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Preface

This book grew out a number of distribution and logistics graduate courses we
have taught over the last ten years. In thefirst few years, the emphasiswas on very
basic models such as the traveling salesman problem, and on the seminal papers
of Haimovich and Rinnooy Kan (1985), which analyzed a simple vehicle routing
problem, and Roundy (1985), which introduced power-of-two policiesand proved
that they are effective for the one warehouse multi-retailer distribution system. At
that time, few results existed for more complex, redistic distribution problems,
stochastic inventory problems or the integration of these issues.

In the last few years however, there has been renewed interest in the area of
logistics among both industry and academia. A number of forces have contributed
to this shift. Firgt, industry has realized the magnitude of savings that can be
achieved by better planning and management of complex logistics systems. In-
deed, a striking example is Wal-Mart’s success story which is partly attributed to
implementing a new logistics strategy, called cross-docking. Second, advancesin
information and communication technol ogies together with sophisticated decision
support systems now make it possible to design, implement and control logistics
strategiesthat reduce system-wide costs and improve servicelevel. These decision
support systems, with their increasingly user-friendly interfaces, arefundamentally
changing the management of logistics systems.

These devel opments have motivated the academic community to aggressively
pursue answersto logisticsresearch questions. Indeed, inthelast five years consid-
erable progress has been made in the analysis and solution of logistics problems.

This progresswas achieved, in many cases, using an approach whose purposeis
to ascertain characteristics of the problem or of an algorithm that are independent
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of the specific problemdata. That is, the approach determines characteristics of the
solution or the solution method that are intrinsic to the problem and not the data.
This approach includes the so-called worst-case and average-case analyses which,
asillustrated in the book, help not only to understand characteristics of the problem
or solution methodology, but also provide specific guarantees of effectiveness. In
many case, the insights obtained from these analyses can then be used to develop
practical and effective algorithms for specific complex logistics problems. Our
objective in writing this book is to describe these tools and devel opments.

Of course, the work presented in this book is not necessarily an exhaustive
account of the current state of the art in logistics. The field is too vast to be
properly covered here. In addition, the practitioner may view some of the models
discussed as simplistic and the analysis presented as complex. Indeed, thisisthe
dilemmaoneisfaced with when analyzing very complex, multi-faceted, real-world
problems. By focusing on simple yet rich models that contain important aspects
of the real-world problem, we hope to glean important aspects of the problem that
might be overlooked by a more detail-oriented approach.

The book is written for graduate students, researchers and practitioners inter-
ested in the mathematics of | ogi stics management. We assumethereader isfamiliar
with the basics of linear programming and probability theory and, in a number of
sections, complexity theory and graph theory, although in many cases these can
be skipped without loss of continuity. The book provides:

o A thorough treatment of performance anaysis techniques including worst-
case analysis, probablistic analysis and linear programming based bounds.

e Anin-depth analysisof avariety of vehicle routing models focusing on new
insights obtained in recent years.

e A detailed, easy-to-follow analysis of complex inventory models.

e A model that integrates inventory control and transportation policies and
explains the observed effectiveness of the cross-docking strategy.

e A description of adecision support system for planning and managing im-
portant aspects of the logistics system.

Parts of thisbook are based on work we have done either together or with others.
Indeed, some of the chapters originated from papers we have published in jour-
nals such as Mathematics of Operations Research, Mathematical Programming
Operations Research, and || E Transactions. We rewrote most of these, trying to
present the results in a simple yet general and unified way. However, a number
of key results, proofs and discussions are reprinted without substantial change.
Of course, in each case this was done by providing the appropriate reference and
by obtaining permission of the copyright owner. In the case of Operations Re-
search and Mathematics of Operations Research, it is the Institute for Operations
Research and Management Science.
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1

| ntroduction

1.1 What Is Logistics Management?

Fierce competition in today’s global markets, the introduction of products with
short life cycles and the heightened expectation of customers have forced manu-
facturing enterprisestoinvest in and focusattention on their logisticssystems. This,
together with changesin communications and transportation technologies, for ex-
ample, mobile communication and overnight delivery, has motivated continuous
evolution of the management of logistics systems.

In these systems, items are produced at one or more factories, shipped to ware-
houses for intermediate storage and then shipped to retailers or customers. Con-
sequently, to reduce cost and improve service levels, logistics strategies must take
into account the interactions of these various levelsin thislogistics network. This
network consistsof suppliers, manufacturing centers, warehouses, distribution cen-
ters and retailer outlets, as well as raw materials, work-in-process inventory and
finished products that flow between the facilities; see Figure 1.1.

The goal of this book isto present the state-of-the-art in the science of logistics
management. But what exactly islogistics management? According to the Council
of Logistics Management, a nonprofit organization of business personnel, itis

the process of planning, implementing, and controlling the efficient,
effective flow and storage of goods, services, and related information
from point of origin to point of consumption for the purpose of con-
forming to customer requirements.

This definition leads to several observations. First, logistics management takes
into consideration every facility that has an impact on system effectiveness and
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FIGURE 1.1. The logistics network.
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plays arole in making the product conform to customer requirements; from sup-
plier and manufacturing facilities through warehouses and distribution centers to
retailers and stores. Second, the goal in logistics management is to be efficient
and cost effective across the entire system; the objective is to minimize system-
wide costs, from transportation and distribution to inventory of raw material, work
in process and finished goods. Thus, the emphasis is not on simply minimizing
transportation cost or reducing inventories, but rather on a systems approach to
| ogisticsmanagement. Finally, becausel ogi stics management evol vesaround plan-
ning, implementing and controlling the logi stics network, it encompasses many of
the firm’s activities, from the strategic level through the tactical to the operational
level.

Indeed, following Hax and Candea’s (1984) treatment of production-inventory
systems, logistical decisions are typically classified in the following way.

e Thestrategiclevel dealswith decisionsthat have along-lasting effect onthe
firm. This includes decisions regarding the number, location and capacities
of warehouses and manufacturing plants, or the flow of material through the
logi stics network.

e The tactical level typically includes decisions that are updated anywhere
between once every quarter and once every year. This includes purchasing
and production decisions, inventory policies and transportation strategies
including the frequency with which customers are visited.

e The operational level refers to day-to-day decisions such as scheduling,
routing and loading trucks.

1.2 Examples

In this section we introduce some of the logi stics management issuesthat form the
basis of the problems studied in the first four parts of the book. These i ssues span
a large spectrum of logistics management decisions, at each of the three levels
mentioned above. Our objective here is to briefly introduce the questions and the
tradeoffs associated with these decisions.

Distribution Network Configuration

Consider the situation where several plants are producing products serving a set
of geographically dispersed retailers. The current set of warehouses is deemed to
be inappropriate, and management wants to reorganize or redesign the distribu-
tion network. This may be due, for example, to changing demand patterns or the
termination of aleasing contract for anumber of existing warehouses. In addition,
changing demand patterns may entail a change in plant production levels, a se-
lection of new suppliers and, in general, a new flow pattern of goods throughout
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the distribution network. The goal is to choose a set of warehouse locations and
capacities, to determine production levels for each product at each plant, to set
transportation flows between facilities (either from plant to warehouse or ware-
houseto retailer) in such away that total production, inventory and transportation
costs are minimized and various service level requirements are satisfied.

Production Planning

A manufacturing facility must produce to meet demand for a product over afixed
finite horizon. In many real-world casesit is appropriate to assume that demand is
known over the horizon. Thisis possible, for example, if orders have been placed
in advance or contracts have been signed specifying deliveries for the next few
months. Production costs consist of afixed amount, corresponding, say to machine
set-up costs or times, and a variable amount, corresponding to the time it takes to
produceoneunit. A holding costisincurred for each unitininventory. Theplanner’s
objective is to satisfy demand for the product in each period and to minimize the
total production andinventory costsover thefixed horizon. Obviously, thisproblem
becomes more difficult as the number of products manufactured increases.

Inventory Control

Consider aretailer that maintains an inventory of a particular product. Since cus-
tomer demand is random, the retailer only has information regarding the proba-
bilistic distribution of demand. The retailer's objective is to decide at what point
to reorder a new batch of products, and how much to order. Typically, ordering
costs consist of two parts: afixed amount, independent of the size of the order, for
example, the cost of sending a vehicle from the warehouse to the retailer, and a
variable amount dependent on the number of products ordered. A linear inventory
holding cost is incurred at a constant rate per unit of product per unit time. The
retailer must determine an optimal inventory policy to minimize the expected cost
of ordering and holding inventory. As before, this problem becomes even more
difficult asthe number of productsoffered increasesand the order cost isdependent
on the set of items ordered.

Cross Docking

Wal-Mart’'s recent success story highlights the importance of a logistics strategy
referred to as cross docking. Thisis a distribution strategy in which the stores are
supplied by central warehouses which act as coordinators of the supply process,
and as transshipment points for incoming orders from outside vendors, but which
do not keep stock themselves. Werefer to such warehouses as crossdocking points.
Thequestionsare obvious: how many crossdocking pointsare necessary?What are
the savings achieved using a cross docking strategy? How should a cross docking
strategy be implemented in practice?
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Integration of Inventory and Transportation

A warehouse servesaset of retailerswith avariety of products. To reduceoperating
costs, management must determine the appropriate balance between inventory and
transportation costs. The tradeoff is clear. Frequent trips between warehouse and
retailer means each shipment is small, inventory costs are low and transportation
costsare high. Infrequent tripsentail large shipments, highinventory costsand low
transportation costs. Assume, for simplicity, that each retailer experiences constant
deterministic demand for the product. The objective is to construct an inventory
policy and a transportation strategy, specifying vehicle routes and schedules and
the frequency with which the retailers are visited, so as to minimize system-wide
inventory and transportation costs.

Vehicle Fleet Management

A warehouse supplies products to a set of retailers using a fleet of vehicles of
limited capacity. A dispatcher is in charge of assigning loads to vehicles and
determining vehicle routes. First, the dispatcher must decide how to partition the
retailers into groups that can be feasibly served by a vehicle, that is, whose loads
fit in a vehicle. Second, the dispatcher must decide what sequence to use so as
to minimize cost. Typically, one of two cost functions is possible: in the first the
objectiveisto minimizethe number of vehiclesused, whilein the second the focus
ison reducing thetotal distancetraveled. Thelatter isan example of asingle-depot
Capacitated Vehicle Routing Problem (CVRP), where a set of customers hasto be
served by afleet of vehicles of limited capacity. The vehicles are initially located
at adepot (in this case, the warehouse) and the objectiveisto find a set of vehicle
routes of minimal total length.

Truck Routing

Consider a truck that leaves a warehouse to deliver products to a set of retailers.
The order in which the retailers are visited will determine how long the delivery
will take and at what time the vehicle can return to the warehouse. Therefore, it
isimportant that the vehicle follow an efficient route. The problem of finding the
minimal length route, in either time or distance, from a warehouse through a set
of retailersis an example of a Traveling Salesman Problem (TSP). Clearly, truck
routing is a subproblem of the fleet management example above.

Packing Problems

Inmany logisticsapplications, acollection of itemsmust be packed into boxes, bins
or vehicles of limited size. The objectiveisto pack the items such that the number
of binsused isas small as possible. Thisproblem isreferred to as the Bin-Packing
Problem (BPP). For example, it appears as a special case of the CVRP when the
objective isto minimize the number of vehicles used to deliver the products. Bin-
packing al so appearsin many other applications, including cutting standard length
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wire or paper strips into specific customer order sizes. It also often appears as a
subproblem in other combinatorial problems.

Delivery with Time-Windows

In many cases, it is necessary to deliver products to retailers or customers during
specific time-windows. That is, a particular retailer or customer might require
delivery between 9am and 11am. When each retailer specifies a time window, the
problem of finding vehicle routes that meet capacity constraints and time window
constraints becomes even more difficult.

Pickup and Delivery Systems

In some distribution systems, each customer specifies a pickup location and a
delivery or destination location. The dispatcher needs to coordinate the pickup
and delivery of the products so that each customer pickup/delivery pair is handled
by asingletruck and thetotal distancetraveledisassmall aspossible. Thus, atruck
route must satisfy the vehicle capacity constraint, the time-window requirement
for each pickup and déelivery, and must guaranteethat a pickup isalwaysperformed
before its associated delivery.

1.3 Modeling Logistics Problems

The reader observesthat most of the problemsand issues described in the previous
section are fairly well defined mathematically. These are the type of issues, ques-
tions and problems addressed in this book. Of course, many issues important to
logistics are difficult to quantify and therefore to address mathematically; we will
not cover these in this book. This includes topics related to information systems,
outsourcing, third party logistics, strategic partnering, etc. For a detailed analy-
sis of these topics we refer the reader to the upcoming book by Simchi-Levi et
al. (1997).

The fact that the examples provided in the previous section can be defined
mathematically is, obviously, meaningless unless all required data are available.
Aswe discussin Part V of this book, finding, verifying and tabulating the data
aretypically very problematic. Indeed, inventory holding costs, production costs,
extra vehicle costs and warehouse capacities are often difficult to determine in
themselves. Furthermore, identifying the data relevant to a particular logistics
problem adds another layer of complexity to the data gathering problem. Even
when thedatado exist, there are other difficultiesrelated to modeling complex real -
world problems. For example, in our analysis we ignore issues such as variations
intravel times, variableyield in production, inventory shrinkage, forecasting, crew
scheduling, etc. These issues complicate logistics practice considerably.

For most of this book, we assumethat all relevant data, for example, production
costs, production times, warehouse fixed costs, travel times, holding costs, etc., are
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given. As aresult, each logistics problem analyzed in Parts |-V is well defined
and thus merely a mathematical problem.

1.4 Logisticsin Practice

How are logistics problems addressed in practice? That is, how are these difficult
problems solved in the real world. In our experience, companies use severa ap-
proaches. First and foremost, asin other aspects of life, people tend to repeat what
hasworked inthe past. That is, if last year’s safety stock level was enough to avoid
backlogging demands, then the same level might be used this year. If last year's
delivery routes were successful, that is, all retailers received their deliveries on
time, then why change them? Second, there are so-called “rules of thumb” which
are widely used and, at least on the surface, may be quite effective. For example,
it is our experience that many logistics managers often use the so-called “20/80
rule” which says that about 20% of the products contribute to about 80% of total
cost and therefore it is sufficient to concentrate efforts on these critical products.
Logistics network design, to give another example, is an area where a variety of
rules of thumb are used. One such rule might suggest that if your company serves
the continental U.S. and it needs only one warehouse, then this warehouse should
probably be located in the Chicago ares; if two are required, then onein Los An-
geles and one in Atlanta should suffice. Finally, some companies try to apply the
experience and intuition of logistics experts and consultants; the idea being that
what has worked well for a competitor should work well for itself.

Of course, while all these approaches are appealing and quite often result in
logistics strategies that make sense, it isnot clear how muchislost by not focusing
on the best (or close to the best) strategy for the particular case at hand. Indeed,
recently, with the advent of cheap computing power, it has become increasingly
affordable for many firms, not just large ones, to acquire and use sophisticated
decision support systems to optimize their logistics strategies. In these systems,
data are entered, reviewed and validated, various algorithms are executed and a
suggested solutionispresented in auser-friendly way. Provided the dataare correct
and the system is solving the appropriate problem, these decision support systems
can substantially reduce system-wide cost. Also, generating a satisfactory solution
is typically only arrived at after an iterative process in which the user evaluates
various scenarios and assesses their impact on costs and service levels. Although
thismay not exactly be considered “ optimization” in astrict sense, it usually serves
as auseful tool for the user of the system.

These systems have as their nucleus models and algorithms in some form or
another. In some cases, the system may simply be a computerized version of
the rules of thumb above. In more and more instances, however, these systems
apply techniquesthat have been devel oped in the operations research, management
science and computer science research communities.

In this book, we present the current state-of-the-art in mathematical research in
theareaof logistics. Most of the problemslisted above have at their core extremely
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difficult combinatorial problemsin the class called N"P-Hard problems. Thisim-
plies that it is very unlikely that one can construct an algorithm that will aways
find the optimal solution, or the best possible decision, in computation time that
is polynomial in the “size” of the problem. The interested reader can refer to the
excellent book by Garey and Johnson (1979) for detail son computational compl ex-
ity. Therefore, in many cases an algorithm that consistently provides the optimal
solution is not considered areachable goal, and hence heuristic, or approximation,
methods are employed.

1.5 Evaluation of Solution Techniques

A fundamental research question is how to evaluate heuristic or approximation
methods. Such methods can range from simple “rules of thumb” to complex, com-
putationally intensive, mathematical programming techniques. In general, these
are methods that will find good solutions to the problem in a reasonable amount
of time. Of course, theterms“good” and “reasonable” depend on the heuristic and
on the problem instance. Also, what constitutes reasonabl e time may be highly de-
pendent on the environment in which the heuristic will be used; that is, it depends
on whether the agorithm needs to solve the logistics problem in real-time.

Assessing and quantifying a heuristic’s effectiveness is of prime concern. Tra-
ditionaly, the following methods have been employed.

e Empirical Comparisons: Here, arepresentative sample of problemsischo-
sen and the performance of avariety of heuristicsis compared. The compar-
ison can be based on solution quality or computation time, or acombination
of thetwo. Thisapproach has one obvious drawback: deciding on agood set
of test problems. The difficulty, of course, is that a heuristic may perform
well on one set of problems but may perform poorly on the next. As pointed
out by Fisher (1995), this lack of robustness forces practitioners to “patch
up” the heuristic to fix the troublesome cases, leading to an agorithm with
growing complexity. After considerable effort, a procedure may be created
that works well for the situation at hand. Unfortunately, the resulting algo-
rithmisusually extremely sensitive to changesin the data, and may perform
poorly when transported to other environments.

e Worst-Case Analysis: In this type of analysis, one tries to determine the
maximum deviation from optimality, in terms of relative error, that aheuris-
tic can incur on any problem instance. For example, aheuristic for the BPP
might guarantee that any solution constructed by the heuristic uses at most
50% more bins than the optimal solution. Or, a heuristic for the TSP might
guarantee that the length of the route provided by the heuristic is at most
twicethelength of the optimal route. Using aheuristic with such aguarantee
allays some of thefears of suboptimality, by guaranteeing that we arewithin
a certain percentage of optimality. Of course, one of the main drawbacks of
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thisapproachisthat aheuristic may perform very well on most instancesthat
arelikely to appear in areal-world application, but may perform extremely
poorly on some highly contrived instances. Hence, when comparing algo-
rithms it is not clear that a heuristic with a better worst-case performance
guarantee is necessarily more effective in practice.

e Average-Case Analysis: Here, the purpose isto determine a heuristic’s av-
erage performance. Thisis stated as the average relative error between the
heuristic solution and the optimal solution under specific assumptions on
the distribution of the problem data. This may include probabilistic assump-
tions on the depot location, demand size, item size, time windows, vehicle
capacities, etc. Aswe shall see, while these probabilistic assumptions may
be quite general, this approach also has its drawbacks. The most important
includes the fact that an average-case analysis is usually only possible for
large size problems. For example, inthe BPPR, if theitem sizesare uniformly
distributed (between zero and the bin capacity), then a heuristic that will be
“closeto optimal” isonethat first sorts the itemsin nonincreasing order and
then, starting with thelargest item, pairs each item with thelargest item with
which it fits. In what sense is it close to optimal? The analysis shows that
as the problem size increases (the number of items increases), the relative
error between the solution created by the heuristic and the optimal solution
decreases to zero. Another drawback is that in order for an average-case
analysis to be tractable it is sometimes necessary to assume independent
customer behavior. Finally, determining what probabilistic assumptions are
appropriate in a particular real-world environment is not atrivia problem.

Because of theadvantagesand potential drawbacksof each of the approaches, we
agreewith Fisher (1980) that these should betreated as complementary approaches
rather than competing ones. Indeed, it isour experiencethat thelogisticsal gorithms
that are most successfully applied in practice are those with good performancein
at least two of the above measures.

We should also point out that characterizing the worst-case or average-case
performance of a heuristic may betechnically very difficult. Therefore, aheuristic
may perform very well on average, or in the worst-case, but proving this fact may
be beyond our current abilities.

1.6 Additional Topics

We emphasize that due to space and time considerations we have been obliged
to omit some important and interesting results. These include results regarding
yield management, machine scheduling, random yield in production, dynamic and
stochastic fleet management model s, etc. Werefer thereader to Graveset al. (1993)
and Ball et al. (1995), for excellent surveys of these and other related topics.
Also, while there exist many elegant and strong results concerning approaches
to certain logistics problems, there are still many areas wherelittle, if anything, is
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known. Thisis, of course, partly due to the fact that as the models become more
complex and integrate more and more issues that arise in practice, their analysis
becomes more difficult.

Finaly, we remark that it is our firmly held belief that |ogistics management is
one of the areasin which arigorous mathematical analysisyields not only elegant
results but, even more importantly, has had and will continue to have, a significant
impact on the practice of logistics.

1.7 Book Overview

Thisbook ismeant asasurvey of avariety of results covering most of thelogistics
area. The reader should have a basic understanding of complexity theory, linear
programming, probability theory and graph theory. Of course, the book can be
read easily without delving into the details of each proof.

The book is organized as follows. In Part |, we concentrate on performance
analysis techniques. Specifically, in Chapter 2 we discuss some of the basic tools
required to perform worst-case analysis, whilein Chapter 3 we cover average-case
analysis. Findly, in Chapter 4 we investigate the performance of mathematical
programming based approaches.

In Part 11, we consider Vehicle Routing Problems, paying particular attention to
heuristics with good worst-case or average-case performance. Chapter 5 contains
an analysis of the single-depot Capacitated Vehicle Routing Problem when all
customers have equal demands, while Chapter 6 analyzes the case of customers
with unequal demands. In Chapter 7 we perform an average-case analysis of the
Vehicle Routing Problem with Time Window constraints. We also investigate set-
partitioning based approaches and column generation techniques in Chapter 8.

Part 111 concentrates on production and inventory problems. Westart with lot siz-
ing intwo different deterministic environments, one with constant demand (Chap-
ter 9) and the second with varying demand (Chapter 10). Chapter 11 presents
results for stochastic inventory models.

Part 1V deals with hierarchical problems in logistics networks and, in particu-
lar, with the integration of the different levels of decisions described in Section
1.1. Chapter 12 analyzes distribution network configuration and facility location,
also referred to as site selection, problems. Chapter 13 analyzes problems in the
coordination of inventory control and distribution policies.

InPart V, welook at case studies concerning the design of decision support tools
for large scale logistics applications. In Chapter 14 we report on the devel opment
of adecision support tool for school bus routing and scheduling in the City of New
York, while in Chapter 15 we look at a network configuration case.

Finally, Figure 1.2 illustrates the precedence rel ationship between chapters. For
example, an arrow between the numbers 2 and 5 indicates that it is recommended
that Chapter 2 be read before Chapter 5.
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2
Worst-Case Analysis

2.1 Introduction

Sincemost complicated |logistics problems, for example, the Bin-Packing Problem
and Traveling Salesman Problems, are A/P-Hard it isunlikely that polynomial time
algorithmswill bedevel oped for their optimal solutions. Consequently, agreat deal
of work has been devoted to the development and analyses of heuristics. In this
chapter we demonstrate one important tool, referred to as wor st-case performance
analysis, which establishes the maximum deviation from optimality that can occur
for a given heuristic algorithm. We will characterize the worst-case performance
of avariety of algorithms for the Bin-Packing Problem and the Traveling Sales-
man Problem. The results obtained here serve asimportant building blocksin the
analysis of algorithms for vehicle routing problems.

Worst-case effectiveness is essentially measured in two different ways. Take a
generic problem, and let 1 be a particular instance. Let Z*(I) be the total cost of
the optimal solution, for instance 1. Let Z"(I) be the total cost of the solution
provided by the heuristic H on instance 7 . Then, the absolute performance ratio
of heuristic H is defined as:

Z"()
zx(I)

RHﬁinf{rzl| <r foraIII}.

This measure, of course, is specific to the particular problem. The absolute per-
formance ratio is often achieved for very small problem instances. It is therefore
desirable to have a measure that takes into account problems of large size only.
This measure is the asymptotic performance ratio. For a heuristic H, thisratio is
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defined as:

Z"(1)
z(I)

Thismeasure sometimesgivesamoreaccurate pictureof aheuristic’sperformance.
Notethat R < RM.

In general, it is important to also show that no better worst-case bound (for a
given heuristic) is possible. Thisis usualy achieved by providing an example, or
family of examples, where the bound istight, or arbitrarily close to tight.

In this chapter, we will analyze several heuristics for two difficult problems,
the Bin-Packing Problem and the Traveling Salesman Problem, along with their
worst-case performance bounds.

RY = inf {r > 1| 3n such that <r foraIIIWich*(I)zn}.

2.2 The Bin-Packing Problem

The Bin-Packing Problem (BPP) can be stated as follows: given alist of n real
numbers L = (w1, wo, ..., w,), wherewe cal w; € (0, 1] the size of item i, the
problem isto assign each item to a bin such that the sum of theitem sizesinabin
does not exceed 1, while minimizing the number of bins used. For simplicity, we
also use L asaset, but this should cause no confusion. In this case, wewritei € L
tomean w; € L.

Many heuristics have been developed for this problem since the early 1970s.
Some of the more popular ones are First-Fit (FF), Best-Fit (BF), First-Fit De-
creasing (FFD) and Best-Fit Decreasing (BFD) analyzed by Johnson et al. (1974).
First-Fit and Best-Fit assign itemsto bins according to the order they appear inthe
list without using any knowledge of subsequent itemsin the list; these are online
algorithms. First Fit can be described asfollows: placeitem 1in bin 1. Supposewe
are packing item j; placeitem j in the lowest indexed bin whose current content
does not exceed 1 — w;. The BF heuristicis similar to FF except that it placesitem
Jj in the bin whose current content is the largest but does not exceed 1 — w;. In
contrast to these heuristics, FFD first sortstheitemsin nonincreasing order of their
size and then performs FF. Similarly, BFD first sorts the items in non-increasing
order of their size and then performs BF. These are called offline algorithms.

Let bH(L) be the number of bins produced by aheuristic H on list L. Similarly,
let b*(L) be the minimum number of binsrequired to pack theitemsinlist L; that
is, b*(L) isthe optimal solution to the bin-packing problem defined on list L.

The best asymptotic performance boundsfor the FF and BF heuristics are given
in Garey et al. (1976) where they show that

HOHEROI

and
bBF(L) < ﬁ—gb*(L)]
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Here [x] is defined as the smallest integer greater than or equal to x.
The best asymptotic performance bounds for FFD and BFD have been obtained
by Baker (1985) who shows that

11
bO(L) < S0 +3

and 1
bBP(L) < 3b*(L) +3.

Johnson et al. (1974) provide instanceﬁwith arbitrarily large values of 5*(L) such
that the ratios ’;*((LL)) and bb*((LL)) approach £ and instances where Mg’ and ”ZF?S)
approach % Thus, the maximum dev|aI|on from optimality for all lists that are
sufficiently “large” is no more than 70% times the minimal number of binsin the
case of FF and BF, and 22.2% in the case of FFD and BFD.

We now show that by using simple arguments one can characterize the absolute
performance ratio for each of the four heuristics. We start however by demon-
strating that in general we cannot expect to find a polynomial time heuristic with
absolute performance ratio less than g

Lemma 2.2.1 Supposethereexistsa polynomial timeheuristic H for the BPP with
RY < 3/2;thenP = N'P.

Proof. We show that if such aheuristic exists, then we can solvethe A/P-Complete
2-Partition Problem in polynomial time. This problem is defined asfollows: given
aset A = {a,ay,...,a,}, does there exist an A; C A such that >
Daema @?

For a given instance A of 2-Partition we construct an instance L of the bin-
packing problem with items sizes a; and bins of capacity % > 4 a;. Observe that
if there existsan Ay suchthat ), a; = >4\, 4 = 3 Y, @, then the heuristic
H must find a solution such that »H(L) = 2. On the other hand, if thereis no such
Aj in the 2-Partition Problem, then the corresponding Bin-Packing Problem has
no solution with less than 3 bins and hence b™(L) > 3.

Consequently, to solve the 2-Partition Problem, apply the heuristic H to the
corresponding bin-packing problem. If 5™(L) > 3, thereis no subset A with the
desired property. Otherwise thereis one. Since 2-Partition is A"P-Complete, this
impliesP = N'P. |

Let XF be either FF or BF and let XFD be either FFD or BFD. In this section
we prove the following result due to Simchi-Levi (1994).

Theorem 2.2.2 For all lists L,

a; EA1

bXF(L) 7
b (L) ~ 4
and
bXFD (L) 3
(L) 2
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In view of Lemma 2.2.1 it is clear that FFD and BFD have the best possible
absolute performance ratios for the Bin-Packing Problem, among all polynomial
time heuristics. As Garey and Johnson (1979, p. 128) point out, it is easy to con-
struct examplesin which an optimal solution uses 2 binswhile FFD or BFD uses 3
bins. Similarly, Johnson et a. give examplesin which an optimal solution uses 10
bins while FF and BF use 17 bins. Thus, the absolute performance ratio for FFD
and BFD isexactly 3 whileit isat least 1.7 and no more than  for FF and BF.

We now define the following terms which will be used throughout this section.
Anitemiscalled largeif itssizeis (strictly) greater than 0.5; otherwiseitiscalled
small. Define abin to be of type | if it has only small items, and of typell if itis
not atypel bin; thatis, it hasat least one largeiteminit. A biniscaled feasibleiif
the sum of theitem sizesin the bin doesnot exceed 1. Anitemissaid tofitinabin
if the bin resulting from the insertion of thisitem is afeasible bin. In addition, a
bin is said to be opened when an item is placed in abin that was previously empty.

2.2.1 First-Fit and Best-Fit

The proof of the worst-case bounds for FF and BF, the first part of Theorem 2.2.2,
is based on the following observation. Recall XF=FF or BF.

Lemma 2.2.3 Consider the j™ bin opened by XF (j > 2). Any item that was
assigned to it before it was more than half full does not fit in any bin opened by
XF prior to bin j.

Proof. The property is clearly true for FF, and in fact holds for any item assigned
to the j™ bin, j > 2, not necessarily to items assigned to it before it was more
than half full. To prove the property for BF, suppose by contradiction, item i was
assigned to the j bin before it was more than half full, and this item fitsin one
of the previously opened bins, say the k™" bin. Clearly, in that case, i cannot be the
first item assigned to the j™ bin since BF would not have opened anew binif i fits
in one of the previously opened bins. Let the levels of binsk and j, just before the
timeitem i was packed by BF, be«; and «; and let item 7 bethefirstiteminbin j.
Hencew;, < «; < % by the hypothesis. Since BF assigns an item to the bin where
it fitswith the largest content, and item i would havefitinbin k, we haveo; > oy.
Thus, o) < % meaning that item H would have fit in bin &, a contradiction. |

We use Lemma 2.2.3 to construct a lower bound on the minimum number of
bins. For this purpose, weintroduce the following procedure. For agiveninteger v,
2 < v < b*F(L), select v bins from those produced by XF. Index the v binsin the
order they are opened starting with 1 and ending with v. Let X ; bethe set of items
assigned by XF to the j bin before it was more than half full, j = 1,2, ..., v.
Let S; bethe set of items assigned by XF to the j" bin, j = 1,2, ..., v. Observe
thatXJ C Sj for dl j= 1,2,...,v.

Procedure LBBP (Lower Bound Bin-Packing)
Sepl: Let X =X;,i=12,...,v.



2.2 The Bin-Packing Problem 19

Sep2: Fori =1tov—1do
Let j = max{k : X; # ?}.
If j =i, stop.
Else, let u be the smallest itemin X;
SetS; < S; U{u}and X; <~ X}\{u}.

In view of Lemma 2.2.3 it is clear that Procedure LBBP generates nonempty
subsets Sq, S, ..., Sy, for somem < v, suchthat ), es, Wi > lforj<m-1
and possibly for j = m. Thisistrue since by Lemma 2. 2.3itemu (asdefined in
the LBBP procedure), originaly assigned to bin j before it was more than half
full, does not fit in any bini withi < j. Then the following must hold.

Lemma 2.2.4 max {| Uiz Xl m — 1} < i1 Dies, Wi-

Proof. Sincebins1, 2, ..., m — 1 generated by Procedure LBBP are not feasible,
wehave} ' 135, wi > m—1. Notethatevery itemin{J;_,,, X; ismoved by
Procedure LBBPto exactly oneS;, j=12,...,m—1andpossiblytoS,. Thus,
if S,, isfeasible, thatis, no (addmonal) item isassigned by Procedure LBBP1t0 S,,,,
then |Uj_, 1 Xjl <m—1<37} =1 2_ies, Wi- On the other hand, if an item is
assigned by Procedure LBBPto Sm, then none of the subsets S ; Li=L12,.
arefeasible and thereforem = [\J}_,, 11 X1 < 371 2 e, wi- I
We are now ready to prove the fi rst part of Theorem 2.2.2, that is, establish the
upper bound on the absolute performance ratio of the XF heuristic. Let ¢ be the
number of largeitemsin thelist L. Without loss of generality, assume b*F(L) > ¢
since otherwise the solution produced by XF isoptimal. So, »*F(L) — ¢ > Oisthe
number of type | bins produced by XF. We consider the following two cases.

Case 1. c iseven. In this case we partition the bins produced by XF into two sets.
Thefirst set includes only type | binswhile the second set includes the remaining
bins produced by XF, that is, al the type Il bins. Index the binsin the first set in
the order they are opened, from 1 to b*F(L) — ¢. Let v = b*F(L) — ¢, and apply
Procedure LBBP to the set of type | bins, producing m bins out of which at least
m — 1l areinfeasible. Then:

Lemma2.2.5 If ciseven,

ax {% +m, 20°F(L) —m) — 3—26} < b (L).

Proof. Combining Lemma2.2.4 with thefact that no two largeitemsfit in the same
binwehave ), ., w; > m — 1+ 5. On the other hand, every bin in an optimal
solutionisfeasibleandtherefore ; ., w; < b*(L).Sinceciseven,m+35 < b*(L).
Since we applied Procedure LBBP only to the type | bins produced by XF, each
one of these bins has at least two items except possibly one which may have only



20 2. Worst-Case Andysis

oneitem. Hence, 2(0*F (L) —m —c—1)+1 < ||}

j=m+1 X ;| andtherefore, using
Lemma2.2.4,

20°F(L) —m —c—1)+ = +1<Zw,<b*(L)

iel

or
ALF(L) —m —c— 1) + % 42 <bH(L).

Rearranging the left-hand side gives the second lower bound. |

Theorem 2.2.6 If ciseven,

p*F(L) < ;b*(L).

Proof. From Lemma2.2.5we have 2(b*F(L) — m) — % < b*(L). Hence,

XF b*(L)
AOEE 7 +m
b*(L)
T2
7

< Jb'(0).

Ao+
m — —
2 4

sincem + 5, b*(L) and c are lower bounds. |

Case 2: c isodd. In this case we partition the set of all bins generated by the XF
heuristic in a dlightly different way. The first set of bins, called B;, comprise all
the type | bins except the last type | bin opened by XF. The second set is made up
of the remaining bins; that is, these are all the type Il bins together with the type
| bin not included in B;. We now apply procedure LBBP to the binsin By (with
v = b*F(L) — ¢ — 1), producing m bins out of which at least m — 1 bins are not
feasible.

Lemma2.2.7 If cisodd,

[2+m+3 2(BF(L) — )—3—26—%} < b*(L).

Proof. Take one of the type Il bins and “match” it with the only type | bin not in
By; the total weight of these two binsis more than 1. Thus, using Property 2.2, we
have S + 14 (m — 1) < Y_,., w; < b*(L) which proves the first lower bound.
To provethe second lower bound, we usethefact that every binin B; hasat least 2
items and therefore 2(b*F(L) —m — ¢ — 1) < |U}_,,,1 X, |- Using Property 2.2,
we get L
XF c— *
2 (L) —m —c = 1)+ — +1<) w <b*(L),

ielL
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or

20°F(L) —m —c — 1) + % +2 < bH(L).
Rearranging the left-hand side gives the second lower bound. |

Theorem 2.2.8 If ¢ isodd,

1

7 k
p*F(L) < Zb (L) — 7

Proof. From Lemma2.2.7 we have 2(b*F(L) — m) — 3% — < b*(L). Hence,

AT
MY AT

bXF(L) <

b*(L) c 1, ¢ 1
=g+ (mrz+3)+a-g
7 1
-b*(L) — ~.
4 (Z) 4

2.2.2 First-Fit Decreasing and Best-Fit Decreasing

The proof of the worst-case bounds for FFD and BFD is based on Lemma 2.2.3.
This lemma states that if a bin produced by these heuristics contains only items
of size at most % then the first two items assigned to the bin cannot fit in any bin
opened prior toit.

Let XFD denote either FFD or BFD. Index the bins produced by XFD in the
order they are opened. We consider three cases. First, suppose b*FP(L) = 3p for
some integer p > 1. Consider the bin with index 2p + 1. If this bin contains a
large item we are done, since in that case b*(L) > 2p = 2p*FP(L). Otherwise,
bins 2p + 1 through 3p must contain at least 2p — 1 small items, none of which
canfitin thefirst 2p bins. Hence, the total sum of the item sizes exceeds 2p — 1,
meaning that b*(L) > 2p = 50*™P(L).

Suppose »*FP(L) = 3p + 1. If bin 2p + 1 contains alarge item we are done.
Otherwise, bins 2p + 1 through 3p + 1 contain at least 2p + 1 small items, none
of which can fit in the first 2p bins, implying that the total sum of the item sizes
exceeds 2p and hence b*(L) > 2p + 1 > 2pXFO(L).

Similarly, suppose 5*FP(L) = 3p + 2. If bin 2p + 2 contains alarge item we
are done. Otherwise, bins 2p + 2 through 3p + 2 contain at least 2p + 1 small
items, none of which canfit inthefirst 2p + 1 bins, implying the sum of theitem
sizesexceeds 2p + 1 and hence b*(L) > 2p + 2 > 2b*FP(L).



22 2. Worst-Case Andysis
2.3 The Traveling Salesman Problem

I nteresting worst-case results have been obtained for another combinatorial prob-
lem that plays an important role in the analysis of logistics systems: the Traveling
Salesman Problem (TSP). The problem can be defined asfollows: Let G = (V, E)
be a complete undirected graph with vertices V, |V| = n, and edges E and let
d;; bethelength of edge (i, j). (We use the term length to designate the “cost” of
using edge (i, j). The most general formulation of the TSP allows for completely
arbitrary “lengths’ and, in fact, in many applications the physical distanceisirrel-
evant and the d;; simply represents the cost of sequencing j immediately after i.)
The objective in the TSP is to find atour that visits each vertex exactly once and
whose total length is as small as possible. The problem has been analyzed exten-
sively in the last three decades; see Lawler et al. (1985) for an excellent survey
and, in particular, the chapter written by Johnson and Papadimitriou (1985) which
includes some of the worst-case results presented here.

We shall examine a variety of heuristics for the TSP and show that, for an
important special case of this problem, heuristics with strong worst-case bounds
exist. We start however with a negative result, due to Sahni and Gonzalez (1976),
which states that in general finding a heuristic for the TSP with a constant worst-
case bound is as hard as solving any NP-Complete problem, no matter what the
bound.

To present the result, let 7 be an instance of the TSP, Let L*(I) be the length of
the optimal traveling salesman tour through V. Given a heuristic H, let L7(7) be
the length of the tour generated by H.

Theorem 2.3.1 Suppose there exists a polynomial time heuristic H for the TSP
and a constant R such that for all instances 7

LH(1)< H.
) =R

then® = N'P.

Proof. The proof is in the same spirit as the proof of Lemma 2.2.1. Suppose
such a heuristic exists. We will use it to solve the N"P-Complete Hamiltonian
Cycle Problem in polynomial time. The Hamiltonian Cycle Problem is defined as
follows. Given agraph G = (V, E), does there exist a simple cycle (a cycle that
does not visit a point more than once) in G that includes all of V? To answer this
guestion we construct an instance 1 of the TSP and apply H to it; the length of the
tour generated by H will tell uswhether G has a Hamiltonian cycle.

The instance I is defined on a complete graph whose set of verticesis V and
the length of each edge {i, j} is

4 _{1, if {i, j} € E;
Y| |VIRY, otherwise.
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We distinguish between two cases depending on whether G contains a Hamilto-
nian cycle. If G doesnot contain a Hamiltonian cycle, then any traveling salesman
tour in 7 must contain at least one edge with length |V|RY and hence the length
of the tour generated by H isat least |V |R" + |V| — 1.

Ontheother hand, if G hasaHamiltonian cycle, then I must haveatour of length
|V|. Thisistrue since we can use the Hamiltonian cycle as a traveling salesman
tour for theinstance I inwhich theverticesappear on thetraveling salesman tour in
the same order they appear in the Hamiltonian cycle. Thus, if G hasaHamiltonian
cycle, heuristic H applied to 7 must provide a tour of length no morethan |V |RH.

Consequently, we have a method for solving the Hamiltonian Cycle Problem:
apply H to the TSP defined ontheinstance 1. If L"(1) < |V|R", then there exists
aHamiltonian cyclein G. Otherwise, thereisno such cyclein G. Finaly, since H
is assumed to be polynomial, we conclude that P = N'P. |

Thetheorem thusimpliesthat it isvery unlikely that apolynomial time heuristic
for the TSP with aconstant absol ute worst-case bound exists. However, thereisan
important version of the Traveling Salesman Problem that excludes the above neg-
ative result. Thisiswhen the distance matrix {d;;} satisfies the triangle inequality
assumption.

Definition 2.3.2 A distance matrix satisfies the triangle inequality assumption if
forall i, j,k € Vwehaved;; <d + dy;.

In many logistics environments, the triangle inequality assumption is not a very
restrictive one. It merely statesthat traveling directly from point (vertex) i to point
(vertex) j isat most the cost of traveling from i to j through the point k.

In the next four sections we describe and analyze different heuristics developed
for the TSP. To simplify presentation in what follows, wewrite L* instead of L*(I);
this should cause no confusion.

2.3.1 A Minimum Spanning Tree Based Heuristic

The following algorithm provides a simple example of how a fixed worst-case
bound is possible for the TSP when the distance matrix satisfies the triangle in-
equality assumption. In this case, the bound is 2; that is, the heuristic provides a
solution with total length at most 100% above the length of an optimal tour.

A spanning tree of agraph G = (V, E) is a connected subgraph with |V | — 1
edges spanning al of V. The cost (or weight) of atree is the sum of the length
of the edgesin the tree. A minimum spanning tree (MST) is a spanning tree with
minimum cost. It iswell known and easy to show that a minimum spanning tree
can be found in polynomial time (see, for example, Papadimitriou and Steiglitz
(1982)). If W* denotes the weight (cost) of the minimum spanning tree, then we
must have W* < L* since deleting any edge from the optimal tour results in a
spanning tree.

The minimum spanning tree can be used to find a feasible traveling salesman
tour in polynomial time. The idea is to perform a depth-first search (see Aho et
al. (1974)) over the minimum spanning tree and then to do simple improvements
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on this solution. Formally, this is done as follows (Johnson and Papadimitriou,
1985).

A Minimum Spanning Tree Based Heuristic

Sep 1: Construct a minimum spanning tree and color its edges white, and all
other edges black.

Sep 2: Let the current vertex (denoted v) be an arbitrary vertex.

Sep 3: If one of the edges adjacent to v in the MST is white, color it black and
proceed to the vertex at the other end of thisedge. Else (all edgesfrom v areblack),
go back along the edge by which the current vertex was originally reached.

Sep 4: Let thisvertex be v. Stop if v isthe vertex you started with and all edges
of MST are black. Otherwise go to Sep 3.

Observe that the above strategy produces a tour that starts and ends at one of
the vertices and visits all other verticesin the graph covering each arc twice. This
is not a very efficient tour since some vertices may be visited more than once.
To improve on this tour, we can modify the above strategy as follows:. instead of
going back to a visited vertex, we can use a shortcut strategy in which we skip
this vertex, and go directly to the next unvisited vertex. The triangle inequality
assumption implies that the above modification will not increase the length of the
tour, and in fact may reduceit.

Let LMST pe the length of the traveling salesman tour generated by the above
strategy. We clearly have

IMST < ow* < 21%,

where the first inequality follows since without shortcuts the length of the tour is
exactly 2W*. This proves that the worst case bound of the algorithm is at most 2.
It remainsto verify that the worst case bound of this heuristic cannot be improved.
For this purpose consider Figure 2.1, the example constructed by Johnson and
Papadimitriou (1985). Here, W* = 4+ 4(1—€)+26 — 1, LMST ~ Z 4 2(1—¢),

-3
2n
and L* = 7.

2.3.2 The Nearest Insertion Heuristic

Before describing this heuristic, consider the following intuitively appealing strat-
egy, called the Nearest Neighbor Heuristic. Given an instance I of the TSP, start
with an arbitrary vertex and find the vertex not yet visited that is closest to the
current vertex. Travel to this vertex. Repeat this until all vertices are visited; then
go back to the starting vertex.

Unfortunately, Rosenkrantz et al. (1977) show the existence of afamily of in-
stances for the TSP with arbitrary n with the following property. The length of the
tour generated by the Nearest Neighbor Heuristic on each instancein the family is
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The minimum spanning tree

The tour generated by the
Minimum Spanning Tree Based Algorithm

FIGURE 2.1. An example for the minimum spanning tree based algorithm with n = 18.
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O (logn) timesthelength of the optimal tour. Thus, the Nearest Neighbor Heuristic
does not have a bounded worst-case performance.

This comes as no surprise since the algorithm obviously suffers from one major
weakness. This“greedy” strategy tendsto begin well, inserting very short arcsinto
the path, but ultimately it ends with arcs that are quite long. For instance, the last
edge added, the one connecting the last node to the starting node, may be very
long due to the fact that at no point does the heuristic consider the location of the
starting vertex and possible ending vertices.

One way to improve the performance of the Nearest Neighbor Heuristic is
presented in the following variant, called the Nearest Insertion (NI) Heuristic,
developed and analyzed by Rosenkrantz et a. Informally, the heuristic works as
follows: at each iteration of the heuristic a Hamiltonian cycle containing a subset
of the vertices is constructed. The heuristic then selects a new vertex not yet in
the cycle that is “closest” in a specific sense and inserts it between two adjacent
verticesin thecycle. The process stopswhen all verticesareinthe cycle. Formally,
thisis done as follows.

The Nearest Insertion Heuristic

Sep 1: Choose an arbitrary node v and let the cycle C consist of only v.
Sep 2: Find anode outside C closest to anodein C; cal it k.

Step 3: Find anedge {7, j} in C such that dix + di; — d;; isminimal.
Sep 4: Construct anew cycle C by replacing {i, j} with {i, k} and {k, j}.

Sep 5: If the current cycle C contains al the vertices, stop. Otherwise, go to
Sep 2.

Let LN' bethelength of the solution obtained by the Nearest Insertion Heuristic.
Then:

Theorem 2.3.3 For all instances of the TSP satisfying the triangle inequality,
LN < 2L%,

We start by proving the following interesting result. Let T be a spanning tree of
G and let W(T) be the weight (cost) of that tree; that is, W(T) is the sum of the
length of all edgesinthetree T. Then:

Lemma 2.3.4 For every spanning tree T,

LN < 2w/(T).

Proof. We prove the lemma by matching each vertex we insert during the exe-
cution of the algorithm with a single edge of the given tree T. To do that we
describe a procedure that will be carried out in parallel to the Nearest Insertion
Heuristic.
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The Dual Nearest Insertion Procedure
Sep 1. Start with afamily 7 of treesthat, at first, consists of only thetree T'.

Sep 2: Given k (the vertex selected in Sep 2 of NI), find the unique tree in T
containing k. Let thistree be T7;.

Sep 3: Let ¢ bethe unique vertex in T, that isin the current cycle.

Sep 4. Let h bethe vertex adjacent to ¢ on the unique path from £ to k. Replace
T, in T by two trees obtained from T} by deleting edge {¢, h}.

Sep 5: If 7 containsn trees, stop. Otherwise, go to Step 2.

The Dual Nearest Insertion procedure is carried out in parallel to the Nearest
Insertion Heuristic in the sense that each time Sep 1 is performed in the latter pro-
cedure, Sep 1isperformedin theformer procedure. Eachtime Sep 2 isperformed
in the latter, Sep 2 is performed in the former, etc.

Observe that each time Sep 4 of the Dual Nearest Insertion procedure is per-
formed, the set of trees 7 is updated so that each treein 7 has exactly one vertex
from the current cycle and each vertex of the current cycle belongsto exactly one
tree. Thisistrue since when edge {¢, h} is deleted, two subtrees are constructed,
one containing the vertex ¢ and the other containing the vertex k. Edge {¢, h} is
the one we associate with the insertion of vertex k.

Let m bethe vertex in the current cycle to which vertex k (not in the cycle) was
closest. That is, m isthe vertex such that d,, isthe smallest among al d,,, where
u isin the cycle and v outside the cycle. Let m + 1 be one of the vertices on the
cycle adjacent to m. Finally, let edge {i, j} be the edge deleted from the current
cycle. Clearly, inserting k into the current cycle increases the length of the tour by

dit +dvj — dij < dpk + i1 — Attt < 20,

where the left-hand inequality holds because of Step 3 of the Nearest Insertion
Heuristic and the right-hand inequality holds in view of the triangle inequality
assumption. Thisof courseistrueonly whenthecycle containsat | east two vertices.
When it contains exactly one vertex, that is, when the Nearest Insertion algorithm
enters Step 2 for thefirst time, inserting & to the current cycle increases the length
of the tour by exactly 2d,,,;.

Since ¢ isin the current cycle and i is not, d,.x < dg;,. Hence, the increase in
the cost of the current cycle is no more than 2d,;,. Finally, since this relationship
holds for every edge of 7' and the corresponding inserted vertex, we have

LN < 2w(T). 1
To finish the proof of Theorem 2.3.3, apply Theorem 2.3.4 with T*; thus,
W* = W(T*) < L* < LN'" < 2w/(T™).

This completes the proof of the Theorem.
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The original network The tour generated by the
(a) Nearest Insertion Algorithm
(b)

FIGURE 2.2. An example for the nearest insertion algorithm with n = 8.

To see that the bound is tight consider the example (constructed by Rosenkrantz
et al., 1977) depicted in Figure 2.2. In this example, the length of every edge
connecting two consecutive vertices on the perimeter is 1 while all other edges have
length 2. Thus, the optimal traveling salesman tour visits the vertices according
to their appearance on the circle and therefore L* = n. It is easy to see that the
Nearest Insertion Heuristic generates the tour depicted in Figure 2.2(b) with cost
INU =25 -2,

2.3.3 Christofides’ Heuristic

In 1976, Christofides presented a very simple algorithm that currently has the best
known worst-case performance bound for the TSP. To present the algorithm we
need to state several properties of graphs.

Lemma 2.3.5 Given a graph with at least two vertices, the number of vertices
with odd degree is even.

Definition 2.3.6 A Eulerian Tour is a tour that traverses all edges of a graph
exactly once.

Definition 2.3.7 A Eulerian Graph is a graph that has a Eulerian Tour.

Then it is a simple exercise to show the following.

Lemma 2.3.8 A connected graph is Eulerian if and only if the degree of each
vertex is even.

Christofides’ algorithm starts with a minimum spanning tree. Of course, this
tree (as any other tree) is not Eulerian since some of the vertices have odd degree.
We can augment the graph (by adding suitably chosen arcs) so that it becomes
Eulerian. In fact, we would like to add a number of arcs connecting odd degree
vertices so that they then have even degree. To do this, we will find a minimum
weight matching among the odd degree vertices.
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Given agraph with an even number of vertices, amatching is a subset of edges
withtheproperty that every vertex isthe end-point of exactly oneedge of the subset.
I'n the minimum weight matching problem the objectiveisto find amatching whose
total length of all itsedgesisminimum. This problem can besolvedin O (n2) where
n isthe number of vertices in the graph (see Lawler (1976)).

Lemma 2.3.5 tells us that the number of vertices with odd degreein the MST is
even. Thus, adding the edges of a matching defined on those odd degree vertices
clearly increases the degree of each of these vertices by one. The resulting graph
is Eulerian, by Lemma 2.3.8. Of course, to minimize the total cost, we would
like to select the edges of a minimum weight matching. Finally, the Eulerian tour
generated is transformed into a traveling salesman tour using shortcuts, similarly
to what was done in the minimum spanning tree based heuristic of Section 2.3.1.

Let LC bethelength of the tour generated by Christofides' Heuristic. We prove:

Theorem 2.3.9 For all instances of the TSP satisfying the triangle inequality, we

have
3

LS < ZL*
-2
Proof. Recall that W* = W(T*) is the cost of the MST and let W(M*) be the
weight of the minimum weight matching, that is, the sum of edge length of all

edges in the optimal matching. Because of the triangle inequality assumption,
LE < W(T*) + W(M™).

We dready know that W(T*) < L*. It remains to show that W(M*) < %L*.
For this purpose index the vertices of odd degree in the minimum spanning tree
i1, 2, ..., Iz according to their appearance on an optima traveling salesman
tour. Consider two feasible solutions for the minimum weight matching prob-
lem defined on these vertices. The first matching, denoted M*, consists of edges
{i1, 12}, {i3, ia}, ..., {im—1, iz}. The second matching, denoted M2, consists of
edges {iy, i3}, {ia, is}, . .., {iz, i1}.

We clearly have W(M*) < 3[W(M?) + W(M?)]. The triangle inequality as-
sumption tellsusthat W (M) + W(M?) < L*; see Figure 2.3. Hence W (M*) <
5 L* and consequently,

3
L* < W(T*) + W(M*) < éL*. |
As in the two previous heuristics, this bound is tight. Consider the example

depicted in Figure 2.4 for which L* = n while L =n — 1+ %1

2.3.4 Local Search Heuristics

Some of the oldest and, by far, the most extensively used heuristics developed for
the traveling salesman problem are the so-called k-opt procedures (k > 2). These
heuristics, part of the extensive class of local search procedures, can be described



30 2. Worst-Case Analysis

1st Matching v 2nd Matching

FIGURE 2.3. The matching and the optimal traveling salesman tour.

1

FIGURE 2.4. An example for Christofides’ algorithm withn = 7.
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as follows. Given atraveling salesman tour through the set of vertices V, say the
sequence

{i1, 02 o ugs Gugs -« o5 Bugs Lugs -+ -5 In}s

an ¢—exchange is a procedure that replaces ¢ edges currently in the tour by ¢ new
edgessothat theresultisagain atraveling salesmantour. For instance, a2-exchange
procedure replaces edges {i,,, i,,} and {i,,, i,,} with {i,,,i,,} and {i,,, i,,} and
resultsin anew tour

{ila i2- B iula iul» ivl—l’ ey iug» ivz’ iv2+la e ln}

Animproving £-exchangeis an £-exchange that resultsin atour whosetotal length
(cost) is smaller than the cost of the original tour.

A k-opt procedure starts from an arbitrary traveling salesman tour and, using
improving £-exchanges, for ¢ < k, successively generates tours of smaller and
smaller length. The procedure terminates when no improving £-exchangeis found
for al ¢ < k. Let LOPT®) pe the length of the tour generated by a k-opt heuristic,
fork > 2.

Recently, Chandra et al. (1995) obtained interesting results on the worst-case
performance of the k-opt heuristic. They show

Theorem 2.3.10 For all instances of the TSP satisfying the triangle inequality we

have
1,OPT(

<4yn.

L*
In addition, there exists an infinitely large family of TSP instances satisfying the
triangle inequality assumption for which

1,0PT(2)

1
> Zﬁ

They aso provide alower bound on the worst-case performance of k-opt for al
k> 3.

L*

Theorem 2.3.11 Thereexistsaninfinitely largefamily of TSP instances satisfying
the triangle inequality assumption with

1,0PT()

R

1
> —-n
L* — 4

forany k > 2.

Thus, theaboveresultsindicatethat theworst-case performancesof k-opt heuris-
tics are quite poor. By contrast, many researchers and practitioners have reported
that k-opt heuristics can be highly effective; see, for instance, Golden and Stewart
(1985).

This raises a fundamental dilemma. Although worst-case analysis provides a
rigid guarantee on a heuristic's performance, it suffers from being highly deter-
mined by certain pathological examples. Is there a more appropriate measure to
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assess the effectiveness of a particular heuristic, one that would assess the effec-
tiveness on an average or realistic example? We will try to address this question
in the next chapter.

2.4 Exercises

Exercise 2.1. Prove Lemma 2.3.8.

Exercise 2.2. The 2-TSPis the problem of designing two tours that together visit
each of the customers and use the same starting point. Show that any algorithm
for the TSP can solve this problem as well.

Exercise2.3. (Papadimitriou and Steiglitz, 1982) Consider then-city TSPinwhich
the triangle inequality assumption holds. Let ¢* > 0 be the length of an optimal
tour, and let ¢’ be the length of the second best tour. Prove: (¢’ — ¢*)/c* < %
Exercise 2.4. Prove that in every completely connected directed graph (a graph
in which between every pair of vertices there is a directed edge in one of the two
possible directions) there is a directed Hamiltonian Path.

Exercise2.5. Let Z€ bethelength of the tour provided by Christofides' Heuristic,
andlet Z* bethelength of the optimal tour. Construct an examplewith Z¢ = gz *,

Exercise 2.6. Prove that for any graph G there exists an even number of nodes
with odd degree.

Exercise 2.7. Let G be atreewith n > 2 nodes. Show that:
(a) Thereexist at least two nodes with degree one.
(b) The number of arcsisn — 1.

Exercise 2.8. Consider the n-city TSP defined with distances d;;. Assume that
thereexist a, b € IR" suchthat for eachi and j, d;; = a; + b;. What isthe length
of the optimal traveling salesman tour? Explain your solution.

Exercise 2.9. Consider the TSP with the triangle inequality assumption and two
prespecified nodes s and ¢. Assume that the traveling salesman tour has to in-
clude edge (s, t) (that is, the salesman has to travel from s directly to 7). Modify
Christofides' Heuristic for this model and show that the worst-case bound is g

Exercise 2.10. Show that aminimum spanning tree T satisfiesthe following prop-
erty. When 7' is compared with any other spanning tree 7”, the k™ shortest edge
of 7 isno longer than the k™ shortest edgeof 77, fork =1,2,...,n — 1.
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Exercise2.11. (Papadimitriou and Steiglitz, 1982) The Wandering Salesman Prob-
lem (WSP) is a Traveling Salesman Problem except that the salesman can start
wherever he or she wishes and does not have to return to the starting city after
visiting al cities.

(&) Describe a heuristic for the WSP with worst-case bound %’

(b) Show that the same bound can be obtained for the problem when one of the
end-points of the path is specified in advance.

Exercise 2.12. (Papadimitriou and Steiglitz, 1982) Which of the following prob-
lems remain essentially unchanged (complexity-wise) when they are transformed
from minimization to maximization problems? Why?

(a) Traveling Salesman Problem.
(b) Shortest Path from s toz.
(¢) Minimum Weight Matching.

(d) Minimum Spanning Tree.

Exercise 2.13. Suppose there are n jobs that require processing on m machines.
Each job must be processed by machine 1, then by machine 2, . . ., and finally by
machine m. Each machine can work on at most onejob at atime and onceit begins
work onajob it must work onit until completion, without interruption. Theamount

of time machine j must processjob i isdenoted p;; > 0 (fori =1,2,...,nand
j=1,2,..., m).Further supposethat oncetheprocessing of ajobiscompleted on

machine j, itsprocessing must beginimmediatelyonmachine j+1 (for j < m—1).
Thisisaflow shop with no wait-in-process.

Show that the problem of sequencing the jobs so that the last job is completed
as early as possible can be formulated as an (n + 1)-city TSP. Specifically, show
how the d;; values for the TSP can be expressed in terms of the p;; values.

