. The goal is to choose a set of warehouse locations and
capacities, to determine production levels for each product at each plant, to set
transportation flows between facilities (either from plant to warehouse or ware-
house to retailer) in such a way that total production, inventory and transportation
costs are minimized and various service level requirements are satisfied.

Production Planning

A manufacturing facility must produce to meet demand for a product over a fixed
finite horizon. In many real-world cases it is appropriate to assume that demand is
known over the horizon. This is possible, for example, if orders have been placed
in advance or contracts have been signed specifying deliveries for the next few
months. Production costs consist of a fixed amount, corresponding, say to machine
set-up costs or times, and a variable amount, corresponding to the time it takes to
produce one unit. A holding cost is incurred for each unit in inventory. The planner’s
objective is to satisfy demand for the product in each period and to minimize the
total production and inventory costs over the fixed horizon. Obviously, this problem
becomes more difficult as the number of products manufactured increases.

Inventory Control

Consider a retailer that maintains an inventory of a particular product. Since cus-
tomer demand is random, the retailer only has information regarding the proba-
bilistic distribution of demand. The retailer’s objective is to decide at what point
to reorder a new batch of products, and how much to order. Typically, ordering
costs consist of two parts: a fixed amount, independent of the size of the order, for
example, the cost of sending a vehicle from the warehouse to the retailer, and a
variable amount dependent on the number of products ordered. A linear inventory
holding cost is incurred at a constant rate per unit of product per unit time. The
retailer must determine an optimal inventory policy to minimize the expected cost
of ordering and holding inventory. As before, this problem becomes even more
difficult as the number of products offered increases and the order cost is dependent
on the set of items ordered.

Cross Docking

Wal-Mart’s recent success story highlights the importance of a logistics strategy
referred to as cross docking. This is a distribution strategy in which the stores are
supplied by central warehouses which act as coordinators of the supply process,
and as transshipment points for incoming orders from outside vendors, but which
do not keep stock themselves. We refer to such warehouses as cross docking points.
The questions are obvious: how many cross docking points are necessary? What are
the savings achieved using a cross docking strategy? How should a cross docking
strategy be implemented in practice?
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Integration of Inventory and Transportation

A warehouse serves a set of retailers with a variety of products. To reduce operating
costs, management must determine the appropriate balance between inventory and
transportation costs. The tradeoff is clear. Frequent trips between warehouse and
retailer means each shipment is small, inventory costs are low and transportation
costs are high. Infrequent trips entail large shipments, high inventory costs and low
transportation costs. Assume, for simplicity, that each retailer experiences constant
deterministic demand for the product. The objective is to construct an inventory
policy and a transportation strategy, specifying vehicle routes and schedules and
the frequency with which the retailers are visited, so as to minimize system-wide
inventory and transportation costs.

Vehicle Fleet Management

A warehouse supplies products to a set of retailers using a fleet of vehicles of
limited capacity. A dispatcher is in charge of assigning loads to vehicles and
determining vehicle routes. First, the dispatcher must decide how to partition the
retailers into groups that can be feasibly served by a vehicle, that is, whose loads
fit in a vehicle. Second, the dispatcher must decide what sequence to use so as
to minimize cost. Typically, one of two cost functions is possible: in the first the
objective is to minimize the number of vehicles used, while in the second the focus
is on reducing the total distance traveled. The latter is an example of a single-depot
Capacitated Vehicle Routing Problem (CVRP), where a set of customers has to be
served by a fleet of vehicles of limited capacity. The vehicles are initially located
at a depot (in this case, the warehouse) and the objective is to find a set of vehicle
routes of minimal total length.

Truck Routing

Consider a truck that leaves a warehouse to deliver products to a set of retailers.
The order in which the retailers are visited will determine how long the delivery
will take and at what time the vehicle can return to the warehouse. Therefore, it
is important that the vehicle follow an efficient route. The problem of finding the
minimal length route, in either time or distance, from a warehouse through a set
of retailers is an example of a Traveling Salesman Problem (TSP). Clearly, truck
routing is a subproblem of the fleet management example above.

Packing Problems

In many logistics applications, a collection of items must be packed into boxes, bins
or vehicles of limited size. The objective is to pack the items such that the number
of bins used is as small as possible. This problem is referred to as the Bin-Packing
Problem (BPP). For example, it appears as a special case of the CVRP when the
objective is to minimize the number of vehicles used to deliver the products. Bin-
packing also appears in many other applications, including cutting standard length



6 1. Introduction

wire or paper strips into specific customer order sizes. It also often appears as a
subproblem in other combinatorial problems.

Delivery with Time-Windows

In many cases, it is necessary to deliver products to retailers or customers during
specific time-windows. That is, a particular retailer or customer might require
delivery between 9am and 11am. When each retailer specifies a time window, the
problem of finding vehicle routes that meet capacity constraints and time window
constraints becomes even more difficult.

Pickup and Delivery Systems

In some distribution systems, each customer specifies a pickup location and a
delivery or destination location. The dispatcher needs to coordinate the pickup
and delivery of the products so that each customer pickup/delivery pair is handled
by a single truck and the total distance traveled is as small as possible. Thus, a truck
route must satisfy the vehicle capacity constraint, the time-window requirement
for each pickup and delivery, and must guarantee that a pickup is always performed
before its associated delivery.

1.3 Modeling Logistics Problems

The reader observes that most of the problems and issues described in the previous
section are fairly well defined mathematically. These are the type of issues, ques-
tions and problems addressed in this book. Of course, many issues important to
logistics are difficult to quantify and therefore to address mathematically; we will
not cover these in this book. This includes topics related to information systems,
outsourcing, third party logistics, strategic partnering, etc. For a detailed analy-
sis of these topics we refer the reader to the upcoming book by Simchi-Levi et
al. (1997).

The fact that the examples provided in the previous section can be defined
mathematically is, obviously, meaningless unless all required data are available.
As we discuss in Part V of this book, finding, verifying and tabulating the data
are typically very problematic. Indeed, inventory holding costs, production costs,
extra vehicle costs and warehouse capacities are often difficult to determine in
themselves. Furthermore, identifying the data relevant to a particular logistics
problem adds another layer of complexity to the data gathering problem. Even
when the data do exist, there are other difficulties related to modeling complex real-
world problems. For example, in our analysis we ignore issues such as variations
in travel times, variable yield in production, inventory shrinkage, forecasting, crew
scheduling, etc. These issues complicate logistics practice considerably.

For most of this book, we assume that all relevant data, for example, production
costs, production times, warehouse fixed costs, travel times, holding costs, etc., are
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given. As a result, each logistics problem analyzed in Parts I–IV is well defined
and thus merely a mathematical problem.

1.4 Logistics in Practice

How are logistics problems addressed in practice? That is, how are these difficult
problems solved in the real world. In our experience, companies use several ap-
proaches. First and foremost, as in other aspects of life, people tend to repeat what
has worked in the past. That is, if last year’s safety stock level was enough to avoid
backlogging demands, then the same level might be used this year. If last year’s
delivery routes were successful, that is, all retailers received their deliveries on
time, then why change them? Second, there are so-called “rules of thumb” which
are widely used and, at least on the surface, may be quite effective. For example,
it is our experience that many logistics managers often use the so-called “20/80
rule” which says that about 20% of the products contribute to about 80% of total
cost and therefore it is sufficient to concentrate efforts on these critical products.
Logistics network design, to give another example, is an area where a variety of
rules of thumb are used. One such rule might suggest that if your company serves
the continental U.S. and it needs only one warehouse, then this warehouse should
probably be located in the Chicago area; if two are required, then one in Los An-
geles and one in Atlanta should suffice. Finally, some companies try to apply the
experience and intuition of logistics experts and consultants; the idea being that
what has worked well for a competitor should work well for itself.

Of course, while all these approaches are appealing and quite often result in
logistics strategies that make sense, it is not clear how much is lost by not focusing
on the best (or close to the best) strategy for the particular case at hand. Indeed,
recently, with the advent of cheap computing power, it has become increasingly
affordable for many firms, not just large ones, to acquire and use sophisticated
decision support systems to optimize their logistics strategies. In these systems,
data are entered, reviewed and validated, various algorithms are executed and a
suggested solution is presented in a user-friendly way. Provided the data are correct
and the system is solving the appropriate problem, these decision support systems
can substantially reduce system-wide cost. Also, generating a satisfactory solution
is typically only arrived at after an iterative process in which the user evaluates
various scenarios and assesses their impact on costs and service levels. Although
this may not exactly be considered “optimization” in a strict sense, it usually serves
as a useful tool for the user of the system.

These systems have as their nucleus models and algorithms in some form or
another. In some cases, the system may simply be a computerized version of
the rules of thumb above. In more and more instances, however, these systems
apply techniques that have been developed in the operations research, management
science and computer science research communities.

In this book, we present the current state-of-the-art in mathematical research in
the area of logistics. Most of the problems listed above have at their core extremely
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difficult combinatorial problems in the class called NP-Hard problems. This im-
plies that it is very unlikely that one can construct an algorithm that will always
find the optimal solution, or the best possible decision, in computation time that
is polynomial in the “size” of the problem. The interested reader can refer to the
excellent book by Garey and Johnson (1979) for details on computational complex-
ity. Therefore, in many cases an algorithm that consistently provides the optimal
solution is not considered a reachable goal, and hence heuristic, or approximation,
methods are employed.

1.5 Evaluation of Solution Techniques

A fundamental research question is how to evaluate heuristic or approximation
methods. Such methods can range from simple “rules of thumb” to complex, com-
putationally intensive, mathematical programming techniques. In general, these
are methods that will find good solutions to the problem in a reasonable amount
of time. Of course, the terms “good” and “reasonable” depend on the heuristic and
on the problem instance. Also, what constitutes reasonable time may be highly de-
pendent on the environment in which the heuristic will be used; that is, it depends
on whether the algorithm needs to solve the logistics problem in real-time.

Assessing and quantifying a heuristic’s effectiveness is of prime concern. Tra-
ditionally, the following methods have been employed.

• Empirical Comparisons: Here, a representative sample of problems is cho-
sen and the performance of a variety of heuristics is compared. The compar-
ison can be based on solution quality or computation time, or a combination
of the two. This approach has one obvious drawback: deciding on a good set
of test problems. The difficulty, of course, is that a heuristic may perform
well on one set of problems but may perform poorly on the next. As pointed
out by Fisher (1995), this lack of robustness forces practitioners to “patch
up” the heuristic to fix the troublesome cases, leading to an algorithm with
growing complexity. After considerable effort, a procedure may be created
that works well for the situation at hand. Unfortunately, the resulting algo-
rithm is usually extremely sensitive to changes in the data, and may perform
poorly when transported to other environments.

• Worst-Case Analysis: In this type of analysis, one tries to determine the
maximum deviation from optimality, in terms of relative error, that a heuris-
tic can incur on any problem instance. For example, a heuristic for the BPP
might guarantee that any solution constructed by the heuristic uses at most
50% more bins than the optimal solution. Or, a heuristic for the TSP might
guarantee that the length of the route provided by the heuristic is at most
twice the length of the optimal route. Using a heuristic with such a guarantee
allays some of the fears of suboptimality, by guaranteeing that we are within
a certain percentage of optimality. Of course, one of the main drawbacks of
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this approach is that a heuristic may perform very well on most instances that
are likely to appear in a real-world application, but may perform extremely
poorly on some highly contrived instances. Hence, when comparing algo-
rithms it is not clear that a heuristic with a better worst-case performance
guarantee is necessarily more effective in practice.

• Average-Case Analysis: Here, the purpose is to determine a heuristic’s av-
erage performance. This is stated as the average relative error between the
heuristic solution and the optimal solution under specific assumptions on
the distribution of the problem data. This may include probabilistic assump-
tions on the depot location, demand size, item size, time windows, vehicle
capacities, etc. As we shall see, while these probabilistic assumptions may
be quite general, this approach also has its drawbacks. The most important
includes the fact that an average-case analysis is usually only possible for
large size problems. For example, in the BPP, if the item sizes are uniformly
distributed (between zero and the bin capacity), then a heuristic that will be
“close to optimal” is one that first sorts the items in nonincreasing order and
then, starting with the largest item, pairs each item with the largest item with
which it fits. In what sense is it close to optimal? The analysis shows that
as the problem size increases (the number of items increases), the relative
error between the solution created by the heuristic and the optimal solution
decreases to zero. Another drawback is that in order for an average-case
analysis to be tractable it is sometimes necessary to assume independent
customer behavior. Finally, determining what probabilistic assumptions are
appropriate in a particular real-world environment is not a trivial problem.

Because of the advantages and potential drawbacks of each of the approaches, we
agree with Fisher (1980) that these should be treated as complementary approaches
rather than competing ones. Indeed, it is our experience that the logistics algorithms
that are most successfully applied in practice are those with good performance in
at least two of the above measures.

We should also point out that characterizing the worst-case or average-case
performance of a heuristic may be technically very difficult. Therefore, a heuristic
may perform very well on average, or in the worst-case, but proving this fact may
be beyond our current abilities.

1.6 Additional Topics

We emphasize that due to space and time considerations we have been obliged
to omit some important and interesting results. These include results regarding
yield management, machine scheduling, random yield in production, dynamic and
stochastic fleet management models, etc. We refer the reader to Graves et al. (1993)
and Ball et al. (1995), for excellent surveys of these and other related topics.

Also, while there exist many elegant and strong results concerning approaches
to certain logistics problems, there are still many areas where little, if anything, is
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known. This is, of course, partly due to the fact that as the models become more
complex and integrate more and more issues that arise in practice, their analysis
becomes more difficult.

Finally, we remark that it is our firmly held belief that logistics management is
one of the areas in which a rigorous mathematical analysis yields not only elegant
results but, even more importantly, has had and will continue to have, a significant
impact on the practice of logistics.

1.7 Book Overview

This book is meant as a survey of a variety of results covering most of the logistics
area. The reader should have a basic understanding of complexity theory, linear
programming, probability theory and graph theory. Of course, the book can be
read easily without delving into the details of each proof.

The book is organized as follows. In Part I, we concentrate on performance
analysis techniques. Specifically, in Chapter 2 we discuss some of the basic tools
required to perform worst-case analysis, while in Chapter 3 we cover average-case
analysis. Finally, in Chapter 4 we investigate the performance of mathematical
programming based approaches.

In Part II, we consider Vehicle Routing Problems, paying particular attention to
heuristics with good worst-case or average-case performance. Chapter 5 contains
an analysis of the single-depot Capacitated Vehicle Routing Problem when all
customers have equal demands, while Chapter 6 analyzes the case of customers
with unequal demands. In Chapter 7 we perform an average-case analysis of the
Vehicle Routing Problem with Time Window constraints. We also investigate set-
partitioning based approaches and column generation techniques in Chapter 8.

Part III concentrates on production and inventory problems. We start with lot siz-
ing in two different deterministic environments, one with constant demand (Chap-
ter 9) and the second with varying demand (Chapter 10). Chapter 11 presents
results for stochastic inventory models.

Part IV deals with hierarchical problems in logistics networks and, in particu-
lar, with the integration of the different levels of decisions described in Section
1.1. Chapter 12 analyzes distribution network configuration and facility location,
also referred to as site selection, problems. Chapter 13 analyzes problems in the
coordination of inventory control and distribution policies.

In Part V, we look at case studies concerning the design of decision support tools
for large scale logistics applications. In Chapter 14 we report on the development
of a decision support tool for school bus routing and scheduling in the City of New
York, while in Chapter 15 we look at a network configuration case.

Finally, Figure 1.2 illustrates the precedence relationship between chapters. For
example, an arrow between the numbers 2 and 5 indicates that it is recommended
that Chapter 2 be read before Chapter 5.
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2
Worst-Case Analysis

2.1 Introduction

Since most complicated logistics problems, for example, the Bin-Packing Problem
and Traveling Salesman Problems, are NP-Hard it is unlikely that polynomial time
algorithms will be developed for their optimal solutions. Consequently, a great deal
of work has been devoted to the development and analyses of heuristics. In this
chapter we demonstrate one important tool, referred to as worst-case performance
analysis, which establishes the maximum deviation from optimality that can occur
for a given heuristic algorithm. We will characterize the worst-case performance
of a variety of algorithms for the Bin-Packing Problem and the Traveling Sales-
man Problem. The results obtained here serve as important building blocks in the
analysis of algorithms for vehicle routing problems.

Worst-case effectiveness is essentially measured in two different ways. Take a
generic problem, and let I be a particular instance. Let Z∗(I ) be the total cost of
the optimal solution, for instance I . Let ZH(I ) be the total cost of the solution
provided by the heuristic H on instance I . Then, the absolute performance ratio
of heuristic H is defined as:

RH .� inf
{
r ≥ 1 | Z

H(I )

Z∗(I )
≤ r, for all I

}
.

This measure, of course, is specific to the particular problem. The absolute per-
formance ratio is often achieved for very small problem instances. It is therefore
desirable to have a measure that takes into account problems of large size only.
This measure is the asymptotic performance ratio. For a heuristic H, this ratio is
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defined as:

RH
∞

.� inf
{
r ≥ 1 | ∃n such that

ZH(I )

Z∗(I )
≤ r, for all I with Z∗(I ) ≥ n

}
.

This measure sometimes gives a more accurate picture of a heuristic’s performance.
Note that RH

∞ ≤ RH.
In general, it is important to also show that no better worst-case bound (for a

given heuristic) is possible. This is usually achieved by providing an example, or
family of examples, where the bound is tight, or arbitrarily close to tight.

In this chapter, we will analyze several heuristics for two difficult problems,
the Bin-Packing Problem and the Traveling Salesman Problem, along with their
worst-case performance bounds.

2.2 The Bin-Packing Problem

The Bin-Packing Problem (BPP) can be stated as follows: given a list of n real
numbers L � (w1, w2, . . . , wn), where we call wi ∈ (0, 1] the size of item i, the
problem is to assign each item to a bin such that the sum of the item sizes in a bin
does not exceed 1, while minimizing the number of bins used. For simplicity, we
also use L as a set, but this should cause no confusion. In this case, we write i ∈ L
to mean wi ∈ L.

Many heuristics have been developed for this problem since the early 1970s.
Some of the more popular ones are First-Fit (FF), Best-Fit (BF), First-Fit De-
creasing (FFD) and Best-Fit Decreasing (BFD) analyzed by Johnson et al. (1974).
First-Fit and Best-Fit assign items to bins according to the order they appear in the
list without using any knowledge of subsequent items in the list; these are online
algorithms. First Fit can be described as follows: place item 1 in bin 1. Suppose we
are packing item j ; place item j in the lowest indexed bin whose current content
does not exceed 1−wj . The BF heuristic is similar to FF except that it places item
j in the bin whose current content is the largest but does not exceed 1 − wj . In
contrast to these heuristics, FFD first sorts the items in non increasing order of their
size and then performs FF. Similarly, BFD first sorts the items in non-increasing
order of their size and then performs BF. These are called offline algorithms.

Let bH(L) be the number of bins produced by a heuristic H on list L. Similarly,
let b∗(L) be the minimum number of bins required to pack the items in list L; that
is, b∗(L) is the optimal solution to the bin-packing problem defined on list L.

The best asymptotic performance bounds for the FF and BF heuristics are given
in Garey et al. (1976) where they show that

bFF(L) ≤
⌈17

10
b∗(L)

⌉
,

and

bBF(L) ≤
⌈17

10
b∗(L)

⌉
.
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Here �x� is defined as the smallest integer greater than or equal to x.
The best asymptotic performance bounds for FFD and BFD have been obtained

by Baker (1985) who shows that

bFFD(L) ≤ 11

9
b∗(L)+ 3,

and

bBFD(L) ≤ 11

9
b∗(L)+ 3.

Johnson et al. (1974) provide instances with arbitrarily large values of b∗(L) such
that the ratios bFF(L)

b∗(L) and bBF(L)
b∗(L) approach 17

10 and instances where bFFD(L)
b∗(L) and bBFD(L)

b∗(L)

approach 11
9 . Thus, the maximum deviation from optimality for all lists that are

sufficiently “large” is no more than 70% times the minimal number of bins in the
case of FF and BF, and 22.2% in the case of FFD and BFD.

We now show that by using simple arguments one can characterize the absolute
performance ratio for each of the four heuristics. We start however by demon-
strating that in general we cannot expect to find a polynomial time heuristic with
absolute performance ratio less than 3

2 .

Lemma 2.2.1 Suppose there exists a polynomial time heuristic H for the BPP with
RH < 3/2; then P � NP .

Proof. We show that if such a heuristic exists, then we can solve the NP-Complete
2-Partition Problem in polynomial time. This problem is defined as follows: given
a set A � {a1, a2, . . . , an}, does there exist an A1 ⊂ A such that

∑
ai∈A1

ai �∑
ai∈A\A1

ai?
For a given instance A of 2-Partition we construct an instance L of the bin-

packing problem with items sizes ai and bins of capacity 1
2

∑
A ai . Observe that

if there exists an A1 such that
∑

A1
ai �

∑
A\A1

ai � 1
2

∑
A ai , then the heuristic

H must find a solution such that bH(L) � 2. On the other hand, if there is no such
A1 in the 2-Partition Problem, then the corresponding Bin-Packing Problem has
no solution with less than 3 bins and hence bH(L) ≥ 3.

Consequently, to solve the 2-Partition Problem, apply the heuristic H to the
corresponding bin-packing problem. If bH(L) ≥ 3, there is no subset A1 with the
desired property. Otherwise there is one. Since 2-Partition is NP-Complete, this
implies P � NP .

Let XF be either FF or BF and let XFD be either FFD or BFD. In this section
we prove the following result due to Simchi-Levi (1994).

Theorem 2.2.2 For all lists L,

bXF(L)

b∗(L)
≤ 7

4
,

and
bXFD(L)

b∗(L)
≤ 3

2
.
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In view of Lemma 2.2.1 it is clear that FFD and BFD have the best possible
absolute performance ratios for the Bin-Packing Problem, among all polynomial
time heuristics. As Garey and Johnson (1979, p. 128) point out, it is easy to con-
struct examples in which an optimal solution uses 2 bins while FFD or BFD uses 3
bins. Similarly, Johnson et al. give examples in which an optimal solution uses 10
bins while FF and BF use 17 bins. Thus, the absolute performance ratio for FFD
and BFD is exactly 3

2 while it is at least 1.7 and no more than 7
4 for FF and BF.

We now define the following terms which will be used throughout this section.
An item is called large if its size is (strictly) greater than 0.5; otherwise it is called
small. Define a bin to be of type I if it has only small items, and of type II if it is
not a type I bin; that is, it has at least one large item in it. A bin is called feasible if
the sum of the item sizes in the bin does not exceed 1. An item is said to fit in a bin
if the bin resulting from the insertion of this item is a feasible bin. In addition, a
bin is said to be opened when an item is placed in a bin that was previously empty.

2.2.1 First-Fit and Best-Fit

The proof of the worst-case bounds for FF and BF, the first part of Theorem 2.2.2,
is based on the following observation. Recall XF=FF or BF.

Lemma 2.2.3 Consider the j th bin opened by XF (j ≥ 2). Any item that was
assigned to it before it was more than half full does not fit in any bin opened by
XF prior to bin j .

Proof. The property is clearly true for FF, and in fact holds for any item assigned
to the j th bin, j ≥ 2, not necessarily to items assigned to it before it was more
than half full. To prove the property for BF, suppose by contradiction, item i was
assigned to the j th bin before it was more than half full, and this item fits in one
of the previously opened bins, say the kth bin. Clearly, in that case, i cannot be the
first item assigned to the j th bin since BF would not have opened a new bin if i fits
in one of the previously opened bins. Let the levels of bins k and j , just before the
time item i was packed by BF, be αk and αj and let item h be the first item in bin j .
Hence wh ≤ αj ≤ 1

2 by the hypothesis. Since BF assigns an item to the bin where
it fits with the largest content, and item i would have fit in bin k, we have αj > αk .
Thus, αk < 1

2 meaning that item H would have fit in bin k, a contradiction.
We use Lemma 2.2.3 to construct a lower bound on the minimum number of

bins. For this purpose, we introduce the following procedure. For a given integer v,
2 ≤ v ≤ bXF(L), select v bins from those produced by XF. Index the v bins in the
order they are opened starting with 1 and ending with v. Let Xj be the set of items
assigned by XF to the j th bin before it was more than half full, j � 1, 2, . . . , v.
Let Sj be the set of items assigned by XF to the j th bin, j � 1, 2, . . . , v. Observe
that Xj ⊆ Sj for all j � 1, 2, . . . , v.

Procedure LBBP (Lower Bound Bin-Packing)

Step 1: Let X′
i � Xi , i � 1, 2, . . . , v.
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Step 2: For i � 1 to v − 1 do
Let j � max{k : X′

k �� ∅}.
If j � i, stop.
Else, let u be the smallest item in X′

j .
Set Si ← Si ∪ {u} and X′

j ← X′
j\{u}.

In view of Lemma 2.2.3 it is clear that Procedure LBBP generates nonempty
subsets S1, S2, . . . , Sm, for some m ≤ v, such that

∑
i∈Sj wi > 1 for j ≤ m − 1

and possibly for j � m. This is true since by Lemma 2.2.3 item u (as defined in
the LBBP procedure), originally assigned to bin j before it was more than half
full, does not fit in any bin i with i < j . Then the following must hold.

Lemma 2.2.4 max
{
|⋃v

j�m+1 Xj |, m− 1
}
<

∑v
j�1

∑
i∈Sj wi.

Proof. Since bins 1, 2, . . . , m− 1 generated by Procedure LBBP are not feasible,
we have

∑v
j�1

∑
i∈Sj wi > m−1. Note that every item in

⋃v
j�m+1 Xj is moved by

Procedure LBBP to exactly one Sj , j � 1, 2, . . . , m−1 and possibly to Sm. Thus,
if Sm is feasible, that is, no (additional) item is assigned by Procedure LBBP to Sm,
then |⋃v

j�m+1 Xj | ≤ m − 1 <
∑v

j�1

∑
i∈Sj wi . On the other hand, if an item is

assigned by Procedure LBBP to Sm, then none of the subsets Sj , j � 1, 2, . . . , m,
are feasible and therefore m � |⋃v

j�m+1 Xj | <
∑v

j�1

∑
i∈Sj wi .

We are now ready to prove the first part of Theorem 2.2.2, that is, establish the
upper bound on the absolute performance ratio of the XF heuristic. Let c be the
number of large items in the list L. Without loss of generality, assume bXF(L) > c

since otherwise the solution produced by XF is optimal. So, bXF(L)− c > 0 is the
number of type I bins produced by XF. We consider the following two cases.

Case 1: c is even. In this case we partition the bins produced by XF into two sets.
The first set includes only type I bins while the second set includes the remaining
bins produced by XF, that is, all the type II bins. Index the bins in the first set in
the order they are opened, from 1 to bXF(L) − c. Let v � bXF(L) − c, and apply
Procedure LBBP to the set of type I bins, producing m bins out of which at least
m− 1 are infeasible. Then:

Lemma 2.2.5 If c is even,

max
{ c

2
+m, 2(bXF(L)−m)− 3c

2

}
≤ b∗(L).

Proof. Combining Lemma 2.2.4 with the fact that no two large items fit in the same
bin we have

∑
i∈L wi > m − 1 + c

2 . On the other hand, every bin in an optimal
solution is feasible and therefore

∑
i∈L wi ≤ b∗(L). Since c is even,m+ c

2 ≤ b∗(L).
Since we applied Procedure LBBP only to the type I bins produced by XF, each
one of these bins has at least two items except possibly one which may have only
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one item. Hence, 2(bXF(L)−m− c− 1)+ 1 ≤ |⋃v
j�m+1 Xj | and therefore, using

Lemma 2.2.4,

2(bXF(L)−m− c − 1)+ c

2
+ 1 <

∑
i∈L

wi ≤ b∗(L),

or
2(bXF(L)−m− c − 1)+ c

2
+ 2 ≤ b∗(L).

Rearranging the left-hand side gives the second lower bound.

Theorem 2.2.6 If c is even,

bXF(L) ≤ 7

4
b∗(L).

Proof. From Lemma 2.2.5 we have 2(bXF(L)−m)− 3c
2 ≤ b∗(L). Hence,

bXF(L) ≤ b∗(L)

2
+ 3c

4
+m

� b∗(L)

2
+ (m+ c

2
)+ c

4

≤ 7

4
b∗(L),

since m+ c
2 , b∗(L) and c are lower bounds.

Case 2: c is odd. In this case we partition the set of all bins generated by the XF
heuristic in a slightly different way. The first set of bins, called B1, comprise all
the type I bins except the last type I bin opened by XF. The second set is made up
of the remaining bins; that is, these are all the type II bins together with the type
I bin not included in B1. We now apply procedure LBBP to the bins in B1 (with
v � bXF(L) − c − 1), producing m bins out of which at least m − 1 bins are not
feasible.

Lemma 2.2.7 If c is odd,

max
{ c

2
+m+ 1

2
, 2(bXF(L)−m)− 3c

2
− 1

2

}
≤ b∗(L).

Proof. Take one of the type II bins and “match” it with the only type I bin not in
B1; the total weight of these two bins is more than 1. Thus, using Property 2.2, we
have c−1

2 + 1+ (m− 1) <
∑

i∈L wi ≤ b∗(L) which proves the first lower bound.
To prove the second lower bound, we use the fact that every bin in B1 has at least 2
items and therefore 2(bXF(L)−m− c− 1) ≤ |⋃v

j�m+1 Xj |. Using Property 2.2,
we get

2(bXF(L)−m− c − 1)+ c − 1

2
+ 1 <

∑
i∈L

wi ≤ b∗(L),
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or

2(bXF(L)−m− c − 1)+ c − 1

2
+ 2 ≤ b∗(L).

Rearranging the left-hand side gives the second lower bound.

Theorem 2.2.8 If c is odd,

bXF(L) ≤ 7

4
b∗(L)− 1

4
.

Proof. From Lemma 2.2.7 we have 2(bXF(L)−m)− 3c
2 − 1

2 ≤ b∗(L). Hence,

bXF(L) ≤ b∗(L)

2
+m+ 3c

4
+ 1

4

� b∗(L)

2
+

(
m+ c

2
+ 1

2

)
+ c

4
− 1

4

≤ 7

4
b∗(L)− 1

4
.

2.2.2 First-Fit Decreasing and Best-Fit Decreasing

The proof of the worst-case bounds for FFD and BFD is based on Lemma 2.2.3.
This lemma states that if a bin produced by these heuristics contains only items
of size at most 1

2 , then the first two items assigned to the bin cannot fit in any bin
opened prior to it.

Let XFD denote either FFD or BFD. Index the bins produced by XFD in the
order they are opened. We consider three cases. First, suppose bXFD(L) � 3p for
some integer p ≥ 1. Consider the bin with index 2p + 1. If this bin contains a
large item we are done, since in that case b∗(L) > 2p � 2

3b
XFD(L). Otherwise,

bins 2p + 1 through 3p must contain at least 2p − 1 small items, none of which
can fit in the first 2p bins. Hence, the total sum of the item sizes exceeds 2p − 1,
meaning that b∗(L) ≥ 2p � 2

3b
XFD(L).

Suppose bXFD(L) � 3p + 1. If bin 2p + 1 contains a large item we are done.
Otherwise, bins 2p + 1 through 3p + 1 contain at least 2p + 1 small items, none
of which can fit in the first 2p bins, implying that the total sum of the item sizes
exceeds 2p and hence b∗(L) ≥ 2p + 1 > 2

3b
XFD(L).

Similarly, suppose bXFD(L) � 3p + 2. If bin 2p + 2 contains a large item we
are done. Otherwise, bins 2p + 2 through 3p + 2 contain at least 2p + 1 small
items, none of which can fit in the first 2p + 1 bins, implying the sum of the item
sizes exceeds 2p + 1 and hence b∗(L) ≥ 2p + 2 > 2

3b
XFD(L).
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2.3 The Traveling Salesman Problem

Interesting worst-case results have been obtained for another combinatorial prob-
lem that plays an important role in the analysis of logistics systems: the Traveling
Salesman Problem (TSP). The problem can be defined as follows: LetG � (V,E)
be a complete undirected graph with vertices V , |V | � n, and edges E and let
dij be the length of edge (i, j ). (We use the term length to designate the “cost” of
using edge (i, j ). The most general formulation of the TSP allows for completely
arbitrary “lengths” and, in fact, in many applications the physical distance is irrel-
evant and the dij simply represents the cost of sequencing j immediately after i.)
The objective in the TSP is to find a tour that visits each vertex exactly once and
whose total length is as small as possible. The problem has been analyzed exten-
sively in the last three decades; see Lawler et al. (1985) for an excellent survey
and, in particular, the chapter written by Johnson and Papadimitriou (1985) which
includes some of the worst-case results presented here.

We shall examine a variety of heuristics for the TSP and show that, for an
important special case of this problem, heuristics with strong worst-case bounds
exist. We start however with a negative result, due to Sahni and Gonzalez (1976),
which states that in general finding a heuristic for the TSP with a constant worst-
case bound is as hard as solving any NP-Complete problem, no matter what the
bound.

To present the result, let I be an instance of the TSP. Let L∗(I ) be the length of
the optimal traveling salesman tour through V . Given a heuristic H, let LH(I ) be
the length of the tour generated by H.

Theorem 2.3.1 Suppose there exists a polynomial time heuristic H for the TSP
and a constant RH such that for all instances I

LH(I )

L∗(I )
≤ RH;

then P � NP .

Proof. The proof is in the same spirit as the proof of Lemma 2.2.1. Suppose
such a heuristic exists. We will use it to solve the NP-Complete Hamiltonian
Cycle Problem in polynomial time. The Hamiltonian Cycle Problem is defined as
follows. Given a graph G � (V,E), does there exist a simple cycle (a cycle that
does not visit a point more than once) in G that includes all of V ? To answer this
question we construct an instance I of the TSP and apply H to it; the length of the
tour generated by H will tell us whether G has a Hamiltonian cycle.

The instance I is defined on a complete graph whose set of vertices is V and
the length of each edge {i, j} is

dij �
{

1, if {i, j} ∈ E;

|V |RH, otherwise.
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We distinguish between two cases depending on whether G contains a Hamilto-
nian cycle. IfG does not contain a Hamiltonian cycle, then any traveling salesman
tour in I must contain at least one edge with length |V |RH and hence the length
of the tour generated by H is at least |V |RH + |V | − 1.

On the other hand, ifG has a Hamiltonian cycle, then I must have a tour of length
|V |. This is true since we can use the Hamiltonian cycle as a traveling salesman
tour for the instance I in which the vertices appear on the traveling salesman tour in
the same order they appear in the Hamiltonian cycle. Thus, ifG has a Hamiltonian
cycle, heuristic H applied to I must provide a tour of length no more than |V |RH.

Consequently, we have a method for solving the Hamiltonian Cycle Problem:
apply H to the TSP defined on the instance I . If LH(I ) ≤ |V |RH, then there exists
a Hamiltonian cycle in G. Otherwise, there is no such cycle in G. Finally, since H
is assumed to be polynomial, we conclude that P � NP .

The theorem thus implies that it is very unlikely that a polynomial time heuristic
for the TSP with a constant absolute worst-case bound exists. However, there is an
important version of the Traveling Salesman Problem that excludes the above neg-
ative result. This is when the distance matrix {dij } satisfies the triangle inequality
assumption.

Definition 2.3.2 A distance matrix satisfies the triangle inequality assumption if
for all i, j, k ∈ V we have dij ≤ dik + dkj .

In many logistics environments, the triangle inequality assumption is not a very
restrictive one. It merely states that traveling directly from point (vertex) i to point
(vertex) j is at most the cost of traveling from i to j through the point k.

In the next four sections we describe and analyze different heuristics developed
for the TSP. To simplify presentation in what follows, we writeL∗ instead ofL∗(I );
this should cause no confusion.

2.3.1 A Minimum Spanning Tree Based Heuristic

The following algorithm provides a simple example of how a fixed worst-case
bound is possible for the TSP when the distance matrix satisfies the triangle in-
equality assumption. In this case, the bound is 2; that is, the heuristic provides a
solution with total length at most 100% above the length of an optimal tour.

A spanning tree of a graph G � (V,E) is a connected subgraph with |V | − 1
edges spanning all of V. The cost (or weight) of a tree is the sum of the length
of the edges in the tree. A minimum spanning tree (MST) is a spanning tree with
minimum cost. It is well known and easy to show that a minimum spanning tree
can be found in polynomial time (see, for example, Papadimitriou and Steiglitz
(1982)). If W ∗ denotes the weight (cost) of the minimum spanning tree, then we
must have W ∗ ≤ L∗ since deleting any edge from the optimal tour results in a
spanning tree.

The minimum spanning tree can be used to find a feasible traveling salesman
tour in polynomial time. The idea is to perform a depth-first search (see Aho et
al. (1974)) over the minimum spanning tree and then to do simple improvements
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on this solution. Formally, this is done as follows (Johnson and Papadimitriou,
1985).

A Minimum Spanning Tree Based Heuristic

Step 1: Construct a minimum spanning tree and color its edges white, and all
other edges black.

Step 2: Let the current vertex (denoted v) be an arbitrary vertex.

Step 3: If one of the edges adjacent to v in the MST is white, color it black and
proceed to the vertex at the other end of this edge. Else (all edges from v are black),
go back along the edge by which the current vertex was originally reached.

Step 4: Let this vertex be v. Stop if v is the vertex you started with and all edges
of MST are black. Otherwise go to Step 3.

Observe that the above strategy produces a tour that starts and ends at one of
the vertices and visits all other vertices in the graph covering each arc twice. This
is not a very efficient tour since some vertices may be visited more than once.
To improve on this tour, we can modify the above strategy as follows: instead of
going back to a visited vertex, we can use a shortcut strategy in which we skip
this vertex, and go directly to the next unvisited vertex. The triangle inequality
assumption implies that the above modification will not increase the length of the
tour, and in fact may reduce it.

Let LMST be the length of the traveling salesman tour generated by the above
strategy. We clearly have

LMST ≤ 2W ∗ ≤ 2L∗,

where the first inequality follows since without shortcuts the length of the tour is
exactly 2W ∗. This proves that the worst case bound of the algorithm is at most 2.
It remains to verify that the worst case bound of this heuristic cannot be improved.
For this purpose consider Figure 2.1, the example constructed by Johnson and
Papadimitriou (1985). Here,W ∗ � n

3 + n
3 (1−ε)+2ε−1,LMST ≈ 2n

3 + 2n
3 (1−ε),

and L∗ � 2n
3 .

2.3.2 The Nearest Insertion Heuristic

Before describing this heuristic, consider the following intuitively appealing strat-
egy, called the Nearest Neighbor Heuristic. Given an instance I of the TSP, start
with an arbitrary vertex and find the vertex not yet visited that is closest to the
current vertex. Travel to this vertex. Repeat this until all vertices are visited; then
go back to the starting vertex.

Unfortunately, Rosenkrantz et al. (1977) show the existence of a family of in-
stances for the TSP with arbitrary n with the following property. The length of the
tour generated by the Nearest Neighbor Heuristic on each instance in the family is
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O(log n) times the length of the optimal tour. Thus, the Nearest Neighbor Heuristic
does not have a bounded worst-case performance.

This comes as no surprise since the algorithm obviously suffers from one major
weakness. This “greedy” strategy tends to begin well, inserting very short arcs into
the path, but ultimately it ends with arcs that are quite long. For instance, the last
edge added, the one connecting the last node to the starting node, may be very
long due to the fact that at no point does the heuristic consider the location of the
starting vertex and possible ending vertices.

One way to improve the performance of the Nearest Neighbor Heuristic is
presented in the following variant, called the Nearest Insertion (NI) Heuristic,
developed and analyzed by Rosenkrantz et al. Informally, the heuristic works as
follows: at each iteration of the heuristic a Hamiltonian cycle containing a subset
of the vertices is constructed. The heuristic then selects a new vertex not yet in
the cycle that is “closest” in a specific sense and inserts it between two adjacent
vertices in the cycle. The process stops when all vertices are in the cycle. Formally,
this is done as follows.

The Nearest Insertion Heuristic

Step 1: Choose an arbitrary node v and let the cycle C consist of only v.

Step 2: Find a node outside C closest to a node in C; call it k.

Step 3: Find an edge {i, j} in C such that dik + dkj − dij is minimal.

Step 4: Construct a new cycle C by replacing {i, j} with {i, k} and {k, j}.
Step 5: If the current cycle C contains all the vertices, stop. Otherwise, go to
Step 2.

LetLNI be the length of the solution obtained by the Nearest Insertion Heuristic.
Then:

Theorem 2.3.3 For all instances of the TSP satisfying the triangle inequality,

LNI ≤ 2L∗.

We start by proving the following interesting result. Let T be a spanning tree of
G and let W (T ) be the weight (cost) of that tree; that is, W (T ) is the sum of the
length of all edges in the tree T . Then:

Lemma 2.3.4 For every spanning tree T ,

LNI ≤ 2W (T ).

Proof. We prove the lemma by matching each vertex we insert during the exe-
cution of the algorithm with a single edge of the given tree T . To do that we
describe a procedure that will be carried out in parallel to the Nearest Insertion
Heuristic.
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The Dual Nearest Insertion Procedure

Step 1: Start with a family T of trees that, at first, consists of only the tree T .

Step 2: Given k (the vertex selected in Step 2 of NI), find the unique tree in T
containing k. Let this tree be Tk .

Step 3: Let ( be the unique vertex in Tk that is in the current cycle.

Step 4: Let h be the vertex adjacent to ( on the unique path from ( to k. Replace
Tk in T by two trees obtained from Tk by deleting edge {(, h}.
Step 5: If T contains n trees, stop. Otherwise, go to Step 2.

The Dual Nearest Insertion procedure is carried out in parallel to the Nearest
Insertion Heuristic in the sense that each time Step 1 is performed in the latter pro-
cedure, Step 1 is performed in the former procedure. Each time Step 2 is performed
in the latter, Step 2 is performed in the former, etc.

Observe that each time Step 4 of the Dual Nearest Insertion procedure is per-
formed, the set of trees T is updated so that each tree in T has exactly one vertex
from the current cycle and each vertex of the current cycle belongs to exactly one
tree. This is true since when edge {(, h} is deleted, two subtrees are constructed,
one containing the vertex ( and the other containing the vertex k. Edge {(, h} is
the one we associate with the insertion of vertex k.

Let m be the vertex in the current cycle to which vertex k (not in the cycle) was
closest. That is, m is the vertex such that dkm is the smallest among all duv where
u is in the cycle and v outside the cycle. Let m + 1 be one of the vertices on the
cycle adjacent to m. Finally, let edge {i, j} be the edge deleted from the current
cycle. Clearly, inserting k into the current cycle increases the length of the tour by

dik + dkj − dij ≤ dmk + dk,m+1 − dm,m+1 ≤ 2dmk,

where the left-hand inequality holds because of Step 3 of the Nearest Insertion
Heuristic and the right-hand inequality holds in view of the triangle inequality
assumption. This of course is true only when the cycle contains at least two vertices.
When it contains exactly one vertex, that is, when the Nearest Insertion algorithm
enters Step 2 for the first time, inserting k to the current cycle increases the length
of the tour by exactly 2dmk .

Since ( is in the current cycle and h is not, dmk ≤ d(h. Hence, the increase in
the cost of the current cycle is no more than 2d(h. Finally, since this relationship
holds for every edge of T and the corresponding inserted vertex, we have

LNI ≤ 2W (T ).

To finish the proof of Theorem 2.3.3, apply Theorem 2.3.4 with T ∗; thus,

W ∗ � W (T ∗) < L∗ ≤ LNI ≤ 2W (T ∗).

This completes the proof of the Theorem.
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Given a graph with an even number of vertices, a matching is a subset of edges
with the property that every vertex is the end-point of exactly one edge of the subset.
In the minimum weight matching problem the objective is to find a matching whose
total length of all its edges is minimum. This problem can be solved inO(n3) where
n is the number of vertices in the graph (see Lawler (1976)).

Lemma 2.3.5 tells us that the number of vertices with odd degree in the MST is
even. Thus, adding the edges of a matching defined on those odd degree vertices
clearly increases the degree of each of these vertices by one. The resulting graph
is Eulerian, by Lemma 2.3.8. Of course, to minimize the total cost, we would
like to select the edges of a minimum weight matching. Finally, the Eulerian tour
generated is transformed into a traveling salesman tour using shortcuts, similarly
to what was done in the minimum spanning tree based heuristic of Section 2.3.1.

Let LC be the length of the tour generated by Christofides’ Heuristic. We prove:

Theorem 2.3.9 For all instances of the TSP satisfying the triangle inequality, we
have

LC ≤ 3

2
L∗.

Proof. Recall that W ∗ .� W (T ∗) is the cost of the MST and let W (M∗) be the
weight of the minimum weight matching, that is, the sum of edge length of all
edges in the optimal matching. Because of the triangle inequality assumption,

LC ≤ W (T ∗)+W (M∗).

We already know that W (T ∗) ≤ L∗. It remains to show that W (M∗) ≤ 1
2L

∗.
For this purpose index the vertices of odd degree in the minimum spanning tree
i1, i2, . . . , i2k according to their appearance on an optimal traveling salesman
tour. Consider two feasible solutions for the minimum weight matching prob-
lem defined on these vertices. The first matching, denoted M1, consists of edges
{i1, i2}, {i3, i4}, . . . , {i2k−1, i2k}. The second matching, denoted M2, consists of
edges {i2, i3}, {i4, i5}, . . . , {i2k, i1}.

We clearly have W (M∗) ≤ 1
2 [W (M1) + W (M2)]. The triangle inequality as-

sumption tells us that W (M1) +W (M2) ≤ L∗; see Figure 2.3. Hence W (M∗) ≤
1
2L

∗ and consequently,

L∗ ≤ W (T ∗)+W (M∗) ≤ 3

2
L∗.

As in the two previous heuristics, this bound is tight. Consider the example
depicted in Figure 2.4 for which L∗ � n while LC � n− 1+ n−1

2 .

2.3.4 Local Search Heuristics

Some of the oldest and, by far, the most extensively used heuristics developed for
the traveling salesman problem are the so-called k-opt procedures (k ≥ 2). These
heuristics, part of the extensive class of local search procedures, can be described
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as follows. Given a traveling salesman tour through the set of vertices V , say the
sequence

{i1, i2 . . . , iu1 , iu2 , . . . , iv1 , iv2 , . . . , in},
an (−exchange is a procedure that replaces ( edges currently in the tour by ( new
edges so that the result is again a traveling salesman tour. For instance, a 2-exchange
procedure replaces edges {iu1 , iu2} and {iv1 , iv2} with {iu1 , iv1} and {iu2 , iv2} and
results in a new tour

{i1, i2 . . . , iu1 , iv1 , iv1−1, . . . , iu2 , iv2 , iv2+1, . . . , in}.
An improving (-exchange is an (-exchange that results in a tour whose total length
(cost) is smaller than the cost of the original tour.

A k-opt procedure starts from an arbitrary traveling salesman tour and, using
improving (-exchanges, for ( ≤ k, successively generates tours of smaller and
smaller length. The procedure terminates when no improving (-exchange is found
for all ( ≤ k. Let LOPT(k) be the length of the tour generated by a k-opt heuristic,
for k ≥ 2.

Recently, Chandra et al. (1995) obtained interesting results on the worst-case
performance of the k-opt heuristic. They show

Theorem 2.3.10 For all instances of the TSP satisfying the triangle inequality we
have

LOPT(2)

L∗
≤ 4

√
n.

In addition, there exists an infinitely large family of TSP instances satisfying the
triangle inequality assumption for which

LOPT(2)

L∗
≥ 1

4

√
n.

They also provide a lower bound on the worst-case performance of k-opt for all
k ≥ 3.

Theorem 2.3.11 There exists an infinitely large family of TSP instances satisfying
the triangle inequality assumption with

LOPT(k)

L∗
≥ 1

4
n

1
2k

for any k ≥ 2.

Thus, the above results indicate that the worst-case performances of k-opt heuris-
tics are quite poor. By contrast, many researchers and practitioners have reported
that k-opt heuristics can be highly effective; see, for instance, Golden and Stewart
(1985).

This raises a fundamental dilemma. Although worst-case analysis provides a
rigid guarantee on a heuristic’s performance, it suffers from being highly deter-
mined by certain pathological examples. Is there a more appropriate measure to
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assess the effectiveness of a particular heuristic, one that would assess the effec-
tiveness on an average or realistic example? We will try to address this question
in the next chapter.

2.4 Exercises

Exercise 2.1. Prove Lemma 2.3.8.

Exercise 2.2. The 2-TSP is the problem of designing two tours that together visit
each of the customers and use the same starting point. Show that any algorithm
for the TSP can solve this problem as well.

Exercise 2.3. (Papadimitriou and Steiglitz, 1982) Consider the n-city TSP in which
the triangle inequality assumption holds. Let c∗ > 0 be the length of an optimal
tour, and let c′ be the length of the second best tour. Prove: (c′ − c∗)/c∗ ≤ 2

n
.

Exercise 2.4. Prove that in every completely connected directed graph (a graph
in which between every pair of vertices there is a directed edge in one of the two
possible directions) there is a directed Hamiltonian Path.

Exercise 2.5. Let ZC be the length of the tour provided by Christofides’ Heuristic,
and letZ∗ be the length of the optimal tour. Construct an example withZC � 3

2Z
∗.

Exercise 2.6. Prove that for any graph G there exists an even number of nodes
with odd degree.

Exercise 2.7. Let G be a tree with n ≥ 2 nodes. Show that:

(a) There exist at least two nodes with degree one.

(b) The number of arcs is n− 1.

Exercise 2.8. Consider the n-city TSP defined with distances dij . Assume that
there exist a, b ∈ IRn such that for each i and j , dij � ai + bj . What is the length
of the optimal traveling salesman tour? Explain your solution.

Exercise 2.9. Consider the TSP with the triangle inequality assumption and two
prespecified nodes s and t . Assume that the traveling salesman tour has to in-
clude edge (s, t) (that is, the salesman has to travel from s directly to t). Modify
Christofides’ Heuristic for this model and show that the worst-case bound is 3

2 .

Exercise 2.10. Show that a minimum spanning tree T satisfies the following prop-
erty. When T is compared with any other spanning tree T ′, the kth shortest edge
of T is no longer than the kth shortest edge of T ′, for k � 1, 2, . . . , n− 1.
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Exercise 2.11. (Papadimitriou and Steiglitz, 1982) The Wandering Salesman Prob-
lem (WSP) is a Traveling Salesman Problem except that the salesman can start
wherever he or she wishes and does not have to return to the starting city after
visiting all cities.

(a) Describe a heuristic for the WSP with worst-case bound 3
2 .

(b) Show that the same bound can be obtained for the problem when one of the
end-points of the path is specified in advance.

Exercise 2.12. (Papadimitriou and Steiglitz, 1982) Which of the following prob-
lems remain essentially unchanged (complexity-wise) when they are transformed
from minimization to maximization problems? Why?

(a) Traveling Salesman Problem.

(b) Shortest Path from s to t .

(c) Minimum Weight Matching.

(d) Minimum Spanning Tree.

Exercise 2.13. Suppose there are n jobs that require processing on m machines.
Each job must be processed by machine 1, then by machine 2, . . . , and finally by
machinem. Each machine can work on at most one job at a time and once it begins
work on a job it must work on it until completion, without interruption. The amount
of time machine j must process job i is denoted pij ≥ 0 (for i � 1, 2, . . . , n and
j � 1, 2, . . . , m). Further suppose that once the processing of a job is completed on
machine j , its processing must begin immediately on machine j+1 (for j ≤ m−1).
This is a flow shop with no wait-in-process.

Show that the problem of sequencing the jobs so that the last job is completed
as early as possible can be formulated as an (n + 1)-city TSP. Specifically, show
how the dij values for the TSP can be expressed in terms of the pij values.

Exercise 2.14. Consider the Bin-Packing Problem with items of size wi , i �
1, 2, . . . , n, such that 0 < wi ≤ 1. The objective is find the minimum number
of unit size bins b∗ needed to pack all the items without violating the capacity
constraint.

(a) Show that
∑n

i�1 wi is a lower bound on b∗.

(b) Define a locally optimal solution to be one where no two bins can be feasibly
combined into one. Show that any locally optimal solution uses no more than
twice the minimum number of bins, that is, no more than 2b∗ bins.

(c) The Next-Fit Heuristic is the following. Start by packing the first item in bin
1. Then, each subsequent item is packed in the last opened bin if possible,
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or else a new bin is opened and it is placed there. Show that the Next-Fit
Heuristic produces a solution with at most 2b∗ bins.

Exercise 2.15. (Anily et al., 1994) Consider the Bin-Packing Problem and the
Next-Fit Increasing heuristic. In this strategy items are ordered in a nondecreasing
order according to their size. Start by packing the first item in bin 1. Then each
subsequent item is packed in the last opened bin if possible, or else a new bin
is opened and it is placed there. Show that the number of bins produced by this
strategy is no more than 7

4 times the optimal number of bins. For this purpose,
consider the following two steps.

(a) Consider the following procedure. First order the items in nondecreasing
order of their size. When packing bin i ≥ 1, follow the packing rule: if the
bin is currently feasible (i.e., total load is no more than 1), then assign the
next item to this bin; otherwise, close this bin, open bin i + 1 and put this
item in bin i + 1. Show that the number of bins generated by this procedure
is a lower bound on the minimal number of bins needed.

(b) Relate this lower bounding procedure to the number of bins produced by the
Next-Fit Increasing heuristic.

Exercise 2.16. Given a network G � (V,E), and edge length le for every e ∈ E,
assume that edge (u, v) has a variable length x. Find an expression for the length
of the shortest path from s to t as a function of x.

Exercise 2.17. A complete directed network G � (V,A) is a directed graph such
that for every pair of vertices u, v ∈ V , there are arcs u→ v and v→ u in A with
nonnegative arc lengths d(u, v) and d(v, u), respectively. The networkG � (V,A)
satisfies the triangle inequality if for all u, v,w ∈ V , d(u, v)+d(v,w) ≥ d(u,w).

A directed cycle is a sequence of vertices v1 → v2 → · · · → v( → v1 without
any repeated vertex other than the first and last ones. If the cycle contains all the
vertices in G, then it is said to be a directed Hamiltonian cycle. To keep notation
simple, let dij

.� d(vi, vj ).
A directed cycle containing exactly k vertices is called a k-cycle. The length of

a cycle is defined as the sum of arc lengths used in the cycle. A directed network
G � (V,A) with |V | ≥ k is said to be k-symmetric if for every k-cycle v1 →
v2 → · · · → vk → v1 in G,

d12 + d23 + · · · + dk−1,k + dk1 � d1k + dk,k−1 + · · · + d32 + d21.

In other words, a k-symmetric network is a directed network in which the length
of every k-cycle remains unchanged if its orientation is reversed.

(a) Show that the asymmetric Traveling Salesman Problem on a |V |-symmetric
network (satisfying the triangle inequality) can be solved via solving a cor-
responding symmetric Traveling Salesman Problem. In particular, show that
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any heuristic with fixed worst-case bound for the symmetric Traveling Sales-
man Problem can be used for the asymmetric Traveling Salesman Problem
on a |V |-symmetric network to obtain a result with the same worst-case
bound.

(b) Prove that any 3-symmetric network is k-symmetric for k � 4, 5, . . . , |V |.

Thus part (a) can be used if we have a 3-symmetric network. Argue that a 3-
symmetric network can be identified in polynomial time.
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3
Average-Case Analysis

3.1 Introduction

Worst-case performance analysis is one method of characterizing the effectiveness
of a heuristic. It provides a guarantee on the maximum relative difference between
the solution generated by the heuristic and the optimal solution for any possible
problem instance, even those that are not likely to appear in practice. Thus, a
heuristic that works well in practice may have a weak worst-case performance,
if, for example, it provides very bad solutions for one (or more) pathological
instance(s).

To overcome this important drawback, researchers have recently focused on
probabilistic analysis of algorithms with the objective of characterizing the aver-
age performance of a heuristic under specific assumptions on the distribution of
the problem data. As pointed out, for example, by Coffman and Lueker (1991),
probabilistic analysis is frequently quite difficult and even the analysis of simple
heuristics can often present a substantial challenge. Therefore, usually the analysis
is asymptotic. That is, the average performance of a heuristic can only be quantified
when the problem size is extremely large.

As we demonstrate in Parts II and IV, an asymptotic probabilistic analysis is
useful for several reasons:

1. It can foster new insights into which algorithmic approaches will be effective
for solving large size problems. That is, the analysis provides a framework
where one can analyze and compare the performance of heuristics on large
size problems.

2. For problems with fast rates of convergence, the analysis can sometimes
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explain the observed empirical behavior of heuristics for more reasonable
size problems.

3. The approximations derived from the analysis can be used in other models
and may lead to a better understanding of the tradeoffs in more complex
problems integrating vehicle routing with other issues important to the firm,
such as inventory control.

In this chapter we present some of the basic tools used in the analysis of the
average performance of heuristics. Again we use the Bin-Packing Problem and the
Traveling Salesman Problem as the “raw materials” on which to present them.

3.2 The Bin-Packing Problem

The Bin-Packing Problem provides a very well studied example for which to
demonstrate the benefits of a probabilistic analysis.

Without loss of generality, we scale the bin capacity q so that it is 1. Consider the
item sizes w1, w2, w3 . . . to be independently and identically distributed on (0, 1]
according to some general distribution /. In this section we demonstrate two
elegant and powerful techniques that can be used in the analysis of b∗n, the random
variable representing the optimal solution value on the itemsw1, w2, . . . , wn. The
first is the theory of subadditive processes and the second is the theory of martingale
inequalities.

Subadditive Processes

Let {an}, n ≥ 1, be a sequence of positive real numbers. We say that the sequence
is subadditive if for all n andmwe have an+am ≥ an+m. The following important
result was proved by Kingman (1976) and Steele (1990) whose proof we follow.

Theorem 3.2.1 If the sequence {an}, n ≥ 1 is subadditive, then there exists a
constant γ such that

lim
n→∞

an

n
� γ.

Proof. Let γ � limn→∞
an
n

. For a given ε select n such that an
n
≤ γ + ε. Since the

sequence {an} is subadditive we have

anm ≤ an + an(m−1).

Making a repeated use of this inequality we get anm ≤ man which implies

anm

nm
≤ γ + ε.
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For any k, 0 ≤ k ≤ n, define (
.� nm+ k. Using subadditivity again, we have

a( � anm+k ≤ anm+k−1 + a1

≤ anm + ka1

≤ anm + na1

where the second inequality is obtained by repeating the first one k times. Thus,

a(

(
� anm+k
nm+ k

≤ anm + na1

nm+ k
≤ anm

nm
+ a1

m
≤ γ + ε + a1

m
.

Taking the limit with respect to m we have

lim
(→∞

a(

(
≤ γ + ε + lim

m→∞
a1

m
� γ + ε.

The proof is therefore complete since ε was chosen arbitrarily.
It is clear that the optimal solution of the Bin-Packing Problem possesses the

subadditivity property; that is,

∀n,m, b∗n+m ≤ b∗n + b∗m.

The above analysis implies that there exists a constant γ such that the optimal
solution to the Bin-Packing Problem b∗n satisfies

lim
n→∞

b∗n
n
� γ.

In addition, γ is dependent only on the item size distribution /.

The Uniform Model

To illustrate the concepts just developed, consider the case where/ is the uniform
distribution on [0, 1]. In order to pack a set of n items drawn randomly from
this distribution, we use the following Sliced Interval Partitioning heuristic with
parameter r (SIP (r)). It works as follows. For any fixed positive integer r ≥ 1,
the set of items N is partitioned into the following 2r disjoint subsets, some of
which may be empty:

Nj �
{
k ∈ N

∣∣∣1

2

(
1− j + 1

r

)
< wk ≤ 1

2

(
1− j

r

)}
j � 1, 2, . . . , r − 1,

and

Nj �
{
k ∈ N

∣∣∣1

2

(
1+ j − 1

r

)
< wk ≤ 1

2

(
1+ j

r

)}
j � 1, 2, . . . , r − 1.

