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Preface 

IVe teach a course on Dzstrzbutzon Logzsttcs at  the Faculty of Engineering 
and Management at Politecnico di Torino. After an initial teaching experi- 
ence based on assembling diverse material from various origins, we reluctantly 
accepted the painful idea of writing our own textbook. 

l l any  books have been published on Supply Chain Management and Distri- 
bution Logistics. and the list includes some truly excellent ones. Still. we felt 
that there was some place for this book. IVe perceived a sort of dichotomy be- 
tween very advanced books aimed at  mathematically gifted (possibly Ph.D.) 
students, and all-encompassing manuals. which did cover a lot of topics in an 
excellent manner, but did not emphasize the quantitative approach in a way 
that we consider suitable for Engineering students Our hope was to write 
a book that (i) focuses on a rather narrow set of themes related to Supply 
Chain hlanagement. (ii) is quantitatively oriented. while still not neglecting 
issues that are difficult to quantify; (iii) shows how to build models to make 
logistic decisions. but still discusses practical issues and uses real-life examples 
to hopefully guide the reader through the hazards of Mathematics, Statistics, 
and Optimization. 

In what follows. there is extensive use of tools from Probability. Statistics, 
and Mathematical Programming. In order to make the book as self-contained 
as possible, and to enlarge its potential audience, we included extensive appen- 
dices on these topics. Thus, while the book requires some level of rnathemati- 
cal maturity, it can be used by students (both at  graduate and undergraduate 
level) in such diverse areas as Engineering. Business Administration. Eco- 
nomics, Mathematics and Statistics, and (last but not least) by the potential 
users of the proposed methodologies 

We do not want to encourage an uncritical use of algorithms and sophis- 
ticated models in place of intuition and common sense. A classical example, 
from the Just in Time folklore. is the Japanese attitude towards setup times: 
There is little point in building complicated mathematical models to  manage 
production with setup times, if they can be eliminated by proper improve- 
ment of manufacturing. However. there is a steady increase of commercially 
available software packages including quantitative-based procedures. and we 

X / i /  
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think that a good working knowledge of quantitative models and methods is 
needed, first of all, to use these tools with care and to be fully aware of their 
up- and down-sides. The limitations of mathematical modeling lead many 
students to identify theoretzcal with no t  practical. On the contrary, as James 
Clerk Maxwell (apparently) put it 

There  i s  nothing more  practical t h a n  a good theory.  

There is no contradiction between good theory and good applications, ruling 
out those bad "applications," in which it is hard to see what  was applied 
exactly. A suitably simplified, but formal representation is valuable in un- 
derstanding the nature of problems, in assessing tradeoffs, and in developing 
solution approaches or alternative strategies. This is not to say that there is 
no danger in relying only on quantitative modeling, or that they guarantee 
the success of our endeavors: One can tackle the wrong problem. or solve it on 
the basis of unreliable data. or finding a theoretically optimal solution which 
cannot be applied, due to  some neglected organizational constraint. Still. only 
an expert and competent decision maker can find the right balance between 
conflicting requirements, possibly adapting the proposed solution to  fully ac- 
count for unmodeled features of a real-life problem. A strong background in 
quantitative modeling allows a practitioner to make the most out of them or, 
when the context so dictates, to  knowingly avoid the use of an inappropriate 
tool. 

When tackling any management problem, a practitioner needs a clear view 
of the environment in which a firm operates and of its positioning in terms of 
strategies and competition levers. All of this conjures up the idea of something 
inherently "creative" and definitely in contrast with the "mechanistic" flavor 
of quantitative approaches. Again, this is a false myth. It is often said that in 
mathematics there can be no opinions, and this is certainly true for low level 
algebra. But the way mathematics is applied to tackle a relevant problem does 
require a fair share of creativity and ingenuity: We must spot the subset of 
relevant variables. the objective to  pursue. and the options at  hand. All of 
this is far from boring routine. and we hope that in writing this book we can 
share our enthusiasm for tackling and modeling distribution problems with 
the reader. 

The book consists of eight chapters: 

Chapter 1 is an overview of Supply Chain Management. with the aim of 
providing the appropriate context and to  draw the line between what is 
included in the book and what is not. 

Chapter 2 deals with distribution network design problems. With respect 
to  the following chapters. this one deals with issues at a strategic level. 
and it relies more heavily on mathematical programming models. 
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Chapter 3 is dedicated to several forecasting models. We include classi- 
cal topics in time series forecasting, with some additional emphasis on 
initialization and testing issues. 1t-e also deal with regression based 
modeling. and forecasting demand for new products. 

Chapter 4 offers basic background in classical inventory control models as- 
suming deterministic demand, such as the Economic Order Quantity 
model and some of its variant. With respect to  standard literature, we 
also emphasize parameter uncertainty issues. multi-item problems, and 
mathematical programming models for multi-period problems. 

Chapter 5 covers several models for inventory management subject to un- 
certain demand. assuming a single facility. 

Chapter 6 outlines issues in multiechelon inventory systems. This is a very 
difficult topic, requiring considerable background: hence, we have lim- 
ited the treatment to some simple cases in order to let the reader ap- 
preciate the issues involved. 

Chapter 7 covers incentive issues in a supply chain where multiple actors 
interact with conflicting views and objectives. This is a relatively un- 
usual topic in distribution logistics books, bordering with Industrial 
Economics. Unlike other chapters. the models we present here are not 
really operational, but aim at shedding some light on basic problems 
and concepts that can be used to  tackle them. 

Chapter 8 is relatively independent from previous ones. as it provides the 
reader with the essential background on the operational problem of Ve- 
hicle Routing. This problem lends itself to  quite sophisticated conibina- 
torial optimization strategies. but just provide the reader with the basic 
knowledge to understand the basic strategies that are used within some 
commercially available software packages. 

Finally. we have included two relatively extensive appendices on Probability 
and Statistics and Mathematical Programming. 

As you may see, we do not cover physzcal distribution logistics and mate- 
rials handling. There are other important topics which are omitted. such as 
supplier management. and discrete event simulation. Indeed, we did not aim 
at writing a comprehensive manual dealing with all of the topics which are re- 
lated to Supply Chain llanagement. There are voluminous handbooks which 
have been written with this aim, whereas we wanted to provide students and 
practitioners with a solid background on quantitative approaches. in order to 
pave the way for their extension and adaptation to  real life problems. m-ith all 
of their nuances and peculiarities. 

T1-e should also mention that, in our teaching. we complement our lecture 
notes with the discussion of business cases. mostly froin the rich library of 
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the Harvard Business School, and software development laboratories. The 
interactive nature of these fundamental additional activities does not lend 
them to text book coverage. 

Despite the best of our efforts, typos and mistakes are a fact of life when 
writing lengthy books. We will be grateful to  readers who will be kind enough 
to share their opinions or criticism. and will point out our mistakes. A list of 
errata will be posted and maintained on the following Web page: 

http://staff.polito.it/paolo.brandimarte/ 

Courtesy of Murphy‘s law, our Web manager will decide that all of our URLs 
have to change a few days after publication of the book. An up-to-date link 
will be maintained on the following Wiley Web page: 

http://www.wiley.com/mathematics 

We also plan to  post some supplements on topics that we have omitted in 
order to  keep the book to  a manageable size. Some web sections are already 
integrated within the book, and they are characterized by a section numbering 
starting with ‘W’ (e.g.. web section W.2.5). Overly technical sections are left 
as supplements at the end of chapters; they are characterized by a section 
numbering starting with ‘S‘ (e.g., supplement S.5.8) 

As a final remark, although the book is the result of a joint effort, chapters 
1, 2, 8, and appendices A and B can be attributed to  the first author (PB); 
chapters 3, 4. 5. 6, and 7 can be attributed to the second author (GZ). 

PAOLO BRANDIMARTE 

GIULIO ZOTTERI 

paolo.brandimarte@polito.it 

giulio.zotteri@polito.it 

Politecnico di Torino 
May 2007 



Supp ly  Chain 
Man ag em ent 

1.1 WHAT DO WE MEAN BY LOGISTICS? 

Logistics has quite a long history, n-hose origins predate by far the initial at- 
tempts to  make it “scientific.” Many engineering schools were born because 
of the need for building better militar?; fortifications and weapons. Logistics 
followed a pattern common to t,hat of many fields in engineering: Military 
applications gave an important impulse to its development. Sl‘hile relatively 
small armies in the past could sustain theniselves also by robbing local pop- 
ulations, proper management of supplies mas required at  later tinies to  sup- 
port larger armies in need for ammunition and a significant amount of food. 
Yapoleon. who is acknowledged with the motto ’.An army marches on its 
stomach.“ is considered an innovat,or in this respect. because (what me non- 
call) supply chain management afforded his armies a far greater degree of mo- 
bility than his rivals. Logistics has played an iricreasing role in later conflicts: 
like the American Civil War (ACW). where transporting supplies and troops 
was accomplished by an array of transportation means including siipply wag- 
ons. rail, ships, and (in the IlTestern Theater) rivers. The role of logistics can 
be appreciated by considering how the availability of supplies is of no use if 
the supplies cannot be roukd to destination, whereas clever organization may 
make good enough use of scarce resources. A paradox in Confederate logistics 
during -4CW was that an economy strong in agriculture and weak iii industrial 
power. compared to its Union counterpart, succeeded in maintaining a flow 
of weapons and ammunitions, whereas t,roops often starved because of lack of 

1 



2 SUPPLY CHAlN MANAGEMENT 

f0od.l Indeed. some military academics are reported to  say that “amateurs 
study tactics, professionals study logistics.” 

Military applications continued to play a prominent role in the develop- 
ment of scientific logistics in the 20th century.’ The quantitative approach 
t o  management problems is typically associated with Operations Research, 
whose origin can be attributed in part to  the need of managing the supply 
chain across the Atlantic Ocean during World War IL3 However. we should 
not think that the scientific approach to  logistics is that recent. For instance. 
the well-known Economic Order Quantity (EOQ) formula for inventory man- 
agement dates back to the early 20th century, since it was published in 1913*: 
furthermore, the manifesto of Taylorism5 was published in 1911, but its roots 
can be traced back to a rationalization process in manufacturing, which had 
been quite active during the 19th century. 

Given this long history. we should not be surprised that the term *‘Logis- 
tics“ has now a rather wide and often ambiguous meaning. Indeed. several 
professional and academic organizations have attempted to draw the line, 
pointing out what we should mean by this term. The U S Council of Logis- 
tics Management proposed the following definition: 

Buszness logzstzcs zs the  t e r m  descrzbang the  zntegrataon of two or more 
actrvztzes for the  purpose of plannzng, zmplementzng and controllzng the  
e f iczent  flow of raw materzals, an-process znventory and finzshed goods 
from the  poznt of orzgzn t o  poznt of consumptzon These  actzvitzes m a y  
znclude, but are no t  lzmzted t o  cus tomer  servzce, demand forecastzng. drs- 
trzbutzon communzcatzons,  znventory control. materzal handlzng, order 
processzng, parts and servzce support ,  plant and warehouse sate selec- 
tzon, procurement,  packagzng, re turn  goods handlzng. salvage and scrap 
dzsposal, t r a f i c  and  transportatzon and warehouszng and  storage. 

The term busaness logastzcs emphasizes a separation from other fields. such 
as urban transportation. which could be included in a more general notion 
of logistics. The definition we have reported is not very recent. as it dates 
back to 1979, but it includes both management issues and material handling 
issues. which are more physical in nature. This book is only concerned with 
management issues, not with physical activities which might be labeled as 

ISee: R.K. Krick. The Power of the  Land. in: A. Sheehan-Dean (editor), Struggle for Q 

Vast Future: the American Civil War ,  Osprey Publishing, Oxford. 2006. 
2Those of us  who are sane enough not t o  appreciate the  grim ar t s  of war too much, may find 
some consolation in thinking tha t  the  same approaches can be used t o  route huge amounts 
of essential supplies. in a short time span, to  areas struck by natural disasters. 
3Another element in the birth of Operations Research was queuing theory, initially de- 
veloped t o  model telephone traffic. It is worth remembering tha t  the celebrated simplex 
method to  solve linear programming problems was developed in 1947 by George Dantzig. 
who worked for U.S. Air Force. 
4See: F.W. Harris. How many parts to  make at once. Factory: the Magazzne of Manage- 
ment. Vol. 10: 1913. pp. 135-136. Reprinted in Operations Research, 1990. Vol. 38, pp, 

5F.\V. Taylor. The Prznczples of Scientific Management. Harper 6r. Row. New York. 1911. 
947-950. 
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..industrial" logistics. This is certainly- not to say t,hat industrial logistics 
has a lesser role. or that  there is no interconnection between hardware and 
managerial issues. Some management activities have no sense if the underlying 
physical process is not properly designed and if certain technolo,' uies are riot 
exploited. Our aim is to define a consistent, and relatively limited scope. 
in order to  offer a pedagogical treatment of selected material at R suitably 
deep level. rather t,lian offering a superficial handbook covering all possible 
topics. As we stress below? solid foundations are essential to any practitioner. 
as general principles have to be twist,ed and adapted to many cli\wse and 
peculiar settings. and a superficial listing of cookbook recipes is actually of 
little use. if not counterproductive in case these recipes are applied improperly. 

Apparently. the definition above includes too many things. However. mod- 
ern integration trends have given rise to  Supply Chain Mariagenient (SCU) 
as an almost all-encompassing discipline. On the supply side of the chain. in- 
creasing emphasis is given to  supplier relat,ionships management, purchasing. 
and contract design. On the other end of the spectrum. customer relation- 
ships management (CRhI) is another example of an issue which is gaining 
relevance. Information Technology (IT) had a dramatic impact too. thanks 
to the rise of Internet. which made electronic commerce. online auctions for 
products and services. and the sharing of large databases possible. As far as 
inforniat ion sj-stems are concerned. t,he int,roduct,ion of Enterprise Resource 
Planning (ERP) systems has made the case for the interconnection with other 
functional areas, such as manufacturing.6 accounting. etc. And if' this does 
not look confusing enough, the list of complications could go on and include 
other factors: 

0 The reduced lifespan of products arid the need for customization i n i p l ~  
that the supply chain has to be continuously redesigned. Even product 
design may interact 1% ith logistics. For instance. design for supply chain 
iriariagenient has bwn successfullj- applied by He~Ie t t -Packard .~  

0 Globalization has introduced a new array of risk factors which impact 
SCSI. such has exchange rate risk and. at a higher level. political risk. 

0 The availability of several transportation modes and the concentration 
of production into large sites have a deep impact on transportation 
managmient . 

Erndeed. in many practical settings. we cannot deal with distribution logistics n.ithout 
paying due attention to  production. From a methodological point of view-. man:; models and 
modeling techniques we illustrate in the book are often included in books on rnanufacturirig 
management. 
'See: H.L. Lee, C. Billington. and B. Carter. 1993, Hewlett-Packard G H ~ I J S  Control of 
Inventory and Service through Design for Localization. Interfaces. Vol. 23. yip. 1-11. 
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Revenue and yield management' have a prominent role in the air trans- 
portation and in the service industry, but they are likely to see an in- 
creased role in distribution too (think of price cuts at the end of the 
selling season in many retail chains). 

0 Environmental issues dictate that  we also pay due attention to reuerse 

All of the above, and more. has something to do with Supply Chain Manage- 
ment. Trying to  cover such a wide spectrum or topics and issues in one book 
is a hopeless endeavor, unless one is willing to just compile a list of buzzwords. 
We believe that students (and practitioners) should have a firm grasp of basic 
principles of distribution logistics. Armed with a solid background, they can 
tackle new developments with confidence. Quantitative models and methods 
play a fundamental role in developing basic skills. and indeed this book is 
more quantitative oriented than others in this area. However, we did not aim 
at writing a high-level research survey for Ph.D. students. We only outline 
problems and solutions. using both toy examples to  build intuition and real 
cases when appropriate. Moreover, we should never forget that  quantitative 
models may be implemented in a computer program, but they are ultimately 
applied by people. People have incentives, possibly unwritten ones; this ap- 
plies both to  single individuals and to  organizations. Indeed, distribution 
logistics typically crosses borders between organizations. and understanding 
incentives and organizational barriers is a prerequisite to  successfully apply 
any "scientific" solution. 

logistics. 

1.1.1 Plan of the chapter 

After insisting on what we do not include in the book, we would better explain 
what we do include. This chapter lays down the foundations for the next ones. 
according to the following plan. 

0 A distribution network is characterized by a physical arrangement of 
facilities, such as warehouses and transit points. on a possibly wide geo- 
graphical area. In section 1.2 we illustrate typical structures of distribu- 
tion networks. The physical arrangement of facilities does not tell the 
whole story. as goods flow in the network by some transportation means 
(e.g.. trucks or rail). Inventory and transportation management strate- 
gies contribute to the definition of a distribution network. Furthermore. 
information flows must be described too. 

When designing a distribution network, we should make our decisions 
There is no single "one- in a way that supports a specific strategy. 

sRevenue and yield management are essentially dynamic pricing policies. They have a 
prominent role in the case of goods which cannot be stored, such as seats on an  aircraft; 
transportation services can also be priced dynamically. as well as perishable items. 



WHAT DO WE MEAN BY LOGISTICS? 5 

best-way" strategy that works in all possible settings. A >trategy is 
a compromise between the need of achieving a good competitive posi- 
tion, according to  a selected profile. and the need of keeping costs low 
Competitive factors. cost drivers. and possible strategies are outlined in 
section 1.3. 

0 A distrihution network typically includes locations in which goods are 
stocked. Common wisdom maintains that inventories are the source of 
a long array of evils and should be kept as low as possible. In fact. 
inventories are a source of many relevant costs. but they play specific 
roles in achieving a certain competitive position. Hence. they must be 
properly managed and we should have their functions very clear in rnind 
Section 1.4 illustrates the roles of inventories. 

0 A recurring t,heme in t,his book is uncertainty. Demand iincertainty 
is the single most relevant complicat,ing factor in dist,ribution logistics. 
Good forecasting procedures may be used to  predict future deniand, 
but they can only reduce rather than eliminate uncertaints. Even if 
uncertainty cannot, be eliminated. it can be managed. In section 1.5 we 
start outlining a few ways to deal with uncertainty. 

0 Goods move on a dist,ribution network. from factories in which they 
are produced, through warehouses and transit points. to retail stores. 
Nanagiiig transportation is another relevant, piece in the overall puz- 
zle. Section 1.6 illustrates some basic wa>-s to  define a transportation 
st,rategy. 

0 The flow of goods is what is typically associated to logist,ics. but the 
flow of information is just as import,ant. Any decision procedure is 
based on some piece of information, but without informat,ion sharing. 
certain procedures are simply not feasible. Information sharing may be 
difficult in a large firm consisting of several branches: let alone a supply 
chain involving different firms. Furthermore, assigning decision rights in 
a supply chain involving several actors is not a trivial task. Section 1.7 
outlines a few issues related to  information, incentives. and decisicxis. 

0 The structure of a net>work is something that should not change too 
quickly-. since the decision to build a facility may be made considering 
a relatively long tinie horizon, say years. A recent tendency is t'o lease 
warehouses, which contributes to shorten the time span of these deci- 
sions9 Nevertheless. moving all the goods from an old wirehouse to 
a iielv one is not something we want t,o do on a monthly basis. On 
the contrary. a change in the inventory management, strategy c:m be 

"Another factor which calls for frequent changes in the  supply chain is the reduced liftxycle 
of products. 
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Fig. 1.1 Linear logistic structure 

achieved on a shorter time span, and transportation must be managed 
daily. Hence. different decisions may have different time horizons and 
pertain to various hierarchical levels. In section 1.8 we introduce strate- 
gic. tactical, and operational decisions. These should be regarded as 
loose guidelines. since sometimes it is hard to draw the line between the 
levels. due to  tight interactions between different them. 

0 There are some recurring expressions in Distribution Logistics, and more 
generally in Operations Management, such as make-to-stock. make-to- 
order. push. and pull. They have raised quite a bit of controversy, 
as sometimes they are used ambiguously. Indeed. they do not really 
define specific strategies, but they do define attrzbutes of possibly hybrid 
decision strategies. In section 1.9 we illustrate the meaning of these 
terms as features of decision strategies. 

0 Last but not least, to tackle all of the above problems we may take ad- 
vantage of models and methods. Quantitative approaches play a promi- 
nent role in the book, which is not to say that they should be applied 
with a blind faith in their power. Section 1.10 helps in classifying quan- 
titative models. including those which are quite useful but are not dealt 
with here: the most notable example is discrete event simulation. 

1.2 STRUCTURE OF PRODUCTION/DISTRIBUTION NETWORKS 

From a physical point of view. a supply chain consists of possibly several stages 
where items are produced. transformed. assembled. packaged. and distributed 
to consumers. The simplest structure is illustrated in figure 1.1, where vie see 
a linear arrangement of nodes. Each node in this chain can be more or less 
complex. The first node is likely to  be a factory. where items are produced: 
we deal with this node as a black box, but a manufacturing system would 
consist in turn of several machines. laid out according to a certain pattern. 
From our distribution point of view. these details are not quite relevant per 
se. However. the arrangement of the manufacturing system has a definite 
impact on performance measures such as flow time, i.e., the time that an 
order takes to go through all of the stages required by its technological cycle. 
The manufacturing flow time is clearly relevant from the supply chain point of 
view. Thus, we do not investigate the internal structure of the nodes and treat 
them as black boxes. However, the performance (cost, lead time. etc.) of each 



STRUCTURE OF PRODUCT/ON/DISTRlBUTlON NETWORKS 7 

F/g 1 2 Supply chain striicture with assemblies. 

black box is very relevant to  11s. The network could be extended to the left. 
and include the production of raw materials. but any analysis has to focus on 
a portion of the overall chain. Proceeding to the right in the figure, we may 
find other stages at which mat,erial is transformed: we should pay attention 
to the increase in value of the product. which affects the oarerall economic 
performance of the network. After the whole chain of transformations. the 
products may flow through other st,ages. at which material is simply stocked in 
a warehouse. until the retail st,ore is reached. Factories may have invent,ories 
too. both inbound and outbound. 

Along a linear chain. we may have transformations aiid transportat,ions of 
items. However. assembly of components into elid items is a coiiniion occur- 
rence. \Then items from different sources are assembled. we get a converging 
structure like t,hat illustrated in figure 1.2.  Readers with a miiiiufacturing 
background could be tempted t,o int,erpret the convergent network in the fig- 
ure like a bill of materials. i.e., a technological representation of lion- an end 
item is obtained by assembling components arid possibly complex suba 
blies. hctual1;v. what we are representing here is the geographical structure of 
the network. where components can be prodiiced in a continent anti assembled 
in another one. In a convergent net,n.ork. we clearly see the need for proper 
synclironization in the material flow: If n-e miss even one. possihl\- lon.-cost 
component, n-e cannot assemble the product we need. 

Finally. figure 1.3 illustrates an arborescent (or divergent,) network n-hich 
is typical of pure dist'ribution. Here node 1 could be a large warehouse lo- 
cated near a factory producing an item. nodes 2 and 3 might be regional 
hrarehouses. aiid the remaining nodes could be retail stores (in a r t d  network, 
there would be much more retail stores than depicted). In a pure distribution 
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fig. 1.3 Pure distribution (arborescent) network. 

network, the product is always the same." However. whenever material is 
transferred downstream, we commit it to a certain section of the network. 
Such an allocation decision is absent in the previous cases. and it must be 
made with care when material availability is scarce. One could wonder why 
intermediate stages are needed; after all, they are a cost. We will consider the 
roles of intermediate stages in depth in chapter 2.  Intermediate nodes might 
help the company in exploiting economies of scale in transportation and/or to 
reduce the impact of demand uncertainty. We should note that intermediate 
nodes can be distribution warehouses, but they can be also simple transit 
points with no facility to  store inventory; alternative terms for the last case 
are "transshipment nodes" or "cross-docking platforms." 

The three structures we have illustrated are just basic prototypes. A real- 
life supply chain is a hybrid of all of them. with many variations. For instance. 
in the distribution network of figure 1.3. material flows downstream according 
to a regular pattern. stage by stage. In practice. some retail stores could be 
served directly from node 1. m-e will see that this depends on the demand 

l0The lack of physical transformations does not imply that  the cost of items does not 
change: as an example. consider customs duties we may have to pay when crossing certain 
borders. 
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volume; when this is large enough: we do not need intermediate nodes to take 
advantage of economies of scale in transportation. For example. we might 
be in a posit,ion t,o fill a full truck leaving the warehouse to visit a given 
store. Another variation, with respect, to scholastic cases. is the rwerse flow 
of materials. In the previous figures, we see mat,erial flowing downstream. but 
recycling and t,he need to collect waste call for proper management of reverse 
logistics. The increasing concerns for t,he environment make such i sues  more 
and more relevant. Finally. we may have flows of materials between peer 
nodes. i.e., stages which are located at the same level in the network. These 
lateral shipments can be used to reallocate material among stores of large retail 
chains in case one is experiencing a stockout and another is overstocked. 

A network design problem calls for structuring a possibly large supply 
chain. locating facilities. deciding t,heir capacity. and optimizing t,he trans- 
portation of material among them. This is a very difficult task. as we shall 
see in chapter 2.  Fortunately, we are often interested in the partial  redesign 
of a network. which makes the task considerably easier. However: the shorter 
and shorter life cycle of product's calls for the continuous redesign of supply 
chains.' 

1.3 COMPETITION FACTORS, COST DRIVERS, AND STRATEGY 

IVhen managing a supply chain, the natural aim is providing thc customer 
with a suitably good service. and doing so at a suitably low cost'. By "good 
service;" we mean that the customer should get U J ~ U ~  she wants. u ! k m  she 
wants it,  and how she want,s it. Ot,her fact,ors could be relevant. siicli as after- 
sales service, but even if we focus on the minimal set of attributes that make 
a good service. we see that, there is no single dominant strategy: There is no 
possibility of being first in class along all possible dimensions, a t  a reasoiiable 
cost. Il'liat we need is a clear view of the dimensions on which we compete. 
in order to  get priorities straight. In t,lie following sections we illustrat'e a 
few examples of attributes which define competition factors: theii we list a 
few sources of cost that we must keep under control: finally, we illustratc, how 
all of the relevant dimensions can be traded off: b>- prioritizing compet itioii 
factors to  define a strategy. 

1.3.1 Competition factors 

Say that you are a customer wishing to buy a certain good. IVliat are the 
attributes that are import,ant, to you? Probably; most people would point out 
quality requirements. Of course. quality of the goods is key factor influencing 

' 'Hewktt  Packard provides an excellent example of using software tools bawd on quanti- 
tative methods to design supply chains in a dynamic environment: see [2]. 
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consumers' choice, but it is itself a complex concept encompassing multiple 
dimensions. The quality of a car can be measured through the number of 
safety features, the top speed. gas consumption, acceleration. etc. Lloreover. 
quality can be measured through the target qualzty (i.e., the quality the prod- 
uct should have, according to  its design) and conformance qualzty (i.e., the 
ability of the single item to meet the target quality over time). & i o .  the qual- 
ity of the good could be traded off against price, depending on which market 
segment we want to address. Moreover. quality is relevant not only in terms 
of goods, but also in terms of serwzce. Indeed, there are complementary ser- 
vices which may contribute to  establish a reputation. Consumers can return 
the merchandise they bought to many mail retailers (as well as to brick and 
mortar retailers in countries such as the U.S.A.). Other services are more and 
more relevant in times of increasing environmental concerns: we have already 
mentioned the role of reverse logistics and the possibility of returning packag- 
ing materials. used products, etc.. which contribute to the positive image of 
an environmentally responsible supplier. After-sales services are specificall?. 
important for durable goods whereas installation support is very important 
for complex systems such as high-end audio and video systems. 

If we think of distribution services per  se. fast deliver>- may be important. 
but dependabzlaty may be even more. So. waiting for a long Delivery Lead 
Time (DLT) may be unpleasing. but a very uncertain and unreliable DLT 
may be even more annoying. In fact the possibility of tracking shipments 
or to check order status. possibly via Web. is typically offered by couriers. 
such as DHL and Fed Ex, by Internet-based sellers. and service centers of 
non-durable goods. From the consumer's point of view. DLT must be zero 
for some products: No one would like to  wait a few days for a bottle of milk. 
However. the DLT for milk is not zero from the point of view of the retail 
store or of other actors along the supply chain. Yet, we will see that a zero 
DLT may make the management of inventories much easier. On the one hand 
a non-zero DLT provides us with some advance information that can help us 
improve performance (e.g., reduce inventories or increase service level). On 
the other hand. exploiting this information is all but trivial and complicates 
modeling substantially. 

At the other end of the spectrum, engineered-to-order items have a long 
DLT: No one would expect to  find a radar system on the shelves. In between 
these extreme cases, there is an array of intermediate possibilities. DLT is 
linked to the structure of the network. the transportation means adopted. and 
the inventory levels and their deployment in the network. If large amounts 
of goods are held near the customers (say at the stores). DLT is short: it can 
also be reduced if quick but costly transportation services are used. So. we 
see that there is a tradeoff between DLT and different types of cost. 

Example 1.1 CHL is an Italian retail chain of information technology prod- 
ucts. An important feature of its strategy is that it does not maintain inven- 
tories a t  retail stores, which are just used to collect orders and to deliver items 



COMPETITION FACTORS, COST DRIVERS, AND STRATEGY 11 

to customers. This results in a significant ieduction in inventor? levels. which 
is particularl? relevant for itenis characterized by very fast obsoleicence and 
thus high cost of inventories. 0 

Another relevant competitive weapon is assortment. i.e.. the variety of prod- 
ucts offered. For a manufacturer, this means offering a large catalogue and the 
possibility of customizing an end itern according to customers' wishes. For a 
retail store. this means offering a large set of alternative it,ems on its shelves. 
In bot,h cases. n-e see t,hat variety comes at a cost. Also, we can trade off as- 
sortment with DLT. If products are customized to order. we need some time 
for this operation and customers shall be willing to  wait. If you offer a .large 
assortment with zero IILT, you have to keep a lot of items in inventory. each 
one with a possibly low arid hardly predictable demand. However, variety 
may be an important and valuable asset to attract customers. Indeed, there 
may be a positive feedback, when variety increases demand, thereby easing 
some of the difficulties associated with low levels of demand. 

Another relevant feature of the supply chain is t,he flexibility. that is the 
ability to  adapt to changes and exceptional conditions. For example, a flexible 
supply chain can fulfill an extremely important order in an exceptionally short 
time. Jf:e can have different kinds of flexibility according to the variable that 
raises the need for a change. Sje call product flexibil i ty the ability to adapt 
the product to customers' needs. For example. the ability to configure the 
product to cust,onier specifications might be criicial for complex products such 
as furniture or cars. A company that carries inventories of components and 
assembles them to order usually can achieve a great deal of flexibility with 
limited resources (provided customers are willing t,o wait while components 
are being assembled). Think of the large number of different sandwiches 
one can prepare with just a fern basic components! SJ'Te call f l m i h i l i t y  t o  
product innouations the ability t,o manage the introduction of a new product. 
To achieve this kind of flexibility the company might need to buy  flexible 
production systems and might want to carrv components over. that is use 
components arid subsystems from previous generations of the product. Such 
kind of flexibility is more and more important nowadays given the growing 
importance of new produch and product novelty. 11-e call deliver!/ flexibility 
the ability to adapt deliveries to cust,omers' needs. For example. the ability to  
deliver rush orders or manage luggage of VIP clients with a tight connection 
in a hub-airport might be crucial. We call volume flexibil i ty thc ability to  
increaseldecrease production arid distribution quantities on a short notice. 
This flexibility is expecially valued in markets n-ith a sharply seasonal pattern. 
such as Christmas gifts. etc. This flexibility can be gained through both spare 
resources (e.g. spare capacity), flexible resources (e.g.. teniporarJ- workers). 
or appropriate planning (e.g., we might, produce/distribute all products with 
a predictable demand before the peak of the season so that during the peak 
we can use the limited productiori/distributioii capacity to manage just the 
iincertain part of demand). 
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1.3.2 Cost drivers 

Keeping costs under control is a fundamental factor in supply chain compe- 
tition. We should state quite clearly that cost minimization per se need not 
be a winning strategy: a strategy is a good tradeoff between the objective of 
minimizing costs and the objective of maximizing other competitive perfor- 
mance metrics such as quality, delivery. service, etc. Keeping this in mind, 
we should list the typical cost drivers in supply chain management, in order 
to set the stage for decision-making approaches. Before doing so. we should 
classify costs according to a couple of dimensions. 

0 Costs can be h e a r  or nonlznear. Consider an arbitrary activity (e.g.. 
how many parts we make or buy), and denote its level by a decision 
variable by z. A linear cost function is something like f(z) = cz, where 
c is a unit cost. More generally, if we have N activities indexed by i. a 
linear cost function has the form f(x) = Cz=l c,z,: note how linearity 
implies that costs pertaining to different activities are simply added. 
Otherwise. we have to  deal with a nonlinear (possibly discontinuous) 
cost function. Examples of nonlinear cost functions are f(x) = zo or 
f ( z l ~  Q) = 21x2. Consider, for instance, purchasing large amounts of 
some component; a discount might be offered if the purchased quantity 
is above a given threshold. In such a situation, we have an economy 
of scale: diseconomy of scales occur when scaling an activity level up 
increases the related cost more than proportionally. Interactions among 
activities may also result in a nonlinear total cost function. 

In practice, costs are always nonlinear. but sometimes they can be suit- 
ably approximated by linear functions. at least for small variations of 
the level of activity (say number of units purchased or produced). When 
formulating an optimization model (see appendix B), keeping everything 
linear is an important concern in order to limit the computational ef- 
fort required for solving the model. Even when assuming a linear cost 
function is too far from reality. nonlinear costs can be approximated by 
piecewise linear functions (see section 2.3) whereas in the general case 
they can be fairly different. 

We may also recall two important concepts. Consider a generic cost 
function ~ ( z ) .  The value of the first-order derivative c'(z) is called 
marginal cost. The marginal cost is constant for a linear cost func- 
tion. but not in general. The average cost is c(z)/z: we may see that 
average and marginal cost are the same for a linear cost function. 

0 Costs can be fixed or varzable. In accounting, a cost is fixed if there 
is nothing we can do about it in the short term." For instance, the 

N 

"Strictly speaking, accounting professionals use "period" and "product" costs. 
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cost of a plant is fixed from t,he point of view of shorbterm operations 
(consider. e.g.. rent. depreciation. or cost of fixed personnel). The direct 
production cost is variable, since we can change it, through production 
decisions on a much shorter time scale. Of course. in the lorig run all 
costs are variable. so the distinction is a matter of time scale. Never- 
theless. such fixed costs do not (or a t  least should not) influence current 
decisions: they may contribute a constant term to an objective> function 
iii an optimization problem, but this does not change the optimal solu- 
t,ion. In the short run: these fixed costs are constant. no matter what 
the short term decisions are. So in a way the>- are simply irrelevant 
for decisions making processes. Sometimes. the term sunk cost is used 
to refer to a cost which has been paid arid no future decision has any 
influence on it. 

In this book. we will use fixed/variable costs with a slightly different 
meaning. If a cost function can be expressed by 

we refer to F is the fixed cost,. Hence. what we mean by -fixed cost" is 
a cost that does not depend on the value of a decision variable. provided 
it is strictly positive.13 The typical example of fixed cost in this vein is a 
fixed ordering cost, i.e., a cost, t,hat we pa whenever we order. whatever 
amount we order. Clearly. such costs ni ht encourage ordering larger 
quantities, resulting in economies of sca1e.l4 Hence, fixed cost in this 
sense do influence decisions. unlike fixed costs in the accounting smse 
(for the sake of clarity in the remainder of this book we will call these 
sunk costs). 

Fixed costs may result in piecewise constant cost functions. Consider the 
cost of t,ransportirig an amount 2 of some good. and assume that there 
is a fixed cost component. that we pay for each truck we use. Depending 
on x, we rnay have to use one truck or two. This induces a discontinuity 

13Sometimes. the  term fixed charge is used to  avoid ambiguity, 
"Notice tha t  in Economics the term "economies of scale" has a slightly different meaning. 
since they are regarded as a long term phenomenon. \\-hen Lve face econorn.es of xa l e .  
the  long term average cost decreases as the  production volume (per unit of tiine. say per 
year) increases. IVhen economists say "it is a long term effect." they really rnt'an that x e  
can observe such a reduction in  the  average cost when we compare different plants (or. 
inore gcnerally. infrastructures) with different capacities. On t,he contrary. the  effect of the 
production volume on the  costs of a given plant is a short tprni effect. As such. econoinists 
do not consider this to  be related to  economies of scale. I n  this book bve iihe the term 
economies of scale in a broader sense. Therefore. in this book the economies uf  scale lead 
to  the  reduction of the  average unit price and might be due to  the dilution of some fixed 
costs when the level of activity (say the production voliiinc. the purchase quailtity, or any 
other relevant, level of actilvity) increases. \Ye disregard the distinction betwemi short term 
decisions and long term ones. 
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Fig. 1.4 Semivariable costs. 

in the cost function. which might include a piecewise constant term. 
Sometimes. the term semi-variable cost is used to  refer to  such a case 
(see figure 1.4). 

We stress again that we cannot really draw a thick line between the concepts 
above: A linear cost function can be a suitable approximation of a nonlinear 
one, and a fixed cost may be transformed (at least partially) into a variable one 
by suitable arrangements. So, we should just consider the above classifications 
as useful guidelines, which are best illustrated by a few examples. 

We have seen that a supply chain is. from a physical point of view, a 
network of facilities on which goods are stocked and transported. A first set 
of costs is associated with building and maintaining facilities. These costs are 
sunk when we are operating the network, but they are a result of a decision 
when we are deszgnzng the network. The cost of a facility is a possibly complex 
function of its type, location, and capacity. A pure transit point is typically 
less expensive than a distribution warehouse. We need to find a suitable 
approximation of the cost associated with building and operating a facility. 
and this is certainly not a simple linear function. Some costs are fixed. such 
as those linked to the realization of basic infrastructures to get the facility 
working: other costs could be represented by a piecewise constant function 
depending on capacity, or by general nonlinear functions of the flows going 
through that node in the network. Recent trends tend to make some fixed 
costs variable, as we may lease warehouse space from a provider of logistic 
services: in a highly uncertain and dynamic setting. this may be an advantage. 

Transportation costs present a similar structure, resulting from a mix of 
fixed and variable costs. When shipping a standard container from a certain 
point of the supply chain to  another one, part of the cost is fixed and in- 
dependent of the content. Transportation rates may be quite intricate, but 
again we may find a suitably accurate representation. If we want to compare 
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t,Tvo trailsportation modes. we are actually interested in figuring the best so- 
lution. If errors in the cost evaluation are not too large. they do not reverse 
the ranking of alternatives. and we make the correct decision anywa>-. 

Nore often than not. there is a tradeoff between different cost components. 
For instance. transportation cost can be reduced by selecting a close supplier: 
however. this need not lead to the lowest overall cost because. when we order 
something from a supplier, several factors come into play besides transporta- 
tion cost: 

0 ordering costs. 

0 the price charged by the supplier. which may also be affected b>- curreriel- 
exchange rates, 

0 inventory holding costs. 

Unlike transportation costs, ordering costs are interm1 costs. in the sense that 
they depend on the operations of the buyer firm. whereas transportation cost 
may depend on either the supplier. or the buyer. or a service provider. In the 
past, each order was associated with a procedure iiicluding some phone calls 
or fax messages. These costs viere largely independent of the amount pur- 
chased. This is wh?- we typically consider fixed ordering costs. i.e.. associated 
with the order itself and not with the amount ordered. Electronic coininerce 
has eased this burden considerably. but we ma!- also consider receiving. in- 
specting. and handling incoming goods as components of the ordering cost. 
They can be partially captured b>- a fixed ordering cost. Sometimes. for the 
sake of simplicity. we aggregate all of the fixed cost components. including 
transportation. into a fixed ordering cost. 

It is not uncommon to compare a geographically close supplier against a 
distant one who charges a lower price. The decision cannot be taken with- 
out specif).ing an ordering strategy. n-hicli is linked to the in\-entory control 
policy. The price can also depend on the purchased quantity. as quantity 
discount opportunities are sometimes offered. Should we take those opportu- 
nities? Reducing the purchase cost is certainly attractive. and the possibility 
of securing a known price might be too. if  we fear an adverse movement in 
prices and/or exchange rates. However. ordering more materials also implies 
larger inventor>- holding costs. Inventory holding costs aggregate different 
cost components. To begin with. m-lienever we pa>- for some goods. and these 
stay in a warehouse for a possibly long time. n-e have an opportunit>- cost for 
the capital tied up in in\-entories. which we could ha\-e invested otlierxvise. 
From a financial point of \-ien.. too niuch capital sitting in inventories is bad 
neivs. lIore so. if  n-e had to borron- money to purchase materials. Apart from 
financial issues. more in\-entory means more insurance charges. more material 
handling (n-ith the possibilitj- of wasting materials), larger expenses to lieat 
or to refrigerate the n-arehouse. etc. If the goods are perishable or subject to 
obsolrscence. n-e may also face the need of scrapping R significant amount of 
material: Cisco Systenis lvas reported to take a staggering iiiventory write-off 
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( $ 2 . 5  billion). All of these considerations lead to  the idea that inventories 
should be kept low. Actually, inventory management is all about finding the 
right tradeoff we will introduce the well-known Economic Order Quantity for- 
mula in section 1.4. to illustrate the tradeoff between cost of inventories and 
benefits of inventories (i.e.? value of the functions performed by inventories). 

We close this section by considering costs which may be very hard to quan- 
tify. i.e., stockout costs. We have a stockout whenever we run out of stock and 
vie are not able to  satisfy demand immediately: this may result in an unsat- 
isfied customer or the stopping of downstream production. In the latter case, 
the stockout cost may be not too hard to  estimate in terms of lost production, 
but when dealing with customers at a retail store, how much does an angry 
customer cost? To begin with. the loss of image associated with a stockout 
is an elusive concept. because it depends on consumer behavior. If we have 
a stockout and cannot meet an order from a customer. will she wait or go 
somewhere else? Assuming she is impatient, and the second case occurs, do 
we lose just this order or the customer altogether? This is very hard to tell: 
maybe we will never know, because she will just purchase a substitute item 
without telling anyone. As a further complication. the stockout cost can be 
linked to the occurrence of the stockout itself. or to the szze of the stockout 
(e.g.. number of customers that could not find the stocked out item). Even if 
we cannot quantify a stockout cost, we need to  keep close control of the service 
level we offer, trading off other costs against this performance measure. We 
cover all of these considerations in chapter 5 on inventory management under 
uncertain demand. 

1.3.3 Strategy 

After this cursory look at  competition factors and cost drivers in supply chain 
management. it should be clear that  there is no way to find a single solution 
which is optimal from all of the conceivable points of view. In fact, firms 
adopt quite different strategies. The supply chain for a technologically mature 
product with a low profit margin must be efficient and inexpensive. In the 
case of an innovative product, with high margins and maybe a limited life. 
the overall strategy will be quite different: 

0 In the retail sector. the availability of goods on the shelves is essential. 
Still, an unsatisfied costumer might have a negligible impact. particu- 
larly for goods which have acceptable substitutes. However. a stockout 
for a whole product category (say. milk) or for products which are sub- 
ject to  strong brand loyalty (e.g.. Coke in the soft drink industry or 
detergents for personal hygiene) may have serious consequences. 

0 In the "business-to-business" sector. we may have quite different priori- 
ties. Just think of managing the stock of spare parts to replace defective 
or failed ones in big industrial machining tools. Keeping such machines 
idle because of lack of spare parts may be extremely costly: indeed, this 
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is a case where stockout costs may be easy to quantify, as there are con- 
tracts specifying penalties for lack of service. Quant,ifyiiig t,he stockout 
cost of spare parts for life-critical eyuipments at hospitals is impossi- 
ble. but we clearly see that in such a case we need to ensure iinmediate 
availability. eithcr by suitable stock levels or. if the cost is too high. by 
very fast and expensive transport,ation. 

In ordcr to define a strategy, we must associate priorities to cornprtition fac- 
tors and find cost-effective ways to achieve a given performance target. pos- 
sibly trading off performance against cost. Firms in different indiistries  ill 
probably define quite different, strategies. It is no surprise that, managing 
supply chains for high performance laptop computers requires a different ap- 

industry. we may observe quite different strategies. 
proach t,han in t,he case of soap powder. However: even within the hame k' rlvell 

Example 1.2 Personal computers are sold using different distribution chan- 
nels. appealing to  different consumers. Some consumers are quite sophisti- 
cated and want, a very specific configuration: t,hey are milling t,o wait relatively 
long lead t,iiries to get exactly the stuff they want. Ot,hers prefer i i  choice be- 
tn-een a few well-defined alternatives. but fast delivery and cheap prices are 
essential to them. For similar reasons. some consumers do not niiiid ordering 
on a web site. whereas other consumers feel much safer buying from 111ore 
traditional channels, because they want a personal contact in caw of trouble 
with the product. In fact. different market segments can be dealt with by 
different rnarket,ing strategies.'" 0 

Example 1.3 IKEA and LIC are two dominant players in the Italian re- 
tail furniture hsiness .  They are both healthy and fast growing companies. 
However. they have fair1)- different strategies. IKEA liasically tlesigncd a 
self-service environment where customer are asked to select the product they 
like. take note of the product code; and collect the selected iteni(s) at the 
warehonse. IKEA customers tend to  transport goods by theinselves. IKEA 
does not provide transportation services (though a business partiier located 
near the counters sells transport,ation services). IKEA customers are even 
asked to design their on-n kitchen through tlie Iiiteriiet or at do-it,-yoi trself 
PC stands in tlie st,ores. LIoreover. IKEA has a very wide niimber of product 
categories ranging froin i icds arid chairs. t,o carpets and forks. Honrvc:~. the 
range of product designs is ratlicr liiiiitctl and is doininatetl by tlie Swdisli 
iriiriinia1ist)ic design. The SIC strategy is quite differeiit. Tliough t,he prices 
are comparable. SIC only sells furniture. In a SIC store one cannot find car- 
pets, forks. etc. However. in a SIC store one can firid furniture with very 
diverse designs ranging from classic. to modern. ethnic. romantic.. etc. So 

' " S e e :  \'.K Rangan and If. Bell. Dell 0 7 h n e .  Harvartl Business School Case KO. 9-598-116. 
1999. 



18 SUPPLY CHAlN MANAGEMENT 

the assortment offered by hlC is very wide. though in a slightly different way: 
AlC provides fewer product categories, but more styles than IKEA does. Also. 
while IKEA provides little sales assistance and delivery service. LlC has a ser- 
vice intensive strategy. The vast majority of MC customers is attended by a 
salesperson. A salesperson can spend up to one hour designing the kitchen 
for a customer that then might simply walk away. Also, 90% of customers ask 
for the delivery of goods at their place (the cost of delivery is just 7% of the 
overall price). As we can see, the two companies have very different strategies 
(in many perspectives they have opposite strategies). However. they both 
are fairly successful. How can that be? Actually, the key idea is that the 
two companies appeal to  two different segments of consumers and have two 
different value propositions. IKEA appeals mostly to youngsters (IKEA of- 
fers services such as day care for children). who can easily use technologies to 
design their own kitchen, can transport and assemble furniture on their own, 
and tend to appreciate the minimalistic Scandinavian style. hlC tends to ap- 
peal to a more mature population that appreciates more traditional furniture 
and services such as sales assistance, delivery. and assembly of furniture. 0 

Perhaps even more surprisingly, the same firm may pursue different operations 
strategies in space and/or time. In fact. operations may be diversified by geo- 
graphic region, because alternative markets may require different approaches. 
depending on customers habits and cultural factors. 

Example 1.4 Buying a car follows different patterns on the two sides of the 
Atlantic Ocean. In the USA, it is common to purchase a car on the spot, 
after having a look at  what is available at the retailer. In Europe. it is more 
common to order a specific configuration, and possibly wait weeks for the 
desired model. 0 

The level of market penetration and/or the potential entry of competitors may 
also contribute to  the definition of a strategy. Finally. time is also essential. 
as a product a t  the beginning of its life cycle is typically not managed like an 
almost obsolete one. For example. a stockout late in the life cycle of a product 
is almost a desired outcome. 

1.4 T H E  ROLE OF INVENTORIES 

Much of what follows in this book deals with inventories: actually. three chap- 
ters (4, 5, and 6) are devoted to this topic. Keeping inventories implies a long 
array of costs, including less obvious ones such as an adverse effect on qual- 
ity.16 Indeed, given that many management philosophies are based on the 

l6Quality may be adversely affected because large amount of stocks typically require more 
material handling, which may result on accidental damage. High inventory levels also 
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idea of zero inventory. should we could consider inventory manageriient a sort 
of more or less necessary evil'? 

Example 1.5  An intuitive consideration is that inventory availat)ilit,y has a 
positive effect on our ability to satisfy demand. What may be less obvious 
is that sometimes it is inventory itself that  generates demand; just think of 
the allocation of shelf space at a big retail st,ore. Even less obvious. inventory 
availability ma)- be used to sense demand. Consider a large book store. Keep- 
ing an inventory of all possible titles is clearly out of the question. However. 
having some titles covering some discipline may be essent,ial t,o check if there 
is potential demand for that  kind of book (see case ill]). Otherwise. lack of 
inventory may imply lack of demand. which may be furt,her rnotivat,ion for 
not keeping stock; a perfect vicious ~ i r c 1 e . l ~  Also. some companies keep de- 
liberately large invent,ories if some staple products to show their (dominance 
and as an implicit promise of product availability, which most customers tend 
t,o notice. 0 
The example above does not imply that we should just increase stock avail- 
ability. The message is that inventory has a purpose. and that we should 
understand it5 role and function in order to plan its level a t  a facdity. The 
most complex problem is arguably the deployment of stock at the right in- 
stallation of a large supply chain: on the one hand. we would like to place 
stock near customers. but this may be the worst place in terms of value of 
stock. as this is where we have the most added value: furthermore. stock near 
custoniers has been committed to a given retail region. potentiallv reducing 
flexibility in the allocation of goods. Generally. inventory reduction may be 
highly beneficial. provided that me eliminate the reasons for keeping i t .  In 
order to understand why we might need some inventory. a good starting point 
is the classical EOQ model. 

1.4.1 

In this section we outline a sort of archetypal model for inventory rnanagenient. 
t'he Economic Order Quantit'y (EOQ) model. Our purpose is just to illustrate 
how fixed ordering cost,s affect the need for some stock as well as to  lay clown 
some background which will be also used in chapter 2. Hence, the analysis is 
rather superficial. and milch more detail is given in sect,ion 4.2. 

Consider a distributor selling a good with a rather regular demarld pattern. 
Taking it to the limit. we consider a perfectly constant demand over time. Let 

A classical model: Economic order quantity 

imply longer waiting times on the shelves, which have an  impact on perishahle items. In 
manufitcturing. high work in process levels are associated with longer flow times: if quality 
is checked a t  the  end of the process. defects will be detected later. with a possib!? significant 
increase in scrapped material. .. 
"For a similar issue, related to phase-in/phase-out of products. see example 3.7 on page 
100. 
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Q 

Fig. 1.5 Time evolution of inventory levels in the EOQ model. 

d the demand per unit time; the specific time unit is not important, provided 
that we are consistent in specifying the remaining data (e.g.. if demand in 
measured in units/daym the holding cost is unit of value ~ say euro - per 
unit, per day). The demand must be satisfied from stock. and goods are 
ordered from a supplier. A natural objective is finding an ordering strategy 
that allows the distributor to  satisfy demand at minimum cost. Given that 
demand is constant. it is also reasonable to assume that the ordered quantity 
is always the same. Let Q be the lot size we choose and. without loss of 
generality. assume that we start with Q units on hand, as shown in figure 1.5. 
We will run out of stock after Q / d  time units. Ideally, we would like to get 
a new lot of Q parts exactly when the inventory level drops to  zero, as this 
will keep holding cost down. Such a perfect timing is possible if everything is 
certain and deterministic: this means not only demand. but also the supplier's 
delivery lead time. If the lead time is denoted by LT. it is easy to  see that 
we should order Q whenever the inventory level" drops to a reorder point R 
given by the demand over the lead time : R = d . LT. If we repeat this cycle 
over and over. the time evolution of the inventory level will be periodic. as 
shown in figure 1.5. with cycles repeating every T = Q / d  time units. 

Let c be the unit price charged by the supplier for each unit: we assume 
that whenever we order Q units from the supplier. we pay her an amount cQ. 
In other words, there are no discount opportunities we might take advantage 
of by ordering a larger amount. IVe see that cQ is a linearlj variable cost. In 

lsIn later chapters we will see tha t  ordering decisions should not be simply based on on-hand 
inventory. 
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the cost c; we could also include a variable component of the transportation 
cost. Tl\\’licnever we order. it is also reasonable t,o expect that  a fixed cost has 
to  be paid. This may be due to  a fixed component of the transporttttion cost: 
or it could be a fixed ordering cost due to the need of issuing anti tracking 
the order. I fki tever  the case, we denote this fixed ordering cost bj A: which 
does not depend on Q. To summarize. whenever me order Q. the total cost of 
the order is A + cQ. This expression suggests the opportunity of not ordcsring 
too often a small amount. We have an economy of scale if we ordtlr a larger 
amount, because the fixed component is distributed on a larger number of 
parts. 

However. there are good reasons to  keep Q to a reasonable size. In this very 
simplified setting we do not consider the risk of obsolescence or perishability, 
nor physical space limitations in the warehouse. But the least WE! should do 
is to consider an inventory holding cost. The simplest reason for dealing with 
such a cost is the opportunity cost of capital tied up in invent,ory. There are 
many other factors which come into play here, but let us simply saj- that if 
we keep one part in inventory for a unit period. we face a cost h. Note that 
the dimensions of this unit inventory holding cost are money per part. per 
unit time. If we assume that, this cost depends linearly on inventory. the total 
holding cost over some time period is 11 times the average inventory level. 

Example 1.6 fVe should emphasize t,liat using a linear inventory holding 
cost. as we will do in most of t,he book. can be a rather unsatisfactory approx- 
irnat,ion. To begin with. if we have discount opportunities. we should consider 
an explicit dependence h(Q) ; clearly the total opportunity cost does depend 
on the price n.e pay per item, and this creates sonie dependence bctween the 
inventory holding cost arid the average inventory level. which also depends 
on Q. Even if we assunie t,liat financial costs are inore or less linear, other 
factors inaj- have a nonlinear effect. For instance. consider a very perishable 
item. n-hose shelf life is ,just one day. If we keep inventory levels low, me will 
probdbly sell all of the available stock and no material will be scrapped. But 
if we raise inventory. under dernmd uncert ailit>-. sonie leftover invtmtory will 
have to be occasionally disposed of. Hence. we sec t,hat cost linearity may he 
a debatable assunipt,ion. Still. all of these considerations point out sonie in- 
centive to keep a low inventory level. maybe within a range such that a linear 
approximation is acceptable. Anyway. if demand is assumed deterministic, a 
limited shc>lf life would simply imply an upper bound on Q. which is easily 
dealt with. Hcnce, me will stick to linear holding costs in the following. 1 

IT-e see that TVC ha\-e two contrasting factors to account for in deterniining the 
order quantity Q .  To spot the best coniprornisr. we should quantifJ- the t,otal 
cost per unit time (say. one year) as a function of t,lir decision \-ariable Q. Since 
inventory 1evr:l ranges betm-reii 0 arid Q according to  a linear pattern. we sec 
that the average inventory level is Q / 2 .  Hence. tlic holdiiig cost component 
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is 

Q* 

Fig. 1.6 Inventory holding and fixed cost components in the EOQ model. 

The contribution of the fixed cost component is A times the average number 
of orders issued per unit time. Since we have d / Q  orders per unit time, this 
component is 

Ad 
c o r  = q 

Taking into account the purchasing cost of yearly demand, C,, = cd. we have 

Leaving the last constant component aside. we may draw a qualitative picture 
of total cost in figure 1.6. We see that the objective function depends on a 
linearly increasing component C,, and a decreasing component Car. displaying 
an economy of scale with respect to Q. The variable purchase cost plays no 
role really. as it does not depend on Q under our assumptions (but see example 
1.7 below). Now we may find the optimal solution by equating the first-order 
derivative of the total cost to  zerolg: 

Q*=P h 

IgAs we point out in appendix B? this first-order condition need not be sufficient for opti- 
mality, and we should also check the second-order derivative or. equivalently, show that the 
total cost is a convex function of Q. See example B.3 on page 547. 
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lye have just derived the n-ell-known EOQ (Economac Order Qunntzty) for- 
mula, which is valid only under a rather long list of limiting assumptions: 
nevertheless. it provides us with some useful insights. lye see that the EOQ 
size increases with the fixed cost A arid decreases with the inventoiy holding 
cost h .  A simple calculation yields the optimal cost value for the optimal lot 
size: 

C to , (Q*)  = + cd. (1 .2)  

This function shows that the total cost is a concave function of tleniartd d: 
in other words, there is an economy of scale with respect to the demand a 
facilitl- must face. and we will see in chapter 2 what impact this has on the 
design of a logistic network. 

Example 1.7 ( A  remark o n  relevant us. irrelevant costs) Expression (1.2) 
suggests that .  unless discount opportunities are offered, the unit price c we 
pay for the stocked item is irrelevant in determining the optimal order size. 
Of course. it is very relevant for the bottom line, since it affects profitability-. 
but, we should observe that some cash may be irrelevant' when making certain 
decisions. Actually. a closer look at the formula would suggest that probably c 
plays some role in determining h. Indeed; a common wai- to estimate inventory 
holding cost is to  assume some opportunity cost of capital, that is a sort of 
interest rate i .  say 15%. and setting h = ic .  Kevertheless, the last term cd 
in (1.2) does look constant and irrelevant in det,ermining Q*. However, this 
holds only when we want t,o select the order quantity Q for a given supplier. 
If we change t,he problem at stake. things can change substantiall>-. Suppose 
that we want t,o select a supplier and that there are two competitors, whose 
characteristics are represented by fixed and variable costs, c1 and Al;  and 
c2 arid A*. respectively. When comparing the two suppliers, in t,erms OF the 
total cost as expressed in equation (1.2). we cannot overlook the last cost 
term. Hence. we see that cost elements and parameters may be irrelevant or 
not. fixed or not, and this depends on the decision at stake. Indeed. we can 
tell whether some kind of cost, is relevant/irrelevant only with respect to a 
specific decision. 0 

Now suppose we wish to  reduce the inventory leT-el and/or the corresponding 
cost. A look at (1.1) suggests that unless we wish to reduce demand or we 
can reduce inventory holding cost (which increases Q" but reduces the overall 
cost). we should reduce the fixed cost A. The fixed cost may depend or1 the 
ordering mechanism. the transportation cost. and possibly the setup cost. The 
setup cost is. within a production context. a fixed charge we pay whenever we 
start producing an item. independent of how manj parts we make.20 Clearly, 

2oWe should note tha t ,  in a manufacturing context. setup cost might not be as relevant 
as the setup time. which reduces machine availability. \$'hen capacity is scarce. we cannot 
overlook interactions among products manufactured using a shared set of resources; and 
the EOQ model is not well-suited to  this task. 
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if there is such a fixed charge, it is economical to buy or make a suitably large 
number of parts a t  once. and this is why inventories may be needed. 

This reasoning points out a first function of inventories. which is linked to 
the need of adapting a relatively continuous and smooth consumption process 
to a replenishment mechanism. that on the contrary is very lumpy due to 
purchase. production, or distribution lots. The inventory we build because 
of this issue is called cycle stock. We cannot reduce cycle stock unless we 
reduce fixed charges. which create the need for a relatively large lots. Indeed. 
a mainstay of Japanese manufacturing philosophy has been the reduction of 
setup costs. 

However. there are other reasons to build up inventory. 

1. Stock is needed to  decouple supply and demand. when one of them is 
subject to variability, and the other one is constrained and cannot follow 
such variability. In the next subsection we consider how transportation 
or capacity constraints generate stocks. 

2. Stock is needed to  hedge against demand uncertainty. The role of de- 
mand uncertainty is dealt with later in section 1.5. 

IVe should also mention that there are many more factors that result in the 
creation of inventories. Raw material stock is sometime created in anticipation 
of unfavorable market conditions. such as increasing prices or uncertainty in 
the supply of a scarce commodity. We call this speculative stock. 

AIoreover. it is natural to think of stock as something sitting in a warehouse. 
However, inventory may be moving, as is the case of in-transit or pipeline 
stock. If transportation takes a few hours. in-transit inventory is actually 
negligible. but if long-distance transportation by ship is used. we mag have 
a non-negligible impact. A similar consideration applies to manufacturing 
systems: The longer the flow time, the larger the work in process. We should 
note that while cycle stock depends on the order size, average in-transit stock 
only depends on average demand and the transportation delay. as illustrated 
by the following example. 

Example 1.8 Consider an Italian firm importing a product froin the Far 
East. The product is transported by ship. which takes one month. and the 
demand is constant and equal to 1000 pieces per month. If the firm issues a 
replenishment order once per month. each month it will issue an order for 1000 
units. just when the previous one is being received. At each time instant, there 
is always a ship traveling with 1000 items. If the firm orders once per year. 
the order size is 12,000 pieces. and during the month following the order (say, 
January), there will be an in-transit stock of 12,000 items: for the remaining 
eleven months. in-transit inventory is zero, but its yearly average is still 1.000 
anyway. 0 
Example 1.9 Let us consider a company from the Piedmont region that 
produces Barolo wine. Let us assume that the company sells 1,000 liters per 
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year. Barolo wine needs to age for a t  the least three )-ears before it can be mltl. 
Two of thew three years need to be spent in oak barrels. Given this demand 
and these technological constraints. at any point in time the compnny has at 
the very least 3.000 liters in stock. To cut this inventory imestriient [.ither 
we reduce production volume. or change the technology in order to reduce 
the three war LT (i.e.. find a way to make Barolo wine age more quickly). or 
simply decide to produce a different kind of \vine. 0 

1.4.2 Capacity-induced stock 

In the EOQ niodel we consider a constant and perfectly predictablia demand. 
However, deiiiand need not be constant to be perfectly predictable. In (very 
fern) luck\- cases we may have a time-varying demand which we know, as is 
the case if we make to order with a long delivery lead time. Ideally, we should 
be able to deliver all of the items just in time, with no need for stocking end 
items. As expected, cycle stock might be needed if there are fixed charges in 
making or buying the items. However. even if there is no fixed charge. we may 
have to resort to stock items in order to better match demand with capacitv. 

Example 1.10 Consider an item whose demand is strongly affected by sea- 
sonality. For instance. say that average demand is 100 per month, but the 
actual demand is 200 in spring and summer. and zero in autumn and winter. 
If itenis are produced by the firm. rather than purchased froin an outside sup- 
plier, there are t'wo extreme choices. It may size its manufacturiiig capacity- 
to the maximum demand (200 units per month). In this case, there is no 
need for inventory. but capacity utilization is just 50%. At the other extreme. 
it could size the capacit,y to 100 it,ems per month. In this case utilization is 
100% but there is a considerable inventory buildup during the low-dernand 
season. In this case we speak of seasonal stock. 0 

In figure 1.7 we illustrate a sample t,ime evolution of seasonal stock \\.lien 
capacity is held const,ant and equal to average demand. It may also be the 
case t,hat the mismatch is not between constant manufacturing capacity and 
time-varying demand, but between t,ime-varying raw material availability aiitl 
constant denland: this is the case for many food goods. such as canned toma- 
toes and olive oil. Sometimes, one can try to match capacity and tleinarid by 
producing items with opposed seasonalities. For instance, minter arid summer 
clothing can be produced in the same plants. In other cases. transportat,ion 
capacity is used as a buffer: Apparently. for half a year kiwi fruit is imported 
froin Sew Zealand to It,aly, and vice \-ersa in the other half." 

In a mathematical programming niodel illustrated on page 542 of  appendix 
B. we illustrate how we might plan inventory buildup in order to match de- 

"It remains to  be seen \vhether eating kiwi twelve months per year is worth the  resulting 
pollut,iori. 
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Fig. 1.7 Seasonal stock buildup and depletion. 

mand and manufacturing capacity. Clearly. issues may compound with each 
other: in example B.12 on page 571, we consider a production planning prob- 
lem where both capacity limitations and fixed charges call for the creation 
of stock. Yi’e should emphasize that besides fixed charges in the form of a 
fixed cost. we might have fixed consumption of capacity whenever we start 
production. If it takes a few hours to  set up a machine to  make an item type. 
we have to make a fairly large lot not to consume the capacity with setup 
times. These fairly large lots build up some inventories. This is again a form 
of cycle stock, even if the motivation is not strictly economical. 

In the example above, we have considered production capacity. but in distri- 
bution logistics similar considerations apply to  transportation capacity. Cycle 
stock may be necessary if transporting small orders is not economical. but in- 
ventory might also be required if the number of vehicles is limited and their 
capacities need to  be fully utilized by full-truckload transportation. 

1.5 DEALING WITH UNCERTAINTY 

In distribution logistics there are many factors which are significantly affected 
by some form of uncertainty. For instance. we should extend the EOQ model 
to  account for: 

0 uncertainty in demand, which may vary according to not perfectly pre- 
dictable patterns; 

supplier lead time, which is affected both by transportation time and 
by possible material shortages. 

At a different decision level. when tackling a long-period problem, we may 
have to face uncertainty in: 
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0 prices. both in tlie sense of prices our suppliers charge and prices w e  
may ask: 

0 exchange rates, which are relevant in an international context, on both 
the supply and demand side: 

0 changes in average demand: e.g.. demand might simply fade away be- 
cause of new emerging technologies. 

Uncertain factors may be different in nature. depending 011 the length of the 
time horizon on which decisions must be made. Furthermore, different t,ypes 
of uncertainty may compound: for instance: demand uncertainty niay bc the 
result of short-term random variations in demand level. or of more systematic 
factors such as t,he success of a product and its market penetration, which 
also depends on the behavior of competitors. 

In fact,, we niay consider different concepts of uncertainty. The probabilistic 
concept of uncert,ainty. which may be modeled by random variables following 
a given probability distribution, is the most common one. Other paradigms 
have been proposed. but me will essentially stick to a more familiar statistical 
framework (see chapter 5). If me know the relevant probability distribution, 
then we just have uncertainty in the realization of random variables. lIore 
often than not, properties of random variables must be inferred from available 
data, assuming the)- are ayailable and reliable. In such a case. we have some 
uncertainty as far as t,hr probability distribution itself, or its parameters. are 
concerned. Kevertheless. if data are available, we are still in tlie domain 
of probability and statistics and deal with a sort of "objecti1-e" uiicertaint>-. 
In extreme cases. we deal wit,li a brand new innovative product. and past 
information is simply unavailable, or it,s relevance might be questioned. In 
that context. me have to deal with subjective assessments of uncertainty (see 
section 3.12). 

11-hatever the nature of uncertainty. we must come up with some n-ay 
to riiitigate its effects. In the next two sections we consider two exarrip1t:s 
illustrating the role of safety stocks and proper product design. 

1.5.1 Setting safety stocks 

bye have illustrated how much we should order according to the EOQ model. 
but we should also clarify when we should order (for a inore detailed discussion 
see section 5.4). If both clcmancl and supplier lead time arc constant. it 
is easy to  see that we should order an amount Q whenever t,he inventory 
level falls below a reorder point R = d LT corresponding to the demand 
during lead time. In doing so. we should consider not only the physical (on 
hand) inventory; but also orders that n-e have already sent but havc not been 
delivered yet. and backorders. Under deterministic assumptions, items n-ill 
be delivered exactly when on-hand inventory reaches the zero lei el. \Then 
uncertainty is involved in either demand or lead time. or bot,h. it is intuitive 
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that we should raise the reorder level (in most situations. for a more detailed 
discussion see chapter 5). To do so rationally, we need two ingredients: 

1. a description of the uncertainty of demand during lead time: 

2.  a suitable definition of the quality of service we want to  offer our cus- 
tomers, in terms of our ability to meet demand immediately from stock.22 

The uncertainty of demand during lead time depends on how the two ba- 
sic uncertainties, in demand per unit time and in the lead time itself. are 
compounded. A typical assumption is that it can be modeled by a random 
variable DLT. with normal distribution. expected value pLT, and standard 
deviation oLT .23 

As far as the service quality is concerned. we will see in chapter 5 that  differ- 
ent measures can be reasonably defined; we could also set up an optimization 
model, provided we may quantify the cost of a stockout. We consider here 
the simplest, not necessarily the best, alternative. which is to set a constraint 
on the probability of a stockout. This probability. denoted by CY, should be 
suitably small: correspondingly, we define the quantity 1 - a as our service 
level. Typical values of the service level could range between 90% and 99%. 
JYe have a stockout during lead time if demand in that time span exceeds the 
reorder point R. The probability of not having a stockout is 

We immediately see that R is the 1 - Q quantile of a normal distribution with 
parameters pLT and o,,.~~ As shown in appendix A, calculating the quantile 
of an arbitrary normal distribution boils down to finding the corresponding 
quantile for a standard normal distribution. Knowing the quantile Z I - ~  for a 
standard normal variable. we set 

The idea is illustrated in figure 1.8: The shaded area. on the right of the 
quantile, corresponds to  the stockout probability Q. In the deterministic case, 
we simply set R = pLT: doing so when lead time demand is normally dis- 
tributed would result in a 50% service level. In order to increase the service 
level. we add a safety stock given by z ~ - ~ o ~ ~ .  Clearly. safety stock increases 
the overall cost. On the average, we have an additional inventory of ~ 1 - ~ c ~ ~ ~  

221n a make-to-stock system or retail environment. this is the fundamental ability. In a 
make-to-order. quoting a reliable lead time may be more relevant. whereas in assembly- 
to-order. the customer should be allowed to customize her order in an easy and flexible 
way. 
23Central limit theorem may justify such an assumption in the case of consumer goods: see 
page 470. This hypothesis should be checked by a suitable statistical procedure (see section 
A.9.1). 
24See definition A.9 on page 456. 
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Fig. 1.8 Calculating safety stock based on lead-time demand uncertainty. 

parts. with respect to the EOQ model: hence. if we set the ordw quantity 
according to the EOQ rnode12j and WT'C disregard variable purchasiiig cosi . tlie 
average total cost (1.2) becomes 

JYe should also mention that in this expression vie are not consideriiig stockout 
costs. which will be essential in chapter 5 .  Looking at equat,ion (1.3). we see 
two sources of cost: cycle antl safety stock. Setting a safety stock is. in  soiiie 
sense, a pussi7~e answer to t,he problem of uncertainty; we sim 
slack resources to reduce the effects of demand uncertainty 
to  be proactive and prepare a set of actions to  reduce the need for a large 
safety stock. Reducing safety stock, without reducing uncertainty is just not 
a good option, unless we want to give up service quality or ignoie stockout 
costs. This calls for reducing uncertainty in lead time demand. On the one 
hand. lead time should be reduced; in a deterministic setting. thr lead time 
might' be irrelevant. because in that case Tve ha\-e just to  anticipate the order 
tirniiig (yet. it could be relevant in terms of in-transit inventory). In an 
uncertain setting. while the average lead time LT does not enter explicitly 
equation (1.3)% it contributes to increasing oLT. IT-e will see in chapter 5 that.  
if deiriantis during different time periods are independent raridorii variables. 
then oLT increases with the square root of lead time: oLT = o a r ,  where o 
is tlie standard deviation of t,he denlarid per unit time. TVe n-ill also see. in 
chapter G .  liow demand antl lead time uncertainty can be compounded. 

25.11-e will see later, in chapter 5. tha t  this need not be the optimal choice. \Ve should 
select the two parameters Q and R jointly. and perhaps consider an alternative definition 
of service level. taking int,o account the size of the stockout. and not only its occurrence. 
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It is tempting to believe that demand uncertainty is out of our control. and 
there is nothing we can do about it. Sometimes, this is true. but in maiiy 
cases demand uncertainty is not exogenous. In many cases we can simply 
reduce demand variability that creates uncertainty. Demand spikes can be 
the result of unanticipated promotional sales: indeed, some large retail chains 
have decided to avoid promotional sales altogether. adopting an every-day low 
prices (EDLP) policy. In other cases. we may try to improve our forecast- 
ing procedures in order to  (partially) transform unpredictable variability into 
predictable variability. This is basically the purpose of forecasting techniques 
described in 3 .  

In complex systems, many other actions can be attempted to reduce safety 
stock costs. In manufacturing systems, we may adopt preventive maintenance 
policies in order to reduce the occurrence of random machine breakdowns. and 
the related need for inventory buffers. In a multiechelon system. we may try 
to  hold inventories in central warehouses where demand is more aggregate and 
thus more predictable. rather than at retail stores. In the next section, we 
illustrate the general idea of rzsk poolzng by exploiting common components 
in assembling end items. 

1.5.2 A two-stage decision process: Production planning in an 
assemble-to-order environment 

IVhen computing safety stocks, we do not plan orders in advance: SVe pre- 
scribe the structure of a policy (e.g.. Q and R).  and we let the system run and 
place orders when our policy suggests to  do so (eg . ,  when we hit the reorder 
point R). In practice. the parameters are adjusted periodically. Furthermore, 
emergency actions are carried out when needed. All of these adjustments are 
carried out when additional information is obtained, but this is outside this 
formal model. The formal model is. in a sense. single-stage: SVe make some 
decisions and then see what happens. In some other cases, we want to  include 
in a formal model the adjustments we might make at a later stage. In order 
to  do so. we must formalize the dynamics of the decision process. whereby de- 
cisions are made and/or revised when new information is obtained. This may 
lead to very difficult stochastic models. Lye consider here a simple example 
of a two-stage model. 

Consider an assemble-to-order (ATO) system. In such a system. we have 
to make (or buy) components. which are then assembled into some end item 
we sell. It would be nice to do everything after we receive a customer order. 
but we cannot afford this luxury if the customer is not willing to wait that  
much time. If the customer wants everything immediately. we have to keep a 
stock of end items; this may be difficult or impossible when end items come 
in a wide variety of configurations or when items cannot be stocked because 
of their cost. A compromise solution is feasible when making components 
requires a long lead time. but assembly is relatively fast. We can keep a stock 
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of components. which are made or bought before we get customer orders. lye 
assenible only on order. i.e.. after we collect customer demand. Concrete 
examples of AT0 processes are the automotive industry, at least, in Europe. 
and the PC indust,ry, where one can order a customized model and select 
among a number of feature/opt,ions.26 

Let us build a simple but instructive model along with a small numerical 
example. under the following assumptions: 

1. First'. 1%-e decide how many units of each component we build. subject 
to manufacturing capacity constraints. This first decision sets the total 
production cost. 

2 .  After receiving cust,omer orders. we use components to assemble finished 
goods. The assembly plan in designed to  maximize revenues: the cost 
term in the profit function is fixed by the previous decision (if we neglect 
assembly cost): if components are not enough to meet cust,omer orders. 
we lose profit opportunities: if too many components are available. they 
are discarded with a possibly considerable loss of money 

The key- point, apart from demand uncertainty. is that we have a limited 
t,inie window for sales. after which components are no use. This is a limit 
assumption. typical of the classical newsvendor model (see section 5 . 2 ) :  in 
practice. components might have some salvage value, or they could be used in 
later time periods. In this setting. we have to  make two decisions i i i  sequence, 
in order to optimize profit. Literally. we cannot maximize profit. becausi: it is 
a random variable depending on our decisions and on uncertain demand. but 
1%-e may maximize its expected value.27 

Since t'he main complicating factor is demand uncertainty, one possibility is 
to  disregard it and just use expected values of demand in planning production 
of components. Another possibility is representing demand uncertainty by a 
set of scenarios. We will pursue both approaches and compare the decisions 
we make. 