Exercise 2.14. Consider the Bin-Packing Problem with items of size w;, i =
1,2,...,n,suchthat 0 < w; < 1. The objective is find the minimum number
of unit size bins b* needed to pack all the items without violating the capacity
constraint.

(a) Show that }!_; w; isalower bound on b*.

(b) Definealocally optimal solution to be onewhere no two binscan befeasibly
combined into one. Show that any locally optimal solution usesno morethan
twice the minimum number of bins, that is, no more than 2b* bins.

(¢) TheNext-Fit Heuristic isthefollowing. Start by packing thefirstiteminbin
1. Then, each subsequent item is packed in the last opened bin if possible,
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or else anew bin is opened and it is placed there. Show that the Next-Fit
Heuristic produces a solution with at most 26* bins.

Exercise 2.15. (Anily et al., 1994) Consider the Bin-Packing Problem and the
Next-Fit Increasing heuristic. In this strategy items are ordered in anondecreasing
order according to their size. Start by packing the first item in bin 1. Then each
subsequent item is packed in the last opened bin if possible, or else a new bin
is opened and it is placed there. Show that the number of bins produced by this
strategy is no more than % times the optimal number of bins. For this purpose,
consider the following two steps.

(a) Consider the following procedure. First order the items in nondecreasing
order of their size. When packing bini > 1, follow the packing rule: if the
bin is currently feasible (i.e., total load is no more than 1), then assign the
next item to this bin; otherwise, close this bin, open bin i + 1 and put this
iteminbini + 1. Show that the number of bins generated by this procedure
isalower bound on the minimal number of bins needed.

(b) Relatethislower bounding procedureto the number of bins produced by the
Next-Fit Increasing heuristic.

Exercise 2.16. Given anetwork G = (V, E), and edge length [, for every e € E,
assume that edge (u, v) has avariable length x. Find an expression for the length
of the shortest path from s to ¢ as afunction of x.

Exercise 2.17. A complete directed network G = (V, A) isadirected graph such
that for every pair of verticesu, v € V, therearearcsu — vandv — u in A with
nonnegativearc lengthsd(u, v) andd(v, u), respectively. Thenetwork G = (V, A)
satisfiesthetriangleinequality if forall u, v, w € V,d(u, v) +d(v, w) > d(u, w).

A directed cycleis a sequence of verticesvy; — v, — - -+ — v, — vg Without
any repeated vertex other than the first and last ones. If the cycle contains all the
verticesin G, then it is said to be a directed Hamiltonian cycle. To keep notation
Simple, let d,‘j = d(U,‘, Uj).

A directed cycle containing exactly k verticesis called ak-cycle. The length of
acycleis defined as the sum of arc lengths used in the cycle. A directed network
G = (V, A) with |V| > k is said to be k-symmetric if for every k-cycle v; —
v — - — v = V11N G,

dip+dp+ - +di_rp +diy =dy +dij—1+ - +dz+ dor.

In other words, a k-symmetric network is a directed network in which the length
of every k-cycle remains unchanged if its orientation is reversed.

(a) Show that the asymmetric Traveling Salesman Problemon a|V |-symmetric
network (satisfying the triangle inequality) can be solved via solving a cor-
responding symmetric Traveling Salesman Problem. In particular, show that
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any heuristic with fixed worst-case bound for the symmetric Traveling Sales-
man Problem can be used for the asymmetric Traveling Salesman Problem
on a |V|-symmetric network to obtain a result with the same worst-case
bound.

(b) Provethat any 3-symmetric network is k-symmetric for k = 4,5, ..., |V].

Thus part (a) can be used if we have a 3-symmetric network. Argue that a 3-
symmetric network can be identified in polynomial time.
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3
Average-Case Analysis

3.1 Introduction

Worst-case performance analysisis one method of characterizing the effectiveness
of aheuristic. It provides a guarantee on the maximum rel ative difference between
the solution generated by the heuristic and the optimal solution for any possible
problem instance, even those that are not likely to appear in practice. Thus, a
heuristic that works well in practice may have a weak worst-case performance,
if, for example, it provides very bad solutions for one (or more) pathological
instance(s).

To overcome this important drawback, researchers have recently focused on
probabilistic analysis of algorithms with the objective of characterizing the aver-
age performance of a heuristic under specific assumptions on the distribution of
the problem data. As pointed out, for example, by Coffman and Lueker (1991),
probabilistic analysisis frequently quite difficult and even the analysis of simple
heuristics can often present asubstantial challenge. Therefore, usually theanalysis
isasymptotic. That is, the average performance of aheuristic can only be quantified
when the problem size is extremely large.

As we demonstrate in Parts |1 and IV, an asymptotic probabilistic analysis is
useful for several reasons:

1. Itcanfoster new insightsinto which algorithmic approacheswill be effective
for solving large size problems. That is, the analysis provides a framework
where one can analyze and compare the performance of heuristics on large
size problems.

2. For problems with fast rates of convergence, the analysis can sometimes
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explain the observed empirical behavior of heuristics for more reasonable
size problems.

3. The approximations derived from the analysis can be used in other models
and may lead to a better understanding of the tradeoffs in more complex
problemsintegrating vehicle routing with other issuesimportant to the firm,
such asinventory control.

In this chapter we present some of the basic tools used in the analysis of the
average performance of heuristics. Again we use the Bin-Packing Problem and the
Traveling Salesman Problem as the “raw materials’ on which to present them.

3.2 TheBin-Packing Problem

The Bin-Packing Problem provides a very well studied example for which to
demonstrate the benefits of a probabilistic anaysis.

Without loss of generality, we scalethe bin capacity ¢ sothatitis1. Consider the
item sizes wy, wp, w3 . .. to beindependently and identically distributed on (0, 1]
according to some genera distribution ®. In this section we demonstrate two
elegant and powerful techniques that can be used in the analysis of b, the random
variable representing the optimal solution value on theitems wq, wy, ..., w,. The
firstisthetheory of subadditive processesand the secondisthetheory of martingale
inequalities.

Subadditive Processes

Let {a,}, n > 1, beasequence of positive real numbers. We say that the sequence
issubadditiveif for all » and m wehavea, +a,, > a,.,. Thefollowing important
result was proved by Kingman (1976) and Steele (1990) whose proof we follow.

Theorem 3.2.1 If the sequence {a,}, n > 1 is subadditive, then there exists a

constant y such that

. a
lim = =y.

n—>o0o n

Proof. Lety =lim,_, 9. Foragivene select n suchthat % < y +e. Sincethe

sequence {a, } is subadditive we have
apm < ap + Ap(m—1)-

Making arepeated use of thisinequality we get a,,, < ma, which implies

anm

<y +e.
nm
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For any k, O < k < n, define £ = nm + k. Using subadditivity again, we have
Ay = Ayt < Apm+k—1 + a1

< apm + kal

< Qpm + nax

where the second inequality is obtained by repeating the first one k times. Thus,

% _ Apm+k < Apm +na1 < Anm

0 nm+k =~ nm+k T nm

al ag
+—=<y+e+—.

m m
Taking the limit with respect to m we have

-— y -— a1
lim — <y+e+ lim ==y +e.
t—o0 { m—o00 m
The proof is therefore complete since € was chosen arbitrarily. |
It is clear that the optimal solution of the Bin-Packing Problem possesses the
subadditivity property; that is,
Vn,m, b, <Db:+Db}

n+m m*

The above analysis implies that there exists a constant y such that the optimal
solution to the Bin-Packing Problem b satisfies

*

. b
lim 2 =y.

n—oo n

In addition, y is dependent only on the item size distribution ®.

The Uniform Model

Toillustrate the conceptsjust devel oped, consider the case where @ isthe uniform
distribution on [0, 1]. In order to pack a set of n items drawn randomly from
this distribution, we use the following Sliced Interval Partitioning heuristic with
parameter r (S1P(r)). It works as follows. For any fixed positive integer r > 1,
the set of items N is partitioned into the following 2r digjoint subsets, some of
which may be empty:

R T
and
N-’:{keN‘%(l—l—j:l)<wk§%(l+£)} j=12...,r-1
Also
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and

, 1 r—1
N —{kEN‘E(l‘i‘ , )<wk}.
The number of itemsin each N; (respectively, N7) isdenoted by n; (respectively,
n’) for al possible values of ;.

Notethatforany j = 1, 2, ..., r — 1, onebin can hold anitem from N; together
with exactly oneitem from N/. The S1 P(r) heuristic generates pairs of items, one
itemfrom N; andonefrom N/, forevery j = 1,2,...,r—1.Theitemsin NoUN"
are put in individual bins; one bin is assigned to each of these items.

Forany j =1,2,...,r—1,wearbitrarily match oneitem from N; with exactly
one item from N/; one bin holds each such pair. If n; = n/, then al the itemsin
N;UN/ arematched. If, however, n; # n’, thenwecanmatch exactly min{n , n/}
pairs of items. The remaining |n; — n/| itemsin N; U N/ that have not yet been
matched are put one per bin. Thus, the total number of binsused is

r—1
no+n" + Zmax{nj, n’}.
j=1
The heuristic clearly generates afeasible solution to the Bin-Packing Problem.
Since

. i . Y 1 .
lim 2 — jim 2= = (as) foralj=1,2...,r,
n—>oo n—>oo p 2r
we have
b* 1 =1 ‘ 1 1
:Iim—”<|im—[ ! Emax -,J]:— — a.s).
Y n—oo pu ~ n—oon o+ A+ {I’l] n } 2 T 2r ( )

j=1

Since thisholdsfor any r > 1, weseethat y < % Sincey > E(w) (see Exercise
3.4), then y > $ and we conclude that y = % for the uniform distribution on
[0, 1].

Using this idea, we can actually devise an asymptotically optimal heuristic for
instances where the item sizes are uniformly distributed on [0, 1]. To formally
define this property, let Z be the cost of the optimal solution to the problem on
aproblem of sizen, and let Z' be the cost of the solution provided by a heuristic
H. Let the relative error of aheuristic H on a particular instance of n points be

H __ 7%
eH — Zn Zn )
Definition 3.2.2 Let W be a probability measure on the set of instances Z. A
heuristic H is asymptotically optimal for W if almost surely
lim el =0,

n—00

where the problem data are generated randomly from W.
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That is, under certain assumptions on the distribution of the data, H generates
solutions whose relative error tends to zero as n, the number of points, tends to
infinity. The above S1 P(r) heuristic is not asymptotically optimal since for any
fixed r, the relative error converges to %

A truly asymptotically optimal heuristic can easily be constructed. Thefollowing
heuristic is called MATCH. First, sort the itemsin nonincreasing order of theitem
sizes. Then takethelargest item, say item i, and match it with the largest item with
which it will fit. If no such item exists, then put item i in a bin alone. Otherwise,
put item i and theitem it was matched with in abin together. Now repeat this until
al items are packed. The proof of asymptotic optimality is given as an exercise
(Exercise 3.11).

An additional use for the bin-packing constant y is as an approximation for
the number of bins needed. When r is large, the number of bins required to pack
n random items from @ is very close to ny. How close the random variable
representing the number of binsisto ny isdiscussed next.

Martingale Inequalities

Consider the stochastic processes {X,} and {Y,} with n > 0. We say that the
stochastic process { X, } isamartingale with respect to {Y,,} if for every n > Owe
have

(i) E[X,] < +o0, and

(ii) E[Xp41lY1, ..., Y] = X,

To get someinsight into the definition of amartingal e consider someone playing
a sequence of fair games. Let X,, = Y, be the amount of money the player has at
the end of the n™ game. If {X,,} isamartingale with respect to {Y,}, then this says
that the expected amount of money the player will have at the end of the (n + 1)5’t
gameis equal to what the player had at the beginning of that game X ,, regardless
of the game's history prior to state n. See Karlin and Taylor (1975) for details.
Consider now the random variable:

D, = E[Xps1|Y1, ..., Y] — E[Xusa|Y1, ..., Yu_dl.

The sequence {D, } is called a martingale difference sequence if E[D,] = O for
every n > 0. Azuma (1967) developed the following interesting inequality for
martingale difference sequences; see also Stout (1974) or Rhee and Talagrand
(2987).

Lemma3.23 Let {D;},i = 1,2,...,n be a martingale difference sequence.
Then for every t > 0 we have

erZDi > t} < 2exp{ —t2/<22||Di||§o)}f

where || D; ||~ isa uniform upper bound on the D;’s.
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The Lemma can be used to establish upper bounds on the probable deviations
of both

e b’ fromitsmean E[b}], and
o U fromits asymptotic value y.
For this purpose, define
E[bflwy, ..., w;] — E[b}wq, ..., wi—q], ifi>2;
" | E[b¥|wi] — E[b}19], ifi =1.
where E[b}|w1, . .., w;] isthe random variable that represents the expected opti-
mal solution value of the Bin-Packing Problem obtained by fixing the sizes of the
firsti itemsand averaging on &l other item sizes. Clearly, E[b}|w1, ..., w,] = b}
while E[b*|0] = E[b}]. Hence, >/, D; = b% — E[b}]. Furthermore, the se-
guence D; defines amartingal e difference sequence with the property that D; < 1
foreveryi > 1.
Applying Lemma 3.2.3 we obtain the following upper bound.

Pr{|b: — E[B}]| > t} = PrHiDi > t} < 2exp{ —tz/(2n)}.
i=1

This bound can now be used to construct an upper bound on the likelihood that ”7
differs from its asymptotic value by more than some fixed amount.

Theorem 3.2.4 For everye > Othereexistsaninteger ng suchthat for all n > ny,

2

%—y‘>e}<2@(p(—£).

Pr[ 5

Proof. Lemma3.2.1impliesthat lim,_, o, E[%] = y andthereforeforevery e > 0
and k > 2 there exists ng such that for al n > ng we have

el2]-rl <

Consequently,
prf[ % =r] = of < orf - S| |5 - =
= pr| s - eyt > "2

Since this last inequality holds for arbitrary k > 2, this completesthe proof.



3.3 The Traveling Salesman Problem 43

These results demonstrate that b isin fact very closeto ny, and thisistrue for
any distribution of the item sizes. Therefore, it suggests that ny may serve as a
good approximation for & in other, more complex, combinatorial problems.

3.3 The Traveling Salesman Problem

In this section we demonstrate an important use for the tool s presented above. Our
objective is to show how probabilistic analysis can be used to construct effective
algorithms with certain attractive theoretical properties.

Let x1, x2, ..., x, be asequence of points in the Euclidean plane (IR?) and let
L bethelength of the optimal traveling salesman tour through these n points. We
start with adeterministic upper bound on L developed by Few (1955). Wefollow
Jaillet's (1985) presentation.

Theorem 3.3.1 Let a x b be the size of the smallest rectangle that contains
X1, X2...,X,, then
LY </2(n —2)ab + 2(a + b).

Proof. For an integer m (to be determined), partition the rectangle of sizea x b
(wherea isthelength and b isthe height) into 2m equal width horizontal strips. This
creates2m+1 horizontal linesand two vertical lines(counting the boundariesof the
rectangle). Label the horizontal lines 1, 2, ..., 2m + 1 moving downwards. Now
temporarily delete all horizontal lines with an even label. Connect each point x;,
i=1,2...,n,withtwo vertical segments, to the closest (odd-1abeled) horizontal
line. A path through x1, ..., x,, can now be constructed by proceeding from, say
the upper left-hand corner of the a x b rectangle and moving from left to right
on the first horizontal line picking up all points that are connected (with the two
vertical segments) to this line. Then we proceed downwards and cover the third
horizontal line from right to left. This continues until we reach the end of the
2m + 1% line. This path can be extended to atraveling salesman tour by returning
from the last point to the first by adding at most one vertical and one horizontal
line (we avoid diagonal movements for the sake of simplicity). Now repeat this
procedure with the even labeled horizontal lines and, in a similar manner, create
apath through all the customers. Extend this path to a traveling salesman tour by
adding one horizontal line and one vertical segment of length b — % See Figure
3.1
Clearly, the sum of length of the two traveling salesman toursis

b b
a(2m+1)+n—+2b+a+2<b——).
m m

Since L} isno larger than either of these two tours, we have

b
L:§a+2b+ma+(n—2)2—.
m
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B —— 18t tour

--------- 2nd tour

FIGURE 3.1. The two traveling salesman tours constructed by the partitioning algorithm.

The right-hand side is convex in m; hence, we minimize on m. That is, we choose:

" b(n —2)
= [ n2a -]’
then

b(n-2)

L} <a+2b+m*a+

2m*
b(n —2) b(n—2) 2a
§a+2b+a(‘/—~2a +1)+ . /(n—2)b

=/2(n — 2)ab +2(a + b). |

The above result implies that the length of the optimal traveling salesman tour
is at most O(4/n). In 1959, Beardwood et al. showed that the rate of growth of L*,
when customer locations are independent and identically distributed, is @( /7).
Specifically, they prove the following result.

Theorem 3.3.2 Letx), x, . . ., x, be a sequence of independent random variables
having a distribution . with compact support in IR%. Then there exists a constant
B > 0, independent of the distribution ., such that with probability one,

*

L
lim —Z <=8 [ fY(x)dx,
RZ

n—oo ﬁ
where f is the density of the absolutely continuous part of the distribution .

Since Beardwood et al. proved this result many researchers have proved it using
a variety of techniques. One of these methods is based on the concept of Euclidean
subadditive processes (Steele, 1981) which is a generalization of the concept of
subadditive processes described earlier.
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FIGURE 3.2. Region partitioning example withn = 17,g =3,h =2 andt = 1.

In this subsection we are not going to prove the result, but rather concentrate on
its algorithmic implications. Specifically, we will describe the following polyno-
mial time algorithm which is asymptotically optimal. The heuristic was suggested
by Karp (1977), although we have modified it in several places for the purpose of
clarifying the presentation.

A Region Partitioning Heuristic

In the Region Partitioning heuristic, the region containing the points is subdivided
into subregions such that each subregion contains exactly ¢ customers (except
possibly for one) and where g is to be determined later. The heuristic then constructs
an optimal traveling salesman tour on the set of points within each subregion and
then connects these tours to form a traveling salesman tour through all the points.

To generate subregions each with exactly g points, except for possibly one
subregion where there may be fewer points, we use the following strategy: the
smallest rectangle with sides a and b containing the set of points x1, x5, . .., X, is
partitioned by means of horizontal and vertical lines. First, the region is divided
by ¢ vertical lines such that each subregion contains exactly (h + 1)g points except
possibly the last one. This is done precisely as follows: temporarily index the
customers in increasing order of their horizontal coordinate. Place the vertical
lines so that the j™ vertical line (for j < f) goes through the customer with
index j(h + 1)g. Each of these ¢ + 1 subregions is then partitioned by means of
h horizontal lines into & + 1 smaller subregions such that each contains exactly g
points except possibly the last one. More precisely, this is done as follows: in each
vertical strip index the customers in increasing order of their vertical coordinates.
Place the horizontal lines so that the j™ horizontal line (for j < k) goes through
the customer with index jg. See Figure 3.2 for an example.

To solve the Traveling Salesman Problems within each subregion, we use a
dynamic programming algorithm developed by Held and Karp (1962). It finds
an optimal traveling salesman tour through ¢ points in running time which is
0(g*2%). If we choose g = [logn] then solving the Traveling Salesman Problem
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Original

tour

Tour obtained after

using shortcuts

FIGURE 3.3. The tour generated by the region partitioning algorithm.

for a single region takes O(n log? ), and since the number of subregions is no more
than 1 + n/ log n, the total time spent solving these Traveling Salesman Problems
is O(n? logn).

After finding optimal traveling salesman tours within each subregion, observe
that this collection of traveling salesman tours can be easily transformed into
a single traveling salesman tour through all the points. This is true since this
collection of tours along with the lines added as above, defines an Eulerian graph
where the degree of each point (node) is either two or four (a point that is on
the boundary of two subregions will have degree four). Thus, this tour can be
transformed into a single traveling salesman tour, and using shortcuts its length
can be further reduced. See Figure 3.3.

To guarantee that each subregion has exactly g points, except for maybe one, 2

and ¢ must satisfy
n

[
(h+1)q
and
tth+)g <n <@+ 1)h+1).
This is achieved by choosing & = [ 3 - 17.

Let LR? be the length of the tour generated by the above Region Partitioning
heuristic. To establish the quality of the heuristic we need to find an upper bound
on LR®; this is provided by the following.

Lemma 3.3.3 3

LR < L*+ 5P“P,
where PR is the sum of the perimeters of all subregions generated by the Region
Partitioning heuristic.

Proof. Let L; be the length of the optimal traveling salesman tour in subregion
i=12,..., [3]. Similarly, let L% be the sum of the lengths of all segments of
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FIGURE 3.4. The segments S, ..., S; and the corresponding Eulerian graph.

the optimal traveling salesman tour through all n customers that are contained in
the j“‘ subregion, for j > 1. Since the collection of tours and lines constructed
above defines an Eulerian graph, we have L® < }° ; Lj- Also, by definition we
have L* =}~ L}. Thus, it is sufficient to show that

. 3
Ljij-i'—

5P 3.1

where P; is the perimeter of subregion j.

To prove inequality (3.1), assume there are exactly k continuous segments
S1, ..., Sk, of the globally optimal traveling salesman tour, in subregion j; see
Figure 3.4. Let the 2k end-points of these segments be y;, y5, ..., ya ordered
consecutively around the boundary of subregion j. Without loss of generality we
assume that

L(y1y2) + £(y3ya) + - - - + LYuyou—1) < £(32y3) + £(yays) + - - - + L(yu1),

where £(y; y;+1) is the distance between point y; and y;,; along the perimeter of the
j™ subregion. We construct a feasible solution for the Traveling Salesman Problem
defined by the points x; that are in the j™ subregion. The tour is based on (i) the
segments Sy, ..., Sk; (if) two copies of each segment y;y,, y3¥4, . . .5 Yok—1Y2k;
and (iii) one copy of each segment y,y3, y4¥s, - .., Y2 yi.

Observe (Figure 3.4) that the above three components define an Eulerian graph
whose set of vertices is the points x; that belong to the j® subregion plus all the
points y;, fori = 1,2, ..., 2k. This implies that the graph has an Eulerian tour
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whose cost is no more than 3
This tour can be converted into a traveling salesman tour, using shortcuts, and
therefore

. 3
Lj SLj+§Pj.

Summing these up on j completes the proof. |
We can now prove the following result due to Karp.

Theorem 3.3.4 Under the conditions of Theorem 3.3.2, with probability one,
L*

lim — = lim —.

n— 00 \/ﬁ n—o00 n

Proof. Lemma3.3.3 implies
Hence, we need to evaluate the quantity PRP. Note that the number of vertical

lines added in the construction of the subregionsiss < \/g . Each of theselinesis

counted twice in the quantity PRP.
In the second step of the RP heuristic we add /2 horizontal lineswhereh < \/g .

These horizontal lines are also counted twicein PRP. It follows that

PRPSZ\/?(a—i-b)—i-Z(a—i-b)SZ/ " (a+b)+20a+b),
q logn

where the right-hand side inequality isjustified by the definition of g.
Conseguently,

LRP L* 3PRP

NN
- L* 3a+b) 3a-+b)
~—Jn  Jlogn N/
Taking the limit as n goes to infinity proves the theorem. |
3.4 Exercises

Exercise 3.1. Alower bound on 8. Let X(n) = {x1, x2, ..., x,,} beaset of points
uniformly and independently distributed in the unit square. Let ¢; be the distance
fromx; € X(n) tothenearest pointin X (n) \ x;. Let L(X(n)) bethelength of the
optimal traveling salesman tour through X (n). Clearly E(L(X(n))) > nE(£1). We
evauate alower bound on g in the following way.
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(@) Find Pr(¢y > ).
(b) Use (a) to calculate alower bound on E(¢1) = f0°° Pr(¢, > £)de.
(c) Use Stirling’s formulato approximate the bound when » is large.

(d) Show that § isalower bound on B.

Exercise 3.2. An upper bound on 8. (Karp and Steele, 1985) The strips method for
constructing atour through » random points in the unit square dissects the square
into % horizontal strips of width A, and then follows a zigzag path, visiting the
points in the first strip in left-to-right order, then the points in the second strip in
right-to-left order, etc., finally returning to theinitial point from the final point of
the last strip. Prove that, when A is suitably chosen, the expected length of the
tour produced by the strips method is at most 1.16,/7.

Exercise 3.3. Consider the TSP defined on a set of points N indexed 1, 2, ..., n.
Let Z* be the length of the optimal tour. Consider now the following strategy:
starting with point 1, the salesman movesto the closest pointintheset N \ {1}, say
point 2. The salesman then constructs an optimal traveling salesman tour defined
on this set of n — 1 points (N \ {1}) and then returns to point 1 through point 2.
Show that the length of thistour is no larger then 3Z* /2. Is the bound tight?

Exercise 3.4. Prove that the bin-packing constant y satisfies1 < y/E(w) < 2
where E(w) isthe expected item size.

Exercise 3.5. The Harmonic heuristic with parameter M, denoted H (M), is the
following. Foreachk = 1,2,..., M — 1, items of size 25 < w; <  are packed
separately, at most k items per bin. That is, items of size greater than % are packed
one per bin, items of size 3 < w; < 3 are packed two per bin, etc. Finally, items
of sizew; < % are packed separately from the rest using First-Fit.

Given n items drawn randomly from the uniform distribution on (%, 0], what is
the asymptotic number of bins used by H (5)?

Exer cise 3.6. Suggest amethod to pack » itemsdrawn randomly from the uniform
distribution on [%, 1]. Can you prove that your method is asymptotically optimal ?
What is the bin-packing constant (y) for this distribution?

Exer cise 3.7. Suggest amethod to pack »n items drawn randomly from the uniform
distributionon [0, 132]. Can you provethat your method is asymptotically optimal ?
What is the bin-packing constant (y) for this distribution?

Exercise 3.8. Suggest a method to pack » items drawn randomly from the uni-

form distribution on [4—10, %]. Can you prove that your method is asymptotically

optima? What is the bin-packing constant (y) for this distribution?



50 3. Average-Case Andysis

Exercise 3.9. (Dreyfusand Law, 1977) Thefollowing is a dynamic programming
procedure to solve the TSP. Let city 1 be an arbitrary city. Define the following
function.

fi(j, S) = thelength of the shortest path from city 1 to
city j visiting citiesinthe set S, where |S| = i.

Determine the recursive formula and solve the following instance.

The distances between cities.

dj|1 2 3 4 5
110 3 1 5 4
211 0 5 4 3
3]/5 4 0 2 1
413 1 3 0 3
5|15 2 4 1 0

Exercise 3.10. What is the complexity of the dynamic program developed in the
previous exercise?

Exercise 3.11. (Coffman and Leuker, 1991) Consider flipping afair coin n times
insuccession. Let X, represent the random variable denoting the maximum excess
of the number of heads over tailsat any point in the sequence of » flips. It isknown
that E(X,) is ©(4/n). From this, argue that

E[Z}MT] = 2 + 0(Vn).

Exercise3.12. Assumen citiesare uniformly distributed in the unit disc. Consider
the following heuristic for the n-city TSP. Let d; be the distance from city i to the
depot. Order the pointssothat dy < dy, < --- <d,.Foreachi = 1,2,...,n,
draw acircle of radius d; centered at the depot; call this circle i. Starting at the
depot travel directly to city 1. From city 1 travel to circle 2 in adirection aong the
ray through city 1 and the depot. When circle 2 is reached, follow circle 2 in the
direction (clockwise or counterclockwise) that resultsin a shorter route to city 2.
Repeat this same step until city » is reached; then return to the depot. Let Z be
the length of this traveling salesman tour. What is the asymptotic rate of growth
of Z1?|sthis heuristic asymptotically optimal?
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Mathematical Programming Based
Bounds

4.1 Introduction

Animportant method of assessing the effectiveness of any heuristic isto compare
it to the value of alower bound on the cost of an optimal solution. In many cases
thisis not an easy task; constructing strong lower bounds on the optimal solution
may be as difficult as solving the problem. An attractive approach for generating a
lower bound on the optimal solution to an NP-Complete problem is the following
mathematical programming approach. First, formulate the problem as an integer
program; then relax theintegrality constraint and solvetheresulting linear program.

What problemsdo we encounter whenwetry to usethisapproach? Onedifficulty
is deciding on a integer programming formulation. There are myriad possible
formulations from which to choose. Another difficulty may be that in order to
formulate the problem as an integer program, a large (sometimes exponential)
number of variablesarerequired. That is, the resulting linear program may be very
large, so that it is not possible to use standard linear programming solvers. The
third problemisthat it isnot clear how tight the lower bound provided by the linear
relaxation will be. This depends on the problem and the formulation.

In the sections below we demonstrate how a general class of formulations can
provide tight lower bounds on the original integer program. In later chapters we
show that these and similar linear programs can be solved effectively and imple-
mented in a gorithmsthat solvelogistics problemsto optimality or near optimality.
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4.2 AnAsymptotically Tight Linear Program

Again, consider the Bin-Packing Problem. There are many ways to formulate the
problem as an integer program. The one we use here is based on formulating it as
a Set-Partitioning Problem. The ideais as follows. Let F be the collection of all
sets of items that can be feasibly packed into one bin; that is,

Fi{SgN:Zwifl}.

ieS
Foranyi e Nand S € F, let
{ 1, ifies,
ajs = .
0, otherwise.

Let
{ 1, ifthesetof items S are placed in asingle bin,
ys =

0, otherwise.

Then the set-partitioning formulation of the Bin-Packing Problem isthe following
integer program.

Problem P : Min) " ys
SeF
st

Y aisys=1, VieN (4.2)
SeF
ys €{0,1}, VSeF.

In this section we provethat the rel ative difference between the optimal solution
of the linear relaxation of problem P and the optimal solution of problem P (the
integer solution) tends to zero as |N| = n, the number of items, increases. First
we need the following definition.

Definition 4.2.1 A function ¢ is Lipschitz continuous of order g onaset A C IR
if there exists a constant K such that

lp(x) — d(¥)I < Kl|x — y|?, Vx,y € A.
Our first result of this section isthe following.

Theorem 4.2.2 Let the item sizes be independently and identically distributed
according to a distribution @ which is Lipschitz continuous of order ¢ > 1 on
[0, 1]. Let b-P be the value of the optimal solution to the linear relaxation of P,
and let b} be the value of the optimal integer solution to P; that is, the value of
the optimal solution to the Bin-Packing Problem. Then, with probability one,

1 1
lim =b:P = lim =b:.

n—>oo n n—>oo n
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To prove the theorem we consider arelated model. Consider a discretized Bin-
Packing Problem in which there are a finite number W of item sizes. Each dif-
ferent size defines an item type. Let n; be the number of items of type i, for
i=12..,W andletn = 3", n be the total number of items. Clearly,
this discretized Bin-Packing Problem can be solved by formulating it as the set-
partitioning problem P. To obtain some intuition about the linear relaxation of P,
we first introduce another formulation closely related to P.

Let a bin assignment be a vector (ay, az, .. ., aw), where a; > 0 are integers,
and such that asingle bin can contain a; itemsof type 1, along with a, itemsof type
2, ..., dong with ay items of size W, without violating the capacity constraint.
Index all the possiblebinassignments 1, 2, ..., R, and notethat R isindependent
of n. The Bin-Packing Problem can be formulated as follows. Let

A;, = number of items of type i in bin assignment r,
foreachi =1,2,..., Wandr =1,2,...,R. Let
v, = number of times bin assignment r isused in the optimal solution.

The new formulation of the discretized Bin-Packing Problemis:

R
Problem Pp : Min Zy,
r=1
s.t.

R

S oyAuzm, Vi=12...W,
r=1

v, >0andinteger, Vr=12,...,R.

Let b be the value of the optimal solution to Problem Pp, and let b5 be the
optimal solution to the linear relaxation of Problem Pp. Clearly, Problem P and
Problem P, have the same optimal solution values; that is, b* = b7},. On the other
hand, - isnot necessarily equal to ;7. However, it iseasy to seethat any feasible
solution to the linear relaxation of Problem P can be used to construct afeasible
solution to the linear relaxation of Problem Pp and therefore,

b-P > bLP. 4.2)

The following is the crucial lemma needed to prove Theorem 4.2.2.

Lemma4.2.3
PP <b* <P+ W <bPiw

Proof. The left-most inequality istrivial while the right-most inequality is dueto
eguation (4.2). To prove the central inequality note that in Problem Pj there are
W constraints, one for each itemtype. Lety,, forr = 1,2,..., R, be an optimal
solution to the linear relaxation of Problem Pp, and observe that there exists such
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an optimal solution with at most W positive variables; one for each constraint. We
construct a feasible solution to Problem Pp by rounding the linear solution up;
that is, foreachr = 1,2,..., R withy, > Owe make y, = [y,] and for each
r=12,..., Rwithy, = Owemakey, = 0. Hence, theincreasein the objective
function is no more than W. |

Observe that the upper bound on »* obtained in Lemma 4.2.3 consists of two
terms. Thefirst, b, isalower bound on b*, which clearly grows with the number
of items n. The second term (W) isindependent of . Therefore, the upper bound
on b* of Lemma4.2.3 is dominated by P and consequently we see that for large
n, b* ~ b-P, exactly what isimplied by Theorem 4.2.2.

We can now use the intuition developed in the above analysis of the discrete
Bin-Packing Problem to prove Theorem 4.2.2.

Proof. It is clear that b*P < b* and therefore lim,_, o b*°/n < lim,_ o b*/n.
To prove the upper bound, partition the interval (0, 1] into k > 2 subintervals of
equal length. Let N; be the set of items whose size w satisfies L= k <w < ,i and
let [Nj| =n;, j = 1 2, ..., k. We construct a new Bin-Packing Problem where
item sizestake only thevaJuas i,j=1,2,..., kandwherethe number of items
of size £ ismin{n;,n;1}, j = 1,2,..., k — 1. We refer to this instance of the
Bin- Packl ng Problem as the reduced mstance. For this reduced instance, define
b*, b-P and b1 to be the obvious quantities.

It is easy to see that we can always construct a feasible solution to the original
Bin-Packing Problem by solving the Bin-Packing Problem defined on the reduced
instance and then assigning each of theremainingitemsto asingle bin. Thisresults
in: .

b* <b 4 Y Inj—njl
j=1
k—1
<by +k+Y Inj—njl  (usngLemma4.2.3)

j=1
k=1
LP
<P k4 I —njal.
j=1

We now argue that 57 < H-P. This must be true since every item in the reduced
instance can be associated with a unique item in the original instance whose size
is at least as large. Thus, every feasible solution to the linear relaxation of the
set-partitioning problem defined on the original instance is feasible for the same
problem on the reduced instance. Hence,

k—1
b* <BPk+) Inj—njal.
j=1

The Strong Law of Large Numbers and the Mean Value Theorem imply that for
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agivenj =1,...,k — 1, thereexists s; such that

) ; 1
lim 22 = L9065

n—>o0o n

where ¢ isthe density of item sizes. Hence,

— 1 1
lim =|n; —njpal = —~lp(s;) — ¢(s+2)l
n—-oo n k
1 . . _
< %K(sHl —s;)! (by Lipschitz continuity)
2 _ 2
< WK (SnceSj+1 —85; < z)
2 .
< PK (sinceg > 1).
Consequently,
— b  _— bP  2K(k—1)
im — < lim — 4+ ————.
n—oo n n—oo n k2
Since this holds for arbitrary &, this completes the proof. ]

In fact, it appears that the linear relaxation of the set-partitioning formulation
may be extremely close to the optimal solution in the case of the Bin-Packing
Problem. Recently Chan et a. (1995) show that the worst-case effectiveness of the
set-partitioning lower bound (the linear relaxation), that is, the maximum ratio of
the optimal integer solution (b*) to the optimal linear relaxation 5", is 4. They
also provide an example achieving thisbound. That is, for any number of itemsand
any set of item weights, the linear program is at least 75% of the optimal solution.

4.3 Lagrangian Relaxation

In 1971, Held and Karp applied a mathematical technique known as Lagrangian
relaxation to generate a lower bound on a general integer (linear) program. Our
discussion of the method follows the elegant presentation of Fisher (1981). We
start with the following integer program.

Problem P: Z = Min cx
st.
Ax = b, (4.3)
Dx <e, (4.9
x > 0 and integer,

where x is an n-vector, b isan m-vector, e isak-vector, A isanm x n matrix and
D isak x n matrix. Let the optimal solution to the linear relaxation of Problem P
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be Z, p. The Lagrangian relaxation of constraints (4.3) with multipliersu € IR™
is.
Problem LR, : Zp(u) =Min cx + u(Ax — b)
st.
Dx <e, (4.5)
>0 and integer.

The following is a simple observation.
Lemma4.3.1 Forall u € R™, Zp(u) < Z.

Proof. Let x be any feasible solution to Problem P. Clearly, x isalso feasible for
LR, and since Zp(u) isits optimal solution value, we get

Zp(u) < cx +u(Ax — b) = cx.
Consequently, Zp(u) < Z. |

Remark: If the constraints Ax = b in Problem P are replaced with the constraints
Ax < b, then Lemma4.3.1 holdsfor u € IR".

Since Zp(u) < Z holdsfor al u, we are interested in the vector u that provides
the largest possible lower bound. This is achieved by solving Problem D, called
the Lagrangian dual, defined as follows.

ProblemD : Zp = max, Zp(u).
Problem D has a number of important and interesting properties.
Lemma4.3.2 Thefunction Zp(u) isa piecewise linear concave function of u.

Thisimpliesthat Z () attains its maximum at a nondifferentiable point. This
maximal point can be found using a technique called subgradient optimization
which can be described asfollows: given aninitial vector «° the method generates
asequence of vectors {*} defined by

Wt = uk £ 1 (Ax* = b), (4.6)

where x* is an optimal solution to Problem L R,« and # is a positive scalar called

the step size. Polyak (1967) showsthat if the step sizest, 12, . . ., are chosen such

that limy_.oc r = 0and )", # isunbounded, then Zp(u*) convergesto Zp.
The step size commonly used in practice is

o _ M(UB = Zp(u))
£ Yo a(aixk —b;)?

where UB is an upper bound on the optimal integer solution value (found using a
heuristic), a;x* — b; isthe difference between the | eft-hand side and the right-hand
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side of the i constraint in Ax* < b, and A is a scalar satisfying 0 < A; < 2.
Usually, onestartswith Ao = 2 and cutsitin half every time Zp (u) failstoincrease
after a number of iterations.

Itisnow interesting to compare the Lagrangian relaxation lower bound (Zp) to
the lower bound achieved by solving the linear relaxation of the set-partitioning
formulation (Zp).

Theorem 4.3.3
Z\p < Zp.

Proof.
Zp = max { mincx + u(Ax — b)’Dx <e,x >0and integer}
> max { mincx + u(Ax — b)’Dx <e, x> 0}

:maxmax{ve—ub‘vachuA,ng} (by strong duality)

maxive—ub‘vD <c+4uA,v < O]
u,v

min {cy‘Ay =b,Dy<e,y> O} (by strong duality)
y

= Z.p. 1

We say a mathematical program P possesses the integrality property if the
solutiontothelinear relaxation of P awaysprovidesaninteger solution. Inspection
of the above proof reveals the following corollary.

Corollary 4.3.4 If Problem LR, possesses the integrality property, then Zp =
Z|_p.

4.4 Lagrangian Relaxation and the Traveling Salesman
Problem

Held and Karp (1970, 1971) developed the Lagrangian relaxation technique in
the context of the Traveling Salesman Problem. They show some interesting rela-
tionshi ps between this method and a graph-theoretic problem called the minimum
weight 1-tree problem.

441 Thel-TreelLower Bound

We start by defining a 1-tree. For agiven choice of vertex, say vertex 1, al-treeis
atreehavingvertex set {2, 3, . . ., n} together with two distinct edges connected to
vertex 1. Therefore, a 1-tree is a graph with exactly one cycle. Define the weight
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of al-treeto be the sum of the costs of al itsedges. In the minimum weight 1-tree
problem the objectiveisto find a 1-tree of minimum weight. Such a 1-tree can be
constructed by finding a minimum spanning tree on the entire network excluding
vertex 1 and its corresponding edges, and by adding to the minimum spanning tree
the two edges incident to vertex 1 of minimum cost.

We observethat any traveling salesman tour isa 1-tree tour in which each vertex
hasadegree 2. Moreover, if aminimum weight 1-treeisatour, thenitisan optimal
traveling salesman tour. Thus, the minimum weight 1-tree provides alower bound
on the length of the optimal traveling salesman tour.

Unfortunately, thisbound can be quiteweak. However, therearewaystoimprove
it. For this purpose consider the vector 7 = {71, 72, ..., ,} and the following
transformation of the distances {d;;}:

d;jidij+7Ti+7Tj.

Let L* bethelength of the optimal tour with respect to the distance matrix {d;;}.
It is clear that the same tour is also optimal with respect to the distance matrix
{d};}. To seethat observe that any traveling salesman tour S of cost L with respect
to{d;;} hasacost L+23;_; m; withrespectto {d;;}. Thus, thedifference between
the length of any traveling salesmantour in {d;; } and {d;; } is constant, independent
of the tour.

Observe also that the above transformation of the distances does change the
minimum 1-tree. How can this idea be used? First, enumerate al possible 1-trees
and let d* be the degree of vertex i inthe k'™ 1-tree. Let T; be the weight (cost) of
that 1-tree (before transforming the distances). This implies that the cost of that
1-tree after the transformation is exactly

Tk + Z dikﬂ.'i.
ieV
Thus, the minimum weight 1-tree on the transformed distance matrix is obtained
by solving
mkin {Tk + Zdik”i}'
ieV

Since, in the transformed distance matrix, the optimal traveling salesman tour
does not change while the 1-tree provides alower bound, we have

L*+2) 7 > min{Tk + Zd{‘ni},
ieV k ieV
which implies

L* = min {Tk + ;(d}‘ - Z)ni} = w(xn).

Consequently, the best lower bound is obtained by maximizing the function w(rr)
over al possible values of 7. How can wefind the best value of 7 ? Held and Karp
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(1970, 1971) use the subgradient method described in the previous section. That
is, starting with some arbitrary vector °, in step k the method updates the vector
7% according to

ottt = gk 4@k - 2),

i

where 7} isthei™ element in the vector % and #, the step size, equals

_ 2(UB — w(r"))
O Yid-227

k

4.4.2 The 1-Tree Lower Bound and Lagrangian Relaxation

We now relate the 1-tree lower bound to a Lagrangian relaxation associated with
the following formulation of the Traveling Salesman Problem. For every e € E,
let d, be the cost of the edge and let x, be a variable that takes on the value 1 if
the optimal tour includes the edge and the value zero, otherwise. Given a subset
S C V, let E(S) be the set of edgesfrom E such that each edge has its two end-
pointsin S. Let §(S) bethe collection of edgesfrom E inthe cut separating S from
V\S. The Traveling Salesman Problem can be formulated as follows:

Problem P’ : Z* = Min Zdexg

eckE

st.
d xe=2 Vi=12...n (4.7
eed(i)
D xe <ISI-1 VSCV\1L.S#0  (48)
ecE(S)
O0<x,<1 VecE (4.9
x, integer, Vee€ E. (4.10)

Constraints (4.7) ensure that each vertex has an edge going in and an edge
going out. Constraints (4.8), called subtour elimination constraints, forbid integral
solutions consisting of a set of disjoint cycles.

Observe that constraints (4.7) can be replaced by the following constraints.

d xe=2 Vi=1l..n-1 (4.11)
ees(i)
> xe=n. (4.12)
ecE

Thisistruesince constraints (4.11) areexactly constraints (4.7) fori = 1, ..., n—

1. Theonly missing constraintis ) ) Xe = 2. Therefore, it is sufficient to show

e€d(n
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that (4.12) holdsif and only if this one holds. To seethis:

IS S) IS

ecE i=1 e€s(i)

)P ILTED I

i=1 e€s(i) eeﬁ(n)

=mh-1+= er

eeﬁ(n)

Thus, 3" ,.px. =nifandonlyif 3°, 5. xe = 2.
The resulting formulation of the Traveling Salesman Problem is

{Min Zdexe

ecE

(4.8), (4.9), (4.10), (4.11) and (4. 12)}.

We can now use the Lagrangian relaxation technique described in Section 4.3 and
get the following lower bound on the length of the optimal tour.

max i min Y (dij + u; + uj)xi;

i,jev

(4.8), (4.9), (4.10) and (4. 12)].

Interestingly enough, Edmonds (1971) showed that the extreme points of the
polyhedron defined by constraints (4.8), (4.9), (4.10) and (4.12) is the set of all
1-trees; that is, the optimal solution to alinear program defined on these constraints
must be integral. Thus, we can apply Corollary 4.3.4 to see that, the lower bound
obtained from the 1-tree approach is the same as the linear relaxation of Problem
P

45 The Worst-Case Effectiveness of the 1-tree Lower
Bound

We conclude this chapter by demonstrating that the Held and Karp (1970, 1971)
1-tree relaxation provides a lower bound that is not far from the length of the
optimal tour. For this purpose, we show that the Held and Karp lower bound can
be written as follows.

Problen HK :  Z;p = Min Zdexe
ecE
st.

dxe=2 Vi=12...n (413)

ees(i)
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D xe =2 VSCV\(1}.S£0 (414
eed(S)
O<x,<1 VeckE. (4.15)

Lemma4.5.1 Thelinear relaxation of Problem P’ is equivalent to Problem HK.

Proof. Wefirst show that any feasible solution x to thelinear relaxation of Problem
P'isfeasiblefor ProblemHK. Since} ¢ Xe < [SI=1,>, g5y Xe <n—I[S]-1
and Y, gy Xe = n (Why?) weget Y, s Xe > 2.

Similarly, we show that any feasible solution x to Problem HK is feasible for
the linear relaxation of Problem P’. The feasibility of X in Problem HK implies
that 3 s D eesp) Xe = 2IS|. However,

Yo k=2 EA+ Y E=29,

ieS ecé(i) ecE(S) e€s(S)

andsince ), ss)Xe = 2, Weget Y, ps) ¥e < IS| = 1. 1

Shmoysand Williamson (1990) have shown that the Held and Karp lower bound
(Problem HK) has a particular monotonicity property, and as a consequence, they
obtain a new proof of an old result from Wolsey (1980) who showed:

Theorem 4.5.2 For every instance of the TSP for which the distance matrix sat-
isfies the triangle inequality, we have Z* < %‘ZLP.

The proof presented here is based on the monotonicity property established
by Shmoys and Williamson (1990). However, we use a powerful tool discovered
by Goemans and Bertsimas (1993), called the parsimonious property. Thisis a
property that holds for a general class of network design problems.

To present the property consider the following linear program defined on the
completegraph G = (V, E). Associated with each vertex i € V isagiven number
r; whichiseither zeroortwo. Let Vo = {i € V|, = 2}.

We will analyze the following linear program (here ND stands for network
design).

Problen ND : Min Zdexe
ecE
st

dxe=r. Vi=12...n (4.16)
eed(i)
Z Xe>2, VSCV,VonS#¢,
eed(S)

Vo N (V\S) # ¢ (4.17)
O<x,<1 VeckE. (4.18)

Itiseasy to seethat when V, = V thislinear program is equivalent to the linear
program Problem HK. We now provide a short proof of the following result.
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Lemma4.5.3 The optimal solution value to Problem ND is unchanged if we omit
constraint (4.16).

Our proof issimilar to the proof presentedin Bienstock and Simchi-Levi (1993);
see also Bienstock et al. (1993), which uses aresult of Lovasz (1979). In his book
of problems, (Exercise 6.51) Lovasz presents the following result, together with a
short proof. But first, we need a definition.

Definition 4.5.4 An undirected graph G is k-connected between two vertices i
and j if thereare k (node) disjoint paths betweeni and ;.

Lemma4.55 Let G be an Eulerian multigraph and s € V(G), such that G is
k-connected between any two vertices different from s. Then, for any neighbor u
of s, there exists another neighbor w of s, such that the multigraph obtained from
G by removing {s, u} and {s, w}, and adding a new edge {u, w} (the splitting-off
operation) is also k-connected between any two vertices different from s.

Lovasz's proof of Lemma4.5.5 can be easily modified to yield the following.

Lemma4.5.6 Let G be an Eulerian multigraph, Y € V(G) and s € V(G), such
that G is k-connected between any two vertices of Y different from s. Then, for
any neighbor u of s, there exists another neighbor w of s, such that the multigraph
obtained from G by removing {s, u} and {s, w}, and adding a new edge {u, w} is
also k-connected between any two vertices of Y different from s.

We can now prove Lemma4.5.3.

Proof. Let Vo = V\Vy; thatis, Vo = {i € V|r; = 0}. Let Problem ND’ be Problem
ND without (4.16). Finally, let x be arational vector feasible for Problem ND’
chosen such that (i) & isoptimal for Problem ND’, and (i) subject to (i), >
isminimized.

Let M be apositive integer, large enough so that v = 2M x is a vector of even
integers. We may regard v (with aslight abuse of notation) as the incidence vector
of the edge-set £ of amultigraph G with vertex set V. Clearly, G is Eulerian, and
by (4.17), it is 4M —connected between any two elements of V5.

Now suppose that for somevertex s, >, s e > 75 (i.€., s hasadegree larger

than 2Mr, in G). Let us apply Lemma4.5.6 to s and any neighbor u of s (where
Y = V,), and let H be the resulting multigraph, with incidence vector Z.

eeE

Clearly,
Y di <) dd.,
eeE ecE
and so
ecE 2M eckE
Moreover, _
Y=Y i
= Xe — =—.
eckE 2M ecE 2M

Hence, by the choice of X, z = ﬁ cannot be feasible for Problem ND'.
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If s € Vo, then by Lemma 4.5.6, z isfeasible for Problem ND'. Thus, we must
haves € V2 and, infact, 3,5, X = Oforal ¢ € Vo. In other words, E spans

precisely Vs, G is 4M —connected and D ees(isy = 4M + 2. But we claim now

that the multigraph H is 4M —connected. For by Lemma 4.5.6, it could only fail
to be 4M —connected between s and some other vertex, but the only possible cut
of sizelessthan 4M isthe one separating s from V\{s}. Since this cut has at least
4AM edges, the claim is proved. Consequently, again we obtain that 7 is feasible
for Problem ND’, a contradiction. In other words, ) . v. = 2Mr; for al i; that
is, (4.16) holds. |
An immediate consequence of Lemma 4.5.3 is that in Problem HK, one can
ignore constraint (4.13) without changing the value of its optimal solution. This
new formulation reveals the following monotonocity property of the Held and
Karp lower bound: let A C V and consider the Held and Karp lower bound on the
length of the optimal traveling salesman tour through the verticesin A; that is,

Problem HK(A) :  Z.p(A) =Min) _d,x,
ecE
s.t.

Y x=2 VSCA, (419
ecs(S)
O0<x., <1 VeeckE. (4.20)

Since any feasible solution to problem HK (V) isfeasible for problem HK(A), the
cost of thislinear program is monotone with respect to the set of nodes A.
We are ready to prove Theorem 4.5.2.

Proof. Section 2.3.3 presents and analyzesthe heuristic developed by Christofides
for the TSP which isbased on constructing aminimum spanning tree plusamatch-
ing on the nodes of odd degree. Observe that asimilar heuristic can be obtained if
we start from a 1-tree, instead of a minimum spanning tree. Thus, the length of the
optimal tour isbounded by W (T7") + W(M*(A)) where W (T;*) istheweight (cost)
of the best 1-tree and W(M*(A)) is the weight of the optimal weighted matching
defined on the set of odd degree nodesin the best 1-tree, denoted by A.

We arguethat W(M*(A)) < %ZLP(A). Let x bean optimal solution to Problem
HK(A). Itiseasy to seethat the vector %)_c isfeasiblefor the following constraints.

Y xe=1 VieA (4.21)
eed(i)

1 :
Y xe<Z(ISI-1). VYSCAS##, S| =3, [S|isodd (4.22)
ecE(S) 2

O<x, <1 VeckE. (4.23)
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A beautiful result of Edmonds (1965) tells us that these constraints are sufficient
to formulate the matching problem as alinear program. Consequently,

W(M*(A)) < %ZLP(A) < %ZLP(V) = %ZLP

and therefore,
L* < W(T7) + W(M™(A))
<Zip+ }ZLP
2
< §ZLP-
=5 .
4.6 Exercises

Exercise4.1. Prove Lemma4.3.2.
Exercise4.2. Show that alower bound onthe cost of the optimal traveling salesman

tour can be given by:
2
—max Y dij,
|N| ieN ]GZN /

where N isthe set of citiesand d;; is the distance from city i to city ;.

Exercise 4.3. Consider an instance of the Bin-Packing Problem where there are
m; itemsof sizew; € (0,1] for j =1, 2, ..., n. Define abin configuration to be
avector ¢ = (¢, ¢2, .. ., ¢,) With the property that ¢; > Ofori =1,2,...,n and
> i—pcjw; < 1. Enumerate al possible bin configurations. Let there be M such
configurations. Define C . to bethe number of itemsof sizew; inbin configuration
k,fork=212,.... Mandj=1,2,...,n.

Formulate an integer program to solve this Bin-Packing Problem using the
following variables: x; is the number of times configuration k is used, for k =
1,2,....M.

Exercise 4.4. A function u : [0,1] — [0, 1] is dual-feasible if for any sets of
numbers wy, wo, ..., wi, We have

k k
Zwi <1l= Zu(wi) <1
i=1 i=1

(@) Givenaninstanceof the Bin-Packing Problemwithitemsizeswi, wo, ..., w,
and adual-feasible function u, provethat > _; u(w;) < b*.
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(b) Assumen iseven. Let half of theitems be of size% and the other half of size
%. Find adual-feasible function u that satisfies:

n

Zu(wi) = b*.

i=1

Exercise4.5. Consider alist L of n itemsof sizesin (3, 1]. Let 5P bethe optimal
fractional solution to the set-partitioning formulation of the Bin-Packing Problem,
and let b* be the optimal integer solution to the same formulation. Prove that

b* <b-P 41
Exercise 4.6. Prove that if a graph has exactly 2k vertices of odd degree, then the

set of edges can be partitioned into k paths such that each edge is used exactly
once.
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5

The Capacitated VRP with Equal
Demands

5.1 Introduction

A large part of many logistics systems involves the management of a fleet of
vehicles used to serve warehouses, retailers and/or customers. In order to control
the costs of operating the fleet, a dispatcher must continuously make decisions on
how much to load on each vehicle and where to send it. These types of problems
fall under the general class of Vehicle Routing Problems mentioned in Chapter 1.
The most basic Vehicle Routing Problem (VRP) isthe single-depot Capacitated
VehicleRouting Problem (CVRP). It can be described asfollows: aset of customers
has to be served by afleet of identical vehicles of limited capacity. The vehicles
areinitially located at a given depot. The objectiveisto find a set of routesfor the
vehicles of minimal total length. Each route begins at the depot, visits a subset of
the customers and returns to the depot without violating the capacity constraint.
Consider the following scenario. A customer requests w units of product. If we
alow this load to be split between more than one vehicle (i.e., the customer gets
severa deliveries which together sum up to the total load requested), then we can
view the demand for w units as w different customers each requesting one unit
of product located at the same point. The capacity constraint can then be viewed
as simply the maximum number of customers (in this new problem) that can be
visited by asingle vehicle. Thisisthe capacity Q > 1. Therefore, if we allow this
splitting of demands, and this may not be a desirable property (we investigate the
unsplit demand case in Chapter 6), there is no loss in generality in assuming that
each customer has the same demand, namely, one unit, and the vehicle can visit at
most Q of these customers on aroute. Therefore, this model is sometimes called
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the CVRP with splittable demands or the ECVRP.

We denote the depot by xo and the set of customersby N = {x1, x2, ..., x,}.
Theset No = N U {xo} designates all customers and the depot. The customersand
the depot are represented by a set of hodes on an undirected graph G = (N, E).
We denote by d; the distance between customer i and the depot, dimax = MaX; ey d;
the distance from the depot to the furthest customer, and d;; the distance between
customer i and customer j. The distance matrix {d;;} is assumed to be symmetric
and satisfy the triangleinequality; that is, d;; = dj; forall i, j and d;; < djx + di;
for al i, k, j. We denote the optimal solution value of the CVRP by Z* and the
solution provided by a heuristic H by Z".

Inwhat follows, the optimal traveling salesman tour plays an important role. So,
for any set S C No, let L*(S) be the length of the optimal traveling salesman tour
through the set of points S. Also, let L¥(S) be the length of an «-optimal traveling
salesman tour through S, that is, one whose length is bounded from above by
aLl*(S),a > 1

The graph depicted in Figure 5.1 , which is denoted by G(z, s), aso plays an
important role in our worst-case analyses. It consists of s groups of Q nodes and
another s — 1 nodes, called white nodes, separating the groups. The nodes within
the same group have zero interdistance and each group is connected to the depot
by an arc of unit length. The white nodes are of zero distance apart and ¢ units
distance away from the depot. Each white node is connected to the two groups
of nodes it separates by an arc of unit length. Note that when 0 < ¢ < 2, G(z, s)
satisfiesthe triangleinequality (if an edge (i, ;) isnot shown in the graph, then the
distance between node i and node ; is defined as the length of the shortest path
from i to j). Also note that whenever 0 < ¢ < 2, thetour depicted in Figure 5.2 is
an optimal traveling salesman tour of length 2s.

In this chapter, we analyze this problem using the two tools developed earlier,
worst-case and average-case analyses. L ater, in Chapter 6, we will analyzeamore
general model of the CVRP.

5.2 Worst-Case Analysis of Heuristics

A simpleheuristicfor the CV RP, suggested by Haimovich and Rinnooy Kan (1985)
and later modified by Altinkemer and Gavish (1990), is to partition a traveling
salesman tour into segments, such that each segment of customersis served by a
singlevehicle; that is, each segment hasno morethan Q points. Theheuristic, called
the Iterated Tour Partitioning (ITP) heuristic, starts from atraveling salesman tour
through all n = | N| customers and the depot. Starting at the depot and following
the tour in an arbitrary orientation, the customers and the depot are numbered
x@ x@ x@ x@) where x©@ is the depot. We partition the path from x®
to x™ into (%1 digoint segments, such that each one contains no more than Q
customers, and connect the end-points of each segment to the depot. The first
segment contains only customer x(Y. All the other segments contain exactly Q
customers, except maybe the last one. This defines one feasible solution to the
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Group s-1

Group 1 Group s

FIGURE 5.1. Every group contains () customers with interdistance zero.

Group s-1
Group 2

Group 1 Group s

FIGURE 5.2. An optimal traveling salesman tour in G(¢, ).
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problem. We can repeat the above construction by shifting the end-points of all but
the first and last segments up by one position in the direction of the orientation.
This can be repeated Q — 1 times producing atotal of Q different solutions. We
then choose the best of the set of Q solutions generated.

Itiseasy to seethat, for agiven traveling salesman tour, the running time of the
ITP heuristicis O(rn Q). The performance of this heuristic clearly depends on the
quality of theinitial traveling salesmantour choseninthefirst step of thealgorithm.
Hence, when the ITP heuristic partitions an «-optimal traveling salesman tour, it
is denoted I TP(«). To establish the worst-case behavior of the algorithm, we first
find a lower bound on Z*, and then calculate an upper bound on the cost of the
solution produced by the ITP(«) heuristic.

Lemmab5.2.1 Z* > max{L*(No), § Y ey di}.

Proof. Clearly, Z* > L*(Ny) by thetriangleinequality. Toprove Z* > ) Z,E N
consider anoptimal solutioninwhich N ispartitionedintosubsets{Ny, No, ..., N,,,}
where each set N; is served by asingle vehicle. Clearly,

>

| /lzeN

= > L*(N; U {xo}) > Z2maxd >
J

2

Lemma5.2.2 Z'™® < 237 d; + (1 — §)aL*(No).