Also

N0 �
{
k ∈ N

∣∣∣1

2

(
1− 1

r

)
< wk ≤ 1

2

}
,
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and

Nr �
{
k ∈ N

∣∣∣1

2

(
1+ r − 1

r

)
< wk

}
.

The number of items in each Nj (respectively, Nj ) is denoted by nj (respectively,
nj ) for all possible values of j .

Note that for any j � 1, 2, . . . , r−1, one bin can hold an item fromNj together
with exactly one item fromNj . The SIP (r) heuristic generates pairs of items, one
item fromNj and one fromNj , for every j � 1, 2, . . . , r−1. The items inN0∪Nr

are put in individual bins; one bin is assigned to each of these items.
For any j � 1, 2, . . . , r−1, we arbitrarily match one item fromNj with exactly

one item from Nj ; one bin holds each such pair. If nj � nj , then all the items in
Nj∪Nj are matched. If, however, nj �� nj , then we can match exactly min{nj , nj }
pairs of items. The remaining |nj − nj | items in Nj ∪ Nj that have not yet been
matched are put one per bin. Thus, the total number of bins used is

n0 + nr +
r−1∑
j�1

max{nj , nj }.

The heuristic clearly generates a feasible solution to the Bin-Packing Problem.
Since

lim
n→∞

nj

n
� lim

n→∞
nj

n
� 1

2r
(a.s.) for all j � 1, 2, . . . , r,

we have

γ � lim
n→∞

b∗n
n
≤ lim

n→∞
1

n

[
n0 + nr +

r−1∑
j�1

max{nj , nj }
]
� 1

2
+ 1

2r
(a.s.).

Since this holds for any r > 1, we see that γ ≤ 1
2 . Since γ ≥ E(w) (see Exercise

3.4), then γ ≥ 1
2 and we conclude that γ � 1

2 for the uniform distribution on
[0, 1].

Using this idea, we can actually devise an asymptotically optimal heuristic for
instances where the item sizes are uniformly distributed on [0, 1]. To formally
define this property, let Z∗n be the cost of the optimal solution to the problem on
a problem of size n, and let ZH

n be the cost of the solution provided by a heuristic
H. Let the relative error of a heuristic H on a particular instance of n points be

eH
n �

ZH
n − Z∗n
Z∗n

.

Definition 3.2.2 Let 3 be a probability measure on the set of instances I. A
heuristic H is asymptotically optimal for 3 if almost surely

lim
n→∞ eH

n � 0,

where the problem data are generated randomly from 3.
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That is, under certain assumptions on the distribution of the data, H generates
solutions whose relative error tends to zero as n, the number of points, tends to
infinity. The above SIP (r) heuristic is not asymptotically optimal since for any
fixed r , the relative error converges to 1

r
.

A truly asymptotically optimal heuristic can easily be constructed. The following
heuristic is called MATCH. First, sort the items in nonincreasing order of the item
sizes. Then take the largest item, say item i, and match it with the largest item with
which it will fit. If no such item exists, then put item i in a bin alone. Otherwise,
put item i and the item it was matched with in a bin together. Now repeat this until
all items are packed. The proof of asymptotic optimality is given as an exercise
(Exercise 3.11).

An additional use for the bin-packing constant γ is as an approximation for
the number of bins needed. When n is large, the number of bins required to pack
n random items from / is very close to nγ . How close the random variable
representing the number of bins is to nγ is discussed next.

Martingale Inequalities

Consider the stochastic processes {Xn} and {Yn} with n ≥ 0. We say that the
stochastic process {Xn} is a martingale with respect to {Yn} if for every n ≥ 0 we
have

(i) E[Xn] < +∞, and

(ii) E[Xn+1|Y1, . . . , Yn] � Xn.

To get some insight into the definition of a martingale consider someone playing
a sequence of fair games. Let Xn � Yn be the amount of money the player has at
the end of the nth game. If {Xn} is a martingale with respect to {Yn}, then this says
that the expected amount of money the player will have at the end of the (n+ 1)st

game is equal to what the player had at the beginning of that game Xn, regardless
of the game’s history prior to state n. See Karlin and Taylor (1975) for details.

Consider now the random variable:

Dn
.� E[Xn+1|Y1, . . . , Yn]− E[Xn+1|Y1, . . . , Yn−1].

The sequence {Dn} is called a martingale difference sequence if E[Dn] � 0 for
every n ≥ 0. Azuma (1967) developed the following interesting inequality for
martingale difference sequences; see also Stout (1974) or Rhee and Talagrand
(1987).

Lemma 3.2.3 Let {Di}, i � 1, 2, . . . , n be a martingale difference sequence.
Then for every t > 0 we have

Pr
{∣∣∣ ∑

i≤n
Di

∣∣∣ > t
}
≤ 2 exp

{
− t2/

(
2

∑
i≤n

||Di ||2∞
)}
,

where ||Di ||∞ is a uniform upper bound on the Di’s.
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The Lemma can be used to establish upper bounds on the probable deviations
of both

• b∗n from its mean E[b∗n], and

• b∗n
n

from its asymptotic value γ .

For this purpose, define

Di �
{
E[b∗n|w1, . . . , wi]− E[b∗n|w1, . . . , wi−1], if i ≥ 2;

E[b∗n|w1]− E[b∗n|∅], if i � 1.

where E[b∗n|w1, . . . , wi] is the random variable that represents the expected opti-
mal solution value of the Bin-Packing Problem obtained by fixing the sizes of the
first i items and averaging on all other item sizes. Clearly,E[b∗n|w1, . . . , wn] � b∗n
while E[b∗n|∅] � E[b∗n]. Hence,

∑n
i�1 Di � b∗n − E[b∗n]. Furthermore, the se-

quence Di defines a martingale difference sequence with the property that Di ≤ 1
for every i ≥ 1.

Applying Lemma 3.2.3 we obtain the following upper bound.

Pr
{
|b∗n − E[b∗n]| > t

}
� Pr

{∣∣∣ n∑
i�1

Di

∣∣∣ > t
}
≤ 2 exp

{
− t2/(2n)

}
.

This bound can now be used to construct an upper bound on the likelihood that b∗
n

differs from its asymptotic value by more than some fixed amount.

Theorem 3.2.4 For every ε > 0 there exists an integer n0 such that for all n ≥ n0,

Pr
{∣∣∣b∗n
n
− γ

∣∣∣ > ε
}
< 2 exp

(
− nε2

2

)
.

Proof. Lemma 3.2.1 implies that limn→∞ E[ b
∗
n

n
] � γ and therefore for every ε > 0

and k ≥ 2 there exists n0 such that for all n ≥ n0 we have∣∣∣E[b∗n
n

]
− γ

∣∣∣ < ε

k
.

Consequently,

Pr
{∣∣∣b∗n
n
− γ

∣∣∣ > ε
}
≤ Pr

{∣∣∣b∗n
n
− E[b∗n]

n

∣∣∣+ ∣∣∣E[b∗n]

n
− γ

∣∣∣ > ε
}

≤ Pr
{∣∣∣b∗n
n
− E[b∗n]

n

∣∣∣+ ε

k
> ε

}
≤ Pr

{∣∣∣b∗n − E[b∗n]
∣∣∣ > nε(k − 1)

k

}

≤ 2 exp
{
− nε2(k − 1)2

2k2

}
.

Since this last inequality holds for arbitrary k ≥ 2, this completes the proof.
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These results demonstrate that b∗n is in fact very close to nγ , and this is true for
any distribution of the item sizes. Therefore, it suggests that nγ may serve as a
good approximation for b∗n in other, more complex, combinatorial problems.

3.3 The Traveling Salesman Problem

In this section we demonstrate an important use for the tools presented above. Our
objective is to show how probabilistic analysis can be used to construct effective
algorithms with certain attractive theoretical properties.

Let x1, x2, . . . , xn be a sequence of points in the Euclidean plane (IR2) and let
L∗n be the length of the optimal traveling salesman tour through these n points. We
start with a deterministic upper bound on L∗n developed by Few (1955). We follow
Jaillet’s (1985) presentation.

Theorem 3.3.1 Let a × b be the size of the smallest rectangle that contains
x1, x2 . . . , xn, then

L∗n ≤
√

2(n− 2)ab + 2(a + b).

Proof. For an integer m (to be determined), partition the rectangle of size a × b

(where a is the length and b is the height) into 2m equal width horizontal strips. This
creates 2m+1 horizontal lines and two vertical lines (counting the boundaries of the
rectangle). Label the horizontal lines 1, 2, . . . , 2m+ 1 moving downwards. Now
temporarily delete all horizontal lines with an even label. Connect each point xi ,
i � 1, 2 . . . , n, with two vertical segments, to the closest (odd-labeled) horizontal
line. A path through x1, . . . , xn can now be constructed by proceeding from, say
the upper left-hand corner of the a × b rectangle and moving from left to right
on the first horizontal line picking up all points that are connected (with the two
vertical segments) to this line. Then we proceed downwards and cover the third
horizontal line from right to left. This continues until we reach the end of the
2m+ 1st line. This path can be extended to a traveling salesman tour by returning
from the last point to the first by adding at most one vertical and one horizontal
line (we avoid diagonal movements for the sake of simplicity). Now repeat this
procedure with the even labeled horizontal lines and, in a similar manner, create
a path through all the customers. Extend this path to a traveling salesman tour by
adding one horizontal line and one vertical segment of length b − b

m
. See Figure

3.1.
Clearly, the sum of length of the two traveling salesman tours is

a(2m+ 1)+ nb

m
+ 2b + a + 2

(
b − b

m

)
.

Since L∗n is no larger than either of these two tours, we have

L∗n ≤ a + 2b +ma + (n− 2)
b

2m
.
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whose cost is no more than

L∗j +
3

2
Pj .

This tour can be converted into a traveling salesman tour, using shortcuts, and
therefore

Lj ≤ L∗j +
3

2
Pj .

Summing these up on j completes the proof.
We can now prove the following result due to Karp.

Theorem 3.3.4 Under the conditions of Theorem 3.3.2, with probability one,

lim
n→∞

L∗√
n
� lim

n→∞
LRP

√
n
.

Proof. Lemma 3.3.3 implies

L∗ ≤ LRP ≤ L∗ + 3

2
P RP.

Hence, we need to evaluate the quantity P RP. Note that the number of vertical

lines added in the construction of the subregions is t ≤
√

n
q
. Each of these lines is

counted twice in the quantity P RP.

In the second step of the RP heuristic we add h horizontal lines where h ≤
√

n
q
.

These horizontal lines are also counted twice in P RP. It follows that

P RP ≤ 2
√
n

q
(a + b)+ 2(a + b) ≤ 2

√
n

log n
(a + b)+ 2(a + b),

where the right-hand side inequality is justified by the definition of q.
Consequently,

LRP

√
n
≤ L∗√

n
+ 3

2

P RP

√
n

≤ L∗√
n
+ 3(a + b)√

log n
+ 3(a + b)√

n
.

Taking the limit as n goes to infinity proves the theorem.

3.4 Exercises

Exercise 3.1. A lower bound on β. Let X(n) � {x1, x2, . . . , xn} be a set of points
uniformly and independently distributed in the unit square. Let (j be the distance
from xj ∈ X(n) to the nearest point in X(n) \ xj . Let L(X(n)) be the length of the
optimal traveling salesman tour throughX(n). Clearly E(L(X(n))) ≥ nE((1). We
evaluate a lower bound on β in the following way.
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(a) Find Pr((1 ≥ ().

(b) Use (a) to calculate a lower bound on E((1) � ∫∞
0 Pr((1 ≥ ()d(.

(c) Use Stirling’s formula to approximate the bound when n is large.

(d) Show that 1
2 is a lower bound on β.

Exercise 3.2. An upper bound on β. (Karp and Steele, 1985) The strips method for
constructing a tour through n random points in the unit square dissects the square
into 1

7
horizontal strips of width 7, and then follows a zigzag path, visiting the

points in the first strip in left-to-right order, then the points in the second strip in
right-to-left order, etc., finally returning to the initial point from the final point of
the last strip. Prove that, when 7 is suitably chosen, the expected length of the
tour produced by the strips method is at most 1.16

√
n.

Exercise 3.3. Consider the TSP defined on a set of points N indexed 1, 2, . . . , n.
Let Z∗ be the length of the optimal tour. Consider now the following strategy:
starting with point 1, the salesman moves to the closest point in the setN \{1}, say
point 2. The salesman then constructs an optimal traveling salesman tour defined
on this set of n − 1 points (N \ {1}) and then returns to point 1 through point 2.
Show that the length of this tour is no larger then 3Z∗/2. Is the bound tight?

Exercise 3.4. Prove that the bin-packing constant γ satisfies 1 ≤ γ /E(w) ≤ 2
where E(w) is the expected item size.

Exercise 3.5. The Harmonic heuristic with parameter M , denoted H (M), is the
following. For each k � 1, 2, . . . ,M − 1, items of size 1

k+1 < wi ≤ 1
k

are packed
separately, at most k items per bin. That is, items of size greater than 1

2 are packed
one per bin, items of size 1

3 < wi ≤ 1
2 are packed two per bin, etc. Finally, items

of size wi ≤ 1
M

are packed separately from the rest using First-Fit.
Given n items drawn randomly from the uniform distribution on ( 1

6 , 0], what is
the asymptotic number of bins used by H (5)?

Exercise 3.6. Suggest a method to pack n items drawn randomly from the uniform
distribution on [ 1

3 , 1]. Can you prove that your method is asymptotically optimal?
What is the bin-packing constant (γ ) for this distribution?

Exercise 3.7. Suggest a method to pack n items drawn randomly from the uniform
distribution on [0, 5

12 ]. Can you prove that your method is asymptotically optimal?
What is the bin-packing constant (γ ) for this distribution?

Exercise 3.8. Suggest a method to pack n items drawn randomly from the uni-
form distribution on [ 1

40 ,
59

120 ]. Can you prove that your method is asymptotically
optimal? What is the bin-packing constant (γ ) for this distribution?
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Exercise 3.9. (Dreyfus and Law, 1977) The following is a dynamic programming
procedure to solve the TSP. Let city 1 be an arbitrary city. Define the following
function.

fi(j, S) � the length of the shortest path from city 1 to

city j visiting cities in the set S, where |S| � i.

Determine the recursive formula and solve the following instance.

The distances between cities.

dij 1 2 3 4 5
1 0 3 1 5 4
2 1 0 5 4 3
3 5 4 0 2 1
4 3 1 3 0 3
5 5 2 4 1 0

Exercise 3.10. What is the complexity of the dynamic program developed in the
previous exercise?

Exercise 3.11. (Coffman and Leuker, 1991) Consider flipping a fair coin n times
in succession. LetXn represent the random variable denoting the maximum excess
of the number of heads over tails at any point in the sequence of n flips. It is known
that E(Xn) is 9(

√
n). From this, argue that

E[ZMATCH
n ] � n

2
+9(

√
n).

Exercise 3.12. Assume n cities are uniformly distributed in the unit disc. Consider
the following heuristic for the n-city TSP. Let di be the distance from city i to the
depot. Order the points so that d1 ≤ d2 ≤ · · · ≤ dn. For each i � 1, 2, . . . , n,
draw a circle of radius di centered at the depot; call this circle i. Starting at the
depot travel directly to city 1. From city 1 travel to circle 2 in a direction along the
ray through city 1 and the depot. When circle 2 is reached, follow circle 2 in the
direction (clockwise or counterclockwise) that results in a shorter route to city 2.
Repeat this same step until city n is reached; then return to the depot. Let ZH

n be
the length of this traveling salesman tour. What is the asymptotic rate of growth
of ZH

n ? Is this heuristic asymptotically optimal?



4
Mathematical Programming Based
Bounds

4.1 Introduction

An important method of assessing the effectiveness of any heuristic is to compare
it to the value of a lower bound on the cost of an optimal solution. In many cases
this is not an easy task; constructing strong lower bounds on the optimal solution
may be as difficult as solving the problem. An attractive approach for generating a
lower bound on the optimal solution to an NP-Complete problem is the following
mathematical programming approach. First, formulate the problem as an integer
program; then relax the integrality constraint and solve the resulting linear program.

What problems do we encounter when we try to use this approach? One difficulty
is deciding on a integer programming formulation. There are myriad possible
formulations from which to choose. Another difficulty may be that in order to
formulate the problem as an integer program, a large (sometimes exponential)
number of variables are required. That is, the resulting linear program may be very
large, so that it is not possible to use standard linear programming solvers. The
third problem is that it is not clear how tight the lower bound provided by the linear
relaxation will be. This depends on the problem and the formulation.

In the sections below we demonstrate how a general class of formulations can
provide tight lower bounds on the original integer program. In later chapters we
show that these and similar linear programs can be solved effectively and imple-
mented in algorithms that solve logistics problems to optimality or near optimality.
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4.2 An Asymptotically Tight Linear Program

Again, consider the Bin-Packing Problem. There are many ways to formulate the
problem as an integer program. The one we use here is based on formulating it as
a Set-Partitioning Problem. The idea is as follows. Let F be the collection of all
sets of items that can be feasibly packed into one bin; that is,

F
.� {S ⊆ N :

∑
i∈S

wi ≤ 1}.

For any i ∈ N and S ∈ F , let

αiS �
{

1, if i ∈ S,

0, otherwise.

Let

yS �
{

1, if the set of items S are placed in a single bin,

0, otherwise.

Then the set-partitioning formulation of the Bin-Packing Problem is the following
integer program.

Problem P : Min
∑
S∈F

yS

s.t. ∑
S∈F

αiSyS � 1, ∀i ∈ N (4.1)

yS ∈ {0, 1}, ∀S ∈ F.
In this section we prove that the relative difference between the optimal solution

of the linear relaxation of problem P and the optimal solution of problem P (the
integer solution) tends to zero as |N | � n, the number of items, increases. First
we need the following definition.

Definition 4.2.1 A function φ is Lipschitz continuous of order q on a set A ⊆ IR

if there exists a constant K such that

|φ(x)− φ(y)| ≤ K|x − y|q, ∀x, y ∈ A.
Our first result of this section is the following.

Theorem 4.2.2 Let the item sizes be independently and identically distributed
according to a distribution / which is Lipschitz continuous of order q ≥ 1 on
[0, 1]. Let bLP

n be the value of the optimal solution to the linear relaxation of P,
and let b∗n be the value of the optimal integer solution to P ; that is, the value of
the optimal solution to the Bin-Packing Problem. Then, with probability one,

lim
n→∞

1

n
bLP
n � lim

n→∞
1

n
b∗n.
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To prove the theorem we consider a related model. Consider a discretized Bin-
Packing Problem in which there are a finite number W of item sizes. Each dif-
ferent size defines an item type. Let ni be the number of items of type i, for
i � 1, 2, . . . ,W , and let n � ∑W

i�1 ni be the total number of items. Clearly,
this discretized Bin-Packing Problem can be solved by formulating it as the set-
partitioning problem P . To obtain some intuition about the linear relaxation of P ,
we first introduce another formulation closely related to P .

Let a bin assignment be a vector (a1, a2, . . . , aW ), where ai ≥ 0 are integers,
and such that a single bin can contain a1 items of type 1, along with a2 items of type
2, . . . , along with aW items of size W , without violating the capacity constraint.
Index all the possible bin assignments 1, 2, . . . , R, and note that R is independent
of n. The Bin-Packing Problem can be formulated as follows. Let

Air � number of items of type i in bin assignment r,

for each i � 1, 2, . . . ,W and r � 1, 2, . . . , R. Let

yr � number of times bin assignment r is used in the optimal solution.

The new formulation of the discretized Bin-Packing Problem is:

Problem PD : Min
R∑
r�1

yr

s.t.
R∑
r�1

yrAir ≥ ni, ∀i � 1, 2, . . . ,W,

yr ≥ 0 and integer, ∀r � 1, 2, . . . , R.

Let b∗D be the value of the optimal solution to Problem PD and let bLP
D be the

optimal solution to the linear relaxation of Problem PD . Clearly, Problem P and
Problem PD have the same optimal solution values; that is, b∗ � b∗D . On the other
hand, bLP is not necessarily equal to bLP

D . However, it is easy to see that any feasible
solution to the linear relaxation of Problem P can be used to construct a feasible
solution to the linear relaxation of Problem PD and therefore,

bLP ≥ bLP
D . (4.2)

The following is the crucial lemma needed to prove Theorem 4.2.2.

Lemma 4.2.3
bLP ≤ b∗ ≤ bLP

D +W ≤ bLP +W.

Proof. The left-most inequality is trivial while the right-most inequality is due to
equation (4.2). To prove the central inequality note that in Problem PD there are
W constraints, one for each item type. Let yr , for r � 1, 2, . . . , R, be an optimal
solution to the linear relaxation of Problem PD and observe that there exists such
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an optimal solution with at most W positive variables; one for each constraint. We
construct a feasible solution to Problem PD by rounding the linear solution up;
that is, for each r � 1, 2, . . . , R with yr > 0 we make yr � �yr� and for each
r � 1, 2, . . . , R with yr � 0 we make yr � 0. Hence, the increase in the objective
function is no more than W .

Observe that the upper bound on b∗ obtained in Lemma 4.2.3 consists of two
terms. The first, bLP, is a lower bound on b∗, which clearly grows with the number
of items n. The second term (W ) is independent of n. Therefore, the upper bound
on b∗ of Lemma 4.2.3 is dominated by bLP and consequently we see that for large
n, b∗ ≈ bLP, exactly what is implied by Theorem 4.2.2.

We can now use the intuition developed in the above analysis of the discrete
Bin-Packing Problem to prove Theorem 4.2.2.

Proof. It is clear that bLP ≤ b∗ and therefore limn→∞ bLP/n ≤ limn→∞ b∗/n.
To prove the upper bound, partition the interval (0, 1] into k ≥ 2 subintervals of
equal length. Let Nj be the set of items whose size w satisfies j−1

k
< w ≤ j

k
and

let |Nj | � nj , j � 1, 2, . . . , k. We construct a new Bin-Packing Problem where
item sizes take only the values j

k
, j � 1, 2, . . . , k and where the number of items

of size j

k
is min{nj , nj+1}, j � 1, 2, . . . , k − 1. We refer to this instance of the

Bin-Packing Problem as the reduced instance. For this reduced instance, define
b∗, bLP and bLP

D to be the obvious quantities.
It is easy to see that we can always construct a feasible solution to the original

Bin-Packing Problem by solving the Bin-Packing Problem defined on the reduced
instance and then assigning each of the remaining items to a single bin. This results
in:

b∗ ≤ b∗ +
k−1∑
j�1

|nj − nj+1|

≤ bLP
D + k +

k−1∑
j�1

|nj − nj+1| (using Lemma 4.2.3)

≤ bLP + k +
k−1∑
j�1

|nj − nj+1|.

We now argue that bLP ≤ bLP. This must be true since every item in the reduced
instance can be associated with a unique item in the original instance whose size
is at least as large. Thus, every feasible solution to the linear relaxation of the
set-partitioning problem defined on the original instance is feasible for the same
problem on the reduced instance. Hence,

b∗ ≤ bLP + k +
k−1∑
j�1

|nj − nj+1|.

The Strong Law of Large Numbers and the Mean Value Theorem imply that for
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a given j � 1, . . . , k − 1, there exists sj such that

lim
n→∞

nj

n
� 1

k
φ(sj ),

where φ is the density of item sizes. Hence,

lim
n→∞

1

n
|nj − nj+1| � 1

k
|φ(sj )− φ(sj+1)|

≤ 1

k
K(sj+1 − sj )q (by Lipschitz continuity)

≤ 2

kq+1
K

(
since sj+1 − sj ≤ 2

k

)
≤ 2

k2
K (since q ≥ 1).

Consequently,

lim
n→∞

b∗

n
≤ lim

n→∞
bLP

n
+ 2K(k − 1)

k2
.

Since this holds for arbitrary k, this completes the proof.
In fact, it appears that the linear relaxation of the set-partitioning formulation

may be extremely close to the optimal solution in the case of the Bin-Packing
Problem. Recently Chan et al. (1995) show that the worst-case effectiveness of the
set-partitioning lower bound (the linear relaxation), that is, the maximum ratio of
the optimal integer solution (b∗) to the optimal linear relaxation bLP, is 4

3 . They
also provide an example achieving this bound. That is, for any number of items and
any set of item weights, the linear program is at least 75% of the optimal solution.

4.3 Lagrangian Relaxation

In 1971, Held and Karp applied a mathematical technique known as Lagrangian
relaxation to generate a lower bound on a general integer (linear) program. Our
discussion of the method follows the elegant presentation of Fisher (1981). We
start with the following integer program.

Problem P : Z � Min cx

s.t.

Ax � b, (4.3)

Dx ≤ e, (4.4)

x ≥ 0 and integer,

where x is an n-vector, b is an m-vector, e is a k-vector, A is an m× n matrix and
D is a k× n matrix. Let the optimal solution to the linear relaxation of Problem P
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be ZLP. The Lagrangian relaxation of constraints (4.3) with multipliers u ∈ IRm

is:

Problem LRu : ZD(u) � Min cx + u(Ax − b)

s.t.

Dx ≤ e, (4.5)

x ≥ 0 and integer.

The following is a simple observation.

Lemma 4.3.1 For all u ∈ IRm, ZD(u) ≤ Z.

Proof. Let x be any feasible solution to Problem P . Clearly, x is also feasible for
LRu and since ZD(u) is its optimal solution value, we get

ZD(u) ≤ cx + u(Ax − b) � cx.

Consequently, ZD(u) ≤ Z.

Remark: If the constraintsAx � b in Problem P are replaced with the constraints
Ax ≤ b, then Lemma 4.3.1 holds for u ∈ IRm

+ .
Since ZD(u) ≤ Z holds for all u, we are interested in the vector u that provides

the largest possible lower bound. This is achieved by solving Problem D, called
the Lagrangian dual, defined as follows.

Problem D : ZD � maxuZD(u).

Problem D has a number of important and interesting properties.

Lemma 4.3.2 The function ZD(u) is a piecewise linear concave function of u.

This implies that ZD(u) attains its maximum at a nondifferentiable point. This
maximal point can be found using a technique called subgradient optimization
which can be described as follows: given an initial vector u0 the method generates
a sequence of vectors {uk} defined by

uk+1 � uk + tk(Ax
k − b), (4.6)

where xk is an optimal solution to Problem LRuk and tk is a positive scalar called
the step size. Polyak (1967) shows that if the step sizes t1, t2, . . . , are chosen such
that limk→∞ tk � 0 and

∑
k≥0 tk is unbounded, then ZD(uk) converges to ZD.

The step size commonly used in practice is

tk � λk(UB − ZD(uk))∑n
i�1(aixk − bi)2

,

where UB is an upper bound on the optimal integer solution value (found using a
heuristic), aixk−bi is the difference between the left-hand side and the right-hand
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side of the i th constraint in Axk ≤ b, and λk is a scalar satisfying 0 < λk ≤ 2.
Usually, one starts with λ0 � 2 and cuts it in half every timeZD(u) fails to increase
after a number of iterations.

It is now interesting to compare the Lagrangian relaxation lower bound (ZD) to
the lower bound achieved by solving the linear relaxation of the set-partitioning
formulation (ZLP).

Theorem 4.3.3
ZLP ≤ ZD.

Proof.

ZD � max
u

{
min
x
cx + u(Ax − b)

∣∣∣Dx ≤ e, x ≥ 0 and integer
}

≥ max
u

{
min
x
cx + u(Ax − b)

∣∣∣Dx ≤ e, x ≥ 0
}

� max
u

max
v

{
ve − ub

∣∣∣vD ≤ c + uA, v ≤ 0
}

(by strong duality)

� max
u,v

{
ve − ub

∣∣∣vD ≤ c + uA, v ≤ 0
}

� min
y

{
cy

∣∣∣Ay � b,Dy ≤ e, y ≥ 0
}

(by strong duality)

� ZLP.

We say a mathematical program P possesses the integrality property if the
solution to the linear relaxation ofP always provides an integer solution. Inspection
of the above proof reveals the following corollary.

Corollary 4.3.4 If Problem LRu possesses the integrality property, then ZD �
ZLP.

4.4 Lagrangian Relaxation and the Traveling Salesman
Problem

Held and Karp (1970, 1971) developed the Lagrangian relaxation technique in
the context of the Traveling Salesman Problem. They show some interesting rela-
tionships between this method and a graph-theoretic problem called the minimum
weight 1-tree problem.

4.4.1 The 1-Tree Lower Bound

We start by defining a 1-tree. For a given choice of vertex, say vertex 1, a 1-tree is
a tree having vertex set {2, 3, . . . , n} together with two distinct edges connected to
vertex 1. Therefore, a 1-tree is a graph with exactly one cycle. Define the weight
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of a 1-tree to be the sum of the costs of all its edges. In the minimum weight 1-tree
problem the objective is to find a 1-tree of minimum weight. Such a 1-tree can be
constructed by finding a minimum spanning tree on the entire network excluding
vertex 1 and its corresponding edges, and by adding to the minimum spanning tree
the two edges incident to vertex 1 of minimum cost.

We observe that any traveling salesman tour is a 1-tree tour in which each vertex
has a degree 2. Moreover, if a minimum weight 1-tree is a tour, then it is an optimal
traveling salesman tour. Thus, the minimum weight 1-tree provides a lower bound
on the length of the optimal traveling salesman tour.

Unfortunately, this bound can be quite weak. However, there are ways to improve
it. For this purpose consider the vector π � {π1, π2, . . . , πn} and the following
transformation of the distances {dij }:

d ′ij
.� dij + πi + πj .

LetL∗ be the length of the optimal tour with respect to the distance matrix {dij }.
It is clear that the same tour is also optimal with respect to the distance matrix
{d ′ij }. To see that observe that any traveling salesman tour S of cost L with respect
to {dij } has a costL+2

∑n
i�1 πi with respect to {d ′ij }. Thus, the difference between

the length of any traveling salesman tour in {dij } and {d ′ij } is constant, independent
of the tour.

Observe also that the above transformation of the distances does change the
minimum 1-tree. How can this idea be used? First, enumerate all possible 1-trees
and let dki be the degree of vertex i in the kth 1-tree. Let Tk be the weight (cost) of
that 1-tree (before transforming the distances). This implies that the cost of that
1-tree after the transformation is exactly

Tk +
∑
i∈V

dki πi .

Thus, the minimum weight 1-tree on the transformed distance matrix is obtained
by solving

min
k

{
Tk +

∑
i∈V

dki πi

}
.

Since, in the transformed distance matrix, the optimal traveling salesman tour
does not change while the 1-tree provides a lower bound, we have

L∗ + 2
∑
i∈V

πi ≥ min
k

{
Tk +

∑
i∈V

dki πi

}
,

which implies

L∗ ≥ min
k

{
Tk +

∑
i∈V

(dki − 2)πi
}
.� w(π ).

Consequently, the best lower bound is obtained by maximizing the function w(π )
over all possible values of π . How can we find the best value of π? Held and Karp
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(1970, 1971) use the subgradient method described in the previous section. That
is, starting with some arbitrary vector π0, in step k the method updates the vector
πk according to

πk+1
i � πk

i + tk(d
k
i − 2),

where πk
i is the i th element in the vector πk and tk , the step size, equals

tk � λk(UB − w(πk))∑n
i�1(dki − 2)2

.

4.4.2 The 1-Tree Lower Bound and Lagrangian Relaxation

We now relate the 1-tree lower bound to a Lagrangian relaxation associated with
the following formulation of the Traveling Salesman Problem. For every e ∈ E,
let de be the cost of the edge and let xe be a variable that takes on the value 1 if
the optimal tour includes the edge and the value zero, otherwise. Given a subset
S ⊂ V , let E(S) be the set of edges from E such that each edge has its two end-
points in S. Let δ(S) be the collection of edges fromE in the cut separating S from
V \S. The Traveling Salesman Problem can be formulated as follows:

Problem P ′ : Z∗ � Min
∑
e∈E

dexe

s.t. ∑
e∈δ(i)

xe � 2, ∀i � 1, 2, . . . , n (4.7)

∑
e∈E(S)

xe ≤ |S|−1, ∀S⊆V \{1}, S ��∅ (4.8)

0 ≤ xe ≤ 1, ∀e ∈ E (4.9)

xe integer, ∀e ∈ E. (4.10)

Constraints (4.7) ensure that each vertex has an edge going in and an edge
going out. Constraints (4.8), called subtour elimination constraints, forbid integral
solutions consisting of a set of disjoint cycles.

Observe that constraints (4.7) can be replaced by the following constraints.∑
e∈δ(i)

xe � 2, ∀i � 1, . . . , n− 1 (4.11)

∑
e∈E

xe � n. (4.12)

This is true since constraints (4.11) are exactly constraints (4.7) for i � 1, . . . , n−
1. The only missing constraint is

∑
e∈δ(n) xe � 2. Therefore, it is sufficient to show
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that (4.12) holds if and only if this one holds. To see this:

∑
e∈E

xe � 1

2

n∑
i�1

∑
e∈δ(i)

xe

� 1

2

n−1∑
i�1

∑
e∈δ(i)

xe + 1

2

∑
e∈δ(n)

xe

� (n− 1)+ 1

2

∑
e∈δ(n)

xe.

Thus,
∑

e∈E xe � n if and only if
∑

e∈δ(n) xe � 2.
The resulting formulation of the Traveling Salesman Problem is{

Min
∑
e∈E

dexe

∣∣∣(4.8), (4.9), (4.10), (4.11) and (4.12)
}
.

We can now use the Lagrangian relaxation technique described in Section 4.3 and
get the following lower bound on the length of the optimal tour.

max
u

{
min
x

∑
i,j∈V

(dij + ui + uj )xij
∣∣∣(4.8), (4.9), (4.10) and (4.12)

}
.

Interestingly enough, Edmonds (1971) showed that the extreme points of the
polyhedron defined by constraints (4.8), (4.9), (4.10) and (4.12) is the set of all
1-trees; that is, the optimal solution to a linear program defined on these constraints
must be integral. Thus, we can apply Corollary 4.3.4 to see that, the lower bound
obtained from the 1-tree approach is the same as the linear relaxation of Problem
P ′.

4.5 The Worst-Case Effectiveness of the 1-tree Lower
Bound

We conclude this chapter by demonstrating that the Held and Karp (1970, 1971)
1-tree relaxation provides a lower bound that is not far from the length of the
optimal tour. For this purpose, we show that the Held and Karp lower bound can
be written as follows.

Problem HK : ZLP � Min
∑
e∈E

dexe

s.t. ∑
e∈δ(i)

xe � 2, ∀i � 1, 2, . . . , n (4.13)
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e∈δ(S)

xe ≥ 2, ∀S⊆V \{1}, S ��∅ (4.14)

0 ≤ xe ≤ 1, ∀e ∈ E. (4.15)

Lemma 4.5.1 The linear relaxation of Problem P ′ is equivalent to Problem HK.

Proof. We first show that any feasible solution x to the linear relaxation of Problem
P ′ is feasible for Problem HK. Since

∑
e∈S xe ≤ |S|−1,

∑
e∈E(V \S) xe ≤ n−|S|−1

and
∑

e∈E(V ) xe � n (why?) we get
∑

e∈δ(S) xe ≥ 2.
Similarly, we show that any feasible solution x̃ to Problem HK is feasible for

the linear relaxation of Problem P ′. The feasibility of x̃ in Problem HK implies
that

∑
i∈S

∑
e∈δ(i) x̃e � 2|S|. However,∑

i∈S

∑
e∈δ(i)

x̃e � 2
∑
e∈E(S)

x̃e +
∑
e∈δ(S)

x̃e � 2|S|,

and since
∑

e∈δ(S) x̃e ≥ 2, we get
∑

e∈E(S) x̃e ≤ |S| − 1.
Shmoys and Williamson (1990) have shown that the Held and Karp lower bound

(Problem HK) has a particular monotonicity property, and as a consequence, they
obtain a new proof of an old result from Wolsey (1980) who showed:

Theorem 4.5.2 For every instance of the TSP for which the distance matrix sat-
isfies the triangle inequality, we have Z∗ ≤ 3

2ZLP .

The proof presented here is based on the monotonicity property established
by Shmoys and Williamson (1990). However, we use a powerful tool discovered
by Goemans and Bertsimas (1993), called the parsimonious property. This is a
property that holds for a general class of network design problems.

To present the property consider the following linear program defined on the
complete graphG � (V,E). Associated with each vertex i ∈ V is a given number
ri which is either zero or two. Let V2 � {i ∈ V |ri � 2}.

We will analyze the following linear program (here ND stands for network
design).

Problem ND : Min
∑
e∈E

dexe

s.t. ∑
e∈δ(i)

xe � ri, ∀i � 1, 2, . . . , n (4.16)

∑
e∈δ(S)

xe ≥ 2, ∀S ⊂ V, V2 ∩ S �� ∅,

V2 ∩ (V \S) �� ∅ (4.17)

0 ≤ xe ≤ 1, ∀e ∈ E. (4.18)

It is easy to see that when V2 � V this linear program is equivalent to the linear
program Problem HK. We now provide a short proof of the following result.
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Lemma 4.5.3 The optimal solution value to Problem ND is unchanged if we omit
constraint (4.16).

Our proof is similar to the proof presented in Bienstock and Simchi-Levi (1993);
see also Bienstock et al. (1993), which uses a result of Lovasz (1979). In his book
of problems, (Exercise 6.51) Lovasz presents the following result, together with a
short proof. But first, we need a definition.

Definition 4.5.4 An undirected graph G is k-connected between two vertices i
and j if there are k (node) disjoint paths between i and j .

Lemma 4.5.5 Let G be an Eulerian multigraph and s ∈ V (G), such that G is
k-connected between any two vertices different from s. Then, for any neighbor u
of s, there exists another neighbor w of s, such that the multigraph obtained from
G by removing {s, u} and {s, w}, and adding a new edge {u,w} (the splitting-off
operation) is also k-connected between any two vertices different from s.

Lovasz’s proof of Lemma 4.5.5 can be easily modified to yield the following.

Lemma 4.5.6 Let G be an Eulerian multigraph, Y ⊆ V (G) and s ∈ V (G), such
that G is k-connected between any two vertices of Y different from s. Then, for
any neighbor u of s, there exists another neighborw of s, such that the multigraph
obtained from G by removing {s, u} and {s, w}, and adding a new edge {u,w} is
also k-connected between any two vertices of Y different from s.

We can now prove Lemma 4.5.3.

Proof. LetV0 � V \V2; that is, V0 � {i ∈ V |ri � 0}. Let Problem ND′ be Problem
ND without (4.16). Finally, let x̃ be a rational vector feasible for Problem ND′,
chosen such that (i) x̃ is optimal for Problem ND′, and (ii) subject to (i),

∑
e∈E x̃e

is minimized.
Let M be a positive integer, large enough so that ṽ � 2Mx̃ is a vector of even

integers. We may regard ṽ (with a slight abuse of notation) as the incidence vector
of the edge-set Ẽ of a multigraph G̃ with vertex set V . Clearly, G̃ is Eulerian, and
by (4.17), it is 4M−connected between any two elements of V2.

Now suppose that for some vertex s,
∑

e∈δ({s}) x̃e > rs (i.e., s has a degree larger

than 2Mrs in G̃). Let us apply Lemma 4.5.6 to s and any neighbor u of s (where
Y � V2), and let H̃ be the resulting multigraph, with incidence vector z̃.

Clearly, ∑
e∈E

dez̃e ≤
∑
e∈E

deṽe,

and so ∑
e∈E

de
z̃e

2M
≤

∑
e∈E

dex̃e.

Moreover, ∑
e∈E

z̃e

2M
�

∑
e∈E

x̃e − 1

2M
.

Hence, by the choice of x̃, z � z̃
2M cannot be feasible for Problem ND′.
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If s ∈ V0, then by Lemma 4.5.6, z is feasible for Problem ND′. Thus, we must
have s ∈ V2 and, in fact,

∑
e∈δ({t}) x̃e � 0 for all t ∈ V0. In other words, Ẽ spans

precisely V2, G̃ is 4M−connected and
∑

e∈δ({s}) ≥ 4M + 2. But we claim now

that the multigraph H̃ is 4M−connected. For by Lemma 4.5.6, it could only fail
to be 4M−connected between s and some other vertex, but the only possible cut
of size less than 4M is the one separating s from V \{s}. Since this cut has at least
4M edges, the claim is proved. Consequently, again we obtain that z is feasible
for Problem ND′, a contradiction. In other words,

∑
e∈E ṽe � 2Mri for all i; that

is, (4.16) holds.
An immediate consequence of Lemma 4.5.3 is that in Problem HK, one can

ignore constraint (4.13) without changing the value of its optimal solution. This
new formulation reveals the following monotonocity property of the Held and
Karp lower bound: let A ⊆ V and consider the Held and Karp lower bound on the
length of the optimal traveling salesman tour through the vertices in A; that is,

Problem HK(A) : ZLP (A) � Min
∑
e∈E

dexe

s.t. ∑
e∈δ(S)

xe ≥ 2, ∀S ⊂ A, (4.19)

0 ≤ xe ≤ 1, ∀e ∈ E. (4.20)

Since any feasible solution to problem HK(V ) is feasible for problem HK(A), the
cost of this linear program is monotone with respect to the set of nodes A.

We are ready to prove Theorem 4.5.2.

Proof. Section 2.3.3 presents and analyzes the heuristic developed by Christofides
for the TSP which is based on constructing a minimum spanning tree plus a match-
ing on the nodes of odd degree. Observe that a similar heuristic can be obtained if
we start from a 1-tree, instead of a minimum spanning tree. Thus, the length of the
optimal tour is bounded byW (T ∗1 )+W (M∗(A)) whereW (T ∗1 ) is the weight (cost)
of the best 1-tree and W (M∗(A)) is the weight of the optimal weighted matching
defined on the set of odd degree nodes in the best 1-tree, denoted by A.

We argue that W (M∗(A)) ≤ 1
2ZLP (A). Let x be an optimal solution to Problem

HK(A). It is easy to see that the vector 1
2x is feasible for the following constraints.

∑
e∈δ(i)

xe � 1, ∀i ∈ A (4.21)

∑
e∈E(S)

xe ≤ 1

2
(|S| − 1), ∀S ⊂ A, S �� ∅, |S| ≥ 3, |S| is odd (4.22)

0 ≤ xe ≤ 1, ∀e ∈ E. (4.23)
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A beautiful result of Edmonds (1965) tells us that these constraints are sufficient
to formulate the matching problem as a linear program. Consequently,

W (M∗(A)) ≤ 1

2
ZLP (A) ≤ 1

2
ZLP (V ) � 1

2
ZLP

and therefore,
L∗ ≤ W (T ∗1 )+W (M∗(A))

≤ ZLP + 1

2
ZLP

≤ 3

2
ZLP .

4.6 Exercises

Exercise 4.1. Prove Lemma 4.3.2.

Exercise 4.2. Show that a lower bound on the cost of the optimal traveling salesman
tour can be given by:

2

|N | max
i∈N

∑
j∈N

dij ,

where N is the set of cities and dij is the distance from city i to city j .

Exercise 4.3. Consider an instance of the Bin-Packing Problem where there are
mj items of size wj ∈ (0, 1] for j � 1, 2, . . . , n. Define a bin configuration to be
a vector c � (c1, c2, . . . , cn) with the property that ci ≥ 0 for i � 1, 2, . . . , n and∑n

j�1 cjwj ≤ 1. Enumerate all possible bin configurations. Let there be M such
configurations. DefineCjk to be the number of items of sizewj in bin configuration
k, for k � 1, 2, . . . ,M and j � 1, 2, . . . , n.

Formulate an integer program to solve this Bin-Packing Problem using the
following variables: xk is the number of times configuration k is used, for k �
1, 2, . . . ,M .

Exercise 4.4. A function u : [0, 1] → [0, 1] is dual-feasible if for any sets of
numbers w1, w2, . . . , wk , we have

k∑
i�1

wi ≤ 1 ⇒
k∑
i�1

u(wi) ≤ 1.

(a) Given an instance of the Bin-Packing Problem with item sizesw1, w2, . . . , wn

and a dual-feasible function u, prove that
∑n

i�1 u(wi) ≤ b∗.
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(b) Assume n is even. Let half of the items be of size 2
3 and the other half of size

1
2 . Find a dual-feasible function u that satisfies:

n∑
i�1

u(wi) � b∗.

Exercise 4.5. Consider a list L of n items of sizes in ( 1
3 ,

1
2 ]. Let bLP be the optimal

fractional solution to the set-partitioning formulation of the Bin-Packing Problem,
and let b∗ be the optimal integer solution to the same formulation. Prove that

b∗ ≤ bLP + 1.

Exercise 4.6. Prove that if a graph has exactly 2k vertices of odd degree, then the
set of edges can be partitioned into k paths such that each edge is used exactly
once.
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5
The Capacitated VRP with Equal
Demands

5.1 Introduction

A large part of many logistics systems involves the management of a fleet of
vehicles used to serve warehouses, retailers and/or customers. In order to control
the costs of operating the fleet, a dispatcher must continuously make decisions on
how much to load on each vehicle and where to send it. These types of problems
fall under the general class of Vehicle Routing Problems mentioned in Chapter 1.

The most basic Vehicle Routing Problem (VRP) is the single-depot Capacitated
Vehicle Routing Problem (CVRP). It can be described as follows: a set of customers
has to be served by a fleet of identical vehicles of limited capacity. The vehicles
are initially located at a given depot. The objective is to find a set of routes for the
vehicles of minimal total length. Each route begins at the depot, visits a subset of
the customers and returns to the depot without violating the capacity constraint.

Consider the following scenario. A customer requests w units of product. If we
allow this load to be split between more than one vehicle (i.e., the customer gets
several deliveries which together sum up to the total load requested), then we can
view the demand for w units as w different customers each requesting one unit
of product located at the same point. The capacity constraint can then be viewed
as simply the maximum number of customers (in this new problem) that can be
visited by a single vehicle. This is the capacity Q ≥ 1. Therefore, if we allow this
splitting of demands, and this may not be a desirable property (we investigate the
unsplit demand case in Chapter 6), there is no loss in generality in assuming that
each customer has the same demand, namely, one unit, and the vehicle can visit at
most Q of these customers on a route. Therefore, this model is sometimes called
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the CVRP with splittable demands or the ECVRP.
We denote the depot by x0 and the set of customers by N � {x1, x2, . . . , xn}.

The setN0
.� N ∪{x0} designates all customers and the depot. The customers and

the depot are represented by a set of nodes on an undirected graph G � (N0, E).
We denote by di the distance between customer i and the depot, dmax

.� maxi∈N di
the distance from the depot to the furthest customer, and dij the distance between
customer i and customer j . The distance matrix {dij } is assumed to be symmetric
and satisfy the triangle inequality; that is, dij � dji for all i, j and dij ≤ dik + dkj
for all i, k, j . We denote the optimal solution value of the CVRP by Z∗ and the
solution provided by a heuristic H by ZH.

In what follows, the optimal traveling salesman tour plays an important role. So,
for any set S ⊆ N0, let L∗(S) be the length of the optimal traveling salesman tour
through the set of points S. Also, let Lα(S) be the length of an α-optimal traveling
salesman tour through S, that is, one whose length is bounded from above by
αL∗(S), α ≥ 1.

The graph depicted in Figure 5.1 , which is denoted by G(t, s), also plays an
important role in our worst-case analyses. It consists of s groups of Q nodes and
another s − 1 nodes, called white nodes, separating the groups. The nodes within
the same group have zero interdistance and each group is connected to the depot
by an arc of unit length. The white nodes are of zero distance apart and t units
distance away from the depot. Each white node is connected to the two groups
of nodes it separates by an arc of unit length. Note that when 0 ≤ t ≤ 2, G(t, s)
satisfies the triangle inequality (if an edge (i, j ) is not shown in the graph, then the
distance between node i and node j is defined as the length of the shortest path
from i to j ). Also note that whenever 0 ≤ t ≤ 2, the tour depicted in Figure 5.2 is
an optimal traveling salesman tour of length 2s.

In this chapter, we analyze this problem using the two tools developed earlier,
worst-case and average-case analyses. Later, in Chapter 6, we will analyze a more
general model of the CVRP.

5.2 Worst-Case Analysis of Heuristics

A simple heuristic for the CVRP, suggested by Haimovich and Rinnooy Kan (1985)
and later modified by Altinkemer and Gavish (1990), is to partition a traveling
salesman tour into segments, such that each segment of customers is served by a
single vehicle; that is, each segment has no more thanQpoints. The heuristic, called
the Iterated Tour Partitioning (ITP) heuristic, starts from a traveling salesman tour
through all n � |N | customers and the depot. Starting at the depot and following
the tour in an arbitrary orientation, the customers and the depot are numbered
x(0), x(1), x(2), . . . , x(n) where x(0) is the depot. We partition the path from x(1)

to x(n) into � n
Q
� disjoint segments, such that each one contains no more than Q

customers, and connect the end-points of each segment to the depot. The first
segment contains only customer x(1). All the other segments contain exactly Q

customers, except maybe the last one. This defines one feasible solution to the
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problem. We can repeat the above construction by shifting the end-points of all but
the first and last segments up by one position in the direction of the orientation.
This can be repeated Q − 1 times producing a total of Q different solutions. We
then choose the best of the set of Q solutions generated.

It is easy to see that, for a given traveling salesman tour, the running time of the
ITP heuristic is O(nQ). The performance of this heuristic clearly depends on the
quality of the initial traveling salesman tour chosen in the first step of the algorithm.
Hence, when the ITP heuristic partitions an α-optimal traveling salesman tour, it
is denoted ITP(α). To establish the worst-case behavior of the algorithm, we first
find a lower bound on Z∗, and then calculate an upper bound on the cost of the
solution produced by the ITP(α) heuristic.

Lemma 5.2.1 Z∗ ≥ max{L∗(N0), 2
Q

∑
i∈N di}.

Proof. Clearly,Z∗ ≥ L∗(N0) by the triangle inequality. To proveZ∗ ≥ 2
Q

∑
i∈N di ,

consider an optimal solution in whichN is partitioned into subsets {N1, N2, . . . , Nm}
where each set Nj is served by a single vehicle. Clearly,

Z∗ �
∑
j

L∗(Nj ∪ {x0}) ≥
∑
j

2 max
i∈Nj

di ≥
∑
j

2

|Nj |
∑
i∈Nj

di

≥
∑
j

2

Q

∑
i∈Nj

di � 2

Q

∑
i∈N

di.

Lemma 5.2.2 ZITP(α) ≤ 2
Q

∑
i∈N di + (1− 1

Q
)αL∗(N0).

Proof. We prove the lemma by finding the cumulative length of the Q solutions
generated by the ITP heuristic. The i th solution consists of the segments:

{x(1), x(2), . . . , x(i)}, {x(i+1), x(i+2), . . . , x(i+Q)}, . . . , {x(i+1+" n−i
Q
#Q)
, . . . , x(n)}.

Thus, among the Q solutions generated, each customer x(i), 2 ≤ i ≤ n − 1
appears exactly once as the first point of a segment and exactly once as the last
point. Therefore, in the cumulative length of the Q solutions the term 2dx(i) is
incurred for each i, 2 ≤ i ≤ n − 1. Customer x(1) is the first point of a segment
in each of the Q solutions, and in the first one it is also the last point. Thus, the
term dx(1) appears Q + 1 times in the cumulative length. Similarly, x(n) is always
the last point of a segment in each of the Q solutions, and once the first point.
Thus, the term dx(n) appears Q+ 1 times in the cumulative length as well. Finally,
each one of the arcs (x(i), x(i+1)) for 1 ≤ i ≤ n − 1 appears in exactly Q − 1
solutions since it is excluded from only one solution. These arcs, together with the
Q − 1 arcs connecting the depot to x(1) and Q − 1 arcs connecting the depot to
x(n), form Q − 1 copies of the initial traveling salesman tour selected in the first
step of the heuristic. Thus, if the initial traveling salesman tour is an α-optimal
tour, the cumulative length of all Q tours is
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2
∑
i∈N

di + (Q− 1)Lα(N0)

≤ 2
∑
i∈N

di + (Q− 1)αL∗(N0).

Hence,

ZITP(α) ≤ 2

Q

∑
i∈N

di + (1− 1

Q
)αL∗(N0).

Combining upper and lower bounds, we obtain the following result.

Theorem 5.2.3
ZITP(α)

Z∗
≤ 1+

(
1− 1

Q

)
α. (5.1)

For example, if Christofides’ polynomial-time heuristic (α � 1.5) is used to
obtain the initial traveling salesman tour, we have

ZITP(1.5)

Z∗
≤ 5

2
− 3

2Q
.

The proof of the worst-case result for the ITP(α) heuristic suggests that if we
can improve the bound in (5.1) for α � 1, then the bound can be improved for any
α > 1. However, the following theorem, proved by Li and Simchi-Levi (1990),
says that this is impossible; that is, the bound

ZITP(1)

Z∗
≤ 2− 1

Q

is sharp.

Theorem 5.2.4 For any integer Q ≥ 1, there exists a problem instance with
ZITP(1)/Z∗ � 2− 1

Q
.

Proof. Let us consider the graph G(0, q). A solution obtained by the ITP heuristic
is shown in Figure 5.3. In this solution,

ZITP(1) � 2+ 2+ 4+ 4+ · · · + 4︸ ︷︷ ︸
Q−2 times

+2 � 4Q− 2.

One can construct a solution that has Q vehicles serve the Q groups of customers
and the (Q+ 1)st vehicle serve the other Q− 1 nodes. Thus,

Z∗ ≤ 2Q.

Hence,
ZITP(1)

Z∗
≥ 2− 1

Q
.
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ZOP(α)

Z∗
≤ 1+

(
1− 1

Q

)
α.

The next theorem implies that for α � 1 this bound is asymptotically sharp; that
is, ZOP(1)/Z∗ tends to 2 when Q approaches infinity.

Theorem 5.2.5 For any integer Q ≥ 1, there exists a problem instance with
ZOP(1)/Z∗ arbitrarily close to 2− 2

Q+1 .

Proof. Consider the graph G(1,Kq + 1), where K is a positive integer. It is easy
to check that

ZOP(1) � 2(KQ+ 1)+ 2KQ.

On the other hand, consider the solution in whichKQ+1 vehicles serve theKQ+1
groups of customers and another K vehicles serve the other nodes. Hence,

Z∗ ≤ 2(KQ+ 1)+ 2K,

and therefore,

lim
K→∞

ZOP(1)

Z∗
≥ 2− 2

Q+ 1
.

5.3 The Asymptotic Optimal Solution Value

In the following two sections, we assume that the customers are points in the plane
and that the distance between any pair of customers is given by the Euclidean
distance. Assume without loss of generality that the depot is the point (0, 0) and
||x|| designates the distance from the depot to the point x ∈ IR2. The results
discussed in this section and the next are mainly based on Haimovich and Rinnooy
Kan (1985).

The upper bound of Lemma 5.2.2 has two cost components; the first component
is proportional to the total “radial” cost between the depot and the customers.
The second component is proportional to the “circular” cost: the cost of traveling
between customers. This cost is related to the cost of the optimal traveling salesman
tour. As discussed in Chapter 2, for large n, the cost of the optimal traveling
salesman tour grows like

√
n, while the total radial cost between the depot and

the customers grows like n. Therefore, it is intuitive that when the number of
customers is large enough the first cost component will dominate the second. This
observation is now formally proven.

Theorem 5.3.1 Let xk , k � 1, 2, . . . , n be a sequence of independent random
variables having a distribution µ with compact support in IR2. Let

E(d) �
∫
IR2
||x||dµ(x).

Then, with probability one,
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lim
n→∞

Z∗

n
� 2

Q
E(d).

Proof. Lemma 5.2.1 and the strong law of large numbers tell us that

lim
n→∞

Z∗

n
≥ 2

Q
E(d) (a.s.). (5.2)

On the other hand, from Lemma 5.2.2,

Z∗

n
≤ ZITP(1)

n
≤ 2

nQ

∑
i∈N

di +
(

1− 1

Q

)L∗(N0)

n
.

From Chapter 3, we know that there exists a constant β > 0, independent of the
distribution µ, such that with probability one,

lim
n→∞

L∗(N0)√
n

� β

∫
IR2
f 1/2(x)dx,

where f is the density of the absolutely continuous part of the distribution µ.
Hence,

lim
n→∞

Z∗

n
≤ 2

Q
E(d) (a.s.).

This together with (5.2) proves the Theorem.
The following observation is in order. Haimovich and Rinnooy Kan prove The-

orem 5.3.1 merely assuming E(d) is finite rather than the stronger assumption
of a compact support. However, the restriction to a compact support seems to be
satisfactory for all practical purposes. The following is another important gener-
alization of Theorem 5.3.1. Assume that a cluster of wk customers (rather than a
single customer) is located at point xk , k � 1, 2, . . . , n. The theorem then becomes

lim
n→∞

Z∗

n
� 2

Q
E(w)E(d), (5.3)

where E(w) is the expected cluster size, provided that the cluster size is indepen-
dent of the location. This follows from a straightforward adaptation of Lemma
5.2.1 and Lemma 5.2.2.

5.4 Asymptotically Optimal Heuristics

The proof of the previous Theorem (Theorem 5.3.1) reveals that the ITP(α) heuris-
tic provides a solution whose cost approaches the optimal cost when n tends to
infinity. Indeed, replacing ITP(1) by ITP(α) in the previous proof gives the fol-
lowing theorem.

Theorem 5.4.1 Under the conditions of Theorem 5.3.1 and for any fixed α ≥ 1,
the ITP(α) heuristic is asymptotically optimal.
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As is pointed out by Haimovich and Rinnooy Kan (1985), iterated tour par-
titioning heuristics, although asymptotically optimal, hardly exploit the special
topological structure of the Euclidean plane in which the points are located. It
is therefore natural to consider Region Partitioning (RP) heuristics that are more
geometric in nature.

Haimovich and Rinnooy Kan consider three classes of regional partitioning
schemes. In Rectangular Region Partitioning (RRP), one starts with a rectangle
containing the set of customers N and cuts it into smaller rectangles. In Polar
Region Partitioning (PRP) and Circular Region Partitioning (CRP), one starts
with a circle centered at the depot and partitions it by means of circular arcs and
radial lines. We shall shortly discuss each one of these in detail.

In each case the RP heuristics construct subregions of the plane, where subregion
j contains a set of customers N (j ). These subregions are constructed so that each
one of them has exactly Q customers except possibly one.

Since every subsetN (j ) has no more thanQ customers, each of these RP heuris-
tics allocates one vehicle to each subregion. The vehicles then use the following
routing strategy. The first customer visited is the one closest to the depot among
all the customers in N (j ). The rest are visited in the order of an α-optimal travel-
ing salesman tour through N (j ). After visiting all the customers in the subregion
the vehicle returns to the depot through the first (closest) customer. It is therefore
natural to call these heuristics RP (α) heuristics. In particular we have RRP (α),
PRP (α) and CRP (α).

Lemma 5.4.2 ZRP (α) ≤ 2
Q

∑
i∈N di + 2dmax + α

∑
j L

∗(N (j )).

Proof. We number the subsets N (j ) constructed by the RP (α) heuristic so that
|N (j )| � Q for every j ≥ 2 and |N (1)| ≤ Q. It follows that the total distance
traveled by the vehicle that visits subset N (j ), for j ≥ 2, is

≤ 2 min
i∈N (j )

di + αL∗(N (j ))

≤ 2

Q

∑
i∈N (j )

di + αL∗(N (j )),

while the total distance traveled by the vehicle that visits N (1) is no more than

2dmax + αL∗(N (1)).

Taking the sum over all subregions we obtain the desired result.
The quality of the upper bound of Lemma 5.4.2 depends, of course, on the

quantity
∑

j L
∗(N (j )). This value was analyzed in Chapter 3 where it was shown

that for any RP heuristic

∑
j

L∗(N (j )) ≤ L∗(N )+ 3

2
PRP , (5.4)
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wherePRP is the sum of perimeters of the subregions generated by the RP heuristic.
For this reason we analyze the quantityPRP in each of the three region partitioning
heuristics.