To set up a small toy example, say that we own a (very) small firm. pro- 
ducing just three end items (Al. i l 2 .  A3). which are obtained by assembling 
components (q, c2. c3. cq. cg). The components we use for each end item are 
described b>- a bill of materials, which is flat (just two levels: end items and 
components). The bill of mat,erials is given in the left-hand side of table 1.1. 
From the bill of materials, we see that there are two common components. c1 
and c2, while the remaining tliree are specific and characterize each end it,ein. 
15'e assume that three resources (AII1. :U2. -213) are used for production of coin- 
ponents. On the right-hand side of the table w e  also see the bill of resourceb, 

26A possitil) more pleasing example is any pizzeria offering a wide array of pizzas: the. pizza 
is made on order. but all of the components are prepared in advance. 
27A more sophisticated approach would involve some considerations about risk. Lvhich is 
not fully captured by the expected value. 
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Table 1.1 Bill of materials for the 
assemble-to-order example 

Table 1.2 Bill of resources. cost of 
components. and available capacity 

A1 1 1  1 0  0 
A 2 1 1 0 1 0  
A 3 1 1 0 0 1  

c1 1 2 1 2 0  
c2 1 2 2 3 0  
c3 2 2 0 1 0  
c4 1 2 0 1 0  
c5 3 2 0 1 0  

Cap. 800 700 600 

Table 1.3 Demand scenarios. expected value of demand. and selling price of end items 

Sl 5’2 5’3 Exp. Demand Selling Price 

A1 100 50 120 90 80 
A2 50 25 60 45 70 
A3 100 110 60 90 90 

i.e.. the time required on each resource to manufacture one component. In the 
table, we also give the available capacity for each resource type, and the cost 
of each component: this cost might include both direct variable production 
costs and material costs. We assume that assembly is not a bottleneck, hence 
its capacity is disregarded. 

Other relevant data concern end items, demand, and the price at which end 
items are sold. They are given in table 1.3. Demand uncertainty is modeled 
by a set of three scenarios (S1, 5’2. S3).  If we have information about past 
sales. the three scenarios may result from the discretization of a continuous 
probability distribution (of course, more scenarios are needed in a practical 
setting to approximate the distribution): alternatively, they could result from 
an interview with three experts. N’hatever the case, we assume that the three 
scenarios are equally likely. i.e.. each probability is 1/3.28 15-e also give the 
expected value of demand. which is obtained by averaging the three scenarios 
for each end item. The last column displays the price a t  which end items are 
sold.” Also, note that the selling price is larger than 60, the total component 

28When discretizing continuous distributions, we might use different probabilities t o  get a 
better approximation: see. e.g.. [4. chapter 101 for an application of Gaussian quadrature. In 
the case of forecasts based on subjective judgment by experts, using the same probabilities 
means that  we consider three equally reliable experts. 
2gIf we do not want to disregard assembly cost, we may substitute selling price by contri- 
bution to  profit from assembling and selling an item: this defines the second-stage cost. as 
it takes selling price and assembly cost into account. but not component costs. 
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cost. for all of the three end items. but A3 looks more profitable. in a sense. 
because its profit margin including component costs is 90 - GO = 30. uhereas 
A2 is the least profitable: of course. this reasoning may be misleading in that 
it does not take into account resource c o n s ~ m p t i o n . ~ ~  

\Ye may tackle the problem of maximizing expected profit by the Linear 
Programming (LP) techniques described in appendix B. To build a simple 
model as a starting point. we could disregard uncertainty and deal with one 
scenario characterized by average demand. \Ye get the following model: 

3 3 

i=l ;=1 

s.t. 2 Timzi 5 L,. m = 1,2 ,3 .  
i=l 

yJ 5 d j .  j = 1,2,3.  
3 

,=1 

Yj,XZ 2 0. 

Here. subscript i refers to components: subscript j refers to end items; and 
subscript' m refers to resource types. Input data correspond to those reported 
in the tables: 

0 the component cost Ci: 

0 the selling price P, for each end item: 

0 the available capacity L ,  for each resource type (measured in time 
units): 

the resource requirement (processing time) Tzm: for component i on 
resource m: 

0 the number G,; of components i going into an end item j (i.e.. the bill 

the expected demand d,. which is assumed certain. 

of materials - BOhl); 

The decision variables are 2 , .  the number of component,s of typt' i that we 
produce, and ,yJ. the number of end items of type j that are assembled arid 
sold; to be more precise. we pre t end  that we will really sell an miount y,. 
because we disregard demand uncertainty. The model aims at maximizing 
profit. as expressed by the objective function (1.4). subject to capacity con- 
straints (1.5). The inequality (1.6) stat,es that we cannot sell more than what 

" S e e  example B . l  on page 537 



34 SUPPLY CHAIN MANAGEMENT 

is demanded, whereas (1.7) says that we cannot assemble end items if the 
required components are not available. The decision variables are required to 
be non-negative. In fact, for the sake of simplicity, we consider a contznuous 
LP model, which allows for fractional quantities; if we insist on requiring that 
produced and assembled quantities are integer, it is easy to incorporate this 
requirement (see section B.6). 

Solving the model, e.g., by the simplex method (see appendix B). we get 
the following solution (rounded to two decimal digits): 

ZT = 116.67, 

X: = 26.67. xi = 0.00, xi = 90.00. 

IJT = 26.67. y; = 0.00. 1~: = 90.00. 

X; = 116.67, 

In this very small example, we may easily interpret what this solution tries 
to accomplish. We assemble the maximum number of end items of type A3. 

which is the most profitable one; this requires in turn the production of a 
corresponding number of common components c1 and c2. as well as the specific 
component c5. Since demand limit is binding for AS. there is some capacity 
left, which is used to produce a limited amount of the specific component 
c3, which is needed to assemble end item Al,  plus common components. End 
item A2 has the lowest selling price and is disregarded, as well as is its specific 
component c4. It should be noted that,  in general. one should not take for 
granted that the production of the highest profit item should be maximized: 
the consumption of available resources should be taken into account as well 
(see example B. l  on page 537 for a counterexample). 

In this specific case, the solution is quite readable, but it is a bit "extreme." 
An expert planner would immediately see that it is a risky bet on high sales 
of the most profitable item. The optimal profit. according to this model. is 
3233.33. but this is actually misleading. After planning production of com- 
ponents, we do not know the value of profit, but only its distribution (if we 
accept the validity of the demand scenarios). We cannot maximize optimal 
profit: what we can do is maximizing its expected value, and this requires a 
more sophisticated model that  takes demand scenarios into account: 

5 3 

max - C C t x 2 + - - p  ($P3YI) , (1.8) 
,=1 s=1 

5 

s.t. CT,,,Z, 5 L,. m = 1 . 2 , ~  (1.9) 
2 = 1  

< ds 3 = 1.2.3.  S =  1,2 ,3 .  (1.10) - 3'  
3 

C G , , $  5 Z, z = 1.2.3.4.5,  s = 1,2 ,3 .  (1.11) 
2=1 

y;,xz 2 0. 
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The big change in this model. with respect to the expected demand model 
[(1.4)-(1.7)]. is that demand uncertainty is taken into account explicitly. Here 
we consider demand d i  for item in scenario s .  Accordingly, the quantity as- 
seinbled is now represented by scenario-dependent decision variables y; : this 
is the amount of end item we assemble and sell. if and when scenario s is real- 
ized. Assembly decisions are not taken here and now. when we plan produc- 
tion of components, but they are contzngent plans. The scenario-independent 
variables 2,  are first-stage variables, whereas variables y; are second-stage 
variables. So now we implement the production plan (i.e., first stage deci- 
sions 2 , )  and develop a contingency plan for the assembly operations (i.e , 
second stage decisions y i ) .  Only when demand is realized we choose among 
the Contingency plans (y i  ~ y:. Y:).~' We should carefully notice the diffeience 
between a inultiperiod model and a multistage model. i4'e illustrate examples 
of inultiperiod models in appendix B and in chapter 4. In such models. deci- 
sions will be implemented in later time periods, but they are all taken now, 
based on the currently available information. It is possible to  revise such 
decisions bv solving the model again according to a rolling horizon strategy. 
but this is outside the scope of the model itself. In a multistage model. we 
do not commit to  one specific decision for the later stages; the decision that 
will actually be implemented depends on the realization of random variables. 
and it will be fixed only when the relevant information will be available in the 
future. Sext-stage variables may also be used to "adjust" previous decisions. 
given current contingencies. This interpretation explains why models such as 
the one above are called stochastic programming models with recourse. 

Going into details of the model above. the objective function (1.8) consists 
of a first-stage (deterministic) term accounting for the cost of components. 
along with a second-stage term, which is the expected revenue from selling 
end items (not including component cost): the expected value is computed by 
summing the revenues under the three possible decisions, times scenario prob- 
abilities T' .  The capacith constraint (1.9) is unchanged. because it pertains 
to first-stage only. The market constraint (1.10) is now scenario-dependent. 
as it considers the stochastic demand d;. Finally. constraint (1.11) links the 
two stages. stating that assembly is constrained by component availability, 
for each end item and each scenario. Solving this model. we get the following 
solution: 

XT = 115.71, Z; = 115.71. 

31Notice tha t  this holds only when the three scenarios are actually the  only three possible 
demand scenarios. In other cases. we can face a very large number of different scenarios 
(possibly an infinite number of different scenarios). In this case. the  three scenarios are 
only meant to model demand uncertainty and make sure tha t  first stage decibions account 
for demand uncertainty. The realized demand might differ from all three scenarios. In this 
case, once demand is realized we simply have to write a second model for assembly decisions. 
where we need to meet the realized demand with a limited quantity of components that  
was fixed through the  above model. 
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The real outcome of the model is the set of the first-stage decision variables 
x,*. Observing the component production plan. we immediately see a quali- 
tative difference with respect to  the model disregarding uncertainty: It is less 
extreme. We do not produce a large amount of component c j ,  because we do 
not place a risky bet on high sales of A3. In fact, scenario three would prove a 
disaster for the deterministic solution: In that scenario, sales are lower for AS. 
but we could not react because we do not have enough specific components for 
the other end items. This also implies that  many specific components32 would 
be thrown away (according to  our assumptions concerning the limited time 
window for sales and the lack of any salvage value of unused components). 
The stochastic model. instead, increases production of specific component c3, 
which is needed to support assembly and sales of Al :  even a small amount of 
component c4 is produced, in order to support the least profitable end item 
A2, which helps in using common components when sales are low for other 
end items. While there is a big difference in terms of specific components, 
we see that as far as common components are concerned, the solutions of the 
deterministic and the stochastic solutions are essentially the same. There is 
a good reason for this. as common components are a flexible resource, which 
can be exploited to support different end items. Moreover, the demand for 
common components is the sum of the individual demands for the end items. 
and by aggregating demand we often reduce uncertainty. Indeed, this rzsk 
poolsng effect is what we try to  exploit in assemble-to-order systems. In chap- 
ter 6 we will see that the same mechanism is exploited in the management of 
distribution networks. However. it is also important to note that when end 
item demands are strongly correlated. the risk pooling effect is considerably 
reduced. In such a case. we should expect that  even the produced quantities 
of common components differ in the deterministic and the stochastic model. 
Another relevant factor is capacity: If this is so tight that we may sell what- 
ever we are able to produce. a simple deterministic model could be a viable 
option. 

But how do the two solutions compare in terms of profit? The objective 
function from the solution of the second model is 2885.71: apparently. the 
stochastic solution is worse than the deterministic solution. whose objective 
value was 3233.33. But this comparison makes no sense. We are actually 
comparing two different situations rather than two different solutions. The 
above finding simply proves that we would rather face a certain demand rather 
than an uncertain one. The objective function of the first model is neither 

321n the more general case even common components could be thrown away. 
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the true profit. which is uncertain. nor its expected value. It would be the 
optimal profit. if we knew that the average demand scenario is mhat will 
be realized. In the first model I1.4)-(1.7)] we pretend to  know the end item 
demand. and we get the illusion of higher profits In order to  compare the t n o  
solutions, we should fix the production plans for components sugge5ted by the 
two models, and then we should solve a set of second-stage problems, where we 
optimize assembly of end items subject to  component availability, for different 
demand scenarios. Nore formally. given a set of first-stage variables 2;  for 
components, we should solve the following second-stage (recourse>) problem 
for each scenario s' 

3 

C Gzl$ 5 x,'. 
J=1 

> 0, YJ - 

i = 1.2 ,3 .4 .5 ,  

where R"(x*) is the optimal revenue we collect under scenario s.  given the 
first-stage solution XI. and making optimal use of available components to 
meet demand. The first-stage solution can come from solving a stochastic or 
an expected-value model: whatever the case. its expected revenue is 

S 

Expected profit for an arbitrary solution can be obtained by subtracting its 
first-stage cost from its second-stage expected To evaluate the 
deterministic solution. we should plug it in this model: in case of scenario S1. 
the optimal assembly and sales plan is 

y; = 26.67. y; = 0.00, yg = 90.00. 

and the hame holds for Sz. The bad news is that if scenario 5'3 occurs. we are 
in  trouble. because the high-risk solution does not fit demand verv well The 
optimal assembly and sales plan would be 

yr = 26.67. pE = 0.00, g: = 60.00. 

This is a pretty bad scenario with low sales and corresponding low profit. 
JYe must compute revenue for each scenario. multiply it by its probability. 

33\fe are evaluating expected profit in-sample. i.e., by- using the  same set of scenarios which 
are used in the  stochastic model; we could use a much larger set of out-of-sample scenarios 
to  get a more reliable estimate. The  point is tha t  solving a large number of small L P  
problems may take less CPU time than  solving one large stochastic LP model. 
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sum everything to  get the expected value, and subtract the component cost 
from the first stage. Doing so, we may see that the expected profit from 
the deterministic solution (2333.33) is much lower than what the objective 
function of the deterministic model [(1.4)-(1.7)] predicts (3233.33). based on 
one average-case scenario. The percentage improvement of the stochastic 
solution with respect to  the deterministic one is 

2885.71 - 2333.33 = 23.67%. 
2333.33 

Clearly, we cannot extrapolate general results from a small toy example. 
Indeed, the advantage of using a stochastic model is striking here, because 
specific components have a large impact. In a case featuring a lot more com- 
ponent commonality, the result would be less impressive. Furthermore. we 
have assumed that unused components are scrapped, which need not be the 
case. They could have some salvage value, and we could have a multistage 
problem so that they can be used in later stages. Nevertheless. the example 
is quite instructive in pointing out: 

0 the difference between decision stages and tame periods. 

0 the role of risk pooling. 

In this case. risk pooling is obtained by using common components and by 
deferring assembly decisions. To further illustrate the value of deferring de- 
cisions in a more specific distribution setting, some fashion retail chains send 
only a part of the items to retail stores at  the beginning of a season: at a later 
stage, after observing sales at each retail store. the residual stock is sent down- 
stream. Also in this case. the first decision, i.e., the purchase of items from 
suppliers, is often constrained by a budget assigned to each buyer in charge 
of a specific market segment. The second decision, inventory allocation, can 
be made by a different type of professional called planner .  

A last important consideration, which applies to all models we describe in 
this book to deal with demand uncertainty. is that we have considered the 
maximization of expected profit as a suitable objective. We do not consider 
profit variability across scenarios. or what happens in extremely bad scenarios 
(the average smoothes out single outcomes). This makes sense if we may 
repeat the game over and over (for various items or over multiple periods). 
so that what really matters is the average profit in the long run. However, in 
the short run we may take too many chances: If a single bad decision cannot 
be recovered. because we immediately go out of business, or get fired. a more 
careful approach should be taken to fully account for risks. An alternative 
view, for economically minded readers. is that considering expected profit 
is equivalent to assuming a risk-neutral attitude: risk-averse decision makers 
should consider different objective functions. 
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1.5.3 Inventory deployment 

The previous section serves well to illustrate the role of commonality in order 
to  reduce the impact of uncertainty. Common components mitigate uncer- 
tainty by providing flexibility and by allowing postponement of critical de- 
cisions. This is just one instance of the more general risk pooling concepts 
which are widely used in distribution logistics. M'hen we consider an arbores- 
cent network like the one in figure 1.3, we should decide if and how much 
safety stock we should place at  each node. LVe will see in section 2.1.1 that 
placing safety stocks upstream may reduce their aggregate level.34 On the 
other hand. we should be careful to  ensure suitable customer service, which 
would require locating stock downstream. \Ye see that the inventory deploy- 
ment decision is by no way trivial, and as usual there is no ready answer for 
all possible circumstances. As the following example shows, creati1.e thinking 
may be required in peculiar cases. 

Example 1.11 Consider the problem faced by a manufacturer of very ex- 
pensive spare parts for some industrial e q ~ i p i n e n t ~ ~ .  the manufacturer itself, 
or a firin providing maintenance services in its place, signs a contract requir- 
ing immediate replacement of faulty parts. say within a few hours. \T7here 
should spare parts be located. and how many of them are required? The sec- 
ond question requires possibly nontrivial probabilistic modeling. As far as the 
first question is concerned, allocating one part to each customer would cer- 
tainly ensure satisfactory customer service. but it would be extremely costly. 
One alternative could be to  place some stock at a facility which is more or 
less located in a barycentric position with respect to customers. Howei,er. if 
a customer is far. we should probably arrange for very fast transportation, 
mavbe by air. LYith very fast transportation. the exact location of stock may 
be irrelevant. Hence. we could even consider placing spare parts at some cub- 
tomer location. reserving the right to collect the part for fast shipment to  
another customer in need of a spare part. This would save some warehouse 
cost. but it requires a shift in the paradigm prescribing that the owner of 
stock is the owner of the location where the inventory is placed The spare 
part changes owner only when it is mounted on a machine. 0 

The example illustrates a simple case of a more general strategy called Ven- 
dor Managed Inventory, which is later illustrated in example 1.12 on page 
41. For reasons that will be later explained in chapters 6 and 7 it may be 
advantageous to have only one authority in charge of inventory management. 
since the interactions of different decision makers having limited information. 
and typically inisaligned incentives, may generate unwanted spikes in deinand: 
this phenomenon is known as the bullwhip (or Forrester) effect. In fact. it 

3 4 ~ e e  section 2.1.1.  
35See [8]. page 611. 
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is important to keep in mind that managing a complex supply chain is not 
just a technical challenge. as human factors and different points of view may 
exacerbate difficulties (see chapter 7 ) .  

The possibility of postponing inventory allocation decisions and exploiting 
risk pooling depends on product design too. The supply chain of HP DeskJet 
printers was successfully reorganized by changing the assembly process,36 in 
such a way to delay differentiation of products (e.g., according to destination 
country). For example. they assemble the printer with instruction manuals. 
cables. and plugs at the warehouse, rather than at the production site. This 
may result in an increase in the direct product cost, but the analysis must be 
carried out on a global level. taking into account the shorter and shorter life 
cycle of products. whose obsolescence may be very fast (indeed, this is the case 
in consumers' electronics). While this assembly process might add a few cents 
to the direct production cost, customizing products in the central warehouse 
might cut inventory investment and obsolescence cost by millions of euros. 
Generally, demand forecasting is easier whenever we may aggregate items by 
family. Consider clothing. which may differ in model, size, and color. If we 
may postpone dyeing items, in order to  gain more reliable information about 
demand. considerable savings may be obtained. Indeed. a well-known case in 
this vein is Benetton. where cutting and dying operations were swapped in 
order to ease f ~ r e c a s t i n g . ~ ~  

1.6 PHYSICAL FLOWS A N D  TRANSPORTATION 

In section 1.2 we have considered a network as a physical arrangement of facil- 
ities. An essential feature of any supply chain is the selection of a transporta- 
tion strategy and the management of physical flows. inbound and outbound 
from any node. Large organizations manage transportation by themselves, 
whereas in other cases this activity is outsourced: in general. we should de- 
cide between alternatives such as rail, ship, air, or trucks. 

Restricting our attention t o  road transportation. we may arrange point- 
to-point transportation or route a vehicle to serve multiple destinations. For 
instance, referring to figure 1.3. we may have one vehicle for each link from 
node 3 to  nodes 6,7. and 8: alternatively, the same vehicle may visit the three 
retail stores sequentially. A decision problem that may occur in the first case 
is the determination of a suitable transportation frequency; in section 2.1.2 
we show that a simplified version of the problem. accounting for fixed and 
inventory holding costs, closely resembles the EOQ model. In the second 
case. we should find a suitable assignment of customers to vehicles, and a 

36This case study is described, e.g., in [lo]. 
37See S. Signorelli, J .L.  Heskett. Benetton (A) .  Harvard University Business School Case, 
1984. 
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customer sequence for each vehicle. in order to optimize a given performance 
measure; such a problem. known as the Vehicle Routing Problem, is dealt 
with in chapter 8. 

When operating our own vehicles, me may try to  utilize their capacity at 
best. according to  a full truckload strategy (e.g.. see the case [ 7 ] ) .  Sometimes. 
the need for fast delivery requires less-than-truckload (LTL) transportation. 
For instance. fast mail couriers typically cannot easily exploit full transporta- 
tion capacity (trucks and aircrafts), and they try to aggregate flows by proper 
design of the transportation network. In the LTL case. we may also consider 
the use of third-party transportation, leaving to our business partner the task 
of aggregating flows in order to better exploit capacity. 

1.7 INFORMATION FLOWS AND DECISION RIGHTS 

In figures 1.1. 1.2.  and 1.3 we have illustrated the flow of goods. but the 
information flow is just as iinportant. In principle. information pertaining to 
the whole supply chain can be collected and inanaged by a unique decision 
maker. This centralized manager. should be able to come up with globally 
optimal decisions. Information Technology (IT) might make all of this a 
coiicrete possibility. but there may be unsurmountable difficulties To hegin 
with. an all-encompassing decision model may be way too difficult to solve. 
A nastier difficulty is the reliability of information. All large rctail stores 
use point-of-sale data acquisition. and we should be able to know exactly how 
much stock is available and where. for each item In practice. such inforimtion 
need not be 100% reliable because of errors. theft. wrong deliveries on the part 
of suppliers. misplaced inventory. exceeded shelf-life. damage due to iiiai erial 
handling. etc 

ETen leaving the ahove difficulties aside, there are deeper difficulties with 
a fully centralized decision-making architecture: 

0 Actors in the supply chain may be unwilling to share information. 

Actors in the supply chain may be unwilling to relinquish decision rights 
to others. 

Example 1.12 The Vendor Managed Inventory (VAII) approach is a 
good case to illustrate difficulties in information sharing and allocation of de- 
cision rights. Consider a supplier, who delivers goods to independeiitly owned 
retail stores. Point of Sales (POS) information can easily be collectc,d antl sent 
to the supplier. who could plan inventory accordingly. By the stme token. 
retailers should send timely information to  the supplier in case of planned 
promotions: otherwise, unpredicted denland spikes may have both irnniediate 
consequences. such as stockouts, and long term ones; such as loss of customers 
to competitors. which further contribute to  the difficulty in forecxhng de- 
mand a n  planning inventory. In fact; a retailer who receives a reduced amount 



42 SUPPLY CHAIN MANAGEMENT 

of stock. because of a shortage, may be tempted to  order more than needed 
during the next replenishment cycles, in anticipation of rationing strategies 
on the part of the supplier. But if all of the demanded items are eventually 
delivered. a low-demand period will follow because the retailer must get rid 
of excessive stock. This contributes to  an increase in demand volatility along 
the supply chain. as well as to  an overall feeling of partner unreliability. These 
and other reasons contribute to  the generation of the so-called bullwhip ef- 
fect, which has been well-known since the 1960s (see section 6.3). One way 
to  overcome this issue would be to  centralize demand information from POSs, 
which can be collected by the supplier. While technically possible, this solu- 
tion may be thwarted by retailers feeling that the supplier could share this 
information with their competitors. An even more radical approach is based 
on the idea that the supplier is not only the collector of all information in the 
supply chain, but also the only actor in charge of managing stocks. In VMI. 
goods are stocked at retail stores. but they are managed by the supplier and 
change owner only when goods are placed on the shelves. A very well-known 
case in this vein is B ~ i l l a . ~ *  a firm that had to work very hard to persuade 
retailers to adopt such a policy and give up authority on inventory. 0 

A general issue raised by V l l I  is: Assuming that a (maybe partially) cen- 
tralized policy reduces the overall costs. who is going to  enjoy the benefit? 
More generally, if multiple actors (different firms. or separate branches within 
the same firm) control different managerial levers along the supply chain, is 
there any guarantee that the overall strategy is optimal? There is no easy 
and general answer to such very delicate issues. In chapter 7 we clarify the 
related issues and outline the design of incentives to  improve overall perfor- 
mance. Given the complexity of the involved issues. that chapter has more of 
a conceptual than operational nature. 

1.8 T I M E  HORIZONS A N D  HIERARCHICAL LEVELS 

In distribution logistics we have to tackle quite different problems in terms of 
time horizon, involved uncertainty, and impact of the decisions we make. De- 
signing a new network of warehouse facilities, to be operated during the next 
few years, and organizing vehicle routes for the delivery of the next day are 
clearly two extreme examples of problems pertaining to different hierarchical 
levels. 

At the highest hierarchical we have strategic problems. The time hori- 
zon may be years or months. The longer the time horizon, the higher 
the level of uncertainty, which calls for suitable forecasting procedures 

38See J.H. Hammond. Barilla SpA (A). Harvard University Business School Case, 1994. 
Alternatively, the case is described in [13]. 
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Fig. 1.9 Graphical illustration of the location problem in example 1.13. 

and scenario analysis. Decisions made at the strategic level, such as 
warehouse capacity. will play the role of constraints a t  lower levels in 
the hierarchy. 

0 At an intermediate level we have tactical problems. Here. resource 
availability is usually fixed. but the time horizon (say. weeks) is long 
enough to require some form of forecasting. An example of tactical 
problem is the selection of an inventory management policq : changing 
such a decision is definitely easier than redesigning the structure of a 
distribution network. 

0 At an operational level. we have day-to-day decisions, where uncer- 
tainty is negligible, and we have to  react to incoming information in a 
very short time span. 

It is worth noting that the division between the three levels is not sharp at 
all. Third-party providers of logistic services allow us to  enlarge warehouse 
space without building any new facility. and this makes the boundary between 
strategic and tactical problems less clear. 

Furthermore, the hierarchical levels are interdependent. Of course higher- 
level decisions constrain lower-level management. but the link is two-way. 
Hierarchical decomposition is needed to  tackle otherwise intractable problems. 
but when making a strategic decision we must somehow anticipate the efIfects 
on the tactical and operational levels. This must be done by some model 
simplification. resulting in a sort of "anticipation" function. TVe will see a few 
examples in the next chapter. but the next example illustrates how different 
decisions cannot almays be taken disregarding their interactions. 

Example 1.13 Consider a network consisting of three retail stores. located 
on the vertices of an equilateral triangle. as illustrated in figure 1.9. The 
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position of nodes 1. 2 ,  and 3 is given. and we should locate a distribution 
node (or a production plant) in such a way that the total transportation cost 
from the distribution to the retail stores is minimized. Assuming that the 
demand on the three retail stores is the same. an intuitive solution would be 
placing the distribution center in the barycenter of the triangle (node 0 in 
the figure: the resulting vehicle routes are drawn as dotted lines). However, 
this depends on the transportation mode. If demand is large with respect to  
vehicle capacities and we transport point-to-point, this solution is reasonable. 
However. if demand is low and distances are not too large. it could be much 
better to visit nodes 1, 2 .  and 3 in sequence with the same vehicle. In such 
a case, we could place the required node at the same location of any retail 
point on the perimeter and, in case it saves us some money. we can consider to 
place it in one of the three vertexes of the triangle (stores). Of course. a real- 
life problem should also account for fixed cost components in transportation, 
environmental issues. item perishability. etc. 0 
ilie close this section by stressing again the fundamental difference between 
tame perzods and decwzon stages (see section 1.5.2). In a long-term decisions, 
we may prepare plans which are implemented in successive time periods. This 
may result in dynamic problems. If the decisions are made here-and-now and 
are not changed later, we to  have a multiperiod decision problem. but it is a 
single-stage one. We typically reserve the term “multistage” for problems in 
which future decisions are adapted as a function of additional information we 
gather and of the progressive resolution of uncertainty. 

1.9 DECISION APPROACHES 

Supply chain management strategies may differ according to priorities in ob- 
jectives. information availability, and strategy of the firm (see section 1.3). 
There is wide array of possibilities, and confusion is sometimes added by 
ambiguous use of buzzwords. such as push vs. pull systems. Indeed, the 
manufacturing literature has largely contributed to  this state of the matter. 
because of the confusion among different hierarchical levels. such as demand 
management (also known as master production schedule in a production en- 
vironment) and shop-floor control. 

I n  a push-based supply chazn . . productaon deczsaons are based o n  long- 
t e r m  forecasts. (...) In  a pull-based supply c h a m  ... productzon zs 
demand drzven . . .. rather than .  forecast (drzven) 

We may also substitute “purchasing“ or “distribution” for “production.” to 
make the definition more general. So the difference between a push and a pull 
strategy is the following: 

In a pull system. purchasing, production. or distribution orders are 
based on the consumption of a good in the downstream operation. For 

The following classification criterion is suggested in [13, chapter 51: 
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example. in a manufacturing environment. the production of a corri- 
ponent might be triggered by the consumption of that component at 
an assembly plant. In a distribution environment. the distribution of a 
case-pack of canned tomatoes is triggered by the consumption of canned 
tomatoes at  the stores. These policies are somehow based on minimum 
inventory levels and once they are reached the upstream stages start 
purchasing. producing or distributing the products. 

0 In a push system. purchasing, production, or distribution are based on 
a plan, which is based on a forecast of a future demand. For example. 
in a production environment we might decide to  produce a component 
because our assembly plan for next week foresees the need for such a 
part. Also, in a distribution environment we might distribute a large 
quantity of a given product, because we foresee a peak in demand due 
to a promotion. 

To be fair we shall sal- that  somehow pull strategies are based on some sort 
of forecast as well. Indeed. while materials consumption triggers purchase, 
production, or distribution orders. these are governed by parameters that are 
based on some sort of forecast, 

Example 1.14 Now, let us consider a simple EOQ-based polic). where a 
replenishment order is issued when we reach the reorder point. Is this a pull 
policy? From a certain point of view. it certainly is: lire issue an order when 
inventory is pulled. Howe\er. some forecasting procedure is arguably used in 
setting the policy parameters. which depend on the expected value of demand 
and its standard deviation. We see that even a simple pull approach is based 
on a mix of demand forecast and materials consuniption. The parameters are 
based on some sort of forecast, while the replenishment orders are triggered 
by actual demand and materials' consumption. 0 

Example 1.15 Kanban production control can give us another good exam- 
ple of a pull system. Kanbans are a means to control production at the shop 
floor level. they n-ere invented in Japan and made famous by Toyota. Kan- 
bans are basically a permission to start the production. These '.permissions" 
to produce are released only when the components are actually consumed. 
So they are a very effective means to  control the iiiventory level. If we oiilp 
have permissions for 100 units (say we have 100 kaiibans and each gives the 
permission to produce one unit). we never have more than 100 units of the 
component at stake. Ti'hen a unit of the component is coiisumed in the assem- 
bl) operation. we release the permission to produce one unit. 011 the other 
hand the manufacturing stage attaches one kanban to each unit maiiufactured. 
Therefore. while the consumption of the coinporieiit releases 'periiiissi~ris" to 
produce. production consumes them This process makes sure that the inven- 
tories of components do not get out of control. since the inanufactiiring stage 
can produce oiie unit if and only if one unit h i  been consumed. This makes 
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the kanban production control the gold-standard for pull systems. However, 
one could wonder why we decided to  have 100 kanbans rather than just 50? 
On the other hand, one might wonder whether 100 kanbans are enough? Ac- 
tually, these decisions may be made by simple rules of thumb, simulation 
models, or even complex algorithms that lie outside the scope of this book 
that focuses on logistics. However, one can intuitively understand that the 
number of kanbans depends on the rate of consumption of the components, 
which in turn depends on the expected future demand for the finished good. 
Another relevant factor is uncertainty. which provides us with an incentive to 
raise the number of kanbans in order to add some safety stock. 0 

Quite often, .‘pull“ is associated with a good and efficient policy, whereas 
‘.push” is associated with obsolete practice. Actually. in some contexts the 
pull strategy might perform very poorly whereas the push strategy might be 
very effective. 

Also, there is nothing like a pure strategy. as real-life approaches are typ- 
ically hybrid mixtures. and these terms should be associated to  features of a 
solution approach, rather than to a specific choice. So the key issue is not 
choosing between one strategy and the other. We rather have to  find the right 
blend at the various levels, as the two examples below show. 

Example 1.16 For example, in many supply chains, we develop long-medium 
term plans to allocate resources, plan shifts. give suppliers advance notice of 
expected changes in demand. etc. For example, a company might sign a con- 
tract for the supply of 10.000 cans of Coke a month, based on the expected 
demand over the next 3 months. Nevertheless, the actual delivery-orders 
might be driven by the actual consumption of Coke at  the stores; for exam- 
ple. stores might reorder a pallet of Coke when the inventory level of Coke 
drops below a given threshold. So we have a long term push strategy. whereby 
we commit to the overall quantity based on some sort of forecast of future 
demand. On the other hand. the short term replenishment process is driven 
by the consumption of Coke at the stores and thus can be considered to  be 
pull. As we can see, push and pull are features of the solution rather than 
contrasting alternatives. 0 

Example 1.17 In a production environment we might have a master pro- 
duction schedule (that is the plan for production of the finished good) where 
we plan the production quantities over time, according to  current inventory 
levels, future demand (either a demand forecast or firm orders or a mix of the 
two). setup costs, etc. This is actually a plan at  the finished good level. So one 
would be led to think that companies that use the Master Production Sched- 
ule use a push strategy. Actually, at the shop floor level the replenishment of 
components to  be assembled might be driven by their consumption and thus 
might fall under the “pull umbrella.” The assembly of finished products is 
based on a schedule, whereas (some) components are produced and replen- 
ished as they are consumed by assembly operations. This example too shows 
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that the push and the pull logics can coexist and very often are used by the 
same company. 0 

A second recurring theme in operations is the AIake-to-Stock/AIake-to- 
Order dilemma. First we should realize that Make-to-Order is not a syn- 
onym of pull system and Make-to-Stock is not a synonym of push system. 
An example will. hopefully. make the point clear. 

Example 1.18 Let us go back to the car industry (see example 1.4). Both 
in the USA and in Europe the replenishment and production of components is 
based on a pull strategy. at the least in the short run as the kanban production 
control has become a sort of standard in this industry. Nevertheless. in the 
USA most cars are made to stock, while in Europe they are made to  order. 
This clearly shows that push or pull can be associated with either Make-to- 
Stock or Make-to-Order. 0 

‘CYhen one thinks carefully about it. the issue is actually fairly simple. 
The flow of components to the assembly line can be based on a pull or a 
push strategy, but the fact is that both strategies simply disregard whether 
a specific customer (say Slr. Brandimarte) is waiting for the blue car, with 
leather seats. and air conditioning. or the car is simply ordered by a retailer (or 
a commercial unit) that hopes to sell it sooner or later to  a generic consumer. 

Also, Alake-to-Stock and Make-to-Order are not actually contrasting alter- 
natives, but they should rather be considered as features of a strategy. and 
can be combined to  design a reasonable solution. For example. in most good 
restaurants dishes are prepared to  order. while raw materials are purchased to  
stock. Things are fairly easy for standard raw materials with a long shelf life 
such as flour or potatoes. Things are more tricky for very specific and short 
shelf life products such as mullets (a specific kind of fish that is used for very 
specific recipes). They are bought if and when we expect that on the same 
day (or the next day) a customer will ask for a very specific recipe 

Moreover, the assemble-to-order example of section 1.5.2 suggests the pos- 
sibility of integrating different strategies. Components may be produced (or 
purchased) based on forecasts, whereas final assembly is made only when a 
customer order is received. As we pointed out, this is a necessary arrange- 
ment when the delivery lead time accepted by the customer is smaller 1 han 
the overall lead time for producing the end item, but it is impossible to stock 
end items, because of their cost or their variety. We see that there is an order 
decouplzng p o ~ n f ? ~  which separates subsystems governed by different policies. 
Finally, it is also worth noting that quite different approaches may be adopted 
within the same firm. depending on specific items (in terms of valur.. perisha- 
bility, etc.) and customers. 

39Sornetimes, the term “push-pull boundary” is used in manufacturing 
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Example 1.19 Consider for example a manufacturer of top-end watches. 
The basic models (maybe still worth a few thousand euros) are available a t  
the stores. On the contrary. unique items such as top grand-complication 
items (that is items with an extremely complex mechanical movement that 
can account for lunar phases etc.) are made to  customer order as demand is 
so sparse that it makes no sense to carry them over. Also these extremely 
expensive items are only bought by collectors that  seem to enjoy the time 
they have to wait, as it testifies the product is really hard to make and is 
specifically made for them. 0 

1.10 QUANTITATIVE MODELS AND METHODS 

In this book we use quantitative models and methods extensively. Applying 
a quantitative approach means setting up a mathematical model and solving 
it by some appropriate method. The quantitative feature could be associated 
to some “scientific“ or “objective“ virtue, but this is a somewhat reductionist 
approach. As the saying goes, there is no such a thing like an exact model: 
All models are wrong, but some are useful. This is why modeling has been 
defined as the art of selectively simplifying reality. Choosing the right degree 
of simplification is indeed an art ,  which is subject to often contrasting views 
depending on personal taste and opinion. Since building and solving a model 
is done with some purpose in mind. different stakeholders may have quite 
different ideas about the right modeling approach. Whatever the case, there 
are many reasons making simplification necessary: 

0 Computational tractability: As we point out in appendix B. some op- 
timization models may be hard to solve. and we must give up some 
modeling detail and/or resort to suboptimal solution methods. 

0 Uncertainty: In principle. we may use the machinery of probability the- 
ory and statistics (see appendix A) to represent uncertainty. but some- 
times lack of data. or difficulty in the model. prevents an exact repre- 
sentation. We should also keep in mind that not all of the uncertainties 
can be formalized within the framework of probability theory. 

0 Complex dynamics may prevent elegant analytical modeling. 

0 There are often conflicting points of view. which cannot be analyzed 
objectively on a purely quantitative basis. 

There are two wide classes of quantitative models: 

1. Prescriptive models. Typical examples are optimization models, which 
are formulated with the aim of getting a decision directly. In principle. 
decision-making could be automated by gathering data. instantiating a 
mathematical programming model. and solving it by one of the many 
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commercial solvers. In practice. prescriptive models should just be used 
as a decision support tool. 

2 .  Descriptive models. Unlike prescriptive models. modeling tools within 
this class do not aim at generating a decision. They just try to  capture 
relationships between variables. shedding some light on key features of 
the problem at hand. which is then used by the decision maker. 

JYhile we will illustrate many quantitative models. we should emphasize that 
useful descriptive models may also be qualitative: their role is rationalizing a 
business process and reaching a common understanding, which is not to be 
taken for granted in large organizations or in contexts involving several firms 
with different views and incentives. 

The descriptive models we consider in this book are mainly aimed at pre- 
dicting something. Prominent examples that we will consider are time-series- 
based forecasting and regression models (see chapter 3 ) .  SVe might also con- 
sider performance evaluation models. The idea is predicting the pcrforniance 
of a real system. for a certain configuration and for a given settiiig of borne 

parameters governing decision rules. To make this point a bit more concrete. 
let us denote by f(8; w) a performance measure depending on a set of decision 
variables 8 .  which are under our control. and a set of random variables. which 
are beyond our control: the dependence on random events is expressed bv w'. 
A performance evaluation model aims at  estimating the expected value of the 
selected performance measure: 

H ( 8 )  = E , [ f ( 8 ; ~ ) ] .  

Performance evaluation models may further split into two subclasses: 

1. Analytical models. 

2 .  Simulation models. 

Analytical models typically require some simplification LJe will see some ex- 
amples in chapter 5 A lien deriving approximations of expected cost as a func- 
tion of inventory management policies under uncertainty. Analytical models 
in this domain may require some simplifying assumptions: for instance. me 
mill assume that backordering is possible. i.e.. customers are patimt.  But if 
customers are not necessarily willing to  wait. demand can be lost. making 
modeling harder. Simulation models. on the contrary. are extreiwly flexible 
arid powerful. at least in principle: however, they require much effort in data 
gathering. and maybe in solutioii time. and require a working knowledge of 
general-purpose programming languages or more specific simulation environ- 
ments. if-hile in other engineering-related problems we need continuous-time 
siniulation models. in supply chain modeling we need dzscrefe-ew nt simula- 
tion models. By "discrete-event" we mean that the system state changes in 
correspondence with specific events: For instance. the inventory let el changes 
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abruptly when a supplier delivers an order, or when a customer asks for some 
material. Uncertainties are modeled by pseudo-random number generators, 
i.e., algorithms able to emulate random phenomena, such as customer demand. 
The simulation program includes event management and decision rules which 
allow us to emulate the time evolution of quantities of interest and to esti- 
mate required performance measures given the set of parameters 8. There 
are graphical description languages. which may make the modeling task easy 
in simple cases, as they require assembling and linking standard blocks with 
a graphical editor; still, nontrivial thinking may be required to fit a complex 
system within the bounds of the selected simulation environment. 

Because of these reasons, we do not deal with simulation modeling in the 
book, but we want to point out that ,  as usual, we should not draw a very 
thick line separating prescriptive and descriptive models. For instance. many 
revenue management and dynamic pricing strategies use regression modeling 
(e.g., to  capture the link between price and demand), as well as modern op- 
timization software tools. Furthermore, modern simulation environments are 
integrated with optimization solvers able to manage simulation experiments 
in order to automatically search for the best setting of parameters with re- 
spect to  a specified cost or profit function. Since there is randomness in any 
supply chain, we actually want to optimize (say. maximize) the expected value 
of some performance measure: 

max H ( 8 )  = E,[f(O;w)] ,  
eEo 

where 0 is the feasible set for the controlled parameters 8. The expected 
value is. when random variables are continuously distributed. a possibly high- 
dimensional integral. Then, we must resort to some sampling mechanism, 
yielding an approximation B(8) FZ E w [ f ( 8 ;  d ) ] .  For simple systems, we may 
get an analytical approximation, which is suitable for optimization by mathe- 
matical programming, as we have seen in the stochastic optimization example 
of section 1.5.2. When simulation is needed, we have to  resort to different 
optimization approaches. Typically. commercial software relies on some form 
of evolutionary computing able to deal both with noisy estimates of the per- 
formance measure and with usually nonconvex optimization problems. 

1.11 FOR FURTHER READING 

In this book we will deal with problems which lie at the boundary be- 
tween distribution logistics and production planning. An excellent book 
on manufacturing systems, including production planning and control, 
is [8]. 

0 An excellent text covering supply chain management with a wider scope 
(and, necessarily, sometimes a more shallow level) is [ 5 ] .  Among other 
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things. the reader will find there some treatment of re\-enue management 
and electronic commerce. For a text very rich in references to practical 
cases. see also [13]. 

0 TVe deal with distribution logistics from an operatzons management per- 
spective. but we should keep in mind that this dimension must be linked 
to a financial perspective: models integrating the two sides of the coin 
are illustrated in [ la] .  

0 lye have pointed out that there is no best supply chain management 
approach: the strategy must be adapted to the specific firm and market 
at hand. a point which is very well illustrated in [6]. 

0 Readers interested in discrete-event simulation will find [9] very com- 
prehensive and readable. 

0 A tutorial introduction to  stochastic programming models in manufac- 
turing can be found in [1]. For a comprehensive introduction to both 
models and solution methods, see. e.g.. [3]. 
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Network Design and 
Transp o rt a t i o n 

In chapter 1 we have seen that logistic networks can be shaped according to  
several patterns: defining the structure of the network is a strategic task with 
a significant impact on the overall cost of the supply chain. and it resulls in 
constraints on its day-to-day operations. The main problem we deal with in 
this chapter is indeed the design of logistic networks. Actually. we should 
speak of network design problems. as there are many shades and nuances of 
this problem. In principle. designing a logistic network requires locating and 
sizing production plants. distribution centers, and retail stores. In practice. 
we typically face a subset of those decisions. since some part of the network is 
given. To begin with. we rarely design a network from scratch; we may have to  
redesign an existing network in order to adapt it to  changing demand patterns 
or changing prices of inputs. Hence, we may have to  relocate some facilities. 
to expand their capacities. or to  locate a few new ones. Furthermore. (i) when 
locating plants or large distribution centers. retail store locations are taken as 
given: on the contrary. (ii) in retail management we often have to  locate retail 
stores, i.e.. the last nodes in the network (e.g.. see [5]). The relevant criteria 
and constraints are quite different in the two problems. V'hen locating retail 
stores, an important role is played by the logistic range, i.e.. the maximum 
distance a potential customer is willing to travel to  purchase a given item: 
hence. distance may drive sales rather than just contributing a cost term 
to the objective function. When locating a distribution center, the distance 
between the center and the retail stores is typically just an element to  evaluate 
the total transportation cost. SforeoTer. in many location problenis we take 
demand at final destination nodes as exogenously given. On the contrary. 
when locating retail stores. demand is a result of our decisions. 

53 
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The design of a logistic network is typically considered a long-term. strate- 
gic problem. Indeed. building a large and expensive facility is certainly not 
a day-to-day decision. Nevertheless, recent trends, whereby third parties 
may offer logistic services. tend to  make the problem a bit more tactical and 
shorter-term. Obviously, building a plant and renting shelf space for the next 
four months are different decisions. In the latter case. we are changing the 
nature of costs from fixed ones to (relatively) variable ones. Flexibility is a 
requirement dictated by the faster and faster introduction of new products 
and ever changing market conditions. which may call for the almost continu- 
ous redesign of the supply chain. In any case. even if we are making strategic 
decisions. we need to represent their consequences on tactical decisions. such 
as transportation optimization. We need a sort of "anticipation function" in 
order to estimate the costs of tactical decisions that we will make next. subject 
to constraints enforced by strategic decisions: this estimate need not be overly 
precise. In strategic models. we cannot take detailed issues. such as opera- 
tional vehicle routing, into account: such decisions are the subject of chapter 
8; by the same token. the optimal loading of a single vehicle is of no concern 
at  this level. Still, a suitably aggregate representation of transportation flows 
and their costs is needed when designing a network. 

An interesting feature of logistic networks is the presence of intermediate 
nodes. such as distribution warehouses or transit points, between production 
plants and retail stores. Since such facilities represent a cost, there must be 
some good reason to introduce them. We discuss their functions in section 
2.1. In particular. we point out their potential role in reducing the impact 
of demand uncertainty in section 2.1.1. whereas in section 2.1.2 we consider 
their role in optimizing transportation and in managing assortment. 

Section 2.2 deals with classical linear programming models to  optimize 
transportation flows on a network, to locate facilities, and to  choose their ca- 
pacities. To keep computational effort limited, these models are static rather 
than dynamic, and we should wonder if such models are able to capture the 
interaction of flow routing and inventory management decisions. We cannot 
and should not mix detailed descriptions of both strategic and operational 
decisions in the same model: however, a suitable approximate model may be 
obtained by considering nonlinear cost functions. Then. to  avoid the burden of 
solving a large nonlinear mixed-integer programming model. we may approx- 
imate nonlinear costs by piecewise-linear functions, as described in section 
2.3. Since some model formulations may be tough to solve. a huge amount 
of literature has been produced, based on heuristic approaches to  ease the 
computational burden or to make the solution process a bit more intuitive. 
We will not consider this literature, for which we point out a few references at  
the end of the chapter; by the same token, we refrain from describing complex 
models accounting for some additional issues. Indeed, the astonishing progress 
in both hardware and optimization software libraries has paved the way to  
the solution of large scale models. We believe that the main limitations of 
the modeling framework we describe here are not computational but, instead. 
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lie in their limited ability to cope with denland uncertainty. as well as in the 
potential difficulty in understanding why we have obtained a certain optimal 
solution. Indeed. we should consider the models below as one tool within 
a complex decision support architecture: their role is to propose solutions. 
which could be modified in order to comply with some further requirements 
and should be thoroughly checked by detailed simulation. 

The chapter is complemented by two web sections. Section i I7 .2 .4  deals 
with continuous-space location models. In fact. the previous sections assume 
that we have already identified sites for potential facilities. and we must make 
a choice between a discrete set of alternatives: in other cases. we would like 
to  find ideal positions of facilities. in continuous space. This ma!- be useful 
in the process of building alternatives. Section LV.2.5 illustrates peculiarities 
of retail store location problems. compared with plant and distribution center 
location models. This topic is usually covered in books on marketing rather 
than in books on logistics. Lye believe it is actually a borderline issue as it 
defines the “last mile” (i.e.% the last echelon) of the supply chain for consumer 
goods. 

2.1 THE ROLE OF INTERMEDIATE NODES IN A DISTRIBUTION 
NETWORK 

In section 1.2 we have considered the basic structures of logistic networks. In 
particular. figure 1.3 on page 8 illustrates a prototypical arborescent network: 
the network in the figure is an example of a distribution network consisting 
of three levels: 

1. a first level. where production plants are located: 

2 .  an intermediate distribution level: 

3. a third level. where goods are finally routed to satisfy customer demand. 

In practice, the network may be much more complex and it may feature more 
than three levels, but the basic question is: Since goods are not transformed at 
the intermediate nodes, why are they needed? Indeed, intermediate facilities 
are a cost, both for the structure itself and for the inventory they might 
carry. You may hear consultants stating that distribution nodes should be 
avoided. Indeed, in many industries/companies there is a need to rationalize 
the distribution network. and this may require the elimination of intermediate 
levels or the aggregation of distribution centers to cover a wider area.’ Still. 
there may be good reasons to include intermediate levels. and me should 
understand them; if anything. removing a facility calls for the elimination 

’In Italy. inefficiencies in distribution networks consisting of too many levels are often 
mentioned as a cause of higher prices of many goods, with respect t o  other countries. 
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of the reasons for its existence: i.e., the services it provides to  the rest of the 
network. Furthermore, we should carefully consider the tradeoff between their 
cost and their benefit. In the next sections we illustrate simplistic models 
with the aim of pointing out what intermediate distribution centers try to 
accomplish. In the first case, we consider the impact of intermediate nodes 
on demand uncertainty; in the second case. we show how intermediate nodes 
can help manage product variety and transportation. 

2.1.1 

In section 1.5.1 we have introduced the concept of safety stock and we have 
obtained an expression for the total cost per unit time. in the case of a (Q. R) 
policy, with an economic order quantity Q. a reorder point R. and a stockout 
probability a:  

where cr is the standard deviation of lead time demand. which is assumed 
to  be normally distributed. We remind the reader that we have taken for 
granted the possibility of determining Q and R separately: as we shall see 
in chapter 5. this is actually an approximation. Anyway, this expression is 
useful to point out a factor that may make the inclusion of an intermediate 
distribution warehouse useful. 

Let us consider a network with n retail stores, which could carry their own 
inventory. For each retail store i = 1. . . . . n, let d, be the expected value of 
lead time demand and 0% its standard deviation. For the sake of simplicity, 
we also assume that the demands are independent random variables. Now we 
may use equation (2.1) to  compare the cost we have when all of the inventory is 
allocated to the retail stores against the case in which inventory is centralized, 
i.e.. it is kept a t  a central warehouse serving the retail stores. 

If inventory is fully distributed to the retail stores, there is no central 
warehouse and the total cost is the sum of n terms. one per retail store: 

The risk pooling effect: reducing the uncertainty level 

TC = dZGZ+ hzl-aO, (2 .1)  

Note that in the expression above, as well as in the following, we do not 
consider stockout costs; we include such penalties in chapter 5. If we keep 
inventory at the central warehouse, this will see an aggregate demand with 
expected value 

n 

and standard deviation 
i=l 

I n  
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Actuallj-, these two relationships require some care and a few assumptions. 
To begin with. the second one is based on independence among the randoni 
demands. Furthermore, it is certainly true that the aggregate demand per unit 
time is the sum of the individual demands. but in computing safetj stocks 
we must consider the demand during lead time. The lead times seen from 
tlie warehouse and from each retail store need not be the same. while here 
we are assu~ning that it takes the same amount of time to deliver directly to  
the stores. or through a distribution center. Also, demands could he subject 
to different uncertainties. The relationships are correct if the lead times are 
deterministic and the same for all of the network nodes. Under all of these 
assumptions, the overall cost is 

TCc = 

In order to  compare the two total costs. we may see that the following in- 
equalities hold: 

1 2.2) 

To see why these inequalities hold, we may observe that u2 + b2 5 ( a  + b)’. 
for non-negative values of n and b: this can be generalized to the sum of n 
terms. As we have pointed out, these inequalities need not be very accurate 
in a realistic case, but they do suggest that centralization of inventories could 
yield some advantage. 

On the one hand. inequality (2.2) suggests a possible economv of scale, 
essentially due to the concavity of the square root function which is involved in 
the EOQ cost also in the deterministic case. LVe can also provide an economic 
reading of this finding. A company enjoys economies of scale when it orders at 
a central warehouse rather than at  n stores. Ordering at the central warehouie 
can cut the transportation cost and reduce c j  cle inventories. 

Concept 2.1 A central dastributaon center  aggregates demand  arid thus en -  
ables the  company t o  enjoy economaes of scalr an transportataon and order 
processang. 

On tlie other hand. inequality (2.3) suggests that the uncertaint? in the 
aggregate demand can be lower than the sum of uncertainties of the individual 
demands, and this results in a reduction of the safety stock. Hcre we iee 
another example of the risk pooling effect. which we have already met in 
section 1.5.2. In other .uc.ords. deiiiand at the central warehouse is niore stable 
than demand at single stores. Indeed. high demand at one store can be 
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counterbalanced by low demand at  another store. Thus we need less safety 
stocks when we carry inventories in the central warehouse rather than at 
stores. 

Concept 2.2 A central distribution center  aggregates demand .  Aggregate de- 
m a n d  tends to be more  stable, thus reducing the  need f o r  safety stocks.  

We see that centralization of inventories may be beneficial, but we cannot 
really draw a general conclusion, because our analysis is way too simplistic. 
The risk pooling effect may be reduced if there is a strong positive correlation 
among demands at different retail stores. To see this. let us consider the sum 
of two random variables D1 and D2, with standard deviations g1 and C T ~ ,  

respectively. and correlation coefficient2 p: 

where the inequality stems from the condition p 5 1. If the two random vari- 
ables are independent. then p = 0 and the previous analysis applies; if there 
is negative correlation. uncertainty is actually reduced. But if p is large (close 
to  I ) ,  then the inequality tends to an equality and there is little reduction in 
uncertainty. We may have such a positive correlation when demand volume 
depends on the success of a product. assuming this is homogeneous across the 
retail stores. or when it depends on general economic conditions. 

Other very important points we have missed are transportation costs and 
the delivery lead time as seen from the customer. If we have inventory avail- 
able at the retail stores, we may serve the customer immediately. Our analysis 
implicitly assumes that the customer will wait if we can guarantee that stock 
is available at the central warehouse. This may be true for certain products. 
but not always: there is wide spectrum of consumption goods for which lack 
of stock on the shelves simply kills demand. 

To summarize, inequalities (2 .2 )  and (2.3) cannot be used to conclude that 
it is always optimal to  centralize stocks. However. they point out a potential 
tradeoff between the overall amount of safety stock. which is an argument 
for centralization, and the quality of customer service, which is an argument 
against centralization. It can well be the case that the optimal solution is a 
compromise between these extremes. depending on the product type (in terms 
of customer behavior and competition) and on the transportation times from 
warehouse to  retail stores. A detailed analysis can be carried out. but it may 
be remarkably complex: we will consider such issues in chapter 6. which is 
dedicated to multiechelon inventory management. 

2See section A.6.2 in appendix A 
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2.1.2 The role of distribution centers and transit points in 

transportation optimization 

In the previous example, we have seen that distribution centers may be help- 
ful in mit,igating the effects of uncertainty. but they can also be helpful in 
exploiting economies of scale. In this section we disregard uncertaint,y. but n-e 
illustrate the last point in a somewhat more realistic setting. where different 
item types are transported on a simple network. Consider the network in 
figure 2.1. consisting of two production plants and five retail stores. In the 
two plants: items A and B are produced, respectively: bot'h item types are 
sold at the retail stores. i$Te may look at the network of figure 2 . 1  as the 
superimposition of two independent arborescent structures, featuring direct 
shipment from factories to retail stores. A possible alternative is depict,ed 
in figure 2 .2 ,  which features an intermediat'e distribution center. Note that 
we are not considering uncertainty here, and the intermediate transshipment 
point is not necessarily meant to be a warehouse. In order to compare the two 
alternatives and t,o get a feeling for what' might make the second one interest- 
ing: we will use a very simplified example, where both demand at  retail stores 
and production rat,es at factories are constant over t,ime. In our analysis. some 
inventory builds up at' the intermediate node; but, in a inore practical set,ting. 
shipments may be synchronized in order to operate the distribution center 
as a pure cross-docking point. where items are received, fanned out. and are 
immediately shipped to dest,ination. 

Let us analyze direct' shipment first. We have a point-t,o-point transporta- 
tion over ten links. consisting of a pair (factory, retail store). How should 
we niaiiage each transportation link? If we assume that demand is constant 
over time, and that the production rate is perfectly synchronized with this 
demand rate: what we need to find is an optimal transportation frequency, by 
formulating and solving a model which is quite similar to the economic order 
quantity.3 To see this point' clearly. let us focus our a,ttention on one link. say 
t,he transportation from factory A to retail store 1. IVe assume that trans- 
portation cost has a fixed and a linearly variable component. which could 
be an approximation of an economy of scale. The fixed-charge component 
induces a transportation batch. i.e.. a quantity which is transported with a 
fixed period (or frequency). The quantity should also take vehicle capacity 
into account. but for t'he sake of simplicity we disregard such an issue. assuni- 
ing that vehicles are large enough. In figure 2.3 we see how inventory levels 
a t  the two nodes change over time. Note that the figure is drawn under the 
assumption that the net'work consists only of these two nodes: inventory levels 
in factor>- A are also affected by shipments to other retail stores. 'The figure 
suggests that the relevant decision variable is the time T, elapsing between 

'\\-hat we present here is a rough-cut analysis. inspired by [ A .  chapter 1:. where a larger- 
scale problem is discussed more exhaustively. 
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Fig. 2.1 Distribution network with direct shipments. 

Fig 2.2 Distribution network with an  intermediate distribution center. 
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Fig 2.3 
duction and demand rates. 

Inventory levels at the factory and the retail store, assuming uniform pro- 

two shipments, i.e.. the transportation period or equivalently the frequency 
l/Tc. T, is the time needed to transport items between the two nodes, which 
we consider deterministic arid given; during this time interval. items on the 
vehicle are inventory in transit. Just like the EOQ case. the relevant data 
are the inventory holding cost h and the fixed transportation chaige A. The 
variable transportation cost does not play any role. if it is linear. because all of 
the required items will be transported sooner or later: hence. the contribution 
of variable costs to  the overall cost per unit time is constant with respect to 
the decision variable at stake. 

\Ye can write an expression of the total cost per unit time. which is similar 
to  the EOQ objective function: the most notable difference is that the decision 
variable is a time period rather than a quantity. but if demand 1’. constant. 
they actually boil down to the same decision If we denote the demand rate 
by d. which is the same a5 the production rate according to  our hypotheses. 
at each shipment the transported quantity is Q = T,d. If vehicle capacity is 
not an issue. we also see that we have l/T, shipments per unit time; hence 
the fixed charge contribution per unit time is A/Tc Kow m-e muit quantify 
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the inventory holding cost. We should note that in this case we hold inven- 
tory in three stages: at the factory (there is an inventory buildup before each 
shipment), in transit. and at  the retail store. We should figure out the in- 
ventory holding cost for the average piece, which waits somewhere between 
production and consumption. Consider the first piece produced at the factory 
after a shipment. It will wait in the outbound inventory for a time interval of 
length T,: the last piece produced before the next shipment will not wait a t  
all, because as soon it is available, the vehicle is ready for shipment. Hence. 
the average waiting time at the factory is Tc/2. The same occurs a t  the retail 
store, where inventory behaves just like in the EOQ model. The first unit 
sold right after the lot Q is received spends zero seconds in the retail stores, 
whereas the last unit of the lot Q spends T, units of time in the store. The 
average unit spends Tc/2 units of time in the stores. This means that overall 
the average unit spends T, units of time in inventories.' 

We should also consider that there is inventory in transit waiting for a time 
interval T,. Hence. the total waiting time is T, + T, on the average. for each 
of the d pieces which are consumed per unit time. Therefore. the total cost 
per unit time is 

Minimizing the objective function with respect to T,, we get 

T," = &. 
and the shipped quantity should be 

4iYotice that here we implicitly made an assumption on the inventory build-up at  the 
production plants. Indeed, the  logic behind figure 2.3  is tha t  the inventories for each and 
every store accumulate progressively. In other words. a t  any point in time each plant devotes 
a fraction of the  capacity to  each store (the fraction is proportional to  the  demand for the 
item at the  store) and the inventories for the 5 stores build up  in parallel. Figure 2.3  shows 
tha t  there is a continuous production of inventories for the specific store a t  stake. However. 
there is a second. more efficient policy. One could allocate the production capacity in a 
slightly different way. We could produce at full speed for one store, prepare the distribution 
lot for the  store, and then switch t o  the next store. In this case the inventory build-up for 
a given store is all but constant. The maximum inventory level a t  the production site is 
still Q but this quantity builds up over a shorter period of time. just before the goods are 
shipped. In this case, inventories a t  the central warehouse (and going t o  a specific store) 
are displayed in figure 2.4.  

When we compare figure 2.4 with figure 2.3  we can see tha t  the  inventory level at  the 
production site decreases because inventories are kept a t  zero for a fairly long period of time 
(on the average 80% of the cycle time Tc) .  So in our discussion we are cutting some corners; 
tha t  is, we assume the  company has a rather ineffective policy a t  the  central warehouse. 
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Fig 2 4 
allocation of capacity to  stores): bee footnote 4. 

Inventory levels at the factory assuming uniform production (and sequential 

This is essentially the same as the EOQ formula, but for a missing 2 factor: 
this factor is missing because we are considering inventory holding at  two 
locations rather than one. Also, the total cost for the optimal solution is 
similar to  the EOQ case: 

TC(T,*) = 2 J A h d  + hdT,. (2.7) 

As expected. the transportation lag T, does not influence the optimal solu- 
tion. Indeed, no matter what our policy is. all units spend T, time 011 a 
truck (more generally. on some kind of transportation means). Nevertheless. 
T, may be important when comparing different means of transpori ation with 
significantly different transportation lead times (e.g.. ships vs. air freight). 
The same holds for variable transportation costs. In passing. we iliould also 
note that we are writing an objective function. while disregarding potentially 
thorny issues we face when two (or more) firms are involved: if we optimize 
the overall costs. who should reap the benefits? Actually. we do not need two 
separate firms to face this kind of difficulty: eyen two organizations within 



64 NETWORK DESIGN AND TRANSPORTATION 

Table 2.1 Coordinates of the facilities of a sample network 

A B D 1 2 3 4 5  

x 100 100 300 200 400 600 300 700 
y 300 700 400 400 200 100 300 300 

the same firm may face conflicting incentives. We will get back to these issues 
in chapter 7 but, for the time being, let us assume that we live in a very 
idealized world where everyone is willing to improve the general welfare. Now 
we have analyzed a single link, and we should wonder how we can exploit this 
knowledge to  compare the network with direct shipment against the network 
with the intermediate distribution center. In order to get a rough cut evalu- 
ation, we assume that the overall network cost can be estimated by summing 
the cost expression (2.7) over all of the links. This is not really correct, as 
we should pay close attention to the synchronization of transportation from 
a factory to the distribution center and from the distribution center to retail 
stores. This synchronization has an effect on the inventory at the distribution 
center. but we defer such issues to  chapter 6. 

Let us now tackle a small numerical case. m7e introduce subscript z = A. B 
to denote production plants and the related items, and j = 1.2 .3 .4 ,5  to 
denote the retail stores: the distribution center is denoted by D. The coor- 
dinates of each location are given in table 2.1, with respect to some arbi- 
trary point of reference: they can be thought of as miles or kilometers: we 
use these coordinates to  evaluate distances and to  quantify transportation 
costs. Transportation costs in practice depend on several factors, in a pos- 
sibly complicated way. For our toy example. let us assume that there is a 
fixed transportation charge depending on distance traveled, and not on vol- 
ume or weight; we have a cost q per unit distance (mile or kilometer). and 
the transportation cost is obtained by multiplying this factor times distance 
traveled. In a flat region, we may assume that the real road distance between 
two points is not too different from the Euclidean distance. This is actually 
an underestimate of the real distance. and we should take natural obstacles, 
such as mountains and lakes. into account: in practice. distances may be ob- 
tained by querying geographic information systems. To summarize, we may 
use the coordinates given in table 2.1 to compute fixed transportation charges 
A,, between the plants and the retail stores, A,D between the plants and the 
distribution center, and AD, between the center and the retail stores. Using 
plain Euclidean distance yields 

The remaining data we need to  carry out the rough-cut analysis are, for each 
item a ,  its cost c, and its demand d,, per unit time at  each retail store j: these 
data are given in table 2.3. The product cost c,. multiplied by an interest rate 
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Table 2.2 Transportation costs for the network of figure 2 . 2  

D 1 2 3 4 5 

A 223.61 141.42 316.23 538.52 200.00 600.00 
B 360.56 316.23 583.10 781.02 447.21 721.11 
I) - 100.00 223.61 424.26 100.00 412.31 

Table 2 3 Product cost and demand per unit time at  each retail store 

Itern Cost d,l dz2 d23 d,4 d25 

A 100 1000 500 2000 300 2000 
B 200 500 230 1300 120 1200 

Table 2.4 Times between shipments and total cost per unit time on each link 

1 2 3 4 5 

A 0.0752 0.1591 0.1038 0.1633 0.1095 
B 0.1125 0.2252 0.1096 0.2730 0.1096 

A 3760.60 3976.35 10378.02 2449.49 10953.43 
B 5623.41 5179.03 14250.14 3276.15 13155.47 

T .  yields the unit inventory holding cost h, for each item. If distances are short 
enough. the in-transit inventory holding cost is negligible Let us carr) out 
the calculations under the hypothesis that q = 1 and r = 25%. The resulting 
costs are reported in table 2 2. Applying equations (2.5) and (2 7 ) %  for each 
link (2. j )  in the network. we obtain the optimal periods between shipments 
and the total costs per unit time reported in table 2 4. Summing over all of 
the ten links. we get an estimated total cost per unit time of 73003.12. 

Let us now analyze the network with the distribution center D. The problem 
is much more complex here. because the time evolution of the inventory levels. 
depicted in figure 2.3, need not apply to  the new situation. To begin with. 
the inventory manager at the distribution center will see an aggregcite deinanti 
for each item: this demand also depends, in a possibly intricate way. on the 
transportation pattern fioni distribution center to retail storei. Furthermore. 
we have the additional issue of the synchronization between inbound and 
outbound transportation from the distribution center. in terrni of 1)oth tirning 
and quantity. In practice, cross-docking transit points are operated in such a 
way that no inventory is held there. To keep the toy example simple. we \\-ill 
not optimize the overall transportation pattern. but we d l  estimate the total 
cost by applying equation (2.7) again to  each link in the network Exen such 
a rough-cut estimate can be useful in showing if there is a definite advantage 
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of one solution over the other one. Let us consider first the two links from 
plants to distribution centers. On these links, the two items travel separately 
and each plant "sees" an aggregate demand 

3 

The time between shipments and the total cost on each link (i, D) are 

Carrying out the calculations, we get 

T 2 D  = 0.0393, TGD = 0.0464. T C i ,  = 11388.24. TC;, = 15542.58. 

yielding a total cost of 26930.82. Now we should add the cost related to  the 
five links from the distribution center to  the retail stores. Here we have the 
additional complication that items are shipped together. We may aggregate 
the two items together into a 'virtual" product, which is the bundle of the two 
items.' A bundle is a virtual product that consists of a combination of items. 
Think of the bundle as a package containing some units of item A and some 
units of item B.6 But how can we define such a bundle? Under deterministic 
conditions the mix of demand is fixed and so the mix of supply shall be fixed 
as well. So we can define these bundles (i.e.< composite sets of products) and 
plan them rather than the finished products. 

But how do we define the bundle? What is the demand for the bundle? 
On a closer look, we may see that the units we use to express the bundle are 
irrelevant; we have just to be consistent. For example. if at a retail store the 
demand per unit time is 300 for item A and 100 for item B, we may consider a 
bundle consisting of 300 pieces of A and 100 pieces of B, or a bundle consisting 
of 3 pieces of A and 1 piece of B, or finally a bundle consisting of 0.75 pieces 
of A and 0.25 pieces of B (as well as any other combination with a 3 to 1 
ratio for products A and B). In the first case. demand for the bundle will be 
1 unit per period. it will be 100 units per period in the second case. while it 
will be 400 units per period in the third case. Notice that the definition of the 
bundle implies a given level of demand and vice versa a level of demand for 
the bundle implies a definition of the bundle. Say we want to set the demand 
for the bundle to 10 units (per period). This means that we shall define the 
bundle in such a way that it consists of 30 units of A and 10 units of B. The 
inventory holding cost will be adjusted accordingly. 

Once, the bundle is defined. what is the holding cost for the bundle? In the 
first case. holding one unit of the bundle means holding 300 units of A and 100 

'We will use bundles again in section 4.6.1. 
'Notice tha t  we need not really assemble such packages. We simply refer t o  these bundles. 
sets. or packages as the unit we plan for. 
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units of B. so the holding cost for the bundle is h = 300. hA + 100. /ZB. In the 
latter case holding one unit of the bundle means holding 0.75 units of A and 
0.23 units of B. so the holding cost for the bundle is & = 0.75 . hA - 0.25 h~ 

Now let us try to be more general. Say that we define the bundle in such 
a wag that the bundle demand (per unit time) a t  retail store j is 

where a is an arbitrary (positive) number. Then the number of units of item 
a contained in this bundle is 

and the inventory holding cost for the bundle is 

Now we inay see that a is actually irrelevant, because in the formulas giving 
the optimal period and the total cost for each link from the distribution center 
D to retail store J ,  

the value of a gets canceled when multiplying JI and h3 .  This is actually a 
rather obvious finding as the solution cannot possibly depend on an arbitrary 
parameter. 

In order to carry out the calculations. we may assume 

J J  = c d,, . 
2 

In other words we assume that the number of bundle is equal to  the total 
number of units over all products. But we must be careful and realize that 
this does not implj- that we are summing demand for different i t ~ m s .  which 
makes no sense. Each unit of the bundle consists of a percentage L L ' , ~  of each 
item z where 

d,, 
u/lJ = c m. 

In the example above. we are simply assuming a demand for the bundle of 400 
units per period and a bundle consisting of 0.75 units of A and 0 25 units of 
B. UYth this choice of bundle demand. the inventory holding cost for bundle 

is a weighted combination of holding costs for single items 

h3 = C hLutZS. 
7 
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Table 2.5 Demand, weights of single items in the bundle, inventory holding cost, 
optimal ordering period. and total cost per unit time for each bundle j and the corre- 
sponding link (D, j )  

s t o r e ( j )  1 2 3 4 5 
- 
d, 1500 730 3300 420 3200 

2L'Aj 0.6667 0.6849 0.6061 0.7143 0.6250 

WB, 0.3333 0.3151 0.3939 0.2857 0.3750 

h, 33.3333 32.8767 34.8485 32.1429 34.3750 

Tr;j 0.0447 0.0965 0.0607 0.0861 0.0612 

TC;, 7 4472.14 4633.17 13970.02 2323.79 13469.10 

The resulting calculations are displayed in table 2.5. vl'e see that the total 
cost of the second set of links is 38868.21; adding the cost of the first set of 
links (26930.82) we get an overall cost of 65799.04. to be compared against 
the cost of the solution with direct shipments (73003.12). According to the 
model. the percentage saving from the introduction of the distribution center 
is 9.87%. 

We stress again that we have considered a toy model with a lot of debatable 
approximations. but the results suggest that the introduction of a distribution 
center may have some merits. The saving we have estimated might not be 
enough to justify the introduction of the distribution center. because we have 
not considered the cost of building and running it. To get a better idea 
of the effect of an intermediate distribution center. we may apply the same 
modeling approach to  a network with more retail stores. Using data similar to 
those we have just used, generating retail store coordinates on a square where 
both edges are 1000 space units long, and placing the distribution center in 
the barycentre of retail stores, we get the following results: With 100 retail 
stores, the percentage saving is about 30%: if we add a third plant with a 
third product. the saving is 40%. The important message to get from this 
example is why a distribution center may reduce transportation and holding 
costs: The distribution center may improve the frequency of transportation 
from production to  the retail stores. With a point to point transportation, in 
order to exploit economies of scale optimally. we may be forced to  transport 
large amounts of goods, possibly exceeding warehousing capacities. If we mix 
different products at a distribution center, where we manage assortment. we 
are able to adapt transportation patterns on the two sets of links. 

Concept 2.3 A distribution center can consolidate flows of various goods, 
so that these share some fixed ordering and transportation costs. Thus, each 
single product is  delivered i n  smaller quantities and more frequently. I n  other 
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words the distribution center can create joint econom,ies of scale since fixed 
costs are spread over a variety of products. 

Example 2.1 A somewhat paradoxical consequence of introducing a transit 
point is that  goods travel longer distances than with direct shipment. This 
is particularly striking in the case of next-day shipments by logistic. operators 
such as DHL or FedEx. Even considering a relatively limited region. such as 
one country, organizing a direct shipment network is out of the question. We 
have to introduce a hub to  ensure economies of scale. FedEx. in its early days. 
had just one in hiemphis: Hence, a parcel shipped from Oregon to California 
had to travel a long way.7 In a large country, such as the USA, having multiple 
hubs may make sense; in a smaller country. such as Italy. this would be hardly 
justified. 0 

It is now important to  close the section by listing all of the limitations of 
our exercise. 

We have considered one distribution center. in a given position. \Ye 
have not considered the optimal location of single or multiple distri- 
bution centers. nor the problem of allocating retail stores to different 
distribution centers. We need optimization models to accomplish these 
tasks. 

0 In practice. we often see hybrid strategies. Retail stores with high sale 
volumes may justify direct shipments, whereas others need an interme- 
diate point to  exploit economies of scale in transportation. 

0 14-e have adopted a simplistic model of transportation costs and we have 
not accounted for vehicle capacities. Both may depend on the specific 
transportation link. It may also happen that different transportation 
means are used: In intermodal centers. we may have inbound trans- 
portation by rail or sea and have outbound transportation by trucks. 

The transportation period we get from the model above may not be 
practical. because it may take any value. From an organizational point of 
view. one might prefer a more meaningful and regular pattern. Imagine 
the difficulty in arranging a shipment every 3.57 days. 

0 l i e  did not consider the costs of holding in-transit inventory. These 
costs may penalize the increased distance traveled when intermediate 
centers are used. We travel longer distances and goods spend more time 
traveling: thus the inventory holding costs increase. L4ctiially. when 

'See R.O. LIason, J.L. LlcKenney. W. Carlson. and D. Copeland. AbsoIutrIy. Positively 
Operations Research: The Federal Express Story. Interfaces. 27:17-36. 1997. 
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using transportation by truck, the traveling time is rather short and in- 
transit inventory cost may be neglected. However, when transporting 
perishable goods, time may be a very important issue. 

0 A similar consideration applies to variable transportation costs. If we 
approximate transportation costs by one fixed component and one vari- 
able component that varies linearly with the quantity transported, the 
latter does not affect the optimal transportation frequency. But if we 
are comparing different transportation patterns. variable costs may be 
relevant (think of different routes, one going through the distribution 
center and another one going straight into the stores) 

0 M'e have taken for granted that the distribution center had its own ware- 
house (without accurately modeling its dynamics). In fact. by carefully 
synchronizing shipments to and from a distribution center. we may avoid 
any inventory holding there: in this case, the distribution center works 
as a pure cross-docking point (i.e., a transit point). This means that 
the transit point does not reduce safety stocks by risk pooling; however. 
this does not imply that such a transit point has no role in dealing with 
uncertainty. As we will see in chapter 6, when transportation times are 
relevant, a transit point may help us in delaying the allocation of goods 
to specific final destinations: delaying the commitment of goods helps in 
reducing the impact of demand uncertainty. Another relevant consid- 
eration is that  in the case of pure cross-docking, the facility is smaller 
and cheaper to  build and manage (and we may also deal with highly 
perishable goods efficiently). 