Proof. We prove the lemma by finding the cumulative length of the Q solutions
generated by the I TP heuristic. The i!" solution consists of the segments:

@ @ Oy (D 420y GHELGO) )y

Thus, among the Q solutions generated, each customer x), 2 < i < n —1
appears exactly once as the first point of a segment and exactly once as the last
point. Therefore, in the cumulative length of the Q solutions the term 2d, is
incurred for each i, 2 < i < n — 1. Customer x® is the first point of a segment
in each of the O solutions, and in the first one it is also the last point. Thus, the
term d,o appears Q + 1 timesin the cumulative length. Similarly, x® is aways
the last point of a segment in each of the Q solutions, and once the first point.
Thus, theterm d,.« appears Q + 1 timesin the cumulative length aswell. Finaly,
each one of the arcs (x®, x@*V) for 1 < i < n — 1 appearsin exactly 0 — 1
solutions sinceit is excluded from only one solution. These arcs, together with the
Q — 1 arcs connecting the depot to xP and Q — 1 arcs connecting the depot to
x®, form Q — 1 copies of theinitial traveling salesman tour selected in the first
step of the heuristic. Thus, if the initia traveling salesman tour is an a-optimal
tour, the cumulative length of al Q toursis
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2% " di+(Q — DL (No)

ieN
<2 di +(Q — DaL*(No).
ieN
Hence, ) L
Z™@ < 23"y + (1— =)L (No). ]
ieN Q
Combining upper and lower bounds, we obtain the following result.

Theorem 5.2.3
ZITP(a)

<1+ (1— é)a. (5.1)

For example, if Christofides' polynomial-time heuristic (¢« = 1.5) is used to
obtain the initial traveling salesman tour, we have

7! TP(LS) 3

5
< - - —.
-2 20

The proof of the worst-case result for the ITP(«) heuristic suggests that if we
canimprovetheboundin (5.1) for « = 1, then the bound can be improved for any
a > 1. However, the following theorem, proved by Li and Simchi-Levi (1990),
saysthat thisisimpossible; that is, the bound

Z*

ITP(1)
Z <o i

VAR 0

is sharp.
Theorem 5.2.4 For any integer Q > 1, there exists a problem instance with
ZITP(l)/z* —2_ é

Proof. Let usconsider the graph G(0, ¢). A solution obtained by the I TP heuristic
isshown in Figure 5.3. In this solution,

ZTPD) =24 244444 ... +442=40 2.
~————
Q—2times

One can construct a solution that has Q vehicles serve the Q groups of customers
and the (Q + 1)% vehicle serve the other Q — 1 nodes. Thus,

Z* < 20.

Hence,
ZITP(l) 1
>2—-—.

A 0
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FIGURE 5.3. Solution obtained by the ITP heuristic

This together with the upper bound of (5.1) completes the proof. |

Another variant of the tour partitioning heuristic is the Optimal Partitioning (OP)
heuristic described by Beasley (1983). The algorithm takes a traveling salesman
tour and optimally partitions it into a set of feasible routes; that is, each route
contains at most Q customers.

Given a traveling salesman tour through the customers and the depot, the points
are numbered x©@, x®, ..., x® in order of appearance on the tour, where x© is
the depot. Define

the distance traveled by a vehicle that starts at x© visits,
Cjx = { customers xU*D, xU*2 . x® and returns to x©, ifk—j<Q;

00, otherwise.

If we find the shortest path from x to x®™ in the acyclic graph (with nodes x),
0 <i <n,andarcs (x©, xD) for0 < i < j < n) where the distance between x(
and x® is C i, we will have an optimal partition of the traveling salesman tour
into feasible routes. For example, if the shortest path from x©@ to x® is x© —
x® — x® 5 x® then three tours are formed, namely, (x©@, x(, . .., x®, x©@),
(x(°), x(t+1), x(f+2)’ e, x("), x(O)) and (x(o)’ x("+1), x(“+2), ey x("), x(o))_

For a given traveling salesman tour, the above shortest path problem can be
solved in O(n Q) time including the time required to evaluate the costs C ;.

When the OP heuristic partitions an «-optimal traveling salesman tour, it is
denoted OP(c). The partitions considered by the OP(x) heuristic include all Q of
the partitions generated by the ITP(«) heuristic. Therefore, ZOP@ < Z!TP@) and
hence its worst-case bound is at least as good; that is,



5.3 The Asymptotic Optimal Solution Value 75

ZOP(a)
Z*

1
The next theorem implies that for « = 1 this bound is asymptotically sharp; that
is, ZOPW /7* tendsto 2 when Q approachesinfinity.
Theorem 5.2.5 For any integer QO > 1, there exists a problem instance with

OP(1) i i — 2
Z°"3 ) 7* arbitrarily closeto 2 o1

Proof. Consider the graph G(1, K¢ + 1), where K isapositive integer. It is easy
to check that
7P = 2KQ + 1)+ 2K Q.

Ontheother hand, consider thesolutioninwhich K Q +1vehiclesservethe K 0+1
groups of customers and another K vehicles serve the other nodes. Hence,

Z"<2AKQ+1)+2K,

and therefore,

ALY 2
lim >2— .
K—oo [/* Q +1

5.3 The Asymptotic Optimal Solution Value

In the following two sections, we assume that the customers are pointsin the plane
and that the distance between any pair of customers is given by the Euclidean
distance. Assume without loss of generality that the depot is the point (0, 0) and
[|x|| designates the distance from the depot to the point x € IR?. The results
discussed in this section and the next are mainly based on Haimovich and Rinnooy
Kan (1985).

The upper bound of Lemma5.2.2 hastwo cost components; the first component
is proportional to the total “radial” cost between the depot and the customers.
The second component is proportional to the “circular” cost: the cost of traveling
between customers. Thiscost isrelated to the cost of the optimal traveling salesman
tour. As discussed in Chapter 2, for large n, the cost of the optimal traveling
salesman tour grows like +/n, while the total radia cost between the depot and
the customers grows like n. Therefore, it is intuitive that when the number of
customersislarge enough the first cost component will dominate the second. This
observation is now formally proven.

Theorem 5.3.1 Let x;, k = 1,2,...,n be a sequence of independent random
variables having a distribution  with compact support in IR?. Let

E@ = [ eldus).

Then, with probability one,
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Proof. Lemma5.2.1 and the strong law of large numberstell us that

lim z > EE(d) (as). (5.2

n—oo n

On the other hand, from Lemma5.2.2,

n n nQ

Z_* B ZITR(1) 2 i+ (1_ E)L (No)

From Chapter 3, we know that there exists a constant 8 > 0, independent of the
distribution p, such that with probability one,

m© (N°) =P / (),

where f is the density of the absolutely continuous part of the distribution w.
Hence,

n

Vl—)OO

lim Z— < —E(d) (as)).

n—00 0

This together with (5.2) proves the Theorem. |
Thefollowing observation isin order. Haimovich and Rinnooy Kan prove The-

orem 5.3.1 merely assuming E(d) is finite rather than the stronger assumption

of a compact support. However, the restriction to a compact support seems to be

satisfactory for al practical purposes. The following is another important gener-

aization of Theorem 5.3.1. Assume that a cluster of w; customers (rather than a

singlecustomer) islocated at point x;, k = 1, 2, . .., n. Thetheorem then becomes

zx 2
lim — = —E(w)E(d), (5.3
n—oo n (0]
where E(w) isthe expected cluster size, provided that the cluster size isindepen-
dent of the location. This follows from a straightforward adaptation of Lemma
5.21and Lemma5.2.2.

54 Asymptotically Optimal Heuristics

Theproof of the previous Theorem (Theorem 5.3.1) revealsthat the ITP(«) heuris-
tic provides a solution whose cost approaches the optimal cost when » tends to
infinity. Indeed, replacing ITP(1) by ITP(«) in the previous proof gives the fol-
lowing theorem.

Theorem 5.4.1 Under the conditions of Theorem 5.3.1 and for any fixed o« > 1,
the ITP(«) heuristic is asymptotically optimal.
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As is pointed out by Haimovich and Rinnooy Kan (1985), iterated tour par-
titioning heuristics, although asymptotically optimal, hardly exploit the special
topological structure of the Euclidean plane in which the points are located. It
is therefore natural to consider Region Partitioning (RP) heuristics that are more
geometric in nature.

Haimovich and Rinnooy Kan consider three classes of regiona partitioning
schemes. In Rectangular Region Partitioning (RRP), one starts with a rectangle
containing the set of customers N and cuts it into smaller rectangles. In Polar
Region Partitioning (PRP) and Circular Region Partitioning (CRP), one starts
with acircle centered at the depot and partitions it by means of circular arcs and
radial lines. We shall shortly discuss each one of thesein detail.

In each casethe RP heuristics construct subregionsof the plane, where subregion
Jj contains a set of customers N(j). These subregions are constructed so that each
one of them has exactly Q customers except possibly one.

Sinceevery subset N (j) hasno morethan Q customers, each of these RP heuris-
tics allocates one vehicle to each subregion. The vehicles then use the following
routing strategy. The first customer visited is the one closest to the depot among
all the customersin N(j). Therest are visited in the order of an «-optimal travel-
ing salesman tour through N (j). After visiting all the customers in the subregion
the vehicle returns to the depot through the first (closest) customer. It is therefore
natural to call these heuristics R P(«) heuristics. In particular we have RR P(«),
PRP(x) and CRP(c).

Lemma5.4.2 ZRF) < 237\ d; + 2dmax +a 3 ; L*(N()))-

Proof. We number the subsets N () constructed by the R P(«) heuristic so that
IN(j)| = Q forevery j > 2and [N(1)| < Q. It follows that the total distance
traveled by the vehicle that visits subset N(j), for j > 2,is

<2 min d; + aL*(N(j))
ieN(j)

2 S 4 al (V).

S J—
Q ieN(j)
while the total distance traveled by the vehicle that visits N(1) is no more than
2dmax + a L*(N(1)).

Taking the sum over all subregions we obtain the desired result. |

The quality of the upper bound of Lemma 5.4.2 depends, of course, on the
quantity Z,,- L*(N(7)). Thisvalue was analyzed in Chapter 3 where it was shown
that for any R P heuristic

ZL*(N(j)) < L*(N) + gPRP, (5.4
7
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where PR? isthesum of perimetersof the subregionsgenerated by theRPheuristic.
For thisreason we analyzethe quantity P*? in each of thethreeregion partitioning
heuristics.

Rectangular Region Partitioning (RRP)

Thisheuristicisidentical totheoneintroduced for the Traveling Salesman Problem
in Section 3.3. The smallest rectangle with sides a and b containing the set of
customers N is partitioned by means of horizontal and vertical lines. First, the
region is subdivided by ¢ vertical lines such that each subregion contains exactly
(h + 1) Q points except possibly the last one. Each of theser + 1 subregionsisthen
partitioned by means of 4 horizontal linesinto 4 + 1 smaller subregions such that
each contains exactly Q points except possibly for the last one.
Asbefore, h and ¢ should satisfy

= Gipol L

and
th+1)Q0 <n=<(t+1Hh+10.

The unique integer that satisfies these conditionsis i = (\/% — 17. Note that the

number of vertical linesadded isr < %, and each of theselinesis counted twice
in the quantity PRRP.
In the second step of the RRP we add % horizontal lineswhereh < \/% . These

horizontal lines are also counted twicein PRRP_ [t follows that

PRRP < /%(a+b)+2(a+b) < 8dma /% + 8dmax.

Polar Region Partitioning (PRP)

The circle with radius dma containing the set N and centered at the depot is
partitioned in exactly the same way as in the previous partitioning scheme, with
theexception that circular arcsand radial linesreplacevertical and horizontal lines.
Using the same analysis, one can show:

PPRP < 6rd /% + 27 iy + 2dimax. (5.5)

Circular Region Partitioning (CRP)

This scheme partitionsthe circle centered at the depot with radius dnax into 2 equal
sectors, where  isto be determined. Each sector isthen partitioned into subregions
by means of circular arcs, such that each subregion contains exactly Q customers
except possibly the one closest to the depot. Thus, at most /2 subregions, each from
one sector, have lessthan Q customers. These subregions (with the depot on their
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boundary) are then repartitioned by means of radial cuts such that at most 7 — 1
of them have exactly Q customers each except for possibly the last one.

Thetotal length of theinitial radial linesisidma. Thelength of aninner circular
arc bounding a subregion containing aset N () is no more than

2 min d; < 2_HZ;6N({‘) d; _ 21 Y iengy di
h ieN(j) h INQj) hQ

)

while the length of the outer circle is 27 dma. Finaly, the repartitioning of the
central subregions adds no more than hd% Thus,

27[ ZiEN di + hdmax
hO 2

PCRP = 2<hdmax + ) + 277 dimax -

Taking h = ( %-‘, we obtain the following upper bound on P¢R?,

[ 1
PCRP < 4 3ndmax§Zd,» + (3 + 27)dmax.
ieN

The reader should be aware that all of these partitioning schemes can be im-
plemented in O(n logn) time. We now have all the necessary ingredients for an
asymptotic analysis of the performance of these partitioning heuristics.

Theorem 5.4.3 Under the conditions of Theorem 5.3.1 and for any fixed o« > 1,
RRP(x), PRP(x) and CR P(«) are asymptotically optimal.

Proof. Lemma 5.4.2 together with equation (5.4) provide the following upper
bound on the total distance traveled by all vehiclesin the solution produced by the
above R P heurigtics.

2 3
ZRPC) < 2N " d; + 2dma + aL*(N) + Sa PR
ieN 2

By the strong law of large numbers and the fact that the distribution has compact
support, % > ey di converges almost surely to E(d) while ""“Tax converges almost
surely to 0. Furthermore, @ convergesto 0 almost surely; seethe proof of The-
orem 5.3.1. Finally, from the analysis of each of the region partitioning heuristics
and the fact that the points are in a compact region, PTRP converges almost surely
to zero aswell. |

In conclusion, we seethat the CV RPwith equal demandsisasymptotically solv-
able viaseveral different region partitioning schemes. In fact, since each customer
has the same demand, the packing of the customers' demands into the vehicles
isatrivia problem. Any Q customers can fit. The more difficult problem, when
demands are of different sizes, presents complicating bin-packing features which

will prove to be more difficult.
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55 Exercises

Exercise 5.1. Consider the following version of the Capacitated Vehicle Routing
Problem (CVRP). You are given anetwork G = (V, A) with positive arc lengths.
Assumethat E C A isagiven set of edgesthat have to be “covered” by vehicles.
The vehicles areinitially located at adepot p € V. Each vehicle has a“capacity”
q; that is, each vehicle can cover no more than ¢ edges from E. Once a vehicle
starts an edge in E it has to cover al of it. The objective is to design tours for
vehicles so that al edgesin E are covered, vehicles capacities are not violated
and total distance traveled is as small as possible.

(@) Suppose wewant first to find asingle tour that starts at the depot p, traverses
al edgesin E and ends at p whose total cost (length) is as small as possible.
Generalize Christofides' heuristic for this case.

(b) Consider now the version of the CVRP described above and suggest two
possible lower bounds on the optimal cost of the CVRP.

(c) Describe a heuristic algorithm based on a tour partitioning approach using,
astheinitial tour, the tour you found in part (a). What is the worst-case bound of
your algorithm?

Exercise 5.2. Derive equation (5.3).

Exercise 5.3. Consider an n customer instance of the CVRP with equal demands.
Assume there are m depots and at each depot is an unlimited number of vehicles
of limited capacity. Suggest an asymptotically optimal region partitioning scheme
for this case.

Exercise 5.4. Consider an n customer instance of the CVRP with equal demands.
Thereare K customer types: acustomer is of type k with independent probability
pr > 0. Customersof different types cannot be served together in the samevehicle.
Devise an asymptotically optimal heuristic for this problem. If K isafunction of
n, what conditions on K (n) are necessary to ensure that this same heuristic is
asymptotically optimal ?

Exercise 5.5. Derive equation (5.5).
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The Capacitated VRP with Unequal
Demands

6.1 Introduction

In this chapter we consider the Capacitated VVehicle Routing Problem with unequal
demands (UCVRP). In this version of the problem, each customer i has ademand
w; and the capacity constraint stipulatesthat the total amount delivered by asingle
vehicle cannot exceed Q. Welet Z* denote the optimal solution value of UCVRP,
that is, the minimal total distance traveled by all vehicles.

Inthisversion of the problem, the demand of acustomer cannot be split over sev-
eral vehicles; that is, each customer must be served by asingle vehicle. This, more
general version of themodel, is sometimes called the CVRPwith unsplit demands.
The version where demands may be split is dealt with in Chapter 5. Splitting a
customer’sdemand is often physically impossible or managerially undesirable due
to customer service or accounting considerations.

6.2 Heuristicsfor the CVRP

A great deal of work has been devoted to the development of heuristics for the
UCVRP,; see, for example, Christofides (1985), Fisher (1995), Federgruen and
Simchi-Levi (1995) or Bertsimasand Simchi-L evi (1996). Following Christofides,
we classify these heuristics into the 4 categories:

e Constructive Methods

e Route First-Cluster Second Methods
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o Cluster First-Route Second Methods

e Incomplete Optimization Methods.

We will describe the main characteristics of each of these classes and give
examples of heuristics that fall into each.

Constructive Methods

The Savings Algorithm suggested by Clarke and Wright (1964) is the most im-
portant member of this class. This heuristic, which is the basis for a number of
commercial vehicle routing packages, is one of the earliest heuristics designed for
this problem and, without a doubt, the most widely known. The idea of the sav-
ings algorithm is very simple: consider the depot and » demand points. Suppose
that initially we assign a separate vehicle to each demand point. Thetota distance
traveled by avehiclethat visits demand point i is2d;, whered; isthe distance from
the depot to demand point ;. Therefore, the total distance traveled in this solution
is2 Z:’:]_ d;.

If we now combine two routes, say we serve i and j on asingle trip (with the
same vehicle), the total distance traveled by thisvehicleisd; 4 d;; +d;, whered;;
is the distance between demand pointsi and j. Thus, the savings obtained from
combining demand points i and j, denoted s;;, is:

sij =2d,'+2dj—(di+dj+dl'j)=di+dj—dij.

Thelarger the savings s;;, the more desirableit is to combine demand points: and
j. Based on thisidea, Clarke and Wright suggest the following algorithm.

The Savings Algorithm
Sep 1: Start with the solution that has each customer visited by aseparate vehicle.

Step 2: Calculatethe savingss;; = do; + djo — d;j > O for @l pairs of customers
iandj.
Sep 3: Sort the savings in nonincreasing order.

Sep 4: Find thefirst feasible arc (i, j) in the savings list where
1) i and j are on different routes,

2) both i and j are either the first or last visited on their respective routes, and

3) the sum of demands of routesi and j isno morethan Q.

Add arc (i, j) to the current solution and delete arcs (0, i) and (j, 0). Delete arc
(i, j) from the savings list.

Sep 5: Repeat step 4 until no more arcs satisfy the conditions.

Additional constraints, which might be present, can easily be incorporated into
Step 4. Usually a simple check can be performed to see whether combining the
tours containing i and j violates any of these constraints.
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Other examples of heuristics that fall into this class are the heuristics of Gaskel
(1967), Yellow (1970) and Russell (1977). In particular the first two are modifica-
tions of the Savings agorithm.

Route First-Cluster Second Methods

Traditionally, this class has been defined as follows. The class consists of those
heuristics that first construct a traveling salesman tour through all the customers
(routefirst) and then partition the tour into segments (cluster second). One vehicle
isassigned to each segment and visits the customers according to their appearance
on the traveling salesman tour.

Aswe shall seein the next section some strong statements can be made about
the performance of heuristics of thisclass. For this purpose, we give amore precise
definition of the class here.

Definition 6.2.1 Aheuristicisaroutefirst-cluster second heuristicifit first orders
the customers according to their locations, disregarding demand sizes, and then
partitions this ordering to produce feasible clusters. These clusters consist of sets
of customers that are consecutive in the initial order. Customers are then routed
within their cluster depending on the specific heuristic.

This definition of the class is more general than the traditional definition given
above. The disadvantage of this class, of which we will give arigorous anaysis,
can be highlighted by the following simple example. Consider a routing strategy
that orders the demands in such a way that the sequence of demand sizes in the
orderis(9,2,9,2,9,2,9, 2, ...).f thevehicle capacity is 10, then any partition of
this tour must assign one vehicle to each customer. This solution would consist of
half of the vehicles going to pick up two units (using 20% of the vehicle capacity)
and returning to the depot; not a very efficient strategy. By contrast, a routing
strategy that looks at the demands at the sametime asit looks at customer locations
would clearly find amoreintelligent ordering of the customers: one that sequences
demands efficiently to decrease total distance traveled.

Theroutefirst-cluster second classincludes classical heuristics such asthe Opti-
mal Partitioning heuristic introduced by Beasley (1983), and the Sweep algorithm
suggested by Gillett and Miller (1974).

Inthe Optimal Partitioning heuristic, onetriesto find an optimal traveling sales-
man tour, or, if thisis not possible, a tour that is close to optimal. This provides
the initial ordering of the demand points. The ordering is then partitioned in an
efficient way into segments. This step can be done by formulating a shortest path
problem. See Section 5.2 for details.

In the Sweep algorithm, an arbitrary demand point is selected as the starting
point. The other customersare ordered according to the angle made between them,
the depot and the starting point. Demands are then assigned to vehicles following
thisinitial order. In effect, the points are “ swept” in a clockwise direction around
the depot and assigned to vehicles. Then efficient routes are designed for each
vehicle. Specifically, the Sweep algorithm is the following.
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The Sweep Algorithm

Sep 1: Calculate the polar coordinates of all customers where the center is the
depot and an arbitrary customer is chosen to be at angle 0. Reorder the customers
so that

0=01<0,<--- <0,

Sep 2: Starting from the unrouted customer i with smallest angle 6; construct a
new cluster by sweeping consecutive customersi + 1,i + 2. .. until the capacity
constraint will not allow the next customer to be added.

Sep 3. Continue Sep 2 until all customers are included in a cluster.

Sep 4: For each cluster constructed, solve the TSP on the subset of customers
and the depot.

In both of these methods additional constraints can easily be incorporated into
the algorithm.

We note that, traditionally, researchers have classified the Sweep algorithm asa
cluster first-route second method and not asaroutefirst-cluster second method. Our
opinion isthat the essential part of any vehicle routing algorithm is the clustering
phase of the algorithm, that is, how the customersare clustered into groupsthat can
be served by individual vehicles. The specific sequencing within acluster can and,
for most problems, should be done once these clusters are determined. Therefore,
a classification of algorithms for the CVRP should be solely based on how the
clustering is performed. Thus, the Sweep algorithm can be viewed as an algorithm
of the route first-cluster second class since the clustering is performed on a fixed
ordering of the nodes.

Cluster First-Route Second Methods

In this class of heuristics, the clustering is the most important phase. Customers
are first clustered into feasible groups to be served by the same vehicle (cluster
first) without regard to any preset ordering and then efficient routes are designed
for each cluster (route second).

Heuristics of this class are usually more technically sophisticated than the pre-
vious class, since determining the clusters is often based on a mathematical pro-
gramming approach. This class includes the following three heuristics:

e The Two-Phase Method (Christofides et al., 1978)
e The Generalized Assignment Heuristic (Fisher and Jaikumar, 1981)
e The Location-Based Heuristic (Bramel and Simchi-Levi, 1995)

The first two heuristics use, in afirst step, the concept of seed customers. The
seed customers are customers that will be in separate vehiclesin the solution, and
around whichtoursare constructed. I n both cases, the performance of thealgorithm
depends highly on the choice of these seeds. Placing the CVRP in the framework
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of a different combinatorial problem, the Location-Based Heuristic selects the
seeds in an optimal way and creates, at the same time, tours around these seeds.
Thus, instead of decomposing the processinto two steps, as donein the Two-Phase
Method and the Generalized Assignment Heuristic, the L ocation-Based Heuristic
simultaneously picks the seeds and designs tours around them. We will discuss
this heuristic in detail in Section 6.7.

Incomplete Optimization Methods

These methods are optimization algorithms that, due to the prohibitive comput-
ing time involved in reaching an optimal solution, are terminated prematurely.
Examples of these include:

e Cutting Plane Methods (Cornugjols and Harche, 1993)

e Minimum K-Tree Methods (Fisher, 1994).

The disadvantage of incomplete optimization methods is that they still require
large amounts of processing time; they can handle problemswith usually no more
than 100 customers.

6.3 Worst-Case Analysis of Heuristics

In the worst-case analysis presented here, we assume that the customer demands
w1, wy, ..., w, and the vehicle capacity Q are rationals. Hence, without oss of
generality, Q and w; are assumed to be integers. Furthermore, we may assume
that Q is even; otherwise one can double Q aswell aseachw;, i =1, 2,...,n,
without affecting the problem. The following two-phase route first-cluster second
heuristic was suggested by Altinkemer and Gavish (1987). In the first phase, we
relax therequirement that the demand of acustomer cannot be split. Each customer
i isreplaced by w; unit demand points that are zero distance apart. We then apply
the ITP(«) heuristic (see Section 5.3) using a vehicle capacity of %. In the second
phase, we convert the solution obtained in Phase | to a feasible solution to the
origina problem without increasing the total cost. This heuristic is caled the
Unequal-Weight Iterated Tour Partitioning (UITP(«)) heuristic.

We now describe the second phase procedure. Our notation follows the one
suggested by Haimovichetal. (1988). Letm = ), _, w; bethenumber of demand
pointsintheexpanded problem. Recall that inthefirst phasean arbitrary orientation
of the tour is chosen. The customers are then numbered x©, x®, x@ x) jn
order of their appearance on the tour, where x© isthe depot. The I TP(«) heuristic
partitions the path from x® to x into [%7 digjoint segments such that each

one contains no more than % demand points and connects the end-points of each
segment to the depot. The segmentsareindexedby j =1, 2,..., (%”1, such that
the first customer of the ;™ segment is x%) and the last customer is x(¢/). Hence,
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the j™ segment, denoted by S, includes customers {x?), ... x()}. Obviously,
if x() = x®+1) for some j, then the demand of customer x /) is split between the
7" and (j + 1) segments; therefore, these are not feasible routes. On the other
hand, if x(¢/) £ x®i+1) for all j, then the set of routesis feasible.

We now transform the solution obtained in thefirst phaseinto afeasible solution
without increasing the total distance traveled. We use the following procedure.

The Phase Two Procedure
Sepl: Set S, =p,forj=12....[2]

Sep2: Forj=1to {%1 —1do
If x€) = x®i+1) then

If 0% woo < O thenlet s, = {x®), .., x)) and
let x®iv) — xbjratD)
elselet S;. = (x®), ... x€=D} and x i) = x(e)
dse let S = {x®), ... x@)).

We argue that the procedure generates feasible sets S} forj=12,..., {%1.

Note that the j! set can be enlarged only in the (j — 1)% and ;" iterations (if at
al). Moreover if itisenlarged in the j™ iteration, it isclearly donefeasibly in view
of the test Zf/:*bl/_ w0 < Q.Ontheother hand, if S; isenlarged in the (j — 1)%
iteration, at most % demand points are added thus ensuring feasibility. Thiscan be
verified asfollows. Assumeto the contrary that in the (j — 1) iteration more than
% demand points are transferred from S’ _; to §; so that inthe (j — 1)% iteration
x(-2) = x))_ Since the original set S;_; contains at most £ demand points we
must have shifted demand pointsin the (j — 2)™ iteration from S;i2t0S;_1 (and
in particular x®i-) = x(€i-2)), part of which are now being transferred to S;. This
impliesthat x®) = x(i-2) = x(i-) = x(e-2) = x®) wheree; »,b;_1,e;_1 and
b; refer to the original sets S;_,, S;_1 and S;. In other words at the beginning
of the (j — 1)* iteration the set S, contains a single customer x(*). But then,
shifting x/) = x* backwardsto §';_, isfeasible, contradicting the fact that more

than £ demand points need to be shifted forward from §’_4 10 S} Therefore, the
procedure generates feasible sets and we have the following worst case bound.

Theorem 6.3.1 22

7 <2+ (1— 2

Proof. Recall that in the first phase the vehicle capacity is set to % . Hence, using
the bound of Lemma 5.2.2 we obtain the following upper bound on the length of
the tours generated in Phase | of the UITP(«) heuristic,

% > diwi + (1 - é)OIL*(NO) (6.1)
ieN
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Inthe second phase of thealgorithm, thetour obtained inthefirst phaseisconverted
into afeasible solution with total length no morethan (6.1). To verify this, we need
only to analyze those segments whose end-points are modified by the procedure.

Suppose that S; and S} differ in their starting point; then S} must start with
x®+D Thisimplies that arc (x®, x®+D), which is part of the Phase | solution,
does not appear in the j™ route. The triangle inequality ensures that the sum of
the length of arcs (x©@, x®) and (x®?), xs+D) is no smaller than the length of
arc (x@, x®+). A similar argument can be applied if S; and ', differ in their
terminating point. Consequently, for every segment j,for j = 1,2, ..., (%’“1 , the
length of the j™ route according to the new partition is no longer than the length
of the ™ route according to the old partition. Hence,

4 2
ZYTP@) < — N gow; + (1= = JaL*(No).
0 ZN ( Q) °
Clearly, Z > Z*, and therefore using thelower bound on Z* developed in Lemma
5.2.1 completes the proof. |

The UITP heuristic was divided into two phases to prove the above worst-case
result. However, if the Optimal Partitioning heuristic isused in the unequal weight
model, the actual implementation is a one-step process. This is done as follows.
Given atraveling salesman tour through the set of customers and the depot, we
number thenodesx©, x®, ... x® in order of their appearance on the tour where
x© isthe depot. We then define a distance matrix with cost C j, where

the distance traveled by a vehicle that starts

at x@, visitscustomers xU+D x(+2) &
Cjx = | andreturnsto x©, it Y wo < 0
00, otherwise.

Asinthe equal demand case (see Section 5.2), it follows that a shortest path from
x© to x® in the directed graph with distance cost C;; corresponds to an optimal
partition of the traveling salesman tour. This version of the heuristic, developed
by Beasley and called the Unequal-Weight Optimal Partitioning (UOP) heuristic,
also has ZYOP@) )7+ < 2 4 (1 — %)a. The following theorem, proved by Li and
Simchi-Levi (1990), implies that when o« = 1, this bound is asymptoticaly tight
as Q approachesinfinity.

Theorem 6.3.2 For any integer Q > 1, there exists a problem instance with
UOP(1, UITP(L i H 6

ZYOPW /7 (and therefore ZY'TPM/ Z*) arbitrarily close to 3 — 525

Proof. Wemodify thegraph G (2, K ¢+1), where K isapositiveinteger, asfollows.

Every group now, instead of containing Q customers, contains only one customer

withdemand Q. Theother K Q customershaveunit demand. Theoptimal traveling

salesman tour is again as shown in Figure 5.2, and the solution obtained by the
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UOP(1) heuristicisto have 2K Q + 1 vehicles, each one of them serving only one
customer. Thus
ZVPD = 2(KQ 4+ 1) + 4K Q.

The optimal solution to this problem has K Q + 1 vehicles serve those customers
with demand Q, and K other vehicles serve the unit demand customers. Hence,

ZF=2(KQ+1)+4K.
Therefore,

im ZUOP L 2A(KQ+1)+4KQ _3 6 .
K—oo Z* T Koo 2AKQ+1)+4K o 0+2

6.4 The Asymptotic Optimal Solution Value

In the probabilistic analysis of the UCVRP we assume, without |oss of generality,
that the vehicles' capacity Q equals 1, and the demand of each customer is no
morethan 1. Thus, vehicles and demandsin a capacitated vehicle routing problem
correspond to bins and item sizes (respectively) in a Bin-Packing Problem. Hence,
for every routing instance there is a unique corresponding bin-packing instance.

Assume the demands w1, wo, ..., w, are drawn independently from a distri-
bution @ defined on [0, 1]. Assume customer locations are drawn independently
from aprobability measure u with compact support in IR?. We assumethat d; > 0
foreachi € N sincecustomersat the depot can be served at no cost. In this section
wefind the asymptotic optimal solution valuefor any ® and any w. Thisisdone by
showing that an asymptotically optimal algorithm for the Bin-Packing Problem,
with item sizes distributed like @, can be used to solve, in an asymptotic sense,
the UCVRP.

Given the demands w1, wo, . .., wy, let b be the number of bins used in the
optimal solution to the corresponding Bin-Packing Problem. As demonstrated in
Theorem 3.2.4 there exists aconstant ¥ > 0 (depending only on @) such that

nILngo % =y (as). (6.2)
We shall refer to the constant  as the bin-packing constant and omit the depen-
dence of y on ® in the notation.
The following theorem was proved by Simchi-Levi and Bramel (1990). Recall,
without loss of generality the depot is positioned at (0, 0) and ||x|| represents the
distance from the point x € IR? to the depot.

Theorem 6.4.1 Let xi, k = 1,2,...,n be a sequence of independent random
variables having a distribution .« with compact support in IR?. Let

E@ = [ xldus).



6.4 The Asymptotic Optimal Solution Value 89

Let thedemands wy, k = 1, 2, ..., n be a sequence of independent random vari-
ableshaving a distribution & with support on [0, 1] and assume that the demands
and the locations of the customers are independent of each other. Let y be the
bin-packing constant associated with the distribution ®; then, almost surely,

Il_)ngO %Z; =2y E(d).

Thus, the theorem fully characterizes the asymptotic optimal solution value of
the UCVRP, for any reasonable distributions ® and 1. An interesting observation
concerns the case where the distribution of the demands allows perfect packing,
that is, when the wasted space in the bins tends to become a small fraction of the
number of bins used. Formally, @ issaid to allow perfect packing if amost surely
lim,_ % = E(w). Karmarkar (1982) proved that a nonincreasing probability
density function (with some mild regularity conditions) allows perfect packing.
Rhee (1988) completely characterizes the class of distribution functions ® which
alow perfect packing. Clearly, in this case y = E(w). Thus, Theorem 6.4.1
indicatesthat allowing the demandsto be split or not doesnot changetheasymptotic
objective function value. That is, the UCVRP and the ECVRP can be said to be
asymptotically equivalent when @ allows perfect packing.

To prove Theorem 6.4.1, we start by presenting in Section 6.4.1 alower bound
on the optimal objectivefunction value. In Section 6.4.2, we present aheuristic for
the UCVRP based on a simple region partitioning scheme. We show that the cost
of the solution produced by the heuristic converges to our lower bound for any ®
and p, thus proving the main theorem of the section.

6.4.1 A Lower Bound

We introduce a lower bound on the optimal objective function value Z. Let A C
IR? be the compact support of 1 and define dimax = Sup, .4 {||x||}. For agiven fixed
positive integer r > 1, partition the circle with radius dmax centered at the depot
into r rings of equal width. Letd; = (j — )%= for j = 1,2,....r,r + 1, and
construct the following 2r sets of customers:

Sj:{xkEN‘dj<dk§4j+1] forj=1,...,r,

and

F./':US" forj=1,2,...,r.
i=j

Notethat F, C F,_y C--- C F; = N sinced; > Oforadl y, € N.

In the lemma below, we show that |F,| grows to infinity almost surely as n
grows to infinity. This implies that | F;| also grows to infinity almost surely for
j=12,...,r,8nce|Fj.1| < |F;|,for j =1,2,...,r — 1. The proof follows
from the definitions of compact support and drax.
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Lemma6.4.2

nILngo |Z—'| = p (a.s.) for some constant p > 0.

For any set of customers T C N, let b*(T') be the minimum number of vehicles
needed to serve the customersin T'; that is, b*(T) is the optimal solution to the
Bin-Packing Problem defined by item sizes equal to the demands of the customers
in T. We can now present a family of lower bounds on Z? that hold for different
valuesof r > 1.

Lemma6.4.3

7+ 5 dma > bH(F)) forany r > 1.
r =2

Proof. Given an optimal solution to the UCVRP, let K be the number of vehicles
in the optimal solution that serve at least one customer from S,, and for j =
1,2,...,r—1,let K;‘ be the number of vehiclesin the optimal solution that serve
at least one customer in the set S;, but do not serve any customersin F; 1. Also,
let V* be the number of vehicles in the optimal solution that serve at |east one
customer in F;. By these definitions, Vi=3_; K/ forj=12,...r;hence
Ki=V =V forj=12..r—ladKk; =V

Note that V' > b*(F;), for j = 1,2,...,r, since V7 represents the number
of vehicles used in a feasible packing of the demands of customersin F;, while
b*(F;) represents the number of bins used in an optimal packing.

By the definition of K andd ;, Z;; > 23 ",_; d K} and therefore,

r—1
j:

= 241‘/1* + Z 2(4, - ij—l)vf
j=2

=2) (d;~d; 1)V; (sinced, = 0)
j=2

= 22(4,- —d; )b*(F)) (since Vi = b*(F))
=2

r d .
- 22 —"r“axb (F)).
j=2 ]

Note that Lemma 6.4.3 provides a deterministic lower bound; that is, no proba-
bilistic assumptionsareinvolved. Lemma6.4.2 and Lemma6.4.3 are both required
to provide alower bound on 2 Z: that holds almost surely.
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Lemma6.4.4 Under the conditions of Theorem 6.4.1, we have

lim 1Z* > 2y E(d) (as.).

n—oo N

Proof. Lemma 6.4.3 implies that

d, "\ b*(F
lim —z* > 2% |im ()
n—oo N r n—o00 5 n
d ! b*(F .
_ pfmac = i DD T
r =2 n—o0 |Fj| n—oo N
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From Lemma6.4.2, | F;| grows to infinity almost surely as» grows to infinity,
for j = 1,2,...,r. Moreover, since demands and locations are independent of
each other, thedemandsin F;, j = 1, 2, ..., r aredistributed like ®. Therefore,

= (a.s).
n—oco | F}] |Fjl=>00 | F}]

Hence, ailmost surely

1 d,
lim =z; >2ﬂ2

n—oo N n—00

d
_2ﬂ lim = Z|F|

n~>oo
Since

FJ‘:USi forj=1,2...,r

we have |F;| = Zf:,- |S;|; hence, almost surely

lim 12* > 2—;/ lim = ZZlSl

n—oo N n—>oon] 2 i

2—y lim = Z(; — 1851

n—00

By the definition of d;,

n—o00 n—oo . n—o0o

1 r
lim z* > 2y lim = Zd S| =2y lim = Z¢j|sj|,
./':1
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sinced; = 0and |S;| < n. By the definitionof d; and S;,d; > di — "mTax for all
x; € Sj. Then aimost surely

lim =Z*>2y lim — dy — —
am u = <y 1m Z(k r)

n
n—o0 n—>00 b LN

. 1 dmax
=2y lim — dy — 2y —
14 Z k 14 ,

This lower bound holds for arbitrarily large r; hence,

1
lim —Z* > 2y E(d) (as.). |
In the next section we show that thislower bound istight by presenting an upper
bound on the cost of the optimal solution that asymptotically approachesthe same
value.

6.4.2 An Upper Bound

We prove Theorem 6.4.1 by analyzing the cost of the following three-step heuristic
which provides an upper bound on Z}. In the first step, we partition the area A
into subregions. Then, for each of these subregions, we find the optimal packing
of the customers’ demandsin the subregion, into binsof unit size. Finally, for each
subregion, we allocate one vehicle to serve the customersin each bin.

The Region Partitioning Scheme

For afixed h > O, let G(h) be an infinite grid of squares with side % and edges
parallel to the system coordinates. Recall that A is the compact support of the
distribution function p, andlet A1, Ao, ..., A, betheintersection of the squares
of G(h) with the compact support A that have 1t(A;) > 0. Notet(h) < oo since A
iscompact and ¢ (k) isindependent of n.

Let N(i) be the set of customers located in subregion A;, and define n(i) =
IN(i)|. Forevery i = 1,2,...,t(h), let b*(i) be the minimum number of bins
needed to pack the demands of customers in N(i). Finaly, for each subregion
Ai i =1,2,...,t(h), let n;(i) be the number of customersin the j bin of this
optimal packing, foreach j = 1,2, ..., b*(i).

We now proceed to find an upper bound on the value of our heuristic. Recall
that for each bin produced by the heuristic, we send asingle vehicleto serve all the
customers in the bin. First, the vehicle visits the customer closest to the depot in
the subregion to which the bin belongs, then serves all the customersinthebinin
any order, and the vehicle returns to the depot through the closest customer again.
Let d(i) be the distance from the depot to the closest customer in N(i), that is, in
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subregion A;. Note that since each subregion A; isasubset of asquare of side %
the distance between any two customersin A; is no more than # . Consequently,
using the method just described, the distance traveled by the vehiclethat servesall
the customersin the j™ bin of subregion A; is no more than

2d(i) + h(n (i) + 1).

Therefore,
1(h) b* (i) t(h)
Z, = ZZ[Zd(t) + h(n;(0) + 1)] < ZZb*(z)d(z) +2nh. (6.3
i=1j=

This inequality will be coupled with the following lemma to find an almost sure
upper bound on the cost of this heuristic.

Lemma 6.4.5 Under the conditions of the Theorem 6.4.1, we have

t(h)
Tim ;;b*(i)g(i) <yE@d) (as).

Proof. Let p; = u(A;) betheprobability that agiven customer x; fallsin subregion
A;. Since p; > 0, by the strong law of large numbers, lim,,_, » @ = p; dmost
surely and therefore n(i) grows to infinity almost surely as n grows to infinity.
Thus, we have

AT LGN

lim as.).
n—o0 n(i) T n(i)—o0 n(i) @s)
Hence,
fim = %b*( )d(i) = Tim tz(hib*(l) (i)d (i)
1)d(1) = - n\t
n—-oo n —>o0 n -1 I’l()
< Iim 1I(Xh):b*(i) Z d (sinced(i) < di, Vxx € N(i))
Tamoon o ni) S ‘ s l
% im 20 fim Ly g
o ) e G
=y lim — dk
ﬂ—)OOnXA;V

Using the strong law of large numbers, we have

t(h)
Tim ;;b*(i)c_l(i) <yE@) (as),

which compl etes the proof of this lemma. |
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Remark: A simple modification of the proof of Lemma 6.4.5 shows that the in-
equality that appears in the statement of the lemma can be replaced by equality
(see Exercise 6.5).

We can now finish the proof of the Theorem 6.4.1. From equation (6.3) we have

1 t(h)

-7y < - b*(i)d(i) + 2h.
W20y LA+

Taking the limits and using Lemma 6.4.5, we obtain

— 1
lim =Z <2yE(d)+ 2h (as).

n—oon

Since thisinequality holds for arbitrarily small 2 > 0, we have
— 1
lim =Z* <2y E(d) (as)).
n—oon

This upper bound combined with the lower bound of Lemma 6.4.4 proves the
main theorem.

6.5 Probabilistic Analysisof Classical Heuristics

Recently, Bienstock et al. (1993) analyze the average performance of heuristics
that belong to the routefirst-cluster second class. Recall our definition of thisclass:
all those heuristics that first order the customers according to their locations and
then partition this ordering to produce feasible clusters.

It is clear that the UITP(«) and UOP(«) heuristics described in Section 6.3
belong to this class. As mentioned in Section 6.2, the Sweep algorithm suggested
by Gillett and Miller can also be viewed as a member of this class.

Bienstock et al. show that the performance of any heuristic in this class is
strongly related to the performance of a nonefficient bin-packing heuristic called
Next-Fit (NF). TheNext-Fit bin-packing heuristic can bedescribedinthefollowing
manner. Given alist of n items, start with item 1 and placeit in bin 1. Suppose we
are packing item j; let bin i be the highest indexed nonempty bin. If item j fits
in bin i, then place it there; else place it in anew bin indexed i + 1. Thus, NF is
an online heuristic; that is, it assigns items to bins according to the order in which
they appear without using any knowledge of subsequent itemsin thelist.

The NF heuristic possesses some interesting properties that will be useful in
the analysis of the class route first-cluster second. Assume the items are indexed
1,2,...,n and let a consecutive heuristic be one that assigns items to bins such
that items in any bin appear consecutively in the sequence. The following is a
simple observation.

Property 6.5.1 Among all consecutive heuristics, NF uses the least number of
bins.
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The next property is similar to a property developed in Section 3.2 for b}, the
optimal solution to the Bin-Packing Problem.

Property 6.5.2 Lettheitemsizeswy, wo, ..., w,, ...intheBin-Packing Problem
be a sequence of independent random variables and let bNF be the number of bins
produced by NF on theitems 1, 2, ..., n. For everyt > 0

Pr{|b,’)‘F — EM\F)| > t} < 2exp(—1?/8n). (6.4)
A direct result of this property is the following. The proof isleft as an exercise

(Exercise 6.2).
Corollary 6.5.3 Foranyn > 1,

NF < EGNT) + 4y/nlogn  (as).

Thenext property isasimple consequence of thetheory of subadditive processes
(see Section 3.2) and the structure of solutions generated by NF.

Property 6.5.4 For any distribution of itemsizes, there existsa constant yN© > 0

such that lim,_ o ”EF = yNF almost surely, where b\¥ is the number of bins
produced by the NF packing and " depends only on the distribution of the item
sizes.

These properties are used to prove the following theorem, the main result of this
section.

Theorem 6.5.5 (i) Let H bearoutefirst-cluster second heuristic. Then, under the
assumptions of Theorem 6.4.1, we have

1
lim =z" > 2yNFE@)  (as).
n—oo N
(ii) The UOP(«) heuristic is the best possible heuristic in this class; that is, for
any fixed « > 1 we have

.1
lim =ZzY%P@ = 2,NFE@@)  (as).
n—oon
In view of Theorems 6.4.1 and 6.5.5 it isinteresting to compare ' NF to y since
the asymptotic error of any heuristic H in the class of route first-cluster second
satisfies
lim zH/z* > lim ZVOP@) 7 — ) NF /),
n—o0o
Although in genera the ratio is difficult to characterize, Karmarkar was able to
characterize it for the case when the item sizes are uniformly distributed on an
interval (0, a] for 0 < a < 1. For instance, for a satisfying % <a <1, wehave

yNFry = 2{ 5(154% — 9a? +3a—1)+f( =) tan h(f:)}

1243
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so that when the item sizes are uniform (0, 1] the aboveratio is g which implies
that UOP(«) converge to a value which is 33.3 % more than the optimal cost, a
very disappointing performance for the best heuristic currently availablein terms
of worst-case behavior.

Moreover, heuristics in the route first-cluster second class can never be asymp-
totically optimal for the UCVRP, except in some trivial cases (e.g., demands are
all the same size). In fact, Theorem 6.5.5 clearly demonstrates that the route first-
cluster second class suffers from misplaced priorities. The routing (in the first
phase) is done without any regard to the customer demands and thus this leads to
a packing of demands into vehicles that is at best like the Next-Fit bin-packing
heuristic. Thisis clearly suboptimal in al but trivial cases, one being when cus-
tomers have equal demands, and thus we see the connection with the results of
the previous chapter. Therefore, thistheorem showsthat an asymptotically optimal
heuristic for the UCV RP must use an asymptotically optimal bin-packing heuristic
to pack the customer demands into the vehicles.

In the next two subsections we prove Theorem 6.5.5 by developing a lower
bound (Section 6.5.1) on Z" and an upper bound on ZY°P®) (Section 6.5.2).

6.5.1 A Lower Bound

In this section, we present alower bound on the solution produced by these heuris-
tics. Let H denote aroute first-cluster second heuristic.

Asin Section 6.4.1, let A be the compact support of the distribution w«, and
define dmax = sUp,c{l1x1}. Given afixed integer r > 1, defined; = (j — 1)"r”7ax
for j =1,2,...,r, and construct the following r sets of customers:

Fj:{xkeN’4j<dk} for j=1,...,r

Notethat F, C F,_; C ... C Fy,and F; = N since, without loss of generality,
d, > Oforal x, € N.

L et the customers be indexed x3, x2, .. ., x, according to the order determined
by the heuristic H in the route-first phase.

For any set of customers7 € N, let 5N(T) bethe number of bins generated by
the Next-Fit heuristic when applied to the Bin-Packing Problem defined by item
sizesequal to the demands of the customersin T', packed in the order of increasing
index.

Lemma6.5.6 Foranyr > 1,

d r
zfl > 27N " PN(F).
r
=2

Proof. For agiven solution constructed by H, let V (F;) be the number of vehicles
that serve at least one customer in F;, for j = 1,2,...,r. By this definition,
V(F;)—V(Fj+1),j =1,2,...,r — lisexactly the number of vehicles whose
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farthest customer visitedisin F; but notin F; 4, and trivialy V(F,) isthe number
of vehicles whose farthest customer visited isin F,. Hence,
r—1
> 2d,V(F) + Y 2, (V(F) = V(Fji)
j=1

=2d,V(F1)+ Y 2(d; —d,; ,)V(F)).
j=2

For a given subset of customers F;, j = 1,2,...,r, the V(F;) vehicles that
contain these customer demands (in the solution produced by H) can be ordered
in such a way that the customer indices are in increasing order. Disregarding
the demands of customers in these vehicles that are not in F;, this represents the
solution produced by a consecutive packing heuristic on the demands of customers
in F;. By Property 6.5.1wemusthave V (F;) > bNF(F;), forevery j = 1,2,...,r.
This, together withd;, = 0,d; —d; ; = %=, imply that

. dmax
zH > 2% " TERNF(R). |
"> ,; ON(E)

This lemma is used to derive an asymptotic lower bound on the cost of the
solution produced by H that holdsalmost surely. The proof of thelemmaisidentical
to the proof of Lemma 6.4.4.

Lemma6.5.7 Under the conditions of Theorem 6.4.1, we have

1
lim =z' > 2yNE@)  (as).
n—oo N

In the next section we show that this lower bound is asymptotically tight in the
case of UOP(«) by presenting an upper bound that approaches the same value.

6.5.2 The UOP(«) Heuristic

We prove Theorem 6.5.5 by finding an upper bound on ZYOP®). et L« bethelength
of the «-optimal tour selected by UOP(«). Starting at the depot and following
the tour in an arbitrary orientation, the customers and the depot are numbered
x@ x@ x@ o x0) where x@ is the depot. Select an integer m = [n#] for
somefixed 8 € (%, 1) and note that for each such g we havelim, ., = = 0(i.e,
m = o(n)) and lim,,_, */75 = 0(i.e., /n = o(m)). We partition the path from x
to x) into m + 1 segments, such that each one contains exactly | 2 | customers,
except possibly the last one.

Number the segments 1, 2, ..., m + 1 according to their appearance on the
traveling salesman tour, where each segment has exactly | ;- | customers except
possibly segment m + 1. Let L; (respectively, N;) be the length of (respectively,
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subset of customersin) segmenti, 1 <i < m + 1. Finaly, let n; = |N;|, i =
1,2,....m+1

To obtain an upper bound on the cost of UOP(«), we apply the Next-Fit heuristic
to each segment separately, where items are packed in bins in the same order they
appear in the segment. This gives us a partition of the tour that must provide
an upper bound on the cost produced by UOP(«). Let bNF be the number of
bins produced by the Next-Fit heuristic when applied to the customer demandsin
segment ;. We assign asingle vehicleto each bin produced by the above procedure,
each of which starts at the depot, visitsthe customers assigned to its corresponding
bininthesameorder asthey appear on thetraveling salesman tour, and then returns
to the depot. Let d; be the distance from the depot to the farthest customer in N;.
Clearly, the total distance traveled by all the vehicles that serve the customersin
segmenti, 1 <i < m + 1, isno more than

26N d; + L.

Hence,
m—+1

i=1

<23 b} d; + 2b)F ydiva + o L. (6.5)
i=1
Lemma 6.5.8 Under the conditions of Theorem 6.4.1, we have

im ZbNFd <yNEW) (as).

n—>00 p 4

Proof. Since the number of customersin every segmenti, 1 <i < m, isexactly
n; = [~]andlim, % = 0, wehavefor agiveni, 1 <i < m,

NF < E®NT) + /9K n; logn; (as.),

forany K > 2.

We now show that, for sufficiently large n, these m inequalities hold simultane-
ously almost surely. To provethis, notethat Property 6.5.2 tellsusthat, for n; large
enough, the probability that one such inequality does not hold is no more than
2exp(—K logn;) = 2nl.‘K. Thus, the probability that at |east one of these inequal-

itiesisviolated isno morethan 2m(:- — 1)~X. By the Borel-Cantelli Lemma, these

m inequalities hold aimost surely if > m (2~ )K < 00. Choosing K > ﬂ >3

-8
shows that this holds for any m = [n#]where 2 < 8 < 1.
Thus,

m m

. 1
nILTo;Zb d; < ZZ . (as).

i=1 i=1
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Clearly, d; < dy + L, forevery x, ¢ N; andevery i = 1,2, ..., m. Thus,

a=([2]" X a)+r forewyi=12....m

Xx€N;

Hence,

"1 — 1,
m, 2 fn":';on_ 2 det im 1

i=1 X €N
< lim E di + o lim =L*.
n—-oopnp — n—>oo m
X;\GN

Applying the strong law of large numbers and using lim,, . 7 = 0, we have

lim

n—»oon —m

Y di=E(d) (as).

XkEN

Now from Chapter 3, we know that the length of the optimal traveling salesman
tour through a set of k points independently and identically distributed in a given
region grows almost surely like +/k. This together with lim,,_, o %ﬁ = 0implies
that

*

lim L =0 (as)).

n—oo m

These facts compl ete the proof. |
We can now complete the proof of Theorem 6.4.1. From (6.5) and Lemma4.1
we have

1 1 — 1
lim =zY%P@ < 2,NFE(q) + 2udiax I|m berl +alim ZL*  (as).

n—oon n—oon
Finally, using Beardwood et a.'s (1959) result (see Theorem 3.3.2), and the fact
that the number of pointsin segment m + 1isat most .-, we obtain the desired
result.

6.6 The Uniform Mod€

To our knowledge, no polynomial time algorithm that is asymptotically optimal
isknown for the UCVRP for general ®. We now describe such a heuristic for the
case where @ isuniform on theinterval [0, 1]. In the unit interval, it is known that
there exists an asymptotically optimal solution to the Bin-Packing Problem with
at most two items per bin. This forms the basis for the heuristic for the UCVRRP,
called Optimal Matching of Pairs (OMP). It considers only feasible solutions in
which each vehicle visits no more than two customers. Among all such feasible
solutions, the heuristic finds the one with minimum cost. This can be done by
formulating the following integer linear program.



100 6. The Capacitated VRP with Unequal Demands

For every x;, x; € N, let
dy +dy+d, ifk#landw, +w <1,
Cyl = 2dy, ifk =1,
0, otherwise.

Theinteger program to solveis

Problem P : Min ZCkIXkl

k<l
st.
Y Xu+) Xu=1 Vk=12...n (66
1>k I<k
X €{0,1}, Vk<I 6.7)

For k < I, X4 is 1if avehicle delivers items to customers x; and x; and is O
otherwise. Constraint (6.6) ensures that each customer is visited.

Itisnot hard to see that P can be solved in polynomial time since it is no more
than a classical weighted matching problem defined on a specific graph. Define
the following graph G = (N, E), where each customer x;, is represented by two
nodes v, and vy, fork =1, 2, ..., n. The set of edges of G isdefined as follows.

E ={(v, v})|xx € N}
U{(vg, v)lxk € N, x; € Nk #Lwe +w; <1}
U{(vp, v)lxx € N,x; € Nk #1, we +w; < 1},

Thus, G has 2n vertices. The length of edge (v, v;), for k # 1, is ¢y, of edge
(vk, vp) is e and of edge (vy, v;) iSO, for all k and .

Note that any given feasible solution to P can be transformed into a feasible
solution to thematching problem on G with the same cost. For any feasible solution
to P, choose edge (vx, v;) if customer k is served by a vehicle that does not serve
any other customer and choose edges (vi, v;) and (v, v;) if customers x; and x;
are visited together. Similarly, any feasible solution to the matching problem can
be transformed into a feasible solution to P with the same cost. Hence, the two
problems are equivalent.

An optimal matching in G can be found in O (n%) using Lawler’s (1976) algo-
rithm.

The main result of this section is the following.

Theorem 6.6.1 Let x;, k = 1,2,...,n be a sequence of independent random
variables having a distribution « with compact support in IR?. Let

£@) = [ 1ixllduto).

Let thedemands wy, k = 1, 2, ..., n be a sequence of independent random vari-
ables having a uniformdistribution on [0, 1] and assume that the demands and the
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location of the customers are independent of each other. Then, the OMP heuristic
is asymptotically optimal. That is, with probability one,

Z* ZOMP
lim —% = lim

n—oo n n—o00 n

— E(d).

To prove that the OMP heuristic is asymptotically optimal, we approximate its
performance by that of the Sliced Region Partitioning heuristic with parameters 4
and r (SRP(h,r)). For any fixed positive integer » > 1, the set N is partitioned
into the following 2r digjoint subsets, some of which may be empty.

Nj:{xkeN’%(l—j—:l)<wk§%(l—£)} j=12....r—1

and
Nfz{xkezv‘%(pr’%l)<wk§%(1+§)} j=12...r-1

Also

o= e mf3a- ) <m =)

and

N = {)Ck € N’%(l—}— r p 1) < wk}.
The number of customersin each N; (respectively, N/) isdenoted by n; (respec-
tively, n/) for all possible values of ;.

Notethat forany j = 1, 2,...,r — 1, one vehicle can deliver the demand of a
customer from N; together with the demand of exactly one customer from N/. The
SRP(h, r) heuristic generates pairs of customers, one customer from N; and one
fromN/, forevery j = 1,2, ..., r — 1, using the same region partitioning scheme
used in the proof of Theorem 6.4.1 (Section 6.4.2). The customersin No U N™ are
served separately; asingle vehicle is assigned to each of these customers.

For every subregion A;, i = 1,2, ...,t(h), generated by the grid G(h) (see
Section 6.4.2) and for every j = 1,2,...,r — 1, let N;(i) (respectively, N/(i))
be the subset of pointsin N; (respectively, N7) that fall in subregion A;. Also, let
n;(i) = IN; () and nl (i) = [NV (i)].

In each subregion A;, i = 1,2,...,¢(h),andforany j = 1,2,...,r — 1,
we arbitrarily match one customer from N;(i) with exactly one customer from
N/(i); one vehicle serves each such pair. If n;(i) = n’/(i), then al customersin
N, (i)UN/(i) arematched and thereforevisitedin pairs. If, however, n; (i) # n’ (i),
then we can match exactly min{n (i), n/ (i)} pairs of customers. The remaining
[n;(i) —n’/(i)| customersin N;(i) U N/ (i) that have not yet been matched are each
served by one vehicle. Thus the total number of vehicles used in subregion A; is

r—1
noi) +n" (i) + Y _ max{n; (i), n’ (i)}.

j=1
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Theheuristic clearly generates afeasible solution to the UCV RP. Moreover, this
solution isfeasible for P, as each vehicle visits at most two customers. Thus,

ZOMP < zSRP(LT) forany r > 1and h > 0.

We now proceed by finding an upper bound on ZS%*(-") | Essentially the same
analysis asin Section 6.4.2 shows that the total distance traveled by all vehiclesis
no more than

t(h)
ZZd(l [no(l) +n"(i)+ Z max{n ; (i), nf(l)}] + 2nh.

i=1 j=1
Since
ni@i) lim n/(i) 1

im = = — a.s. foralj=12...,r,
AM D e e 2 @s) ’

we have

no(l)+n’(l)+2max{nj(l) n (l)}] :% % (@s).

lim

n(z)—>oo ( )[
The remainder of the proof isidentical to the proof of the upper bound of Theorem
6.4.1.

Therefore, the OMP is asymptotically optimal when demands are uniformly
distributed between 0 and 1. In fact, the proof can be extended to alarger class of
demand distributions. For example, for any demand distribution with symmetric
density, one with f(x) = f(1 — x) for x € [0, 1], one can show that the same
result holds.

6.7 The Location-Based Heuristic

Recently, Bramel and Simchi-Levi (1995) used theinsight obtained from the anal-
ysis of the asymptotic optimal solution value (see Theorem 6.4.1 above and the
discussion that follows it) to develop a new and effective class of heuristics for
the UCVRP called L ocation-Based Heuristics. Specifically, this class of heuristics
was motivated by the following observations.