Rectangular Region Partitioning (RRP)

This heuristic is identical to the one introduced for the Traveling Salesman Problem
in Section 3.3. The smallest rectangle with sides a and b containing the set of
customers N is partitioned by means of horizontal and vertical lines. First, the
region is subdivided by t vertical lines such that each subregion contains exactly
(h+1)Q points except possibly the last one. Each of these t+1 subregions is then
partitioned by means of h horizontal lines into h+ 1 smaller subregions such that
each contains exactly Q points except possibly for the last one.

As before, h and t should satisfy

t �
⌈ n

(h+ 1)Q

⌉
− 1,

and
t(h+ 1)Q < n ≤ (t + 1)(h+ 1)Q.

The unique integer that satisfies these conditions is h � �
√

n
Q
− 1�. Note that the

number of vertical lines added is t ≤
√

n
Q

, and each of these lines is counted twice

in the quantity P RRP.

In the second step of the RRP we add h horizontal lines where h ≤
√

n
Q
. These

horizontal lines are also counted twice in P RRP. It follows that

P RRP ≤ 2
√
n

Q
(a + b)+ 2(a + b) ≤ 8dmax

√
n

Q
+ 8dmax.

Polar Region Partitioning (PRP)

The circle with radius dmax containing the set N and centered at the depot is
partitioned in exactly the same way as in the previous partitioning scheme, with
the exception that circular arcs and radial lines replace vertical and horizontal lines.
Using the same analysis, one can show:

P PRP ≤ 6πdmax

√
n

Q
+ 2πdmax + 2dmax. (5.5)

Circular Region Partitioning (CRP)

This scheme partitions the circle centered at the depot with radius dmax into h equal
sectors, where h is to be determined. Each sector is then partitioned into subregions
by means of circular arcs, such that each subregion contains exactly Q customers
except possibly the one closest to the depot. Thus, at most h subregions, each from
one sector, have less than Q customers. These subregions (with the depot on their
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boundary) are then repartitioned by means of radial cuts such that at most h − 1
of them have exactly Q customers each except for possibly the last one.

The total length of the initial radial lines is hdmax. The length of an inner circular
arc bounding a subregion containing a set N (j ) is no more than

2π

h
min
i∈N (j )

di ≤ 2π

h

∑
i∈N (j ) di

|N (j )| � 2π
∑

i∈N (j ) di

hQ
,

while the length of the outer circle is 2πdmax. Finally, the repartitioning of the
central subregions adds no more than hdmax

2 . Thus,

PCRP ≤ 2
(
hdmax + 2π

∑
i∈N di

hQ
+ hdmax

2

)
+ 2πdmax.

Taking h �
⌈√

4π
∑

i∈N di
3Qdmax

⌉
, we obtain the following upper bound on PCRP ,

PCRP ≤ 4

√
3πdmax

1

Q

∑
i∈N

di + (3+ 2π )dmax.

The reader should be aware that all of these partitioning schemes can be im-
plemented in O(n log n) time. We now have all the necessary ingredients for an
asymptotic analysis of the performance of these partitioning heuristics.

Theorem 5.4.3 Under the conditions of Theorem 5.3.1 and for any fixed α ≥ 1,
RRP (α), PRP (α) and CRP (α) are asymptotically optimal.

Proof. Lemma 5.4.2 together with equation (5.4) provide the following upper
bound on the total distance traveled by all vehicles in the solution produced by the
above RP heuristics.

ZRP (α) ≤ 2

Q

∑
i∈N

di + 2dmax + αL∗(N )+ 3

2
αPRP .

By the strong law of large numbers and the fact that the distribution has compact
support, 1

n

∑
i∈N di converges almost surely to E(d) while dmax

n
converges almost

surely to 0. Furthermore, L
∗(N )
n

converges to 0 almost surely; see the proof of The-
orem 5.3.1. Finally, from the analysis of each of the region partitioning heuristics
and the fact that the points are in a compact region, PRP

n
converges almost surely

to zero as well.
In conclusion, we see that the CVRP with equal demands is asymptotically solv-

able via several different region partitioning schemes. In fact, since each customer
has the same demand, the packing of the customers’ demands into the vehicles
is a trivial problem. Any Q customers can fit. The more difficult problem, when
demands are of different sizes, presents complicating bin-packing features which
will prove to be more difficult.
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5.5 Exercises

Exercise 5.1. Consider the following version of the Capacitated Vehicle Routing
Problem (CVRP). You are given a network G � (V,A) with positive arc lengths.
Assume that E ⊆ A is a given set of edges that have to be “covered” by vehicles.
The vehicles are initially located at a depot p ∈ V . Each vehicle has a “capacity”
q; that is, each vehicle can cover no more than q edges from E. Once a vehicle
starts an edge in E it has to cover all of it. The objective is to design tours for
vehicles so that all edges in E are covered, vehicles’ capacities are not violated
and total distance traveled is as small as possible.

(a) Suppose we want first to find a single tour that starts at the depot p, traverses
all edges in E and ends at p whose total cost (length) is as small as possible.
Generalize Christofides’ heuristic for this case.

(b) Consider now the version of the CVRP described above and suggest two
possible lower bounds on the optimal cost of the CVRP.

(c) Describe a heuristic algorithm based on a tour partitioning approach using,
as the initial tour, the tour you found in part (a). What is the worst-case bound of
your algorithm?

Exercise 5.2. Derive equation (5.3).

Exercise 5.3. Consider an n customer instance of the CVRP with equal demands.
Assume there are m depots and at each depot is an unlimited number of vehicles
of limited capacity. Suggest an asymptotically optimal region partitioning scheme
for this case.

Exercise 5.4. Consider an n customer instance of the CVRP with equal demands.
There are K customer types: a customer is of type k with independent probability
pk > 0. Customers of different types cannot be served together in the same vehicle.
Devise an asymptotically optimal heuristic for this problem. If K is a function of
n, what conditions on K(n) are necessary to ensure that this same heuristic is
asymptotically optimal?

Exercise 5.5. Derive equation (5.5).



6
The Capacitated VRP with Unequal
Demands

6.1 Introduction

In this chapter we consider the Capacitated Vehicle Routing Problem with unequal
demands (UCVRP). In this version of the problem, each customer i has a demand
wi and the capacity constraint stipulates that the total amount delivered by a single
vehicle cannot exceed Q. We let Z∗u denote the optimal solution value of UCVRP,
that is, the minimal total distance traveled by all vehicles.

In this version of the problem, the demand of a customer cannot be split over sev-
eral vehicles; that is, each customer must be served by a single vehicle. This, more
general version of the model, is sometimes called the CVRP with unsplit demands.
The version where demands may be split is dealt with in Chapter 5. Splitting a
customer’s demand is often physically impossible or managerially undesirable due
to customer service or accounting considerations.

6.2 Heuristics for the CVRP

A great deal of work has been devoted to the development of heuristics for the
UCVRP; see, for example, Christofides (1985), Fisher (1995), Federgruen and
Simchi-Levi (1995) or Bertsimas and Simchi-Levi (1996). Following Christofides,
we classify these heuristics into the 4 categories:

• Constructive Methods

• Route First-Cluster Second Methods
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• Cluster First-Route Second Methods

• Incomplete Optimization Methods.

We will describe the main characteristics of each of these classes and give
examples of heuristics that fall into each.

Constructive Methods

The Savings Algorithm suggested by Clarke and Wright (1964) is the most im-
portant member of this class. This heuristic, which is the basis for a number of
commercial vehicle routing packages, is one of the earliest heuristics designed for
this problem and, without a doubt, the most widely known. The idea of the sav-
ings algorithm is very simple: consider the depot and n demand points. Suppose
that initially we assign a separate vehicle to each demand point. The total distance
traveled by a vehicle that visits demand point i is 2di , where di is the distance from
the depot to demand point i. Therefore, the total distance traveled in this solution
is 2

∑n
i�1 di .

If we now combine two routes, say we serve i and j on a single trip (with the
same vehicle), the total distance traveled by this vehicle is di + dij + dj , where dij
is the distance between demand points i and j . Thus, the savings obtained from
combining demand points i and j , denoted sij , is:

sij � 2di + 2dj − (di + dj + dij ) � di + dj − dij .

The larger the savings sij , the more desirable it is to combine demand points i and
j . Based on this idea, Clarke and Wright suggest the following algorithm.

The Savings Algorithm

Step 1: Start with the solution that has each customer visited by a separate vehicle.

Step 2: Calculate the savings sij � d0i + dj0 − dij ≥ 0 for all pairs of customers
i and j .

Step 3: Sort the savings in nonincreasing order.

Step 4: Find the first feasible arc (i, j ) in the savings list where
1) i and j are on different routes,
2) both i and j are either the first or last visited on their respective routes, and
3) the sum of demands of routes i and j is no more than Q.

Add arc (i, j ) to the current solution and delete arcs (0, i) and (j, 0). Delete arc
(i, j ) from the savings list.

Step 5: Repeat step 4 until no more arcs satisfy the conditions.

Additional constraints, which might be present, can easily be incorporated into
Step 4. Usually a simple check can be performed to see whether combining the
tours containing i and j violates any of these constraints.
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Other examples of heuristics that fall into this class are the heuristics of Gaskel
(1967), Yellow (1970) and Russell (1977). In particular the first two are modifica-
tions of the Savings algorithm.

Route First-Cluster Second Methods

Traditionally, this class has been defined as follows. The class consists of those
heuristics that first construct a traveling salesman tour through all the customers
(route first) and then partition the tour into segments (cluster second). One vehicle
is assigned to each segment and visits the customers according to their appearance
on the traveling salesman tour.

As we shall see in the next section some strong statements can be made about
the performance of heuristics of this class. For this purpose, we give a more precise
definition of the class here.

Definition 6.2.1 A heuristic is a route first-cluster second heuristic if it first orders
the customers according to their locations, disregarding demand sizes, and then
partitions this ordering to produce feasible clusters. These clusters consist of sets
of customers that are consecutive in the initial order. Customers are then routed
within their cluster depending on the specific heuristic.

This definition of the class is more general than the traditional definition given
above. The disadvantage of this class, of which we will give a rigorous analysis,
can be highlighted by the following simple example. Consider a routing strategy
that orders the demands in such a way that the sequence of demand sizes in the
order is (9, 2, 9, 2, 9, 2, 9, 2, . . .). If the vehicle capacity is 10, then any partition of
this tour must assign one vehicle to each customer. This solution would consist of
half of the vehicles going to pick up two units (using 20% of the vehicle capacity)
and returning to the depot; not a very efficient strategy. By contrast, a routing
strategy that looks at the demands at the same time as it looks at customer locations
would clearly find a more intelligent ordering of the customers: one that sequences
demands efficiently to decrease total distance traveled.

The route first-cluster second class includes classical heuristics such as the Opti-
mal Partitioning heuristic introduced by Beasley (1983), and the Sweep algorithm
suggested by Gillett and Miller (1974).

In the Optimal Partitioning heuristic, one tries to find an optimal traveling sales-
man tour, or, if this is not possible, a tour that is close to optimal. This provides
the initial ordering of the demand points. The ordering is then partitioned in an
efficient way into segments. This step can be done by formulating a shortest path
problem. See Section 5.2 for details.

In the Sweep algorithm, an arbitrary demand point is selected as the starting
point. The other customers are ordered according to the angle made between them,
the depot and the starting point. Demands are then assigned to vehicles following
this initial order. In effect, the points are “swept” in a clockwise direction around
the depot and assigned to vehicles. Then efficient routes are designed for each
vehicle. Specifically, the Sweep algorithm is the following.
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The Sweep Algorithm

Step 1: Calculate the polar coordinates of all customers where the center is the
depot and an arbitrary customer is chosen to be at angle 0. Reorder the customers
so that

0 � θ1 ≤ θ2 ≤ · · · ≤ θn.

Step 2: Starting from the unrouted customer i with smallest angle θi construct a
new cluster by sweeping consecutive customers i + 1, i + 2 . . . until the capacity
constraint will not allow the next customer to be added.

Step 3: Continue Step 2 until all customers are included in a cluster.

Step 4: For each cluster constructed, solve the TSP on the subset of customers
and the depot.

In both of these methods additional constraints can easily be incorporated into
the algorithm.

We note that, traditionally, researchers have classified the Sweep algorithm as a
cluster first-route second method and not as a route first-cluster second method. Our
opinion is that the essential part of any vehicle routing algorithm is the clustering
phase of the algorithm, that is, how the customers are clustered into groups that can
be served by individual vehicles. The specific sequencing within a cluster can and,
for most problems, should be done once these clusters are determined. Therefore,
a classification of algorithms for the CVRP should be solely based on how the
clustering is performed. Thus, the Sweep algorithm can be viewed as an algorithm
of the route first-cluster second class since the clustering is performed on a fixed
ordering of the nodes.

Cluster First-Route Second Methods

In this class of heuristics, the clustering is the most important phase. Customers
are first clustered into feasible groups to be served by the same vehicle (cluster
first) without regard to any preset ordering and then efficient routes are designed
for each cluster (route second).

Heuristics of this class are usually more technically sophisticated than the pre-
vious class, since determining the clusters is often based on a mathematical pro-
gramming approach. This class includes the following three heuristics:

• The Two-Phase Method (Christofides et al., 1978)

• The Generalized Assignment Heuristic (Fisher and Jaikumar, 1981)

• The Location-Based Heuristic (Bramel and Simchi-Levi, 1995)

The first two heuristics use, in a first step, the concept of seed customers. The
seed customers are customers that will be in separate vehicles in the solution, and
around which tours are constructed. In both cases, the performance of the algorithm
depends highly on the choice of these seeds. Placing the CVRP in the framework
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of a different combinatorial problem, the Location-Based Heuristic selects the
seeds in an optimal way and creates, at the same time, tours around these seeds.
Thus, instead of decomposing the process into two steps, as done in the Two-Phase
Method and the Generalized Assignment Heuristic, the Location-Based Heuristic
simultaneously picks the seeds and designs tours around them. We will discuss
this heuristic in detail in Section 6.7.

Incomplete Optimization Methods

These methods are optimization algorithms that, due to the prohibitive comput-
ing time involved in reaching an optimal solution, are terminated prematurely.
Examples of these include:

• Cutting Plane Methods (Cornuéjols and Harche, 1993)

• Minimum K-Tree Methods (Fisher, 1994).

The disadvantage of incomplete optimization methods is that they still require
large amounts of processing time; they can handle problems with usually no more
than 100 customers.

6.3 Worst-Case Analysis of Heuristics

In the worst-case analysis presented here, we assume that the customer demands
w1, w2, . . . , wn and the vehicle capacity Q are rationals. Hence, without loss of
generality, Q and wi are assumed to be integers. Furthermore, we may assume
that Q is even; otherwise one can double Q as well as each wi, i � 1, 2, . . . , n,
without affecting the problem. The following two-phase route first-cluster second
heuristic was suggested by Altinkemer and Gavish (1987). In the first phase, we
relax the requirement that the demand of a customer cannot be split. Each customer
i is replaced by wi unit demand points that are zero distance apart. We then apply
the ITP(α) heuristic (see Section 5.3) using a vehicle capacity of Q

2 . In the second
phase, we convert the solution obtained in Phase I to a feasible solution to the
original problem without increasing the total cost. This heuristic is called the
Unequal-Weight Iterated Tour Partitioning (UITP(α)) heuristic.

We now describe the second phase procedure. Our notation follows the one
suggested by Haimovich et al. (1988). Letm � ∑

i∈N wi be the number of demand
points in the expanded problem. Recall that in the first phase an arbitrary orientation
of the tour is chosen. The customers are then numbered x(0), x(1), x(2), . . . , x(n) in
order of their appearance on the tour, where x(0) is the depot. The ITP(α) heuristic
partitions the path from x(1) to x(n) into � 2m

Q
� disjoint segments such that each

one contains no more than Q

2 demand points and connects the end-points of each
segment to the depot. The segments are indexed by j � 1, 2, . . . , � 2m

Q
�, such that

the first customer of the j th segment is x(bj ) and the last customer is x(ej ). Hence,
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the j th segment, denoted by Sj , includes customers {x(bj ), · · · , x(ej )}. Obviously,
if x(ej ) � x(bj+1) for some j , then the demand of customer x(ej ) is split between the
j th and (j + 1)th segments; therefore, these are not feasible routes. On the other
hand, if x(ej ) �� x(bj+1) for all j , then the set of routes is feasible.

We now transform the solution obtained in the first phase into a feasible solution
without increasing the total distance traveled. We use the following procedure.

The Phase Two Procedure

Step 1: Set S ′j � ∅, for j � 1, 2, . . . , � 2m
Q
�

Step 2: For j � 1 to � 2m
Q
� − 1 do

If x(ej ) � x(bj+1) then
If

∑bj+1

i�bj wx(i) ≤ Q then let S ′j � {x(bj ), · · · , x(ej )} and

let x(bj+1) � x(bj+1+1)

else let S ′j � {x(bj ), · · · , x(ej−1)} and x(bj+1) � x(ej )

else, let S ′j � {x(bj ), · · · , x(ej )}.

We argue that the procedure generates feasible sets S ′j for j � 1, 2, . . . , � 2m
Q
�.

Note that the j th set can be enlarged only in the (j − 1)st and j th iterations (if at
all). Moreover if it is enlarged in the j th iteration, it is clearly done feasibly in view
of the test

∑bj+1

i�bj wx(i) ≤ Q. On the other hand, if Sj is enlarged in the (j − 1)st

iteration, at most Q

2 demand points are added thus ensuring feasibility. This can be
verified as follows. Assume to the contrary that in the (j − 1)st iteration more than
Q

2 demand points are transferred from S ′j−1 to Sj so that in the (j − 1)st iteration

x(ej−1) � x(bj ). Since the original set Sj−1 contains at most Q

2 demand points we
must have shifted demand points in the (j − 2)nd iteration from Sj−2 to Sj−1 (and
in particular x(bj−1) � x(ej−2)), part of which are now being transferred to Sj . This
implies that x(∗) .� x(ej−2) � x(bj−1) � x(ej−1) � x(bj ), where ej−2, bj−1, ej−1 and
bj refer to the original sets Sj−2, Sj−1 and Sj . In other words at the beginning
of the (j − 1)st iteration the set S ′j−1 contains a single customer x(∗). But then,
shifting x(bj ) � x(∗) backwards to S ′j−1 is feasible, contradicting the fact that more

than Q

2 demand points need to be shifted forward from S ′j−1 to S ′j . Therefore, the
procedure generates feasible sets and we have the following worst case bound.

Theorem 6.3.1 ZUITP(α)

Z∗u
≤ 2+ (1− 2

Q
)α.

Proof. Recall that in the first phase the vehicle capacity is set to Q

2 . Hence, using
the bound of Lemma 5.2.2 we obtain the following upper bound on the length of
the tours generated in Phase I of the UITP(α) heuristic,

4

Q

∑
i∈N

diwi +
(

1− 2

Q

)
αL∗(N0). (6.1)
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In the second phase of the algorithm, the tour obtained in the first phase is converted
into a feasible solution with total length no more than (6.1). To verify this, we need
only to analyze those segments whose end-points are modified by the procedure.

Suppose that Sj and S ′j differ in their starting point; then S ′j must start with
x(bj+1). This implies that arc (x(bj ), x(bj+1)), which is part of the Phase I solution,
does not appear in the j th route. The triangle inequality ensures that the sum of
the length of arcs (x(0), x(bj )) and (x(bj ), x(bj+1)) is no smaller than the length of
arc (x(0), x(bj+1)). A similar argument can be applied if Sj and S ′j differ in their

terminating point. Consequently, for every segment j , for j � 1, 2, . . . , � 2m
Q
�, the

length of the j th route according to the new partition is no longer than the length
of the j th route according to the old partition. Hence,

ZUITP(α) ≤ 4

Q

∑
i∈N

diwi +
(

1− 2

Q

)
αL∗(N0).

Clearly,Z∗u ≥ Z∗, and therefore using the lower bound onZ∗ developed in Lemma
5.2.1 completes the proof.

The UITP heuristic was divided into two phases to prove the above worst-case
result. However, if the Optimal Partitioning heuristic is used in the unequal weight
model, the actual implementation is a one-step process. This is done as follows.
Given a traveling salesman tour through the set of customers and the depot, we
number the nodes x(0), x(1), . . . , x(n) in order of their appearance on the tour where
x(0) is the depot. We then define a distance matrix with cost Cjk , where

Cjk �




the distance traveled by a vehicle that starts

at x(0), visits customers x(j+1), x(j+2), . . . , x(k)

and returns to x(0), if
∑k

i�j+1 wx(i) ≤ Q;

∞, otherwise.

As in the equal demand case (see Section 5.2), it follows that a shortest path from
x(0) to x(n) in the directed graph with distance cost Cjk corresponds to an optimal
partition of the traveling salesman tour. This version of the heuristic, developed
by Beasley and called the Unequal-Weight Optimal Partitioning (UOP) heuristic,
also has ZUOP(α)/Z∗ ≤ 2 + (1 − 2

Q
)α. The following theorem, proved by Li and

Simchi-Levi (1990), implies that when α � 1, this bound is asymptotically tight
as Q approaches infinity.

Theorem 6.3.2 For any integer Q ≥ 1, there exists a problem instance with
ZUOP(1)/Z∗u (and therefore ZUITP(1)/Z∗u) arbitrarily close to 3− 6

Q+2 .

Proof. We modify the graph G(2,Kq+1), whereK is a positive integer, as follows.
Every group now, instead of containing Q customers, contains only one customer
with demandQ. The otherKQ customers have unit demand. The optimal traveling
salesman tour is again as shown in Figure 5.2, and the solution obtained by the
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UOP(1) heuristic is to have 2KQ+ 1 vehicles, each one of them serving only one
customer. Thus

ZUOP(1) � 2(KQ+ 1)+ 4KQ.

The optimal solution to this problem has KQ+ 1 vehicles serve those customers
with demand Q, and K other vehicles serve the unit demand customers. Hence,

Z∗u � 2(KQ+ 1)+ 4K.

Therefore,

lim
K→∞

ZUOP(1)

Z∗u
� lim

K→∞
2(KQ+ 1)+ 4KQ

2(KQ+ 1)+ 4K
� 3− 6

Q+ 2
.

6.4 The Asymptotic Optimal Solution Value

In the probabilistic analysis of the UCVRP we assume, without loss of generality,
that the vehicles’ capacity Q equals 1, and the demand of each customer is no
more than 1. Thus, vehicles and demands in a capacitated vehicle routing problem
correspond to bins and item sizes (respectively) in a Bin-Packing Problem. Hence,
for every routing instance there is a unique corresponding bin-packing instance.

Assume the demands w1, w2, . . . , wn are drawn independently from a distri-
bution / defined on [0, 1]. Assume customer locations are drawn independently
from a probability measureµwith compact support in IR2. We assume that di > 0
for each i ∈ N since customers at the depot can be served at no cost. In this section
we find the asymptotic optimal solution value for any/ and anyµ. This is done by
showing that an asymptotically optimal algorithm for the Bin-Packing Problem,
with item sizes distributed like /, can be used to solve, in an asymptotic sense,
the UCVRP.

Given the demands w1, w2, . . . , wn, let b∗n be the number of bins used in the
optimal solution to the corresponding Bin-Packing Problem. As demonstrated in
Theorem 3.2.4 there exists a constant γ > 0 (depending only on /) such that

lim
n→∞

b∗n
n
� γ (a.s.). (6.2)

We shall refer to the constant γ as the bin-packing constant and omit the depen-
dence of γ on / in the notation.

The following theorem was proved by Simchi-Levi and Bramel (1990). Recall,
without loss of generality the depot is positioned at (0, 0) and ||x|| represents the
distance from the point x ∈ IR2 to the depot.

Theorem 6.4.1 Let xk , k � 1, 2, . . . , n be a sequence of independent random
variables having a distribution µ with compact support in IR2. Let

E(d) �
∫
IR2
||x||dµ(x).
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Let the demands wk , k � 1, 2, . . . , n be a sequence of independent random vari-
ables having a distribution / with support on [0, 1] and assume that the demands
and the locations of the customers are independent of each other. Let γ be the
bin-packing constant associated with the distribution /; then, almost surely,

lim
n→∞

1

n
Z∗u � 2γE(d).

Thus, the theorem fully characterizes the asymptotic optimal solution value of
the UCVRP, for any reasonable distributions / and µ. An interesting observation
concerns the case where the distribution of the demands allows perfect packing,
that is, when the wasted space in the bins tends to become a small fraction of the
number of bins used. Formally, / is said to allow perfect packing if almost surely
limn→∞

b∗n
n
� E(w). Karmarkar (1982) proved that a nonincreasing probability

density function (with some mild regularity conditions) allows perfect packing.
Rhee (1988) completely characterizes the class of distribution functions / which
allow perfect packing. Clearly, in this case γ � E(w). Thus, Theorem 6.4.1
indicates that allowing the demands to be split or not does not change the asymptotic
objective function value. That is, the UCVRP and the ECVRP can be said to be
asymptotically equivalent when / allows perfect packing.

To prove Theorem 6.4.1, we start by presenting in Section 6.4.1 a lower bound
on the optimal objective function value. In Section 6.4.2, we present a heuristic for
the UCVRP based on a simple region partitioning scheme. We show that the cost
of the solution produced by the heuristic converges to our lower bound for any /
and µ, thus proving the main theorem of the section.

6.4.1 A Lower Bound

We introduce a lower bound on the optimal objective function value Z∗u. Let A ⊂
IR2 be the compact support ofµ and define dmax

.� supx∈A{||x||}. For a given fixed
positive integer r ≥ 1, partition the circle with radius dmax centered at the depot
into r rings of equal width. Let dj

.� (j − 1) dmax
r

for j � 1, 2, . . . , r, r + 1, and
construct the following 2r sets of customers:

Sj �
{
xk ∈ N

∣∣∣dj < dk ≤ dj+1

}
for j � 1, . . . , r,

and

Fj �
r⋃
i�j

Si for j � 1, 2, . . . , r.

Note that Fr ⊆ Fr−1 ⊆ · · · ⊆ F1 � N since dk > 0 for all yk ∈ N .
In the lemma below, we show that |Fr | grows to infinity almost surely as n

grows to infinity. This implies that |Fj | also grows to infinity almost surely for
j � 1, 2, . . . , r, since |Fj+1| ≤ |Fj |, for j � 1, 2, . . . , r − 1. The proof follows
from the definitions of compact support and dmax.
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Lemma 6.4.2

lim
n→∞

|Fr |
n

� p (a.s.) for some constant p > 0.

For any set of customers T ⊆ N , let b∗(T ) be the minimum number of vehicles
needed to serve the customers in T ; that is, b∗(T ) is the optimal solution to the
Bin-Packing Problem defined by item sizes equal to the demands of the customers
in T . We can now present a family of lower bounds on Z∗u that hold for different
values of r ≥ 1.

Lemma 6.4.3

Z∗u > 2
dmax

r

r∑
j�2

b∗(Fj ) for any r ≥ 1.

Proof. Given an optimal solution to the UCVRP, letK∗
r be the number of vehicles

in the optimal solution that serve at least one customer from Sr , and for j �
1, 2, . . . , r− 1, letK∗

j be the number of vehicles in the optimal solution that serve
at least one customer in the set Sj , but do not serve any customers in Fj+1. Also,
let V ∗

j be the number of vehicles in the optimal solution that serve at least one
customer in Fj . By these definitions, V ∗

j �
∑r

i�j K
∗
i , for j � 1, 2, . . . , r; hence,

K∗
j � V ∗

j − V ∗
j+1 for j � 1, 2, . . . , r − 1 and K∗

r � V ∗
r .

Note that V ∗
j ≥ b∗(Fj ), for j � 1, 2, . . . , r , since V ∗

j represents the number
of vehicles used in a feasible packing of the demands of customers in Fj , while
b∗(Fj ) represents the number of bins used in an optimal packing.

By the definition of K∗
j and dj , Z∗u > 2

∑r
j�1 djK

∗
j and therefore,

Z∗u > 2drV
∗
r +

r−1∑
j�1

2dj
(
V ∗
j − V ∗

j+1

)

� 2d1V
∗

1 +
r∑

j�2

2(dj − dj−1)V ∗
j

� 2
r∑

j�2

(dj − dj−1)V ∗
j (since d1 � 0)

≥ 2
r∑

j�2

(dj − dj−1)b∗(Fj ) (since V ∗
j ≥ b∗(Fj ))

� 2
r∑

j�2

dmax

r
b∗(Fj ).

Note that Lemma 6.4.3 provides a deterministic lower bound; that is, no proba-
bilistic assumptions are involved. Lemma 6.4.2 and Lemma 6.4.3 are both required
to provide a lower bound on 1

n
Z∗u that holds almost surely.
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Lemma 6.4.4 Under the conditions of Theorem 6.4.1, we have

lim
n→∞

1

n
Z∗u ≥ 2γE(d) (a.s.).

Proof. Lemma 6.4.3 implies that

lim
n→∞

1

n
Z∗u ≥ 2

dmax

r
lim
n→∞

r∑
j�2

b∗(Fj )

n

� 2
dmax

r

r∑
j�2

lim
n→∞

b∗(Fj )

|Fj | lim
n→∞

|Fj |
n
.

From Lemma 6.4.2, |Fj | grows to infinity almost surely as n grows to infinity,
for j � 1, 2, . . . , r . Moreover, since demands and locations are independent of
each other, the demands in Fj , j � 1, 2, . . . , r are distributed like /. Therefore,

lim
n→∞

b∗(Fj )

|Fj | � lim
|Fj |→∞

b∗(Fj )

|Fj | � γ (a.s.).

Hence, almost surely

lim
n→∞

1

n
Z∗u ≥ 2

dmax

r

r∑
j�2

γ lim
n→∞

|Fj |
n

� 2
dmax

r
γ lim
n→∞

1

n

r∑
j�2

|Fj |.

Since

Fj �
r⋃
i�j

Si for j � 1, 2, . . . , r,

we have |Fj | �
∑r

i�j |Si |; hence, almost surely

lim
n→∞

1

n
Z∗u ≥ 2

dmax

r
γ lim
n→∞

1

n

r∑
j�2

r∑
i�j

|Si |

� 2
dmax

r
γ lim
n→∞

1

n

r∑
j�2

(j − 1)|Sj |.

By the definition of dj ,

lim
n→∞

1

n
Z∗u ≥ 2γ lim

n→∞
1

n

r∑
j�2

dj |Sj | � 2γ lim
n→∞

1

n

r∑
j�1

dj |Sj |,
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since d1 � 0 and |S1| ≤ n. By the definition of dj and Sj , dj ≥ dk − dmax
r

, for all
xk ∈ Sj . Then almost surely

lim
n→∞

1

n
Z∗u ≥ 2γ lim

n→∞
1

n

∑
xk∈N

(dk − dmax

r
)

� 2γ lim
n→∞

1

n

∑
xk∈N

dk − 2γ
dmax

r

� 2γE(d)− 2γ
dmax

r
.

This lower bound holds for arbitrarily large r; hence,

lim
n→∞

1

n
Z∗u ≥ 2γE(d) (a.s.).

In the next section we show that this lower bound is tight by presenting an upper
bound on the cost of the optimal solution that asymptotically approaches the same
value.

6.4.2 An Upper Bound

We prove Theorem 6.4.1 by analyzing the cost of the following three-step heuristic
which provides an upper bound on Z∗u. In the first step, we partition the area A
into subregions. Then, for each of these subregions, we find the optimal packing
of the customers’ demands in the subregion, into bins of unit size. Finally, for each
subregion, we allocate one vehicle to serve the customers in each bin.

The Region Partitioning Scheme

For a fixed h > 0, let G(h) be an infinite grid of squares with side h√
2

and edges
parallel to the system coordinates. Recall that A is the compact support of the
distribution functionµ, and letA1, A2, . . . , At(h) be the intersection of the squares
of G(h) with the compact support A that have µ(Ai) > 0. Note t(h) <∞ since A
is compact and t(h) is independent of n.

Let N (i) be the set of customers located in subregion Ai , and define n(i)
.�

|N (i)|. For every i � 1, 2, . . . , t(h), let b∗(i) be the minimum number of bins
needed to pack the demands of customers in N (i). Finally, for each subregion
Ai , i � 1, 2, . . . , t(h), let nj (i) be the number of customers in the j th bin of this
optimal packing, for each j � 1, 2, . . . , b∗(i).

We now proceed to find an upper bound on the value of our heuristic. Recall
that for each bin produced by the heuristic, we send a single vehicle to serve all the
customers in the bin. First, the vehicle visits the customer closest to the depot in
the subregion to which the bin belongs, then serves all the customers in the bin in
any order, and the vehicle returns to the depot through the closest customer again.
Let d(i) be the distance from the depot to the closest customer in N (i), that is, in
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subregion Ai . Note that since each subregion Ai is a subset of a square of side h√
2
,

the distance between any two customers in Ai is no more than h . Consequently,
using the method just described, the distance traveled by the vehicle that serves all
the customers in the j th bin of subregion Ai is no more than

2d(i)+ h(nj (i)+ 1).

Therefore,

Z∗u ≤
t(h)∑
i�1

b∗(i)∑
j�1

[
2d(i)+ h(nj (i)+ 1)

]
≤ 2

t(h)∑
i�1

b∗(i)d(i)+ 2nh. (6.3)

This inequality will be coupled with the following lemma to find an almost sure
upper bound on the cost of this heuristic.

Lemma 6.4.5 Under the conditions of the Theorem 6.4.1, we have

lim
n→∞

1

n

t(h)∑
i�1

b∗(i)d(i) ≤ γE(d) (a.s.).

Proof. Letpi
.� µ(Ai) be the probability that a given customer xk falls in subregion

Ai . Since pi > 0, by the strong law of large numbers, limn→∞ n(i)
n
� pi almost

surely and therefore n(i) grows to infinity almost surely as n grows to infinity.
Thus, we have

lim
n→∞

b∗(i)
n(i)

� lim
n(i)→∞

b∗(i)
n(i)

� γ (a.s.).

Hence,

lim
n→∞

1

n

t(h)∑
i�1

b∗(i)d(i) � lim
n→∞

1

n

t(h)∑
i�1

b∗(i)
n(i)

n(i)d(i)

≤ lim
n→∞

1

n

t(h)∑
i�1

b∗(i)
n(i)

∑
xk∈N (i)

dk (since d(i) ≤ dk,∀xk ∈ N (i))

�
t(h)∑
i�1

lim
n→∞

b∗(i)
n(i)

lim
n→∞

1

n

∑
xk∈N (i)

dk

� γ lim
n→∞

1

n

∑
xk∈N

dk.

Using the strong law of large numbers, we have

lim
n→∞

1

n

t(h)∑
i�1

b∗(i)d(i) ≤ γE(d) (a.s.),

which completes the proof of this lemma.
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Remark: A simple modification of the proof of Lemma 6.4.5 shows that the in-
equality that appears in the statement of the lemma can be replaced by equality
(see Exercise 6.5).

We can now finish the proof of the Theorem 6.4.1. From equation (6.3) we have

1

n
Z∗u ≤

2

n

t(h)∑
i�1

b∗(i)d(i)+ 2h.

Taking the limits and using Lemma 6.4.5, we obtain

lim
n→∞

1

n
Z∗u ≤ 2γE(d)+ 2h (a.s.).

Since this inequality holds for arbitrarily small h > 0, we have

lim
n→∞

1

n
Z∗u ≤ 2γE(d) (a.s.).

This upper bound combined with the lower bound of Lemma 6.4.4 proves the
main theorem.

6.5 Probabilistic Analysis of Classical Heuristics

Recently, Bienstock et al. (1993) analyze the average performance of heuristics
that belong to the route first-cluster second class. Recall our definition of this class:
all those heuristics that first order the customers according to their locations and
then partition this ordering to produce feasible clusters.

It is clear that the UITP(α) and UOP(α) heuristics described in Section 6.3
belong to this class. As mentioned in Section 6.2, the Sweep algorithm suggested
by Gillett and Miller can also be viewed as a member of this class.

Bienstock et al. show that the performance of any heuristic in this class is
strongly related to the performance of a nonefficient bin-packing heuristic called
Next-Fit (NF). The Next-Fit bin-packing heuristic can be described in the following
manner. Given a list of n items, start with item 1 and place it in bin 1. Suppose we
are packing item j ; let bin i be the highest indexed nonempty bin. If item j fits
in bin i, then place it there; else place it in a new bin indexed i + 1. Thus, NF is
an online heuristic; that is, it assigns items to bins according to the order in which
they appear without using any knowledge of subsequent items in the list.

The NF heuristic possesses some interesting properties that will be useful in
the analysis of the class route first-cluster second. Assume the items are indexed
1, 2, . . . , n and let a consecutive heuristic be one that assigns items to bins such
that items in any bin appear consecutively in the sequence. The following is a
simple observation.

Property 6.5.1 Among all consecutive heuristics, NF uses the least number of
bins.
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The next property is similar to a property developed in Section 3.2 for b∗n, the
optimal solution to the Bin-Packing Problem.

Property 6.5.2 Let the item sizesw1, w2, . . . , wn, . . . in the Bin-Packing Problem
be a sequence of independent random variables and let bNF

n be the number of bins
produced by NF on the items 1, 2, . . . , n. For every t ≥ 0

Pr
{
|bNF
n − E(bNF

n )| > t
}
≤ 2 exp(−t2/8n). (6.4)

A direct result of this property is the following. The proof is left as an exercise
(Exercise 6.2).

Corollary 6.5.3 For any n ≥ 1,

bNF
n ≤ E(bNF

n )+ 4
√
n log n (a.s.).

The next property is a simple consequence of the theory of subadditive processes
(see Section 3.2) and the structure of solutions generated by NF.

Property 6.5.4 For any distribution of item sizes, there exists a constant γ NF > 0

such that limn→∞
bNF
n

n
� γ NF almost surely, where bNF

n is the number of bins
produced by the NF packing and γ NF depends only on the distribution of the item
sizes.

These properties are used to prove the following theorem, the main result of this
section.

Theorem 6.5.5 (i) LetH be a route first-cluster second heuristic. Then, under the
assumptions of Theorem 6.4.1, we have

lim
n→∞

1

n
ZH ≥ 2γ NFE(d) (a.s.).

(ii) The UOP(α) heuristic is the best possible heuristic in this class; that is, for
any fixed α ≥ 1 we have

lim
n→∞

1

n
ZUOP(α) � 2γ NFE(d) (a.s.).

In view of Theorems 6.4.1 and 6.5.5 it is interesting to compare γ NF to γ since
the asymptotic error of any heuristic H in the class of route first-cluster second
satisfies

lim
n→∞

ZH/Z∗u ≥ lim
n→∞ZUOP(α)/Z∗u � γ NF/γ.

Although in general the ratio is difficult to characterize, Karmarkar was able to
characterize it for the case when the item sizes are uniformly distributed on an
interval (0, a] for 0 < a ≤ 1. For instance, for a satisfying 1

2 < a ≤ 1, we have

γ NF/γ � 2

a

{ 1

12a3
(15a3 − 9a2 + 3a − 1)+

√
2
(1− a

2a

)
tanh

(1− a√
2a

)}
,
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so that when the item sizes are uniform (0, 1] the above ratio is 4
3 which implies

that UOP(α) converge to a value which is 33.3 % more than the optimal cost, a
very disappointing performance for the best heuristic currently available in terms
of worst-case behavior.

Moreover, heuristics in the route first-cluster second class can never be asymp-
totically optimal for the UCVRP, except in some trivial cases (e.g., demands are
all the same size). In fact, Theorem 6.5.5 clearly demonstrates that the route first-
cluster second class suffers from misplaced priorities. The routing (in the first
phase) is done without any regard to the customer demands and thus this leads to
a packing of demands into vehicles that is at best like the Next-Fit bin-packing
heuristic. This is clearly suboptimal in all but trivial cases, one being when cus-
tomers have equal demands, and thus we see the connection with the results of
the previous chapter. Therefore, this theorem shows that an asymptotically optimal
heuristic for the UCVRP must use an asymptotically optimal bin-packing heuristic
to pack the customer demands into the vehicles.

In the next two subsections we prove Theorem 6.5.5 by developing a lower
bound (Section 6.5.1) on ZH and an upper bound on ZUOP(α) (Section 6.5.2).

6.5.1 A Lower Bound

In this section, we present a lower bound on the solution produced by these heuris-
tics. Let H denote a route first-cluster second heuristic.

As in Section 6.4.1, let A be the compact support of the distribution µ, and
define dmax

.� supx∈A{||x||}. Given a fixed integer r ≥ 1, define dj � (j − 1) dmax
r

for j � 1, 2, . . . , r, and construct the following r sets of customers:

Fj �
{
xk ∈ N

∣∣∣dj < dk

}
for j � 1, . . . , r.

Note that Fr ⊆ Fr−1 ⊆ . . . ⊆ F1, and F1 � N since, without loss of generality,
dk > 0 for all xk ∈ N .

Let the customers be indexed x1, x2, . . . , xn according to the order determined
by the heuristic H in the route-first phase.

For any set of customers T ⊆ N , let bNF(T ) be the number of bins generated by
the Next-Fit heuristic when applied to the Bin-Packing Problem defined by item
sizes equal to the demands of the customers in T , packed in the order of increasing
index.

Lemma 6.5.6 For any r ≥ 1,

ZH
n > 2

dmax

r

r∑
j�2

bNF(Fj ).

Proof. For a given solution constructed by H, let V (Fj ) be the number of vehicles
that serve at least one customer in Fj , for j � 1, 2, . . . , r . By this definition,
V (Fj ) − V (Fj+1), j � 1, 2, . . . , r − 1 is exactly the number of vehicles whose
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farthest customer visited is in Fj but not in Fj+1, and trivially V (Fr ) is the number
of vehicles whose farthest customer visited is in Fr . Hence,

ZH
n > 2drV (Fr )+

r−1∑
j�1

2dj
(
V (Fj )− V (Fj+1)

)

� 2d1V (F1)+
r∑

j�2

2(dj − dj−1)V (Fj ).

For a given subset of customers Fj , j � 1, 2, . . . , r , the V (Fj ) vehicles that
contain these customer demands (in the solution produced by H) can be ordered
in such a way that the customer indices are in increasing order. Disregarding
the demands of customers in these vehicles that are not in Fj , this represents the
solution produced by a consecutive packing heuristic on the demands of customers
inFj . By Property 6.5.1 we must haveV (Fj ) ≥ bNF(Fj ), for every j � 1, 2, . . . , r .
This, together with d1 � 0, dj − dj−1 � dmax

r
, imply that

ZH
n > 2

r∑
j�2

dmax

r
bNF(Fj ).

This lemma is used to derive an asymptotic lower bound on the cost of the
solution produced by H that holds almost surely. The proof of the lemma is identical
to the proof of Lemma 6.4.4.

Lemma 6.5.7 Under the conditions of Theorem 6.4.1, we have

lim
n→∞

1

n
ZH
n ≥ 2γ NFE(d) (a.s.).

In the next section we show that this lower bound is asymptotically tight in the
case of UOP(α) by presenting an upper bound that approaches the same value.

6.5.2 The UOP(α) Heuristic

We prove Theorem 6.5.5 by finding an upper bound onZUOP(α)
n . LetLα be the length

of the α-optimal tour selected by UOP(α). Starting at the depot and following
the tour in an arbitrary orientation, the customers and the depot are numbered
x(0), x(1), x(2), . . . , x(n), where x(0) is the depot. Select an integer m

.� �nβ� for
some fixed β ∈ ( 1

2 , 1) and note that for each such β we have limn→∞ m
n
� 0 (i.e.,

m � o(n)) and limn→∞
√
n

m
� 0 (i.e.,

√
n � o(m)). We partition the path from x(1)

to x(n) into m + 1 segments, such that each one contains exactly " n
m
# customers,

except possibly the last one.
Number the segments 1, 2, . . . , m + 1 according to their appearance on the

traveling salesman tour, where each segment has exactly " n
m
# customers except

possibly segment m + 1. Let Li (respectively, Ni) be the length of (respectively,
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subset of customers in) segment i, 1 ≤ i ≤ m + 1. Finally, let ni � |Ni |, i �
1, 2, . . . , m+ 1.

To obtain an upper bound on the cost of UOP(α), we apply the Next-Fit heuristic
to each segment separately, where items are packed in bins in the same order they
appear in the segment. This gives us a partition of the tour that must provide
an upper bound on the cost produced by UOP(α). Let bNF

i be the number of
bins produced by the Next-Fit heuristic when applied to the customer demands in
segment i. We assign a single vehicle to each bin produced by the above procedure,
each of which starts at the depot, visits the customers assigned to its corresponding
bin in the same order as they appear on the traveling salesman tour, and then returns
to the depot. Let di be the distance from the depot to the farthest customer in Ni .
Clearly, the total distance traveled by all the vehicles that serve the customers in
segment i, 1 ≤ i ≤ m+ 1, is no more than

2bNF
i di + Li.

Hence,

ZUOP(α) ≤ 2
m+1∑
i�1

bNF
i di + Lα

≤ 2
m∑
i�1

bNF
i di + 2bNF

m+1dmax + αL∗. (6.5)

Lemma 6.5.8 Under the conditions of Theorem 6.4.1, we have

lim
n→∞

1

n

m∑
i�1

bNF
i di ≤ γ NFE(d) (a.s.).

Proof. Since the number of customers in every segment i, 1 ≤ i ≤ m, is exactly
ni � " n

m
# and limn→∞ m

n
� 0, we have for a given i, 1 ≤ i ≤ m,

bNF
i ≤ E(bNF

i )+
√

9Kni log ni (a.s.),

for any K ≥ 2.
We now show that, for sufficiently large n, these m inequalities hold simultane-

ously almost surely. To prove this, note that Property 6.5.2 tells us that, for ni large
enough, the probability that one such inequality does not hold is no more than
2 exp(−K log ni) � 2n−Ki . Thus, the probability that at least one of these inequal-
ities is violated is no more than 2m( n

m
−1)−K . By the Borel-Cantelli Lemma, these

m inequalities hold almost surely if
∑

n m( m
n−m )K <∞. Choosing K >

1+β
1−β > 3

shows that this holds for any m � �nβ� where 1
2 < β < 1.

Thus,

lim
n→∞

1

n

m∑
i�1

bNF
i di ≤ γ NF lim

n→∞

m∑
i�1

1

m
di (a.s.).
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Clearly, di ≤ dk + Li for every xk ∈ Ni and every i � 1, 2, . . . , m. Thus,

di ≤
(⌊ n

m

⌋−1 ∑
xk∈Ni

dk

)
+ Li for every i � 1, 2 . . . , m.

Hence,

lim
n→∞

m∑
i�1

1

m
di ≤ lim

n→∞
1

n−m

∑
xk∈N

dk + lim
n→∞

1

m
Lα

≤ lim
n→∞

1

n−m

∑
xk∈N

dk + α lim
n→∞

1

m
L∗.

Applying the strong law of large numbers and using limn→∞ m
n
� 0, we have

lim
n→∞

1

n−m

∑
xk∈N

dk � E(d) (a.s.).

Now from Chapter 3, we know that the length of the optimal traveling salesman
tour through a set of k points independently and identically distributed in a given
region grows almost surely like

√
k. This together with limn→∞

√
n

m
� 0 implies

that

lim
n→∞

L∗

m
� 0 (a.s.).

These facts complete the proof.
We can now complete the proof of Theorem 6.4.1. From (6.5) and Lemma 4.1

we have

lim
n→∞

1

n
ZUOP(α)
n ≤ 2γ NFE(d)+ 2dmax lim

n→∞
1

n
bNF
m+1 + α lim

n→∞
1

n
L∗ (a.s.).

Finally, using Beardwood et al.’s (1959) result (see Theorem 3.3.2), and the fact
that the number of points in segment m + 1 is at most n

m
, we obtain the desired

result.

6.6 The Uniform Model

To our knowledge, no polynomial time algorithm that is asymptotically optimal
is known for the UCVRP for general /. We now describe such a heuristic for the
case where / is uniform on the interval [0, 1]. In the unit interval, it is known that
there exists an asymptotically optimal solution to the Bin-Packing Problem with
at most two items per bin. This forms the basis for the heuristic for the UCVRP,
called Optimal Matching of Pairs (OMP). It considers only feasible solutions in
which each vehicle visits no more than two customers. Among all such feasible
solutions, the heuristic finds the one with minimum cost. This can be done by
formulating the following integer linear program.
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For every xk, xl ∈ N , let

ckl �



dk + dkl + dl, if k �� l and wk + wl ≤ 1;

2dk, if k � l;

∞, otherwise.

The integer program to solve is

Problem P : Min
∑
k≤l

cklXkl

s.t. ∑
l≥k

Xkl +
∑
l<k

Xlk � 1, ∀k � 1, 2, . . . , n (6.6)

Xkl ∈ {0, 1}, ∀k ≤ l. (6.7)

For k < l, Xkl is 1 if a vehicle delivers items to customers xk and xl and is 0
otherwise. Constraint (6.6) ensures that each customer is visited.

It is not hard to see that P can be solved in polynomial time since it is no more
than a classical weighted matching problem defined on a specific graph. Define
the following graph G � (N,E), where each customer xk is represented by two
nodes vk and v′k , for k � 1, 2, . . . , n. The set of edges of G is defined as follows.

E �{(vk, v′k)|xk ∈ N}
∪ {(vk, vl)|xk ∈ N, xl ∈ N, k �� l, wk + wl ≤ 1}
∪ {(v′k, v′l)|xk ∈ N, xl ∈ N, k �� l, wk + wl ≤ 1}.

Thus, G has 2n vertices. The length of edge (vk, vl), for k �� l, is ckl , of edge
(vk, v′k) is ckk and of edge (v′k, v

′
l) is 0, for all k and l.

Note that any given feasible solution to P can be transformed into a feasible
solution to the matching problem onGwith the same cost. For any feasible solution
to P, choose edge (vk, v′k) if customer k is served by a vehicle that does not serve
any other customer and choose edges (vk, vl) and (v′k, v

′
l) if customers xk and xl

are visited together. Similarly, any feasible solution to the matching problem can
be transformed into a feasible solution to P with the same cost. Hence, the two
problems are equivalent.

An optimal matching in G can be found in O(n3) using Lawler’s (1976) algo-
rithm.

The main result of this section is the following.

Theorem 6.6.1 Let xk , k � 1, 2, . . . , n be a sequence of independent random
variables having a distribution µ with compact support in IR2. Let

E(d) �
∫
IR2
||x||dµ(x).

Let the demands wk , k � 1, 2, . . . , n be a sequence of independent random vari-
ables having a uniform distribution on [0, 1] and assume that the demands and the
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location of the customers are independent of each other. Then, the OMP heuristic
is asymptotically optimal. That is, with probability one,

lim
n→∞

Z∗u
n
� lim

n→∞
ZOMP

n
� E(d).

To prove that the OMP heuristic is asymptotically optimal, we approximate its
performance by that of the Sliced Region Partitioning heuristic with parameters h
and r (SRP (h, r)). For any fixed positive integer r ≥ 1, the set N is partitioned
into the following 2r disjoint subsets, some of which may be empty.

Nj �
{
xk ∈ N

∣∣∣1

2

(
1− j + 1

r

)
< wk ≤ 1

2

(
1− j

r

)}
j � 1, 2, . . . , r − 1,

and

Nj �
{
xk ∈ N

∣∣∣1

2

(
1+ j − 1

r

)
< wk ≤ 1

2

(
1+ j

r

)}
j � 1, 2, . . . , r − 1.

Also

N0 �
{
xk ∈ N

∣∣∣1

2

(
1− 1

r

)
< wk ≤ 1

2

}
,

and

Nr �
{
xk ∈ N

∣∣∣1

2

(
1+ r − 1

r

)
< wk

}
.

The number of customers in each Nj (respectively, Nj ) is denoted by nj (respec-
tively, nj ) for all possible values of j .

Note that for any j � 1, 2, . . . , r − 1, one vehicle can deliver the demand of a
customer fromNj together with the demand of exactly one customer fromNj . The
SRP (h, r) heuristic generates pairs of customers, one customer from Nj and one
fromNj , for every j � 1, 2, . . . , r−1, using the same region partitioning scheme
used in the proof of Theorem 6.4.1 (Section 6.4.2). The customers in N0 ∪Nr are
served separately; a single vehicle is assigned to each of these customers.

For every subregion Ai, i � 1, 2, . . . , t(h), generated by the grid G(h) (see
Section 6.4.2) and for every j � 1, 2, . . . , r − 1, let Nj (i) (respectively, Nj (i))
be the subset of points in Nj (respectively, Nj ) that fall in subregion Ai . Also, let
nj (i) � |Nj (i)| and nj (i) � |Nj (i)|.

In each subregion Ai , i � 1, 2, . . . , t(h), and for any j � 1, 2, . . . , r − 1,
we arbitrarily match one customer from Nj (i) with exactly one customer from
Nj (i); one vehicle serves each such pair. If nj (i) � nj (i), then all customers in
Nj (i)∪Nj (i) are matched and therefore visited in pairs. If, however, nj (i) �� nj (i),
then we can match exactly min{nj (i), nj (i)} pairs of customers. The remaining
|nj (i)−nj (i)| customers inNj (i)∪Nj (i) that have not yet been matched are each
served by one vehicle. Thus the total number of vehicles used in subregion Ai is

n0(i)+ nr (i)+
r−1∑
j�1

max{nj (i), nj (i)}.
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The heuristic clearly generates a feasible solution to the UCVRP. Moreover, this
solution is feasible for P, as each vehicle visits at most two customers. Thus,

ZOMP ≤ ZSRP (h,r) for any r ≥ 1 and h > 0.

We now proceed by finding an upper bound on ZSRP (h,r). Essentially the same
analysis as in Section 6.4.2 shows that the total distance traveled by all vehicles is
no more than

2
t(h)∑
i�1

d(i)
[
n0(i)+ nr (i)+

r−1∑
j�1

max{nj (i), nj (i)}
]
+ 2nh.

Since

lim
n(i)→∞

nj (i)

n(i)
� lim

n(i)→∞
nj (i)

n(i)
� 1

2r
(a.s.) for all j � 1, 2, . . . , r,

we have

lim
n(i)→∞

1

n(i)

[
n0(i)+ nr (i)+

r−1∑
j�1

max{nj (i), nj (i)}
]
� 1

2
+ 1

2r
(a.s.).

The remainder of the proof is identical to the proof of the upper bound of Theorem
6.4.1.

Therefore, the OMP is asymptotically optimal when demands are uniformly
distributed between 0 and 1. In fact, the proof can be extended to a larger class of
demand distributions. For example, for any demand distribution with symmetric
density, one with f (x) � f (1 − x) for x ∈ [0, 1], one can show that the same
result holds.

6.7 The Location-Based Heuristic

Recently, Bramel and Simchi-Levi (1995) used the insight obtained from the anal-
ysis of the asymptotic optimal solution value (see Theorem 6.4.1 above and the
discussion that follows it) to develop a new and effective class of heuristics for
the UCVRP called Location-Based Heuristics. Specifically, this class of heuristics
was motivated by the following observations.

A byproduct of the proof of Theorem 6.4.1 is that the region partitioning scheme
used to find an upper bound on Z∗u is asymptotically optimal. Unfortunately, the
scheme is not polynomial since it requires, among other things, optimally solving
the Bin-Packing Problem. But, the scheme suggests that, asymptotically, the tours
in an optimal solution will be of a very simple structure consisting of two parts. The
first is the round trip the vehicle makes from the depot to the subregion (where the
customers are located); we call these the simple tours. The second is the additional
distance (we call this insertion cost) accrued by visiting each of the customers it
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serves in the subregion. Our goal is therefore to construct a heuristic that assigns
customers to vehicles so as to minimize the sum of the length of all simple tours
plus the total insertion costs of customers into each simple tour. If done carefully,
the solution obtained is asymptotically optimal.

To construct such a heuristic we formulate the routing problem as another com-
binatorial problem commonly called (see, e.g., Pirkul (1987)) the single-source
Capacitated Facility Location Problem (CFLP). This problem can be described as
follows: given m possible sites for facilities of fixed capacity Q, we would like to
locate facilities at a subset of these m sites and assign n retailers, where retailer i
demandswi units of a facility’s capacity, in such a way that each retailer is assigned
to exactly one facility, the facility capacities are not exceeded and the total cost is
minimized. A site-dependent cost is incurred for locating each facility; that is, if
a facility is located at site j , the set-up cost is vj , for j � 1, 2, . . . , m. The cost
of assigning retailer i to facility j is cij (the assignment cost), for i � 1, 2, . . . , n
and j � 1, 2, . . . , m.

The single-source CFLP can be formulated as the following integer linear pro-
gram. Let

yj �
{ 1, if a facility is located at site j ,

0, otherwise,

and let

xij �
{ 1, if retailer i is assigned to a facility at site j ,

0, otherwise.

Problem CFLP : Min

n∑
i�1

m∑
j�1

cij xij +
m∑
j�1

vjyj

s.t.

m∑
j�1

xij � 1, ∀i (6.8)

n∑
i�1

wixij ≤ Q, ∀j (6.9)

xij ≤ yj , ∀i, j (6.10)

xij ∈ {0, 1}, ∀i, j (6.11)

yj ∈ {0, 1}, ∀j. (6.12)

Constraints (6.8) ensure that each retailer is assigned to exactly one facility,
and constraints (6.9) ensure that the facility’s capacity constraint is not violated.
Constraints (6.10) guarantee that if a retailer is assigned to site j , then a facility
is located at that site. Constraints (6.11) and (6.12) ensure the integrality of the
variables.

In formulating the UCVRP as an instance of the CFLP, we set every customer
xj in the UCVRP as a possible facility site in the location problem. The length of
the simple tour that starts at the depot visits customer xj and then goes back to the
depot is the set-up cost in the location problem (i.e., vj � 2dj ). Finally, the cost of
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inserting a customer into a simple tour in the UCVRP is the assignment cost in the
location problem (i.e., cij � di + dij − dj ). This cost should represent the added
cost of inserting customer i into a simple tour through the depot and customer j .
Consequently, when i is added to a tour with j , the added cost is cij � di+dij−dj ,
so that vj + cij � di + dij + dj . However, when a third customer is added, the
calculation is not so simple, and therefore the values of cij should in fact represent
an approximation to the cost of adding i to a tour that goes through customer j
and the depot. Hence, finding a solution for the CVRP is obtained by solving the
CFLP with the data as described above. The solution obtained from the CFLP is
transformed (in an obvious way) to a solution to the CVRP.

Although NP-Hard, the CFLP can efficiently, but approximately, be solved
by the familiar Lagrangian relaxation technique (see Chapter 12), as described
in Pirkul or Bramel and Simchi-Levi (1995) or by a cutting-plane algorithm, as
described in Deng and Simchi-Levi (1992).

We can now describe the Location-Based Heuristic (LBH):

The Location-Based Heuristic

Step 1: Formulate the UCVRP as an instance of the CFLP.

Step 2: Solve the CFLP.

Step 3: Transform the solution obtained in Step 2 into a solution for the UCVRP.

Variations of the LBH can also be applied to other problems; we discuss this
and related issues in the next chapter where we consider a more general vehicle
routing problem.

The LBH algorithm was tested on a set of 11 standard test problems taken from
the literature. The problems are in the Euclidean plane and they vary in size from
15 to 199 customers. The performance of the algorithm on these test problems
was found to be comparable to the performance of most published heuristics. This
includes both the running time of the algorithm as well as the quality (value) of
the solutions found; see Bramel and Simchi-Levi (1995) for a detailed discussion.

One way to explain the excellent performance of the LBH is by analyzing its
average performance. Indeed, a proof similar to the proof of Theorem 6.4.1 reveals
(see also Bramel and Simchi-Levi (1995)) that,

Theorem 6.7.1 Under the assumptions of Theorem 6.4.1, there are versions of the
LBH that are asymptotically optimal; that is,

lim
n→∞

1

n
ZLBH � 2γE(d) (a.s).