0 Finally. we have neglected issues related to the increased material han- 
dling due to intermediate centers. Additional unloading/loading activi- 
ties have a cost. and they may also increase the loss of material because 
of accidental damage. 

All of these considerations illustrate adequately the extreme complexity of 
network design, which calls for the development of suitable models to take 
relatively strategic decisions. These models have to be reasonably simplified, 
yet we must anticipate the effect of strategic decisions on the costs associated 
to  tactical and operational management. All we can hope to do is to ap- 
proximate these costs; hence, optimization models have the role of generating 
a restricted set of candidate solutions, which must be fully evaluated by an 
accurate simulation model. It should be emphasized that a simulation model 
per se need not be an effective or efficient way to generate solutions. This is 
why in this chapter we deal with optimization models. We should also men- 
tion that heuristic solution approaches have been developed over the years. 
We refer the reader to [3]  and to our web supplements. 
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2.2 LOCATION AND FLOW OPTIMIZATION MODELS 

In this section with deal with a subclass of linear programming models, pos- 
sibly mixed-integer ones. linked to  classical network optimization problems: 
they include plant location and optimal flow models. Plant location is rele- 
vant at a strategic level. whereas flow optimization is of a more tactical or 
operational nature, but it occurs as a subcomponent of strategic models. In- 
deed. when locating plants we should account for the impact of the logistic 
infrastructure on the transportation cost. Hence. in illustrating models. we 
will not move from strategic down to tactical levels: rather, we n-ill present 
models in increasing order of complexity. The simplest model is the classical 
transportation problem. and we will proceed to more realistic modeling frame- 
works including demand uncertainty and nonlinear costs. Our aiin is not to  
propose a general. all-encompassing model. since there is no such thing. JYe 
want to present building blocks that can be assembled when needed: the focus 
is on modeling frameworks. and not on solution methods. We take for granted 
that a good commercial solver is available. to solve the models bv standard 
methods such as simplex or branch and bound algorithms (see appendix B).  
This need not be the case. as some really large-scale models may require spe- 
cific solution methods: however. we feel that  algorithmic finesse is beyond 
the scope of the book: furthermore. the astonishing progress in optimization 
software is pushing the intractability frontier further and further. 

All of the models below are based on the mathematical concept of a net- 
work, which is essentially a graph with some additional information. -4 graph 
consists of two components: nodes and arcs (see. e.g.. figure 2 . 5 ) .  Nodes are. 
in our case. facilities along a supply chain: arcs, connecting nodes. represent 
the flow of goods along a certain transportation link. Formally. an arc is just 
a pair of nodes. Not every pair of nodes is directly connected by an arc: to 
reach a destination node starting from a source node, we may need to traverse 
several arcs, modeling a sequence of transportation activities. Arcs may be 
directed (oriented) or not: formally this depends on the t j p e  of node pair. 
which can be ordered or not. The arc orientation is associated with the sense 
of an arrow. and it represents the direction of goods flowing along the arc. 
A directed graph consists of nodes and oriented arcs. In this chapter. goods 
flow along a specific direction: hence. we will deal with directed graphs. lye 
will meet undirected graphs in chapter 8 on vehicle routing, but n e  maj  also 
think of an undirected arc as a pair of diiected ones.' \Ye have d network 
when elements of the graph are associated with additional information related 
to costs or constraints. For instance. we may give the maximum amount of 
flow that can go through a node per unit time. i.e.. the matelid handling 

aStrictly speaking. in an  undirected graph we should speak of vertices. rather than nodes 
and edges. rather than arcs. we will use terms rather loosely 
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n 

Fig. 2.5 A graph corresponding to a transportation problem. 

capacity of a transit point, or the cost associated to  an arc, representing unit 
transportation costs. 

2.2.1 The transportation problem 

The classical transportation problem is actually a very simplified view of a 
real-life transportation problem. It is a linear programming model dealing 
with a two-level network. on which a single type of good flows. We have two 
disjoint sets of nodes: the set S of source nodes and the set V of destination 
nodes. Referring to figure 2 . 5 ,  we have S = {A. B. C} and V = { 1,2,3.4.5.6}.  
Examples of (directed) arcs are (A. 1) and (C, 4): there is no ( B .  6) arc. Also. 
when there is no arc connecting two sources or two destinations; we say that 
the graph is bipartite. Destination nodes represent retail stores, which are 
characterized by a demand d, ( J  E V). which may be given per unit time or 
over a time span of interest. Source nodes might represent production plants, 
with a given limited capacity R, (z E S). measured over the same time span 
as demand. For each sourcedestination pair. i.e.. for each arc, we have a unit 
transportation cost ctg.  This is considered as a variable linear cost; clearly. 
this is just a very rough-cut approximation of a real-life transportation cost. 
The problem consists of finding the minimum-cost set of flows. over all of the 
links (2 .1 ) .  such that demand is met and plant capacities are not exceeded. 

To represent the transportation problem as a mathematical programming 
model. we have to  find suitable decision variables first. In this case, it is fairly 
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evident that we need one decision variable for each link ( i . ~ ) :  let xtJ be the 
flow on each arc. We will assume that the only requirement on flows is that 
they be non-negative: we do not require that they be integers. which makes 
sense if we consider large flows. so that possible issues with a continuous 
approximation are of no c ~ n c e r n . ~  The resulting linear programming model 
is 

iniri ctJ x , ~ .  
ZES J € D  

The objective function (2.8) is a sum over all the pairs of nodes: and it amounts 
to the total transportation cost. The expression above assumes that there is 
an arc for any source-destination pair, which need not be the case. 11-e could 
think of associating a suit,ably high cost cz j  t,o nonexistent arcs: so that they 
are never used. A possibly more elegant solution is to represent explicitly the 
arcs in the network by a set N .  and writing the double sum as x(i,JIE,Q, ct1)xij .  
The constraint (2.9) makes sure that demand is met at each destination node. 
by summirig inflows from plants. The capacity constraint ~ limiting outflows 
from any source, is represented by (2.10). Kotice the reversal of roles bet,ween 
subscripts i and j in constraints (2.9) and (2.10). 

This model is extremely simplistic and it just provides us with a starting 
point, for further modeling. To begin with: it is a static model ignoring time 
patterns in demand (demand variabilit,y). In principle. it is easy to extend 
the model t,o a multiperiod one: we need to introduce a time-varying demand 
d,t and inventory variables at nodes: along the lines of section B. l .  By the 
same token. we could consider diversified production costs across the plants: 
different items or families, and a more realistic transport,ation cost structure. 
possibly including fixed charges and economies of scale. Pursuing this line. we 
may come up with an integrated production-distribution model. Obviously, 
the computational requirements would grow, but this need not be the main 
difficult>- of such an exercise; addit,ional critical points are the following: 

'In fact. if all problem da ta  in the  transportation problem are integers. it can be shown 
tha t  there is no need to  use branch and bound methods t o  get an integer solution. The 
simplex algorithm will always yield an  integer solution because of the striicture of the 
problem. Actually. this structure is so peculiar tha t  \ye may use more specialized and 
efficient algorithms. it'e refer the  reader t o  the  available literature on model solving, which 
is not too relevant for our purposes. Anyway, good commercial solvers are able t o  spot 
network structures in linear programming models and t o  exploit them properly. 
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1. Any model taking dynamic demand patterns into account may be flawed 
if demand is highly uncertain. The longer the time horizon. the higher 
demand uncertainty. JVe could build scenario-based optimization mod- 
els where demand uncertainty is suitably modeled. We have seen how 
this can be accomplished in the two-stage case in section 1.5.2,  but the 
solution effort grows very quickly for the multistage case. Nevertheless, 
scenario-based models have been proposed for strategic level decisions: 
we will illustrate an example in section 2.2 .3 .  

2. Another fundamental limitation is that transportation costs are assumed 
linear. which rules out economies of scale. In a strategic or tactical 
model, it may be difficult to account too accurately for transportation 
costs that also depend on operational decisions: however. we may ap- 
proximate such costs by a nonlinear function, which in turn can be 
approximated by a piecewise linear function. as we illustrate in section 
2.3 ,  with a corresponding increase in the computational effort. 

2.2.2 

In the classical transportation problem we have a two-layer network. If we 
generalize the network to an arbitrary structure. we obtain the minimum cost 
flow problem. In the classical version of the problem, we have one source 
node, which has to  send a given flow, and a destination node, where the flow 
must ultimately be routed; our task is to  find a minimum cost transportation 
plan. Since source and destination nodes need not be connected directly. 
we must use intermediate transshipment points. A complicating factor is 
represented by arc capacities, which limit the amount of flow we may transport 
on each link. The optimal flow might be split over multiple routes. This may 
actually be the case in telecommunication networks. but it is uncommon in 
distribution logistics. With respect to the basic network flow problem. we have 
other complicating factors. such as multiple destinations and sources. different 
commodities, nodes' capacities expressing limitation of transshipment nodes. 
etc. For the sake of simplicity, we will consider a three-layer network. of the 
type we have already seen in figure 1.3. Actually. arbitrary flow structures can 
be modeled. As in the transportation model, we denote source and destination 
nodes by S and D. respectively. and denote by C the set of intermediate 
transshipment nodes. We consider multiple items, whose set is denoted by C. 
Production plants, i.e., flow sources, need not be able to  produce the whole 
spectrum of products; furthermore, capacities and production costs may vary 
across source nodes. We will also consider transportation capacities, e.g. ~ 

linked to  either volume or weight. 
Given the increased complexity of this model. we proceed step by step. 

As we have already pointed out,  a good starting point is figuring out which 
decision variables we need. In network flow problems, we always need to 
represent the amount of goods shipped along each link. with reference to 

The minimum cost flow problem 
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some unit of time. Let us denote by Z , A ~  the amount of product t\-pe 1 E C. 
produced on plant z E S and shipped to  distribution center k E C similarly. 
we denote by ykJl the amount of product 1 shipped from distribution center k 
to destination node 3 E D. To be precise, we should define variables x , k l  only 
for items 1 which can be produced in plant z:  by the same token. we should 
only define both variables for arcs which are included in the network. To ease 
the notation. we refrain from doing so. but we could easily add the required 
subsets. 

Now we should write the constraints that  must be enforced on flows. We 
start from downstream nodes and then move upstream. To begin with. we 
want to meet the demand for any destination node: 

k E C  

where d,l is the demand for item 1 at  destination j. 
JVe also have limited transportation capacities on each link, in terms of 

volume or weight. U'e have to aggregate different items according to these 
dimensions. For the sake of simplicity, we consider only volume. and m-e let 2'1 

be the unit volume of item I and let &k and IVk, be the maximum volumes 
per unit of time which can be shipped on arcs ( 1 .  k )  and ( k .  j), respectively. 
Then we may express capacity constraints on each arc: 

If some links are not really available. we may thiiik of setting their capacities 
to zero. Itre also associate unit transportatioii costs c,k and g k 3 .  which are 
related to  the volume shipped on each link. 

Then we also have to formalize constraints on activities at transshipment 
nodes. A typical constraint we need for multihop flow routing is the conser- 
vation of flows. The amount of goods flowing into a node must be equal to 
the amount flowing out of that node: 

IYe should also consider the material handling capacity of distribution centers. 
If Hi, the maximum amount of volume that can be handled at node k per unit 
time. we have to  enforce the inequality 

Z E S  1 E l  

Finally. we must express capacity constraints on each production plant. To 
this aim. we need resource requirements for each item. There ma1 be several 
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relevant resources, but if there is a clear bottleneck, e.g.. labor, we may collect 
the unit resource requirements r,z to produce one unit of item 1 on plant i. 
along with the resource availability R, on that plant. Note that,  because of 
possibly different technologies, we allow for plant-dependent resource require- 
ments; for the same reason, we allow for different unit production costs p,l. 
The following production capacity constraint must be written for each plant: 

Note that we are summing over both item types and distribution centers as 
we consider the overall workload of the plant, regardless of what the item is 
and where it is shipped to. In fact. we have not used production variables, 
because they are directly disaggregated into shipments to distribution centers. 
In a multiperiod model. where inventories are introduced. we would need to 
make production variables explicit. 

Wrapping it up. and including the objective of minimizing the total cost. 
production plus transportation both to  the warehouses and the stores, we 
obtain the following linear programming model: 

min >: X ( p z 1  -k C , k ~ l ) ~ ~ k l  + g k j U l Y k 3 1 .  
1EZ tES k E C  ~ E Z  k E C j E V  

k E C  

X z k l r y k j l  2 0. 

For the sake of brevity, we will not repeat the cautionary remarks we made 
for the basic transportation problem. 

2.2.3 The plant location problem 

In the two models above we have taken the network structure as given. Hence, 
the decisions we had to  make were tactical or operational, and just linked to 
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flow routing. However. at a more strategic level. we have to make decisions 
concerning: 

0 the location (or relocation) of production plants: 

0 the sizing (or the expansion) of production capacities: 

0 the capacity and location planning for distribution centers: 

0 the allocation of retail stores to  distribution centers. 

As far as the last point is concerned. we may consider a purely exogenous 
demand. which we have to  satisfy. say. at minimum cost. However. there are 
problems, such as the choice of the location for retail stores, in which the 
demand is a result of our decisions. 

What we describe here is a straightforward extension of the transporta- 
tion problern. whereby source nodes are just potentaal locations of plants. We 
should decide where (in the set of predefined options) a plant must be opened. 
taking into account the related costs. Such decisions (and the related vari- 
ables) are logical (i.e.. binary) in nature: Either we open a plant. or we do 
not. This is a typical setting in which binary decision variables are used: 

1 
0 otherwise. 

if source node i is opened. 
Yk = { 

\Then opening a plant, the related costs include a fixed component. linked to  
the binary decision variables y2. Finding a good solution calls for trading off 
the cost of opening a plant against transportation costs. Even if we consider 
only a fixed charge for opening a plant, we must be careful in making it 
comparable with transportation costs (basically we turn a one-time-only cost 
into a kind of per-unit-of-time fee, say a monthly fee). If demand is given per 
unit time, and we measure transportation cost on the same basis. we must 
somehow amortize opening costs to make all of them comparable. If me do 
this, we end up with a fixed charge for operating plant a .  which we denote by 
f 2 .  The classical plant location model. where one item type is considered. has 
the following form: 

2ES 

(2.11) 

(2.12) 

Comparing this model against the transportation problem. we see two basic 
differences: 
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1. There is an additional term in the objective function (2.11). which is 
typical of models including fixed charges. 

2 .  The capacity constraint (2.12) does not include a given capacity. but a 
capacity depending on our strategic decisions. If a plant is not opened 
(yz = 0),  there can be no flow going out of the corresponding node. 
This way of linking continuous decision variables. in our case the flows. 
to  binary variables is quite common." 

Since the model includes binary decision variables, it must be solved by mixed- 
integer programming methods such as branch and bound. Leaving solution 
issues aside. it is important to  realize that the main difference between the 
two sets of decision variables is not due to integrality requirements. One set 
of variables is related to strategic decisions, which are not easy to change on 
a short time scale. Another set of variables is related to tactical decisions: 
Transportation decisions, should the demand pattern change, can be adapted 
on a short notice, subject to  plant capacity constraints. The role of the flow 
variables xtJ is to "anticipate" in a strategic model the effects of tactical deci- 
sions which will be made later: in the model below, they define an anticipation 
function in the form of a linear transportation cost." . 

This difference in the nature of decision variables gets clearer if we extend 
the model to account for demand uncertainty. To do so. we may exploit the 
same concepts we introduced in section 1.5.2. where we illustrated a two-stage 
stochastic programming model for optimization under uncertainty. Like we 
did there, we represent demand uncertainty by a set of scenarios. indexed 
by s and associated with a probability 7 ~ ' .  Let d; be the demand at retail 
store j under scenario s: for the moment. let us assume that demand must 
be satisfied anyway. The decision of opening a plant is a first-stage decision, 
which must be taken here and now: production and transportation decisions 
will be taken later, once demand is known. Hence, we have a set of second- 
stage decision variables x : ~ ,  which are contingent on the realization of scenario 
s. The minimization of the total plant cost plus the expected transportation 
cost is obtained by solving the following model: 

"See also the lot-sizing model (B.15) on page 573.  
l'An anticipation function actually anticipates the effects of the decisions at stake in the 
model on future performance. In this case, the function anticipates the effects of location 
decisions on future transportation costs. We could say that the model encompasses design 
variables yi and control variables x.j that  are used to capture the effect of design variables 
on future costs. Also, arguably a more accurate anticipation function should be nonlinear. 
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\Ye see that capacity constraints link the first-stage variables gz with the 
second-stage variables x,SS ~ which must adapt to contingent demand d ; .  subject 
to available capacity So. first stage decision variables generate the capacity 
that we then use in the second stage to meet demand. Solving this model could 
yield a very costly solution, if extreme but unlikely high-demand scenarios are 
included. since we would be forced to  buy a lot of capacity just in case that 
odd scenario comes true. Hence. we could also consider a more "elastic" 
formulation allowing for the possibility of leaving some demand unsatisfied 
(at least in some high-demand scenarios). Let 23" 2 0 be the amount of unmet 
demand at node under scenario s: these decision variables are included in the 
objective function multiplied by a penalty coefficient & . yielding the elastic 
model formulation: 

s . t .  + 23" = d3 V s ,  V j  E D. 
ZES 

X',S3'Z," 2 0. y, E {0,1}. 

The penalty coefficient 13~  could be quantified by taking the relative impor- 
tance of different markets into account; alternatively, it could be related to  
the cost of meeting demand by resorting to external suppliers. 

It is important to really understand the meaning of the model above. The 
second-stage cost term is just an anticipation function: Transportation plans 
will be determined by possibly complex strategies. and in a real setting we 
could have inventories at destination nodes. The meaning of the model above 
is the minimization of the long-run average cost. assuming that similar de- 
mands are observed over multiple periods (in modeling terms, independent 
experiments are repeated taking independent and identically distributed de- 
mand samples). If we anticipate possible trends in demand and we foresee 
significant changes on top of random fluctuations (say we expect demand to 
increase), we need to build a multiperiod model that accounts for demand 
variability. with considerable complications. An advantage of a multistage 
formulation mould be the ability of including the redesign of the network. In 
real life. we typically have to redesign the network by closing facilities. build- 
ing brand new ones. or expanding the capacit?- of existing facilities. The next 
model shows, in a deterministic setting. how this could be accomplished. 
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Fig. 2.6 Capacity expansion and relocation in a distribution network 

Concept 2.4 W h e n  we design a model t o  set the infrastructure of a supply 
chain and locate warehouses, we shall anticipate the effects of such structural 
decisions o n  the ongoing operational performance. I n  other words, when we 
make strategic deciszons we shall anticipate their effect o n  operational perfor- 
mance. 

2.2.4 Putting it all together 

In this section we discuss a model which summarizes modeling elements we 
have introduced before.12 For the sake of simplicity. we deal with one item 
type and disregard uncertainty: yet. the model is a good example of how we 
can improve an existing network to  adapt it to changing demand patterns. The 
network illustrated in figure 2.6 consists of two production plants. A and B, 
of given capacity. which can manufacture a product which must be ultimately 
be shipped to six final destinations. The product is shipped through three 
distribution centers, a ,  3, and y, with some current capacity level. The 
problem calls for the redesign of the network. pursuing the following options: 

1. We could expand the capacity of distribution center 7, which is drawn 
as a shaded area to point out this opportunity. 

2 .  We could build a new center 6. which is drawn using a dashed line, 
endowing it with a relatively low capacity. 

"The example described here is a simplified version of a similar model considered in [9]. 
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3. ilje could build center 6, with a relatively high capacity. 

Also. the transportation links going into and out of center 6 are dashed to  
point out that  they are potential transportation links. For organizational 
or budget constraints. if we open the new center 6. me must close (at leait) 
one between centers Q. and 3. In other words, we do not want to use more 
than three centers. Center nr might be expanded. but we do not consider it 
a candidate for dismissal. Every decision has a given cost. or a benefit. a5 

is the case of the savings associated with closing centers a or 3: all of these 
quantities are expressed on a per unit of time basis (i e , are amortized). in 
order to make them compatible with transportation costs and flows per unit 
time. The capacity of all transportation links is assumed unbouiided. it is 
node capacitS that constrains goods flow. 

To write the model, we will use subscripts z = A. B for production plants. 
k = a, 3. n,. 6 for distribution centers. and J = 1. 2 . .  . , , G  for retail stores. The 
available data. which may be referred to  time units when necessari. are: 

0 demand per unit time d, at retail stores: 

0 unit transportation costs c2k and g k , .  between the different network 
layers: 

0 the current handling capacity Tk for the three active distribution center5 
k = a. 3 . 2 :  

0 the possible capacity expansion li- for center -1. along with its cost per 
unit time ql: 

0 the two possible capacity levels, high and low. UA e li;. for the potential 
center 6, along with the related fixed charges q& and 4:: 

0 the saving rk for the potential closure of centers k = a .  3. 

0 production capacity R,. per unit time. at the production plants. which 
we asslime have the same technology. hence the same unit production 
costs: 

The decision variables are the material flows per unit time. &k and y k J %  on 
the two sets of links. along with the logical Tariables: 

1 
0 otherwise: 

1 
Z k  = { 0 otherwise: 

1 
0 otherwise: 

1 
0 otherwise. 

s(j = 

if the capacity of center ni is expanded. 

if center k = a. J is kept open. 

if we open center 6 with Ion- capacity. 

if we open center 6 with high capacity. 

{ 

{ 

w y  = 

/ 

s,” = { 



82 NETWORK DESIGN AND TRANSPORTATION 

We obtain a model which is a hybrid between the minimum cost flow problem 
of section 2.2.2 and the plant location model of section 2.2.3: 

(2.14) 
k 

7 

i 

(2.18) 
i 

(2.19) l h  
S6 + S6 I 1, 
z ,  + zq + sf + ss" i 2, (2.20) 

(2.21) 
Ic 

w-,, s;, s;, z,, zq E (0, l}, 

x z k , y k j  2 0. 

The objective function (2.13) consists of two terms: The first one is linked to 
capacity modifications; the second one (an anticipation function) is linked to  
transportation costs. The only point worth noting is the negative sign of the 
term associated with decisions pertaining to centers LV and 4: It is a saving. 
and the binary variables are complemented to  one, because we have a saving if 
we do not keep the center open. Notice that implicitly we consider the current 
situation where Q, P and y are currently open as our base-case scenario. 
Obviously, any other base case scenario would work as well (we suggest the 
reader to  restate the model with other base cases). The constraint (2.14) 
says that demand must be satisfied. The flow equilibrium on distribution 
centers is expressed by (2.15). Constraint (2.16) says that it is possible to 
have transshipment through centers CI: and D only if they are kept open, in 
which case total flow is limited by handling capacity. The constraint (2.17) 
is also a node capacity constraint, but in this case we include a potential 
expansion of capacity. The capacity of center S can take one of three values: 
zero. low. or high, depending on our decisions; constraint (2.18) takes care 
of this. We should note that capacity in y cannot be the sum of low and 
high capacity, because the related decision variables are mutually exclusive. 
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courtesy of constraint (2 .19) .  Finally. inequality (2.20) has the effect that at 
most two centers among a ,  3. and 6 are active in the new network. whereas 
(2.21) is the capacity constraint on production plants. 

2.3 MODELS INVOLVING NONLINEAR COSTS 

The careful reader has certainly noticed something strange in the last model 
we have considered: \Thy didn’t we consider the possibility of shipping goods 
directly from a factory to  a retail store? Extending the model by the inclusion 
of a new set of decision variables. say z , ~ ,  to model the direct flow from 
factory z to retail store J would be rather trivial; we just have to  adjust 
constraints on outflows from factories and on inflows to  retail stores. The 
real issue is that  this linear model is not able to  capture economies of scale. 
Since the objective function includes linearly variable transportation costs. 
if it is convenient to  ship a large amount directly rather than through the 
distribution center. this will also be the case for a small amount. SVhat we 
observe in practice is that  direct shipments are used only for large demand 
volumes at destination. The reason, as we have hinted at in section 2.1 .2 .  is 
that we must achieve economies of scale in transportation. We should better 
represent costs. which are actually nonlinear. In fact, equation (2 .7)  on page 
63, despite its limitations. suggests that the cost associated to  a transportation 
link is not only a nonlinear function of flow, which in this case is essentially 
given by demand d per unit time: this function is also concave. because it 
includes the square root of d . I3  Concave cost functions model economies of 
scale. The total cost function of the Economic Order Quantity model offers a 
similar suggestion. 

The actual cost associated with transportation flows on a link, with inven- 
tory holding. and with material handling at a facility is a comp1icatc.d function 
depending on dynamic system behavior. At the network design level. we must 
settle for a suitable approxiniation by some anticipation function, aggregating 
costs on a relatively long-term horizon: then we may validate the solution we 
have obtained by simulating operational decisions. One possible approach is 
to  postulate some functional form. like 

where C is the cost per unit time. V is the flow volume. and u and 3 are 
coefficients we should estimate. For values of 3 such a h  0.5 or 0.8. this cost 
function is concave. One possible way of finding suitable values for the coef- 
ficients in the assumed functional forin is by analyzing approximate models. 
An interesting alternative is carrying out siniulation experiments and then 

I3See section B.3 for the  definition of convex and concave functions. 
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fitting a functional form against experimental results. e.g., by least-squares 
methods (see section A.10.6).14 

Introducing a nonlinear cost function in a network optimization model may 
significantly change the nature of the model, the nature of the solution, and 
the computational effort to get this solution by solving the model: 

In general, nonlinear programming models are harder to solve than their 
linear counterparts. and this may limit the size of the model we can 
afford to  tackle. 

Location models involve binary decision variables; solving a nonlinear 
mixed-integer model may be difficult. 

Recent research has spawned a host of efficient algorithms for general 
convex optimization. and solvers have been introduced for nonlinear 
mixed-integer programming. Regrettably, minimizing a concave func- 
tion is not a convex problem. For a model with a nonconvex objective. 
even solving a continuous relaxation within a branch and bound strategy 
(see section B.6.1) may be difficult because of potential local optima. 
We should use possibly demanding global optimization methods. 

Even if we refrain from dwelling too deeply in algorithmic details. we imme- 
diately see that solving a suitably accurate network optimization model may 
be a time-consuming task. Network design is not a real-time decision-making 
task and that possibly significant savings are involved by proper analysis; 
hence. much CPU time can be afforded, but if we want to play with alterna- 
tive scenarios to get a robust solution. we should try to keep computational 
requirements as low as possible. 

One way out of this difficulty is approximating a nonlinear cost function 
by a piecewise-linear function, like those illustrated in figure 2.7. Given a 
function f ( z ) .  we can define a set of “knots” z(’) which separate intervals 
over which the function is approximated by a linear piece. Determining how 
many linear pieces are needed and how knots should be placed requires some 
skill and experience. but we see that we may boil down a possibly complex 
model to a linear programming model. The nature of the function dictates 
if this may be solved as a continuous linear programming model or if mixed- 
integer modeling is necessary. We have the first case when the function we 
approximate is convex. so that its approximation may be convex too. For 
instance. let us consider a function like 

14The approach of using a simulation model t o  build an approximate analytical model is 
called meta-modeling. 
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Fig. 2.7 
cave. (c) neither convex nor concave. 

Piecewise approximations of nonlinear functions f(z):  (a) conwx. (b) con- 

modeling a cost depending on the level 5 of some activity. If c1 < c2 < c3. like 
the case of figure 2.7a. then marginal costs are increasing: in other words we 
have a diseconomJ- of scale. which is represented by a convex cost function. 
If. on the contrary. c1 > c2 > c3, marginal costs are decreasing and we have 
a concave function displaying economies of scale, as depicted in figure 2.7b. 
In our applications. this is the case most likely to occur, but in principle we 
might have the case of a generic function. like in figure 2 . 7 ~ .  

If the piecewise linear function is convex, its minimization is easily recast 
as a continuous linear program which can be efficiently solved. We have 
to transform the function f ( z )  into the sum of linear terms. depending on 
auxiliary variables. say y1. y2. and y3 if the function consists of three pieces: 
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fig. 2.8 Modeling a nonconvex piecewise linear function. 

In practice, each variable yz is associated with an interval, and the original 
variable is expressed as the sum of auxiliary variables. In order for this ap- 
proximation to work properly, auxiliary variables should be “activated” in the 
correct order. First we use y1. and we should activate further variables only 
if 2 > x( l ) ;  in other words, each “subinterval” must be saturated before using 
the next one. But since in the convex case we have c1 < ~ 2 %  y2 will be positive 
in the optimal solution only if y1 reaches its upper bound ~ ( ~ 1 .  We will not 
use yy~ in place of y1. unless strictly necessary. because y2 is more expensive 
to use. By the same token, y3 is activated only if both y1 and y2 reach their 
upper bounds. 

This reasoning applies for the minimization of a convex function, or the 
maximization of a concave one. But if we are minimizing a concave function, 
due to decreasing marginal costs, the solution algorithm would find it advan- 
tageous to use variable y3 first, because it is the cheapest one. Of course this 
is no surprise. because we cannot expect to recast a nonconvex problem into 
a convex one. However. we may trade one nonconvexity for another one, by 
transforming the model into a mixed-integer linear programming model. The 
trick is associating a binary decision variable with each interval, making sure 
that only one interval is used. To see the idea. let us refer to  figure 2.8, in 
which the piecewise linear approximation is encoded by a set of points of co- 
ordinates (z,. yz). where yz = f ( z , ) .  i = 0,1.2,3.  Each point on the segment 
from (zc2.yz) to (x,+1.yz+1) can be expressed as a convex combination15 of 

I5A convex combination of an  arbitrary number points in Rn is just  a linear combination of 
those points, such that  weights are non-negative and their sum is 1. Given a set of points 
S. the set of all of the possible convex combinations of them is called the conuez hull of S. 
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those two extreme points: 

J: = xz, + (1 - A)Z,+l. 

Y = AY, + (1 - A ) Y 2 + 1 %  

where 0 I A I 1. Now. let us see what happens if we form a convex comhi- 
nation of all four points: 

3 

i=O 
3 

i = O  

3 

z=O 

M-hat we get is not really the piecewise linear function. but rather the convex 
hull of the four knots. which is depicted as the shaded area in figure 2.8. 
Nevertheless, we are close to our aim. JVe should find a way to enforce the 
use of only pairs of adjacent points in forming the convex combinations. In 
other words, only pairs of adjacent coefficients A, can be positive. For instance. 
if A0 and A1 are allowed to take positive values. whereas A2 and A:3 are stuck 
at  zero, we get the first line segment: if only A 1  and A2 are free. me get the 
second one. and so on. To accomplish this. we may introduce a set of three 
binary variables, s,. z = 1.2.3, one for each segment (z - 1. i), and link these 
variables to the weights A, by the following constraints: 

CS. = 1. s, E (0. l}. 
2 = 1  

This may look like a rather involved trick. but many software packages for 
mathematical programming ease the burden of introducing binary decision 
variables b) just requiring the knots of the approximation. and automating the 
generation of auxiliary variables. However. it is important to realize what’s 
happening behind the scenes: when we approximate a nonconvcx function 
in a mininiization problem, we introduce binary decision variables. and the 
resulting model may be hard to solve. lye must be careful in striking a suitable 
compromise between accuracy of the approximation and the computational 
effort for solving tht. resulting model. 
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While we are discussing modeling by binary variables. we should also men- 
tion another typical modeling trick. To motivate it. suppose that we are 
considering the use of some transportation link, which should not be used if 
flow traveling on it is below a certain minimal threshold. Note that we are 
not saying that a certain activity level x must lie in the range [L ,  U ] ,  where 
L and U are lower and upper bounds, respectively. Doing so would enforce 
a strictly positive value of x; however, what we want to express is that zf x 
is positive. then it must stay within that interval. hlore formally, the feasible 
region for z is (0) U [ L ,  U ] .  Since this set is not convex,16 we cannot just re- 
sort to continuous linear programming. Yet. we may express the requirement 
within the mixed-integer linear programming framework, by introducing a bi- 
nary decision variable s, set to 1 if the service is activated (x > 0). and set to  
0 otherwise. Our aim is easily accomplished by the following constraints: 

x 2 Ls,  x 5 us. 

We see that if s = 0, then x = 0; if s = 1, then x E [L.  U ] .  

W. 2.4 C 0 N T I N U 0 US- S PAC E LO CAT1 0 N M 0 D E LS 

In the last section, we considered a location-routing model in which potential 
sites for distribution centers have already been selected. Continuous-space 
location models are relevant when we want to  generate alternatives. In the 
web section we describe "minsum" models, in which the aim is to minimize 
the sum of the distances between the new facility and. say. the retail centers; 
alternatively, we might wish to  minimize the maximum distance. which leads 
to "minmax" models. By solving such a model. a new facility might well be 
located in the middle of a lake; nevertheless. the solution is useful in order to 
spot a neighborhood which could be searched for real location opportunities. 

W.2.5 RETAIL-STORE LOCATION MODELS 

In this chapter we have considered models in which demand was given ex- 
ogenously. However. consider a consumer who has to travel a long distance 
to get to  a retail store we want to build. If she is offered alternatives, she is 
not likely to become our most loyal customer. Indeed, an important concept 
in retailing is the logistical range, i.e., the maximum distance a customer is 
willing to travel. This depends on many factors, including the type of product 
and the level of competition, but it is easy to see that demand is endogenously 
generated by our choice of retail store location. In the web section we outline 
a few models which are suited to this task. 

I6In general, the union of convex sets need not be convex. 
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2.6 FOR FURTHER READING 

0 Background references which are relevant to  this chapter are [l] and [a]. 

0 The analysis outlined in section 2.1.2 is a simplified version of what 
is proposed in [4]. to which we refer the reader for more details and 
further justification. In practice. organizational constraints niay dictate 
that transportation frequencies are restricted to  discrete values; a model 
to cope with this case is described in [ 8 ] .  

0 The example described in section 2.2.4 is a simplified version of a sirnilar 
model considered in is]. 

0 In [7] the reader may find approaches to reflect uncertainties. safety 
stocks, and alternative transportation modes within a static modeling 
framework. 

0 The reader interested in further information on location models can have 
a look. e.g.. at [6]. while [5] is useful to those working in the retail sector. 

0 Commercially available optimization solvers and languages are described. 
e.g., in http : //www . i l o g .  corn and http : //www. amp1 . com 

0 To have an idea of what software is commercially available for the logis- 
tic network design. we suggest visiting http : //www. slirncorp . corn and 
http://www.bestroutes.com 
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3 
Forecasting 

3.1 INTRODUCTION 

Before we discuss horn to forecast. we shall wonder whether we should do so 
and why. Over the last few years many managers and academics have been 
supporting the drive towards lead time reduction and Make t o  Order (AlTO). 
A basic truth about forecasts is that  they turn out to be wrong. Hence. some 
managerial theories suggest that  you would better not forecast: and actually. 
if a company is quick enough. it does not need forecasting. But what does 
“quick enough” mean? And is lead time reduction free? 

Certainly, cutting lead times is a fruitful endeavor (e.g.. see [ la]) .  How- 
ever. reality is a little bit more complex than these theories suggest. First. 
while these theories contrast Make t o  Order and Make to  Stock (\ITS) sup- 
ply chains. almost all supply chains are partially driven by customers’ orders 
(think about the assembly of a car that ,  at the least in Europe. is almost 
always custom-built) and partially driven by demand forecasts (think of coni- 
ponents or raw materials purchases). 

Example 3.1 Dell computers is today one of t,he largest PC manufactur- 
ers in the world and is considered to be the champion of AIakc to Order 
supp1)- chains. Dell assembles PCs to customers‘ order. However. not the 
whole Dell supply chain is order-driven. Components‘ inventories are set ac- 
cording to demand forecasts. Thus, a more appropriate description of the 
Dell supply chain is: Distribution arid production are order-driven (LITO) 
while components are made to stock (AITS). This is a significant advantage 
over other competitors. as Dell carries inventories where consumption is more 
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predictable (component level) rather than where it is less predictable (single 
product configuration/single store). This redesign of the supply chain makes 
Dell a very efficient manufacturer and a very successful competitor in the 
tough PC business. 

Also. Dell provides a very interesting answer to the question, what is “quick 
enough?” Dell significantly reduced the production lead time and can deliver 
in 23 days. Is that enough? The answer is that  for PCs it is enough for most 
customers that do not need the computer they bought immediately. However. 
it is not enough for all users. Think of a situation where you lost your PC and 
need to make an important presentation tomorrow. Dell is not your favorite 
supplier. Also. this depends on the product a company is selling. While 2-3 
days is fair enough for most customers for a PC. it is definitely too long if we 
are speaking about drugs for acute diseases (for further information on these 
examples see [17] and [IS]). 0 
Moreover, many companies forecast demand implicitly. For example. in the 
grocery business many companies state that they do not generate any forecast 
(especially a t  the store/item level). However, when one digs into the planning 
systems. he/she can see that one key input to the purchase/delivery plan 
is a demand forecast, though it is often fairly rudimentary. For example, 
at a couple of grocery retailers in Italy, the target inventory level for the 
next week depends on the demand during the previous week. Thus. these 
companies implicitly assume a stationary demand and use the so-called ”nai’ve 
approach’: that is. demand forecast for the next period (read “week” in the 
example) is equal to the demand in the previous one. 

Generally speaking, when the Delivery Lead Time that customers want is 
shorter than purchasing, production, and distribution lead time. one needs 
to perform some sort of forecast to  execute some activities before customers‘ 
orders are collected. 

Example 3.2 In most retail outlets customers expect to  collect immediately 
the goods they are looking for. This means that most retail companies shall 
somehow forecast demand to plan inventories for the finished products carried 
at each single store. 

However, for some product categories the situation is rather different. For 
food products such as pizza. we might not need to carry all possible product 
variants. as customers might be willing to wait while their pizza is being 
cooked. Does this mean that all operations in a pizza restaurant are made to 
order? Actually, in Italy the average customer is just willing to  wait while the 
raw materials are “assembled” and cooked. Most customers are not willing 
to  wait while the cook looks for and buys the topping(s) they have ordered. 
Thus, even in a simple pizza restaurant we need to forecast the consumption of 
raw materials to purchase them in advance (pre-position raw materials). Quite 
interestingly in this case too we can see that different customers have different 
needs. While in traditional pizza restaurants pizzas are Made to  Order, in 
fast-food and most US pizza restaurants the basic cheese pizza is cooked and 
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then toppings are added according to customers' orders: as customers are not 
much willing t,o wait. In this case. customers are willing to  give up a bit of 
product quality to reduce Delivery Lead Time (DLT). For t,liem. 15 minutes 

Forecasting needs to cover and guide the portion of the supply chain oper- 
ations that, cannot, be driven by customers' orders (see the order decoupling 
point, concept in chapter 1). Let us consider a specific activity 1; and let us 
use i as the index for activities performed by the supply chain starting from 
the deliver>- to customers (we number activities starting from downstream 
and move upstream). If the lead time of all downstream activities Ci=, LT, 
is greater t,hari the DLT. then activity i cannot be driven by orders and we 
sliall perform some sort of forecast to plan i t .  

Concept 3.1 Forecasting i s  required when  cus tomers  are not willing t o  wai t  
long enough f o r  all activit ies [purchasing, production,, and distribution) in 
the  supply cha in  t o  be performed based o n  firm cus tomers '  orders.  So; the  
relevance of forecasting also depends o n  the  strategy of t h e  firm. In par t icular ,  
it i s  ve ry  relevant for companies tha t  rely o n  quick delivery and high seruice 
levels t o  gain a competit ive aduantage.  
Before we get into the details of algorithiiis t,o generate a forecast and measure 
forecasting errors, in section 3.2 we investigat,e what we mean by forecasting 
and how to choose a forecasting technique: in particular, me describe a fore- 
casting process in section 3.2.1. Then. in section 3.3 we analyze liow to mea- 
sure forecast quality by means of accuracy and bias metrics. The remainder of 
the chapter discusses forecasting t,echniques. Section 3.4 classifies forecasting 
techniques. Sections 3.5-3.10 discuss several techniques start,iiig from simple 
ones such as moving average to slightly more complex ones such as simple 
linear regression and exponential smoothing with trend and seasonalit,y. In 
section W.3.11 we describe an example of how multiple linear regression (see 
section 1Y.A. 11) can be used in forecasting. Finally, forecasting techniques 
for new products are covered in 3.12-3.13. 

is just not "quick enough.'' 0 

3.2 T H E  VARIABLE TO BE PREDICTED 

Before we move on to  the forecasting techniques ( -1iom- should n-e forecast'?") 
we sliall introduce some parameters that help us define the variallle we want 
to forecast ("what should we forecast?").' 1Te need to define this concept 
carefully in order to  set the forecasting problem properly. 

lo f t en  we just say tha t  we want to forecast demaiid: as we shall see. this answer is just 
way too broad and fuzzy. In the  remainder of this chapter we will refer to  demand as the 
variable we want to forecast. This is just an example. as one might want to  forecast other 
variables. Lte use demand instead of ,variable IT? mant t o  forecast" for the sake of clarity. 
However, the concepts we investigate apply to the more general problem of forecasting. 
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The time bucket First. to properly set the forecasting problem we shall choose 
the tame bucket. that  is. the unit of time. The time bucket is a quantum of 
time. that is, a minimum amount of time we use for our analysis of demand. 
When we choose months as the time bucket. we never look at  demand at  
the week, day, or hour leveL2 We basically choose to look at  time as a set 
of months. Clearly. forecasting demand at the day level can be harder than 
forecasting it at the week or month level. So the forecasting problem is not 
properly set until we define the time bucket. 

Example 3.3 A retailing company in Italy has historically recorded demand 
and delivery data during periods consisting of ten days. The logic behind this 
choice is that tens of days is a convenient metric to split monthly data.3 
However. such a logic has significant drawbacks for a retailer. In retailing. 
sales peak on Saturday and Sunday (in case stores are open). For this specific 
company, sales on Saturday and Sunday are more than twice the sales of 
the average weekday. A time bucket of 10 (or 11 days) is a poor choice, as 
demand data become very bumpy. Indeed, when we have only one weekend in 
ten days, demand is relatively low, while when we have two weekends in ten 
days. demand is substantially higher (on the average, by roughly 20%). Once 
the problem was identified. the company switched to weekly time buckets for 
all operational processes, from inventory planning. to  sales force and delivery 
scheduling. The monthly data are used only for sales reporting and budgeting 
purposes and tens of days are no longer used. 0 

The forecasting horizon. Second. we shall set the forecastang horzzon. that is. 
how far into the future we want to  foresee demand. For example, given a time 
bucket of one week. we shall wonder whether we want to forecast demand 
for the next week rather than 52 weeks into the future. In many instances 
we have to forecast demand over a variety of forecasting horizons rather than 
just one. For example, we might need a demand forecast for each of the next 
4 weeks. Thus we might forecast demand over multiple forecasting horizons 
rather than a single one. 

The forecast frequency. The third relevant parameter is the frequency of fore- 
casting updates. For example, let us assume we have to forecast demand for 
each of the next 52 weeks. On the one hand. such forecasts can be updated 
each and every week; we call such practice rollsng forecast. On the other hand. 

2Note that  one can also try to predict when a given event is going to  occur. For example, 
one can try to predict when a given customer is going to  place his/her next order. In other 
words, in this book we try to answer the question: How many units are going to be requested 
in a given time bucket? Another question is: In which time bucket is a given event (say an 
order) going to occur? The former question is much more common and. generally speaking. 
more relevant. 
3Actually. each month is split in three sections: the first ten days of the month. the second 
ten days of the month, and the rest of the month. 
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we can update the forecast at the end of these 52 weeks (so called fixed hora- 
2012). In the former case. the company can always foresee 5 2  weeks into the 
future. In the latter case. the company can foresee 5 2  weeks into the future. 
just after the forecast is generated. but the forecasting horizon progressively 
decreases down to just a single week. However. in the former case the cost of 
forecasting is substantially higher than in the latter one. as 52  different fore- 
casts rather than a single one are generated in a year. Also. it makes sense to 
update demand forecast only when additional pieces of information are avail- 
able. For example. let us consider a retailer that uploads demand information 
from each single stores once a month. For retailer like this it does not make 
sense to update demand forecasts weekly. Thus the appropriate forecast fre- 
quency depends on the cost of the forecasting process. on the availability of 
additional information. and on the potential benefits of a fresher (and thus 
usually “better”) forecast. 

The  product. A fourth relevant parameter is the definition of the product or 
set of products we refer to. Forecasting demand for a specific model of shoes 
in a given size (for example. Clark’s Desert Boots, brown. size 43) is definitely 
more complex than forecasting the aggregate demand for all shoes in a given 
market. 

The  market The last relevant issue is the m a r k e t  or geographzcal area we 
refer to. Forecasting aggregate demand for shoes in Italy is relatively simple, 
whereas forecasting it at the single store level can be all but trivial. First. a t  
the single store level, demand is lower and thus it tends to be (relatively) more 
variable (i.e., the coefficientof variation is larger). Also. exogenous factors such 
as local weather or even simple road-works can change the demand pattern 
significantly. 

\Ye have introduced the five dimensions that identify the object of forecasting. 
i.e.. the variable we want to forecast; but we still have to answer a key question: 
?\-hat is the right choice for these five dimensions? ?That is the right set of 
products? Should we forecast at item of family level? \That is the right time 
bucket? Should we forecast at the day or year level? 

Forecasting the aggregate demand for a whole country in a year 1s definitely 
simpler than forecasting demand for a single model. in specific color in a 
specific size at a given store in week 4 of year 2007. This simplistic analysis 
can lead us to belie\.e that  we should always try to  aggregate dc.mand over 
product. time, and locations to reduce the forecasting error Indeed. as the 
object of forecasting is more aggregate. the demand pattern tends to be more 
stable. Thus. it is easier to  read past history and predict future one. This 
view of forecasting overlooks the relationship between the forecasfzng process 
and the deczszon-makang process. The forecasting process is part of a broader 
decision-making process. To properly set the parameters of the forecasting 
process, we should first understand the decision-making problemis) we want 



96 FORECASTlNG 

to support through a better forecast. In the specific case of logistics, the 
identification of the appropriate variable to forecast depends on the features 
of the planning problem(s) we're facing. For example, if we want to plan 
deliveries of drugs to a chain of drugstores that are replenished weekly, we 
must forecast the weekly demand for each single drug in each single store. 

Example 3.4 Often these basic concepts are overlooked by many companies. 
Company Gamma is a market leader in the US office supply retail sector and 
operates hundreds of stores. Gamma wants to forecast promotional demand. 
Promotions last two weeks. Gamma thought they had found a great forecast- 
ing tool. as the forecasting error was apparently just 2%. This would be a 
very impressive result by any standard. as a 50% error is rather common for 
promotional items. However, this error was measured on the overall turnover 
for all promoted items in the whole chain. The metric of accuracy was totally 
inconsistent with planning problem the company was facing. Gamma corpo- 
ration needs to plan how many units of each item (tens of items are promoted 
in any given week) shall be sent to  each single store (the chain consists of 
hundreds of stores). Thus, the aggregate metric of forecasting performance 
has nothing to do with the very detailed decision problem the company is 
facing. 0 

Example 3.5 THREE is a company that sells furniture in Italy. Each three 
months they place orders to their Asian suppliers. Suppliers deliver in three 
months, so the lead time is three months. 

THREE has hired a new employee to improve the forecasting and planning 
process Table 3.1 shows demand data downloaded from the company's IT 
systems. The employee needs to forecast demand and measure its variability 
to  properly set safety stocks. One might be tempted to use monthly demand 
data. Nevertheless, the company does not need really such a detailed forecast. 
The company only needs to  forecast demand at the quarter level, as the 
frequency of orders (and thus the frequency of deliveries) and the lead time 
are three months. So, for any practical purpose the decisions of the company 
do not depend on whether the demand for April is high and for May is low 
or vice versa. Indeed, the company needs to  place an order in early January 
for delivery in early April. Such an order shall meet demand for April, May. 
and June regardless of the distribution of demand among the three months. 
Thus, we actually need the demand during each quarter. In other words. we 
should restructure the demand database as table 3.2  shows. 0 

Concept 3.2 T h e  forecasting problem i s  properly set  only w h e n  we  have set  
t h e  t i m e  bucket, t he  forecasting horizon and frequency, and selected the  appro- 
p r i a t e  aggregation of products and marke t s .  Also, these choices really depend 
on  t h e  decision-making process forecasting i s  supposed t o  support .  Indeed, we 
forecast t o  m a k e  better decisions. 
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Table 3.1 Forecasting example: demand data 

Month/Year 2000 200 1 2002 2003 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

127 
130 
134 
134 
126 
103 
91 
88 
90 
93 
103 
115 

111 
131 
131 
137 
119 
103 
96 
96 
91 
84 
96 
101 

111 
132 
124 
134 
111 
105 
94 
98 
96 
101 
95 
108 

119 
136 
136 
130 
118 
119 
92 
100 
99 
86 
98 
108 

Table 3.2 Forecasting example: aggregate demand data 

Mont h/Year 2000 2001 2002 2003 

First Quarter 39 1 373 367 391 
Second Quarter 363 359 350 367 

Fourth Quarter 311 281 301 292 
Third Quarter 269 283 288 291 
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3.2.1 The forecasting process 

When one says “forecasting,” most people tend to  think about algorithms. 
Indeed. in some instances algorithms can be used to  forecast. However, fo re -  
castzng zs a process rather than an algorithm or a set of algorithms. Algorithms 
are just part of the broader process that consists of various phases presented 
in the following sections. 

Analysis of  decision-making processes. The first step of a forecasting process 
is to analyze the decision making process one wants to  support. This sets the 
basic output of the forecasting process (definition of product. time bucket, 
and market demand refers to. and choice of forecasting horizon(s) and fre- 
quency of updates). It is actually fairly hard to prescribe how this task shall 
be performed. However, we have to  realize that any mistake in this initial 
phase has substantial consequences. A guiding principle is to  look at the in- 
formation one needs to  make decisions and make sure that the forecasting 
process provides it. 

If the forecasting process is too detailed. the output is too inaccurate (see 
previous section). On the other hand, if the forecasting process is too aggre- 
gate the output is generic and hardly helps the decision maker. For example. 
consider company Gamma from example 3.4. Probably, aggregate figures on 
consumption of paper in the USA are hardly the input that inventory planners 
expect in order to  decide how many reams of paper should be sent to store 
346 tomorrow. 

Gathering information. This is the second phase of the forecasting process. 
Once the output of the forecasting process is properly defined. we shall in- 
vestigate what pieces of information are available to  generate it. Forecasting, 
like any other statistic, is conditioned upon (i.e.. depends on) an information 
set. In other words, the quality of the final forecast depends, among other 
things. on the quality and quantity of data and information used to generate 
such a forecast. Thus finding the right set of information to forecast demand 
can be as important or even more important than the selection of the appro- 
priate forecasting algorithm. Indeed, even the best algorithm cannot possibly 
operate successfully without key pieces of information. 

Example 3.6 Figure 3.1 shows the demand pattern of a food product in 
a large Italian grocery chain. The graph shows wide variations as demand 
jumps from 10 to 240. The root cause of such bumps are t rade promotzons.  

It is rather apparent that the manufacturer of this product cannot possi- 
bly forecast demand accurately with no information on trade promotions, no 
matter what the forecasting algorithm is. Indeed, there is no clear pattern in 
promotions and thus an algorithm cannot predict when they will occur in the 
future and forecast their impact on demand. However. the retailer and the 
manufacturer agree on the promotions well in advance of their start. Indeed. 
both the retailer and the manufacturer enjoy the beneficial increase of demand. 
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Thus the retailer asks the manufacturer to cut the wholesale price (i.e., the 
price the manufacturer charges the retailer) temporarily. So the manufac- 
turing company knows when the promotions are going to  occur few a weeks 
before they start. The manufacturer needs to make this precious information 
available to the forecasters. Unfortunately, those that collect the information 
from the retailers typically belong to the sales departments. while the per- 
sons in charge of forecasting belong to  other departments (e.g.% logistics or 
manufacturing), and in many companies information does not flow smoothly 
across departmental boundaries. The benefits of such an information can be 
appreciated by looking at  Figure 3.2. I] 

The key pieces of information to predict future demand depend on the 
specific forecasting problem one faces. Thus we cannot provide an exhaustive 
list of variables one might want to  consider. However, we can discuss issues 
and variables that are often overlooked and do require some careful attention. 

Forecasting tries to predict the future behavior of an exogenous variable. in 
our case, future demand.4 Hence. it is very important to  use demand rather 
than sales as the input to the forecasting process. Actually. sales depend 
on true customer demand (that is a truly exogenous variable one tries to 
predict) and on the availability of products (that is a lever for the supply chain 
manager). Product availability censors demand. In most situations a company 
can only sell the products that are currently available in the warehouse or in 
the store. When 30 cans of beer are available in a supermarket. we cannot 
sell more than 30 cans. If sales are used to forecast future demand, a low 
demand forecast might turn out to  be a self-fulfilling prophecy. Low sales 
might reduce the forecast. which then leads planners to  reduce inventories. 
Finally, low inventories might further reduce sales5 

Example 3.7 For example, a leader in the production of dry pasta in Italy 
uses time-series models (see section 3.5 in this chapter). When a new kind of 
pasta was launched. the company decided to postpone the launch in a given 
region because the company wanted to  consume inventories of a preexisting 
item that the new one was going to  cannibalize. The automatic forecasting 
and replenishment system immediately started to  record zero sales for the new 
product in that region, thus predicting no demand and suggesting to ship zero 
units of the new kind of pasta. The vicious circle was interrupted only when 
the product manager spotted the anomaly in sales. investigated the issue. and 
finally discovered what was going on. 0 

‘Please note that demand is not completely exogenous for a company, since many levers 
such as price can influence it. However, in our context we can assume demand to be 
exogenous, as logistics and supply chain managers are supposed to meet demand. In other 
functions such as marketing and sales. demand is actually the variable that one tries t o  
control through pricing, promotions. new products. etc. 
jNote that  this process might be very dangerous in case of products with low margin, as 
companies tend to  provide low service levels and a relatively large portion of demand can 
be lost (see section 5.2). 
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Moreover, a stockout of a given product can perturb the sales pattern of other 
products since some customers might be willing to  substitute the product 
they were looking for with a surrogate. In some industries such as business to 
business. e-commerce, or catalogue sales. it is relatively easy to capture the 
gap between sales and demand as one can keep track of customers orders In 
other instances. like '.brick and mortar" retail chains. this is more complex. 
as customers do not formally place orders. In this case too, though. one can 
use statistics to estimate the potential customer demand out of censored sales 
data (ainong others see [l5] and [20]). 

Analysis o f  demand. The third phase of the process is the analysis of demand. 
In this phase one shall study and identify demand patterns. As we further 
discuss in the next sect,ions, all quantitative forecasting techniques make some 
assumptions on demand behavior and pattern. Thus one should first analyze 
demand to  figure out its actual behavior and then look for a forecasting tech- 
nique that fits it. For example, we might investigate the demand to check 
whether it is stationary. it shows seasonal fluctuations, or it is influenced by 
phenomena such as weather conditions, promotions. or fashion. S!'7e should 
understand first the drivers of demand. and then we can design (or choose) 
an appropriate forecasting model that, is able to  read past demand behavior 
and predict the fut,ure one. 

Selection of forecasting technique and fine tuning of  parameters. The fourth 
phase of the process consists of (i) the select,ion of t,he appropriate forecasting 
model and (ii) the fine tuning of its paramet,ers. In simple cases, one can 
just, select a forecasting niodel off the shelf, i.e., adopt an existing model as 
it fits very well. Commercial software provides several standard forecasting 
techniques to  choose from.6 Very often, though, real-life problems require 
more complex or at t,he least ..ad hoc" solutions. This is the reason why one 
shall fully understand assumpt,ions, mechanics. and applicability of standard 
forecasting techniques. If one does not fully understand the details of st,aridard 
techniques. he/she is bound to use them as they are and cariiiot adapt them 
to the unique features of any given demand. Sforeover, tlie effectiveness of 
inany models depends on the selection of proper values of the parameters, 

Usually. forecasters judge the quality of a model or a set of parameters 
by looking at their ability t,o generate small errors. In the next sect,ion vie 
discuss several metrics for forecasting errors. Notice that the selection of a 
model (or set of parameters) should be based on its ability t,o forccast future 
demand. Unfortunat,ely, future demand is not, known yet. This makes tlie 
selection of the "best," model tricky. Often one looks at what u-odd 1iaT.e 
been the performance of the forecasting niodel (or set of parameters), had it 
been used in the past. This is typically the only way out,. but, we are implicitly 

6For a list of software providers see www. forecastingeducation. corn 
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assuming that the basic demand pattern will not change: The best model to 
predict past demand will still be the best model for future demand as well. In 
case we expect a significant change in demand - say we expect a stationary 
demand to start growing - this approach might lead us to poor performance. 
In these cases, we might want to select a model simply because it logically fits 
the demand pattern we expect to observe in the future. 

Forecast generation Once the model is selected and parameters are set. we 
can start using them to generate demand forecasts. During this phase. data 
are processed and forecasts are used to make decisions. 

Measuring forecasting errors While we continuously generate demand fore- 
casts. we shall keep track of errors. By doing so. one can spot any inconsis- 
tency between the model and current demand behavior. which in real contexts 
is dynamic and thus requires periodic tunings. Moreover, the quality of fore- 
casts is a relevant input for the distribution and production planning process. 
As chapters 5 and 6 discuss in detail. uncertainty (as measured by forecasting 
error) changes the very nature of decision-making and planning problems. Un- 
der uncertain conditions we shall deliberately acknowledge that very different 
scenarios might come true. Also. forecasting errors can be used to judge the 
quality of a forecasters’ job and, through appropriate incentives. lead him/her 
to  improve it over time. 

Often this phase of the forecasting process is overlooked. The basic logic is 
that  right or wrong. the story is over once we have observed demand. Many 
companies do not record forecasts in their systems. They simply record the 
purchase, production, or distribution plans. Some companies think that if 
200 units were manufactured and 200 units were sold. the forecast quality was 
good. This simplistic vision overlooks a basic difference between a forecast and 
a plan. The forecast is the expectation of the future behavior of a variable 
which is a t  least partially exogenous. A plan is the response the company 
believes to be optimal in the face of all possible future levels of demand. 
Thus the demand forecast and the plans to  meet it are logically very different 
and should be treated as such. As we discuss in further detail in chapter 5 .  
producing 100 units while we expect a demand for 100 units can be a very 
bad decision. though an apparently reasonable one. 

Also, even when forecasts are recorded, they are often overwritten as they 
are updated. Thus, only the most recent, and usually most accurate. forecasts 
are left in the databases. The following example shall make the concept 
clearer. 

Example 3.8 Let us assume that a company forecasts demand and plans 
inventories with a monthly time bucket. Also, let us assume that the company 
forecasts and plans 12 months into the future with a rolling horizon. i.e.. 
every month it forecasts demand and plans inventories for each of the next 12 
months. At the end of year 2006 the company updates forecasts for January- 
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November 2007 and creates a brand new one for the month of December 2007. 
The forecast for December is going to  be updated in January 2007. February 
2007. and so on. Often companies tend to overwrite the original forecast 
for December 2007 with more recent ones. Thus in databases we tend to 
find forecasts with very short horizons and thus relatively small errors. This 
often leads companies to overestimate their ability to forecast demand and 
underestimate the uncertainties they face. For example, consider a company 
that wants to forecast the total turnover for a fiscal year and during the year 
constantly keeps on updating the forecast to get an accurate figure. By the 
end of the year the figure is going to get very accurate by definition. as we are 
basically looking back at  past sales rather than predicting future ones. I] 

3.3 METRICS FOR FORECAST ERRORS 

To properly define a metric for forecasting quality. we must first understand 
the nature and objectives of the forecasting process. In case of point forecasts. 
the relevant performance is the percentage of correct forecasts. For example. 
in the case of sport bets, what matters is the number of correct predictions. 
The extent to  which a forecast was wrong does not actually matter. If you 
predict soccer teams I and hI will draw. no matter whether 11 won 3 to  2 or 
6 to 0. you still made an error. In general, a point forecast is relevant when 
any difference between the forecast and the actual event is equall) damaging 
(in the case of sport bets, no matter how close to the final outcome your 
prediction was. you still lose your money). 

In most circumstances. though. we do not use point forecasts When we 
say that we expect a demand of 1.000 units. me really mean that we expect 
demand to be around 1.000 units rather than exactly 1.000 units. Thus. we 
do not reallj care about the frequency of perfect forecasts. If demand is a 
continuous variable (think of demand for energy or demand for cheese over the 
counter at a supermarket). the probability that demand will equal the point 
forecast is zero (see appendix A).  Hence. we do not care about the frequency 
of perfect forecasts. but me should rather capture the differences between our 
predictions arid actual demand. 

IIeasuring the quality of a forecast for a single product. in a iingle mar- 
ket. for a single time bucket is relatively straightforward. as you only need to 
compare actual demand with your forecast. Often one needs mow aggregate 
figures to  ,judge the performance of a forecasting tool (or a forecaster) oxer 
multiple periods of time. multiple items. or multiple markets. In this book we 
investigate in detail the case of a single product in a single market over mul- 
tiple time buckets. The final section of this chapter presents some extensions 
to the multi-item or multi-market case. 

To nieasure the forecast error, we need to introduce some notation: 
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Ft,h is the forecast generated in period t with an horizon h: thus Ft,h is 
a prediction of demand at  time t + h,  where h = 1,2 .3 . .  . .. 

Yt is the realization at time t of the variable we try to forecast; in our 
examples it is the demand at  time t .  

0 et = Y, - Ft is the forecast error a t  time t .  
Notice that Ft is the forecast of demand zn perzod t regardless of when such 
forecast was generated. We look back ex post and compare it with demand 
at  time t to judge its quality. The time at which the forecast was generated 
depends on the decision process we have to support, and it is irrelevant if we 
are evaluating the forecasting process. On the contrary, Ft,h is the forecast 
generated zn time t for time t + h. 

Also. notice that in our definition the error is positive when demand is larger 
than the forecast (i.e., we under-forecasted), whereas the error is negative 
when demand is smaller than the forecast (i.e.% we over-forecasted). 

3.3.1 The Mean Error 

A first metric of “forecasting quality” is the simple average of past errors. that 
is, the mean error (ME): 

l n  
ME = -Get. 

n 
- t=l 

As equation (3.1) clearly shows, with this metric, positive errors counterbal- 
ance negative ones. In other words a forecasting method that generates no 
error in each of the n periods in our sample and a forecasting method that 
generates a +10 units error in 50% of the periods and generates a -10 units 
error in 50% of the periods are just as good, from the ME standpoint (see 
table 3.3). In fact, hIE is just a metric of bzas, since it just captures whether 
our forecasting process is on the average pessimistic (it tends to under-forecast 
and thus ME is positive) or optimistic (it tends to over-forecast and thus ME 
is negative). 

Therefore, we need to  consider other metrics that can capture accuracy, 
that is, the ability to generate a forecast that is close to actual demand in 
each period. hletrics of accuracy differ from ME (and more generally metrics 
of bias) as positive errors do not cancel negative ones: rather. they add up. 

3.3.2 Mean Absolute Deviation 

A first metric for accuracy is MAD (Mean Absolute Deviation), which basi- 
cally uses the absolute error to make sure negative and positive errors add 
U p :  

l n  
NAD = - C let/  

t=l 
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Table 3.3 LIean Error a metric for bias 

Period 1 2 3 4 5 6 ATE 
~ ~ ~~ ~ 

Demand 90 110 110 90 110 90 
Forecast 1 100 100 100 100 100 100 0 
Forecast 2 90 110 110 90 110 90 0 

Table 3.4 Comparison between LIE and LIAD 

Period 1 2 3 4 5 6 1\IE h14D 

Demand 7 13 9 12 8 11 
Forecast 1 10 10 10 10 10 10 0 2 
Forecast 2 6 1 2  8 11 7 10 1 1 

The example in table 3.4 tells the difference between AIE and AlAD. The first 
forecast is not biased. as the mean demand equals the mean forecast. On the 
contrary. the second series of forecasts is biased. as it is always conser\ative: 
The forecast is always one unit below the demand. LIE actually tells us that 
the first series of forecasts is unbiased while the second one under-forecasts. 
However, the second forecast captures and follows demand fluctuations more 
accurately than the first one. Thus, in each single time bucket the second 
forecast tends to be closer to demand than the first one. MAD catches such 
a difference as it tells that the second forecast is more accurate than the first 
one. 

Finally, which forecast is the best option? Should we care more about 
accuracy or bias? 

Actually. we cannot tell whether one forecast is better than the other. One 
is better for bias. the other for accuracy. In some contexts bias might matter 
inore than accuracy and vice versa. However. we may see that correcting 
for bias is relatively easier than correcting for inaccuracy. If a forecasting 
process is consistently conserlative. but it folloa 5 demand fluctuations very 
closely (see the example in table 3.4). we can improve the forecast by adding 
the average bias to the forecast. For example. if a forecaster is conservative 
and consistently underestimates demand by 10 units. when he/she generates 
a demand forecast of 110 units for next period, we might expect deniand to be 
around 120 units (110 units + 10 units). In the example above. if  the second 
forecaster predicts a demand of 12 units for the next period. we might add 
one extra unit to it since in the past we have noticed that he/she tends to 
under-forecast by one unit. Thus we might expect demand for 13 units. Such 
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an adjustment to the forecast improves both bias and accuracy, thus reducing 
both the ME and the MAD. On the contrary. there is no obvious solution 
to inaccuracy. Say you want to improve the quality of the first forecast in 
table 3.4. What would you do? Actually there is no easy fix with regard to 
inaccuracy. 

Concept 3.3 A good forecast 2s both accurate and unbzased. B o t h  are very 
relevant performance metrzcs, but whale there zs a fazrly easy fix f o r  a conszs- 
tently bzased but accurate forecast, there as n o  such easy fix f o r  a n  unbiased 
and znaccurate one. 

3.3.3 Root Mean Square Error 

A second metric for accuracy is Root Mean Square Error (RMSE). This metric 
squares errors to  sum positive and negative ones. 

t=l 
(3.3) 

RMSE is a very commonly used metric, as in statistics squared errors are 
often used instead of absolute ones (they result in a differentiable function, 
whereas the absolute value function is kinky). Thus, a quadratic error provides 
estimates that are more directly linked to the variance and standard deviation 
(see appendix A) of the demand distribution. Often we use the forecast that 
an algorithm generates as an estimate for the expected level of demand while 
we use RMSE as an estimate of standard deviation. 

Table 3 .5  shows the differences among ME. MAD. and RMSE. Forecast 2 
differs from Forecast 3, as errors are more frequent but they tend to be smaller. 
This is why RMSE considers Forecast 2 to be more accurate than Forecast 3. 
This finding can be generalized by saying that RMSE is a quadratic metric 
for error and thus it tends to  overweight large errors. So RMSE "prefers" 
forecasting algorithms that generate constant errors. rather than algorithms 
that are very accurate in some periods but can generate significant errors in 
others. MAD is a linear metric for error and thus gives the same weight to  
all errors. small or large. 

ME. RICISE. and MAD measure the forecast error using the same units of 
measurement as demand. For example, if demand is measured in units or kg. 
then LIE, RMSE, and NAD are measured in units or kg as well. This can be a 
drawback: When reading the performance of any forecast. we should carefully 
consider the scale that is adopted. If one decides to  use kg rather than hg to 
measure demand for cheese. ME. MAD, and RhlSE drop by a factor of 10. 

Moreover, these metrics make the comparison of performances across prod- 
ucts very hard. As table 3.6 shows, the metrics presented so far might lead us 
to  believe that the forecast for item A is more accurate than the forecast for 
item B. However. an error of one unit out of an average demand of 10 units 
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Table 3 5 Comparison between accuracy metrics: MAD and RSISE 

Period 1 2 3 4 5 6 BIAS AlAD RIISE 

Demand 7 13 9 12 8 11 
Forecast 2 6 12 8 11 7 10 1 1 1 
Forecast 3 7 10 9 9 8 11 1 1 1.73 
Error 2 $1 +l +1 +1 +1 +1 1 1 1 
Error 3 0 + 3 0 + 3 0  0 1 1 1.73 

Table 3 6 Comparison between accuracy metrics: LIAD and RIISE 

Period 1 2 3 4  5 6 ME MAD RAISE 

Demand -4 7 13 9 12 8 11 
Forecast A 8 12 10 11 7 1 2  0 1 1 
Error A -1 +1 -1 +l +1 -1 0 1 1 

Demand B 70 130 90 120 80 110 
Forecast B 75 125 95 115 75 115 0 5 5 
Error B -5 +5 -5 +5  +5  -5 0 5 5 

is “worse” than an error of 5 units out of a demand of 100 units. Thus. often 
one wants to look at percentage error metrics. 

3.3.4 

The drawbacks of nietrics such as AIE. MAD. and RXISE lead us to introduce 
percentage errors that  basically try to  compare the forecasting error with 
demand. The most classic metrics in this vein are Mean Percentage Error 
(LIPE) and hlean Absolute Percentage Error (NAPE).  which measure per- 
centage bias and percentage accuracy, respectively. Notice that. as following 
equations show. these metrics compare the error in period t with the demand 
in the same period: 

Mean Percentage Error and Mean Absolute Percentage Error 

h l P E = - x t .  l n  

yt t=l 

1 ”  
NAPE = - w. 

n Y t  t = l  
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These metrics are pure numbers and thus do not depend on the scale one uses 
to measure demand. Hence. one can easily compare the accuracy and bias 
across various product or  market^.^ 

Example 3.9 Some European Fortune 500 companies have adopted differ- 
ent percentage errors metrics. They basically divide the error by the forecast 
rather than by the demand; hence, they use the metrics below, which are 
modified versions of MPE and NAPE: 

1 "  

n Ft 
MPEM = - 5, 

t=l 

This might be a tempting solution but is actually an awful one. Indeed, 
this definition of percentage error provides the forecasters (whose reward may 
depend on these metrics) with two means to  improve their performance: 

0 First, they can reduce the numerator, that is reduce the forecasting 
error. 

0 Second. they can increase the denominator. that  is increase the forecast. 

This gives the forecasters an incentive to  overstate their forecast. Not surpris- 
ingly the companies noticed that the predicted demand was on the average 
above the actual one. 

These metrics are particularly dangerous in the case of low or highly vari- 
able demand. Let us consider the case of a demand that in 1/3 of the cases 
is zero, in 1/3 of the cases is one, and in 1/3  of the cases is two. Let us 
assume that the forecaster is judged and rewarded on the basis of 51APEhl. 
Also, let us assume that he/she has no specific idea about what is going to 
happen in the next period. So he/she basically faces the long term demand 
distribution. He/she has two options. The more reasonable one is to forecast 
one unit for all future periods. In this case. in 213 of the cases the absolute 
error is 1 and in 113 of the case it is zero. Given the forecast of one. the 
hIAPEM is going to be 0.66. The other apparently less reasonable option is 
to  forecast two units for all future periods. In 1/3 of the cases, demand is 
going to be zero and the error is going to be 2.  In 1/3 of the cases demand 
is going to  be one and error is going to  be one. and finally in 1 /3  of the cases 
the forecast is going to be correct. This really means that the hfAPEM is just 
0.5 (33.33% 2 + 33.33% . 1 + 33.33%. 0) /2. As this example clearly shows. 

7Note tha t ,  in general, we expect products/markets with higher demand to have less vari- 
ability. Thus. in general. we also expect tha t  the  higher the demand, the  lower the  percent- 
age error, as the  forecasting problem is simpler. 
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Table 3.7 Percentage error nietrics: MPE and NAPE 

Period 1 2 3 4 i) 6 

Demand A 7 13 9 12 8 11 
Forecast A 8 12 10 11 7 12 
Error A -14.3% +7.7% -11.1% +8.3% +12.5% -9.1% 

Demand B 70 130 90 120 80 110 
Forecast B 75 125 95 115 75 115 
Error B -7.1% +3.8% -5.6% 1 4 . 2 %  +6.3% -4.5% 

Table 3.8 Comparison between absolute and percentage error metrics 

LIE MAD l l P E  NAPE 

Forecast A 0 1 -1% l0.5'x 

Forecast B 0 5 -0.5% 5.3% 

these metrics. which are apparently very similar to hIPE and NAPE and are 
commonly used. provide very odd incentives to overstate the forecast. 0 

\Ye can reconsider the data in table 3.6 and calculate the percentage errors 
displayed in table 3.8. Data show that the forecast for demand B is actually 
more accurate than for demand A. 

The use of hIPE and MAPE as performance evaluation measure is sug- 
gested in the literature (see, e.g.. [13]). but these metrics have sevwal draw- 
backs and weaknesses: 

They cannot be adopted when demand during a time bucket can be zero. 
Indeed, when demand is zero we cannot compute the percentage error. 
In real applications. such a case is relatively frequent. For example. 
in the case of retail chains. replenishnients are so quick and frequent 
that one needs to forecast demand down to the single da) or single 
week. Also, assortments tend to be veq- wide and thus man\ products 
have relatively low demand rates. These trends make the likelihood of 
a zero demand for a single product. in d single store. in a given day 
quite sizeable. Understandably. the extent of this problem dcpends on 
the definition of the demand one wants to forecast: The longer the 
time bucket. the larger the market (nation vs. single store) and the 
broader the set of product variants (single SKU or product family). the 
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Table 3.9 Percentage error metrics in case of variable demand 

Period 1 2 3 4 5 6 7 8 9 10 

Demand 10 10 10 10 1 10 10 10 10 10 
Forecast 1 10 10 10 10 10 10 10 10 10 10 
Error 1 0 0 0 0 -9 0 0 0 0 0 
Forecast 2 12 12 12 12 1 12 12 12 12 12 
Error 2 -2 -2 -2 -2 0 -2 -2 -2 -2 -2 

ME MAD MPE MAPE 

Forecast 1 -0.9 0.9 -90% 90% 
Forecast 2 -1.8 1.8 -18% 1 8 %  

higher the expected demand and thus the lower the probability of a zero 
demand. 

0 Even in cases of nonzero demand, these indexes can give really odd re- 
sults when demand shows wide variations. Indeed, as the example in 
table 3.9 shows, MPE and MAPE tend to overweight errors in low de- 
mand periods. In the example. the error of the first forecasting method 
in period five is so large (in percentage) that  it more than counterbal- 
ances the greater accuracy that this method achieves in other periods. 

Thus. these metrics cannot possibly be computed when demand is zero, and 
when demand varies substantially they might provide misleading insights. 
For example, in table 3.9 the first forecast seems to be more accurate and 
less biased than the second one, while MPE and MAPE seem to suggest just 
the opposite. Thus these metrics might lead us to erroneous conclusions. 
Indeed. in most circumstances the cost due to a forecast error of 2 units in 
a low demand period is quite similar to  the cost of a 2 units error in a high 
demand one. Finally. these metrics actually build strange incentive schemes 
for the forecasters. If a forecaster is to allocate his/her efforts among different 
products or over time, he/she might end up focusing on items in periods of low 
demand since a unit of error is more heavily penalized by the error metric.8 

3.3.5 ME%, MAD%, RMSE% 

The problems discussed in the previous section lead us to  design new perfor- 
mance metrics that  

81n this case. we clearly overlook the fact that  the effort required to cut the error by one 
unit might be different for different products/periods. 
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0 consider errors in low and high demand periods equally damaging and 

0 allow us to compare the performance across products and markets with 
different mean demand. 