A byproduct of the proof of Theorem 6.4.1 isthat the region partitioning scheme
used to find an upper bound on Z is asymptotically optimal. Unfortunately, the
schemeis not polynomial since it requires, among other things, optimally solving
the Bin-Packing Problem. But, the scheme suggests that, asymptotically, the tours
inanoptimal solutionwill be of avery simplestructure consisting of two parts. The
first isthe round trip the vehicle makes from the depot to the subregion (where the
customers are located); we call thesethe simpletours. The second isthe additional
distance (we call this insertion cost) accrued by visiting each of the customers it
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serves in the subregion. Our goal is therefore to construct a heuristic that assigns
customers to vehicles so as to minimize the sum of the length of all simple tours
plusthetotal insertion costs of customersinto each simpletour. If done carefully,
the solution obtained is asymptotically optimal.

To construct such a heuristic we formulate the routing problem as another com-
binatorial problem commonly called (see, e.g., Pirkul (1987)) the single-source
Capacitated Facility L ocation Problem (CFLP). This problem can be described as
follows: given m possible sites for facilities of fixed capacity Q, wewould like to
locate facilities at a subset of these m sites and assign » retailers, where retailer i
demands w; unitsof afacility’scapacity, in such away that each retailer isassigned
to exactly one facility, the facility capacities are not exceeded and the total cost is
minimized. A site-dependent cost is incurred for locating each facility; that is, if
afacility is located at site j, the set-up cost isv;, for j = 1,2, ..., m. The cost
of assigning retailer i to facility j isc;; (theassignment cost), fori =1,2,...,n
adj=12...,m.

The single-source CFLP can be formulated as the following integer linear pro-

gram. Let
1, if afacility islocated at site j,
Y= {O, otherwise,

1, if retaler i isassigned to afacility at site j,
Xij = .
{O, otherwise.

n m m

Problem CFLP: Min Y | Y cijxij + Y v;¥j
1 j=1

i1 =
s.t. > xi=1, Vi (6.8)
j=1
Zwixij <0, vj (6.9)
i—1
Xij < ¥j, Vi, j (6.10)
Xij € {0, 1}, Vl, ] (611)
y; €1{0,1}, vj. (6.12)

Constraints (6.8) ensure that each retailer is assigned to exactly one facility,
and constraints (6.9) ensure that the facility’s capacity constraint is not violated.
Constraints (6.10) guarantee that if aretailer is assigned to site j, then afacility
is located at that site. Constraints (6.11) and (6.12) ensure the integrality of the
variables.

In formulating the UCVRP as an instance of the CFLP, we set every customer
x; inthe UCVRP as a possible facility site in the location problem. The length of
the simple tour that starts at the depot visits customer x; and then goes back to the
depot isthe set-up cost in the location problem (i.e., v; = 2d;). Finally, the cost of
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inserting a customer into asimple tour in the UCVRPisthe assignment cost in the
location problem (i.e,, ¢;; = d; + d;; — d;). This cost should represent the added
cost of inserting customer i into a simple tour through the depot and customer ;.
Consequently, wheni isadded to atour with j, theadded costisc;; = d; +d;; —d;,
so that v; + ¢;j = d; + d;; + d;. However, when a third customer is added, the
calculationis not so simple, and therefore the values of ¢;; should in fact represent
an approximation to the cost of adding i to atour that goes through customer j
and the depot. Hence, finding a solution for the CVRP is obtained by solving the
CFLP with the data as described above. The solution obtained from the CFLP is
transformed (in an obvious way) to a solution to the CVRP.

Although N"P-Hard, the CFLP can efficiently, but approximately, be solved
by the familiar Lagrangian relaxation technique (see Chapter 12), as described
in Pirkul or Bramel and Simchi-Levi (1995) or by a cutting-plane algorithm, as
described in Deng and Simchi-Levi (1992).

We can now describe the Location-Based Heuristic (LBH):

The Location-Based Heuristic

Sep 1. Formulate the UCVRP as an instance of the CFLP.

Sep 2: Solvethe CFLP.

Sep 3: Transform the solution obtained in Step 2 into a solution for the UCVRP.

Variations of the LBH can also be applied to other problems; we discuss this
and related issues in the next chapter where we consider a more general vehicle
routing problem.

The LBH agorithm was tested on a set of 11 standard test problems taken from
the literature. The problems are in the Euclidean plane and they vary in size from
15 to 199 customers. The performance of the algorithm on these test problems
was found to be comparable to the performance of most published heuristics. This
includes both the running time of the algorithm as well as the quality (value) of
the solutions found; see Bramel and Simchi-Levi (1995) for adetailed discussion.

One way to explain the excellent performance of the LBH is by analyzing its
average performance. Indeed, aproof similar to the proof of Theorem 6.4.1 reveals
(see dso Bramel and Simchi-Levi (1995)) that,

Theorem 6.7.1 Under the assumptions of Theorem6.4.1, there are versions of the
LBH that are asymptatically optimal; that is,

JLngo %Z'—BH =2y E(d) (a.s).

Finally, we observe that the Generalized Assignment Heuristic due to Fisher
and Jaikumar (1981) can be viewed as a special case of the LBH in which the
seed customers are selected by a dispatcher. In the second step, customers are
assigned to the seeds in an efficient way by solving a generalized assignment
problem. The advantage of the LBH is that the selection of the seeds and the
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assignment of customers to seeds are done simultaneously, and not sequentially
asin the Generalized Assignment Heuristic. Note that neither of these heuristics
(the LBH or the Generalized Assignment Heuristic) requires that potential seed
points be customer locations; both can be easily implemented to start with seed
points that are simply points on the plane. A byproduct of the analysis, therefore,
isthat when the Generalized Assignment Heuristic is carefully implemented (i.e.,
“good” seeds are selected), it is asymptotically optimal aswell.

6.8 Rate of Convergence to the Asymptotic Value

While the resultsin the two previous sections completely characterize the asymp-
totic optimal solution value of the UCVRP, they do not say anything about the
rate of convergence to the asymptotic solution value. See Psaraftis (1984) for an
informal discussion of thisissue.

To get someintuition ontherate of convergence, itisinteresting to determinethe
expected difference between the optimal solution for agiven number of customers
n, and the asymptotic solution value (i.e., 2y E[d]). This can be done for the
uniform model discussed in Section 6.6.

In this case, Bramel et a. (1991) and, independently, Rhee (1991) proved the
following strong result.

Theorem 6.8.1 Let x; k = 1,2, ...,n be a sequence of independent random
variables uniformly distributed in the unit square [0, 1]°. Let the demands wy,
k =1,2,...,n be drawn independently from a uniform distribution on (0, 1].
Then

E[Z}] = nE[d] + O(n?3).

The proof of Theorem 6.8.1 relies heavily on the theory of three-dimensional
stochastic matching which is outside the scope of our survey. We refer the reader
to Coffman and Lueker (1991, Chapter 3) for an excellent review of matching
problems.

Rhee has also found an upper bound on the rate of convergence to the asymp-
totic solution value, for general distribution of the customers' locations and their
demands. Using a new matching theorem devel oped together with Talagrand, she
proved:

Theorem 6.8.2 Under the assumptions of Theorem 6.4.1, we have

2ny E[d] < E[Z}] < 2ny E[d] + O((nlogn)*3).
6.9 Exercises

Exercise 6.1. Consider the following heuristic for the CVRP with unequal de-
mands. All customers of demand w; > % are served individually, one customer
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per vehicle. To serve the rest, apply the UITP heuristic with vehicle capacity Q.
Prove that this solution can be transformed into a feasible solution to the CVRP
with unegual demands. What is the worst-case bound of this heuristic?

Exercise 6.2. Prove Corollary 6.5.3.

Exercise 6.3. Given a seed point i, assume you must estimate the cost of the
optimal traveling salesman tour through a set of points S U {i } using the following
cost approximation. Starting with 2d;, when each point j is added to the tour, add
thecost ¢;; = d; + d;; — d;. That is, show that for any » > 1 thereis an example
where the approximation is r times the optimal cost.

Exer cise 6.4. Construct an exampl e of the single-source CFL P where each facility
isapotentia site (and vice versa) in which an optimal solution chooses a facility
but the demand of that facility is assigned to another chosen site.

Exercise 6.5. Show that Lemma 6.4.5 can be replaced by an equality instead of an
inequality.

Exercise 6.6. Prove that the version of the LBH with set-up costs v; = 24; and
assignment costs ¢;; = d; + d;; — d; is asymptotically optimal.

Exercise 6.7. Explain why the following constraints can or cannot be integrated
into the Savings Algorithm.

(a) Distance constraint. Each route must be at most A mileslong.
(b) Minimum route size. Each route must pick up at least m points.

(c) Mixing constraints. Even indexed points cannot be on the same route as odd
indexed points.

Exercise 6.8. Consider an instance of the CVRP with n customers. A customer is
red with probability p and blue with probability 1 — p, for some p € [0, 1]. Red
customers have loads of size % while blue customers have loads of size % What
islim,_. £ asafunction of p?
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The VRP with Time Window
Constraints

7.1 Introduction

In many distribution systems each customer specifies, in addition to the load that
has to be delivered to it, a period of time, called a time window, in which this
delivery must occur. The objective isto find a set of routes for the vehicles, where
each route begins and ends at the depot, serves a subset of the customers without
violating the vehicle capacity and time window constraints, while minimizing the
total length of the routes. We call this model the Vehicle Routing Problem with
Time Windows (VRPTW).

Due to the wide applicability and the economic importance of the problem,
variants of it have been extensively studied in the vehicle routing literature; for a
review see Solomon and Desrosiers (1988). Most of the work on the problem has
focused on an empirical analysis while very few papers have studied the problem
from an analytical point of view. Thisis done in an attempt to characterize the
theoretical behavior of heuristics and to use the insights obtained to construct
effective algorithms. Some exceptions are the recent works of Federgruen and van
Ryzin (1992) and Bramel and Simchi-Levi (1996). Below we describe the results
of the latter paper.

7.2 TheModel

Toformally describethemodel we analyze here, let theindex set of then customers
bedenoted N = {1,2, ..., n). Let x; € IR? be the location of customer k € N.
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Assume, without loss of generality, that the depot is at the origin and, by rescaling,
that the vehicle capacity is 1 and that the length of the working day is 1. We
assume vehicles can leave and return to the depot at any time. Associated with
customer k isaquadruplet (wy, ex, sk, Ix), caled the customer parameters, which
represents, respectively, the load that must be picked up, the earliest starting time
for service, the time required to complete the service, called the service time, and
the latest time service can end. Clearly, feasibility requiresthat ¢, + s, < [ and
Wy, e, I € [0, 1], foreachk e N.

For any point x € IR?, let || x| denote the Euclidean distance between x and the
depot. Let d;, = ||x; || be the distance between customer k and the depot. Also, let
djr = |lx; — x|l be the distance between customer j and customer k. Let Z;* be
thetotal distance traveled in an optimal solution to the VRPTW, and let Z be the
total distance traveled in the solution provided by a heuristic H.

Consider the customer locations to be distributed according to a distribution w
with compact support in IR?. Let the customer parameters {(wy, ey, st Ik) : k € N}
be drawn from a joint distribution ® with a continuous density ¢. Let C be the
support of ¢; that is, C isasubset of {(a1, az, az, as) € [0, 1]* : as + a3z < aa}.
Each customer istherefore represented by itslocation in the Euclidean plane along
withapointin C. Finally, we assume that a customer’slocation and its parameters
are independent of each other.

In our analysis we associate a job with each customer. The parameters of job
k are the parameters of customer k, that is, (wy, ex, sk, lx), where wy is referred
to astheload of job k and, using standard scheduling terminology, e; represents
the earliest time job k& can begin processing, s; represents the processing time
and [, denotes the latest time the processing of the job can end. The value of ¢,
can be thought of as the release time of job k, that is, thetime it is available for
processing. The value of [ represents the due date for the job. Each job can be
viewed abstractly as simply apoint in C. Occasionally, we will refer to customers
and jobs interchangeably; this convenience should cause no confusion.

To any set of customers T C N with parameters {(wy, e, sk, k) : k € T},
we associate a corresponding machine scheduling problem as follows. Consider
the set of jobs T and an infinite sequence of parallel machines. Job k becomes
availablefor processing at time ¢, and must be finished processing by time ;. The
objective in this scheduling problem is to assign each job to a machine such that
(i) each machine has at most one job being processed on it a a given time, (if)
the processing time of each job starts no earlier than its release time and ends no
later than its due date and (iii) the total load of all jobs assigned to a machine is
no morethan 1, and the number of machines used is minimized. In our discussion
we refer to (i) asthe job time window constraint and to (iii) asthe machine load
constraint.

Scheduling problems have been widely studied in the operations research lit-
erature; see Lawler et a. (1993) and Pinedo (1995). Unfortunately, no paper has
considered the scheduling problem in its general form with the objective function
of minimizing the number of machines used.

Observethat in the absence of timewindow constraints, the scheduling problem



7.3 The Asymptotic Optimal Solution Value 109

is no more than a Bin-Packing Problem. Indeed, in that case the VRPTW reduces
to the model analyzed in the previous chapter, the CVRP. Thus, our strategy isto
try to relate the machine scheduling problem to the VRPTW in much the same
way as we used results obtained for the Bin-Packing Problem in the analysis of
the CVRP. Aswe shall shortly see, thisis much more complex.

Let M*(S) be the minimum number of machines needed to schedule aset S of
jobs. It is clear that this machine scheduling problem possesses the subadditivity
property, described in Section 3.2. Thisimpliesthat if M isthe minimum number
of machines needed to schedule a set of n jobs whose parameters are drawn in-
dependently from adistribution ®, then there exists a constant y > 0 (depending
only on ®) such that lim,_... M/n =y (a.s).

In this chapter we relate the solution to the VRPTW to the solution to the
scheduling problem defined by the customer parameters. That is, we show that
asymptotically the VRPTW is no more difficult to solve than the corresponding
scheduling problem. Our main result is the following.

Theorem 7.2.1 Let x1, x2, ..., x, be independently and identically distributed
according to a distribution . with compact support in IR?, and define

£@ = [ Ixldn(),

Let the customer parameters {(wy, ex, sk, lx) : k € N} be drawn independently
from &. Let M;* be the minimum number of machines needed to feasibly schedule

the n jobs corresponding to these parameters, and lim,,_, o, MT =y (a.s). Then
1
lim —zF =2yE(d) (as).
n—oo n

We prove this theorem (in Section 7.3) by introducing a lower bound on the
optimal solution value and then devel oping an upper bound that converges to the
same value. The lower bound uses a similar technique to the one developed in
Chapter 6. The upper bound can be viewed as a randomized algorithm that is
guaranteed to generate a feasible solution to the problem. That is, different runs
of the algorithm on the same data may generate different feasible solutions. In
Section 7.4, we show that the analysis leads, in a natural way, to the devel opment
of anew deterministic algorithm which isasymptotically optimal for the VRPTW.
Though not polynomial, computational evidence shows that the algorithm works
very well on a set of standard test problems.

7.3 The Asymptotic Optimal Solution Value

Westart theanal ysisby introducing alower bound on the optimal objectivefunction
value Z7. First, let A be the compact support of w, and define dmax = supf||x|| :
x € A}.Pickafixedinteger» > 1,anddefined ; = (j—l)meaX,forj =12, ...,r.
Now define the sets:
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Fj = {keNla_lj <dk} forj=1,2,....r

Forany set T € N, let M*(T) be the minimum number of machines needed to
feasibly schedulethe set of jobs{(wy, ek, sk, Ik) : k € T}. Thenextlemmaprovides
a deterministic lower bound on Z; and is analogous to Lemma 6.4.3 developed
for the VRP with capacity constraints.

Lemma7.3.1

dimax <
Z; > 25N " MA(F)).
r "
j=2

Proof. Let V* bethe number of vehiclesin an optimal solutionto the VRPTW that
serve a customer from F;, for j = 1,2, ..., r. By this definition, V" is exactly
the number of vehicles whose farthest customer visited isin F;, and Vi— V*
is exactly the number of vehicles whose farthest customer visited isin F \ F
Observe that if V' = V7 ,, then there are no vehicles whose farthest customer
visitedisin F; \F]+1 Con%quently,

r—1
Zp =2,V + )y 2,V =V}
j=1

= 211‘/{k + Z z@j - ij—l)V;
j=2

We now claimthat foreach j = 1,2,...,r, Vi > M*(F;). This should be clear
from the fact that the set of jobsin F; can be feasibly scheduled on V;* machines
by scheduling the jobs at the times they are served in the VRPTW solution. |
We can now determine the asymptotic value of this lower bound. This can be
donein asimilar manner to that of Chapter 6, and hence we omit the proof here.

Lemma 7.3.2 Under the conditions of Theorem 7.2.1

lim lZ* >2yE(d) (as).

n—oo N

We prove Theorem 7.2.1 by approximating the optimal cost from above by that
of the following four-step heuristic. In the first step, we partition the region where
the customers are distributed into subregions. In the second step, we randomly
separate the customers of each subregion into two sets. Then for each subregion,
we solve a machine scheduling problem defined on the customersin one of these
sets. Finally, we use this schedul e to specify how to serve all the customersin the
subregion.
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Pick an ¢ > 0, and let § be given by the definition of continuity of ¢, that is,
8 > Oissuchthat foral x, y € C with ||x — y|| < §, wehave |p(x) — ¢(y)] < €.
Finaly, picka A < min{%, €.

Let G(A) be aninfinite grid of squares of diagonal A, that is, of side %, with
edges pardldl to the system coordinates. Recall that A is the compact support of
wandlet Ag, As, ..., Aya) bethe subregions of G(A) that intersect A and have
n(A;) > 0.

Let N(i) be the indices of the customers located in subregion A;, and define
n(i) = |N(i)|. For each customer k € N(i), with parameters (wy, ek, Sk, lx), we
associate ajob with parameters (wy, ex, sk + A, Iy + A). Forany set T € N of
customers, let M (T) be the minimum number of machines needed to feasibly
schedule the set of jobs {(wy, ek, sk + A, Iy + A) : k € T}. Inaddition, for any set
T of customers, let T(i) = N@)NT,fori =1,2,...,t(A).

For the given grid partition and for any set T € N of customers, the following
isafeasibleway to servethe customersin N. All subregions are served separately;
that is, no customers from different subregions are served by the same vehicle.
In subregion A;, we solve the machine scheduling problem defined by the jobs
{(wy, ex, sk + A, I + A) : k € T(i)}. Then, for each machine in this scheduling
solution, we associate avehiclethat servesthe customers corresponding to the jobs
on that machine. The customers are visited in the exact order they are processed
on the machine, and they are served in exactly the same interval of time as they
are processed. This is repeated for each machine of the scheduling solution. The
customersof theset N (i) \ 7 (i) are served one vehicle per customer. This strategy
is repeated for every subregion, thus providing a solution to the VRPTW.

We will show that for a suitable choice of the set T, this routing strategy is
asymptotically optimal for the VRPTW. An interesting fact about the set T isthat
it is arandomly generated set; that is, each time the algorithm is run it resultsin
different sets 7.

The first step is to show that, for any set T < N (possibly empty), the solu-
tion produced by the above-mentioned strategy provides afeasible solution to the
VRPTW. This should be clear from the fact that having an extra A units of time
to travel between customers in a subregion is enough since all subregions have
diagonal A. Therefore, any sets of customers scheduled on a machine together can
be served together by one vehicle. Customers of N (i) \ T can clearly be served
within their time windows since they are served individually, one per vehicle.

We now proceed to find an upper bound on the value of this solution. For each
subregion A;, let n;(i) be the number of jobs on the 7™ machine in the optimal
schedule of the jobsin T'(i), foreach j = 1,2,..., M;(T(i)). Let d(i) be the
distance from the depot to the closest customer in N (i), that is, in subregion A;.
Using the routing strategy described above, the distance traveled by the vehicle
serving the customers whose job was assigned to the j™ machine of subregion A;
isno more than

2d(i) + A(n; () + 1).
Therefore,
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zr<y > [2d0) + a0+ D]+ 24
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Dividing by n and taking the limit we have
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In order to relate this quantity to the lower bound of Lemma 7.3.2, we must
choose the set T appropriately. For this purpose, we make the following ob-
servation. Recall that ¢ is the continuous density associated with the distribu-
tion ®. The customer parameters (wy, ex, sk, I) of each of the customers of N
are drawn randomly from the density ¢. Associated with each customer is a job
whose parameters are perturbed by A in the third and fourth coordinates, that is,
(wg, ex, sk + A, I+ A). Thisisequivaent to randomly drawing thejob parameters
fromadensity whichwecall ¢'. Thedensity ¢’ can befound simply by translating ¢
by A inthethird and fourth coordinates, that is, for each x = (61, 62, 03, 6) € IR?,
@' (x) = ¢'(01, 02, 03, 04) = P(61, 62,03 — A, 64 — A). Findly, for each x € IR“,
define ¥ (x) = min{p(x), ¢'(x)} andlet g = [, ¥ < 1.

The n jobs (or customer parameters) {yr = (wx, e, sk + A, Iy + A) 1 k € N}
are drawn randomly from the density ¢’ and our task isto select theset T C N.
To simplify presentation, we refer interchangeably to the index set of jobs and to
the set of jobs itself; that is, k € N will have the same interpretation as y, € N
where y, = (wy, ex, sk + A, Iy + A).

For eachjob y;, generatearandom value, call it ug, uniformly in[0, ¢’(yx)]. The
point (v, u;) € IR® isapoint below the graph of ¢'; that is, u;, < ¢'(yx). Define
T astheset of indices of jobs whose u, value falls below the graph of ¢; that is,
T ={keN:u <¢(y)} Thentheset of jobs{y; : k € T} can be viewed as a
random sample of |T| jobs drawn randomly from the densi ty e

In order to relate this upper bound to the lower bound we need to present the
following lemma.
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Lemma 7.3.3 For T generated asaboveand for each subregion A;,i = 1,2, ...,
1(A),
M (T
lim —&~ 2 al (l)) <v, (as.).
n— 00 I’l(l)
Proof. Toprovetheresult for agiven subregion A;, we construct afeasibleschedule
fortheset of jobs{y, = (w, ex, sk + A, [k +A) 1 k € T(i)}. Generaten(i)—|T (i)|
jobs randomly from the density

1
mw—lﬁl

Call this set of jobs D, for dummy jobs. From the construction of the sets D and
T(i), itisasimple exerciseto show that the parameters of thejobsin DU T (i) are
distributed like ¢.

A feasible schedule of thejobsin T'(i) is obtained by optimally scheduling the
jobsin D U T(i) using, say M; machines. The number of machines needed to
schedule the jobs in T'(i) is obviously no more than M;, since the jobsin D can
simply be ignored. Thus we have the bound

MA(T (@) < M;.
Now dividing by n(i) and taking the limits, we get

= MA(TG) _ o M,

n—00 }’l(l) T n—o00 n(l) =Y (as)

sincethe set of jobs D U T'(i) isjust aset of n(i) jobs whose parameters are drawn

independently from the density ¢. |
Lemma 7.3.3 thus reduces equation (7.1) to
1. - 2 ( )
im Z*<22y I|m —2d(i) +2A + I|m Zde
n—oo n k¢T
o t(A)
:2yn|Ln;;Zn(l)g(l)+2A+H|Lm g;de

<2y lim = de+2A+I|m Zde

n—00 keN n—00 kgéT

=2yE(d)+2A + lim = Zde
n—oo k¢T

< 2yE(d) + 2A + 2dma lim —|N \T|.
n—-oo n

The next lemma determines an upper bound on lim, .. 2|N \ 7.
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Lemma7.3.4 Givene > Oand T generated as above,
- 1 2
lim —IN\T| < (14 ¢€)%€ (as).
n—-oo n

Proof. By the Strong Law of Large Numbers, the limit is equal to the probability
that ajob of N isnotinthe set T. The probability of aparticular job y, not being
inT issimply

%, if &' (k) = ¢(k),
0, otherwise.

Hence, ailmost surely

im }|N\T|=/ max{M
n—o0o n R

</ ¢'(x) — ¢(x)
TR ¢'(x)

- f 16/(x) — $(0)ldx
R4

=/4|¢/(91, 02, 03, 04) — (61, 02, O3, 04)|d (01, 62, 63, 64)
IR

= / . |p(B1, 62,63 — A, 04 — A) — ¢(61, 62, 63, 04)|d (61, 02, O3, 04)
R

< (1+ A%
< (14 €)%,

where the second to last inequality follows from |[(01, 62,03 — A, 6 — A) —
(61, 62, B3, 64)|| < AV2 < § and the continuity of ¢. |

We now have all the necessary ingredients to finish the proof of Theorem 7.2.1;
thus

1
lim Z* <2y E(d) + 2dpex(1+ €)% +2A  (as).

n—o0

Since e was arbltrary and recalling that A < €, we have
— 1
lim —Z* <2y E(d) (as)).
n—-oon

This upper bound combined with the lower bound proves Theorem 7.2.1.

7.4 An Asymptotically Optimal Heuristic

In this section we generalize the LBH heuristic developed for the CVRP (see
Chapter 6) to handle time window constraints. Similarly to the original LBH we
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prove that the generalized version is asymptotically optimal for the VRPTW. We
refer to this more general version of the heuristic also as the Location-Based
Heuristic; this should cause no confusion.

7.4.1 The Location-Based Heuristic

TheLBH can beviewed asathree-step algorithm. Inthefirst step, the parameters of
theVRPTW aretransformed into datafor alocation problem called the Capacitated
Vehicle L ocation Problem with Time Windows (CVLPTW), described below. This
location problem is solved in the second step. In the final step, we transform the
solution to the CVLPTW into afeasible solution to the VRPTW.

The Capacitated Vehicle Location Problem with Time Windows

The Capacitated Vehicle Location Problem with Time Windows (CVLPTW) is
a generalization of the single-source Capacitated Facility Location Problem (see
Section 6.7) and can be described as follows: we are given m possible sites to
locate vehicles of capacity Q. There are n customers geographically dispersed in
a given region, where customer i has w; units of product that must be picked up
by a vehicle. The pickup of customer i takes s; units of time and must occur in
the time window between times e; and [;; that is, the service of customer i can
start at any timet € [e;, [; — s;]. The objectiveisto select a subset of the possible
sites, to locate one vehicle at each site, and to assign the customersto the vehicles.
Each vehicle must leave its site, pick up the load of customers assigned to it in
such away that the vehicle capacity is not exceeded and all pickups occur within
the customer’s time window, and then return to its site. The costs are as follows:
a site-dependent cost is incurred for locating each vehicle; that is, if a vehicleis
located at site j, the set-up costisv;, for j = 1,2, ..., m. The cost of assigning
customer i to the vehicle at site j isc;; (the assignment cost), fori =1,2,...,n
andj =1, 2,..., m. Weassume that there are enough vehicles and sites so that a
feasible solution exists.
The CVLPTW can be formulated as the following mathematical program. Let

1, if avehicleislocated at site j,
Y= {O, otherwise,

and let
{ 1, if customer i isassigned to the vehicle at site j,
Xij =

0, otherwise.

Forany set S € N, let f;(S) = 1if the set of customers S can be feasibly served
in their time windows by one vehicle that starts and ends at site j (disregarding
the capacity constraint), and O otherwise.
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m

Problem P : Min iicuxﬁ + Zvjyj
j=1

i=1 j=1
s.t. > xi=1, Vi (7.2
j=1
Zwixij <0, vj (7.3)
i=1
Xij <V, Vi,j (74)
fiiixj=1)=1 Vj (7.5)
)C,'j, yj S {O, 1}, Vl, ] (76)

Constraints (7.2) ensure that each customer is assigned to exactly one vehicle,
and constraints (7.3) ensure that the vehicle's capacity constraint is not violated.
Constraints (7.4) guarantee that if a customer is assigned to the vehicle at site j,
then avehicleislocated at that site. Constraints (7.5) ensure that the time window
constraintsarenot violated. Constraints (7.6) ensuretheintegrality of thevariables.

The Heuristic

Torelatethe CVLPTW to the VRPTW, consider each customer in the VRPTW to
be a potential site for avehicle; that is, the set of potential sitesis exactly the set
of customers, and therefore m = n. Picking a subset of the sitesin the CVLPTW
correspondsto picking asubset of the customersin the VRPTW; we call this set of
selected customers the seed customers. These customers are those that will form
simple tours with the depot.

In order for the LBH to perform well, the costs of the CVLPTW should approx-
imate the costs of the VRPTW. The set-up cost for locating avehicle at site j (v;)
or, in other words, of picking customer j as a seed customer, should be the cost
of sending a vehicle from the depot to customer j and back (i.e., the length of the
simple tour). Hence, we set v; = 2d; for each j € N. The assignment cost ¢;; is
the cost of assigning customer i to the vehicle at site j. Therefore, this cost should
represent the added cost of inserting customer i into the ssmple tour through the
depot and customer j. Consequently, when i is added to atour with j, the added
costisc;; = d;j+d;j —d;,sothat v; +c;; = d; +d;; +d;. Thiscost isexact for two
and sometimes three customers. However, as the number of customers increases,
the values of ¢;; in fact represent an approxi mation to the cost of adding i to atour
that goes through customer j and the depot. In Section 7.4.3 we present values of
c;; that we have found to work well in practice.

Once these costs are determined the second step of the LBH consists of solving
CVLPTW. The solution provided is a set of sites (seed customers) and a set of
customers assigned to each of these sites (to each seed). This solution can then be
easily transformed into asolution to the VRPTW, since aset of customersthat can
befeasibly served starting from site j can also befeasibly served starting from the
depot.
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7.4.2 A Solution Method for CVLPTW

The computational efficiency of the LBH depends on the efficiency with which
CVLPTW can be solved. We therefore present a method to solve the CVLPTW.
Asdiscussed earlier, the CVLPTW without constraints (7.5) is simply the single-
source Capacitated Facility Location Problem (CFLP) for which efficient solution
methodsexist based on the cel ebrated L agrangian rel axati on techni que; see Section
4.3. For the CVLPTW, we use a similar method, although the specifics are more
complex in view of the existence of these time window constraints.

In this case, for a given multiplier vector A € IR", constraints (7.2) are relaxed
and put into the objectivefunction with themultiplier vector. Theresulting problem
can be separated into n subproblems (one for each of the n sites), since constraints
(7.2) are the only constraints that relate the sites to one another. The subproblem
for site j is:

n
Problem P; : Min Y " Gijxij + v,y
i=1

s.t. Zwixij <Q
i=1
Xij = Vj Vi
fili ixiy=1)=1
Xij € {0, 1} Vi and Yj € {0, 1},

wherec;; = ¢;; + A;, foreachi e N.

Inthe optimal solution to problem P;, y; iseitherOor 1. If y; = 0, thenx;; = 0
foral i e N, and the objective function valueis 0. If y; = 1, then the problem
reducesto adifferent, but simpler, routing problem. Consider avehicle of capacity
Q initially located at site j. The driver gets a profit of p;; = —c;; for picking
up the w; items at customer i in the time window (e;, ;). The pickup operation
takess; units of time. The objectiveisto choose a subset of the customers, to pick
up their loads in their time windows, without violating the capacity constraint,
using avehicle which must begin and end at site j, while maximizing the driver's
profit. Let G*; be the maximum profit attainable at site j; that is, G isthe optimal
solution to the problem just described for site j. Thisimpliesthat v; — G7 isthe
optimal solution value of Problem P; giventhat y; = 1. Therefore, we can write
the optimal solution to Problem P; assmply min{0, v; — G3}.

Unfortunately, in general, determlnlng the values G for ] € N is N'P-Hard.
We can, however, determine upper bounds on G*; call them G,. Thisprovides a
lower bound on the optimal solution to problem P; whichis equal tomin{0, v; —
G;}. We use the smple bound given by G; = 3., _o pij. Consequently,
> iamin{0, v; — G;} — 3271 A; is alower bound on the optimal solution to
the CVLPTW.

To generate afeasible solution to the VRPTW at each iteration of the procedure,
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we use information from the upper bounds on profit G; for j € N. After every
iteration of the lower bound (for each multiplier) we renumber the sites so that
G1 > G, > --- > G,. The upper bounds on profit are used as an estimate of
the profitability of placing a vehicle at a particular site. For example, site 1 is
considered to be a“good” site (or seed customer), since a large profit is possible
there. A large profit for site j corresponds to a seed customer where neighboring
customers can be feasibly served from it at low cost. Therefore, a site with large
profitisselected asaseed customer sinceit will tend to have neighboring customers
around it that can be feasibly served by avehicle starting at that site.

To generate afeasible solution to CVLPTW, we do the following: starting with
j = linthenew ordering of the sites (customers), welocateavehicleat site j. For
every customer still not assigned to a site, we first determine if this customer can
be feasibly served with the customers that are currently assigned to site j. Then,
of the customers that can be served from this site, we determine the one that will
causetheleast increasein cost, that is, the onewith minimum ;; over al customers
i that can be served from this site. We then assign this customer to the site. We
continue until no more customers can be assigned to site 7, due to capacity or time
constraints. We then increment j to 2 and continue with site 2. After al customers
have been feasibly assigned to a site, we obtain a feasible solution whose cost is
compared to the cost of the current best solution.

Aswefind solutionsto the CVLPTW, we also generate feasible solutions to the
VRPTW, using the information from the lower bound to CVLPTW. Starting with
J =1, pick customer j as a seed customer. Then, for every customer that can be
feasibly served with this seed, we determine the added distance this would entail;
that is, we determine the best place to insert the customer into the current tour
through the customers assigned to seed j. We choose the customer that causes
the least increase in distance traveled as the one to assign to seed j. This idea
is similar to the Nearest Insertion heuristic discussed in Section 2.3.2. We then
continue trying to add customers in this way to seed j. Once no more can be
added to thistour (due to capacity or time constraints), we increment j to 2, select
seed customer 2 and continue. Once every customer appears in a tour, that is,
every customer is assigned to a seed, we have afeasible solution to the VRPTW
corresponding tothe current set of multipliers. Thecost of thissolutioniscompared
to the cost of the current best solution.

Multipliers are updated using (4.6). The step sizeisinitialy set to 2 and halved
after the lower bound has not improved in a series of 30 iterations. After the step
size has reached a preset minimum (0.05), the heuristic is terminated.

7.4.3 Implementation

Itisclear that many possible variations of the LBH can beimplemented depending
on the type of assignment costs (c;;) used. In the computational results discussed
below, the following have been implemented.
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direct cost: Cij = Zd,‘j, and

nearest insertion cost: ¢;; = d; + d;; — d;.

Direct cost ¢;; has the advantage that, when several customers are added to the
seed, the resulting cost, which isthe sum of the set-up costs and these direct costs,
is an upper bound on the length of any efficient route through the customers. On
the other hand, the nearest insertion cost works well because it is accurate at |east
for tours through two customers, and often for tours through three customers as
well.

Several versions of the LBH have been implemented and tested. In thefirst, the
Star-Tours (ST) heuristic, the direct assignment cost is used, while in the second,
the Seed-Insertion (SI) heuristic, the nearest insertion assignment cost is applied.
Observe that the LBH is not a polynomial-time heuristic. However, as we shall
shortly demonstrate, the running times reported on standard test problems are very
reasonable and are comparable to the running times of many heuristics for the
vehicle routing problem.

The ST heuristic is of particular interest becauseit is asymptotically optimal as
demonstrated in the following lemma. The proof is similar to the previous proofs
and is therefore omitted.

Lemma7.4.1 Let n customers, indexed by N, be independently and identically
distributed according to a distribution . with compact support in IR?. Define

E@ = [ xldus).

Let the customer parameters {(wy, ex, sk, lx) : k € N} bejointly distributed like
®. In addition, let M be the minimum number of machines needed to feasibly
schedule the jobs {(wx., ek, sk, lk) : k € N} and let lim,_.o M)/n = y, (as).
Then
N 1
lim —Z>" = lim —Z = 2y E(d) (as).
n—oon

n—oo n

7.4.4 Numerical Sudy

Tables 1 and 2 summarize the computational experiments with the standard test
problems of Solomon (1986). The problem set consists of 56 problems of various
types. All problems consist of 100 customers and one depot, and the distances are
Euclidean. Problemswiththe”R” prefix are problemswherethe customer locations
arerandomly generated according to auniform distribution. Problemswith the“C”
prefix are problems where the customer locations are clustered. Problems with
the “RC" prefix are a mixture of both random and clustered. In addition, all the
problems have a constraint on the latest time T, at which a vehicle can return to
the depot. For afull description of these problems we refer the reader to Solomon.

We compare the performance of the LBH against the heuristics of Solomon and
the column generation approach of Desrochers et al. (1992). The latter method
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was able to solve effectively 7 of the 56 test problems; we describe this approach
in the next chapter.

Table 1

CPU CPU Solomon’s
Problem | Alg.ST  Time | Alg. Sl Time | Best Solution
C201 591.6 245.9s 591.6 260.5s 591
Cc202 *652.8 276.1s | *640.8 262.7s 731
C203 *692.2 309.2s | *741.1 308.9s 786
C204 *721.6 335.9s 782.3 340.6s 758
C205 713.8 250.8s 699.9 258.8s 606
C206 770.8 257.3s | * 7228 283.3s 730
C207 767.2 265.7s 708.9 275.8s 680
C208 736.2 287.7s 660.2 272.4s 607
R201 *1665.3 207.1s | *1533.4 209.6s 1741
R202 *1485.3 276.4s | *1484.3 248.5s 1730
R203 *1371.5 406.5s | *1349.3 389.0s 1567
R204 1096.7 532.0s | 1077.0 538.2s 1059
R205 1472.3 287.0s | *1329.4 312.6s 1471
R206 *1237.0 412.2s | *1283.7 374.2s 1405
R207 *1217.7 484.8s | *1162.9 453.9s 1241
R208 *966.1 587.8s| *959.9 612.6s 1046
R209 *1276.1 394.8s | *1262.8 355.7s 1418
R210 *1312.5 380.7s | *1340.6 388.6s 1425
R211 1080.9 474.7s | 1141.3 488.7s 1016
RC201 | *1873.8 203.5s | *1841.7 185.8s 1880
RC202 | *1742.1 227.8s | *1705.1 241.0s 1799
RC203 | *1417.5 331.5s | *1471.1 300.1s 1550
RC204 | *1139.6 437.7s | *1190.3 411.5s 1208
RC205 | *1830.5 233.0s | *1878.9 214.0s 2080
RC206 1640.1 259.0s | 1607.5 248.2s 1582
RC207 | *1566.4 294.2s | *1557.3 272.3s 1632
RC208 12548 345.7s | 1298.7 317.3s 1194

(* indicates that the LBH improves upon the best solution known.)

To compare the LBH to these solution methods, a time window reduction phase
wasimplemented beforethe start of the heuristic. Here, the earliest timefor service
ey isreplaced by max{ey, di}; in that way, vehicles |eave the depot no earlier than
timeO0. In addition, the latest time service can end [, isreplaced by min{l;, To—d;}.
The LBH can then berun asit is described in Section 7.4.1.

As can be seen in the tables, both the ST and the Sl heuristics have been imple-
mented. CPU times are in seconds on a Sun SPARC Station 1. In Tables 1 and 2,
the column “ Solomon’s Best Solution” corresponds to the best solution found by
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Solomon. Solomon tested eight different heuristics on problem sets R1 and C1,

Table 2

CPU CPU Solomon’s | DDS Solution
Problem | Alg.ST  Time | Alg.SI  Time | Best Solution Value
C101 8289 741s| 8289 67.0s 829 827.3
C102 982.8 8209s| 10434 73.1s 968 827.3
C103 *1015.1  95.9s | 12329 884s 1026
C104 *080.9 1054s | *976.1 114.5s 1053
C105 *8289 79.7s| 8608 67.3s 829
C106 8529 828s| 880.1 66.7s 834 827.3
C107 8289 831s| 8412 74.7s 829 827.3
C108 8529 886s| 8536 80.9s 829 827.3
C109 991.0 886s| 10145 83.1s 829
R101 1983.7 57.2s| 20712 39.9s 1873 1607.7
R102 1789.0 70.8s | 18214 57.4s 1843 1434.0
R103 15945 88.6s| 1599.1 67.9s 1484
R104 12420 106.2s| 1237.3 81.0s 1188
R105 16044 67.0s| 1696.2 52.0s 1502
R106 16069 78.0s| 1589.2  70.0s 1460
R107 *1324.9 924s| 13612 704s 1353
R108 1202.6 107.5s | 12055 101.1s 1134
R109 1504.7 785s| 14918 69.6s 1412
R110 1380.9 92.0s | 14344  69.4s 1211
R111 14221  91.7s| 14324  69.5s 1202
R112 1248.1 105.2s | 1284.6  79.4s 1086
RC101 2045.1 60.6s | 20144  45.0s 1867
RC102 1806.6 68.7s | 1969.5 52.2s 1760
RC103 17089 8l.7s| 17163  69.6s 1641
RC104 13721 935s| 14588  79.5s 1301
RC105 | *1826.3 689s| 2036.8 51.3s 1922
RC106 17108 68.0s | 1804.8 50.5s 1611
RC107 15932 76.4s| 16309 64.9s 1385
RC108 14210 84.7s| 14938 65.5s 1253

(* indicates that the LBH improves upon the best solution known.)

and six heuristics on problems RC1, R2, C2 and RC2. We seethat the ST heuristic
providesabetter solution than Solomon’sheuristicsin 25 of the 56 problems, while
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the Sl heuristic provides a better solution in 21 of the 56 problems. In Table 2,
the column “DDS Solution Value” corresponds to the value of the solution found
using the column generation approach of Desrochers et al.

7.5 Exercises

Exercise 7.1. You are given anetwork G = (V, A) where |V| = n, d(i, j) isthe
length of edge (i, j) and a specified vertex a € V. One service unit is located
a a and has to visit each vertex in V so that total waiting time of all verticesis
as small as possible. Assume the waiting time of a vertex is proportional to the
total distance traveled by the server from a to the vertex. The total waiting time
(summed up over al customers) isthen:

(n — 1d(a,2) + (n — 2d(2,3) + (n — 3)d(3.4) + - -- +d(n — 1, n).

The Déelivery Man Problem (DMP) is the problem of determining the tour that
minimizes the total waiting time.

Assume that G is atree with d(i, j) = 1 for every (i, j) € A. Show that any
tour that follows a depth-first search starting from a is optimal.

Exercise 7.2. Consider the Delivery Man Problem described in Exercise 7.1. A
delivery man currently located at the depot must visit each of n customers. Let
ZPM pe the total waiting time in the optimal delivery man tour through the »
points. Let Z* be the total time required to travel the optimal traveling salesman
tour through the n points.

(a) Provethat
DM N
2 ()

(b) One heuristic proposed for this problem is the Nearest Neighbor (NN)
Heuristic. In this heuristic, the vehicle serves the closest unvisited customer
next. Provide afamily of examples to show that the heuristic does not have
a fixed worst-case bound.

Exercise 7.3. Consider the Vehicle Routing Problem with Distance Constraints.
Formally, a set of customers has to be served by vehicles that are al located at
a common depot. The customers and the depot are presented as the nodes of an
undirected graph G = (N, E). Each customer has to be visited by a vehicle.
The j™ vehicle starts from the depot and returns to the depot after visiting a
subset N; € N. The total distance traveled by the j™ vehicle is denoted by
T;. Each vehicle has a distance constraint A: no vehicle can travel more than A
units of distance (i.e.,, T; < 1). We assume that the distance matrix satisfies the
triangleinequality assumption. Also, assumethat thelength of theoptimal traveling
salesman tour through all the customers and the depot is greater than A.
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(a) Suppose the objective function is to minimize the total distance traveled.
Let K* be the number of vehiclesin an optimal solution to this problem.
Show that there always existsan optimal solutionwith total distancetraveled
> %K *X. Does this lower bound hold for any optimal solution?

(b) Consider the following greedy heuristic: start with the optimal traveling
salesman tour through all the customers and the depot. In an arbitrary ori-
entation of this tour, the nodes are numbered (io, i1, ...,i,) = S in order
of appearance, where n = the number of customers, iy is the depot and
i1, io, ..., i, arethe customers. We break the tour into K segments and
connect the end-points of each segment to the depot. Thisis donein thefol-
lowing way. Each vehicle j, 1 < j < K* starts by traveling from the depot
to the first customer i, not visited by the previous j — 1 vehicles and then
visits the maximum number of customers according to S without violating
the distance constraint upon returning to the depot.

Show that K# < min{n, {T 2"’"]} where T isthe length of the optimal traveling
salesman tour and d,,, is the dlstance from the depot to the farthest customer.

Exercise 7.4. Consider the Pickup and Delivery Problem. Here customers are
pickup customerswith probability p and delivery customerswith probability 1— p.
Assume a vehicle capacity of 1. If customer i is a pickup customer, then a load
of size w; < 1 must be picked up at the customer and brought to the depot. If
customer i is a delivery customer, then a load of size w; < 1 must be brought
from the depot to the customer. Assume pickup sizes are drawn randomly from a
distribution with bin-packing constant yp» and delivery sizes are drawn randomly
from adistribution with bin-packing constant y». A pickup and a delivery can be
in the vehicle at the sametime.

(a) Develop aheuristic H for this problem and determinelim,,_. % asafunc-
tionof p, yp and yp.

(b) Assume all pickups are of size $ and deliveries are of size 2. Suggest a

better heuristic for this case. What islim,,_, o Zn—" asafunction of p for this
heuristic?
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Solving the VRP Using a Column
Generation Approach

8.1 Introduction

A classical method, first suggested by Balinski and Quandt (1964), for solving
the VRP with capacity and time window constraints is based on formulating the
problem as a set-partitioning problem. (See Chapter 4 for a general discussion of
set partitioning.) The ideais as follows: let the index set of all feasible routes be
{1,2,..., R} andlet ¢, bethelength of route r. Define

1, if customer i isservedin router,
o —
"’ 0, otherwise,

foreachcustomeri =1,2,...,nandeachrouter =1, 2, ..., R. Also, for every
r=12 ..., R, let

{ 1, ifrouter isintheoptimal solution,
Yr = .
0, otherwise.

Inthe Set-Partitioning formulation of the VRP, the objectiveisto select aminimum
cost set of feasible routes such that each customer isincluded in someroute. It is:

R
Problen S: Min Zc,y,.
r=1

R
st. Y ey =1 Vi=12..., n (8.1)
r=1

yrG{O,l}, Vr:l,Z,...,R.
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Observethat we havewritten constraints(8.1) asinequality constraintsinstead of
equality constraints. The formulation with equality constraintsis equivalent if we
assume the distance metrix {d;;} satisfiesthetriangleinequality and therefore each
customer will bevisited exactly oncein the optimal solution. The formulation with
inequality constraintswill prove to be easier to work with from an implementation
point of view.

This formulation was first used successfully by Cullen et a. (1981) to design
heuristic methods for the VRP. Recently, Desrochers et al. (1992) have used it in
conjunction with a branch and bound method to generate optimal or near optimal
solutions to the VRP. Similar methods have been used to solve crew scheduling
problems, such as Hoffman and Padberg (1993).

Of course, the set of all feasible routesis extremely large and one cannot expect
togenerateit completely. Evenif thissetisgiven, itisnot clear how to solvethe set-
partitioning problem since it is alarge-scale integer program. Any method based
on this formulation must overcome these two obstacles. We start, in Section 8.2,
by showing how the linear relaxation of the set-partitioning problem can be solved
to optimality without enumerating all possible routes. In Section 8.3, we combine
this method with a polyhedral approach that generates an optimal or near-optimal
solution to the VRP. Finaly, in Section 8.4, we provide a probabilistic analysis
that helps explain why a method of this type will be effective.

To simplify the presentation, we assume no time window constraints exist; the
extension to the more general model is, for the most part, straightforward. The
interested reader can find some of these extensions in Desrochers et al.

8.2 Solving a Relaxation of the Set-Partitioning
Formulation

To solve the linear relaxation of Problem S without enumerating al the routes,
Desrochers et al. use the celebrated column generation technique. A thorough
explanation of this method is given below, but the general ideais as follows. A
portion of all possibleroutesisenumerated, and the resulting linear rel axation with
this partial route set is solved. The solution to this linear program is then used to
determineif there are any routes not included that can reduce the objective function
value. This is the column generation step. Using the values of the optimal dual
variables (with respect to the partial route set), a new route is generated and the
linear relaxation isresolved. Thisis continued until one can show that an optimal
solution to the linear program is found, one that is optimal for the complete route
Set.

Specifically, thisisdone by enumerating apartia set of routes, 1, 2, ..., R’, and
formulating the corresponding linear relaxation of the set-partitioning problem
with respect to this set:
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"
Problem §":  Min ¢,y
r=1
st.
.
Yy =1, Vi=12....n (8.2
r=1
y.>0, Vr=12...,R.

Let y be the optimal solution to Problem §’, and let 7= be the corresponding
optimal dual variables. We would like to know whether y (or equivaently, 7) is
optimal for the linear relaxation of Problem S (respectively, the dual of the linear
relaxation of Problem S). To answer thisquestion observethat thedual of thelinear
relaxation of Problem S is

Problem Sp :  Max Xn:ni
s.t. -
Zn:ai,rri <¢, Vr=12,...,R (8.3
12171,» >0, Vi=12,...,n.

Clearly, if T satisfiesevery constraint (8.3) thenitisoptimal for Problem Sp, and
therefore y is optimal for the linear programming relaxation of Problem S. How
can we check whether 7 satisfies every constraint in Problem S, ? Observe that
the vector 7 isnot feasible in Problem S, if we can identify asingle constraint, r,

such that
Z Olirﬁl‘ > Cy.
i=1

Consequently, if we can find a column » minimizing the quantity ¢, — >} o;,7T;
and this quantity is negative, then a violated constraint is found. In that case the
current vector 7 is not optimal for Problem Sp. The corresponding column just
found can be added to the formulation of Problem Sp, which is solved again. The
processrepeatsitself until no violated constraint (column) isfound; inthiscasewe
have found the optimal solution to the linear relaxation of Problem S (the vector
y) and the optimal solution to Problem S, (the vector 7).
Our task isthen to find a column, or aroute, r minimizing the quantity:

Cr — iai,ﬁi. (84)

We can look at this problem in a different way. Suppose we replace each distance
d;; with anew distance d;; defined by

dij = dij — - — =
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Thenatour u; — up — ... — u, whoselengthusing {d;;} ist;l1 Aoy + duyuy
has, using {d/;}, alength

-1 -1 4
§ : ’ ’ _

du;MH,l + du(ul - § :d”[”Hl + du«m - z :7174/'
i=1 i=1 i=1

Hence, finding a route r that minimizes (8.4) is the same as finding a tour of
minimum length using the distance matrix {d;;} that starts and ends at the depot,
visitsasubset of the customers, and hasatotal load no morethan Q. Unfortunately,
this itself is an NP-Hard problem and so we are |eft with a method that is not
attractive computationally.

To overcomethisdifficulty, the set-partitioning formulation, Problem S, ismod-
ified so asto alow routes visiting the same customer more than once. The purpose
of this modification will be clear in a moment. This model, call it Problem Sy,
(where M stands for the “modified” formulation), is defined as follows. Enumer-
ate al feasible routes, satisfying the capacity constraint, that may visit the same
customer anumber of times; each such visit increasesthe total |oad by the demand
of that customer. Let the number of routes (columns) be Ry, and let ¢, be the
total distance traveled in route r. For each customer i = 1,2, ..., n and route
r=12 ..., Ry, let

&, = number of times customer i isvisited in route r.
Also, foreachr = 1,2, ..., Ry, define

{ 1, if router isinthe optimal solution,
yVr = .
0, otherwise.

The VRP can be formulated as;

Rm
Problem Sy : Min ¢y,
r=1
s.t.
Rm
D&y =1 Vi=12...n (8.5)
r=1
v, €{0,1}, Vr=12,...,Ry.

This is the set-partitioning problem solved by Desrochers et a. and therefore it
is not exactly Problem S. Clearly, the optimal integer solution to Problem S,
is the optimal solution to the VRP. However, the optimal solution values of the
linear relaxations of Problem S, and Problem S may be different. Of course, the
linear relaxation of Problem S, provides alower bound on the linear relaxation
of Problem S.

To solvethelinear relaxation of Problem S,, we use the method described above
(for solving Problem §). We enumerate a partial set of R}, routes; solve Problem
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Sy, which isthe linear relaxation of Problem S, defined only on this partial list;
usethe dual variablesto see whether there exists acolumn not in the current partial
listwith " ; &,7; > c,. If there exists such acolumn(s), we add it (them) to the
formulation and solve the resulting linear program again. Otherwise, we have the
optimal solution to the linear relaxation of Problem Sy,.

The modification we have made makes the column generation step computa-
tionally easier. This can now be found in pseudopolynomial time using dynamic
programming.

For thispurpose, we need thefollowing definitions. Givenapath P = {0, uy, us,
..., u¢}, where it is possible that u; = u; for i # j, let the load of this path be
Zf:l wy, . That is, the load of the path is the sum, over al customersin P, of the
demand of a customer multiplied by the number of times that customer appears
in P. Let f,(i) be the cost (using {d/;}) of the least cost path that starts at the
depot and terminates at vertex i with total load ¢. This can be calculated using the
recursion

126 = min | fyu () + dis . (86)
with the initial conditions
. d(/)l If q = wi,
Jai) = { +o0o0  otherwise.

Finally, let £2(i) = f,(i) +dg. Thus, (i) isthelength of aleast cost tour that
starts at the depot, visits a subset of the customers, of which customer i isthe last
to be visited, has atotal load ¢ and terminates at the depot. Observe that finding
fqo(i) foreveryg,1<q < Q,andevery i,i € N, requires O(n>Q) calculations.
The recursion choosesthe predecessor of i tobeanode j # i. Thisrequiresrepeat
visitsto the same customer to be separated by at |east onevisit to another customer.
In fact, expanding the state space of this recursion can eliminate two-loops: |oops
of thetype...i, j, i.... Thisforcesrepeat visitsto the same customer to be separated
by visitsto at least two other customers. This can lead to a stronger relaxation of
the set-partitioning model. For a more detailed discussion of this recursion, see
Christofides et al. (1981).

If thereexistsag, 1 < ¢ < Q andi,i € N with fqo(i) < 0, then the current
vectors’y and 7 are not optimal for the linear relaxation of Problem Sy,. Insuch a
case we add the column corresponding to this tour (the one with negative fqo(i )
to the set of columnsin Problem ;. If, on the other hand, fqo(i) > Ofor every g
and i, then the current y and 7 are optimal for S,.

To summarize, the column generation algorithm can be described as follows.

The Column Generation Procedure
Step 1: Generate an initial set of R}, columns.
Step 2: Solve Problem S}, and findy and 7.

Sep 3: Construct the distance matrix {d;;} and find f%g) fordli € N and
l=g=0.
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Sep 4 For every i and g with £9(¢) < 0, add the corresponding column to R},
and goto Step 2.

Sep5: If f2(g) > Oforal i and ¢, stop.

The procedure produces a vector y which is the optimal solution to the linear
relaxation of Problem S,,. Thisis alower bound on the optimal solution to the
VRP.

8.3 Solving the Set-Partitioning Problem

In the previous section we introduced an effective method for solving the linear
relaxation of the set-partitioning formulation of the VRP, Problem S,,. How can
we usethissolutionto thelinear programto find an optimal or near-optimal integer
solution?

Starting with the set of columns present at the end of the column generation step
(the set E), one approach to generating an integer solution to the set-partitioning
formulation is to use the method of branch and bound. This method consists of
splitting the problem into easier subproblems by fixing the value of a branching
variable. Thevariable (inthiscaseasuitable choiceis y, for somerouter) iseither
set to 1 or 0. Each of these subproblems is solved using the same method; that is,
another variable is branched. At each step, tests are performed to seeif the entire
branch can be eliminated; that is, no better solution than the one currently known
can be found in this branch. The solution found by this method will be the best
integer solution among all the solutionsin E. This solution will not necessarily be
the optimal solution to the VRRP, but it may be close.

Another approach that will generate the same integer solution as the branch and
bound method isthe following. Given afractional solutionto S,,, we can generate
a set of constraints that will cut off this fractional solution. Then we can resolve
thislinear program and if it isinteger, we have found the optimal integer solution
(among the columns of E). If itisstill fractional, then we can continue generating
constraints and resolving the linear program until an integer solution is found.
Again, the best integer solution found using this method may be close to optimal.
This is the method successfully used by Hoffman and Padberg (1993) to solve
crew-scheduling problems.

Formally, the method is as follows.

The Cutting Plane Algorithm
Step 1. Generate an initial set of R}, columns.
Step 2: Solve, using column generation, Problem Sj,.

Step 3: If the optimal solution to Problem S, is integer, stop.
Else, generate cutting planes separating this solution.
Add these cutting planes to the linear program S, .
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Step 4: Solvethelinear program S;,. Goto Step 3.

To illustrate this constraint generation step (Step 3), we make use of a number
of observations. First, let E bethe set of routes at the end of the column generation
procedure. Clearly, we can split E into two subsets. One subset E,,, includes every
column r for which thereis at least one i with &;, > 2; these columns are called
multiple visit columns. The second subset E; includes the remaining columns;
these columns are referred to as single visit columns. It is evident that an optimal
solution to the VRP will use no columns from E,,. That is, there always exists a
single visit column of at most the same cost that can be used instead. We therefore
can immediately add the following constraint to the linear relaxation of Problem
Su.

> w =0 (8.7)

rek,

To generate more constraints, construct the intersection graph G. The graph
G has anode for each column in E;. Two nodes in G are connected by an edge
if the corresponding columns have at least one customer in common. Observe
that a solution to the VRP where no customer is visited more than once can be
represented by an independent set in this graph. That is, it isacollection of hodes
on the graph G such that no two nodes are connected by an edge.

These observations give rise to two inequalities that can be added to the formu-
lation.

1. We select a subset of the nodes of G, say K, such that every pair of nodes
i, j € K are connected by an edge of G. Each set K, called a clique, must
satisfy the following condition.

Y owsl (88)

rek

Clearly, if thereisanode j ¢ K suchthat j isadjacenttoeveryi € K, then
we can replace K with K U {j} in inequality (8.8) to strengthen it (thisis
called lifting). In that sense we would like to use inequality (8.8) when the
set of nodes K ismaximal in that sense.

2. Defineacycle C = {u1, us, ..., u,} in G, such that node u; is adjacent to
uiy1, foreachi = 1,2,...,¢ — 1, and node u, is adjacent to node u;. A
cycle C iscaled an odd cycleif the number of nodesin C, |C| = ¢, isodd.
An odd cycleis called an odd hole if there is no arc connecting two nodes
of the cycle except the ¢ arcs defining the cycle. It is easy to see that in
any optimal solution to the VRP each odd hole must satisfy the following

property.
-1
v s =1 (8.9)

reC 2
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8.3.1 Identifying Violated Clique Constraints

Hoffman and Padberg suggest several procedures for clique identification, one
of which is based on the fact that small size problems can be solved quickly by
enumeration. For this purpose, select v to be the node with minimum degreeamong
al nodesof G. Clearly, every clique of G containing v isasubset of the neighbors
of v, denoted by neigh(v). Thus, starting with v as a temporary clique, that is,
K = {v}, we add an arbitrary node w from neigh(v) to K. We now delete from
neigh(v) al nodes that are not connected to a node of K, in this case either v or
w. Continue adding nodes in this manner from the current set neigh(v) to K until
either thereisno nodein neigh(v) connected to al nodesin K, or neigh(v) = @.
Inthe end, K will be amaximal clique. We can then calculate the weight of this
clique, that is, the sum of the values (in the linear program) of the columnsin the
clique. If the weight is more than one, then the corresponding clique inequality
isviolated. If not, then we continue the procedure with a new starting node. The
method can be improved computationally by, for example, always choosing the
“heaviest” among those nodes eligible to enter the clique.