Finally, we observe that the Generalized Assignment Heuristic due to Fisher
and Jaikumar (1981) can be viewed as a special case of the LBH in which the
seed customers are selected by a dispatcher. In the second step, customers are
assigned to the seeds in an efficient way by solving a generalized assignment
problem. The advantage of the LBH is that the selection of the seeds and the
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assignment of customers to seeds are done simultaneously, and not sequentially
as in the Generalized Assignment Heuristic. Note that neither of these heuristics
(the LBH or the Generalized Assignment Heuristic) requires that potential seed
points be customer locations; both can be easily implemented to start with seed
points that are simply points on the plane. A byproduct of the analysis, therefore,
is that when the Generalized Assignment Heuristic is carefully implemented (i.e.,
“good” seeds are selected), it is asymptotically optimal as well.

6.8 Rate of Convergence to the Asymptotic Value

While the results in the two previous sections completely characterize the asymp-
totic optimal solution value of the UCVRP, they do not say anything about the
rate of convergence to the asymptotic solution value. See Psaraftis (1984) for an
informal discussion of this issue.

To get some intuition on the rate of convergence, it is interesting to determine the
expected difference between the optimal solution for a given number of customers
n, and the asymptotic solution value (i.e., 2γE[d]). This can be done for the
uniform model discussed in Section 6.6.

In this case, Bramel et al. (1991) and, independently, Rhee (1991) proved the
following strong result.

Theorem 6.8.1 Let xk k � 1, 2, . . . , n be a sequence of independent random
variables uniformly distributed in the unit square [0, 1]2. Let the demands wk ,
k � 1, 2, . . . , n be drawn independently from a uniform distribution on (0, 1].
Then

E[Z∗n] � nE[d]+9(n2/3).

The proof of Theorem 6.8.1 relies heavily on the theory of three-dimensional
stochastic matching which is outside the scope of our survey. We refer the reader
to Coffman and Lueker (1991, Chapter 3) for an excellent review of matching
problems.

Rhee has also found an upper bound on the rate of convergence to the asymp-
totic solution value, for general distribution of the customers’ locations and their
demands. Using a new matching theorem developed together with Talagrand, she
proved:

Theorem 6.8.2 Under the assumptions of Theorem 6.4.1, we have

2nγE[d] ≤ E[Z∗n] ≤ 2nγE[d]+O((n log n)2/3).

6.9 Exercises

Exercise 6.1. Consider the following heuristic for the CVRP with unequal de-
mands. All customers of demand wi >

1
2 are served individually, one customer
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per vehicle. To serve the rest, apply the UITP heuristic with vehicle capacity Q.
Prove that this solution can be transformed into a feasible solution to the CVRP
with unequal demands. What is the worst-case bound of this heuristic?

Exercise 6.2. Prove Corollary 6.5.3.

Exercise 6.3. Given a seed point i, assume you must estimate the cost of the
optimal traveling salesman tour through a set of points S ∪ {i} using the following
cost approximation. Starting with 2di , when each point j is added to the tour, add
the cost cij � dj + dij − di . That is, show that for any r ≥ 1 there is an example
where the approximation is r times the optimal cost.

Exercise 6.4. Construct an example of the single-source CFLP where each facility
is a potential site (and vice versa) in which an optimal solution chooses a facility
but the demand of that facility is assigned to another chosen site.

Exercise 6.5. Show that Lemma 6.4.5 can be replaced by an equality instead of an
inequality.

Exercise 6.6. Prove that the version of the LBH with set-up costs vj � 2dj and
assignment costs cij � di + dij − dj is asymptotically optimal.

Exercise 6.7. Explain why the following constraints can or cannot be integrated
into the Savings Algorithm.

(a) Distance constraint. Each route must be at most λ miles long.

(b) Minimum route size. Each route must pick up at least m points.

(c) Mixing constraints. Even indexed points cannot be on the same route as odd
indexed points.

Exercise 6.8. Consider an instance of the CVRP with n customers. A customer is
red with probability p and blue with probability 1 − p, for some p ∈ [0, 1]. Red
customers have loads of size 2

3 , while blue customers have loads of size 1
3 . What

is limn→∞ Z∗
n

as a function of p?



7
The VRP with Time Window
Constraints

7.1 Introduction

In many distribution systems each customer specifies, in addition to the load that
has to be delivered to it, a period of time, called a time window, in which this
delivery must occur. The objective is to find a set of routes for the vehicles, where
each route begins and ends at the depot, serves a subset of the customers without
violating the vehicle capacity and time window constraints, while minimizing the
total length of the routes. We call this model the Vehicle Routing Problem with
Time Windows (VRPTW).

Due to the wide applicability and the economic importance of the problem,
variants of it have been extensively studied in the vehicle routing literature; for a
review see Solomon and Desrosiers (1988). Most of the work on the problem has
focused on an empirical analysis while very few papers have studied the problem
from an analytical point of view. This is done in an attempt to characterize the
theoretical behavior of heuristics and to use the insights obtained to construct
effective algorithms. Some exceptions are the recent works of Federgruen and van
Ryzin (1992) and Bramel and Simchi-Levi (1996). Below we describe the results
of the latter paper.

7.2 The Model

To formally describe the model we analyze here, let the index set of then customers
be denoted N � {1, 2, . . . , n}. Let xk ∈ IR2 be the location of customer k ∈ N .
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Assume, without loss of generality, that the depot is at the origin and, by rescaling,
that the vehicle capacity is 1 and that the length of the working day is 1. We
assume vehicles can leave and return to the depot at any time. Associated with
customer k is a quadruplet (wk, ek, sk, lk), called the customer parameters, which
represents, respectively, the load that must be picked up, the earliest starting time
for service, the time required to complete the service, called the service time, and
the latest time service can end. Clearly, feasibility requires that ek + sk ≤ lk and
wk, ek, lk ∈ [0, 1], for each k ∈ N .

For any point x ∈ IR2, let ‖x‖ denote the Euclidean distance between x and the
depot. Let dk

.� ‖xk‖ be the distance between customer k and the depot. Also, let
djk

.� ‖xj − xk‖ be the distance between customer j and customer k. Let Z∗t be
the total distance traveled in an optimal solution to the VRPTW, and let ZH

t be the
total distance traveled in the solution provided by a heuristic H.

Consider the customer locations to be distributed according to a distribution µ
with compact support in IR2. Let the customer parameters {(wk, ek, sk, lk) : k ∈ N}
be drawn from a joint distribution / with a continuous density φ. Let C be the
support of φ; that is, C is a subset of {(a1, a2, a3, a4) ∈ [0, 1]4 : a2 + a3 ≤ a4}.
Each customer is therefore represented by its location in the Euclidean plane along
with a point in C. Finally, we assume that a customer’s location and its parameters
are independent of each other.

In our analysis we associate a job with each customer. The parameters of job
k are the parameters of customer k, that is, (wk, ek, sk, lk), where wk is referred
to as the load of job k and, using standard scheduling terminology, ek represents
the earliest time job k can begin processing, sk represents the processing time
and lk denotes the latest time the processing of the job can end. The value of ek
can be thought of as the release time of job k, that is, the time it is available for
processing. The value of lk represents the due date for the job. Each job can be
viewed abstractly as simply a point in C. Occasionally, we will refer to customers
and jobs interchangeably; this convenience should cause no confusion.

To any set of customers T ⊆ N with parameters {(wk, ek, sk, lk) : k ∈ T },
we associate a corresponding machine scheduling problem as follows. Consider
the set of jobs T and an infinite sequence of parallel machines. Job k becomes
available for processing at time ek and must be finished processing by time lk . The
objective in this scheduling problem is to assign each job to a machine such that
(i) each machine has at most one job being processed on it at a given time, (ii)
the processing time of each job starts no earlier than its release time and ends no
later than its due date and (iii) the total load of all jobs assigned to a machine is
no more than 1, and the number of machines used is minimized. In our discussion
we refer to (ii) as the job time window constraint and to (iii) as the machine load
constraint.

Scheduling problems have been widely studied in the operations research lit-
erature; see Lawler et al. (1993) and Pinedo (1995). Unfortunately, no paper has
considered the scheduling problem in its general form with the objective function
of minimizing the number of machines used.

Observe that in the absence of time window constraints, the scheduling problem



7.3 The Asymptotic Optimal Solution Value 109

is no more than a Bin-Packing Problem. Indeed, in that case the VRPTW reduces
to the model analyzed in the previous chapter, the CVRP. Thus, our strategy is to
try to relate the machine scheduling problem to the VRPTW in much the same
way as we used results obtained for the Bin-Packing Problem in the analysis of
the CVRP. As we shall shortly see, this is much more complex.

Let M∗(S) be the minimum number of machines needed to schedule a set S of
jobs. It is clear that this machine scheduling problem possesses the subadditivity
property, described in Section 3.2. This implies that ifM∗

n is the minimum number
of machines needed to schedule a set of n jobs whose parameters are drawn in-
dependently from a distribution /, then there exists a constant γ > 0 (depending
only on /) such that limn→∞M∗

n/n � γ (a.s.).
In this chapter we relate the solution to the VRPTW to the solution to the

scheduling problem defined by the customer parameters. That is, we show that
asymptotically the VRPTW is no more difficult to solve than the corresponding
scheduling problem. Our main result is the following.

Theorem 7.2.1 Let x1, x2, . . . , xn be independently and identically distributed
according to a distribution µ with compact support in IR2, and define

E(d) �
∫
IR2
‖x‖dµ(x).

Let the customer parameters {(wk, ek, sk, lk) : k ∈ N} be drawn independently
from /. Let M∗

n be the minimum number of machines needed to feasibly schedule

the n jobs corresponding to these parameters, and limn→∞
M∗

n

n
� γ (a.s.). Then

lim
n→∞

1

n
Z∗t � 2γE(d) (a.s.).

We prove this theorem (in Section 7.3) by introducing a lower bound on the
optimal solution value and then developing an upper bound that converges to the
same value. The lower bound uses a similar technique to the one developed in
Chapter 6. The upper bound can be viewed as a randomized algorithm that is
guaranteed to generate a feasible solution to the problem. That is, different runs
of the algorithm on the same data may generate different feasible solutions. In
Section 7.4, we show that the analysis leads, in a natural way, to the development
of a new deterministic algorithm which is asymptotically optimal for the VRPTW.
Though not polynomial, computational evidence shows that the algorithm works
very well on a set of standard test problems.

7.3 The Asymptotic Optimal Solution Value

We start the analysis by introducing a lower bound on the optimal objective function
value Z∗t . First, let A be the compact support of µ, and define dmax

.� sup{‖x‖ :
x ∈ A}. Pick a fixed integer r ≥ 1, and define dj

.� (j−1) dmax
r

, for j � 1, 2, . . . , r .
Now define the sets:
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Fj �
{
k ∈ N | dj < dk

}
for j � 1, 2, . . . , r.

For any set T ⊆ N , let M∗(T ) be the minimum number of machines needed to
feasibly schedule the set of jobs {(wk, ek, sk, lk) : k ∈ T }. The next lemma provides
a deterministic lower bound on Z∗t and is analogous to Lemma 6.4.3 developed
for the VRP with capacity constraints.

Lemma 7.3.1

Z∗t > 2
dmax

r

r∑
j�2

M∗(Fj ).

Proof. Let V ∗
j be the number of vehicles in an optimal solution to the VRPTW that

serve a customer from Fj , for j � 1, 2, . . . , r . By this definition, V ∗
r is exactly

the number of vehicles whose farthest customer visited is in Fr , and V ∗
j − V ∗

j+1
is exactly the number of vehicles whose farthest customer visited is in Fj \ Fj+1.
Observe that if V ∗

j � V ∗
j+1, then there are no vehicles whose farthest customer

visited is in Fj \ Fj+1. Consequently,

Z∗t > 2drV
∗
r +

r−1∑
j�1

2dj (V ∗
j − V ∗

j+1)

� 2d1V
∗

1 +
r∑

j�2

2(dj − dj−1)V ∗
j

� 2
dmax

r

r∑
j�2

V ∗
j .

We now claim that for each j � 1, 2, . . . , r , V ∗
j ≥ M∗(Fj ). This should be clear

from the fact that the set of jobs in Fj can be feasibly scheduled on V ∗
j machines

by scheduling the jobs at the times they are served in the VRPTW solution.
We can now determine the asymptotic value of this lower bound. This can be

done in a similar manner to that of Chapter 6, and hence we omit the proof here.

Lemma 7.3.2 Under the conditions of Theorem 7.2.1

lim
n→∞

1

n
Z∗t ≥ 2γE(d) (a.s.).

We prove Theorem 7.2.1 by approximating the optimal cost from above by that
of the following four-step heuristic. In the first step, we partition the region where
the customers are distributed into subregions. In the second step, we randomly
separate the customers of each subregion into two sets. Then for each subregion,
we solve a machine scheduling problem defined on the customers in one of these
sets. Finally, we use this schedule to specify how to serve all the customers in the
subregion.
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Pick an ε > 0, and let δ be given by the definition of continuity of φ, that is,
δ > 0 is such that for all x, y ∈ C with ||x − y|| < δ, we have |φ(x)− φ(y)| < ε.
Finally, pick a 7 < min{ δ√

2
, ε}.

Let G(7) be an infinite grid of squares of diagonal 7, that is, of side 7√
2
, with

edges parallel to the system coordinates. Recall that A is the compact support of
µ and let A1, A2, . . . , At(7) be the subregions of G(7) that intersect A and have
µ(Ai) > 0.

Let N (i) be the indices of the customers located in subregion Ai , and define
n(i) � |N (i)|. For each customer k ∈ N (i), with parameters (wk, ek, sk, lk), we
associate a job with parameters (wk, ek, sk + 7, lk + 7). For any set T ⊆ N of
customers, let M∗

7(T ) be the minimum number of machines needed to feasibly
schedule the set of jobs {(wk, ek, sk +7, lk +7) : k ∈ T }. In addition, for any set
T of customers, let T (i) � N (i) ∩ T , for i � 1, 2, . . . , t(7).

For the given grid partition and for any set T ⊆ N of customers, the following
is a feasible way to serve the customers inN . All subregions are served separately;
that is, no customers from different subregions are served by the same vehicle.
In subregion Ai , we solve the machine scheduling problem defined by the jobs
{(wk, ek, sk +7, lk +7) : k ∈ T (i)}. Then, for each machine in this scheduling
solution, we associate a vehicle that serves the customers corresponding to the jobs
on that machine. The customers are visited in the exact order they are processed
on the machine, and they are served in exactly the same interval of time as they
are processed. This is repeated for each machine of the scheduling solution. The
customers of the setN (i) \T (i) are served one vehicle per customer. This strategy
is repeated for every subregion, thus providing a solution to the VRPTW.

We will show that for a suitable choice of the set T , this routing strategy is
asymptotically optimal for the VRPTW. An interesting fact about the set T is that
it is a randomly generated set; that is, each time the algorithm is run it results in
different sets T .

The first step is to show that, for any set T ⊆ N (possibly empty), the solu-
tion produced by the above-mentioned strategy provides a feasible solution to the
VRPTW. This should be clear from the fact that having an extra 7 units of time
to travel between customers in a subregion is enough since all subregions have
diagonal7. Therefore, any sets of customers scheduled on a machine together can
be served together by one vehicle. Customers of N (i) \ T can clearly be served
within their time windows since they are served individually, one per vehicle.

We now proceed to find an upper bound on the value of this solution. For each
subregion Ai , let nj (i) be the number of jobs on the j th machine in the optimal
schedule of the jobs in T (i), for each j � 1, 2, . . . ,M∗

7(T (i)). Let d(i) be the
distance from the depot to the closest customer in N (i), that is, in subregion Ai .
Using the routing strategy described above, the distance traveled by the vehicle
serving the customers whose job was assigned to the j th machine of subregion Ai

is no more than
2d(i)+7(nj (i)+ 1).

Therefore,
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Z∗t ≤
t(7)∑
i�1

M∗
7(T (i))∑
j�1

[
2d(i)+7(nj (i)+ 1)

]
+

∑
k /∈T

2dk

≤ 2
t(7)∑
i�1

M∗
7(T (i))d(i)+ 2n7+

∑
k /∈T

2dk.

Dividing by n and taking the limit we have

lim
n→∞

1

n
Z∗t ≤ 2

t(7)∑
i�1

lim
n→∞

1

n
M∗

7(T (i))d(i)+ 27+ lim
n→∞

1

n

∑
k /∈T

2dk

� 2
t(7)∑
i�1

lim
n→∞

n(i)

n

M∗
7(T (i))

n(i)
d(i)+ 27+ lim

n→∞
1

n

∑
k /∈T

2dk

≤ 2
t(7)∑
i�1

lim
n→∞

n(i)

n
lim
n→∞

M∗
7(T (i))

n(i)
d(i)+

27+ lim
n→∞

1

n

∑
k /∈T

2dk. (7.1)

In order to relate this quantity to the lower bound of Lemma 7.3.2, we must
choose the set T appropriately. For this purpose, we make the following ob-
servation. Recall that φ is the continuous density associated with the distribu-
tion /. The customer parameters (wk, ek, sk, lk) of each of the customers of N
are drawn randomly from the density φ. Associated with each customer is a job
whose parameters are perturbed by 7 in the third and fourth coordinates, that is,
(wk, ek, sk+7, lk+7). This is equivalent to randomly drawing the job parameters
from a density which we callφ′. The densityφ′ can be found simply by translatingφ
by7 in the third and fourth coordinates, that is, for each x � (θ1, θ2, θ3, θ4) ∈ IR4,
φ′(x) � φ′(θ1, θ2, θ3, θ4) � φ(θ1, θ2, θ3 −7, θ4 −7). Finally, for each x ∈ IR4,
define ψ(x)

.� min{φ(x), φ′(x)} and let q
.� ∫

IR4 ψ < 1.
The n jobs (or customer parameters) {yk .� (wk, ek, sk +7, lk +7) : k ∈ N}

are drawn randomly from the density φ′ and our task is to select the set T ⊆ N .
To simplify presentation, we refer interchangeably to the index set of jobs and to
the set of jobs itself; that is, k ∈ N will have the same interpretation as yk ∈ N

where yk
.� (wk, ek, sk +7, lk +7).

For each job yk , generate a random value, call it uk , uniformly in [0, φ′(yk)]. The
point (yk, uk) ∈ IR5 is a point below the graph of φ′; that is, uk ≤ φ′(yk). Define
T as the set of indices of jobs whose uk value falls below the graph of φ; that is,
T

.� {k ∈ N : uk ≤ φ(yk)}. Then the set of jobs {yk : k ∈ T } can be viewed as a
random sample of |T | jobs drawn randomly from the density ψ

q
.

In order to relate this upper bound to the lower bound we need to present the
following lemma.
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Lemma 7.3.3 For T generated as above and for each subregionAi , i � 1, 2, . . . ,
t(7),

lim
n→∞

M∗
7(T (i))

n(i)
≤ γ, (a.s.).

Proof. To prove the result for a given subregionAi , we construct a feasible schedule
for the set of jobs {yk � (wk, ek, sk+7, lk+7) : k ∈ T (i)}. Generate n(i)−|T (i)|
jobs randomly from the density

1

1− q
[φ − ψ].

Call this set of jobs D, for dummy jobs. From the construction of the sets D and
T (i), it is a simple exercise to show that the parameters of the jobs in D ∪T (i) are
distributed like φ.

A feasible schedule of the jobs in T (i) is obtained by optimally scheduling the
jobs in D ∪ T (i) using, say Mi machines. The number of machines needed to
schedule the jobs in T (i) is obviously no more than Mi , since the jobs in D can
simply be ignored. Thus we have the bound

M∗
7(T (i)) ≤ Mi.

Now dividing by n(i) and taking the limits, we get

lim
n→∞

M∗
7(T (i))

n(i)
≤ lim

n→∞
Mi

n(i)
� γ, (a.s.),

since the set of jobs D ∪T (i) is just a set of n(i) jobs whose parameters are drawn
independently from the density φ.

Lemma 7.3.3 thus reduces equation (7.1) to

lim
n→∞

1

n
Z∗t ≤ 2

t(7)∑
i�1

γ lim
n→∞

n(i)

n
d(i)+ 27+ lim

n→∞
1

n

∑
k /∈T

2dk

� 2γ lim
n→∞

1

n

t(7)∑
i�1

n(i)d(i)+ 27+ lim
n→∞

1

n

∑
k /∈T

2dk

≤ 2γ lim
n→∞

1

n

∑
k∈N

dk + 27+ lim
n→∞

1

n

∑
k /∈T

2dk

� 2γE(d)+ 27+ lim
n→∞

1

n

∑
k /∈T

2dk

≤ 2γE(d)+ 27+ 2dmax lim
n→∞

1

n
|N \ T |.

The next lemma determines an upper bound on limn→∞ 1
n
|N \ T |.
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Lemma 7.3.4 Given ε > 0 and T generated as above,

lim
n→∞

1

n
|N \ T | < (1+ ε)2ε (a.s.).

Proof. By the Strong Law of Large Numbers, the limit is equal to the probability
that a job of N is not in the set T . The probability of a particular job yk not being
in T is simply {

φ′(yk )−φ(yk )
φ′(yk ) , if φ′(yk) ≥ φ(yk),

0, otherwise.

Hence, almost surely

lim
n→∞

1

n
|N \ T | �

∫
IR4

max
{φ′(x)− φ(x)

φ′(x)
, 0

}
φ′(x)dx

≤
∫
IR4

∣∣∣φ′(x)− φ(x)

φ′(x)

∣∣∣φ′(x)dx

�
∫
IR4
|φ′(x)− φ(x)|dx

�
∫
IR4
|φ′(θ1, θ2, θ3, θ4)− φ(θ1, θ2, θ3, θ4)|d(θ1, θ2, θ3, θ4)

�
∫
IR4
|φ(θ1, θ2, θ3 −7, θ4 −7)− φ(θ1, θ2, θ3, θ4)|d(θ1, θ2, θ3, θ4)

< (1+7)2ε

< (1+ ε)2ε,

where the second to last inequality follows from ‖(θ1, θ2, θ3 − 7, θ4 − 7) −
(θ1, θ2, θ3, θ4)‖ ≤ 7

√
2 < δ and the continuity of φ.

We now have all the necessary ingredients to finish the proof of Theorem 7.2.1;
thus

lim
n→∞

1

n
Z∗t ≤ 2γE(d)+ 2dmax(1+ ε)2ε + 27 (a.s.).

Since ε was arbitrary and recalling that 7 < ε, we have

lim
n→∞

1

n
Z∗t ≤ 2γE(d) (a.s.).

This upper bound combined with the lower bound proves Theorem 7.2.1.

7.4 An Asymptotically Optimal Heuristic

In this section we generalize the LBH heuristic developed for the CVRP (see
Chapter 6) to handle time window constraints. Similarly to the original LBH we
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prove that the generalized version is asymptotically optimal for the VRPTW. We
refer to this more general version of the heuristic also as the Location-Based
Heuristic; this should cause no confusion.

7.4.1 The Location-Based Heuristic

The LBH can be viewed as a three-step algorithm. In the first step, the parameters of
the VRPTW are transformed into data for a location problem called the Capacitated
Vehicle Location Problem with Time Windows (CVLPTW), described below. This
location problem is solved in the second step. In the final step, we transform the
solution to the CVLPTW into a feasible solution to the VRPTW.

The Capacitated Vehicle Location Problem with Time Windows

The Capacitated Vehicle Location Problem with Time Windows (CVLPTW) is
a generalization of the single-source Capacitated Facility Location Problem (see
Section 6.7) and can be described as follows: we are given m possible sites to
locate vehicles of capacity Q. There are n customers geographically dispersed in
a given region, where customer i has wi units of product that must be picked up
by a vehicle. The pickup of customer i takes si units of time and must occur in
the time window between times ei and li ; that is, the service of customer i can
start at any time t ∈ [ei, li − si]. The objective is to select a subset of the possible
sites, to locate one vehicle at each site, and to assign the customers to the vehicles.
Each vehicle must leave its site, pick up the load of customers assigned to it in
such a way that the vehicle capacity is not exceeded and all pickups occur within
the customer’s time window, and then return to its site. The costs are as follows:
a site-dependent cost is incurred for locating each vehicle; that is, if a vehicle is
located at site j , the set-up cost is vj , for j � 1, 2, . . . , m. The cost of assigning
customer i to the vehicle at site j is cij (the assignment cost), for i � 1, 2, . . . , n
and j � 1, 2, . . . , m. We assume that there are enough vehicles and sites so that a
feasible solution exists.

The CVLPTW can be formulated as the following mathematical program. Let

yj �
{ 1, if a vehicle is located at site j ,

0, otherwise,

and let

xij �
{ 1, if customer i is assigned to the vehicle at site j ,

0, otherwise.

For any set S ⊆ N , let fj (S) � 1 if the set of customers S can be feasibly served
in their time windows by one vehicle that starts and ends at site j (disregarding
the capacity constraint), and 0 otherwise.
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Problem P : Min

n∑
i�1

m∑
j�1

cij xij +
m∑
j�1

vjyj

s.t.

m∑
j�1

xij � 1, ∀i (7.2)

n∑
i�1

wixij ≤ Q, ∀j (7.3)

xij ≤ yj , ∀i, j (7.4)

fj ({i : xij � 1}) � 1, ∀j (7.5)

xij , yj ∈ {0, 1}, ∀i, j. (7.6)

Constraints (7.2) ensure that each customer is assigned to exactly one vehicle,
and constraints (7.3) ensure that the vehicle’s capacity constraint is not violated.
Constraints (7.4) guarantee that if a customer is assigned to the vehicle at site j ,
then a vehicle is located at that site. Constraints (7.5) ensure that the time window
constraints are not violated. Constraints (7.6) ensure the integrality of the variables.

The Heuristic

To relate the CVLPTW to the VRPTW, consider each customer in the VRPTW to
be a potential site for a vehicle; that is, the set of potential sites is exactly the set
of customers, and therefore m � n. Picking a subset of the sites in the CVLPTW
corresponds to picking a subset of the customers in the VRPTW; we call this set of
selected customers the seed customers. These customers are those that will form
simple tours with the depot.

In order for the LBH to perform well, the costs of the CVLPTW should approx-
imate the costs of the VRPTW. The set-up cost for locating a vehicle at site j (vj )
or, in other words, of picking customer j as a seed customer, should be the cost
of sending a vehicle from the depot to customer j and back (i.e., the length of the
simple tour). Hence, we set vj � 2dj for each j ∈ N . The assignment cost cij is
the cost of assigning customer i to the vehicle at site j . Therefore, this cost should
represent the added cost of inserting customer i into the simple tour through the
depot and customer j . Consequently, when i is added to a tour with j , the added
cost is cij � di+dij−dj , so that vj+cij � di+dij+dj . This cost is exact for two
and sometimes three customers. However, as the number of customers increases,
the values of cij in fact represent an approximation to the cost of adding i to a tour
that goes through customer j and the depot. In Section 7.4.3 we present values of
cij that we have found to work well in practice.

Once these costs are determined the second step of the LBH consists of solving
CVLPTW. The solution provided is a set of sites (seed customers) and a set of
customers assigned to each of these sites (to each seed). This solution can then be
easily transformed into a solution to the VRPTW, since a set of customers that can
be feasibly served starting from site j can also be feasibly served starting from the
depot.
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7.4.2 A Solution Method for CVLPTW

The computational efficiency of the LBH depends on the efficiency with which
CVLPTW can be solved. We therefore present a method to solve the CVLPTW.
As discussed earlier, the CVLPTW without constraints (7.5) is simply the single-
source Capacitated Facility Location Problem (CFLP) for which efficient solution
methods exist based on the celebrated Lagrangian relaxation technique; see Section
4.3. For the CVLPTW, we use a similar method, although the specifics are more
complex in view of the existence of these time window constraints.

In this case, for a given multiplier vector λ ∈ IRn, constraints (7.2) are relaxed
and put into the objective function with the multiplier vector. The resulting problem
can be separated into n subproblems (one for each of the n sites), since constraints
(7.2) are the only constraints that relate the sites to one another. The subproblem
for site j is:

Problem Pj : Min

n∑
i�1

cij xij + vjyj

s.t.

n∑
i�1

wixij ≤ Q

xij ≤ yj , ∀i
fj ({i : xij � 1}) � 1

xij ∈ {0, 1} ∀i and yj ∈ {0, 1},
where cij

.� cij + λi , for each i ∈ N .
In the optimal solution to problem Pj , yj is either 0 or 1. If yj � 0, then xij � 0

for all i ∈ N , and the objective function value is 0. If yj � 1, then the problem
reduces to a different, but simpler, routing problem. Consider a vehicle of capacity
Q initially located at site j . The driver gets a profit of pij

.� −cij for picking
up the wi items at customer i in the time window (ei, li). The pickup operation
takes si units of time. The objective is to choose a subset of the customers, to pick
up their loads in their time windows, without violating the capacity constraint,
using a vehicle which must begin and end at site j , while maximizing the driver’s
profit. Let G∗

j be the maximum profit attainable at site j ; that is, G∗
j is the optimal

solution to the problem just described for site j . This implies that vj −G∗
j is the

optimal solution value of Problem Pj given that yj � 1. Therefore, we can write
the optimal solution to Problem Pj as simply min{0, vj −G∗

j }.
Unfortunately, in general, determining the values G∗

j for j ∈ N is NP-Hard.
We can, however, determine upper bounds on G∗

j ; call them Gj . This provides a
lower bound on the optimal solution to problem Pj which is equal to min{0, vj −
Gj }. We use the simple bound given by Gj

.� ∑
{i:pij>0} pij . Consequently,∑n

j�1 min{0, vj − Gj } −
∑n

i�1 λi is a lower bound on the optimal solution to
the CVLPTW.

To generate a feasible solution to the VRPTW at each iteration of the procedure,
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we use information from the upper bounds on profit Gj for j ∈ N . After every
iteration of the lower bound (for each multiplier) we renumber the sites so that
G1 ≥ G2 ≥ · · · ≥ Gn. The upper bounds on profit are used as an estimate of
the profitability of placing a vehicle at a particular site. For example, site 1 is
considered to be a “good” site (or seed customer), since a large profit is possible
there. A large profit for site j corresponds to a seed customer where neighboring
customers can be feasibly served from it at low cost. Therefore, a site with large
profit is selected as a seed customer since it will tend to have neighboring customers
around it that can be feasibly served by a vehicle starting at that site.

To generate a feasible solution to CVLPTW, we do the following: starting with
j � 1 in the new ordering of the sites (customers), we locate a vehicle at site j . For
every customer still not assigned to a site, we first determine if this customer can
be feasibly served with the customers that are currently assigned to site j . Then,
of the customers that can be served from this site, we determine the one that will
cause the least increase in cost, that is, the one with minimum cij over all customers
i that can be served from this site. We then assign this customer to the site. We
continue until no more customers can be assigned to site j , due to capacity or time
constraints. We then increment j to 2 and continue with site 2. After all customers
have been feasibly assigned to a site, we obtain a feasible solution whose cost is
compared to the cost of the current best solution.

As we find solutions to the CVLPTW, we also generate feasible solutions to the
VRPTW, using the information from the lower bound to CVLPTW. Starting with
j � 1, pick customer j as a seed customer. Then, for every customer that can be
feasibly served with this seed, we determine the added distance this would entail;
that is, we determine the best place to insert the customer into the current tour
through the customers assigned to seed j . We choose the customer that causes
the least increase in distance traveled as the one to assign to seed j . This idea
is similar to the Nearest Insertion heuristic discussed in Section 2.3.2. We then
continue trying to add customers in this way to seed j . Once no more can be
added to this tour (due to capacity or time constraints), we increment j to 2, select
seed customer 2 and continue. Once every customer appears in a tour, that is,
every customer is assigned to a seed, we have a feasible solution to the VRPTW
corresponding to the current set of multipliers. The cost of this solution is compared
to the cost of the current best solution.

Multipliers are updated using (4.6). The step size is initially set to 2 and halved
after the lower bound has not improved in a series of 30 iterations. After the step
size has reached a preset minimum (0.05), the heuristic is terminated.

7.4.3 Implementation

It is clear that many possible variations of the LBH can be implemented depending
on the type of assignment costs (cij ) used. In the computational results discussed
below, the following have been implemented.
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direct cost: cij � 2dij , and

nearest insertion cost: cij � di + dij − dj .

Direct cost cij has the advantage that, when several customers are added to the
seed, the resulting cost, which is the sum of the set-up costs and these direct costs,
is an upper bound on the length of any efficient route through the customers. On
the other hand, the nearest insertion cost works well because it is accurate at least
for tours through two customers, and often for tours through three customers as
well.

Several versions of the LBH have been implemented and tested. In the first, the
Star-Tours (ST) heuristic, the direct assignment cost is used, while in the second,
the Seed-Insertion (SI) heuristic, the nearest insertion assignment cost is applied.
Observe that the LBH is not a polynomial-time heuristic. However, as we shall
shortly demonstrate, the running times reported on standard test problems are very
reasonable and are comparable to the running times of many heuristics for the
vehicle routing problem.

The ST heuristic is of particular interest because it is asymptotically optimal as
demonstrated in the following lemma. The proof is similar to the previous proofs
and is therefore omitted.

Lemma 7.4.1 Let n customers, indexed by N, be independently and identically
distributed according to a distribution µ with compact support in IR2. Define

E(d) �
∫
IR2
||x||dµ(x).

Let the customer parameters {(wk, ek, sk, lk) : k ∈ N} be jointly distributed like
/. In addition, let M∗

n be the minimum number of machines needed to feasibly
schedule the jobs {(wk, ek, sk, lk) : k ∈ N} and let limn→∞M∗

n/n � γ, (a.s.).
Then

lim
n→∞

1

n
ZST � lim

n→∞
1

n
Z∗t � 2γE(d) (a.s.).

7.4.4 Numerical Study

Tables 1 and 2 summarize the computational experiments with the standard test
problems of Solomon (1986). The problem set consists of 56 problems of various
types. All problems consist of 100 customers and one depot, and the distances are
Euclidean. Problems with the “R” prefix are problems where the customer locations
are randomly generated according to a uniform distribution. Problems with the “C”
prefix are problems where the customer locations are clustered. Problems with
the “RC” prefix are a mixture of both random and clustered. In addition, all the
problems have a constraint on the latest time T0 at which a vehicle can return to
the depot. For a full description of these problems we refer the reader to Solomon.

We compare the performance of the LBH against the heuristics of Solomon and
the column generation approach of Desrochers et al. (1992). The latter method
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was able to solve effectively 7 of the 56 test problems; we describe this approach
in the next chapter.

Table 1

CPU CPU Solomon’s
Problem Alg. ST Time Alg. SI Time Best Solution
C201 591.6 245.9s 591.6 260.5s 591
C202 ∗ 652.8 276.1s ∗ 640.8 262.7s 731
C203 ∗ 692.2 309.2s ∗ 741.1 308.9s 786
C204 ∗ 721.6 335.9s 782.3 340.6s 758
C205 713.8 250.8s 699.9 258.8s 606
C206 770.8 257.3s ∗ 722.8 283.3s 730
C207 767.2 265.7s 708.9 275.8s 680
C208 736.2 287.7s 660.2 272.4s 607
R201 ∗1665.3 207.1s ∗1533.4 209.6s 1741
R202 ∗1485.3 276.4s ∗1484.3 248.5s 1730
R203 ∗1371.5 406.5s ∗1349.3 389.0s 1567
R204 1096.7 532.0s 1077.0 538.2s 1059
R205 1472.3 287.0s ∗1329.4 312.6s 1471
R206 ∗1237.0 412.2s ∗1283.7 374.2s 1405
R207 ∗1217.7 484.8s ∗1162.9 453.9s 1241
R208 ∗ 966.1 587.8s ∗ 959.9 612.6s 1046
R209 ∗1276.1 394.8s ∗1262.8 355.7s 1418
R210 ∗1312.5 380.7s ∗1340.6 388.6s 1425
R211 1080.9 474.7s 1141.3 488.7s 1016
RC201 ∗1873.8 203.5s ∗1841.7 185.8s 1880
RC202 ∗1742.1 227.8s ∗1705.1 241.0s 1799
RC203 ∗1417.5 331.5s ∗1471.1 300.1s 1550
RC204 ∗1139.6 437.7s ∗1190.3 411.5s 1208
RC205 ∗1830.5 233.0s ∗1878.9 214.0s 2080
RC206 1640.1 259.0s 1607.5 248.2s 1582
RC207 ∗1566.4 294.2s ∗1557.3 272.3s 1632
RC208 1254.8 345.7s 1298.7 317.3s 1194

(∗ indicates that the LBH improves upon the best solution known.)

To compare the LBH to these solution methods, a time window reduction phase
was implemented before the start of the heuristic. Here, the earliest time for service
ek is replaced by max{ek, dk}; in that way, vehicles leave the depot no earlier than
time 0. In addition, the latest time service can end lk is replaced by min{lk, T0−dk}.
The LBH can then be run as it is described in Section 7.4.1.

As can be seen in the tables, both the ST and the SI heuristics have been imple-
mented. CPU times are in seconds on a Sun SPARC Station II. In Tables 1 and 2,
the column “Solomon’s Best Solution” corresponds to the best solution found by
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Solomon. Solomon tested eight different heuristics on problem sets R1 and C1,

Table 2

CPU CPU Solomon’s DDS Solution
Problem Alg. ST Time Alg. SI Time Best Solution Value
C101 828.9 74.1s 828.9 67.0s 829 827.3
C102 982.8 82.9s 1043.4 73.1s 968 827.3
C103 ∗1015.1 95.9s 1232.9 88.4s 1026
C104 ∗ 980.9 105.4s ∗ 976.1 114.5s 1053
C105 ∗ 828.9 79.7s 860.8 67.3s 829
C106 852.9 82.8s 880.1 66.7s 834 827.3
C107 828.9 83.1s 841.2 74.7s 829 827.3
C108 852.9 88.6s 853.6 80.9s 829 827.3
C109 991.0 88.6s 1014.5 83.1s 829
R101 1983.7 57.2s 2071.2 39.9s 1873 1607.7
R102 1789.0 70.8s 1821.4 57.4s 1843 1434.0
R103 1594.5 88.6s 1599.1 67.9s 1484
R104 1242.0 106.2s 1237.3 81.0s 1188
R105 1604.4 67.0s 1696.2 52.0s 1502
R106 1606.9 78.0s 1589.2 70.0s 1460
R107 ∗1324.9 92.4s 1361.2 70.4s 1353
R108 1202.6 107.5s 1205.5 101.1s 1134
R109 1504.7 78.5s 1491.8 69.6s 1412
R110 1380.9 92.0s 1434.4 69.4s 1211
R111 1422.1 91.7s 1432.4 69.5s 1202
R112 1248.1 105.2s 1284.6 79.4s 1086
RC101 2045.1 60.6s 2014.4 45.0s 1867
RC102 1806.6 68.7s 1969.5 52.2s 1760
RC103 1708.9 81.7s 1716.3 69.6s 1641
RC104 1372.1 93.5s 1458.8 79.5s 1301
RC105 ∗1826.3 68.9s 2036.8 51.3s 1922
RC106 1710.8 68.0s 1804.8 50.5s 1611
RC107 1593.2 76.4s 1630.9 64.9s 1385
RC108 1421.0 84.7s 1493.8 65.5s 1253

(∗ indicates that the LBH improves upon the best solution known.)

and six heuristics on problems RC1, R2, C2 and RC2. We see that the ST heuristic
provides a better solution than Solomon’s heuristics in 25 of the 56 problems, while
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the SI heuristic provides a better solution in 21 of the 56 problems. In Table 2,
the column “DDS Solution Value” corresponds to the value of the solution found
using the column generation approach of Desrochers et al.

7.5 Exercises

Exercise 7.1. You are given a network G � (V,A) where |V | � n, d(i, j ) is the
length of edge (i, j ) and a specified vertex a ∈ V . One service unit is located
at a and has to visit each vertex in V so that total waiting time of all vertices is
as small as possible. Assume the waiting time of a vertex is proportional to the
total distance traveled by the server from a to the vertex. The total waiting time
(summed up over all customers) is then:

(n− 1)d(a, 2)+ (n− 2)d(2, 3)+ (n− 3)d(3, 4)+ · · · + d(n− 1, n).

The Delivery Man Problem (DMP) is the problem of determining the tour that
minimizes the total waiting time.

Assume that G is a tree with d(i, j ) � 1 for every (i, j ) ∈ A. Show that any
tour that follows a depth-first search starting from a is optimal.

Exercise 7.2. Consider the Delivery Man Problem described in Exercise 7.1. A
delivery man currently located at the depot must visit each of n customers. Let
ZDM be the total waiting time in the optimal delivery man tour through the n
points. Let Z∗ be the total time required to travel the optimal traveling salesman
tour through the n points.

(a) Prove that

ZDM ≤
(n

2

)
Z∗.

(b) One heuristic proposed for this problem is the Nearest Neighbor (NN)
Heuristic. In this heuristic, the vehicle serves the closest unvisited customer
next. Provide a family of examples to show that the heuristic does not have
a fixed worst-case bound.

Exercise 7.3. Consider the Vehicle Routing Problem with Distance Constraints.
Formally, a set of customers has to be served by vehicles that are all located at
a common depot. The customers and the depot are presented as the nodes of an
undirected graph G � (N,E). Each customer has to be visited by a vehicle.
The j th vehicle starts from the depot and returns to the depot after visiting a
subset Nj ⊆ N . The total distance traveled by the j th vehicle is denoted by
Tj . Each vehicle has a distance constraint λ: no vehicle can travel more than λ

units of distance (i.e., Tj ≤ λ). We assume that the distance matrix satisfies the
triangle inequality assumption. Also, assume that the length of the optimal traveling
salesman tour through all the customers and the depot is greater than λ.
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(a) Suppose the objective function is to minimize the total distance traveled.
Let K∗ be the number of vehicles in an optimal solution to this problem.
Show that there always exists an optimal solution with total distance traveled
> 1

2K
∗λ. Does this lower bound hold for any optimal solution?

(b) Consider the following greedy heuristic: start with the optimal traveling
salesman tour through all the customers and the depot. In an arbitrary ori-
entation of this tour, the nodes are numbered (i0, i1, . . . , in) ≡ S in order
of appearance, where n � the number of customers, i0 is the depot and
i1, i2, . . . , in are the customers. We break the tour into KH segments and
connect the end-points of each segment to the depot. This is done in the fol-
lowing way. Each vehicle j , 1 ≤ j < KH starts by traveling from the depot
to the first customer iq not visited by the previous j − 1 vehicles and then
visits the maximum number of customers according to S without violating
the distance constraint upon returning to the depot.

Show that KH ≤ min{n, � T−2dm
λ−2dm

�} where T is the length of the optimal traveling
salesman tour and dm is the distance from the depot to the farthest customer.

Exercise 7.4. Consider the Pickup and Delivery Problem. Here customers are
pickup customers with probabilityp and delivery customers with probability 1−p.
Assume a vehicle capacity of 1. If customer i is a pickup customer, then a load
of size wi ≤ 1 must be picked up at the customer and brought to the depot. If
customer i is a delivery customer, then a load of size wi ≤ 1 must be brought
from the depot to the customer. Assume pickup sizes are drawn randomly from a
distribution with bin-packing constant γP and delivery sizes are drawn randomly
from a distribution with bin-packing constant γD . A pickup and a delivery can be
in the vehicle at the same time.

(a) Develop a heuristic H for this problem and determine limn→∞ ZH

n
as a func-

tion of p, γP and γD .

(b) Assume all pickups are of size 1
3 and deliveries are of size 2

3 . Suggest a

better heuristic for this case. What is limn→∞ ZH

n
as a function of p for this

heuristic?
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8
Solving the VRP Using a Column
Generation Approach

8.1 Introduction

A classical method, first suggested by Balinski and Quandt (1964), for solving
the VRP with capacity and time window constraints is based on formulating the
problem as a set-partitioning problem. (See Chapter 4 for a general discussion of
set partitioning.) The idea is as follows: let the index set of all feasible routes be
{1, 2, . . . , R} and let cr be the length of route r . Define

αir �
{

1, if customer i is served in route r ,

0, otherwise,

for each customer i � 1, 2, . . . , n and each route r � 1, 2, . . . , R. Also, for every
r � 1, 2, . . . , R, let

yr �
{

1, if route r is in the optimal solution,

0, otherwise.

In the Set-Partitioning formulation of the VRP, the objective is to select a minimum
cost set of feasible routes such that each customer is included in some route. It is:

Problem S : Min
R∑
r�1

cryr

s.t.
R∑
r�1

αiryr ≥ 1, ∀i � 1, 2, . . . , n (8.1)

yr ∈ {0, 1}, ∀r � 1, 2, . . . , R.
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Observe that we have written constraints (8.1) as inequality constraints instead of
equality constraints. The formulation with equality constraints is equivalent if we
assume the distance matrix {dij } satisfies the triangle inequality and therefore each
customer will be visited exactly once in the optimal solution. The formulation with
inequality constraints will prove to be easier to work with from an implementation
point of view.

This formulation was first used successfully by Cullen et al. (1981) to design
heuristic methods for the VRP. Recently, Desrochers et al. (1992) have used it in
conjunction with a branch and bound method to generate optimal or near optimal
solutions to the VRP. Similar methods have been used to solve crew scheduling
problems, such as Hoffman and Padberg (1993).

Of course, the set of all feasible routes is extremely large and one cannot expect
to generate it completely. Even if this set is given, it is not clear how to solve the set-
partitioning problem since it is a large-scale integer program. Any method based
on this formulation must overcome these two obstacles. We start, in Section 8.2,
by showing how the linear relaxation of the set-partitioning problem can be solved
to optimality without enumerating all possible routes. In Section 8.3, we combine
this method with a polyhedral approach that generates an optimal or near-optimal
solution to the VRP. Finally, in Section 8.4, we provide a probabilistic analysis
that helps explain why a method of this type will be effective.

To simplify the presentation, we assume no time window constraints exist; the
extension to the more general model is, for the most part, straightforward. The
interested reader can find some of these extensions in Desrochers et al.

8.2 Solving a Relaxation of the Set-Partitioning
Formulation

To solve the linear relaxation of Problem S without enumerating all the routes,
Desrochers et al. use the celebrated column generation technique. A thorough
explanation of this method is given below, but the general idea is as follows. A
portion of all possible routes is enumerated, and the resulting linear relaxation with
this partial route set is solved. The solution to this linear program is then used to
determine if there are any routes not included that can reduce the objective function
value. This is the column generation step. Using the values of the optimal dual
variables (with respect to the partial route set), a new route is generated and the
linear relaxation is resolved. This is continued until one can show that an optimal
solution to the linear program is found, one that is optimal for the complete route
set.

Specifically, this is done by enumerating a partial set of routes, 1, 2, . . . , R′, and
formulating the corresponding linear relaxation of the set-partitioning problem
with respect to this set:
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Problem S ′ : Min
R′∑
r�1

cryr

s.t.
R′∑
r�1

αiryr ≥ 1, ∀i � 1, 2, . . . , n (8.2)

yr ≥ 0, ∀r � 1, 2, . . . , R′.

Let y be the optimal solution to Problem S ′, and let π be the corresponding
optimal dual variables. We would like to know whether y (or equivalently, π ) is
optimal for the linear relaxation of Problem S (respectively, the dual of the linear
relaxation of Problem S). To answer this question observe that the dual of the linear
relaxation of Problem S is

Problem SD : Max
n∑
i�1

πi

s.t.
n∑
i�1

αirπi ≤ cr , ∀r � 1, 2, . . . , R (8.3)

πi ≥ 0, ∀i � 1, 2, . . . , n.

Clearly, if π satisfies every constraint (8.3) then it is optimal for Problem SD and
therefore y is optimal for the linear programming relaxation of Problem S. How
can we check whether π satisfies every constraint in Problem SD? Observe that
the vector π is not feasible in Problem SD if we can identify a single constraint, r ,
such that

n∑
i�1

αirπi > cr .

Consequently, if we can find a column r minimizing the quantity cr −
∑n

i αirπ i

and this quantity is negative, then a violated constraint is found. In that case the
current vector π is not optimal for Problem SD . The corresponding column just
found can be added to the formulation of Problem SP , which is solved again. The
process repeats itself until no violated constraint (column) is found; in this case we
have found the optimal solution to the linear relaxation of Problem S (the vector
y) and the optimal solution to Problem SD (the vector π ).

Our task is then to find a column, or a route, r minimizing the quantity:

cr −
n∑
i

αirπ i . (8.4)

We can look at this problem in a different way. Suppose we replace each distance
dij with a new distance d ′ij defined by

d ′ij
.� dij − πi

2
− πj

2
.
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Then a tour u1 → u2 → . . .→ u( whose length using {dij } is
∑(−1

i�1 duiui+1 +du(u1

has, using {d ′ij }, a length

(−1∑
i�1

d ′uiui+1
+ d ′u(u1

�
(−1∑
i�1

duiui+1 + du(u1 −
(∑
i�1

πui .

Hence, finding a route r that minimizes (8.4) is the same as finding a tour of
minimum length using the distance matrix {d ′ij } that starts and ends at the depot,
visits a subset of the customers, and has a total load no more thanQ. Unfortunately,
this itself is an NP-Hard problem and so we are left with a method that is not
attractive computationally.

To overcome this difficulty, the set-partitioning formulation, Problem S, is mod-
ified so as to allow routes visiting the same customer more than once. The purpose
of this modification will be clear in a moment. This model, call it Problem SM
(where M stands for the “modified” formulation), is defined as follows. Enumer-
ate all feasible routes, satisfying the capacity constraint, that may visit the same
customer a number of times; each such visit increases the total load by the demand
of that customer. Let the number of routes (columns) be RM , and let cr be the
total distance traveled in route r . For each customer i � 1, 2, . . . , n and route
r � 1, 2, . . . , RM , let

ξir � number of times customer i is visited in route r.

Also, for each r � 1, 2, . . . , RM , define

yr �
{

1, if route r is in the optimal solution,

0, otherwise.

The VRP can be formulated as:

Problem SM : Min
RM∑
r�1

cryr

s.t.
RM∑
r�1

ξiryr ≥ 1, ∀i � 1, 2, . . . , n (8.5)

yr ∈ {0, 1}, ∀r � 1, 2, . . . , RM.

This is the set-partitioning problem solved by Desrochers et al. and therefore it
is not exactly Problem S. Clearly, the optimal integer solution to Problem SM
is the optimal solution to the VRP. However, the optimal solution values of the
linear relaxations of Problem SM and Problem S may be different. Of course, the
linear relaxation of Problem SM provides a lower bound on the linear relaxation
of Problem S.

To solve the linear relaxation of Problem SM we use the method described above
(for solving Problem S). We enumerate a partial set of R′

M routes; solve Problem
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S ′M which is the linear relaxation of Problem SM defined only on this partial list;
use the dual variables to see whether there exists a column not in the current partial
list with

∑n
i�1 ξirπ i > cr . If there exists such a column(s), we add it (them) to the

formulation and solve the resulting linear program again. Otherwise, we have the
optimal solution to the linear relaxation of Problem SM .

The modification we have made makes the column generation step computa-
tionally easier. This can now be found in pseudopolynomial time using dynamic
programming.

For this purpose, we need the following definitions. Given a pathP � {0, u1, u2,

. . . , u(}, where it is possible that ui � uj for i �� j , let the load of this path be∑(
i�1 wui . That is, the load of the path is the sum, over all customers in P , of the

demand of a customer multiplied by the number of times that customer appears
in P . Let fq(i) be the cost (using {d ′ij }) of the least cost path that starts at the
depot and terminates at vertex i with total load q. This can be calculated using the
recursion

fq(i) � min
j ��i

{
fq−wi

(j )+ d ′ij
}
, (8.6)

with the initial conditions

fq(i) �
{
d ′0i if q � wi ,

+∞ otherwise.

Finally, let f 0
q (i) � fq(i)+d ′0i . Thus, f 0

q (i) is the length of a least cost tour that
starts at the depot, visits a subset of the customers, of which customer i is the last
to be visited, has a total load q and terminates at the depot. Observe that finding
f 0
q (i) for every q, 1 ≤ q ≤ Q, and every i, i ∈ N , requires O(n2Q) calculations.

The recursion chooses the predecessor of i to be a node j �� i. This requires repeat
visits to the same customer to be separated by at least one visit to another customer.
In fact, expanding the state space of this recursion can eliminate two-loops: loops
of the type ...i, j, i.... This forces repeat visits to the same customer to be separated
by visits to at least two other customers. This can lead to a stronger relaxation of
the set-partitioning model. For a more detailed discussion of this recursion, see
Christofides et al. (1981).

If there exists a q, 1 ≤ q ≤ Q and i, i ∈ N with f 0
q (i) < 0, then the current

vectors y and π are not optimal for the linear relaxation of Problem SM . In such a
case we add the column corresponding to this tour (the one with negative f 0

q (i))
to the set of columns in Problem S ′M . If, on the other hand, f 0

q (i) ≥ 0 for every q
and i, then the current y and π are optimal for SM .

To summarize, the column generation algorithm can be described as follows.

The Column Generation Procedure

Step 1: Generate an initial set of R′
M columns.

Step 2: Solve Problem S ′M and find y and π .

Step 3: Construct the distance matrix {d ′ij } and find f 0
i (q) for all i ∈ N and

1 ≤ q ≤ Q.
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Step 4: For every i and q with f 0
i (q) < 0, add the corresponding column to R′

M

and go to Step 2.

Step 5: If f 0
i (q) ≥ 0 for all i and q, stop.

The procedure produces a vector y which is the optimal solution to the linear
relaxation of Problem SM . This is a lower bound on the optimal solution to the
VRP.

8.3 Solving the Set-Partitioning Problem

In the previous section we introduced an effective method for solving the linear
relaxation of the set-partitioning formulation of the VRP, Problem SM . How can
we use this solution to the linear program to find an optimal or near-optimal integer
solution?

Starting with the set of columns present at the end of the column generation step
(the set E), one approach to generating an integer solution to the set-partitioning
formulation is to use the method of branch and bound. This method consists of
splitting the problem into easier subproblems by fixing the value of a branching
variable. The variable (in this case a suitable choice is yr for some route r) is either
set to 1 or 0. Each of these subproblems is solved using the same method; that is,
another variable is branched. At each step, tests are performed to see if the entire
branch can be eliminated; that is, no better solution than the one currently known
can be found in this branch. The solution found by this method will be the best
integer solution among all the solutions in E. This solution will not necessarily be
the optimal solution to the VRP, but it may be close.

Another approach that will generate the same integer solution as the branch and
bound method is the following. Given a fractional solution to SM , we can generate
a set of constraints that will cut off this fractional solution. Then we can resolve
this linear program and if it is integer, we have found the optimal integer solution
(among the columns of E). If it is still fractional, then we can continue generating
constraints and resolving the linear program until an integer solution is found.
Again, the best integer solution found using this method may be close to optimal.
This is the method successfully used by Hoffman and Padberg (1993) to solve
crew-scheduling problems.

Formally, the method is as follows.

The Cutting Plane Algorithm

Step 1: Generate an initial set of R′
M columns.

Step 2: Solve, using column generation, Problem S ′M .

Step 3: If the optimal solution to Problem S ′M is integer, stop.
Else, generate cutting planes separating this solution.

Add these cutting planes to the linear program S ′M .
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Step 4: Solve the linear program S ′M . Goto Step 3.

To illustrate this constraint generation step (Step 3), we make use of a number
of observations. First, letE be the set of routes at the end of the column generation
procedure. Clearly, we can splitE into two subsets. One subsetEm includes every
column r for which there is at least one i with ξir ≥ 2; these columns are called
multiple visit columns. The second subset Es includes the remaining columns;
these columns are referred to as single visit columns. It is evident that an optimal
solution to the VRP will use no columns from Em. That is, there always exists a
single visit column of at most the same cost that can be used instead. We therefore
can immediately add the following constraint to the linear relaxation of Problem
SM . ∑

r∈Em

yr � 0. (8.7)

To generate more constraints, construct the intersection graph G. The graph
G has a node for each column in Es . Two nodes in G are connected by an edge
if the corresponding columns have at least one customer in common. Observe
that a solution to the VRP where no customer is visited more than once can be
represented by an independent set in this graph. That is, it is a collection of nodes
on the graph G such that no two nodes are connected by an edge.

These observations give rise to two inequalities that can be added to the formu-
lation.

1. We select a subset of the nodes of G, say K , such that every pair of nodes
i, j ∈ K are connected by an edge of G. Each set K , called a clique, must
satisfy the following condition. ∑

r∈K
yr ≤ 1. (8.8)

Clearly, if there is a node j �∈ K such that j is adjacent to every i ∈ K , then
we can replace K with K ∪ {j} in inequality (8.8) to strengthen it (this is
called lifting). In that sense we would like to use inequality (8.8) when the
set of nodes K is maximal in that sense.

2. Define a cycle C � {u1, u2, . . . , u(} in G, such that node ui is adjacent to
ui+1, for each i � 1, 2, . . . , ( − 1, and node u( is adjacent to node u1. A
cycle C is called an odd cycle if the number of nodes in C, |C| � (, is odd.
An odd cycle is called an odd hole if there is no arc connecting two nodes
of the cycle except the ( arcs defining the cycle. It is easy to see that in
any optimal solution to the VRP each odd hole must satisfy the following
property. ∑

r∈C
yr ≤ |C| − 1

2
. (8.9)
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8.3.1 Identifying Violated Clique Constraints

Hoffman and Padberg suggest several procedures for clique identification, one
of which is based on the fact that small size problems can be solved quickly by
enumeration. For this purpose, select v to be the node with minimum degree among
all nodes ofG. Clearly, every clique ofG containing v is a subset of the neighbors
of v, denoted by neigh(v). Thus, starting with v as a temporary clique, that is,
K � {v}, we add an arbitrary node w from neigh(v) to K . We now delete from
neigh(v) all nodes that are not connected to a node of K , in this case either v or
w. Continue adding nodes in this manner from the current set neigh(v) to K until
either there is no node in neigh(v) connected to all nodes in K , or neigh(v) � ∅.
In the end, K will be a maximal clique. We can then calculate the weight of this
clique, that is, the sum of the values (in the linear program) of the columns in the
clique. If the weight is more than one, then the corresponding clique inequality
is violated. If not, then we continue the procedure with a new starting node. The
method can be improved computationally by, for example, always choosing the
“heaviest” among those nodes eligible to enter the clique.

8.3.2 Identifying Violated Odd Hole Constraints

Hoffman and Padberg use the following procedure to identify violated odd hole
constraints. Suppose y is the current optimal solution to the linear program and
G is the corresponding intersection graph. Starting from an arbitrary node v ∈ G,
construct a layered graph G((v) as follows. The node set of G((v) is the same as
the node set ofG. Every neighbor of v in G is connected to v by an edge inG((v).
We refer to v as the root, or level 0 node, and we refer to the neighbors of v as level
1 nodes. Similarly, nodes at level k ≥ 2 are those nodes in G that are connected
(in G) to a level k − 1 node but are not connected to any node at level < k − 1.
Finally, each edge (ui, uj ) in G((v) is assigned a length of 1− yui − yuj ≥ 0.

Now pick a node u inG((v) at level k ≥ 2 and find the shortest path from u to v
inG((v). Delete all nodes at levels i (1 ≤ i < k) that are either on the shortest path
or adjacent to nodes along this shortest path (other than nodes that are adjacent
to v). Now pick another node w that is adjacent (in G) to u in level k. Find the
shortest path from w to v in the current graph G((v). Combining these two paths
with the arc (u,w) creates an odd hole. If the total length of this cycle is less than
1, then we have found a violated odd hole inequality. If not, we continue with
another neighbor of u and repeat the process. We can then choose a node different
from u at level k. If no violated odd hole inequality is found at level k, we proceed
to level k + 1. This subroutine can be repeated for different starting nodes (v) as
well.
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8.4 The Effectiveness of the Set-Partitioning
Formulation

The effectiveness of this algorithm depends crucially on the quality of the initial
lower bound; this lower bound is the optimal solution to the linear relaxation of
Problem SM . If this lower bound is not very tight, then the branch and bound or the
constraint generation methods will most likely not be computationally effective.
On the other hand, when the gap between the lower bound and the best integer
solution is small, the procedure will probably be effective.