Such metrics are ME%. LIADX. and RAISE’%. 

mean demand for the product/market combination: 
These performance measures compare the ME, IIAD, and RAISE to the 

LIE 
Y 

hlE% = =. 

where 
. n  
1 - Y = - C K .  

t = l  

These metrics still retain the good features of LIPE and NAPE. Indeed, if 
we apply them to the data in table 3.6, they suggest that forecast B is more 
accurate than forecast A: MAD’% and RAISE% are 5% (5/100) for B, while 
they are 10% (1/10) for A: LIE% is zero in both cases. 

Sloreover. they avoid some of the drawbacks of 51PE and MAPE as they 
can properly judge the quality of the forecasts in table 3.9. MAD% for forecast 
1 is 9.9% (0.9/9.1) while it is 19.8% (1.8,’g.l) in case of forecast 2 .  

These metrics can measure the quality of a forecast and compare it with 
the average demand.9 However. predicting an extremely variable demand can 
be more complex than predicting a very stable one. In other words, a given 
forecasting error might be very good in the case of an extremely variable 
demand. whereas it might be very poor in the case of a flat one. Thus we 
might not want to  look at  the forecasting error per  se. but we might want to 
put it in the right perspective and analyze the complexity of the forecasting 
task. 

gNote that  in this case the denominator depends on the sample we choose. Thus. if we 
consider the accuracy of the forecast for hlay 2006 and look a t  the demand over the first 
five months of 2006 or over the last 12 months, we are going to get two different figures. 
Therefore, t o  make sure metrics for accuracy and bias do not change over time. we shall 
define sampling policies. For example, a company that  generates forecasts a t  the day level 
might want to record accuracy and bias a t  the month level to properly define the sample 
and thus the average demand in each sample. 
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Table 3.10 The impact of demand variability on forecasting performance. 

Period 1 2 3 4 5 6 hlE% MAD% RhiSE% 

Demand 4 10 9 10 11 10 10 
Forecast A 9 10 11 10 9 11 0 
Error A +1 -1 -1 +1 +1 -1 0 10% 10% 

DemandB 15 8 5 12 13 7 
Forecast B 14 9 7 10 12 8 0 
Error B +1 -1 -2 +2 +1 -1 0 13.3% 14.3% 

3.3.6 Theil's U statistic 

Often. the Theil's U statistic is used to put the accuracy of a forecast in 
perspective. This statistic is defined as 

We can interpret the U statistic by looking at  the numerator terms within the 
squared ratios. The term Ft+l - is the error at time t + 1. Yt - X+l is 
the error we would have made, had we adopted a nai've forecasting technique 
where the forecast for next period t + 1 is equal to the demand in the last 
period t (Ft 1 = Yt). Thus, the U statistic compares the error of the method 
we have adopted with the error that a simplistic model would generate. In 
case our model generates an error that is larger than the error of the nai've 
one, the U statistic is greater than 1. If. on the contrary. the forecasting model 
used is just as accurate as the nai've one. the U statistic is equal to  1. Finally. 
if the forecasting model adopted is much more accurate than the nai've one. 
the U statistic is close to 0. 

Thus the U statistic gauges the ability of the model adopted to be more 
accurate than a nai've technique that is somehow considered a point of refer- 
ence. In other words. the U statistic does not measure the accuracy of the 
forecast. but rather relates the error to the complexity of the forecasting task. 

In the example of table 3.10, the U statistic is 1.11 for forecast A and 
0.31 for forecast B. Thus the statistic captures the fact that forecast B is less 
accurate than forecast A simply because time series B is harder to predict 
than time series A. Actually, the U statistic uses the nai've method as a point 
of reference and tells that forecast A is 11% worse than the na'ive one, while 
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forecast B is 69% better than the na'ive one. Although MAD% and RAISE% 
suggest that  forecast A is more accurate than forecast B. the latter is actually 
a more appropriate model than forecast A. 

The definition of the U statistic shows that the forecast error at time t + 
1 (of both the forecasting model adopted and the nai've one) is divided by 
the demand at time t .  This makes the reading of the statistic less than 
intuitive. Thus. we often use the simple ratio between the performance (e.g.. 
MAD% and RAlSE%) of the forecasting model adopted by the company- and 
the performance of the nai've method (Ft+l = Y,). 

Example 3.10 A grocery retail company in northern Europe has a rather 
heterodox and interesting view of forecasting accuracy. Basically. this company 
theorizes that classic measures of forecasting accuracy are simply not relevant. 
Actually. they think that a 2% error is simply not relevant. A forecast error of 
2% is basically as good as a perfect forecast. from their standpoint. Their idea 
is that a forecast error matters simply because it can increase the costs of the 
company. Also. they noticed that the flexibility in the supply chain enables 
them to recover, say. a 30% forecast error during promotions. This really 
means that any error below 30% has basically no consequence n hatsoever. 
A 20% error and a 7% error are just as good. So. their measure of forecast 
accuracy is the percentage of forecasts that are within 30% of the actual 
demand. So a 98% accuracl means that in 98% of the cases demand is within 
30% of demand. Thr  idea behind this is to use a metric for accuracy that is a 
good proxy for the cost function of the company. The cost of errors below 30% 
is limited and is assumed to be zero in the metric developed by this company. 
Errors above 30% are expensi\-e for the company. Though understandably a 
70% error can be more expensive than a 35% one. the simple metric catches 
the fact that they are both expensive. In other nords, though the cost function 
can be more complex, the metric adopted b>- the company assunies that it 
resembles a step function that is 0 if the (absolute) error is lowei than 30% 
and is 1 if the error is above this threshold. 

Actually this uncommon. though fairly interesting. practice is consistent 
with a stream of research that int-estigates whether costs are somelion related 
to any specific metric of forecasting performance. 0 

3.3.7 

The metrics for forecasting accuracj- presented in the previous section can be 
used for various purposes. 

Using metrics of forecasting accuracy 

1. First. the metrics can be used to  monitor performance over time. Nea- 
sures of accuracy are used to  gauge demand uncertainty (i.e.. our ability 
to predict demand) that is a key input to the planning process (see chap- 
ters 5 and 6). 
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2. The error can be used to set forecasters' incentives. focus their efforts 
over time, and hopefully improve performance. 

3. Also. the control of performance over time can be used to judge whether 
the forecasting method currently adopted fits the current demand pat- 
tern. 

In case performance is unsatisfactory. one can (i)  change the parameters, (ii) 
adapt the technique, or (iii) adopt a completely different forecasting approach. 
But how can we judge what is the most appropriate forecasting method or 
the most appropriate set of parameters? Obviously, the best method/set of 
parameters is the one that generates the best performance. But how can we 
estimate the performance that the forecasting process would generate if we 
choose to  adopt it in the future? Basically, this is a very hard exercise. as we 
do not know how demand will behave in the future. We basically have two 
options. 

A first option is to actually try the forecasting process and measure the 
performance it actually generates over a trial period. This approach selects 
the forecasting method, based on actual performance. However, it is very 
expensive, since several forecasting tools and processes (including human in- 
teractions and corrections) must run in parallel for a period of time that 
shall be long enough to draw statistically significant conclusions. Also. in the 
trial period we might be using data from a forecasting process that actually 
generates very poor predictions and thus we might make poor decisions and 
experience poor operational performance and high costs. 

A second, widely adopted approach is to use past history to test the perfor- 
mance that the various alternative methods would have generated had they 
been adopted in the past. This selection process makes an implicit assump- 
tion. It assumes that the method that would have worked best in the past 
will be the best option for the future.1° 

Then the question becomes: How can we judge the performance a that 
forecasting process would have generated in the past? 

To do so. we must use past demand data both to generate a forecast and to 
test its quality. When we do such analysis we must be extremely careful and 
avoid a frequent conceptual error. No data about any period after t shall be 
used to  generate the forecast Ft,h. In other words, we want to  make sure we 
appropriately simulate the forecasting process. While we forecast demand in 
period t (for period t + h ) ,  only information about demand (as well as other 
variables) in periods T 5 t is available. In particular, demand in period t + h 
shall not be used in any even indirect way to generate Ft,h. 

Several forecasting methods depend upon some parameters that influence 
their behavior and performance. These parameters are set by using a sub- 

lOActually even the first option makes a similar assumption. Indeed. it assumes that the 
method that  performs better in the near future (trial period) works best in the long term 
as well. 
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sample of the demand data that we call fit sample. Thus. when one wants 
to  use past demand data to  judge the quality of various forecasting meth- 
ods. he/she shall identify a fit sample to set the parameters of the forecasting 
models and a second subsample (often called test sample) to  ,judge their 
performance." The larger the fit sample the better the choice of the parame- 
ters of the models and thus their performance. On the other hand. a large fit 
sample implies a small test sample (given the limited amount of relevant data 
available). Hence. we face a tradeoff between the choice of the appropriate 
parameters for each of the competing models and the ability to  properly judge 
the quality of the forecasts they generate. 

Example 3.11 Let us assume that 100 demand observations are available 
and we are considering two alternative forecasting algorithms. .Also let us 
assu~ne that the forecasting horizon is 1. 

A first choice is to  use 99 demand observations to set the parameters of the 
two models and compare them on their ability to  predict the deniand in the 
100th period. In this case, the parameters of the two forecasting models are 
set very effectively and thus we compare the two forecasting modcls at their 
full potential. However. we are judging the quality of the two options on their 
errors in a single period. Thus, our conclusions have little statistical signifi- 
cance and might be wrong. In other words. we might choose the forecasting 
method with an higher error simply because it was "lucky" in the one period 
we used to  compare our two alternatives. 

On the other hand. we might be tempted to use very few demand observa- 
tions (in the extreme case. just 1) to  set the parameters of the two models so 
that we can enjoy a fairly large test sample (in the extreme case. 99 periods). 
In this case, we compare the performance of the two forecasting methods 
over multiple periods. and thus conclusions might seem statistically reliable. 
However. in this case the parameters of both methods would be set poorly. 
Thus we might choose the method that requires less data to  set up the pa- 
rameters (often the simpler method) or the method that by pure chance got 
better parameters. Clearly. in both cases there is little guarantee that the 
best forecasting method is selected. 0 

"It is interesting to notice that more complex models tend to have more parameters and 
thus more degrees of freedom. This greater degree of flexibility makes then1 the perfect 
candidate to fit the past demand data. In principle. a model with 100 degrees of freedom 
can perfectly fit 100 demand observations. However, this does not necessarily mean that it 
will generate better forecasts. Actually, literature (e.g., ill) shows that  often more complex 
models have little or no advantage over simpler ones. Indeed. simple models can be crude. 
but from a statistical point of view they are actually more solid than complcx ones. The 
latter. under perfect circumstances and with a lot of information. might pcrform better 
than simple ones. but in real-life situations they tend to perform rather poorly. 
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fig. 3.3 
ical machinery industry. 

Adoption of various categories of forecasting methods in the Italian mechan- 

3.4 A CLASSIFICATION O F  FORECASTING M E T H O D S  

Forecasting methods can be classified in two broad categories: 

0 quantitative methods 

0 qualitative methods 

A large portion of this chapter is devoted to quantitative methods. as they 
can be properly described through formulas and equations, and this is one of 
the key features of this book. This does not mean that,  from any practical 
standpoint, qualitative methods are less important or less performing than 
quantitative ones.I2 On the contrary. qualitative methods are widely adopted 
as figure 3.3 shows. 

In general, we cannot say that one approach works better than the other. 
Rather, they have contrasting pros and cons. So there is no one-best-way 
but rather one shall choose the right blend of quantitative and qualitative 
methods according to the specific forecasting problem one is confronted with. 

Qualitative forecasting methods are very flexible, since they do not require 
any explicit assumption on the relationship between the pieces of information 

I2Some articles (e.g., [19]) t ry  t o  compare the performance of the  two groups of forecasting 
methods. Often they find tha t  quantitative methods are more accurate than qualitative 
ones. However. these research studies fail to  account for the  different demand patterns they 
t ry  t o  predict. Often qualitative methods are used in more complex situations. Thus they 
can generate larger errors either because they face harder forecasting problems or because 
they are less accurate. 
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t'hat are believed to be relevant and the forecast (i.e.. inputs and outputs of 
the forecasting process). Basically. t,hey are as flexible as the minds of human 
experts. Thus they can fit rat,her complex situations such as new product 
launches and/or loiig-t,erni forecasts. However, these methods can accurately 
predict future demand only if the forecast,ers are true experts. So t,hese meth- 
ods must be expensive (i.e; they have t,o exploit a lot of very scarce and 
precious resources) to  be effective (i.e.. generate rather accurate forecasts). 
Thus these methods can be deployed only when the relevance of the issue at  
stake just'ifies the usage of such precious resources. Furthermore, qualitative 
methods can capture changes in the demand pattern, as human beings can 
capture a variet'y of variables. adding new ones as they become relwant. Of- 
ten though. experts' forecasts are inconsistent: Human beings are unable to  
provide consistent estimates. This means that the same person facing the 
same evidence at  diflerent points in time might generate very different fore- 
casts. Also. when experts are asked to forecast demand for each single item 
in a product family, the single numbers might be very well thought out, but 
the overall demand forecast for the product family might immediately sound 
unreasonable: let alone accurate. 

Often incentives can push experts to overestimate/underestimate demand. 
For example. think about the incentive of the sales force to  underestimate t,he 
demand in case it is used to set sales targets. On the other hand. think about, 
the incentive of the sales force to  overstate the demand forecast in case the 
forecast is used t,o set inventory targets: The higher the demand forecast. the 
higher the inventory level; this in turn implies more available prociucts and 
easier sales. 

Example 3.12 A large manufacturer of white goods has a 6 weeks rolling 
forecast. The total lead time for its products is roughly 3 weeks. so the most 
relevant forecasts are +1. + 2 .  and t 3  weeks. Other forecasts (t4. + 5 .  and 
+6) are basically an advance information for the purchasing department and 
suppliers. The company has a team of forecasters that  update the system 
foreca5t (i.e., a forecast generated by the company's IT systems) through 
their personal reading of demand trends (so-called "experience"). To drive 
their behavior. the company has designed an incentive scheme that rewards 
them on forecasting accuracy. The company has decided to reward them just 
on the accuracy of the +3 meeks forecast (i.e.. the forecast three weeks into 
the future), to  make the incentive scheme simple. The forecast for week $3 
tends to be more accurate than the forecast5 for longer horizons (t4. +5 
arid +6). Quite interestingly, though. forecasts for weeks + 2  arid ~1 are just 
as accurate as the +3 weeks forecast. LIanagers were surprised to iep such a 
pattern. a5 t l iq- expected the forecasters to  collect more inforniatiori and thus 
be more accurate. Actually. this odd result ha5 more to  do with incentives 
than with iriformatiori or forecasting. Indeed. the forecasters did exactly what 
nianageri. through the incentive scheme. told them to do irnprovc accuracy 
of the forecast three weeks into the future and disregard any further potential 
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improvement of the forecast. Interestingly though, this was not a deliberate 
choice. Indeed, the purchase plan is driven by the +3 weeks forecast. but 
the assembly and distribution operations are driven by the +1 and + 2  weeks 
forecast. So a relatively poor short-term forecast (i.e.. a forecast that  is less 
accurate than it could be for weeks +1 and + 2 )  might be quite expensive for 
the company. 0 

On the contrary. quantitative methods require an explicit assumption on 
the demand behavior (e.g., a seasonal, rather than stable, or linearly increas- 
ing demand). This makes them less flexible. If the demand behavior changes. 
the forecasting method performs very poorly. Nonetheless. these methods are 
more efficient, as a fairly large number of products and markets can be man- 
aged with very limited resources. Also, these methods provide very consistent 
results since computers will do the same task over and over again and are not 
influenced by any kind of incentive scheme. So, however wrong they might be. 
one can track their performance. spot their weaknesses, and hopefully correct 
them over time. 

Example 3.13 A retail company in the furniture business used to adopt 
qualitative methods to  forecast demand (and plan inventories). When two 
forecasters faced with the same demand pattern were asked to  predict future 
demand. they could provide fairly different forecasts. What is even more 
interesting is that the same person would generate different figures on different 
days. When the company switched to  quantitative methods, it was able to 
double the store/items combinations each forecaster could manage. Also, 
when four forecasters out of four left the company. the company could still 
operate normally. as the four new employees now in charge of forecasting 
could leverage on the demand knowledge built into the company's systems. 
We cannot tell what would have happened had the forecast been completely 
qualitative. Still, we can argue that it would have been harder to  survive the 
change. I] 

Broadly speaking, quantitative methods consist of two subfamilies. 

0 Time-series models basically look at  the past demand pattern over 
time and extrapolate future demand levels. In time-series models. we 
only look at demand data over time and thus do not account for variables 
that might influence them such as price. weather. competition, distri- 
bution. promotions. advertising etc. In these models we only have two 
variables, demand and time. Therefore, they are effective only when de- 
mand changes depend on time. Demand can be stable. might be growing 
over time, and can show periodic fluctuations (weekly, monthly quar- 
terly or yearly fluctuations). These models. however, fail to work prop- 
erly when other variables play a major role and determine significant 
changes in demand. Time-series models are the most widely adopted 
quantitative forecasting technique and a wide array of algorithms are 
investigated in sections 3.5-3.9. 
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Explanatory models try to find a relationship between demand and 
some explanatory variables such as price. promotion, time. etc.. that 
drive it. These models are often called causal models, as most variables 
they use might cause changes in demand. IVe call them explanatory 
models. since actually the statistics behind the models hardly provide 
any causal relationship. Rather. these models simply observe that when 
price goes down. demand goes up. and thus they predict that if in the 
future the company will reduce price. demand will go up again. So 
our readzng of the models is causal. while they simply obierve that 
low prices go together with high demand. The most basic explanatory 
model. simple linear regression, is discussed in sections 3.10 m d  A 10. 

Qualitative and quantitative methods are often presented as alternative solu- 
tions. On the contrary. in many contexts they can be integrated to  exploit the 
respective strengths. A blend of the two approaches can enjoy the flexibility 
and reactivity of humans and the consistency of an algorithm. Actually. there 
is a growing body of evidence that a combination of quantitative methods and 
qualitative ones can outperform both purely quantitative and purely qualita- 
tive methods (e.g.. see 1191) Quantitative methods can generate a forecast for 
a large number of product/market combinations. The quantitative method 
might be based on a simple assumption of demand behavior. but still it pro- 
vides very consistent forecasts. The outcomes of this first forecastiiig process 
can then be controlled and. eventually. adjusted by human experts to  account 
for all the variables arid phenomena the quantitative systems fails to account 
for properly. l3 

For example, a number of quantitative methods analyze time series of de- 
mand and extrapolate some sort of demand pattern (steady, linea1. seasonal 
etc.) from past observations. These methods, by their very nature, fail to  
capture the effect of variables that change the demand pattern. such as the 
launch of competitive products. For example, a quantitative method could 
generate a demand forecast of 100 tons for a given kind of fresh filled pasta. 
However. an expert might reduce this forecast as a new competing product 
is beiiig launched and it might be expected to partially cannibalize the exist- 
ing one. Notice that the role of the quantitative method is to (i)  provide a 
point of reference so that the expert can just focus on the net effect of the 
launch of the new product on the demand for the existing one and (ii) take 

I3Notice tha t  this is one of the  basic problems with neural networks. Neural networks are 
a forecasting technique tha t  tries to  simulate the  learning process of human brain. The 
good thing about this forecasting technique is tha t  the  user is not forced to  make any 
assumption about t he  demand pattern.  Basically. we let the  neural network observe past 
da ta  and t ry  t o  figure out a pattern. One of the  flipsides of this model is tha t  under these 
circumstances a human being trying to  improve the system forecast would not know the 
assumptions behind the forecast: and thus he/she would hardly be in a position to  properly 
modify and improve the forecast to account for other phenomena the system might have 
overlooked (e.g.; because no quantitative da ta  are available or because some new trend or 
relevant variable is emerging). 
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off the forecaster's table all the items that do not require specific attention. 
as demand is relatively stable, so that the forecaster can devote as much time 
as he/she needs to  understand what is going on with products that  face un- 
usual conditions (that is. conditions that do not fit the assumptions behind 
the quantitative model). 

Also, the integration between qualitative and quantitative models can be 
a sort of weighted average of qualitative and quantitative methods. This. say 
parallel. method of integration is actually seldom used though its effectiveness 
has been often proven in literature. 

Finally. qualitative forecasts can be used as an input to a quantitative 
forecast. For example, experts' opinions can be the independent variables 
of a linear regression. Also, market research can be one of the key inputs 
to estimate the market potential of a new product. In this case as well, the 
quantitative methods can read the signal in experts' opinions, but a t  the same 
time they can account for any bias they might have. So, they can generate 
a consistent forecast as they correct for bias. but they still can be accurate 
since they exploit experts' knowledge. 

The bottom line is that  one can generate a consistent but still flexible 
forecasts by blending the qualitative and quantitative forecast in various ways. 

3.5 MOVING AVERAGE 

Moving average is the simplest time-series model. In this class of models 
we analyze past demand patterns to extrapolate a future forecast. All these 
models make an assumption about the pattern of demand: They try to identify 
it in past data to project it into the future. Hence. the performance of these 
forecasting techniques really depends on whether the underlying assumptions 
fit the actual demand pattern. This is why we devote a specific section to 
describe the basic assumptions on demand that each model in this class relies 
on. 

3.5.1 The demand model 

A first forecasting model is moving average. The assumption behind this 
approach is that demand is steady, as we expect neither major trend (neither 
downward nor upward) nor periodic fluctuations (seasonal patterns). 

More formally, we assume that demand data are generated by a process 
like 

where E ( d t )  is the expected demand, which is an unknown parameter we want 
to estimate, and E t  is a noise term such that E(t,) = 0. Actually, we do not 
expect E(d) to be truly steady but we expect smooth and random fluctuations 
of the expected value over time: 

yt = E ( d t )  + E t .  (3.9) 
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where E(et)  = 0. 
Given these assumptions, at any given point in time t the demand forecast 

is the same for all future periods (Ft.h does not really depend on h ) .  Indeed, 
we assume demand to  be statistically stationary and thus have no reason 
whatsoever to expect an increase or a decrease in demand. This does not mean 
that the forecast cannot be updated. Actually. as more recent obseivations of 
demand are collected. the demand forecast is updated (Ft,h does depend on 
t .  but not on h) .  

3.5.2 The algorithm 

The moving average algorithm estimates the level demand (so called baseline 
demand) Bt for the future as the average of the last k demand observations. 

(3.11) 

lye can think of k as a "time window" which we apply to past data to include 
only the most recent ones. Also. given the assumptions of this model. we 
predict a flat demand for any future period: 

3.5.3 Setting the parameter 

To use the moving average method. we shall set the parameter k .  that  is, the 
number of demand observations we want to use to generate the forecast. To 
select this parameter. we face a tradeoff between. 

0 The ability of the model to  filter noise. that  is. to  avoid overreactions to  
demand observations that are significantly above or below thP average. 

0 The ability of the model to promptly react to changes in demand such 
as a sudden increase or decrease in expected demand. 

If a large value of k is chosen. the moving average method shows a strong 
inertia. On the one hand, a single observation significantly above (or below) 
the average has little consequence. On the other hand. it takes time for the 
model to adapt to  any significant change in average demand. So. iii this case 
the moving average Jilters nozse very effectively, but it adapts to changes in 
demand slowly. 

On the contrary. if a small value k is chosen. a single demand observation 
has a great deal of influence on the future forecast ( to an extremc. if k = 1 
the forecast just equals last demand observation). Thus a small k makes the 
moving average very reactzw but at the same time very seriszt 
In other words. demand observations significantly above or belo\$ the average 
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lead to bumps in the demand forecast, which turn into a larger forecasting 
error.14 

Figures 3.4-3.7 show the behavior of moving average with various values 
of k .  The examples consider the moving average with k = 2 and k = 6, and 
a forecasting horizon of one period ( h  = 1). 

When we analyze the performance of the moving average with a statistically 
stationary demand (figure 3.4 e 3.5) we can see that: 

0 The moving average with time window 6 ( k  = 6) requires a longer 
initialization: 

0 The moving average with k = 6 is more stable than with k = 2. This 
leads to  more accurate forecasts. if the expected demand is stable (and 
the random part of the demand is not auto-correlated, that  is variables 
~t in equation (3.9) are independent-see definition A . l l ) .  In these 
cases. stable forecasts are more effective simply because fluctuations in 
forecasts add to the fluctuations in demand and tend to  increase the gap 
between the two variables, that  is. the forecast error.15 

In the case of the demand patterns displayed in figures 3.4 and 3.5. k = 6 
guarantees more accuracy than k = 2 (RhlSE is 7.67 and 10.11, respectively, 
while MAD is 6.96 and 8.26. respectively).16 

Figures 3.6 and 3.7 show how the moving average reacts to an odd demand 
observation that significantly differs from the mean. The figures show that 
the reaction to the anomaly is definitely larger in the case of k = 2 than in 
the case of k = 6. However, the effect of the odd observation lasts longer in 
the case of k = 6. Indeed, in the case of k = 2 the anomaly in period 15 
quickly exits the sample we consider to generate the new forecast. This really 
means that if k = 2 the effects of the outlier are not larger but simply more 
concentrated over a shorter period of time. While the differences in MAD 
are negligible (MAD is 38.7 and 37.2 for k = 6 and k = 2 respectively). the 
differences in RhfSE are sizable (RhlSE is 82.6 and 71.8. respectively) since 
RMSE penalizes larger errors (see section 3.3). 

I4We basically add the fluctuations of demand to  the fluctuations of forecast in a scenario 
where expected demand is stable. 
151f the process is truly stationary, there is no reason whatsoever to consider only the last 
k demand observations. If demand is truly stationary, we should simply take the average 
of all demand observations we have. However, in real-life contexts, this situation is hardly 
the rule. So we only consider the last k demand observations. as we believe them to be 
the only relevant ones to  estimate future demand. Adding an extra observation from the 
past adds more information on the one hand, and thus should increase accuracy, but on the 
other hand it reduces the quality of our inputs, as the older the data,  the least significant 
they are to predict future demand. 
16Notice that  we only use periods 7 to 30 to  measure accuracy so that  performance of both 
alternatives are measured on the same sample. 
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Fig. 3.6 Behavior of moving average: k = 2; demand featuring a pulse. 
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Fig. 3.7 Behavior of moving average: k = 6. demand featuring a pulse. 

Also. figures 3.6 and 3.7 show that when one uses time-series models, out- 
liers cause forecasting errors both when they occur (as they are unpredictable 
for time series models) and in successive periods as they bias forecasts. 

The previous examples show that,  for "large" values of k .  the moving av- 
erage *'filters noise" very well. that  is, it effectively tells the average behavior 
of demand from random short-term fluctuations. The example of figures 3.8 
and 3.9 shows that large values of k entail a poor reactivity of the model. that 
is, they limit the ability to adapt to changes in expected demand. In the case 
of k = 2 the moving average completely "forgets" the previous behavior of 
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Fig. 3.8 Behavior of moving average: k = 2:  demand is a step function 
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demand while in the case of moving average with step 6 ( k  = 6) the transient 
state is much longer and thus the accuracy is worse (51AD is 29.0 and 56.2 
while RhISE is 76.7 and 107.1. respectively). 

3.5.4 Drawbacks and limitations 

The moving average is a rather simple forecasting method that is widely used. 
However. it has drawbacks and limitations. This method gives an equal weight 
l / k  to the last k demand observations. while it totally neglects previous ones. 
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Table 3.11 Demand data for vanilla ice cream 

period 1 2 3 4 5 6 7 8 
yt 116.36 96.30 109.64 99.92 110.31 99.88 89.07 107.38 

period 9 10 11 12 13 14 15 16 
yt 121.21 100.99 89.63 88.43 83.83 95.87 102.17 103.43 

period 17 18 19 20 21 22 23 24 
yt 104.55 88.19 98.53 103.58 87.95 110.83 103.87 115.57 

One could think that it might be more reasonable 

0 To give more recent observations a greater weight than more remote 
ones: for example. one might want to give more weight to observation t 
than to  observation t - 1; 

0 To give even more remote demand observations a nonzero weight. 

Example 3.14 Let us consider a store that sells ice cream on a beach. The 
demand for vanilla ice cream over the last 24 days is shown in table 3.11. 
Demand is rather stationary with some minor variations. 

The lead time is two days and deliveries are daily. This means that the 
time bucket is the single day and the forecasting horizon is two days ( h  = 2) 
The manager of the store is trying to  predict future demand with the moving 
average algorithm. He wonders whether he shall be using moving average 
with k = 2 or k = 5. 

To choose between the two options. we can measure which one would 
have performed better in the past, assuming that the option that would have 
worked better in the past is going to be the better performer in the future as 
well. The moving average with step 5 ( k  = 5) can generate the first forecast 
only in period 5. Our horizon consists of two periods: hence, in order to get a 
fair comparison, we are going to compare the accuracy of the two parameters 
in periods 7 to  24. 

Let us take you through the forecast generated in period 5 for period 7. 
i.e., F s , ~  = F7: 

0 If k = 2, the forecast generated in period 5 is the average of demand in 
period 4 and in period 5. So, F s , ~  = F7 = (99.92 + 100.31)/2 = 105.12. 
Given the demand in period 7 Y7 = 89.07. the error is e7 = 89.07 - 
105.12 = -16.05. 

0 If k = 5 ,  the forecast generated in period 5 is the average of the demand 
in the first 5 periods. So F s , ~  = F7 = (116.36 + 96.30 + 109.64 + 99.92 + 
100.31)/5 = 106.51. So the error in period 7 is e7 = 89.07 - 106.51 = 

- 17.44. 
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Table 3.12 Forecast with step 2 ( I ;  = 2 )  

period 7 8 9 10 11 12 13 14 15 
Ft 105.12 105.10 94.48 98.23 114.30 111.10 95.31 89.03 86.13 

period 16 17 18 19 20 21 22 23 24 
Ft 89.85 99.02 102.80 103.99 96.37 93.36 101.06 95.77 99.39 

Table 3.13 Error with step 2 ( k  = 2 )  

period 7 8 9 10 11 12 13 14 15 
et -16.045 2.285 26.735 2.765 -24.665 -22.67 -11.48 6.84 16.04 

period 16 17 18 19 20 21 22 23 24 
et 13.58 5.53 -14.61 -5.46 7.21 -5.41 9.775 8.105 16.18 

Table 3.14 Forecast with step 5 ( k  = 5 )  

period 7 8 9 10 11 12 13  14 15 
Ft 106.51 103.21 101.76 101.31 105.57 103.71 101.66 101.53 96.82 

period 16 17 18 19 20 21 22 23 24 
Ft 91.75 91.99 94.75 97.97 98.84 99.37 99.66 96.56 97.82 

Table 3.15 Error with step 5 ( k  = 5 )  

period 7 8 9 10 11 1 2  13  14 15 
et -17.44 4.17 19.45 -0.32 -15.94 -15.28 -17.83 -5.66 5.35 

period 16 17 18 19 20 21 22 23 24 
et 11.68 12.56 -6.56 0.56 4.74 -11.42 11.17 7.31 17.75 

1t-e can repeat this process for t = 8, .... 24 and obtain tables 3.12 and 3.13, 
which show the forecasts and errors, respectively. in the case of k = 2 ,  and 
tables 3.14 and 3.15 that show the forecasts and errors, respectively. in the 
case of k = 5 .  

Finally. with the error data we can compute accuracy metrics. For example. 
the RMSE is 13.95 for k = 2 and 11.90 for k = 5 .  Thus we draw the conclusion 
that we would rather select k = 5 .  0 

3.6 SIMPLE EXPONENTIAL SMOOTHING 

3.6.1 The demand model 

The drawbacks discussed in the previous section suggest replacing the moving 
average with the simple exponential smoothing method. This method assumes 



128 FORECASTING 

the very same demand behavior and pattern as the moving average, that is, a 
stochastic but stationary demand or a demand with very smooth changes in 
the expected demand.17 

3.6.2 The algorithm 

In the simple exponential smoothing technique. the current level of demand 
is estimated through a weighted average of the last demand observation yt 
and the previous estimate of the demand level Bt-1. This method increases 
the previous estimate Bt-l when actual demand yt is greater than we had 
estimated, while it reduces the previous estimate Bt-1 when demand U, turns 
out to be lower than we thought:ls 

(3.13) 

Also, given the assumption of a stationary demand over time, the forecast 
generated at a given point in time t is the same for all forecasting horizons h: 

Notice that, just like in the case of moving average, we keep on updating the 
estimate of the demand level Bt. So Ft,h really depends on t but does not 
depend on h. Given equations (3.13) and (3.6.2), we can also write 

In this forecasting model, a is a parameter between 0 and 1 that determines 
the reactivity (i.e.. promptness) of the model. Indeed, as Q changes we change 
the weight of the most recent demand observation yt and of the previous 
expectation of demand Bt-1. If Q is 1, the smoothing algorithm behaves just 
like a moving average with a unit time window ( k  = 1) and thus reacts very 
promptly to any change in demand. 

If Q is set to  zero, then the previous estimate Bt-1 is not affected by the last 
demand observation U, and thus Bt = Bt-1. This clearly makes the forecast- 
ing technique extremely stable. Also, noise has no influence whatsoever on 
future forecasts. However, this brings the forecasting technique to a standstill 
and the model cannot adapt to any change in demand. 

I7As we already discussed. for a truly stationary process the best estimate of the expected 
demand is the simple mean of all observations. If this was the case; taking only the last 
k observations would not make sense. Also, it would not make sense to give more recent 
observations a greater weight. If demand is really stationary, all observations are equally 
relevant and thus have the same weight. 
18Notice that we assume that  we update our forecast at  each period. If the forecast is 
reviewed less frequently (say every j periods), we simply take the weighted average of the 
average of the last j demand observations and the level of demand at time t - j .  
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Fig 3.10 Behavior of exponential smoothing: cy = 0.5, stationary demand. 
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Fig. 3.11 Behavior of exponential smoothing: CY = 0.1. stationary demand. 

The parameter cy plays a role that is very similar to the role of k in the 
moving average technique. Figures 3.10-3.15 show that the pattern we get 
with a lorn cu resembles the one we get with a large k and vice versa. Figures 
with cu = 0.1 show a rather inertial behavior, but also a great ability to 
filter noise. just ltke in the case of k = 6 for the moving average. Figures 
with Q = 0.5 reseinble the ones with k = 2 .  as both techniques show a good 
reactivity. but a poor ability to  filter noise. 
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fig. 3.12 Behavior of exponential smoothing: a: = 0.5, demand featuring a pulse. 

f ig.  3.13 Behavior of exponential smoothing: a: = 0.1, demand featuring a pulse. 
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Fig. 3.14 Behavior of exponential smoothing: cy = 0.5, step demand. 
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Fig. 3.15 Behavior of exponential smoothing: a = 0.1, step demand. 
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We can elaborate on equations (3.13) and (3.14) to  derive two formulations 
that provide interesting insights. A first reformulation is 

Ft,h = Bt = QV, + ( I  - a)Bt-l = Bt-1 + a(V, - Bt-1) Vh. (3.15) 

In other words, the new forecast generated at  time t is equal t o  the previous 
one generated at  time t-1 (Ft-l ,h = Bt-l) plus a term smoothed through the 
parameter a ,  which can be interpreted as the error we made while attempting 
t o  forecast demand ut at time t - 1. Indeed, as the formula holds for all h we 
can set h = 1 and read the smoothed factor as V, - Ft-l , l .  Thus exponential 
smoothing can be interpreted as a method that tends to  correct the error by 
reducing the forecast when errors are positive and by increasing it when errors 
are negative. 

We can provide a second reading by exploiting the recursiveness of equation 
(3.13) : 

By substituting in equation (3.13), we obtain 

Bt-1 = 0yt-1 + (1 - ~ ) B t - 2 .  

Bt = aU, + a(1- a)%-1+ (1 - a)2Bt-2 

= aV, + cY(1- C2)yt-l + a(1- ayYt-2 + (1 - 4 3 B t - 3  

QV, + a(1 - Q)Yt- l f  a(1- a ) * I L  + a(1- a ) 3 V , - 3  + (1 - a )  *B  t -  4 - - 

This formulation shows that exponential smoothing gives past demands a 
weight that  decreases with the time elapsed since the demand observation. 
The weight of the demand observation at  time t - i is a decreasing function 
of a .  Figure 3.16 shows the pattern of these weights with various levels of a. 

For low Q the weight of observation yt is very similar to the weight of 
observation X-1. and so on. On the contrary, for high values of a the weight 
of observation Yt-1 is significantly lower than for the latest observation V,. 

Also. we can use the properties of geometric series to show that the sum 
of all weights is just 1. as one would intuitively expect.lg This property also 
suggests that all demand observations prior to  t - 20 have an overall weight 
that is equal to  1 minus the sum of weights of all demands from period t - 20 
to t .  Figure 3.16 shows that in case of a very small a.  the weight of the 
"remote past" is fairly relevant (see "other periods" in the figure). 

3.6.3 Setting the parameter 

The above analysis suggests that high values of a enjoy reactivity, that is the 
ability to  promptly react to changes in average demand. whereas low values 
of Q filter noise very effectively. This is why in real-life situations the choice 

IgIn  case we sum the  weights of an  infinite number of demand observations. 
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Fig. 3.16 Weights of the demand observations with various levels of a.  

of a: (and more generally all smoothing parameters that  are presented in this 
chapter) should be dynamically adapted to  the changes in demand. We shall 
increase a!, as demand is going through a period of changes. while we shall 
reduce it when we expect demand to be rather stable and we only observe 
random fluctuations around the mean demand. 

To support the choice of the appropriate level of a:, we can use the tracking 
szgnal (TS t ) :  

The tracking signal is basically a smoothed average of most recent errors. 
The logic behind this tool is that  if expected demand is relatively stable. the 
demand forecast is unbiased, however inaccurate it might be. Thus. errors 
are positive in some periods and negative in other periods: They tend to 
cancel out and the tracking signal tends to  be close to zero. On the contrary, 
if demand starts growing (or decreasing), exponential smoothing generates 
conservative (optimistic) forecasts and errors tend to be positive (negative). 
Thus errors tend to  add up rather than cancel out, and the tracking signal 
(TSt ) significantly (differs from zero. 

TSt signals the tendency of demand to  increase (decrease) as it significantly 
differs from zero. So it can be used to decide when to choose large values of 
a (tracking signal differs from zero) and when to choose small ones (tracking 
signal close to zero). 

The choice of the appropriate values of Q (and more generally the pa- 
rameters of the smoothing algorithms) is a key lever to  control and improve 
the forecasting proress. So, in general, it requires some managerial attention. 
Most software (and even Excel. if managed properly) can automatically search 
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for optimal values of a that can then be used for a while. In the case of a very 
large numbers of time series (e.g., cheap products sold in various markets) 
the continuous control of a lot of parameters can be fairly expensive and not 
worth the effort. This is why one might consider the so-called self-adaptzve 
methods that self-select the parameters according to the demand patterns. 

In general, in a self-adaptive method, the value of a depends on the tracking 
signal, that measures the rate of change of demand. A possible choice is to 
set a = a . ITStl. that is a changes proportionally to the absolute value of 
TSt .  The parameter a is often set to  1. 

3.6.4 Initialization 

Equation (3.15) highlights one of the key issues for this forecasting algorithm: 
It is recursive and generates a new estimate of the expected demand in period 
t with a previous expectation from period t - 1. However, this method needs 
a starting point. i.e.. an estimate to start from. We call this the initialization 
of the smoothing algorithm. that is. the generation of the first estimate Bo. 

Before we get into the details of how one can initialize the forecast, we 
notice that this can be a fairly important issue. Indeed, we can show that the 
initial estimate Bt-1 can have a significant impact on the forecast we generate 
at  current time t .  Let us assume we have a set of I demand observations, 
Y t - I + l ,  . . . . Yt. It is easy to show that the initial estimate (that refers to 
period t - I .  that is the period before the start of our sample) is updated I 
times and thus has a weight of (1 -a)’ (this means that a percentage (1 -a)’ 
of the current estimate Bt depends on the initial one Bt-1). Thus for high 
values of a and low values of I .  the initialization plays a key role. as a large 
portion of the current estimate Bt depends on the initial one (Bo). When cy 
is low (thus, the estimate remains stable over time) and the initial estimate 
is updated a limited number of times I ,  the initial estimate Bt-I can be the 
single most relevant “ingredient” of the final estimate Bt and of the forecast 
for future demands. Oddly, it can be even more important than the last 
demand observation (see figure 3.16, case of Q = 0.05). 

There are several approaches to set Bt-1: 

1. A first option is to start with a zero estimate (Bt-1 = 0). This makes 
the initial estimate biased. In case of low values of a and I .  this makes 
the current estimate Bt and future forecasts Ft,h significantly biased as 
well (see figure 3.17). 

2 .  A second option is to set Bt-1 = y t - ~ + l ,  that is, we set the first estimate 
of demand level equal to the first demand observation. Apparently this 
is unfair cheating. It seems we are using demand in period t - I + 1 
to predict the demand itself, since by setting h = 1 we have Bt-1 = 

Ft-I,h = Ft-1.1 = X - I + ~ .  that is we are guaranteed not to make any 
error in the first forecast. In other words. we are violating the basic 
principle of non-anticipation. However, we must keep in mind that we 
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Fig. 3.1 7 Case of initial forecast equal to 0 with various levels of cy 

are using a fit sample (see section 3 .3 .7 ) :  that is. we are using demand 
data to  initialize the forecasting process. We shall simply be careful and 
fair when we judge the performance of our forecasting method. When 
we measure the performance of our method, we shall use a test sample 
that does not contain any data  we have used to initialize the exponential 
smoothing technique. 

Using demand Yt-~+l to set the initial estimate of the baseline demand 
Bt-1 is totally acceptable. We must be careful not to use it to judge the 
quality of our forecast. Therefore, when we use this approach the first 
demand observation y t - ~ + l  cannot be used to measure the accuracy and 
bias of our forecasting process. To put it in a different way. we use the 
initial value to  initialize the estimate of demand but we do not use it to 
forecast. 

This second approach provides an initial estimate Bt-I that is not bla- 
tantly biased like in the former case. Xevertheless, it might significantly 
differ from the average demand since it is based on a single demand 
observation that might be affected by noise (see figure 3.18). 

3. A third approach is designed to partially fix the problems we have just 
highlighted. 'We can use the average of the first I periods to initialize 
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the estimate of demand level*O: 

Y ,  
t-I+l 

Bt-1 = c 7' 
k t - 1 + 1  

In this case, the initialization is based on 1 periods rather than a single 
one. Thus it can capture more accurately the long run average demand 
(see figure 3.19). However, this approach too has a side effect: We 
cannot use 1 periods to  judge the quality of the forecasting process. For 
these periods the demand forecast depends on (i.e., exploits the informa- 
tion about) the demand itself (the forecast depends on the initialization 
that in turn depends on the demand during the first 1 periods). 

This is actually a minor problem, when one just wants to  generate a 
demand forecast in current period t .  However, when one wants to  in- 

20Notice that  we use I periods but still initializeat period t - I ,  that  is we initialize as far back 
into the past as possible. Indeed, one could be tempted to  set B,-I+L = x,=t-I+l Yt/L~ or 

even worse Bt = ~ ~ ; ~ + ~ + l  x/L. Actually, the initialization procedure is just a violation 
of the basic mechanics of this forecasting process that  is based on progressive updates of 
previous estimates of demand. The more the initialization is set far into the past, the more 
time the exponential smoothing has to  actuallyupdate demand and to  limit the effect of the 
initialization. On the contrary. if we set B,-I+l = zL=t--I+l t-'+' K / l .  we increase the weight 

of the initialization by a factor l / d .  Finally, if we set Bt = C:=,'_+:+, x/L. Basically, 
the first forecast Ft,h = Bt is not based on any sort of exponential moving average, but 
rather on a simple average of demand observations that  might not even be recent. Thus. 
we would simply be using a different forecasting method rather than the one we believe is 
appropriate for our forecasting problem. 

t-1+1 
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vestigate the performance of various methods (or various sets of param- 
eters) to select the best one, we have to set aside a "test sample'' to  
measure the forecasting errors. Thus we face a tradeoff between (i)  the 
quality of the initialization and (ii) our ability to judge what is the best 
forecasting method (or the best set of parameters). 

Figures 3.17-3.19 show the behavior of the smoothing algorithm under the 
three initialization policies. Figure 3.17 shows that setting the initial forecast 
to zero leads to a biased forecast during the first periods. The duration of this 
transient state depends on a: The higher the value of a. the more quickly the 
initial forecast loses weight and the forecast reaches steady state 1 alues. 

Figure 3.18 shows that.  in the second case. initializationis no longer biased. 
but it can be fairly inaccurate. as it is based on a single demand observation. 
So. also this method for initialization can generate fairly inaccurate forecasts 
for the first few periods. especially in the case of low a.  

Figure 3.19 shows that the third choice usually guarantees a better initial- 
ization. This is particularly important in the case of low a. However. we 
also notice that we can measure the accuracy of the forecasting algorithm 
from period 11 onward. as the first 10 observations were used to  initialize the 
forecasting algorithm. In the second case. instead. one can start measuring 
accuracy in the second period.21 Hence. the third option tends to  provide 
a better initialization. but it ''consumes" a lot of data and we might be left 

21Kotice tha t  we shall be expecting larger errors in the  early periods as the forecasting 
technique is basically drawing conclusions on very small samples. So in an odd way even the  
second option might be misleading. as it might lead us t o  prefer the  option with lower da ta  
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with a small test sample. So, in an odd way the error might be smaller but 
we have a limited ability to properly quantify it. 

3.6.5 Drawbacks and limitations 

Both forecasting methods presented so far are designed to manage a rather 
simple demand pattern, that is, a basically stable demand with random fluctu- 
ations. These simple methods are effective to the extent that their underlying 
assumptions hold. For example, when demand is expected to grow or vary 
according to season, these forecasting methods are inaccurate. The next three 
sections present forecasting techniques that are suited for these more complex 
and nonstationary demand scenarios. 

3.7 EXPONENTIAL SMOOTHING W I T H  TREND 

3.7.1 The demand model 

Trend can be interpreted as the consistent change (growth or decrease) of 
expected demand over time. Demand growth (decrease) can be either: 

Linear. that is. we observe a constant increase: e.g.. demand increases 
by 20 units per period, or 

Exponential, that is, a constant percentage change; e.g.. demand grows 
by +20% per period. 

In this book we discuss in full depth the linear trend model. while exponential 
trend is just presented briefly. The logic of, drawbacks of. limitations of, 
and comments about the linear trend model apply, mutatzs mutandas, to the 
exponential trend model as well. 

3.7.2 The algorithm 

The exponential smoothing with trend algorithm uses two parameters. as the 
demand model is more complex. The two parameters are: 

Bt, the baseline demand (or level of demand) in period t :  

Tt,  the trend of demand in period t ;  demand is growing when Tt is 
positive and is decreasing when Tt is negative. 

The demand model is nonstationary and thus the forecast depends on the 
forecasting horizon. For example, if we expect a growth of 10 units per month. 

requirements, which more quickly “forgets” an erroneous initialization, or simply performs 
better by pure chance. 
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demand for the next month is lower than the forecast for the following months. 
In particular, given the linear trend assumption. we obtain: 

In other words, the demand forecast for period t + h equals the baseline level 
in period t plus h times the growth we expect in a single period. 

This method uses the exponential smoothing logic to update the two pa- 
rameters Bt and Tt. As to the baseline level Bt, we use the last demand 
observation to update previous estimates. just like in the case of simple ex- 
ponential smoothing. However. in this case we cannot just average the last 
demand observation yt with the last estimate of the baseline demand Bt-l. 
as they are actually hardly comparable numbers. In an odd way, they are 
apples and oranges. Indeed, we are facing a nonstationary process and thus 
the baseline at time t - 1 and the demand at  time t are not directly com- 
parable figures. Actually. demand at time t can be compared with the most 
recent forecast of demand at  time t ,  that  is, the one generated at time t - 1 
( F t - l , ~  = Bt-1 + 1 . Tt-1). Thus we can take a weighted average between 
actual demand and our latest expectation about it. Basically, we increase our 
expectations if demand has exceeded them and reduce them in case demand 
was lower then we thought: 

As to the trend factor, we shall update the last period's estimate with the 
latest observation of the demand growth (decrease). We can measure the last 
growth of demand through Bt - Bt-l and thus update the trend factor as 
follows: 

(3.18) 

where 3 is a second smoothing factor that is used to update the trend param- 
eter. 

Tt = 9(Bt - Bt-1) + (1 - O)(Tt-l). 0 5 3 5 1, 

3.7.3 Setting the parameters 

This forecasting method uses two parameters a and 3 so that we can differ- 
entiate the speeds at which estimates Bt and Tt are updated. The effects of a 
high rather than low value of 3 resemble those of a. However. the trend factor 
Tt depends on a as well as on 3. If 01 is low, then the difference Bt - Bt-1 is 
basically equal to  c-1 and the trend factor changes very slowly.22 

22iXotice that  one could also update the trend through the difference between the last two 
demand observations. 

Tt := 3(Yt - Yt-1) + (1 - O)(Tf- l )  0 5 3 5 1 ( 3  19) 
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3.7.4 Initialization 

In the case of exponential smoothing with trend, we have to  initialize two 
parameters. Thus, a reasonable initialization requires a t  the least two demand 
observations to be in a position to  judge whether demand is increasing rather 
than decreasing over time. Assuming that we choose to initialize the algorithm 
with this minimal information set. we can take the difference between two 
successive periods to estimate the demand trend23: 

As we have already discussed in the case of simple exponential smoothing. 
this procedure apparently violates the principle of nonanticipation, since TO 
incorporates demands from periods t = 1 and t = 2.  In fact. we are just 
using a fit sample to  initialize the smoothing algorithm. The same concept 
applies to all smoothing algorithms and initialization policies presented in the 
remainder of this chapter and we are not going to  get back to it. 

As to the initialization of the baseline demand at  time 0. we shall properly 
exploit the demands of periods 1 and 2. Given the nonstationary demand 
process. demand Yl and Y2 cannot be directly used to  estimate the baseline 
level of demand at  time 0. To use demand in t = 1 to estimate the baseline at 
time 0. we should remove the demand trend from it. To properly use demand 
observation from period t = 2 .  we subtract the trend twice: 

(Yl - 1 . To) + (Yz - 2 . To) Bo = 
2 

These initial values depend on the specific demand realizations (draws) of 
the first two periods. Thus this approach can lead to significantly wrong esti- 
mates. For example, the initial demand trend TO might be negative even when 
demand tends to grow over time. Just like in the case of simple exponential 

This is a more nervous statistic than the difference between the two most recent baseline 
demands Bt - Bt-1. Indeed, one can plug equation (3.16) into equation (3.18) and get 

Tt = , ~ [ c Y .  Yt + (1 - C Y )  (Bt-1 + Tt-1) - Bt-11 + (1 - P ) ( T t - l ) ,  0 5 3 5 1. (3 .20 )  

Hence 
Tt = P . o i [ . y t  -B t - l ]  + (1 - P . c Y )  ,Tt-l ,  0 5 1. (3.21) 

The previous equation shows that  the weight of the previous trend Tt is very large in 
equation (3.18). For example, in case of cy = /3 = 0.1, 99% of the trend factor at time t 
is determined by the previous trend factor Tt-1. Basically, we apply both the 01 and the 

smoothing factors. We first apply the smoothing factor a t o  estimate Bt ,  and then we 
further smooth this variable through ,3. Indeed. while the previous value of trend Tt-l has 
a weight of 1 -a$.  the  most recent demand observation has a weight a.3.  In other words, 
the most recent demand observation has very little effect on trend, unless the smoothing 
parameter(s) is (are) very high. 

This is neither good nor bad per se. One should simply account for that ,  when setting the 
smoothing parameter p;  this might be larger in the case of the classic formulation (3.18). 
23N~t i ce  that  we assume to  have n demand observations for t = 1 , 2  ...... n 
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smoothing. this sets it tradeoff between the quality of the initial estimates of 
the parameters through a fit sample. and the number of data points that can 
be used to  judge the quality of the forecasting method in a test sample. In the 
interest of brevity we shall not repeat previous comments (see section 3.6.4). 

Let us assume that we decide to use 1 periods to initialize the two parame- 
ters Tt and Bt. We can exploit these 1 data in various ways. Here we present 
the two major ones. 

0 First. we can use linear regression (see appendix A).  In the linear regres- 
sion, demand Y is the independent variable while time t is the indepen- 
dent one. Here we shall consider linear regression as a tool to  interpolate 
demand data arid identify a linear trend. Thus linear regression sets the 
parameters a and b of a straight line y = a + b .  t .  These two parameters 
can be then used to  initialize the baseline and the trend factors at time 
0: Bo = a and TO = b. 

0 Second. we can use a simpler method that looks at the average demand 
levels and the average trend during the first 1 periods. We shall first 
estimate a trend factor to  make demand observations in different periods 
comparable. During the first 1 periods, we observe 1 - 1 differences 
between successive demand periods. i.e.. 1 - 1 observations of demand 
trend. Thus the initial trend level TO is given by the average of these 
1 - 1 demand increases (or decreases): 

- (Y2 - Yl) + (Y3 - Y2) + .  ’ ’ + (K-1 - K-2) + (K - K - 1 )  

y -- Y1 

- 

1 - 1  

-- - - 
1--1 ’ 

Kotice how the average boils down to the difference of two single values: 
This method does not fully exploit all the information available, a5 we 
basically overlook all demand observations from period 2 to period 1 - 1. 
This makes this approach simpler as well as less accurate than linear 
regression. One might think that.  since we are basically using just two 
demand observations to  initialize the trend factor To. we might just use 
the first two observations. Still, when we use 1 > 2 demand observations. 
the expected difference between and Yl is comparatively large and 
thus the estimate TO is less subject to noise. For example. if one tries 
to  use this method to predict the weight of a newborn baby. the growth 
pattern can be estimated by comparing the weight in two consecutive 
days but such an estimate might be affected by various random events 
(for example. a stomachache can easily lead us to believe that the baby 
is losing weight. while it is actually and obviously growing). On the 
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contrary. when you compare the weight over a two-week period. the 
estimate of the growth pattern is much more reliable. 

Once we have generated an estimate of the trend factor, we can exploit 
it to make the 1 demand observations directly comparable and use them 
to initialize the baseline demand Bo. 
We can tell the trend from the baseline demand and make all demand 
observations comparable so that we can use them to initialize the base- 
line Bo. To do so, we shall subtract from a generic demand observation 
Y, the trend that we have observed during the i periods since time 0, 
i . Tt. So we can initialize the baseline Tt as follows2*: 

(3.22) 

3.7.5 Drawbacks and limitations 

Obviously. this forecasting method is effective to the extent that its assump- 
tions hold (just like any quantitative method). On top of this, it has several 
drawbacks and limitations. As the forecasting horizon h grows, the model is 
more and more sensitive to any error in the estimate of the trend factor Tt. 
The model assumes that the trend we have observed in the past will last in the 
future. Actually, this is not a drawback per  se, as all quantitative forecasting 
methods make some sort of assumption of stability of the demand pattern. 
However. we shall notice that this assumption can lead to poor performance 
at  market "turning points." In such instances the forecasting method projects 
a growth (decrease) even when demand is starting to  decrease (grow). This 
can open a wide gap between the company's expectations and actual demand. 
Also. the longer the forecasting horizon, the greater the problem since any er- 
ror in the estimate of Tt is multiplied by h in formula (3.16). An example 
can clarify the concept. Let us assume that demand used to grow by g units 
per period. and that a t  time tl it takes a downturn and starts decreasing at a 
pace of s units per period. In period tl the forecasting method still projects 
a growth of g units and thus forecasts a demand Ftl,h = Bt, + h . g for pe- 
riod tl + h. So while the actual growth of demand stops in t l .  we project an 
increase up to  period tl + h.25 On the contrary, demand in period tl + h is 
h .  s units lower than it was in period t l .  Thus the forecasting error in period 
tl + h  is approximately equal to  h(s+g) .  Figures 3.20 and 3.21 show that the 

2 4 N ~ t i c e  that the initialization methods suggested in this chapter can also be used to  
forecast demand. These methods fall under the umbrella of decomposition methods These 
methods basically derive estimates of the parameters of a demand pattern from a sample 
of demand observations and have no update whatsoever. 
25This holds regardless of the smoothing factors. But in the case of small smoothing factors 
cu and p. we continue to  project a growth of demand for a much longer period of time. as 
the trend factor remains positive for a fair number of periods after t l .  
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Fig. 3.20 Drawbacks of the trend model in case of demand downturn: h = 1. 
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Fig. 3.21 Drawbacks of the trend model in case of demand downturn: h = 5. 

forecasting error depends on the horizon h. Also, the error clearly depends 
on the responsiveness of the model and thus on its parameters. as we have 
already discussed in the case of simple exponential smoothing. 

Also, using a linear demand model (either linear trend smoothing or linear 
regression) can lead us to unreasonable forecasts. For example. when the 
trend factor Tt is negative. this method might generate negative forecasts, 
especially in the case of long forecasting horizons and a markedly negative 
trend factor or low levels of the baseline Bt. Such unreasonable output shall 
be considered as a clear sign that the model is unfit for the demand at  stake 
and thus a different forecasting method should be selected. For example, 
when the baseline demand Bt is 100 units and the trend factor Tt is -40 
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units. it might be reasonable to expect a decrease in demand for the next 
period. down to 60 units. For the following two periods. one might expect a 
40% decrease rather than a 40-unit decrease. In other words. we might expect 
an exponential rather than linear demand model. In such cases, obviously, a 
multiplicative model that leads to  an exponential demand pattern might be 
a more reasonable choice than the additive (linear) one we have described so 
far. 

For the sake of completeness we show the formulas of the multzplzcatzve 
trend model: 

3.8 EXPONENTIAL SMOOTHING WITH SEASONALITY 

Seasonal fluctuations are a second source of nonstationarity. In several indus- 
tries the average demand is neither increasing nor decreasing. but it still faces 
significant seasonal fluctuations, according to the time of the year. weather 
conditions, or day of the week. For example. think about the food industry 
that. in many developed countries, shows a negligible growth as neither the 
population nor the per capita consumption is increasing significantly. Still 
demand faces sharp fluctuations according to seasons and weather. Consider 
products whose consumption depends on weather conditions such as chocolate 
or ice creams and of event-related food such as turkey on Thanksgiving day 
in the USA and Christmas cakes in many other countries. On top of these 
yearly fluctuations we face weekly fluctuations as these products are mostly 
bought on Fridays and Saturdays (and on Sundays in countries where stores 
tend to  be opened 7 days a week, such as the USA). 

3.8.1 The demand model 

We can model the effect of seasonality both as a percentage or an absolute 
variation (either increase or decrease) against average demand. For exam- 
ple. when we study demand fluctuations within the week. we can think that 
demand for grocery products on Saturdays is 80% above the average daily 
demand of 100.000€ per day. Also, we can think that demand on Saturdays 
exceeds the average demand by 80.000€. The two models behave differently 
in case of wide variation of demand during the year. They can behave rather 
differently both in peak- and low-demand weeks. The second model assumes 
that on Saturdays we sell 80.000€ more than on the average day of the week, 
during each of the 52  weeks of the year. On the contrary, the first model basi- 
cally assumes that the demand increase on Saturdays is less than 80.000€ in 



EXPONENTIAL SMOO THING WITH SEASONALITY 145 

low demand weeks (e.g.. the beginning of the vacation period in large cities) 
and more than 80.000€ in high-demand periods (e.g.% around Christmas). 

In this section WE' discuss in detail the multiplicative model. I l e  only pro- 
vide the equations for the additive one. The logic, mechanics. and limitations 
of the additive model can be easily derived. mutatzs mutandzs, from the anal- 
ysis of the multiplicative one. 

Before we discuss the details of a seasonality model. we have to identify 
the periodicity of demand fluctuations we want to analyze. In other words. 
we want to identify the most relevant season for our forecasting purposes. 

A first option is to study the periodicity of demand fluctuations within each 
year. In case the da,y is the time bucket, the season lasts 365 periods: in case 
the week is the time bucket. the season lasts 5 2  periods: and if the month is 
the time bucket, the season lasts 12 periods. A second option is to investigate 
the demand fluctuations within the week (in case of daily time buckets. the 
season lasts 7 days) 

The choice of the appropriate season can be supported by the analysis of 
demand data to check whether they actually show the periodicity we have 
assumed. However, the choice shall not be totally data-driven. For example, 
in case demand data show a 4-day periodicity, we should look for a reasonable 
explanation of this demand behavior. If we cannot logically explain the 4-day 
periodicity. it might be simply a spurious statistical result. Thus. demand 
might behave differently in the future. 

For 
the sake of simplicity. in the remainder of this section we analyLe the case 
of yearly seasonalit37 with monthly time buckets to  illustrate the underlying 
logic. However. the formulas do apply to  different seasons and time buckets. 

LVe denote by s the duration of the season we choose to analyze. 

3.8.2 The algorithm 

The factors of this forecasting method are the average level of demand Bt 
and the seasonality factors St. The average demand is a single parameter 
that is updated over time. On the contrary. to properly describe the demand 
fluctuations in a season, we need to have s different seasonality factors that 
are updated over time. In the case of 1 2  month seasons, we need to have a 
seasonality factor for each month of the year. 

The demand model behind this forecasting tools is 

I7t h = Bt . St+hPs. for h 5 9: (3.23) 

more generally, when we consider a forecasting horizon that exceeds the single 
"season." we obtain 

Ft h Bt ' St+h-~b++1j s '  (3.24) 

In other words. the Forecast generated in period t for period t + h considers (i)  
the most recent estimate of the average level of demand Bt and (ii) the most 
recent estimate of the appropriate seasonality factor. In case at the end of 
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December 2006 we want to forecast demand for January 2007, we consider the 
estimate of the average level of demand we created in December 2006. As to 
seasonality factors, one might be tempted to use the most recent estimate of 
seasonality generated in December 2006. However, this is very unreasonable 
as the seasonality of January might significantly differ from the seasonality of 
December (think of the Christmas effect for most product categories in most 
Western countries). Thus, we must use the most recent estimate of seasonality 
for the month of January, which was generated in January 2006. 

The assumptions of this model lead us to generate the same forecast for 
the months of January 2007, 2008, 2009 and so on (if they are generated 
at the same point in time, that  is with the same information set). These 
forecasts share the same average demand Bt and the same seasonality factor 
St+hPs. Indeed, this forecasting method assumes that the average demand 
does not change over time, though we face repetitive fluctuations. However. 
the forecasts of demand for January 2007, February 2007, March 2007 and so 
on, are (potentially) different. as we use different seasonality factors. 

To make this forecasting method work, we shall now understand how to 
estimate the average demand Bt and the seasonality factors St. In this case. 
demand is a nonstationary process and thus we cannot estimate the aver- 
age demand through the sum of demand observations from different periods. 
What would happen if we update the estimate of demand for ice cream in June, 
July, and August? This would lead us to  overestimate the average demand 
we should expect in the average month of the year Bt and we would project 
a high demand for ice cream into fall and winter. We might be quite wrong. 
since the high demand for ice cream might simply depend on the season, and 
it might vanish in autumn and winter. To update the previous estimate of 
the average demand Bt-1, we have to understand whether the latest demand 
observation is higher or lower than we expected. So when we want to update 
the previous estimate of the average demand Bt-1 with the June observation, 
we shall account for the seasonality of the specific month. Even if demand is 
higher than in the average month, we might not draw the conclusion that we 
shall increase Bt, as the relatively high demand for ice cream might somehow 
be expected. 

In other words, we shall remove sources of nonstationarity from the latest 
demand observation yt so that it can be directly compared to the previous 
estimate of average demand Bt-1: 

(3.25) 

Notice that if we assume seasonality to be additive rather than multiplica- 
tive we simply remove nonstationarity in a different manner. We subtract 
the seasonal increase (decrease) rather than divide by the seasonality factor. 
Moreover, we notice that we divide the latest demand observation yt by a 
seasonality factor St-,, which is one season old. At this point in time, StPs 
is the latest estimate of the relevant seasonality factor. 
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Once we have settled the estimate of average demand. we shall update 
the estimate of the seasonality factor. In our example, we shall estimate the 
seasonality factor for December 2006. The seasonality factor tries to capture 
whether the expected demand in a specific month (December) is above or 
below the average. If we expect the demand in December to be above the 
average monthly demand in the year, the seasonality factor is above 1; in case 
we expect the demand in December to be below the monthly average demand 
the seasonality factor is below 1. If the seasonality factor is 2 ,  we expect the 
demand in December to  be twice the average monthly demand. To update 
previous estimates we shall compare the last demand observation Yt with 
the latest estimate of the average demand Bt.  The ratio between these two 
variables tells us whether demand during the last month was above or below 
the monthly average. Then, we can use this ratio to  update the last relevant 
seasonality factor; in our example we can update the seasonality factor for 
the month of December with the last estimate from December 2005. On the 
contrary, it does not make sense to  use the demand observed in December 
2006 to  update the seasonality factor we have just estimated for Sovember 
2006 as these are totally incomparable figures. Thus. we can estimate the 
seasonality factor as follows: 

(3.26) yt 
Bt st = y- + (1 - -/)St-s, 0 5 7 5 1, 

where y is a smoothing parameter. In case the previous relevant seasonality 
factor was 1.5 and the demand observed in the last month was twice the 
average monthly deinand Bt we shall increase our estimate of the seasonality 
factor and draw the conclusion that next December we might be expecting 
a demand that is between 1.5 and 2 times the average monthly demand. 
depending on the srnoothing factor -/. 

3.8.3 Setting the parameters 

Like in previous cases, parameters a and 7 determine the speed at  which the 
parameters Bt and St are updated. Hence. these parameters influence the 
ability to  filter noise and react promptly to changes in demand. 

We notice that while the average demand Bt is updated each and every 
period, the seasonality factors are updated only once in a season (in our 
example. once every 12 months). that is. every s periods. So. if we want the 
seasonality factor to  be as reactive as the average demand, we might want to 
choose a relatively large value of */. 

3.8.4 Initialization 

This forecasting method too is recursive and thus must be initialized to be 
properly used. We have to initialize s seasonality factors St and one average 
demand Bo. This could lead us to believe that we need at least s + 1 demand 
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observations. However. we only need s data points. The seasonality factors 
capture the difference between the demand in each specific month and the 
average month of the year. Thus, on the average they shall be equal to  1. 
This adds an extra constraint to  our problem. Thus to initialize (and use) 
this method, a t  least s demand observations are required. With less than 
s demand observations (in our example 12 months) we cannot estimate the 
average demand in a season and thus we cannot estimate a single seasonality 
factor. Initializing demand is rather trivial when we only have s demand 
observations. Bo is simply equal to the average of the s (12 in the example) 
demand observations, and the s seasonality factors are equal to the ratio 
between demand in the related period (month) and the average demand Bo: 

C L  Y, Bo = 
S 

Just like in the previous cases, when we initialize with the very minimum set of 
data, errors might be considerable. In this specific case, each seasonality factor 
basically depends on a single demand draw that may be substantially different 
from its expected value (especially in the case of small time buckets and quite 
variable demand). Thus, in case more data are available, it is advisable to use 
more than s data points. We have already discussed the tradeoff we face when 
we choose the number 1 of periods that we use to initialize demand in section 
3.6.4. If 1 is a multiple of s, we use ..whole seasons.” In this case. the simple 
average of the 1 observations is a good estimate for the average demand, as this 
metric is not influenced by seasonality since we take the average of demand 
over l / s  seasons (years in the example). We can initialize the seasonality for 
a given month, say January, by comparing the average demand for all months 
of January in the fit sample to  the initial average monthly demand Bo: 

In the slightly more complex case where we do not consider whole seasons 
and thus 1 is not a multiple of s. we still compare the average demand in 
January to the average demand Bo. The only minor issue is that  in our 
fit sample we might have 3 months of January (say 2004, 2005. and 2006) 
and just 2 months of December (say 2004 and 2005). A simple average of 
all demand observations would not be a reasonable estimate for the initial 
monthly demand Bo, as it is influenced by the seasonality of January (which 
is overrepresented in the fit sample). Thus, we might want to  compute first 
the average demand in each of the 12 months (average demand in January, 
February. March, etc.) and then take the average of these 12 (in general s) 
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Table 3.16 Demand data  for a sport newspaper (data in thousands) 

weekday week 1 week 2 week 3 week 4 week 5 

Tuesday 4 6 57 23 36 29 
LVednesday 37 43 24 35 34 
Thursday 19 35 34 43 38 

Sunday 9 5 81 81 110 91 

Friday 5 0 50 60 50 52 
Saturday 6 fi 79 92 63 72 

SIonday 121 114 123 116 113 

figures. In this way, the estimate of average demand does not depend on the 
seasonality. as each month has an equivalent weight. The reader might want 
to  try to translate the above concepts into formulas. 

Example 3.15 Let us consider a large newsstand in Italy. Among other 
newspapers the newsstand sells sport newspapers. The dominant player in 
this business is the newspaper called Gazzetta. The newsvendor keeps track 
of demand (including any lost sales) and wants to forecast demand. The 
newsvendor places orders for copies of tomorrow’s newspaper a t  the end of 
the working day. So, the forecasting horizon is one day. Sow we are a t  the end 
of week 5 (Monday night) and he/she needs to plan orders for next Tuesday. 
So he/she need to generate a demand forecast. Table 3.16 shows data on 
the last 5 weeks of demand. Data show a clear seasonal pattern. as demand 
increases on Saturdays. Sundays, and Mondays. right before or after major 
sport events. 

Also, given the nature of the product the time bucket is a single day since 
we need to  plan inventories on each single day: Inventories leftover (unsold 
copies) on Tuesdays will not sell on Wednesdays. The newsvendor wants 
to have a distributional information about the future demand. Indeed, this 
distribution of demand is going to  be used when setting the inventory levels 
(this is done later in example 5.10 on page 255). A point forecast is just not 
enough. 

So the newsvendol- wants to apply exponential smoothing with seasonality 
model to  these data Lie identify the 35 data points with t = 1 to t = 35 
(t = 1 is Tuesday. week one: t = 35 is llonday. week five). The first decision 
is to set the fit sample and the test sample: In order to  have a distributional 
information. we shall measure the forecasting error and thus should set aside 
a test sample. Let us assume that we want to  have a test sample consisting of 
two weeks. thus we csn use the first three weeks to fit the forecasting method 
to the data. 

The first operation is the initialization of parameters. The initial estimate 
of baseline demand Bo is the simple average of the first three w e k s  of de- 
mand (first 21 days). Since we take whole weeks (i.e.. “whole seasons”) the 
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Table 3.1 7 Initial seasonality factors 

weekday parameter initial value 

Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 
Sunday 
Monday 

B-6 

B-5 
B-4 
B-3 
B- 2 

B- 1 

BO 

0.6632 
0.5474 
0.4632 
0.8421 
1.2474 
1.3526 
1.8842 

seasonality of demand has no impact on the baseline demand 

2 1  

Bo = 1; = 63.33. 
t=l 

(3.27) 

Notice that the initial estimate of the baseline demand refers to time 0. Once 
again one could be tempted to set B21 = 63.33 but this would mean that 
the forecast for period 22 is actually not based on any sort of exponential 
smoothing and thus should not be used to capture forecasting error of such a 
method, demand distribution, and uncertainty. With this figure we can now 
initialize the seasonality factors for the seven days of the week. Let us start 
with the initial seasonality factor for Tuesdays. We simply take the average 
(42) of demand in the three Tuesdays in out fit sample (46, 57, 23 units) and 
divide it by the baseline demand Ro = 63.33. Thus the initial seasonality 
factor for Tuesdays is 42163.33 = 0.6631. The question then becomes: Which 
period does this seasonality factor refer to? The first Tuesday in our sample is 
period 1. Actually, initial factors precede the fit sample, and the first Tuesday 
before our fit sample was period t = 1 - 7 = -6. So the initial seasonality 
factor for Tuesdays is B-6 = 0.6631 [see equation (3.27). with j=1]. Similarly, 
we can derive initial seasonality factors for the seven days of the week, as table 
3.17 shows. 

Once we have initialized the parameters we can let the smoothing algorithm 
update them. Let us assume that Q = 0.1 and y = 0.2. Let us walk you 
through the calculation for the first update. The updated baseline demand 
after we have observed period 1 is [see equation (3.25), where t = 1 and s = 71 

46 
B1 = 0.1.  ___ 

0.6631 - 
0.1) . 63.33 = 63.93. (3.28) 

Similarly, we can update the seasonality factor for Tuesdays through equation 
(3.26), where t = 1 and s = 7: 

46 s1 = 0.2 .  - 
63.93 -I- (' - 

0.2) . 0.6631 = 67.44. (3.29) 
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Table 3.18 Baseline estimate Bt (data in thousands) 

weekday week 1 week 2 week 3 week 4 week 5 

Tuesday 63.94 64.27 61.66 62.83 63.19 
Wednesday 64.30 65.62 59.68 63.04 63.14 
Thursday 61.97 67.16 61.27 65.87 64.32 
Friday 61.71 66.43 62.47 65.18 64.14 
Saturday 60.83 66.29 63.82 63.68 63.71 
Sunday 61.77 65.49 63.40 65.50 63.79 
Monday 62.02 64.95 63.64 65.12 63.48 

Table 3.19 Estimates of the seasonality factors St 
~~ ~ ~~ 

weekday week 1 week 2 week 3 week 4 week 5 

Tuesday 0.6744 0.7169 0.6481 0.6331 0.5983 
Wednesday 0.5530 0.5734 0.5392 0.5424 0.5416 
Thursday 0.4318 0.4497 0.4707 0.5072 0.5239 
Friday 0.835 7 0.8191 0.8474 0.8313 0.8272 
Saturday 1 . 2  149 1.2103 1.2565 1.2031 1.1885 
Sunday 1.3897 1.3591 1.3428 1.4101 1.4134 
Monday 1.8976 1.8691 1.8818 1.8617 1.8454 

lf'e can proceed with t = 2, ..... 35 to  update the parameters B and S .  Tables 
3.18 and 3.19 show how the estimates are updated over time. 

Had we been interested in a point forecast for period 36 (i.e.. next Tuesday), 
we simply would have used the last estimate of demand baseline B35 = 63.48 
and the relevant seasonality factor 5'29 = 0.5983. Using equation (3.23). we 
obtain the point forecast for the next Tuesday (period 36) as 

F36 = F35,l = 63.48, 0.5983 = 37.98. (3.30) 

However, the newsvendor wants to have some distributional information about 
the demand on Tuesdays; thus. we have to investigate the expected forecast 
error. The smoothing algorithm suggests that we shall expect a demand for 
37.98 units. However, so far we have no information about the confidence on 
that number. Actually, given we have set aside two weeks (week 4 and week 
5) to test the performance of this forecasting method, we can investigate the 
forecasting error in these two weeks and reasonably assume that the expected 
error [E (Y36 - F36)] equals the average past error.26 To capture the error in 
the test period. we shall generate the forecasts over the test period (&, t = 

26Notice tha t .  in this case, we assume tha t  the  expected error does not depend on the day 
of the week. even if dif€erent days have different demand expectations. In other words, 
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Table 3.20 Forecast Ft = Ft-l,l (data in thousands) 

weekday week 4 week 5 

Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 
Sunday 
Monday 

41.25 41.23 
33.25 34.08 
28.09 31.97 
51.92 54.76 
78.49 78.42 
85.70 89.80 
119.31 121.95 

22. .... 35). To generate the forecast for period 22,  we shall use the most recent 
parameters. We use the baseline at time t = 21 and the seasonality factor of 
period t = 15, as equation (3.23) shows 

F21.1 = F22 = B21 ' 5'15 = 63.64. 0.6481 = 41.25. (3.31) 

Similarly. we compute the forecast for the remaining observations in the test 
sample (see table 3.20). Notice that while the parameters are estimated for 
the whole set of 35 observations, we only generate a forecast for the test 
sample, as using data from the fit sample to compare the forecast with the 
actual demand would not make sense. 