8.3.2 Identifying Violated Odd Hole Constraints

Hoffman and Padberg use the following procedure to identify violated odd hole
constraints. Suppose y is the current optimal solution to the linear program and
G isthe corresponding intersection graph. Starting from an arbitrary node v € G,
construct alayered graph G,(v) asfollows. The node set of G,(v) isthe same as
thenode set of G. Every neighbor of v in G isconnected to v by an edgein G,(v).
Werefer to v astheroot, or level 0 node, and werefer to the neighbors of v aslevel
1 nodes. Similarly, nodes at level k > 2 are those hodes in G that are connected
(in G) to alevel k — 1 node but are not connected to any node at level < k — 1.
Finally, each edge (u;, u;) in G,(v) isassigned alengthof 1 -y, — Vi, = 0.

Now pick anodeu in G,(v) at level k > 2 and find the shortest path from u to v
inG,(v). Deletedll nodesat levelsi (1 < i < k) that are either on the shortest path
or adjacent to nodes along this shortest path (other than nodes that are adjacent
to v). Now pick another node w that is adjacent (in G) to u in level k. Find the
shortest path from w to v in the current graph G,(v). Combining these two paths
with thearc (1, w) creates an odd hole. If the total length of this cycleislessthan
1, then we have found a violated odd hole inequality. If not, we continue with
another neighbor of « and repeat the process. We can then choose a node different
fromu at level k. If no violated odd holeinequality isfound at level k, we proceed
to level k + 1. This subroutine can be repeated for different starting nodes (v) as
well.
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8.4 The Effectiveness of the Set-Partitioning
Formulation

The effectiveness of this algorithm depends crucialy on the quality of the initial
lower bound; this lower bound is the optimal solution to the linear relaxation of
Problem S,,. If thislower bound is not very tight, then the branch and bound or the
constraint generation methods will most likely not be computationally effective.
On the other hand, when the gap between the lower bound and the best integer
solution is small, the procedure will probably be effective.

Fortunately, many researchers have reported that the linear relaxation of the
set-partitioning problem, Problem S, provides a solution close to the optimal
integer solution (see, e.g., Desrochers et al. (1992)). That is, the solution to the
linear relaxation of Problem S,, provides avery tight lower bound on the solution
of the VRP. For instance, in their paper, Desrocherset al. report an averagerelative
gap between the optimal solution to the linear relaxation and the optimal integer
solution of only 0.733%. A possible explanation for this observation is embodied
inthefollowing theoremwhich statesthat asymptotically therel ative error between
the optimal solution to the linear relaxation of the set-partitioning model and
the optimal integer solution goes to zero as the number of customers increases.
Consider again the general VRP with capacity and time window constraints.

Theorem 8.4.1 Let the customer locations x1, x», ..., x, be a sequence of inde-
pendent random variables having a distribution . with compact support in IR?.
Let the customer parameters (see Chapter 7) beindependently and identically dis-
tributed like ®. Let Z'" be the value of the optimal fractional solution to S, and
let Z* be the value of the optimal integer solution to S; that is, the value of the
optimal solution to the VRP. Then

lim EZLP = lim }Z* (a.s).
n—oon n—»oo n

The theorem thusimplies that the optimal solution value of the linear program-
ming relaxation of Problem S tends to the optimal solution of the vehicle routing
problem as the number of customers tends to infinity. This is important since, as
shown by Bramel and Simchi-Levi (1994) other classical formulations of the VRP
can lead to diverging linear and integer solution values (see Exercise 8.8).

In the next section we motivate Theorem 8.4.1 by presenting asimplified model
which capturesthe essential ideas of the proof. Finally, in Section 8.4.2 we provide
aformal proof of the theorem. Again, to simplify the presentation, we assume no
timewindow constraintsexist; for the general case, theinterested reader isreferred
to Bramel and Simchi-Levi (1994).

8.4.1 Motivation

Defineacustomer typeto bealocation x € IR? and acustomer demand w; that is, a
customer type defines the customer location and avalue for the customer demand.
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Consider a discretized vehicle routing model in which there is a finite number W
of customer types, and afinite number m of distinct customer locations. Let n; be
the number of customersof typei,fori =1,2,..., Wandletn = Ziviln,- bethe
total number of customers. Clearly, this discretized vehicle routing problem can
be solved by formulating it as a set-partitioning problem. To obtain someintuition
about the linear relaxation of S, we introduce another formulation of the vehicle
routing problem closely related to S.

Let avehicleassignment beavector (a3, ay, . . ., aw), wherea; > Oareintegers,
and such that a single vehicle can feasibly serve a; customers of type 1, and a»
customersof type2, .. ., anday customersof type W together without violating the
vehiclecapacity constraint. Index all thepossiblevehicleassignmentsl, 2, ..., R,
and let ¢, be the total length of the shortest feasible route serving the customers
in vehicle assignment r. (Note that R, is independent of n.) The vehicle routing
problem can be formulated as follows. Let

A;, = number of customers of type i in vehicle assignment r,
foreachi =1,2,..., Wandr =1,2,..., R,. Let
y, = humber of times vehicle assignment r is used in the optimal solution.

The new formulation of this discretized VRPis:

R
Problem Sy :  Min Zy,c,
r=1

s.t.

Ra

ZyrAiania Vi=1,2,...,W,
r=1

y, > 0andinteger, Vr=1,2 ..., R,.

Let Z3, be the value of the optimal solution to Problem Sy and let Z be the
optimal solution to the linear relaxation of Problem Sy . Clearly, Problem S and
Problem Sy have the same optimal solution values; thet is, Z* = Z3, while their
linear relaxations may be different. Definec = max, -1, g, {c/}; that is, c isthe
length of the longest route among the R, vehicle assignments. Using an analysis
identical to the onein Section 4.2, we obtain:

Lemma8.4.2
7P <zv < 7P+ we< z*P 4 we

Observe that the upper bound on Z* obtained in Lemma 8.4.2 consists of two
terms. Thefirst, Z'P, isalower bound on Z*, which clearly growswith the number
of customers n. The second term (We) is the product of two numbers that are
fixed and independent of n. Therefore, the upper bound on Z* of Lemma8.4.2is
dominated by Z-P and consequently we see that for large n, Z* ~ Z'P, exactly
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what is implied by Theorem 8.4.1. Indeed, much of the proof of the following
section is concerned with approximating the distributions . (customer locations)
and @ (customer demands) with discrete distributions and forcing the number of
different customer types to be independent of .

8.4.2 Proof of Theorem8.4.1
Itisclear that Z-P < Z* and thereforelim 3(z* — 7'P) > 0. Theinteresting

part isto find an upper bound on Z* that involves ZP and use this upper bound to
show that Tim,, .o 2(Z* — Z'P) < 0. We do thisin essentially the same way asin
Section 8.4.1. We successively discretize the problem by introducing a sequence
of vehicle routing problems whose optimal solutions are “relatively” closeto Z*.
The last vehicle routing problem is a discrete problem which therefore, as in
Section 8.4.1, can be directly related to the linear relaxation of its set-partitioning
formulation. This linear program is also shown to have an optimal solution close
to Z'P.

To provethe upper bound, let N betheindex set of customers, with |[N| = n, and
let problem P betheorigina VRP Let A bethe compact support of thedistribution
of the customer locations (1), and define dmax = supfllx|| : x € A}, where || x| is
the distance from point x € A to the depot. Finally, pick afixed k > 1.

Discretization of the Locations

We start by constructing the following vehicle routing problem with discrete loca-
tions. Define A = % and let G(A) beaninfinite grid of squaresof diagonal A, that
is, of side %, with edgesparallel tothesystem coordinates. Let A1, Ay, ..., A,ya)
bethesubregionsof G(A) thatintersect A and havet(A;) > 0. Since A isbounded,
m(A) isfinitefor each A > 0. For convenience, we omit the dependence of m on
A inthe notation. For each subregion, let X; bethe centroid of subregion A;, that
is, the point at the center of the grid square containing A;. This defines m points
X1, X5, ..., X, and note that a customer is at most % units from the centroid of
the subregion in which it is located.

Construct anew VRP, called P(m), defined on the customers of N. Each of the
customersin N is moved to the centroid of the subregion in which it is located.
Let Z*(m) be the optimal solutionto P(m). We clearly have

Z* < Z*(m) + nA. (8.10)

Discretization of the Customer Demands

We now describe a VRP where the customer demands are also discretized in
much the same way as it is done in Section 4.2. Partition the interval (0, 1] into
subintervals of size A(= %). This produces k segmentsand I = k — 1 pointsin
theinterval (0, 1) which we call corners.

We refer to each centroid—corner pair as a customer type; each centroid defines

acustomer location and each corner defines the customer demand. It is clear that
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there are m1 possible customer types. An instance of a fully discretized vehicle
routing problem is then defined by specifying the number of customers of each of
them I types.

For each centroid j = 1,2,...,m,andcorneri =1,2,...,1, et

N_,-i:{heN:1T<wh§%andxheAj}.

Finaly, forevery j =1,2,...,m,andi =1,2,..., 1, letn;; = |Nj|.

We now defineafully discretized vehiclerouting problem Py (m), whose optimal
solution value is denoted Z;(m). The vehicle routing problem Py (m) is defined
ashaving min{n;, n; 1} customers located at centroid j with customer demand
equalto i, foreachi =1,2,...,Iandj=1,2,...,m.

We have the following result.

Lemma8.4.3

m I
Z*(m) < Zi(m) + 2dmax Y Y |nji —njigal.

j=1i=1

Proof. Observe:

(i) In Py(m), the number of customers at centroid j and with demand defined by
corner i ismin{nj;, nj 41}

(#7) In P(m) each customer belongs to exactly one of the subsets Nj;, for j =
1,2,....mandi =1,2,...,1.

(iii) InP(m)thecustomersin N;; have smaller loadsthan the customersof Py (m)
at centroid j with demand defined by corner i.

Given an optimal solution to P,(m), let us construct a solution to P(m). For each
centroid j = 1,2,...,m and corner i = 1,2,..., I, we pick any max{n;; —
nji+1, 0} customersfrom N ;; and servetheminindividual vehicles. Theremaining
min{n;;,n;,+1} customers in N;; can be served with exactly the same vehicle
schedulesasin P (m). This can be donedueto (iii) and therefore one can always
serve customers with demand of P(im) in the same vehicles that the customers of
Py (m) are served. |

Now P,(m) is fully discrete and we can apply results as in Section 8.4.1. Let
Z}P(m) be the optimal solution to the linear relaxation of the set-partitioning
formulation of the routing problem P, (m). Let ¢ be defined as in Section 8.4.1;
that is, it is the cost of the most expensive tour among al the possible routes in
Pk(m)

Lemma8.4.4
Z¥(m) < Z:P(m) + mlc.
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Proof. Sincethe number of customer typesisat most m 1, we can formulate Py (m)
as the integer program, like Problem Sy, described in Section 8.4.1, with mI
constraints. The bound then follows from Lemma 8.4.2. |

Recall that Z'P is the optimal solution to the linear relaxation of the set-
partitioning formulation of the VRP defined by problem P. Then

Lemma8.4.5
ZP(m) < 2P+ nA.

Proof. Let{y, :r =1, 2, ..., R} betheoptimal solutiontothelinear relaxation of
the set-partitioning formulation of problem P. We can assume (see Exercise 8.3)
that Zle y,.a; = 1,foreachi = 1,2, ..., n. We construct afeasible solution to
the linear relaxation of the set-partitioning formulation of P, (m) using the values
y,. Since every customer in P(m) assigned to centroid j and corner i can be
associated with a customer in P with x; € A; and whose demand is &t least as
large, each route r with y, > 0 can be used to construct a route r’ feasible for
Pi(m). Sincein P, (m) the customersare at the centroidsinstead of at their original
locations, we modify the route so that the vehicle travels from the customer to its
centroid and back. Thus, the length (cost) of route r’ is at most the cost of route r
in P plusn, A wheren, isthe number of customersin router.

To create afeasible solution to the linear relaxation of the set-partitioning for-
mulation to P,(m) we take the solution to the linear relaxation of P and create the
routes r’ as above. Therefore,

R
ZPPm) < 2+ ) "y A < 2P 4 nA. |
r=1
We can now prove Theorem 8.4.1.

Z* < Z*(m) +nA

m 1
< Z,f(m) + deax Z Z |I/lji — nj,i+1| +nA
j=1i=1

m

< Z{P(m) + mIc + deaxZZ nji —njipal +nA
j=1i=

m 1
< ZLP+mIc+2dmaxZZ| ji — njitil +2nA.
j=1i=1

We now need to show that Z'P is the dominant part of the last upper bound. We
do that using the following lemma.

Lemma8.4.6 Thereexistsa constant K such that

lim = ZZ |nji —njip] <
n—oon

j=1i=
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Proof. In Section 4.2 we prove that given i and j there exists a constant K such

that
— 1 2K
n'Lf'gO ;|nji —njip1l < 2

Therefore, asimilar analysis gives

-_— l n ! m 2K 2K
lim ZZ Inji = njival = Zu(Aj)— =—. 1
nmeen ST i =i k k

Finally observe that each tour in P,(m) has atotal length no morethan 1, since
the truck travels at a unit speed and the length of each working day is 1. Hence,
mlc = 0(1), and therefore,

lim =(z* - z'P) < Mmaxz +2A

n—oon
2

Since K is aconstant and k£ was arbitrary, we see that the right-hand side can be
made arbitrarily small. Therefore,

1 — 1
0< lim =(z*-z"®) < lim =(z* - 7z*P) <o0.
n— 00 n n—-oon
We conclude this chapter with the following observation. The proof of Theorem
8.4.1 alsorevealsan upper bound ontherate of convergenceof Z'P toitsasymptotic
value. Indeed (see Exercise 8.1), we have

E(Z*) < E(Z'P) + 0(n¥%). (8.11)

85 Exercises

Exercise 8.1. Prove the upper bound on the convergence rate (equation (8.11)).

Exercise8.2. Consider anundirected graph G = (V, E) whereeachedge(i, j) has
acost ¢;; and each vertex i € V anonnegative penalty ;. In the Prize-Collecting
Traveling Salesman Problem (PCTSP), the objective is to find a tour that visits a
subset of the vertices such that the length of the tour plus the sum of penalties of
all vertices not in the tour is as small as possible. Show that the problem can be
formulated as a Longest Path Problem between two prespecified nodes of a new
network.

Exercise 8.3. Consider the Bin-Packing Problem. Let w; be the size of item i,
i =1,...,n, and assume the bin capacity is 1. An important formulation of the
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Bin-Packing Problem is as a set-covering problem. Let
F={S:Zwi <1
ieS
Define - -
{ 1, ifitemiisins,
ais = .
0, otherwise,
foreachi =1,2,...,nandeach S € F. Finaly, forany S, S € F, let

B { 1, iftheitemsin S are packed in asingle bin with no other items,
Ys 0, otherwise.

In the set-covering formulation of the Bin-Packing Problem, the objective is to
select aminimum number of feasible bins such that each item isincluded in some
bin. It isthe following integer program.

ProblemP : Min )y,
SeF
s

.
D ysais =1, Yi=12....n (8.12)
SeF

ys € {0,1}, VSeF.

Let Z* bethe optimal solution to problem P and let Z-P be the optimal solution
to the linear relaxation of Problem P. We want to prove that

Z7* < 27'P. (8.13)
(a) Formulate the dual of the linear relaxation of Problem P,
(b) Show that Y7, w; < Z'P.
(c) Arguethat Z* < 23", w;. Conclude that (8.13) holds.

(d) Andternativeformulation to Problem Pisabtained by replacing constraints
(8.12) with equality constraints. Call the new problem Problem PE. Show
that the optimal solution value of the linear relaxation of Problem P equals
the optimal solution value of the linear relaxation of Problem PE.

Exercise 8.4. Recall the dynamic program given by equation (8.6). Let
L=, M2, J)

Consider the function defined as follows.

gq(i) = wrg;/nsq{fq’(i) + quq’+w,- (i)}a
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foreachi e N and w; < ¢ < Q. Now define g = min;cy min,, ;<o g,(i). Show
that f = g. B

Exercise 8.5. Develop adynamic programming procedure for the column genera-
tion step similar to f, (i) that avoids two-loops (loops of thetype...i, j, i...). What
isthe complexity of this procedure?

Exercise 8.6. Develop a dynamic programming procedure for the column gen-
eration step in the presence of time-window constraints. What is required of the
time-window datain order for thisto be possible? What is the complexity of your
procedure?

Exercise 8.7. Develop a dynamic programming procedure for the column gen-
eration step in the presence of a distance constraint on the length of any route.
What is required of the distance datain order for this to be possible? What is the
complexity of your procedure?

Exercise 8.8. Consider an instance of the VRPTW with n customers. Given a
subset of the customers S, let 5*(S) be the minimum number of vehicles required
to carry the demands of customersin S; that is, b*(S) is the solution to the Bin-
Packing Problem defined onthedemands of all customersinS.Fori = 1,2,...,n
andj=12,...,nlet

{ 1, if avehicletravelsdirectly between pointsi and j,
Xij = .
/ 0, otherwise.

Let O denote the depot and define ¢;; as the cost of traveling directly between
pointsi and j, fori, j =0,1,2,...,n. Lets represent the time avehicle arrives
at the location of customer i and for every i and j, such that i < j, define
M;; = max{l; +d;; — e;, Oy whered;; = ||Y; — Y;|. Thenthefollowingisavalid
formulation of the VRPTW.

Problem P’ : Min Zc,-jxij

i<j

s.t. inj+Zin:2, Vi=12,...,n,

i<j i>j

in,5|5|—b*(5), vSc{lL2...,n,2<|S|<n-1,
i,jes

e <t;<lj—s;, 1<i<n,

ti+si+dij_tj§Mij(1_xij)’ 15[<J§n,
xje(0.1), l<i<j<n (8.14)
% €{0.12), j=12....n (8.15)
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The case xp; = 2 corresponds to a vehicle serving only customer ;. The linear
programming relaxation of P’ isobtained by replacing constraints(8.14) and (8.15)
by their linear equivalents.

Construct an instance of the VRPTW in which the fractional and integer solu-
tionsto the above linear program do not approach the same value asymptotically.
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9

Economic Lot Size Models with
Constant Demands

9.1 Introduction

Production planning is also an areawhere difficult combinatorial problems appear
in day to day logistics operations. In this chapter, we analyze problems related
to lot sizing when demands are constant and known in advance. Lot sizing in
this deterministic setting is essentially the problem of balancing the fixed costs of
ordering with the costs of holding inventory. In this chapter, we look at severa
different modelsof deterministiclot sizing. First we consider themost basic single-
item model, the Economic Lot Size Model. Then we look at coordinating the
ordering of several itemswith awarehouse of limited capacity. Finally, we look at
aone-warehouse multiretailer system.

9.1.1 The Economic Lot Sze Model

The classical Economic Lot Size Model, introduced by Harris (1915) (see Er-
lenkotter (1990) for an interesting historical discussion), is a framework where
we can see the simple tradeoffs between ordering and storage costs. Consider a
facility, possibly awarehouse or aretailer, that faces aconstant demand for asingle
item and places ordersfor theitem from another facility in the distribution network
whichisassumed to have an unlimited quantity of the product. The model assumes
the following.

e Demand is constant at arate of D items per unit time.

e Order quantities arefixed at Q items per order.
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Inventory level

l—— cycle time ——1

FIGURE 9.1. Inventory level as a function of time.

o A fixed set-up cost K is incurred every time the warehouse places an order.

A linear inventory carrying cost A, also referred to as holding cost, is accrued
for every unit held in inventory per unit time.

The lead time, that is, the time that elapses between the placement of an
order and its receipt, is zero.

¢ Initial inventory is zero.
o The planning horizon is infinite.

The objective is to find the optimal ordering policy minimizing total purchasing
and carrying cost per unit of time without shortage.

Like all models, this is a simplified version of what might actually occur in
practice. The assumption of a known fixed demand over the infinite horizon is
clearly unrealistic. Lead time is most likely positive, and the requirement of a fixed
order quantity is restrictive. As we shall see, all these assumptions can be easily
relaxed while maintaining a relatively simple optimal policy. For the purposes of
understanding the basic tradeoffs in the model, we keep the assumptions listed
above.

It is easy to see that an optimal ordering policy must satisfy the Zero Inventory
Ordering Property which says that every order is received precisely when the
inventory level drops to zero. This can be seen by considering the case where
an order is placed when the inventory level is not zero. In that case, cost is not
increased if we simply wait until inventory is zero to order.

time
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To find the optimal ordering policy in the Economic Lot Size Model, we con-
sider theinventory level asafunction of time (see Figure 9.1). Thisisthe so-called
saw-toothed inventory pattern. We refer to the time between two successive re-
plenishments as a cycle time. Thus, total inventory cost in a cycle of length T
is

hT Q
K A
+ 2

and since Q = T D, the average total cost per unit of timeis
KD h
KD  hQ
0 2
Hence, the optimal order quantity is

.. [2KD
Q" = h
This quantity is referred to as the Economic Order Quantity (EOQ) and it is the
quantity at which inventory set-up cost per unit of time (K—QD) equals inventory
holding cost per unit of time (2).

We now see how some of our assumptions can be relaxed, without losing any of
the simplicity of themodel. Consider the casein which initial inventory is positive,
say at level Ip; then the first order for Q* itemsis simply delayed until time ’50.
Further, the assumption of zero lead time can also be easily relaxed. In fact, the
model can handle any deterministic lead time L. To do this simply place an order
for O* items when the inventory level is DL. On the other hand, relaxing the
assumptions of fixed demands and infinite planning horizon requires significant
changes to the above solution.

9.1.2 TheFinite Horizon Model

To make the model more realistic, we now introduce a finite horizon, say ¢. For
instance, in the retail apparel industry, such a horizon may represent an 8-12
week period, for example, the “winter season,” in which demand for the product
might be assumed to be constant and known. We also relax the assumption that the
order quantities are fixed. We seek an inventory policy on the interval [0, ¢] that
minimizes ordering and carrying costs.

For this purpose, consider any inventory policy, say P, that placesm > 1 orders
intheinterval [0, 7]. Clearly, thefirst order must be placed at time zero and the last
must be placed so that theinventory at timer iszero. Forany i, 1 <i <m —1, let
T; be the time between the placement of the i™ order and the (i 4+ 1) order and let
T,, be the time between the placement of the last order and ¢. Thus, by definition,
t =" ,T;,and P placesthe j™ order at time Y _/_; 7;, for 1 < j < m.Again,
it is clear that the policy P must satisfy the Zero Inventory Ordering Property.
Figure 9.2 illustrates the inventory level of the policy P.
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FIGURE 9.2. Inventory level as a function of time under policy P.

For the policy P, let I(t) be the inventory level at time t € [0, ¢]. Thus, the
total cost per unit of time associated with P is

;[Km +h fo t I(r)dr].

The only thing we know about the function I(7) is that it decreases at a rate of D
(a slope of — D) between orders and reaches zero exactly m times. Thus, we can
express the total inventory up to time ¢ as a function of the time between orders

{T:}ia1....m as follows.
m m
T,-DI; D,
2 “ 2 2 21: T
= ™

Consequently, if m orders are placed we can find the best times to place them by

solving:
m m
Min[ZT,?’ M T=1,T >0, Vi=1,2,...,m}.

i=1 i=1

The optimal solution to this convex optimization problem is T; = é for each
i =1,2,..., m. Hence, an optimal policy must have the following property.

Property 9.1.1 For a problem with one product over the interval [0, t], the inven-
tory policy with minimum cost that places m orders is achieved by placing orders
of equal size at equally spaced points in time.

The property thus implies that total purchasing and carrying cost per unit time
associated with P is at least
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The property thus implies that total purchasing and carrying cost per unit time
associated with P is at least
Km  hDt
_ .
t 2m
Consequently, by selecting the value of m that minimizes this value we can con-
struct apolicy of minimal cost. Let

, [hD
a=t/-—,
2K

andthusthebest valueof m iseither |« | or [«], depending onwhichyieldssmaller
cost. Thus our policy in the finite horizon caseisin fact very similar to theinfinite
horizon case. Orders are placed at regularly spaced intervals of time, and of course
the orders are of the same size each time.

9.1.3 Power of Two Policies

Consider the infinite horizon model described in Section 9.1. For this model we
know that average total cost per unit of timeis

KD hQ K hTD .

—_— —_—— —_— T

0 + > T + > F(T),
where T is the time between orders. In this subsection, following Muckstadt and
Roundy (1993), weintroduce anew class of policies called power-of-two policies.
Tosimplify theanalysis, andin accordancewiththenotation usedintheliterature

(see Roundy, 1985, and Muckstadt and Roundy, 1993), let g = % and hence

f(T) = ? + gT.

Observe that the function f(7) motivates another interpretation of the model. We
can consider the problem to be an Economic Lot Size model with unit demand
rate, that is, D = 1, and inventory holding cost 2¢. The optimal reorder interval is
T* = \/g and total cost per unit timeis f(7T*) = 2/Kg.

One difficulty with the Economic Lot Size Model is that the optimal reorder
interval T* may takeon any valueand thusmight lead to highly impractical optimal
policies. For instance, reorder intervalsof v/3days, or ./ weekswould not be easy
to implement. That is, the model might specify that orders be placed on Monday
of one week, Thursday of the next, Tuesday of the next week etc., a schedule of
orders that may not have an easily recognizable pattern. Therefore, it is natural to
consider policies where the reorder interval T is restricted to values that would
entail easily implementable policies. One such restriction is termed the power of
two restriction. In this case, T is restricted to be a power of two multiple of some
fixed base planning period Tp; that is,

T =Tz2* ke{0,1,23,...}. (9.2)
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Such apolicy is called a power of two policy. The base planning period T may
represent a day, week, month, etc. and is usually fixed beforehand. It represents
the minimum possible reorder interval.
Restricting ourselvesto power of two policies requires addressing thefollowing
issues.
o How does onefind the best power of two policy, the one minimizing the cost
over al possible power of two policies?

o How far from optimal is the best policy of thistype?

We start by answering the first question. Let T* = \/g be the optimal (unre-

stricted) reorder interval and let T be the optimal power of two reorder interval.
Since f isconvex, theoptimal k in (9.1) isthe smallest integer k satisfying

[(Tp2Y) < f(Tp2Y),

or

+gTp2" < + gTp2"*t

K
Tsz ~ Tp 2k+1
Hence, k isthe smallest integer such that

/ —T* < T2k =T.
2g

Thus, finding the optimal power of two policy is straightforward.
Observe that by the definition of the optimal k, it must also be true that

2K
T =T < | == =217,
g

and hence the optimal power of two policy, for a given base planning period T,
must bein the interval [%T*, V/2T*]. Itis easy to verify that

1 1,1
f(TZT*> = f(V21*) = 5(72 + \/E)f(T*),
and hence, since f is convex, we have

(1) _ (
f (T*) T 2\)2

Consequently, theaverageinventory purchasing and carrying cost of the best power
of two policy is guaranteed to be within 6% of the average cost of the overall
minimum policy. The reader can see that this property is aresult of the “flathess’
of the function f around its minimum.

This restriction, to powers of two multiples of the base planning period, will
also prove to be quite useful later in amore general setting.

+ ~/§) ~ 1.06.
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9.2 Multi-lItem Inventory Models

9.2.1 Introduction

The previousmodel sestablished optimal inventory policiesfor singleitem models.
It is simple to show that without the presence of joint order costs, a problem with
several items each facing a constant demand can be handled by solving each item’s
replenishment problem separately. In reality, management of a single warehouse
inventory system involves coordinating inventory ordersto minimize cost without
exceeding the warehouse capacity. Thewarehouse capacity limitsthetotal volume
held by thewarehouseat any pointintime. Thisconstraint tiestogether thedifferent
items and necessitates careful coordination (or scheduling) of the orders. That
is, it is not only important to know how often an item is ordered, but exactly
the point in time at which each order takes place. This problem is called the
Economic Warehouse Lot Scheduling Problem (EWLSP). The scheduling part,
hereafter called the Saggering problem, isexactly the problem of time-phasing the
placement of the ordersto satisfy thewarehouse capacity constraint. Unfortunately,
this problem has no easy solution and consequently it has attracted a considerable
amount of attention in the last three decades.

The earliest known referenceto the problem appearsin Churchman et al. (1957)
and subsequently in Holt (1958) and Hadley and Whitin (1963). These authors
were concerned with determining lot sizes that made an overall schedule satisfy
the capacity constraint, and not with the possibility of phasing the orders to avoid
holding the maximum volume of each item at the sametime. Thus, they only con-
sidered what are called Independent Solutions, wherein every item is replenished
without any regard for coordination with other items.

Several authors considered another class of policies called Rotation Cycle poli-
cies wherein all items share the same order interval. Homer (1966) showed how
to optimally time-phase (stagger) the orders to satisfy the warehouse constraint
for a given common order interval. Page and Paul (1976), Zoller (1977) and Hall
(1988) independently rediscovered Homer’sresult. At the end of hispaper devoted
to Rotation Cycle policies, Zoller indicates the possibility of partitioning theitems
into digoint subsets, or clusters, if the assumption of a Rotation Policy “proves
to be too restrictive”” Thisis precisely Page and Paul’s partitioning heuristic. In
their heuristic, al the items in a cluster share a common order interval. The or-
ders are then optimally staggered within each cluster, but no attempt is made to
time-phase the orders of different clusters. Goyal (1978) argued that such atime-
phasing across the different clusters may lead to further reduction in warehouse
space requirements. Hartley and Thomas (1982) and Thomas and Hartley (1983)
considered the two-item casein detail.

Recently a number of studies have been concerned with the strategic version
of the EWLSP in which the warehouse capacity is not a constraint but rather a
decision variable. Theseinclude Hodgson and Howe (1982), Park and Yun (1985),
Hall (1988), Rosenblatt and Rothblum (1990) and Anily (1991). In this model,
the inventory carrying cost consists of two parts; one part is proportiona to the
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average inventory while the second part is proportional to the peak inventory. A
component of the latter cost, discussed in Silver and Peterson (1985), is the cost
of leasing the storage space. This cost is typically proportional to the size of the
warehouse, and not to the inventories actually stored init.

Define a policy to be a Sationary Order Size policy if al replenishments of
an item are of the same size. Likewise, a Sationary Order Intervals policy has
al orders for an item equally spaced in time. It is easily verified that an optimal
Stationary Order Size (respectively, Stationary Order Interval) policy is also a
Stationary Order Interval (respectively, a Stationary Order Size) policy if every
order of anitemisreceived precisely when theinventory of that item dropsto zero;
that is, it also satisfies the Zero Inventory Ordering property. Thus, it is natural to
consider policies that have al three properties: Stationary Order Size, Stationary
Order Interval and Zero Inventory Ordering. Wecall such policies Sationary Order
Szesand Intervals policies, in short, SOS policies. Two “extreme” cases of SOSI
policies are the Independent Solutions and the Rotation Cycle policies defined
above. All the authors cited above considered SOSI policies exclusively. Zoller
claimsthat SOS| policies are the only rational aternative, and most authors agree
that SOSI policies are much easier to implement in practice. In his Ph.D. thesis,
however, Hariga (1988) investigated both time-variant and stationary order sizes.
He was motivated to study time-variant order sizes by their successful application
in resolving the feasibility issuein the Economic Lot Scheduling Problem (EL SP)
(see Dobson (1987)).

The paper by Anily departs from earlier work on the EWLSP in its focus on
worst-case performance of heuristics. In her paper, Anily restricts herself to the
class of SOSI policies for the strategic model. She proves lower bounds on the
minimum required warehouse size and on the total cost for this class of policies.
She presents a partitioning heuristic of which the best Independent Solution and
the best Rotation Cycle policies are special cases. This partitioning heuristic is
similar to the one proposed by Page and Paul for the tactical model, although the
precise methods for finding the partition are different. Anily proves that the ratio
of the cost of the best I ndependent Solution to her lower bound is at most /2. She
also provides a data-dependent bound for the best Rotation Cycle, derived from
Jones and Inman’s (1989) work on the Economic Lot Size Problem. As a resullt,
her partitioning heuristic is at least as good as either specia case, and thus has a
worst case bound of /2 relative to SOSI policies.

In this section we determine easily computable lower bounds on the cost of the
EWL SP aswell as some simple heuristics for the problem. These bounds are used
to determine the worst-case performance of these heuristics on different versions
of the problem. First, in Section 9.2.2, we introduce notation, state assumptions
and formally define the strategic and tactical versions of the EWLSP. In Section
9.2.3, we establish the worst-case results. The discussion in this section is based
on the work of Gallego et al. (1996).



9.2 Multi-Item Inventory Models 153

9.2.2 Notation and Assumptions

Let N ={1,2,...,n} beaset of n items each facing a constant unit demand rate
(this can be done without loss of generality). An ordering cost K; isincurred each
time an order for item i is placed. A linear holding cost 2k; is accrued for each
unit of item i held in inventory per unit of time. Demand for each item must be
met over an infinite horizon without shortages or backlogging.

The volume of inventory of item i held at a given point in time is the product
of itsinventory level at that time and the volume usage rate of item i, denoted by
y; > 0. The volume usage rate is defined as the volume displaced by one unit of
item . Without loss of generality, we select theunit of volumesothat ) ", y; = 1.

The objective in the strategic version of the EWLSP is to minimize the long-
run average inventory carrying and ordering cost plus a cost proportiona to the
maximum volume held by the warehouse at any point in time. Formally, for any
inventory policy P, let V(P) denote the maximum inventory volume held by the
warehouse and let C(P) be the long-run average inventory carrying and holding
cost incurred by this policy. Then, the objectiveisto find apolicy P minimizing

Z(P) =C(P)+ V(P).

The tactical version of the EWLSP has also received much attention in the
literature. There, the objectiveistofind apolicy 77 minimizing thelong-run average
inventory carrying and hol ding costs subject to theinventory alwaysbeinglessthan
the warehouse capacity. Hence, the tactical version can be formulated as: find a
policy P minimizing C(P) subject to V(P) < v, where v denotes the available
warehouse volume.

9.2.3 Worst-Case Analyses
Preliminaries
We present here two simple results that are used in subsequent analyses.
Given aSOSl policy, let T = {T1, T>, ..., T,} bethe vector of reorder intervals
where T; isthe reorder interval of item i. For any such vector T, let V(T') denote

the maximum volume of inventory held by the warehouse over all pointsin time.
The following provides a simple upper bound on V(7).

Lemma9.2.1 For anyvector T = {T1, T», ..., T,}, we have

n
V(T) <Y vl
i=1

Proof. Clearly, the inventory level of item i, at any moment in time, is no more
than T; (recall demand is 1 for all i). |

For the next result we need some additional notation. Consider any inventory
policy P and any timeinterval [0, 7]. Let V (P, t) be the maximum inventory held
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by the warehouse in policy P over the interval [0, ] and C(P, ) be the average
inventory holding and carrying cost incurred over [0, r]. Let m; be the number
of times the warehouse places an order for item i over the interval [O, f]. For
T € [0, 1], let I;(7) be the inventory level of item i at time 7. Let v;(zr) be the
volume of inventory held by item i at time t; that is, v;(t) = y; (). Also, let
v(r) = Y., vi(r) bethe volume of inventory held by the warehouse at time .

Lemma 9.2.2 For any inventory policy P and timeinterval [0, ¢], we have
1& Yit
— <
2 ; m; -
Proof. Clearly, v(t) < V(P,t) foral r <. Taking theintegral uptotimer > 0
gives
1 t
V(P,t) > — i (T)d
Pz [ Suw
1/I > vili(r)d
= i1i\T)at
t =0 i y
1 t
:Z—%‘/ Ii(r)dt
i t =0

n

1 t
_Vi/ Ii(t)dt < V(P,1).
1 t =0

i=

where the last inequality follows from Property 9.1.1 which states that when m;
orders for asingle item are placed over the interval [0, ¢], the average inventory
level isminimized by placing equal orders at equally spaced pointsin time. |

The Strategic Model

Consider the following heuristic for the strategic version of the EWLSP. Use the
vector of reorder intervals T that solves

=] 5 (5 + o)

Clearly, the vector T can be found in O(n) time by solving n separate Economic
Lot Scheduling models, and

z" =23 " JKi(hi + v). (9.2)

By Lemma9.2.1, Z¥ must provide an upper bound on the optimal solution value
of the strategic model.

We now construct alower bound on the optimal solution value over all possible
inventory policies. The lower bound is the cost of the optimal policy if the ware-
house cost were based on average inventory rather than maximum inventory. This
bound will be used to prove the worst-case resullt.
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Lemma 9.2.3 Alower bound on the optimal solution value over all possible in-
ventory strategiesis given by

zM =23 " Ki(hi + vi/2). (9.3)

Proof. We show that ZL8 < C(P, t) + V(P, t) for al possibleinventory policies
P and for al r > 0. Given an inventory policy P, where m; ordersfor itemi are
placed over atime interval [0, ], then

C(P, 1) = % > (m,»K,- +2n, / t_o I,-(t)dr).

Combining this cost with the lower bound obtained in Lemma 9.2.2 on V (P, t)
yields the following lower bound on C(P, 1) + V (P, 1).

1 ! 1 !
CP.)+ VP = T 3 [miki+2n [ nee]+ 5 > | 1w

i

= ;—LZ [miKi + (2hi + ;) /;O Ii(T)dT]
a2+ @ 0(2)

Thelast inequality again follows from Property 9.1.1. Minimizing the last expres-
sion with respect to -=- for each i € N provesthe result. |
We now show that this heuristic is effective in terms of worst-case performance.

Theorem 9.2.4
ZH
7LB < V2.

Proof. Combining equations (9.2) and (9.3) we get

zH 2% VKi(hi +v)
= L < \/E
ztB 23 JKi(hi +vi/2) ~
Can this bound be improved? The following example shows that the bound is

tight as the number of items grows to infinity. Consider an example n items with
Ki=K, hy=0andy, =y = X forali € N. Clearly,

z% =2n/Ky.

We now construct afeasible solution whose cost approaches the lower bound Z%2
asn goes to infinity. Consider afeasible policy 7 with identical reorder intervals
denoted by T'. To reduce the maximum volume V (T'), we stagger the orders such
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that item i is ordered at times 7[ =2 + k] for k > 0. Then the maximum volume
of inventory is “£2 7y . Hence, the cost of policy P is

nkK n+1
_I_

Minimizing with respect to 7' gives

Z(P)=+v2n(n+ DKy.

Consequently,

z" _z" /Ky

ZLB = Z(P)  J2n(n+ DKy’
The limit of this last quantity is +/2 (as n goes to infinity) hence, aong with
Theorem 9.2.4, we see that an example can be constructed where the worst-case
ratio is arbitrarily closeto /2.

The Tactical Model

For thetactical version of the EWL SP, asimpleheuristic denoted HW first proposed
by Hadley and Whitin (1963) isto solve

Problem pAW . ¢V — MinZ(hE + %’)

s.t.
ZyiTi <v,
i
T >0.

We show that the HW heuristic has a worst-case performance bound of 2 with
respect toall feasiblepolicies. Wedo so by proving that the solution to thefollowing
nonlinear program provides alower bound on the cost of any feasible policy.

LB _ i oK
Problem PL% ; CcL8 = MlnXi: (h,T, + Ti)

st
1
EZ%T:' <v, (94)
T=>0.

Lemma9.2.5 C%E isalower bound on the cost of any feasible inventory policy.

Proof. Consider any feasible policy P over theinterval [0, ¢] that placesm; orders
foritemi in [0, ¢]. From Lemma9.2.2 we have vVt > 0,
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1 Vi
> V(P,t >—E —T.
v= (7) )_2 F nm;

The averageinventory holding and carrying cost incurred over theinterval [0, 7]
is

1 t
cP.==3" [m,»[(,- +2n, f

[ ()] ¢

Again, the last inequality follows from Property 9.1.1.
Thus, by replacing % with T; for all i > 1, we seethat minimizing (9.5) subject

to%Zi y;t/m; < v providesalower bound on C(P, 1). |
We now prove the worst-case bound.

Theorem 9.2.6

Ii(t)dr]

CHW

CLB 52

Proof. Let 758 = {T}8, T}E, ..., TF®} bethe optima solution to PXZ. Obvi-
ously, 7/ = 3T;*8 isfeasiblefor P#". Hence,

K;
e <3 (mri+ )

1 K;
=3I 2) g

LB
< 2C*”. 1

Asinthe strategic version, the worst-case bound provided by the above theorem
can be shown to be tight. To do so, consider the case where all items are identical
withK; = K, h; =0andy;, =y = ,%for all i € N. The solution to problem
P isclearly T, = vforali e N,so CH" = & Consider now afeasible
policy P with identical reorder intervals denoted by T' such that an order for item
i isplaced at times T[ﬁ%2 + k] for k£ > 0. The maximum volume occupied by

policy Pis "87y. So T = 24 isfeasibleand C(P) = X4+ Hence,

.chw . nkK /v
im — = lim ——— =
n>oo C(P) n—oo K(n+ 1)/2v

By performing a similar analysis one can obtain worst-case bounds on the per-
formance of heuristicsfor other versions of the EWL SP. For instance, for the Joint
Repl enishment version of the strategic model, where an additional set-up cost Kgis
incurred whenever an order for one or more itemsis placed, the worst-case bound
of aheuristic, similar to the one described for the EWL SP, can be shown to be v/3.
The worst-case bound on the tactical version of the Joint Replenishment model
can be shown to be 2./2.
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9.3 A Single Warehouse Multi-Retailer Model

9.3.1 Introduction

Many distribution systems involve replenishing the inventories of geographically
dispersed retailers. Consider a distribution system in which a single warehouse
supplies a set of retailers with a single product. Each retailer faces a constant
retailer-specific demand that must be met without shortage or backlogging. The
warehousefacesordersfor theproduct fromthedifferent retailersand inturn places
orders to an outside supplier. A fixed, facility-dependent, set-up cost is charged
each time the warehouse or the retailers receive an order and inventory carrying
cost is accrued at each facility at a constant facility-dependent rate. The objective
is to determine simultaneously the timing and sizes of retailer deliveries to the
warehouse as well as replenishment strategies at the warehouse so as to minimize
long-run average inventory purchasing and carrying costs.

Intheabsence of afixed set-up cost charged when thewarehouse placesan order,
the problem can be decomposed into an Economic Lot Sizemodel for each retailer.
That is, the existence of this cost ties together the different retailers requiring the
warehouseto coordinateits ordersand deliveriesto the different retailers. It iswell
known that optimal policiescan bevery complex and thusthe problem hasattracted
aconsiderable amount of attention in recent years (see Graves and Schwarz, 1977,
Roundy, 1985). The latter paper presents the best approach currently available for
this model; it suggests a set of power of two reorder intervals for each facility and
show that the cost of this solution is within 6% of alower bound on the optimal
cost. In this section, we present this method along with the worst-case bound.

9.3.2 Notation and Assumptions

Consider a single warehouse (indexed by 0) which supplies n retailers, indexed
1,2,...,n. We will use the term facility to designate either the warehouse or a
retailer. We make the following assumptions.

e Each retailer faces a constant demand rate of D; units, fori = 1,2, ..., n.
e Set-up cost for an order at afacility isK;,fori =0,1,...,n.

e Holding cost is &, at the warehouse and /] t retailer i, with ] > hg for
eechi=1,2,...,n.

o No shortages are allowed.

Asdemonstrated by several researchers, policiesfor this problem may be quite
complex and thusit is of interest to restrict our attention to a subset of all feasible
policies. A popular subset of policiesisthe set of nested and stationary policies. A
nested policy is characterized by having each retailer place an order whenever the
warehouse does. Asin the previous section, stationarity implies that reorder inter-
vals are constant for each facility. It is easy to show that any policy should satisfy
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the Zero Inventory Ordering Property. Roundy (1985) showed that, although ap-
pealing from a coordination point of view, nested policies may perform arbitrarily
badly in one-warehouse multi-retailer systems. We therefore will not restrict our-
selves to nested policies. We concentrate on policies where each retailer’ s reorder
intervals are a powers of two multiple of a base planning period 7. Below, we
assume the base planning period is fixed. The worst-case bound reducesto 1.02 if
it can be chosen optimally, although we omit this extension.

L et’sfirst determinethecost of anarbitrary power of twopolicy T = {Ty, T1, - . .,
T,} that satisfies the Zero Inventory Ordering Property. If we consider the inven-
tory at the warehouse, then it does not have the saw-toothed pattern. To overcome
thisdifficulty, it isconvenient to introduce the notion of systeminventory aswell as
echelon holding cost rates. Retailer i’s system inventory is defined asthe inventory
at retailer i plus the inventory at the warehouse that is destined for retailer i. If
we consider the system inventory of retailer i, then it has the saw-toothed pattern.
Echelon holding cost ratesare defined as o = hyand h; = h; — hy,. For simplicity,
defineg; = 1h;D; and g' = 3hoD; foreachi = 1,2, ..., n. To compute the cost
of such a policy, we separate each item in the warehouse's inventory into cate-
gories depending on the retailer for which the item is destined. Let H;(To, T;) be
the average cost of holding inventory for retailer i at the warehouse and at retailer
i. Weclam:

Hi(To, T;) = &T; + ¢' max{To, T3).

To prove this consider the two cases:

Casel: T; > Tp. Since T is a power of two policy, T; > To implies that the
warehouse places an order every time the retailer does. Therefore, the warehouse
never holdsinventory for retailer i and average holding cost is
1, 1 ;
Eh,‘TiDi = é(h’ +ho)TiD; = (g + &")T:.
Case 2: T; < Tp. Consider the portion of the warehouse inventory that is destined
for retailer i. Using the echelon holding cost rates, that is, inventory at retailer i is
charged at arate of #; and system inventory is charged at arate of i, we have

1 1 .
H{(To, T;) = zhiDiTi + EhODiTO =g Ti + g'To.

Therefore, the average cost of apower of two policy T isgiven by:

S Y HiTo. T, (96)

i>0 ! i>1

Our objective then is to find the power of two policy T' that minimizes (9.6).

Our approach to solving this problem is to first minimize the average cost over
al vectors T > 0, that is, we solve this problem when the restriction to power of
two vectors is relaxed. We then round the solution T' to a vector whose elements
are the powers of two multiple of 7.
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For afixed value of Ty, we consider the following problem

K4
biTz'f{—’ HiT,Ti}. 9.
(To) },-n>oT,-+(o) (9.7)
To solve this problem, let 7/ = & andlett; = /% and note that ¢/ < t; for

al i > 1. Then one can show that
2JKi(gi+g) ifTo<t
bi(To) = % +(gi+8)h ift/<Th=<t
ZQ/K,'gi + giTo if T; < To.

That is, if Ty < 7/, itis best to choose 7" = /. If 1/ < Ty < t;, then choose
T* = To. If Tp > 7;, itis best to choose 7" = 7;.
We now consider minimizing

. K -
B(To) = Ts + Y bi(To)
i-1

over al Tp > 0. The function B isof theform

K (To)
T

+ M(To) + H(To)To

over any interval where K (), M() and H () are constant. For any Tp, define the sets
G(To) ={i:Tp < ‘Ki/}, E(To) ={i: ‘Ei/ <Ts < ‘L’i/} and L(To) ={i: 1 < To}.
Then K (), M() and H () are constant on those intervals where G(), E() and L() do
not change. To find the minimum of B, consider the intervals induced by the 2n
valuest/ and 7; fori =1, 2, ..., n. Say Ty fallsin some specific interval; then we
set
i, ifi e G(To)
Ti* = To ifi e E(To)
T, ifi € L(Tp).

Thesets G, E and L change only when T; crosses a breakpoint t/ or t; for some
i > 1. Specifically, if To moves from right to left across t;, retailer i moves from
L to E. If Top moves from right to left across 7/, retailer i moves from E to G.
This suggests a simple algorithm to minimize B(Tp). Start with Ty larger than
the largest breakpoint, and let L = {1,2,...,n} and G = E = (. We then
successively decrease Tp moving from interval to interval. On each interval we

need only check that 5% falls in the same subinterval as Tp. In this case we

St Ty = 503 Let B* = B(Ty) = inf 1,20 B(To)}; then this value is clearly a
lower bound on the cost of any power of two policy.
We now want to prove that this value is a lower bound on the cost of any

policy. For notational convenience, we abbreviate G = G(7y), E = E(T) and
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L =L(Ty). Let K = Ko+ Y ;cp Kin G = Y, p(gi + &)+ X, & and
M =2/ KG.Wealso definefor eachi > 0
gi+g, ifiegG,
Gi = 8is if i € L,

(T’g—)z ifi € EU{0},

G =g 4+ g — G;,and M; = 2/K;G;. Inthisway we can write B* as

=M+ ) M. (9.8)

ieLUG

We now provethat B* isalower bound on any policy. Wefirst show that in fact
B* =} ..o M;. From (9.8), we need only show that M =, ;. 0, M,

M =2VKG =

zzzﬁ

*
ie EU{0} TO

=2
16%:{0 VK/G

=2 Z VK;G;
ie EU{0}

= Y M.
i€ EU{0}

Consider any policy over an interval [0, ¢'] for ¢’ > 0. We show that the total
cost associated with this policy over [0, ¢'] isat least B*t'. Let m; be the number
of orders placed by facility i > 0intheinterval [0, ¢']. Let I;(¢) be the inventory
at facility i > 1attimer and let S;(r) be the system inventory of facility i > 1 at
timer. Clearly, total inventory holding cost is

f (s, + &5,

i>1

We will show that thisis no smaller than

/ G L(t) + G'S; (t))dt.

i>1

For this purpose consider the quantity G, I;(t) + G' S;(¢) for eachi > 1. There are
three cases to consider.

Casel: i € G.Then G, = gi+ g and G' = g, + g — G; = 0 and since
S;(t) > I;(¢) for al ¢t > 0, we have
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gili(1) +&'Si(t) = Gili(t) + G'Si 1)
Case2 ic L. ThenG, =g andG' =g +¢g' — G, = g'; hence
gili(t) + &' Si(t) = GiI;(t) + G' Si(t).

Case3.i € E.ThenG; = *)2 and G' = g; +g' — G;. Observethat by definition

ifie E;thent/ <T§ <1 wh|ch|mplleeg, <G; <g +g'. SinceS;(t) > L)
foral r > O, then

gili(t) + &' Si(t) = Gi I;(1) + G'Si(t) + (G — gi)(Si(r) — I;(1))
> G;Ii(t) + G'S;(t). (9.9

Finally, it is a simple exercise (see Exercise 9.7) to show that Go = )., G,
and therefore our lower bound on the inventory holding cost can be written as

/ GI(t)+GS(t) dt / G;I;(t)dt,
i>1

i>0
where we have defined Io(1) = &= >_;., G'Si(1).
Hence, total cost per unit of time under this policy is at least

(K m; + /Of' G, ]i(t)dt) =3 (Kr:— + G,;—) (by Property 9.1.1)

t/

i>0 i>0
> 2 j{: vVKiG;i+2 j{: VKiG;
ieLUG icEU{0}
= M; =B".
i>0

We have thus established that B* is alower bound on the total cost per unit time

of any policy.
Finally, for eachi € G U L select apower of two policy (avalue of k) such that

1
—T* < Tg2" < V2T

V2

For eachi € E U {0} select apower of two policy (avaue of k) such that

1
Ty < Tg2" < V215,

V2

It isasimple exercise (Exercise 9.4) to show that the policy constructed in this
manner has cost at most 1.06 times the cost of the lower bound.
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9.4 Exercises

Exercise9.1. Consider the Economic Lot Size Model and et K bethe set-up cost,
h be the holding cost per item per unit of time and D the demand rate. Shortage
is not allowed and the objective is to find an order quantity so asto minimize the
long-run average cost. That is, the objective isto minimize

_kD ko
C(Q) = ) +

where Q isthe order quantity. Suppose the warehouse can order only an integer
multiple of ¢ units. That is, the warehouse can order ¢, or 2¢, or 3¢, €tc.

(a) Provethat the optimal order quantity Q* has the following property. There
exists an integer m such that Q* = mq and

Im—1 QFf m+1
<= <, /—,
m — Q* " m

where Q¢, the Economic Order Quantity, is:

. [2KD
=y

(b) Suppose now that m > 2. Show that C(Q*) < 1.06C(Q°).

Exercise 9.2. (Zavi, 1976) Consider the Economic Lot Size Model with infinite
horizon and deterministic demand D items per unit of time. When the inventory
level is zero, production of Q items starts at arate of P items per unit of time,
P > D. The set-up cost is K$ and holding cost is h$/item/time. Every time
production starts at alevel of P items/time, weincur acost of « P, o > 0.

(a) What isthe optimal production rate?

(b) Suppose that due to technological constraints, P must satisfy 2D < P <
3D. What isthe optimal production rate and the optimal order quantity?

Exercise 9.3. Consider the Economic Lot Size Model over the infinite horizon.
Assume that when an order of size Q isplaced theitems are delivered by trucks of
capacity ¢ and thus the number of trucks used to deliver Q is f%} , where [m] is
the smallest integer greater than or equal to m. The set-up cost isalinear function
of the number of trucksused: itis Ko + [%1 K. Holding cost is h $/item/time and
shortage is not allowed. What is the optimal reorder quantity?
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Exercise 9.4. Prove that the heuristic for the Single Warehouse Multi-Retailer
Model described in Section 9.3 providesasolution within 1.06 of thelower bound.

Exercise 9.5. Consider the power of two policies described in the single product
model of Section 9.1.3. Describe how you could generate a power of three policy
(apolicy where each T; = 3T for someinteger k > 0). What isthe effectiveness
(in terms of worst-case performance) of the best power of three policy?

Exercise9.6. (Porteus, 1985) The Japanese concept of J T (Just In Time) advocates
reducing set up cost as much as possible. To analyze this concept, consider the
Economic Lot Size model with constant demand of D items per year, holding cost
h $ per item per year and current set up cost Kq. Suppose you can lease a new
technology that allows you to reduce the set up cost from Ky to K at an annual
leasing cost of A — BIn(K) dollars. That is, reducing the set up cost from the
current set up cost,Ko, to K will cost annually A — Bin(K) dollars. Of course,
weassumethat A — B In(Ko) = 0 which impliesthat using the current set up cost
requires no leasing cost. What isthe optimal set up cost? What isthe optimal order
quantity in this case?

Exercise 9.7. Show that in the proof of the lower bound, B*, for the single ware-
house mullti-retailer model we have Go = ) _,.; G'.

Exercise 9.8. Prove equation (9.9).
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Economic Lot Size Models with
Varying Demands

Our analysis of inventory models so far has focused on situations where demand
was both known in advance and constant over time. We now relax this latter
assumption and turn our attention to systems where demand is known in advance,
yet varies with time. This is possible, for example, if orders have been placed
in advance, or contracts have been signed specifying deliveries for the next few
months. In this case, aplanning horizon is defined as those periods where demand
is known. Our objective is to identify optimal inventory policies for single item
models as well as heuristics for the multi-item case.

10.1 The Wagner-Whitin Model

Assume we must plan asequence of orders, or production batches, over aT period
planning horizon. In each period, a single decision must be made: the size of the
order or production batch.

We make the following assumptions.

e Demand during period ¢ isknown and is denoted d, > O.

e The per unit order cost is ¢ and afixed order cost K isincurred every time
anorder isplaced; that is, if y unitsare ordered, the order costiscy + Ké&(y)
(where §(y) = 1if y > 0, and O otherwise).

e Theholding costis i > 0 per unit per period.

o Initial inventory is zero.
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o Leadtimesare zero; that is, an order arrives as soon as it is placed.

o All ordering and demand occursat the start of the period. I nventory ischarged
on the amount on hand at the end of the period.

The problem is to decide how much to order in each period so that demands
are met without backlogging and the total cost, including the cost of ordering and
holding inventory, is minimized. This basic model was first analyzed by Wagner
and Whitin (1958) and has now been called the Wagner-Whitin Model.

Inthismodel, it is clear that the total variable order cost incurred will be fixed
and independent of the schedule of orders, and thus this cost can be ignored. Let
v, be the amount ordered in period ¢, and I, be the amount of product in inventory
at the end of period ¢. Using these variables, the problem can be formulated as
follows:

T
Problem W W : th}j[KSQﬂ—%hb]
=1

s.t.
L=I5L1+y —d, t=12....,T (10.1)
Ipb=0 (10.2)
L,y>0 1=12...,T. (10.3)

Here constraints (10.1) are called the inventory-balance constraints, while (10.2)
simply specifies initial inventory. Note that the inventory can also be rewritten
as: I, = Y i_,(vi — d;) and therefore the 1, variables can be eliminated from the
formulation.

Wagner and Whitin made the following important observation.

Theorem 10.1.1 Any optimal policy isa zero-inventory ordering policy, that is, a
policy in which
yvl,.1=0,fort =2,2,...,T.

Proof. The proof is quite simple. By contradiction, assume there is an optimal
policy in which an order is placed in period ¢ even though the inventory level at
the beginning of the period (1,_1) is positive. We will demonstrate the existence
of another policy with lower total cost. Evidently, the I,_; items of inventory were
orderedinvariousperiodsprior toz. Thus, if weinstead order theseitemsin period
t, we save al the holding cost incurred from the time they were each ordered. i

Thus, ordering only occurs when inventory is zero. A simple corollary is that
in an optimal policy an order is of size equal to satisfy demands for an integer
number of subsequent periods.

Using the above property, Wagner and Whitin developed a dynamic program-
ming algorithm to determine those periods when ordering takes place. By con-
structing asimple acyclic network withnodesV = {1, 2, ..., T + 1}, wecanview
the problem of determining a policy as a shortest path problem. Formally, let ¢;;,
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thelength of arc (i, ;) inthis network, bethe cost of ordering in period i to satisfy
thedemandsin periodsi,i +1,...,j —1,foral1<i < j < T+ 1. Thatis,

j—1

Ly =K +hy (k—i)d.

k=i
All other arcshave ¢;; = 4-00. Thelength of the shortest path from node 1 to node
T + 1in this acyclic network is the minimal cost of satisfying the demands for
periods 1 through 7. The optimal policy, that is, a specification of the periodsin
which an order is placed, can be easily reconstructed from the shortest path itself.
This procedureis clearly O(T?).

Most of the assumptions made above can be relaxed without changing the basic
solution methodol ogy. For example, one can consider problem datathat are period
dependent (e.g., ¢;, i, or K,). The assumption of zero leadtimes can be relaxed if
one assumes the leadtimes are known in advance and deterministic. In that case,
if an order isrequired in period ¢, then it isordered in period r — L, where L isthe
leadtime.

Researchers have also considered order coststhat are general concave functions
of the amount ordered, that is, ¢;(y). The problem can be formulated as a network
flow problem with concave arc costs. This was the approach of Zangwill (1966)
who al so extended the model! to handle backlogging, although the solution method
isonly computationally attractive for small size problems.

The Wagner-Whitin model can also be useful if demands during periods well
into the future are not known. Thisideais embodied in the following theorem.

Theorem 10.1.2 Lett bethelast period a set-up occursintheoptimal order policy
associated with a T period problem. Then for any problem of length 7* > T it
is necessary to consider only periods {j : ¢t < j < T*} as candidates for the last
set-up. Furthermore, if 1 = T, the optimal solution to a 7* period problem has
y; > 0.

Thisresult isuseful sinceit showsthat if an order isplaced in period ¢, the optimal
policy for periods 1, 2, ..., t — 1 does not depend on demands beyond period .

Surprisingly, even though the Wagner-Whitin solution procedure is extremely
efficient, often simple approximate, yet intuitive, heuristics may be more appeal -
ing to managers. For example, this may be the reason for the popularity of the
Silver-Meal (1973) heuristic or the Part-Period Balancing heuristic of Dematteis
(1968). One important reason is the sensitivity of the optimal strategy to changes
inforecasted demandsd,,t = 1, 2, ..., T. Indeed, in practice these forecasted de-
mands are typically modified “on-the-fly.” These changestypically imply changes
in the optimal strategy. Some of the previously mentioned heuristics are not as
sensitive to these changes while producing optimal or near optimal strategies. For
another approach, see Federgruen and Tzur (1991).