Fortunately, many researchers have reported that the linear relaxation of the
set-partitioning problem, Problem SM , provides a solution close to the optimal
integer solution (see, e.g., Desrochers et al. (1992)). That is, the solution to the
linear relaxation of Problem SM provides a very tight lower bound on the solution
of the VRP. For instance, in their paper, Desrochers et al. report an average relative
gap between the optimal solution to the linear relaxation and the optimal integer
solution of only 0.733%. A possible explanation for this observation is embodied
in the following theorem which states that asymptotically the relative error between
the optimal solution to the linear relaxation of the set-partitioning model and
the optimal integer solution goes to zero as the number of customers increases.
Consider again the general VRP with capacity and time window constraints.

Theorem 8.4.1 Let the customer locations x1, x2, . . . , xn be a sequence of inde-
pendent random variables having a distribution µ with compact support in IR2.
Let the customer parameters (see Chapter 7) be independently and identically dis-
tributed like /. Let ZLP be the value of the optimal fractional solution to S, and
let Z∗ be the value of the optimal integer solution to S; that is, the value of the
optimal solution to the VRP. Then

lim
n→∞

1

n
ZLP � lim

n→∞
1

n
Z∗ (a.s.).

The theorem thus implies that the optimal solution value of the linear program-
ming relaxation of Problem S tends to the optimal solution of the vehicle routing
problem as the number of customers tends to infinity. This is important since, as
shown by Bramel and Simchi-Levi (1994) other classical formulations of the VRP
can lead to diverging linear and integer solution values (see Exercise 8.8).

In the next section we motivate Theorem 8.4.1 by presenting a simplified model
which captures the essential ideas of the proof. Finally, in Section 8.4.2 we provide
a formal proof of the theorem. Again, to simplify the presentation, we assume no
time window constraints exist; for the general case, the interested reader is referred
to Bramel and Simchi-Levi (1994).

8.4.1 Motivation

Define a customer type to be a location x ∈ IR2 and a customer demandw; that is, a
customer type defines the customer location and a value for the customer demand.
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Consider a discretized vehicle routing model in which there is a finite number W
of customer types, and a finite number m of distinct customer locations. Let ni be
the number of customers of type i, for i � 1, 2, . . . ,W and let n � ∑W

i�1 ni be the
total number of customers. Clearly, this discretized vehicle routing problem can
be solved by formulating it as a set-partitioning problem. To obtain some intuition
about the linear relaxation of S, we introduce another formulation of the vehicle
routing problem closely related to S.

Let a vehicle assignment be a vector (a1, a2, . . . , aW ), where ai ≥ 0 are integers,
and such that a single vehicle can feasibly serve a1 customers of type 1, and a2

customers of type 2, . . . , andaW customers of typeW together without violating the
vehicle capacity constraint. Index all the possible vehicle assignments 1, 2, . . . , Ra

and let cr be the total length of the shortest feasible route serving the customers
in vehicle assignment r . (Note that Ra is independent of n.) The vehicle routing
problem can be formulated as follows. Let

Air � number of customers of type i in vehicle assignment r,

for each i � 1, 2, . . . ,W and r � 1, 2, . . . , Ra . Let

yr � number of times vehicle assignment r is used in the optimal solution.

The new formulation of this discretized VRP is:

Problem SN : Min
Ra∑
r�1

yrcr

s.t.
Ra∑
r�1

yrAir ≥ ni, ∀i � 1, 2, . . . ,W,

yr ≥ 0 and integer, ∀r � 1, 2, . . . , Ra.

Let Z∗N be the value of the optimal solution to Problem SN and let ZLP
N be the

optimal solution to the linear relaxation of Problem SN . Clearly, Problem S and
Problem SN have the same optimal solution values; that is, Z∗ � Z∗N while their
linear relaxations may be different. Define c

.� maxr�1,2,...,Ra
{cr}; that is, c is the

length of the longest route among the Ra vehicle assignments. Using an analysis
identical to the one in Section 4.2, we obtain:

Lemma 8.4.2
ZLP ≤ Z∗ ≤ ZLP

N +Wc ≤ ZLP +Wc.

Observe that the upper bound on Z∗ obtained in Lemma 8.4.2 consists of two
terms. The first,ZLP, is a lower bound onZ∗, which clearly grows with the number
of customers n. The second term (Wc) is the product of two numbers that are
fixed and independent of n. Therefore, the upper bound on Z∗ of Lemma 8.4.2 is
dominated by ZLP and consequently we see that for large n, Z∗ ≈ ZLP, exactly
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what is implied by Theorem 8.4.1. Indeed, much of the proof of the following
section is concerned with approximating the distributions µ (customer locations)
and / (customer demands) with discrete distributions and forcing the number of
different customer types to be independent of n.

8.4.2 Proof of Theorem 8.4.1

It is clear that ZLP ≤ Z∗ and therefore limn→∞
1
n

(Z∗ −ZLP) ≥ 0. The interesting
part is to find an upper bound on Z∗ that involves ZLP and use this upper bound to
show that limn→∞ 1

n
(Z∗ −ZLP) ≤ 0. We do this in essentially the same way as in

Section 8.4.1. We successively discretize the problem by introducing a sequence
of vehicle routing problems whose optimal solutions are “relatively” close to Z∗.
The last vehicle routing problem is a discrete problem which therefore, as in
Section 8.4.1, can be directly related to the linear relaxation of its set-partitioning
formulation. This linear program is also shown to have an optimal solution close
to ZLP.

To prove the upper bound, letN be the index set of customers, with |N | � n, and
let problemP be the original VRP. LetA be the compact support of the distribution
of the customer locations (µ), and define dmax

.� sup{‖x‖ : x ∈ A}, where ‖x‖ is
the distance from point x ∈ A to the depot. Finally, pick a fixed k > 1.

Discretization of the Locations

We start by constructing the following vehicle routing problem with discrete loca-
tions. Define7

.� 1
k

and letG(7) be an infinite grid of squares of diagonal7, that
is, of side 7√

2
, with edges parallel to the system coordinates. LetA1, A2, . . . , Am(7)

be the subregions ofG(7) that intersectA and haveµ(Ai) > 0. SinceA is bounded,
m(7) is finite for each 7 > 0. For convenience, we omit the dependence of m on
7 in the notation. For each subregion, let Xi be the centroid of subregion Ai , that
is, the point at the center of the grid square containing Ai . This defines m points
X1, X2, . . . , Xm and note that a customer is at most 7

2 units from the centroid of
the subregion in which it is located.

Construct a new VRP, called P (m), defined on the customers of N . Each of the
customers in N is moved to the centroid of the subregion in which it is located.
Let Z∗(m) be the optimal solution to P (m). We clearly have

Z∗ ≤ Z∗(m)+ n7. (8.10)

Discretization of the Customer Demands

We now describe a VRP where the customer demands are also discretized in
much the same way as it is done in Section 4.2. Partition the interval (0, 1] into
subintervals of size 7(� 1

k
). This produces k segments and I

.� k − 1 points in
the interval (0, 1) which we call corners.

We refer to each centroid–corner pair as a customer type; each centroid defines
a customer location and each corner defines the customer demand. It is clear that
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there are mI possible customer types. An instance of a fully discretized vehicle
routing problem is then defined by specifying the number of customers of each of
the mI types.

For each centroid j � 1, 2, . . . , m, and corner i � 1, 2, . . . , I , let

Nji �
{
h ∈ N :

i − 1

k
< wh ≤ i

k
and xh ∈ Aj

}
.

Finally, for every j � 1, 2, . . . , m, and i � 1, 2, . . . , I, let nji � |Nji |.
We now define a fully discretized vehicle routing problemPk(m), whose optimal

solution value is denoted Z∗k (m). The vehicle routing problem Pk(m) is defined
as having min{nji, nj,i+1} customers located at centroid j with customer demand
equal to i

k
, for each i � 1, 2, . . . , I and j � 1, 2, . . . , m.

We have the following result.

Lemma 8.4.3

Z∗(m) ≤ Z∗k (m)+ 2dmax

m∑
j�1

I∑
i�1

|nji − nj,i+1|.

Proof. Observe:

(i) In Pk(m), the number of customers at centroid j and with demand defined by
corner i is min{nji, nj,i+1}.

(ii) In P (m) each customer belongs to exactly one of the subsets Nji , for j �
1, 2, . . . , m and i � 1, 2, . . . , I .

(iii) InP (m) the customers inNji have smaller loads than the customers ofPk(m)
at centroid j with demand defined by corner i.

Given an optimal solution to Pk(m), let us construct a solution to P (m). For each
centroid j � 1, 2, . . . , m and corner i � 1, 2, . . . , I , we pick any max{nji −
nj,i+1, 0} customers fromNji and serve them in individual vehicles. The remaining
min{nji, nj,i+1} customers in Nji can be served with exactly the same vehicle
schedules as in Pk(m). This can be done due to (iii) and therefore one can always
serve customers with demand of P (m) in the same vehicles that the customers of
Pk(m) are served.

Now Pk(m) is fully discrete and we can apply results as in Section 8.4.1. Let
ZLP
k (m) be the optimal solution to the linear relaxation of the set-partitioning

formulation of the routing problem Pk(m). Let c be defined as in Section 8.4.1;
that is, it is the cost of the most expensive tour among all the possible routes in
Pk(m).

Lemma 8.4.4
Z∗k (m) ≤ ZLP

k (m)+mIc.
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Proof. Since the number of customer types is at mostmI , we can formulate Pk(m)
as the integer program, like Problem SN , described in Section 8.4.1, with mI

constraints. The bound then follows from Lemma 8.4.2.
Recall that ZLP is the optimal solution to the linear relaxation of the set-

partitioning formulation of the VRP defined by problem P . Then

Lemma 8.4.5
ZLP
k (m) ≤ ZLP + n7.

Proof. Let {yr : r � 1, 2, . . . , R} be the optimal solution to the linear relaxation of
the set-partitioning formulation of problem P . We can assume (see Exercise 8.3)
that

∑R
r�1 yrαir � 1, for each i � 1, 2, . . . , n. We construct a feasible solution to

the linear relaxation of the set-partitioning formulation of Pk(m) using the values
yr . Since every customer in Pk(m) assigned to centroid j and corner i can be
associated with a customer in P with xk ∈ Aj and whose demand is at least as
large, each route r with yr > 0 can be used to construct a route r ′ feasible for
Pk(m). Since in Pk(m) the customers are at the centroids instead of at their original
locations, we modify the route so that the vehicle travels from the customer to its
centroid and back. Thus, the length (cost) of route r ′ is at most the cost of route r
in P plus nr7 where nr is the number of customers in route r .

To create a feasible solution to the linear relaxation of the set-partitioning for-
mulation to Pk(m) we take the solution to the linear relaxation of P and create the
routes r ′ as above. Therefore,

ZLP
k (m) ≤ ZLP +

R∑
r�1

yrnr7 ≤ ZLP + n7.

We can now prove Theorem 8.4.1.

Z∗ ≤ Z∗(m)+ n7

≤ Z∗k (m)+ 2dmax

m∑
j�1

I∑
i�1

|nji − nj,i+1| + n7

≤ ZLP
k (m)+mIc + 2dmax

m∑
j�1

I∑
i�1

|nji − nj,i+1| + n7

≤ ZLP +mIc + 2dmax

m∑
j�1

I∑
i�1

|nji − nj,i+1| + 2n7.

We now need to show that ZLP is the dominant part of the last upper bound. We
do that using the following lemma.

Lemma 8.4.6 There exists a constant K such that

lim
n→∞

1

n

m∑
j�1

I∑
i�1

|nji − nj,i+1| ≤ 2K

k
.
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Proof. In Section 4.2 we prove that given i and j there exists a constant K such
that

lim
n→∞

1

n
|nji − nj,i+1| ≤ 2K

k2
.

Therefore, a similar analysis gives

lim
n→∞

1

n

m∑
j�1

I∑
i�1

|nji − nj,i+1| ≤
m∑
j�1

µ(Aj )
2K

k
� 2K

k
.

Finally observe that each tour in Pk(m) has a total length no more than 1, since
the truck travels at a unit speed and the length of each working day is 1. Hence,
mIc � O(1), and therefore,

lim
n→∞

1

n
(Z∗ − ZLP) ≤ 4dmax

K

k
+ 27

� 2

k
(2Kdmax + 1).

Since K is a constant and k was arbitrary, we see that the right-hand side can be
made arbitrarily small. Therefore,

0 ≤ lim
n→∞

1

n
(Z∗ − ZLP) ≤ lim

n→∞
1

n
(Z∗ − ZLP) ≤ 0.

We conclude this chapter with the following observation. The proof of Theorem
8.4.1 also reveals an upper bound on the rate of convergence ofZLP to its asymptotic
value. Indeed (see Exercise 8.1), we have

E(Z∗) ≤ E(ZLP)+O(n3/4). (8.11)

8.5 Exercises

Exercise 8.1. Prove the upper bound on the convergence rate (equation (8.11)).

Exercise 8.2. Consider an undirected graphG � (V,E) where each edge (i, j ) has
a cost cij and each vertex i ∈ V a nonnegative penalty πi . In the Prize-Collecting
Traveling Salesman Problem (PCTSP), the objective is to find a tour that visits a
subset of the vertices such that the length of the tour plus the sum of penalties of
all vertices not in the tour is as small as possible. Show that the problem can be
formulated as a Longest Path Problem between two prespecified nodes of a new
network.

Exercise 8.3. Consider the Bin-Packing Problem. Let wi be the size of item i,
i � 1, . . . , n, and assume the bin capacity is 1. An important formulation of the
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Bin-Packing Problem is as a set-covering problem. Let

F � {S :
∑
i∈S

wi ≤ 1}.

Define

αiS �
{

1, if item i is in S,

0, otherwise,

for each i � 1, 2, . . . , n and each S ∈ F . Finally, for any S, S ∈ F , let

yS �
{

1, if the items in S are packed in a single bin with no other items,

0, otherwise.

In the set-covering formulation of the Bin-Packing Problem, the objective is to
select a minimum number of feasible bins such that each item is included in some
bin. It is the following integer program.

Problem P : Min
∑
S∈F

yS

s.t. ∑
S∈F

ySαiS ≥ 1, ∀i � 1, 2, . . . , n (8.12)

yS ∈ {0, 1}, ∀S ∈ F.
Let Z∗ be the optimal solution to problem P and let ZLP be the optimal solution

to the linear relaxation of Problem P. We want to prove that

Z∗ ≤ 2ZLP. (8.13)

(a) Formulate the dual of the linear relaxation of Problem P.

(b) Show that
∑n

i�1 wi ≤ ZLP.

(c) Argue that Z∗ ≤ 2
∑n

i�1 wi . Conclude that (8.13) holds.

(d) An alternative formulation to Problem P is obtained by replacing constraints
(8.12) with equality constraints. Call the new problem Problem PE. Show
that the optimal solution value of the linear relaxation of Problem P equals
the optimal solution value of the linear relaxation of Problem PE.

Exercise 8.4. Recall the dynamic program given by equation (8.6). Let

f � min
i∈N

min
wi≤q≤Q

fq(i).

Consider the function defined as follows.

gq(i) � min
wi≤q ′≤q

{fq ′ (i)+ fq−q ′+wi
(i)},
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for each i ∈ N and wi ≤ q ≤ Q. Now define g � mini∈N minwi≤q≤Q gq(i). Show
that f � g.

Exercise 8.5. Develop a dynamic programming procedure for the column genera-
tion step similar to fq(i) that avoids two-loops (loops of the type ...i, j, i...). What
is the complexity of this procedure?

Exercise 8.6. Develop a dynamic programming procedure for the column gen-
eration step in the presence of time-window constraints. What is required of the
time-window data in order for this to be possible? What is the complexity of your
procedure?

Exercise 8.7. Develop a dynamic programming procedure for the column gen-
eration step in the presence of a distance constraint on the length of any route.
What is required of the distance data in order for this to be possible? What is the
complexity of your procedure?

Exercise 8.8. Consider an instance of the VRPTW with n customers. Given a
subset of the customers S, let b∗(S) be the minimum number of vehicles required
to carry the demands of customers in S; that is, b∗(S) is the solution to the Bin-
Packing Problem defined on the demands of all customers in S. For i � 1, 2, . . . , n
and j � 1, 2, . . . , n, let

xij �
{

1, if a vehicle travels directly between points i and j ,

0, otherwise.

Let 0 denote the depot and define cij as the cost of traveling directly between
points i and j , for i, j � 0, 1, 2, . . . , n. Let ti represent the time a vehicle arrives
at the location of customer i and for every i and j , such that i < j , define
Mij � max{li + dij − ej , 0} where dij ≡ ‖Yi − Yj‖. Then the following is a valid
formulation of the VRPTW.

Problem P ′ : Min
∑
i<j

cij xij

s.t.
∑
i<j

xij +
∑
i>j

xji � 2, ∀i � 1, 2, . . . , n,

∑
i,j∈S

xij ≤ |S| − b∗(S), ∀S ⊂ {1, 2, . . . , n}, 2 ≤ |S| ≤ n− 1,

ei ≤ ti ≤ li − si, 1 ≤ i ≤ n,

ti + si + dij − tj ≤ Mij (1− xij ), 1 ≤ i < j ≤ n,

xij ∈ {0, 1}, 1 ≤ i < j ≤ n, (8.14)

x0j ∈ {0, 1, 2}, j � 1, 2, . . . , n. (8.15)
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The case x0j � 2 corresponds to a vehicle serving only customer j . The linear
programming relaxation ofP ′ is obtained by replacing constraints (8.14) and (8.15)
by their linear equivalents.

Construct an instance of the VRPTW in which the fractional and integer solu-
tions to the above linear program do not approach the same value asymptotically.
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9
Economic Lot Size Models with
Constant Demands

9.1 Introduction

Production planning is also an area where difficult combinatorial problems appear
in day to day logistics operations. In this chapter, we analyze problems related
to lot sizing when demands are constant and known in advance. Lot sizing in
this deterministic setting is essentially the problem of balancing the fixed costs of
ordering with the costs of holding inventory. In this chapter, we look at several
different models of deterministic lot sizing. First we consider the most basic single-
item model, the Economic Lot Size Model. Then we look at coordinating the
ordering of several items with a warehouse of limited capacity. Finally, we look at
a one-warehouse multiretailer system.

9.1.1 The Economic Lot Size Model

The classical Economic Lot Size Model, introduced by Harris (1915) (see Er-
lenkotter (1990) for an interesting historical discussion), is a framework where
we can see the simple tradeoffs between ordering and storage costs. Consider a
facility, possibly a warehouse or a retailer, that faces a constant demand for a single
item and places orders for the item from another facility in the distribution network
which is assumed to have an unlimited quantity of the product. The model assumes
the following.

• Demand is constant at a rate of D items per unit time.

• Order quantities are fixed at Q items per order.
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To find the optimal ordering policy in the Economic Lot Size Model, we con-
sider the inventory level as a function of time (see Figure 9.1). This is the so-called
saw-toothed inventory pattern. We refer to the time between two successive re-
plenishments as a cycle time. Thus, total inventory cost in a cycle of length T

is

K + hTQ

2
,

and since Q � TD, the average total cost per unit of time is

KD

Q
+ hQ

2
.

Hence, the optimal order quantity is

Q∗ .�
√

2KD

h
.

This quantity is referred to as the Economic Order Quantity (EOQ) and it is the
quantity at which inventory set-up cost per unit of time (KD

Q
) equals inventory

holding cost per unit of time ( hQ2 ).
We now see how some of our assumptions can be relaxed, without losing any of

the simplicity of the model. Consider the case in which initial inventory is positive,
say at level I0; then the first order for Q∗ items is simply delayed until time I0

D
.

Further, the assumption of zero lead time can also be easily relaxed. In fact, the
model can handle any deterministic lead time L. To do this simply place an order
for Q∗ items when the inventory level is DL. On the other hand, relaxing the
assumptions of fixed demands and infinite planning horizon requires significant
changes to the above solution.

9.1.2 The Finite Horizon Model

To make the model more realistic, we now introduce a finite horizon, say t . For
instance, in the retail apparel industry, such a horizon may represent an 8–12
week period, for example, the “winter season,” in which demand for the product
might be assumed to be constant and known. We also relax the assumption that the
order quantities are fixed. We seek an inventory policy on the interval [0, t] that
minimizes ordering and carrying costs.

For this purpose, consider any inventory policy, say P , that placesm ≥ 1 orders
in the interval [0, t]. Clearly, the first order must be placed at time zero and the last
must be placed so that the inventory at time t is zero. For any i, 1 ≤ i ≤ m− 1, let
Ti be the time between the placement of the i th order and the (i+ 1)st order and let
Tm be the time between the placement of the last order and t . Thus, by definition,
t � ∑m

i�1 Ti , and P places the j th order at time
∑j

i�1 Ti , for 1 ≤ j ≤ m. Again,
it is clear that the policy P must satisfy the Zero Inventory Ordering Property.
Figure 9.2 illustrates the inventory level of the policy P .
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The property thus implies that total purchasing and carrying cost per unit time
associated with P is at least

Km

t
+ hDt

2m
.

Consequently, by selecting the value of m that minimizes this value we can con-
struct a policy of minimal cost. Let

α � t

√
hD

2K
,

and thus the best value ofm is either "α# or �α�, depending on which yields smaller
cost. Thus our policy in the finite horizon case is in fact very similar to the infinite
horizon case. Orders are placed at regularly spaced intervals of time, and of course
the orders are of the same size each time.

9.1.3 Power of Two Policies

Consider the infinite horizon model described in Section 9.1. For this model we
know that average total cost per unit of time is

KD

Q
+ hQ

2
� K

T
+ hTD

2
.� f (T ),

where T is the time between orders. In this subsection, following Muckstadt and
Roundy (1993), we introduce a new class of policies called power-of-two policies.

To simplify the analysis, and in accordance with the notation used in the literature
(see Roundy, 1985, and Muckstadt and Roundy, 1993), let g

.� hD
2 and hence

f (T ) � K

T
+ gT .

Observe that the function f (T ) motivates another interpretation of the model. We
can consider the problem to be an Economic Lot Size model with unit demand
rate, that is, D � 1, and inventory holding cost 2g. The optimal reorder interval is

T ∗ �
√

K
g

and total cost per unit time is f (T ∗) � 2
√
Kg.

One difficulty with the Economic Lot Size Model is that the optimal reorder
interval T ∗ may take on any value and thus might lead to highly impractical optimal
policies. For instance, reorder intervals of

√
3 days, or

√
π weeks would not be easy

to implement. That is, the model might specify that orders be placed on Monday
of one week, Thursday of the next, Tuesday of the next week etc., a schedule of
orders that may not have an easily recognizable pattern. Therefore, it is natural to
consider policies where the reorder interval T is restricted to values that would
entail easily implementable policies. One such restriction is termed the power of
two restriction. In this case, T is restricted to be a power of two multiple of some
fixed base planning period TB ; that is,

T � TB2k, k ∈ {0, 1, 2, 3, . . .}. (9.1)
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Such a policy is called a power of two policy. The base planning period TB may
represent a day, week, month, etc. and is usually fixed beforehand. It represents
the minimum possible reorder interval.

Restricting ourselves to power of two policies requires addressing the following
issues.

• How does one find the best power of two policy, the one minimizing the cost
over all possible power of two policies?

• How far from optimal is the best policy of this type?

We start by answering the first question. Let T ∗ �
√

K
g

be the optimal (unre-

stricted) reorder interval and let T be the optimal power of two reorder interval.
Since f is convex, the optimal k in (9.1) is the smallest integer k satisfying

f (TB2k) ≤ f (TB2k+1),

or
K

TB2k
+ gTB2k ≤ K

TB2k+1
+ gTB2k+1.

Hence, k is the smallest integer such that√
K

2g
� 1√

2
T ∗ ≤ TB2k � T .

Thus, finding the optimal power of two policy is straightforward.
Observe that by the definition of the optimal k, it must also be true that

T � TB2k ≤
√

2K

g
�
√

2T ∗,

and hence the optimal power of two policy, for a given base planning period TB ,
must be in the interval [ 1√

2
T ∗,

√
2T ∗]. It is easy to verify that

f
( 1√

2
T ∗

)
� f (

√
2T ∗) � 1

2

( 1√
2
+
√

2
)
f (T ∗),

and hence, since f is convex, we have

f (T )

f (T ∗)
≤ 1

2

( 1√
2
+
√

2
)
≈ 1.06.

Consequently, the average inventory purchasing and carrying cost of the best power
of two policy is guaranteed to be within 6% of the average cost of the overall
minimum policy. The reader can see that this property is a result of the “flatness”
of the function f around its minimum.

This restriction, to powers of two multiples of the base planning period, will
also prove to be quite useful later in a more general setting.
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9.2 Multi-Item Inventory Models

9.2.1 Introduction

The previous models established optimal inventory policies for single item models.
It is simple to show that without the presence of joint order costs, a problem with
several items each facing a constant demand can be handled by solving each item’s
replenishment problem separately. In reality, management of a single warehouse
inventory system involves coordinating inventory orders to minimize cost without
exceeding the warehouse capacity. The warehouse capacity limits the total volume
held by the warehouse at any point in time. This constraint ties together the different
items and necessitates careful coordination (or scheduling) of the orders. That
is, it is not only important to know how often an item is ordered, but exactly
the point in time at which each order takes place. This problem is called the
Economic Warehouse Lot Scheduling Problem (EWLSP). The scheduling part,
hereafter called the Staggering problem, is exactly the problem of time-phasing the
placement of the orders to satisfy the warehouse capacity constraint. Unfortunately,
this problem has no easy solution and consequently it has attracted a considerable
amount of attention in the last three decades.

The earliest known reference to the problem appears in Churchman et al. (1957)
and subsequently in Holt (1958) and Hadley and Whitin (1963). These authors
were concerned with determining lot sizes that made an overall schedule satisfy
the capacity constraint, and not with the possibility of phasing the orders to avoid
holding the maximum volume of each item at the same time. Thus, they only con-
sidered what are called Independent Solutions, wherein every item is replenished
without any regard for coordination with other items.

Several authors considered another class of policies called Rotation Cycle poli-
cies wherein all items share the same order interval. Homer (1966) showed how
to optimally time-phase (stagger) the orders to satisfy the warehouse constraint
for a given common order interval. Page and Paul (1976), Zoller (1977) and Hall
(1988) independently rediscovered Homer’s result. At the end of his paper devoted
to Rotation Cycle policies, Zoller indicates the possibility of partitioning the items
into disjoint subsets, or clusters, if the assumption of a Rotation Policy “proves
to be too restrictive.” This is precisely Page and Paul’s partitioning heuristic. In
their heuristic, all the items in a cluster share a common order interval. The or-
ders are then optimally staggered within each cluster, but no attempt is made to
time-phase the orders of different clusters. Goyal (1978) argued that such a time-
phasing across the different clusters may lead to further reduction in warehouse
space requirements. Hartley and Thomas (1982) and Thomas and Hartley (1983)
considered the two-item case in detail.

Recently a number of studies have been concerned with the strategic version
of the EWLSP in which the warehouse capacity is not a constraint but rather a
decision variable. These include Hodgson and Howe (1982), Park and Yun (1985),
Hall (1988), Rosenblatt and Rothblum (1990) and Anily (1991). In this model,
the inventory carrying cost consists of two parts; one part is proportional to the
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average inventory while the second part is proportional to the peak inventory. A
component of the latter cost, discussed in Silver and Peterson (1985), is the cost
of leasing the storage space. This cost is typically proportional to the size of the
warehouse, and not to the inventories actually stored in it.

Define a policy to be a Stationary Order Size policy if all replenishments of
an item are of the same size. Likewise, a Stationary Order Intervals policy has
all orders for an item equally spaced in time. It is easily verified that an optimal
Stationary Order Size (respectively, Stationary Order Interval) policy is also a
Stationary Order Interval (respectively, a Stationary Order Size) policy if every
order of an item is received precisely when the inventory of that item drops to zero;
that is, it also satisfies the Zero Inventory Ordering property. Thus, it is natural to
consider policies that have all three properties: Stationary Order Size, Stationary
Order Interval and Zero Inventory Ordering. We call such policies Stationary Order
Sizes and Intervals policies, in short, SOSI policies. Two “extreme” cases of SOSI
policies are the Independent Solutions and the Rotation Cycle policies defined
above. All the authors cited above considered SOSI policies exclusively. Zoller
claims that SOSI policies are the only rational alternative, and most authors agree
that SOSI policies are much easier to implement in practice. In his Ph.D. thesis,
however, Hariga (1988) investigated both time-variant and stationary order sizes.
He was motivated to study time-variant order sizes by their successful application
in resolving the feasibility issue in the Economic Lot Scheduling Problem (ELSP)
(see Dobson (1987)).

The paper by Anily departs from earlier work on the EWLSP in its focus on
worst-case performance of heuristics. In her paper, Anily restricts herself to the
class of SOSI policies for the strategic model. She proves lower bounds on the
minimum required warehouse size and on the total cost for this class of policies.
She presents a partitioning heuristic of which the best Independent Solution and
the best Rotation Cycle policies are special cases. This partitioning heuristic is
similar to the one proposed by Page and Paul for the tactical model, although the
precise methods for finding the partition are different. Anily proves that the ratio
of the cost of the best Independent Solution to her lower bound is at most

√
2. She

also provides a data-dependent bound for the best Rotation Cycle, derived from
Jones and Inman’s (1989) work on the Economic Lot Size Problem. As a result,
her partitioning heuristic is at least as good as either special case, and thus has a
worst case bound of

√
2 relative to SOSI policies.

In this section we determine easily computable lower bounds on the cost of the
EWLSP as well as some simple heuristics for the problem. These bounds are used
to determine the worst-case performance of these heuristics on different versions
of the problem. First, in Section 9.2.2, we introduce notation, state assumptions
and formally define the strategic and tactical versions of the EWLSP. In Section
9.2.3, we establish the worst-case results. The discussion in this section is based
on the work of Gallego et al. (1996).
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9.2.2 Notation and Assumptions

Let N � {1, 2, . . . , n} be a set of n items each facing a constant unit demand rate
(this can be done without loss of generality). An ordering cost Ki is incurred each
time an order for item i is placed. A linear holding cost 2hi is accrued for each
unit of item i held in inventory per unit of time. Demand for each item must be
met over an infinite horizon without shortages or backlogging.

The volume of inventory of item i held at a given point in time is the product
of its inventory level at that time and the volume usage rate of item i, denoted by
γi > 0. The volume usage rate is defined as the volume displaced by one unit of
item i. Without loss of generality, we select the unit of volume so that

∑n
i�1 γi � 1.

The objective in the strategic version of the EWLSP is to minimize the long-
run average inventory carrying and ordering cost plus a cost proportional to the
maximum volume held by the warehouse at any point in time. Formally, for any
inventory policy P , let V (P) denote the maximum inventory volume held by the
warehouse and let C(P) be the long-run average inventory carrying and holding
cost incurred by this policy. Then, the objective is to find a policy P minimizing

Z(P)
.� C(P)+ V (P).

The tactical version of the EWLSP has also received much attention in the
literature. There, the objective is to find a policy P minimizing the long-run average
inventory carrying and holding costs subject to the inventory always being less than
the warehouse capacity. Hence, the tactical version can be formulated as: find a
policy P minimizing C(P) subject to V (P) ≤ v, where v denotes the available
warehouse volume.

9.2.3 Worst-Case Analyses

Preliminaries

We present here two simple results that are used in subsequent analyses.
Given a SOSI policy, let T � {T1, T2, . . . , Tn} be the vector of reorder intervals

where Ti is the reorder interval of item i. For any such vector T , let V (T ) denote
the maximum volume of inventory held by the warehouse over all points in time.
The following provides a simple upper bound on V (T ).

Lemma 9.2.1 For any vector T � {T1, T2, . . . , Tn}, we have

V (T ) ≤
n∑
i�1

γiTi .

Proof. Clearly, the inventory level of item i, at any moment in time, is no more
than Ti (recall demand is 1 for all i).

For the next result we need some additional notation. Consider any inventory
policy P and any time interval [0, t]. Let V (P, t) be the maximum inventory held
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by the warehouse in policy P over the interval [0, t] and C(P, t) be the average
inventory holding and carrying cost incurred over [0, t]. Let mi be the number
of times the warehouse places an order for item i over the interval [0, t]. For
τ ∈ [0, t], let Ii(τ ) be the inventory level of item i at time τ . Let vi(τ ) be the
volume of inventory held by item i at time τ ; that is, vi(τ ) � γiIi(τ ). Also, let
v(τ ) � ∑n

i�1 vi(τ ) be the volume of inventory held by the warehouse at time τ .

Lemma 9.2.2 For any inventory policy P and time interval [0, t], we have

1

2

n∑
i�1

γit

mi

≤
n∑
i�1

1

t
γi

∫ t

τ�0
Ii(τ )dτ ≤ V (P, t).

Proof. Clearly, v(τ ) ≤ V (P, t) for all τ ≤ t . Taking the integral up to time t > 0
gives

V (P, t) ≥ 1

t

∫ t

τ�0

∑
i

vi(τ )dτ

� 1

t

∫ t

τ�0

∑
i

γiIi(τ )dτ

�
∑
i

1

t
γi

∫ t

τ�0
Ii(τ )dτ

≥
∑
i

1

2

γit

mi

,

where the last inequality follows from Property 9.1.1 which states that when mi

orders for a single item are placed over the interval [0, t], the average inventory
level is minimized by placing equal orders at equally spaced points in time.

The Strategic Model

Consider the following heuristic for the strategic version of the EWLSP. Use the
vector of reorder intervals T that solves

ZH � min
T

{ ∑
i

(Ki

Ti
+ hiTi

)
+

∑
i

γiTi

}
.

Clearly, the vector T can be found in O(n) time by solving n separate Economic
Lot Scheduling models, and

ZH � 2
∑
i

√
Ki(hi + γi). (9.2)

By Lemma 9.2.1, ZH must provide an upper bound on the optimal solution value
of the strategic model.

We now construct a lower bound on the optimal solution value over all possible
inventory policies. The lower bound is the cost of the optimal policy if the ware-
house cost were based on average inventory rather than maximum inventory. This
bound will be used to prove the worst-case result.
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Lemma 9.2.3 A lower bound on the optimal solution value over all possible in-
ventory strategies is given by

ZLB � 2
∑
i

√
Ki(hi + γi/2). (9.3)

Proof. We show that ZLB ≤ C(P, t)+V (P, t) for all possible inventory policies
P and for all t > 0. Given an inventory policy P , where mi orders for item i are
placed over a time interval [0, t], then

C(P, t) � 1

t

∑
i

(
miKi + 2hi

∫ t

τ�0
Ii(τ )dτ

)
.

Combining this cost with the lower bound obtained in Lemma 9.2.2 on V (P, t)
yields the following lower bound on C(P, t)+ V (P, t).

C(P, t)+ V (P, t) ≥ 1

t

∑
i

[
miKi + 2hi

∫ t

τ�0
Ii(τ )dτ

]
+ 1

t

∑
i

γi

∫ t

τ�0
Ii(τ )dτ

� 1

t

∑
i

[
miKi + (2hi + γi)

∫ t

τ�0
Ii(τ )dτ

]

≥
∑
i

[
Ki

(mi

t

)
+ (2hi + γi)

2

( t

mi

)]
.

The last inequality again follows from Property 9.1.1. Minimizing the last expres-
sion with respect to t

mi
for each i ∈ N proves the result.

We now show that this heuristic is effective in terms of worst-case performance.

Theorem 9.2.4
ZH

ZLB
≤
√

2.

Proof. Combining equations (9.2) and (9.3) we get

ZH

ZLB
� 2

∑
i

√
Ki(hi + γi)

2
∑

i

√
Ki(hi + γi/2)

≤
√

2.

Can this bound be improved? The following example shows that the bound is
tight as the number of items grows to infinity. Consider an example n items with
Ki � K, hi � 0 and γi � γ � 1

n
for all i ∈ N . Clearly,

ZH � 2n
√
Kγ .

We now construct a feasible solution whose cost approaches the lower bound ZLB

as n goes to infinity. Consider a feasible policy P with identical reorder intervals
denoted by T̃ . To reduce the maximum volume V (T̃ ), we stagger the orders such
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that item i is ordered at times T̃ [ (i−1)
n
+ k] for k ≥ 0. Then the maximum volume

of inventory is (n+1)
2 T̃ γ . Hence, the cost of policy P is

Z(P) � nK

T̃
+ n+ 1

2
T̃ γ .

Minimizing with respect to T̃ gives

Z(P) �
√

2n(n+ 1)Kγ .

Consequently,
ZH

ZLB
≥ ZH

Z(P)
� 2n

√
Kγ√

2n(n+ 1)Kγ
.

The limit of this last quantity is
√

2 (as n goes to infinity) hence, along with
Theorem 9.2.4, we see that an example can be constructed where the worst-case
ratio is arbitrarily close to

√
2.

The Tactical Model

For the tactical version of the EWLSP, a simple heuristic denoted HW first proposed
by Hadley and Whitin (1963) is to solve

Problem PHW : CHW � Min
∑
i

(
hiTi + Ki

Ti

)
s.t. ∑

i

γiTi ≤ v,

T ≥ 0.

We show that the HW heuristic has a worst-case performance bound of 2 with
respect to all feasible policies. We do so by proving that the solution to the following
nonlinear program provides a lower bound on the cost of any feasible policy.

Problem PLB : CLB � Min
∑
i

(
hiTi + Ki

Ti

)
s.t.

1

2

∑
i

γiTi ≤ v, (9.4)

T ≥ 0.

Lemma 9.2.5 CLB is a lower bound on the cost of any feasible inventory policy.

Proof. Consider any feasible policy P over the interval [0, t] that placesmi orders
for item i in [0, t]. From Lemma 9.2.2 we have ∀t > 0,
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v ≥ V (P, t) ≥ 1

2

∑
i

γi

mi

t.

The average inventory holding and carrying cost incurred over the interval [0, t]
is

C(P, t)� 1

t

∑
i

[
miKi + 2hi

∫ t

τ�0
Ii(τ )dτ

]
≥

∑
i

[
Ki

(mi

t

)
+ hi

( t

mi

)]
. (9.5)

Again, the last inequality follows from Property 9.1.1.
Thus, by replacing t

mi
with Ti for all i ≥ 1, we see that minimizing (9.5) subject

to 1
2

∑
i γi t/mi ≤ v provides a lower bound on C(P, t).

We now prove the worst-case bound.

Theorem 9.2.6
CHW

CLB
≤ 2.

Proof. Let T LB � {T LB
1 , T LB

2 , . . . , T LB
n } be the optimal solution to PLB . Obvi-

ously, T ′i � 1
2T

LB
i is feasible for PHW . Hence,

CHW ≤
∑
i

(
hiT

′
i +

Ki

T ′i

)

� 1

2

∑
i

hiT
LB
i + 2

∑
i

Ki

T LB
i

≤ 2CLB.

As in the strategic version, the worst-case bound provided by the above theorem
can be shown to be tight. To do so, consider the case where all items are identical
with Ki � K, hi � 0 and γi � γ � 1

n
for all i ∈ N . The solution to problem

PHW is clearly Ti � v for all i ∈ N , so CHW � nK
v
. Consider now a feasible

policy P with identical reorder intervals denoted by T̃ such that an order for item
i is placed at times T̃ [ (i−1)

n
+ k] for k ≥ 0. The maximum volume occupied by

policy P is (n+1)
2 T̃ γ . So T̃ � 2v

(n+1)γ is feasible and C(P) � K(n+1)
2v . Hence,

lim
n→∞

CHW

C(P)
� lim

n→∞
nK/v

K(n+ 1)/2v
� 2.

By performing a similar analysis one can obtain worst-case bounds on the per-
formance of heuristics for other versions of the EWLSP. For instance, for the Joint
Replenishment version of the strategic model, where an additional set-up costK0 is
incurred whenever an order for one or more items is placed, the worst-case bound
of a heuristic, similar to the one described for the EWLSP, can be shown to be

√
3.

The worst-case bound on the tactical version of the Joint Replenishment model
can be shown to be 2

√
2.
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9.3 A Single Warehouse Multi-Retailer Model

9.3.1 Introduction

Many distribution systems involve replenishing the inventories of geographically
dispersed retailers. Consider a distribution system in which a single warehouse
supplies a set of retailers with a single product. Each retailer faces a constant
retailer-specific demand that must be met without shortage or backlogging. The
warehouse faces orders for the product from the different retailers and in turn places
orders to an outside supplier. A fixed, facility-dependent, set-up cost is charged
each time the warehouse or the retailers receive an order and inventory carrying
cost is accrued at each facility at a constant facility-dependent rate. The objective
is to determine simultaneously the timing and sizes of retailer deliveries to the
warehouse as well as replenishment strategies at the warehouse so as to minimize
long-run average inventory purchasing and carrying costs.

In the absence of a fixed set-up cost charged when the warehouse places an order,
the problem can be decomposed into an Economic Lot Size model for each retailer.
That is, the existence of this cost ties together the different retailers requiring the
warehouse to coordinate its orders and deliveries to the different retailers. It is well
known that optimal policies can be very complex and thus the problem has attracted
a considerable amount of attention in recent years (see Graves and Schwarz, 1977;
Roundy, 1985). The latter paper presents the best approach currently available for
this model; it suggests a set of power of two reorder intervals for each facility and
show that the cost of this solution is within 6% of a lower bound on the optimal
cost. In this section, we present this method along with the worst-case bound.

9.3.2 Notation and Assumptions

Consider a single warehouse (indexed by 0) which supplies n retailers, indexed
1, 2, . . . , n. We will use the term facility to designate either the warehouse or a
retailer. We make the following assumptions.

• Each retailer faces a constant demand rate of Di units, for i � 1, 2, . . . , n.

• Set-up cost for an order at a facility is Ki , for i � 0, 1, . . . , n.

• Holding cost is h′0 at the warehouse and h′i at retailer i, with h′i ≥ h′0 for
each i � 1, 2, . . . , n.

• No shortages are allowed.

As demonstrated by several researchers, policies for this problem may be quite
complex and thus it is of interest to restrict our attention to a subset of all feasible
policies. A popular subset of policies is the set of nested and stationary policies. A
nested policy is characterized by having each retailer place an order whenever the
warehouse does. As in the previous section, stationarity implies that reorder inter-
vals are constant for each facility. It is easy to show that any policy should satisfy
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the Zero Inventory Ordering Property. Roundy (1985) showed that, although ap-
pealing from a coordination point of view, nested policies may perform arbitrarily
badly in one-warehouse multi-retailer systems. We therefore will not restrict our-
selves to nested policies. We concentrate on policies where each retailer’s reorder
intervals are a powers of two multiple of a base planning period TB . Below, we
assume the base planning period is fixed. The worst-case bound reduces to 1.02 if
it can be chosen optimally, although we omit this extension.

Let’s first determine the cost of an arbitrary power of two policyT � {T0, T1, . . . ,

Tn} that satisfies the Zero Inventory Ordering Property. If we consider the inven-
tory at the warehouse, then it does not have the saw-toothed pattern. To overcome
this difficulty, it is convenient to introduce the notion of system inventory as well as
echelon holding cost rates. Retailer i’s system inventory is defined as the inventory
at retailer i plus the inventory at the warehouse that is destined for retailer i. If
we consider the system inventory of retailer i, then it has the saw-toothed pattern.
Echelon holding cost rates are defined as h0 � h′0 and hi � h′i−h′0. For simplicity,
define gi � 1

2hiDi and gi � 1
2h0Di for each i � 1, 2, . . . , n. To compute the cost

of such a policy, we separate each item in the warehouse’s inventory into cate-
gories depending on the retailer for which the item is destined. Let Hi(T0, Ti) be
the average cost of holding inventory for retailer i at the warehouse and at retailer
i. We claim:

Hi(T0, Ti) � giTi + gi max{T0, Ti}.
To prove this consider the two cases:

Case 1: Ti ≥ T0. Since T is a power of two policy, Ti ≥ T0 implies that the
warehouse places an order every time the retailer does. Therefore, the warehouse
never holds inventory for retailer i and average holding cost is

1

2
h′iTiDi � 1

2
(hi + h0)TiDi � (gi + gi)Ti.

Case 2: Ti < T0. Consider the portion of the warehouse inventory that is destined
for retailer i. Using the echelon holding cost rates, that is, inventory at retailer i is
charged at a rate of hi and system inventory is charged at a rate of h0, we have

Hi(T0, Ti) � 1

2
hiDiTi + 1

2
h0DiT0 � giTi + giT0.

Therefore, the average cost of a power of two policy T is given by:∑
i≥0

Ki

Ti
+

∑
i≥1

Hi(T0, Ti). (9.6)

Our objective then is to find the power of two policy T that minimizes (9.6).
Our approach to solving this problem is to first minimize the average cost over

all vectors T ≥ 0, that is, we solve this problem when the restriction to power of
two vectors is relaxed. We then round the solution T to a vector whose elements
are the powers of two multiple of TB .
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For a fixed value of T0, we consider the following problem

bi(T0) � inf
Ti>0

{Ki

Ti
+Hi(T0, Ti)

}
. (9.7)

To solve this problem, let τ ′i
.�

√
Ki

gi+gi and let τi
.�

√
Ki

gi
and note that τ ′i ≤ τi for

all i ≥ 1. Then one can show that

bi(T0) �




2
√
Ki(gi + gi) if T0 < τ ′i

Ki

T0
+ (gi + gi)T0 if τ ′i ≤ T0 ≤ τi

2
√
Kigi + giT0 if τi < T0.

That is, if T0 < τ ′i , it is best to choose T ∗i � τ ′i . If τ ′i ≤ T0 ≤ τi , then choose
T ∗i � T0. If T0 > τi , it is best to choose T ∗i � τi .

We now consider minimizing

B(T0)
.� K0

T0
+

n∑
i�1

bi(T0)

over all T0 > 0. The function B is of the form

K(T0)

T0
+M(T0)+H (T0)T0

over any interval where K(), M() and H () are constant. For any T0, define the sets
G(T0)

.� {i : T0 < τ ′i }, E(T0)
.� {i : τ ′i ≤ T0 ≤ τ ′i } and L(T0)

.� {i : τi < T0}.
Then K(), M() and H () are constant on those intervals where G(), E() and L() do
not change. To find the minimum of B, consider the intervals induced by the 2n
values τ ′i and τi for i � 1, 2, . . . , n. Say T0 falls in some specific interval; then we
set

T ∗i �



τ ′i if i ∈ G(T0)

T0 if i ∈ E(T0)

τi if i ∈ L(T0).

The sets G, E and L change only when T0 crosses a breakpoint τ ′i or τi for some
i ≥ 1. Specifically, if T0 moves from right to left across τi , retailer i moves from
L to E. If T0 moves from right to left across τ ′i , retailer i moves from E to G.
This suggests a simple algorithm to minimize B(T0). Start with T0 larger than
the largest breakpoint, and let L � {1, 2, . . . , n} and G � E � ∅. We then
successively decrease T0 moving from interval to interval. On each interval we

need only check that
√

K(T0)
H (T0) falls in the same subinterval as T0. In this case we

set T ∗0 �
√

K(T0)
H (T0) . Let B∗ .� B(T ∗0 ) � infT0≥0{B(T0)}; then this value is clearly a

lower bound on the cost of any power of two policy.
We now want to prove that this value is a lower bound on the cost of any

policy. For notational convenience, we abbreviate G � G(T ∗0 ), E � E(T ∗0 ) and
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L � L(T ∗0 ). Let K � K0 +
∑

i∈E Ki , G � ∑
i∈E(gi + gi) + ∑

i∈L g
i and

M � 2
√
KG. We also define for each i ≥ 0

Gi �



gi + gi, if i ∈ G,

gi, if i ∈ L,
Ki

(T ∗0 )2 , if i ∈ E ∪ {0},

Gi � gi + gi −Gi , and Mi � 2
√
KiGi . In this way we can write B∗ as

B∗ � M +
∑
i∈L∪G

Mi. (9.8)

We now prove that B∗ is a lower bound on any policy. We first show that in fact
B∗ � ∑

i≥0 Mi . From (9.8), we need only show that M � ∑
i∈E∪{0}Mi ,

M � 2
√
KG � 2

K

T ∗0

� 2
∑

i∈E∪{0}

Ki

T ∗0

� 2
∑

i∈E∪{0}

Ki√
Ki/Gi

� 2
∑

i∈E∪{0}

√
KiGi

�
∑

i∈E∪{0}
Mi.

Consider any policy over an interval [0, t ′] for t ′ > 0. We show that the total
cost associated with this policy over [0, t ′] is at least B∗t ′. Let mi be the number
of orders placed by facility i ≥ 0 in the interval [0, t ′]. Let Ii(t) be the inventory
at facility i ≥ 1 at time t and let Si(t) be the system inventory of facility i ≥ 1 at
time t . Clearly, total inventory holding cost is

∑
i≥1

∫ t ′

0

(
giIi(t)+ giSi(t)

)
dt.

We will show that this is no smaller than

∑
i≥1

∫ t ′

0

(
GiIi(t)+GiSi(t)

)
dt.

For this purpose consider the quantity GiIi(t)+GiSi(t) for each i ≥ 1. There are
three cases to consider.
Case 1: i ∈ G. Then Gi � gi + gi and Gi � gi + gi − Gi � 0 and since
Si(t) ≥ Ii(t) for all t > 0, we have
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giIi(t)+ giSi(t) ≥ GiIi(t)+GiSi(t).

Case 2: i ∈ L. Then Gi � gi and Gi � gi + gi −Gi � gi ; hence

giIi(t)+ giSi(t) � GiIi(t)+GiSi(t).

Case 3: i ∈ E. ThenGi � Ki

(T ∗0 )2 andGi � gi+gi−Gi . Observe that by definition

if i ∈ E, then τ ′i ≤ T ∗0 ≤ τi which implies gi ≤ Gi ≤ gi + gi . Since Si(t) ≥ Ii(t)
for all t ≥ 0, then

giIi(t)+ giSi(t) � GiIi(t)+GiSi(t)+ (Gi − gi)(Si(t)− Ii(t))

≥ GiIi(t)+GiSi(t). (9.9)

Finally, it is a simple exercise (see Exercise 9.7) to show that G0 �
∑

i≥1 G
i ,

and therefore our lower bound on the inventory holding cost can be written as

∑
i≥1

∫ t ′

0

(
GiIi(t)+GiSi(t)

)
dt �

∑
i≥0

∫ t ′

0
GiIi(t)dt,

where we have defined I0(t) � 1
G0

∑
i≥1 G

iSi(t).
Hence, total cost per unit of time under this policy is at least

1

t ′
∑
i≥0

(
Kimi +

∫ t ′

0
GiIi(t)dt

)
≥

∑
i≥0

(
Ki

mi

t ′
+Gi

t ′

mi

)
(by Property 9.1.1)

≥ 2
∑
i∈L∪G

√
KiGi + 2

∑
i∈E∪{0}

√
KiGi

�
∑
i≥0

Mi � B∗.

We have thus established that B∗ is a lower bound on the total cost per unit time
of any policy.

Finally, for each i ∈ G∪L select a power of two policy (a value of k) such that

1√
2
T ∗i ≤ TB2k ≤

√
2T ∗i .

For each i ∈ E ∪ {0} select a power of two policy (a value of k) such that

1√
2
T ∗0 ≤ TB2k ≤

√
2T ∗0 .

It is a simple exercise (Exercise 9.4) to show that the policy constructed in this
manner has cost at most 1.06 times the cost of the lower bound.
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9.4 Exercises

Exercise 9.1. Consider the Economic Lot Size Model and letK be the set-up cost,
h be the holding cost per item per unit of time and D the demand rate. Shortage
is not allowed and the objective is to find an order quantity so as to minimize the
long-run average cost. That is, the objective is to minimize

C(Q) � KD

Q
+ hQ

2
,

where Q is the order quantity. Suppose the warehouse can order only an integer
multiple of q units. That is, the warehouse can order q, or 2q, or 3q, etc.

(a) Prove that the optimal order quantity Q∗ has the following property. There
exists an integer m such that Q∗ � mq and√

m− 1

m
≤ Qe

Q∗ ≤
√
m+ 1

m
,

where Qe, the Economic Order Quantity, is:

Qe �
√

2KD

h
.

(b) Suppose now that m ≥ 2. Show that C(Q∗) ≤ 1.06C(Qe).

Exercise 9.2. (Zavi, 1976) Consider the Economic Lot Size Model with infinite
horizon and deterministic demand D items per unit of time. When the inventory
level is zero, production of Q items starts at a rate of P items per unit of time,
P ≥ D. The set-up cost is K$ and holding cost is h$/item/time. Every time
production starts at a level of P items/time, we incur a cost of αP , α > 0.

(a) What is the optimal production rate?

(b) Suppose that due to technological constraints, P must satisfy 2D ≤ P ≤
3D. What is the optimal production rate and the optimal order quantity?

Exercise 9.3. Consider the Economic Lot Size Model over the infinite horizon.
Assume that when an order of sizeQ is placed the items are delivered by trucks of
capacity q and thus the number of trucks used to deliver Q is �Q

q
�, where �m� is

the smallest integer greater than or equal to m. The set-up cost is a linear function
of the number of trucks used: it is K0 + �Qq �K . Holding cost is h $/item/time and
shortage is not allowed. What is the optimal reorder quantity?
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Exercise 9.4. Prove that the heuristic for the Single Warehouse Multi-Retailer
Model described in Section 9.3 provides a solution within 1.06 of the lower bound.

Exercise 9.5. Consider the power of two policies described in the single product
model of Section 9.1.3. Describe how you could generate a power of three policy
(a policy where each Ti � 3kTB for some integer k ≥ 0). What is the effectiveness
(in terms of worst-case performance) of the best power of three policy?

Exercise 9.6. (Porteus, 1985) The Japanese concept of JIT (Just In Time) advocates
reducing set up cost as much as possible. To analyze this concept, consider the
Economic Lot Size model with constant demand ofD items per year, holding cost
h $ per item per year and current set up cost K0. Suppose you can lease a new
technology that allows you to reduce the set up cost from K0 to K at an annual
leasing cost of A − Bln(K) dollars. That is, reducing the set up cost from the
current set up cost,K0, to K will cost annually A − Bln(K) dollars. Of course,
we assume that A−B ln(K0) � 0 which implies that using the current set up cost
requires no leasing cost. What is the optimal set up cost? What is the optimal order
quantity in this case?

Exercise 9.7. Show that in the proof of the lower bound, B∗, for the single ware-
house multi-retailer model we have G0 �

∑
i≥1 G

i .

Exercise 9.8. Prove equation (9.9).



10
Economic Lot Size Models with
Varying Demands

Our analysis of inventory models so far has focused on situations where demand
was both known in advance and constant over time. We now relax this latter
assumption and turn our attention to systems where demand is known in advance,
yet varies with time. This is possible, for example, if orders have been placed
in advance, or contracts have been signed specifying deliveries for the next few
months. In this case, a planning horizon is defined as those periods where demand
is known. Our objective is to identify optimal inventory policies for single item
models as well as heuristics for the multi-item case.

10.1 The Wagner-Whitin Model

Assume we must plan a sequence of orders, or production batches, over a T period
planning horizon. In each period, a single decision must be made: the size of the
order or production batch.

We make the following assumptions.

• Demand during period t is known and is denoted dt > 0.

• The per unit order cost is c and a fixed order cost K is incurred every time
an order is placed; that is, if y units are ordered, the order cost is cy+Kδ(y)
(where δ(y) � 1 if y > 0, and 0 otherwise).

• The holding cost is h > 0 per unit per period.

• Initial inventory is zero.
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• Leadtimes are zero; that is, an order arrives as soon as it is placed.

• All ordering and demand occurs at the start of the period. Inventory is charged
on the amount on hand at the end of the period.

The problem is to decide how much to order in each period so that demands
are met without backlogging and the total cost, including the cost of ordering and
holding inventory, is minimized. This basic model was first analyzed by Wagner
and Whitin (1958) and has now been called the Wagner-Whitin Model.

In this model, it is clear that the total variable order cost incurred will be fixed
and independent of the schedule of orders, and thus this cost can be ignored. Let
yt be the amount ordered in period t , and It be the amount of product in inventory
at the end of period t . Using these variables, the problem can be formulated as
follows:

Problem WW : Min
T∑
t�1

[
Kδ(yt )+ hIt

]
s.t.

It � It−1 + yt − dt , t � 1, 2, . . . , T (10.1)

I0 � 0 (10.2)

It , yt ≥ 0, t � 1, 2, . . . , T . (10.3)

Here constraints (10.1) are called the inventory-balance constraints, while (10.2)
simply specifies initial inventory. Note that the inventory can also be rewritten
as: It �

∑t
i�1(yi − di) and therefore the It variables can be eliminated from the

formulation.
Wagner and Whitin made the following important observation.

Theorem 10.1.1 Any optimal policy is a zero-inventory ordering policy, that is, a
policy in which

ytIt−1 � 0, for t � 1, 2, . . . , T .

Proof. The proof is quite simple. By contradiction, assume there is an optimal
policy in which an order is placed in period t even though the inventory level at
the beginning of the period (It−1) is positive. We will demonstrate the existence
of another policy with lower total cost. Evidently, the It−1 items of inventory were
ordered in various periods prior to t . Thus, if we instead order these items in period
t , we save all the holding cost incurred from the time they were each ordered.

Thus, ordering only occurs when inventory is zero. A simple corollary is that
in an optimal policy an order is of size equal to satisfy demands for an integer
number of subsequent periods.

Using the above property, Wagner and Whitin developed a dynamic program-
ming algorithm to determine those periods when ordering takes place. By con-
structing a simple acyclic network with nodes V � {1, 2, . . . , T +1}, we can view
the problem of determining a policy as a shortest path problem. Formally, let (ij ,
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the length of arc (i, j ) in this network, be the cost of ordering in period i to satisfy
the demands in periods i, i + 1, . . . , j − 1, for all 1 ≤ i < j ≤ T + 1. That is,

(ij � K + h

j−1∑
k�i

(k − i)dk.

All other arcs have (ij � +∞. The length of the shortest path from node 1 to node
T + 1 in this acyclic network is the minimal cost of satisfying the demands for
periods 1 through T . The optimal policy, that is, a specification of the periods in
which an order is placed, can be easily reconstructed from the shortest path itself.
This procedure is clearly O(T 2).

Most of the assumptions made above can be relaxed without changing the basic
solution methodology. For example, one can consider problem data that are period
dependent (e.g., ct , ht or Kt ). The assumption of zero leadtimes can be relaxed if
one assumes the leadtimes are known in advance and deterministic. In that case,
if an order is required in period t , then it is ordered in period t −L, where L is the
leadtime.

Researchers have also considered order costs that are general concave functions
of the amount ordered, that is, ct (y). The problem can be formulated as a network
flow problem with concave arc costs. This was the approach of Zangwill (1966)
who also extended the model to handle backlogging, although the solution method
is only computationally attractive for small size problems.

The Wagner-Whitin model can also be useful if demands during periods well
into the future are not known. This idea is embodied in the following theorem.

Theorem 10.1.2 Let t be the last period a set-up occurs in the optimal order policy
associated with a T period problem. Then for any problem of length T ∗ > T it
is necessary to consider only periods {j : t ≤ j ≤ T ∗} as candidates for the last
set-up. Furthermore, if t � T , the optimal solution to a T ∗ period problem has
yt > 0.

This result is useful since it shows that if an order is placed in period t , the optimal
policy for periods 1, 2, . . . , t − 1 does not depend on demands beyond period t .

Surprisingly, even though the Wagner-Whitin solution procedure is extremely
efficient, often simple approximate, yet intuitive, heuristics may be more appeal-
ing to managers. For example, this may be the reason for the popularity of the
Silver-Meal (1973) heuristic or the Part-Period Balancing heuristic of Dematteis
(1968). One important reason is the sensitivity of the optimal strategy to changes
in forecasted demands dt , t � 1, 2, . . . , T . Indeed, in practice these forecasted de-
mands are typically modified “on-the-fly.” These changes typically imply changes
in the optimal strategy. Some of the previously mentioned heuristics are not as
sensitive to these changes while producing optimal or near optimal strategies. For
another approach, see Federgruen and Tzur (1991).