Finally, we can compute the error we would have made in each of the 14 
days in the test sample, had we adopted this algorithm in the past. For 
example. the error in period 22. is 

e22 = Y 2 2  - F22 = 41.25 - 36 = 5.25. (3.32) 

By the same token, we can derive the errors for periods t = 23, .... 35, as shown 
in table 3.21. 

With these errors, we can compute our usual performance metrics. For 
example. the RMSE is 10.05. It really means that,  if our assumption of a 
statistically stationary error holds, we shall expect a mean squared difference 
between our forecast for period 36 (F36 = F35,1 = 37.98) and demand Y36 to 
be 10.052 (bias is negligible and here we assume ME to be zero). In other 
words the demand in period 36 has an expectation of 37.98 thousand units and 
a standard deviation of 37.98 thousand units. In example 5.10 on page 255. 
we show how this distributional information can be used to make inventory 
decisions and how demand forecasting and inventory planning problems are 
strictly related. 

we assume that a stable random noise overlaps the weekly fluctuations of demand. With 
a test sample longer than two weeks, we could test the assumption empirically. In this 
toy-example. data were generated according to this assumption, which is implicitly made. 
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Table .3.21 Errors et = Yt - Ft (data in thousands) 

weekday week 4 week 5 

Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 
Sunday 
Alonday 

5.25 
-1.75 
-14.91 

1.92 
15.49 

3.31 
-24.30 

12.23 
0.08 

-6.03 
2.76 
6.42 

-1.20 
8.95 

Also, our example can show the difference between demand variability and 
uncertainty. The standard deviation of the 35 demand observations is 34.48. 
whereas RAISE is just 10.05 units. While the standard deviation measures the 
variability of demand, RhISE captures our inability to forecast demand. that  
is. to predict demand fluctuations. In other words, in our example, demand is 
very variable. but some part of these fluctuations are predictable and due to  
weekly seasonality. Thus the forecasting error, that is uncertainty. is smaller 
than variability. 0 

3.8.5 Drawbacks and limitations 

This forecasting me1 hod uses a wide range of factors and thus it requires a 
fairly large information set to operate properly. However, when we use a long 
past history to calibrate the model. we might end up using fairly old demand 
observations (e.g.. 5 or 10 years old) that  might have little to  do with the 
current demand pat1 ern. 

Clearly. the larger the value of s.  the more parameters we have to estimate 
and the less the information is available to  estimate each single parameter. 
So the adoption of this method with a small time bucket and long seasons 
can be dangerous and lead to poor performance. Actually. some researchers 
found that the naive approach (Ft 1 = x) might outperform the smoothing 
algorithm with seasonality for this reason (see [4]): A simple and very reactive 
method (with a short forecasting horizon) can adjust to changes in ieasonality 
better than a complex one that might fail to estimate seasonality properly 

Example 3.16 Let us consider a company that uses a daily time bucket 
and wants to  analyze demand fluctuations within a year. The company needs 
to  estimate 365 different seasonalit>- factors. Had the company adopted a 
monthly time bucket. we would have estimated only 12 parameters instead. 
Estimating daily seasonality factors might be counterproductive el en if de- 
mand shows sharp 5,easonal fluctuations. In fact our estimate of 5easonality 
might be so inaccurate that the seasonality factors increase rather than reduce 
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the forecasting errors. Let us consider a company trying to forecast demand 
for ice cream with daily time buckets. In case April 6 was rainy the last two 
years, while next April 6 is going to  be sunny. the forecast will turn out to  be 
quite wrong as it will underestimate demand substantially. Indeed. we would 
estimate a low seasonality for April 6, and this would lead to a very low de- 
mand forecast for the next April 6. However, if next year April 6 is sunny (a 
more than reasonable chance in Italy). then error is going to be substantial. 

Some correctives have been designed to improve the performance of the 
seasonal exponential smoothing. First. in many instances, demand is driven 
by weather conditions rather than the season per se (think about food prod- 
ucts, apparel goods, and white goods). So one might want to investigate the 
relationship between weather (e.g.. temperature and inches of rain) and de- 
mand (often through regression methods). This approach has a substantial 
advantage: We do not consider seasonality on April the 6 as totally different 
and independent from April 5. 4. 3 etc., and 7.  8. 9, etc. Hence. when we 
try to forecast demand for the next April 6. we exploit a much broader in- 
formation set than in the case of traditional models (for an example of this 
approach to seasonality, see [2]). 

Furthermore, one can feed the classic exponential model with seasonality 
with a smoothed demand, so that single events like rain on April 6 do not 
influence the seasonality factors as much. One option is to  replace yt in 
formulas (3.25) and (3.26) with the average of periods from t - 3 to  t + 3. In 
this case, the seasonality of April 6 does not depend on the specific weather 
conditions of April 6, but rather on the average condition of the week of April 
6. This clearly improves the estimates of the seasonality factors and thus 
reduces forecasting errors. 0 

3.9 SMOOTHING WITH SEASONALITY AND TREND 

3.9.1 The demand model 

The last two sections have presented separate models to  deal with demand 
trend and seasonality, respectively. In this section we present a forecasting 
model that combines these two features and thus can forecast a seasonal de- 
mand with trend. We assume that demand tends to  grow (or decrease) in the 
long run, and we assume this trend to  be linear. On top of this long-term 
trend. we observe seasonal fluctuations, that we assume to be multiplicative. 

3.9.2 The algorithm 

Given the above assumptions about demand, the forecasting model is: 
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In other words. we take the baseline level of demand at time t (i.e., Bt) and 
the increase (decrease) we expect during the forecasting horizon h (i.e.. hTt). 
Bt + hTt is the level of demand we would expect in period t + h if there was no 
seasonality or the seasonality factor of that  period was 1. Thus, to  generate an 
accurate forecast ~ we shall account for the seasonality of period t + h. which is 
a multiplicative factor that tells us whether we shall expect demand in period 
t + h to lie above or below the general trend line (see figure 3.22). The term 
St+h-s ~ ( h - l ) / ~ + l l  boils down to St+hPs if the forecast horizon h is not larger 
than s;  the notation 1x1 means that we round z down to the nearest integer 
number. 

Like in previous cases. the second step is to  design a procedure to update the 
s + 2  parameters with the most recent demand observations. As to the baseline 
Bt, vie shall simply combine the trend and the seasonal model properly. M'e 
shall de-seasonalize the last demand observation and add the last estimate of 
the trend factor Tt- 1 to the previous baseline demand Bt-1: 

(3.34) yt Bt = a;,  + (1 - a)(Bt-l + Tt-1). 0 5 o 5 1. 
A - s  

As to the trend and seasonality factors we can adopt the equations we have 
designed in the last two sections: 

3.9.3 Initialization 

This is another recursive forecasting method and thus it need to be initialized. 
In this case we need at the very least s + 1 periods. Indeed. we shall calculate 
s + 2 parameters, and we have one constraint on the s seasonality indexes: 
Their average must be 1. An alternative explanation is that to estimate the 
trend we must compare periods with the same seasonality. If in December 
demand for cakes is <above the demand in January, we can hardly tell whether 
this is due to  seasonality or trend. In our example of seasonality within 
the year and monthly time buckets. we need at  the very least 13 demand 
observations to tell seasonality from trend. 

If only this minimum information set is available. we can initialize the trend 
and seasonality factors as follows. lye first estimate the trend factor 

Ys+1 - Yl To = 
S 

(3.35) 

by taking the difference between the only two demand observations that are 
comparable. as far as seasonality is concerned. 

This initialization. though often used. suffers from a significant problem: 
To is affected by seasonality. Both demand observations Y1 and Ys+l depend 
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on a (multiplicative) seasonality index27 and thus their difference depends on 
the seasonality index as well. Understandably, in case the seasonality index 
of these two periods is close to 1, this is a minor issue and has no practical 
effects. On the contrary, in case the seasonality index is significantly above or 
below 1, it is a major concern and it is more appropriate to use at the least 
2s demand observations, i.e., two whole seasons. In this way, we can estimate 
s differences between pairs of demands that share the same seasonality index 
(in our example, 1 2  pairs of months from successive years, e.g., January 2005 
and January 2006, February 2005 and February 2006, and so on). In this 
case each single difference is affected by seasonality; however. the average of 
the s differences is actually affected by the average seasonality that is 1: By 
taking s differences. we cancel out the effect of seasonality. So in this case we 
initialize the trend factor as follows: 

(3.36) 

We can now use the above estimate of trend TO to tell the effect of trend from 
seasonality and thus estimate both the s seasonality factors and the baseline 
demand Bo . 

To estimate the multiplicative seasonality factors. we shall compare the 
actual demand observations with the ones we would have expected. had there 
been no seasonality (i.e., with the ones we would have expected had there 
been a seasonality index equal to  1). To do so, in figure 3.22 we shall compare 
the actual demand observation Yt with the corresponding point on the line 
Y = Bo + Tt . t .  If points are above the line. the seasonality is greater than 1. 
If points are below the line, seasonality is lower than 1. 

So we need to estimate Bo to estimate the seasonality indexes. To do so, we 
need to make the demand observations in different time buckets comparable; 
therefore, we need to remove the trend from these observations by subtracting 
the expected growth t .  To from demand observation x. 

If we initialize parameters with whole seasons (e.g., two seasons). yt - t To 
is affected by seasonality; however, in the sample such seasonality cancels out 
as we consider whole seasons. Thus the estimate of the initial baseline demand 
is 

If s + 1 demand observations are used to initialize the parameters, we should 
be a bit more careful. Indeed. periods 1 and s + 1 are overrepresented in the 
sample. and this might lead to  a bias. For example. if we consider the January 
2004 to  January 2005 period. the month of January would be overrepresented 
in our sample (there are two months of January and just one February. one 

27Note that this problem does not exist in the case of additive seasonality, as we take the 
difference between the two observations. 
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Fig. 3 22 
and trend. 

The initialization process in case of exponential smoothing with seasonality 

Illarch. and so on).  So if the product is in high demand during winter. we 
happen to overestimate demand. while if the product is mostly bought in 
summer. we tend to  underestimate baseline demand. 

To solve this problem. we first compute the average demand in each of 
the s (12) periods (months) in a season (year). Then we take the average 
demand across periods to get a baseline demand estimate with no trend and 
no seasonality: 

Finally, we shall compute the seasonality indexes. lJre compare the actual 
observation yt with the one we would have observed. had there been no sea- 
sonality (and no randomness in demand) Bo + t . Tt. For instance, if we use 
whole seasons (e.g. ~ two seasons) to initialize the forecasting method. we have 

(3.39) 

Kotice that we are not dealing with all of the possible options and thus our 
analysis is not exhaustive. The extension to other cases is left as an exercise 
for the reader. 
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Finally, this model shares the limits and drawbacks of the exponential 
smoothing with trend or seasonality. Also. the selection of the parameters 
shall follow the same process. 

3.10 SIMPLE LINEAR REGRESSION 

The forecasting models we have analyzed so far are widely adopted. However. 
in these models demand is just a function of time. On the contrary, in many 
real-life situations demand might depend on a variety of variables including 
advertising expenditures. weather. price, number of stores carrying the item, 
state of the economy, etc. A forecasting model that  tries to capture these 
effects can be fairly complex for several reasons. 

0 First, demand might depend on many variables. For example, in grocery 
supermarkets, demand might depend on traffic (number of customers 
visiting the store), weather, the price of the item, promotions of the 
item at  stake and/or substitute ones, religious events such as Easter 
or Christmas. and sport events such as the Soccer World Cup or the 
Olympic Games. 

Second. the relationships between the independent (i.e.. explanatory) 
variables and demand can be complex and nonlinear. Let us assume 
that we have cut price by 50% and gained a 100-unit increase in demand. 
If we cut price by 100% and give the product away for free, we definitely 
should not expect a 200-unit lift. 

Though the problem can be fairly complex in real life situations. in this section 
we address a relatively trivial situation where demand depends on a single 
independent variable. In other words. we illustrate the application of simple 
linear regression (see section A.lO). The more general case of multivariate 
regression, i.e., situations where we explain and forecast demand through 
more than one independent variable. is dealt with in the web sections W.A.11 
and W .3.11. 

In section A.10 we describe in full detail the assumptions and properties of 
simple linear regression. This statistical method estimates. through empirical 
data. the linear relationship between a variable X we call independent and a 
variable Y we assume to depend on the first one. In our case, demand is the 
dependent variable. 

As such, linear regression is just a tool to  investigate the relationship be- 
tween two variables. Thus it might be used to analyze the relationship between 
two variables, say demand for ice cream and temperature. demand for cars 
and Gross Domestic Product (GDP), and demand for fashion products and 
advertising. Once such a relationship is estimated. we can use it to forecast 
future demand. if we know the future values of the independent variable (or 
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they can be predicted accurately). Indeed, a "perfect analysis" of the rela- 
tionship between the demand for cars and the GDP does not help to forecast 
the demand for cars if we have no idea about the future of the economy. In 
the remainder of this section we assume the future values of X to be known 
with certainty (e.g.. think about the prices the company sets). In the final 
part of the section we briefly discuss the consequences of uncertainty on the 
future value(s) of X (e.g.. when estimates about the future GDP are available, 
though they are affected by some sort of error). 

LVe assume that demand observations are drawn from a random linear 
process: 

(3.40) yz = Q + ox, + E , :  

where: 

0 i is the index that identifies the i-th observation of demand and of the 
variable that influences it: 

0 cy and 3 are unknown parameters that  influence the demand process: 
these parameters have to be estimated: 

0 E, is a normally distributed random variable with a expected value zero 
and standard deviation oe (additional assumptions concerning statistical 
independence are pointed out in section A.lO). 

Also, we assume to have an estimate of the relationship between Y and x. 

Y = a + b x .  (3.41) 

Section A.10 show: how this relationship can be estimated, based on past 
observations of Y and 2 .  The point forecast of Y (e.g.. demand for cars) 
corresponding to  x = xo is 

Yo = a + bxo. (3.42) 

It is easy to show that Y o  is an unbiased prediction*' of the future level of 
demand. since estimates a and b are unbiased. However. as discussed in the 
first section of this chapter, a point forecast is often meaningless. especially 
in the case of continuous variables such as Yt ( E  is continuous and thus Y is 
continuous as well). 

So we should not only look at the expected level of future demand. we 
should also investigate the standard deviation of the estimate. that is. the 

28Kote tha t  in section A.10 we are mainly concerned with the  estimate of unknown numbers 
cy and 3. The demand YO, corresponding t o  a value 10 of the  independent variable is 
a random variable tha t  we are trying to  predict. This is conceptually different and. for 
instance; we should talk about prediction intervals rather than  confidence intervals. In this 
chapter we are a hit sloppy a t  times. For the  sake of simplicity, we use the  term ,.standard 
error of estimate" when referring t o  See(Y0). which is conceptually not quite correct. 
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square root of the expected squared difference between the forecast YO and 
the actual demand YO: 

Y o - Y o = a + / 3 2 o + € o - ( a + b ~ o ) =  ( Q - a ) + ( B - b ) z o + € o .  (3.43) 

On the one hand, this can be interpreted as the forecasting error we shall 
expect. On the other hand. we can read the output of the forecasting process 
as a distribution of demand rather than a point forecast. The mean of the 
distribution is YO and the standard deviation is 

In section A.10 we show that 

Similarly. one can show that See(Y0) is given by 

(3.44) 

We can read equation (3.44) and make sense of it. First, as n tends to infinity, 
the second and third terms under square root tend to  zero (respectively, n 
and the number of terms in the summation grow). while the first one remains 
unchanged. Unlike the case of the estimates a and b of the parameters Q and 
0,  the prediction error does not go to zero. as n tends to infinity. Actually. 
as n tends to infinity the forecasting error tends to  oc. 

Indeed, with an infinite number n of past observations we can perfectly 
estimate the relationship between Y and 2 .  so we face no error in the estimates 
of Q and p. However, this is just not enough to generate an error-free forecast. 
Indeed, a perfect estimate of the parameters leads to a perfect estimate of the 
expected level ( a  + P.0) of the demand YO. that is. the nonstochastic part of 
the demand process. However, the random part of the process €0 still creates 
random fluctuations we cannot predict. Thus, it leads to forecasting errors. 
as figure 3.23 shows. By now the first term in equation (3.44) shall be clear. 
and we can devote our attention to  the second and third one. They show 
the impact of errors of estimate of a and b. To clearly tell the contribution 
of these errors we shall assume that €0 is zero. In other words, we assume 
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Fig. 3.23 The forecasting error due to the variability of the demand process. 

that the random noise is zero and the new demand observation lies on the 
line Y = cy + J ~ X .  Therefore, any error is due to the wrong estimate of the 
parameters, rather than to  the randomness of the demand process. 

The second term .,"In is just the variance of the n draws of E we have 
studied to  estimate the regression line y = a + bz. When the n observations 
tend to lie above the ideal line Y = Q + 32 (i.e.. when the average of the n 
draws of E is greater. or lower, than zero), the estimated regression line tends 
to  lie above (below) the ideal one. Thus the estimate a tends to be larger 
than the actual paralmeter a.  The error in the estimate of cy leads to an error 
of estimate of 

Finally. the last term in equation (3.44) can be interpreted as the impact of 
errors of estimate of ,!? on the accuracy of the demand forecast Y o .  To isolate 
this effect, we set to zero the sources of errors we have discussed so far. hlore 
formally we assume that: 

(see figure 3.24).29 

0 C:='=, E %  = 0. i . c .  we assume that the average of the n random draws is 
zero and thus the estimated line lies neither above nor below the ideal 
line: 

2 9 € i ~ t i ~ e  that  this is not the only source of error in the estimate of a .  Indeed. even when 
the average noise Cy=l et  is zero, we might still face an error of estimate of 0 .  Indeed. in 
this case the draws are on the average neither above nor below the ideal line Y = a + ,3x. 
This means that  the es,timated line lies neither above nor below the ideal one. Still the 
estimate b of the slope inight be wrong and (in case of 5 f 0) this can lead to  errors in the 
estimate of cy (see section A.lO). So one might more properly say that the first term shows 
the impact of errors in the vertical position of the estimated regression line. rather than 
errors of estimate of a per se. 
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Fig. 3.24 Forecasting error due to a wrong estimate of a. 

0 €0 = 0, i.e.: we assume that demand YO is exactly on the ideal line 
Y = a + Q z .  

The third term in equation (3.44) can be interpreted as the error of esti- 
mate of ,O [see equation (3.44)] times (zo - 5).  Why does the forecast accuracy 
depend on Seeb and on the distance between xo and Z? The definition of a 
shows that the estimated line goes through the barycenter of the demand 
observations (z; Y ) .  Also, since we assume that C:=l E ,  = 0, the ideal line 
Y = Q + /3x intersects the estimated one in the barycenter of demand obser- 
vations. Thus the errors in the estimate of the slope (Seeb) generate no effect 
on the inaccuracy of demand when xo = Z. On the contrary, the error in the 
estimate of the slope generates large errors when zo is far from the point 5 
where the two lines intersect (see figure 3.25). 

Concept 3.4 T h e  error  of est imate  i s  due t o  the  randomness of demand  
process, and the  errors in the  est imate  of t he  intercept (a vs. a )  and slope (b 
us. p) of t he  regression l ine.  

Equation (3.44) shows the standard forecast error and thus enables us to build 
confidence intervals of demand Y .  The analysis above shows that the standard 
error of estimate reaches a minimum when zo = Z, since Z is the barycenter 
of past observations and thus is the single point we have more information 
about. This relative abundance of information reduces the forecasting error. 

Hence, the width of the prediction interval is affected by the distance be- 
tween the barycenter of past observations Z and the point xo for which we 
want to  forecast demand. Figure 3.26 shows the confidence intervals (with 
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Fig. 3.26 Forecasting error as a function of 20 
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Fig. 3.27 Effects of a partial knowledge of 20.  

confidence level 90%) for various ZO. This figure shows that they are wider 
for zo significantly to the left or to the right of Z. 

The above findings hold only under the tight assumptions of the regression 
model (see section A.lO). When we study real-life data the assumptions are 
typically not fully met. For example, the relationship between z and Y might 
be linear only within a given range of z. Outside this range it might be 
nonlinear, and thus we should expect biased forecasts and far larger errors 
than the linear regression model predicts. 

Finally, we investigate the effect of less-than-perfect information on X o  .30 
For example, consider a model where the demand for a given kind of food 
depends on the temperature. If we want to use this model for forecasting pur- 
poses, we should know the future temperature. However, the future tempera- 
ture is uncertain and it is known, at best, in terms of probability distribution 
(or confidence intervals). Hence, when we use temperature to estimate future 
demand, we have an additional source of uncertainty. Geometrically. a par- 
tial information on XO means that we do not know exactly where. on the X 
axis. we shall read the relationship between Y and X. Hence, the confidence 
interval on Y is a sort of an area on the ( X ,  Y) plane rather than a simple 
segment, as we face uncertainty on both X and Y .  We do not know the right 
point on the X axis, and still for a given point on the z axis we only have 
distributional information on YO. 

30N~t i ce  that in this case we use X O  instead of 20,  as we do not know the future level of X 
and thus it can be interpreted as a random variable rather than a number. 
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3.10.1 

As we discuss in section A.lO. linear regression relies on a rather wide range 
of assumptions on the demand process (more generally. a random process). 
Often, demand data hardly meet these assumptions and thus cannot be used 
for linear regression. 

Setting up data for regression 

Example 3.17 When we want to investigate the relationship between tem- 
perature and demanld of a food product or demand elasticity. i.e.. the increase 
in demand due to  promotions and/or price cuts. we might not be able to use 
straight demand data. as they might be affected by a significant seasonality 
that might lead to  erroneous conclusions. 

Let us consider a retail company that. during the weekends, cuts by 20% 
the price of a product that on the average sells 100 unitslday. When we look 
at  demand and price data we might be led to ascribe the whole increase in 
demand to price elasticity. On the contrary it is, at the least partially. due to  
weekly fluctuations that make demand increase on Saturdays and Sundays. So 
we might overestimate the price sensitivity of demand as we attribute both 
the seasonal fluctuation and the increase due to the price cut to  the price 
elasticity of demand. For a more detailed discussion we refer to  [7] .  0 

This is why we might want to  "clean" the data before we apply linear regres- 
sion to make them fit with the assumptions of the model and make sure the 
analysis is reliable. In the case of example 3.17 above, we should first remove 
the seasonality of demand from the dataset and then analyze price sensitivity 
to understand the relationship between price and demand. A second option 
is to  use multiple regression that tries to  estimate both effects at  once. 

W.3.11 FORECASTING MODELS BASED O N  MULTIPLE 
REGRESSION 

In the previous section. we have shown that sometimes linear regression mod- 
els cannot fully capture the mechanism generating demand for a product. 

Here we build on the theory of linear multiple regression. outlined in sec- 
tion lY.A.11, by illustrating how this tool can be exploited to  build more 
realistic forecasting models. Quite often. categorical variables are used to ac- 
count for qualitative features. and this paves the way for quite sophisticated 
models. However tempting this may sound, we should always keep in mind 
that the adoption of overly sophisticated models may be counterproductive 
in practice. The more parameters we have to estimate. the more uncertainty 
we introduce. Hence. we should stick to  a "principle of parsimony." and keep 
model complexity to  a reasonable size. 
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3.12 FORECASTING DEMAND FOR NEW PRODUCTS 

So far we have discussed forecasting methods that basically try to  predict 
demand for a given product with a fairly long demand history either by ex- 
trapolating future demand from the time series or by reading the linear rela- 
tionship with a variable (say price) that  drives its behavior. Unfortunately, 
for new products we do not enjoy a long past history and thus we shall resort 
to other forecasting tools. We can resort to  qualitative methods that leverage 
on the knowledge of experts; on the other hand, we can analyze other sources 
of relevant information on demand for new products and design forecasting 
techniques to properly exploit them. 

3.12.1 

The word Delphi refers to the sacred oracle in ancient Greece. Forecasts and 
advice from Gods were sought through intermediaries at this oracle. Leaders 
and generals in ancient Greece used to  look for the advice and predictions of 
the Delphi oracle before any major war or political initiative. 

Even today companies face very uncertain future events. and at  times they 
do not enjoy any factual information or data, so they have to resort to some 
sort of oracle. Today’s oracles are experts that over time have collected in- 
formation about the future event we try to  forecast and have developed an 
implicit interpretative model that  puts them in a position to  predict the fu- 
ture. Examples from today’s world are fashion experts and designers trying 
to predict new fashion trends. 

The Delphi method was originally designed for long-term technological fore- 
casting: however. it can be used to  forecast demand before the launch of a 
new product. In these circumstances no actual demand data are available and 
companies have to  resort to  a more qualitative process (see figure 3 . 3 ) .  

Probably, the most common qualitative forecasting process is the commzttee 
process. where a group of presumably expert panelists engage a discussion on 
the new product, its features, its positioning, pricing. etc. In this process 
the committee as a whole reaches an agreement on the future expected level 
of demand for a given product (more generally a given future event, in the 
remainder of the paragraph we use the specific case of a new product but 
statements apply, mutatzs  mutandzs,  to the more general case of a generic 
qualitative forecast). 

This process clearly permits a high bandwidth communication among the 
experts and favors the exchange of information and the discussion on the 
implicit models of demand the various experts have. However, this process 
permits a social interaction that might have significant side effects. 

In many social situations. individuals tend to be influenced by others and 
this might imply a loss of potentially relevant information. This is even more 
dangerous within the specific social system of a company. Indeed, within a 

The Delphi method and the committee process 
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company. conflicts among organizational units, incentive schemes. and hier- 
archy might prevent individuals from eliciting their opinion in a group. One 
example might make the point clear. One of the authors was simulating the 
committee process with a group of managers from various companies. They 
were trying to predict the demand for men's winter jackets. One member of 
the committee started the discussion with a bold statement: -JVho's the idiot 
that can possibly wear that blue jacket?"31 The personality of this "expert" 
was so strong that nobody dared to  say a word and the committee finally 
"agreed" that the demand for the blue jacket was going to be very low. Quite 
interestingly, single experts were also asked to  write what their personal ex- 
pectation was. It turned out that a shy guy thought that the blue jacket was 
going to be the top seller, but he did not dare to defend his opinion in the pub- 
lic discussion. Actually. his opinion about the blue jacket was totally lost in 
the committee discussion. Similar problems can arise because of hierarchical 
relationships among experts rather than because of differences in personality. 

Unfortunately, neither seniority nor a bold personality perfectly correlate 
with the ability to forecast demand for a new product. This really means that 
the committee process can lead to  a loss of potentially relevant information. 

Also, in a committee process we might face the "dictatorship of the major- 
ity," meaning that in many instances the majority of the group might disre- 
gard heterodox opinions and simply ignore them. This can be very dangerous 
in a very uncertain situation. where even odd scenarios might come true. As 
we have discussed. social interaction within the group can lead to the loss of 
potentially valuable information. 

The Delphi method was actually designed to control interaction among 
experts. The original Delphi method is administered through questionnaires 
sent by mail. Clearly. nowadays it can be administered via e-mail. Experts 
can even sit in the same building or room. 

Basically, the idea behind this method is that the interaction among pan- 
elists should be limited and formalized to  avoid social interaction that might 
lead to loss of information. So in the basic Delphi method, panelist interact 
only through the administrator of the Delphi process. The steps of the process 
are the following: 

0 Building the panel of experts 

0 Development and test of the first round Delphi questionnaire 

0 Transmission of the first questionnaires to the panelists 

0 Analysis of the first round of responses 

0 Preparation of the second round questionnaires 

31U'hat made the situation really fun is tha t  one of the authors was using the ,jacket during 
that winter! 
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0 Transmission of the second round questionnaires to the panelists 

0 Analysis of the second round responses (Steps 5 to 7 are reiterated as 
long as desired or necessary to achieve stability in the results) 

0 Preparation of a report by the analysis team to present the conclusions 
of the exercise 

Quite interestingly, the panelists are asked the same questions (e.g., how many 
units is the new product going to sell during the season?) multiple times. 
The logic behind this reiterated process is that iterations are the means of 
communication among panelists. After each round of the questionnaire, the 
responses are analyzed and the panelists are given a summary of the responses 
(e.g., the mean response, the standard deviation, and where he/she is in the 
distribution). 

The idea behind this multiple interactions is to tell noase f r o m  sagnal. Let 
us consider a panelist that provided a response off the average. In other 
words, his/her opinion differs from the average one quite substantially. Once 
the first round is completed, the panelist is provided with the distribution of 
the responses and he/she figures out that other experts do not share his/her 
vision of the future. During the second round he/she basically has two options. 
The first is to stick to his/her opinion, while the second is to account for the 
other experts' opinions and revert to the mean. Actually, experts that do 
have a strong point on the demand for the new product tend to stick to their 
initial forecast. On the contrary, those that have no clear idea on the new 
product tend to revert to the average opinion of other experts. For these 
panelists, indeed, the average opinion of the other experts is a very relevant 
piece of additional information that lead them to significantly update their 
initial forecast. Such iterations of the process distinguish noise from signal as 
we retain grounded opinions off the average while we tend to discard those 
that are off by pure chance. 

Concept 3.5 T h e  Delphi method relies o n  experts' knowledge t o  forecast, and 
it is  designed t o  control social interaction in such a way that the signal about 
genuinely different opinions i s  kept, while random noise (i.e.,  lack of infor- 
mat ion  and/or knowledge) is  removed f r o m  the data. 

Another fairly important feature of the Delphi method is that it can cap- 
ture the disagreement among experts. Indeed, while the committee process 
generates a single number, in the Delphi method each expert generates one 
number (actually a series of forecast, but the final outcome of the process is 
one forecast per expert). Thus in the latter case we can compute the dis- 
agreement among experts. This is actually a fairly important feature of the 
process, as several studies (e.g., see [6] and [8]) show that the disagreement 
among experts correlate with the degree of uncertainty. Such empirical stud- 
ies basically confirm intuition. When a future event (think of a sport event) 



FORECASTING DEMAND FOR NEW PRODUCTS 169 

is basically certain, true experts can hardly have substantially different opin- 
ions, whereas when it is truly uncertain, each of them might, have a different 
perspective. In other words, when experts tend to  agree, they also tend to be 
right. whereas when they tend to disagree, their errors tend to increase. This 
is actually a very important feature of this process, as measures of uncertainty 
are needed to  make several decisions, including sequencing of products in pro- 
duction planning (see [ 111). sourcing decisions (see [9]), inventory planning 
(see chapter 3 ) .  etc. 

Concept 3.6 T h e  disagreement among ezperts i s  a good proxy f o r  demand 
uncertainty. W h e n  experts tend t o  agree: their  error i s  relatively low and we 
face a low uncertainty.  Vice versa, when they tend t o  disagree, very different 
demand scenarios might  come t rue and we face a fa i r ly  uncertain demand.  

Basically, one can estimate the uncert,ainty the company is current,ly facing 
by looking at two information sets. First, we can use past predictions of the 
panel of experts to investigate the relationship between experts' disagreement, 
and uncertainty as measured by the forecast error (difference between experts' 
forecast and actual demand). For example, in [6] and [ll] aut,hors suggest t,hat 
the expect'ed forecast error is t,wice the disagreement among experts. We can 
leverage on these relat,ionships to gauge demand uncertainty for a product. 
We just need to measure the disagreement among experts and then read on 
the estimated relationship the expected error this entails. 

Also, this method can provide us with relevant information to judge the real 
ability of the presumed experts to  forecast demand. In the committee process 
the whole team generates a single number and thus it is hardly possible to  
judge to  contribution of each member. On the contrary, in the Delphi method 
we can track the performance of single panelists and give different experts 
different weights or even remove some of them from the panel. Given the 
degree of uncertainty involved in this forecasting process, we shall not jump 
to the conclusion t,hat a person is not good at  forecasting demand for new 
products simply because one forecast was substantially wrong. Basically we 
are tr?;ing t,o estimate the average error one expert makes. This process is 
affected by substantial variability and we need a fairly large sample of forecasts 
to judge the true quality of the expert (i.e.> the unknown parameter). 

Drawbacks and limitations Just like all forecasting methods. Delphi has sev- 
eral drawbacks and limitations. First. the outcome of a Delphi forecasting 
process is nothing but the opinion of experts. Thus the results of this exercise 
are just as good as the experts and the information we provided them with 
(e.g.. price, product description. advertising campaigns and budget. etc.) [14]. 
Thus the process needs high-quality intellectual capital to operate properly. 
Also. the process is rather long and time-consuming. This means that it does 
not fit emergency situations where a prompt answer is required. hloreover, 
it can be deployed only when the relevance of the decision at stake justifies 
the effort. For example. one might want to  use a process like this for new 
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Fig. 3.28 Measuring uncertainty through disagreement among experts: source [6]. 

products, but it can hardly work for monthly forecasts of a wide range of 
existing ones. 

Moreover. this process suffers from all weaknesses of qualitative methods. 
First it depends on clarity of the question(s) posed to the experts and of the 
objectives of the exercise (see [ 5 ] ) .  For example, one should clarify the time 
frame that demand refers to  (are we forecasting demand for 12 months or 
until current year’s end?) and marketing levers (How many stores are going 
to  carry the item? What price are we going to  charge? And so on). A 
lack of clarity on the objectives and boundary conditions can lead to  a very 
poor problem setting. This not only reduces the ability of experts to  forecast 
demand but also reduces their commitment and interest in the process. 

Experts, as well as managers of the whole process, might be biased by their 
objectives. For example, if one uses the forecast to set sales targets. the sales 
managers might be tempted to  understate their expectations. On the other 
hand, if the forecast drives production and thus product availability, a sales 
manager might be tempted to  overstate its forecasts. So one shall make very 
clear the purpose of the Delphi process and what data are going to  be used for. 
Moreover, one might want to point out that experts are going to be judged 
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on their forecasting accuracy to  focus their attention on accuracy rather than 
on the potential effects of their opinions. 

3.12.2 Lancaster model: forecasting new products through product 

features 

The Delphi method relies solely on experts’ opinion and it can be used to  fore- 
cast demand for new products. However, even before the product is launched. 
one can use more structured models to predict sales. 

A trivial possibility is to  identify a “related“ item and assume the new 
one is going to sell at a similar rate. It is rather interesting to discuss what 
the word “similar“ i~eally means. Often, this has two meanings. First. the 
existing one can be discontinued and a new one (actually a new version of 
the same product or a product in the same market segment) is going to  take 
its place. A second meaning of the word “similar” is that the new product 
shares several features with the existing ones. For example, they might have 
a similar price. the same color. a similar design, etc. 

Actually, one can try to generalize this rather trivial process and forecast 
the demand for a new product on the basis of its features. 

The basic logic of this model is that customers are not interested in new 
products per se but rather in the features of the new product. For example, a 
customer might be looking for a red t-shirt, size large. rather than for a specific 
SKU. Clearly. this model of demand does not fit items that are somehow 
unique to  the customers. For example, customers might want to buy the 
“Da Vinci code“ book and not be interested in any other book on Da Vinci 
or the Opus Dei. or authored by Dan Brown. The average customer is just 
interested in that specific SKU. In other instances, customers might just look 
for a combination of features. For example, a customer might want to buy a 
package of spaghetti. Barilla brand, in a 1-kg package. and might be willing to 
switch to  another brand or to  another package size according to availability or 
price. Zara. a leading fashion retailer based in Spain, extensively analyzes the 
product features that happen to be most popular to  design new products and 
adjust its assortment during the selling season. Basically. the retailer identifies 
the most popular color patterns, shapes, and accessories (e.g.. buttons vs. 
zippers) and generates all possible combinations of the most successful product 
features to generate products with a very reasonable chance of ~ U C C ~ S S  (see 

So. to  the exteniG that the model can be applied (i.e., products are not 
unique but rather can be described as set of features). one can try to predict 
the demand for a new product by looking at  whether its features are popular 
in the current product assortment. 

One way to  estimate the popularity of these features is to  use multiple linear 
regression. In this model the dependent variable are sales of the product and 
the independent variables are product features. 

191). 
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When one uses this model with statistics packages or even general-purpose 
software such as Excel. one should pay careful attention to the nature of the 
variables. These are often categorical variables. In other words, shape 1 and 
shape 2 are as different as shape 1 and shape 15. They are simply different 
opt ions. 

Other variables can be added to this model to account for seasonality and 
even experts' opinion simply by adding these variables as predictors in the 
linear regression. 

3.12.3 The early sales model 

Once the product is on the market, we can observe sales and judge the market 
potential for the product through its early sales. In the specific case of seasonal 
products (and more generally for products with a preset life cycle) such as 
fashion apparel, one could try to estimate demand up to season-end through 
the early sales. For example, one could try to forecast the season demand for 
a sandal based on sales in the month of March. 

To do so, one has to estimate the relationship between the demand in the 
month of March and the demand for the total season. One can study the 
relationship between these two variables in the past to check whether actually 
demand in March is a good predictor of total season sales and, if this is the 
case, estimate the relationship. Notice that the underlying assumption is 
that the distribution of sales within the season next year will behave like it 
has behaved in past years. Thus, this process acknowledges that different 
products succeed to different degrees. Yet, it still somehow assumes that the 
future resembles the past. In particular it assumes that pattern of sales of any 
item within the season (in a product category) is the same year after year.32 

Concept 3.7 W h e n  season af ter  season sales keep the  s a m e  pa t t e rn  over  
t i m e ,  early sales are a good predictor of total  season's sales. 

To judge the merits of this approach, one can draw the so-called "percent- 
age done" curves. In other words. we can use demand data from past seasons 
and measure the percentage of total season sales accumulated by a given point 
in time in the season. 

More formally, let Y,,t be the demand for item i at time t within the season, 
T the duration of the selling season, C,,t the cumulative demand for item z 
at time t ,  and P,.t the percentage of total season's sales of item i occurred by 

3 2 N ~ t i c e  that  this concept is closely related to the seasonality model presented in section 
3.8. However, there are two differences. First and foremost. in this case the product has 
less than one year or season of history, thus we cannot use the past demand to  estimate 
the fluctuations of future demand. Therefore. we basically resort to related products t o  
estimate how demand varies within the season. Also, in this case we do not look at  sales 
in each time bucket (say one week), but rather at the sales up to  a given point in time t .  
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Table 3.22 Demand data  for a set of seasonal products 

Time Product 1 Product 2 Product 3 Product 4 

1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

29 
30 
31 
32 
33 
34 
35 

a 

28 

206 127 
291 193 
565 296 

826 469 
590 273 
514 242 
514 269 
482 194 
452 194 
529 186 
483 190 

46 1 214 
466 228 
568 210 
427 191 
394 154 
400 189 
347 134 
314 122 
294 109 
304 112 
286 97 
233 85 
199 101 
216 105 
229 112 
221 102 
176 96 
143 73 
146 64 
127 73 
137 81 
117 76 

841 482 

465 187 

4aa 
674 
925 
1017 

607 
541 
610 
497 
427 
46 1 
472 

532 
528 
526 
464 

444 
357 
354 

347 
327 
287 
262 
235 
263 
259 
200 
202 
212 
203 
216 
212 

a61 

482 

408 

328 

192 

334 
394 
370 
238 
224 
214 
156 
157 
160 
173 
166 

192 
206 
141 
166 
163 
131 
121 
101 
119 
103 
91 

84 
108 
91 
93 
86 
70 
65 
76 
72 

289 

iaa 

a4 

Demand in the season 12963 6030 15228 5618 
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Table 3.23 Percentage done of season demand curves 

Time Product 1 Product 2 Product 3 Product 4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

2% 
4% 
8% 
15% 
21% 
26% 
30% 
34% 
37% 
41% 
45% 
49% 
52% 
56% 
59% 
64% 
67% 
70% 
73% 
76% 
78% 
80% 
83% 
85% 
87% 
88% 
90% 
92% 
93% 
95% 
96% 
97% 
98% 
99% 
100% 

2% 
5% 
10% 
18% 
26% 
31% 
35% 
39% 
42% 
45% 
49% 
52% 
55% 
58% 
62% 
66% 
69% 
71% 
74% 
77% 
79% 
80% 
82% 
84% 
85% 
87% 
89% 
91% 
92% 
94% 
95% 
96% 
97% 
99% 
100% 

3% 
8% 
14% 
20% 
26% 
30% 
34% 
38% 
41% 
44% 
47% 
50% 
53% 
56% 
60% 
63% 
66% 
69% 
72 % 
74% 
77% 
79% 
81% 
83% 
85% 
87% 
88% 
90% 
92% 
93% 
94% 
96% 
97% 
99% 
100% 

3% 
9% 
15% 
22% 
28% 
32% 
36% 
40% 
43% 
46% 
49% 
52% 
55% 
58% 
61% 
65% 
68% 
70% 
73% 
76% 
78% 
80% 
82% 
84% 
85% 
87% 
88% 
90% 
92% 
93% 
95% 
96% 
97% 
99% 
100% 
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percentage done of 
season sales 

0 5 10 15 20 25 30 35 40 
time 

Fig. 3.29 Predicting season’s sales with the early sales: percentage done curves. 

time t :  
t 

(3.45) 

(3.46) 

In this case. time t is the time elapsed since the beginning of the selling season. 
So the second week of the selling season of year ‘05 and ’06 both refer to t = 2 .  

If the graph of percentage done shows that products in the past had a 
rather similar behavior as in figure 3.29, then we know how demand behaves 
within the season. Actually, we are not interested in sales on a specific day 
or in a specific week. We just notice that by time t we tend to sell a given 
percentage of the total season sales.33 

In this case. a more trivial approach is to estimate the average distribution 
of sales as the average of the percentage done curves of all N products sold 
in past season(s). 

N 

(3.47) 1 1 c, t pt = c P,.t = - c -, ~v ct T z = 1  2 = 1  

33N~tice that  the products we analyze shall be related to the products we want t o  forecast 
during next season. For example. they should belong to  the same product category in order 
to share the same demand pattern during the selling season. 
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We can then use this percentage done curve to estimate total season sales for 
the new product j as 

(3.48) 

This procedure is often adopted though it is rather crude, as we assume that 
E(W) = E ( W / X )  . E(X), which in general is not true and holds only if 
the two variables are independent. If this process is followed, we tend to  
measure the accuracy of this prediction as the standard deviation of P,,i (i.e.. 
the percentage of total season sales occurred by time t for various products), 
which again is an oversimplification as the real uncertainty depends on the 
standard deviation of l/P,.t. 

A more appropriate description of the process is to  investigate the rela- 
tionship between the two variables through a regression. We can use past 
seasons' data to estimate the relationship between the sales up to time t ,  C, t ,  
and total season sales, C, T .  In particular. if we assume that the relationship 
is proportional. we can investigate the following relationship: 

Cz,T = a + B ' ct t + 6 .  

Once we have estimated the parameters Q and ,!3 through a and b. we can use 
them to estimate total season sales for product J as follows: 

Linear regression provides us with more information on the distribution of 
errors and enables us to estimate errors and thus uncertainty [see equation 
(3.44)]. 

If the curves of various products show rather different behaviors over time, 
we might want to  investigate the drivers of such differences. First. products 
might have inherently different demand patterns. For example, sandals and 
shoes that are part of a spring-summer collection might show different behav- 
iors and we might want to  tell one from the other by drawing two separate 
percentage done curves for the two clusters of products. Also, the actual 
selling pattern of products might be influenced by actions and decisions of 
the company. For example, demand might be influenced by the number of 
stores carrying the item, the current price and the availability of the product 
variants. All these variables might distort sales and thus open a gap between 
the natural demand pattern and the actual sales pattern we observe. For 
example, two products might have a relatively similar demand pattern over 
time. but one might take off at a later stage simply because it is delivered to 
stores at a later stage. Also, one product can take off at a given point in time 
simply because its price was significantly reduced.34 Finally. sales might dip 

34This is a very relevant issue in those countries where retailers can freely reduce price at 
any point in time. In other more regulated countries, such as Italy, the retailers can reduce 
prices only during the off-price season (e.g., January 10-February 15). 
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at a given point in time simply because stores are running out of the product. 
This means that either the product actually stocks-out or that inventories are 
so low that sales are reduced. 

Example 3.18 Indeed. for some products the inventory level drives sales. 
This theme is widely investigated for fast moving goods such as grocery. In- 
terestingly. similar findings hold in the case of slow moving goods. In the 
case of shoes. a US company has estimated that when less than ten pairs 
of a given shoe (style-color combination) are available. sales start declining. 
Indeed. with less than ten units the size distribution is broken and itore man- 
agers start pulling back the product and even salespersons might riot suggest 
the product to a consumer simply because he/she does not know whether 
the right size is available. The salesperson might prefer to suggest another 
product not to disappoint the consumer and embarrass him/herself. 

3.13 THE BASS MODEL 

The Bass model is a classic tool for the analysis of new product introduction 
from the marketing field [3]. The model is designed to forecast the adoption 
pattern of new durable products. It is a so called dzffuszon model In other 
words. the model tries to forecast the adoption pattern of a new product. 
In particular, the model is aimed at durable products: For such products. 
multiple purchases of the same item are unlikely. so the model assumes that 
each potential adopter buys only one unit. In other words, given the number m 
of potential adopters the number of units sold over the lifetime of the product 
is by definition m. So rather than forecasting the size of a market. the model 
analyses how demand varies over time. The demand for the new product at 
time t is Yt. and it corresponds to  the growth in the number of actual adopters 
during period t .  In other words, the demand Yt is the difference between the 
adopters at time t ,  IVt, and the adopters at time t - 1. Nt-1: 

Furthermore. the model assumes that there are two basic adoption processes. 
On the one hand. some potential customers. called annovators adopt the new 
product at a given rate p simply because they come to appreciate i t i  features 
On the other hand. other potential users, called zmztators. simply imitate 
current users. This second demand generat ion process actually depends on 
the number of current adopters that can be imitated. as well as the number 
of current nonadopters that can imitate them. This is the so-called word of 
mouth" or "contagion" effect. and a parameter denoted by q accounts for it. 

Hence. the probability that a potential adopter actually adopts the product 
in current period t is 

p t = p + q . - - .  (3.50) 
Art - 1 

m 
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probability of adoption 

5% 

4% 3% 0 , 

2 % 

0% 1 time 
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 

Fig. 3.30 Bass model: probability of adoption pt with no imitation ( q  = 0). Case of 
p = 0.05. 

Hence, the probability that a potential user adopts the product at  time t 
depends on the rate of innovative adoption plus the rate of imitation times 
the percentage of current adopters. Basically, there are two probabilities of 
adoption and the second one is fully deployed only when the number of actual 
adopters reaches its maximum level m: p+q is the probability of adoption of 
the “last customer.’’ 

This probability of adoption is multiplied by the number of potential new 
customers that have not adopted the product, so far: 

(3.51) 

In this model the shape of demand over time depends on the two parameters 
p and y. While parameter p tells the initial degree of adoption, the parameter 
y tells whether the product all of a sudden becomes very popular because of 
imitation and so demand reaches a peak. 

The combination of these two parameters fits very different patterns of 
adoption. In the case of q = 0 there is no imitation and thus the percentage 
of customers that adopt the product is steady (see figure 3.30). This means 
that the adoption pattern follows a logarithmic curve (see figure 3.31) and 
the demand is decreasing as we have a constant probability of adoption but 
a decreasing number of potential adopters. 

When we change the imitation parameter to q = 0.1, adoption pattern 
and demand change substantially. In this case. the probability of adoption 
increases with time (see figure 3.33) and the demand shows a peak in period 6 
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adopters 

400 

300 

200 

100 

O L L  'me 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 

Fig. 3.31 Bass model: adoption pattern with no imitation ( q  = 0). Case of p = 0.05. 

Demand 

6o j 

1\ 50 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 

Fig. 3.32 Bass model: demand pattern with no imitation ( q  = 0). Case of p = 0.05 
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probability of adoption 

_______-___ 

"" 1 

2% , 

fig. 3.33 Bass model: probability of adoption. Case of p = 0.005 and q = 0.1. 

adopters 

700 

600 f f 

_ _ ~ _ _ _  

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 

Fig. 3.34 Bass model: adoption pattern. Case of p = 0.005 and Q = 0.1. 
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0 iiL time 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 

Fig. 3.35 Bass model: demand pattern. Case of p = 0.005 and q = 0.1. 

probability of adoption 

12% , 

10% 

8% . . - . ...... 

6% j p  
4% j- 

i 

time 2 % m L  0 Yo 1 7 13 19 25 31 37 43 49 55 ~ . , .  61 , , , . , . a #  67 73 , ,  , , / , '  79 85 , ,  --TTp--rm 91 97 

Fig. 3.36 Bass model: probability of adoption. Case of p = 0.001 and q = 0.1. 
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adopters 
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1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 

Fig. 3.37 Bass model: adoption pattern. Case of p = 0.001 and q = 0.1. 

Demand 
30 , 

25 ' 
I 

20 - f t 

15 - 

10 -. f t 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 

Fig. 3.38 Bass model: demand pattern. Case of p = 0.001 and q = 0.1. 
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(see figure 3.35). Previous periods have a lower probability of adoption while 
following ones have ti relatively low number of potential adopters left. The 
number of adopters shows a similar pattern (see figure 3.34). 

However. when we reduce p to 0.001 things change substantially. Like in 
the previous case. thLe probability of adoption changes over time. Interest- 
ingly. the pattern of adoption is very different from the previous case. In this 
case the product fever due to  imitation starts a t  a later stage. Indeed. the 
imitation effect plays a significant role only once the innovators have built a 
significant base of users that  current nonadopters can imitate. The buildup 
of this minimum nurnber of users depends on the speed of the adoption by 
innovators. p .  In case it is slow (i.e., there's a low probability of adoptionp), it 
takes more time to build the critical mass of adopters that can be imitated by 
nonadopters (see figure 3.36). This change in p t  has an effect on the number 
of current adopters that shows a classic S shape (see figure 3.34). Demand 
starts very slowly as only innovators adopt the product in the early stages. As 
a fair base of adopters is established. the imitation effect starts plq-ing a role 
and demand increases. Finally. demand decreases as the number of adopters 
reaches the maximum level m and we run out of new potential adopters (see 
figure 3.38). 

SInce the demand patterns can be so different according to the parameters p 
and q 3  we should figure out how to estimate the parameters properly. A wrong 
estimation of the parameters might lead us to  believe that future demand will 
look like figure 3.32 while it might resemble figure 3.35. 

The Bass model 11s a centerpiece in the literature on new products and 
several procedures to  estimate parameters have been suggested. but they are 
beyond the scope of this book. Here we report the estimation process sug- 
gested by Bass in his, 1969 article. 

\;ire first restate thLe model as 

4 
m = p m + ( q - p ) N t - l  

By setting 

q 
m 

c =  -- 

we can then restate the problem as follows: 

(3.52) 

(3.53) 

(3.54) 

(3.55) 
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Equation (3.55) can be used with any statistical package to estimate pa- 
rameters a. b. and c through multiple r e g r e ~ s i o n . ~ ~  

Once these estimates are available, we can derive estimates of m,  p ,  and q 
through equations (3.52) to (3.54). We know that p = 2. Also. q = - c .  m. 
Substituting in (3.53) we have 

that can be restated as a quadratic equation 

a + b m + c m 2 = 0  

(3.56) 

(3.57) 

Hence. 

Once we have investigated how the model can be estimated, we should 
discuss how these estimates can be used. Actually, this really depends on 
where the product is in its life cycle. Before the product (or new technology) 
is launched, these estimates cannot be possibly derived from product's demand 
data. What one can do in these cases is to build estimates for the various 
parameters, based on various sources of information: 

The potential market size rn can be estimated through analysis of prod- 
uct performance. price, etc.. to  estimate the number of customers that 
might potentially buy the product (for further discussion see [lo] and 

[161). 

The innovation and diffusion parameters p and q can be derived from 
past introduction patterns of comparable products. The assumption 
behind this approach is that the pattern of adoption of a new product 
depends (mainly) on the products category it belongs to  (see 3.12.2). 
There might be significant differences among products, but still we lack 
the data to judge the current product and thus resort to the most reliable 
piece of information we have. that is, the category it belongs to. 

35Notice that we are using a ,  b,  and c as both estimates and parameters. Indeed, the model 
does not provide any formulation of demand as a stochastic process. Also: here we estimate 
a ,  b,  and c. and then we obtain estimates of m, p ,  and q.  However, the best estimate of a 
function of parameters a ,  b ,  and c might not be the function of the best estimate of those 
parameters. In other words, this is a robust empirical solution that  happens to  work, but 
it is not grounded in solid statistics. 
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At a later stage. as the product starts selling and more demand data on 
the specific product is available, we can estimate parameters for the specific 
product as shown in equation (3.55). Notice that the usage of product-specific 
estimates rather than category-related ones depends on the availability of 
data. Once we have three data points, we are in a position to  estimate the 
three parameters of ;he Bass model m, p, and q.  However. they might be 
so poor that it might still be worth using the past estimates based on the 
category. 

3.13.1 Limitations and drawbacks 

The Bass model is one of the best-known models for new product demand 
forecasting. A wide literature has applied, discussed, and improved the model. 

A major stream of research has highlighted that the diffusion depends on 
the marketing levers of the company. For instance, the adoption pattern might 
depend on the pricing policies. Actually, if the price is reduced at a given point 
in time. the demand is likely to  increase. Also. competitive variables might 
be a second source of variations in the adoption pattern. For instance. the 
adoption of the model can be influenced by the launch of competitor products 
or their price over tirne. 
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Inventoru Manaaernent 
with* DeterGinistic 

Demand 
4.1 INTRODUCTION 

Managing distribution logistics effectively requires coordination of both tn- 
formatzon and materaal flows in the supply chain to gain eficzency. that is 
minimize costs. and tzficacy. that  is meet demand. 

In chapter 1 we have discussed the various functions of inventories and 
showed that they car be deployed at various stages of the supply chain from 
raw materials, to components. to  finished goods both at  central distribution 
centers. at local warehouses, and at single retail stores This short overview 
shows that inventory management is a rather broad and complex topic. Thus. 
we need a framework to  identify single problems, tell the differences among 
them and design specific solutions. The first step is to identify the variables 
along which the various inventory problems differ. i.e.. dimensions of the prob- 
lems' space. Such variables are going to be used to  classify both problems and 
solutions presented 111 the following: 

0 nature of inventories and of the supply chain; 

0 nature of demand: 

0 available inforniation set: 

0 set of objectives the solution tries to  achieve (e.g.. which metric is used 
And how do we measure customer to measure inventory efficiency? 

service?). 

187 
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Nature of  inventories and of the supply chain. To properly set the inventory 
management problem, we need to identify the supply c h a m  we refer to. For 
example. inventory management policies designed for a single warehouse of- 
ten perform poorly in a multiechelon supply chain where the purchase quan- 
tity might depend on inventory levels and demand both upstream and down- 
stream. Also, as we have seen in chapter 1, multiechelon supply chains can 
be linear, converging. or diverging: each structure may have its peculiarities. 

Supply chains with deterministic lead tzmes (LT) differ from supply chains 
with stochastic ones. In the latter case. indeed, there is no tight relationship 
between purchase/production plans and deliveries to the warehouse, and this 
makes planning harder. Moreover. we must choose the set  of products we in- 
tend to  manage. Indeed, a szngle z t em supply chain is relatively easy to model 
and manage. Understandably, in supply chains where interactions among 
products are weak (e.g., they are neither substitute nor complements, they do 
not share production equipments, transportation means, or warehouse space) 
we can pretend that the various inventory problems are independent. On the 
contrary, modeling and managing multz-ztem supply chains where products 
are complements, share limited production or transportation capacity, etc. , is 
more complex. 

Another relevant feature of the product is the ratio between the product lzfe 
cycle and the purchasing LT. Such a ratio tells whether the planning problem 
is statzc (i.e., decisions are taken at  one point in time) rather than dynamtc  
(decisions are taken at  multiple points in time). For example, in the case of 
products with a very short life cycle and a relatively long production lead 
time, such as newspapers, we can decide how much inventory to carry only 
before we start selling. Such problems are statzc, as only one decision is made 
and 

the decision is not going to be updated at a later stage; 

0 the current decision has no effect whatsoever on the future ones as prod- 
ucts expire. 

Example 4.1 In the case of newspapers. the number of copies is set the 
night before the product starts selling: moreover. any units left unsold at  the 
end of the day expire. as they become yesterday's news. Furthermore. any 
units left unsold today do not reduce the requirement of copies of tomorrow's 
newspaper. Thus, we make a single decision on the number of copies we want 
to  print at one single point in time. Hence, the newsvendor problem is statzc. 

0 

A related. though different classification variable catches whether we are mak- 
ing just one purchase decision rather than multiple decisions. In other words, 
we can face both szngle-perzod and multzple-period ones. To tell the difference 
between these two variables let us consider the following examples (see also 
chapter 1). 
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Example 4.2 Let us consider the case of a European retailing chain that 
sells fashion apparel products. In this business the assortment changes com- 
pletely each and every season. Also, let us assume that the retailer purchases 
products from Asia 30 that LT are too long to readjust the assortment and 
the quantities based on early season sales (see section 3.12.3).  So, say that 
the retailer places orders for the fall/winter collection only once a year. This 
makes the problem :;tatzc. meaning that all decisions are taken at one point 
in time with one information set (i.e.. the problem is szngle-stage). Neverthe- 
less, the retailer might decide to receive goods at  various points in time. For 
example, the retailer might decide to  receive some goods in early August and 
some additional quantities in early October, in order to  reduce the inventory 
investment in August and September. This makes the problem multiperiod. 
Indeed. the decisions are taken for various periods of time. The inventories 
received in August are designed to  meet demand during the first portion of 
the season. while goods received in October are designed to meet demand 
during the last portion of the season (see section 5.2.1). So this example 
shows a case of static. and multiperiod problem that contrasts with the case of 
the newsvendor that is a static and single-period problem. The next example 
finally shows a case (of dynamic and multiperiod problem. 0 

Example 4.3 Some products have such a long life cycle that it can be con- 
sidered to  be infinite. For example. some standard packaged goods such as 
dry pasta or frozen beans often have a rather long shelf lzfe and thus goods left 
over at the end of one day are carried to the next day. Also. these products 
remain unchanged over time and thus we can have multiple deliveries over 
time. This makes the inventory planning problem a multiperiod one. Also. 
the delivery quantities are not the same forever. For example. a planner might 
decide production or purchase quantities for dry pasta once a week. These 
decisions are updated as more information becomes available. So, we plan 
inventories for multiple periods rather than for a single one. Also, we make 
decisions at various points in time with different information sets. This makes 
the problem dynamzc as well. 0 

In the next two chapters we only consider single-period problems and those 
multiperiod problems where the life cycle (and shelf life) of the product is so 
long that we can ignore the end-of-life-cycle (and end-of-shelf-life) issues arid 
costs (we only briefly discuss a two-period problem in section 5.2.1). The 
following example illustrates a kind of multiperiod problem where end-of- 
life/end-of-shelf-life issues must be dealt with. 

Example 4.4 The case of fresh food in supermarkets is actually ail inter- 
mediate problem where we face both the complexity of end of life. that is 
typical of the single-period problems. and the complexity of multiple periods. 
So. it is an intermediate problem that sums the complexities and hurdles of 
both extreme situations. These products often have roughly one month of 
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shelf-life. For example, yogurt expires in roughly three weeks after the pro- 
duction is completed. So. during the product shelf life we can replenish the 
store multiple times. On the other hand, the product shelf life is quite limited 
and we cannot rule out the risk that the product expires on the shelf (or that  
the shelf life left is so short that customers do not buy it anymore). These 
intermediate problems are much more complex to model since, like in the case 
of multiperiod problems. we need to  model the impact of decisions at time t 
on the initial condition at  time t + 1. but we also have to model the age of 
products in the supply chain and the probability that they expire. 0 

Nature of demand. The nature of demand is a crucial issue, as meeting de- 
mand is the problem the firm tries to address through an appropriate inventory 
management policy. 

Two important features of demand are the degree of certaznty/uncertaznty 
and the degree of varzabalaty. These two basic concepts are often erroneously 
considered synonyms (see [ lo] ) .  Nevertheless, we shall separate them and 
clearly tell the difference between them. As the following examples show, 
demand can be very variable and certain, or stable and uncertain. 

Example 4.5 The production of machineries industry faces sharp fluctua- 
tions of demand that depend on the economic outlook, as it might or might 
not lead firms to make investments in additional capacity or replace old ma- 
chineries. In this industry, plus or minus 50% year-to-year variations are 
rather common and make demand very variable. However, such products are 
Engzneered To Order (ETO). In other words, each single machine is designed 
or, at least, partially customized according to industrial customers’ needs. 
Thus. production cannot be possibly completed before the customer order is 
received and the product is fully designed and engineered. Purchasing de- 
partments in this industry face a variable demand over time; however, when 
they place an order for a component. they often know customer demand. As 
we just said. demand variability is objective. while uncertainty is subjective 
and refers to  an information set available to  the forecaster: The purchasing 
planner in the machinery industry typically knows demand very well when 
he/she places purchase orders; on the contrary, when the management of the 
same company prepares next year’s budget, typically it faces a significant un- 
certainty about next year’s orders and turnover. Hence, the same demand is 
certain for the purchasing planner while the management perceives a great 
deal of uncertainty as it plans over a much longer horizon (at the least one 
year) and does not enjoy a very relevant piece of information, i.e.. customer 
orders (usually the order portfolio covers just a few months) 0 
Example 4.6 In the car industry, most Original Equipment Manufacturers 
(OEMs) choose one (szngle sourczng) or two suppliers (parallel sourczng) for 
a specific component (e.g., a speedometer) for a specific model (e.g., FIAT 
Punto). OEMs do their best to keep the utilization rate of the very expensive 
production lines steady; thus. also the demand for components is relatively 
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flat (at least for those that are common to all product variants). However. 
for suppliers. demand might be very uncertain for several reasons. First. 
while designing a car with an expected demand of 100 units per day, several 
suppliers bid for the supply of speedometer. Thus, each of them faces a 
significant uncertain1,y: Demand could be either 0 (if a competitor is selected) 
or around 100 units per day (if the supplier itself is chosen). Once a supplier 
wins the bid, it still faces some additional uncertainty as the new car might 
be more or less successful than we initially expected. Thus, according to the 
level of sales, the OEh4 might use one, two, or even more production lines 
to assemble the car. As we can see, the demand for car components is likely 
to  be fairly flat over time. but it is very uncertain before the new model is 
launched and. even inore so. before the supplier is selected. 0 

The warzabzlzty of demand (and, more in general, of a process) is easy 
to  capture through statistics such as standard deviation or the coefficient 
of variation when, as it is often the case, an adimensional metric is more 
appropriate. These statistics capture the variation of demand over time as 
they compare single observations (draws) of demand to  their average. 

On the contrary, 1 he concept of certaznty/uncertaznty is more complex and 
subtle, as it refers to an information set available to the forecaster that tries to 
predict demand with a given forecasting horizon. Demand certainty/uncertainty 
depends on the extent to which the forecaster can predict the future level of 
demand with a given horizon and thus is subjective. meaning that it depends 
on the subject that is forecasting. For example, the future level of price of the 
shares of a given company might be very uncertain for many analysts before 
quarterly results are released but,  at the same time. it might be relatively 
easy to  predict for the CEO of the company that might already know them 
(at least roughly). 

Demand can be either contznuous or dascrete. In some instances demand 
is basically a continuous process where small (infinitesimal) orders are con- 
tinuously collected. For example. think about the sales pattern of Coke cans 
in any large chain of grocery stores. In theory the demand for cans of Coke 
is discrete. as one cannot buy 0.7853 units. However, aggregate demand is so 
large that this discreteness is somehow irrelevant for our planning problems. 
In other instances, demand is discrete as single customer orders are large as 
compared to the average demand. In this case the number of orders per unit 
of time is very small and thus orders are not received continuously. For ex- 
ample, consider the case of large machineries where each order is a separate 
project and several salespersons might follow a single customer. 

The first case is easier to model than the latter. as we can model the 
demand pattern rather than each single order. The latter demand pattern is 
also called lumpy demand. as orders occur only sporadically in large lumps. 

In the rest of this chapter and in the bulk of chapter 5 we assume demand 
to  be a continuous process for the sake of simplicity and because this type of 
demand covers a large share of real-life problems. In chapter 6, we discuss how 
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lot sizing policies can turn a continuous final consumer demand in a rather 
discrete demand upstream in the supply chain. We refer the reader to  a more 
specific literature on discrete lumpy demand (e.g.. see [9], [ll]. [8]). 

Finally. to  capture the nature of demand we shall look at Delzvery Lead 
Tzmes (DLT) customers expect or desire. i.e.. the speed that customers re- 
quire. If customers expect a zero DLT. the company knows customer orders 
only when they are delivered. Brick and mortar grocery stores are a typical 
example of this situation: Customers literally walk into the store and take 
what they need on the spot. In other instances, customers place their orders 
before their desired delivery date. For example. in the car industry customers 
(in Europe and only partially in the USA) place their order for a custom built 
car a few weeks in advance of the required delivery date. Also. the same hap- 
pens with e-grocery stores, where customers might place orders a few days in 
advance of the requested delivery date. If DLT larger than zero, companies 
can take advantage of this advance notice of customers' need and plan their 
inventories accordingly. 

Example 4.7 The comparison between various cases from the retazl zndus- 
t ry  can shed some light on the meaning and effects of customers' DLT. As 
consumers. we expect zero DLT at fast food restaurants, while we are will- 
ing to wait for our fresh fish to be cooked for 40 minutes or so in a top-end 
restaurant. Thus, in the first case the retailer carries finished goods (e.g.. 
burgers) and keeps a relatively limited assortment, whereas top-end restau- 
rants only carry raw materials and produce a very wide range of finished 
products (dishes) to customers' order. Also. customers' expectations might 
depend on the product category. In most furniture stores (with the remark- 
able exception of IKEA) most customers place their orders a few weeks before 
the requested delivery date. This enables retailers to plan their inventories 
accordingly and make sure goods are delivered to the warehouse just a few 
days before they are shipped to consumers. 0 

In case of strictly positive Delivery Lead Time. the order portfolio can give 
us a very relevant piece of information that can be used to make proper plans. 
However. for the sake of simplicity in this book we assume DLT to be zero. 

Set of  information available As we already mentioned. inventory problems dif- 
fer in the degree of demand uncertainty. This is just a specific case of a broader 
concept: More generally. the applicability of various inventory management 
methods depends on the availability of various pieces of information. 

Example 4.8 Some grocery supermarkets adopt automatic replenishment 
for some of their products, whereas others rely on employees that walk the 
store, look at  current inventory levels, and place orders. The choice between 
one solution and the other depends on several issues. One of them is the 
ability of information systems to reliably capture current inventory levels on 
hand in the store (just think about what happens when a customer buys one 



lNTRODUCTlON 193 

vanilla and one banana yogurt and. given the identical prices, the l-anilla one 
is scanned twice; or when products are damaged or stolen). 

To fully appreciate the impact of this problems, let us assume that the op- 
timal inventory level is 100 units. If the information system does not capture 
the current inventor) level accurately, it cannot place an optimal replenish- 
ment order that  raises inventories to 100 units. Several grocery retail chairis 
think that an automated and centralized replenishment system might reduce 
labor costs. cut inventory investment. and improve product availability and 
customer service. However. they still use a manual process, as they know that 
employees can have it much clearer picture on current inventory levels than 
an automatic and centralized information system can. Other companies have 
decided not to  surrender to inventory data inaccuracy (errors in inventory 
records). These companies spend time. money. and efforts to reduce such 
errors rather than live with them and adopt manual ordering. For example 
such companies audit their inventories more frequently or adopt more fancy 
techniques such as the so-called zero balance walk. In other words, these com- 
panies noticed that it is very easy to  count zero units on the shelf and tell 
the system the products that are currently out of stock. This practice enables 
them to capture actual stockouts: also, they can check the inventory level of 
many products (on the average. 8% of the items in a grocery store are out of 
stock: see [ 2 ] )  with a very limited effort. 

Even these companies, though, adopt automatic replenishment only for 
long shelf life products. For fresh products. the central information system 
might know the quantity available in the store. but it cannot possibly capture 
other relevant pieces of information. For example, the system does not know 
the expiration dates of the 10 units of yogurt left on the shelf; also. the system 
ignores whether fruits and vegetables on the shelves are good-looking or are 
getting rotten 0 

In classic inventory models we assume to know the current inventory level. 
Only recently the issue of inventory data accuracy has been investigated em- 
pirically (see [4], [ 5 ] .  [6]) and theoretically (see [3]). Given the scope of this 
book. we assume that the decision maker knows current inventory levels per- 
fectly. 

Among other pieces of information, in im7entory theory we stud? whether 
the information on inventory levels is available continuously (continuous re- 
mew)  rather than sporadically (perzodzc reuzew). In other words. WP tell the 
cases where we can monitor inventories continuously from the cases where 
we can know inventory levels only with a given periodicity. Indeed. in peri- 
odic review systems we shall acknowledge that in the time between reviews. 
inventories are out of control and fluctuate freely according to demand 

In the past, periodic review systems were often used because continuous 
ones were way too expensive. Today, the cost of such systems has gone down 
substantially. Thus. an information system that can track inventory level in 
real time is no longer an issue in most developed countries. However, the 
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availability of such an system is just one of the requirements for the adop- 
tion of continuous review planning systems. For example, in many companies. 
purchase orders proposed by the computerized system must be approved (and 
at times modified) by planners and time and resource constraints might force 
the planners to look at purchase plans only once a month. In this case, the 
Information Technology infrastructure supports continuous review but the 
company is forced to  use a periodic review system, as any piece of informa- 
tion released between two purchase plans would not be used to make better 
decisions and thus would be totally ineffective: The company works as if the 
real-time information was not available. 

Objectives Finally. to  properly set the inventory problem, we should identify 
the objectives the company is trying to  achieve. Such objectives are hetero- 
geneous. However, we often try to translate them into costs to make the 
objective function scalar rather than vectorial. If and when this is a viable 
option, the objective function can be optimized.2 In this chapter. we fully 
explore the flipsides of this approach. Also, cases where several objectives 
cannot be turned into a scalar objective function are investigated. 

Finally. to fully identify an inventory management system, we have to  
specify the objectives the company (or organization) is trying to achieve. As 
we just discussed. such objectives can be fairly heterogeneous. However, we 
often try to turn them into a single cost function so that we can deal with a 
scalar rather than a vector and optimize it. We do so by associating each single 
objective with a unit cost. For example, we turn the service objective into a 
cost by stating that a single stockout is worth a given monetary amount. In 
the next chapter, we discuss the issues this approach raises and we investigate 
cases where we cannot turn several objectives into a single cost function. 

The most common cost categories are: 

Purchase costs: i.e., the amount of money required to buy the goods. 

Ordering costs, i.e., the costs associated to an order or a lot. Such costs 
can be setup costs in a production environment where the warehouse is 
supplied by the company’s production plant. but they can also be fixed 
transportation costs the customer pays for (or the supplier charges for); 
also, they can be administrative costs of order processing, receipt, and 
inspection of inbound materials. 

‘Notice that in current information systems we have so-called alerts. These tools call for 
the attention of the planner under “critical” conditions. This really means that  the decision 
maker can plan the product once each month, but on the other hand the system can call for 
hisiher attention when inventories run highilow, demand has any odd behavior, and so on. 
This really means that  the decision makers have a blend of the two processes. They review 
decisions periodically, but at the same time the computerized system controls inventories 
and demand continuously and calls for decision-makers’ attention when it is needed. 
’See section B.7 on multiobjective optimization. 
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0 Inventory costs i.e., the cost for warehouse space occupancy. financial 
cost of holding money in inventories, loss of value of goods carried both 
because they might perish (think of fresh goods that lose weight and can 
rot) or they might lose value because of technological innovation (think 
of the value of older PC when a newer one is launched) or fashion (think 
about the value of a garment at  the beginning of the selling season and 
after the end of it). 

0 Costs of lack oj servzce to customers; one of the functions of inventories 
is to  enable the company to meet demand with short Delivery Lead 
Times. Poor inventory management can lead to fairly low service levels. 
Obviously, customer service can be defined in several ways that entail 
very different cost functions. For example, in the case of drugs for spring 
allergies the lack of a product might not be too serious: on the contrary, 
the lack of B- blood in a hospital might be a very dangerous situation. 

In this chapter. we start with the simplest problem: 

0 single warehouse (single echelon): 

0 infinite life cycle and thus multiperiod problem: 

0 stationary and continuous demand (later extended to variable but per- 
fectly predictable demand): 

0 known (deterministic) lead times, demand, and inventory levels: 

0 the objective is to  minimize the sum of inventories and ordering costs. 

The above system is deterministic and thus we do not need to  tell the contin- 
uous review case from the periodic review one. Once we know the status of 
the system at any point in time to. we can derive the status of the system at 
any other point in time t .  

Section 4.2 deals with the simple case of a single product with zero Lead 
Time. and section 4 3 discusses the robustness of the model. The following 
sections extend the model in several directions. Section 4.4 describes the case 
of deterministic but nonzero lead times: section 4.5 deals with the so-called 
finite production rate case. that is, when the products in a lot are not delivered 
all at  once, but are rather delivered progressively. Section 4.6 discusses the 
multi-item case, and nonlinear costs are investigated in section 4 7 .  Finally. 
in section 4.8 we illustrate a few examples of how variable but knomn demand 
can be managed by deterministic optimization models. 

4.2 ECONOMIC ORDER QUANTITY 

If demand is constant. the model that supports decisions is the so called 
Economic Order Quantity (EOQ). In the simplistic conditions of the model 
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(deterministic, constant, continuous and known demand and zero lead times) 
we can completely fulfill demand and therefore the cost related to lack of 
service is zero. Indeed, in this case we only need to  order any amount of goods 
when we run out of the product. The goods are replenished immediately and 
thus all customers are served. 

Moreover, the basic model described in this section assumes no quantity 
discounts. Under these assumptions. the purchase cost is not a relevant per- 
formance measure, since in the long run the quantity purchased depends on 
the demand rate rather than on the purchasing policy. The purchasing cost 
per unit time is just equal t o  the demand rate times the unit purchase cost. 

Under these circumstances the only relevant costs are: 

0 Ordering costs Car; in the basic model we assume that ordering cost are 
a fixed cost the company incurs each single time an order is placed: thus 
the total ordering cost is equal to  the number of orders placed times 
the fixed cost of each single order. In other words. we assume that the 
ordering cost is a linear function of the number of orders placed. 

0 Inventory costs Cjn; inventory costs too are a linear function of the aver- 
age inventory level; we assume that other variables such as the maximum 
inventory level are irrelevant, while in real-life applications they might 
matter (think of the size of the warehouse that depends on the maximum 
inventory level rather than on the average one). 

Given the above setting, we clearly face a tradeoff A purchasing policy that 
entails frequent purchases of a few units at a time leads to  relatively low 
average inventory level. but incurs the fixed purchasing cost very frequently. 
On the contrary, buying large quantities infrequently causes an increase in 
the average inventory level but reduces the number of orders and saves on 
ordering costs. 

Let us introduce some notations to describe this tradeoff more precisely: 

0 d is the demand rate, i.e., the number of units or quantity of demand 
per unit of time (e.g., units/month or kg/year); 

0 A is the fixed ordering cost in units of value per lot (e.g., € or $ per 
lot); 

0 h is the inventory holding cost in units of value per unit of product held 
in inventory. per unit of time (e.g., € per unit per month). Sometimes, 
this cost is stated as a percentage of the unit purchasing cost u: hence, 
we have h = h% . u, where 

- u is the unit purchasing cost; 

- h% is the percentage holding cost of a unit of value for a unit of 
time; we may note that this quantity plays the role of an interest 
rate for the money tied up in inventories; 
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Q is the order quantity. i.e., the amount that is purchased when inven- 
tory drops to  zero: 

T is the time between two consecutive orders. i.e., the periodicity of the 
ordering process, that we also call the order cycle. 