Recently researchers have shown that it is possible to take advantage of the
specia cost structure in the Wagner-Whitin model and use it to develop faster
exact algorithms(i.e., O(T)). Thisincludesthework of Aggarwal and Park (1990),
Federgruen and Tzur (1991) and Wagelmans et al. (1992).
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We sketch here the O(T) agorithm of Wagelmans et al. which is the most
intuitive of the ones proposed. It is a backwards dynamic programming approach.
Defined;; = Z{:i d,fori,j=1,2,...,T,thatis, the demand from period i to
period j. To describe the algorithm, we will change slightly the way we account
for the holding cost. If anitemisorderedin period i to satisfy ademand in period
Jj = i, then we are charged H; = (T — i + 1)k per unit. That is, we incur the
holding cost until the end of the time horizon. Aslong aswe remember to subtract
the constant 4 ZiTzl dy; from our final cost, then we are charged exactly the right
amount. With this in mind, define G(i) to be cost of an optimal solution with a
planning horizon from period i to period 7', fori = 1, 2, ..., T. For convenience,
define G(T + 1) = 0. Then,

G(@) = min l{K + Hid; -1+ G(1)}

i<t<T+

— K+ min {Hd, 1+ G(t)}. (10.4)
i<t<T+1

The fina cost isthen G(1) — & ZiTzl dq;. Using this recursion, which is just a
reformulation of the shortest path recursion discussed earlier, it is clear that the
complexity is O(T?). Wagelmans et al.’'s O(T') algorithm is based on the crucial
observation that with careful implementation, thetotal amount of timespent finding
the period that minimizes (10.4) over the entire running of the algorithmis O(T).

Consider the calculation of G(i). It is useful to plot the points (d;7, G(j)) for
j=i+1i+2,...,T+ 1, wherethe point (dr+17, G(T + 1)) issimply the
origin. Let £ bethelower convex envel ope of these points; then define the function
g(x) = yifandonlyif (x,y) € £. Itisclear that g is a piecewise linear convex
function on [0, d;+1.7] with g(d;+1.7) = G(i + 1) and g(0) = 0. See Figure 10.1.

Define the breakpoints of g to be all the points x where g changes slope in
addition to the pointsx = 0 and x = d;1,7. If x isabreakpoint, then x = d;r
for someperiod j € {i + 1,i + 2,..., T + 1}. Let there be r breakpoints and let
i+1=1t(1) <2 < ... <t(r) =T+ 1denote the corresponding periods.
These periods are called efficient because of the following.

Theorem 10.1.3

_min {Hid;; 1+ G(t)} = min {H;d; ,)-1 + G(t(p))}.
i<t<T+1 1<p=r

Proof. Supposethat j (withi +1 < j < T 4 1) isnot an efficient period and let
and ¢ (withk < j < £) bethe two consecutive efficient periods straddling j. The
sopeof g on [d,r, dir] isequa to [G (k) — G(€)]/dk -1, hence

Gl -G,

gldjr) = G(£) + -1

dre-1

Furthermore, G(j) = g(d,r).
There are two cases to consider.
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FIGURE 10.1. The plotted points and the function g.

Case l: H; > %.Then

Hid; j—1 +G(j) = Hidi 1 + Hidy j_1 + g(d;T)

k)— G Gk) -G

> Hidi o1 + wdm_l +G() + Mdﬂ_]
di oy dre—1

= Hid; ;_1 + G(k).

Case2: H; < Q%. Then

Hid; j_1 + G(j) 2 Hid; ey — Hidj ¢ + g(d;T)

Gk) — G Gk) — G©)
> Hidigt — ————dj -1+ G) + —(—(dj,e—l
dk,g_l dk,e—l
= Hid,"g_l + G((Z)
In both cases, the minimum occurs at an efficient period. [ |

Being able to quickly find the efficient period p that achieves the minimum
is therefore crucial to the complexity of the algorithm. This step is aided by the
following result.

Lemma 10.1.4 Let k and £, k < £ be two consecutive efficient periods. If

Gk) — G(¢)

< H,',
di e
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then

Hidix 1+ G(k) < Hid; o1+ G(£);
otherwise

Hid; -1+ G(k) > Hid; -1+ G(£).

Proof. Suppose that ﬂgﬁﬁ < H;; then G(k) < Hdy.—1 + G(¢). Adding
Hd; ;1 to both sides results in H;d; x—1 + G(k) < Hid; -1 + G(£). The other
case can be shown in asimilar fashion. |

We now describe specifically how to find the efficient period achieving the
minimum in (10.4). This is done by keeping an up-to-date list L of the current
efficient periods. Let £(p) betheindex of theefficient period immediately following
efficient period p; that is, p < £(p). From Lemma 10.1.4 and the convexity of g
it follows that the value of j that achieves the minimum of

min {H;d; ;_ G(j
i<j§IT+1{ RO}

corresponds to the period ¢ (i) defined by:

G(p) — G(¢(p)) - H}]

q(i)imin[T+l,min[peL|p< T + 1and
dp.u(p)-1

because then

Hid; ,—1+ G(p) = Hid; yp)-1+ G(£(p)), forp e L andp < q(i),
and

Hid; ,—1+ G(p) < Hid; op)-1 + G(L(p)), forpe Landp > q(i).

Infact, it is easy to determine ¢ (i) from g (i + 1). Notethat ¢(i + 1) € L and
aslong as ¢(i + 1) isefficient it has the same successor £(i + 1) in L. Using the
definition of ¢(i + 1) we obtain:

G(g(i +1) — Gq( + 1))
dg(i+1), g (+1)-1
Hence, it followsthat g (i) < ¢(i + 1); that is, the values of ¢ (i) are decreasing in
i. Therefore, starting at (i + 1) we successively decrement by one until we find
¢(i). The total amount of time spent searching for ¢(i) in the entire algorithm is
therefore O(T).

To complete the complexity result, we must be able to quickly update thelist of
efficient periods, that is, update the lower convex envelope. After calculating G (i)
and plotting the point (d;7, G(i)), we search for the smallest efficient period #(s)
such that the slope of the line segment connecting (d;z, G(i)) to (dy(s), 7, G(¢(s)))
is greater than the slope of the line segment connecting (ds(s+1),7, G(t(s + 1)) to
(di(s), 7. G(2(s))) (thus maintaining convexity). Then the new efficient periods are
i andthe periodsfrom(s) to#(r) = T + 1, the efficient periods between i + 1 and
t(s) — 1 become inefficient. Since a period can become inefficient at most once,
one can verify that the total amount of work spent updating the list L over the
entire algorithm is O(T).

< Hiy1 < H,.
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10.2 Modelswith Capacity Constraints

Animportant generalization of the Wagner-Whitin model isthe inclusion of upper
bounds on the amount that can be ordered or produced in a given period. This
corresponds to adding the following constraints to Problem WW.

y<C, t=12...T. (10.5)

The values C, > 0 correspond to the maximum amount that can be ordered (or
produced) in period ¢ dueto, for example, limited production capacities.

In this case, the problem is not as ssimple as before; Florian et a. (1980) show
that in general, the problem is A“P-Complete. Florian and Klein (1971) propose
a dynamic programming approach which involves solving a sequence of acyclic
shortest path problemsfor the special casewhere C, = C for all 7. Love (1973) de-
visesan agorithm based on characterizing the extreme points of the solution space
for the general problem. The branch and bound algorithm of Baker et al. (1978)
seems to be the most computationally effective, although it is not polynomial.

We sketch here the approach of Florian and Klein. For now assume unequal
capacities; most of the structural results proved by Florian and Klein hold in this
more general case. Clearly, afeasible solution existsif and only if

XI:CJ» > Xl:dj, fori=12,...,T.
j=1 j=1

We therefore assume this is satisfied. Let
P ={ye R":ysatisfies(10.1), (10.2), (10.3) and (10.5)},

and let D bethe set of extreme points of 7. Since the objective function is concave
(why?), we know an optimal solution will existin D.
Florian and Klein prove the following Inventory Decomposition Property.

Theorem 10.2.1 Suppose that the constraint

I, =0, forsomek e [1,..., T —1]

is added to Problem WW and
Yciz Y d. fori=k+1,....T
j=k+1 j=k+1

holds. Then an optimal solution to the original problem can be found by indepen-
dently finding solutionsto the problemsfor thefirst £ periodsand for thelast T — &
periods.

Thisis clearly a generaization of Theorem 10.1.2. Following thisidea, call a
period t aregeneration point if 7, = 0. Define a production sequence S;;, where
0<i<j=<T,tobe
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S,’j :{(yi+1,yi+2,...,yj) | I; :Ij =0, I, > Ofori <k <J}

Clearly, any production plan can be decomposed into aset of production sequences.
Define aproduction sequence S;; to be capacity constrained if the production level
in a most one period k, (i + 1 < k < j) satisfies0 < y; < C; and al other
production levels are either zero or at their capacities.

The authors then characterize the extreme points of P in the following way.

Theorem 10.2.2
y € D <= y consists of capacity constrained production sequences only.

This characterization is done in several steps. First:

Lemma10.2.3 If y € D, then y consists only of capacity constrained production
sequences.

Proof. Supposey € D and S;; is a production sequence of y that is not capacity
constrained. This means there are at least two periods, say k and £, (i + 1 <k <
£ < j),inwhich0 < y; < Cyand 0 < y, < C,. Without loss of generality we
can assume there are only two periods of thistype.

Let

1 . .
s = > min{yx, Cx — Y&, ¢, C¢ — ye, min I},
i+1l<t<j

and let ¢, bethe (j — i) component vector with aonein the »™ position and zeros
everywhere else. Define two production sequences

Si/j = S[j - 8€k + 88[,

and
Sz/; = S,’j + Sep — Sey.

Note that production sequence S; ; simply represents a shifting of production from
period k to period ¢, while sequence S;; represents the opposite shift. They are

clearly feasible, and since § > O they are distinct. However, S;; = %(Si’j + S;}), a
contradiction.

Lemma10.2.4 If y’ and y” aredistinct feasible production plansand y = %(y/ +
y"), then y’ and y” share all the regeneration points of y.

Proof. Let period k be aregeneration point of y. Then

k k k
0=3 00 —d) = 5[ D207~ )+ Y207 — )] = S0+ 1))
t=1 t=1 t=1

Since I, I/ > 0, both I; and ;" must be zero. |
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Lemma 10.2.5 If afeasible plan y consists only of capacity constrained produc-
tion sequences, then y € D.

Proof. Suppose by contradiction that y ¢ D. Then there exist feasible plans y’
and y” suchthat y = %(y’ + y").

From Lemma10.2.4, y" and y” share the regeneration pointsof y. Leti and j be
two such successive regeneration points, and let S;;, S;; and S;; be the associated
distinct production sequences of y, y’ and y”, respectlvely EV|dentIy,

1 4 1
Sl] - E(Slj + Sl])

We show that the only possibility is S;; = S}, = S’ For this purpose, consider any
period k, i + 1 < k < j and observe that y, can take only three possible values.
Either y, = Oinwhichcasey, = y;/ = 0, or yy = Cy inwhichcasey, = y; = Ci
or 0 < yx < Cy. Since S;; isacapacity constrained sequence, at most one period,
say period £,i +1 < ¢ < jhasO < y, < C,. But total production between period
i +1and period j must be equa to total demands over the same periods, and hence
ye =y, = y;. Consequently, S;; = S;; = S/. |

This compl etes the proof of Theorem 10. 22.

Itisnow clear that an optimal solution must be made up of asequence of optimal
capacity constrained production sequences. However, determining these sequences
can bequitetediousand computationally expensive. To maketheproblemtractable,
Florian and Klein consider the case where the capacity constraints are identical
and equal to C. Demand between any two periods, say periodsi and j, can then
be written asmC + p wherem isaninteger and p < C. Then:

Corollary 10.2.6 If C, = C for all ¢, an optimal production sequence has a
number of periods in which production levels are equal to C, at most one period
where production level is0 < p < C, and the remaining periods have zero
production levels.

Thissimplifiesthe problem considerably; for example, consider determining the
optimal production sequence between regeneration pointsi and j. From Corollary
10.2.6, in each period k € {i + 1,i+2,...,j} productioniseither O, C or p for
somep € (0, C).LetY, = Zé ir1 Yk fori < k < j, thatis, theamount produced
between periods i + 1 and & in this production sequence. Then Y, can only take
onvauesin{0, p,C,C + p,2C,...,mC,mC + p}.

Thus, we can construct a network where the vertices correspond to the possible
values of Y, for eachi < k < j with directed edges (Yx, Yi+1) defined by:

o IfY, =¢C,2=0,1,...,m,thentherearethree edges emanating from this
vertex: oneto Y41 = £C (corresponding to no production in period k), one
to Y11 = £C + p (corresponding to production of p in period k) and one
to Yx11 = (¢ + 1)C (corresponding to production of C in period k).

o IfY, =4C+ p,£=0,1,...,m,thenthereare two edges emanating from
thisvertex: oneto Y1 = £C + p (corresponding to no productionin period
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k) and oneto Y1 = (¢ + 1)C + p (corresponding to production of C in
period k).

After creating an artificial initial vertex Yy, we see that every path from Yy to
Y; represents a feasible capacity constrained production sequence. Assigning arc
costsequal tothe cost of producing and storing the corresponding product amounts,
it is clear that finding the optimal production sequence from i to j is no harder
than solving the shortest path problem on this network. The complexity of this
procedure is clearly proportional to (j — i)?, thus determining that the optimal
production sequence between all pairs of periodsis O(T3).

To determine the optimal production plan over the entire planning horizon,
Florian and Klein solve another shortest path problem on anetwork similar to the
oneformulated in Section 10.1. That is, length of anarc (i, j) inthisnetwork isthe
total cost of the optimal production sequencefrom i to j. After solving the shortest
path problem, the optimal set of regeneration points can be found by checking the
shortest path. Thisstep is O(T?2).

Unfortunately, Florian and Klein's approach cannot be extended to a computa-
tionally effective technique for the general case with unequal capacities. In that
case, a more effective approach may be the one by Baker et al. We sketch this
approach here. Asin the uncapacitated case, the authorsfirst identify special prop-
erties that an optimal solution must satisfy. They are the following.

Theorem 10.2.7 If (y1, y2, ..., yr) represents an optimal solution, then for every
t:

I,-1(C, — y)y: = 0.

This can be proven easily using the same technique asin Theorem 10.1.1. Though
not quite as useful asthe Zero Inventory Ordering property of the (uncapacitated)
Wagner-Whitin model, this property does simplify the problem considerably. It
states that if there is inventory carried into the period, then production in this
period iseither zero or at capacity. On the other hand, if production is positive, but
less than capacity, the inventory must be zero.

A simple corollary of this result, and the key to the approach, is the following.

Theorem 10.2.8 Let r = max{j : y; > O} If (y1, y2, ..., yr) represents an
optimal solution, then

y, = min {C,, édj}.

To seehow thismight beuseful, consider thetwo possiblecases. If y, = Zf:l dj <
C,, then since I,_; = 0 the problem becomes one of determining the best way to
satisfy the demands of periods 1, 2, ..., t — 1 with nofinal inventory. On the other
hand, if y, = C, < ZL, d;, then the problem becomes one of determining the
best way to satisfy the demands of periods 1, 2, ..., — 1 with final inventory
equal tod = Zf:l d; — C,. Thisfinal inventory stipulation can easily be handled
by considering it simply as extra demand in that last period. Therefore, starting
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from the end of the planning horizon, one can successively solve smaller and more
manageable problems.

The authors therefore propose a tree-search solution method that works as fol-
lows. We start at the root of the tree, the one associated with the last period, period
T.Productioninthisperiodiseither yr = 0or y; = min{C7, dr} (from Theorem
10.2.8). These two possibilities result in the creation of two subproblems (or subn-
odes in the tree). The authors explain how to continue in this manner, and, using
some shortcuts to reduce the number of nodes that need to be fathomed, it results
in an effective technique. Unfortunately, sinceit is not a polynomial procedure, it
is possibleto construct examples where the amount of computation required using
this method is extensive.

10.3 Multi-ltem Inventory Models

In many practical situations, the coordination of inventory and ordering policies
involves avariety of different products and this complicates the problem consider-
ably. Consider the uncapacitated case once again, and assumethere are n products.
Each product faces aknown demand during the next T periods. In addition, afixed
order cost of K; isincurred every time product i is ordered.

For each product i, define the following.

e Let y;, betheamount of product i ordered inperiodz, forr =1,2,...,T.
e Let h; betheinventory holding cost for product .

e Let I;; be the amount of product i in inventory at the start of period ¢, for
t=12...,T.

e Letd;, bethedemand in period ¢ for product i, fort =1,2,...,T.

Making the same assumptions as in the Wagner-Whitin model, the problem is
then:

T n
Problem P i Min 3" [Kid(vi) + bl

=1 i=1
s.t.
Li=L,1+yr—dy, i=12...,n,t=212...,T (10.6)
Lo=0 i=12...,n (10.7)
Li,yi >0, i=12,....,n,t=12,...,T . (10.8)

Here(10.6) areinventory-balance constraintsfor each product, while(10.7) specify
starting inventory for each product.

Itiseasy to seethat P decomposesintom single product problems. Each of these
single product problems can be solved using the algorithmsfor the Wagner-Whitin
model.
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A morerealistic version of thisproblemiswhen ajoint set-up cost K ispresent.
This cost isincurred whenever any product is ordered. The problem then becomes

T n m

Problem P':  Min [KOS(Z i+ (Ki(S(yi,) n hizi,)]
=1 i=1 i=1
5.t (10.6), (10.7) and (10.8).

Unfortunately, this problem is considerably more difficult to solve than the
simple Wagner-Whitin model. In fact, Arkin et al. (1989) prove that it is N'P-
Complete Several researchershave proposed heuristicsfor thisproblem, including
Silver (1976), Atkins and lyogun (1988) and Joneja (1990). We present here the
approach of Joneja.

The cost covering heuristic of Joneja proceeds period by period in a forward
direction. Specifically, at period ¢, the ordering policy of periods1,2,...,r — 1
has been determined and the decision is which items to order, if any, in period
t. Let ¢; be the last period in which item i was ordered. Let H;, denote the total
inventory holding cost incurred by item i since period #; assuming no order for
itemi isplaced in period z. That is,

1
Hi; =h; Z (j — ti)d;;.
j=ti+1
Intuitively, if we forget for the moment, the joint order cost and H;, > K;, then it
isworth orderingitem in period ¢, sinceit costs moreto keep anitemininventory
from period #; (thelast timeitemi wasordered) to ¢ thanto order itin period . The
quantity max{ H;, — K;, 0} can be seen asthe savingsthat are accrued by ordering
item i in period ¢. This approach is basically the Silver-Meal heuristic adapted to
the multiple item case. With the joint order cost present, an order should only be
placed if the total savings accrued by ordering a set of itemsin period ¢ exceeds
the joint order cost. Therefore, Jongja proposes the following ordering rule.

Rule 1. In period 7, order those items i such that H;, > K;, if Y, max{H;, —
K;, 0} > Ko.

Joneja shows that this single rule is not quite strong enough to ensure that the

schedule of ordersis cost efficient. For instance, consider the following example

with two products. The holding costs are equal (k1 = h, = 1). Pick an integer m
and set the demands to

dy =0, forr=12...m—-1

Ko+ Kq
dy, =
m—1
dy =0, fort=21,2,....,m
Ko+ K>

dZm+l=: .
m
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UsingRulel, item 1 will beordered at timem, but notitem 2. Item 2 will beordered
attimem + 1. If both itemswere ordered at timem, thenwepay hods, 41 = XKz
in extra holding cost but save K in ordering costs. Therefore, for large m, we see
that we can be far from optimal.

To counteract this behavior, Joneja proposed the following additional feature.
Let 7o be the time at which the last joint order was placed, and assumeitem i was
notincludedinthisorder (since H;,, < K;). It may, in some cases, be advantageous
to order item i at time 7o even though Rule 1 would specify the opposite. Define

t
S =hilto—1:) Y _ dyj.

J=to

Then S;, is the savings in inventory holding cost accrued by ordering item i at
time . Since ajoint order is already placed in period 7, the following rule was
proposed.

Rule 2. In period ¢, if the last joint order wasin period zo, item i was not ordered
in period rg and S;; > K;, then order item i in period .

Computational experiments with this heuristic, whose complexity is O(nT),
show that it produces solutions fairly close to optimal.

10.4 Exercises

Exercise 10.1. Assume order costs are general concave and time-dependent func-
tions of the number of items produced. Also, assume holding costs are general
concave and time-dependent functions of the number of items held in inventory.
Prove that the Zero-Inventory Ordering Property holds in this general setting as
well.

Exercise 10.2. The Silver-Meal Heuristic works asfollows. Let dy, da, . .., d, be
the demands in the n period planning horizon. Define C(T') to be the per period
average holding and set-up cost under the condition that the current order covers
demand in the next T periods. Then C(1) = K, C(2) = %(K + hdy), etc. Inthe
Silver-Meal Heuristic we calculate these until C(i) > C(i — 1). In this case, we
stop and producein period 1 to meet the demand of thefirst i — 1 periods. Wethen
start over with the i™ period.

Construct an example where the Silver-Meal Heuristic provides a nonoptimal
solution.

Exercise 10.3. Determine the complexity of Baker et a.’s algorithm.
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11
Stochastic Inventory Models

11.1 Introduction

The inventory models considered so far are al deterministic in nature; demand
is assumed to be known and either constant over the infinite horizon or varying
over afinite horizon. In many logistics systems, however, such assumptions are
not appropriate. Typically, demand is a random variable whose distribution may
be known.

Stochastic inventory models have attracted considerable attention in the last
three decades. The pioneering work of Scarf (1960), Iglehart (1963a and b) and
Veinott and Wagner (1965) for a single warehouse, Clark and Scarf (1960) for
multi-echelon systems, Eppen and Schrage (1981) and Federgruen and Zipkin
(1984a-c) for distribution systems, and Rosling (1989) for assembly systems, all
represent milestonesin our understanding of complex stochastic logistics systems.
More recently, thework of Zheng (1991), Zheng and Federgruen (1991) and Chen
and Zheng (1994) reveal new insights and provide more efficient algorithms for
these problems. For recent reviews, werefer thereader to Leeand Nahmias (1993),
Porteus (1990) and the recent book by Zipkin (1997).

Inthischapter wereview someof themain resultsin stochasticinventory models.
We start with the analysis of a single warehouse model. To build our intuition,
Section 11.2 considers asingle period model. In Sections 11.3 and 11.4 we show
that the insight obtained in the previous section can be used to analyze a multi-
period model. Section 11.5 extends the analysis further to the infinite horizon
model. Finally, Section 11.6 describes the development of interesting bounds on
the optimal cost for multi-echelon systems.
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11.2 Single Period Models

Consider a company that designs, produces and sells winter fashion items such
as skijackets, coats, etc. About six months before the winter season, the company
must commit itself to specific production quantitiesfor all its products. Sincethere
isno clear indication as to how the market will respond to the new designs, these
decisions are typically based on realized sales from the last few years, current
economic conditions and professional judgment.

To assist management in selecting production quantities, the marketing depart-
ment assumes that demand D for each new product is randomly distributed, gen-
erated from a product-specific distribution with continuous cdf F(-). Additional
information availabl e to the decision makers includes the variabl e production cost
per unit ¢, the selling price per unit », and the salvage value per unit v. Clearly,
these variables should satisfy r > ¢ > v, otherwise the problem can trivialy be
solved.

Since demand is a random variable, the decision concerning how many units
to produce is based on the expected cost z(y), which is a function of the amount
produced y. This expected cost is

v
z2(y)=cy—r /D min(y, D)dF(D) —v /Dio(y — D)dF(D) fory>0.

Notethat [, min(y, D)dF(D) = [, DdF(D) + y f;o dF(D). Adding and sub-
tracting the quantity r [,° DdF(D) to z(y), we get

00 y

z2(y) =cy —rE(D) — rf (y — D)dF(D) — v /D_O(y — D)dF(D). (11.1)

D=y

The objectiveis, of course, to choose y so as to minimize the expected cost z(y).
Thisisthe so-called newsboy problem.

Taking the derivative of z(y) with respect to y and using the Leibnitz rule, we
get the optimality condition:

c—r(1-Pr{D <y})—vPr{D =<y} =0,
which implies that the optimal production quantity S should satisfy

r—=c¢

Pr{D < S} = .
r—v
Since by assumption, r —c¢ < r —v and F (D) iscontinuous, afinitevalue S, S > 0
aways exists. In addition, it can easily be verified that the expected cost z(y) is
convex for y € (0, 0o0), and that the value of z(y) tends to infinity as y — oo.
Hence, the quantity S isaminimizer of z(y).

Observethat, implicitly, three assumptionshave been madeintheaboveanalysis.
First, thereisnoinitia inventory. Second, thereis no fixed set-up cost for starting
production. Third, the excess demand islost; that is, if the demand D happens to
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be greater than the produced quantity y, then the additional revenue r(D — y) is
lost.

The tools devel oped so far alow usto extend the above results to models with
initial inventory yo, and set-up cost K. We now relax the first two assumptions.
Observe that the expected cost of producing (y — yo) unitsis

K —cyo + z(y).

Hence, S clearly minimizes this expected cost if we decide to produce. Conse-
quently, there are two cases to consider.

1. If yo > S, we should not produce anything.

2. If yo < S, the best we can do is to raise the inventory to level S. However,
thisis optimal only if —cyo + z(y0), the cost associated with not producing
anything, is larger than or equals K — cyo + z(S), the cost associated with
producing S — yo. That is, if yo < S, itisoptimal to produce S — yg only if
z(yo) = K + z(S).

Let s be anumber such that
z(s) = K + z(S).

The discussion above implies that the optimal policy has the following structure.
Order S — yg if theinitial inventory level yg isat or below s, otherwise do not order.

We refer to such apolicy asan (s, S) policy. The quantity S is called the order-
up-to level while s isreferred to as the reorder point.

11.3 Finite Horizon Models

We are now ready to consider the finite horizon (multi-period) inventory problem.
This problem can be described as follows. At the beginning of each period, for
exampl e, each week or every month, theinventory of acertainitemat thewarehouse
isreviewed and the inventory level is noted. Then an order may be placed to raise
theinventory level upto acertain level. Replenishment ordersarriveinstantly. The
case with the nonzero leadtime will be discussed at the end of the Section 11.5.

We assume that demands for successive periods areindependent and identically
distributed. If the demand exceeds the inventory on hand, then the additional de-
mand is backlogged and is filled when additional inventory becomes available.
Thus, the backlogged units are viewed as negative inventory. The inventory left
over at theend of thefinal period hasavalueof ¢ per unit, and all unfilled demand at
thistime can be backlogged at the same cost ¢. Aswe shall seg, these assumptions
ensurethat the expected (gross) revenuein each period is aconstant, and therefore
we will not include the revenue term in our formulation.
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Costsinclude ordering, holding and shortage costs. Ordering cost consists of a
set-up cost, K, charged every time the warehouse places a replenishment order,
and a proportional purchase cost ¢. There is a holding cost of 4t for each unit
of the inventory on hand at the end of a period and a shortage cost of 2~ per
unit whenever demand exceeds the inventory on hand. To avoid triviality, we
assume A, h™ > 0 (why?). The objective is to determine an inventory policy
that minimizes the expected cost over m periods. In what follows, we show that
an (sx, Sx) policy is optimal, and develop a dynamic programming algorithm to
determine the optimal (s;, S;) valuesfor k = 1,2, ..., m. Of course, an (s, Sx)
policy issimilar to the (s, S) policy described earlier except that the parameters s
and S may vary from period to period.

To characterize the optimal policy for thefinite horizon model wefirst develop a
dynamic programming formulation of the problem. Herewefollow the convention
of letting theindex k represent the number of remaining periods; for example, k = 1
refersto the last period, and k = m refers to the first period. Similarly, y; isthe
inventory level at the start of the final period (before possible ordering) and y,, is
theinitial inventory at the beginning of the first period.

If the inventory level immediately after ordering is y, then the expected one-
period shortage and holding cost for that period is

G(y)=ht fD max(y — D, 0)dF(D) + h~ /D max(D — y, 0)dF(D), (11.2)

which is the so-called one-period loss function. Since the maximum of convex
functionsis convex and since convexity is preserved under integration, we see that
G(y) isconvex.

Givenapolicy Y = (y%, y2,---, y™), where y* are the order-up-to levels (ran-
dom variables) and may be contingent upon other variables, the sum of the total
expected proportional purchasing cost and salvage value Py is given by

Py = E[ic()’k — ) —C(yl—Dl)],

k=1
where Dy, istherealized demand in period k. Noting that y;_; = y* — Dy, we have

Py =cElY" —yu+y" "= (" = Du)+ -+ y = (* = D2) + D1 — ']
= cmE(D).

Thus, Py~ isindependent of the ordering policy, and we can drop off the linear
ordering cost component from the formulation. This observation is quite intuitive,
sinceall backlogged demandisfilled at theend of thelast period whileall remaining
inventory left at thisperiod issalvaged, both at the samepricec. Weal soremark that
whenever possible, we will suppress the subscript £ from D, (because demands
areiid) and superscript k& from y*.

To formulate the dynamic program, define the following two expected cost
functions. Denote by y, the inventory level, prior to ordering, at the beginning of
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period m — k + 1. Let G¥(y) be the expected cost for the remaining k periodsif we
do not order in period m — k + 1 and act optimally in the remaining £ — 1 periods.
Let z*(y;) be the minimal expected cost incurred through the remaining k periods
if we act optimally in period m — k + 1 and all the remaining k — 1 periods. It
follows that

GH () = G(y) + / 41y — D)AF (D).
D

and
() = Minysy, {K8(y — w) + G*()}, (11.3)

where §(x) is1if x > OanditisO otherwise.

Note that if we order up to the level y > y; in period m — k + 1, the cost for
the final k periodsis K + G*(y).

It remainsto show that an (s, Si) policy isoptimal forevery k,k = 1,2, ..., m.
For this purpose, it is sufficient to prove that the function G*(y) is K -convex, and
G*(y) - oo as|y| — oo, foreach period k, k = 1,2, ..., m.

Definition 11.3.1 Afunction g is K-convex if

K +gla+x)—g(x) — (a/b)(g(x) — glx — b)) = 0
foranya > 0,b > Oandfor all x € (—o0, 00) (Scarf, 1960).

Note that a convex function is 0-convex, and a K;—convex function is aso
K>—convex if K, > K. To understand this definition we examine Figure 11.1.
Here one observes that if initial inventory is y, then raising inventory to level S;
is not optimal. Thisis true since the total cost at S, g(S1) plus K, is more than
g(»). Since the same holds for each of S;, it follows that S is the (only) optimal
order up to level. Note, on the other hand, that if the curve in the figure satisfies
K + g(81) < g(»), then it would have contradicted the definition of K-convexity.
This is seen as follows. In the above definition, let a + x = S; and x = y and

hence,
S1

50— 8l = b)] > 0.

K +g(81) —g(y) =
for somesmall b, b > 0.

Lemma 11.3.2 A K-convex function g(y) is bounded for any finite y and contin-
uous on (—oo, 00).

Proof. Thefinitenessof g(y) for any |y| < oo follows directly from the definition
of K-convexity. Now suppose, to the contrary, that g(y) is not continuous. For
somediscontinuouspoint y (|y| < o), therearetwo possibilities: g(y™) # g(y™)
and g(y) # g(y™) = g(»y™). In either case, it is possible to choose x, a and b
in Definition 11.3.1, such that K-convexity is always violated. For this purpose,
choose the parameters such that a/b — oo, while g(x) — g(x — b) < —p where
p isapositive constant. |
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oy

s Y s, 3.2 S3 y
FIGURE 11.1. A K -convex function.

As in the single period problem, analyzed in Section 11.2, to prove that an
(sx, Si) policy is optimal we must also show the existence of s; and S, and that
the typical graph for G*(y;) is as illustrated in Figure 11.1, for k = 1,...,m.
The proof is constructive in nature and proceeds in several steps. First, we assume
that G"(y) is K-convex for all k, k = 1,...,m and show the existence of an
optimal (s, S¢) policy; then we show that G*(y) is indeed K -convex. The next
two lemmas establish the optimality of (s¢, S¢) policies under the assumption that
G*(y) is K-convex.

Lemma 11.3.3 G*(y) - oo as |y| > oo.

Proof. We prove by induction. For k = 1, G(y) = G(y) > 0 for all y and
G(y) — ooas|y| — oo. This implies thatz!(y) > 0. Now assume that G*~1(y) >
0 for all y and is unbounded as |y| — oo. Then z*~!(y) > 0 and Gi(y) =
G(y) + Eplz*~'(y — D)] > O for all y, and hence G*(y) — oo as |y| = co. 1

Suppose that G*(y) is K -convex. Unfortunately, even with this assumption,
the above two lemmas are still not sufficient to prove the optimality of (si, Si)
policies. The difficulty is that we have not ruled out the possibility of multiple
(Sx, Sx) policies in period m — k + 1.

For this purpose, we need the following result.

Lemma 11.3.4 Suppose that G*(y;) is K -convex; then we have:
(i) there exists a number Sy minimizing G*(y;);

(ii) there exists a number sy such that G*(sy) = K + G*(S;) and sy < S. In case
of multiple sy, we choose the biggest one;

(iii) for yy < sy, G* (yx) is nonincreasing, and there are no two points yy; and
Yiz such that s; < yi1 < yi2 and G*(yu1) — G*(y2) > K.

Before proving the Lemma, we demonstrate what happens if part (iii) does not
hold. Suppose the second part of (iii) fails to hold. In this case, if we are facing
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inventory level y,1, wewill be better off raising the inventory level up to y, since
G (y2) + K < G*(yr1). Similarly, if thefirst part of (iii) failsto hold, it may be
the case that G*(y;) < G*(Sx) + K.

Proof. Parts (i) and (ii) follow easily from the continuity of G*(y;) and the
infiniteness of G¥(y,) as|y| — oo. Note that if there exist multiple numbers s;,
we choose the largest one.

To seethat G*(yy) isnonincreasing for y, < s;, we supposethat, to the contrary,
G*(y) has alocal maximum at y°. Without loss of generality, assume G*(y°) >
G¥(sz). Then there must exist some positive number p > 0 so that G¥(y°) —
Gy —p)>0.Letx =y a+x=a+)y =S andx —b = y° — p. Firgt
assume that G*(y°) > G*(s;). The K -convexity of G*(y;) implies that

K + G*(SK) — G* (%) — ((Se — ¥°)/p)(G* (%) = G*(° - p)) = O,

which, together with K + G*(S;) = G*(si), contradicts the hypothesis. Now
assumethat G¥(y°) = G¥(s); again, the K -convexity will not hold unless G*(y° —
p) = G¥(sz). This proves the first part of (iii).

We now show that there are no two points y1 and y,» suchthat S, < yi1 < yi2
and G*(yi1) — G*(yr2) > K. Again, assumethat, to the contrary, such points exist.
Let x = yi1, x — b = S, and x + a = yj2. The K-convexity of G*(y;) gives

K + G (yi2) — G*(ye1) — (e — yi1)/ (k1 — SONG*(yu1) — G*(Sk)) = O,

which again contradicts the hypothesis, since G*(yi1) > G*(S;).

Finally, it follows from (ii) that G*(yx1) — G*(yk2) < K for sp < yi1 < yr2. B

The above lemma can be interpreted as follows. For y, € (—oo, sz), G*(yx) >
G*(s;) and is nonincreasing; for y; € (st, Sk], G*(yx) — G¥(Sk) < K; and finally,
for yr > S, G¥(y) — G*(yx +a) < K forany a > 0.

The next result follows directly from the above two lemmas.

Corollary 11.3.5 If G¥(y) satisfies the conditions specified in the above two lem-
mas, then the optimal inventory policy solving (11.3) isan (s, Si) policy for all k,
k=12,...,m.

Thus, the optimality of (s;, Si) policy in period k implies that

K + GF(Sy) if yk < s,

. 114
G*(wi) if ye > sk (11.4)

) = {

It now remains to show that G*(y;) isindeed K -convex.

Lemma11.3.6 Thefunction G*(y) is K-convexfor all k,k =1, ..., m.

Proof. We start by stating two properties of K-convex functions, whose proof
followsdirectly from the definition of K-convexity. See, for instance, Dreyfusand
Law (1977), Bertsekas (1987) or Exercise 11.6.
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1. If g1(y) and g2(y) are K -convex and L-convex, respectively, thenfor o, >
0, ag1(y) + Bg2(y) is (e K + BL)-convex.

2. If g(y) is K-convex, then Ep[g(y — D)] isaso K-convex.

We provethelemmaintwo steps. Inthefirst step we show that if the (sy_1, S_1)
policy isoptimal in period k — 1 and G¥~1(y) is K -convex, then G¥(y) isalso K -
convex. In the second step, we demonstrate that G(y) is K -convex. By Lemmas
11.3.2, 11.3.3 and 11.3.4, these two steps are sufficient to show that G*(y) is
K -convex.

Consider Step 1. The definition of G*(y),

G*(y) = G() + Ep[z**(y — D],

together with the two properties stated above implies that it suffices to show that
7Z¥=1(y) is K -convex. Our objective isto prove that

K+ 2 x +a) — 274 ) — %(zk*l(x) M -p) 20

for any a,b > 0 and for al x € (—o0, 00). For this purpose, and following
the treatment in Dreyfus and Law (1977), we differentiate between four cases,
depending upon where x, x +a and x — b lie.

Casel: x — b > s;_1. Clearly, x, x + a > s;_1. By (11.4), ZF"1(x) = G*1(x)
and hence, z*~1(x) is K -convex in this region.
Case2. x — b < s5p_1 < x. From (11.4),

K42 (x +a) — 257 (x) — %[zk_l(x) — Y (x — b))
= K + G (r +a) = 671 (x) = 716" H(x) = G H(Si0) — K]
= K+ G (r +a) - 671(%) - 716 H) - G (se-)
=W.

Toseethat z¥~%(x) is K -convex inthisregion, wefurther consider two subcases:
2.1) G*1(x) < G*Y(s;_1) and (2.2) G*1(x) > G*(si_1). In (1), W > 0
because of Lemma11.3.4 (iii) and the K -convexity of G¥~1(x). For (2.2), consider

K 4+ G Yx 4+a) — GFHx) — [GF M x) — G Hsic)] = W

X —Sp-1

Because G¥X(x) is K-convex, W’ > 0. By the assumption x — b < sx_1 < x,
we seethat b > x — s;_1. Hence, 0 < W/ < W and z~1(x) is K-convex in this
interval.

Case3: x < s4_1 < x +a. Inthiscase,

K+ +a) = 2700 = 20 - N - o))

=G (x +a) — G*"X(Si_1) = 0,
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where the last inequality holds since S;_; isaminimizer of GK=1(y).
Case4: x +a < s;_1. Inthiscase,

F) = +a) = = b) = K 4+ GFH(Si-).

and therefore, zA=1(y) is obviously K -convex.
Asfor Step 2, the proof is straightforward. In the final period,

G'(y1) = G(y), (11.5)

where the function G(-) isdefined in equation (11.2). Since G(y1) isconvexin y,
G'(y1) isthus K -convex. In addition, G(y) — oo as|y| — oo. Hence, the (s1, S1)
policy is optimal for the final period. The proof is now completed. ]

We now show how to solve the dynamic programming problem, that is, how
to compute the optimal (s¢, Si) policy for every k > 1. We start computing the
optimal policy for the final period, and then recursively calculate the functions
G¥(y) and z¥(y). These functions are used to determine the optimal (s, S;) for
k=2 ...,m.

We know that the functions G*(y) and z1(y) aswell as the optimal (s1, S1) can
be found as described in Section 11.2. Given the functions G/ (y) and z/(y) and
the optimal (s;, S;), for j = 1,2,...,k — 1, we determine the functions G*(y)
and zX(y). Asin the single period model, let

Gi () = K + G*(S)).

That is, GX(y) is the expected cost given that we start in period m — k + 1 with
on-hand inventory of y; units, order up to S; in that period, and act optimally in
the remaining k — 1 periods.

Clearly, theoptimal S; will bethevalueof y that minimizes G*(y). Alternatively,
to compute the optimal S, we find the point at which the function GX(y,), aline
with slope 0, is tangent to G¥(yi) + K.

To determine s;, we look for y smaller than S, such that

G'(y) = K + G*(S).
We thus conclude that

0 ify < sk,

Z/k(y) — { G/k(y) T (11.6)

What can we say about the rel ationship between the different quantities (s, S),
k=12, ...,m? Very little! The only result known was obtained by Iglehart
(1963a).

Theorem 11.3.7 Theoptimal policy solving (11.3) satisfies S1 < Sk, 2 < k < m.

Proof. It is sufficient to show that G*(y) < O for all y < S;. Suppose that we
choose the smallest S; that minimizes G(y). The convexity of G1(y)(= G(y))
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impliesthat G'*(y) < Ofor al y < S1, and hence z(y) < Oforal y < Si; see
equation (11.6). Now assume z*(y) < Ofor all y < S; and observe that

GHH() = G'(y) + / (y — D)AF(D) <O,
D

which compl etes the proof. |

11.4 Quasiconvex Loss Functions

The above proof on the optimality of (s, Si) policiesrelieson thefact that the one-
period loss function G(y) is convex. In many practical situations this assumption
is not appropriate. For instance, consider the previous model, but assume that
whenever ashortage occurs, an emergency shipment isrequested. Suppose further,
that this emergency shipment incurs afixed cost plus alinear cost proportional to
the shortage level. It can be easily shown that the new loss function G(y) is, in
general, not convex.

To overcome this difficulty, Veinott (1966) offers a different yet elegant proof
for theoptimality of (s, Sx) policiesunder the assumption that —G () isunimodal
or G(y) isquasiconvex. Here we provide a slightly simplified proof suggested by
Chen (1996) for the model considered here.

Definition 11.4.1 Afunction f is quasiconvex on a convex set X if for any x and
yeXand0<gqg <1,

flgx + (1 —q)y) < max{f(x), f(y)}.

It is easily verified that a convex function is also quasiconvex. An adternative
definition may be asfollows: f issaid to be quasiconvex if

— f(x) isunimodal.
Consider the following m-period model:
() = min{K3(y — i) + G () (11.7)
where
G*(y) = G(y) + Ep[z¥" Yy — D)], for k=1,2,...,m. (11.8)
In the analysis below we use the following assumptions on G(y).

(i) G(y) iscontinuous and quasiconvex.

(ii) G(y) > inf, G(x) + K as|y| — oo.
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Other assumptions on ordering costs and demands are the same as in the previous
section.

If (i) and (i7) hold, thereisanumber y* that minimizes G(y). In addition, there
are two numbers s(< y*) and S(> y*) such that

G(S) =GO +K (11.9)
G(s) = GO™) + K. (11.10)

Itisalsoworthmentioningthat G(y) isdecreasing (nonincreasing) in y on(—oo, y*]
and increasing (nondecreasing) in y on (y*, 00).
To provethe optimality of (s¢, Si) policy for al k, we need the next two lemmas.

Lemmalld2 Fork=1,...,m,andy < y’,

() < () + K and (11.11)
G'(Y) - G*(») = G(Y) - G(y) — K. (1112

Proof. It follows that

Z(y) = min{G*(y), K + min,, G*(x)}
< K + min,s, G*(x)
< K + min,>, G*(x)
< K +7Z(y).

Wealso provide an aternative proof here. Theresult obviously holdsfor y’ = y.
Now assumethat y’ > y. Supposethat at the beginning of the period, theinventory
level prior to any ordering is y. Consider the following strategy: wefirst raise the
inventory level up to y" and then act optimally as if we started with the inventory
level y’ (prior to any ordering). Such a strategy incurs cost equal to K + z5(y").
Because this strategy is not necessarily optimal, it follows that

) < K +70),

which aso proves (11.11).
Inequalitiesin (11.11) implies that

GH(Y) = G*(y) = G(y) = G(y) + Epl[Z" (¢ = D)] — Ep[z*"*(y — D)]
= G(Y)-G() - K,

which compl etes the proof. |
Lemmall43 Fork=1,...,m,andy <y’ < y*,

G*(y) - G"(») = G(y) - G(y) = 0 and (11.13)
() =) (11.14)
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Proof. The proof is by induction. Note that G(y) isdecreasingin y for y < y*.
Fork = 1,GY(y")—G(y) = G(y')—G(y) < 0,whichimpliesthat min,,» G(x)
= min,>, G(x). Then,
Z'(y') = min{G*(y"), K +minG*(x)}
xzy'
< min{G'(y), K + minG*(x)}
x>y’

= min{G(y), K + minG(x)} = z}(y).
x>y

Assumethat fork —1>0,andy <y’ < y*,

G () - GYy) < G(Y) - G(y) < 0 and
) < ZF7Yy).

Now it follows immediately that

G'(y) - G*(y) = G(Y') — G(y) + Ep[" *(y/ — D)] — Ep[z* *(y — D)]
=G(Y) - G(y) + Ep[z* " *(y) = D) — " 1(y — D)]

<G(H)-G() =<0, (11.15)
and
() = min{G*(y'), K + min G*(x)}
x>y
< min{G*(y), K +minG*(x)} = 2*(»).
This compl etes the proof. |

We are now ready to show the optimality result.

Theorem 11.4.4 (Veinott, 1966) If (i) and (i7) hold, an (s, S) policy is optimal
for the model (11.7). Moreover, s < s < y*and y* < S, < S.

Proof. The proof proceeds in severa steps. We start with the assumption that
G¥(y) iscontinuousin y. This assumption will be confirmed at the end.

(1) S isaglobal minimizer of G¥(y). For this purpose, we first show that G*(y)
is decreasing for y < y*, which follows directly from (11.13). Because G*(y) is
continuous, there exists a number S that minimizes G*(y) over [y, S]. Now it
is clear that S, minimizes Gk(y) on (—oo, S). By the definition of S and Lemma
11.4.2, it followsthat for y > S(> y*),

G'(y) = G*(y") = G(y) — G(y*) — K
>G(S)-G(*) - K =0,

where G(y) > G(S) due to the quasiconvexity of G(y). Hence, S isindeed a
global minimizer of G¥(y) and y* < S, < S.
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(2) There exists a number s; such that
G*(S)+ K = G*(st) ands < s < y*.
The definitions of Sy, s and y* imply that

G*(S)) + K — GX(s) < G*(y") + K — G*(s)
<G(H)+K-G(s) =0,

where the first inequality follows from the definition that Sy is the minimizer of
G¥(y) whilethe second inequality holds dueto Lemma11.4.3. From the definition
of y* and Lemma 11.4.2, we see

G(S) + K — G*(y*) = G(S) — GO — K+ K > 0.

Together with the continuity assumption of G*(y) and the fact that G*(y) is de-
creasing on (—oo, y*], the above two inequalitiesimply that there exists anumber
s, such that

G*(Sy) + K = G*(s;) ands < s < y*.

Q) Fory* <y <y,
[K +G*()] - G*(y) = 0.

Thisfollows directly from Lemma 11.4.2 and the fact that G(y") > G(y):
G*(Y) - G*(y) = G(Y) - G(y) - K = —K.

Notethat thisobservationimpliesthat placing an order doesnot reducethe expected
cost wheny > y*,
(4) We conclude, therefore, that an (sx, Sx) policy isoptimal.
(5) It remains to prove that G¥(y) is continuousin y.

Again, we proceed by induction. It istruefor k = 1 because G1(y) = G(») (by
assumption (i)). Suppose now that G*~(y) is continuous for k > 1. From (4),

k1,0 | K+ G ify < s,
a0 = { G*1(y) ify > s

Define 7/ (y) = max, {|z*X(x)| : s < x < y} fory < oo. Obviously, 7'(y) isthe
largest dopein theinterval (s, y]. The existence of 7/(y) is due to the continuity
of z¥=1(y) and the fact that z*~(y) = O for y < s.

For any given 6 > 0, there exists anumber ¢ > 0 such that

Z(y)-e<¥6

and
|Ep[* My = D) =" My +e—D)I <7(y) € <0.

Hence, Ep[z*~1(y — D)] is continuous. |
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The above proof for the optimality of (sx, Si) policiesis based on the assump-
tion that demands are independent and identically distributed. If demands are
not independent and identically distributed, Lemma 11.4.3 will generaly fail to
hold for the following reason. In the proof of Lemma 11.4.3, we require that
Yy — D) — "}y — D) < Ofor al D in (11.15), which holds only if
y—D <y — D < y* When demands are not independent and identically
distributed, the minimizer of G(y) may vary from period to period, and the re-
quirement that z*~1(y’ — D) — z*~1(y — D) < 0 may not be met. In the proof
of K-convexity, however, no requirement isimposed upon demands. Thus, while
the result in this section is more general than the results of Section 11.3, when
demands are independent and identically distributed, it is not a generalization of
thefirst.

11.5 Infinite Horizon Models

In this section we consider a discrete time infinite horizon model in which an
order may be placed by the warehouse at the beginning of any period. To simplify
the analysis, we assume a discrete distribution of the one period demand D. Let
pj =Pr{D = j}for j =0,1,2,.... The objective is to minimize the long-run
expected cost per period. All other assumptions and notation are identical to those
in the previous section.

This problem has attracted considerable attention in the last three decades. The
intuition devel oped in the previous section (for the finite horizon models) suggests
and is proved by Iglehart (1963b) and Veinott and Wagner (1965), that an (s, S)
policy is optimal for the infinite horizon case. A simple proof is proposed by
Zheng (1991). Various agorithms have been suggested by Veinott and Wagner
(1965), Bell (1970) and Archibald and Silver (1978) as well as others; see, for
instance, Porteus (1990) or Zheng and Federgruen (1991). This section describesa
recent, surprisingly simple, algorithm developed by Zheng and Federgruen (1991)
for finding the optimal (s, S) policy. We follow their paper, as well as the insight
provided in Denardo (1996).

Let c(s, S) bethelong-run average cost associated with the (s, S) policy. Given
aperiodand aninitia inventory y, recall that thelossfunction G(y) isthe expected
holding and shortage cost minus revenue at the end of the period. In what follows
theloss function G(y) is assumed to be quasi convex.

Let M(;) be the expected number of periods that elapse until the next order is
placed when starting with s + ;j units of inventory. That is, M(;) is the expected
number of periods until total demand exceeds j units. It is obvious that for all j
we have

J 00
M) =Y pll+ MG -0+ > pe (11.16)
k=0 k=j+1
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J
=Y pM(j—k)+1,
k=0

with M(0) = 0.

Let F(s, y) bethe expected total cost in al periods until placing the next order,
when we start with y units of inventory.

Observethat since orders are received immediately, each time an order isplaced
the inventory level increases to S. Hence, replenishment times can be viewed as
regeneration points, see Ross (1970). The theory of regeneration processes tells
us that

F(s, S)
M(S —s)
That is, ¢(s, S), the long-run average cost, is the ratio of the expected cost be-
tween successive regeneration points and the expected time between successive
regeneration points.

To calculate M (S — s), one need only solve the recursive equation (11.16). In
addition,

c(s, S) = (11.27)

F(s,S) =K+ H(s, S),

where H (s, S) is the expected holding and shortage cost until placing the next
order, when starting with S units of inventory. How can we calculate the quantity
H (s, S)? For this purpose, observethat M(j) > M(j — 1) and let

m(j)=M(j)— M@ — 1),

for j = 1,2,3,.... To interpret m(j), observe that for any j, j < S — s, the
expected time between successive regeneration points consists of two components:
thefirstis M () the expected timeuntil demand exceeds j unitswhilethesecondis
the expected time, prior to placing the next order, until demand exceeds (S —s — j)
units. Thus, the definition of M(j) implies that m(j) is the expected number of
periods, prior to placing the next order, for which the inventory level is exactly

S — j. Hence,
S—s—1

H(s, S) = Z m(j)G(S — j). (11.18)
j=0
To summarize, given an (s, S) policy we have

K + H(s, S)

c(s, S) = MG —s)

Recall that y* isthe smallest y minimizing the function G(y). That is,
y* = min{y|G(y) = minG(x)}.

Zheng and Federgruen’s algorithm is essentially based on the following results.

Lemma 11.5.1 There existsan optimal (s, S) policy satisfyings < y* < S.
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Proof. Observe that G(y) is a quasiconvex function of y and therefore G(y) is
nonincreasing for y < y* and nondecreasing for y > y*. Consider now s > y*.
Equation (11.18) together with the quasi convexity of G(y) impliesthat H(s—1, S—
1) < H(s, S).Hence, c(s, S) > ¢(s—1, S—1). Supposenow that y* > S. A similar
argument showsthat H(s+1, S+1) < H(s, S)andhencec(s, S) > c¢(s+1, S+1)
which completes the proof. |

The following property is given without proof; the interested reader is referred
to Zheng and Federgruen.

Lemma 11.5.2 For any order-up-to level S, areorder level s° < y* isoptimal if
G(s%) > ¢(s°, 8) = G(s° + 1). (11.19)

Smilarly, for any order-up-to level S, there exists an optimal reorder level s° such
that s° < y* and (11.19) holds.

An immediate byproduct of the lemma is an algorithm for finding an optimal
reorder point s° for any given S.

Corollary 11.5.3 For any value of S, s° = max{y < y*|c(y, S) < G(y)} isthe
optimal reorder level associated with S.

Proof. Let
M(S—s—1)
o= ——"T"—
M(S —s)
and observe that (11.17) and (11.18) imply that
c(s,S) =ac(s +1,8) + (1 — &)G(s). (11.20)

Thedefinition of s® impliesthat G(s°) > ¢(s°, S) and hence, using (11.20), wehave
c(s9, 8) > c(s° + 1, S). In addition, the same definition also implies G(s° + 1) <
c(s°+1, 5). Hence, G(s° 4+ 1) < c(s° S) < G(s°). Thus, by Lemma11.5.2, s% is
an optimal reorder point associated with S. |

Lemma11.5.4 For two order-up-to levels S0, § > y*, let s and s be the corre-
sponding optimal reorder points, respectively. The (s, S) policy improves on (has
smaller cost than) (s°, $°) if and only if

c(s°, 8) < ¢(s°, 89).

Proof. Weneed only show that if c(s, ) < ¢(s°, $°), thenc(s°, S) < c(s°, $°). By
contradiction, assume c(s°, S) > c(s°, S°). We prove that thisimplies c(s, S) >
c(s%, 89 for y* > 5. We distinguish between two cases. First we look at s > s°.
Define g = M(S — s)/M(S — s°) and observe that 0 < 8 < 1. The definition of
c(s°, S) together with Lemma 11.5.2 implies that

c(s°, 8) < Be(s, S) + (L — B)e(s°, 9).

Hence, ¢(s°, S) < c(s, S) which together with c(s°, §) > ¢(s°, S°) shows that
c(s, 8) > c(s°, §9), acontradiction. The proof when s < s% isidentical. |
Finally, we state the following lemma without proof.
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Lemma11.5.5 Let (s*, S*) denote an optimal (s, S) policy. Then c¢(s*, $*) >
G(S*).

These results suggest the following simple algorithm. Start with S° = y* and
find the best reorder point s° applying Lemma 11.5.3. Now increase S by incre-
ments of 1 each time comparing ¢(s°, $°) to ¢(s°, S). If ¢(s°, ) < c(s°, §9), set
§9 = § and find the corresponding reorder point. Continue until you've identified
(s%, 8% suchthat no S, S > S° hasc(s°, S) < ¢(s°, $°) and G(S) > c(s°, S°).

We conclude this section with a discussion of the impact of leadtimes on the
analysis. So far we have assumed zero leadtimes; if this fails to hold, and a fixed
delivery leadtime hasto be incorporated, the problem can be transformed into one
with zero leadtime by a fairly ssmple change in the loss function G(-); see, for
instance, Veinott and Wagner (1965), Veinott (1966), Heyman and Sobel (1984)
or the third exercise at the end of this chapter. For this purpose, let the inventory
position at the warehouse be defined as the inventory at that warehouse plus in-
ventory in transit to the warehouse. The loss function G(y) is calculated such that
y istheinventory position and D isthe total demand during the leadtime plus one
period.

11.6 Multi-Echelon Systems

Consider a distribution system with a single warehouse, denoted by the index O,
and n retailers, indexed from 1 to n. Incoming orders from an outside vendor with
unlimited stock are received by the warehouse that replenishes the retailers. We
refer to the warehouse or the retailers as facilities. The transportation leadtime to
facilityi =0,1,2,...,n,isaconstant L;.

Asinthe previous section, we analyze a discrete time model in which customer
demands are independent and identically distributed and are faced only by the
retailers. Every time a facility places an order, it incurs a set-up cost K;, i =
0,1,2,...,n. Theecheloninventory holding cost (see Chapter 9) ish;" at facility
i,i = 0,12, ..., n Findly, demand is backlogged at a penalty cost of &,
i =12, ...,n perunit per period. The objectiveisto find a centralized strategy,
that is, a strategy that uses systemwide inventory information, so as to minimize
long-run average system cost.

Asthereader no doubt understands, the anal ysi sof stochasti ¢ distributionmodels
isquitedifficult and finding an optimal strategy is closetoimpossible; consider the
difficulty involved in finding an approximate solution for itsdeterministic, constant
demand counterpart; see Chapter 9. Asaresult, limited literature isavailable. The
rare exceptions are the approximate strategy suggested by Eppen and Schrage
(1981) and the lower bounds devel oped by Federgruen and Zipkin (1984a-c) and
Chen and Zheng (1994). We briefly describe these two bounds here.

For this purpose, let the echelon inventory position at afacility be defined asthe
echelon inventory at that facility plus inventory in transit to that facility.

Consider the following approach suggested by Federgruen and Zipkin
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(1984a-c). Given an inventory position y; at retailer i, let the loss function G, (y;)
be
Gi(y:) = hi max{0, y; — D} + (h; + h{) max{0, D — y;},

where D istotal demand faced by retailer i during L; + 1 periods (see the end of
the previous section for a discussion).

Consider now any inventory policy with echelon inventory of y units at the
warehouse and inventory position y; at retailer i. The expected one period holding
and shortage cost in the system is

G(y)=h{(y — )+ >_ Gi(y),
i=1
where . is the expected single period systemwide demand. Since, by definition,
y > Y7, v, alower bound on G(y) is obtained by finding

Go(y) = min {i5 (= w)+Y Gl Y < v}, (11.21)
S " i=1 i=1

Thus, a lower bound on the long-run average system cost C# is obtained by
solving a single facility inventory problem with loss function G and set-up cost
Ko. Notice that this bound does not take into account the retail er-specific set-up
costs. Thisisincorporated in the next lower bound of Chen and Zheng (1994).

To describetheir lower bound consider the following assembly-distribution sys-
tem associated with the original distribution system. In the assembly-distribution
system each retailer sellsaproduct consisting of two components. A basic compo-
nent, denoted by ag and aretailer-specific component, denoted by a;. Each retailer
receives component ap from the warehouse which receives it from the outside
supplier. On the other hand, component a; is supplied directly from the vendor to
retailer i. The arrival of abasic component at retailer i is coordinated with the ar-
rival of component a;. That is, at thetimethe warehouse delivers basic components
to retailer i, the same number of a; components are shipped to the retailer from
the supplier. These two shipments arrive at the same time and the final product is
assembled, each containing one basic component and one a; component.

To ensure that the origina distribution system and the assembly-distribution
systemare, in some sense, equivalent, weallocate cost inthe new system asfollows.
Associated with retailer i isasingle facility inventory model with set-up cost K;,
holding cost /;" and shortage cost i + h; . Delivery leadtime to the facility is
L; and demand is distributed according to demand faced by retailer i. Thisis, of
course, astandard inventory model for whichan (s;, S;) policy isoptimal. Let C; be
the long-run average cost associated with this optimal policy. Given an inventory
position y, let G;(y) be the associated loss function. Finally, let

iy )G iy <y
G0 = { Gi(y) ify > 5

and G2(y) = Gi(y) — Gi(y).
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In the assembly-distribution system costs are charged as follows. A set-up cost
Ko isallocated to the basic component and a set-up cost K; to each component a;,
and an expected holding and penalty cost, that is, loss function, of G to the basic
component and G to component ;. Notice that since shipments are coordinated,
there is no difference between long-run average cost in the original system and in
the assembly-distribution system.