Recently researchers have shown that it is possible to take advantage of the
special cost structure in the Wagner-Whitin model and use it to develop faster
exact algorithms (i.e.,O(T )). This includes the work of Aggarwal and Park (1990),
Federgruen and Tzur (1991) and Wagelmans et al. (1992).
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We sketch here the O(T ) algorithm of Wagelmans et al. which is the most
intuitive of the ones proposed. It is a backwards dynamic programming approach.
Define dij �

∑j

t�i dt for i, j � 1, 2, . . . , T , that is, the demand from period i to
period j . To describe the algorithm, we will change slightly the way we account
for the holding cost. If an item is ordered in period i to satisfy a demand in period
j ≥ i, then we are charged Hi

.� (T − i + 1)h per unit. That is, we incur the
holding cost until the end of the time horizon. As long as we remember to subtract
the constant h

∑T
i�1 d1i from our final cost, then we are charged exactly the right

amount. With this in mind, define G(i) to be cost of an optimal solution with a
planning horizon from period i to period T , for i � 1, 2, . . . , T . For convenience,
define G(T + 1) � 0. Then,

G(i) � min
i<t≤T+1

{K +Hidi,t−1 +G(t)}

� K + min
i<t≤T+1

{Hidi,t−1 +G(t)}. (10.4)

The final cost is then G(1) − h
∑T

i�1 d1i . Using this recursion, which is just a
reformulation of the shortest path recursion discussed earlier, it is clear that the
complexity is O(T 2). Wagelmans et al.’s O(T ) algorithm is based on the crucial
observation that with careful implementation, the total amount of time spent finding
the period that minimizes (10.4) over the entire running of the algorithm is O(T ).

Consider the calculation of G(i). It is useful to plot the points (djT ,G(j )) for
j � i + 1, i + 2, . . . , T + 1, where the point (dT+1,T ,G(T + 1)) is simply the
origin. Let E be the lower convex envelope of these points; then define the function
g(x) � y if and only if (x, y) ∈ E . It is clear that g is a piecewise linear convex
function on [0, di+1,T ] with g(di+1,T ) � G(i + 1) and g(0) � 0. See Figure 10.1.

Define the breakpoints of g to be all the points x where g changes slope in
addition to the points x � 0 and x � di+1,T . If x is a breakpoint, then x � djT
for some period j ∈ {i + 1, i + 2, . . . , T + 1}. Let there be r breakpoints and let
i + 1 � t(1) < t(2) < . . . < t(r) � T + 1 denote the corresponding periods.
These periods are called efficient because of the following.

Theorem 10.1.3

min
i<t≤T+1

{Hidi,t−1 +G(t)} � min
1≤p≤r

{Hidi,t(p)−1 +G(t(p))}.

Proof. Suppose that j (with i+1 < j < T +1) is not an efficient period and let k
and ( (with k < j < () be the two consecutive efficient periods straddling j . The
slope of g on [d(T , dkT ] is equal to [G(k)−G(()]/dk,(−1, hence

g(djT ) � G(()+ G(k)−G(()

dk,(−1
dj,(−1.

Furthermore, G(j ) ≥ g(djT ).
There are two cases to consider.





170 10. Economic Lot Size Models with Varying Demands

then
Hidi,k−1 +G(k) < Hidi,(−1 +G(();

otherwise
Hidi,k−1 +G(k) ≥ Hidi,(−1 +G(().

Proof. Suppose that G(k)−G(()
dk,(−1

< Hi ; then G(k) < Hidk,(−1 + G((). Adding
Hidi,k−1 to both sides results in Hidi,k−1 + G(k) < Hidi,(−1 + G((). The other
case can be shown in a similar fashion.

We now describe specifically how to find the efficient period achieving the
minimum in (10.4). This is done by keeping an up-to-date list L of the current
efficient periods. Let ((p) be the index of the efficient period immediately following
efficient period p; that is, p < ((p). From Lemma 10.1.4 and the convexity of g
it follows that the value of j that achieves the minimum of

min
i<j≤T+1

{Hidi,j−1 +G(j )}

corresponds to the period q(i) defined by:

q(i)
.� min

[
T + 1,min

{
p ∈ L | p < T + 1 and

G(p)−G(((p))

dp,((p)−1
< Hi

}]
,

because then

Hidi,p−1 +G(p) ≥ Hidi,((p)−1 +G(((p)), for p ∈ L and p < q(i),

and

Hidi,p−1 +G(p) < Hidi,((p)−1 +G(((p)), for p ∈ L and p ≥ q(i).

In fact, it is easy to determine q(i) from q(i + 1). Note that q(i + 1) ∈ L and
as long as q(i + 1) is efficient it has the same successor ((i + 1) in L. Using the
definition of q(i + 1) we obtain:

G(q(i + 1))−G(((q(i + 1)))

dq(i+1),((q(i+1))−1
< Hi+1 ≤ Hi.

Hence, it follows that q(i) ≤ q(i + 1); that is, the values of q(i) are decreasing in
i. Therefore, starting at q(i + 1) we successively decrement by one until we find
q(i). The total amount of time spent searching for q(i) in the entire algorithm is
therefore O(T ).

To complete the complexity result, we must be able to quickly update the list of
efficient periods, that is, update the lower convex envelope. After calculating G(i)
and plotting the point (diT ,G(i)), we search for the smallest efficient period t(s)
such that the slope of the line segment connecting (diT ,G(i)) to (dt(s),T ,G(t(s)))
is greater than the slope of the line segment connecting (dt(s+1),T ,G(t(s + 1))) to
(dt(s),T ,G(t(s))) (thus maintaining convexity). Then the new efficient periods are
i and the periods from t(s) to t(r) ≡ T +1; the efficient periods between i+1 and
t(s) − 1 become inefficient. Since a period can become inefficient at most once,
one can verify that the total amount of work spent updating the list L over the
entire algorithm is O(T ).
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10.2 Models with Capacity Constraints

An important generalization of the Wagner-Whitin model is the inclusion of upper
bounds on the amount that can be ordered or produced in a given period. This
corresponds to adding the following constraints to Problem WW.

yt ≤ Ct, t � 1, 2, . . . , T . (10.5)

The values Ct ≥ 0 correspond to the maximum amount that can be ordered (or
produced) in period t due to, for example, limited production capacities.

In this case, the problem is not as simple as before; Florian et al. (1980) show
that in general, the problem is NP-Complete . Florian and Klein (1971) propose
a dynamic programming approach which involves solving a sequence of acyclic
shortest path problems for the special case whereCt � C for all t . Love (1973) de-
vises an algorithm based on characterizing the extreme points of the solution space
for the general problem. The branch and bound algorithm of Baker et al. (1978)
seems to be the most computationally effective, although it is not polynomial.

We sketch here the approach of Florian and Klein. For now assume unequal
capacities; most of the structural results proved by Florian and Klein hold in this
more general case. Clearly, a feasible solution exists if and only if

i∑
j�1

Cj ≥
i∑

j�1

dj , for i � 1, 2, . . . , T .

We therefore assume this is satisfied. Let

P � {y ∈ IRT : y satisfies (10.1), (10.2), (10.3) and (10.5)},
and letD be the set of extreme points of P . Since the objective function is concave
(why?), we know an optimal solution will exist in D.

Florian and Klein prove the following Inventory Decomposition Property.

Theorem 10.2.1 Suppose that the constraint

Ik � 0, for some k ∈ [1, . . . , T − 1]

is added to Problem WW and

i∑
j�k+1

Cj ≥
i∑

j�k+1

dj , for i � k + 1, . . . , T

holds. Then an optimal solution to the original problem can be found by indepen-
dently finding solutions to the problems for the first k periods and for the last T −k
periods.

This is clearly a generalization of Theorem 10.1.2. Following this idea, call a
period t a regeneration point if It � 0. Define a production sequence Sij , where
0 ≤ i < j ≤ T , to be:
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Sij � {(yi+1, yi+2, . . . , yj ) | Ii � Ij � 0, Ik > 0 for i < k < j}.

Clearly, any production plan can be decomposed into a set of production sequences.
Define a production sequence Sij to be capacity constrained if the production level
in at most one period k, (i + 1 ≤ k ≤ j ) satisfies 0 < yk < Ck and all other
production levels are either zero or at their capacities.

The authors then characterize the extreme points of P in the following way.

Theorem 10.2.2

y ∈ D ⇐⇒ y consists of capacity constrained production sequences only.

This characterization is done in several steps. First:

Lemma 10.2.3 If y ∈ D, then y consists only of capacity constrained production
sequences.

Proof. Suppose y ∈ D and Sij is a production sequence of y that is not capacity
constrained. This means there are at least two periods, say k and (, (i + 1 ≤ k <

( ≤ j ), in which 0 < yk < Ck and 0 < y( < C(. Without loss of generality we
can assume there are only two periods of this type.

Let

δ � 1

2
min{yk, Ck − yk, y(, C( − y(, min

i+1≤t<j
It },

and let en be the (j − i) component vector with a one in the nth position and zeros
everywhere else. Define two production sequences

S ′ij � Sij − δek + δe(,

and
S ′′ij � Sij + δek − δe(.

Note that production sequence S ′ij simply represents a shifting of production from
period k to period (, while sequence S ′′ij represents the opposite shift. They are

clearly feasible, and since δ > 0 they are distinct. However, Sij � 1
2 (S ′ij + S ′′ij ), a

contradiction.

Lemma 10.2.4 If y ′ and y ′′ are distinct feasible production plans and y � 1
2 (y ′ +

y ′′), then y ′ and y ′′ share all the regeneration points of y.

Proof. Let period k be a regeneration point of y. Then

0 �
k∑
t�1

(yt − dt ) � 1

2

[ k∑
t�1

(y ′t − dt )+
k∑
t�1

(y ′′t − dt )
]
� 1

2
(I ′k + I ′′k ).

Since I ′k, I
′′
k ≥ 0, both I ′k and I ′′k must be zero.
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Lemma 10.2.5 If a feasible plan y consists only of capacity constrained produc-
tion sequences, then y ∈ D.

Proof. Suppose by contradiction that y �∈ D. Then there exist feasible plans y ′

and y ′′ such that y � 1
2 (y ′ + y ′′).

From Lemma 10.2.4, y ′ and y ′′ share the regeneration points of y. Let i and j be
two such successive regeneration points, and let Sij , S ′ij and S ′′ij be the associated
distinct production sequences of y, y ′ and y ′′, respectively. Evidently,

Sij � 1

2
(S ′ij + S ′′ij ).

We show that the only possibility is Sij � S ′ij � S ′′ij . For this purpose, consider any
period k, i + 1 ≤ k ≤ j and observe that yk can take only three possible values.
Either yk � 0 in which case y ′k � y ′′k � 0, or yk � Ck in which case y ′k � y ′′k � Ck

or 0 < yk < Ck . Since Sij is a capacity constrained sequence, at most one period,
say period (, i+1 ≤ ( ≤ j has 0 < y( < C(. But total production between period
i+1 and period j must be equal to total demands over the same periods, and hence
y( � y ′( � y ′′( . Consequently, Sij � S ′ij � S ′′ij .

This completes the proof of Theorem 10.2.2.
It is now clear that an optimal solution must be made up of a sequence of optimal

capacity constrained production sequences. However, determining these sequences
can be quite tedious and computationally expensive. To make the problem tractable,
Florian and Klein consider the case where the capacity constraints are identical
and equal to C. Demand between any two periods, say periods i and j , can then
be written as mC + p where m is an integer and p < C. Then:

Corollary 10.2.6 If Ct � C for all t , an optimal production sequence has a
number of periods in which production levels are equal to C, at most one period
where production level is 0 < p < C, and the remaining periods have zero
production levels.

This simplifies the problem considerably; for example, consider determining the
optimal production sequence between regeneration points i and j . From Corollary
10.2.6, in each period k ∈ {i + 1, i + 2, . . . , j} production is either 0, C or p for
some p ∈ (0, C). Let Yk �

∑k
(�i+1 yk , for i < k ≤ j , that is, the amount produced

between periods i + 1 and k in this production sequence. Then Yk can only take
on values in {0, p, C,C + p, 2C, . . . , mC,mC + p}.

Thus, we can construct a network where the vertices correspond to the possible
values of Yk for each i < k ≤ j with directed edges (Yk, Yk+1) defined by:

• If Yk � (C, ( � 0, 1, . . . , m, then there are three edges emanating from this
vertex: one to Yk+1 � (C (corresponding to no production in period k), one
to Yk+1 � (C + p (corresponding to production of p in period k) and one
to Yk+1 � ((+ 1)C (corresponding to production of C in period k).

• If Yk � (C + p, ( � 0, 1, . . . , m, then there are two edges emanating from
this vertex: one to Yk+1 � (C+p (corresponding to no production in period
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k) and one to Yk+1 � (( + 1)C + p (corresponding to production of C in
period k).

After creating an artificial initial vertex Y0, we see that every path from Y0 to
Yj represents a feasible capacity constrained production sequence. Assigning arc
costs equal to the cost of producing and storing the corresponding product amounts,
it is clear that finding the optimal production sequence from i to j is no harder
than solving the shortest path problem on this network. The complexity of this
procedure is clearly proportional to (j − i)2, thus determining that the optimal
production sequence between all pairs of periods is O(T 3).

To determine the optimal production plan over the entire planning horizon,
Florian and Klein solve another shortest path problem on a network similar to the
one formulated in Section 10.1. That is, length of an arc (i, j ) in this network is the
total cost of the optimal production sequence from i to j . After solving the shortest
path problem, the optimal set of regeneration points can be found by checking the
shortest path. This step is O(T 2).

Unfortunately, Florian and Klein’s approach cannot be extended to a computa-
tionally effective technique for the general case with unequal capacities. In that
case, a more effective approach may be the one by Baker et al. We sketch this
approach here. As in the uncapacitated case, the authors first identify special prop-
erties that an optimal solution must satisfy. They are the following.

Theorem 10.2.7 If (y1, y2, . . . , yT ) represents an optimal solution, then for every
t:

It−1(Ct − yt )yt � 0.

This can be proven easily using the same technique as in Theorem 10.1.1. Though
not quite as useful as the Zero Inventory Ordering property of the (uncapacitated)
Wagner-Whitin model, this property does simplify the problem considerably. It
states that if there is inventory carried into the period, then production in this
period is either zero or at capacity. On the other hand, if production is positive, but
less than capacity, the inventory must be zero.

A simple corollary of this result, and the key to the approach, is the following.

Theorem 10.2.8 Let t � max{j : yj > 0}. If (y1, y2, . . . , yT ) represents an
optimal solution, then

yt � min
{
Ct,

T∑
j�t

dj

}
.

To see how this might be useful, consider the two possible cases. If yt �
∑T

j�t dj <
Ct , then since It−1 � 0 the problem becomes one of determining the best way to
satisfy the demands of periods 1, 2, . . . , t−1 with no final inventory. On the other
hand, if yt � Ct ≤

∑T
j�t dj , then the problem becomes one of determining the

best way to satisfy the demands of periods 1, 2, . . . , t − 1 with final inventory
equal to d � ∑T

j�t dj −Ct . This final inventory stipulation can easily be handled
by considering it simply as extra demand in that last period. Therefore, starting
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from the end of the planning horizon, one can successively solve smaller and more
manageable problems.

The authors therefore propose a tree-search solution method that works as fol-
lows. We start at the root of the tree, the one associated with the last period, period
T . Production in this period is either yT � 0 or yT � min{CT , dT } (from Theorem
10.2.8). These two possibilities result in the creation of two subproblems (or subn-
odes in the tree). The authors explain how to continue in this manner, and, using
some shortcuts to reduce the number of nodes that need to be fathomed, it results
in an effective technique. Unfortunately, since it is not a polynomial procedure, it
is possible to construct examples where the amount of computation required using
this method is extensive.

10.3 Multi-Item Inventory Models

In many practical situations, the coordination of inventory and ordering policies
involves a variety of different products and this complicates the problem consider-
ably. Consider the uncapacitated case once again, and assume there are n products.
Each product faces a known demand during the next T periods. In addition, a fixed
order cost of Ki is incurred every time product i is ordered.

For each product i, define the following.

• Let yit be the amount of product i ordered in period t , for t � 1, 2, . . . , T .

• Let hi be the inventory holding cost for product i.

• Let Iit be the amount of product i in inventory at the start of period t , for
t � 1, 2, . . . , T .

• Let dit be the demand in period t for product i, for t � 1, 2, . . . , T .

Making the same assumptions as in the Wagner-Whitin model, the problem is
then:

Problem P : Min
T∑
t�1

n∑
i�1

[
Kiδ(yit )+ hiIit

]
s.t.

Iit � Ii,t−1 + yit − dit , i � 1, 2, . . . , n, t � 1, 2, . . . , T (10.6)

Ii0 � 0, i � 1, 2, . . . , n (10.7)

Iit , yit ≥ 0, i � 1, 2, . . . , n, t � 1, 2, . . . , T . (10.8)

Here (10.6) are inventory-balance constraints for each product, while (10.7) specify
starting inventory for each product.

It is easy to see thatP decomposes intom single product problems. Each of these
single product problems can be solved using the algorithms for the Wagner-Whitin
model.
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A more realistic version of this problem is when a joint set-up costK0 is present.
This cost is incurred whenever any product is ordered. The problem then becomes

Problem P ′ : Min
T∑
t�1

[
K0δ(

n∑
i�1

yit )+
m∑
i�1

(
Kiδ(yit )+ hiIit

)]
s.t. (10.6), (10.7) and (10.8).

Unfortunately, this problem is considerably more difficult to solve than the
simple Wagner-Whitin model. In fact, Arkin et al. (1989) prove that it is NP-
Complete. Several researchers have proposed heuristics for this problem, including
Silver (1976), Atkins and Iyogun (1988) and Joneja (1990). We present here the
approach of Joneja.

The cost covering heuristic of Joneja proceeds period by period in a forward
direction. Specifically, at period t , the ordering policy of periods 1, 2, . . . , t − 1
has been determined and the decision is which items to order, if any, in period
t . Let ti be the last period in which item i was ordered. Let Hit denote the total
inventory holding cost incurred by item i since period ti assuming no order for
item i is placed in period t . That is,

Hit � hi

t∑
j�ti+1

(j − ti)dij .

Intuitively, if we forget for the moment, the joint order cost and Hit > Ki , then it
is worth ordering item i in period t , since it costs more to keep an item in inventory
from period ti (the last time item i was ordered) to t than to order it in period t . The
quantity max{Hit −Ki, 0} can be seen as the savings that are accrued by ordering
item i in period t . This approach is basically the Silver-Meal heuristic adapted to
the multiple item case. With the joint order cost present, an order should only be
placed if the total savings accrued by ordering a set of items in period t exceeds
the joint order cost. Therefore, Joneja proposes the following ordering rule.

Rule 1. In period t , order those items i such that Hit ≥ Ki , if
∑n

i�1 max{Hit −
Ki, 0} ≥ K0.

Joneja shows that this single rule is not quite strong enough to ensure that the
schedule of orders is cost efficient. For instance, consider the following example
with two products. The holding costs are equal (h1 � h2 � 1). Pick an integer m
and set the demands to

d1t � 0, for t � 1, 2, . . . , m− 1

d1m � K0 +K1

m− 1

d2t � 0, for t � 1, 2, . . . , m

d2,m+1 � K0 +K2

m
.
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Using Rule 1, item 1 will be ordered at timem, but not item 2. Item 2 will be ordered
at timem+1. If both items were ordered at timem, then we pay h2d2,m+1 � K0+K2

m

in extra holding cost but save K0 in ordering costs. Therefore, for large m, we see
that we can be far from optimal.

To counteract this behavior, Joneja proposed the following additional feature.
Let t0 be the time at which the last joint order was placed, and assume item i was
not included in this order (sinceHit0 < Ki). It may, in some cases, be advantageous
to order item i at time t0 even though Rule 1 would specify the opposite. Define

Sit � hi(t0 − ti)
t∑

j�t0
dij .

Then Sit is the savings in inventory holding cost accrued by ordering item i at
time t0. Since a joint order is already placed in period t0, the following rule was
proposed.

Rule 2. In period t , if the last joint order was in period t0, item i was not ordered
in period t0 and Sit ≥ Ki , then order item i in period t0.

Computational experiments with this heuristic, whose complexity is O(nT ),
show that it produces solutions fairly close to optimal.

10.4 Exercises

Exercise 10.1. Assume order costs are general concave and time-dependent func-
tions of the number of items produced. Also, assume holding costs are general
concave and time-dependent functions of the number of items held in inventory.
Prove that the Zero-Inventory Ordering Property holds in this general setting as
well.

Exercise 10.2. The Silver-Meal Heuristic works as follows. Let d1, d2, . . . , dn be
the demands in the n period planning horizon. Define C(T ) to be the per period
average holding and set-up cost under the condition that the current order covers
demand in the next T periods. Then C(1) � K , C(2) � 1

2 (K + hd2), etc. In the
Silver-Meal Heuristic we calculate these until C(i) > C(i − 1). In this case, we
stop and produce in period 1 to meet the demand of the first i−1 periods. We then
start over with the i th period.

Construct an example where the Silver-Meal Heuristic provides a nonoptimal
solution.

Exercise 10.3. Determine the complexity of Baker et al.’s algorithm.
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11
Stochastic Inventory Models

11.1 Introduction

The inventory models considered so far are all deterministic in nature; demand
is assumed to be known and either constant over the infinite horizon or varying
over a finite horizon. In many logistics systems, however, such assumptions are
not appropriate. Typically, demand is a random variable whose distribution may
be known.

Stochastic inventory models have attracted considerable attention in the last
three decades. The pioneering work of Scarf (1960), Iglehart (1963a and b) and
Veinott and Wagner (1965) for a single warehouse, Clark and Scarf (1960) for
multi-echelon systems, Eppen and Schrage (1981) and Federgruen and Zipkin
(1984a-c) for distribution systems, and Rosling (1989) for assembly systems, all
represent milestones in our understanding of complex stochastic logistics systems.
More recently, the work of Zheng (1991), Zheng and Federgruen (1991) and Chen
and Zheng (1994) reveal new insights and provide more efficient algorithms for
these problems. For recent reviews, we refer the reader to Lee and Nahmias (1993),
Porteus (1990) and the recent book by Zipkin (1997).

In this chapter we review some of the main results in stochastic inventory models.
We start with the analysis of a single warehouse model. To build our intuition,
Section 11.2 considers a single period model. In Sections 11.3 and 11.4 we show
that the insight obtained in the previous section can be used to analyze a multi-
period model. Section 11.5 extends the analysis further to the infinite horizon
model. Finally, Section 11.6 describes the development of interesting bounds on
the optimal cost for multi-echelon systems.
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11.2 Single Period Models

Consider a company that designs, produces and sells winter fashion items such
as skijackets, coats, etc. About six months before the winter season, the company
must commit itself to specific production quantities for all its products. Since there
is no clear indication as to how the market will respond to the new designs, these
decisions are typically based on realized sales from the last few years, current
economic conditions and professional judgment.

To assist management in selecting production quantities, the marketing depart-
ment assumes that demand D for each new product is randomly distributed, gen-
erated from a product-specific distribution with continuous cdf F (·). Additional
information available to the decision makers includes the variable production cost
per unit c, the selling price per unit r , and the salvage value per unit v. Clearly,
these variables should satisfy r > c > v, otherwise the problem can trivially be
solved.

Since demand is a random variable, the decision concerning how many units
to produce is based on the expected cost z(y), which is a function of the amount
produced y. This expected cost is

z(y) � cy − r

∫
D

min(y,D)dF (D)− v

∫ y

D�0
(y −D)dF (D) for y ≥ 0.

Note that
∫
D

min(y,D)dF (D) � ∫ y

0 DdF (D) + y
∫∞
y
dF (D). Adding and sub-

tracting the quantity r
∫∞
D�y DdF (D) to z(y), we get

z(y) � cy − rE(D)− r

∫ ∞

D�y
(y −D)dF (D)− v

∫ y

D�0
(y −D)dF (D). (11.1)

The objective is, of course, to choose y so as to minimize the expected cost z(y).
This is the so-called newsboy problem.

Taking the derivative of z(y) with respect to y and using the Leibnitz rule, we
get the optimality condition:

c − r(1− Pr{D ≤ y})− v Pr{D ≤ y} � 0,

which implies that the optimal production quantity S should satisfy

Pr{D ≤ S} � r − c

r − v
.

Since by assumption, r−c < r−v andF (D) is continuous, a finite value S, S > 0
always exists. In addition, it can easily be verified that the expected cost z(y) is
convex for y ∈ (0,∞), and that the value of z(y) tends to infinity as y → ∞.
Hence, the quantity S is a minimizer of z(y).

Observe that, implicitly, three assumptions have been made in the above analysis.
First, there is no initial inventory. Second, there is no fixed set-up cost for starting
production. Third, the excess demand is lost; that is, if the demand D happens to
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be greater than the produced quantity y, then the additional revenue r(D − y) is
lost.

The tools developed so far allow us to extend the above results to models with
initial inventory y0, and set-up cost K . We now relax the first two assumptions.
Observe that the expected cost of producing (y − y0) units is

K − cy0 + z(y).

Hence, S clearly minimizes this expected cost if we decide to produce. Conse-
quently, there are two cases to consider.

1. If y0 ≥ S, we should not produce anything.

2. If y0 < S, the best we can do is to raise the inventory to level S. However,
this is optimal only if −cy0 + z(y0), the cost associated with not producing
anything, is larger than or equals K − cy0 + z(S), the cost associated with
producing S − y0. That is, if y0 < S, it is optimal to produce S − y0 only if
z(y0) ≥ K + z(S).

Let s be a number such that

z(s) � K + z(S).

The discussion above implies that the optimal policy has the following structure.

Order S − y0 if the initial inventory level y0 is at or below s, otherwise do not order.

We refer to such a policy as an (s, S) policy. The quantity S is called the order-
up-to level while s is referred to as the reorder point.

11.3 Finite Horizon Models

We are now ready to consider the finite horizon (multi-period) inventory problem.
This problem can be described as follows. At the beginning of each period, for
example, each week or every month, the inventory of a certain item at the warehouse
is reviewed and the inventory level is noted. Then an order may be placed to raise
the inventory level up to a certain level. Replenishment orders arrive instantly. The
case with the nonzero leadtime will be discussed at the end of the Section 11.5.

We assume that demands for successive periods are independent and identically
distributed. If the demand exceeds the inventory on hand, then the additional de-
mand is backlogged and is filled when additional inventory becomes available.
Thus, the backlogged units are viewed as negative inventory. The inventory left
over at the end of the final period has a value of c per unit, and all unfilled demand at
this time can be backlogged at the same cost c. As we shall see, these assumptions
ensure that the expected (gross) revenue in each period is a constant, and therefore
we will not include the revenue term in our formulation.
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Costs include ordering, holding and shortage costs. Ordering cost consists of a
set-up cost, K , charged every time the warehouse places a replenishment order,
and a proportional purchase cost c. There is a holding cost of h+ for each unit
of the inventory on hand at the end of a period and a shortage cost of h− per
unit whenever demand exceeds the inventory on hand. To avoid triviality, we
assume h−, h+ > 0 (why?). The objective is to determine an inventory policy
that minimizes the expected cost over m periods. In what follows, we show that
an (sk, Sk) policy is optimal, and develop a dynamic programming algorithm to
determine the optimal (sk, Sk) values for k � 1, 2, . . . , m. Of course, an (sk, Sk)
policy is similar to the (s, S) policy described earlier except that the parameters s
and S may vary from period to period.

To characterize the optimal policy for the finite horizon model we first develop a
dynamic programming formulation of the problem. Here we follow the convention
of letting the index k represent the number of remaining periods; for example, k � 1
refers to the last period, and k � m refers to the first period. Similarly, y1 is the
inventory level at the start of the final period (before possible ordering) and ym is
the initial inventory at the beginning of the first period.

If the inventory level immediately after ordering is y, then the expected one-
period shortage and holding cost for that period is

G(y) � h+
∫
D

max(y −D, 0)dF (D)+ h−
∫
D

max(D − y, 0)dF (D), (11.2)

which is the so-called one-period loss function. Since the maximum of convex
functions is convex and since convexity is preserved under integration, we see that
G(y) is convex.

Given a policy Y � (y1, y2, · · · , ym), where yk are the order-up-to levels (ran-
dom variables) and may be contingent upon other variables, the sum of the total
expected proportional purchasing cost and salvage value P∑ is given by

P∑ � E
[ m∑
k�1

c(yk − yk)− c(y1 −D1)
]
,

whereDk is the realized demand in period k. Noting that yk−1 � yk−Dk , we have

P∑ � cE[ym − ym + ym−1 − (ym −Dm)+ · · · + y1 − (y2 −D2)+D1 − y1]

� cmE(D).

Thus, P∑ is independent of the ordering policy, and we can drop off the linear
ordering cost component from the formulation. This observation is quite intuitive,
since all backlogged demand is filled at the end of the last period while all remaining
inventory left at this period is salvaged, both at the same price c. We also remark that
whenever possible, we will suppress the subscript k from Dk (because demands
are iid) and superscript k from yk .

To formulate the dynamic program, define the following two expected cost
functions. Denote by yk the inventory level, prior to ordering, at the beginning of
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periodm−k+1. LetGk(yk) be the expected cost for the remaining k periods if we
do not order in period m− k+ 1 and act optimally in the remaining k− 1 periods.
Let zk(yk) be the minimal expected cost incurred through the remaining k periods
if we act optimally in period m − k + 1 and all the remaining k − 1 periods. It
follows that

Gk(yk) � G(yk)+
∫
D

zk−1(yk −D)dF (D),

and
zk(yk) � Miny≥yk {Kδ(y − yk)+Gk(y)}, (11.3)

where δ(x) is 1 if x > 0 and it is 0 otherwise.
Note that if we order up to the level y > yk in period m − k + 1, the cost for

the final k periods is K +Gk(y).
It remains to show that an (sk, Sk) policy is optimal for every k, k � 1, 2, . . . , m.

For this purpose, it is sufficient to prove that the function Gk(y) is K-convex, and
Gk(y) →∞ as |y| → ∞, for each period k, k � 1, 2, . . . , m.

Definition 11.3.1 A function g is K-convex if

K + g(a + x)− g(x)− (a/b)(g(x)− g(x − b)) ≥ 0

for any a ≥ 0, b ≥ 0 and for all x ∈ (−∞,∞) (Scarf, 1960).

Note that a convex function is 0-convex, and a K1−convex function is also
K2−convex if K2 > K1. To understand this definition we examine Figure 11.1.
Here one observes that if initial inventory is y, then raising inventory to level S1

is not optimal. This is true since the total cost at S1, g(S1) plus K , is more than
g(y). Since the same holds for each of Si , it follows that S is the (only) optimal
order up to level. Note, on the other hand, that if the curve in the figure satisfies
K + g(S1) < g(y), then it would have contradicted the definition of K-convexity.
This is seen as follows. In the above definition, let a + x � S1 and x � y and
hence,

K + g(S1)− g(y) ≥ S1 − y

b
[g(y)− g(y − b)] > 0,

for some small b, b > 0.

Lemma 11.3.2 A K-convex function g(y) is bounded for any finite y and contin-
uous on (−∞,∞).

Proof. The finiteness of g(y) for any |y| <∞ follows directly from the definition
of K-convexity. Now suppose, to the contrary, that g(y) is not continuous. For
some discontinuous point y (|y| <∞), there are two possibilities: g(y+) �� g(y−)
and g(y) �� g(y−) � g(y+). In either case, it is possible to choose x, a and b

in Definition 11.3.1, such that K-convexity is always violated. For this purpose,
choose the parameters such that a/b →∞, while g(x) − g(x − b) < −p where
p is a positive constant.
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inventory level yk1, we will be better off raising the inventory level up to yk2, since
Gk(yk2)+K < Gk(yk1). Similarly, if the first part of (iii) fails to hold, it may be
the case that Gk(yk) < Gk(Sk)+K .

Proof. Parts (i) and (ii) follow easily from the continuity of Gk(yk) and the
infiniteness of Gk(yk) as |y| → ∞. Note that if there exist multiple numbers sk ,
we choose the largest one.

To see thatGk(yk) is nonincreasing for yk ≤ sk , we suppose that, to the contrary,
Gk(yk) has a local maximum at y0. Without loss of generality, assume Gk(y0) ≥
Gk(sk). Then there must exist some positive number ρ > 0 so that Gk(y0) −
Gk(y0 − ρ) ≥ 0. Let x � y0, a + x � a + y0 � Sk and x − b � y0 − ρ. First
assume that Gk(y0) > Gk(sk). The K-convexity of Gk(yk) implies that

K +Gk(Sk)−Gk(y0)− ((Sk − y0)/ρ)(Gk(y0)−Gk(y0 − ρ)) ≥ 0,

which, together with K + Gk(Sk) � Gk(sk), contradicts the hypothesis. Now
assume thatGk(y0) � Gk(sk); again, theK-convexity will not hold unlessGk(y0−
ρ) � Gk(sk). This proves the first part of (iii).

We now show that there are no two points yk1 and yk2 such that Sk < yk1 < yk2

andGk(yk1)−Gk(yk2) > K . Again, assume that, to the contrary, such points exist.
Let x � yk1, x − b � Sk and x + a � yk2. The K-convexity of Gk(yk) gives

K +Gk(yk2)−Gk(yk1)− ((yk2 − yk1)/(yk1 − Sk))(G
k(yk1)−Gk(Sk)) ≥ 0,

which again contradicts the hypothesis, since Gk(yk1) ≥ Gk(Sk).
Finally, it follows from (ii) that Gk(yk1)−Gk(yk2) ≤ K for sk < yk1 ≤ yk2.
The above lemma can be interpreted as follows. For yk ∈ (−∞, sk), Gk(yk) ≥

Gk(sk) and is nonincreasing; for yk ∈ (sk, Sk], Gk(yk)−Gk(Sk) < K; and finally,
for yk > Sk , Gk(yk)−Gk(yk + a) ≤ K for any a ≥ 0.

The next result follows directly from the above two lemmas.

Corollary 11.3.5 If Gk(y) satisfies the conditions specified in the above two lem-
mas, then the optimal inventory policy solving (11.3) is an (sk, Sk) policy for all k,
k � 1, 2, . . . , m.

Thus, the optimality of (sk, Sk) policy in period k implies that

zk(yk) �
{
K +Gk(Sk) if yk ≤ sk,

Gk(yk) if yk > sk.
(11.4)

It now remains to show that Gk(yk) is indeed K-convex.

Lemma 11.3.6 The function Gk(y) is K-convex for all k, k � 1, . . . , m.

Proof. We start by stating two properties of K-convex functions, whose proof
follows directly from the definition ofK-convexity. See, for instance, Dreyfus and
Law (1977), Bertsekas (1987) or Exercise 11.6.
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1. If g1(y) and g2(y) areK-convex andL-convex, respectively, then for α, β ≥
0, αg1(y)+ βg2(y) is (αK + βL)-convex.

2. If g(y) is K-convex, then ED[g(y −D)] is also K-convex.

We prove the lemma in two steps. In the first step we show that if the (sk−1, Sk−1)
policy is optimal in period k − 1 and Gk−1(y) is K-convex, then Gk(y) is also K-
convex. In the second step, we demonstrate that G1(y) is K-convex. By Lemmas
11.3.2, 11.3.3 and 11.3.4, these two steps are sufficient to show that Gk(y) is
K-convex.

Consider Step 1. The definition of Gk(y),

Gk(y) � G(y)+ ED[zk−1(y −D)],

together with the two properties stated above implies that it suffices to show that
zk−1(y) is K-convex. Our objective is to prove that

K + zk−1(x + a)− zk−1(x)− a

b
(zk−1(x)− zk−1(x − b)) ≥ 0

for any a, b ≥ 0 and for all x ∈ (−∞,∞). For this purpose, and following
the treatment in Dreyfus and Law (1977), we differentiate between four cases,
depending upon where x, x + a and x − b lie.

Case 1: x − b > sk−1. Clearly, x, x + a > sk−1. By (11.4), zk−1(x) � Gk−1(x)
and hence, zk−1(x) is K-convex in this region.
Case 2: x − b ≤ sk−1 < x. From (11.4),

K+zk−1(x + a)− zk−1(x)− a

b
[zk−1(x)− zk−1(x − b)]

� K +Gk−1(x + a)−Gk−1(x)− a

b
[Gk−1(x)−Gk−1(Sk−1)−K]

� K +Gk−1(x + a)−Gk−1(x)− a

b
[Gk−1(x)−Gk−1(sk−1)]

.� W.

To see that zk−1(x) isK-convex in this region, we further consider two subcases:
(2.1) Gk−1(x) ≤ Gk−1(sk−1) and (2.2) Gk−1(x) > Gk−1(sk−1). In (2.1), W ≥ 0
because of Lemma 11.3.4 (iii) and theK-convexity ofGk−1(x). For (2.2), consider

K +Gk−1(x + a)−Gk−1(x)− a

x − sk−1
[Gk−1(x)−Gk−1(sk−1)]

.� W ′.

Because Gk−1(x) is K-convex, W ′ ≥ 0. By the assumption x − b ≤ sk−1 < x,
we see that b ≥ x − sk−1. Hence, 0 ≤ W ′ ≤ W and zk−1(x) is K-convex in this
interval.
Case 3: x ≤ sk−1 < x + a. In this case,

K + zk−1(x + a)− zk−1(x)− a

b
[zk−1(x)− zk−1(x − b)]

� Gk−1(x + a)−Gk−1(Sk−1) ≥ 0,
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where the last inequality holds since Sk−1 is a minimizer of Gk−1(y).
Case 4: x + a ≤ sk−1. In this case,

zk−1(x) � zk−1(x + a) � zk−1(x − b) � K +Gk−1(Sk−1),

and therefore, zk−1(y) is obviously K-convex.
As for Step 2, the proof is straightforward. In the final period,

G1(y1) � G(y1), (11.5)

where the function G(·) is defined in equation (11.2). Since G(y1) is convex in y1,
G1(y1) is thusK-convex. In addition,G(y) →∞ as |y| → ∞. Hence, the (s1, S1)
policy is optimal for the final period. The proof is now completed.

We now show how to solve the dynamic programming problem, that is, how
to compute the optimal (sk, Sk) policy for every k ≥ 1. We start computing the
optimal policy for the final period, and then recursively calculate the functions
Gk(y) and zk(y). These functions are used to determine the optimal (sk, Sk) for
k � 2, . . . , m.

We know that the functions G1(y) and z1(y) as well as the optimal (s1, S1) can
be found as described in Section 11.2. Given the functions Gj (y) and zj (y) and
the optimal (sj , Sj ), for j � 1, 2, . . . , k − 1, we determine the functions Gk(y)
and zk(y). As in the single period model, let

Gk
o(yk) � K +Gk(Sk).

That is, Gk
o(yk) is the expected cost given that we start in period m − k + 1 with

on-hand inventory of yk units, order up to Sk in that period, and act optimally in
the remaining k − 1 periods.

Clearly, the optimalSk will be the value of y that minimizesGk(y). Alternatively,
to compute the optimal Sk we find the point at which the function Gk

o(yk), a line
with slope 0, is tangent to Gk(yk)+K .

To determine sk , we look for y smaller than Sk such that

Gk(y) � K +Gk(Sk).

We thus conclude that

z′k(y) �
{

0 if y ≤ sk,

G′k(y) if y > sk.
(11.6)

What can we say about the relationship between the different quantities (sk, Sk),
k � 1, 2, . . . , m? Very little! The only result known was obtained by Iglehart
(1963a).

Theorem 11.3.7 The optimal policy solving (11.3) satisfies S1 ≤ Sk, 2 ≤ k ≤ m.

Proof. It is sufficient to show that G′k(y) ≤ 0 for all y < S1. Suppose that we
choose the smallest S1 that minimizes G(y). The convexity of G1(y)(� G(y))
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implies that G′1(y) < 0 for all y < S1, and hence z′1(y) ≤ 0 for all y < S1; see
equation (11.6). Now assume z′k(y) ≤ 0 for all y < S1 and observe that

G′k+1(y) � G′(y)+
∫
D

z′k(y −D)dF (D) < 0,

which completes the proof.

11.4 Quasiconvex Loss Functions

The above proof on the optimality of (sk, Sk) policies relies on the fact that the one-
period loss function G(y) is convex. In many practical situations this assumption
is not appropriate. For instance, consider the previous model, but assume that
whenever a shortage occurs, an emergency shipment is requested. Suppose further,
that this emergency shipment incurs a fixed cost plus a linear cost proportional to
the shortage level. It can be easily shown that the new loss function G(y) is, in
general, not convex.

To overcome this difficulty, Veinott (1966) offers a different yet elegant proof
for the optimality of (sk, Sk) policies under the assumption that−G(y) is unimodal
or G(y) is quasiconvex. Here we provide a slightly simplified proof suggested by
Chen (1996) for the model considered here.

Definition 11.4.1 A function f is quasiconvex on a convex set X if for any x and
y ∈ X and 0 ≤ q ≤ 1,

f (qx + (1− q)y) ≤ max{f (x), f (y)}.

It is easily verified that a convex function is also quasiconvex. An alternative
definition may be as follows: f is said to be quasiconvex if

−f (x) is unimodal.

Consider the following m-period model:

zk(yk) � min
y≥yk

{Kδ(y − yk)+Gk(y)} (11.7)

where

Gk(y) � G(y)+ ED[zk−1(y −D)], for k � 1, 2, . . . , m. (11.8)

In the analysis below we use the following assumptions on G(y).

(i) G(y) is continuous and quasiconvex.

(ii) G(y) > infx G(x)+K as |y| → ∞.
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Other assumptions on ordering costs and demands are the same as in the previous
section.

If (i) and (ii) hold, there is a number y∗ that minimizes G(y). In addition, there
are two numbers s(≤ y∗) and S(≥ y∗) such that

G(S) � G(y∗)+K (11.9)

G(s) � G(y∗)+K. (11.10)

It is also worth mentioning thatG(y) is decreasing (nonincreasing) iny on (−∞, y∗]
and increasing (nondecreasing) in y on (y∗,∞).

To prove the optimality of (sk, Sk) policy for all k, we need the next two lemmas.

Lemma 11.4.2 For k � 1, . . . , m, and y ≤ y ′,

zk(y) ≤ zk(y ′)+K and (11.11)

Gk(y ′)−Gk(y) ≥ G(y ′)−G(y)−K. (11.12)

Proof. It follows that

zk(y) � min{Gk(y),K +minx≥y Gk(x)}
≤ K +minx≥y Gk(x)
≤ K +minx≥y ′ Gk(x)
≤ K + zk(y ′).

We also provide an alternative proof here. The result obviously holds for y ′ � y.
Now assume that y ′ > y. Suppose that at the beginning of the period, the inventory
level prior to any ordering is y. Consider the following strategy: we first raise the
inventory level up to y ′ and then act optimally as if we started with the inventory
level y ′ (prior to any ordering). Such a strategy incurs cost equal to K + zk(y ′).
Because this strategy is not necessarily optimal, it follows that

zk(y) ≤ K + zk(y ′),

which also proves (11.11).
Inequalities in (11.11) implies that

Gk(y ′)−Gk(y) � G(y ′)−G(y)+ ED[zk−1(y ′ −D)]− ED[zk−1(y −D)]
≥ G(y ′)−G(y)−K,

which completes the proof.

Lemma 11.4.3 For k � 1, . . . , m, and y ≤ y ′ ≤ y∗,

Gk(y ′)−Gk(y) ≤ G(y ′)−G(y) ≤ 0 and (11.13)

zk(y ′) ≤ zk(y). (11.14)
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Proof. The proof is by induction. Note that G(y) is decreasing in y for y ≤ y∗.
For k � 1,G1(y ′)−G1(y) � G(y ′)−G(y) ≤ 0, which implies that minx≥y ′ G1(x)

� minx≥y G1(x). Then,

z1(y ′) � min{G1(y ′),K +min
x≥y ′

G1(x)}
≤ min{G1(y),K +min

x≥y ′
G1(x)}

� min{G1(y),K +min
x≥y G

1(x)} � z1(y).

Assume that for k − 1 ≥ 0, and y ≤ y ′ ≤ y∗,

Gk−1(y ′)−Gk−1(y) ≤ G(y ′)−G(y) ≤ 0 and

zk−1(y ′) ≤ zk−1(y).

Now it follows immediately that

Gk(y ′)−Gk(y) � G(y ′)−G(y)+ ED[zk−1(y ′ −D)]− ED[zk−1(y −D)]

� G(y ′)−G(y)+ ED[zk−1(y ′ −D)− zk−1(y −D)]

≤ G(y ′)−G(y) ≤ 0, (11.15)

and

zk(y ′) � min{Gk(y ′),K +min
x≥y ′

Gk(x)}
≤ min{Gk(y),K +min

x≥y G
k(x)} � zk(y).

This completes the proof.
We are now ready to show the optimality result.

Theorem 11.4.4 (Veinott, 1966) If (i) and (ii) hold, an (sk, Sk) policy is optimal
for the model (11.7). Moreover, s ≤ sk ≤ y∗ and y∗ ≤ Sk ≤ S.

Proof. The proof proceeds in several steps. We start with the assumption that
Gk(y) is continuous in y. This assumption will be confirmed at the end.
(1) Sk is a global minimizer of Gk(y). For this purpose, we first show that Gk(y)
is decreasing for y ≤ y∗, which follows directly from (11.13). Because Gk(y) is
continuous, there exists a number Sk that minimizes Gk(y) over [y∗, S]. Now it
is clear that Sk minimizes Gk(y) on (−∞, S). By the definition of S and Lemma
11.4.2, it follows that for y > S(≥ y∗),

Gk(y)−Gk(y∗) ≥ G(y)−G(y∗)−K

≥ G(S)−G(y∗)−K � 0,

where G(y) ≥ G(S) due to the quasiconvexity of G(y). Hence, Sk is indeed a
global minimizer of Gk(y) and y∗ ≤ Sk ≤ S.
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(2) There exists a number sk such that

Gk(Sk)+K � Gk(sk) and s ≤ sk ≤ y∗.

The definitions of Sk , s and y∗ imply that

Gk(Sk)+K −Gk(s) ≤ Gk(y∗)+K −Gk(s)

≤ G(y∗)+K −G(s) � 0,

where the first inequality follows from the definition that Sk is the minimizer of
Gk(y) while the second inequality holds due to Lemma 11.4.3. From the definition
of y∗ and Lemma 11.4.2, we see

Gk(Sk)+K −Gk(y∗) ≥ G(Sk)−G(y∗)−K +K ≥ 0.

Together with the continuity assumption of Gk(y) and the fact that Gk(y) is de-
creasing on (−∞, y∗], the above two inequalities imply that there exists a number
sk such that

Gk(Sk)+K � Gk(sk) and s ≤ sk ≤ y∗.

(3) For y∗ < y < y ′,
[K +Gk(y ′)]−Gk(y) ≥ 0.

This follows directly from Lemma 11.4.2 and the fact that G(y ′) ≥ G(y):

Gk(y ′)−Gk(y) ≥ G(y ′)−G(y)−K ≥ −K.

Note that this observation implies that placing an order does not reduce the expected
cost when y > y∗.
(4) We conclude, therefore, that an (sk, Sk) policy is optimal.
(5) It remains to prove that Gk(y) is continuous in y.

Again, we proceed by induction. It is true for k � 1 because G1(y) � G(y) (by
assumption (i)). Suppose now that Gk−1(y) is continuous for k > 1. From (4),

zk−1(y) �
{
K +Gk−1(Sk) if y ≤ sk,

Gk−1(y) if y > sk.

Define z̄′(y) � maxx{|z′k−1(x)| : sk < x ≤ y} for y <∞. Obviously, z̄′(y) is the
largest slope in the interval (sk, y]. The existence of z̄′(y) is due to the continuity
of zk−1(y) and the fact that z′k−1(y) � 0 for y ≤ sk .

For any given θ > 0, there exists a number ε > 0 such that

z̄′(y) · ε < θ

and
|ED[zk−1(y −D)− zk−1(y + ε −D)]| ≤ z̄′(y) · ε < θ.

Hence, ED[zk−1(y −D)] is continuous.
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The above proof for the optimality of (sk, Sk) policies is based on the assump-
tion that demands are independent and identically distributed. If demands are
not independent and identically distributed, Lemma 11.4.3 will generally fail to
hold for the following reason. In the proof of Lemma 11.4.3, we require that
zk−1(y ′ − D) − zk−1(y − D) ≤ 0 for all D in (11.15), which holds only if
y − D ≤ y ′ − D ≤ y∗. When demands are not independent and identically
distributed, the minimizer of G(y) may vary from period to period, and the re-
quirement that zk−1(y ′ − D) − zk−1(y − D) ≤ 0 may not be met. In the proof
of K-convexity, however, no requirement is imposed upon demands. Thus, while
the result in this section is more general than the results of Section 11.3, when
demands are independent and identically distributed, it is not a generalization of
the first.

11.5 Infinite Horizon Models

In this section we consider a discrete time infinite horizon model in which an
order may be placed by the warehouse at the beginning of any period. To simplify
the analysis, we assume a discrete distribution of the one period demand D. Let
pj � Pr{D � j} for j � 0, 1, 2, . . . . The objective is to minimize the long-run
expected cost per period. All other assumptions and notation are identical to those
in the previous section.

This problem has attracted considerable attention in the last three decades. The
intuition developed in the previous section (for the finite horizon models) suggests
and is proved by Iglehart (1963b) and Veinott and Wagner (1965), that an (s, S)
policy is optimal for the infinite horizon case. A simple proof is proposed by
Zheng (1991). Various algorithms have been suggested by Veinott and Wagner
(1965), Bell (1970) and Archibald and Silver (1978) as well as others; see, for
instance, Porteus (1990) or Zheng and Federgruen (1991). This section describes a
recent, surprisingly simple, algorithm developed by Zheng and Federgruen (1991)
for finding the optimal (s, S) policy. We follow their paper, as well as the insight
provided in Denardo (1996).

Let c(s, S) be the long-run average cost associated with the (s, S) policy. Given
a period and an initial inventory y, recall that the loss functionG(y) is the expected
holding and shortage cost minus revenue at the end of the period. In what follows
the loss function G(y) is assumed to be quasiconvex.

Let M(j ) be the expected number of periods that elapse until the next order is
placed when starting with s + j units of inventory. That is, M(j ) is the expected
number of periods until total demand exceeds j units. It is obvious that for all j
we have

M(j ) �
j∑

k�0

pk[1+M(j − k)]+
∞∑

k�j+1

pk (11.16)
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�
j∑

k�0

pkM(j − k)+ 1,

with M(0) � 0.
Let F(s, y) be the expected total cost in all periods until placing the next order,

when we start with y units of inventory.
Observe that since orders are received immediately, each time an order is placed

the inventory level increases to S. Hence, replenishment times can be viewed as
regeneration points, see Ross (1970). The theory of regeneration processes tells
us that

c(s, S) � F(s, S)

M(S − s)
. (11.17)

That is, c(s, S), the long-run average cost, is the ratio of the expected cost be-
tween successive regeneration points and the expected time between successive
regeneration points.

To calculate M(S − s), one need only solve the recursive equation (11.16). In
addition,

F(s, S) � K +H (s, S),

where H (s, S) is the expected holding and shortage cost until placing the next
order, when starting with S units of inventory. How can we calculate the quantity
H (s, S)? For this purpose, observe that M(j ) ≥ M(j − 1) and let

m(j )
.� M(j )−M(j − 1),

for j � 1, 2, 3, . . .. To interpret m(j ), observe that for any j , j < S − s, the
expected time between successive regeneration points consists of two components:
the first isM(j ) the expected time until demand exceeds j units while the second is
the expected time, prior to placing the next order, until demand exceeds (S−s−j )
units. Thus, the definition of M(j ) implies that m(j ) is the expected number of
periods, prior to placing the next order, for which the inventory level is exactly
S − j . Hence,

H (s, S) �
S−s−1∑
j�0

m(j )G(S − j ). (11.18)

To summarize, given an (s, S) policy we have

c(s, S) � K +H (s, S)

M(S − s)
.

Recall that y∗ is the smallest y minimizing the function G(y). That is,

y∗ � min{y|G(y) � min
x
G(x)}.

Zheng and Federgruen’s algorithm is essentially based on the following results.

Lemma 11.5.1 There exists an optimal (s, S) policy satisfying s < y∗ ≤ S.
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Proof. Observe that G(y) is a quasiconvex function of y and therefore G(y) is
nonincreasing for y ≤ y∗ and nondecreasing for y ≥ y∗. Consider now s ≥ y∗.
Equation (11.18) together with the quasiconvexity ofG(y) implies thatH (s−1, S−
1) ≤ H (s, S). Hence, c(s, S) ≥ c(s−1, S−1). Suppose now that y∗ ≥ S. A similar
argument shows thatH (s+1, S+1) ≤ H (s, S) and hence c(s, S) ≥ c(s+1, S+1)
which completes the proof.

The following property is given without proof; the interested reader is referred
to Zheng and Federgruen.

Lemma 11.5.2 For any order-up-to level S, a reorder level s0 < y∗ is optimal if

G(s0) ≥ c(s0, S) ≥ G(s0 + 1). (11.19)

Similarly, for any order-up-to level S, there exists an optimal reorder level s0 such
that s0 < y∗ and (11.19) holds.

An immediate byproduct of the lemma is an algorithm for finding an optimal
reorder point s0 for any given S.

Corollary 11.5.3 For any value of S, s0 � max{y < y∗|c(y, S) ≤ G(y)} is the
optimal reorder level associated with S.

Proof. Let

α � M(S − s − 1)

M(S − s)
and observe that (11.17) and (11.18) imply that

c(s, S) � αc(s + 1, S)+ (1− α)G(s). (11.20)

The definition of s0 implies thatG(s0) ≥ c(s0, S) and hence, using (11.20), we have
c(s0, S) ≥ c(s0 + 1, S). In addition, the same definition also implies G(s0 + 1) <
c(s0 + 1, S). Hence, G(s0 + 1) < c(s0, S) ≤ G(s0). Thus, by Lemma 11.5.2, s0 is
an optimal reorder point associated with S.

Lemma 11.5.4 For two order-up-to levels S0, S ≥ y∗, let s0 and s be the corre-
sponding optimal reorder points, respectively. The (s, S) policy improves on (has
smaller cost than) (s0, S0) if and only if

c(s0, S) < c(s0, S0).

Proof. We need only show that if c(s, S) < c(s0, S0), then c(s0, S) < c(s0, S0).By
contradiction, assume c(s0, S) ≥ c(s0, S0). We prove that this implies c(s, S) ≥
c(s0, S0) for y∗ > s. We distinguish between two cases. First we look at s > s0.
Define β � M(S − s)/M(S − s0) and observe that 0 < β ≤ 1. The definition of
c(s0, S) together with Lemma 11.5.2 implies that

c(s0, S) ≤ βc(s, S)+ (1− β)c(s0, S).

Hence, c(s0, S) ≤ c(s, S) which together with c(s0, S) ≥ c(s0, S0) shows that
c(s, S) ≥ c(s0, S0), a contradiction. The proof when s < s0 is identical.

Finally, we state the following lemma without proof.
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Lemma 11.5.5 Let (s∗, S∗) denote an optimal (s, S) policy. Then c(s∗, S∗) ≥
G(S∗).

These results suggest the following simple algorithm. Start with S0 � y∗ and
find the best reorder point s0 applying Lemma 11.5.3. Now increase S by incre-
ments of 1 each time comparing c(s0, S0) to c(s0, S). If c(s0, S) < c(s0, S0), set
S0 � S and find the corresponding reorder point. Continue until you’ve identified
(s0, S0) such that no S, S > S0 has c(s0, S) < c(s0, S0) and G(S) > c(s0, S0).

We conclude this section with a discussion of the impact of leadtimes on the
analysis. So far we have assumed zero leadtimes; if this fails to hold, and a fixed
delivery leadtime has to be incorporated, the problem can be transformed into one
with zero leadtime by a fairly simple change in the loss function G(·); see, for
instance, Veinott and Wagner (1965), Veinott (1966), Heyman and Sobel (1984)
or the third exercise at the end of this chapter. For this purpose, let the inventory
position at the warehouse be defined as the inventory at that warehouse plus in-
ventory in transit to the warehouse. The loss function G(y) is calculated such that
y is the inventory position and D is the total demand during the leadtime plus one
period.

11.6 Multi-Echelon Systems

Consider a distribution system with a single warehouse, denoted by the index 0,
and n retailers, indexed from 1 to n. Incoming orders from an outside vendor with
unlimited stock are received by the warehouse that replenishes the retailers. We
refer to the warehouse or the retailers as facilities. The transportation leadtime to
facility i � 0, 1, 2, . . . , n, is a constant Li .

As in the previous section, we analyze a discrete time model in which customer
demands are independent and identically distributed and are faced only by the
retailers. Every time a facility places an order, it incurs a set-up cost Ki , i �
0, 1, 2, . . . , n. The echelon inventory holding cost (see Chapter 9) is h+i at facility
i, i � 0, 1, 2, . . . , n. Finally, demand is backlogged at a penalty cost of h−i ,
i � 1, 2, . . . , n per unit per period. The objective is to find a centralized strategy,
that is, a strategy that uses systemwide inventory information, so as to minimize
long-run average system cost.

As the reader no doubt understands, the analysis of stochastic distribution models
is quite difficult and finding an optimal strategy is close to impossible; consider the
difficulty involved in finding an approximate solution for its deterministic, constant
demand counterpart; see Chapter 9. As a result, limited literature is available. The
rare exceptions are the approximate strategy suggested by Eppen and Schrage
(1981) and the lower bounds developed by Federgruen and Zipkin (1984a-c) and
Chen and Zheng (1994). We briefly describe these two bounds here.

For this purpose, let the echelon inventory position at a facility be defined as the
echelon inventory at that facility plus inventory in transit to that facility.

Consider the following approach suggested by Federgruen and Zipkin
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(1984a-c). Given an inventory position yi at retailer i, let the loss function Gi(yi)
be

Gi(yi) � h+i max{0, yi −D} + (h−i + h+0 ) max{0,D − yi},
where D is total demand faced by retailer i during Li + 1 periods (see the end of
the previous section for a discussion).

Consider now any inventory policy with echelon inventory of y units at the
warehouse and inventory position yi at retailer i. The expected one period holding
and shortage cost in the system is

G(y) � h+0 (y − µ)+
n∑
i�1

Gi(yi),

where µ is the expected single period systemwide demand. Since, by definition,
y ≥ ∑n

i�1 yi , a lower bound on G(y) is obtained by finding

G0(y)
.� min
y1,...,yn

{
h+0 (y − µ)+

n∑
i�1

Gi(yi)|
n∑
i�1

yi ≤ y
}
. (11.21)

Thus, a lower bound on the long-run average system cost CFZ is obtained by
solving a single facility inventory problem with loss function G0 and set-up cost
K0. Notice that this bound does not take into account the retailer-specific set-up
costs. This is incorporated in the next lower bound of Chen and Zheng (1994).

To describe their lower bound consider the following assembly-distribution sys-
tem associated with the original distribution system. In the assembly-distribution
system each retailer sells a product consisting of two components. A basic compo-
nent, denoted by a0 and a retailer-specific component, denoted by ai . Each retailer
receives component a0 from the warehouse which receives it from the outside
supplier. On the other hand, component ai is supplied directly from the vendor to
retailer i. The arrival of a basic component at retailer i is coordinated with the ar-
rival of component ai . That is, at the time the warehouse delivers basic components
to retailer i, the same number of ai components are shipped to the retailer from
the supplier. These two shipments arrive at the same time and the final product is
assembled, each containing one basic component and one ai component.

To ensure that the original distribution system and the assembly-distribution
system are, in some sense, equivalent, we allocate cost in the new system as follows.
Associated with retailer i is a single facility inventory model with set-up cost Ki ,
holding cost h+i and shortage cost h+0 + h−i . Delivery leadtime to the facility is
Li and demand is distributed according to demand faced by retailer i. This is, of
course, a standard inventory model for which an (si, Si) policy is optimal. LetCi be
the long-run average cost associated with this optimal policy. Given an inventory
position y, let Gi(y) be the associated loss function. Finally, let

Gi
i(y) �

{
Ci if y ≤ si
Gi(y) if y > si

and G0
i (y) � Gi(y)−Gi

i(y).
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In the assembly-distribution system costs are charged as follows. A set-up cost
K0 is allocated to the basic component and a set-up cost Ki to each component ai ,
and an expected holding and penalty cost, that is, loss function, of G0

i to the basic
component and Gi

i to component ai . Notice that since shipments are coordinated,
there is no difference between long-run average cost in the original system and in
the assembly-distribution system.