We note that in this simplistic case the decision maker can only play with 
one decision variable. Once the purchase quantity (lot) Q has been set, the 
purchase frequency T is fixed as well. Vice versa, once the frequency T is set, 
quantity Q is fixed as well. 

Example 4.9 Consider a company with a demand for 100 units/month. 
This company can order once a month. In this case, the company orders 100 
units at a time. Also, the company can order 600 units twice a year. Finally. 
the company can order 1200 units once a year. This example shows that the 
choice of the order quantity implies the order frequency and vice versa. [I 

Given a demand rate d.  the order quantity Q is consumed in Q / d  periods 
(e.g., months) and therefore an order is placed each T = Q / d  periods. 

Finding the economic order quantity calls for the definition of an objective 
function expressing the total cost, over a given time period. as a function 
of the decision variable Q .  Before we try to write the objective function. 
we should understand the dynamics of the inventory system. Any stockout 
is avoided by placing orders exactly when inventories are depleted. Also. it 
would not make sense to place orders before the inventory level reaches zero. 
as we would just increase inventory holding costs and at  the same time would 
be ordering sooner rather than later (that is, we would anticipate the ordering 
cost). Right after the order is placed, the purchase quantity Q is delivered to 
the warehouse (as LT is zero) and the inventory level I immediately reaches 
Q. Such inventory buildup is progressively consumed at the constant demand 
rate d.  The inventory level displays a typical saw-tooth pa t t e rn  (figure 4.1) 
and fluctuates between the minimum level zero and the maximum level Q. 

Once the dynamics of the system is clear. n e  can write the total cost 
function. which consists of two terms: 

ct,, = Cor + cin 
The ordering cost depends on the fixed ordering cost (fixed cost for a lot) A 
and on the number of orders placed in a period (unit of time). The latter 
variable is equal to  the demand in a period divided by the lot size Q.  Indeed. 
in the long run. demand equals the purchased quantity that in turn equals 
the number of lots times the order size Q. 

Example 4.10 For example, let us assume that a company sells 1000 units 
per month. In the long run. a company that sells 1000 units per month must 
buy 1000 units per month. vC7e do not mean that the company buys exactly 
1000 each and ever> month. In some months, the ordering polic? might lead 
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Fig. 4.1 Inventory dynamics in the EOQ system for LT = 0. 

the company to buy slightly more than 1000 units while in other months the 
company might buy slightly less than 1000 units. But on the average a com- 
pany that sells 1000 units per month buys 1000 units per month. Purchases 
in excess of 1000 units per month would lead to a progressive increase in in- 
ventories. On the contrary. if the company purchases less than 1000 units per 
month, sooner or later it is going to  run out of inventories and a stockout is 
going to occur. A company that purchases 1000 units can purchase 10 lots 
of 100 units per month, 2 .5  lots (i.e.. some months 2 orders. other months 3 
orders) of 400 units per month, and so on. Thus, in general the number of 
lots (in a period) is equal to  demand (in a period) divided by the lot size Q. 

0 

Hence, 

As to inventory holding costs, we can refer to  figure 4.1 to understand that 
the average inventory level is Q / 2 ,  as inventories fluctuate linearly between 0 
and Q. Thus. the inventory holding cost term is 

and total cost is 

(4.1) 
d Q 

Ctot = A .  - + h .  -. Q 2 

Figure 4.2 shows the total cost as a function of the order quantity Q .  Taking 
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n 

Q* 

Fig. 4.2 Total cost per unit time as a function of the order quantity Q.  

the first-order derivative with respect to  Q. we can prove that the optimal 
value of Q is 

and thus the optimal purchasing frequency is 

T* = E. 

(4.2) 

(4.3) 

We can read the mathematical results economically. Equation (4.2) shows 
that:  

0 As the fixed ordering cost A increases. we shall increase the lot size Q 
to incur the high cost A less frequently. 

0 As the demand rate d increases. we shall buy larger lots Q: indeed, with 
a higher demand we use up Q items more quickly and thus order more 
frequently. with a corresponding increase in  the total ordering cost; this 
makes ordering costs more crucial and a larger Q helps keeping them 
under control. 

0 As the holding cost h increases. the company is less and less willing 
to carry inventories and thus cuts the lot size Q to reduce the average 
inventory level Q / 2 .  
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We can evaluate the minimum total cost by substituting Q' for Q in equation 
(4.1): 

d &* 
Q* 2 

C{ot = Ctot (&*) = A .  - + h .  - 

lih 

= m. (4.4) 

The above equation show that minimum cost is reached where the ordering 
cost equals the inventory holding cost (see also figure 4.2). 

To apply the above EOQ model, we must learn how to quantify the pa- 
rameters of the model. Estimating the demand per unit time d is a fairly easy 
task, provided we have adequate information about past demand data.3 On 
the contrary, measuring A and h is not that easy. 

Ordering costs The ordering cost A includes all costs that  linearly depend 
on the number of lots the company manufactures or orders. As we will see 
in our further discussion, some costs might depend on the number of lots in 
some contexts while in others they might not. We are not in a position to 
tell what shall be included in a generic situation. Here we just list the major 
costs that migh t  be included and provide the reader with guiding principles 
that can help him/her to  figure out whether in his/her specific context they 
shall or shall not be included. 

Admznzstrat ive costs. Administrative costs might depend on the number 
of lots purchased. As the number of orders increases, the number of 
invoices, proofs of delivery, etc.. can increase and thus the number of 
employees and related costs might increase as well. Having said that,  the 
estimate of A is often biased as all administrative costs are allocated to  
A, while s o m e  of them should not be considered as they do not depend 
on the number of orders placed (a very common practice is to  divide 
the total administrative cost by the number of orders). For example. 
the cost of administrative software is not proportional to the number of 
orders; it is actually very likely to remain the same. no matter whether 
we place 100 or 150 orders. Moreover, some costs depend on the number 

3We should always keep in mind that  information systems typically record sales. and not 
demand. If stockouts do not occur too frequently, we may consider recorded sales as a proxy 
for demand. 
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of orders but not linearly (think of the cost of labor). Using a term from 
Economics. we call them semivariable costs. since they are not variable 
costs st r ic tu  sensu! as they are flat within a given rage (of orders in 
this case). but they increase outside this range. For example. consider a 
company with two administrat,ive persons that manage 100 orders per 
month: also let us assume that the company needs to raise the number of 
orders to  101. It is very likely not to  incur any additional labor cost: also, 
the companj- definit,ely does not pay for 2.02 employees. On the contrary. 
if the company needs to  manage 150 orders, an additional employee is 
hired rising the number of administrative persons to  3.  The additional 
cost is the gross cost of the employee plus any related cost such as a PC. 
software licenses. etc. Finally, does the cost of administrative employees 
drop if' the nuinber of orders drops from 100 to 50? SS'ell. it depends. In 
case the ..spare" employee can be fired or used productively elsewhere 
in the company. the reduction in the number of orders can t,urn into 
a rcduction of administrative costs. Otherwise. cutting the number of 
orders has no real economic benefit (think of highly regulated labor 
markets such as Italy and France). AIore generally. costs are subject 
to h,ysteresis: that  is. an increase in output (number of orders) followed 
by ail equal decrease in output might not take t,he cost,s back to initial 
stage. as it is often much easier to increase costs (headcounts in this 
case) than cut' them. 

However, the current trend tornard outsourcing of administrative ac- 
tivities and/or niore flexible contracts to  absorb workload peaks make 
administrative costs more and inore variable. Thus. administrative costs 
may depend 011 the number of lots. but such relationship is often nonlin- 
ear. This makes the EOQ model a linear approximation of a nonlinear 
cost. 

Transportation costs. This is a second cost component that  can depend 
on the number of lots. Indeed. moving goods from production (or an 
upst,reani warehouse) frequentll- aiid in small batches might increase 
transportation cask However. these costs too might, not depend linearly 
on the number of orders. A linear relationship between number of orders 
and transportat,iori costs implies that  the cost of a single deliver\- does 
not depend on the quantity transported. Such an assumpt,ion clearly 
does not hold. at least for large variations in the quantit,j- transported. 
In the case of a private fleet of trucks. if the quantity increases above the 
capacitl- of a given truck. the company can either use a larger (and thus 
more expensive) truck or increase the number of trips. Both options 
increase transportation costs. Also. in the case of a private fleet,. costs 
like insurance and depreciation of trucks are fixed. at least in the short, 
run. and t'herefore they should not be included in A. 
In the case of a third-party fleet the problem is even more complex. In 
the case of "point-to-point'! transportation (i.e.. a direct trip from source 
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to destination). the cost might not depend on the quantity transported: 
in such a case. if the truck capacity is not saturated, one more order may 
cost practically nothing (to a first approximation). On the contrary. in 
the case where goods from several sources and moving toward several 
destinations share the same truck (think of FedEx. DHL, national postal 
services, etc.) the cost typically depends on the volume or weight of 
goods transported. Indeed, the weight and volume of the goods can set 
some relevant constraints to the routing problem (see chapter 8) and 
this makes planning the trips harder and potentially less efficient.* 

Thus, in the EOQ model we consider transportation costs to be a linear 
function of the number of orders, but we shall be aware that this is an 
approximation that can be crude at  times. 

0 Receavang, anspectaon, and handlzng costs. When an order is received 
at  a warehouse, personnel needs to perform a series of time consuming 
activities. Documentation shall be checked and recorded in the infor- 
mation system. quality shall be controlled, and finally goods should be 
placed on shelves. The duration of some of these activities does not 
depend on the number of units delivered but rather on the number of 
orders. For example, handling a pallet with 10 or 12 units takes exactly 
the same amount of time (provided that 12 units fit on a single pallet). 
However. if the number of units increases above the maximum capacity 
of a pallet, the workload and thus the cost increases as well. 

What has been said about administrative costs applies to these costs as 
well: They are often semivariable and subject to hysteresis. Moreover, 
many companies outsource warehousing activities, and this turns these 
costs into truly variable ones. 

Setup cost. In case a warehouse is supplied by a production process, 
setup costs of production machines contribute to the ordering cost A. 
Also in this case. the specific condition of the company should be care- 
fully considered when one tries to measure setup costs. Setting up a 
machine creates direct costs that clearly depend on the number of setups 
(think of the need to use washing material, or the scrapped production 
at  the beginning and at  the end of each lot in continuous production 
processes such as food). These direct costs shall always be accounted 
for. 

Other costs might/might not be included in the ordering cost A. Cost of 
workers setting up the machines and downtime (i.e., lack of production 

4The problem is getting more and more complex, as companies are trying to match supply 
and demand at times with online auctions. For example, transportation might be much 
more expensive from China to  Italy than vice versa. Such pricing policies known as rewenue 
management at times can lead to odd pricing strategies. For example, consider air-fares: 
Just to give one example, at times a round trip can be less expensive than a one-way ticket. 



ECONOMK ORDER QUANTlTY 203 

while setting up the machines) are often considered to be part of setup 
cost. As to  personnel we shall use the same caveat we have discussed in 
the case of administrative costs: Can we really save the money? Can 
we really use the worker effectively in case we do not use him/her to  set 
up the machine? As to downtime. its cost really depends on operational 
condition of the firm: 

- if production capacity is saturated (fully utilized) a single setup 
prevents the company from producing other goods and serving 
other customers: thus in this case a setup creates opportunity costs; 

- in the case of spare capacity. on the contrary, the setup does not 
have any significant flipside and might be basically cost-free. Also. 
setup costs shall only be considered when the plant supplying the 
warehouse produces on a lot-for-lot logic. That is when the deliv- 
ery lot equals the production lot and thus one  addatzonal delzvery 
entazls a n  addztaonal setup. 

inventory holding cost. The EOQ model assumes an infinite product life cycle. 
30 product has a infinite life cycle, so strzctu sensu  we cannot apply the EOQ 
model to  any real-life problem. However, the model can be applied when 
the end of the product life cycle is so far into the future that costs of goods 
leftover a t  the end of the life cycle are irrelevant for our problem. Under 
this assumption, inventory costs are just the cost of holding inventories in the 
warehouses. Still. measuring h appropriately is not trivial, as several variables 
contribute to  it. 

Fznanczal costs. The investment in inventories increases the working 
capital and the need for financial resources to  run the company. Thus. 
inventories imply not only more need for capital, but also a larger finan- 
cial cost of capitaL5 Still. what is the right measure of the financial cost 
of capital for a company? Is it the average cost of debt? Is it the cost of 
equity? If so. what is the cost of equity capital? For a thorough discus- 
sion we refer to  any textbook on accounting systems and finance (e.g.. 
[7] ) .  while here we just provide the basic ideas. The cost of capital re- 
ally depends on the current financial conditions of the specific company. 
Consider a company with spare cash invested in short-term bonds. Any 
increase in the inventory investment reduces the spare cash. the invest- 
ment in bonds, and their interests. In this case the percentage cost of 
capital h% is equal to the interest one gains on short-term bonds. Note 
that these are opportunity costs (the investment prevents the company 
from making money. rather than creating an actual cost) but this is just 

5The larger the  working capital the  larger the need for capital and the higher the risk of 
insolvency. This means tha t  money lenders ask for a higher return on their capital as a 
reward for the higher risk. 
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irrelevant for a cold-blooded, rational decision maker. However, the cost 
can be much higher. Let us consider a company with financial problems 
that has very large debts. Under these circumstances, debt might be 
fairly expensive. An extra investment in inventories might require extra 
cash that in turn requires an additional (i.e., marginal) debt with some 
additional (marginal) costs. In this case, the cost of inventories can be 
higher than in the former case as borrowing rates are usually higher 
than lending rates. 

Clearly, in real contexts an extra screw might not increase the cost 
of debt at all. More generally, very small changes in the inventory 
investment for a specific SKU might not require any additional debt (or 
might not reduce the investment in short term bonds). However, we just 
aim at figuring out the average financial cost of an extra (i.e., marginal) 
investment of one Euro in inventories. 

Also, one might wonder what happens if the contract with suppliers sets 
three or four month terms of payment. Does that change the holding 
cost, as the company can hold goods for four months without any real 
financial exposure? The answer is no, it does not matter. The key idea 
is that no matter what the payment conditions are, any increase in the 
average inventory level increases the financial exposure of the company 
and thus the need for working capital. Terms of payment can really 
make a difference for the overall financial exposure of the company. 
For example, a company that used to pay suppliers one month after 
goods were received and then moves to three months might improve the 
financial exposure substantially and might cut h% (see note 4.2 on page 
203). However, given the terms of payment, if inventories increase by 
l€, the working capital increases by 1€ and its cost goes up by h% 
€, no matter what the terms of payment are. Thus, a larger purchase 
quantity Q implies an increase in inventories and thus an incremental 
holding cost. Indeed, a change in terms of payment basically changes 
the in-transit stock (see chapter l), i.e., basically changes the point 
in time (and in the supply chain) from which the company financially 
holds inventories. As we have learned in chapter 1, companies hold both 
in-transit stock and cycle stock. The former is influenced by terms of 
payment and is not a function of order quantity Q (1.8). If LT is shorter 
than terms of payment the net in-transit stock can be negative. On the 
contrary. cycle stock depends on the order quantity Q, it can only be 
positive, and it is not a function of terms of payment. 

Example 4.11 Let us consider a European company that imports 
goods from East Asia. It takes roughly one month to transport goods 
from East Asia to Europe. Let us assume that bills are paid two months 
after goods are shipped. Also, the demand for product A (let us assume 
this is the only one product for the sake of simplicity) is 1200 units/year. 
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The cost is l€/unit and the holding cost h% is 10%. The company is 
considering two policies: 

- order 100 units once a month; 

- order 400 units every four months. 

In the first case, 100 units are shipped on January 1, delivered on Febru- 
ary 1. and paid on March 1. Goods delivered on February 1 are sold 
during the month of February. Thus, the financial exposure of the com- 
pany fluctuates between 0 on February 1 and -100 on February 28. 
This pattern is the repeated for February shipments, March shipments 
and so on (see figures 4.3 and 4.4). 

In the second case, 400 units are shipped on January 1. delivered on 
February 1 and paid on March 1. Goods delivered on February 1 are 
sold in February. March. April and May. Thus, the financial exposure of 
the company changes as follows. It starts at  0 on February 1, when goods 
start being sold before they are paid. It reaches -100 on February 28. 
then on March 1 400€ are paid and it reaches 300. Then it progressively 
decreases to  0 on May 31 (see figures 4.5 and 4.6). 

The two patterns above can actually be interpreted as the overlap be- 
tween a positive cycle inventory and negative in-transit inventories. In 
the first case, cycle inventories vary between 0 and 100: when we add 
a negative working capital of -100 units as goods are paid one month 
after they are delivered. we get the pattern described in figure 4.4. In 
the latter case we can interpret figure 4.6 as the overlap between cycle 
inventories varying from 0 to 400 with a negative in-transit inventory 
level of 100 units (see figure 4.5). 0 

Warehouszng costs. The investment in inventories requires not only cap- 
ital but also warehouses where goods can be stored. U’hen the company 
owns its warehouses, these costs are semivariable and subject to hys- 
teresis: Until spare space is available in the current warehouse(s), the 
cost does not vary significantly.6 However. if we run out of space in the 
warehouse. we have to either build (or buy) a new one or just rent addi- 
tional space. Variable costs such as insurance premia or the energy cost 
for refrigerated goods should be added on top of these variable costs. 
As discussed for ordering costs. things change substantially if the com- 
pany outsources warehousing since costs might be ”more linear.” i.e.. 
cost might vary linearly with the average inventory level. Foi example. 
a contract with the third-party logistic provider might set a cost per 
pallet per month. 

G I ~ i  some very specific instances such as refrigerated warehouses. the cost of running the 
warehouse might depend on the amount of goods carried. as the amount of energy required 
t o  keep temperature constant might depend on the mass kept in the warehouse. 
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Fig. 4.3 Components of financial exposure of policy 1 over time. 

financial exposure 

Fig. 4.4 Overall financial exposure of policy 1 over time. 
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Fig. 4.5 Components of financial exposure of policy 2 over time. 

financial exposure 

300 

-100 

f ig. 4.6 Overall financial exposure of policy 2 over time. 
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Loss of value of inventorzes. Holding inventories in a warehouse can 
reduce the value of the goods carried. For example. in the case of furni- 
ture. handling goods in the warehouse might damage them and reduce 
their value substantially. In other instances, such as fresh fruit and 
vegetables. products might lose weight or rot. 

4.3 ROBUSTNESS OF EOQ MODEL 

In the previous section we showed that measuring parameters of the EOQ is 
not a trivial task. Forecasting d and estimating A and h is all but trivial, 
hence we should check whether the model is robust. In other words, we have 
to  understand whether the decisions the model suggests are reasonable even 
when the input data are not 100% exact. but they are affected by some error. 
By “reasonable” in this context we mean that decisions lead to a performance 
(cost in our case) that is nearly optimal. This is the reason why we measure 
the robustness of the model by the deviation from optimal cost. 

Just to show an example, we try to understand what happens if the ordering 
cost A is not estimated properly. Let us assume that the error in the estimate 
of A is A .  The company would believe the cost A to be A + A and the 
EOQ model would suggest to  choose a quantity Q1 = d2 ( A  + A) d /h ,  rather 
than optimal quantity Q* = J2Ad/h. One could be tempted to measure the 
robustness of the EOQ model as the difference between Q1 and Q*. Tempting 
though this might sound. we are not really interested in this metric. Indeed. 
it would capture whether our decision Q1 is close to the optimal decision Q”.  
whereas we are more interested in whether our decision leads to nearly optimal 
costs. Thus, we shall measure the difference in total cost. 

The suboptimal quantity Q1 leads to  a higher cost than the optimal one 
C;ot = Ctot (Q*) = m. The cost we get by setting Q = Q1 is 

If we compare the above cost with the optimal one C{ot, we can measure the 
percentage increase in cost due to  the error A in the estimate of A: 
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As equation (4.5) shows, a 10% error in the est,iinate of A increases the cost 
only by 0.176. This finding sheds a new light on the estimation problems 
discussed in section 4.2. Parameters of the EOQ model might be hard to  
estimat,e. But even sizable errors lead to small increases in cost. 

Similar analyses can be performed on t,he effects of errors in the estimate 
of h and d :  and similar results can be obtained. 

A related but distinct case is the one where not all values of Q E R+ are a 
viable option as there are some constraints. For example, many products are 
distributed to  retailers in casepacks (apparel products, packaged goods. etc.) 
that cannot be broken and are called m i n i m u m  order size or m i n i m u m  lot. In 
other instances. minimum lots are set for marketing purposes rather than for 
logistic ones. 

Moreover, it is often convenient to set the ordering frequency in such a way 
that, warehouse operations can be easily managed. For example, it is very 
easy to receive goods from a given supplier once a day or once a week. On the 
contrary, receiving each 1.7 days is much more complex as the time of delivery 
would keep on changing. The EOQ model does not consider any constraint 
on the solution Q. Hence; the solution Q* is very likely not to be viable. ?Ire 
can deal wit,h this problem in two ways. First we can re-define the problem. 
The second and more convenient, solution is to  choose the feasible solut,ion Q s  
which is closest t,o the optimal one Q*. 

Concept 4.1 W h e n  inputs  to  the model are uncertain or not  precise, we  
should per form some sort of sensitivity analysis. In sensitivity unalysis we  
want t o  capture the quality of the solution i n  t e r m s  of extra cost (loss of po-  
tential profit) w e  might face. I n  other words; we are interested in performance. 
W e  are not  really interested an whether the solution we suggest zs actually close 
to  the optimal one. 

The cost of this solut,ion Ctot ( Q f )  is higher t,han the unconstrained minimum 
Ctot (Q*), that  could be reached if Q* was a viable option, i.e.. if there was no 
constraint on the solution. However, the increase in cost Ctot ( Q f )  -Ctot (Q*) 
is often fairly small. T;C7e can compute the percentage increase in costs by 
coniparing the cost of Qf with CTot: 
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Equation (4.6) shows that rounding the optimal solution Q* to the closest 
feasible solution increases the total cost marginally. For example, in the case 
the nearest feasible solution is 20% larger than the optimal solution Q*, the 
cost increases only by 1.67%. Therefore, we can take the solution of the EOQ 
and round it to the nearest7 feasible solution with a very limited increase in 
costs. 

Example 4.12 Company B produces canned soups and sells them in 12- 
units casepacks. One of the customers is a large hypermarket that  gets di- 
rect deliveries from the supplier. The ordering cost for the hypermarket is 
lo€  which covers administrative costs. handling costs. and quality checks. 
Demand is 100 units/week. A single can of soup costs 1€ to the hyper- 
market. Cost of inventories is 0.4% per week and covers financial cost and 
variable warehousing costs. Given the above inputs. the optimal solution is 
Q* = 707.1 unit. However. we cannot buy 0.1 units, and even purchasing 707 
pieces at a time is not a viable option. The two options we have are 696 and 
708 units. Given these two options, we clearly choose to purchase lots of 708 
units. The delivery of case packs of 12 units increases the cost by less than 
0.01%. This increase is very likely to be offset by savings in handling costs at 
the warehouse. 0 

The EOQ model can be extended in several ways by changing the most unre- 
alistic assumptions of the basic EOQ model. Such extensions are the subject 
of sections 4.4-4.7. 

4.4 CASE OF LT > 0: THE (Q, R)  MODEL 

The first easy extension of the EOQ model is the case of nonzero and deter- 
ministic LT. In such a case, we cannot wait until we run out of inventories to 
order. as the order quantity Q is not readily available. On the contrary. we 
should order LT units of time before we run out of stock. Given the demand 
rate d ,  we shall place an order when the inventory level reaches the so-called 
reorder poznt. also known as reorder level R = LT ’ d .  In other words, we 
order when we have just enough inventory to  meet demand during the LT. 
The system works this way: Each time inventory reaches the level R, an order 
of Q units is placed. Q units are then delivered LT periods after the order is 
placed. 

In such a system we have two decision levers, i.e., variables we can control: 
Q and R. However. the pattern of inventories over time behaves just like in 

7As equation (4.6) shows, the right metric for distance is Q f / Q *  + Q * / Q f ,  which is a 
geometric distance. In fact, two quite different decisions. such as increasing the optimal 
quantity by a factor of 2 (plus 100%) or decreasing it by a factor of 2 (-50%). result in the 
same increase in cost of 25%. On the contrary, increasing the optimal quantity by 50% 
raises the total cost by only 8.3%. 
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Fig. 4.7 Inventory pattern in the EOQ model, case of LT > 0 

the case of the EOQ model (see figure 4.7). Hence. nonzero lead times have 
no influence on the choice of Q .  Indeed. just like in the basic EOQ model. 
Q units are delivered exactly when inventory reaches the zero level, and an 
order is placed every Q / d  time units. Thus. the optimal quantity is the EOQ 
in this case as well Notice that the two control levers are set independently: 
Q* sets the optimal purchase quantity to  minimize the sum of inventory and 
ordering costs, whereas R picks the right timing for ordering so that Q* is 
delivered exactly when it is needed. 

This rather simple case forces us to introduce a new variable: the znventory 
posztaon. If a warehouse manager checks the inventories a few seconds after 
an order is placed. he/she would be tempted to  place a second order. as 
inventories on hand might look low since they are below the reorder point 
R. This would be very dangerous. since vie might keep on ordering Q units 
several times. Such a series of orders might then be delivered over a short 
period of time. leading to a skyrocketing increase in inventories. But how can 
we avoid such problems? 

In inventory management we should not only look at current inventory 
level physically in the warehouse. called znwentory on hand. \Ve must consider 
physical inventory in the warehouse plus the outstanding orders. i e . all orders 
that have been placed but have not been delivered yet.8 \Ye call this new 

'In the next chapters we will investigate the stochastic case. In this more coniplex setting, 
we might experience a stockout and thus customer orders might be backlogged .As we will 
see, in such a case the inventory position is equal t o  inventory on hand plus outstanding 
orders sent to the supplier(s) minus unmet orders from the customer(s). The case of DLT > 
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variable inventory posztzon (IP). This is the variable we should be looking at 
when we ponder whether we should or should not be placing an order. 

When we look at  the above example, we can see that the inventory position 
IP can easily solve the problem. Orders are placed when and only when IP 
reaches the reorder level R. Therefore, right after the order for Q units is 
placed, a warehouse manager is not even tempted to  place a second purchase 
order. Indeed. the inventory position increases to R + Q immediately after 
the order for Q units is placed (even if these units have not been delivered 

Yet). 

Concept 4.2 In anventory management and plannzng the current on-hand 
znventory maght be a masleadzng figure. We would rather carefully conszder 
the znventory posatzon, that accounts for znventory on hand as well as for 
ancomang orders and customer backorders ( z f  any), an order to  gave us a more 
dynamac pacture of our current znventory level. 

Just like in the basic EOQ model, inventory on hand fluctuates between 
0 and Q units (with an average of & / 2  units), while the inventory position 
varies between R and R + Q units, with an average of R + Q/2. In the 
case of relatively short LT (LT < Q / d )  the inventory position differs from 
inventory on hand when the order is placed, as it jumps from R to R+Q, while 
inventory on hand remains unchanged at  R. Only when the order quantity 
Q is delivered. the inventory position equals inventory on hand as there are 
no more outstanding orders, i.e., we no longer wait for the supplier to  deliver 
an order (see figure 4.8). On the contrary. in the case of relatively long 
LT (LT > Q / d ) ,  the warehouse is always waiting for a t  least one order to be 
delivered. and thus the inventory position is always greater than the inventory 
on hand, by definition. 

4.5 CASE OF F IN ITE REPLENISHMENT RATE 

So far we have discussed cases where the quantity ordered is delivered in a 
lump of Q units. This is generally true when the warehouse receives goods 
from an upstream warehouse. On the contrary, when the warehouse is served 
by a production plant, goods might be progressively delivered as they are 
produced. This happens when each single unit is delivered to the warehouse 
as production is completed. This changes the dynamics of inventories in the 
warehouse. so the cost function and the optimal quantity Q* change as well. 

The finite replenishment rate r is the number of units delivered per unit 
of time. Obviously. T shall be greater than d .  When d is greater than (or 
equal to) r .  the production rate is not sufficient (or barely sufficient) to  meet 

0 sets similar problems. as there is a series of orders placed by the customers that have not 
been met yet. 
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Fig 4 8 On-hand inventory and in\-entor3 position, case of LT < Q / d .  

demand. thus we keep on producing continuously. In this case. the order 
quantity problem is not properly set. In the remainder of this section we 
assume r to be greater than d.  

%-hen the inventory level reaches zero. it does not immediately increase 
by Q units. It increases progressively at  a rate r - d.  The r - d growth 
rate is the result of an inflow of r units of product per unit of time and 
an outflow of d units of product per unit of time. This process goes on 
until all Q units of the production lot are delivered. It takes Q / r  periods to 
complete the production lot Q with a production rate r .  Thus. when the lot 
is completed, the inventory level has reached ( r  - d )  Q / r  units. This quantity 
can be rewritten as Q - d .  Q / r :  in other words, this means that the maximum 
inventory level is equal to  the production lot Q minus the demand (d) that 
has occurred while the lot was being delivered (over a period of time Q / r ) .  
Once the production is over. inventory starts decreasing at a rate d.  The 
inventory level reaches its maximum when the production lot Q is completed. 
Therefore, inventory increases linearly between 0 and ( r  - d) Q / r  at a T - d 
rate and then it decreases linearly between ( r  - d) Q / r  and 0 at a d rate. as 
figure 4.9 shows. 

Hence, the average inventory level is (? -2d) Q arid the total cost functiori is 
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Fig. 4.9 Inventories pattern in case of finite rate of delivery. 

by taking the derivative with respect to  Q we can show that 

t 

We shall now read the formula to understand it. The finite production rate 
EOQ suggests that  when production rate r equals demand rate d the produc- 
tion lot Q is infinite; that is, we shall continuously produce to  meet demand. 
Also, when r is barely greater than d ,  the production lot tends to  be very 
large, as inventories build up very slowly in the warehouse (at a r - d rate). 
Finally, as r + +x. equation (4.8) tends to look like the EOQ formula, which 
can be considered just a specific case of this more general one. 

4.6 MULTI-ITEM EOQ 

So far we have investigated single-item problems. However. very often we can 
find several items in a warehouse. This makes modeling the problem harder. 

One might want to model the multi-item problem as a series of independent 
single-item problems. This is an easy way out, but it comes at a cost. When we 
use this approach, we basically treat a single warehouse with several products 
as a series of independent warehouses, each with a single product. Companies 
actually build a single warehouse to  leverage on joint economies of scale: that  
is. to take advantage of the savings one can gain by managing several products 
under one roof. Hence. looking at a multi-item problem as a series of single- 
item ones might be a simplistic rather than a simple solution to a complex 
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problem. Indeed. this might miss some crucial feature of the problem and 
lead to a poor or unfeasible solution. 

Example 4.13 Let us consider a warehouse with two products Q and 3 
sourced from a single supplier. Demand for product a! is 100 units/month 
while demand for product 3 is 300 units/month. Placing an order costs 800'2 
no matter whether one or two products are ordered. The cost is fairly high 
as the supplier is located in China and transportation costs are significant. 
Holding one unit of Q for a month costs 1€. while holding one unit of 3 for 
a month costs 16/27€. 

If we optimize order quantities for the two products separately, we get the 
following optimal quantities: QT, = 400 and Q; = 900. Once order quantities 
are defined, we can try to overlap orders to gain some savings. The best 
option is the following: order a on qth. gth. and 12th month. and order 3 on 
the 3rd. 6th,  gth.  and 12th month. This order plan implies 6 orders per year. 
that is 0.5 orders per month. 

Thus. the monthly cost is 

. 200 units 
€ 

+ 1  Ctot = 0.5 - .800 ~ 

orders 
month orders unit month 

' 450 unit's 
€ 

unit .  mont,h 
= 866.6 €/mont,h. 

+16/27 

Intuition suggests that this is very likely not to  be the best option, as potential 
synergies between the two products are not fully exploited since often we do 
not take advantage of shared ordering costs. For example, if we order product 
9 once every 4 months. the total cost is 

.200  units 
orders € € 
month order unit . month 

Ctot = 0.25- ,800- + 1  

. 600 units 
€ 

unit month 
+16/27 

= 755.55€/month. 

This solution is clearly crude. and it is likely not to be optimal: yet. it proves 
that optimizing the order quantity for single items might not be a good idea. 
The next subsections show how we can find optimal solutions to multi-item 
problems. [I 

4.6.1 

Example 4.13 above shows that setting EOQ for each single item indepen- 
dently might be sub-optimal as it might not fully exploit the potential advan- 
tages of a joint and coordinated policy. \Ye first investigate the case of shared 
ordering costs. where the cost of an order A depends neither on the number 
of product types ordered nor on their quantities, just like in example 4.13. 

The case of shared ordering costs 
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To apply the results of single-item EOQ to the multi-item case, we shall 
first identify the mix of products. In the deterministic case. such a mix is 
easy to  set. since deliveries to  the warehouse and inventories a t  the warehouse 
have exactly the same mix as demand. Thus. we define a bundle of products 
with the right mix of items. For example, if demand for Coke is twice the 
demand for Sprite, when planning joint deliveries we can refer to a “virtual” 
composite product consisting of 2 Cokes and 1 Sprite. Note that for our 
purposes. a bundle (i.e.> virtual composite product) of 4 Cokes and 2 Sprites 
would work just as well.’ 

Example 4.14 In example 4.13, the ratio between the demands of product 
Q and B is 1:3. Therefore, we can define a bundle consisting of 1 unit of Q 

and 3 units of /3. Demand for this bundle of products is 100 units per month. 
Holding one bundle for 1 month means holding 1 unit of Q and 3 units of p; 
hence the holding cost of one bundle is 1 + 3 . 16/27 = 25/9. The ordering 
cost is 800€, as it is a fixed cost that  does not depend on quantity. 

Thus, we can apply the EOQ model to  the bundle of products and find 
that the optimal purchase quantity for the bundle is Q* = 240 units, which 
really means setting the purchase quantities of the two products to Q: = 240 
and Qi = 720. This choice implies a cost of 666.6€. which is well below the 

two costs found in example 4.13. 0 

It is interesting to  notice that the joint optimal quantity for two (or more) 
products is lower than the optimal quantity for single products. Let us com- 
pare two different scenarios. 

1. In the first scenario. products share a common cost A. as the company 
places one single order with multiple products and receives just one de- 
livery. Therefore, reducing the order frequency by one order per month, 
will only save A Euro, but it will increase the inventory levels and thus 
holding costs of both products. 

2. In the second scenario. each single product requires a separate order and 
a separate delivery and thus products do not share a common fixed cost 
A. Here, reducing the ordering frequency of, say, item a saves ordering 
cost A, but it increases inventories and holding cost of item a only. 

We see that in the first case we have a stronger incentive to increase order 
frequency and thus order smaller quantities. An extra order makes us save 
inventory investment and holding costs on several products, rather than a 

gNote that  this holds true when we have no constraint on the units or case-packs. that  is 
when demand and deliveries have no lower bound on actual units and can be considered as 
continuous variables for all practical purposes. For example, demand for fast moving goods 
like Coke can actually be considered continuous even if it is produced and distributed in 
units. On the contrary. retail demand for jewels can hardly be modeled as a continuous 
variable. 
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single one. Another way to  see this problem is that when two or more products 
are delivered together and a bundle is defined, the holding costs add up while 
the shared ordering cost remains unchanged. Thus. pulling together various 
products (e.g., buying them from the same supplier or receiving them from 
the same warehouse) leaves the numerator of the EOQ formula unchanged 
(in particular A) while it increases the denominator (in particular h) .  thus 
reducing optimal purchase quantities. 

This result takes us back to a basic concept discussed in section 2.1.2. Joint 
deliveries of multiple products reduce inventory investments as the ordering 
frequency can be increased. That is why many grocery stores and retail stores 
of large chains (such as Wal-Mart) receive the bulk of their deliveries from 
a central distribution center rather than from suppliers. These chains rather 
hold goods in a central warehouse and then deliver to stores very frequently 
with trucks filled with goods from several suppliers rather than get direct (and 
sparse) deliveries from suppliers with a relatively limited assortment. The 
savings on inventory costs are well worth the cost of a distribution center. 

4.6.2 The multi-item case with a constraint on ordering capacity 

In section 4.2 we showed that the ordering cost often depends on the degree of 
utilization of administrative resources and warehouse personnel. For example. 
if the utilization of employees involved in ordering and receiving materials is 
low and they can neither be fired nor be utilized in any other way, the cost of 
an order A can be very close to zero. 

In many instances. to  choose the appropriate fixed cost A ,  the company 
needs to figure out an ordering policy to  exploit limited resources. In the 
example just discussed. the EOQ problem is one where the limited ordering 
capacity shall be allocated to all items in the company's assortment. Similarly. 
the company might have a limited ability to receive goods in the wwehouse or 
a limited transportation capacity, as the number of trucks in the company's 
fleet is fixed. In our further analysis we assume that products are ordered 
from separate suppliers and are delivered separately. Thus we assume that 
they do not share ordering costs. 

If this is the case. the company aims at  minimizing the inventory holding 
cost, subject to a constraint on the total number of orders placed with a proper 
allocation of the limited capacity to each single product. In other words. the 
company tries to keep inventories under control subject to a constraint on the 
overall number of orders. 

This is a nonlinear optimization problem that can be written ah follows: 

- 'I/ 

min hzQ2. 
2 = 1  

2 
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where: 

0 i is the item index. 

0 N is the total number of item types, 

0 d, is the demand per unit of time for product i ,  

0 h, is the cost of holding one unit of product z for one unit of time, 

0 Q, is the purchase quantity for item i ,  

0 F is the ordering capacity per unit of time, i.e., the maximum number 

We notice that as the total number of placed orders increases, the purchase 
quantity of each single item i decreases and so does the overall inventory 
holding cost. Therefore, we know that the ordering capacity constraint is 
active in the optimal solution. Hence, we can replace the inequality constraint 
with an equality one in equation (4.9). 

To solve this problem, we can resort to the method of Lagrangian multi- 
pliers . First. we write the Lagrangian function:" 

of orders that can be placed in a unit of time. 

In principle, we should add a non-negativity constraint on decision variables 
Q,. We assume a so-called anterzor optzmum, which means that no non- 
negativity constraint is active and the optimal solution is such that Q,* > 0. 
Also, this condition is required for the constraint (4.9) to  make sense. Then. 
we enforce first-order optimality conditions by computing derivatives with 
respect to the N variables Q2. and A. 

thus 

C - $ = F .  
i=l 

(4.12) 

losee section B.4. In case of equality constraint. how the constraint is added to  the objective 
function and the sign of the Lagrangian multiplier are irrelevant. However, the sign we have 
adopted helps us to  read the results economically and would work in case of an inequality 
constraint as well. 
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When vie look at  these optimality conditions. we notice that equation (4.11) 
resembles the EOQ formula. The only minor difference is that the ordering 
cost A is substituted by the optimal Lagrangian multiplier. To understand 
the formula we shall resort to the economic meaning of Lagrangian multipliers 
discussed in section B.4.2 (shadow prices). 

From the discussion in section B.4.2. we know that the multiplier tells us the 
extent to  which a (marginal) increase in the ordering frequenci can decrease 
the inventory holding cost of a product. The shadow price interpretation of 
the Lagrangian multipliers guides us in the design of a procedure to identify 
the optimal solution. Indeed. optimality conditions (4.11) and (4.12) are a 
system of nonlinear equations. In general, such a system can only be solved 
numerically, even though in specific cases like this one. a closed form solution 
is easy to  find." Even if this is an easy case. we prefer to suggest an iterative 
algorithm to find the optimal value of the multiplier. One reason is that 
the procedure can be applied in a more general setting, when an analytical 
solution cannot be find (see the multi-item newsvendor problem in section 
5.2.1). Another reason is that the approach lends itself to a nice economic 
interpretation. 

From equation (4.11). we see that the multiplier plays the role of an ordering 
cost. which is consistent with its shadow price interpretation. If the value of 
X is too small (i.e.. smaller than the optimal one), we order small quantities 
Qt too frequently. and the total number of orders exceeds capacity. If X 
is too large. on the contrary, capacity is not fully utilized and inventories 
are excessive, leading to suboptimal solution. M5e should look for the right 
ordering cost, which results in the full utilization of our ordering capacity. 

1. Choose an initial value for A. 

2 .  Use this value of X to calculate the S quantities Q,* 

4. If C;"=, & < F ,  decrease A. 

"By plugging expression (4.11) for Q: into (4.12). we see tha t  

Hence 

which can be plugged back into equation (4.11) to find the  optimal order quantities. 
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5. If the current solution satisfies the constraint. at least within a given 
tolerance, stop; otherwise go back to  step 2.12 

This search procedure can be interpreted as demand/offer mechanism by 
which we aim at finding the right ordering cost: If the resource is too cheap, it 
is over-utilized, and we must increase its cost; if it is too expensive, we should 
lower its cost in order to  achieve full utilization. 

A common finding is that ordering (or setup) costs are often overstated, 
leading to an unnecessarily large amount of stock. Indeed, a fixed ordering 
cost A is used in the EOQ formula, even when from an economical standpoint 
the orders imply no marginal cost. as resources are fixed. The EOQ approach 
may be justified as a simplification of the above procedure. when we apply 
a fixed cost X to  provide an incentive to  ”properly” use the limited ordering 
capacity. Finally, even in this case we might face estimation problems. Above 
all, we should keep in mind that in the long run F is a decision variable as 
well. and we might wonder what is the appropriate ordering capacity for our 
company. 

4.7 CASE OF NONLINEAR COSTS 

The basic EOQ model assumes that cost parameters h = h%.  u and A do not 
depend on quantity Q. Thus purchasing costs are assumed to be proportional 
t o  the total quantity purchased (which in the long run equals demand). Also. 
the EOQ model assumes that ordering costs are proportional to the number 
of orders placed (i.e., the number of lots). In many real contexts these as- 
sumptions hardly hold. as cost parameters depend on the purchase quantity 
Q. Very often, suppliers are willing to offer discounts to  customers that place 
large orders (quantzty dzscounts). Also, some of the costs included in A might 
depend on Q.  Transportation costs might depend on Q ,  as this cost can be 
semivariable: when the quantity Q exceeds the capacity of a small truck, a 
larger and more expensive truck is required. 

Let us consider a company that places orders for a single product and 
pays for direct deliveries (i.e., there is no interaction with other products and 
the product purchased from the supplier can fully use the capacity of means 
of transportation). Also, we assume that the company can choose among 
three means of transportation, say 1. 2, and 3, with capacity constraints 

12A simple but effective search algorithm is bisection. It  is often used to solve scalar 
nonlinear equations with a single unknown variable. We identify two values of A. A -  and 
A+, that  lead to overutilization and underutilization of the ordering capacity F .  respectively. 
We know that the optimal value of A lies in the (A-> A+) range. We consider the midpoint of 
the interval, A, = ( A - + A f ) / 2 ,  and we check whether it leads to over- or underutilizationof 
capacity. We continue our search accordingly, by setting A -  = Am or A+ = A,, respectively. 
We see that  the interval bracketing the solution is always bisected. The process is repeated 
until the range (A-, A+) is “small enough.” 
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Q1. Qz > & I .  and infinite. respectively. Using the three different means of 
transportation implies three different ordering costs A1 < A2 < A?. 

In this case, we cannot choose of the best order quantity by enforcing a first- 
order optimality condition like in the basic EOQ model, as the cost function 
need not be differentiable (nor continuous) for all Q E R. Nevertheless. solving 
the problem is rather simple. The overall cost function consists of pieces of 
convex functions (see figure 4.10), and we can take advantage of this property 
while searching for the optimal solution. To start our analysis, we can draw 
the cost functions for the three means of transportation (see figure 4.10). 
Figure 4.10 shows that as A increases. the cost function is shifted upward and 
the optimal quantity increases. Economically. this means that as the fixed 
cost increases. the overall cost and the economic order quantity increase as 
well. 

\Ye might be tempted to choose the first means of transportation. as it keeps 
the ordering costs to  a minimum. This view neglects the capacity constraints. 
Although the cost function 1 is lower than others. we might not be able to 
purchase the optimal quantity QT. as it might be greater than the maximum 
capacity Q1. In other words. the optimal quantity QT might not fit on the 
relatively small means of transportation 1 that cuts ordering costs down to 
Al .  

If this is the case. we can leverage on the convexity of the cost function 1 
to identify the best viable solution. The cost function 1 is decreasing up to 
QT. thus the optimal viable solution is Q1. 1.e.. the maximum quantity that 
can be transported on the first means of transportation. 

As to  the second means of transportation. we assume that the optimal 
quantity Q h  is lower than the maximum capacity Q 2 .  Notice that under these 
assumptions the third means of transportation is basically not even an option. 
Indeed. we know that the cost function of the second means of traiisportation 
is lower than the cost function of the third one. Also, the second means of 
transportation can operate at the optimal level Q;. Thus. no matter what 
quantity Q3 we want to carry, the cost of the third means of traiisportation 
is higher than the cost of the second means of transportation. 

Hence. the solutions we shall consider are: 

0 means of transportation 1, quantity &I: 

0 means of transportation 2 .  quantity QZ; 
within this set of options we shall pick 1 he one with the lowest cost. In the 
example of figures 4.10 and 4.11. the best option is to use the second means 
of transportation and order Q; units at a time. 

?rIore generally. we exploit the convexity of constituent cost functions to 
solve these pr0b1ems.l~ \Ye can identify the optimal quantity for each interval 
and then compare the various local optima to tell the global optimum. 

l3T0 be more precise. the  convexity of each single piece of the  overall cost is just exploited 
to  guarantee tha t  the  optimum of each piece is either the point of stationarity, or an extreme 
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Fig. 4.10 Cost functions for various fixed ordering costs A .  
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Fig. 4.11 Overall cost function. 
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A similar procedure can be used in the case of quantzty dzscounts. i.e, when 
the unit cost of the product u depends on the purchase quantity Q. In this 
case. a third cost should be added to  the cost function (on top of ordering and 
inventories costs): the purchasing cost. Indeed. larger lots might reduce the 
total purchase cost. as quantity discounts might cut the average unit cost. 

We can distinguish two different kinds of discount14: 

all-unat dzscount: the discount applies to the whole quantity purchased: 

marginal unat dzscount: the discount applies only to the marginal quan- 
tity. 1.e.. on the quantity that exceeds a given minimum threshold. 

For example. some suppliers might offer a 20% discount when customers pur- 
chase more than 100 units. Other suppliers might offer a 20% discount on 
units in excess of 100.'' 

In the former case the cost function might be discontinuous. as reaching the 
minimum quantity required to gain a given discount (say Q1) might actually 
reduce the overall purchase cost and. as a consequence, holding cost. In other 
words, oddly. the last unit required to  qualify for the discount might have a 
negative marginal cost: Purchasing Q1 units costs less than ordering Q1 - 1 
units. 

Example 4.15 Alpha is a retail company that sells product a. This prod- 
uct is purchased from company Beta. Demand for a is 1.000 units a week. 
Company Beta has a rather complex pricing policy. For orders below 10.000 
units, it charges 4€ per unit: for orders larger than or equal to  10,000 and 
less than 50.000 units it charges 3.75€ per unit: and finally it charges 3.5€ 
per unit for orders of at least 50.000 units. Placing an order costs 500€. The 
holding cost for one week is 1% of the unit cost." Company Alpha wants to 
properly set the purchase quantity from Beta. The price discount is tempting. 
but managers are wondering whether they should be buying very large lots of 
50.000 units. 

point of the  pertaining interval: then we select the  minimum over all of the sub-intervals. If 
we had to minimize a piecewise-concave function (of a single variable). we would use much 
the same strategy: the  only difference would be tha t  the  minimum of a concave function 
would always be one of the  two extreme points of each interval. 
14Notice tha t  in this section we only investigate cases where the unit cost u depends on the  
purchase quantity Q .  Some of the  reasons why a company might give such discounts are 
going to  be investigated in chapter 7. Furthermore. in tha t  chapter other kinds of discount 
are going t o  be investigated. For example; a company might reward customers for the  
overall amount of revenue they generate, rather than  for the  size of each single order. In 
our current framework these pricing policies would be basically irrelevant, as we consider d 
to  be an exogenous variable tha t  logistic managers just t ry  to  forecast. 
"This is basically the logic of taxation on personal income in most Western countries. 
16iXotice tha t  assuming a holding cost given by a fixed percentage of the purchase costs 
implicitly means tha t  we assume tha t  most holding cost are financial in nature. However; 
other costs such as warehousing do not depend on the unit cost of the  item, but they depend 
on its physical features such as volume instead. 
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Fig. 4.12 Overall cost function 

If the unit cost is 4€ per unit, the EOQ formula suggests buying 

J2.500.1,000/ (4 .1%)  = 5,000 units. 

This quantity implies monthly holding and ordering costs for 

= d2 ,500 . 1,000. (4 .1%)  = 200€/month. 

In this case, these are not the only relevant costs. The purchasing cost (cost 
of goods) is not fixed as the unit cost u depends on Q (see figure 4.12). Thus 
the relevant total cost consists on ordering, inventory, and purchasing costs 
and it is 200 €/month + 1,000 unit/month. 4 €/unit = 4,20O€/month. 

In case we want to pay just 3.75€/unit1 the EOQ formula suggests to 
buy J2 . 500. 1,000/ (3.75. 1%) = 5,164 units. Unfortunately, this is not 
consistent with the pricing policy of the supplier Beta. To enjoy the price 
reduction. we must order at  least 10.000 units. This would imply an overall 
ordering cost of 

500 €/order . 1,000 units/month 
10.000 units/order 

= 50€/month. 

and an overall holding cost of 

1 
- .3.75€/unit l%/month. 10.000 units = 187.5 €/month. 
2 

The sum of ordering and holding costs is in this case (237.5€), higher than 
in the former one (200€). since the purchased quantity is far larger than 
the unconstrained optimal one. However, purchasing costs make up for the 
increase in holding costs. They drop by 250€, down to 3750€. Notice that if 
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company Alpha buys 9,999 units it pays 3.996€. whereas the cost of 10.000 
units is 3,750€. Basically, the 10, OOOth unit has a negative price of -246€. 
so buying one additional unit makes saves money. The overall cost drops to 
3.987.5€/month. making this alternative more attractive than the first one. 

This initial result might lead us to believe that buying large quantities 
makes us save money. Let us check whether we can save any more money 
by cutting the price down to 3.5€/unit. In this case the EOQ formula would 
suggest to purchase 5.345 units. well below the minimum quantity required 
to enjoy such a low price. Thus, we need to  purchase 50.000 units: given the 
convexity of the cost function and the requirement to  get the discount, this is 
the best viable option we have. In this case. the ordering cost drops to  

500 €/order . 1,000 units/month 
50,000 units/order 

= 10€/month 

-41~0. purchasing cost drops to 3,50O€/month. However, these savings are 
more than offset by the increase in holding cost that reaches 

1 
- . 3.5 €/unit . l%/month 50.000 units = 875 €/month. 
2 

leading to a total cost of 4,385€/month. making this low unit-cost alternative 
the least attractive for company Alpha. 0 
Concept 4.3 A lower purchase cost of ten zrnplzes a hagher fixed orderang cost 
(e.g.. because we amport f r o m  low cost countrzes). W e  m u s t  carefully manage 
the trade o f  between the varaable purchase cost and the fixed orderang one.  

The case of discounts on marginal quantities is solved by a similar approach, 
which takes into account a few differences: 

0 The overall purchase cost. as a function of the order quantity. is a contin- 
uous piecewise-linear function. with kinky points corresponding to price 
breaks; because of discounts, the slope of the linear pieces is decreasing 
with respect to  order quantity. 

0 The unit holding cost should be evaluated by taking the average unit 
purchase cost into account. 

0 The total cost function is continuous as well. even though not differen- 
tiable for all Q E R. 

4.8 T H E  CASE OF VARIABLE D E M A N D  WITH K N O W N  
VA R I A B I L I TY 

So far. me have studied cases of deterministic and constant demand. In the 
next chapter we discuss the case of uncertain demand. that is unpredictable 
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variability. In this section we illustrate some examples of variable though pre- 
dictable demand. The objective is to show how modeling by mixed-integer 
linear programming, introduced in section B.6.2, can be used in complex con- 
texts. All of these models assume that the planning horizon can be split in 
periods, also known as time buckets. Time buckets are quanta of time: For 
example, if the time bucket is the single week, we never look at  single days or 
single hours. 

The simplest problem is basically a generalization of the EOQ problem 
to the case of deterministically variable demand. We have a product whose 
demand in time bucket t is d t ,  for t = 1.. . . , T .  The objective is to meet 
demand at the minimum cost. We denote by h the unit holding cost and by 
A the fixed ordering cost. just like in the case of the EOQ model: 

m 

where xt is the quantity ordered (and immediately delivered, assuming a zero 
lead time) during time bucket t ,  It is the inventory level at the end of the 
time bucket t ,  and 6t is a binary (i.e., Boolean or 0/1) variable that is set to 
1, if we order during t .  When we order in time bucket t ,  we also pay a fixed 
cost A. 

This model is a simplified version of the lot sizing model proposed in section 
B.6.2. since in this case we have no capacity constraints that create some sort 
of interaction among products. The constant Mt is the typical big-M that we 
use to link continuous variables to  binary ones to model fixed costs. We know 
we do not buy more goods than we need to meet current and future demands. 
so we can set: 

T 

r=t 

This is a mixed-integer linear programming (MILP) model, and apparently 
branch and bound methods are required to solve it. Actually. it can be solved 
very efficiently by exploiting the properties of the optimal solution. This 
analysis, though. is beyond the scope of this book.’’ 

17We can show that the optimal solution is such that  I;-1 . z; = 0, that  is we order only 

when the warehouse is empty. Thus the optimal solution is such that 5: = Ckz d k .  The 
optimal lot size satisfies the needs of the current period and of a given number 7 of future 
periods. The issue is actually finding this number of periods T. The problem can be boiled 
down to finding the shortest-path on a graph. For example, see [l] for a brief but readable 
description. 
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In more complex situations. we actually have to resort to branch and bound 
methods. The first case we show deals with suppliers' selection. 

Example 4.16 Let us consider the case of N products, indexed by i = 

1,. . . , N .  The demand over the next, T time buckets is known to be d i t .  
Products are bought from various suppliers. The suppliers' index is j = 

1. . . . ! J .  Each supplier can sell a subset 1, c { 1 . 2 ,  . . . , iv} of products. 
For each product i we have a set of alternative suppliers Ji c ( 1 .2 ,  . . . . J } .  
Suppliers charge prices cij that  might be different for different products i and 
different suppliers j .  We sell product i at a price p i .  However, the least 
expensive supplier for each product might not be the optimal solution. T4'e 
assume that,  like in example 4.13, there is a fixed cost component Aj we incur 
each time we send an order t,o a supplier j ,  no matter what and how much we 
order. iVe can think of A, as a fixed cost for transportation, which depends 
on tlie geographical distance from the supplier. If an Italian firm soiirces from 
a Chinese supplier, probably the unit cost is low, but the distance increases 
the fixed cost Aj so that only large batches make economic sense. Also, we 
consider another fixed cost aij, which me have to pay when ordering product 
i from supplier j. This fixed cost is smaller than A,. and it can model costs 
for lot inspection to  control both quality and quant'ity of the product. These 
costs might depend on the supplier: For example, a certified supplier might 
reduce these costs, since we might not need to check each and every lot.ls 
Products can be stored in the warehouse for a holding cost hi.'' 

Let us assume that the initial inventory level IZo is given, and that we 
want t,o reach a target inventory level H ,  at  the end of t'he planning horizon 
consist,ing of T time buckets (otherwise the model shows a "border" effect and 
leaves all inventories empty at  t,he end of the planning horizon). The objective 
is to maximize profit, assuming that cust,omers are not willing t'o wait, and 
thus demand cannot be backlogged.). First,, we define decision variables: 

0 xijt 2 0 is the quantity of product i we purchase from supplier j during 
t ,  assuming immediate delivery and defining the variables only for i E 1,; 

0 S j t  E (0, 1) is a binary variable that tells us whether during t we place 
an order to  supplier j :  

0 E (0.1) is a binary variable that tells whether during t we order a 
product i from supplier 3 ;  

181n manufacturing, we face similar issues when we have product families. In this case we 
might incur a relatively large cost when we switch between product families. and a minor 
setup cost/time when we switch among products within the  product family. 
'g.Actually. the  holding cost might depend on the supplier. For the  sake of simplicity we 
neglect the  issue. as it is sometimes done in accounting practice. In case we want to  model 
this appropriately. we shall introduce different inventory variables for products sourced from 
different suppliers. 
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I,t 2 0 is the inventory level of product i at the end of time bucket t :  

z,t 2 0 is the quantity of i sold in period t .  

To link binary variables and continuous ones. we need a “big-Ad” for each 
product in each single period. which gives us the maximum quantity it makes 
sense to purchase.” It is the sum of present plus future demands for the item 
plus the desired ending inventory: 

The resulting model is 

N T  N T  

max Pizit - h i l i t  
i=l t=l i=l t=l 

N T N T J T  

- C C C c i j x i j t  - C C C aijTijt  - A j d j t  
i=l j € J t  t=l i=l j€.?$ t=l j=1 t=l 

(4.13) 

(4.14) 

Just like in the example B.13 from page 573, formulation (4.13) is computa- 
tionally more efficient than the equivalent one: 

2 €Z, 

where 11, I is the cardinality of the set. that is. the number of different 
products the supplier j can supply. 

The model we just discussed might look complex. Actually, through ap- 
propriate reformulation and state-of-the-art software solvers, near-optimal so- 
lutions can be found. Indeed, in real applications the key hurdles are the un- 
certainty on demand data d,t. ill-defined customer priorities, etc., rather than 
CPU time. However, the strength of this modeling approach is flexibility. Let 
us consider a slight variation of the problem. 

20See example B.12 on page 571 
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Example 4.17 In example 4.16 we assumed that the company tries to max- 
imize profit. but it need not meet all demand necessarily. Now, let us assume 
that the company wants to fully meet demand. In this case. the objective is 
to minimize costs since revenues are a constant. Also, we can remove decision 
variable zZt that models the number of units we want to sell. 

Let us assume that the fixed cost A, depends on the transportation cost 
from the supplier 3 .  Also. let us assume that we can use different trucks 
to transport goods from supplier j, just like in section 4.7. For the sake of 
simplicity, let us asbume that we only have two kinds of truck, a small one and 
a large one. The volume and weight capacities of the small truck are denoted 
by Cv and Cbt , respectively (measured, say. in cubic meters and tons). We 
call L', and w, the unit volume and weight of product i. Let us assume that 
the large truck is large enough to transport any amount of goods we might 
reasonably wish. The cost depends on the kind of truck and on the distance 
traveled. Thus we have fixed cost A:') for the small truck and A:') for the 
large truck. For this model we can use the same notations we have introduced 
for the previous one, but we must separate decision variables in two groups 
corresponding to  the two kinds of trucks. We introduce two groups of binary 
variables 6:;) and 6:;) for the small and large trucks respectively. Similarly. 

we have two sets of variables xtJ t  e x , ~ ~ .  Using the same notation as above. 
we can write the model belowz1 

(1) ( 2 )  

21Kotice that the constraint 6:;) + 6:;' 5 1 is actually redundant. Indeed. 111 the case the 
large truck is used. there is no reason whatsoever to  use the small truck as Tvell I t  just 
adds extra fixed costs and thus the model self selects a solution where6;:) + 6;:) 5 1 
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Notice that there is no guarantee that there is a t  least a feasible solution to  
this model. In the case of tight constraints on capacity. we might not be in a 
position to  fully meet demand. In this case we would need a model with slack 
variables like in example B.2 from page 546. 0 

We conclude this chapter by reminding the reader that  we can use linear 
approximations of nonlinear concave functions to model quantity discounts, 
as we have shown in section 2.3. 

REFERENCES 

1. P. Brandimarte and A. Villa. Advanced Models for Manufacturing Sys- 
tems Management. CRC Press, Boca Raton, FL, 1995. 

2. D. Corsten and T. Gruen. Desperately Seeking Shelf Availability: An 
Examination of the Extent, the Causes, and the Efforts to Address Retail 
Out-of-Stocks. International Journal of Retail 63' Distribution Manage- 
ment, 31:605-617, 2003. 

3. N.  DeHoratius, A.J. Slersereau. and L. Schrage. Retail Inventory Man- 
agement when Records Are Inaccurate. Available from web page 
http://faculty.chicagogsb.edu/adam.mersereau/research/, 
filename dehor at ius -mer sere au- s chr age -06 1023. pdf , 2006. 

4. A. Raman, N. DeHoratius, and Z. Ton. The Achilles' Heel of Supply 
Chain Management. Harvard Business Review, May:2-3, 2001. 

5. A. Raman, K. DeHoratius, and Z. Ton. Execution: The Missing Link in 
Retail Operations. California Management Review, 43(3):136-152. 2001. 

6 .  A. Raman and Z. Ton. Operational Execution at Arrow Electronics; case 
9-603-127. Harvard Business School Publishing, Boston, MA; 2003. 

7. S.A. Ross, R.W. Westerfield, and B.D. Jordan. Fundamentals of Corpo- 
rate Finance (6th Ed.). McGraw-Hill, New York, 2003. 

8. R. Verganti. Order Overplanning with Uncertain Lumpy Demand: A Sim- 
plified Theory. International Journal of Production Research, 35:3229- 
3248. 1997. 

9. J.B. Ward. Determining Reorder Points when Demand is Lumpy. Man- 
agement Science, 24:623-632, 1978. 

10. N. Watson. Paper and More, case 9-604-093. Harvard Business School 
Publishing, Boston, MA, 2006. 



REFERENCES 231 

11. G. Zotteri and R. Verganti. Multi-Level Approaches to Denland Alan- 
agement in Complex Environments: An iliialgtical Nodel. Internatzonal 
Journal of Productzon Economacs. 71:221-233. 2001. 



This Page Intentionally Left Blank



Inventory Control: The 
Stochastic Case 

5.1 INTRODUCTION 

The vast majority of distribution systems do not enjoy the benefits of cer- 
tainty. They face several sources of uncertainty: 

0 D e m a n d  uncertainty: In many supply chains, at least a subset of deci- 
sions have to be made before customers place their orders. i.e.. with a 
partial knowledge of future demand. 

0 Uncertainty on delzvery quantztzes: Suppliers might not deliver the quan- 
tity we have ordered, either because they face production problems (e.g.. 
strikes or machine breakdowns) or because a portion of the delivery 
quantity does not fully meet minimum quality standards. 

0 Uncertainty on suppliers' delzvery lead tzme:  Suppliers can be late be- 
cause of production problems. transportation problems. or simply be- 
cause their capacity is overbooked. 

0 Uncertainty on current znventory level in a warehouse: this is due to  
wrong tracking of inflows and outflows (e.g.. think of shrinkage in a 
supermarket). 

Though all sources of uncertainty could be modeled in our analysib. we focus 
on demand uncertainty. which is the most classic and often the main source of 
uncertainty in supply chains. So, unless we specifically mention other sources 
of uncertainty. in the remainder of this chapter we focus on just one source 

233 
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of uncertainty. As to  uncertain lead times. we refer to  [5] and [lo]. As to 
uncertain delivery quantities, see [9]. As to uncertainty on current inventory 
levels. we refer to  [3], [6], [7] ,  and [8]. 

DifFerent kinds o f  uncertainty To better understand the concept of uncer- 
tainty, we should appreciate the various shades of this rather broad concept. 

Uncertaanty on  draws of the random varaable. We can assume we know 
the probability distribution from which the single demand observations 
are drawn. For example, the demand can follow a normal distribution 
with known mean and standard distribution (e.g., a weekly demand with 
a normal distribution, a mean of 100 units. and standard deviation of 10 
units). Under these conditions. the future level of demand is uncertain 
but it is known at least in terms of probability distribution. With this 
knowledge we can compute the probability that demand will fall in a 
given range or will be below a given threshold. In this case. managing 
inventories is like betting at  the casino. We know the odds in advance. 
A good inventory manager, like the bank in a casino, knows that in 
the long run he/she is going to win, though the outcome of each single 
decision might be very uncertain. 

2 .  Uncertaanty on  the parameters of the uncertazn varzable. Under more 
critical conditions we might know the shape of the demand distribution, 
but we might have an imperfect knowledge of its parameters. In this 
case we do not even know the probability distribution of demand from 
which we draw demand observations. This case is more complex than 
the previous one, as we cannot attribute a probability (or probability 
density) to  each of the possible levels of demand. This actually resembles 
bets on sport events. Soccer matches have only three possible outcomes. 
Thus the probability distribution is trinomial. However. the probability 
that F.C. Inter is going to beat A.C. Milan is not known in advance of 
the event. 

Nevertheless, when we know the probability distribution of the unknown 
parameters, the problem boils down to the previous case. We can re- 
sort to the envelopment of the demand distribution. In other words, 
we attribute a probability (density in the case of continuous variables) 
f(zlp) conditional on the vector of parameters p. Also, we assume to 
have a probability distribution g(p) for all possible vectors p (see [l] for 
an example of how this problem can be tackled). 

In this case, the probability density of z can be estimated as the integral 
over all possible values of p of the conditional probability f(x1p) 
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Hence. even when the parameters of the distributions are unknown, if 
we know their distribution we can derive the probability distribution of 
demand and the problem boils down to the previous, simpler case. 

Example 5.1 Let us consider a situation where we have two dices. 
One dice has 6 faces. while the other one has 10 faces. Lye randomly 
generate a draw by the following process. The random variable of in- 
terest is the dice-roll. First we randomly select one of the two dices 
and then roll it. When we start the process. we really do not know the 
probability that we will draw number 2. If the first dice is selected the 
probability of that  event is 1/6, if the second dice is selected the prob- 
ability of that  event is 1/10. So, we know the probability that we draw 
a 2 conditioned on the number of faces of the dice. Also. we know the 
probability that we will select a dice with 6 faces ( l / 2 )  rather than the 
dice with 10 faces (1/2). Using the theorem of total probabilities (see 
section A.2). we can calculate the unconditional probability that we will 
draw a 2.  based on the two conditional probabilities. These are 1/6 in 
the 50% of the cases where the first dice is selected. and 1/10 in the 50% 
of the cases where the second dice is selected. This means that the ( a  
przorz) unconditional probability is 1 / 2 .  1/6 + 1 / 2 .  1/10 = 2/15. The 
same result obviously holds for 1. 3 .  4. 5 .  and 6. On the contrary. things 
are different in the case of 7. 8. 9. and 10. In these cases, the proba- 
bility is zero when the first dice is selected and thus the unconditional 
probability is 1/20. Notice that obviously the sum of all probabilities is 
still 1. 0 

3. Uncertainty o n  the  shape of the  demand  dzstrzbutzon. In this case we 
cannot attribute any probability distribution to  demand (e.g.. we do not 
know whether it is normal. lognormal, uniform. gamma. etc.). Thus we 
do not even know the parameters that  control the distribution (e.g., /* 
and 0 for the normal distribution a and b for the gamma distribution) 
and. in case. what their distribution is. 

Concept 5.1 In a logastac s y s t e m  there  are dzfferent sources of uncertainty 
(demand ,  delzvery quantztaes and lead tzmes.  current  znventory levels) as  uiell 
as  dzfferent kinds of uncertainty, rangang f r o m  uncertaanty on the  value of 
each single demand  draw, t o  the uncertaaizty o n  the  pa rame te r s  of t he  demand  
dzstrzbutaon and.  f inally,  on the shape of t he  demand  dzstrabutzon. 

In this book we analyze only the first case: that is. we assume to have 
a demand distribution and face uncertainty on each single future dram of 
demand. but we assume to know its parameters [though we include the cases 
where we know the probability distribution of the parameters. see equation 

Finally. we shall remind the reader that probability can be interpreted both 
as a frequency of occurrence or as a subjectwe estimate. The second is more 

(5.111. 
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relevant when no objective data are available to estimate probabilities. This 
is very typical of brand new products with no past history whatsoever (see 
section 3.12). 

EfFects o f  uncertainty. Uncertainty, has several consequences for supply chains. 
First, an uncertain demand can lead to  stockouts that in deterministic con- 
ditions can be easily avoided (though actually limited capacity can lead to  
stockouts). 

Example 5.2 Let us consider the demand for fresh bread in a bakery shop 
and let us assume that it is normally distributed with an average of 100 kg 
and a standard deviation of 10 kg. In this case, manufacturing 100 kg of 
bread (i.e.. the expected demand) entails a 50% chance of stockout. The 
demand distribution is symmetric and thus the probability that demand is 
above its expected value is 50% (in symmetric distributions the mean is also 
the median). The baker can reduce the probability of stockout with an extra 
investment in inventories. However, this increases the cost of inventories. 
Also, under the normal distribution assumption, this probability is never zero 
(though from a practical standpoint it might be virtually zero for all relevant 
managerial purposes). 0 

Thus, in order to model and manage inventories under uncertainty. we 
should understand what  happens w h e n  we  experience a stockout. i.e., what 
happens when we run out of inventories. In real contexts, stockouts can have 
various and heterogeneous effects that  often are hard to  capture and measure. 

Example 5.3 In grocery stores a customer can substitute a stocked-out 
product with a substitute. postpone the purchase, leave the store to visit 
another one. and maybe never come back, if the new store meets his/her 
needs. Also, some recent papers (e.g., see [a]) have highlighted that the re- 
action to a stockout really depends on the frequency of stockouts. Somehow 
customers seem to forgive sporadic errors. However, they interpret frequent 
stockout as an advance notice of future stockouts and adapt their buying 
behavior accordingly. 0 

However, inventory management models typically do not investigate this 
rich array of possible situations and just analyze the two extreme scenarios. 

Lost sales assumption.  In the "lost sales" case we assume that unmet de- 
mand is completely lost and thus the customer goes to another supplier 
and does not accept a delayed delivery. 

Backorder  assumption.  In the "backorder" case. unmet demand is back- 
ordered to  the next period: so in this case we assume that customers 
are willing to  wait. We call backorder or backlog the demand not met in 
previous periods we still have to fulfill. 
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These alternative assumptions basically tell us the mechanzcs of a stockout ~ 

that is, they tell us what happens to the inventory system when we run out 
of goods. In the first case. customer just walk away from us. In the second 
case. customers are patient and basically enter a waiting line. 

In most models we assume demand to be stationary and we assume it does 
not depend on the service level we provide. However. in real-life situations, 
low service levels (frequent stockouts) can reduce demand, at least in the long 
run. 

The cost of a stockout In uncertain conditions we can face a stockout. and 
this makes the cost of a stockout a relevant cost. 

The cost of a stockout depends on customers' reactions. In example 5.3. if 
the customer is willing to substitute the stocked-out product with a substitute 
with an equal (or even higher) margin, the cost of a stockout might be small 
or even negative. On the contrary. if the customer faced with a stockout 
leaves the store and never comes back, the cost is substantial (we call this 
cost "customer lifetime value"). 

Once again. inventory models simplify this wide range of possible situations 
and classify them in two categories: 

Cost depends on the  occurrence of n stockout.  lye can model the cost 
of a stockout in several different ways. A first option is to assume that 
the cost of a stockout depends on ihe number of stockouts. and thus 
assume that the occurrence of the stockout is the cost driver. In other 
words, we can assume that the lack of service is a problem p e r  se, small 
or large that it might be. 

Cost depends on the szze of the  stockout.  A second. more frequent as- 
sumption is that the cost of a stockout depends on its size. In other 
words. the stockout of Barilla pasta number 5 in the 500-g package can 
be both a minor or a major issue. In case we stocked out a t  8 p.m. on 
a hronday night and we failed to  meet demand for 10 more units. then 
the stockout is a minor problem. In case we stocked out a t  9 a.m. on 
a Saturday morning and we had to  turn away demand for hundreds of 
units, the cost of the stockout is substantial. Notice that in the former 
case (cost depends on occurrence of stockout) we would have considered 
these two fairly different situations to be equal. Indeed, in both cases a 
stockout has occurred. 

Jl-hile the previous classification tells the mechanics of the inventory sys- 
tem. this classification tell us the economzcs of the inventory system In other 
words this classification tells us what is the economic effect of a stock out. 
Does it depend on the occurrence of a stock out or on its size? 

At first sight. the first option might look odd. However. in many iituations 
it can depict real life quite effectively. Both the former and the latter cost 



238 INVENTORY CONTROL: THE STOCHASTIC CASE 

functions are simplified and stylized models. While in some contexts the latter 
fits better. in other contexts the former performs better. 

Example 5.4 In continuous production systems such as steel plants. start- 
ing the production process involves significant setups. Thus, in these cases. 
we do not care about the duration of the stockout of raw materials or en- 
ergy.' Rather, the occurrence of a stockout is per  se a problem that generates 
additional costs. In recent years Italy. Central Europe and the USA have 
experienced significant blackouts. The interruption of electrical energy was 
the cause of significant costs to restart power plants, the distribution network, 
and other industrial plants. In this case. a lack of supply caused a problem, no 
matter what its duration was. On the contrary, in the case of grocery stores 
the duration of the stockout, the number of upset customers. and the size of 
the product shortage are very relevant pieces of information to tell the cost 
of the stockout. 0 

Parameters o f  the cost function. Once we have chosen appropriate stockout 
cost funct ion,  we shall set its parameters. Thus in both cases we shall answer 
one of the basic. but still among the hardest questions in the field of operations 
management : 

W h a t  is  the cost of a stockout? 

All researchers agree that this is a tough question to answer. In this book we 
do not even try to  generate a complete set of rules or variables to  gauge the 
cost of a stockout. We simply provide a list of variables one might want to 
carefully consider when he/she tries to capture the cost of a stockout. 

0 Cost depends o n  the occurrence of a stockout. In this case we write the 
cost function as the (expected) number of stockouts, times the cost of a 
single stockout p ,  that is, the penalty cost of a single stockout.2 We shall 
capture the effect of a stockout on customer goodwill and any additional 
contractual penalty cost. 

IThis is actually a first. rough cut approximation, as the duration of the stockout might 
matter as well, but still this simplificationcaptures the problem effectively as the occurrence 
of the stockout matters more than its duration. 
2Notice that  we are implicitly assuming that the decision maker is risk neutral, as we are 
simply looking a t  the expected number of stockout and neglect the variance (or standard 
deviation) in the number of stockouts We are going to make such an assumption in all 
stochastic models presented in this book. This is a very reasonable assumption, as these 
are operational level decisions that  are going to  be repeated multiple times over a fairly 
large number of products. Under these circumstances, risk-averse decision makers might 
care about the uncertainty on overall performance of the logistic system (e.g., aggregate 
profit from multiple products). However, they are very likely to be risk neutral a t  the item 
level, since the large number of decisions taken on single items in each single unit of time 
(say week) guarantees that  even risky decisions a t  the single item level are not risky from 
the standpoint of the overall collection of items. 



0 Cost depends on the s u e  of the stockout. In case the cost depends on the 
size of the stockout. we shall capture the demand that we were not able 
to fulfill immediately. Also. we shall estimate the cost of not fulfilling 
one unit of demand for the company: We call this parameter p,, that  
is. the penalty cost for each unit of demand not fulfilled immediately (in 
the backorder case, demand is fulfilled at a later stage, whereas in the 
case of lost sales demand will never be fulfilled and is lost). 