To find a lower bound on the long-run average cost of the original system,
we consider a relaxation of the assembly distribution system in which the basic
components can be sold independently of the other components. Thus, C;, i =
1, 2,..., nisexactly thelong-run average cost associated with the distribution of
component a;. Let Co be alower bound on the long-run average cost of the basic
component. Consequently, Y __, C; isalower bound on the long-run average cost
of the original distribution system.

It remains to find Cy. This is obtained following the approach suggested by
Federgruen and Zipkin and described above. For this purpose, we replace G; by
GYin (11.21) and take C# as Co.

11.7 Exercises

Exercise 11.1. In (11.1), we assume that F (D) is continuous. Now suppose that
F(D) is not necessarily continuous. Does there exist an S such that z(y) is mini-
mized at y = S ?If there exists such an S, how can you determineit ?

Exercise 11.2. Prove (11.20).

Exercise 11.3. Consider the singlewarehouseinventory model analyzed in Section
11.5 with leadtime ! > 0. Prove that the inventory on hand at the end of period ¢
for somet > [ can be written as

t
S — Z D;,

i=t—I

where S,_; isthe order-up-to-level in period r — [ and D; isthedemandin period:.
Conclude that any nonzero leadtime model can be replaced by a model with zero
leadtime for which the loss function G(y) is calculated according to (11.2) with y
being the inventory position and D the total demand during the leadtime.

Exercise 11.4. It isnow June and your company has to make adecision regarding
how many skijacketsto produce for the coming Winter season. It costs ¢ dollarsto
produce one skijacket which can besoldfor r dollars. Skijacketsnot sold during the
Winter season arelost. Suppose your marketing department estimates that demand
during the season can take one of the values Dy, Dy, ..., Dy, k > 3. Since this
is anew product, they do not know what probabilities to attach to each possible
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demand D;; that is, they do not have estimates of p;, the probability that demand
during the Winter season will be D;,i = 1, 2, ..., k. They have, however, a good
estimate of average demand 1, and the variance of the demand o2. Your objective
isto find production quantity y that will protect you against the worst probability
distribution possible while maximizing profit. For this purpose you would like to
consider the following optimization model.

MAXIMIZE , MINIMIZE ,, __,.cp Average Profit, (11.22)

where P isthe set of all possible discrete distribution functions with mean . and
variance 2.

(a) Write an expression for the average profit as a function of the production
quantity y and the unknown probabilities p1, p2, ..., pk.

(b) Suppose we have aready determined the production quantity, y. Write a
linear program that identifies the worst possible distribution, that is, the one
that minimizes average profit.

(b) Givenavalueof y characterizethe worst possible distribution; that is, iden-
tify the number of demand points that have positive probabilities in the
probability distribution found in the previous question.

(¢) Canyouformulate alinear program that finds the optimal production quan-
tity; that is, can you write alinear program that solves equation (11.22)?

Exercise 11.5. Consider the following discrete version of the newsboy problem.
Demand for product cantakethevalues Dy, Do, ..., D,,n > 3, with probabilities
P1, P2, ..., po,Where Y™, p; = 1. Let r beaknown selling price per unit and ¢
beaknown cost per unit. Our objectiveisto find an order quantity y that maximizes
expected profit. Prove that the optimal order quantity that maximizes the expected
profit must be one of the demand points, D1, D», ..., D,.

Exercise 11.6. Prove the following properties.

(@) If g1(y) and g2(y) are K -convex and L-convex, respectively, thenfor o, 8 >
0, ga(y) + Bga(y) is (@K + BL)-convex.

(b) If g(y) is K-convex, then Ep[g(y — D)] isalso K-convex.

Exercise 11.7. Consider the newsboy problem with demand D being a random
variable whose density, f(D), is known. Let r be a known selling price per unit
and ¢ be aknown cost per unit. Assume no initial inventory and no salvage value.
The objectiveisto find an order quantity y that maximizes expected profit.



(@)

(b)

(©)
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Let a service level be defined as the probability that demand is no more
than the order quantity, y. Our objectiveisto find the order quantity, y, that
maximizes expected profit subject to the requirement that the service level
isat least . What isthe optimal order quantity as afunction of «, ¢, r and

f(D).

Suppose there is no service level requirement; however, there is a capacity
constraint, C, on the amount we can order. That is, the order quantity, y,
cannot be morethan C. What isthe optimal order quantity, y, that maximizes
expected profit subject to the capacity constraint, C.

Supposethereisaservicelevel requirement, «r, and acapacity constraint, C.
What isthe optimal order quantity, y, that maximizes expected profit subject
to the constraints that service level is at least o and the capacity constraint,
C.
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12
Facility Location Models

12.1 Introduction

One of the most important aspects of logistics is deciding where to locate new
facilities such as retailers, warehouses or factories. These strategic decisions are
acrucia determinant of whether materialswill flow efficiently through the distri-
bution system.

In this chapter we consider several important warehouse location problems:
the p -Median Problem, the Single-Source Capacitated Facility L ocation Problem
and a distribution system design problem. In each case, the problem isto locate a
set of warehouses in a distribution network. We assume that the cost of locating a
warehouse at aparticular siteincludesafixed cost (e.g., building costs, rental costs,
etc.) and avariable cost for transportation. This variable cost includes the cost of
transporting the product to the retailers as well as possibly the cost of moving the
product from the plants to the warehouse. In general, the objective is to locate a
set of facilities so that total cost is minimized subject to a variety of constraints
which might include:

e each warehouse has a capacity which limitsthe areaiit can supply.
e each retailer receives shipments from one and only one warehouse.

e each retailer must be within afixed distance of the warehouse that supplies
it, so that areasonable delivery lead timeis ensured.

L ocation analysis has played a central role in the development of the operations
research field. In this area lie some of the discipline's most elegant results and
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theories. We note here the paper of Cornugjols et a. (1977) and the two excel-
lent books devoted to the subject by Mirchandani and Francis (1990) and Daskin
(1995). Location problems encompass a wide range of problems such asthe loca-
tion of emergency services (fire houses or ambulances), the location of hazardous
materials, problems in telecommunications network design, etc. just to name a
few.

Inthenext section, we present an exact algorithm for one of the simplest location
problems, the p -Median Problem. We then generalize thismodel and algorithm to
incorporate additional factors important to the design of the distribution network,
such as warehouse capacities and fixed costs. In Section 12.4, we present a more
general model where all levels of the distribution system (plants and retailers)
are taken into account when deciding warehouse locations. We also present an
efficient algorithm for its solution. All of the algorithms developed in this chapter
are based on the L agrangian relaxation technique described in Chapter 4.3 which
has been applied successfully to a wide range of location problems. Findly, in
Section 12.5, we describe the structure of the optimal solution to problemsin the
design of large-scale logistics systems.

12.2  An Algorithm for the p -Median Problem

Consider a set of retailers geographically dispersed in aregion. The problemisto
choose where in the region to locate a set of p identical warehouses. We assume
there are m > p sites that have been preselected as possible locations for these
warehouses. Oncethe p warehouses have been located, each of » retailerswill get
its shipments from the warehouse closest to it. We assume:

o thereisno fixed cost for locating at a particular site, and
o thereis no capacity constraint on the demand supplied by awarehouse.

Note that the first assumption also encompasses the case where the fixed cost is
not site-dependent and therefore the fixed set-up cost for locating p warehousesis
independent of where they are located.

Lettheset of retailersbe N where N = {1, 2, . . ., n}, and let the set of potential
sites for warehouses be M where M = {1, 2, ..., m}. Let w; be the demand or
flow between retailer i and itswarehouse for eachi € N. We assume that the cost
of transporting the w; units of product from warehouse j to retailer i is c;;, for
eachi e Nand j € M.

The problem isto choose p of the m sites where awarehouse will be located in
such away that the total transportation cost is minimized. Thisisthe p -Median
Problem.

The continuousversion of thisproblem, whereany point isapotentia warehouse
location, was first treated as early as 1909 by Weber. The discrete version was
analyzed by Kuehn and Hamburger (1963) as well as Hakimi (1964), Manne
(1964), Balinski (1965) and many others.
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We present hereahighly effective approach to the problem. Definethefollowing
decision variables:

v — { 1, if awarehouseislocated at site j,
7710, otherwise,

for j € M, and

P { 1, if retailer i isserved by awarehouse &t site j,
Y10, otherwise,
fori € Nand j € M. The p-Median Problem isthen:

Problem P :Min ZZC”XU
i 1

i=1 j=

st. » Xi;=1 VieN (12.1)
j=1
dvi=p (12.2)
j=1
Xij < Yj, VieN, _/ eM (123)
X,’j, YJ' (S {O, 1}, Vi € N, ] eM. (124)

Constraints (12.1) guarantee that each retailer is assigned to awarehouse. Con-
straint (12.2) ensures that p sites are chosen. Constraints (12.3) guarantee that a
retailer selects a site only from among those that are chosen. Constraints (12.4)
force the variables to be integer.

Thisformulation can easily handle severa side constraints. If ahandling feeis
charged for each unit of product going through a warehouse, these costs can be
added to the transportation cost along al arcs leaving the warehouse. Also, if a
particular limit is placed on the length of any arc between retailer i and warehouse
Jj, thiscan beincorporated by simply setting the per unit shipping cost (c;;) to +oc.
In addition, the model can be easily extended to cases where a set of facilitiesare
already in place and the choice is whether to open new facilities or expand the
existing facilities.

Let Z* bean optimal solution to Problem P. One simple and effective technique
to solve this problem is the method of Lagrangian relaxation described in Chapter
4.3.

As described in Chapter 4.3, Lagrangian relaxation involves relaxing a set of
constraints and introducing them into the objective function with amultiplier vec-
tor. This provides a lower bound on the optimal solution to the overall problem.
Then, using asubgradient search method, weiteratively update our multiplier vec-
tor in an attempt to increase the lower bound. At each step of the subgradient
procedure (i.e., for each set of multipliers) we also attempt to construct afeasible
solution to thelocation problem. Thisstep usually consists of asimpleand efficient
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subroutine. After a prespecified number of iterations, or when the solution found
iswithin afixed error tolerance of the lower bound, the algorithm is terminated.

To solve the p -Median Problem, we choose to relax constraints (12.1). We
incorporate these constraints in the objective function with the multiplier vector
A € IR". Theresulting problem, call it P;, with optimal objective function value
Z,,is

n m n

Min ZZCUXU + ZX[(XWL:XU — 1)
=1 =1

i=1 j=1
subject to (12.2) — (12.4).

Disregarding constraint (12.2) for now, the problem decomposes by site, that is,
each sitecan be cpnsi dered separately. L et subproblem P,/ , with optimal objective
function value Z;, be the following.

Min (cij +)\.1)le

n

i=1

S.t. Xijfyj’ Vie N
X,’j € {0, 1}, Vie N
Y; € {0, 1).

Solving Subproblem P/

Assume i isfixed. InProblem P, site j iseither selected (Y; = 1) or not (¥; = 0).
If site j isnot selected, then X;; = Oforalli € N andtherefore Z/ = 0. If site j is
selected, then we set Y; = 1 and assign exactly thoseretailersi withc;; +1; <0
tosite j. Inthis case;

z] = " min{c;; + A, 0}. (12.5)
i=1

We see that P{ is solved easily and its optimal objective function value is given
by (12.5).

To solve P;, we must now reintroduce constraint (12.2). This constraint forces
us to choose only p of the m sites. In P,, we can incorporate this constraint by
choosing the p siteswith smallest values Z; . To do this, let = be a permutation of
thenumbers 1, 2, ..., m such that

Then the optimal solution to P, has objective function value:

Z, = XP:ZZ(") - Xn:,\j.
=1 =1
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The value Z; is alower bound on the optimal solution of Problem P for any
vector A € IR". To find the best such lower bound, we consider the Lagrangian
dual:

m?X{Z/\}-

Using the subgradient procedure (described in Chapter 4.3), we can iteratively
improve this bound.

Upper Bounds

It is crucia to construct good upper bounds on the optimal solution value as the
subgradient procedure advances. Clearly, solutions to P, will not necessarily be
feasible to Problem P. Thisis due to the fact that the constraints (12.1) (that each
retailer choose one and only one warehouse) may not be satisfied. The solution to
P;, may have facilities choosing a number of sites. If, in the solution to P;, each
retailer chooses only one site, then this must be the optimal solution to P and
therefore we stop. Otherwise, there are retailers that are assigned to several or no
sites. A simple heuristic can be implemented which fixes those retailers that are
assigned to only one site, and assigns the remaining retailers to these and other
sites by choosing the next site to open in the ordering defined by 7. When p sites
have been selected, a simple check that each retailer is assigned to its closest site
(of those selected) can further improve the solution.

Computational Results

Below we give a table listing results of various computational experiments. The
retailer locations were chosen uniformly over the unit square. For simplicity, we
made eachretailer |ocation apotential sitefor awarehouse, thusm = n. Thecost of
assigning aretailer to a site was the Euclidean distance between the two locations.
The values of w; were chosen uniformly over the unit interval. We applied the
a gorithm mentioned above to many problemsand recorded therel ative error of the
best sol ution found and the computation timerequired. Thealgorithmisterminated
when the relative error is below 1% or when a prespecified number of iterations
is reached. The numbers below “Error” are the relative errors averaged over ten
randomly generated problem instances. The numbers below “CPU Time” is the
CPU time averaged over the ten problem instances. All computational times are
on an IBM Risc 6000 Model 950.

Table 1: Computational results for the p -Median agorithm

n p Error  CPU Time
10 3 03% 0.2s

20 4 17% 2.6s

50 5 14% 20.7s
100 7 13% 87.7s
200 10 24% 715.4s
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12.3 An Algorithm for the Single-Source Capacitated
Facility Location Problem

Consider the p -Median Problem where we make the following two changes in
our assumptions.

e The number of warehouses to locate (p) is not fixed beforehand.

o If awarehouseislocated at site j:
o afixed cost f; isincurred, and
o thereis acapacity ¢; on the amount of demand it can serve.

The problem is to decide where to locate the warehouses and then how the re-
tailers should be assigned to the open warehouses in such away that total cost is
minimized. We see that the problem is considerably more complicated than the
p -Median Problem. We now have capacity constraints on the warehouses and
therefore aretailer will not always be assigned to its nearest warehouse. Allowing
the optimization to choose the appropriate number of warehouses also adds to the
level of difficulty.

Thisproblem is called the single-source Capacitated Facility L ocation Problem
(CFLP), or sometimes the Capacitated Concentrator Location Problem (CCLP).
This problem was successfully used in Chapter 6 as a framework for solving the
Capacitated Vehicle Routing Problem.

Using the same decision variables as in the p -Median Problem, we formulate
the single-source CFLP as the following integer linear program.

Min ZZC,‘/X[j‘FijYj
=1

i=1 j=1
s.t. iXU =1 VieN (12.6)
j=1
Xn:wiXij <gq;Y; VjeM (12.7)
l;j,Yj e {0, 1} YVie N, jeM. (12.8)

Constraints (12.6) (along with theintegrality conditions (12.8)) ensure that each
retailer is assigned to exactly one warehouse. Constraints (12.7) ensure that the
warehouse’s capacity is not exceeded, and also that if a warehouse is not located
at site j, no retailer can be assigned to that site.

Let Z* be the optimal solution value of single-source CFLP. Note we have
restricted the assignment variables (X) to beinteger. A related problem, wherethis
assumption isrelaxed, is simply called the (multiple-source) Capacitated Facility
Location Problem. In that version, aretailer’s demand can be split between any
number of warehouses. In the single-source CFLP, it isrequired that each retailer
have only one warehouse supplying it. In many logistics applications, this is a
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realistic assumption since without this restriction optimal solutions might have
a retailer receive many deliveries of the same product (each for, conceivably, a
very small amount of the product). Clearly, from a managerial, marketing and
accounting point of view, restricting deliveries to come from only one warehouse
isamore appropriate delivery strategy.

Several algorithms have been proposed to solve the CFLP in the literature; all
are based on the Lagrangian relaxation technique. This includes Neebe and Rao
(1983), Barcelo and Casanovas (1984), Klincewicz and Luss (1986) and Pirkul
(1987). The one we derive hereis similar to the algorithm of Pirkul which seems
to be the most effective.

We apply the Lagrangian relaxation technique by including constraints (12.6)
in the objective function. For any A € IR", consider the following problem P;.

n m

Min Z Ci_inj‘I’iijj—i_Xn:)‘i(iXij_1)
1 j=1 =1 j=1

i=1 j=

subject to (12.7) — (12.8).
Let Z, beitsoptimal solution and note that
Z, < Z* VieR".

To solve P;, asin the p -Median Problem, we separate the problem by site. For
agiven j € M, define the following problem P/, with optimal objective function
value Z;:

Min (cij + 1) Xij + fiY;

n
=1

1

n
s.r. ZwiXi_,- < q_in
i=1

Xij E{O, 1} VieN
Y; € {0, 1}.

Solving P}

Problem P,/ can be solved efficiently. In the optimal solution to P/, Y; is either
Oor1.1fY; =0,then X;; = Oforali e N.If Y; = 1, then the problem is no
more difficult than a single constraint 0-1 Knapsack Problem, for which efficient
algorithms exist; see, for example, Nauss (1976). If the optimal knapsack solution
islessthan — f;, then the corresponding optimal solution to P, isfound by setting
Y; = land X;; according to the knapsack solution, indicating whether retailer i
is assigned to site j. If the optimal knapsack solution is more than — f;, then the

optimal solution to P, isfound by setting ¥; = Oand X;; = Oforall i € N.
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The solution to P, isthen given by
z=y 7=y n
j=1 i=1

For any vector A € IR", thisisalower bound on the optimal solution Z*. In order
to find the best such lower bound we use a subgradient procedure.

Notethat if the problem hasaconstraint on the number of warehouses (facilities)
that can be opened (chosen), this can be handled in essentially the same way as it
was handled in the algorithm for the p -Median Problem.

Upper Bounds

For a given set of multipliers, if the values {X} satisfy (12.6), then we have an
optimal solution to Problem P, and we stop. Otherwise, we perform asimple sub-
routineto find afeasible solution to P. The procedureis based on the observation
that the knapsack solutions found when solving P, give us some information con-
cerning the benefit of setting up awarehouse at asite (relative to the current vector
A). If, for example, the knapsack solution corresponding to agiven siteisO, that is,
the optimal knapsack is empty, then thisis most likely not a“good” site to select
at thistime. In contrast, if the knapsack solution has a very negative cost, then this
isa“good” site. Given the values Z] for each j € M, let = be a permutation of
1,2, ...,m suchthat

The procedure we perform allocates retailers to sites in a myopic fashion. Let
M be the minimum possible number of warehouses used in the optimal solution
to CFLP. This can be found by solving the Bin-Packing Problem defined on the
values w; with bin capacities Q ;; see Section 2.2. Starting with the “best” site, in
this case site (1), assign the retailers in its optimal knapsack to this site. Then,
following the indexing of the knapsack solutions, take the next “best” site (say site
J = m(2)) and solve anew knapsack problem: one defined with costsc;; = ¢;; +A;
for each retailer i still unassigned. Assign al retailersin this knapsack solution to
site j. If this optimal knapsack is empty, then a warehouse is not located at that
site, and we go on to the next site. Continue in this manner until M warehouses
are located.

The solution may still not be afeasible solution to P since some retailers may
not be assigned to a site. In this case, unassigned retailers are assigned to sites
that are already chosen where they fit with minimum additional cost. If needed,
additional warehouses may be opened following the ordering of 7. A local im-
provement heuristic can be implemented to improve on this solution, using simple
interchanges between retailers.

Computational Results

We now report on various computational experiments using this algorithm. The
retailer locationswere chosen uniformly over theunit square. Again, for simplicity,
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we made each retailer location a potentia site for awarehouse; thus, m = n. The
fixed cost of asite was chosen uniformly between 0 and 1. The cost of assigning a
retailer to a site was the Euclidean distance between the two locations. The values
of w; werechosen uniformly over theinterval Oto % withwarehouse capacity equal
to 1. We applied the algorithm mentioned above to ten problems and recorded the
averagerelative error of the best solution found and the average computation time
required. The algorithm isterminated when the relative error is below 1% or when
a prespecified number of iterations is reached. The numbers below “Error” are
the relative errors averaged over the ten randomly generated problem instances.
The numbers below “CPU Time” isthe CPU time averaged over the ten problem
instances. All computational times are on an IBM Risc 6000 Model 950.

Table 2: Computational results for the
single-source CFLP agorithm

n Error CPU Time
10 1.2% 1.2s

20 1.0% 8.1s
50 1.1% 110.0s
100 1.1% 558.3s

12.4 A Distribution System Design Problem

So far thelocation model swe have considered have been concerned with minimiz-
ing the costs of transporting products between warehouses and retailers. We now
present a more realistic model that considers the cost of transporting the product
from manufacturing facilities to the warehouses as well.

Consider thefollowing warehouselocation problem. A set of plantsand retailers
are geographically dispersed in a region. Each retailer experiences demands for
avariety of products which are manufactured at the plants. A set of warehouses
must be located in the distribution network from alist of potential sites.

The cost of locating a warehouse includes the transportation cost per unit from
warehouses to retailers but a so the transportation cost from plants to warehouses.
In addition, asin the CFLP, there is a site-dependent fixed cost for locating each
warehouse.

The data for the problem are the following.

e L = number of plants; wewill alsolet L = {1,2,..., L}

e J = number of potential warehouse sites, dlsolet J = {1, 2, ..., J}
o |/ = number of retailers, dsolet 7 ={1,2,...,1}

e K = number of products, alsolet K = {1,2,..., K}

e W = number of warehouses to locate
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e cyji = cost of shipping one unit of product k from plant £ to
warehouse site j

e d;; = cost of shipping one unit of product k& from warehouse
site j toretailer i

o f; = fixed cost of locating a warehouse at site j

e vy = supply of product k at plant ¢

e w;; = demand for product k at retailer i

e s, = volume of one unit of product &

e g; = capacity (in volume) of awarehouse at site j

We make the additional assumption that a retailer gets delivery for a product
from one warehouse only. This does not preclude solutions where a retailer gets
shipments from different warehouses, but these shipments must be for different
products. On the other hand, we assume that the warehouse can receive shipments
from any plant and for any amount of product.

The problem is to determine where to locate the warehouses, how to ship the
product from the plants to the warehouses and also how to ship the product from
the warehouses to the retailers. This problem is similar to one analyzed by Pirkul
and Jayaraman (1996).

We again use a mathematical programming approach. Define the following
decision variables:

Y; =

{ 1, if awarehouseislocated at site j,
J

0, otherwise,

and
Uyjx = amount of product k shipped from plant ¢ to warehouse j,

foreacht¢ e L, j € Jandk € K. Also define:

P { 1, if retailer i receives product k from warehouse j,
77 1o, otherwise,

foreachj e J,i e ITandk € K.
Then the Distribution System Design Problem can be formulated as the follow-
ing integer program.

L J K 1 J K J
Min ZZZngkUejk+Zzzdjikwikxjik+2ijj
j= Jj= j=1

(=1 1k i=1 1 k=1

=1
J
st. Y Xju=1 Viel keK (12.9)
j=1
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1 K
Yo scwaXju < q;Y; Vjeld (12.10)
i=1 k=1
1 L
Y waXj=Y Uj Vjel kek (12.11)
i=1 (=1
J
> Uik < va VeeL, keK (12.12)
j=1
J
Yy =w (12.13)
j=1
Y. Xjix € {0, 1} Viel,jelkek (12.14)
Ugjr = 0 VieL,jeJ, keKk. (12.15)

The objective function measures the transportation costs between plants and ware-
houses, between warehouses and retailers and also the fixed cost of locating the
warehouses. Constraints (12.9) ensure that each retailer/product pair isassigned to
one warehouse. Constraints (12.10) guarantee that the capacity of the warehouses
isnot exceeded. Constraints (12.11) ensure that thereis a conservation of the flow
of products at each warehouse; that is, the amount of each product arriving at a
warehouse from the plants is equa to the amount being shipped from the ware-
house to the retailers. Constraints (12.12) are the supply constraints. Constraints
(12.13) ensure that we locate exactly W warehouses.

The model can handle several extensions such as a warehouse handling fee or
alimit on the distance of any link used just asin the p -Median Problem. Another
interesting extension iswhen there are afixed number of possible warehouse types
from which to choose. Each type has a specific cost along with a specific capacity.
The model can be easily extended to handle this situation (see Exercise 12.1).

Asin the previous problems, we will use Lagrangian relaxation. We relax con-
straints (12.9) (with multipliers ;) and constraints (12.11) (with multipliers6,).
Theresulting problem is:

L

J K J I K J
Min ZZZCeijgjk+Zzzdjikwikxjik+2ijj

=1 j=1 k=1 j=1i=1 k=1 =1
J K 1 L I K J
+ZZQ [Zwikxjik_ZUéjk] +ZZ)\ik|:l—Zink]s
=1 k= i-1 =1 i=1 k=1 =1

subject to (12.10), (12.12) — (12.15).

Let Z, ¢4 be the optimal solution to this problem. This problem can be decom-
posed into two separate problems P; and P,. They are the following.

L J
Problem Py : Z; =Min ) ZZ[C‘J" — 0] Uqjx
=1 j=1k=

o~
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J
st. Z U(jk <vg,V€eL, keK (1216)
=1

Ujr =0, VlelL,jel keKk.

J 1 K J
Problem P> 7 =Min ZZ Z[dj,-kwik — lik + ijwik]Xﬂk + Z ijj

j=1i=1 k=1 j=1
1 K
st Y swaXju <q;Y; Vjeld (12.17)
i=1 k=1
J
> ¥, =P, (12.18)

|_\

Jj=
Y;, X;ju€{0,1}, Viel jelJ keKk.

Solving Py

Problem P; can be solved separately for each plant/product pair. In fact, the ob-
jective functions of each of these subproblems can be improved (without lossin
computation time) by adding the constraints:

L
scY Ui <qj, Vjel kek. (12.19)
=1

For each plant/product combination, say plant ¢ and product &, sort the J values
C; = cyjx — Ojx. Starting with the smallest value of ¢;, say ¢, if ¢;; > 0O, then the
solution is to ship none of this product from this plant. If ¢, < 0O, then ship as
much of this product as possible along arc (¢, j’) subject to satisfying constraints
(12.16) and (12.19). Then if the supply vy has not been completely shipped, do
the same for the next cheapest arc, as long as it has negative reduced cost (¢).
Continue in this manner until all of the product has been shipped or the reduced
costs are no longer negative. Then proceed to the next plant/product combination
repeating this procedure. Continue until all the plant/product combinations have
been scanned in this fashion.

Solving P

Solving Problem P, issimilar to solving the subproblem in the CFLP. For now we
canignore constraints (12.18). Then we separate the problem by warehouse. Inthe
problem corresponding to warehouse j, either Y; = 0orY; = L. If Y; = O, then
Xju =0fordli e Nandk € K. If ¥; =1, then weget aKnapsack Problem
with N K items, onefor each retailer/product pair. Let Z2 bethe objectivefunction
valuewhenY; isset to 1 and theresulting knapsack problemissolved. After having
solved each of these, let = be a permutation of the numbers 1, 2, ..., J such that
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The optimal solution to P, isto choose the W smallest values:

w
Z,=Y 737
j=1
For fixed vectors A and 6, the lower bound is

Zio=2Z1+2Zr+

> i

K
k=1

1
i=1
To maximize this bound, that is,

max{Z; o},
A0
we again use the subgradient optimization procedure.

Upper Bounds

At each iteration of the subgradient procedure, we attempt to construct a feasi-
ble solution to the problem. Consider Problem P,. Its solution may have a re-
tailer/product combination assigned to several warehouses. We determine the set
of retailer/product combinations that are assigned to one and only one retailer and
fix these. Other retailer/product combinations are assigned to warehouses using
the following mechanism. For each retail er/product combination we determine the
cost of assigning it to a particular warehouse. After determining that this assign-
ment is feasible (from a warehouse capacity point of view), the assignment cost
is calculated as the cost of shipping all of the demand for this retailer/product
combination through the warehouse plus the cost of shipping the demand from the
plantsto the warehouse (along one or more arcs from the warehouse to the plants).
For each retailer/product combination we determine the penalty associated with
assigning the shipment to its second best warehouse instead of its best warehouse.
We then assign the retail er/product combination with the highest such penalty and
update all arc flows and remaining capacities. We continue in this manner until all
retailer/product combinations have been assigned to warehouses.
Computational results for this problem appear at the end of Chapter 15.

12.5 The Structure of the Asymptotic Optimal Solution

In this section we describe aregion partitioning scheme to solve large instances of
the CFLP.

Assumetherearen retailerslocated at points{x1, x2, . .., x,,}. Eachretailer also
serves as a potential site for a warehouse of fixed capacity ¢. The fixed cost of
locating awarehouse at asite is assumed to be proportional to the distancethe site
is from a manufacturing facility located at xo which is assumed (without loss of
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generality) to be the origin (0, 0). Retailer i has a demand w; which is assumed
to be less than or equal to ¢g. Without loss of generality, we assume ¢ = 1 and
therefore w; € [0, 1] for eachi € N. Let o be the per unit cost of transportation
between warehouses and the manufacturing facility, and let 8 be the per unit cost
of transportation between warehouses and retailers.

We assumetheretailer locations areindependently and identically distributed in
acompact region A C IR? according to some distribution .. Assume the retailer
demands are independently and identically distributed according to a probability
measure ¢ on [0, 1]. The bin-packing constant associated with the distribution ¢
(denoted by y,, or simply y) is the asymptotic number of bins used per item in an
optimal packing of the retailer demands into unit size bins, when items are drawn
randomly from the distribution ¢ (see Section 3.2).

Thefollowing theorem showsthat if the retailer locations and demand sizes are
random (from ageneral class of distributions), then as the problem size increases,
the optimal solution hasavery particular structure. This structure can be exploited
using aregion partitioning scheme as demonstrated bel ow.

Theorem 12.5.1 Let x;, k = 1,2, ..., n be a sequence of independent random
variables having a distribution x with compact support in IR?. Let ||x|| be the
Euclidean distance between the manufacturing facility and the point x € IR?, and
let

E(d) = / llxld p(x).

Let the demands wy, k = 1, 2, ..., n be a sequence of independent random vari-
ables having a distribution ¢ with bin-packing constant equal to y. Then, almost
surely,

n—oo

1
lim —=Z¥ = ay E(d).
n

This analysis demonstrates that simple approaches which consider only the
geography and the packing of the demands can be very efficient on large problem
instances. Asymptotically, thisisin fact the optimal strategy. This analysis also
demonstrates that, asymptotically, the cost of transportation between retailers and
warehouses becomes a very small fraction (eventually zero) of the total cost.

12.6 Exercises

Exercise 12.1. In the Distribution System Design Problem, explain how the solu-
tion methodology changes when there are a fixed number of possible warehouse
capacities. For example, at each site, if we decide to install a warehouse, we can
install asmall, medium or large one.

Exercise 12.2. Prove Theorem 12.5.1.
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Exercise 12.3. Show how any instance of the Bin-Packing Problem (see Part I)
can be formulated as an instance of the Single-Source CFLP.

Exercise 12.4. Consider Problem P; of Section 12.4.
(@) Show that this formulation can be strengthened by adding the constraints:

L K
D sk <q;. Vjed

=1 k=1

(b) Show that this new formulation can be transformed to a speciaized kind of
linear program called a transportation problem.
(c) Why might we not want to use this stronger formulation?

Exercise 12.5. (Mirchandani and Francis, 1990) Define the Uncapacitated Facility
Location Problem (UFLP) in the following way. Let F; be the fixed charge of
opening afacility at site j, for j =1,2,...,m.

Problem UFLP : Min Z ZC,‘]‘X,‘]‘ + Z F_,'Yj
i=1 j=1 j=1

m
st. Y Xij=1 VieN
j=1

X,‘ijj, ViGN,jEM
X,‘j,YjG{O,l}, ViEN, _]GM

Show that UFLP is N"P-Hard by showing that any instance of the N"P-Hard
Node Cover Problem can be formulated as an instance of UFLP. The Node Cover
Problem is defined as follows: given agraph G and an integer &, does there exist
asubset of k nodes of G that cover all the arcs of G? (Node v is said to cover arc
e if visan end-point of e.)

Exercise 12.6. (Mirchandani and Francis, 1990) It appears that the p -Median
problem can be solved by solving the resulting problem UFLP (see Exercise 12.5)
for different valuesof F = F;,Vj, until avalue F* isfound wherethe UFL P opens
exactly p facilities. Show that this method does not work by giving an instance
of a 2-Median problem for which no value of F provides an optimal solution to
UFCLP with two open facilities.
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13
Integrated L ogistics Models

13.1 Introduction

The vehicle routing models discussed in Part |1 assume that the frequency, timing
and sizes of customer deliveries are predetermined. There are however many dis-
tribution problems in which the vehicle schedules and the timing and size of the
customer deliveries are (or should be) simultaneously determined. Thisis clearly
the caseininternal distribution systemsin which the depot and the customersrep-
resent (part of) consecutive layersin the distribution network of a single company
(see, e.g., Chapter 12).

In addition, the need to integrate inventory control and routing decisions arises
in many external distribution processes in which deliveries need to be made to
external customers. An exampleisthe gasindustry where the gas producersinstall
tanks at their customers’ locations and assume the responsibility for maintaining
an adequate inventory level by determining the replenishment frequency and de-
livery sizes of al customers. Suppliers of supermarkets and department stores, to
give another example, often acquire shelf space and are given the responsibility
for replenishing the stock. They often adopt the complete inventory management
function of their retailer customers. By hilling aretailer only at the time it makes
a sde to a consumer, the capital costs associated with the retailer’s inventories
are borne by the supplier. The supplier is given the responsibility to replenish the
retailer’s inventory at its discretion while guaranteeing a given fill rate or being
charged for any lost sales or backlogs.

Thisarrangement aleviates the industrial retailer of its costly inventory invest-
ments and the intricacies of inventory planning; the supplier has the advantage
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of being able to determine when and in what quantities to deliver to its retailer
customers. Moreover, when demands are subject to a considerable degree of un-
certainty, the system as awhole derives additional benefits from this arrangement
because the supplier can meet a given service level with an aggregate safety stock
significantly smaller than the sum of the safety stocks required by the individual
retailers, a phenomenon known as risk pooling.

There are many potential modelsintegrating inventory control and vehicle rout-
ing problems. These include:

o Single-period modelswith stochastic customers demands; see, for instance,
Federgruen and Zipkin (1984) who consider the following model. At the
beginning of the period, theinitial inventory, perhaps supply remaining from
the previous period, for each location is reported to the central depot. This
information is used to determine the allocation of the available product
among the locations. At the same time, the assignment of customers to
vehicles and their routes are determined. After the deliveries are made, the
demands occur and inventory-carrying and shortage costs are incurred at
each location proportional to the end-of-the-period inventory level. Observe
that in this model it is possible that some locations will not be visited in a
particular period.

e Multi-period models with deterministic (known) customer demands. Dror
and Ball (1987) and Chien et a. (1989) suggest decomposing the multi-
period problem into a series of single-period problems using a cost adjust-
ment in each single-period model to reflect the effect of decisions made
in one time period on later time periods. For further discussion of the
multi-period inventory-routing problem the reader is referred to Golden et
al. (1984), Assad et al. (1982), Dror et al. (1986), Dror and Ball (1987) and
Chandra and Fisher (1990).

o Infinite horizon models where demands are at a customer-specific constant
and deterministic rate. Here one needs to determine infinite horizon replen-
ishment policiesfor al customers as well as efficient vehicle routes.

The impact of integrated inventory and routing strategies was recently high-
lighted by Stalk et a. (1992) who review the evolution of the discount retailing
industry. They attribute Wal-Mart’s successin devel oping into thelargest and high-
est profit retailer in the world to arelentless focus on efficient logistical design and
planning. “ The key to achieving these goal s was to make the way the company re-
plenished inventory the centerpiece of itscompetitive strategy.” Stalk et a. identify
anumber of major componentsin thisstrategic vision, most importantly, alogistics
technique referred to as “cross docking.” This refers to a distribution strategy in
which the stores are supplied by central warehouses which act as coordinators of
the supply process, and as transshipment points for incoming orders from outside
vendors, but which do not keep stock themselves. In this chapter we analyze mod-
elsthat will to some extent explain the observed effectiveness of the cross docking
strategy.



13.2 Single Warehouse Models 221

The models below assume that the firm operates its own private fleet of vehi-
cles. Therefore, vehicle and maintenance costs are essentialy sunk and the only
remaining costs are fuel and labor. The analysis below differs substantially from
the situation where the distribution is done through outside distributors such as
truck-load carrier, less-than-truckload carrier, couriers, UPS etc. Models of this
type will not be analyzed here.

13.2 Single Warehouse Models

The single warehouse distribution planning problem can be modeled asfollows: a
singlewarehouse servesretail ersgeographically dispersedinagivenarea. Stock for
asingleitem is delivered to the retailers by afleet of vehicles of limited capacity.
Each retailer faces a deterministic, retailer-specific demand rate. The inventory
holding costs are accrued at a retailer-specific constant rate. No inventory is kept
a the depot. Each time a vehicle is sent out to replenish inventory, it incurs a
fixed cost plus acost proportional to thetotal distance traveled by the vehicle. The
objective isto determine an inventory policy and arouting strategy such that each
retailer satisfiesits demands and the long-run average transportation and inventory
costs are minimized.

In a distribution system of this type, one may have an additional constraint
limiting the frequency with which each retailer is visited. Such a constraint may,
for example, be dueto limited material handling capacity and/or to the set-up time
required for unloading deliveries at the retailers.

It is highly improbable that an optimal strategy will be identified in the near
futurefor thismodel; such attempts have long been abandoned even for far simpler
models, for example, the special case where the cost of dispatching a vehicle to
a group of retailers only consists of the fixed component and is independent of
the distance travel ed. Such models, with joint replenishment costs of thistype, are
often referred to as Joint Replenishment Problems; see Jackson et al. (1985) and
Federgruen and Zheng (1992). Most important, the structure of a fully optimal
strategy may be so complex that it might fail to be implementable even if it could
be determined in areasonable amount of time. As a consequence, various authors
have restricted themselves at the outset to specific classes of strategies and have
developed methods to identify optimal or asymptotically optimal rules within the
chosen class.

It is noteworthy that all of the proposed classes of policiesfor these and related
problems are subsets of the class of Zero Inventory Ordering Property (Z10) poli-
cies(see Chapter 9) under which aretailer isreplenishedif and only if itsinventory
iszero. In the absence of constraints on the vehicle capacity and the frequency with
which retailers can be served, it iseasily verified that an optimal policy must satisfy
the ZIO property. However, in the presence of these constraints, ZI1O policies may
fail to be optimal, as we shall demonstrate shortly.

Even the structure of an optimal ZIO policy may be too complex to permit
implementation or identification by a reasonable algorithm; this is why all of
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the literature on this model has restricted itself to specific subclasses of the ZIO
policies. One attractive classis the class of Fixed Partition (FP) policies analyzed
by Bramel and Simchi-Levi (1995). A FP policy partitions the set of retailersinto
anumber of regions such that each region is served separately and independently
fromall other regions. Moreover, whenever aretailer inasetisvisited by avehicle,
all other retailersin the set are visited as well. Fixed partition policies are easy to
implement: they allow for an easy integration of the distribution, marketing and
customer service functions.

Other strategies have been considered as well. For instance, Anily and Feder-
gruen (1990), the first to analyze this model, focus on a class of replenishment
strategies W with the following properties: areplenishment strategy in W specifies
acollection of regions (subset of retailers); if aretailer belongsto severa regions,
aspecific fraction of its salesisassigned to each of these. Each time one of the out-
letsin agiven region getsadelivery, thisdelivery ismade by avehiclewhich visits
al other outletsin the region aswell. Anily and Federgruen show that regions can
be formed by asimple regional partitioning scheme similar to those introduced in
Section 5.4 and a combined inventory and routing strategy can thus be computed
which is asymptotically optimal within the class .

Subsequent work considers restrictions to other classes of strategies. Gallego
and Simchi-Levi (1990) show that Direct Shipping (DS) policies, that is, policies
in which each vehicle visits a single retailer, are within 6% of optimality under
certain restrictions on the problem parameters. We present these resultsin Section
13.3.

Herer and Roundy (1990) and Viswanathan and Mathur (1993) show good em-
pirical performance for the so-called power-of-two strategies under which each
retailer is replenished at constant intervals which are power-of-two multiples of a
common base planning period. For adetailed discussion of power-of-two policies
see Chapter 9. Bramel and Simchi-Levi (1995) analyzed the class of Fixed Parti-
tion policies. They show good empirical performance for medium-size problems
in the absence of frequency constraints.

Observe that al the approaches suggested for the problem use strategies that
belong to the class of ZIO policies. The question, of course, is how much is lost
when onerestrictsitself to this class. Following the work of Chan et al. (1996) we
perform, in Section 13.4, a probabilistic analysis of the class of ZIO and the class
of FP policies.

Finaly, in Section 13.5, we discuss multi-echelon systems and present recent
results obtained by Chan and Simchi-Levi (1996) on the effectiveness of the cross-
docking strategy; a strategy introduced in the previous section.

13.3 Worst-Case Analysis of Direct Shipping Strategies

In view of the worst-case results developed for the Capacitated Vehicle Routing
Problem (see Chapters 5 and 6), one wonders whether similar results can be ob-
tained for models integrating inventory control and transportation policies. Here
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we demonstrate that this is possible for infinite horizon inventory-routing prob-

lems where the warehouse does not hold inventory. For this model, Gallego and

Simchi-Levi characterize the effectiveness of so-called direct shipping strategies.
Consider amodel with a set of retailers N. For each retailer i € N, we define

e D; = demand per unit of time

e d; = distance from the warehouse

e 1i; = holding cost per unit per unit of time
e K; = set up cost for ordering.

Items are shipped from a central depot to the retailers using vehicles of capacity
q. Each time a vehicle is sent out to replenish inventory to a set of retailers S,
it incurs a cost proportional to the total distance traveled by the vehicle, that is,
a cost proportional to L*(S), the length of the optimal traveling salesman tour
through the warehouse and the retailers in the set S. Without loss of generality,
we set the cost per mile equal to one. We seek a combined inventory control and
routing strategy that replenishes retailer inventoriesin time to meet their demands
and minimizesthelong-run averagetotal inventory holding and transportation cost
per unit of time. Asin traditiona joint replenishment inventory models, it is not
clear that one “optimal” policy aways exists. That is, it is possible that a series
of policies successively has smaller and smaller cost without the existence of a
“limiting” policy. Thus, herewelet Z* denote theinfimum of thelong-run average
cost values over all feasible policies.

13.3.1 A Lower Bound

A lower bound on the long-run average cost over all inventory-routing strategiesis
obtained by combining lower bounds on thelong-run average ordering and holding
costs and a lower bound on the long-run average transportation cost.

Lemma 13.3.1 Alower bound B on the long-run average cost over all inventory
routing strategiesis given by

2d; D;

B= Z{ 2D, Kihy; + —] (13.1)
ieN q

Proof. Let B denote the lower bound obtained by minimizing separately,

(a) theordering and holding costs, and

(b) the total vehicle routing costs required to allow all retailers to meet their
demands,
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and then adding these two values.
Theminimum of (a) isgiven by the average costs of n independent EOQ models

(see Chapter 9), that is, by

> V2DiK;h;.

ieN
To find a lower bound for (b) we use a similar analysis to the proof of Lemma
5.2.1. Consider the distance traveled by vehicles of capacity ¢ serving a set of
geographically dispersed retailers (N) located at distances d; from the depot and
facing demands w;. A lower bound on the total distance traveled is given by

9 ien

L et us now consider the distance traveled up to time z. The cumulative demand
a retailer i uptotimer is D;t, and since no shortages or backlogging are allowed,
theminimal amount shippedtoretailer i uptotimerisD;t forali € N. Therefore,
the minimal distance traveled up to time ¢ is obtained by substituting D;t for w;
in equation (13.2). Consequently, alower bound on the distance traveled per unit
timeis given by 5 Y ey di Di. Adding this expression to the lower bound on the
long-run inventory ordering and holding cost we obtain equation (13.1). |

13.3.2 The Effectiveness of Direct Shipping

We now analyzethe cost of supplying all retailers separately. We call thisthe class
of direct shipping strategies. An important subclass, called fully loaded direct
shipping strategies, consists of direct shipping strategies where all shipments are
made by fully loaded vehicles. We obtain an upper bound on the optimal cost inthis
subclass of policies. This bound, together with the lower bound of Lemma 13.3.1,
characterizes an upper bound on the worst-case performance of direct shipping.

Let Q; bethelot sizefor retaileri € N, thatis, theamount brought to theretailer
at equal intervals of time. The cost per unit of timefor retailer i € N isgiven by

KiD;  h;Q; 0Q;7 D;

zi(Q:) = 0, + 2 +2dl’7 q -‘Qz

Let ZPS = Y, zi(Q;) be the total cost per unit of time for the policy corre-

sponding to the order quantities {Q1, O, ..., 0,}. We find an upper bound on

ZPS py restricting the choice of lot sizesto fully loaded vehicles, that is, the order
quantitiesarerestrictedtotheset F = {mq : m = 1,2,...}.

Clearly, ZPS is separable, so it is enough to find an upper bound on z over F,
where z isidentical to z; omitting theindex i. Let f(Q) = K—QD + % and note
that, in F, the functions f and z differ only by the constant ZdTD' Thus, @7, the
minimizer of f over F, is aso the minimizer of z over the same set. Finaly, let
Q° = V2K Dh, n = max{ 4, V2yande(n) = 3(n + 1). We have

Lemma 1332 2(0/) = (£(09) + X2 )e().
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Proof. It iseasily verified (see Maxwell and Singh (1983)) that Q/ = mg mini-
mizes f over F if and only if

S22t < geppr < ML (133)
m m

Consider the following two cases. If Q¢ > <, thenby (13.3), \i@ <2 <2
Since f isconvex and f(Q°V/2) = f(QT;) we obtain (with n = v/2)

f(Q7) = f(Q)e(m). (13.4)
If, on the other hand, Q¢ < % then 0/ = ¢. Hence,
f(Q7) = f(Q%)e(n). (13.5)
Combining (13.4) and (13.5), €(n) > 1 and the definition of z we obtain
: X 2dD 2dD
(0N = £+ == = [0+ == e, '
q q

We are now ready to characterize the worst-case performance of direct ship-
ping. For this purpose, let n; = max{Z, V2}, n = maxiey{n;} and ZFPS =

> .oy 2(0)). Itis easy to see that the lower bound B obtained in Lemma 13.3.1
together with the upper bound of Lemma 13.3.2 yields:

Theorem 13.3.3 For any instance, 22> < ¢(n).

This implies that the worst-case ratio of the cost of direct shipping to a lower
bound on the optimal cost is no more than 1.061 whenever the economic lot sizes
exceed 71% of the vehicle capacity, that is, whenever Q¢ > % forali € N.
The worst-case ratio increases as the economic lot sizes decrease. For instance, if
the minimum lot size is 50% (respectively, 33%) of the vehicle capacity, then the
worst-case ratio is 1.25 (respectively, 1.68).

13.4 Asymptotic Analysisof ZIO Policies

In this section our objective is to characterize the asymptotic effectiveness of the
classof ZIO and theclassof FP policiesdescribed in Section 13.2. For thispurpose
we analyze the following model.

Consider adistribution system withaset N = {1, 2, ..., n} of geographically
dispersedretailers. A central warehousewithan unlimited supply of agiven product
serves the retailers using vehicles of limited capacity ¢. Retailer i, located at a
distance d; from the warehouse, faces a deterministic demand rate D; per unit of
time and incursalinear holding cost at aconstant rate z per unit of product stored
there per unit of time. Demand at each retailer must be met over aninfinite horizon
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without shortages or backlogging. The frequency with which a given retailer can
be visited is bounded from above by f; that is, the time that elapses between two
consecutive deliveriesto aretailer should be at least 1. As mentioned earlier, this
upper bound on the delivery frequency to each retai (er may be due to the set-up
timerequired for unloading at theretailersor may be dueto other material handling
constraints.

Each time a vehicle is sent out to replenish inventory to a set of retailers S, it
incurs a fixed cost ¢ plus a cost proportional to the total distance traveled by the
vehicle, that is, a cost proportional to L*(S), the length of the optimal traveling
salesman tour through the warehouse and the retailersin the set S. Without loss of
generality, we set the cost per mile equal to one. We seek a combined inventory
control and routing strategy that replenishes retailer inventories in time to meet
their demands and minimizes the long-run average total inventory holding and
transportation cost per unit of time.

Let Z?, denote the infimum of thelong-run average cost over all Zero-Inventory
Ordering policies. Thefollowing example showsthat Z*, the infimum of the long-
run average costs over al possible policies, can be strictly smaller than Z?; even
in an asymptotic sense, that is, we can construct a sequence of problem instances
inwhichasn — oo we havelim, o £ < lim,_ o Zi

An Example

Consider a problem in which there are 3n retailers, each one with demand rate
D = 2, located at the same point adistanced = 1fromthewarehouse. Let f = 1
and g = 3. Thefixed cost of sending out avehicle c equals 1 and the holding cost
ratehis 1.

Lemma 13.4.1 Thereexistsa feasible policy with long-run average cost Z; — 3.
Proof. Consider policiesthat satisfy the Zero-Inventory Ordering property. Let w
be the size of asingle delivery to aretailer in a policy of thistype. The frequency
constraint implies that w > ? = 2 and hence each delivery to aretailer must be

made by a separate vehicle. Since 2%.t92 — 12 > 9 = 42, the optimal ZIO
policy delivers afull truck load (3 units) to each retailer every 1.5 units of time.
Thelong-run average transportation cost of thispolicy is(3n) 2‘{? = 6n whilethe
long-run average holding cost is 3n(1.5) = 4.5n.

Consider now a different policy which fails to satisfy the Zero-Inventory Or-
dering property. Under this policy, each retailer receives a delivery every unit of
time. The frequency constraint is clearly satisfied. Without loss of generality, as-
sume the system starts with zero-inventory at each retailer. Partition the retailers
into groups of three retailers each. For each such group of three retailers, let the
delivery sizesbe (2,2,3) at time 0, (2,3,1) at time 2t — 1 and (2,1,3) at time 27 for
eacht = 1,2,.... Hence, foreacht = 1,2, ..., only two fully loaded vehicles
are needed to visit each group of three retailers. It is easy to see that the long-run
average transportation cost of this policy is (2d + ¢)2n = 6n while the long-run
average holding cost isn[1 + 1.5+ 1.5] = 4n. |
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13.4.1 A Lower Bound on the Cost of Any Policy

We start by constructing alower bound on the cost of any feasible policy.

Lemma 13.4.2

B— Z[D(Zd +c) Zf]

is a lower bound on the long-run average cost over all feasible policies over the
infinite horizon.

Proof. Let I; > 0 betheinitial inventory level at retailer i for every i. Consider
an arbitrary policy P over an infinite horizon. Let C(P, t) be the average cost per
unit of time incurred by this policy over theinterval [0, ¢). It sufficesto show that
C(P,t) > ;ﬁ)B — 07 for some constant ¢’ for al ¢ > max; l’)—

Assume thefretailers areordered sothat di > do > ... > d,. Let M be the
number of vehicles sent out from the warehouse during the interval [0, ¢), S;
the set of retailers visited by vehicle j = 1,2,..., M, and wij the number of
units of product received by retailer i from vehicle j during [0, 7). Let Q; bethe
amount of product delivered by the j™ vehicle during the interval [0, r); that is,
Q=31 wij'

We first construct a lower bound on the total transportation cost incurred by
policy P. Consider the j vehicleand aretaileri e S;.Clearly, L*(S;)+c > 2d;+c
and hence,

Q[L*(S)) +cl = Y w![L*(S)) + ¢l = > w/(2d; +c).

ieS; ieS;
Since Q; < ¢,

w!
L*(Sj)+ ¢ =Y —(2d; + o).

i€S;
Hence, the total transportation cost is no smaller than

M
D ILH(S) 4+ = ZZ l(2d +¢c)
j=1

j=lieSs;

_ZZ ’(2d +¢)

i=1 jlieS;

nDil‘—Ii
z;: p (2d; + ¢).
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Consider now the holding cost for each retailer i. Let r; bethe number of deliv-
eriesreceived by retailer i over theinterval [0, ¢). Dueto the frequency constraint,
r < (t+ %)f. Hence, the holding cost incurred by retailer i is no smaller than
when the total delivery quantity to retailer i in [0, ¢) isthe minimum required, that
is, D;t — I;, and the quantity is delivered at r; equidistant epochs when inventories
fall to zero; see Chapter 9. In this case the average inventory level equals =5— D’ L;
The total holding cost incurred by retailer i in [0, ¢) is thus bounded from below
b

g D,-t—I» hD;t t htl1;

ht T2 (t+9f 2(t+%)f'

Letc = Zyz 1 f]—‘(Zdi + ¢). Combining the lower bounds on the transportation
and the holding costs, we have

D(2d+c) d hY. L 1
c(P.n) = - ..
(P.1) 1;[ q 2f] t 2f t—}—%
h) . I; 1
:<t—il>3_c?_ ?}2 t+ 31
7 7 1

13.4.2 An Efficient Fixed Partition Policy

We construct a FP policy which is close to optimal in a specific sense described
below. In particular, we show that the cost of this FP policy is, asymptoticaly,
related to the asymptotic optimal solution of arelated Bin-Packing Problem.
Given the retailers’ demand rates, D4, D>, ..., D,, consider the Bin-Packing
Problem defined by items of size equal to these demand rates and bins of capacity
b, whereb = ¢ f. Without |oss of generality we assume b isan integer. Feasibility
implies that for every retailer i € N, its demand rate D; must satisfy D; <
b. Assume the retailer demand rates D;, i = 1,2,...,n are independent and
identically distributed according to a probability measure & defined on [1, b] with
expected value E(D). Let b* be the number of bins used in the optimal solution
to this Bin-Packing Problem. Then it follows from the analysisin Section 3.2 that
there existsaconstant y such that lim,,_, ”7 =y admost surely. If y = %, the

distribution is said to allow perfect packing. In that case, the constant « = y E(ED)

equals one. If the distribution does not allow perfect packing, that is, y > 2,

then the constant « isin (1, 2].

The next theorem uses the constant « to characterize the difference between the
long-run average cost of the FP policy and the long-run average cost of the best
possible policy for any distribution ® of the retailer demand rates.

Theorem 13.4.3 Let the set of n retailer locations be a sequence of independent
random variables having a distribution ;. with compact support A C IR?. Let the
retailer demand rates be a sequence of independent random variables having a
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distribution ®. Let Z*, Z7; and Z7, denote theinfimumof thetotal costsamong al/

possible strategies, all zero-inventory strategies and all FP policies, respectively.
Then with probability one,

zZ* A

lim 22 < lim 22 < /a.

n—oo £* T n—oo /£*

Observe that when the distribution @ allows perfect packing « = 1 and there-
fore, in that case, and when the number of retailers tends to infinity, Z7, has the
same cost as the cost of the best Zero-Inventory Ordering policy whichis also the
cost of the best policy.

To prove the theorem, we construct a FP policy using the following two-step
procedure. In the first step, we partition the region A where the retailers are dis-
tributed into subregions. The retailers in each subregion are then partitioned into
subsets of retailers by solving the Bin-Packing Problem defined by the retailer
demand rates and bins of size b. Each such set is then served in an efficient way.

The Region Partitioning Scheme

Similarly to what we have donein Chapter 6, let G () beaninfinitegrid of squares
with edgesparallel to the coordinate axesand sidelength \/Lé Let{A1, Az, ..., Ap}
denote the intersections of the squares with the compact region A.

Let N(j) be the set of retailers in subregion A; with n(j) = |IN(j)I, j =
1,2,...,m.Givensubregion A;, let c_lj be the distance from the warehouse to its
closestpointinA;, j =1,2,...,m.

To construct the fixed partition policy, we group all the retailers in subregion
A;, j=1,2...,minto sets by solving the Bin-Packing Problem defined by the
demand rates of the retailers in N(j) and bins of capacity b. Each such set §
of retailers is served together using a reorder interval that depends on D(S) =
Y ies Di and the subregion where the retailers are located. If S isaset of retailers
in subregion A ;, then the reorder interval is

1, if \/ZD(S)(ZQ i +¢)/h < D(S)/f,
ts= 1 /2L if D(s)/f < J2D(S)@d; +)/h <,
ﬁ otherwise.

That is, the reorder interval is chosen so that g5 = D(S)zs is the value of w
achieving the following.
D(S)(2d; +¢)  hw
(———+=]
w 2

min
D(S)/f=w=q
Consequently, these reorder intervals satisfy the capacity aswell asthe frequency
constraints.
For any set of retailers S € N(j), we use the following routing strategy. The
vehicle travels from the warehouse to its closest point in A ;, visitsthe retailersin
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S in any order, and then returns to the warehouse. It is clear that the total distance
traveled isno morethan 2d ; + (IS + Lu.

Analysis of the Upper Bound

For each subregion A ;, let 5*( ) bethe optimal solutionto the Bin-Packing Problem
defined by the demand rates of theretailersin N(j), j = 1,2, ..., m. Let S¢(j),
¢ =12 ...,b*j) bethe set of retailers assigned to the ¢ bin in this optimal
solution.

We first need the following technical lemma presented without proof (theinter-
ested reader can consult Chan et al. (1996) for details).

Lemma 13.4.4 (a) The function

[b(2d+c) N h_w]

F(b,d) = min
w 2

b/f<w=q

isconcavein b for all b € [1, b].
(b) F(b, d) < F(b, d)\/% for all b € [1, B].

We now derive an upper bound on the cost of the above-defined FP policy and
henceon Z%,, theinfimum of the cost among all FP policies. This bound depends
on the number of routes b*(N (7)) into which the customers of A; are partitioned,
for j =1,2,...,m. For each subregion j = 1, 2, ..., m, we express the number
of routes generated in the subregion relative to the minimum possible number of
routes, that is, the number of routes required if the demand rates {D; : i € N(j)}
could be perfectly packed into binsof sizeb; in other words, we expressthe number

of routes employed by the FP policy in terms of

b*(N(j))b
PRS0
ZieN(j) D;
where in the notation we have omitted the dependence of 8; on n.
Theorem 13.4.5
m F E, di
- (b. di)

P < VB Z D, 5 + 2nuf.

j=1 ieN(j)

Proof. We bound Z » by the cost of the particular FP policy described above.
Under this policy, the reorder interval for every subset of retailers S,(j), £ =
1,2...,b*(N(j)), ists,() > % Hence, Z7, is bounded by



13.4 Asymptotic Analysis of ZIO Policies

m b*(N(j 2d; +c+u(lSe(N+1)  hD(Se(j))ts,(;
ij - Z { " (Se(/)) S«(J)}
j=1 =1 tSZ(./) 2
NG 2;+c  hD(S(j))ts,(;
< Z { + ( l(])) Se(f) } + Znuf
=1 ISK(J) 2

S
%
—~
=
—~
<
=
=

N

/ _ D(S:(j)2d, +¢) h
B S L0 R BT P
‘O = PG/ fsw=q w
m_b*(N(j))
= F(D(Se(j)). d;) + 2nuf.
j=1 =1
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ByLemmal3.4.4(a), F(b, d ;) isaconcavefunctionof bforevery j = 1,2,....m

and therefore for every j,

b*(N(/)) . —
> FD).) = OO (Fic 4) = OVOIF(5a,)
Then

m

, F(7.d)) o
Z* < * J
Z ("”(ﬁ,>—b/ﬁ, + 2nuf

n F(7.d))
+ 2nu
,Z((» /ﬁ !