To find a lower bound on the long-run average cost of the original system,
we consider a relaxation of the assembly distribution system in which the basic
components can be sold independently of the other components. Thus, Ci , i �
1, 2, . . . , n is exactly the long-run average cost associated with the distribution of
component ai . Let C0 be a lower bound on the long-run average cost of the basic
component. Consequently,

∑n
i�0 Ci is a lower bound on the long-run average cost

of the original distribution system.
It remains to find C0. This is obtained following the approach suggested by

Federgruen and Zipkin and described above. For this purpose, we replace Gi by
G0
i in (11.21) and take CFZ as C0.

11.7 Exercises

Exercise 11.1. In (11.1), we assume that F (D) is continuous. Now suppose that
F (D) is not necessarily continuous. Does there exist an S such that z(y) is mini-
mized at y � S ? If there exists such an S, how can you determine it ?

Exercise 11.2. Prove (11.20).

Exercise 11.3. Consider the single warehouse inventory model analyzed in Section
11.5 with leadtime l > 0. Prove that the inventory on hand at the end of period t
for some t > l can be written as

St−l −
t∑

i�t−l
Di,

where St−l is the order-up-to-level in period t− l andDi is the demand in period i.
Conclude that any nonzero leadtime model can be replaced by a model with zero
leadtime for which the loss function G(y) is calculated according to (11.2) with y
being the inventory position and D the total demand during the leadtime.

Exercise 11.4. It is now June and your company has to make a decision regarding
how many skijackets to produce for the coming Winter season. It costs c dollars to
produce one skijacket which can be sold for r dollars. Skijackets not sold during the
Winter season are lost. Suppose your marketing department estimates that demand
during the season can take one of the values D1,D2, . . . , Dk , k ≥ 3. Since this
is a new product, they do not know what probabilities to attach to each possible
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demand Di ; that is, they do not have estimates of pi , the probability that demand
during the Winter season will be Di , i � 1, 2, . . . , k. They have, however, a good
estimate of average demand µ, and the variance of the demand σ 2. Your objective
is to find production quantity y that will protect you against the worst probability
distribution possible while maximizing profit. For this purpose you would like to
consider the following optimization model.

MAXIMIZE y MINIMIZE p1,...,pk∈P Average Profit, (11.22)

where P is the set of all possible discrete distribution functions with mean µ and
variance σ 2.

(a) Write an expression for the average profit as a function of the production
quantity y and the unknown probabilities p1, p2, . . . , pk .

(b) Suppose we have already determined the production quantity, y. Write a
linear program that identifies the worst possible distribution, that is, the one
that minimizes average profit.

(b) Given a value of y characterize the worst possible distribution; that is, iden-
tify the number of demand points that have positive probabilities in the
probability distribution found in the previous question.

(c) Can you formulate a linear program that finds the optimal production quan-
tity; that is, can you write a linear program that solves equation (11.22)?

Exercise 11.5. Consider the following discrete version of the newsboy problem.
Demand for product can take the valuesD1,D2, . . . , Dn, n ≥ 3, with probabilities
p1, p2, . . . , pn, where

∑n
i�1 pi � 1. Let r be a known selling price per unit and c

be a known cost per unit. Our objective is to find an order quantity y that maximizes
expected profit. Prove that the optimal order quantity that maximizes the expected
profit must be one of the demand points, D1,D2, . . . , Dn.

Exercise 11.6. Prove the following properties.

(a) If g1(y) and g2(y) areK-convex andL-convex, respectively, then for α, β ≥
0, αg1(y)+ βg2(y) is (αK + βL)-convex.

(b) If g(y) is K-convex, then ED[g(y −D)] is also K-convex.

Exercise 11.7. Consider the newsboy problem with demand D being a random
variable whose density, f (D), is known. Let r be a known selling price per unit
and c be a known cost per unit. Assume no initial inventory and no salvage value.
The objective is to find an order quantity y that maximizes expected profit.
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(a) Let a service level be defined as the probability that demand is no more
than the order quantity, y. Our objective is to find the order quantity, y, that
maximizes expected profit subject to the requirement that the service level
is at least α. What is the optimal order quantity as a function of α, c, r and
f (D).

(b) Suppose there is no service level requirement; however, there is a capacity
constraint, C, on the amount we can order. That is, the order quantity, y,
cannot be more thanC. What is the optimal order quantity, y, that maximizes
expected profit subject to the capacity constraint, C.

(c) Suppose there is a service level requirement, α, and a capacity constraint,C.
What is the optimal order quantity, y, that maximizes expected profit subject
to the constraints that service level is at least α and the capacity constraint,
C.
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12
Facility Location Models

12.1 Introduction

One of the most important aspects of logistics is deciding where to locate new
facilities such as retailers, warehouses or factories. These strategic decisions are
a crucial determinant of whether materials will flow efficiently through the distri-
bution system.

In this chapter we consider several important warehouse location problems:
the p -Median Problem, the Single-Source Capacitated Facility Location Problem
and a distribution system design problem. In each case, the problem is to locate a
set of warehouses in a distribution network. We assume that the cost of locating a
warehouse at a particular site includes a fixed cost (e.g., building costs, rental costs,
etc.) and a variable cost for transportation. This variable cost includes the cost of
transporting the product to the retailers as well as possibly the cost of moving the
product from the plants to the warehouse. In general, the objective is to locate a
set of facilities so that total cost is minimized subject to a variety of constraints
which might include:

• each warehouse has a capacity which limits the area it can supply.

• each retailer receives shipments from one and only one warehouse.

• each retailer must be within a fixed distance of the warehouse that supplies
it, so that a reasonable delivery lead time is ensured.

Location analysis has played a central role in the development of the operations
research field. In this area lie some of the discipline’s most elegant results and
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theories. We note here the paper of Cornuéjols et al. (1977) and the two excel-
lent books devoted to the subject by Mirchandani and Francis (1990) and Daskin
(1995). Location problems encompass a wide range of problems such as the loca-
tion of emergency services (fire houses or ambulances), the location of hazardous
materials, problems in telecommunications network design, etc. just to name a
few.

In the next section, we present an exact algorithm for one of the simplest location
problems, the p -Median Problem. We then generalize this model and algorithm to
incorporate additional factors important to the design of the distribution network,
such as warehouse capacities and fixed costs. In Section 12.4, we present a more
general model where all levels of the distribution system (plants and retailers)
are taken into account when deciding warehouse locations. We also present an
efficient algorithm for its solution. All of the algorithms developed in this chapter
are based on the Lagrangian relaxation technique described in Chapter 4.3 which
has been applied successfully to a wide range of location problems. Finally, in
Section 12.5, we describe the structure of the optimal solution to problems in the
design of large-scale logistics systems.

12.2 An Algorithm for the p -Median Problem

Consider a set of retailers geographically dispersed in a region. The problem is to
choose where in the region to locate a set of p identical warehouses. We assume
there are m ≥ p sites that have been preselected as possible locations for these
warehouses. Once the p warehouses have been located, each of n retailers will get
its shipments from the warehouse closest to it. We assume:

• there is no fixed cost for locating at a particular site, and

• there is no capacity constraint on the demand supplied by a warehouse.

Note that the first assumption also encompasses the case where the fixed cost is
not site-dependent and therefore the fixed set-up cost for locating p warehouses is
independent of where they are located.

Let the set of retailers beN whereN � {1, 2, . . . , n}, and let the set of potential
sites for warehouses be M where M � {1, 2, . . . , m}. Let wi be the demand or
flow between retailer i and its warehouse for each i ∈ N . We assume that the cost
of transporting the wi units of product from warehouse j to retailer i is cij , for
each i ∈ N and j ∈ M .

The problem is to choose p of the m sites where a warehouse will be located in
such a way that the total transportation cost is minimized. This is the p -Median
Problem.

The continuous version of this problem, where any point is a potential warehouse
location, was first treated as early as 1909 by Weber. The discrete version was
analyzed by Kuehn and Hamburger (1963) as well as Hakimi (1964), Manne
(1964), Balinski (1965) and many others.
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We present here a highly effective approach to the problem. Define the following
decision variables:

Yj �
{

1, if a warehouse is located at site j ,

0, otherwise,

for j ∈ M , and

Xij �
{

1, if retailer i is served by a warehouse at site j ,

0, otherwise,

for i ∈ N and j ∈ M . The p -Median Problem is then:

Problem P : Min
n∑
i�1

m∑
j�1

cijXij

s.t.
m∑
j�1

Xij � 1, ∀i ∈ N (12.1)

m∑
j�1

Yj � p (12.2)

Xij ≤ Yj , ∀i ∈ N, j ∈ M (12.3)

Xij , Yj ∈ {0, 1}, ∀i ∈ N, j ∈ M. (12.4)

Constraints (12.1) guarantee that each retailer is assigned to a warehouse. Con-
straint (12.2) ensures that p sites are chosen. Constraints (12.3) guarantee that a
retailer selects a site only from among those that are chosen. Constraints (12.4)
force the variables to be integer.

This formulation can easily handle several side constraints. If a handling fee is
charged for each unit of product going through a warehouse, these costs can be
added to the transportation cost along all arcs leaving the warehouse. Also, if a
particular limit is placed on the length of any arc between retailer i and warehouse
j , this can be incorporated by simply setting the per unit shipping cost (cij ) to+∞.
In addition, the model can be easily extended to cases where a set of facilities are
already in place and the choice is whether to open new facilities or expand the
existing facilities.

LetZ∗ be an optimal solution to ProblemP . One simple and effective technique
to solve this problem is the method of Lagrangian relaxation described in Chapter
4.3.

As described in Chapter 4.3, Lagrangian relaxation involves relaxing a set of
constraints and introducing them into the objective function with a multiplier vec-
tor. This provides a lower bound on the optimal solution to the overall problem.
Then, using a subgradient search method, we iteratively update our multiplier vec-
tor in an attempt to increase the lower bound. At each step of the subgradient
procedure (i.e., for each set of multipliers) we also attempt to construct a feasible
solution to the location problem. This step usually consists of a simple and efficient
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subroutine. After a prespecified number of iterations, or when the solution found
is within a fixed error tolerance of the lower bound, the algorithm is terminated.

To solve the p -Median Problem, we choose to relax constraints (12.1). We
incorporate these constraints in the objective function with the multiplier vector
λ ∈ IRn. The resulting problem, call it Pλ, with optimal objective function value
Zλ, is:

Min
n∑
i�1

m∑
j�1

cijXij +
n∑
i�1

λi

( m∑
j�1

Xij − 1
)

subject to (12.2)− (12.4).

Disregarding constraint (12.2) for now, the problem decomposes by site, that is,
each site can be considered separately. Let subproblem P

j

λ , with optimal objective
function value Zj

λ , be the following.

Min
n∑
i�1

(cij + λi)Xij

s.t. Xij ≤ Yj , ∀i ∈ N
Xij ∈ {0, 1}, ∀i ∈ N
Yj ∈ {0, 1}.

Solving Subproblem P
j

λ

Assume λ is fixed. In ProblemP
j

λ , site j is either selected (Yj � 1) or not (Yj � 0).
If site j is not selected, thenXij � 0 for all i ∈ N and thereforeZj

λ � 0. If site j is
selected, then we set Yj � 1 and assign exactly those retailers i with cij + λi < 0
to site j . In this case:

Z
j

λ �
n∑
i�1

min{cij + λi, 0}. (12.5)

We see that P j

λ is solved easily and its optimal objective function value is given
by (12.5).

To solve Pλ, we must now reintroduce constraint (12.2). This constraint forces
us to choose only p of the m sites. In Pλ, we can incorporate this constraint by
choosing the p sites with smallest values Zj

λ . To do this, let π be a permutation of
the numbers 1, 2, . . . , m such that

Z
π (1)
λ ≤ Z

π (2)
λ ≤ Z

π (3)
λ ≤ · · · ≤ Z

π (m)
λ .

Then the optimal solution to Pλ has objective function value:

Zλ
.�

p∑
j�1

Z
π (j )
λ −

n∑
j�1

λj .
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The value Zλ is a lower bound on the optimal solution of Problem P for any
vector λ ∈ IRn. To find the best such lower bound, we consider the Lagrangian
dual:

max
λ
{Zλ}.

Using the subgradient procedure (described in Chapter 4.3), we can iteratively
improve this bound.

Upper Bounds

It is crucial to construct good upper bounds on the optimal solution value as the
subgradient procedure advances. Clearly, solutions to Pλ will not necessarily be
feasible to Problem P . This is due to the fact that the constraints (12.1) (that each
retailer choose one and only one warehouse) may not be satisfied. The solution to
Pλ may have facilities choosing a number of sites. If, in the solution to Pλ, each
retailer chooses only one site, then this must be the optimal solution to P and
therefore we stop. Otherwise, there are retailers that are assigned to several or no
sites. A simple heuristic can be implemented which fixes those retailers that are
assigned to only one site, and assigns the remaining retailers to these and other
sites by choosing the next site to open in the ordering defined by π . When p sites
have been selected, a simple check that each retailer is assigned to its closest site
(of those selected) can further improve the solution.

Computational Results

Below we give a table listing results of various computational experiments. The
retailer locations were chosen uniformly over the unit square. For simplicity, we
made each retailer location a potential site for a warehouse, thusm � n. The cost of
assigning a retailer to a site was the Euclidean distance between the two locations.
The values of wi were chosen uniformly over the unit interval. We applied the
algorithm mentioned above to many problems and recorded the relative error of the
best solution found and the computation time required. The algorithm is terminated
when the relative error is below 1% or when a prespecified number of iterations
is reached. The numbers below “Error” are the relative errors averaged over ten
randomly generated problem instances. The numbers below “CPU Time” is the
CPU time averaged over the ten problem instances. All computational times are
on an IBM Risc 6000 Model 950.

Table 1: Computational results for the p -Median algorithm

n p Error CPU Time
10 3 0.3% 0.2s
20 4 1.7% 2.6s
50 5 1.4% 20.7s

100 7 1.3% 87.7s
200 10 2.4% 715.4s
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12.3 An Algorithm for the Single-Source Capacitated
Facility Location Problem

Consider the p -Median Problem where we make the following two changes in
our assumptions.

• The number of warehouses to locate (p) is not fixed beforehand.

• If a warehouse is located at site j :
◦ a fixed cost fj is incurred, and
◦ there is a capacity qj on the amount of demand it can serve.

The problem is to decide where to locate the warehouses and then how the re-
tailers should be assigned to the open warehouses in such a way that total cost is
minimized. We see that the problem is considerably more complicated than the
p -Median Problem. We now have capacity constraints on the warehouses and
therefore a retailer will not always be assigned to its nearest warehouse. Allowing
the optimization to choose the appropriate number of warehouses also adds to the
level of difficulty.

This problem is called the single-source Capacitated Facility Location Problem
(CFLP), or sometimes the Capacitated Concentrator Location Problem (CCLP).
This problem was successfully used in Chapter 6 as a framework for solving the
Capacitated Vehicle Routing Problem.

Using the same decision variables as in the p -Median Problem, we formulate
the single-source CFLP as the following integer linear program.

Min
n∑
i�1

m∑
j�1

cijXij +
m∑
j�1

fjYj

s.t.

m∑
j�1

Xij � 1 ∀i ∈ N (12.6)

n∑
i�1

wiXij ≤ qjYj ∀j ∈ M (12.7)

Xij , Yj ∈ {0, 1} ∀i ∈ N, j ∈ M. (12.8)

Constraints (12.6) (along with the integrality conditions (12.8)) ensure that each
retailer is assigned to exactly one warehouse. Constraints (12.7) ensure that the
warehouse’s capacity is not exceeded, and also that if a warehouse is not located
at site j , no retailer can be assigned to that site.

Let Z∗ be the optimal solution value of single-source CFLP. Note we have
restricted the assignment variables (X) to be integer. A related problem, where this
assumption is relaxed, is simply called the (multiple-source) Capacitated Facility
Location Problem. In that version, a retailer’s demand can be split between any
number of warehouses. In the single-source CFLP, it is required that each retailer
have only one warehouse supplying it. In many logistics applications, this is a
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realistic assumption since without this restriction optimal solutions might have
a retailer receive many deliveries of the same product (each for, conceivably, a
very small amount of the product). Clearly, from a managerial, marketing and
accounting point of view, restricting deliveries to come from only one warehouse
is a more appropriate delivery strategy.

Several algorithms have been proposed to solve the CFLP in the literature; all
are based on the Lagrangian relaxation technique. This includes Neebe and Rao
(1983), Barcelo and Casanovas (1984), Klincewicz and Luss (1986) and Pirkul
(1987). The one we derive here is similar to the algorithm of Pirkul which seems
to be the most effective.

We apply the Lagrangian relaxation technique by including constraints (12.6)
in the objective function. For any λ ∈ IRn, consider the following problem Pλ.

Min
n∑
i�1

m∑
j�1

cijXij +
m∑
j�1

fjYj +
n∑
i�1

λi

( m∑
j�1

Xij − 1
)

subject to (12.7)− (12.8).

Let Zλ be its optimal solution and note that

Zλ ≤ Z∗, ∀λ ∈ IRn.

To solve Pλ, as in the p -Median Problem, we separate the problem by site. For
a given j ∈ M , define the following problem P

j

λ , with optimal objective function
value Zj

λ :

Min
n∑
i�1

(cij + λi)Xij + fjYj

s.t.

n∑
i�1

wiXij ≤ qjYj

Xij ∈ {0, 1} ∀i ∈ N
Yj ∈ {0, 1}.

Solving P j

λ

Problem P
j

λ can be solved efficiently. In the optimal solution to P j

λ , Yj is either
0 or 1. If Yj � 0, then Xij � 0 for all i ∈ N . If Yj � 1, then the problem is no
more difficult than a single constraint 0-1 Knapsack Problem, for which efficient
algorithms exist; see, for example, Nauss (1976). If the optimal knapsack solution
is less than−fj , then the corresponding optimal solution to Pjλ is found by setting
Yj � 1 and Xij according to the knapsack solution, indicating whether retailer i
is assigned to site j . If the optimal knapsack solution is more than −fj , then the
optimal solution to P j

λ is found by setting Yj � 0 and Xij � 0 for all i ∈ N .
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The solution to Pλ is then given by

Zλ
.�

m∑
j�1

Z
j

λ −
n∑
i�1

λi.

For any vector λ ∈ IRn, this is a lower bound on the optimal solution Z∗. In order
to find the best such lower bound we use a subgradient procedure.

Note that if the problem has a constraint on the number of warehouses (facilities)
that can be opened (chosen), this can be handled in essentially the same way as it
was handled in the algorithm for the p -Median Problem.

Upper Bounds

For a given set of multipliers, if the values {X} satisfy (12.6), then we have an
optimal solution to Problem P , and we stop. Otherwise, we perform a simple sub-
routine to find a feasible solution to P . The procedure is based on the observation
that the knapsack solutions found when solving Pλ give us some information con-
cerning the benefit of setting up a warehouse at a site (relative to the current vector
λ). If, for example, the knapsack solution corresponding to a given site is 0, that is,
the optimal knapsack is empty, then this is most likely not a “good” site to select
at this time. In contrast, if the knapsack solution has a very negative cost, then this
is a “good” site. Given the values Zj

λ for each j ∈ M , let π be a permutation of
1, 2, . . . , m such that

Z
π (1)
λ ≤ Z

π (2)
λ ≤ · · · ≤ Z

π (m)
λ .

The procedure we perform allocates retailers to sites in a myopic fashion. Let
M be the minimum possible number of warehouses used in the optimal solution
to CFLP. This can be found by solving the Bin-Packing Problem defined on the
values wi with bin capacities Qj ; see Section 2.2. Starting with the “best” site, in
this case site π (1), assign the retailers in its optimal knapsack to this site. Then,
following the indexing of the knapsack solutions, take the next “best” site (say site
j
.� π (2)) and solve a new knapsack problem: one defined with costs cij

.� cij+λi
for each retailer i still unassigned. Assign all retailers in this knapsack solution to
site j . If this optimal knapsack is empty, then a warehouse is not located at that
site, and we go on to the next site. Continue in this manner until M warehouses
are located.

The solution may still not be a feasible solution to P since some retailers may
not be assigned to a site. In this case, unassigned retailers are assigned to sites
that are already chosen where they fit with minimum additional cost. If needed,
additional warehouses may be opened following the ordering of π . A local im-
provement heuristic can be implemented to improve on this solution, using simple
interchanges between retailers.

Computational Results

We now report on various computational experiments using this algorithm. The
retailer locations were chosen uniformly over the unit square. Again, for simplicity,
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we made each retailer location a potential site for a warehouse; thus, m � n. The
fixed cost of a site was chosen uniformly between 0 and 1. The cost of assigning a
retailer to a site was the Euclidean distance between the two locations. The values
ofwi were chosen uniformly over the interval 0 to 1

2 with warehouse capacity equal
to 1. We applied the algorithm mentioned above to ten problems and recorded the
average relative error of the best solution found and the average computation time
required. The algorithm is terminated when the relative error is below 1% or when
a prespecified number of iterations is reached. The numbers below “Error” are
the relative errors averaged over the ten randomly generated problem instances.
The numbers below “CPU Time” is the CPU time averaged over the ten problem
instances. All computational times are on an IBM Risc 6000 Model 950.

Table 2: Computational results for the
single-source CFLP algorithm

n Error CPU Time
10 1.2% 1.2s
20 1.0% 8.1s
50 1.1% 110.0s

100 1.1% 558.3s

12.4 A Distribution System Design Problem

So far the location models we have considered have been concerned with minimiz-
ing the costs of transporting products between warehouses and retailers. We now
present a more realistic model that considers the cost of transporting the product
from manufacturing facilities to the warehouses as well.

Consider the following warehouse location problem. A set of plants and retailers
are geographically dispersed in a region. Each retailer experiences demands for
a variety of products which are manufactured at the plants. A set of warehouses
must be located in the distribution network from a list of potential sites.

The cost of locating a warehouse includes the transportation cost per unit from
warehouses to retailers but also the transportation cost from plants to warehouses.
In addition, as in the CFLP, there is a site-dependent fixed cost for locating each
warehouse.

The data for the problem are the following.

• L � number of plants; we will also let L � {1, 2, . . . , L}
• J � number of potential warehouse sites, also let J � {1, 2, . . . , J }
• I � number of retailers, also let I � {1, 2, . . . , I }
• K � number of products, also let K � {1, 2, . . . , K}
• W � number of warehouses to locate
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• c(jk � cost of shipping one unit of product k from plant ( to
warehouse site j

• djik � cost of shipping one unit of product k from warehouse
site j to retailer i

• fj � fixed cost of locating a warehouse at site j

• v(k � supply of product k at plant (

• wik � demand for product k at retailer i

• sk � volume of one unit of product k

• qj � capacity (in volume) of a warehouse at site j

We make the additional assumption that a retailer gets delivery for a product
from one warehouse only. This does not preclude solutions where a retailer gets
shipments from different warehouses, but these shipments must be for different
products. On the other hand, we assume that the warehouse can receive shipments
from any plant and for any amount of product.

The problem is to determine where to locate the warehouses, how to ship the
product from the plants to the warehouses and also how to ship the product from
the warehouses to the retailers. This problem is similar to one analyzed by Pirkul
and Jayaraman (1996).

We again use a mathematical programming approach. Define the following
decision variables:

Yj �
{

1, if a warehouse is located at site j ,

0, otherwise,

and

U(jk � amount of product k shipped from plant ( to warehouse j,

for each ( ∈ L, j ∈ J and k ∈ K . Also define:

Xjik �
{

1, if retailer i receives product k from warehouse j ,

0, otherwise,

for each j ∈ J , i ∈ I and k ∈ K .
Then the Distribution System Design Problem can be formulated as the follow-

ing integer program.

Min
L∑
(�1

J∑
j�1

K∑
k�1

c(jkU(jk +
I∑
i�1

J∑
j�1

K∑
k�1

djikwikXjik +
J∑
j�1

fjYj

s.t.
J∑
j�1

Xjik � 1 ∀i ∈ I, k ∈ K (12.9)
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I∑
i�1

K∑
k�1

skwikXjik ≤ qjYj ∀j ∈ J (12.10)

I∑
i�1

wikXjik �
L∑
(�1

U(jk ∀j ∈ J, k ∈ K (12.11)

J∑
j�1

U(jk ≤ v(k ∀( ∈ L, k ∈ K (12.12)

J∑
j�1

Yj � W (12.13)

Yj ,Xjik ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K (12.14)

U(jk ≥ 0 ∀( ∈ L, j ∈ J, k ∈ K. (12.15)

The objective function measures the transportation costs between plants and ware-
houses, between warehouses and retailers and also the fixed cost of locating the
warehouses. Constraints (12.9) ensure that each retailer/product pair is assigned to
one warehouse. Constraints (12.10) guarantee that the capacity of the warehouses
is not exceeded. Constraints (12.11) ensure that there is a conservation of the flow
of products at each warehouse; that is, the amount of each product arriving at a
warehouse from the plants is equal to the amount being shipped from the ware-
house to the retailers. Constraints (12.12) are the supply constraints. Constraints
(12.13) ensure that we locate exactly W warehouses.

The model can handle several extensions such as a warehouse handling fee or
a limit on the distance of any link used just as in the p -Median Problem. Another
interesting extension is when there are a fixed number of possible warehouse types
from which to choose. Each type has a specific cost along with a specific capacity.
The model can be easily extended to handle this situation (see Exercise 12.1).

As in the previous problems, we will use Lagrangian relaxation. We relax con-
straints (12.9) (with multipliers λik) and constraints (12.11) (with multipliers θjk).
The resulting problem is:

Min
L∑
(�1

J∑
j�1

K∑
k�1

c(jkU(jk +
J∑
j�1

I∑
i�1

K∑
k�1

djikwikXjik +
J∑
j�1

fjYj

+
J∑
j�1

K∑
k�1

θjk

[ I∑
i�1

wikXjik −
L∑
(�1

U(jk

]
+

I∑
i�1

K∑
k�1

λik

[
1−

J∑
j�1

Xjik

]
,

subject to (12.10), (12.12)− (12.15).

Let Zλ,θ be the optimal solution to this problem. This problem can be decom-
posed into two separate problems P1 and P2. They are the following.

Problem P1 : Z1
.�Min

L∑
(�1

J∑
j�1

K∑
k�1

[c(jk − θjk]U(jk
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s.t.
J∑
j�1

U(jk ≤ v(k,∀( ∈ L, k ∈ K (12.16)

U(jk ≥ 0, ∀( ∈ L, j ∈ J, k ∈ K.

Problem P2 : Z2
.�Min

J∑
j�1

I∑
i�1

K∑
k�1

[djikwik − λik + θjkwik]Xjik +
J∑
j�1

fjYj

s.t.
I∑
i�1

K∑
k�1

skwikXjik ≤ qjYj , ∀j ∈ J (12.17)

J∑
j�1

Yj � P, (12.18)

Yj ,Xjik ∈ {0, 1}, ∀i ∈ I, j ∈ J, k ∈ K.

Solving P1

Problem P1 can be solved separately for each plant/product pair. In fact, the ob-
jective functions of each of these subproblems can be improved (without loss in
computation time) by adding the constraints:

sk

L∑
(�1

U(jk ≤ qj , ∀j ∈ J, k ∈ K. (12.19)

For each plant/product combination, say plant ( and product k, sort the J values
cj

.� c(jk − θjk . Starting with the smallest value of cj , say cj ′ , if cj ′ ≥ 0, then the
solution is to ship none of this product from this plant. If c(j ′k < 0, then ship as
much of this product as possible along arc ((, j ′) subject to satisfying constraints
(12.16) and (12.19). Then if the supply v(k has not been completely shipped, do
the same for the next cheapest arc, as long as it has negative reduced cost (c).
Continue in this manner until all of the product has been shipped or the reduced
costs are no longer negative. Then proceed to the next plant/product combination
repeating this procedure. Continue until all the plant/product combinations have
been scanned in this fashion.

Solving P2

Solving Problem P2 is similar to solving the subproblem in the CFLP. For now we
can ignore constraints (12.18). Then we separate the problem by warehouse. In the
problem corresponding to warehouse j , either Yj � 0 or Yj � 1. If Yj � 0, then
Xjik � 0 for all i ∈ N and k ∈ K . If Yj � 1, then we get a Knapsack Problem
withNK items, one for each retailer/product pair. LetZj

2 be the objective function
value when Yj is set to 1 and the resulting knapsack problem is solved. After having
solved each of these, let π be a permutation of the numbers 1, 2, . . . , J such that
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Z
π (1)
2 ≤ Z

π (2)
2 ≤ · · · ≤ Z

π (J )
2 .

The optimal solution to P2 is to choose the W smallest values:

Z2
.�

W∑
j�1

Z
π (j )
2 .

For fixed vectors λ and θ , the lower bound is

Zλ,θ
.� Z1 + Z2 +

I∑
i�1

K∑
k�1

λik.

To maximize this bound, that is,

max
λ,θ

{Zλ,θ },

we again use the subgradient optimization procedure.

Upper Bounds

At each iteration of the subgradient procedure, we attempt to construct a feasi-
ble solution to the problem. Consider Problem P2. Its solution may have a re-
tailer/product combination assigned to several warehouses. We determine the set
of retailer/product combinations that are assigned to one and only one retailer and
fix these. Other retailer/product combinations are assigned to warehouses using
the following mechanism. For each retailer/product combination we determine the
cost of assigning it to a particular warehouse. After determining that this assign-
ment is feasible (from a warehouse capacity point of view), the assignment cost
is calculated as the cost of shipping all of the demand for this retailer/product
combination through the warehouse plus the cost of shipping the demand from the
plants to the warehouse (along one or more arcs from the warehouse to the plants).
For each retailer/product combination we determine the penalty associated with
assigning the shipment to its second best warehouse instead of its best warehouse.
We then assign the retailer/product combination with the highest such penalty and
update all arc flows and remaining capacities. We continue in this manner until all
retailer/product combinations have been assigned to warehouses.

Computational results for this problem appear at the end of Chapter 15.

12.5 The Structure of the Asymptotic Optimal Solution

In this section we describe a region partitioning scheme to solve large instances of
the CFLP.

Assume there are n retailers located at points {x1, x2, . . . , xn}. Each retailer also
serves as a potential site for a warehouse of fixed capacity q. The fixed cost of
locating a warehouse at a site is assumed to be proportional to the distance the site
is from a manufacturing facility located at x0 which is assumed (without loss of
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generality) to be the origin (0, 0). Retailer i has a demand wi which is assumed
to be less than or equal to q. Without loss of generality, we assume q � 1 and
therefore wi ∈ [0, 1] for each i ∈ N . Let α be the per unit cost of transportation
between warehouses and the manufacturing facility, and let β be the per unit cost
of transportation between warehouses and retailers.

We assume the retailer locations are independently and identically distributed in
a compact region A ⊂ IR2 according to some distribution µ. Assume the retailer
demands are independently and identically distributed according to a probability
measure φ on [0, 1]. The bin-packing constant associated with the distribution φ
(denoted by γφ or simply γ ) is the asymptotic number of bins used per item in an
optimal packing of the retailer demands into unit size bins, when items are drawn
randomly from the distribution φ (see Section 3.2).

The following theorem shows that if the retailer locations and demand sizes are
random (from a general class of distributions), then as the problem size increases,
the optimal solution has a very particular structure. This structure can be exploited
using a region partitioning scheme as demonstrated below.

Theorem 12.5.1 Let xk , k � 1, 2, . . . , n be a sequence of independent random
variables having a distribution µ with compact support in IR2. Let ‖x‖ be the
Euclidean distance between the manufacturing facility and the point x ∈ IR2, and
let

E(d) �
∫
‖x‖dµ(x).

Let the demands wk , k � 1, 2, . . . , n be a sequence of independent random vari-
ables having a distribution φ with bin-packing constant equal to γ . Then, almost
surely,

lim
n→∞

1

n
Z∗n � αγE(d).

This analysis demonstrates that simple approaches which consider only the
geography and the packing of the demands can be very efficient on large problem
instances. Asymptotically, this is in fact the optimal strategy. This analysis also
demonstrates that, asymptotically, the cost of transportation between retailers and
warehouses becomes a very small fraction (eventually zero) of the total cost.

12.6 Exercises

Exercise 12.1. In the Distribution System Design Problem, explain how the solu-
tion methodology changes when there are a fixed number of possible warehouse
capacities. For example, at each site, if we decide to install a warehouse, we can
install a small, medium or large one.

Exercise 12.2. Prove Theorem 12.5.1.
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Exercise 12.3. Show how any instance of the Bin-Packing Problem (see Part I)
can be formulated as an instance of the Single-Source CFLP.

Exercise 12.4. Consider Problem P1 of Section 12.4.
(a) Show that this formulation can be strengthened by adding the constraints:

L∑
(�1

K∑
k�1

skU(jk ≤ qj , ∀j ∈ J.

(b) Show that this new formulation can be transformed to a specialized kind of
linear program called a transportation problem.

(c) Why might we not want to use this stronger formulation?

Exercise 12.5. (Mirchandani and Francis, 1990) Define the Uncapacitated Facility
Location Problem (UFLP) in the following way. Let Fj be the fixed charge of
opening a facility at site j , for j � 1, 2, . . . , m.

Problem UFLP : Min
n∑
i�1

m∑
j�1

cijXij +
m∑
j�1

FjYj

s.t.
m∑
j�1

Xij � 1, ∀i ∈ N

Xij ≤ Yj , ∀i ∈ N, j ∈ M
Xij , Yj ∈ {0, 1}, ∀i ∈ N, j ∈ M.

Show that UFLP is NP-Hard by showing that any instance of the NP-Hard
Node Cover Problem can be formulated as an instance of UFLP. The Node Cover
Problem is defined as follows: given a graph G and an integer k, does there exist
a subset of k nodes of G that cover all the arcs of G? (Node v is said to cover arc
e if v is an end-point of e.)

Exercise 12.6. (Mirchandani and Francis, 1990) It appears that the p -Median
problem can be solved by solving the resulting problem UFLP (see Exercise 12.5)
for different values ofF � Fj , ∀j , until a valueF ∗ is found where the UFLP opens
exactly p facilities. Show that this method does not work by giving an instance
of a 2-Median problem for which no value of F provides an optimal solution to
UFCLP with two open facilities.
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13
Integrated Logistics Models

13.1 Introduction

The vehicle routing models discussed in Part II assume that the frequency, timing
and sizes of customer deliveries are predetermined. There are however many dis-
tribution problems in which the vehicle schedules and the timing and size of the
customer deliveries are (or should be) simultaneously determined. This is clearly
the case in internal distribution systems in which the depot and the customers rep-
resent (part of) consecutive layers in the distribution network of a single company
(see, e.g., Chapter 12).

In addition, the need to integrate inventory control and routing decisions arises
in many external distribution processes in which deliveries need to be made to
external customers. An example is the gas industry where the gas producers install
tanks at their customers’ locations and assume the responsibility for maintaining
an adequate inventory level by determining the replenishment frequency and de-
livery sizes of all customers. Suppliers of supermarkets and department stores, to
give another example, often acquire shelf space and are given the responsibility
for replenishing the stock. They often adopt the complete inventory management
function of their retailer customers. By billing a retailer only at the time it makes
a sale to a consumer, the capital costs associated with the retailer’s inventories
are borne by the supplier. The supplier is given the responsibility to replenish the
retailer’s inventory at its discretion while guaranteeing a given fill rate or being
charged for any lost sales or backlogs.

This arrangement alleviates the industrial retailer of its costly inventory invest-
ments and the intricacies of inventory planning; the supplier has the advantage
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of being able to determine when and in what quantities to deliver to its retailer
customers. Moreover, when demands are subject to a considerable degree of un-
certainty, the system as a whole derives additional benefits from this arrangement
because the supplier can meet a given service level with an aggregate safety stock
significantly smaller than the sum of the safety stocks required by the individual
retailers, a phenomenon known as risk pooling.

There are many potential models integrating inventory control and vehicle rout-
ing problems. These include:

• Single-period models with stochastic customers demands; see, for instance,
Federgruen and Zipkin (1984) who consider the following model. At the
beginning of the period, the initial inventory, perhaps supply remaining from
the previous period, for each location is reported to the central depot. This
information is used to determine the allocation of the available product
among the locations. At the same time, the assignment of customers to
vehicles and their routes are determined. After the deliveries are made, the
demands occur and inventory-carrying and shortage costs are incurred at
each location proportional to the end-of-the-period inventory level. Observe
that in this model it is possible that some locations will not be visited in a
particular period.

• Multi-period models with deterministic (known) customer demands. Dror
and Ball (1987) and Chien et al. (1989) suggest decomposing the multi-
period problem into a series of single-period problems using a cost adjust-
ment in each single-period model to reflect the effect of decisions made
in one time period on later time periods. For further discussion of the
multi-period inventory-routing problem the reader is referred to Golden et
al. (1984), Assad et al. (1982), Dror et al. (1986), Dror and Ball (1987) and
Chandra and Fisher (1990).

• Infinite horizon models where demands are at a customer-specific constant
and deterministic rate. Here one needs to determine infinite horizon replen-
ishment policies for all customers as well as efficient vehicle routes.

The impact of integrated inventory and routing strategies was recently high-
lighted by Stalk et al. (1992) who review the evolution of the discount retailing
industry. They attribute Wal-Mart’s success in developing into the largest and high-
est profit retailer in the world to a relentless focus on efficient logistical design and
planning. “The key to achieving these goals was to make the way the company re-
plenished inventory the centerpiece of its competitive strategy.” Stalk et al. identify
a number of major components in this strategic vision, most importantly, a logistics
technique referred to as “cross docking.” This refers to a distribution strategy in
which the stores are supplied by central warehouses which act as coordinators of
the supply process, and as transshipment points for incoming orders from outside
vendors, but which do not keep stock themselves. In this chapter we analyze mod-
els that will to some extent explain the observed effectiveness of the cross docking
strategy.
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The models below assume that the firm operates its own private fleet of vehi-
cles. Therefore, vehicle and maintenance costs are essentially sunk and the only
remaining costs are fuel and labor. The analysis below differs substantially from
the situation where the distribution is done through outside distributors such as
truck-load carrier, less-than-truckload carrier, couriers, UPS etc. Models of this
type will not be analyzed here.

13.2 Single Warehouse Models

The single warehouse distribution planning problem can be modeled as follows: a
single warehouse serves retailers geographically dispersed in a given area. Stock for
a single item is delivered to the retailers by a fleet of vehicles of limited capacity.
Each retailer faces a deterministic, retailer-specific demand rate. The inventory
holding costs are accrued at a retailer-specific constant rate. No inventory is kept
at the depot. Each time a vehicle is sent out to replenish inventory, it incurs a
fixed cost plus a cost proportional to the total distance traveled by the vehicle. The
objective is to determine an inventory policy and a routing strategy such that each
retailer satisfies its demands and the long-run average transportation and inventory
costs are minimized.

In a distribution system of this type, one may have an additional constraint
limiting the frequency with which each retailer is visited. Such a constraint may,
for example, be due to limited material handling capacity and/or to the set-up time
required for unloading deliveries at the retailers.

It is highly improbable that an optimal strategy will be identified in the near
future for this model; such attempts have long been abandoned even for far simpler
models, for example, the special case where the cost of dispatching a vehicle to
a group of retailers only consists of the fixed component and is independent of
the distance traveled. Such models, with joint replenishment costs of this type, are
often referred to as Joint Replenishment Problems; see Jackson et al. (1985) and
Federgruen and Zheng (1992). Most important, the structure of a fully optimal
strategy may be so complex that it might fail to be implementable even if it could
be determined in a reasonable amount of time. As a consequence, various authors
have restricted themselves at the outset to specific classes of strategies and have
developed methods to identify optimal or asymptotically optimal rules within the
chosen class.

It is noteworthy that all of the proposed classes of policies for these and related
problems are subsets of the class of Zero Inventory Ordering Property (ZIO) poli-
cies (see Chapter 9) under which a retailer is replenished if and only if its inventory
is zero. In the absence of constraints on the vehicle capacity and the frequency with
which retailers can be served, it is easily verified that an optimal policy must satisfy
the ZIO property. However, in the presence of these constraints, ZIO policies may
fail to be optimal, as we shall demonstrate shortly.

Even the structure of an optimal ZIO policy may be too complex to permit
implementation or identification by a reasonable algorithm; this is why all of
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the literature on this model has restricted itself to specific subclasses of the ZIO
policies. One attractive class is the class of Fixed Partition (FP) policies analyzed
by Bramel and Simchi-Levi (1995). A FP policy partitions the set of retailers into
a number of regions such that each region is served separately and independently
from all other regions. Moreover, whenever a retailer in a set is visited by a vehicle,
all other retailers in the set are visited as well. Fixed partition policies are easy to
implement: they allow for an easy integration of the distribution, marketing and
customer service functions.

Other strategies have been considered as well. For instance, Anily and Feder-
gruen (1990), the first to analyze this model, focus on a class of replenishment
strategies3 with the following properties: a replenishment strategy in3 specifies
a collection of regions (subset of retailers); if a retailer belongs to several regions,
a specific fraction of its sales is assigned to each of these. Each time one of the out-
lets in a given region gets a delivery, this delivery is made by a vehicle which visits
all other outlets in the region as well. Anily and Federgruen show that regions can
be formed by a simple regional partitioning scheme similar to those introduced in
Section 5.4 and a combined inventory and routing strategy can thus be computed
which is asymptotically optimal within the class 3.

Subsequent work considers restrictions to other classes of strategies. Gallego
and Simchi-Levi (1990) show that Direct Shipping (DS) policies, that is, policies
in which each vehicle visits a single retailer, are within 6% of optimality under
certain restrictions on the problem parameters. We present these results in Section
13.3.

Herer and Roundy (1990) and Viswanathan and Mathur (1993) show good em-
pirical performance for the so-called power-of-two strategies under which each
retailer is replenished at constant intervals which are power-of-two multiples of a
common base planning period. For a detailed discussion of power-of-two policies
see Chapter 9. Bramel and Simchi-Levi (1995) analyzed the class of Fixed Parti-
tion policies. They show good empirical performance for medium-size problems
in the absence of frequency constraints.

Observe that all the approaches suggested for the problem use strategies that
belong to the class of ZIO policies. The question, of course, is how much is lost
when one restricts itself to this class. Following the work of Chan et al. (1996) we
perform, in Section 13.4, a probabilistic analysis of the class of ZIO and the class
of FP policies.

Finally, in Section 13.5, we discuss multi-echelon systems and present recent
results obtained by Chan and Simchi-Levi (1996) on the effectiveness of the cross-
docking strategy; a strategy introduced in the previous section.

13.3 Worst-Case Analysis of Direct Shipping Strategies

In view of the worst-case results developed for the Capacitated Vehicle Routing
Problem (see Chapters 5 and 6), one wonders whether similar results can be ob-
tained for models integrating inventory control and transportation policies. Here
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we demonstrate that this is possible for infinite horizon inventory-routing prob-
lems where the warehouse does not hold inventory. For this model, Gallego and
Simchi-Levi characterize the effectiveness of so-called direct shipping strategies.

Consider a model with a set of retailers N . For each retailer i ∈ N , we define

• Di � demand per unit of time

• di � distance from the warehouse

• hi � holding cost per unit per unit of time

• Ki � set up cost for ordering.

Items are shipped from a central depot to the retailers using vehicles of capacity
q. Each time a vehicle is sent out to replenish inventory to a set of retailers S,
it incurs a cost proportional to the total distance traveled by the vehicle, that is,
a cost proportional to L∗(S), the length of the optimal traveling salesman tour
through the warehouse and the retailers in the set S. Without loss of generality,
we set the cost per mile equal to one. We seek a combined inventory control and
routing strategy that replenishes retailer inventories in time to meet their demands
and minimizes the long-run average total inventory holding and transportation cost
per unit of time. As in traditional joint replenishment inventory models, it is not
clear that one “optimal” policy always exists. That is, it is possible that a series
of policies successively has smaller and smaller cost without the existence of a
“limiting” policy. Thus, here we letZ∗ denote the infimum of the long-run average
cost values over all feasible policies.

13.3.1 A Lower Bound

A lower bound on the long-run average cost over all inventory-routing strategies is
obtained by combining lower bounds on the long-run average ordering and holding
costs and a lower bound on the long-run average transportation cost.

Lemma 13.3.1 A lower bound B on the long-run average cost over all inventory
routing strategies is given by

B �
∑
i∈N

{√
2DiKihi + 2diDi

q

}
. (13.1)

Proof. Let B denote the lower bound obtained by minimizing separately,

(a) the ordering and holding costs, and

(b) the total vehicle routing costs required to allow all retailers to meet their
demands,
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and then adding these two values.
The minimum of (a) is given by the average costs of n independent EOQ models

(see Chapter 9), that is, by ∑
i∈N

√
2DiKihi.

To find a lower bound for (b) we use a similar analysis to the proof of Lemma
5.2.1. Consider the distance traveled by vehicles of capacity q serving a set of
geographically dispersed retailers (N ) located at distances di from the depot and
facing demands wi . A lower bound on the total distance traveled is given by

2

q

∑
i∈N

diwi. (13.2)

Let us now consider the distance traveled up to time t . The cumulative demand
at retailer i up to time t is Dit , and since no shortages or backlogging are allowed,
the minimal amount shipped to retailer i up to time t isDit for all i ∈ N . Therefore,
the minimal distance traveled up to time t is obtained by substituting Dit for wi

in equation (13.2). Consequently, a lower bound on the distance traveled per unit
time is given by 2

q

∑
i∈N diDi. Adding this expression to the lower bound on the

long-run inventory ordering and holding cost we obtain equation (13.1).

13.3.2 The Effectiveness of Direct Shipping

We now analyze the cost of supplying all retailers separately. We call this the class
of direct shipping strategies. An important subclass, called fully loaded direct
shipping strategies, consists of direct shipping strategies where all shipments are
made by fully loaded vehicles. We obtain an upper bound on the optimal cost in this
subclass of policies. This bound, together with the lower bound of Lemma 13.3.1,
characterizes an upper bound on the worst-case performance of direct shipping.

LetQi be the lot size for retailer i ∈ N , that is, the amount brought to the retailer
at equal intervals of time. The cost per unit of time for retailer i ∈ N is given by

zi(Qi) � KiDi

Qi

+ hiQi

2
+ 2di

⌈Qi

q

⌉Di

Qi

.

Let ZDS � ∑
i∈N zi(Qi) be the total cost per unit of time for the policy corre-

sponding to the order quantities {Q1,Q2, . . . ,Qn}. We find an upper bound on
ZDS by restricting the choice of lot sizes to fully loaded vehicles, that is, the order
quantities are restricted to the set F

.� {mq : m � 1, 2, . . .}.
Clearly, ZDS is separable, so it is enough to find an upper bound on z over F ,

where z is identical to zi omitting the index i. Let f (Q) � KD
Q
+ hQ

2 and note

that, in F , the functions f and z differ only by the constant 2dD
q

. Thus, Qf , the
minimizer of f over F , is also the minimizer of z over the same set. Finally, let
Qe .� √

2KDh, η
.� max{ q

Qe ,
√

2} and ε(η)
.� 1

2 (η + 1
η
). We have

Lemma 13.3.2 z(Qf ) ≤
(
f (Qe)+ 2dD

q

)
ε(η).
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Proof. It is easily verified (see Maxwell and Singh (1983)) that Qf � mq mini-
mizes f over F if and only if√

m− 1

m
≤ Qe/Qf ≤

√
m+ 1

m
. (13.3)

Consider the following two cases. If Qe ≥ q√
2
, then by (13.3), 1√

2
≤ Qe

Qf ≤
√

2.

Since f is convex and f (Qe
√

2) � f (Q
e√
2
) we obtain (with η � √

2)

f (Qf ) ≤ f (Qe)ε(η). (13.4)

If, on the other hand, Qe <
q√
2
, then Qf � q. Hence,

f (Qf ) � f (Qe)ε(η). (13.5)

Combining (13.4) and (13.5), ε(η) ≥ 1 and the definition of z we obtain

z(Qf ) � f (Qf )+ 2dD

q
≤

[
f (Qe)+ 2dD

q

]
ε(η).

We are now ready to characterize the worst-case performance of direct ship-
ping. For this purpose, let ηi

.� max{ q

Qe
i

,
√

2}, η .� maxi∈N {ηi} and ZFDS .�∑
i∈N z(Q

f

i ). It is easy to see that the lower bound B obtained in Lemma 13.3.1
together with the upper bound of Lemma 13.3.2 yields:

Theorem 13.3.3 For any instance, ZFDS

B
≤ ε(η).

This implies that the worst-case ratio of the cost of direct shipping to a lower
bound on the optimal cost is no more than 1.061 whenever the economic lot sizes
exceed 71% of the vehicle capacity, that is, whenever Qe

i ≥ q√
2

for all i ∈ N .
The worst-case ratio increases as the economic lot sizes decrease. For instance, if
the minimum lot size is 50% (respectively, 33%) of the vehicle capacity, then the
worst-case ratio is 1.25 (respectively, 1.68).

13.4 Asymptotic Analysis of ZIO Policies

In this section our objective is to characterize the asymptotic effectiveness of the
class of ZIO and the class of FP policies described in Section 13.2. For this purpose
we analyze the following model.

Consider a distribution system with a set N � {1, 2, . . . , n} of geographically
dispersed retailers. A central warehouse with an unlimited supply of a given product
serves the retailers using vehicles of limited capacity q. Retailer i, located at a
distance di from the warehouse, faces a deterministic demand rate Di per unit of
time and incurs a linear holding cost at a constant rate h per unit of product stored
there per unit of time. Demand at each retailer must be met over an infinite horizon
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without shortages or backlogging. The frequency with which a given retailer can
be visited is bounded from above by f ; that is, the time that elapses between two
consecutive deliveries to a retailer should be at least 1

f
. As mentioned earlier, this

upper bound on the delivery frequency to each retailer may be due to the set-up
time required for unloading at the retailers or may be due to other material handling
constraints.

Each time a vehicle is sent out to replenish inventory to a set of retailers S, it
incurs a fixed cost c plus a cost proportional to the total distance traveled by the
vehicle, that is, a cost proportional to L∗(S), the length of the optimal traveling
salesman tour through the warehouse and the retailers in the set S. Without loss of
generality, we set the cost per mile equal to one. We seek a combined inventory
control and routing strategy that replenishes retailer inventories in time to meet
their demands and minimizes the long-run average total inventory holding and
transportation cost per unit of time.

LetZ∗zi denote the infimum of the long-run average cost over all Zero-Inventory
Ordering policies. The following example shows thatZ∗, the infimum of the long-
run average costs over all possible policies, can be strictly smaller than Z∗zi even
in an asymptotic sense, that is, we can construct a sequence of problem instances
in which as n→∞ we have limn→∞ Z∗

n
< limn→∞

Z∗zi
n

.

An Example

Consider a problem in which there are 3n retailers, each one with demand rate
D � 2, located at the same point a distance d � 1 from the warehouse. Let f � 1
and q � 3. The fixed cost of sending out a vehicle c equals 1 and the holding cost
rate h is 1.

Lemma 13.4.1 There exists a feasible policy with long-run average cost Z∗zi − n
2 .

Proof. Consider policies that satisfy the Zero-Inventory Ordering property. Let w
be the size of a single delivery to a retailer in a policy of this type. The frequency
constraint implies that w ≥ D

f
� 2 and hence each delivery to a retailer must be

made by a separate vehicle. Since 2(2di+c)D
h

� 12 > 9 � q2, the optimal ZIO
policy delivers a full truck load (3 units) to each retailer every 1.5 units of time.
The long-run average transportation cost of this policy is (3n) 2d+c

1.5 � 6nwhile the
long-run average holding cost is 3n(1.5) � 4.5n.

Consider now a different policy which fails to satisfy the Zero-Inventory Or-
dering property. Under this policy, each retailer receives a delivery every unit of
time. The frequency constraint is clearly satisfied. Without loss of generality, as-
sume the system starts with zero-inventory at each retailer. Partition the retailers
into groups of three retailers each. For each such group of three retailers, let the
delivery sizes be (2,2,3) at time 0, (2,3,1) at time 2t − 1 and (2,1,3) at time 2t for
each t � 1, 2, . . . . Hence, for each t � 1, 2, . . . , only two fully loaded vehicles
are needed to visit each group of three retailers. It is easy to see that the long-run
average transportation cost of this policy is (2d + c)2n � 6n while the long-run
average holding cost is n[1+ 1.5+ 1.5] � 4n.
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13.4.1 A Lower Bound on the Cost of Any Policy

We start by constructing a lower bound on the cost of any feasible policy.

Lemma 13.4.2

B �
n∑
i�1

[Di(2di + c)

q
+ hDi

2f

]

is a lower bound on the long-run average cost over all feasible policies over the
infinite horizon.

Proof. Let Ii ≥ 0 be the initial inventory level at retailer i for every i. Consider
an arbitrary policy P over an infinite horizon. Let C(P, t) be the average cost per
unit of time incurred by this policy over the interval [0, t). It suffices to show that
C(P, t) ≥ ( t

t+ 1
f

)B − c′
t

for some constant c′ for all t > maxi
Ii
Di

.

Assume the retailers are ordered so that d1 ≥ d2 ≥ . . . ≥ dn. Let M be the
number of vehicles sent out from the warehouse during the interval [0, t), Sj
the set of retailers visited by vehicle j � 1, 2, . . . ,M , and w

j

i the number of
units of product received by retailer i from vehicle j during [0, t). Let Qj be the
amount of product delivered by the j th vehicle during the interval [0, t); that is,
Qj �

∑n
i�1 w

j

i .
We first construct a lower bound on the total transportation cost incurred by

policyP . Consider the j th vehicle and a retailer i ∈ Sj . Clearly,L∗(Sj )+c ≥ 2di+c
and hence,

Qj [L∗(Sj )+ c] �
∑
i∈Sj

w
j

i [L∗(Sj )+ c] ≥
∑
i∈Sj

w
j

i (2di + c).

Since Qj ≤ q,

L∗(Sj )+ c ≥
∑
i∈Sj

w
j

i

q
(2di + c).

Hence, the total transportation cost is no smaller than

M∑
j�1

[L∗(Sj )+ c] ≥
M∑
j�1

∑
i∈Sj

w
j

i

q
(2di + c)

�
n∑
i�1

∑
j |i∈Sj

w
j

i

q
(2di + c)

≥
n∑
i�1

Dit − Ii

q
(2di + c).
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Consider now the holding cost for each retailer i. Let ri be the number of deliv-
eries received by retailer i over the interval [0, t). Due to the frequency constraint,
ri ≤ (t + 1

f
)f . Hence, the holding cost incurred by retailer i is no smaller than

when the total delivery quantity to retailer i in [0, t) is the minimum required, that
is,Dit− Ii , and the quantity is delivered at ri equidistant epochs when inventories
fall to zero; see Chapter 9. In this case the average inventory level equals Dit−Ii

2ri
.

The total holding cost incurred by retailer i in [0, t) is thus bounded from below
by

ht
Dit − Ii

2ri
≥ hDit

2

t

(t + 1
f

)f
− htIi

2(t + 1
f

)f
.

Let c′ � ∑M
j�1

Ii
q

(2di + c). Combining the lower bounds on the transportation
and the holding costs, we have

C(P, t) ≥ t

t + 1
f

n∑
i�1

[Di(2di + c)

q
+ hDi

2f

]
− c′

t
− h

∑
i Ii

2f

1

t + 1
f

�
( t

t + 1
f

)
B − c′

t
− h

∑
i Ii

2f

1

t + 1
f

.

13.4.2 An Efficient Fixed Partition Policy

We construct a FP policy which is close to optimal in a specific sense described
below. In particular, we show that the cost of this FP policy is, asymptotically,
related to the asymptotic optimal solution of a related Bin-Packing Problem.

Given the retailers’ demand rates, D1,D2, . . . , Dn, consider the Bin-Packing
Problem defined by items of size equal to these demand rates and bins of capacity
b, where b

.� qf . Without loss of generality we assume b is an integer. Feasibility
implies that for every retailer i ∈ N , its demand rate Di must satisfy Di ≤
b. Assume the retailer demand rates Di , i � 1, 2, . . . , n are independent and
identically distributed according to a probability measure/ defined on [1, b] with
expected value E(D). Let b∗ be the number of bins used in the optimal solution
to this Bin-Packing Problem. Then it follows from the analysis in Section 3.2 that
there exists a constant γ such that limn→∞ b∗

n
� γ almost surely. If γ � E(D)

b
, the

distribution is said to allow perfect packing. In that case, the constant α
.� γ b

E(D)

equals one. If the distribution does not allow perfect packing, that is, γ > E(D)
b

,
then the constant α is in (1, 2].

The next theorem uses the constant α to characterize the difference between the
long-run average cost of the FP policy and the long-run average cost of the best
possible policy for any distribution / of the retailer demand rates.

Theorem 13.4.3 Let the set of n retailer locations be a sequence of independent
random variables having a distribution µ with compact support A ⊂ IR2. Let the
retailer demand rates be a sequence of independent random variables having a
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distribution/. LetZ∗,Z∗zi andZ∗fp denote the infimum of the total costs among all
possible strategies, all zero-inventory strategies and all FP policies, respectively.
Then with probability one,

lim
n→∞

Z∗zi
Z∗

≤ lim
n→∞

Z∗fp
Z∗

≤ √
α.

Observe that when the distribution / allows perfect packing α � 1 and there-
fore, in that case, and when the number of retailers tends to infinity, Z∗fp has the
same cost as the cost of the best Zero-Inventory Ordering policy which is also the
cost of the best policy.

To prove the theorem, we construct a FP policy using the following two-step
procedure. In the first step, we partition the region A where the retailers are dis-
tributed into subregions. The retailers in each subregion are then partitioned into
subsets of retailers by solving the Bin-Packing Problem defined by the retailer
demand rates and bins of size b. Each such set is then served in an efficient way.

The Region Partitioning Scheme

Similarly to what we have done in Chapter 6, letG(u) be an infinite grid of squares
with edges parallel to the coordinate axes and side length u√

2
. Let {A1, A2, . . . , Am}

denote the intersections of the squares with the compact region A.
Let N (j ) be the set of retailers in subregion Aj with n(j ) � |N (j )|, j �

1, 2, . . . , m. Given subregion Aj , let dj be the distance from the warehouse to its
closest point in Aj , j � 1, 2, . . . , m.

To construct the fixed partition policy, we group all the retailers in subregion
Aj , j � 1, 2 . . . , m into sets by solving the Bin-Packing Problem defined by the
demand rates of the retailers in N (j ) and bins of capacity b. Each such set S
of retailers is served together using a reorder interval that depends on D(S)

.�∑
i∈S Di and the subregion where the retailers are located. If S is a set of retailers

in subregion Aj , then the reorder interval is

tS �




1
f
, if

√
2D(S)(2dj + c)/h ≤ D(S)/f ,√

2(2dj+c)
D(S)h , if D(S)/f <

√
2D(S)(2dj + c)/h ≤ q,

q

D(S) otherwise.

That is, the reorder interval is chosen so that qS � D(S)tS is the value of w
achieving the following.

min
D(S)/f≤w≤q

{D(S)(2dj + c)

w
+ hw

2

}
.

Consequently, these reorder intervals satisfy the capacity as well as the frequency
constraints.

For any set of retailers S ⊆ N (j ), we use the following routing strategy. The
vehicle travels from the warehouse to its closest point in Aj , visits the retailers in
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S in any order, and then returns to the warehouse. It is clear that the total distance
traveled is no more than 2dj + (|S| + 1)u.