In both cases. various costs are relevant: 

0 Loss of customer goodwzll or  loss of zmage. Stockouts have obvious 
short-term effects: however. very often the long-term ones can be even 
more important, though harder to  capture. For example, frequent stock- 
outs can lead current customers to switch to  a different supplier. These 
costs are crucial but hard to  measure: indeed. it is very hard to figure 
out the reason why a customer has defected our company. Once again 
the grocery retail chain is telling. A customer that has decided to stop 
shopping at  a given supermarket because he/she cannot find the prod- 
uct he/she was looking simply leaves the store. He/she does not tell 
the managers what he/she was looking for and what led him/her to the 
decision to switch to another retailer. The estimate of the customer 
lafetame value is an attempt to capture how much the customer good- 
wzll is worth. This concept captures how much a customer is worth. 
Nevertheless. it still leaves two questions unanswered. First. what is the 
probability that a stockout turns into a lost customer? Second. does the 
upset customer influence the behavior of other potential users? In other 
words. can a stockout experienced by customer A influence the buying 
behavior of customer B? Marketing research suggests that  in some in- 
dustries where customers have rather infrequent purchases, this ..word 
of mouth" effect can be substantial. Retail companies often can hardly 
estimate such cost but try to  retain customers in two ways: 

0 On the one hand they use marketing levers such as promotions or 
advertising. to  increase store loyalty. that  is. they try to induce 
customers to first select the store and only at a second stage, once 
they are in the store. choose the product within the assortment 
offered by the store.3 

'While retailers try to  increase store loyalty, manufacturers try to  increase brand loyalty. In 
other words. they try to push consumers in the opposite direction: they push consumers to 
first select the products and then select a retailer that  carries it. Both actions try to reduce 
the side effect of a stockout. Indeed. the retailer tries t o  convince the customer that  in case 
a product is stocked out or no longer available he/she should select another one from the 
store assortment rather than walk away from the store. Nanufacturers try to  convince the 
consumer that the product is very unique and he/she should move to another store rather 
than switch to another brand. 
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0 Also, retailers often identify sets of "must-have products." i.e., 
products that  often customers consider to  be absolutely necessary. 
For these products, companies offer a very high service level since 
a stockout might cause large damages and lead to  the loss of sev- 
eral customers. Coke, Nutella, and personal hygiene products are 
examples of three items with very high brand loyalty. For these 
products a stockout is very likely to turn into a lost sale or, even 
worse, a lost customer. In other cases, the consumer might not 
care about the single product, but it might care a lot about the 
availability of a product category. In other words, the customer 
might be very willing to  switch among brands in the product cate- 
gory to  the extent that a t  least one option is viable. For example. a 
customer might be very willing to switch to a different brand of low 
fat milk. However, the customer might leave the store to  move to  
another retailer in case no low fat milk is available or, even worse. 
no milk at  all is available. The customer and his/her family want 
to have milk for breakfast and might be willing to  visit another 
store to get it. 

Penaltaes. Final consumers tend to sanction bad vendors that experience 
a stockout with a reduction in purchases. Most industrial customers use 
contractual penalties, as well. In other words, industrial customers tend 
to let the vendors pay for the cost their lack of service creates, even when 
such costs are incurred at the customer's site. The contract makes the 
estimate of the cost of a stockout ( p  orp,) rather simple. though it might 
overlook substantial issues such as customer goodwill (a customer might 
get paid for the lack of service but might still be upset). 

Other variables are relevant only when the cost of the stockout depends on 
its size. 

0 Lost sales. If customers (or a portion of them) decide not to  buy the 
item when it is not available (lost sales). a stockout causes, a t  the very 
least, a loss of margin.4 In other words, had stock been available, it 
would have increased revenue by the unit price of the item. However. 
this additional unit would have added extra variable costs. Thus the 
net effect is the additional margin. that is, the difference between unit 
price and variable costs. 

This is what economists call an opportunity cost. In other words it is 
not a actual cost with a negative (outgoing) cash flow. It is actually 
a lost opportunity to make money and have a positive (incoming) cash 

4By "margin" we mean the difference between the marginal price, (which in linear, i.e. 
standard, contracts equals the unit price) and the marginal cost, that  is. the variable unit 
cost. 



flow. These are not actual costs for the company and generate no nega- 
tive cash flow. This is why these costs are often overlooked. though for 
a rational decision maker there is no factual difference betnren oppor- 
tunity costs and actual ones. Indeed. for a rational decision maker there 
is no difference between an actual cost and the missed opportunity to  
generate revenues and margins. Also. we shall keep in mind that the 
cost of lost sales should account for the margin gained through a sur- 
rogate product. in case customers (or a subset of them) are willing to  
substitute. 

0 Complemen ta ry  products.  Often we tend to measure the cost of a stock- 
out through the margins of the stocked-out product. In some instances. 
however, a customer that cannot find one item might take the whole 
shopping basket to  an alternative supplier. In this case the cost of the 
stockout can be substantial as it might include the loss of niargiri on a 
rather large set of products. 

Example 5.5 Let us consider a consumer that wants to prepare a bar- 
becue for the weekend. In case charcoal is stocked-out in a supermarket, 
the customer is very likely to leave the store right away. Indeed. it would 
not make sense to purchase meat for the grill. which is useless without 
the charcoal. However. estimating these complex effects in a real-life 
context is all but trivial. One should estimate demand of meat as a 
function of the charcoal inventories. This is not impossible to do p e r  se. 
IVhat makes it very hard are several other variables that can influence 
demand for meat. such as season. weather. average price, news on food 
heath (e.g., foot and mouth disease). and so on. Thus, telling the net ef- 
fect of the availability of charcoal from others is not an easy task. JVhat 
makes the problem even more complex is the fact that the impact of the 
availability of one item might depend on the availability of other items. 
Let us assume that a supermarket carries two kinds of charcoal (A and 
B).  The average consumer is very likely to  substitute charcoal A with 
B. in case A is stocked out. If B is available. the cost of the stockout 
for -4 is actually negligible. On the contrary. if B is stocked out as well. 
the cost of the stockout is substantial. as we lose margins on charcoal 
and complementary products such as meat. 0 

Often companies cannot perform such a complex analysis and just study 
so-called shoppzng baskets. that is, they investigate which products tend 
to  be sold together. both to  estimate the cost of a stockout and to design 
an appropriate store 

'A classic example of shopping basket analysis shows tha t  in-depth da ta  analysis can pro- 
vide counterintuitive and interesting insights in customer behavior (as well as supply chain 
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Metrics for service level. In chapter 1. we mentioned that there are several 
kinds of services including tracking information. dependability of deliveries, 
and so on. In this chapter we focus on product availability that is a relevant 
metric for service and is the one most directly impacted by forecasting and 
inventory management policies. 

So we shall define metrics to  measure the availability of products to cap- 
ture the service we are getting from our suppliers and are delivering to our 
customers. 

We start from the single product/single warehouse case in a static environ- 
ment (stationary demand distribution. and stable inventories) to  clearly show 
the logic behind the service level metrics. The concepts we discuss in this 
rather simple case still hold in more complex situations. though they shall be 
properly adapted. In this rather simplistic context we can design two metrics 
of service level that  mirror the two possible costs of the stockout. 

0 Type I Servzce Level. When the cost driver is the occurrence of a stock- 
out. rather than its size, the frequency of a stockout in a given time 
frame (e.g., frequency of a stockout within a week) might be a relevant 
metric of service level. For example one might want to control how of- 
ten a production line is stopped because the plant runs out of a given 
component. This is a purely ex post metric of service. To gauge service 
level ez ante we calculate the probability of a stockout within a given 
time-frame (say a week). For example. let us assume that demand for 
a newspaper a t  a newsstand follows a probability distribution f ( x ) .  If 
the newsvendor purchases N units of the newspaper. he can offer his 
customers a type I service level ( S L I )  equal to  

N 

x=o 

in case of discrete distributions, and 

in case of continuous distributions whose support is R+. 
Type I service level captures the probability of a stockout in a given time 
frame. Thus. comparing the type I service levels of different companies 
might not make sense as it might be measured over different time frames. 
For example, an publisher of newspapers might have a 95% probability 
of completely meeting demand (i.e., avoid any stockout) in a day. A 

behavior). These analyses showed that  customers who buy diapers also tend to buy beers. 
Indeed. parents of newborn kids tend not to go out at night and tend to drink beer at their 
place rather than at trendy pubs. 
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second publisher might have a 90% probability of meeting the demand 
for weekly magazines. This does not mean that the former publisher 
is better than the latter a t  managing the supply chain. To properly 
compare service levels, we should refer service levels to the same given 
time frame. For example. if we assume that the first publisher provides 
the market with the same 95% service level throughout the week. the 
probability that he/she does not incwr a single stockout during the week 
is (0.95)7 = 69.8%. Thus in any given week we are more likely to observe 
a stockout of newspapers than of magazines. 

Type  11 servzce level. Sl;hen the size of the stockout is a relevant mat- 
ter. we shall design a second metric for service levels that  coinpares the 
demand actually met with the overall potential demand. So to express 
such a metric we need to be able to measure the demand that was not 
immediately met. In some contexts. such as industrial custoniers or cat- 
alogues, it is relatively easy to do so as customers tell the company what 
they want. In other industries, such as brick-and-mortar retailing, the 
customer who cannot find the item he/she is looking for leaves the store 
and is very likely not to leave any information about the iteni(s) he/she 
would have purchased had it (they) been available (no information is left 
in the IT systems and very often no information is given to the sales- 
personnel in self-service environments such as most supermarkets). In 
this case too, we have to estimate the service level ex an te  rather than 
just measure it ex post .  
The expected type I1 service level is: 

v +?c 

E[z] - (5 - .Y) f (z )  

x=o 

in the case of discrete demand distribution; 

lA:j(~) dz + l r y b f ( z )  dx E[z] - L:'z - X) f(x) dz 
- S L I I  = - 

k + ; f ( x j  dx E [x] 

(5.5) 
in the case of a continuous demand distribution with support W' 

Clearly. these definitions show that these two metrics are very different and 
mean very different things. Type I service level measures a probability (of not 
stocking out). whereas type I1 service level is a ratio between the demand we 
expect to  serve and the demand we expect to face. So while type I service 



244 INVENTORY CONTROL: THE STOCHASTIC CASE 

Table 5.1 Differences between type I e type I1 service levels 

Period 1 2 3 4 5 6  7 8 9 1 0  
Demand 1 1 1 1 1 1 1 1 1 1  1 
stockout 0 0 0 0 0  1 0 0 0  0 
Demandmet 1 1 1 1 1 2 1 1 1  1 

level measures the percentage of peraods during which we expect no stockouts. 
the second is a percentage of demand  that  we expect to meet. 

Concept 5.2 There  are several dafferent metracs for servace level and we  shall 
carefully znvestzgate t h e  definztaon of a n y  servace level metrac t o  understand 
what  at means  and whether  at can be compared across companaes, busaness 
unats, regaons, or products.  I n  partacular t he  type I servace level measures  the  
probabalaty of a stockout over  a gaven peraod of tame, whale type I I  servace level 
measures the  percentage of demand  m e t  f r o m  stock. 

Also, these definitions gave us a chance to  show how we can "translate" 
equations from the continuous to the discrete case and vice versa. In most 
of the remainder of this book we use continuous variables. The reader can 
derive the equations for the case of discrete distributions easily. In the few 
instances where we use discrete distributions. we explicitly warn the reader. 

Example 5.6 To show that the two metrics are very different. we consider 
a newsstand that faces the demand distribution for a newspaper in table 5.1. 
The newsvendor has decided to carry two copies of the newspaper. 

The newsvendor stocks-out only one day out of ten. So the type I service 
level is 90%. However, the type I1 service level, that is the percentage of 
demand met. is significantly lower. The newsvendor was able to meet demand 
for 11 units out of 20. Thus the type I1 service level is just 55%. 0 

This simple example shows that the two definitions are very different and 
thus jumping to  the conclusion that a company that offers a 70% service level 
is worse than a company that offers a 90% service level might be misleading. 
We must fully understand the metrics used and their meaning to  properly 
compare them. 

T h e  multzperzod case wath backorders. In the multiperiod case with back- 
order, customers are willing to wait for products that are temporarily 
stocked-out. In this case, one might want to  add metrics for late de- 
liveries. We can leverage on tools and concepts from queueing theory. 
Also, backordered customers might change the distribution of inventory 
consumption in the next period and complicate the estimate of type I1 
service level. 
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0 The multaproduct multalocataon case. Alany chains consists of several 
stores and warehouses that carry thousands of items. One niight want 
to have aggregate measures of service level. For example. in a super- 
market chain one might want to know the service level of the yogurt 
sections. In these cases one can USE' weighted averages of service levels 
for the item/location combinations. Obviously one can design various 
averages. For example, one might consider the stockout of any item 
equally important. This means that the stockout of cans of Coke is just 
as important as the stockout of spicy soy sauce (which, in the average 
supermarket. hardly sells a fraction of what Coke can sell). On the 
contrary. if the average accounts for number of units sold. turnover. or 
margins. the picture looks fairly different. In the case of industrial firms 
(i.e.. firms that sell products and services to  other firms). one has to de- 
cide whether the service level is measured for each order rather than for 
each line.6 In the former case, one might consider the order completed 
only when all units of all lines are delivered. So. in general, measuring 
service level for orders rather than for lines is a more conservative mea- 
sure of service level. So the multiproduct and/or multilocatiori problems 
adds new complexity to  the concept of service level. In these cases we 
shall be even more careful when we want to  compare across companies. 
business units, etc.. as numbers might be hardly comparable. 

The remainder of the chapter discusses inventory management problems 
and techniques. We start from the simple case (section 5 . 2 )  involving a single 
product and single period. and then we move to  dynamic problems that are 
introduced in section 5.3 .  LVe discuss (Q.R) policies in section 5.4: section 
5.5 introduces periodic review policies, which are discussed in sections 5.6 and 
5.7. 

5.2 THE NEWSVENDOR PROBLEM 

U5th respect to the classification of inventory problems introduced in section 
4.1, the newsvendor problem is: 

0 single-product. single-period and thus static. single-echelon: 

0 demand is uncertain. though we know its distribution: 

0 the objective is to minimize the (expected) cost of inventories and ser- 
vice: in each period we have to place one order. as inventorics left over 

'Industrial firms place formal orders tha t  consist of various lines. The order typically comes 
form a single customer and requires a single delivery a t  a single point in time. The customer 
might want several different items to  be  delivered at  once. Each single line refers t o  a single 
item and states how many units (of the  item) the customer Lvants to  receive. 
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in the previous period cannot be used any longer (think of newspapers 
left over yesterday); this makes the ordering costs constant and thus 
irrelevant. 

This problem is called the newsvendor problem. as it resembles the problem 
a newsvendor faces each and every morning, when he/she needs to decide 
how many copies of a newspaper he/she wants to purchase from the publisher 
or distributor. In this case. ordering costs do not depend on the purchase 
quantity and thus are an irrelevant variable in the model. The vendor shall 
balance two contrasting objectives. He/she wants to fully meet customers' 
demand, take all the opportunities to  sell the product, and minimize cost of 
service. On the other hand, buying too many units of the newspaper might 
leave some units left over (i.e.. unsold) at the end of the day. 

Formally. we can define two costs: 

Cost of the stockout. In the remainder of this section we consider the 
unit cost of the stock out to basically consist of the loss margin (thus we 
ignore for the sake of simplicity other issues such as customer goodwill 
or the possibility that a customer switches to  a substitute product; our 
results. though, hold in the more general case). So in the remainder of 
this section the unit stockout penalty p ,  is identified with the margin m 
that the newsvendor can gain by selling one unit of the newspaper. sold 
at  a price p to the consumer and bought at a cost u from the distributor 
or the publisher. 

Cost of excess anventoraes that is the units left over at the end of the 
day. The cost is c equal to  the difference between the purchase cost 
u and the salvage value v of the newspaper at  night (i.e., the residual 
value of the product at  night. that is. the amount of money we can get 
back from the publisher, the distributor. or the value of scrap ~ a p e r ) . ~  
Xotice that, in this case. we do not consider the stock holding cost (that 
is. the cost of inventories in the EOQ model), since goods are held for a 
very short period of time and the holding cost is negligible, as compared 
to  the cost of stockouts and of excess inventories. 

70ddly, in most countries the publishers and distributors give the newsvendors full credit 
for the units left unsold at the end of the day. In other words, u = v. As we will see later in 
this section, this situation seems to suggest that  overstocking creates no additional costs. 
So the newsvendor might be tempted to  order very large quantities as excess inventories 
are not expensive to them. Nevertheless experience tells us the this is not the case: since 
often newsvendor run out of newspapers by day-end. So there is an apparent gap between 
what the newsvendor model seems to  suggest and the actual behavior of real newsvendors. 
Are newsvendors stupid or is the model not working properly? Actually, neither hypothesis 
is true. First. 
newsvendors have limited space in the newsstand and thus excess inventories might mess 
up the operations of the store (see section 5.2.1). Also. there are some administrative costs 
associated to receiving and returning the copies left unsold. For example, at  the end of 
the day the newsvendor needs to count the units left unsold and packs them, so that  the 
distributor's truck can pick them up the next morning. 

Indeed, there are other costs associated to very large purchase orders. 
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Table 5.2 Probability distribution 

Units(x) 1 2 3 4 5 6 7 8 9 
Probabilityp(x) 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 

When one faces demand uncertainty, he/she might be tempted to treat the 
problem “as i f”  it were deterministic: that is. he/she might be tempted to 
neglect demand randomness. A simple example can show that this is actually 
not a good idea. 

Example 5.7 A newsvendor faces an uncertain and discrete demand that 
follows the distribution in table 5.2. He/she sells the newspaper for l€, buys 
it at 80 cents. and can give it back to the publisher for 75 cents, in case some 
units are left over a t  the end of the day. 

A first option is to  buy 5 units. as the expected demand is 5 units. Also. 5 
units is the single most likely demand scenario (mode of the distribution). The 
newsvendor does not know his/her profit T ( Q )  in advance, since it depends 
on the random demand. However. he/she can compute the expected profit 
E [ ~ ( 5 ) ]  of this policy: 

9 4 

E [T (5)] = 5 1 ‘ p ( ~ )  + [X . 1 + (5 - X) 0.753 . p ( ~ )  - 5 .  0.8 = 0.75€. 
X = 5  x = l  

iyhen demand is equal to or larger than inventories (5 units), we sell 5 units 
and the revenue is 5 units.l€/unzt = 5€. If the demand is lower than inven- 
tories (5 units). sales equal demand. The cost of this policy is the purchase 
cost of the 5 units, that is, 4 €. This apparently sensible policy turns out to  
be all but optimal. 

To begin with. we can investigate the marginal profit of the 6th unit. that 
is the additional amount of money the newsvendor would make if he/she 
purchased 6 units instead of 5. The 6th unit has a certain cost of 0.8€ and 
an uncertain revenue. It is 1€ if it is sold. while it is 0.75€ when it is left 
over at the end of the day. The 6th unit is going to be sold if demand is at 
the least 6 units. Thus the probability selling it to the final coiisiimer at 1€ 
is 40%, that is P { X  2 6). Hence. the probability that it will be sent back to 
the publisher for 0.75€ is 60%. 

Hence. revenue is uncertain, but we can compute the expected marginal 
revenue of the 6th unit that is 1€.0.4+0.75€.0.6 = 0.85€. In other words. if 
the vendor decides to  carry the 6th unit 011 top of the first 5 units. revenue is 
expected to increase by 0.85€. Given the marginal cost of 0.8€, the marginal 
profit is then 0.05€. The vendor can increase the profit by 0.05€ simply by 
buying an extra unit. This means that the Tendor shall expect a profit of 



248 INVENTORY CONTROL: THE STOCHASTIC CASE 

0.8€ if he/she buys 6 units: 

9 5 

E (T (6)) = C 6 . 1 . p ( ~ )  + C [X . 1 + (6 - Z) '0.751 . P ( Z )  - 6 .0.8 = 0.8 '2. 

0 x=6 x=1 

More generally we can easily show that the objective function is concave. as 
the expected marginal return is decreasing with respect to  the stocking quan- 
tity Q (as the quantity increases, the probability that demand will be high 
enough to sell the Qth unit decreases. and thus marginal revenues decrease) 
while the marginal cost is constant. Hence, also units 1-5 have a positive 
marginal profit. Thus the apparently reasonable decision to buy 5 units is 
suboptimal. One could be tempted to draw the conclusion that when de- 
mand is uncertain, we shall always carry extra inventories, i.e., carry more 
inventories than we expect to sell. This is actually a wrong conclusion. The 
solution depends on the economic parameters of the problem. In some cases 
we over-stock, while in other cases we understock. 

Example 5.8 Let us assume that the publisher in example 5.7 decides that 
for some reason he does not collect unsold copies for 0.75'2 and, thus, the 
salvage value of unsold copies drops to zero. In this case, the marginal revenues 
from the 6th unit would drop to 1€.  40% + 08. 60% = 0.4€, making the 
marginal profit negative (-0.4€) and the 6th unit unprofitable. 

Also. the marginal profit of the 5th unit would be negative as well (-0.2€). 
So we would buy less than 5 units. and would increase the risk of stockouts 
(we would experience a stockout when demand equals or exceeds 5 units). 

0 
Concept 5.3 Uncertaanty changes the fundamentals  of the deczsaon-makang 
problem. Thus ,  chozces that are optamal under  determznzstac condztaons turn 
out  t o  be faarly znappropraate f o r  uncertazn ones. 

This example challenges one of the so-called "golden rules" of logistics: We 
shall have a 100% service level. This very simple example shows that a 100% 
service level can be counterproductive for some companies. The costs of such 
an high service level might exceed the potential benefits. 

As we have seen in the newsvendor example, the optimal inventory and the 
optimal service level depend on the economacs of the company, that  is. costs 
and margins. Increasing the service level without changing the economics is 
an error that can have consequences. 

Concept 5.4 A 100% servzce level zs not  always a recape for success. T h e  
chozce of the optzmal servzce and znventory level depends on  the economzcs of 
the company. 

Once these basic concepts are set, we can move on to  the next stage and 
create a more rigorous model to  answer the question, How many copies of 



THE NEWSVENDOR PROBLEM 249 

the newspaper should the newsvendor buy from the publisher? 'Ile can deal 
with this question in two different ways. though obviously they lead to the 
same answer. A first approach uses economic theory and investigates marginal 
revenue and marginal cost. A second approach leverages on mathenlatics and 
optimization, and it stems from the profit function and its differentiability. 

An economic approach to newsvendor problem lye can interpret the newsven- 
dor problem as a simple economic problem where the newsvendor is just an 
economic agent who tries to maximize its profits. To do so. the newsvendor in- 
vests in inventories when they are expected to  generate profit. whereas he/she 
stops investing when the reward for such an investment is negative. In the 
previous section we have shown that the marginal return of the investment 
in inventories is decreasing. In other words. the expected profit for the first 
unit is higher than the expected profit from the second unit, which in turn 
is higher that the expected profit from the third unit and so on. Indeed, the 
probability of selling unit Q + 1 decreases as Q increases. On the contrary. 
the purchase cost is a linear function of Q and the marginal cost of unsold 
inventories increases (the probability that the item is unsold at the end of the 
day increases). Thus, the profit function is concave. 

This implies that in the case of continuous demand distributions. a local 
maximum of profit function is a global niaximum as well. In the case of dis- 
crete demand distributions we just need to solve the problem in the continuum 
and then choose between the two nearest integer solutions (floor and roof of 
the continuous solution). In the remainder of this section we only deal with 
the continuous distribution problem. as we have shown that discrete problems 
can be easily solved through a continuous relaxation. 

To find the optimal solution in the continuous case. we shall just equal 
marginal returns and marginal costs. In the newsvendor model this means 
that the newsvendor keeps on buying additional copies of the newspaper to 
the point where the marginal return he expects from the additional copy is 
larger than (or equal to) the additional cost he expects to face. Notice that 
in the model we assume the decision maker to  be rzsk neutral. At a first sight 
this might look like a fairly odd assumption. as most decision makers are rask 
adverse. However, if the decision maker repeats the decision each and every 
morning and maybe he/she makes the decision on several newspapers (more 
generally when the decision is repeated multiple times and the i m p x t  of each 
decision is very limited'), even a risk-adverse decision maker tends to  behave 
like a risk-neutral one. 

*This means the we shall not include decisions tha t .  in the case of bad luck. can lead to 
immediate bankruptcy or, in general. irreversible problems. 
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Now we just need to turn these concepts into math. We can write the 
marginal expected profit from the Qth unit as: 

where: 

0 T' (Q) is the expected marginal profit from the Qth unit: 

0 P { X  2 Q }  is the probability that demand X is larger than or equal to 
inventory level Q. 

We do not know the marginal (i.e., additional) profit we gain through the Qth 
unit, but we know that we have a probability P { X  2 Q }  of selling it and if 
we sell it me gain a margin rn. On the contrary. if we cannot sell the Qth unit 
we face a cost c and this scenario has a probability P { X  < Q } ,  since in all 
scenarios where demand is lower than Q. the Qth unit is left unsold. 

Now we can restate equation (5.6) as 

where F (Q) = P { X  5 Q }  is the cumulative distribution function of random 
demand: also note that,  in the continuous case, P { X  5 Q }  = P { X  < Q } .  
Then we set the marginal profit to  zero to find the maximum: it is easy to 
show that for continuous demand distributions we have 

A mathematical approach t o  the Newsvendor Problem We can also write the 
expected profit function and calculate its derivatives to find the maximum. 
The expected profit function is 

E [T ( Q ) ]  = m .  ( l Q x , f ( x )  dz + h + z f ( x )  dz)  - c .  lTQ - x)f(x) dz. 

In other words. the expected profit is equal to the margin we expect to enjoy 
minus the costs of inventories we expected to face. Expected margins are equal 
to the unit margin times the expected number of units sold. i.e.. demand 2 .  

when this is lower than the quantity on handQ. and Q in all other cases. Cost 
of unsold inventories is related to the difference between inventories Q and 
sales: We only have (Q - x) units left over when demand (x) is lower than 
inventories (Q). 

Now we have to  take the first-order derivative of the profit function with 
respect to  Q to maximize it. To do so. we use Leibniz's rule. which is used to 
differentiate integrals. 
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F g  5 I Graphical illustration of Leibiniz's rule. 

Technical note (Leibniz's rule). Consider a function g ( Q ,  x) of two vari- 
ables, and let us define a function of Q through the integral: 

Notice that G(.) does not depend on x. which is used as an integration vari- 
able. In many applications we need the derivative of G ( Q )  and Leibniz's rule 
suggests how to find it. Under suitable technical assumptions. Leibniz's rule 
says that 

The intuition behind Leibniz's rule is that  the integral can vary either 
because the upper endpoint of the integration interval is shifted, or because 
the lower endpoint is shifted (there is a iniiius in the formula b e c ~ s c  if the 
lower endpoint increases. the overall value of the integral nio\es in tlie opposite 
direction if g is positive) or. finally. as the function g ( Q ,  x) is chaiiged. Thi. 
point is illustrated in figure 5.1. 0 
lye can use Leibniz's rule to compute tlie derivatile of the expected profit 
function with respect to  Q: 

dE (7r ( Q ) )  
aQ 
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We can use the above equation to  obtain (5.8). 

derivative: 
Also. we can show that this a maximum by checking the second-order 

Thus, no matter what approach we follow. we still find the same conditions 
for optimality and thus the optimal quantity Q”. 

Once we have derived the optimal condition (5.8). we shall reflect upon the 
process we have followed. 

We have made no explicit assumption on the demand distribution to  
derive equation (5.8); hence, (ruling out pathological cases) the results 
are essentially distribution-free. 

The solution thus suggests that the optimal quantity Q* depends on two 
basic ingredients: 

- First, the optimal solution depends on the economics of the item/firm 
we are planning for. that is the margin m and the cost of excess 
inventories c 

- Second, the demand cumulative distribution F (x) .’ This fairly 
simple model clearly shows that there is no such thing as one 
“right” level of inventories that  fits all companies. Often com- 
panies and managers tend to  ask point blank: We have k units 
in stock (often inventories are measured as number of months of 
supply); is this the right level of inventories? Do we have too much 
inventories? Or maybe too little? Is it more or less than the com- 
petitors? The rather simple newsvendor model is telling us that 
we cannot possibly answer that question without a proper analysis 
of the economics of the company. 

gWhen demand is discrete (in our case, it is expressed by integer numbers), there might 
not be any value 5 that  satisfies equation (5.9). However, given the convexity of the cost 
function (concavityof the profit one), we shall only consider the solutions z1 and 5 2  = sl+l 
that are the two solutions where F ( z )  is just lower than and just greater than &. More 
formally, z1 = m a x s .  s . t .F(s) 5 e, and 2 2  = minz. s . t .F(z)  2 A. m+c 
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0 Also. we notice that equation (5.8) suggests the service leTel that the 
newsvendor should provide. Indeed, F (Q) is the probability that de- 
mand is met completely: thus. it is the type I service level we shall expect 
if me carry Q units. So the newsvendor model suggests an optimal type 
I service level as a function of the economics of the companl and of the 
item. 

The next step is to identify the inventory level Q* that guarantees the 
required type I service level. Obviously. Q" depends on the probability dis- 
tribution of demand. The quantity Q that leads to  a 90% service level in a 
newsstand in a small town is definitely insufficient for a newsstand at a New 
York City railway station. 

JYe need to  identify the demand distribution (and its curnulatile function 
F ( . ) )  to properly set the optimal value C)* as follows 

(5.9) 

Example 5.9 Let us consider a seller of milk fresh from the cow. This 
seller buys fresh milk from the cattlemen in the Alps at  0.5€/liter and sells 
it for l . l€/l i ter  in the city. The product perishes quickly. as it is does not go 
through any thermic or chemical process. Also. the seller wants to sell only 
very fresh milk to support the high-price policy. Milk left over at the end of 
the day is sold to a pig farmer at 0.2€/liter. Demand for milk is a random 
and stationary process that follows a normal distribution with an expected 
value of 100 units/day and standard deviation of 20 units/dal. 

The seller has to decide how many liters he wants to buy from the cat- 
tlemen. As the reader can easily see. this situation closely resembles the 
newsvendor problem: At the end of each single day. all the units are sold 
either to the final consumers a t  a margin m or to the pig fa rmu at a loss 
c. This makes the problem static since the decisions taken at t h e  t have no 
impact whatsoever on successive decisions. 

Thus the milk seller just wants to apply the findings of the newsvendor 
problem. 

In this case. if the product is sold at full price to the end-consumer he 
gains a margin m = 1.1€ - 0 5 8  = 0.6€. whereas if the product is sold to  the 
pig-farmer the seller loses c = 0.5€ - 0.2€ = 0.3€. 

Hence the seller shall seek a service level 

0.6 
0.6 + 0.3 

LSr (Q*) = F (Q*) = -- = 66.6% 

Cp to this stage we have not used any information on the demand distribu- 
tion. Kow. to move forward. we need this information to identif? tlie quantity 
Q* that leads to the optimal service lel-el (66.6%). 

In the case of the normal distribution. we can use tlie standardued normal 
distribution. In the appropriate tables u e can find z bo that F ( Q * )  = 0.666. 
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Fig. 5.2 Solution of the newsvendor problem: F ( Q * )  = 66.6% and normal distribu- 
tion. 

Fig. 5.3 
tion. 

Solution of the newsvendor problem: F ( Q * )  = 66.6% and uniform distribu- 
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Tables suggest that we select z = 0.429. Hence, the seller maximizes expected 
profit by purchasing Q* = 100 + 0.429 20 = 108.58 liters of milk per day. 

Clearly. in the case of different demand distributions (either different shapes 
or different parameters) we would have reached different conclusions (compare 
figure 5.2 with figure 5.3). I] 

Example 5.10 Finally. we want to  show how demand forecasting and in- 
ventory planning can be integrated. We refer back to example 3 15 on page 
149. \Ye consider the inventory planning the newsvendor faces for day 36. 
that is. next Tuesday. He/she needs to make a decision on how many copies 
of the newspaper he/she wants to orders. lye know that he/she expects a 
demand for 37.98 units with a standard deviation of 10.05. Notice that when 
planning inventories we care about the demand uncertainty rather than de- 
mand variability. \Vhen the newsvendor will be faced with the decision on the 
number of units to buy on Sunday, the expected demand will be substantialll- 
higher and thus the quantity will be substantially higher. Nevertheless. when 
planning inventories for Tuesday we really care about the expected demand 
and the uncertainty in demand for Tuesday and are not interested in the vari- 
ability of demand within the week. For the sake of simplicity. let us assume 
we can model the demand distribution as a normal distribution (demand is 
discrete. but given the large number of units involved the approximation by 
a continuous variable is rather reasonable). To find the best decision we have 
to investigate the economics of the newsvendor. The newsvendor sells the 
newspaper for 1€ and buys it for 0.8€ from the editor. At the end of the 
day the newsvendor gets back 0.7€ for each unit left unsold. In this case, the 
margin for the newsvendor is 0.2€. while the cost of inventories is 0.1€. it-e 
can use these economic parameters in equation (5.8) to  derive the optimal 
service level 

0.2 F (Q*)  = = 66.66%. 
0.2 + 0.1 (5.10) 

Finally. we need to use the standard tables for the Normal distribution to find 
the optimal quantity Q* that  satisfies the above equation. The standard tables 
for the normal distribution suggest that  the relevant t for a 66.66 service level 
is z = 0.429. Thus the optimal quantity is Q = 37.98 + 0.43. 10.05 M 42.30. 

I] 

Concept 5.5 D e m a n d  forecastang provades a k e y  anput t o  anventory plannzng. 
B o t h  the  expected demand  and the d e m a n d  uncertaznty are provided by the  
forecastzrig process.  

Once the Newsvendor problem is solved. we can try to read the result 
economically. Equation (5.8) suggests that the service level one shall provide 
increases as the margin increases. As m increases we have a greater and 
greater incentive to buy more units anc accept the risk that they might be 
left unsold. On the contrary. if the cost of inventories left unsold grows, we 
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shall reduce the purchase quantity to  limit the probability that this fairly 
expensive scenario comes true. 

Also. equation (5.8) suggests that  when the margin m is larger than the 
cost of inventories c, we shall achieve a greater than 50% type I service level. 
In the opposite case. it is advisable to reach a less than 50% type I service 
level. 

This simple result shows that it is very unreasonable to assume that all 
companies should seek the same service level. In particular, for many compa- 
nies a 100% service level can be a very silly strategy. 

In the case of symmetric demand distributions, to  gain a service level above 
50%. we shall select an inventory level above the expected demand (a so-called 
overproduce. overbuy, or overstock policy), whereas when the target service 
level is lower than 50% we shall deliberately choose an inventory level below 
the expected demand (a so-called underproduce. underbuy, or understock 
policy). 

The newsvendor problem is not just a powerful prescriptive tool, but also 
an interesting interpretative tool can help us read economic behaviors that at 
first sight might look odd. 

Example 5.11 A first application of the newsvendor problem is apparel 
products with a high fashion content. We know very well that  retailers in this 
industry have a fair amount of products left over at the end of the season. In 
the Western world the winter selling season peaks at Christmas. Most retailers 
at the beginning of each year “discover” that units bought for the previous 
Christmas season were excessive and there are left over goods that shall be 
liquidated through a sale. What is really surprising is that this happens year 
after year and retailers seem not to be able to adjust their purchase quantities 
to reduce the amount of goods sold at  a discount. 

A first simplistic reading of the phenomenon is that  apparel retailers are 
just optimistic by nature and tend to overestimate demand for almost all 
products they sell. 

Actually, this has more to do with economic incentives to overstock than 
with forecasting. Apparel goods are often manufactured in the Far East and 
thus have rather long lead times because of both relatively limited respon- 
siveness and long transportation lead time to major Western markets ( 3  to 4 
weeks to transport goods via ship to  Europe). These products are sold over 
a relatively short period of time (one season at maximum). So many com- 
panies only place one order for the whole season to Asian suppliers (though 
there is just one advance order we might have multiple deliveries - see chap- 
ter 4).1° Therefore. the purchase planning for fashion products resembles the 

‘‘Kotice that t o  judge whether the company is in a position to  place more than one order 
and thus adjust purchases to  meet demand, we shall compare the time it takes to read early 
demand - i.e.. the amount of time to  collect a statistic on demand that significantlyimproves 
accuracy over forecasts generated before the beginning of the season - and supplier’s lead 
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newsvendor problem. Before we start selling. the inventory quantit>- is set. 
Later we try to  sell the product a t  full price and finally we get rid of left over 
inventories (excess inventories) just like in the case of the newsLendor So the 
structure of the problem is exactly the same, though products are different, 
lead times are different, product life cycle is different aiid the means to get rid 
of excess products are different (returns vs. end-of-season sale). Companies 
in the fashion apparel industry enjoy fairly large margins. illany small stores 
have a 100% markup. i.e.. when they buy an item for loo€. they sell it for 
200€. Cost of inventories is rather limited: Though end-of-season discounts 
are significant the cost of inventories is significantly below the margin of loo€. 
Thus retailers offer a very high service level. For example. consider a product 
purchased for loo€. The retailer adds transportation and handling costs for 
additional 20€. The full price is 200€ while the sale price (so-called salvage 
value. i.e.. the value of the product after the end of the selling season) is 110E 
In this case the optimal service level is 

200 - 100 - 20 
= 88.9%. 

(200 - 100 - 20) + (100 t 20 - 110) 

This means that. for any product with these economics, it is advisable to have 
a 88.9% probability of not stocking out. i.e.> a 88.9% probabilitj that some 
units will be left over at the end of the season and only a small probabiliti- 
11.1% of selling-out the item before the end of the full-price season (with con- 
tinuous distributions the probability that demand perfectly matches supplj 
is zero). Thus the Newsvendor problem provides a very clear reading of an 
apparently odd behavior. 0 

Example 5.12 The above example might lead us to  believe that in real-life 
situations. companies tend to over-stock. A counterexample helps us under- 
stand that this is not actually the case. Italians like to  eat fresh bread and 
thus typically buy fresh bread daily from small bakery shops that bake their 
own bread. Bakers typically bake bread once a day (the production process 
is very long and they start preparing bread as early as 2 a.m.). So before 
the sun rises. the baker makes the production decision a few hours before the 
store opens and he/she can start selling. This is exactly what happens to 
the newsvendor. All Italian consumers know very well that at a few minutes 
before the bakery store closes the vast inajority of bakers run out of most 
kinds of bread. 

A first reading of this behavior is thiPt bakers are pessimistic by nature 
and tend to underestimate potential demand. On the contrary. theie retailers 
know their business ver? well. They know that a piece of bread \old for 50 
cents has a relatively high cost: let us assume a \ariable cost of 40 cents for 

time with the product life cycle. In the case of apparel goods imported fromi Asia. we often 
have a limited ability to react and thus the  problem is a static one. though i n  the case of 
multiple deliveries and significant holding costs. it can be a niultiperiod problem. 
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raw materials and energy. Also, bread unsold at  the end of the day has a 
very low value. It can either be turned into dry grated bread, frozen at  a 
significant cost, or sold as food for animals. Let us assume that the salvage 
value of a piece of bread is 10 cents. Under our simple assumptions, the baker 
shall seek a type I service level of 

30 - 25 
(30 - 25) + (25 - 10) 

= 25%. 

Thus. the baker shall run out of bread three days out of four. Again, the 
newsvendor problem helps us make sense of an apparently odd behavior that 
is actually economically sound. Notice that here we do not argue that mom 
and pop bakers in Italy do their math an optimize the Newsvendor problem. 
Actually most of them make no formal calculation to  determine the production 
quantity. So. 
they experience both stockouts and excess inventories and they immediately 
understand that the cost of a stockout is smaller than the cost of excess 
inventories. Therefore, given that they repeat the decision over and over 
again, they can adjust their stocking policy over time and get the right balance 
empirically. l1 Unfortunately, not all businesses enjoy this opportunity. Thus, 
it would be advisable to  understand the newsvendor model and get it right 
the first time. 

However. they face the same decision each and every day. 

0 

Example 5.13 In our examples we have compared two different product 
categories. Now we want to  compare the service level that  different companies 
offer on a given product category. In most large cities, one can hardly find 
fresh fish in a fish shop late in the afternoon. On the contrary. if one enters 
the best fish restaurant in town, say at  10 p.m. one is very likely to find 
exactly the kind of fish he/she wants. So one might wonder why one cannot 
find fresh fish in the afternoon in a shop while in the same town one can find 
fish a few hours later in a restaurant. 

Again we can find the right solution t o  this puzzle by looking at margins. 
The margins of a good restaurant are usually far higher than those of a shop. 
So the restaurant is willing to  overbuy so that it can meet the demand from 
an occasional customer late at night. On the contrary. the fish shop tends 
not to overbuy. as the amount of money it makes does not justify the risk of 
having fishes left over at the end of the day. 

So. quite interestingly, two stores with the same upstream supply chain 
(they are very likely to buy the fish from the same distributors or fisherman) 
have very different inventory policies. 0 

llInterestingly, some bakers started to offer discounts between 7 p.m. and closing time to 
get rid of the excess inventories and increase the salvage value. This enables these bakers 
to  offer a higher service level. 
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5.2.1 Extensions of the newsvendor problem 

The newsvendor problems can be extended in several different w7ays. In this 
book we consider two extensions: 

0 Multi-item newsvendor problem 

0 Two-period newsvendor problem 

Multi-item newsvendor problem. The basic newsvendor problem considers only 
one product. Notice that a single-item problem can be applied to  companies 
with man> items that are independent (e.g.. no complementarity or substi- 
tution on the demand side, no supply or budget constraint on the resource 
side). In this case a multi-item problem is just the collection of single-item 
problems. 

On the contrary, when the various items somehow interact. the problem 
becomes more complex. Here we only investigate the case of items that share 
common resources. These common resources constrain the optimal quantity 
of single items. Such constraints can stern from various issues ranging from 
space available on the shelves in stores. to limited production capacity, limited 
budget for a product category, etc. No matter what is causing the constraint, 
we assume we can write it as an upper bound on the total quantity for the I 
products: 

s = l  

where rz  is the amount of the limited common resource consumed by one unit 
of item i, R is the available amount of the comnion resource. and Qz is the 
quantity of item i we decide to stock. l l e  want to maximize the profit of 
the I products in our assortment. Thus we can restate the profit function as 
fol1on.s: 

lye are assuming that the profit functions of the I items are independent In 
this case "independent" has nothing to do with statzstical independence: we 
may write the function in this separable and additive form. since there is no 
interaction either on the demand side (e.g.. no substitution or complementar- 
ity) or on the cost side (no joint economies of scale). 

In this case. we can use Lagrangian multipliers to find the optimal solution. 
lye define the Lagrangian function 
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Note that the sign in the Lagrangian function depends on the fact that we are 
maxamazzng the objective function subject to a budget constraint (see section 
B.4.1). 

Notice that we have an inequality and that we cannot simply assume that 
the constraint is active (i.e., the equality is verified) for the optimal solution 
(contrast this situation with the multi-item EOQ problem). Thus, we shall 
refer to Kuhn-Tucker conditions (see theorem B.6 on page 558). The multi- 
plier is bound to be positive and the complementary slackness condition must 
hold as well. This condition simply states that  there are two possible cases: 

1. The constraint is not active, that is, the common resource is actually 
not fully utilized as it is actually abundant: in this case the multiplier 
is zero. 

2. The multiplier is strictly greater than zero and the constraint is active 
and thus it can be treated as an equality constraint. 

In the former case the constraint is not active and thus we shall just set X = 0 
in the condition below. In this case the optimal solution is just the solution of 
the single-item unconstrained newsvendor problem, since the only constraint 
is basically irrelevant. 

In the latter case the optimal conditions are 

- X . r ,  - 8E (rt (&,)I - d h  (Q1 ..... Q,, ... % Q I ,  A) 

8QZ. 
m, . (1 - F, (Qz))  - c, . F, (Q,)  - A .  T,  = 0 Vz; - - 

8 Q 2  

hence 

I 

C Q i  . ri = R. 

(5.11) 

(5.12) 
2 = 1  

Once we have found the solution, it is interesting to  read the economic message 
the mathematical solution is sending us. Optimality conditions suggest that 
if the budget constraint is binding, the resource may have a positive shadow 
price A. Given this shadow price. the margin (profitability) of each product 
should account for the opportunity cost of the shared resource. For example, 
we should consider the cost of the shelf space used by each unit of the product, 
or the cost of the limited production capacity consumed. etc. 

Example 5.14 Let us consider a product with a price of loo€, a purchase 
cost of 60€, and a salvage value of 40€. Let us assume that the production of 
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one unit consumes 1 unit of production capacity that could be otherwise be 
employed for lo€. A first option to  solve the problem is to  use the findings 
of the basic single-item newsvendor problem. This suggests that we should 
reach a 4o - - 66.6% service level. However, this approach might lead 
us to  overuse the limited production capacity that could be effectively used 
otherwise as we overlook the value of the limited capacity. So. we can be a 
little bit more sophisticated and account for the consumption of the valuable 
capacity. If we use one unit of capacity to  manufacture one unit of the product. 
we might gain a 40€ margin. However. to do so we give up a 10€ margin we 
could have gained by using the capacity differently. Hence. if we account for 
the capacity consumed, the margin we can hope to gain with one additional 
unit is 30€. 

Cost of inventories, too, shall account for the opportunity cost of the valu- 
able capacity. The cost of inventories is the difference between the purchase 
cost (60€) and the salvage cost (40€). Also, we should consider the opportu- 
nity cost of capacity. In other words, this product has not only a 60€ direct 
cost but also the cost of capacity that could have generated a profit of lo€.  
had it been employed differently. So manufacturing a unit that is then left 
unsold at  the end of the period implies direct costs for 20€ plus 10€ we could 
have gained had we used the capacity to  manufacture other products. So the 
total cost of inventories left unsold is 30€. 

So if we restate the solution of the newsvendor problem to account for the 
cost of capacity rather than using just the direct margin m, and direct cost 
of inventories c,, we end up writing equation (5.11). 

In other words we shall provide a - = 50% type I service level. This is 
exactly what equation (5.11) suggests to do: -, where X = 10 is the unit 
cost of capacity and T ,  = 1 is the consumption of capacity to manufacture one 
unit of the product. 0 

The Lagrangian multipliers’ method uses exactly this logic. Hom-ever, there 
is a significant difference: The Lagrangian multipliers find the optimal value 
for A. that  is, the opportunity cost of the shared resource. So Lagrangian 
multipliers do not require the value of the shared resource as an input. Indeed, 
the shadow price of the resource (i.e.. the. opportunity cost) is endogenous to 
the multi-item problem. as it depends on the stocking quantity of the whole set 
of products. their consumption of the shared resource, and their margins. For 
example. if products are produced in limited quantities. the capacity might 
be abundant and basically have a zero value. On the contrary. if products are 
in high demand and have large margins. the opportunity cost of capacity is 
relatively large. 

So far we have just derived optimality conditions. In other words. had we 
found the optimal solution, it would satisfy these conditions. Now we want 
to design an algorithm to find an optimal solution: 

1. X = 0. if the solution satisfies the constraint. then stop: otherwise pro- 
ceed. 
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2 .  If the current solution violates the constraint, increase the opportunity 
cost of capacity A: otherwise, reduce it (while still keeping it positive). 

3. Calculate optimal quantities Q, with equation (5.11). 

4. If the constraint is satisfied with a given tolerance. stop: otherwise goto 
2 .  

This solution process identifies an optimal solution simply because it checks 
first whether the unconstrained optimal solution is feasible and we can imme- 
diately stop. If this is not the case, we try to  identify a price X for the shared 
resource in such a way that it can be fully utilized (100% utilization rate) and 
efficiently allocated among the I products. A too-low opportunity cost X leads 
to an excessive utilization of the shared resource and thus we shall increase 
it. On the contrary. a too-high opportunity cost X leads us to  underutilize 
capacity. Thus it is convenient to use capacity utilization to capture whether 
X is too high or too low. 

Finally, it is interesting to  discuss the special case of products that share 
the same margins m,. cost of inventories c,, and consumption of the common 
resource r,. In this case. the optimal solution is to  give all products exactly 
the same service level. Once again math suggests a solution with a clear 
economic message: If we have two identical products and a limited capacity 
to  manufacture or purchase them, why should we provide a higher service 
level for one rather than the other? A higher type I service level means that 
we have a lower probability of selling the last (marginal) unit and a higher 
probability (just equal to  the service level) of not selling the last unit. A simple 
re-allocation of capacity from the higher service level product to  the lower 
service level one increases the chances of selling the last unit manufactured. 
Clearly. this increases the expected profit. 

Also. notice that the same reasoning applies to the case where margins mL3 
inventory costs c, and consumption of the shared resource r,, though not equal 
across products. are proportional. Indeed, if product 1 has 50% of the margins 
and of the inventory costs of product 2 (ml  = 0.5 .  m2 and c1 = 0.5 . ca) and 
it also consumes 50% less of the shared resource ( T I  = 0.5 . r2) ,  then basically 
one unit of item 1 is equivalent to 0.5 units of item 2 .  So. also in this case we 
should provide the same type I service level for all products.” 

I2Notice that in the case of discrete demand we might not be in a position to reach exactly 
the same service level on all products. One possible way out is to allocate the limited 
capacity to the product that  has the largest expected profit. A description of a greedy 
heuristic might be 

C = R  

Qz = O  Va 

0, = 1 Va 

DO until c,’=, 0, = o 
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Table 5.3 Data for multi-item newsvendor problem 

Product A B C D E 

Selling price 100 130 170 80 80 
Purchase cost 60 70 80 50 50 
Salvage value 40 50 60 45 45 
Expected demand 1000 500 500 1500 2000 
Standard deviation 250 300 350 100 350 

Table 5.4 Unconstrained solution to  t h e  multi-item newsvendor problem 

Product A B C D E 

Optimal service level 0.667 0.75 0.818 0.857 0.857 
Optimal quantity 1108 702 818 1607 2374 
Optimal purchase cost 66480 49140 65440 80350 118700 

Example 5.15 Let us consider a buyer in the fashion business. The com- 
pany has long lead times, so the buyer only buys once in the season. The 
buyer manages a section of the company's assortment. say women's parkas. 
In the assortment we have five products. Table 5 . 3  shows selling price, pur- 
chase cost. and salvage value for the five products in the assortment. Table 
5 . 3  also shows expected demand for the season and its standard deviation. 
Let us assume that the buyer has a limited budget and can only purchase 
products for 330K€. 

Tl-ith the data  in table 5 . 3  we can derive the optimal and unconstrained 
purchase plan that is described in table 5.4. 

a Find 

3 = argmax, { [(I - F ( Q ,  + 1)) m, - F ( Q ,  + I) . c,] 
1"t 

a If (1 - F ( Q 3  + 1)) m3 - F ( Q ,  + 1) c3 <: 0 then stop 

a If r3 > C then 0, = 0 else 

QJ = Q 3 i l  

a Yext 

In this process we basically allocate the limited capacity R to  all products. 0, are Boolean 
variables tha t  capture whether we are still allocating the capacity t o  product i or we stopped 
either because no additional unit fits in the  limited capacity available or because adding an  
extra unit is no longer profitable. 
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Table 5.5 Optimal constrained solution to  the multi-item newsvendor problem 

Product A B C D E 

Service level 0.470 0.578 0.675 0.576 0.576 

Quantity 981 559 659 1519 2067 

Purchase cost 58860 39130 52720 75950 103350 

Constr.Optimum 
Unconstr. 0 pti mum 

0.89 0.80 0.81 0.94 0.87 

Table 5.4 provides us with several insights. Interestingly, different products 
have different target inventories. First. products D and E have the highest 
service level since they have good margins (30€) and a very low risk of ob- 
solescence ( 5 € ) .  Though these two products share the same economics and 
thus the same service level, the stocking quantity of product E is higher than 
the stocking quantity for D since E has both a higher uncertainty (350 vs. 
100) and a higher demand expectation (2000 vs. 1500). At the other extreme 
of the spectrum, product A has a relatively high cost of inventories (20€ = 
6 0 8  - 40€) as compared to the margin (40€ = 100€ -60€). Understand- 
ably, product A has the lowest service level and we produce just a few units 
more than we expect to  sell (108 vs. 304 for E). So we can see that different 
products have different stocking quantities according to their economics and 
demand distributions. So these results are very consistent with the findings of 
the basic newsvendor problem. Unfortunately, this optimal plan is infeasible 
because the total purchase cost is 38011042. which is well above our budget 
of 330K€. This means that we have an opportunity cost for the budget and 
should look for a shadow price to  give the planners of the five items an incen- 
tive to reduce the stocking quantity. In our problem, the purchase costs of 
the items represent the consumption of scarce resources rZ. Thus our solution 
should tend to reduce the production quantity. ceteras parzbus, of those items 
with a large purchase cost. The optimal solution is displayed in table 5.5. We 
can find the optimal solution below with A *  = 0.197. What does this mean? 
Basically, we would be willing to invest up to 0.1978 for one additional euro 
of budget. So the optimal value A* = 0.197 is not only useful to  find the 
optimal allocation of the limited budget, it is also a valuable mean to judge 
how much we are willing to  spend to move (marginally) our constraint. When 
we apply this optimum level of A. we can find the optimal solution displayed 
in table 5 . 5 .  

Now let us try to make sense of this constrained solution. In particular 
the analysis of the last line of the table is telling. It is the ratio between the 
constrained solution and the unconstrained one. This ratio basically tells us 
the extent to which the constrained solution differs from the unconstrained 
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one. The closer the ratio is to  1, the more the two solutions are similar, the 
closer to  0 the more the two solutions differ. The first relevant observation is 
that we decrease the stocking quantity of all five products to meet the budget. 
Howver. we do not reduce the stocking quantities of all items proportionally. 
FYhile we reduce the stocking quantity of item D by roughly 6%. we cut the 
inventories of item B by roughly 20%. Jt-hy do we do that? Also. the service 
level on item A is below 50%. while the service level for item C is still 67.5% 
(notice that while in the previous case D and E had a higher service level than 
C. in the constrained solution it is just the opposite). 

M'e actually tend to  decrease the stocking quantity of products that are 
relatively uncertain (compare product E with product D).  as we are not milling 
to give up a production that is relatively safe: that is. we are quite sure we 
are going to sell (the reader might want to reduce the uncertainty. that is 
standard deviation. of item D to zero and repeat the above exercise: In this 
case the stocking quantity of D is not affected by the budget allocation). Also. 
we tend to reduce more significantly the stocking quantity of expensive items 
(see the ratio for products B and C),  since reducing the stocking quantity for 
these two expensive items is a very effective mean to  cut the total purchase 
cost. If we reduce the stocking quantity bv one unit of B and one unit of C we 
save as much money (150'2) as we save when we reduce the stocking quantity 
of D (or E) by three units. A reduction in the stocking quantity of B and C 
is 50% more effective than the reduction in the stocking quantity of D or E. 
As we can see. the multi-item problem allocates capacity in a rather brilliant 
way according to  the features of the products. 0 

Two-period newsvendor problem Up to this stage. we have investigated the 
classic Kewsvendor problem in a single-period context. In the next sections we 
are going to discuss dynamic problems where product life cycle is so long that 
we can neglect end-of-life in our planning problem. The two-period newsven- 
dor problem is an intermediate situation between these two extremes. 

Let us consider a product with uncertain demand and a rather short life 
cycle that makes stock holding costs relatively irrelevant, like in the case of the 
newsvendor problem. However, unlike in the newsvendor problem, we assume 
that we can replenish the product during its life cycle. JYe assume we can 
observe the initial pattern of demand (set section 3.12.3) update and improve 
our forecast and then place a second order that is going to  be delivered before 
the end of the season. as figure 3.4 show.  

So according to  the classification of inbentory problems proposed in section 
4.1 the two-period newsvendor problem is 

0 single-product. single-echelon. and multistage, that is dynamic; 

0 demand is uncertain, though we know its distribution: 

0 the objective is to minimize the cost of inventories and service: for the 
sake of simplicity we assume we always place two orders. so we neglect 



266 lNVENTORY CONTROL: THE STOCHASTIC CASE 

second oeriod 

first period 
4 

start of selling season end of selling season 
I I I 

I t3 

L _ _  _ _ _ _  _ - _ _  _ _ I  L-- _ _ _ _ _  _ _ _ _ _  I 
first order first delivery second order seoond delivery 

Fig. 5.4 Timeline for the two-stage Kewsvendor problem. 

the possibility of making just one order at the beginning of the season 
to save fixed ordering costs (note that this is a fairly attractive strategy 
for products with a relatively low uncertainty whereas it is definitely 
not a good option for very uncertain products). 

Example 5.16 Some fashion companies can replenish their products during 
the season as they can enjoy short enough lead times. For example. in the 
case of products for the spring-summer collection, retailers can place two 
orders: One to  be delivered at the beginning of the selling season. The second 
is placed once some sales are observed, but early enough for products to  be 
delivered by (say) early May (any delivery beyond this deadline would be too 
late and the chances of selling the units would be too low). 0 

In these situations we can make two decisions: 

0 First, we place the znztzal order that  is delivered at the beginning of the 
product life cycle. 

0 Second. we observe initial demand and place a second order that  is 
delivered before the end of the product life cycle. Hence, the problem 
is two-stage. not only two-period. 

Given this situation, we call the time interval between the beginning of the 
product life cycle and the second delivery f i rs t  perzod. We call second peraod 
the time interval between the placement of the second order and the end of 
the product life cycle. Figure 5.4 shows that these two periods overlap. 

The second order. The decision on the second order resembles the clas- 
sic newsvendor problem. 13The optimal quantity shall balance (i) the cost of 
stockouts in case demand exceeds inventories and (ii) the cost of inventories 
in case goods are left over a t  the end of the season. The only one difference 

'3iXotice tha t  this holds when the LT is very short or when demand is backordered. in case 
of stockouts. In case of long LT and lost sales, we should account for any sales we might 
lose before the second delivery. 
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between this case and the basic newsvendor problem is that when we make 
this decision we might have some inventories on hand (in case we have not 
completely sold out the first lot Q I ) .  This is actually a marginal difference. 
\Ye shall simply subtract the quantity on hand (i.e% the quantity frotn the first 
order not sold as yet) from the optimal quantity. When inventories on hand 
exceed the optimal quantity. we simply place no additional order. 

Example 5.17 Let us consider a retailer that sells Christmas cakes and 
places two orders in a season. The decision on the last delivery is made on 
December 1st. On December ls t ,  700 cakes are on hand. Given the current 
demand trend. we expect a demand for 1000 units by season end. Demand 
is normally distributed and has a standard deviation of 200 units. Christmas 
cakes cost 1€ and are sold at  a full price of 5'2. After the end of the season 
they are sold for 0 . E  

Given these data,  we shall reach a & = 95.24% service level. as the 
newsvendor problem suggests. To reach that target we need 1000+~(95.24%).  
200 = 1000 + 1.67. 200 = 1334 units; 700 of these 1334 unit are already on 
hand. Thus, we shall place an order for 634 (1334 - 700) additional units. 
Had we had more than 1334 units. we would have chosen to  order zero units 
or sell some units to another retailer. in case this is a viable option. 0 

The initial order.14 The first order might resemble the newsvendor problem. 
but actually we have a second chance to  purchase products and this might 
lead us to be slightly more conservative. since we can have a second chance 
to increase inventories in case demand happens to be higher than we initially 
expected. JVhen we set the initial purchase quantity. we face two risks: 

0 The risk that inventories are insufficient and a stockout occurs before 
the second order is delivered. Thus when we estimate the cost of the 
stockout we shall compare the stocking quantity with the demand over 
the first period. Indeed. demand after the first period can be met by 
the second purchase order delivered in t 2 .  

0 In this scenario the cost of holding inventories is relatively negligible and 
thus we shall focus on the cost of excess inventories a t  the end on the 
season. Thus to capture this cost we shall compare initial inventories to 
the demand during the whole life cycle of the product ( t o  - f 3 ) .  

JVe identify the variables that refer t o  the initial period ( t o  - t l )  with 
subscript I .  while me identify the variables that refer to the whole product 

I4\Ve emphasize that  the approach we describe here is actually a reasonable solution heuris- 
tic. Among other things which could complicate the problem. we are not considering issues 
related to correlation between the demand in the two periods: we refer the reader t o  [4] for 
a full treatment. 
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life cycle ( t o  - t 3 )  with subscript T .  Thus the cost of inventories and cost of 
stockout are: 

c,, = m .  L'm (x - Q I )  f d I  (x)dx. 

Notice that the cost of inventories depends on the demand for the whole selling 
period, since products lose value only at  the end of the '(season." In our 
example. we have no fixed costs or minimum order size (these are common 
issues in real-life problems) and we have no stock holding costs (which in 
real-life problems are actually negligible). This makes the purchase quantity 
bought in the initial order as expensive as the quantity purchased in the 
second order. However, postponing part of the purchases enables us to observe 
early demand. This reduces uncertainty and thus reduces mismatches between 
supply and demand. 

So what distinguishes this problem from the basic newsvendor problem is 
that  the two probability distributions refer to  different time frames. However. 
both can be differentiated with respect to the purchase quantity & I .  Using 
Leibniz's rule we can show that 

= c .  FdT ( Q I )  - rn. [l - Fdr (Q1)]  = 0. (5.13) 

These are conditions for optimality; before we try to  use them to find a 
solution. we want to make sense of them and try to understand what they 
are saying. Equation (5.13) suggests that  an increase in the initial purchase 
quantity &I increases the cost of inventories in case the last unit & I  is left 
unsold at the end of the season (this scenario has a probability FdT(QI) and 
a cost c). An increase in Q I  also reduces the cost of the stockout in the first 
period of the season, when demand exceeds inventories (this scenario has a 
probability [1 - FdI ( Q I ) ]  and a cost m),  we keep on increasing the stocking 
quantity to the point where the expected savings on the cost of lost sales in 
the first part of the season are greater or equal to the additional expected 
costs for excess inventories a t  the end of the selling season. 

Concept 5.6 When plannang short lzfe cycle products wath more than one 
delaverzes the first delavery shall trade-off two rasks. On  the one hand, we 
want to order enough unzts to meet demand up to  the next delzvery (even an 
scenarzos where demand as hagher than we expected) . O n  the other hand, we 
want to make sure that the first delavery as not too hagh, not to leave some 
goods left over at the end of the season (even an scenaraos where demand as 
lower than we had expected). 
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JVe cannot find the optimal quantity &; in closed form unless we specify 
the demand distribution for the demand in the first period and in the whole 
season. Once the two demand distributions are identified. we can find the 
optimal solution through a search procedure to find the value of QI that  
satisfies equation (5.13). The search is rather simple. As Q I  increases. the 
cost of excess inventories c .  FdT (QI) increases. while the cost of lost sales m . 
(1 - F d I ( Q ~ ) )  decreases. Thus the left-hand side of equation (5.13) decreases 
in Q I . I 5  

5.3 MULTI-PERIOD PROBLEMS 

In the previous sections we have discussed the newsvendor problem (and some 
extensions of i t) .  The newsvendor problem is a static (single stage) and single 
period problem. as decisions at time t have no influence whatsoever on suc- 
cessive periods. Indeed. inventories left over at the end of period t are just 
sold at  salvage value. In this section we discuss the more common case of 
dynamic problems (actually. in the last subsection we have discussed a first 
dynamic problem) with multiple periods. In these problems. decisions at time 
t have an impact on decisions and performance at  time t + 1. All planning 
problems where the life cycle exceeds the replenishment lead time (plus the 
time required to read demand trends) are dynamic. However. in the following 
sections we only investigate those where the life cycle is so long that it can be 
considered to be infinite. In these cases. we can neglect the end-of-life-cycle 
costs. So we do not investigate situations where either technological innova- 
tion or fashion changes make the current product obsolete. Also. we do not 
consider situations where the product has a limited shelf life.16 

In sections 5.4-5.7 we discuss problems that are: 

0 single product, single level. dynamic and multiperiod; 

0 with uncertain demand, with a known and stationary demand distribu- 
tion. deterministic LT; 

0 where the objective is to minimize stock holding costs. ordering costs 
and costs of service. 

I5Notice tha t  in this case the optimization problem has been written as a cost minimization 
problem. while in the  basic newsvendor problem we have maximized profit. Obviously. both 
problems can be written either one way or the  ot ner and the  end-result does not change a t  
all. \\-e have decided to  write the  two models with different procedures to  show different 
approaches t o  modeling. \Ve suggest the reader to  try t o  reivrite the classic newsvendor 
problem as a cost minimization problem and rewrite the two-stage neasventlor problem as 
a profit maximization problem and check tha t  results do not change. as basic logic suggests. 
“Note tha t  all products sooner or later expire. hiit the  issue here is xvhether thcx expiration 
date entails a relevant cost for our planning problem. For example. canned food can have 
a 5-year shelf life: in this case the  constraint is basically irrelevant from any practical 
standpoint. as companies basically never carry it for 5 years. 
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Before we discuss the details of these planning problems we need to under- 
stand the effects of uncertainty on the planning process. In chapter 4 we have 
shown that,  in the case of deterministic demand, setting the purchase quan- 
tity (order size Q) or the ordering period (time T elapsing between orders) is 
basically the same. Once we have set the order quantity Q,  the frequency is 
implicitly set (it is equal to the order size Q divided by the demand rate d )  and 
vice versa. A first significant difference between certain and uncertain con- 
ditions is that. under uncertain conditions, purchase quantity and frequency 
are no longer deterministically linked. As the following example shows. such 
a relationship still exists; however, it is stochastic rather than deterministic. 
Indeed, the frequency is still the ratio between the purchase quantity Q and 
the demand. but demand is a random variable. 

Example 5.18 Let us consider a company with a zero LT. Such a company 
could order Q units when inventory level reaches zero. even under uncertain 
conditions, but let us assume that the order is issued when inventory reaches 
a reorder point R (see figure 5.5, possibly setting R = 0). The frequency of 
such orders is not fixed but rather depends on demand. If demand is very high 
(i.e.% higher than its expected value), quantity Q is sold out in a short period 
of time (see the second time between orders in figure 5 . 5 ) .  On the contrary, if 
demand is very low (i.e., significantly lower than its expected value). the time 
between two successive orders is relatively long (see the third time between 
orders in figure 5.5). Going back to  example 4.9, if the company orders once a 
month. some months it orders more than 100 units (when demand was higher 
than expected) while in other months it orders less than 100 units (when 
demand was lower than expected). Similarly. if the company places orders for 
100 units a t  a time. sometimes we can wait for more than a month to place 
the next order (when demand is lower than expected) while we can have two 
orders in a month in case demand exceeds expectations. 0 

Concept 5.7 While facing an uncertain demand, we have no deterministic 
relationship between the order quantity and the order frequency. Thus, we 
design planning policies that fix one parameter (e.g., the order size) and let 
the other fluctuate (e.g., order frequency) according to demand fluctuations. 

For example, a company can set the order size to Q = 100 and place an 
order once 100 units have been sold. A second option is to  order once a 
month the quantity that was sold. In other words; one parameter is fixed and 
the second one fluctuates according to  demand. This is why the inventory 
planning methods are called fixed quantity and periodic or fixed period. 

5.4 FIXED QUANTITY: THE (&, R)  MODEL 

A first option in managing inventories is to set a quantity Q that is ordered 
each time inventories reach the reorder point R. Obviously, this planning 
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t 

Fig 5.5 Time between orders as a function of demand in the case of fixed order size 

Q.  

method can be adopted if and only if one can continuously control inventories 
(and demand is a continuous process with no batches) to make sure we can 
place an order exactly when inventories reach the reorder point R. This 
scenario is called contznuous revzew. In 1 he past, this was a rather critical 
assumption. while today it is relatively easy to control inventories of several 
SKUs in several warehouses by the minute through appropriate technology (as 
mentioned in section 4.1, technology is just one portion of the equation. as a 
company needs to  design business processes appropriately and execute them 
accurately. in order to make sure that inventory data are collected accurately 
and in a timely fashion). 

A company shall record all transactions properly, taking into account de- 
fective products, stolen products. errors in deliveries from suppliers. etc.. to  
have reliable information on current inventory levels. While we shall keep 
that in mind and acknowledge it is hard job. in this book we assume, like in 
the bulk of literature on inventories. that  the company can perfectly know the 
current inventory level. 

Also. before we discuss the details of this inventory model we shall go 
back to chapter 4 and recall the relationship between physical inventories and 
inventory position. Our decisions (e.g., should I place an order? How many 
units should I buy?) are based upon inventory position. On the contrary, 
stockouts are generated by a lack of physical inventories. 

If we overlook backlog for a second. the two variables are equal when we 
have no open order. i.e.. we are not waiting for any delivery from the sup- 
plier If we assume that we can have at maximum one open order. when it is 
delivered the physical inventories and inlentory position coincide (see figure 
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5.6). Our assumption holds when LT is lower than the time between orders. 
In other cases we can have more than one open order. 

Though our results are derived under this simple assumption to  build in- 
tuition, they hold under more general conditions. So they apply even when 
LT is longer than the time between orders and thus we can have more than 
one open order at a time.17 For the sake of simplicity. we normally refer to  
the case of LT < f .  where there is one outstanding order a t  the most. 

The dynamics of  the inventory system. We shall describe and intuitively un- 
derstand the dynamics of the inventory system before we get into the details 
of parameters optimization. 

First, when facing an uncertain demand it might be inappropriate to  set 
the reorder point R to  LT.E(d ) ,  that is, the expected demand over the replen- 
ishment LT. Indeed, demand uncertainty makes draws that differ from the 
expected value rather likely (actually in the case of a continuous distribution. 
the probability that demand during the LT equals its expected value is zero). 

The physical inventories in the warehouse one second before the order is 
delivered is equal to the reorder point minus the demand over the LT.  Given 
that demand is a random variable, also the physical inventories just before 
the delivery of the order are a random variable (it is a parameter R minus 
a random variable). So the physical inventory level is as uncertain as the 
demand over the lead time is and the two random variables follow the same 
demand distribution (in terms of shape and variability. though understandably 
they have a different expectation in general). 

After the order is placed, the inventories can follow various patterns over 
time. In figure 5.6 the top trajectory represents a case where demand over the 
lead time was lower than we expected, the intermediate trajectory represents 
a case where demand was equal to its expected value. and finally the bottom 
line represents a case where demand was higher than we expected. Figure 
5.6 shows that when the demand distribution is symmetric, the probability 
distribution of physical inventories a few moments before the order is delivered 
is symmetric as well. So in 50% of the cases a reorder point R = LT . 
E(d) would be insufficient to  meet demand over the lead time and we would 
experience a stockout.18 

The newsvendor problem has proven that in general it is not advisable 
to  have a 50% probability of stockout, as this policy is optimal under very 
specific conditions. On the contrary, for many companies it is appropriate to 
reduce the probability of stockouts, while for others it might be appropriate 
to  set a service level target below 50%. 

3 

17Notice that  these findings hold in the even more general case of stochastic LT.  if orders 
do not cross. 
lsIn the case of discrete distributions we should also account for the probabilitythat demand 
is exactly equal to the inventory level so the probabilityof a stockout might be slightly below 
50%. 
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LT 

Fig 5.6 Various patterns of in\-entories during the LT 

In general, the reorder point can differ from L T . E ( d ) .  In most cases, we set 
a reorder point R > L T . E ( d )  to increase the service level (type I) above 50%. 
The quantity R - LT . E(d) is called safety stock (SS). These inventoriea are 
used only when demand exceeds expectations to meet unexpected demand. 
So, in general, the parameters that are optimal in deterministic conditions are 
not optimal under uncertain ones. 

Concept 5.8 Under  uncertaan condztioiis, the reorder poznt R dzffers f r o m  
the expected demand over the LT. Just lake zn the case of the newsvendor 
problem. the economzcs of the buszness suggest us whether we shall carry more 
znventorzes t h a n  we expect t o  sell over the LT (R > LT . E ( d ) )  or  vtce v ~ r s a .  

Concept 5.9 W e  call the dzfference between the reorder level and the expected 
demand safety stock, that i s  inventor ies  we  plan t o  use only when demand 
exceeds i t s  expectation SS = R - LT . E(d) .  

Notice that in our analysis we have neglected the various scenarios of de- 
mand before we reach the reorder point R. Actually. demand can show very 
different patterns before the reorder point as well as after the reorder point is 
reached. The demand pattern before imrentory position reaches the reorder 
point is not a crucial issue. as it only determines when we reach R and thus 
when we place an order. On the contrary. the demand pattern a f t w  we reach 
R is crucial as we wait for the order quantity Q to be delivered and we hope 
not to  experience a stockout in the meantime. In other words. we hope that 
the inventory level R is going to be large enough to  fully meet demand. 
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The cost function Once the dynamics of the inventory system are clear, we 
can try to write the cost function and derive optimal levels for the control 
parameters Q and R. In this situation there are three relevant costs: 

0 Cosf of znventorzes. The cost of inventories in this case is the holding 
cost. Indeed. the infinite life cycle of the product makes other costs 
(disposal. loss of value, markdown) irrelevant for our purposes. Given 
the logic of the (Q. R)  system. the inventory position fluctuates between 
the minimum level R and the maximum level R+Q and thus the average 
inventory position is R + QI2.l’ 
While I P  is the variable we watch to make decisions. the physical inven- 
tories in our warehouse determine our costs. On the one hand. physical 
inventories (also known as on-hand inventories) are the inventories we 
actually carry in the warehouse and thus we pay for their holding cost. 
On the other hand. we incur the cost of the stockout when we run out of 
physical inventories. When a customer that expects a zero DLT finds 
an empty shelf he/she is upset regardless of incoming orders over the 
next few days that make I P  > 0. 

So we need to  investigate the level of physical inventories, which we call 
I ,  to calculate costs. Physical inventories I reach their minimum just 
before the delivery of Q units. and they reach their maximum level just 
after the delivery. These inventory levels are actually random variables. 
as they depend on the demand over the LT. So we cannot tell, ex ante 
what their future level will be. However. we can study the distribution 
of inventories a few seconds before the delivery of Q units and consider 
their expected level R minus the expected demand over the LT.20 

lgNotice that in general this information about the minimum and maximum level of inven- 
tories is not enough to  draw the conclusion that the average quantity is the average between 
the maximum and the minimum. To draw that conclusion. we have to prove that  the in- 
ventory level over time is: in a sense. uniformly distributed between the maximum and the 
minimum. By “uniformly distributed’ we do not really mean that  if we observe inventory 
level at a specific time instant, we see a uniform distribution; if we take our observation 
just after issuing an order, this is certainly not the case. Rather, we mean that over time. 
i.e., along a sample path,  we see a uniform distribution. To make the idea rigorous, one can 
resort t o  observers arriving at a random time, according to a Poisson process, but we prefer 
leaving such complications aside. In our case the proof is rather trivial, as the demand pro- 
cess is stationary and thus inventories are consumed equally when the warehouse is almost 
full (i.e.! when the inventory level is high) and when the warehouse is almost empty (i.e., 
when the inventory level is low). This means that  there is no reason whatsoever to  presume 
that  the inventory level stays a t  a very high level or a t  a very low level for a long period of 
time. Thus all levels of inventories between the maximum and the minimum are basically 
equally likely. 
20Notice that what we suggest in the main text is actually an approximation, as any model 
actually is. Indeed, physical inventories are bound to be non-negative. So, we should 
somehow ignore all cases where demand exceeds inventory level. In these cases, inventories 
drop to zero. In other words, the expected inventory level before the quantity Q is delivered 
is R - ( E ( ~ L T ~ ~ L T  < R)  F d L T ( R )  + R .  (1 - F d L T ( R ) ) ) .  In other words, the availability 



Thus. the expected inventories just before the delivery of Q units ordered 
at time t o  (i.e.> at the end of the planning cycle) can be reasonably 
approximated by 

E ( I ( t o  + L T - ) )  = R - E ( ~ L T )  = R - E(d) . LT. 