J
Hence, by Lemma 13.4.4(b), we have

z; <Z/ED(N(])) 1. )+2nuf

<Z\//_‘T]ZDF(bd)+2nf

ieN(j)

Thelast inequality follows since F is nondecreasing in its second argument.

We can now finish the proof of Theorem 13.4.3.
Proof. Lemma13.4.2 tells usthat

B 2":[ 2d; +c %]
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Hence,
" D;F(b,d;)
B > - =
and since
lim :Bj =«
n—o0

foreachj =1, 2,..., m weget that aimost surely

zZ% B
lim =22 < Ja lim = + 2uf.

n—oo n n—o0o n
Finally, since u was arbitrary, we obtain that almost surely

*

7 . B . Z
lim 222 < o lim 2 < Ja lim 2. |

n—>o0o n n—>o0o n n—>o0o n

13.5 Asymptotic Analysis of Cross-Docking Strategies

We are now ready to analyze a more genera distribution system consisting of
a single outside vendor, a number of warehouses and a large number of retail-
ers. For this purpose, consider a distribution system with a set N of retailers,
N = {1,2,...,n}, geographically dispersed in a given area A and a set M of
warehouses, M = {1, 2, ..., m}. Anoutside vendor with an unlimited supply of a
product servesthewarehousesusing “ big” vehiclesof capacity Q; each warehouse
serves the retailers using “small” vehicles of capacity ¢. The terms “small” and
“hig” do not necessarily reflect the actual sizes of the vehicles; we use them just
to distinguish between vehicles that deliver items to the warehouses and vehicles
that deliver items to the retailers. We assume that each small vehicle is assigned
to a unique warehouse.

Warehouse j, located at a distance d; from the outside vendor, incurs a linear
holding cost at a constant rate H per unit of product per unit of time. Retailer i,
located adistanced;; fromwarehouse j = 1, ..., m, facesadeterministic demand
rate of D; units of product per unit of time and incurs a linear holding cost at a
constant rate i per unit of product per unit of time.

Demand at each retailer must be met over an infinite horizon without shortages
or backlogging. Thefrequency withwhichagivenretailer can bevisited isbounded
from above by f, that is, the time that elapses between two successive deliveries
to aretailer should be at least 1.

Each time a big vehicle is sent out to replenish inventory at the warehouses, it
incurs a fixed cost C plus a cost proportional to the total distance traveled by it.
Similarly, eachtimeasmall vehicleissent out toreplenishinventory at theretailers,
it incurs afixed cost ¢ plus a cost proportiona to the total distance it travels. In
what follows the variable transportation cost for either a big or small vehicle is
scaled so that it is equal to the total distanceit travels. We seek a dispatching and
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routing strategy that deliversitems from the outside vendor to the warehouses and
fromthereto theretailers such that itslong-run average cost isas small aspossible.
Long-run average cost is defined astotal inventory holding cost per unit of time at
the warehouses and the retailers plus transportation cost per unit of time from the
outside vendor to the warehouses and from the warehouses to the retailers.

Let Z* denotetheinfimum of thelong-run average cost over al feasiblepolicies.
Similarly, let Z}; denote the infimum of the long-run average cost over al Zero-
Inventory Ordering policies. Defineb = g f, b*, ®, y and « asin Section 13.4.2.

Our main results are summarized in the following theorems.

Theorem 13.5.1 Let the set of retailer locations be a sequence of independent
random variables having a distribution « with compact support A C IR?. Let
the retailer demand rates be a sequence of independent random variables having
a distribution ®. If ® allows perfect packing, then there exists a Zero-Inventory
Ordering policy whichisasymptotically optimal with respect toall possiblepolicies
and satisfies the following properties.

(a) Thereisdirect shipping fromthe outside vendor to the warehouses. That is,
each big vehicle visits only a single warehouse in each trip.

(b) No inventory is held at the warehouses. That is, the warehouses serve as
coordinators of the time and sizes of deliveries rather than storing points.

(c) Each retailer is served by exactly one warehouse.

Observethat these propertiesimply adistribution strategy that isvery similar to
the* cross-docking” strategy identified by Stalk et al. in their analysis of Wal-Mart
(see Section 13.1). In particular, the result may explain why a distribution system
in which the warehouses serve only as a coordinator of the timing and size of
deliveries but hold no inventory is so effective in practice.

The above results are explained as follows. Since the total number of retailers
tends to infinity while the number of warehouses is fixed, independent of », the
number of retailers served by a single warehouse goes to infinity as well. Hence,
each warehouse is faced with large demands, enough to fill up the entire capacity
of abig truck. This explains part (a) of the theorem. To explain part (b), observe
that once a big truck arrives at the warehouse, the warehouse can group enough
retailers and immediately deliver theitemsthat arrived so that no inventory isheld
at the warehouse. Finally, part (c) is justified by the fact that the distribution ©
alows perfect packing and thus, with high probability, the small trucks assigned to
asingle warehouse depart the warehouse fully loaded. Thisimpliesthat thereisno
incentive to assign aretailer to more than one warehouse; it does not substantially
improve the utilization of either the small trucks or the big trucks. Thus, in an
asymptotically optimal strategy, a retailer should be served by its most efficient
warehouse.

The proof of Theorem 13.5.1 is based on constructing a Fixed Partition Zero
Inventory Ordering policy that satisfiesall thepropertiesestablishedin thetheorem.
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The policy is similar to the one described in the previous section in terms of the
distribution of productsfrom the warehousesto theretailers. The cost of thispolicy
Z7, converges to the cost of a lower bound on the long-run average cost of all
possible policies, when the distribution & allows perfect packing. The interested
reader may refer to Chan and Simchi-Levi for details.

In the next theorem we characterize the difference between the long-run average
cost of the best FP policy and thelong-run average cost of the best possible strategy
for any distribution @, even those that do not allow perfect packing. We remark
that thistheorem is essentially an extension of similar results presented in Section
13.4 for the single warehouse multi-retailer inventory-routing problem.

Theorem 13.5.2 Under the assumptions of Theorem 13.5.1, and for any distribu-
tion @ of the retailer demand rates we have

*

7* zZ*
lim 22 < lim 22 < Ja <2  (as).

n—oo /* n—oo /*

Observe that when the distribution @ alows perfect packing, « = 1. Therefore,
in this case, when the number of retailers tends to infinity, Z* has the same
asymptotic cost as the cost of the best Zero-Inventory Ordering policy which is
also the asymptotic cost of the best policy.

13.6 An Algorithm for Multi-Echelon Distribution
Systems

The previousresultssuggest anew a gorithm for general multi-echelon distribution
problems. Herewe outline the general steps of the algorithm that generatesaFixed
Partition Zero-Inventory Ordering policy.

Multi-Echelon Distribution Algorithm
Sep 1: Assign each retailer to one warehouse.

Sep 2: For each set of retailers assigned to the same warehouse
Sep 2.1: Partition the retailersinto clusters.
Sep 2.2: Combine the clusters into groups and determine the reorder
interval of each group.

Thus, in this multi-echelon distribution strategy each retailer is assigned to a
unique warehouse and it receives deliveries only from that warehouse. Retailers
assigned to the same warehouse are then partitioned into clusters such that all
retailersin each cluster are served together by a single small vehicle. Each small
vehicleservesacluster of retail ersassigned to awarehouse by foll owing an optimal
traveling salesman tour through the warehouse and all the retailersin the cluster.
Clusters of retailers are combined into sets such that al retailers in the same set
have the same reorder interval.
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The deliveries are then coordinated by the warehouses as follows. Each ware-
house j serving retailersin clusters belonging to aset S, with reorder interval zg,
arrangesthe deliveries so that small vehicles serving clustersin S |eave warehouse
j at the same time. The warehouse coordinates the deliveries such that the mini-
mum number of big vehicles needed to carry the total load of the small vehicles
(that are used to serve the retailers in S) arrive directly from the outside vendor
justintimeto transfer their loads to the small vehicles before these vehicles leave.
With the total load of the big vehicles exactly equal to that of the small vehicles,
warehouse j does not carry any inventory.

Theinterested reader may refer to Chan and Simchi-Levi for more detailson the
algorithm and its effectiveness from both practical and theoretical points of view.

13.7 Exercises

Exercise 13.1. Consider the following distribution problem. We are given a set of
manufacturing facilities M, a set of warehouses W and a set of customers S. Each
warehouse and each customer has a limit on the amount that can be stored at the
facility. Each customer has forecasted demands for a single product for the next
T periods and transportation cost between the facilitiesis a linear function of the
amount delivered. Transportation cost per item may change from one period to
the next. Inventory holding cost is charged on items carried at a facility from one
period to the next. How would you design adelivery schedule that does not allow
for shortages?
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14
A Case Study: School Bus Routing

14.1 Introduction

We now turn our attention to a case study in transportation logistics. We highlight
particular issuesthat arise when implementing an optimization algorithmin areal-
liferouting situation. The case concernsthe routing and scheduling of school buses
in the five boroughs of New York City.

Many of the vehicle routing problems we have discussed so far (see Part 1)
have been simplified versions of the usually more complex problems that appear
in practice. Typically, a vehicle routing problem will have many constraints on
the types of routes that can be constructed including multiple vehicle types, time
and distance constraints, complex restrictions on what items can be in a vehicle
together, etc. The problems that appear in the context of school bus routing and
scheduling could be characterized as the most difficult types of vehicle routing
problems since they have aspects of al these constraints. Thisis the problem we
will consider here.

School bus routing and scheduling is an area where, in general, computerized
algorithms can have a large impact. User-friendly software that call routing and
scheduling algorithms at the click of abutton and that result in workable solutions
can grestly affect theday-to-day operationsof adispatching unit. Withincreasingly
affordable high-speed computing power in desktop computers and the possibility
of displaying geographic information on-screen, it is not surprising that many
communities are using expert systems to perform the daunting task of routing and
scheduling their school buses. In most cases, this has led to improved solutionsin
fractions of the time that was previously required.
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Unfortunately, providing workable solutions for such an application as thisis
not as simple as just “clicking” the right button. Anyone who has been involved
in areal-life optimization application knows that much discussion is involved in
determining what the problem is and how we are to “solve” it. In this chapter we
concern ourselves with some of the details that make it possible to put modeling
assumptions and algorithms into action.

14.2 The Setting

TheNew York City school systemiscomposed of 1,069 school sand approximately
onemillion students. M ost of these studentseither walk to school or aregiven public
transportation passes. About 125,000 students ride school busesthat are leased by
the Board of Education. The mgjority, or about 83,000, of these are classified as
General Education students. These students walk to their neighborhood bus stop
in the morning and wait for a bus to take them to schoal. In the afternoon, a bus
takes them from their school and drops them off back at their bus stop. The rest
of these students with particular needs, classified as Special Education, are picked
up and dropped off directly at their homes.

Thisis one distinction that makes the transportation policies governing Special
Ed students fundamentally different from those of General Ed students. Another
fundamental differenceisthat, in many cases, Special Ed studentsenroll in schools
with specific services and therefore may be bused over long distances. General Ed
students usually go to schools only a few miles from their homes and almost
exclusively to schools within the same borough. In addition, Special Ed students,
such as wheelchair-bound students, are transported in specially designed vehicles
with much smaller carrying capacities.

For General Ed student transportation, currently the Board of Education leases
approximately 1,150 busesayear. Many companiesbid for the contract to transport
the students and currently the companies winning contracts design the routes.
Independent of the company, theleasing cost to the Board i sapproximately $80,000
annually for each bus (and driver). The total yearly budget for General Education
student transportation alone is therefore close to $100 million.

Therouting of Special Education studentsisdonedifferently. Using colored pins
and large maps placed on walls, ateam of inspectors/routers at the Board of Edu-
cation Office of Pupil Transportation mark the students' homes and schools. Then,
usingtheir knowledge of the geography and street conditionsacquired through their
many years of work, they literally string pinstogether to form routes. Although the
inspectors clearly do thiswell, thisis very time consuming. For example, agroup
of five people took approximately three months to manually generate routes just
for the Borough of Manhattan.

Several yearsago, the New York City Board of Education appropriated fundsto
develop acomputerized system, called CATS (Computer-Assisted Transportation
System). This system is supposed to help in the design of routes for both the
General and Specia Ed students. The project consists of three phases.
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Phasel: Replicate the pinning and stringing approach on a computer. The purpose
of this phaseis to emulate on the computer screen what was previously done with
maps, pinsand string. First, adatabaseis needed to keep track of all relevant student
and school information. The student data consist of address, bus stop and school.
For each school, the data consist of an address, aswell as starting and ending times
for al sessions. This makes data easily retrievable and updatable, and provides
someof thebasicinformation that isneeded for routing and scheduling. In addition
to the database, a method of generating maps on the computer is needed as well;
thisisthe geographic information system (GIS). These systems, widely available
only in the last few years, truly offer a new dimension to many decision-support
systems. With this software, color-coded objects designating students or schools
can easily be displayed on a computer screen. This enables the user to visualize
therelative locations of important points. In addition, the user can “ click and drag”
with a mouse and get information about the area outlined. This information can
include U.S. Census data such as number of households, median age, income,
etc. Moreimportantly, in this application, by designating two points, the GIS can
calculate exact locations (latitude and longitude coordinates) and also the distance
between the two points along the street network. By “stringing” together a series
of points, the software can give the total distance traveled. When this phase is
compl eted, inspectors currently designing Special Ed routeswill beableto “ click”
on bus stopswith amouse and “ string” them together on the computer screen. This
isthe method called “blocking and stringing.”

Phase I1: Extend the functionality developed in Phase | to the General Education
stop-to-school service. The goal isto create a system whereby one could construct
routes for the General Ed population on the computer screen. For example, by
choosing aset of schoolswith amouse, the pertinent bus stops (those with students
going to the set of schools) are highlighted. The inspector can then string together
thestopsand schoolstoformaroutedirectly onthecomputer screen, or againlet the
computer determine a good route through the stops. The immediate visualization
of apossible solution (routes) along with relevant statistics (bus load, total travel
time, total students picked up) makes it much easier to check feasibility of the
routes. This alone considerably simplifies the task of building efficient routes.

Phase I11: Create an optimization module. The aim here is to build software that
uses the student and school data and the GIS to generate efficient bus routes and
schedules meeting existing transportation policies. The software should include
subroutines that check feasibility of suggested routes or design routes for any
subset of the population, beit aschool, adistrict, aborough or the entire city. This
isthe phase in which we are the most interested.

We present here arange of issuesrelated to the devel opment of thisoptimization
module (Phase|11) and to the problem of routing buses through the New York City
streets. We focus on routing the General Ed students; the routing of Special Ed is
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currently being done at the Office of Pupil Transportation using the “blocking and
stringing” approach.

In Section 14.3, we give a short summary of some of the important papers that
have appeared in the literature in the area of school bus routing and scheduling
and related vehicle routing problems. In Section 14.4, we present details of the
school bus routing and scheduling problem in Manhattan. In Section 14.5, we give
abrief overview of methodol ogies we used to estimate distances, travel times and
the pickup and dropoff times.

In designing a computerized system for this problem it isimportant to consider
thefollowing questions. First, isit possibleto design an algorithmthat will generate
quality solutions in a reasonable amount of computing time? Second, are routes
constructed by the computerized system truly driveable? Third, what is the best
way to make these computerized algorithms of use to the people designing the
routes? To answer the first two questions, we designed a school bus routing and
scheduling algorithm and ran it on the Manhattan data. The algorithm is presented
in Section 14.6. To answer the third question, in Section 14.8 we discuss some
of the ways in which a computerized system for school bus routing can be made
more interactive. In Section 14.9, we present results on the Manhattan data

14.3 Literature Review

Intheoperationsresearch literature, wefind quiteafew referencestothe problemas
well as many different solution techniques. A standard way the school busrouting
and scheduling problem has been analyzed is to decompose it into two problems:
a route generation problem where simple routes are designed (usually with only
one school), and aroute scheduling problem where these routes are linked to form
longer routes (routes that visit more than one schoal).

As early as 1969, Newton and Thomas looked at a bus routing problem for a
single school. Using some of the first local improvement procedures for vehicle
routing problems, they designed atour through all the bus stopsand then partitioned
it into smaller feasible routes that each could be covered by abus.

In 1972, Angel et a. considered a clustering approach to generating routes.
First, bus stops are grouped by their proximity using a clustering algorithm. Then
an attempt is made to find minimum length routes through these clustersin such
away that the constraints are satisfied. Finally, some clusters are merged if this
isfeasible. The algorithm was applied to an instance consisting of approximately
1,500 students and 5 schools in Indiana.

In 1972, Bennett and Gazis considered the problem of generating routes. They
modified the Savings Algorithm of Clarke and Wright (1964) (see Section 6.2).
They & so experimented with different objective functions such as minimizing total
student-miles. The problem considered had 256 bus stops and approximately 30
routes in Toms River, New Jersey.

In 1979, Bodinand Berman used a3-opt procedureto generateaninitial traveling
salesmantour whichisthen partitionedinto feasibleroutes. Thisa gorithm usestwo
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additional components: alookahead feature and a bus stop splitter. The lookahead
feature allows theinitial order to be changed slightly. The bus stop splitter allows
abus stop to be split into smaller bus stops. Two problems were studied. One dealt
with a school district in a densely populated suburban area with 13,000 students
requiring bus transportation each day and 25 schools. A second district, dsoin a
suburban area, had 4,200 students transported.

In 1984, Swersey and Ballard addressed only the problem of scheduling a set
of routes that had aready been designed. Given a set of routes that delivered all
students from their bus stopsto their schools, the authors devised amethod to find
the minimum number of buses that could “cover” these routes. This scheduling
problem can be formulated as a difficult integer program. The authors used some
simple cutting planes to solve it heuristically. The size of the problem considered
was approximately 30-38 buses and 100 routes.

Finally, in 1986, Desrosiers et a. studied a bus routing problem in Montréal,
Canada. Using several techniques, depending on whether the stopswerein rural or
urban areas, they generated a set of routes. To schedule them, they formulated the
problem as an integer program and solved it using a column generation approach.
The problem solved had 60 schools and 20,000 students.

14.4 The Problemin New York City

The School Bus Routing and Scheduling Problem can take many forms depending
on how generaly it is formulated. In its most general form, the problem consists
of aset of students distributed in aregion who haveto be brought to and from their
schools every school day. The problem consists of determining bus stop locations,
assigning students to bus stops, and finally routing and scheduling the buses so
as to minimize total operating cost while following all transportation guidelines.
The difficulty, of course, is that each of these subproblems are dependent and
therefore should be looked at simultaneoudly. That is, any determination of bus
stop locations, and who gets assigned to each, clearly has an impact on the routes
and schedules of the buses. Hence, an integrated approach is required to avoid
suboptimality. However, due to the complexity and the size of the problem thishas
historically never been attempted. In addition, often it is not necessarily possible
to reoptimize all aspects of the problem, such as bus stop locations or assignments.
Tounderstand why thisproblemisso complex, consider for instancethe bus stop
location problem on its own. There are numerous constraints and requirements:
no more than a certain number of students can be assigned to the same bus stop;
bus stops cannot be within a certain distance of each other; each student must be
within a short walk of the bus stop and must not cross a major thoroughfare, etc.
In our case, the Board of Education decided that the bus stops that are currently
being used will remain in use. Thus, the position of the bus stops as well as
which students are assigned to each was assumed fixed. These stops satisfy al the
regquirements mentioned above. Our routing and scheduling problem thus starts
with a set of bus stops, each with a particular number of students assigned to it
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destined for aparticular school. Each school has starting and ending timesfor each
session. In addition to bus stop and school data, it is assumed that distance and
travel time between any two pointsin the areaarereadily available. Thisissue will
be discussed in more detail in Section 14.5.

Weformally definearouteasfollows. A routeisaseguence of stopsand possibly
several schoolsthat can be feasibly driven by one bus. For example, routes for the
morning problem always start with a pickup at a stop and end with dropoff at a
school. In contrast, an afternoon route always starts with a pickup at a school and
ends with a dropoff at a stop.

The goal isto design a set of minimum cost routes satisfying all existing trans-
portation guidelines. The major cost component to the Board of Education is the
cost of leasing each bus and driver, and hence the objectiveis essentially to mini-
mize the number of buses needed to feasibly transport the students. Clearly, safety
is the first consideration, and it is the view of the Board of Education that bus
routes that meet all transportation guidelines provide a high level of safety. The
rest isup to the drivers.

Routefeasibility isthe most complex aspect of the problem. Thereare numerous
side congtraints. First, the bus can hold only a limited number of students at one
time (capacity constraint). Second, each student must not be on the bus for more
than a specific amount of time and/or distance (time or distance constraint). This
ismotivated by the simple observation that the less time spent on the bus the safer
and more desirable it is for the students. And finally, there are restrictions on the
timeabuscan arrive at aschool in the morning, and on the time abus can leavethe
school in the afternoon (time window constraints). In many school busrouting and
scheduling problems, transportation policies specify that students from different
schools not be put on the same bus at the same time; that is, no mixed loads are
allowed. Clearly, allowing mixed |oads providesincreased flexibility and therefore
can lead to savings in cost. In New York City, for the most part, mixed loads are
alowed. We list here the primary constraints. There are several other constraints
which we talk about in Section 14.7.

We will deal exclusively here with the problem of delivering the students to
their schoal in the morning. Researchers have noted that this problem is usually
more critical than the afternoon problem for two reasons. First, in the afternoon
the time windows are usually less constraining. For example, in Manhattan (in
the morning), school starting times fall between 7:30am and 9:00am. That gives
roughly aone and ahalf hour time window to pickup all students and take them to
their schools. In the afternoon, schools end at times over awider range: anywhere
between 1:00pm and 4:15pm. Second, traffic congestion is usually higher in the
morning hours than in the afternoon hours when the students are being bused.
Therefore, it is very likely more buses will be needed in the morning than in the
afternoon. Indeed, our computational experiments reported in Section 14.9 verify
that thisistrue in Manhattan. Note that the solution found in the morning cannot
besimply replicated in the afternoon, that is, having each bustravel the sameroute
asin the morning but in the opposite direction. This is true since the sequencing
of school ending timesin the afternoon is different from the sequencing of school
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starting times and therefore schools visited in one order in the morning cannot
aways be visited in the same or opposite order in the afternoon.

For the morning problem in Manhattan, the specific problem parameters are
given below. During the 1992-93 academic year, 4,619 students were transported
by school busesfrom 838 bus stopsto 73 schools. The constraintswere asfollows.

e \khicle capacity constraint. At most 66 students can be on the bus at one
time.

e Distance constraint. Each student cannot be on the bus for more than 5
miles.

e Time window constraints: Buses must arrive at a school no earlier than 25
minutes before and no later than 5 minutes before the start of school.

e The earliest pickup must not be before 7:00 am.

o Mixed loads are allowed.

The 5-mile distance constraint is not applied uniformly to al students; students
in District 6 (upper Manhattan) are often transported out of their district due to
overcrowding. Therefore, since this involves longer trips, sometimes traversing
most of the island, the 5-mile constraint is not applied to these students. Approxi-
mately 36% of the students in our application werein this group.

The Manhattan school bus routing problem presents many challenges. First of
all, the number of bus stops and schools is much larger than those encountered in
most vehicle routing applications. Second, there are many difficulties involved in
calculating accurate distances and travel timesin New York City. We now consider
these two points.

145 Distance and Time Estimation

To accurately estimate distances one needs a precise geographic representation of
the area. Thisis achieved using a geographic information system (GIS) which is
based on data files built from satellite photographs. These files store geographic
objects, such as streets, highways, parks and rivers that can be presented on a
computer screen. Animportant featureisthe ability to calcul ate exact latitudes and
longitudes of any point. Given a street address, the process of geocoding returns
the coordinates of the address with very high accuracy. Given these coordinates, it
is then easy to calculate “asthe crow flies’ or “Euclidean” distances. Some GISs
also have the capability of calculating exact road network distances, that is, the
distance between two points on the actual street network, sometimes even taking
into account one-way streets.

The Office of Pupil Transportation at the Board of Education usesa GIS called
Maplinfo for Windows. The MapInfo version used by the City does not have a
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street network representation of New York City. However, such anetwork hasbeen
developed by a subcontractor and therefore accurate shortest distances between
any two points along the street network are readily available. The current version
aso takes into account one-way streets. Although incorporating one-way street
information may seem like a trivial task, it turned out to be very difficult. We
believe most current geographic information systems are highly inaccurate with
regard to one-way streets and are probably unusable without substantial error
checking. The New York City Department of Transportation does not keep the
information in an easily retrievable format. We had to resort to checking the one-
way street sign database at the NYC DOT to reconstruct accurate information
about one-way streets. Needless to say, the data collection and error checking was
extremely time consuming.

Estimating accurate travel timesin New York City is probably the trickiest part
of the problem. As described above, a GIS with a street network representation
simplifies the calculation of street distances. In addition, in the GIS each data
structure corresponding to a street segment has space to store the average travel
speed and/or travel timeal ong the segment. These estimateswould makeit possible
tocalculatetravel timesalongany path. Thedifficulty lies, of course, indetermining
these travel speeds.

Most existing vehicle routing implementations that we are aware of use afixed
travel speed throughout the area of interest. Travel times are then determined by
simply dividing the distance traveled by this universal speed. Thismethod is most
likely not satisfactory for New York City. Anyone who has driven in New York
City knows the multitude of different street types and congestion levels that can
produce a wide variety of different travel speeds. We decided to try to get some
idea of the average speed in different parts of New York City.

In addition to performing various timing experiments, we obtained several re-
portsfrom the New York City Department of Transportation. Theseinclude“Mid-
town Auto Speeds-Spring 1992 and “Midtown Auto Speeds—Fall 1992." These
reports provide data on Midtown Manhattan average travel speedsaswell as some
data on the variance of these speeds. (Midtown Manhattan is defined as the rect-
angular area between First and Eighth Avenues and 30th and 60th Streets.) The
data seem to suggest that speeds vary from an average of 6 miles per hour up to
about 14 miles per hour, depending on street type, direction and time of day.

Our approach wasto choose an estimate of speed that would be specific to each
district; thus, a district in the Bronx would not have the same speed estimate as
one in Midtown Manhattan. These range from about 7 miles per hour to 12 miles
per hour. An important observation made when collecting data was that when a
bus experienced below average travel times along the beginning of the route, the
bus driver will slow down or spend moretime at the stopsto get back on schedule.
In addition, since the students have a scheduled pickup time, the bus cannot, as a
rule, leave early. It must wait until a specific time before leaving the bus stop. If
the bus experiences above average travel times (below average speeds), then the
bus driver can speed up (slightly) and make sure to leave when all students are on
the bus. Consequently, the travel timeis not as random as one might think.
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To make sure that school buses meet the time window constraints, information
about travel time along the streets of New York City is not sufficient. The time to
pick up studentsfrom their bus stops and to drop off students at their schools must
aso be taken into account. By riding the buses, we collected data on the time it
takesto pick up or drop off students at stops or at schools. A linear regression was
performed on the data providing the following model for the pickup time:

PTime = 19.0+ 2.6N,

where PTime = pickup time (in seconds), and N = number of students picked
up at the bus stop. This regression was performed on 30 data points. The R? was
77.7% and the p-value of the independent variable was very small (< 0.001). The
regression performed on the dropoff times resulted in the equation:

DTime = 29.0+ 1.9N,

where DTime = dropoff time (in seconds), and N = number of students dropped
off at the school. This regression was performed on 30 data points. Here the R?
was 41.9% and the p-value of the independent variable was 0.01%. In our imple-
mentation, we used these equations to determine approximate pickup and dropoff
times.

Overall, the approximations and calculations made in testing the optimization
module were designed with the goal of ensuring that a route constructed by the
algorithm would be a driveable one. The next question is how to generate a good
feasible solution to the school bus routing and scheduling problem.

14.6 The Routing Algorithm

There are many existing algorithms for school bus routing and scheduling. Nu-
merous communities throughout the world have implemented computerized algo-
rithms to perform these tasks. Overall, the success seems to be universally recog-
nized. Almost all papers published in the literature mention cost savings of around
5-10%. We recognize that it may be useless to even contemplate the meaning of
these savings numbers since the savings may not only come from reduction in cost
but also from increased control of the bus routes. The magnitude of the “ savings’
is aso highly dependent on what methods were in use before the computerized
system was put into place.

Transferability seemsto bethecritical factor. Itisdifficult to comparea gorithms
for this problem directly from the literature. Each problem hasits own version of
the constraints and even objectives. It is not always simple or even possible to
take an existing algorithm in use in one community and simply apply it to another.
Each problem has its peculiarities and may also have very different constraints.
For instance, in an implementation in Montréal, the people designing the routes
have the freedom to change existing school starting and ending times at their
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convenience. Clearly thisadded flexibility can simplify the problem to someextent,
and can lead to additional savingsin cost. In New York City thiswas not possible.

Finally, thisis all within the framework of an optimization problem, which we
have seen is extremely difficult to solve. There is an absence of any strong lower
bounds on the minimum number of buses required.

In determining what type of algorithm to apply to this large vehicle routing
problem, we considered several important aspects of the problem and aso the
setting in which the algorithm would be used.

Efficiency Thisis an extremely large problem, so the solution method must be
efficient in computation time and in space requirement. Assuming opti-
mization might be done by district, some districts have as many as 1,500
bus stops. Even though complete optimization of the solution might only
be done once a year, the time involved in testing and experimenting with
the problem parametersisreduced considerably if the algorithmistime and
space efficient.

Transparency Thealgorithm would most likely need to be constructive in nature
thereby providing adispatcher with the ability of viewing the algorithm pro-
gression in real-time. This makesit possible to detect “problem routes’ and
correct errors without having to wait until the termination of the algorithm.
That is, the approach should build routesin a sequential fashion and not, for
example, work for hours and finally, in the last moments provide a solution.

Flexibility The heuristic should be flexible enough to handle, not only the con-
straints currently in place, but additional constraints that might be imposed
in the future.

Interactivity From our discussions with the inspectors it is clear that the algo-
rithm implemented must have an interactive component that would allow an
experienced inspector to help construct routes using his or her prior know!-
edge. That is, the algorithm must be able to work in two different modes.
First, it must be able to act like a black box, where data are input and a
solution is output. Second, it must also serve as an interactive tool, where a
starting solution can be presented along with a set of unrouted stops and the
algorithm finds the best way to add on to this starting solution.

Multiple Solutions The agorithm should be capable of producing a series of
solutions, not simply one solution. This last point is important since each
solution would have to be checked by an inspector, and it is possible that
the inspector will rule out some solutions.

Finally, the urban nature of our application, in contrast to many of the problems
seen in the literature, should also be taken into account. As many researchers
have noted (see Bodin and Berman, 1979, and Chapleau et a., 1983), the vehicle
capacity constraint tends to be the most binding constraint when routing in an
urban area. Thisis due to the general rule that the bus will tend to “fill up” before
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the time constraints become an issue. Therefore, it seems as though algorithms
developed for the Capacitated Vehicle Routing Problem (CVRP) (see Chapter 6)
should be a good starting point. The difficulty is that the CVRP generally has a
different objective function: minimize the total distance traveled, not the number
of vehicles used. Fortunately (see Chapter 6 or Bramel et al., 1991), if the number
of pickup points is very large and distances follow a general norm, when the
distance is minimized, a byproduct of the solution is that the minimum number
of vehicles will be used. Observe that distancesin New York City come from the
street network, not from anorm; however, since the blocks are short and somewhat
uniform in size, the street network distance isfairly close to a norm distance, and
similar results most likely hold.

For these reasons, our starting point for the algorithm for the school bus routing
and scheduling problem was the Location Based Heuristic (LBH) (see Section
6.7) developed for the CVRP. This agorithm has the important property that it is
asymptotically optimal for the CVRP (see Section 6.7); that is, the relative error
between the value of the solution generated by the algorithm and the optimal
solution value tends to zero as the number of pickup points increases.

Dueto the size and complexity of the problem, we made several changesto the
LBH. The algorithm is serial in nature asit constructs one route at atime and not
in parallel. To describe the algorithm, let the bus stopsbeindexed 1, 2, . .., n. Let
aroute run by a single bus be denoted R;. Let a full solution to the school bus
routing and scheduling problem be written as a set of routes {R1, Ro, ..., Ry},
where M is the number of buses used. For each bus stop j, let school [ j] be the
index of the school to which the students at stop j are destined. Let U be the set
of indices of all unvisited pickup points.

The following algorithm creates one solution to the school bus routing and
scheduling problem. More solutions can be generated by starting the algorithm
with different random seeds.

Randomized LBH:

LeeU=1{1,2,..,n}andm = 0.
while (U # ¢) do
{
Pick a seed stop from U using a selection criterion. Call it ;.
LetU < U\ {j}.
Let the current route be R,, = {j — school[ j]}.
repeat
{
For each i € U, calculate ¢; =routelength(i, R,,).
Let ¢, = min;cy{ci}.
If ¢, < +o00 then
{
Let R, <« buildroute(k, R,,).
LetU <« U\ {k}.
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1
}until ¢, = 4o00.
m < m+ 1.
1
M <« m.
The heuristic solutionis {R1, Ro, ..., Ry}.

The selection of the seed stops can be donein one of several different ways. One
approach isto simply select these stops at random from the set of unvisited stops.
Another approach isto select stopswith largeloads or stopsthat havetight delivery
windows (i.e., the distance and time constraints force these stops to be delivered
amost directly from the stop to the school with very few stopsin between). Other
criteriawere used according to which constraints were binding at particular stops.

Thefunctionroutelength(i, R) determinesthe approximate cost of inserting stop
i intoroute R. Route R consists of apath through several stops and schools. While
preserving the order of the stops and schools in route R, we determine the best
insertion point for stop i. We check each consecutive pair of points (either stops
or schools) along route R and check whether stop i can be inserted between these
two. If school[i] is not in route R, then we must not only find the best insertion
point for stop i, but also the best insertion point for school[:]. It is possible that no
insertion point(s) can be found that resultsin afeasible route. Checking whether a
stop can be inserted requires checking all the constraints. If no feasible insertion
point exists, then the value of routelength(i, R) ismade +o0. Thisindicatesthat it
isnot possible (while preserving the order of R) toinsert stop i into route R. If an
insertionisfound that resultsin afeasibleroute, then the value of routelength(i, R)
is made to be exactly the additional distance traveled.

To illustrate the difficulty of this step, consider smply the capacity constraint.
In the case of the CVRP, all loads are dropped off at the same point (the final
stop); therefore, the maximum load that is carried by the vehicle is when it picks
up its last load. Therefore, it is easy to check whether a stop can be added to
aroute since we need only check that the maximum load is less than the vehicle
capacity. Thismaximum loadisalwaysat thelast stop, sothecalculationiseasy. By
contrast, performing asimilar calculation in the school bus routing and scheduling
problem is much more complicated since there is more than one dropoff point.
Checking feasibility when adding a stop to a route requires knowing when the
student is getting on and off the bus, since this will affect whether there is room
for a student at future points on the bus route. Therefore, checking whether the
capacity congtraint is violated in the school bus routing problem is much more
complicated than in the CVRP.

The function buildroute(k, R) creates the route that results from the insertion
of stop k into route R. Again, stop k is simply inserted between the two consec-
utive points (stops or schools) that result in the shortest total route. This route is
guaranteed to be feasible since ¢, < +oc.

The algorithm satisfies the requirements that we described above. It runs effi-
ciently for problems of large size and builds routes sequentialy. It is very flexible
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in the sense that constraints of almost any type can be included (e.g., disallowing
mixed loads for some schools). Of course each additional constraint causes the
algorithm to take a little longer to find a solution. In terms of its interactivity (see
the next section for details), the algorithm can be used in an interactive mode if
this is desired. In this mode, a partia routing solution can be used as a starting
point and unrouted stops can be added efficiently. The inspector can aso have a
major impact on the routes generated by the algorithm viathe selection of the seed
points (see Section 14.8 below for a further discussion on this point). Since the
agorithm can be easily randomized (by randomizing the seed stop selection pro-
cedure), starting the algorithm with different random numbers makes it generate
different solutions. Finally, the most important advantage of this heuristic is that
it does not decompose the problem into subproblems, but solves the routing and
scheduling components simultaneously.

14.7 Additional Constraints and Features

In the course of the implementation of our algorithm, several additional “soft”
constraints came to our attention. These are subtle rules that inspectors used when
constructing feasible routes, which were only determined once a set of routeswere
shown to the inspectors.

Limit on the number of busesto a particular school Thisisbest explainedwith
an example. Consider the situation where a school, say school A, has alate
starting time relative to other schools, say 9:30am, where all other schools
start at 9am, and assume only a dozen of the students from school A reguire
bus service. Previoudly, if a solution required 20 buses to serve all schools,
routers would take one of these and have it alone serve school A. That is,
some time between 9am and 9:30am one bus would pick up the dozen stu-
dents and deliver them to school A. Since 20 buses are used in the solution,
this solution is equivalent to, for example, having 6 of the 20 buses each
deliver 2 students to school A between 9am and 9:30am. This, from a cost
point of view, isjust as good a solution. However, school A may only be
able to handle one or two buses at a time due to limited driveway space.
We therefore needed to add a constraint on the number of buses that could
deliver studentsto each school. This constraint only became activefor afew
schooals.

Multi-level relational distance constraints When delivering packages to ware-
houses or to customers, a distance constraint is usually set on the complete
route thus limited to the driver's working day. When delivering students
to schools, the distance constraint is really student specific. That is, each
student’s trip is limited, not just the driver’s. In the school bus routing and
scheduling problem, the distance constraint also illustrates the difficulty of
modeling, through simple constraints, areal-life problem. To illustrate this,
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consider the 5-mile distance constraint discussed earlier. We found that this
simple constraint was actually unsatisfactory for this problem. For exam-
ple, if a student was only 1 mile from school, then it was not considered
desirable to have him or her end up traveling 5 miles on the bus. This stu-
dent (and maybe more vociferously his or her parents) would not consider
this an equitable solution. We therefore decided to implement what we call
arelational distance constraint. That is, for a multiplier «, say ¢« = 2, a
student could not travel on the bus for more than « times the distance the
student’s bus stop was from school. The question was then to what do we
set a. We determined that the best rule was to divide the region around a
particular school into concentric rings. For example, if the first ring was 3
miles in radius, then a stop that was d < 3 miles from the school would
have a distance constraint (on the bus) of «1d miles. Ring i was assigned a
multiplier o; and thiswasrepeated for each ring. Although it took sometime
to determine appropriate multipliers, eventualy thisis the type of distance
constraint that was implemented.

Waiting time constraint Another constraint that did not come to our attention

until we presented our routes to the inspectors was the waiting time con-
straint. Again, this is something that is specific to the routing of people as
opposed to packages. Consider a simple problem with two schools, school
A starting at 8am and school B starting at 9am. At 7:30 a bus picks up both
studentsfor schools A and B and then arrives at school A in thetimewindow
(say at 7:45) and drops off only those students that are going to school A.
Since school B starts at 9am, the buswaits for half an hour at school A until
proceeding to pick up some more students for school B and then arriving
at school B at 8:45 and dropping off all the students. A route of this type,
where students wait on the bus for half an hour, was definitely not deemed
acceptable. Therefore, we needed to add a constraint on the amount of time
a bus (with students on it) can wait idle. Five minutes was the number that
was eventually used.

Route balancing It is desirable that the routes in a solution be of similar dura-

tion and total distance. It does not seems fair if one driver serves morning
routes from 7am to 7:30am while another works from 7am to 9:30am. The
balancing of the workloads is partially achieved by implementation of a
route-balance() subroutine that is called once, at the end of the algorithm.
This subroutine essentially moves stops and schools from heavily loaded
routes to less heavily loaded routes while maintaining feasibility of the so-
[ution. This seemed to work very well.

Single route optimization Once a solution is determined, we may (and should)

optimize the sequencing of the stops and schools on each route individualy.
That is, given a set of stops and schools that can be feasibly served by one
bus, in terms of service level, what is the “best” route to actually drive?
An objective that guarantees a high service level is to minimize the total
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number of student-miles traveled (see e.g., Bennett and Gazis (1972)). For
each route created, we call a procedure called route-opt() which minimizes
the total number of student-mileswhile maintaining feasibility of the route.

14.8 The Interactive Mode

Aswementioned earlier, the completerescheduling of all busesmight only be done
once ayear (in August). However, throughout the course of the school year there
are quite a few small changes that must be made to the solution. These changes
could be caused by, for example:

e A school, which previously did not request bus service, requests service in
mid-year.

e A student changes address or schooal.
e A school’s session time changes.

Oneoption might besimply to reoptimizeall routesthat are affected by thechanges.
This might cause mgjor disruptionsin alarge number of routes. These disruptions
may trandlate to disruptions in the parents’ morning schedules which might over-
load the Office of Pupil Transportation telephone switchboard. In essence, it is
desirable to implement the changes while making the fewest disruptions to other
students' schedules.

This was the impetus for the development of the algorithm’s interactive mode.
Here it is possible to start the algorithm with a number of routes already created
and to simply add stops to or delete stops from these routes. Let's consider what
happens when a stop is added to an existing set of routes. The user has the ability
to select from one of three options:

e Complete reoptimization. This corresponds to starting the reoptimization
from scratch, that is, throwing away all previously created routes. Optimiza-
tion then starts with all new stops added to the list of stops.

o Singleroutereoptimization. This correspondsto sel ecting aroute and check-
ing whether a particular stop can be added to it. This is done through a
simple route-check() subroutine. In this case, the route may be completely
resequenced.

o Noreoptimization. Inthiscase, the stop issimply inserted between two stops
on existing routes without any reoptimization.

Deleting a stop is somewhat easier to do, the user simply clicks the mouse on
the stop in question and deletes it from the current solution. The fact that this
may actually render the remaining route infeasible is a good illustration of the
complexity of the bus routing and scheduling problem. Thisis due to the waiting
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time constraint mentioned in the previous section. In either case, the user can
specify whether a reoptimization of the route is desired.

These optimization tools proved quite useful as they provided simple ways to
test what-if scenarios; teststhat previously would have taken weeksif not months.

14.9 Data, Implementation and Results

To assess the effectiveness of our algorithm, we attempted to solve the problem
using the Manhattan data given to us by the Office of Pupil Transportation, that is,
to use our algorithm to generate a solution and to check it for actual drivability.

We solved both the morning and the afternoon problem. We first calculated
the shortest distance matrix between all 911 points of interest (838 stops and 73
schools) along the street network. We used aspeed of 8 milesper hour for theentire
borough. Thiswas the lowest average speed in Midtown Manhattan along a street
or avenue between 7am and 10am (thetimeinterval that the buswould betraveling
in the morning) reported by the Department of Transportation. We feel that this
average speed is quite conservative and a bus can on average travel more quickly.
One reason for this is that the measurement was made in Midtown Manhattan,
a location with very high congestion throughout the day. The algorithm was run
on aPC (486DX2/50 megahertz) under Windows over a period of severa hours.
To generate its first feasible solution, the algorithm takes about 40 minutes. We
repeated the algorithm 40 times keeping track of the best solution. The algorithm
has a detailed schedule and directions for each bus.

In order to determine the sensitivity of the resultsto some of the assumptionswe
have made, we ran the algorithm with several settingsfor the average travel speed.
We used 8 mph, 10 mph and 12 mph. Note again these speeds are conservative, as
we have a so taken into account the time to stop and pick up or drop off students.
The following table lists the number of buses used in the best solutions found for
each of these settings and for the morning and afternoon problems.

Table 1: General education routing

Universal || Number of Buses Used

Speed Morning | Afternoon
8 mph 74 67
10 mph 64 60
12 mph 59 56

Asacomparison, these solutions use substantially fewer busesthan are currently
in use. We do not expect that the number of buses used will be aslow asindicated
by our preliminary results, dueto the fact that the routes have not been checked by
theinspectors. However, it isreasonabl e to assume that they will serve asastarting
solution which can be modified by the inspectors.
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A Decision Support System for Network
Configuration

15.1 Introduction

In this chapter we present some of the issues involved in the development of a
decision support system for logistics network configuration. These are issues that
are often not dealt with in traditional operations research analyses. However, they
are essential in transforming raw data and problem characteristics to modeling
assumptions and input data for the models.

Network configuration may involve issues relating to plant, warehouse and re-
tailer location. As explained in Chapter 1, these are strategic decisions since they
have a lasting effect on the firm. In the discussion below, we concentrate on a
decision support system for the following key strategic decisions: (1) determin-
ing the appropriate number of warehouses, (2) determining the location of each
warehouse, (3) determining the size of each warehouse, (4) alocating space for
products in each warehouse and (5) determining which products customers will
receive from each warehouse. We theref ore assumethat plant and retailer locations
will not be changed. The objectiveisto design or reconfigure the l ogi stics network
S0 as to minimize annual system-wide costs including production and purchasing
costs, inventory holding costs, facility costs (storage, handling and fixed costs) and
transportation costs, subject to a variety of service level requirements.

In this setting, the tradeoffs are clear. Increasing the number of warehouses
typically yields:

e animprovement in service by reducing travel time to customers,

e an increase in inventory costs due to increased safety stocks required to
protect the warehouse against uncertainties in customer demands,
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FIGURE 15.1. The DSS screen representing data prior to optimization.

e an increase in overhead and set-up costs,

e areduction in outbound transportation costs; transportation costs from the
warehouses to the customers,

e an increase in inbound transportation costs; transportation costs from the
suppliers and/or manufacturers to the warehouses.

In essence, the firm must balance the costs of opening new warehouses with the
advantages of being “close” to the customer. In this way, decisions in warehouse
location are crucial determinants of whether the supply chain is an efficient channel
for the distribution of the products.

We describe below some of the issues related to data collection and the cal-
culation of costs required for the optimization models. In addition, we discuss
how these are performed in the context of a decision support system (DSS) for
distribution network design. Some of the information provided is based on lo-
gistics textbooks such as Ballou (1992), Johnson and Wood (1986) and Robeson
and Copacino (1994). Most of it, however, is based on our experience with the
development of a DSS, called LogicTools, that includes a geographic information
system (see Chapter 14), various database features and optimization tools. The lat-
ter is comprised mainly of an algorithm similar in nature (although incorporating
many more features) to the one described in Section 12.4. Figure 15.1 and Figure
15.2 present two typical screens that the user would see at different stages of the
optimization. One represents the network prior to optimization and the second
represents the optimized network.
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Maplitude 1.0

FIGURE 15.2. The DSS screen representing the optimized logistics network.
15.2 Data Collection

A typical network configuration problem involves large amounts of data. This
includes information on:

1. Location of customers, retailers, existing warehouses and distribution cen-
ters, manufacturing facilities and suppliers.

All products, including volumes, special transport modes (e.g., refrigerated).
. Annual demand for each product by customer location.

. Transportation rates by mode.

. Warehousing costs including labor, inventory carrying charges and fixed
operating costs.

=)

. Shipment sizes and frequencies for customer delivery.
7. Order processing costs.

8. Customer service requirements and goals.

Data Aggregation

Of course, a quick look at the above list suggests that the amount of data involved
in any optimization model for this problem is overwhelming. For instance, in a
typical soft drink distribution system there are between 10,000 to 120,000 accounts
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(customers). Similarly, in a retail logistics network, such as Wal-Mart or J. C.
Penney, the number of different products that flow through the network isin the
thousands or even hundreds of thousands.

For that reason, atypical first step is data aggregation. This is done using the
following criteria

e Customers located in close proximity to each other are aggregated using a
grid network or other clustering technique. All customerswithinasinglecell
or asingle cluster are replaced by a single customer located at the centroid
of the cell or cluster. We refer to a cell or a cluster as a customer zone. A
technique that is commonly used and which we have found to be effective
isto aggregate customers according to the five-digit zip code.

e Itemsare aggregated into areasonable number of product groups, based on

1. Didtribution pattern. All products picked up at the same source and
destined to the same customers are aggregated.

2. Product type. In many cases, different products might simply be vari-
ations in product models or style or might differ only in the type of
packaging. These products are typically aggregated.

Animportant consideration, of course, istheimpact onthe model’ seffectiveness
duetoreplacingtheoriginal detailed datawith the aggregated data. We addressthis
issuein two ways. First, evenif thetechnology existsto solve thelogistics network
design problemwiththeoriginal data, it still may beuseful to aggregatedata. Thisis
true, sinceour ability toforecast customer demand at the account and product levels
isusually poor. Because of the reduction in variance achieved through aggregation
(seeExercise15.1) forecast demandissignificantly moreaccurate at the aggregated
level. Second, various researchers report that aggregating datainto about 150-200
points usually results in no more than about 1% error in the estimation of total
transportation costs; see Ballou (1992) and House and Jamie (1981).

In practice, the following guidelines are used when aggregating the data.

e Aggregate demand points to between 150-200 zones.

e Make sure each zone has about an equal amount of total demand. This
implies that the zones may be of different sizes.

o Place the aggregated points at the center of gravity of the zone.
e Aggregate the products into 20-50 product groups.

Transportation Rates

The next step in constructing the distribution network design model is estimat-
ing transportation costs. An important characteristic of most transportation rates
including truck, rail and others, is that the rates are almost linear with distance
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and volume. We distinguish here between transportation costs associated with an
internal and an external fleet.

Estimating transportation costs for company-owned trucks is typically quite
simple. Itinvolvesannual costs per truck, annual mileage per truck, annual amount
delivered and the truck’s effective capacity. All this information can be used to
easily calculate cost per mile per SKU (Stock Keeping Unit).

Incorporating in the model transportation rates for an external fleet is more
complex. These rates typically belong to one of three basic types of freight rates:
class, exception and commodity. The class rates are standard rates that can be
found for almost all products or commodities shipped. They are found with the
help of a classification tariff which gives each shipment arating or a class. For
instance, the railroad classification includes 31 classes ranging from 400 to 13
which are obtained from the widely used Uniform Freight Classification. The
National Motor Freight Classification, on the other hand, includes only 23 classes
ranging from 500 to 35. In all cases, the higher the rating or class, the greater the
relative charge for transporting the commodity. There are many factors involved
in determining a product’s specific class. These include product density, ease or
difficulty of handling and transporting, and liability for damage.

Once therating is established it is necessary to identify the rate basis number.
Thisnumber isthe approximate distance between theload’ s origin and destination.
With the commaodity rating or class and the rate basis number, the specific rate per
hundred pounds can be obtained from a freight rate table.

The two other freight rates, namely, exception and commodity, are specialized
ratesused to provide either less expensiverates (exception), or commodity-specific
rates (commodity). For an excellent discussion, see Johnson and Wood (1986) and
Patton (1994). Most carriers provide an easy-to-use database with all their trans-
portation rates; these databases are typically incorporated as part of the decision
support system.

Mileage Estimation

Asinthe previous case study (Chapter 14), we can estimate distances using either
street network or straight line distances. Specifically, suppose we want to estimate
the distance between two points a and b. Since the decision-support system uses
a GIS, geo-coding makes it possible to obtain lon, and lat,, the longitude and
latitude of point a (similarly for point »). Then the straight line distance in miles
froma to b, D, iscalculated as follows

Dy, = 69y/(lon, — lony)? + (lat, — laty)?.

The value 69 is approximately the number of miles per degree (for the latitudes of
the continental United States), since longitude and latitude are given in degrees.
Thisequation is accurate for short distances only; it does not take into account the
curvature of the Earth. To measurefairly long distances and correct for the Earth’'s
curvature, we use the approximation (see Lindsey, 1996) suggested by the U.S.
Geological Survey:
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lat, — laty,

lon, — lony, )2
2

2
) + cos(lat,) x cos(lat,) x sin( >

Dy = 2(69)sin~2 \/sin (
Notethesin~! should return degreesin order for D, tobeinmiles. Theseequations
result in very accurate distance cal culations; however, in both cases the equations
underestimate the actual road distance. Therefore, to correct for this we multiply
D, by acircuitry factor p. Typicaly, p = 1.3.

Warehouse Costs

Warehousing and distribution center costs include three main components:

e Fixed costs. These capture al cost components that are not proportional to
the amount of material that flows through the warehouse.

e Handling costs. Theseinclude labor and utility costs.
e Storage costs. These are proportional to inventory level.

The first two cost components are fairly easy to estimate; the third is not so
simple. The problem isthat inventory, or storage costs, are proportional to average
inventory levels (see Chapter 9), and not to the annual flow of material through
the warehouse. To see this difference, suppose that during the entire year 1,000
units of product are required by a particular customer. These 1,000 units are not
required to flow through the warehouse at the same time. Thus, when constructing
the data for the DSS we need to convert these annual flows into actual inventory
amounts over time. To overcome this difficulty, we call upon a concept often used
by practitioners: the inventory turnover ratio. Thisis defined as follows.

annual sales

Inventory Turnover Ratio = - .
average inventory level

In our case, theinventory turnover ratio istheratio of thetotal annual flow through
thewarehouseto theaverageinventory level. Thus, if theratiois A, thenthe average
inventory level istotal annual flow divided by A. Finally, multiplying the average
inventory level by the inventory holding cost gives the annual storage costs.

Warehouse Capacities

Another important input to the distribution network design model are the actual
warehouse capacities. The question, of course, is how to estimate the actual space
required, given a specific annual flow of material through the warehouse. We use
the inventory turnover ratio again. As before, annual flow through a warehouse
divided by theinventory turnover ratio allows usto calcul ate the average inventory
level. Assuming a regular shipment and delivery schedule, such as that given by
Figure 9.1, it follows that the required storage space is approximately twice that
amount. Of course, in practice, every pallet stored in the warehouse requires an
empty space to alow for a convenient approach to the pallet. Thus, considering
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this space aswell as space for aisles, picking, sorting and processing facilities and
AGVs, we typically multiply the required storage space by a factor (> 1). This
factor depends on the specific application and allows us to more accurately assess
the amount of space available in the warehouse. A typical factor used in practiceis
3. Thisfactor would be used in the following way. Consider a situation where the
annua flow through the warehouse is 1,000 units and the inventory turnover ratio
is10.0. Thisimpliesthat average inventory per day isabout 100 units and henceif
each unit takes 10 square feet of floor space, the required space for the productsis
2,000 square feet. The total space, therefore, required for the warehouse is about
6,000 sguare feet.

Potential Warehouse L ocations

Another major part of the development of the model is identifying potential lo-
cations for new warehouses. Typically, these locations must satisfy a variety of
conditions:

e geographical and infrastructure conditions,
e natural resources and labor availahility,

e local industry and tax regulations,

e public interest.

Asaresult, there are only alimited number of locations that would meet all the
reguirements. These are the potential location sites for the new facilities.

Service Level Requirements

There are various ways to define service levels. For example, we might specify an
upper bound on the distance between every customer and the warehouse serving it.
Thisisdue to the requirement that a warehouse will be able to serveits customers
within areasonable time. A related service level requirement recognizes that for
some customers, maybe those in rural or isolated areas, it is harder to satisfy the
same service level asmost other customers. For this purpose, we define the service
level as the proportion of customers whose distance to their assigned warehouse
is no more than a given distance. For instance, we may require that 95% of the
customers are within 200 miles of the warehouses serving them.

Future Demand

Asobservedin Chapter 1, decisionsat the strategiclevel, whichincludedistribution
network design, have a long-lasting effect on the firm. In particular, decisions
regarding the number, locations and sizes of warehouses have an impact on the
firm for at least the next three to five years. Thisimplies that changesin customer
demands over the next few years should be taken into account when designing the
network. Our approach here isto use a scenario-based approach incorporating net
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present value calculations. For example, one generates various possible scenarios
representing a variety of possible states for demand over the planning horizon.
These scenarios can then be directly incorporated into the model to determine the
best distribution strategy.

15.3 The Basdine Feature

The previous section documentsthe difficultiesin collecting, tabulating and clean-
ing the datafor anetwork configuration DSS. Oncethisisdone, how do we ensure
that the data accurately reflect the network design problem? For this purpose we
use what we call abaseline feature. Thistool isan integral feature of the decision
support system. It serves two main functions. It allows the user to:

(a) reconstruct the current existing network, and
(b) perform aset of “what-if” scenarios.

The importance of (a) cannot be overstated. The baseline feature presents the
user with the current state of operation. It lists al costs, including warehousing,
inventory, production and transportation costs generated under the current network
configuration. These data can then be compared to the company’s accounting in-
formation. In our experience, it usually identifies errors in the data, problematic
assumptions, modeling flaws, etc. For instance, in one implementation, the trans-
portation costscal culated by the baselinefeaturewere consistently underestimating
the costs suggested by the accounting data. After a careful review of the distribu-
tion practices, we concluded that the effective truck capacity was only about 30%
of thetruck’s physical capacity. That is, trucks were being sent out with very little
payload. Thus, the baseline feature not only helped calibrate some of the parame-
tersused in the model but also suggested potential improvementsin the utilization
of the existing network.

The second feature also plays an important role in making the user “believe
in” the system. The baseline feature allows the user to make local changesin the
network configuration and estimatetheir impact on costsand servicelevels. Specif-
ically, this step involves positing a variety of “what if” questions. This includes
estimating theimpact on system performance of closing an existing warehouse. Or,
to give another example, it allows the user to change the flow of material through
the existing network and see the changes in the costs.

Itisour belief that abaseline feature as suggested aboveisauseful tool because
it makes the connection for the user, between the current operation, which the user
can see in the baseline feature, and possible improvements, after optimization. In
our experience, thisis a critical factor in determining how well the DSS will be
received.
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15.4 Flexibility and Robustness

One of the key requirements of any decision support system is flexibility. In the
context of distribution network design, we define flexibility as the ability of the
system to incorporate a large set of preexisting network characteristics. Indeed,
in our experience, many users want their system to be able to make decisions of
increasing flexibility. At one end of this spectrum is complete reoptimization of
the existing network. This means each warehouse can be either opened or closed
and all transportation flows can be redirected. At the other end of the spectrum we
find users that may want the optimization to incorporate the following features.

1. Customer-specific service level requirements.

2. Existing warehouses. In most cases, there are warehouses aready existing
and the lease has not yet expired. Therefore, the model should not permit
the closing of the warehouse.

3. Expansion of existing warehouses. Existing warehouses may be expandable.

4. Specific flow patterns. In avariety of situations, specific flow patterns (from,
say aparticular warehouseto aset of customers) may not need to be changed.

5. Warehouse-to-warehouse flow. In some cases, material may flow from a
warehouse to awarehouse.

The decision support system must have the capability of dealing with all these
issues with little or no reduction in its effectiveness. The latter requirement is
directly related to the so-called robustness of the system. This stipulates that the
relative quality of the solution generated by the system, that is, cost and service
level, should beindependent of the specific environment, the variability of the data
or the particular setting.

Another important requirement is that the system running time be reasonable.
Of course, asdiscussed in Chapter 1, theterm reasonabl e depends on the particular
problem at hand.

In the next table, we report running times, in seconds, on an IBM PC 166MHz
machine for a variety of problem sizes. The results are given as a function of
various parameters. In all cases, the number of potential locations for warehouses
is 32, the number of suppliersis 9 and the numbers of productsisalso 9. In each
case, we require that the distance between a customer and a warehouse serving
it will be no more than 100 miles. The optimization was terminated when the
relative difference between the cost of the solution generated and the optimal
cost was within a specified gap. Thus, the column “Running Time 5%" provides
the running times when the gap is 5%, while “Running Time 1%” provides the
running times when the gap is 1%. Finally, these six test problems represent real-
world data that we have received from a producer and distributor of soft drinksin
the Northeastern part of the United States.
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Table 1: Running times

Number of | Number of | Running | Running

Customers® | Warehouses | Time5% | Time 1%
144 6 64s 106s
144 5 95s 209s
144 4 99s 227s
73 6 31s 60s
73 5 19s 54s
73 4 20s 37s

* after aggregation.
15.5 Exercises

Exercise 15.1. Consider n independent and identically distributed random vari-
ables, Xq, Xo,..., X,. Let S, = ,—112?:1 X;. Find the variance of the random
variable S,, as afunction of the variance of X;.
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