Analysis of the Upper Bound

For each subregionAj , letb∗(j ) be the optimal solution to the Bin-Packing Problem
defined by the demand rates of the retailers in N (j ), j � 1, 2, . . . , m. Let S((j ),
( � 1, 2, . . . , b∗(j ) be the set of retailers assigned to the (th bin in this optimal
solution.

We first need the following technical lemma presented without proof (the inter-
ested reader can consult Chan et al. (1996) for details).

Lemma 13.4.4 (a) The function

F (b, d) � min
b/f≤w≤q

[b(2d + c)

w
+ hw

2

]

is concave in b for all b ∈ [1, b].

(b) F (b, d) ≤ F (b, d)
√

b

b
for all b ∈ [1, b].

We now derive an upper bound on the cost of the above-defined FP policy and
hence on Z∗fp, the infimum of the cost among all FP policies. This bound depends
on the number of routes b∗(N (j )) into which the customers of Aj are partitioned,
for j � 1, 2, . . . , m. For each subregion j � 1, 2, . . . , m, we express the number
of routes generated in the subregion relative to the minimum possible number of
routes, that is, the number of routes required if the demand rates {Di : i ∈ N (j )}
could be perfectly packed into bins of size b; in other words, we express the number
of routes employed by the FP policy in terms of

βj � b∗(N (j ))b∑
i∈N (j ) Di

≥ 1,

where in the notation we have omitted the dependence of βj on n.

Theorem 13.4.5

Z∗fp ≤
m∑
j�1

√
βj

∑
i∈N (j )

Di

F (b, di)

b
+ 2nuf.

Proof. We bound Z∗fp by the cost of the particular FP policy described above.
Under this policy, the reorder interval for every subset of retailers S((j ), ( �
1, 2 . . . , b∗(N (j )), is tS((j ) ≥ 1

f
. Hence, Z∗fp is bounded by
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Z∗fp ≤
m∑
j�1

b∗(N (j ))∑
(�1

{2dj + c + u(|S((j )| + 1)

tS((j )
+ hD(S((j ))tS((j )

2

}

≤
m∑
j�1

b∗(N (j ))∑
(�1

{2dj + c

tS((j )
+ hD(S((j ))tS((j )

2

}
+ 2nuf

�
m∑
j�1

b∗(N (j ))∑
(�1

min
D(S((j ))/f≤w≤q

{D(S((j ))(2dj + c)

w
+ hw

2

}
+ 2nuf.

�
m∑
j�1

b∗(N (j ))∑
(�1

F (D(S((j )), dj )+ 2nuf.

By Lemma 13.4.4(a),F (b, dj ) is a concave function ofb for every j � 1, 2, . . . , m
and therefore for every j ,

b∗(N (j ))∑
(�1

F (D(S((j )), dj ) ≤ b∗(N (j ))F
(D(N (j ))

b∗(N (j ))
, dj

)
� b∗(N (j ))F

( b

βj
, dj

)
.

Then

Z∗fp ≤
m∑
j�1

b∗(N (j ))
( b

βj

)F ( b
βj
, dj )

b/βj
+ 2nuf

�
m∑
j�1

D(N (j ))
F ( b

βj
, dj )

b/βj
+ 2nuf.

Hence, by Lemma 13.4.4(b), we have

Z∗fp ≤
m∑
j�1

√
βjD(N (j ))

F (b, dj )

b
+ 2nuf

≤
m∑
j�1

√
βj

∑
i∈N (j )

Di

F (b, di)

b
+ 2nuf.

The last inequality follows since F is nondecreasing in its second argument.
We can now finish the proof of Theorem 13.4.3.

Proof. Lemma 13.4.2 tells us that

B �
n∑
i�1

[
Di

2di + c

q
+ h

2f

]

�
n∑
i�1

Di

[2di + c√
b
f
q

+ h

2b

√
b

f
q
]

≥
n∑
i�1

Di min
b/f≤w≤q

[2di + c

w
+ hw

2b

]
.
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Hence,

B ≥
n∑
i�1

DiF (b, di)

b

and since
lim
n→∞βj � α

for each j � 1, 2, . . . , m we get that almost surely

lim
n→∞

Z∗fp
n

≤ √
α lim
n→∞

B

n
+ 2uf.

Finally, since u was arbitrary, we obtain that almost surely

lim
n→∞

Z∗fp
n

≤ √
α lim
n→∞

B

n
≤ √

α lim
n→∞

Z∗

n
.

13.5 Asymptotic Analysis of Cross-Docking Strategies

We are now ready to analyze a more general distribution system consisting of
a single outside vendor, a number of warehouses and a large number of retail-
ers. For this purpose, consider a distribution system with a set N of retailers,
N � {1, 2, . . . , n}, geographically dispersed in a given area A and a set M of
warehouses, M � {1, 2, . . . , m}. An outside vendor with an unlimited supply of a
product serves the warehouses using “big” vehicles of capacityQ; each warehouse
serves the retailers using “small” vehicles of capacity q. The terms “small” and
“big” do not necessarily reflect the actual sizes of the vehicles; we use them just
to distinguish between vehicles that deliver items to the warehouses and vehicles
that deliver items to the retailers. We assume that each small vehicle is assigned
to a unique warehouse.

Warehouse j , located at a distance dj from the outside vendor, incurs a linear
holding cost at a constant rate H per unit of product per unit of time. Retailer i,
located a distance dij from warehouse j � 1, . . . , m, faces a deterministic demand
rate of Di units of product per unit of time and incurs a linear holding cost at a
constant rate h per unit of product per unit of time.

Demand at each retailer must be met over an infinite horizon without shortages
or backlogging. The frequency with which a given retailer can be visited is bounded
from above by f , that is, the time that elapses between two successive deliveries
to a retailer should be at least 1

f
.

Each time a big vehicle is sent out to replenish inventory at the warehouses, it
incurs a fixed cost C plus a cost proportional to the total distance traveled by it.
Similarly, each time a small vehicle is sent out to replenish inventory at the retailers,
it incurs a fixed cost c plus a cost proportional to the total distance it travels. In
what follows the variable transportation cost for either a big or small vehicle is
scaled so that it is equal to the total distance it travels. We seek a dispatching and
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routing strategy that delivers items from the outside vendor to the warehouses and
from there to the retailers such that its long-run average cost is as small as possible.
Long-run average cost is defined as total inventory holding cost per unit of time at
the warehouses and the retailers plus transportation cost per unit of time from the
outside vendor to the warehouses and from the warehouses to the retailers.

LetZ∗ denote the infimum of the long-run average cost over all feasible policies.
Similarly, let Z∗zi denote the infimum of the long-run average cost over all Zero-
Inventory Ordering policies. Define b

.� qf , b∗, /, γ and α as in Section 13.4.2.
Our main results are summarized in the following theorems.

Theorem 13.5.1 Let the set of retailer locations be a sequence of independent
random variables having a distribution µ with compact support A ⊂ IR2. Let
the retailer demand rates be a sequence of independent random variables having
a distribution /. If / allows perfect packing, then there exists a Zero-Inventory
Ordering policy which is asymptotically optimal with respect to all possible policies
and satisfies the following properties.

(a) There is direct shipping from the outside vendor to the warehouses. That is,
each big vehicle visits only a single warehouse in each trip.

(b) No inventory is held at the warehouses. That is, the warehouses serve as
coordinators of the time and sizes of deliveries rather than storing points.

(c) Each retailer is served by exactly one warehouse.

Observe that these properties imply a distribution strategy that is very similar to
the “cross-docking” strategy identified by Stalk et al. in their analysis of Wal-Mart
(see Section 13.1). In particular, the result may explain why a distribution system
in which the warehouses serve only as a coordinator of the timing and size of
deliveries but hold no inventory is so effective in practice.

The above results are explained as follows. Since the total number of retailers
tends to infinity while the number of warehouses is fixed, independent of n, the
number of retailers served by a single warehouse goes to infinity as well. Hence,
each warehouse is faced with large demands, enough to fill up the entire capacity
of a big truck. This explains part (a) of the theorem. To explain part (b), observe
that once a big truck arrives at the warehouse, the warehouse can group enough
retailers and immediately deliver the items that arrived so that no inventory is held
at the warehouse. Finally, part (c) is justified by the fact that the distribution /
allows perfect packing and thus, with high probability, the small trucks assigned to
a single warehouse depart the warehouse fully loaded. This implies that there is no
incentive to assign a retailer to more than one warehouse; it does not substantially
improve the utilization of either the small trucks or the big trucks. Thus, in an
asymptotically optimal strategy, a retailer should be served by its most efficient
warehouse.

The proof of Theorem 13.5.1 is based on constructing a Fixed Partition Zero
Inventory Ordering policy that satisfies all the properties established in the theorem.
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The policy is similar to the one described in the previous section in terms of the
distribution of products from the warehouses to the retailers. The cost of this policy
Z∗fp converges to the cost of a lower bound on the long-run average cost of all
possible policies, when the distribution / allows perfect packing. The interested
reader may refer to Chan and Simchi-Levi for details.

In the next theorem we characterize the difference between the long-run average
cost of the best FP policy and the long-run average cost of the best possible strategy
for any distribution /, even those that do not allow perfect packing. We remark
that this theorem is essentially an extension of similar results presented in Section
13.4 for the single warehouse multi-retailer inventory-routing problem.

Theorem 13.5.2 Under the assumptions of Theorem 13.5.1, and for any distribu-
tion / of the retailer demand rates we have

lim
n→∞

Z∗zi
Z∗

≤ lim
n→∞

Z∗fp
Z∗

≤ √
α ≤

√
2 (a.s.).

Observe that when the distribution / allows perfect packing, α � 1. Therefore,
in this case, when the number of retailers tends to infinity, Z∗fp has the same
asymptotic cost as the cost of the best Zero-Inventory Ordering policy which is
also the asymptotic cost of the best policy.

13.6 An Algorithm for Multi-Echelon Distribution
Systems

The previous results suggest a new algorithm for general multi-echelon distribution
problems. Here we outline the general steps of the algorithm that generates a Fixed
Partition Zero-Inventory Ordering policy.

Multi-Echelon Distribution Algorithm

Step 1: Assign each retailer to one warehouse.

Step 2: For each set of retailers assigned to the same warehouse
Step 2.1: Partition the retailers into clusters.
Step 2.2: Combine the clusters into groups and determine the reorder

interval of each group.

Thus, in this multi-echelon distribution strategy each retailer is assigned to a
unique warehouse and it receives deliveries only from that warehouse. Retailers
assigned to the same warehouse are then partitioned into clusters such that all
retailers in each cluster are served together by a single small vehicle. Each small
vehicle serves a cluster of retailers assigned to a warehouse by following an optimal
traveling salesman tour through the warehouse and all the retailers in the cluster.
Clusters of retailers are combined into sets such that all retailers in the same set
have the same reorder interval.



13.7 Exercises 235

The deliveries are then coordinated by the warehouses as follows. Each ware-
house j serving retailers in clusters belonging to a set S, with reorder interval tS ,
arranges the deliveries so that small vehicles serving clusters in S leave warehouse
j at the same time. The warehouse coordinates the deliveries such that the mini-
mum number of big vehicles needed to carry the total load of the small vehicles
(that are used to serve the retailers in S) arrive directly from the outside vendor
just in time to transfer their loads to the small vehicles before these vehicles leave.
With the total load of the big vehicles exactly equal to that of the small vehicles,
warehouse j does not carry any inventory.

The interested reader may refer to Chan and Simchi-Levi for more details on the
algorithm and its effectiveness from both practical and theoretical points of view.

13.7 Exercises

Exercise 13.1. Consider the following distribution problem. We are given a set of
manufacturing facilities M , a set of warehouses W and a set of customers S. Each
warehouse and each customer has a limit on the amount that can be stored at the
facility. Each customer has forecasted demands for a single product for the next
T periods and transportation cost between the facilities is a linear function of the
amount delivered. Transportation cost per item may change from one period to
the next. Inventory holding cost is charged on items carried at a facility from one
period to the next. How would you design a delivery schedule that does not allow
for shortages?
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14
A Case Study: School Bus Routing

14.1 Introduction

We now turn our attention to a case study in transportation logistics. We highlight
particular issues that arise when implementing an optimization algorithm in a real-
life routing situation. The case concerns the routing and scheduling of school buses
in the five boroughs of New York City.

Many of the vehicle routing problems we have discussed so far (see Part II)
have been simplified versions of the usually more complex problems that appear
in practice. Typically, a vehicle routing problem will have many constraints on
the types of routes that can be constructed including multiple vehicle types, time
and distance constraints, complex restrictions on what items can be in a vehicle
together, etc. The problems that appear in the context of school bus routing and
scheduling could be characterized as the most difficult types of vehicle routing
problems since they have aspects of all these constraints. This is the problem we
will consider here.

School bus routing and scheduling is an area where, in general, computerized
algorithms can have a large impact. User-friendly software that call routing and
scheduling algorithms at the click of a button and that result in workable solutions
can greatly affect the day-to-day operations of a dispatching unit. With increasingly
affordable high-speed computing power in desktop computers and the possibility
of displaying geographic information on-screen, it is not surprising that many
communities are using expert systems to perform the daunting task of routing and
scheduling their school buses. In most cases, this has led to improved solutions in
fractions of the time that was previously required.



240 14. A Case Study: School Bus Routing

Unfortunately, providing workable solutions for such an application as this is
not as simple as just “clicking” the right button. Anyone who has been involved
in a real-life optimization application knows that much discussion is involved in
determining what the problem is and how we are to “solve” it. In this chapter we
concern ourselves with some of the details that make it possible to put modeling
assumptions and algorithms into action.

14.2 The Setting

The New York City school system is composed of 1,069 schools and approximately
one million students. Most of these students either walk to school or are given public
transportation passes. About 125,000 students ride school buses that are leased by
the Board of Education. The majority, or about 83,000, of these are classified as
General Education students. These students walk to their neighborhood bus stop
in the morning and wait for a bus to take them to school. In the afternoon, a bus
takes them from their school and drops them off back at their bus stop. The rest
of these students with particular needs, classified as Special Education, are picked
up and dropped off directly at their homes.

This is one distinction that makes the transportation policies governing Special
Ed students fundamentally different from those of General Ed students. Another
fundamental difference is that, in many cases, Special Ed students enroll in schools
with specific services and therefore may be bused over long distances. General Ed
students usually go to schools only a few miles from their homes and almost
exclusively to schools within the same borough. In addition, Special Ed students,
such as wheelchair-bound students, are transported in specially designed vehicles
with much smaller carrying capacities.

For General Ed student transportation, currently the Board of Education leases
approximately 1,150 buses a year. Many companies bid for the contract to transport
the students and currently the companies winning contracts design the routes.
Independent of the company, the leasing cost to the Board is approximately $80,000
annually for each bus (and driver). The total yearly budget for General Education
student transportation alone is therefore close to $100 million.

The routing of Special Education students is done differently. Using colored pins
and large maps placed on walls, a team of inspectors/routers at the Board of Edu-
cation Office of Pupil Transportation mark the students’ homes and schools. Then,
using their knowledge of the geography and street conditions acquired through their
many years of work, they literally string pins together to form routes. Although the
inspectors clearly do this well, this is very time consuming. For example, a group
of five people took approximately three months to manually generate routes just
for the Borough of Manhattan.

Several years ago, the New York City Board of Education appropriated funds to
develop a computerized system, called CATS (Computer-Assisted Transportation
System). This system is supposed to help in the design of routes for both the
General and Special Ed students. The project consists of three phases.
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Phase I: Replicate the pinning and stringing approach on a computer. The purpose
of this phase is to emulate on the computer screen what was previously done with
maps, pins and string. First, a database is needed to keep track of all relevant student
and school information. The student data consist of address, bus stop and school.
For each school, the data consist of an address, as well as starting and ending times
for all sessions. This makes data easily retrievable and updatable, and provides
some of the basic information that is needed for routing and scheduling. In addition
to the database, a method of generating maps on the computer is needed as well;
this is the geographic information system (GIS). These systems, widely available
only in the last few years, truly offer a new dimension to many decision-support
systems. With this software, color-coded objects designating students or schools
can easily be displayed on a computer screen. This enables the user to visualize
the relative locations of important points. In addition, the user can “click and drag”
with a mouse and get information about the area outlined. This information can
include U.S. Census data such as number of households, median age, income,
etc. More importantly, in this application, by designating two points, the GIS can
calculate exact locations (latitude and longitude coordinates) and also the distance
between the two points along the street network. By “stringing” together a series
of points, the software can give the total distance traveled. When this phase is
completed, inspectors currently designing Special Ed routes will be able to “click”
on bus stops with a mouse and “string” them together on the computer screen. This
is the method called “blocking and stringing.”

Phase II: Extend the functionality developed in Phase I to the General Education
stop-to-school service. The goal is to create a system whereby one could construct
routes for the General Ed population on the computer screen. For example, by
choosing a set of schools with a mouse, the pertinent bus stops (those with students
going to the set of schools) are highlighted. The inspector can then string together
the stops and schools to form a route directly on the computer screen, or again let the
computer determine a good route through the stops. The immediate visualization
of a possible solution (routes) along with relevant statistics (bus load, total travel
time, total students picked up) makes it much easier to check feasibility of the
routes. This alone considerably simplifies the task of building efficient routes.

Phase III: Create an optimization module. The aim here is to build software that
uses the student and school data and the GIS to generate efficient bus routes and
schedules meeting existing transportation policies. The software should include
subroutines that check feasibility of suggested routes or design routes for any
subset of the population, be it a school, a district, a borough or the entire city. This
is the phase in which we are the most interested.

We present here a range of issues related to the development of this optimization
module (Phase III) and to the problem of routing buses through the New York City
streets. We focus on routing the General Ed students; the routing of Special Ed is
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currently being done at the Office of Pupil Transportation using the “blocking and
stringing” approach.

In Section 14.3, we give a short summary of some of the important papers that
have appeared in the literature in the area of school bus routing and scheduling
and related vehicle routing problems. In Section 14.4, we present details of the
school bus routing and scheduling problem in Manhattan. In Section 14.5, we give
a brief overview of methodologies we used to estimate distances, travel times and
the pickup and dropoff times.

In designing a computerized system for this problem it is important to consider
the following questions. First, is it possible to design an algorithm that will generate
quality solutions in a reasonable amount of computing time? Second, are routes
constructed by the computerized system truly driveable? Third, what is the best
way to make these computerized algorithms of use to the people designing the
routes? To answer the first two questions, we designed a school bus routing and
scheduling algorithm and ran it on the Manhattan data. The algorithm is presented
in Section 14.6. To answer the third question, in Section 14.8 we discuss some
of the ways in which a computerized system for school bus routing can be made
more interactive. In Section 14.9, we present results on the Manhattan data.

14.3 Literature Review

In the operations research literature, we find quite a few references to the problem as
well as many different solution techniques. A standard way the school bus routing
and scheduling problem has been analyzed is to decompose it into two problems:
a route generation problem where simple routes are designed (usually with only
one school), and a route scheduling problem where these routes are linked to form
longer routes (routes that visit more than one school).

As early as 1969, Newton and Thomas looked at a bus routing problem for a
single school. Using some of the first local improvement procedures for vehicle
routing problems, they designed a tour through all the bus stops and then partitioned
it into smaller feasible routes that each could be covered by a bus.

In 1972, Angel et al. considered a clustering approach to generating routes.
First, bus stops are grouped by their proximity using a clustering algorithm. Then
an attempt is made to find minimum length routes through these clusters in such
a way that the constraints are satisfied. Finally, some clusters are merged if this
is feasible. The algorithm was applied to an instance consisting of approximately
1,500 students and 5 schools in Indiana.

In 1972, Bennett and Gazis considered the problem of generating routes. They
modified the Savings Algorithm of Clarke and Wright (1964) (see Section 6.2).
They also experimented with different objective functions such as minimizing total
student-miles. The problem considered had 256 bus stops and approximately 30
routes in Toms River, New Jersey.

In 1979, Bodin and Berman used a 3-opt procedure to generate an initial traveling
salesman tour which is then partitioned into feasible routes. This algorithm uses two
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additional components: a lookahead feature and a bus stop splitter. The lookahead
feature allows the initial order to be changed slightly. The bus stop splitter allows
a bus stop to be split into smaller bus stops. Two problems were studied. One dealt
with a school district in a densely populated suburban area with 13,000 students
requiring bus transportation each day and 25 schools. A second district, also in a
suburban area, had 4,200 students transported.

In 1984, Swersey and Ballard addressed only the problem of scheduling a set
of routes that had already been designed. Given a set of routes that delivered all
students from their bus stops to their schools, the authors devised a method to find
the minimum number of buses that could “cover” these routes. This scheduling
problem can be formulated as a difficult integer program. The authors used some
simple cutting planes to solve it heuristically. The size of the problem considered
was approximately 30-38 buses and 100 routes.

Finally, in 1986, Desrosiers et al. studied a bus routing problem in Montréal,
Canada. Using several techniques, depending on whether the stops were in rural or
urban areas, they generated a set of routes. To schedule them, they formulated the
problem as an integer program and solved it using a column generation approach.
The problem solved had 60 schools and 20,000 students.

14.4 The Problem in New York City

The School Bus Routing and Scheduling Problem can take many forms depending
on how generally it is formulated. In its most general form, the problem consists
of a set of students distributed in a region who have to be brought to and from their
schools every school day. The problem consists of determining bus stop locations,
assigning students to bus stops, and finally routing and scheduling the buses so
as to minimize total operating cost while following all transportation guidelines.
The difficulty, of course, is that each of these subproblems are dependent and
therefore should be looked at simultaneously. That is, any determination of bus
stop locations, and who gets assigned to each, clearly has an impact on the routes
and schedules of the buses. Hence, an integrated approach is required to avoid
suboptimality. However, due to the complexity and the size of the problem this has
historically never been attempted. In addition, often it is not necessarily possible
to reoptimize all aspects of the problem, such as bus stop locations or assignments.

To understand why this problem is so complex, consider for instance the bus stop
location problem on its own. There are numerous constraints and requirements:
no more than a certain number of students can be assigned to the same bus stop;
bus stops cannot be within a certain distance of each other; each student must be
within a short walk of the bus stop and must not cross a major thoroughfare, etc.

In our case, the Board of Education decided that the bus stops that are currently
being used will remain in use. Thus, the position of the bus stops as well as
which students are assigned to each was assumed fixed. These stops satisfy all the
requirements mentioned above. Our routing and scheduling problem thus starts
with a set of bus stops, each with a particular number of students assigned to it
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destined for a particular school. Each school has starting and ending times for each
session. In addition to bus stop and school data, it is assumed that distance and
travel time between any two points in the area are readily available. This issue will
be discussed in more detail in Section 14.5.

We formally define a route as follows. A route is a sequence of stops and possibly
several schools that can be feasibly driven by one bus. For example, routes for the
morning problem always start with a pickup at a stop and end with dropoff at a
school. In contrast, an afternoon route always starts with a pickup at a school and
ends with a dropoff at a stop.

The goal is to design a set of minimum cost routes satisfying all existing trans-
portation guidelines. The major cost component to the Board of Education is the
cost of leasing each bus and driver, and hence the objective is essentially to mini-
mize the number of buses needed to feasibly transport the students. Clearly, safety
is the first consideration, and it is the view of the Board of Education that bus
routes that meet all transportation guidelines provide a high level of safety. The
rest is up to the drivers.

Route feasibility is the most complex aspect of the problem. There are numerous
side constraints. First, the bus can hold only a limited number of students at one
time (capacity constraint). Second, each student must not be on the bus for more
than a specific amount of time and/or distance (time or distance constraint). This
is motivated by the simple observation that the less time spent on the bus the safer
and more desirable it is for the students. And finally, there are restrictions on the
time a bus can arrive at a school in the morning, and on the time a bus can leave the
school in the afternoon (time window constraints). In many school bus routing and
scheduling problems, transportation policies specify that students from different
schools not be put on the same bus at the same time; that is, no mixed loads are
allowed. Clearly, allowing mixed loads provides increased flexibility and therefore
can lead to savings in cost. In New York City, for the most part, mixed loads are
allowed. We list here the primary constraints. There are several other constraints
which we talk about in Section 14.7.

We will deal exclusively here with the problem of delivering the students to
their school in the morning. Researchers have noted that this problem is usually
more critical than the afternoon problem for two reasons. First, in the afternoon
the time windows are usually less constraining. For example, in Manhattan (in
the morning), school starting times fall between 7:30am and 9:00am. That gives
roughly a one and a half hour time window to pickup all students and take them to
their schools. In the afternoon, schools end at times over a wider range: anywhere
between 1:00pm and 4:15pm. Second, traffic congestion is usually higher in the
morning hours than in the afternoon hours when the students are being bused.
Therefore, it is very likely more buses will be needed in the morning than in the
afternoon. Indeed, our computational experiments reported in Section 14.9 verify
that this is true in Manhattan. Note that the solution found in the morning cannot
be simply replicated in the afternoon, that is, having each bus travel the same route
as in the morning but in the opposite direction. This is true since the sequencing
of school ending times in the afternoon is different from the sequencing of school
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starting times and therefore schools visited in one order in the morning cannot
always be visited in the same or opposite order in the afternoon.

For the morning problem in Manhattan, the specific problem parameters are
given below. During the 1992-93 academic year, 4,619 students were transported
by school buses from 838 bus stops to 73 schools. The constraints were as follows.

• Vehicle capacity constraint. At most 66 students can be on the bus at one
time.

• Distance constraint. Each student cannot be on the bus for more than 5
miles.

• Time window constraints: Buses must arrive at a school no earlier than 25
minutes before and no later than 5 minutes before the start of school.

• The earliest pickup must not be before 7:00 a.m.

• Mixed loads are allowed.

The 5-mile distance constraint is not applied uniformly to all students; students
in District 6 (upper Manhattan) are often transported out of their district due to
overcrowding. Therefore, since this involves longer trips, sometimes traversing
most of the island, the 5-mile constraint is not applied to these students. Approxi-
mately 36% of the students in our application were in this group.

The Manhattan school bus routing problem presents many challenges. First of
all, the number of bus stops and schools is much larger than those encountered in
most vehicle routing applications. Second, there are many difficulties involved in
calculating accurate distances and travel times in New York City. We now consider
these two points.

14.5 Distance and Time Estimation

To accurately estimate distances one needs a precise geographic representation of
the area. This is achieved using a geographic information system (GIS) which is
based on data files built from satellite photographs. These files store geographic
objects, such as streets, highways, parks and rivers that can be presented on a
computer screen. An important feature is the ability to calculate exact latitudes and
longitudes of any point. Given a street address, the process of geocoding returns
the coordinates of the address with very high accuracy. Given these coordinates, it
is then easy to calculate “as the crow flies” or “Euclidean” distances. Some GISs
also have the capability of calculating exact road network distances, that is, the
distance between two points on the actual street network, sometimes even taking
into account one-way streets.

The Office of Pupil Transportation at the Board of Education uses a GIS called
MapInfo for Windows. The MapInfo version used by the City does not have a
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street network representation of New York City. However, such a network has been
developed by a subcontractor and therefore accurate shortest distances between
any two points along the street network are readily available. The current version
also takes into account one-way streets. Although incorporating one-way street
information may seem like a trivial task, it turned out to be very difficult. We
believe most current geographic information systems are highly inaccurate with
regard to one-way streets and are probably unusable without substantial error
checking. The New York City Department of Transportation does not keep the
information in an easily retrievable format. We had to resort to checking the one-
way street sign database at the NYC DOT to reconstruct accurate information
about one-way streets. Needless to say, the data collection and error checking was
extremely time consuming.

Estimating accurate travel times in New York City is probably the trickiest part
of the problem. As described above, a GIS with a street network representation
simplifies the calculation of street distances. In addition, in the GIS each data
structure corresponding to a street segment has space to store the average travel
speed and/or travel time along the segment. These estimates would make it possible
to calculate travel times along any path. The difficulty lies, of course, in determining
these travel speeds.

Most existing vehicle routing implementations that we are aware of use a fixed
travel speed throughout the area of interest. Travel times are then determined by
simply dividing the distance traveled by this universal speed. This method is most
likely not satisfactory for New York City. Anyone who has driven in New York
City knows the multitude of different street types and congestion levels that can
produce a wide variety of different travel speeds. We decided to try to get some
idea of the average speed in different parts of New York City.

In addition to performing various timing experiments, we obtained several re-
ports from the New York City Department of Transportation. These include “Mid-
town Auto Speeds–Spring 1992” and “Midtown Auto Speeds–Fall 1992.” These
reports provide data on Midtown Manhattan average travel speeds as well as some
data on the variance of these speeds. (Midtown Manhattan is defined as the rect-
angular area between First and Eighth Avenues and 30th and 60th Streets.) The
data seem to suggest that speeds vary from an average of 6 miles per hour up to
about 14 miles per hour, depending on street type, direction and time of day.

Our approach was to choose an estimate of speed that would be specific to each
district; thus, a district in the Bronx would not have the same speed estimate as
one in Midtown Manhattan. These range from about 7 miles per hour to 12 miles
per hour. An important observation made when collecting data was that when a
bus experienced below average travel times along the beginning of the route, the
bus driver will slow down or spend more time at the stops to get back on schedule.
In addition, since the students have a scheduled pickup time, the bus cannot, as a
rule, leave early. It must wait until a specific time before leaving the bus stop. If
the bus experiences above average travel times (below average speeds), then the
bus driver can speed up (slightly) and make sure to leave when all students are on
the bus. Consequently, the travel time is not as random as one might think.
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To make sure that school buses meet the time window constraints, information
about travel time along the streets of New York City is not sufficient. The time to
pick up students from their bus stops and to drop off students at their schools must
also be taken into account. By riding the buses, we collected data on the time it
takes to pick up or drop off students at stops or at schools. A linear regression was
performed on the data providing the following model for the pickup time:

PT ime � 19.0+ 2.6N,

where PT ime � pickup time (in seconds), and N � number of students picked
up at the bus stop. This regression was performed on 30 data points. The R2 was
77.7% and the p-value of the independent variable was very small (< 0.001). The
regression performed on the dropoff times resulted in the equation:

DT ime � 29.0+ 1.9N,

whereDT ime � dropoff time (in seconds), andN � number of students dropped
off at the school. This regression was performed on 30 data points. Here the R2

was 41.9% and the p-value of the independent variable was 0.01%. In our imple-
mentation, we used these equations to determine approximate pickup and dropoff
times.

Overall, the approximations and calculations made in testing the optimization
module were designed with the goal of ensuring that a route constructed by the
algorithm would be a driveable one. The next question is how to generate a good
feasible solution to the school bus routing and scheduling problem.

14.6 The Routing Algorithm

There are many existing algorithms for school bus routing and scheduling. Nu-
merous communities throughout the world have implemented computerized algo-
rithms to perform these tasks. Overall, the success seems to be universally recog-
nized. Almost all papers published in the literature mention cost savings of around
5–10%. We recognize that it may be useless to even contemplate the meaning of
these savings numbers since the savings may not only come from reduction in cost
but also from increased control of the bus routes. The magnitude of the “savings”
is also highly dependent on what methods were in use before the computerized
system was put into place.

Transferability seems to be the critical factor. It is difficult to compare algorithms
for this problem directly from the literature. Each problem has its own version of
the constraints and even objectives. It is not always simple or even possible to
take an existing algorithm in use in one community and simply apply it to another.
Each problem has its peculiarities and may also have very different constraints.
For instance, in an implementation in Montréal, the people designing the routes
have the freedom to change existing school starting and ending times at their
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convenience. Clearly this added flexibility can simplify the problem to some extent,
and can lead to additional savings in cost. In New York City this was not possible.

Finally, this is all within the framework of an optimization problem, which we
have seen is extremely difficult to solve. There is an absence of any strong lower
bounds on the minimum number of buses required.

In determining what type of algorithm to apply to this large vehicle routing
problem, we considered several important aspects of the problem and also the
setting in which the algorithm would be used.

Efficiency This is an extremely large problem, so the solution method must be
efficient in computation time and in space requirement. Assuming opti-
mization might be done by district, some districts have as many as 1,500
bus stops. Even though complete optimization of the solution might only
be done once a year, the time involved in testing and experimenting with
the problem parameters is reduced considerably if the algorithm is time and
space efficient.

Transparency The algorithm would most likely need to be constructive in nature
thereby providing a dispatcher with the ability of viewing the algorithm pro-
gression in real-time. This makes it possible to detect “problem routes” and
correct errors without having to wait until the termination of the algorithm.
That is, the approach should build routes in a sequential fashion and not, for
example, work for hours and finally, in the last moments provide a solution.

Flexibility The heuristic should be flexible enough to handle, not only the con-
straints currently in place, but additional constraints that might be imposed
in the future.

Interactivity From our discussions with the inspectors it is clear that the algo-
rithm implemented must have an interactive component that would allow an
experienced inspector to help construct routes using his or her prior knowl-
edge. That is, the algorithm must be able to work in two different modes.
First, it must be able to act like a black box, where data are input and a
solution is output. Second, it must also serve as an interactive tool, where a
starting solution can be presented along with a set of unrouted stops and the
algorithm finds the best way to add on to this starting solution.

Multiple Solutions The algorithm should be capable of producing a series of
solutions, not simply one solution. This last point is important since each
solution would have to be checked by an inspector, and it is possible that
the inspector will rule out some solutions.

Finally, the urban nature of our application, in contrast to many of the problems
seen in the literature, should also be taken into account. As many researchers
have noted (see Bodin and Berman, 1979, and Chapleau et al., 1983), the vehicle
capacity constraint tends to be the most binding constraint when routing in an
urban area. This is due to the general rule that the bus will tend to “fill up” before
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the time constraints become an issue. Therefore, it seems as though algorithms
developed for the Capacitated Vehicle Routing Problem (CVRP) (see Chapter 6)
should be a good starting point. The difficulty is that the CVRP generally has a
different objective function: minimize the total distance traveled, not the number
of vehicles used. Fortunately (see Chapter 6 or Bramel et al., 1991), if the number
of pickup points is very large and distances follow a general norm, when the
distance is minimized, a byproduct of the solution is that the minimum number
of vehicles will be used. Observe that distances in New York City come from the
street network, not from a norm; however, since the blocks are short and somewhat
uniform in size, the street network distance is fairly close to a norm distance, and
similar results most likely hold.

For these reasons, our starting point for the algorithm for the school bus routing
and scheduling problem was the Location Based Heuristic (LBH) (see Section
6.7) developed for the CVRP. This algorithm has the important property that it is
asymptotically optimal for the CVRP (see Section 6.7); that is, the relative error
between the value of the solution generated by the algorithm and the optimal
solution value tends to zero as the number of pickup points increases.

Due to the size and complexity of the problem, we made several changes to the
LBH. The algorithm is serial in nature as it constructs one route at a time and not
in parallel. To describe the algorithm, let the bus stops be indexed 1, 2, . . . , n. Let
a route run by a single bus be denoted Ri . Let a full solution to the school bus
routing and scheduling problem be written as a set of routes {R1, R2, . . . , RM},
where M is the number of buses used. For each bus stop j , let school [j ] be the
index of the school to which the students at stop j are destined. Let U be the set
of indices of all unvisited pickup points.

The following algorithm creates one solution to the school bus routing and
scheduling problem. More solutions can be generated by starting the algorithm
with different random seeds.

Randomized LBH:

Let U � {1, 2, ..., n} and m � 0.
while (U �� ∅) do

{
Pick a seed stop from U using a selection criterion. Call it j .
Let U ← U \ {j}.
Let the current route be Rm � {j → school[j ]}.
repeat

{
For each i ∈ U , calculate ci �routelength(i, Rm).
Let ck � mini∈U {ci}.
If ck < +∞ then

{
Let Rm ← buildroute(k, Rm).
Let U ← U \ {k}.
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}
} until ck � +∞.

m← m+ 1.
}

M ← m.
The heuristic solution is {R1, R2, . . . , RM}.
The selection of the seed stops can be done in one of several different ways. One

approach is to simply select these stops at random from the set of unvisited stops.
Another approach is to select stops with large loads or stops that have tight delivery
windows (i.e., the distance and time constraints force these stops to be delivered
almost directly from the stop to the school with very few stops in between). Other
criteria were used according to which constraints were binding at particular stops.

The function routelength(i, R) determines the approximate cost of inserting stop
i into routeR. RouteR consists of a path through several stops and schools. While
preserving the order of the stops and schools in route R, we determine the best
insertion point for stop i. We check each consecutive pair of points (either stops
or schools) along route R and check whether stop i can be inserted between these
two. If school[i] is not in route R, then we must not only find the best insertion
point for stop i, but also the best insertion point for school[i]. It is possible that no
insertion point(s) can be found that results in a feasible route. Checking whether a
stop can be inserted requires checking all the constraints. If no feasible insertion
point exists, then the value of routelength(i, R) is made+∞. This indicates that it
is not possible (while preserving the order of R) to insert stop i into route R. If an
insertion is found that results in a feasible route, then the value of routelength(i, R)
is made to be exactly the additional distance traveled.

To illustrate the difficulty of this step, consider simply the capacity constraint.
In the case of the CVRP, all loads are dropped off at the same point (the final
stop); therefore, the maximum load that is carried by the vehicle is when it picks
up its last load. Therefore, it is easy to check whether a stop can be added to
a route since we need only check that the maximum load is less than the vehicle
capacity. This maximum load is always at the last stop, so the calculation is easy. By
contrast, performing a similar calculation in the school bus routing and scheduling
problem is much more complicated since there is more than one dropoff point.
Checking feasibility when adding a stop to a route requires knowing when the
student is getting on and off the bus, since this will affect whether there is room
for a student at future points on the bus route. Therefore, checking whether the
capacity constraint is violated in the school bus routing problem is much more
complicated than in the CVRP.

The function buildroute(k, R) creates the route that results from the insertion
of stop k into route R. Again, stop k is simply inserted between the two consec-
utive points (stops or schools) that result in the shortest total route. This route is
guaranteed to be feasible since ck < +∞.

The algorithm satisfies the requirements that we described above. It runs effi-
ciently for problems of large size and builds routes sequentially. It is very flexible
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in the sense that constraints of almost any type can be included (e.g., disallowing
mixed loads for some schools). Of course each additional constraint causes the
algorithm to take a little longer to find a solution. In terms of its interactivity (see
the next section for details), the algorithm can be used in an interactive mode if
this is desired. In this mode, a partial routing solution can be used as a starting
point and unrouted stops can be added efficiently. The inspector can also have a
major impact on the routes generated by the algorithm via the selection of the seed
points (see Section 14.8 below for a further discussion on this point). Since the
algorithm can be easily randomized (by randomizing the seed stop selection pro-
cedure), starting the algorithm with different random numbers makes it generate
different solutions. Finally, the most important advantage of this heuristic is that
it does not decompose the problem into subproblems, but solves the routing and
scheduling components simultaneously.

14.7 Additional Constraints and Features

In the course of the implementation of our algorithm, several additional “soft”
constraints came to our attention. These are subtle rules that inspectors used when
constructing feasible routes, which were only determined once a set of routes were
shown to the inspectors.

Limit on the number of buses to a particular school This is best explained with
an example. Consider the situation where a school, say school A, has a late
starting time relative to other schools, say 9:30am, where all other schools
start at 9am, and assume only a dozen of the students from school A require
bus service. Previously, if a solution required 20 buses to serve all schools,
routers would take one of these and have it alone serve school A. That is,
some time between 9am and 9:30am one bus would pick up the dozen stu-
dents and deliver them to school A. Since 20 buses are used in the solution,
this solution is equivalent to, for example, having 6 of the 20 buses each
deliver 2 students to school A between 9am and 9:30am. This, from a cost
point of view, is just as good a solution. However, school A may only be
able to handle one or two buses at a time due to limited driveway space.
We therefore needed to add a constraint on the number of buses that could
deliver students to each school. This constraint only became active for a few
schools.

Multi-level relational distance constraints When delivering packages to ware-
houses or to customers, a distance constraint is usually set on the complete
route thus limited to the driver’s working day. When delivering students
to schools, the distance constraint is really student specific. That is, each
student’s trip is limited, not just the driver’s. In the school bus routing and
scheduling problem, the distance constraint also illustrates the difficulty of
modeling, through simple constraints, a real-life problem. To illustrate this,
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consider the 5-mile distance constraint discussed earlier. We found that this
simple constraint was actually unsatisfactory for this problem. For exam-
ple, if a student was only 1 mile from school, then it was not considered
desirable to have him or her end up traveling 5 miles on the bus. This stu-
dent (and maybe more vociferously his or her parents) would not consider
this an equitable solution. We therefore decided to implement what we call
a relational distance constraint. That is, for a multiplier α, say α � 2, a
student could not travel on the bus for more than α times the distance the
student’s bus stop was from school. The question was then to what do we
set α. We determined that the best rule was to divide the region around a
particular school into concentric rings. For example, if the first ring was 3
miles in radius, then a stop that was d ≤ 3 miles from the school would
have a distance constraint (on the bus) of α1d miles. Ring i was assigned a
multiplier αi and this was repeated for each ring. Although it took some time
to determine appropriate multipliers, eventually this is the type of distance
constraint that was implemented.

Waiting time constraint Another constraint that did not come to our attention
until we presented our routes to the inspectors was the waiting time con-
straint. Again, this is something that is specific to the routing of people as
opposed to packages. Consider a simple problem with two schools, school
A starting at 8am and school B starting at 9am. At 7:30 a bus picks up both
students for schools A and B and then arrives at school A in the time window
(say at 7:45) and drops off only those students that are going to school A.
Since school B starts at 9am, the bus waits for half an hour at school A until
proceeding to pick up some more students for school B and then arriving
at school B at 8:45 and dropping off all the students. A route of this type,
where students wait on the bus for half an hour, was definitely not deemed
acceptable. Therefore, we needed to add a constraint on the amount of time
a bus (with students on it) can wait idle. Five minutes was the number that
was eventually used.

Route balancing It is desirable that the routes in a solution be of similar dura-
tion and total distance. It does not seems fair if one driver serves morning
routes from 7am to 7:30am while another works from 7am to 9:30am. The
balancing of the workloads is partially achieved by implementation of a
route-balance() subroutine that is called once, at the end of the algorithm.
This subroutine essentially moves stops and schools from heavily loaded
routes to less heavily loaded routes while maintaining feasibility of the so-
lution. This seemed to work very well.

Single route optimization Once a solution is determined, we may (and should)
optimize the sequencing of the stops and schools on each route individually.
That is, given a set of stops and schools that can be feasibly served by one
bus, in terms of service level, what is the “best” route to actually drive?
An objective that guarantees a high service level is to minimize the total
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number of student-miles traveled (see e.g., Bennett and Gazis (1972)). For
each route created, we call a procedure called route-opt() which minimizes
the total number of student-miles while maintaining feasibility of the route.

14.8 The Interactive Mode

As we mentioned earlier, the complete rescheduling of all buses might only be done
once a year (in August). However, throughout the course of the school year there
are quite a few small changes that must be made to the solution. These changes
could be caused by, for example:

• A school, which previously did not request bus service, requests service in
mid-year.

• A student changes address or school.

• A school’s session time changes.

One option might be simply to reoptimize all routes that are affected by the changes.
This might cause major disruptions in a large number of routes. These disruptions
may translate to disruptions in the parents’ morning schedules which might over-
load the Office of Pupil Transportation telephone switchboard. In essence, it is
desirable to implement the changes while making the fewest disruptions to other
students’ schedules.

This was the impetus for the development of the algorithm’s interactive mode.
Here it is possible to start the algorithm with a number of routes already created
and to simply add stops to or delete stops from these routes. Let’s consider what
happens when a stop is added to an existing set of routes. The user has the ability
to select from one of three options:

• Complete reoptimization. This corresponds to starting the reoptimization
from scratch, that is, throwing away all previously created routes. Optimiza-
tion then starts with all new stops added to the list of stops.

• Single route reoptimization. This corresponds to selecting a route and check-
ing whether a particular stop can be added to it. This is done through a
simple route-check() subroutine. In this case, the route may be completely
resequenced.

• No reoptimization. In this case, the stop is simply inserted between two stops
on existing routes without any reoptimization.

Deleting a stop is somewhat easier to do, the user simply clicks the mouse on
the stop in question and deletes it from the current solution. The fact that this
may actually render the remaining route infeasible is a good illustration of the
complexity of the bus routing and scheduling problem. This is due to the waiting
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time constraint mentioned in the previous section. In either case, the user can
specify whether a reoptimization of the route is desired.

These optimization tools proved quite useful as they provided simple ways to
test what-if scenarios; tests that previously would have taken weeks if not months.

14.9 Data, Implementation and Results

To assess the effectiveness of our algorithm, we attempted to solve the problem
using the Manhattan data given to us by the Office of Pupil Transportation, that is,
to use our algorithm to generate a solution and to check it for actual drivability.

We solved both the morning and the afternoon problem. We first calculated
the shortest distance matrix between all 911 points of interest (838 stops and 73
schools) along the street network. We used a speed of 8 miles per hour for the entire
borough. This was the lowest average speed in Midtown Manhattan along a street
or avenue between 7am and 10am (the time interval that the bus would be traveling
in the morning) reported by the Department of Transportation. We feel that this
average speed is quite conservative and a bus can on average travel more quickly.
One reason for this is that the measurement was made in Midtown Manhattan,
a location with very high congestion throughout the day. The algorithm was run
on a PC (486DX2/50 megahertz) under Windows over a period of several hours.
To generate its first feasible solution, the algorithm takes about 40 minutes. We
repeated the algorithm 40 times keeping track of the best solution. The algorithm
has a detailed schedule and directions for each bus.

In order to determine the sensitivity of the results to some of the assumptions we
have made, we ran the algorithm with several settings for the average travel speed.
We used 8 mph, 10 mph and 12 mph. Note again these speeds are conservative, as
we have also taken into account the time to stop and pick up or drop off students.
The following table lists the number of buses used in the best solutions found for
each of these settings and for the morning and afternoon problems.

Table 1: General education routing

Universal Number of Buses Used
Speed Morning Afternoon
8 mph 74 67

10 mph 64 60
12 mph 59 56

As a comparison, these solutions use substantially fewer buses than are currently
in use. We do not expect that the number of buses used will be as low as indicated
by our preliminary results, due to the fact that the routes have not been checked by
the inspectors. However, it is reasonable to assume that they will serve as a starting
solution which can be modified by the inspectors.



15
A Decision Support System for Network
Configuration

15.1 Introduction

In this chapter we present some of the issues involved in the development of a
decision support system for logistics network configuration. These are issues that
are often not dealt with in traditional operations research analyses. However, they
are essential in transforming raw data and problem characteristics to modeling
assumptions and input data for the models.

Network configuration may involve issues relating to plant, warehouse and re-
tailer location. As explained in Chapter 1, these are strategic decisions since they
have a lasting effect on the firm. In the discussion below, we concentrate on a
decision support system for the following key strategic decisions: (1) determin-
ing the appropriate number of warehouses, (2) determining the location of each
warehouse, (3) determining the size of each warehouse, (4) allocating space for
products in each warehouse and (5) determining which products customers will
receive from each warehouse. We therefore assume that plant and retailer locations
will not be changed. The objective is to design or reconfigure the logistics network
so as to minimize annual system-wide costs including production and purchasing
costs, inventory holding costs, facility costs (storage, handling and fixed costs) and
transportation costs, subject to a variety of service level requirements.

In this setting, the tradeoffs are clear. Increasing the number of warehouses
typically yields:

• an improvement in service by reducing travel time to customers,

• an increase in inventory costs due to increased safety stocks required to
protect the warehouse against uncertainties in customer demands,
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(customers). Similarly, in a retail logistics network, such as Wal-Mart or J. C.
Penney, the number of different products that flow through the network is in the
thousands or even hundreds of thousands.

For that reason, a typical first step is data aggregation. This is done using the
following criteria:

• Customers located in close proximity to each other are aggregated using a
grid network or other clustering technique. All customers within a single cell
or a single cluster are replaced by a single customer located at the centroid
of the cell or cluster. We refer to a cell or a cluster as a customer zone. A
technique that is commonly used and which we have found to be effective
is to aggregate customers according to the five-digit zip code.

• Items are aggregated into a reasonable number of product groups, based on

1. Distribution pattern. All products picked up at the same source and
destined to the same customers are aggregated.

2. Product type. In many cases, different products might simply be vari-
ations in product models or style or might differ only in the type of
packaging. These products are typically aggregated.

An important consideration, of course, is the impact on the model’s effectiveness
due to replacing the original detailed data with the aggregated data. We address this
issue in two ways. First, even if the technology exists to solve the logistics network
design problem with the original data, it still may be useful to aggregate data. This is
true, since our ability to forecast customer demand at the account and product levels
is usually poor. Because of the reduction in variance achieved through aggregation
(see Exercise 15.1) forecast demand is significantly more accurate at the aggregated
level. Second, various researchers report that aggregating data into about 150–200
points usually results in no more than about 1% error in the estimation of total
transportation costs; see Ballou (1992) and House and Jamie (1981).

In practice, the following guidelines are used when aggregating the data.

• Aggregate demand points to between 150–200 zones.

• Make sure each zone has about an equal amount of total demand. This
implies that the zones may be of different sizes.

• Place the aggregated points at the center of gravity of the zone.

• Aggregate the products into 20–50 product groups.

Transportation Rates

The next step in constructing the distribution network design model is estimat-
ing transportation costs. An important characteristic of most transportation rates
including truck, rail and others, is that the rates are almost linear with distance
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and volume. We distinguish here between transportation costs associated with an
internal and an external fleet.

Estimating transportation costs for company-owned trucks is typically quite
simple. It involves annual costs per truck, annual mileage per truck, annual amount
delivered and the truck’s effective capacity. All this information can be used to
easily calculate cost per mile per SKU (Stock Keeping Unit).

Incorporating in the model transportation rates for an external fleet is more
complex. These rates typically belong to one of three basic types of freight rates:
class, exception and commodity. The class rates are standard rates that can be
found for almost all products or commodities shipped. They are found with the
help of a classification tariff which gives each shipment a rating or a class. For
instance, the railroad classification includes 31 classes ranging from 400 to 13
which are obtained from the widely used Uniform Freight Classification. The
National Motor Freight Classification, on the other hand, includes only 23 classes
ranging from 500 to 35. In all cases, the higher the rating or class, the greater the
relative charge for transporting the commodity. There are many factors involved
in determining a product’s specific class. These include product density, ease or
difficulty of handling and transporting, and liability for damage.

Once the rating is established it is necessary to identify the rate basis number.
This number is the approximate distance between the load’s origin and destination.
With the commodity rating or class and the rate basis number, the specific rate per
hundred pounds can be obtained from a freight rate table.

The two other freight rates, namely, exception and commodity, are specialized
rates used to provide either less expensive rates (exception), or commodity-specific
rates (commodity). For an excellent discussion, see Johnson and Wood (1986) and
Patton (1994). Most carriers provide an easy-to-use database with all their trans-
portation rates; these databases are typically incorporated as part of the decision
support system.

Mileage Estimation

As in the previous case study (Chapter 14), we can estimate distances using either
street network or straight line distances. Specifically, suppose we want to estimate
the distance between two points a and b. Since the decision-support system uses
a GIS, geo-coding makes it possible to obtain lona and lata , the longitude and
latitude of point a (similarly for point b). Then the straight line distance in miles
from a to b, Dab is calculated as follows

Dab � 69
√

(lona − lonb)2 + (lata − latb)2.

The value 69 is approximately the number of miles per degree (for the latitudes of
the continental United States), since longitude and latitude are given in degrees.
This equation is accurate for short distances only; it does not take into account the
curvature of the Earth. To measure fairly long distances and correct for the Earth’s
curvature, we use the approximation (see Lindsey, 1996) suggested by the U.S.
Geological Survey:
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Dab � 2(69) sin−1

√
sin

( lata − latb

2

)2
+ cos(lata)× cos(latb)× sin

( lona − lonb

2

)2
.

Note the sin−1 should return degrees in order forDab to be in miles. These equations
result in very accurate distance calculations; however, in both cases the equations
underestimate the actual road distance. Therefore, to correct for this we multiply
Dab by a circuitry factor ρ. Typically, ρ � 1.3.

Warehouse Costs

Warehousing and distribution center costs include three main components:

• Fixed costs. These capture all cost components that are not proportional to
the amount of material that flows through the warehouse.

• Handling costs. These include labor and utility costs.

• Storage costs. These are proportional to inventory level.

The first two cost components are fairly easy to estimate; the third is not so
simple. The problem is that inventory, or storage costs, are proportional to average
inventory levels (see Chapter 9), and not to the annual flow of material through
the warehouse. To see this difference, suppose that during the entire year 1,000
units of product are required by a particular customer. These 1,000 units are not
required to flow through the warehouse at the same time. Thus, when constructing
the data for the DSS we need to convert these annual flows into actual inventory
amounts over time. To overcome this difficulty, we call upon a concept often used
by practitioners: the inventory turnover ratio. This is defined as follows.

Inventory Turnover Ratio � annual sales

average inventory level
.

In our case, the inventory turnover ratio is the ratio of the total annual flow through
the warehouse to the average inventory level. Thus, if the ratio is λ, then the average
inventory level is total annual flow divided by λ. Finally, multiplying the average
inventory level by the inventory holding cost gives the annual storage costs.

Warehouse Capacities

Another important input to the distribution network design model are the actual
warehouse capacities. The question, of course, is how to estimate the actual space
required, given a specific annual flow of material through the warehouse. We use
the inventory turnover ratio again. As before, annual flow through a warehouse
divided by the inventory turnover ratio allows us to calculate the average inventory
level. Assuming a regular shipment and delivery schedule, such as that given by
Figure 9.1, it follows that the required storage space is approximately twice that
amount. Of course, in practice, every pallet stored in the warehouse requires an
empty space to allow for a convenient approach to the pallet. Thus, considering
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this space as well as space for aisles, picking, sorting and processing facilities and
AGVs, we typically multiply the required storage space by a factor (> 1). This
factor depends on the specific application and allows us to more accurately assess
the amount of space available in the warehouse. A typical factor used in practice is
3. This factor would be used in the following way. Consider a situation where the
annual flow through the warehouse is 1,000 units and the inventory turnover ratio
is 10.0. This implies that average inventory per day is about 100 units and hence if
each unit takes 10 square feet of floor space, the required space for the products is
2,000 square feet. The total space, therefore, required for the warehouse is about
6,000 square feet.

Potential Warehouse Locations

Another major part of the development of the model is identifying potential lo-
cations for new warehouses. Typically, these locations must satisfy a variety of
conditions:

• geographical and infrastructure conditions,

• natural resources and labor availability,

• local industry and tax regulations,

• public interest.

As a result, there are only a limited number of locations that would meet all the
requirements. These are the potential location sites for the new facilities.

Service Level Requirements

There are various ways to define service levels. For example, we might specify an
upper bound on the distance between every customer and the warehouse serving it.
This is due to the requirement that a warehouse will be able to serve its customers
within a reasonable time. A related service level requirement recognizes that for
some customers, maybe those in rural or isolated areas, it is harder to satisfy the
same service level as most other customers. For this purpose, we define the service
level as the proportion of customers whose distance to their assigned warehouse
is no more than a given distance. For instance, we may require that 95% of the
customers are within 200 miles of the warehouses serving them.

Future Demand

As observed in Chapter 1, decisions at the strategic level, which include distribution
network design, have a long-lasting effect on the firm. In particular, decisions
regarding the number, locations and sizes of warehouses have an impact on the
firm for at least the next three to five years. This implies that changes in customer
demands over the next few years should be taken into account when designing the
network. Our approach here is to use a scenario-based approach incorporating net



262 15. A Decision Support System for Network Configuration

present value calculations. For example, one generates various possible scenarios
representing a variety of possible states for demand over the planning horizon.
These scenarios can then be directly incorporated into the model to determine the
best distribution strategy.

15.3 The Baseline Feature

The previous section documents the difficulties in collecting, tabulating and clean-
ing the data for a network configuration DSS. Once this is done, how do we ensure
that the data accurately reflect the network design problem? For this purpose we
use what we call a baseline feature. This tool is an integral feature of the decision
support system. It serves two main functions. It allows the user to:

(a) reconstruct the current existing network, and

(b) perform a set of “what-if” scenarios.

The importance of (a) cannot be overstated. The baseline feature presents the
user with the current state of operation. It lists all costs, including warehousing,
inventory, production and transportation costs generated under the current network
configuration. These data can then be compared to the company’s accounting in-
formation. In our experience, it usually identifies errors in the data, problematic
assumptions, modeling flaws, etc. For instance, in one implementation, the trans-
portation costs calculated by the baseline feature were consistently underestimating
the costs suggested by the accounting data. After a careful review of the distribu-
tion practices, we concluded that the effective truck capacity was only about 30%
of the truck’s physical capacity. That is, trucks were being sent out with very little
payload. Thus, the baseline feature not only helped calibrate some of the parame-
ters used in the model but also suggested potential improvements in the utilization
of the existing network.

The second feature also plays an important role in making the user “believe
in” the system. The baseline feature allows the user to make local changes in the
network configuration and estimate their impact on costs and service levels. Specif-
ically, this step involves positing a variety of “what if” questions. This includes
estimating the impact on system performance of closing an existing warehouse. Or,
to give another example, it allows the user to change the flow of material through
the existing network and see the changes in the costs.

It is our belief that a baseline feature as suggested above is a useful tool because
it makes the connection for the user, between the current operation, which the user
can see in the baseline feature, and possible improvements, after optimization. In
our experience, this is a critical factor in determining how well the DSS will be
received.
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15.4 Flexibility and Robustness

One of the key requirements of any decision support system is flexibility. In the
context of distribution network design, we define flexibility as the ability of the
system to incorporate a large set of preexisting network characteristics. Indeed,
in our experience, many users want their system to be able to make decisions of
increasing flexibility. At one end of this spectrum is complete reoptimization of
the existing network. This means each warehouse can be either opened or closed
and all transportation flows can be redirected. At the other end of the spectrum we
find users that may want the optimization to incorporate the following features.

1. Customer-specific service level requirements.

2. Existing warehouses. In most cases, there are warehouses already existing
and the lease has not yet expired. Therefore, the model should not permit
the closing of the warehouse.

3. Expansion of existing warehouses. Existing warehouses may be expandable.

4. Specific flow patterns. In a variety of situations, specific flow patterns (from,
say a particular warehouse to a set of customers) may not need to be changed.

5. Warehouse-to-warehouse flow. In some cases, material may flow from a
warehouse to a warehouse.

The decision support system must have the capability of dealing with all these
issues with little or no reduction in its effectiveness. The latter requirement is
directly related to the so-called robustness of the system. This stipulates that the
relative quality of the solution generated by the system, that is, cost and service
level, should be independent of the specific environment, the variability of the data
or the particular setting.

Another important requirement is that the system running time be reasonable.
Of course, as discussed in Chapter 1, the term reasonable depends on the particular
problem at hand.

In the next table, we report running times, in seconds, on an IBM PC 166MHz
machine for a variety of problem sizes. The results are given as a function of
various parameters. In all cases, the number of potential locations for warehouses
is 32, the number of suppliers is 9 and the numbers of products is also 9. In each
case, we require that the distance between a customer and a warehouse serving
it will be no more than 100 miles. The optimization was terminated when the
relative difference between the cost of the solution generated and the optimal
cost was within a specified gap. Thus, the column “Running Time 5%” provides
the running times when the gap is 5%, while “Running Time 1%” provides the
running times when the gap is 1%. Finally, these six test problems represent real-
world data that we have received from a producer and distributor of soft drinks in
the Northeastern part of the United States.
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Table 1: Running times

Number of Number of Running Running
Customers∗ Warehouses Time 5% Time 1%

144 6 64s 106s
144 5 95s 209s
144 4 99s 227s
73 6 31s 60s
73 5 19s 54s
73 4 20s 37s

∗ after aggregation.

15.5 Exercises

Exercise 15.1. Consider n independent and identically distributed random vari-
ables, X1, X2, . . . , Xn. Let Sn � 1

n

∑n
i�1 Xi . Find the variance of the random

variable Sn as a function of the variance of Xi .
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Cornuéjols, G. and F. Harche (1993), Polyhedral Study of the Capacitated Vehicle
Routing Problem. Math. Programming 60, pp. 21–52.
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