Yow it is easy to show that the expected level of physical inventories 
at the beginning of the next cycle (so-called maximum expected level of 
inventories). right after the delivery of Q units. is 

and the expected level of average inventories E(I)  is 

E ( I )  = R + Q / 2  - E(d) LT, 

as inventories fluctuate between the maximum level and the minimum 
level and are uniformly distributed between these two values. 

of inventories censores the  demand distribution. Also. the  distribution of inventories a few 
seconds after the quantity Q is delivered really depends on the customers' willingness to  
wait. If customers do not wait, i.e. under the  lost sales assumption; the  inventory level after 
the delivery is just equal to  R - ( E ( ~ L T ( ~ L T  < R:,.FdLT (R)+R. (  1 -Fd,,(R))) +Q. Indeed. 
in this case we have no list of customers waiting for the delivery and thus the  quantity Q is 
just added t o  the  inventory available before the delivery. On the  contrary, in the  backorder 
case. the inventory position just after the  delivery is equal to  R + Q - E(d).  as in this case 
any demand in excess of the  inventory level R is just backordered and thus once the quantity 
Q is delivered, the whole demand is fulfilled and inventories are consumed (we deliberately 
ignore situations where we still have a list of cuatomers right after the delivery of a lot Q). 
Thus as we can see, the approximation we have made in this book works better for the 
backorder than  for the  lost sales case. For exaniple. let us consider the case of a uniform 
demand distribution U(l00,ZOO) over the LT. Also, let us assume tha t  the reorder point R 
is 180 and the  order quantity Q is 500. Under the  lost sales assumption, inventories before 
the delivery are going t o  be 0 with a 20% probability and the remaining 80% of probability 
is uniformly distributed between 0 and 80 units. Also. the  inventory level just after the  
delivery is 500 with a 20% probability and the  remaining 80% of probability is uniformly 
distributed between 500 and 580. Thus the  expected inventory level a t  the  beginning of 
the next cycle is 532 rather than 530. This meitns tha t  not only our model simplifies the 
dynamic of inventories at  the  end of any planning cycle. but this also has an effect on 
inventories in the  next cycle. Let us now consider how things change under the  backorder 
assumption. Under the backorder assumption the  inventory distribution before the  delivery 
remains unchanged. So; even in the backorder case we are cutting some corners. Indeed. we 
are overestimating the inventory level and thus the  inventory holding cost (e.g.. we might 
run out of inventories before the end of the  cycle). However. the physical inventory level at  
the  beginningof the  next cycle is R + Q - E ( ~ L T . )  = 180+500- 150 = 530. In this case any 
demand unsatisfied a t  the  end of the  previous cycle is delivered as the  lot Q is delivered. 
Finally. we shall notice tha t  this approximation is very crude in case of low service levels. 
At one extreme. when R is lower than  the expected demand. we might draw the conclusion 
tha t  the expected level of physical inventories a1 the  end of any planning cycle is negative! 
On the  contrary when the  service level target is high, unmet demand is negligible and thus 
our simplification is reasonable. especially in the  case of backordered demand. Luckily; most 
products with a long life cycle have a fairly high service level. as the  cost of inventories is 
the cost of holding inventories rather than the  loss of value like for high-tech or fashion 
products and thus our simplifying assumptions turn out to  be reasonable. 



276 INVENTORY CONTROL: THE STOCHASTIC CASE 

Thus the expected cost of inventories for this policy is 

C,, = h .  ( R  + Q / 2  - E(d) LT)  . 

a T h e  ordering cost. While the inventory level depends on both control 
parameters R and Q ;  the ordering cost only depends on the lost size 
Q only. The reorder point R tells when to order, while the parameter 
Q tells how much to order and thus how often we order. The number 
of orders in a period is actually a random variable that depends on the 
level of demand. However, we can compute the expected number of 
orders that  is equal to E(d)/Q. Thus the expected ordering cost is 

(5.14) 

a Cost of lack of service. To describe the cost of lack of service we shall 
choose one of the two scenarios according to  the driver of the cost func- 
tion: 

a cost due to  the presence of a stockout; 
a cost due t o  the size of the stockout. 

The cost of the stockout is different under the two scenarios (difference 
in economic consequences of a stock out) and thus the optimal policy can 
change accordingly. So the two cases are going to be treated separately. 

Cost depends on the occurrence of a stockout. In this case. the cost of the 
stockout is equal to the cost of a single stockout. i.e. the cost a company 
incurs each time it runs out of the product, times the number of stockouts we 
expect to face. In turn, the number of stockouts then depends on two factors: 

a the number of chances to experience a stockout. that is the number of 
planning cycles. when we wait for the delivery of the Q units of the 
product and inventories might fall short of demand: 

a the probability that in each planning cycle the demand actually exceeds 
the stocking quantity R and we face a stockout. 

Thus, under these assumptions the expected stockout cost is 

where FdL,-(5) and f d L T ( x )  are the cumulative and the density function of 
demand over the LT. 



FIXED QUANTITY: THE ( Q ,  R) MODEL 277 

Under these assumptions the total cost is 

G o t  = C O T  + cz, + c,, 
= A .  - E(d) + h .  (R+ Q / 2  - E(d) .  LT)  (5.15) Q 

(5.16) 

Cost depends on the size of  the stockout. Under this assumption the cost of 
the stockout depends on the number of units of demand (in the remainder of 
the chapter we call them customers, assuming that a single customer buys a 
fixed and small quantity -say one unit- of the product) unmet. because of a 
stockout. In this case, to quantify the cost of a stockout, we should measure 
the cost p,, of not meeting one unit of demand and the number of units not 
immediately delivered to the customers from stock. Once again this latter 
variable is equal to the number of planning cycles times the number n(R)  of 
units of demand we expect not to deliver from stock in each planning cycle. 
Clearly, this depends on R: the higher R. the lower the unmet demand. Under 
this assumption. we can write the expected stockout cost as 

Thus. under this assumption the total cost function is 

Solution process Given the total cost fun.ction we can try to find a solution 
in two ways. The first option is clearly to  minimize the total cost and find 
an optimal level of the control parameters Q and R. This approach is clearly 
the first best option but requires a reliable estimate of the costs of a stock- 
out ( p  and p u ) .  As we have discussed in this chapter. finding a reasonable 
estimate for such cost parameters is act,ually a real challenge. So many com- 
panies rather prefer to  set minimum targets for service level and then try to  
minimize ordering cost and stock-holding (costs (the idea is that, the minimum 
requirement on service level keeps the cost of the stockout under control). 
This approach might look simplistic but i t  is actually fairly reasonable when 
the ineasiires of the cost of a st,ockout are very unreliable. Indetd: in this 
case the mariager provides an indirect estimate of the cost of the stockout by 
requiring a minimum service level. IThile setting t,he rninirnurri service level 
t,he manager implicit,ly balances the cost of the stockout with the holding 
cost (and to a minor extent the ordering cost). The higher the service level 
requirement. the higher the implicit estimate of the stockout cost and vice 
versa. So it is just matter of finding the most appropriate and accurat,e way 
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f ig. 5.7 Various scenarios for the (Q,R) problem: schema of the section. 

to  estimate the cost of the stockout. It can be either a direct measure of the 
consequences of a stockout ( p  or p U )  or an indirect measure that is a minimum 
service level requirement. 

As figure 5.7 shows, there are four possible combinations of cost structure 
(occurrence vs. size of the stockout) and solution process (optimization vs. 
minimum service level requirements). In the next three sections we investigate 
three of these four cases, while we address the fourth and more complex 
case in supplement S.5.8 at the end of the chapter: the supplement, which is 
technically more involved than the rest of the chapter, may be safely skipped. 

5.4.1 Optimization of the (Q,R) model in case the stockout cost 

depends on the size of the stockout 

When we have a reliable estimate of the stockout cost p,. we can compute 
the derivative of the total cost function (5.17) with respect to the control 
parameters Q and R. 

= 0, 
A .  E(d) h pu . E(d) . n(R) 

Q 2  
+ - -  ____ act,, - - aQ Q 2  2 

To proceed with our problem, we should evaluate n’(R); that  is, we have 
to  understand how the number of customers (units of demand) unsatisfied 
changes as a function of the reorder point R. Once again, on the one hand, 
we can use rigorous math: on the other hand, we can use our intuition to 
support math. 
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Increasing the reorder level R by an infinitesimal quantity dR has no effect 
whatsoever on the number of unhappy customers (i.e,* unmet demand) in all 
demand scenarios where the reorder point was already high enough to fully 
meet demand over the LT. 

On the contrary. increasing the reorder level up to  R + dR pays off in all 
scenarios where R is not enough to  fully meet demand and thus we experience 
a stockout. In these cases. dR additional units decrease the number of un- 
satisfied customers (i.e.. the unmet demand) by dR units. The last step is to 
remember that the probability that this second scenario occurs (i.e.> the prob- 
ability of a stockout) is 1 - FdLr ( R ) .  Thus the dR increase in reorder point 
leads to a dR reduction in unmet demand with a probability 1 - FdLT (R). 
that is. the probability that the additional dR units actually turn out to  be 
really useful. Thus 

hiore formally we use Leibniz‘s rule to  dif€erentiate n(R) (obviousl!- this pro- 
cess leads to exactly the same results) 

= - (1 - F d L r ( z ) ; / .  

Thus we can re-write the optimality conditions as 

= 0. 
A .  E ( d )  h p ,  E ( d )  . n(R)  

-~ + - - -  
Q2 2 Q 2  

hence 

(5.19) 

(5.20) 

Before we use these optimality conditions to look for the optimal solution 
(Q* and R*).  we shall read the economic message they are sending. Equation 
(5.19) resembles the Economic Order Quantity. The one difference is that 
under uncertain conditions the fixed ordering cost A is replaced by A + p ,  
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n(R).  In fact, an order cycle implies not only the ordering cost when the 
inventory position reaches R.  but also the risk of stocking out before the 
quantity Q is delivered. While the first is a certain cost, the second one is 
an uncertain one. However, we know its expected value is p ,  . n(R).  In other 
words. when facing uncertainty (in a ( Q .  R)  system) a company might want to 
increase the order size both (i) to  avoid very frequent orders (and the related 
cost A) and (ii) to  reduce the number of orders since each time an order is 
placed. the company faces the risk that the demand during the LT exceeds 
the reorder point R. a stockout occurs and some customers cannot find the 
product they were looking for. Clearly. this further incentive leads companies 
to  increase Q above the EOQ quantity. Such incentive is stronger and stronger 
as the cost of a stockout p ,  increases and the reorder point R decreases. 
leading to an increase in the probability of a stockout. Equation (5.20) is 
derived from (5.18) and marginally analyzes the effects of an (infinitesimal) 
unit increase in the reorder quantity. This equation basically compares the 
cost and the benefits of such an increase in R. Increasing R leads to  an 
increase in the stocking quantity and thus in the holding cost h [in fact, the 
derivative of the holding cost component Cin with respect to R is dCin/dR = 
h . E ( I ) / R  = h; see equation (5.14)].21 On the benefits side, increasing R 
reduces the cost of a stockout by p ,  with a probability 1 - FdLT ( R )  during each 
of the E(d)/Q planning cycles. Thus the second equation basically compares 
the marginal stock-holding cost with the marginal reduction in the cost of 
stockout, suggesting to increase R until the savings on the stockout cost exceed 
the additional holding costs.22 

Also, this equation suggests that R shall be reduced, as Q increases (this is 
the flipside of equation (5.19)). Indeed, if the purchase quantity Q is relatively 
large the planning cycle is relatively long and thus it might not make sense to 
carry an extra unit of safety stock (that is R) for a very long planning cycle 
to  slightly reduce the probability and/or size of a stockout at the end of it. 

*INotice that this is a result of our simplifying assumption on the minimum level of inven- 
tories (see footnote 20 on page 274). Actually. the additional unit can be sold before the 
end of the planning cycle and thus might be held for less that  a whole planning cycle. In 
particular. if R guarantees a /3 type I1 service level, we expect the product to be available 
on the average during a fraction ,/3 of the cycle. Thus in the more complete model the term 
h is multiplied by a.  Finally, p is obviously a function of the control parameters Q and R 
as 1 - p = n(R) /Q .  
22Notice that while the marginal cost of inventories is constant ( h ) ,  the savings on the 
stockout cost are decreasing in R, as the probability of a stockout decreases and thus the 
additional investment in inventories is more and more likely to  be completely ineffective. 
Also, notice that the holding cost is equal t o  h because we assume that the additional unit 
of inventories is always carried. As discussed in footnote 20 on page 274. we are cutting 
some corners and deliberately ignore the fact that  we might run out of inventories and 
thus we might not always carry the marginal unit. Again this assumption, however, is 
fairly reasonable, given that  for most companies and most products it is advisable to  reach 
a fairly high service level. Thus we seldom sold out;  that  is we seldom sell the last unit 
carried in inventories and almost always carry it until very late in the planning cycle. 
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Concept 5.10 Under uncertazn condatzons the Jxed cost of an  order cycle 
ancludes both the fixed orderang cost and the expected cost of a stockout. Thus 
the order lots tend to  be larger to  reduce the number of  cycles and thus the 
opportunztzes to stockout. 

Once the economic message equations (5.19) and (5.20) are sending is clear. 
we use them to look for the optimal solution (Q*,  R*). 

MCle shall notice that so far we have made no assumption whatsoever on 
the demand distribution. we just used the generic functions FdLT and n(R). 
Obviously, we need to  specify the demand distribution to find the optimal 
solution. So we just need the basics of statistics to deploy the solution for 
various demand distributions. that  is. according to the various situations we 
might face. 

Using equations (5.19) and (5.20) to  find the optimal solution is not trivial. 
Indeed. in equation (5.19) the optimal order quantity Q" depends on R* . while 
in equation (5.19) the optimal reorder point R* depends on Q*.  One way out 
of this loop is to iteratively find the solution. For example, we can start with a 
reasonable order quantity Qo = EOQ to find a first tentative reorder level Ro 
through equation (5.20). This first estimate of the reorder point Ro can then 
be used to  find a better order quantity Q1 and so on. The iterative process 
can be stopped when QZ RZ QI--l .  where the tolerance depends on the specific 
decision at  stake. 

Example 5.19 Let us consider a product whose cost is lo€% with a LT of 
6 months, a holding cost of 20%/year, and a cost of a stockout of 25€ per 
unit, as we expect the customer to leave the company in case he/she routinely 
cannot find the product he/she looks for. 

Also. let us assume that the ordering cost is 50€ and the demand over the 
LT is normally distributed with a mean of 500 units and a standard deviation 
of 100 units. 

In this situation we can start from the EOQ quantity as a first, rough-cut 
estimate Qo of the optimal order quantity: 

LVe can then use QO to  derive a first. rough-cut estimate of the reorder level 
Ro : 

€ 
units . y 2 ~ . 100 units 

-- F ( R )  = 1 - - 96%. 
units ,200- 25 units Y 
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Now the distribution of demand comes into the picture and starts playing a 
role. For some distributions such as the Uniform or the Exponential we can 
find R through integrals, while for others such as the normal distribution we 
cannot solve the integral in close form and thus we resort to standard tables. 
To reach a 96% type I service level we shall choose a level z equal to 1.75. In 
other words, the first rough cut decision is to  carry 1.75 standard deviations 
more than we expect to sell during the LT. Thus we only need to  find the 
right parameters and refer them to the demand over the LT: 

Ro = 100 + 1.75.25 = 144. 

Once we have obtained Ro, we want to use it to improve the decision 
on lot size through equation (5.19). To do so, we shall derive the quantity 
n(R). Once again this function depends on the demand distribution. For 
some distributions such as the uniform or the exponential, we can get the 
function in close form. For other distributions such as the Normal, we resort 
to standard tables. 

In the case of normal distribution the estimate of n(R) is based on the 
standardized loss functzon 

L ( z )  = ( t  - z)o( t )d t .  i" 
where d(t) is the density of the standard normal distribution. We can show 
that: 

where z = (R-E(~LT) ) /o .  The loss function can be found on statistical tables 
in most reference books in statistics. We can use such tables to  calculate a 
new (and improved) order size Q1. In the case of the Normal distribution we 
can proceed as follows: 

n(Ro) = g .  L (2) = 25. L (1.75) = 25.0.0162 = 0.405. 

and thus the "new optimal order size" is 

2 .200  units . (50€ + 25 & . 0.405 units) 
N llOunits. Q I = \  units. € y 

We can find the optimal solution Q' = 111 e R" = 143 with a type I service 
level F(R) = 95.73% by simply iterating the above process. 

It is rather interesting to notice that the initial solution QO =EOQ suggests 
an order size below the optimal level Q*. as the EOQ model overlooks the 
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cost of stockouts in equation (5.19). This is why the initial reorder level is 
higher than the optimal one and the initial type I service level (96%) is higher 
than the optimal one: The initial order size is relatively small and thus we 
face a relatively large number of planning cycles and therefore reduce the risk 
of stocking out in each order cycle. 0 
iYe shall notice that in the above example the text provides data on expected 
demand and standard deviation over the LT. What shall we do n hen data 
refer to  a different time horizon? 

ilre can refer to  example A.10 of page 464. The example shows that we 
simply need to  scale demand expectation linearly. For instance, in case we 
want to derive the expected demand for a week given the total demand for 
the year. vie must simply divide the demand expectation for the year by the 
number of weeks in a year (52) 23 As to the standard deviation. the example 
investigates the case of non-autocorrelated demand. that is, demand at t h e  
t is independent from demand in previous, an successive periods. Cnder such 
an assumption. the standard deviation can be scaled back with the squared 
root rule. For example. the demand for the week is 92 times the standard 
deviation of demand for the year. 

Example 5.20 Let us assume that the total year demand for a product is 
Normally distributed with an expected .;due 1000 and standard deviation 
250. LT is two months. The optimal reorder point shall cover demand over 
the LT. But what is the distribution of demand over the LT? Actually. we do 
not know the shape of the distribution. but for the sake of simplicity we can 
assume that the distribution at the month level is Normal. ilre still need to  
find the expectation and the standard del iation of demand over a two-month 
period. 1t-e assume that the vear consist: of 1 2  identical months (of roughly 
30 daj s) and assume the demand in each month is independent. Thus we can 
show that 

E [d~77] = 1000/6 X 166.67; OdLT = 250/& E 102.06. 

If-e shall notice that the model of demand shows some weaknesses. Indeed. 
while the probability of negative values of demand mas negligible for the de- 
mand distribution for the year, it is sizeable for the demand for 2 months (the 
ratio E ( d )  to  o is 4 for the year and 1.63 for the two-month period) This 
suggests that  while the normal assumption for the demand for the >-ear might 
work fairly well. this model shows some strains for the bimonthly demand. 
But we shall also notice that this might not be a crucial issue for inventory 
models. T\e typically consider fairly high service leT el targets. This means 
that what really matters is whether the demand distribution we adopt prop- 
erly describes the right tail of the actual demand distribution. If the denland 

23\\t assume a stationary demand and thus assume that all weeks sharp the s a n e  expected 
demand. So this finding does not apply directly to the case of significant seasonality 
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distribution we choose fails to properly describe the left tail of the actual 
distribution, this tends not to  be a problem for our purposes and we still 
can consider the model of demand fair enough, as it leads to nearly optimal 
decisions. [I 

5.4.2 

Often companies can hardly estimate the cost of a stockout and thus cannot 
write and minimize the total cost function. To keep under control the cost of 
stockout (that are still relevant even if we fail to accurately measure them), 
companies often set a minimum service level target. In an odd way this is an 
indirect estimate of the cost of a stockout, as high service level requirements 
imply a “gut feeling” that stockouts are expensive and vice versa. In such a 
situation we can resort to two approaches: One is simple and straight, while 
the other one is more complex, though better performing and more elegant. 

(Q,R) system: case of constraint on the type I I  service level 

Disjoint choice of  Q and R 
into two disjoint parts. 

G o t  = C O T  + c a n  + c,, 

The first option is to  split the total cost function 

= A .  - E(d) + h ( R  + Q/2 - E(d) * L T )  + P,- E(d) .1,’2;. - R) f d L T  (x) dx 
Q Q 

Economic Oider Quantity 

+ h ( R  - E(d) . LT)  + P, . - . 
Q 

Cost constrained by the service level requirement 

Hence. a solution to this problem is to set Q = EOQ to minimize the first 
part of the objective function, while the service level requirement keeps the 
second part of the cost function under control. In this case, we set a constraint 
on the type I1 service level as the size of the stockout rather than its occurrence 
matters. This approach basically makes the choice of Q independent from 
R and vice versa. So Q is set as if there were no uncertainty. R is the 
only control lever in charge of managing uncertainty and is set to  reach the 
minimum service level target. 

Example 5.21 Going back to example 5.19, we can assume that the com- 
pany cannot properly estimate the cost of the stockout p ,  and thus simply 
requires a 95% type I1 service level. The order size is set according to the 
EOQ model Q = EOQ = 100 units. 

We now select the reorder point R in such a way that we meet 95% of 
demand from stock. In a planning cycle, the average demand is Q and the 



FIXED QUANTITY: THE (Q. R) MODEL 285 

expected unsatisfied demand is n(R).  Thus the percentage of unsatisfied 
demand in each planning cycle is n(R)/Q.  Since we want at the least a 95% 
type I1 service level. we set this to  5% IlIore generally, when we want to  
achieve a 9 type I1 service level. we want to set this ratio to  1 - J: 

(5.21) 

hence 

n(R)  = ( 1 - 3 ) ' Q  
= (1 - 0.95) . 100 = 5 units. 

and thus we can leverage on the properties of the normal distribution and 
resort to the standardized normal distribution: 

n(R) = 5 = c7. L( 5) = 25 ' L ( z ) .  (5.22) 

Thus L ( z )  = 0.2, z = 0.49 and R = 100 -+ 0.49 25 = 112.25. 0 

Though simple and straight. this approach is not optimal. Indeed. it fixes 
Q first and then uses only R to reach the service level target. while equation 
(5.21) shows that to reach a given service level target one can act on Q as well 
as R. Actually, it is easy to show that this approach leads to a suboptimal 
Q because it overlooks the effect of larger orders on the number of planning 
cycles and thus the number of potential stockouts and the unsatisfied demand. 

Cost of  the stockout implicitly estimated through a minimum service level require- 
ment. A second and slightly more sophisticated approach is to optimize the 
parameters Q and R jointly to meet the service level target. This approach 
tries to elicit the cost of the stockout froin the minimum service level require- 
ment. TYhen the service level required is relatively high, managers implicitly 
believe the stockout to be very expensive: while when they require a low 5er- 
vice level they implicitll- believe that the stockout is not as expensive. So we 
can use equation (5.20) to measure the cost of the stockout implicit in the 
managers' requirements: 

this estimate can be used to  derive the optimal quantity Q by substituting p u  
with l jU in equation (5.19): 
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that is, a quadratic equation in Q: 

We can derive the optimal solution (we ignore the negative solution for obvious 
reasons) : 

We now need to simultaneously solve equation (5.23) and the condition on 
service level: 

n(R*) = L ( z )  . O  = (1 - p) . Q".  (5.24) 

Before we use the above equations to find an optimal solution. we shall 
notice that the order size is larger than the EOQ, since terms l-zld(LR;!R*) 
account for the cost of stockouts a t  the end of the planning cycle. 

Equations (5.23) and (5.24) are not independent and thus we shall solve 
them through iterative methods. In this case. too. we can start with a rea- 
sonable order size Qo = EOQ to  then derive from equation (5.24) a first 
rough-cut reorder quantity Ro. We can then derive from equation (5.23) an 
improved order quantity Q1. Finally, we iterate this process until the solution 
converges. 

Example 5.22 Going back to example 5.21, we can start from Qo = EOQ = 
100. We can use this order size to derive Ro = 100 + 0.49. 25 = 112.25, as 
we have already shown. This solution can be used to  calculate an improved 
order size Q1 

~ 

5 5 2 .200 .50 
Qi = 1 - F(0.49) + d( 1 - F'(0.49))2 + 2 

= 116.21; 
- 2 .200 ' 50 
- 

0.31 

thus 

n(R) = 5 % .  116.21 = O .  L ( z )  = 25 L ( z ) .  
and L(z1)  = 0.232, z1 = 0.395. and R1 = 100+0.395.25 = 109.875. LVith one 
more iteration we get QZ = 116.10; 2 2  = 0.39 R2 = 100 + 0.39. 25 = 109.75. 
which is basically the steady state solution. 

It is rather interesting to compare this solution with example 5.21. In 
this case we have a larger order size Q and a smaller reorder point R as both 
parameters are used to reach the target service level. As we have said multiple 
times, a similar solution process can be used for other demand distributions. 
mutatas mutandis. 0 
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5.4.3 (Q, R) system: case of constraint on type I service level 

Section 5.4.2 shows that.  at times. penalty costs are hard to  estimate and we 
resort to  constraints on service level (see section 5.4.2). 

G o t  = co, + c,, + c,, 

v ~~ 

Economic Order Quantity 

Cost constrained by the service level requirement 

In this case. too, we can split the cost function in two. The first part is 
basically the EOQ problem, while the second part depends on R arid includes 
costs that can be kept under control through a constraint on service level. 
Thus we can set Q according to the EOQ model and set R in such a way that 
the minimum service requirement is reached. 

Example 5.23 Going back to example 5.19, we can assume that the com- 
pany has no reliable estimate of the prnalty cost of a stockout p .  So the 
company requires a 95% type I service level. Just like in previous examples, 
Q = EOQ = 100 units. Now we need to  set R in such a way that the risk of 
a stockout in any planning cycle is 3%. so F (R) = 0.95. To solve this equa- 
tion. vie must know the demand distribution, and in this example vie assume 
a Normal demand distribution. In the table of the standard Normal distri- 
bution. we can find z that guarantees a 95% type I service level: z = 1.64. 
Hence R = E ( ~ L T )  + z 0 = E(d) . LT -t z 0 = 100 + 1.64 .25  = 141 units. 
lye can compare this solution with example 5.21. A 95% service level leads 
to different reorder points R depending on whether the requirement is on the 
type I rather than type I1 service level. This example shows that a type I 
sen ice level requires more inventories than a type I1 service level (at the least 
for a normal distribution and most '.n-ell-behaved" demand distributions) .*' 

0 

*'The type I service level considers a planning cycle where demand exceeds inventories (the 
reorder point R)  by one unit basically a failure. as it counts as a stockout, full stop. On 
the contrary. the  type I1 service level considers it as a fairly good result. Indeed. the  type 
I1 service metric would consider the service lekel in such a planning cycle to  be 1 - 1/Q.  
So. in general. the type I service level sets tighter requirements and thus requires more 
inventories. The only exception to this general rule are demand distributions with a very 
lorig right tail.  For example. when demand is very low (say 1) in most cycles (say 99%) and 
is very large (say 901) in others (1%) a very limited amount of inventories can be enough 
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This procedure is used very often in practice and in many basic software tools. 
However, we shall underline that it is suffers from structural problems. First 
the service level is measured as the probability of not stocking out in each 
planning cycle. For example, a 95% service level implies that we experience 
a stockout in only 5% of the planning cycles. This means that the (expected) 
number of stockouts in any given time frame (e.g.. a year) depends on the 
number of planning cycles. that is. the number of chances to  experience a 
stockout. 

Example 5.24 Let us consider a company with a 95% service level. If on the 
average the company only places one order per year. then we have only a 5% 
probability of stocking out in a year and we expect to experience a stockout 
once each 20 years. On the contrary. if on the average we place an order a 
month, the probability of zero stockouts in a year drops to  0.9512 = 54% and 
we basically face a stockout each 2 years. o 

5.5 PERIODIC REVIEW: s AND (s, s) POLICIES 

Continuous review policies have a significant drawback: Different products 
reach the reorder level at different points in time. As section 4.6 suggests, co- 
ordinating orders among products might be very appropriate. Placing orders 
of various products at the same time can reduce some fixed cost (such as or- 
dering or transportation) that the various products can share (joint economies 
of scale). 

This is the reason why periodic review systems are often used. In periodic 
systems we place an order each r periods. We assume we can observe the 
inventory levels periodically or. at least, we use the information on inventory 
levels to make planning decisions periodically. 

To understand the mechanics of periodic review systems, we must first 
determine the relevant planning horizon to set inventory levels. A first, er- 
roneous intuition might suggest that the planning horizon is the LT. So 
intuition might suggest that we set inventories according to the demand over 
the LT,  like in the case of continuous review policies. 

Example 5.25 A simple counterexample shows that setting inventories ac- 
cording to demand over the LT might be just not enough. Let us consider a 
company that orders some products once a year and receives them with a LT 
of one week. Setting inventories according to the weekly demand is definitely 
insufficient. as the company would run out of the products long before the 
end of the year and the next delivery, one year down the road. 0 

to cover most planning cycles, but still it serves a small fraction of expected demand. In 
our example, R = 2 meets demand in 99% of the cases (type I service level = 99%) but  
meets a very small fraction of overall demand (type I1 service level = 10.1%). However, we 
shall notice that  these are rather infrequent situations. 



PERlODlC REVIEW: s AND ( S .  s) POLlClES 289 

Fig. 5.8 The out-of-control period in periodic systems. 

Example 5.26 Let us consider a company that orders stationery products 
once each 3 mont'hs to a supplier that delivers in a month. Let us focus our 
att'ention on the order t'he company places in early January. This order is 
delivered in early February. The next order mill be placed in early April and 
will be delivered in early May. Thus the order placed in January (together 
with any existing inventories) shall cover 'demand until the next delivery, that 
is. the beginning of Nay. 0 

hlore in general. in periodic review systems. inventories shall cover demand 
over the LT plus the time r bet,meen two consecutive orders (that is, also t,he 
time between two consecutive deliveries, given the deterministic lead times). 
Indeed. the order placed at, time t o  is delivered at  time t o  + LT,  and the 
successive order is placed at  time t o  + T and is delivered at t,ime t o  + r + LT 
(see figure 5.8). Hence: the order issued at time t o  shall cover demand over 
LT + r periods. Such a period LT + r is the so-called Out Of Control period 
(OOC period) since. once the order in t := t o  is placed, inventories are out of 
our control and they depend only on demand fluctuations for LT + r periods. 
until the quantity ordered in t o  + r is delivered in t o  + 7+LT (notice that in 
the supply chain perspective demand is an exogenous variable we just, want 
to meet,, though we shall acknowledge that for the company at  large it is a 
variable we can at  least try to influence; e.g.. through marketing efforts). 

Concept 5.11 In the case of periodic review systems.  inventories shall cover 
the out-of-control period. In other worc!s> when we place an order we shall 
cover demand u p  to the delivery of the 'next order. IVhen orders are placed 
with a periodicitg r .  the order shall increase the inzien,tory position t o  a point 
where i t  is enough t o  cover demand over a period r + LT.  
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Once we have introduced the core concept, we can define the basic periodic 
inventory policies: 

0 A first policy is S. Under this policy, each T periods we place an order 
and the inventory position increases up to S.  This is the so-called base 
stock polzcy or order-up-to polzcy. 

0 The main drawback of the S policy is that it can lead us to place very 
small orders in case the inventory position is barely below the quantity 
S .  To avoid this problem and make sure orders are "large enough", we 
do not place orders if the inventory position is above s. So. under this 
policy called (s, S), each T periods we check inventories. If inventory 
position is equal to or lower than s, we place an order and take the 
inventory position back to S ,  if the inventory position is greater than 
s we do not place any order. This way we make sure that the order 
quantity is at the very least S - s.  

5.6 THE s POLICY 

As usual, before we start modeling the inventory policy and try to  set the 
parameters. we shall understand the basic dynamics of the policy. The inven- 
tory dynamics is described in figure 5.9. Let us consider time to. when we 
place an order. At time t o  we place an order and immediately increase the 
inventory position up to  S. Obviously, physical inventories do not increase on 
the spot. The quantity ordered. S - IP,,, is delivered at time t o  + LT (in 
this instant. inventory position equals physical inventories when LT < T ) .  

When we are delivered, the physical inventory is a random variable that 
depends on demand over the LT. Thus we cannot tell the exact value of 
inventories a t  this point in time. We can just compute its expected value at 
time t o  + LTt: E ( I ( t0  + LT+) )  = S - LT . E ( d ) .  

This is the highest inventory level we expect to have in our inventory (actu- 
ally the maximum possibly conceivable level of physical inventories we might 
have is just S. when demand during the LT is zero.). Physical inventories 
start decreasing according to the demand, and they keep on going down up 
to  next delivery at time t o  + LT + IT. Obviously. even the inventory level at 
this time is a random variable, so we cannot tell its exact value. TVe can just 
compute the distribution and the expected value S - (LT + T )  . E(d) (the 
maximum conceivable value is still S. when demand is zero over LT + T ) ~ ~ .  

This inventory level is called safety stock. Indeed, these are inventories one 
uses just when demand exceeds its expectation, that  is they are designed to 

251n this case as well we deliberately ignore the fact that  inventories are a non-negative 
variable, thus the probability distribution and the expected level of inventories is slightly 
different. We refer the reader to footnote 20 on page 274. 
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Fig. 5 9 Dynamics of inventories in the case of S policy. 

manage demand uncertainty. So physical inventories are expected to fluctu- 
ate between S - LT . E(d) and S - (L?’ + 7 )  . E(d) in each cycle. So the 
quantity ordered on the average is “i . E(d) and average physical inventory is 

Once we have understood the dynamicfj of the system, we can try to  set the 
control parameters “i and S. A first difference between the S and the (Q, R) 
policy is that once we have set “i. the ordering cost are deterministically fixed, 
while in the previous case Q had an influence on the expected ordering cost 
that still was a random variable that depended on demand. 

S - ( L T  + 7 / 2 ) .  E(d). 

Like in previous sections we can try t o  write the total cost function: 

0 The orderzng cost is equal to  the fixed ordering cost A divided by the 
ordering period “i that determines how often we incur the fixed cost A: 

A c,, = -: 
r 

The inventory holdzng cost is equal to the unit holding cost h times the 
average inventory level S - (LT 4 7 / 2 )  . E(d): 

C,, = h .  (S - (LT + . / a ) .  E(d)) . 

0 Finally. as we have already seen in previous sections. we shall compute 
the cost of a stockout. When the rost of the stockout depends on the 
size of the stockout. the stockout cost is 

c,, = . l+m (;. - S) fdLTC,  (x) ds:  ( 5 . 2 5 )  
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while when the cost of the stockout depends on the occurrence of the 
stockout, the expected cost in a period is 

(5.26) 

Interestingly, both in equation (5.25) and in equation (5.26) the relevant 
demand distribution refers to  demand in the out-of-control period r + 
LT. 

From the previous equations we can derive the total cost function. In this 
section we only investigate the case where the cost of the stockout depends on 
the size of the stockout. The concepts and solutions we suggest for this case 
apply to the other case as well. We leave the derivation of the second case to 
the reader. 

Optimization problems in the S polky. Now we can take the derivatives of the 
total cost function with respect to r and S to identify the optimal control pa- 
rameters. Optimal values of control parameters r and S satisfy the equations 
below: 

(5.28) 

(5.29) 

While equation (5.29) does not pose significant problems. the last term in 
equation (5.28) can be problematic. The first two terms in equation (5.28) 
resemble the EOQ problem. as they capture the effect of an increase in r 

Pu = h - - ' [I - FdLT+, (s)] = 0. 
7- 
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on the ordering cost and on the inventory holding cost. The last two terms 
capture the impact of a (marginal) increase in r on the stockout cost. In 
particular. the term -3 . s, (z - S)fLLT+r (z) dz shows that as the time 
between orders increases. the number of stockouts decreases simply because 
the number of cycles and thus the number chances to experience a stockout 
decreases. This term does not set specific challenges when we want to  find 

an optimal solution. The term +? . (z - S )  bT dz tells the effect 
of ‘T on the demand distribution during the out of control period. This is 
all but trivial. as both the expected demand and the standard deviation of it 
change as ‘T changes. Also. as r changes. the shape of the demand distribution 
might change (though we shall remind you that the sum of normal demand 
distributions is still normal and thus in case of normal identically distributed 
distribution we can obtain this function) and thus we cannot really write the 
function in the general case. Then taking the integral of this derivative might 
not be trivial. 

+m 

a f d L T + r  (x) 

One reasonable heuristic For the above computational problems we often 
resort to heuristics. In particular, we hsrdly can find the optimal value for 
r .  So we set it to minimize the first two terms in equation (5.28). Then the 

ordering frequency is r = dz. that  is. exactly the ordering frequency 

that we achieve when we try to order. on the average, the EOQ (when several 
products share the same fixed order A. we can use the process described in 
section (4.6.2) and then set the order frequency T as the ratio between the 
optimal quantity Q* and the expected demand E(d) for the bundle). 26 In 
practice we then round r so that it can be managed in a real context: It is 
very hard to place an order each 1.7313 weeks. Instead, one orders each week 
or once each 2 weeks. 

Once we have set r .  S is the only control lever left. The optimal level of S 
can be derived from equation (5.29): 

(5.30) 

This result might look odd at first sight: Why is the holding cost multiplied 
by r? Is not T + LT the relevant time frame to set inventories? 

A more careful reading of the equation sheds some light on its meaning. The 
manager of the warehouse keeps an additional (marginal) unit of inventories 
in the warehouse for the whole cycle T between two successive deliveries just 
in case it is needed at the end of the cycle to avoid a stockout or a t  least 

261Uotice tha t  in this case the  mix of products in each single order can change according to 
demand. Indeed. if we keep the mix of purchases fixed. any random fluctuation in the mix 
of demand turns into fluctuations in the  mix o f  inventories. So while we set the control 
parameter T according to bundles of products we do not actually buy in bundles with a 
preset mix. 
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reduce its size. So the holding cost over a whole cycle h . 7 counterbalances 
the reduction in the cost of a stockout pu.27 Also, as usual we should notice 
that our findings required no assumption on the demand distribution so far. 
Now we need to make assumptions on the demand distribution to find the 
value of S that satisfies equation (5.30). To solve this equation, we need to  
know the cumulative demand d distribution FdLrcr (.) 

A similar reasoning applies to the case of cost of the occurrence of a stock- 
out. One we can still set the review period 7 in such a way that we tend to 
order the EOQ quantity. But in this case the optimal S is 

S policy with a constraint on service level. Also in the case of the S inventory 
policy, we might have a hard time estimating the cost of a stockout ( p  or p U )  
and thus we might implicitly estimate it through constraints on service level. 

When the constraint is on the type I service level, we call -/ the minimum 
service level required. In this case, the solution is rather trivial. We should 
simply set y in such a way that the probability that demand is lower than S 
is y (i.e., the probability of a stockout in a cycle is 1 - A/): 

(5.31) 

Example 5.27 Let us consider a company that places orders to international 
suppliers once a month. The suppliers deliver in 3 months. Let us assume that 
monthly demand follows a normal distribution with mean 200 and standard 
deviation 40 and is not autocorrelated over time. Also. let us assume we have 
no reliable estimate of the cost of a stockout and thus require a minimum 
type I service level of 98% to limit the number of stockouts. In this case, S 
shall be high enough to make sure that inventories are higher than demand 

"Notice tha t  again we assume tha t  the inventories are held during the whole cycle, whereas 
they might be sold before the  end of the cycle and, in this case, they are going to be held 
for less than a cycle. So our model makes a simplifying assumption (see footnote 20). Also, 
it is interesting to  read the  relationship between the above equation and the newsvendor 
model. In this case the profit we gain when we sell the marginal unit is p,. However: when 
tha t  happens. we still hold the  marginal unit for T .  So the actual net marginal profit is 
m = p ,  - h . T .  On the  contrary, in case we cannot sell the marginal unit in the  cycle T it 
generates a cost c = h T .  So when we apply the newsvendor formula in the  correct way 
(i.e., net of holding costs we ignore in the newsvendor problem), we reach the same results 
we have derived here. 
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over the out-of-control period in 98% of the cases. Thus S is simply equal to 
S = 4. 200 + ~ ( 0 . 9 8 ) d .  40 = 800 + 2.05 80 = 964. 

Thus S is S = 4 200 + z(0.98)& 40 = 800 + 2.05 80 = 964. 0 
If the constraint is on the type I1 service level. we call the niinimum ser- 

vice level S.  Given 
the constraint. only a 1 - 6 portion of the demand in a cycle shall be not 
met from stock. If the order is placed tach T periods. the average demand 
in a cycle is T . E(d). Thus demand we expect not to meet in a cycle is 
‘T . E(d) . (1 - 6) = n(S) at  maximum. If demand happens to be normally 
distributed. we have n ( S )  = L ( z )  . c,-+LT. As the above equation shows (see 
the term c r T + ~ ~ ) .  the inventory level S depends on the demand over the whole 
out-of-control period LT + T .  though we compare the demand not met to  the 
total demand in a cycle 7 .  Also. in this case. a simple example can help us 
make sense of this apparently odd concept. 

Example 5.28 Let us go back to example 5.27. \ l e  just slightly change our 
assumptions: We assume that the 98% minimum service level requirement 
refers to a type I1 service level. In other word?. 98% of customers shall find in 
stock the product they want. This means that only 4 customers a month (or 
less) should not find the product they want. Thus we know that the expected 
demand unmet before the next delivery (delivery frequency is equal to the 
review period of one month. given the del-erministic lead times) shall be equal 
to 4 units. 

Having said this. we shall now find the right level of S to reach that mini- 
mum requirement. For example. when we place an order in early January. it is 
going to be delivered in early April. The delivery quantity shall cover demand 
up to the beginning of IIay. So the inventory position S shall be large enough 
to cover demand up to the beginning of ]\lay: that is. it shall cover the out of 
control period of four months.28. Given our assumptions. the mean of the de- 
mand over the LT = 4 months is 800 units. while the standard deviation is 80. 
Also. me know that demand is normal and the demand we expect not to meet 

In this case the situation is slightly more complex. 

28”otice tha t  the  backorder assumption is crucial. Indeed. if unmet demand gets lost. the 
distribution of sales is not exactly equal t o  the  (demand over the out-of-control period. Let 
us a make an odd. though telling. example. Let us assume tha t  for some reason we are out 
of stock and we forgot to  place any order ol’er 1 he last three months. So basically in early 
January we place an  order that  is going t o  be delivered in early April. Up to tha t  time. 
the whole demand is going t o  get lost. So it does not make sense to  increase the  inventory 
position to meet demand over the  whole out-of-control period as basically demand is going 
to  get lost over the first 3 months. In this case we simply set S (and thus the order quantity) 
to  meet demand during the month of April. hIore in general. in the lost s a l e  case we set 
the ordering quantity t o  meet demand in a period 7 .  The demand over the LT still plays a 
role, as it influences the  inventory level when the  order is delivered and thus the total units 
available to  meet demand in cycle. Finally. notice tha t  the  lost sales and the backorder 
case are very different in the  case of very low :service levels. like in the case we have just 
discussed in this note. However. they behave rather similarly in the more common case of 
a very high service level. 
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in any cycle is n(S)  = L(~).oLT+, = 4. So we shall select z l L ( z )  = & = 0.05. 
In the tables for the normal distribution we can select z = 1.255. Thus, 
S = E(~LT+,)+Z.~LT+, = E(~).(LT+T)+Z.OLT+, = 800+1.255.80 = 900.4. 

0 

Example 5.29 We go back to example 3.14 from page 126 to see how we 
can integrate the forecasting process with inventory planning. In example 3.14 
we have selected the moving average with step 5 (k = 5) as our forecasting 
algorithm. Also, while selecting the method we estimated that it yields a 
RMSE of 11.90. We basically consider this to be the uncertainty in the demand 
estimation. Let us now assume we are in period 24 and want to plan the 
deliveries for period 26. Our point forecast (i.e., our predicted demand) is the 
average of the last 5 demand observations. 

E ( d )  = F24,h = (103.58 + 87.95 + 110.83 + 103.87+ 115.57) / 5  = 104.36. 

As discussed in example 3.14. the LT is 2 days and the delivery frequency is 
daily. So we face an out-of-control period of 3 days. Thus we shall set the S 
parameter to meet a demand over three days. The expected demand over the 
out-of-control period is 3 . 104.36 = 313.08. As to the standard deviation of 
demand, as usual we shall make some assumptions on the correlation among 
demand observations over the out of control period. If we assume demand 
fluctuations to  be independent, we can use the square root rule. In this case. 
the standard deviation of demand in the out-of-control period is 11.9 = 
20.61.’’ 

Now let us assume that we want to achieve a 95% type I1 service level. This 
really means that in each cycle only 5% of demand can be lost. The order cycle 
is daily, so we can loose up to 5% of daily demand. Thus n(S) = 5%.  104.36 = 
5.22 So we shall select z l L ( z )  = - = 0.0166. In tables for the normal 
distribution we can select z = 1.74. Thus. S = 313.08+ 1.74.20.61 = 348.94. 

0 

5.7 THE ( s ,  s) POLICY 

The order up to policy S is often used, but it can lead to  quite irrational 
replenishment decisions, as we might order a very small quantity when inven- 
tories are just slightly below the order up to level 5’. In these cases, one might 
prefer not to order to save the fixed ordering cost A and slightly reduce the 
service level he/she offers. 

29Actua11y if one wants t o  be precise he/she shall measure the  error we make with a fore- 
casting horizon of one, with a forecasting horizon of two and with a forecasting horizon of 
three and then check whether the  three errors are correlated. Here we implicitly assume 
tha t  the error we make with a 2 days horizon is equal to the error we make with a one day 
and a three days horizon. 
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This is the reason why the ( s .  S) policy was designed. Under this policy, 
each 7- periods we check the inventory position. If the inventory position is 
above s.  we do not place any order. Otherwise, we place an order and take 
the inventory position up to S. Though this policy can be very effective (the 
S policy is just a special case of the (s, S ) .  so the latter is by definition more 
flexible and potentially can perform better). it is actually quite hard to model 
for several reasons: 

0 The number of orders placed in a given time frame is a random variable 
that depends on the number of times the inventory position goes below 
s at the points in time ( t o ,  t o  + 7 .  to + 2 7 .  t o  + 37- ...) when we check it. 

The expected service level offered in each planning cycle is actually a 
random variable; while in some planning cycles we take the inventory 
position up to S with an order, in others the starting inventory posi- 
tion is below S (though above s )  and thus the service level (no matter 
whether type I or 11) decreases. 

0 Even calculating the average inventory level is actually all but trivial: we 
know that the inventory position reaches S and goes below s.  However. 
it is hard to  estimate the distribution of the inventory position. Indeed. 
we do not know whether it depends on demand over LT + 7 (in case 
the inventory position goes below s during the first order cycle. that is 
the inventory position is below s in t o  + 7). or on demand over LT + 2-r. 
LT + 37. etc. (in case this happens in two. three, or more c>-cles). 

For these reasons we often resort to heuristics. The most frequently rec- 
ommended is to refer to the (Q. R)  model as follows: 

0 The quantity ordered is the fixed quantity Q in the (Q.R)  policy. In 
the (s.S) model, on the contrary, the quantity ordered is variable. So 
we try to set the parameters in such a way that on the average we 
order Q units. One approximation we can make is Q = S - s .  Such 
an approximation basically assumes that when we place an order the 
inventory position is exactly s. Pihen 7- is relatively small and thus 
we check the inventory position rather frequently, this is a minor issue. 
In those cases where the inventory position is actually below s. the gap 
between our simplifying assumptions and reality is negligible. IVhen 7- is 
substantial and thus we check the inventory position once in a while. the 
inventory position might be significantly below s and thus the average 
order can be significantly larger than S - s .  

Example 5.30 Let us assume 

0 7 = 1 month: 

0 monthly demand is normally distributed with mean 100 and stan- 
dard deviation 10: 
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demand shows no autocorrelation; 

S = 250; 

0 s = 100. 

Finally we assume, for the sake of simplicity, that an order is placed at 
time t = 0 and the inventory position reaches 250. At time t = 1. after 
one month, the inventory position is a random variable, that  is, Normally 
distributed with mean 150 (250-100) and standard deviation 10. This 
really means that the probability that at time t = 1 inventories are below 
s = 100 is actually negligible (the expected value of inventories is 50 
above the threshold s). The next month. at time t = 2 the probability 
distribution of the inventory position is a normally distributed random 
variable with mean 50 (250-2.100) and standard deviation 14.3 ( lo .&)  
and we have an almost 100% probability of placing an order. So the 
order is very likely to be placed at time t = 2 and though its size is 
actually a random variable, the expected value is actually S = 250 
minus the expected level of the inventory position at time 2 (50 units). 
So. though S - s = 150 units, the expected order size is 200 = 250 - 50. 
This large difference is due to  the relatively low frequency of inventory 
control. As the frequency of control increases and the time between 
inventory controls T reaches 0. the periodic review system is more and 
more similar to the continuous review ones and thus the approximation 
to  the (Q, R) policy is more and more effective. 0 

The threshold s plays a role that resembles the reorder point R in the 
(Q, R) policy, so we can set s at  the same level we would have selected 
for R in a continuous review system: The key idea is to  make the ( s ,  S )  
mimic the (Q,R) system. In this case too. the question is how good 
the approximation is. For this control parameter as well. the issue is 
whether the order is placed exactly when the inventory position is s or 
is significantly below it. In this case, too, the larger the value of T ,  the 
more the approximation is crude. 

To solve the problems of this simple heuristic we can, (i) increase the fre- 
quency of periodic controls (reduce T ) ,  (ii) perform more sophisticated statis- 
tical analysis to capture the actual inventory position when we place an order. 
(iii) resort to simulation to check the performance that various levels of the 
control parameters ( T ,  s ,  and S) can generate, or finally, resort to dynamic 
programming. All options lay outside the scope of this introductory book. 
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5.5.8 OPTIMIZATION OF THE (Q,FI)  MODEL WHEN THE COST 
OF A STOCKOUT DEPENDS ON THE OCCURRENCE OF A 
STOCKOUT 

11-e can try to  jointly optimize the two parameters Q and R also when the 
cost of a stockout depends on the occurrence of a stockout. Lye can follow 
a process that resembles 5.4.1. M'e write the total cost function (5.16) and 
compute its derivatives with respect to Q and R: 

and derive conditions for optimality: 

(5.33) 

In this case, too. the optimal lot size Q suggests that the cost of a cycle 
is greater than the ordering cost A,  since in each cycle we run the risk of 
stocking-out. The one difference is that in this case the cost of the stockout 
in a cycle depends on a probability (1 - F d L T ( x ) )  rather than the expected 
level of unfulfilled demand n(R) .  Also. the condition for optimality resembles 
equation (5.20) since the marginal cost of inventories h is compared to  the 
reduction in the stockout cost p . f d L T  (R) in each of the E(d)/Q planning cycles. 
it-hile in the case of (5.20), F(R) is a growing function of R. f d L , ( R )  is not 
a monotonous function of R (at the least not for all density functions). On 
the contrary. for all symmetric demand distributions, if there is one solution 
to  equation (5.33) there must be at  the least another one. 

Example 5.31 For example let us consider a normal demand distribution 
with mean of 100 units and a standard deviation of 20 units. 11-e can reach a 
f d L , ( R )  = 0.015 both for R = 85 and R = 115 (see figure 5.10). 0 

Intuitively, while one of the solutions is a maximum, the other is a minimum 
of the cost function. Indeed. in a symmetric demand distribution, the marginal 
savings from a marginal increase in inventories dR is p f d L T  (R) . dR for each 
planning cycle. For R below the expected1 level of demand, we face increasing 
returns for our investment in inventories since in this range fdL,(R) is a 
growing function of R. This rules out all points below the mean as potential 
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Fig. 5.10 Condition for optimality on the reorder point R. 

candidates for optimality (more in general this rules out all points between a 
minimum and a maximum and below the first maximum). Indeed, the second 
derivative is 

Thus where the density function is growing ( f ’ (R)  > 0) we have stationarity 
points that are either maximums or saddle points of the cost function. Once 
again, economic intuition and math perfectly match. 

Example 5.32 Let us go back to  example 5.31. Let us assume the 85th 
unit generates a reduction in the cost of stockouts that justifies the extra 
holding cost h. Then all units 86 to 135 are worth the inventory investment. 
Indeed, they share the same cost of inventories h but generate an even greater 
reduction in the cost of the stockout (since the probability density is greater 
than in the case of the 85th unit). 0 

This cost structure suggests that  in the case of symmetric demand distri- 
butions (and more in general in the case of demand distributions with a mode 
greater than zero) the cost function has a local minimum in R = 0 that shall 
always be considered as a potential candidate. It shall then be compared with 
those points to  the right of the mode(s) (in the case of symmetric distribu- 
tions with one mode, it is also the mean) that satisfy equation (5.33). When 
R = 0 is the optimal solution. the company deliberately decides to  experience 
a stockout in each and every planning cycle. This raises the cost of a planning 
cycle to A + p  and leads the company to  increase the order quantity Q up to  
[Q*=  Jy]. 
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Also. there is no guarantee that the density function is such that at least - 
one point satisfies equation 1 &* = pp1. -- Indeed, if demand is very 

L i 

uncertain (and thus the demand distribution is very flat) the marginal gain 
from a marginal increase in inventories might be very low and it might not 
justify the investment in inventories. 

Even from the standpoint of the solution process, the situation is all but 
trivial. As discussed in section 5.4.1, equations (5.32)-(5.33) can only be used 
through iterative methods. as they are not independent. However. in this 
case we might want to start our search procedure from the maximum of the 
density functions. In other words, we set li0 equal to the mode of the demand 
distribution. TVe start our search from the single point with the largest return 
on the inventory investment. This first rough-cut estimate of R is then used 
in equation (5.32) to get a first rough-cut estimate of &*. &o. We can then 
use this estimate Qo to  get a better estimate R1 of R*. and so on. 
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Managing Inventories in 
Multiech,elon Supp ly  

Chains 
6.1 INTRODUCTION 

In the two previous chapters we have studied inventory management for a 
single warehouse. However. most distribution (as well as manufacturing) sys- 
tems consist of more than one echelon. This makes the problem more complex 
and makes modeling harder. Indeed, in a rnultiechelon system the optimal in- 
ventory policy depends on both inventories and inventory policies of all other 
warehouses in the system. both upstream and downstream. 

Example 6.1 In the food industry a typical supply chain has several eche- 
lons. Cpstream. manufacturers tend to centralize production in a relatively 
small number of plants to enjoy economies of scale that in this industry (like 
most process industries) are quite sizeable. In Europe, a single plant can 
serve the whole continent (for high-value products such as yogurt and fresh 
pasta) or a whole country (one exception is that of low value per kg prod- 
ucts such as drinking water whose markt3t tends to  be fairly local). These 
large plants feed warehouses for finished products within the plant. These 
warehouses feed distribution warehouses where products coming from vari- 
ous plants of the same manufacturer are held. These distribution warehouses 
feed the central distribution centers (CDC) of the retail chains. The man- 
ufacturer’s distribution warehouses guarantee frequent and quick deliveries 
to  the retailers that cannot be achieved from the central. and thus on the 
average far. production plants. Also. local distribution centers decouple pro- 
duction lots from distribution quantities. Production needs fairl: large lots 
of a relatively limited assortment (for any given plant) to run smoothly while 
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customers want frequent deliveries of a variety of products. Local warehouses 
make these apparently noncompatible ends meet. 

The retailers’ CDC finally deliver to the single stores (at times through 
a network of independent agents or distributors). Finally. in a broader per- 
spective the supply chain ends with the inventories in the refrigerators and 
cupboards of the final consumers. This might look like an irrelevant issue 
since the amount of inventories in each house is very small. However, the 
number of these small warehouses called houses and apartments is enormous. 
For example. to understand the demand pattern for some basic and price- 
sensitive fast-moving consumer goods the time between promotions is a key 
variable. For example. in the now classic case of diapers, the final consumer’s 
consumption is actually very stable and predictable. Nany parents willing 
to keep the cost of these fairly expensive items tend to  buy in large quanti- 
ties during promotions. So, when one wants to understand whether the next 
promotion is going to  be successful. one should consider not only the dis- 
count offered, but also the time since the last promotion (for the same item 
and/or for the product category in case customers are willing to  switch among 
brands). This variable catches the inventory level a t  the consumers’ place and 
thus their willingness to  buy a large quantity. Indeed, in this case the price 
reduction does not increase the aggregate consumption (families with no chil- 
dren hardly buy diapers because they are cheap) but rather pushes consumers 
to  concentrate purchases over time and at a single retailer. 0 

Moreover. multiechelon distribution system might involve more than one 
organization. For example. in a distribution chain we might have a producer 
of raw materials. a manufacturer of the finished product, wholesalers, and 
retailers. Each of these players has his/her own economic objectives that 
might not fully overlap with those of other members of the supply chain. So 
when we study multiechelon supply chains, we shall not only look for the 
optimal plan but we should also wonder what are the objectives each of the 
players is trying to reach and ask ourselves whether they are compatible or 
conflicting. 

In other words, to fully understand and optimize a supply chain. we shall 
merge the perspectives of an economist and the perspective of an engineer.’. 

Basically a classic engineer tries to find the best possible algorithm to find 
optimal solutions to nontrivial problems. The perspective of the engineer is 
that managers of a supply chain are not bright enough to run their supply 
chain so they need some support from algorithms and computers to design 
better plans. So in the engineers’ mind. men and women are very willing to  
implement optimal solutions, if somebody suggests such optimal solution to 
them. 

‘Professor A. Raman of the Harvard Graduate School of Business originally developed this 
telling example. 



The classic perspective of an econoniist is actually quite the opposite. 
Economists believe that men and woine n are extremely brilliant “economic 
beasts.” For example, economists assume that people immediately change 
their willingness to spend or borrow money according to the interest rates. 
Unfortunately, economists acknowledge that these economic beasts are rather 
selfish and are only interested in their welfare rather than in the performance 
of the whole supply chain. This is the reason why for an economist an opti- 
mal plan might be quite likely not to  be ever implemented for a very simple 
reason: It might not be good for one (01 more) of the plal-ers in the supply 
chain that might have the power to call the plan off. 

This really means that to manage a multiechelon supply chain with several 
decision makers and organizations. we shall definitely design optimal plans 
(i.e.. be good “engineers“) but at the same time we have to design a network 
of contracts. incentives. and ways to shart. the benefits of the plan that makes 
sure the plan actually is implemented and can improve actual pwformance 
(i.e.. be a good “economist”). 

Concept 6.1 In multzechelon supply chtrzns we  shall (z) deszgn rules and al- 
gorzthms to zdentzfy good solutzons t o  ra ther  complex problems. and ( 1 1 )  design 
contracts o r  ancentzves an such  a may thrzt all relevant players  are wzllang t o  
i m p l e m e n t  these solutzons and push  an t h e  s a m e  dwectzon. 

The next chapter analyzes the relevance of conflicting objectives and in- 
centives in a distribution chain. In this chapter n-e assume that managers of 
the warehouses in the system belong to one single organization or ;it the very 
least that  the various organizations have agieed on a system of incentives to 
share the benefits of an optimal solution that makes them all very willing to 
minimize the total cost of the supply chain.l 

Example 6.2 The case of large grocery retail chains can be insightful. IYhen 
a product stocks out, the average customer is very likely to  switch to a substi- 
tute product. For example, when the consumer was looking for a specific kind 
of chips. he/she might switch to a different brand. to  the private label. or to 
another snack. That is why the stockout rnight create a limited damage to the 
retailer (at  least in the short run) that  is still very likely to sell some sort of 
snack. On the contrary. in the manufacturer‘s perspective this i5 a loss of mar- 
gin and turnover. 11-hat makes things worse. is that this stimulates consumers 

’Notice tha t  we deliberately use the term orga.riization rather than firm. Indeed. often 
working for the  same firm is just, not enough for people to  share the  same objectives. For 
example. in a large multinational manufacturer of white goods the  managers of some Euro- 
pean subsidiaries are not willing to  share demand and inventory da ta  with the managers of 
the central logistic center for spare parts, as they fear tha t  these pieces of information might 
be used against them. Such lack of information definitely worsens the overall performance 
of the  company, bu t  some European subsidiaries still think this situation is in their best 
interest. These subsidiaries behave like independent organizational units. 
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to try substitute products that they might like. This creates a misalignment 
between the objectives of the manufacturers and retailers. While producers 
have all kinds of incentives to  reduce the frequency of stock-outs. retailers 
pay for holding the inventories in the stores and in their warehouses. Quite 
interestingly, some recent studies on stock-outs in grocery retailing show that.  
on the average. 8% of the products in a supermarket are stocked out. Retail- 
ers seem to be OK with such an apparently bad performance (given the high 
traffic and relatively high volumes of these stores) while most manufacturers 
fell off the chair and believe this to be an unacceptable performance. [I 

Multiechelon systems can be very diverse and thus can set a wide variety 
of problems and issues. 

A first variable we can use to classify them is the structure of the dastra- 
button system. In chapter 1 we have shown that a multiechelon system can 
be: 

0 linear. if each warehouse receives goods from a single supplier and ships 
goods to at most a single warehouse: 

distributave. davergent or arborescent, if each warehouse receives goods 
from at most a single warehouse but can ship to more than a single 
warehouse: : 

assembly or convergent, if each warehouse delivers to a t  most a single 
warehouse but can receive goods from various warehouses. : 

Obviously. these are the basic structures, while in the more general case 
each single warehouse can both ship to and receive from many other ware- 
houses. 

In the case of linear. arborescent, or convergent systems we can define the 
number of echelons in the system. In the remainder of this chapter we number 
the echelons from downstream. So the first echelon of the supply chain serves 
the final customer. LVarehouses that serve the first echelon are in the second 
echelon. and so on (for an example of this numbering of the echelons see figure 
6.1). In this chapter we only investigate supply chains with 2 echelons since 
the complexity of the model increases significantly as the number of echelons 
grows. However. the analysis of this relatively simple problems gives us a 
chance to shed some light on some concepts that apply to the more general 
case of supply chains with 2 or more echelons. 

Example 6.3 Going back to  example 6.1. the distribution chain for a given 
grocery product is arborescent, since a single production plant serves several 
local warehouses: each of them serves several retailers’ central distribution 
centers that ,  in turn. serve several stores. If we consider the consumers to lay 
outside of the boundaries of the supply chain (to some extent the definition 
of what lays outside and what lays inside the supply chain is arbitrary). we 
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Third Echelon v 
Second Echelon Y/ 

Fig 6.1 Example of a threcs echelon supply chain 

can identify 4 echelons in the chain. In this case. stores are the first echelons. 
and warehouses at the production plants are the fourth echelon. 0 

Our definition of the echelons depends on the flow of materials among 
warehouses. Often. though. echelons are also different in nature. For example. 
the first echelon often consists of stores that differ froin other warehouser in 
several ways. First. consumers enter thest3 warehouses while they do not visit 
other n~arehouses. This also means that safety measures are tighter in this 
echelon than in others. Also. this specific kind of warehouses looks really 
different, as they are designed to  raise the inteiest of the consumer. In the 
second level we have a warehouse that (differs froin other echelons because 
inventories held come from a variety of brands and manufacturers. Also. 
iiiveritories held there are (typically) on the retailers’ balance sheet. 

\T’lieii we define the echelons of a supply chain through the chaiacteristics 
of the warehouses (say stores vs. non-stores) we can define honzonta/ trans- 
shipments: that is. shipments among warehouses that belong to the s a n e  
echelon. 

Example 6.4 In retailing. in luxury business. and in the apparel/footwear 
business in particular. horizontal shipmeits ainorig stores in a siiigle city or 

31ndeed. if we define echelons through the flows of goods and tn.0 stores exchange goods n-e 
must simply draw the conclusion tha t  the  structure is neither linear, nor arborescent, nor 
convergent and tve cannot define the echelons. If store .A ships to  store B. B diould he iii 

the first echelon and A in the  second; though this contrasts n i th  the fact tha t  A also sells 
to  the final consumer. Things get even worse if A also receives goods from B. Is A a client 
or a supplier t o  store B? Xeither A nor B can be said to belong to  echelon 1 or 2 .  The>- are 
an  odd mix and our numbering of echelons simply fails. 
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area is a common practice. Retailers use this mean to meet customers' re- 
quests for products/colors/sizes momentarily out of stock. 0 

However, in this chapter we only consider models that do not allow hori- 
zontal shipments for several reasons. 

0 First. in several cases. horizontal shipments are not used for organiza- 
tional issues related to the incentives of the store managers and sales- 
persons. For example. the store manager might not want to send some 
of his/her units of the hottest product to the manager of another store 
that might be competing with him/her for bonuses. Also. some retail 
chains (e.g.. Zara) discourage this practice to commit the manager of 
each store to  selling the products he/she carries and to carefully select 
from the company's assortment the products that fit the local market. 

0 Second. for many products with a low value per unit of volume or weight. 
moving goods from one store to another might not make economic sense 
since the cost of point to point transportation4 might significantly ex- 
ceed its benefits. This is why in grocery retailing we basically have no 
shipment among stores. 

0 Finally, horizontal shipments make modeling harder both because it is 
hard to tell what is the demand for a given node of the network (demand 
might come both from downstream and from other warehouses in the 
same echelon) and because LT becomes stochastic and bimodal. as the 
goods might be delivered from upstream warehouses (typically with a 
longer LT) or from warehouses in the same echelon (typically with a 
shorter LT). 

In this chapter. section 6.2 shows that we can manage a distribution network 
both with (i) local and detailed information (so called znstallatzon-stock) and 
(ii) with a global and aggregate information (so-called echelon stock).  Section 
6.2 also discusses pros and cons of these two options. Section 6.3 introduces 
the rather broad theme of coordination in a supply chain showing the main 
causes of lack of coordination. their root causes. and some possible remedies. 
Section 6.4 shows a first inventory problem with a two-echelon linear system 
with certain demand. Section 6.5 shows how to plan inventories when facing 
demand uncertainty in a two-echelon supply chain consisting of I warehouses 
in the first tier and one transit point that feeds them. This model suggests 
a heuristic and discusses the role and functions of transit points; that is. 
warehouses where inventories merely transit for a few hours. Finally. section 
6.6 analyzes the more complex case where warehouses in the first echelon are 

4As we will discuss in chapter 8. point-to-point transportation (in our case, store-to-store) 
contrasts with hub-and-spoke transportation where one of the  nodes of the  network works 
as a connecting point. just  like in the case of air transport, t o  consolidate traffic and gain 
economies of scale. 
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supplied by a warehouse that carries products. This section also shows that.  
in multiechelon systems, demand uncertainty generates some uncertainty 011 

lead times. 

6.2 MANAGING MULTIECHELON CHAINS: INSTALLATION VS. 
ECHELON STOCK 

In a inultiecheloii distribution system the optimal inventory level in a ware- 
house might in general depend on inventories and demand in all other nodes 
of the network. However. accounting for :hese pieces of information requires 
a lot of real-time information on the current inventory level and demand in 
each ~ r - a r e h ~ u s e . ~  Often such information is not complete and is not available 
quickl? enough. and reliably enough. So we try to design inventory policies 
that can lead to good global performance though they make decisions based 
on local information. Often decision makers at one warehouse onlv have in- 
formation on their own warehouse and simply have no information on the 
inventory levels upstream and downstreain. Installatzon Stock measures the 
inventory position of a given warehouse t’lirough local-only information. Un- 
der the Installation Stock logic. the inveI (tory position of a given warehouse 
(or installation) is just inventories on hand plus incoming orders minus cus- 
tomer backorders. As the reader can immediately realize. this logic neglects 
information on inventories and orders in other nodes of the distribution net- 
work. 

This approach contrasts with the more complex Echelon Stock logic This 
logic measures the Echelon Inventory Position as the sum of the inventory 
positions in the warehouse plus all the inventory positions in the downstream 
warehouses. So this logic requires global information to work properly. The 
Echeloii InLentor) Position is greater than (or equal to) the Installation Stock 
Inventor Position. Also. the Echelon Stock gives a broader perspective on the 
current inventory level in the distribution chain. For example. this second 
logic might show that a second-tier warehouse, with no inventoriei on hand 
and no incoming orders. might still not need to place any order to supplier\. 
sinipll- because the stores this warehouse delivers to are overstocked So iri 
the near future this warehouse might simply not need any inventories 

Example 6.5 Let us consider the distribution chain in figure 6.1. Let us 
assume that the Installation Stock In\-ent ory Positioii for each n-arehouse is 
that shown in table 6.1. As we can see. the Echelon Inr-entorj- Positions are 
greater than (or equal to) the Installation ones. The Inr-entory Position of 
the two logics is obviously the saine for warehouses in the first echclon. since 
there is no downstream warehouse. 

5This section was inspired by [lj 
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Table 6.1 Inventory Position, Installation Stock. and Echelon Stock 

Warehouse 1.1 1.2 1.3 1.4 2 3 

Installation Stock Inventory Position 20 20 20 20 20 0 
Echelon Stock Inventory Position 20 20 20 20 100 100 
LT 1 1 1 1 1 1 
Demand 5 5 5 5 -  - 

Also, the Echelon Stock Inventory Position for the warehouse in the second 
echelon is equal to its Installation Stock Inventory Position plus the sum of the 
inventory positions of all warehouses in the first echelon. Finally. the Echelon 
Stock Inventory Position of the warehouse in the third echelon (warehouse 
3 )  is equal to  the Echelon Stock Inventory Position of warehouse 2 since the 
Installation Stock of warehouse 3 is zero. 

A planner in warehouse 3 needs to decide how many units he/she wants 
to  order. If he/she looks at  the problem with an Installation Stock logic. 
he/she would be tempted to  place an order since the inventory position is 
zero (the size of the order depends on the specific policy the manager adopts. 
purchasing LT. distribution LT. and demand). On the contrary, if we look 
at  the problem with the Echelon Stock logic, the distribution system looks 
fairly well stocked (Echelon Stock Inventory Position is 100 units). At the 
very least with an Echelon Stock logic. we wonder whether we should be 
ordering at all. This decision still depends on the specific inventory policy 
the manager adopts. purchasing LT. distribution LT. and demand. But still 
while the Installation Stock logic seems to suggest that we obviously shall 
place an order. the Echelon Stock logic might not suggest to place an order. 
For example, let us assume that demand at  each store is deterministic and 
equals 5 units per period. we adopt a continuous review period. and all LTs 
are 1 period (purchasing LT to warehouse 3. distribution LT from warehouse 3 
to  warehouse 2. and distribution LT from warehouse 2 to  the stores in the first 
echelon). In this case, in the distribution system we have enough inventories 
for 5 periods (100/(4 . 5 ) ) ,  while the out-of-control period (which is the sum 
of all lead times) is just 3 periods. Thus the inventory level in the system is 
more than enough and we decide not to place any order. 0 

Example 6.5 shows that the two logics are basically different eyeglasses that 
give us a very different reading of the current situation in the supply chain. 
This really means that the two logics can lead to very different decisions. Ex- 
ample 6.5 also shows the fundamental advantage of the Echelon Stock policy: 
Decisions are based on a global perspective on the current status of the whole 
supply chain rather than on local information on the local warehouse. 
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Table 6 2 Inventor! Position, Installation, arid Echelon Stock, in example 6.6 

IYarehouse 1 .1  1 . 2  1.3 1.4 2 3 

Installation Stock Inventory Position 80 0 0 0 20 0 
Echelon Stock Inventory Position 80 0 0 0 100 100 

Concept 6.2 The Echelon Stock logac looks at the mventory lruel 771 the 
downstream supp ly  chaan. and thus deccszons can be based on n global in- 
formatton. 

Example 6.5 might lead iis to  believe that Echelon Stock can alwa\-s outper- 
form Installation Stock. Example 6.6 complements example 6.5 and shows 
the fundamental weakness of this logic. 

Example 6.6 Let us consider the supply chain structure in example 6.5. 
Let us now assume that inventor) levels are those displal-ed in table 6.2. Just 
like in the previous case the Echelon Stock logic seems to suggest that there is 
no need to  place a purchase order for warehouse 3. However. a more detailed 
analysis shows that stores 1.2. 1.3. and 1.4 immediately need 5 units per period 
to fulfill their demand and thus (in case wt’ cannot transfer products from store 
1.1) we shall deliver 13 units per period lrorn warehouse 2 So invrntories in 
warehouse 2 are just enough for one period. So clearly warehouse 3 needs to 
place an order so that inventories required to  meet demand in stoles 12,’l.d 
can enter the distribution system as soon a5 possible. 0 

Example 6.6 shows rather apparentl) the fundamental weakness of tlie 
Echelon Stock logic. It sums the Inventory Positions of all warehouses that 
lay don-nstream of the warehouse we arc’ planning for. So. for the Echelon 
Stock logic. excess inventories in one location can counterbalance> a lack of 
inventoiies in another location. In the long run. excess inventories in one 
~varehouse reduce the need for inTentories. so all goods entering the suppl! 
chain can be devoted to the marehouses currently lacking inventories. In the 
long run. any unbalance in the distribution of inventoriei can be smoothed and 
irnentory lrvels can be rebalanced. Hon-exer. in the short run we can rcbalance 
inventories only if n-e can niove some goods from the overstocked warehouse(.;) 
to  the under-stocked warehouse(s) through horizontal sliipnients. Othern-i\e. 
the n-arehouse(s) lacking inventories genrrate5 a iequirenieiit for inventories 
that is not counterbalanced by excess iinentories in other installations. This 
major issue can only be tackled if the ehcess imentories are actuall! movcd 
horizontally to the store that needs them or if the planiiirig nicthod onl! 
considers the minimum between actual inventor)- level and the optimal one. 
In this second case. we basically ignore any excess inventories in one part of 
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Fig. 6.2 Linear distribution chain with N echelons. 

the supply chain so that it cannot counterbalance any lack of inventories in 
other parts of the supply chain. 

Concept 6.3 The Echelon Stock logic looks at the aggregate inventory level in 
the downstream supply chain and thus does not properly capture any unbalance 
in the distribution of inventories within the supply chain. 

6.2.1 

We investigate a linear distribution chain with N echelons to further under- 
stand the features of the Installation and Echelon Stock logics. Also we assume 
that the inventory policy that each of these warehouses adopts is a (Q, R) con- 
tinuous review system (see figure 6.2). We investigate how the (&. R)  policy 
works under the Installation Stock and the Echelon Stock logics. 

We introduce some notations to model and study the Echelon Stock and 
the Installation Stock logic. 

Features of Installation and Echelon Stock logics 

0 Qn is the lot size for the nth stage of the supply chain. We assume that 
the two logics share the same order size, as there is no reason why we 
would order a larger quantity under one of the two logics. 

0 IP;>t is the Inventory Position in the n th  tier of the supply chain with 
the Installation Stock logic. 



MANAGING MULTIECHELON CHAINS: INSTALLATION VS. ECHELON STOCK 313 

IP," is the Inventory Position in the nth tier of the supply chain with 
the Echelon Stock logic. 

0 Rk is the reorder level in the nth tier of the supply chain with the 
Installation Stock logic. 

0 RE is the reorder level in the nth tier of the supply chain with the 
Echelon Stock logic. 

-41~0. we make the following assumptions: 

0 \Ye assume the lot size at stage n is a integer multiple of lot size at stage 
n - 1. that is. 

Qn = 1 Qn-l ,  3 E ZT = {1,2.3.. . .}. 

This assumption is actually very reasonable since the upstream ware- 
house n receives orders of minimum size Qn-l and thus it seems reason- 
able that warehouse n places orders that are multiples of "quantums of 
demand" Qn- 1.  

0 Also. let us assume that initial conaitions are such that 

Rk < IP; I l3: + Qn.  
Ri < IPz 0 I RE + Q n .  

In other words. we assume that the initial inventory position lays in the 
long-run min-max range. In other words. these assumptions make sure 
we have no initial transient state Notice that if these assumptions do 
not hold. we simply have to wait until we place the first order for each 
warehouse in the chain to make sure the transient state is over and our 
assumptions hold: 

0 Finally let us assume that when a customer places an order, the supplier 
immediatel! receives it (LT for the information flow is zero, SO the LT 
only consists of time required to handle and transport goods). Under 
these assumptions. when the customer in stage n places an order. his/her 
inventory position (both Installatioii and Echelon) grows immediately. 
but at the same time the Installation Inventory Position of the supplier 
decreases b> the same amoiint. 

Property 1: Installation Stock (Q ,  R) policy is nested. An inventor! policy is 
nested if. when a warehouse in echelon n places an order. also n-archouses at 
echeloiis 1 to n - 1 served (directly or indirectly) by the warehouse in echelon 
n are placing an order as we1L6 

'Actiially in case of arborescent supply chains a1 the least one narehouse for each down- 
stream echelon orders at  the same point in time 
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Fig. 6.3 A divergent or distribution supply chain. 

Example 6.7 In the supply chain in figure 6.3, if the manager chooses a 
nested inventory policy, when warehouse 2.1 places an order. at least one of 
the warehouses 1.1, 1.2 and 1.3 orders as well. However. other warehouses 
(e.g., 3 .  2 . 2 ,  1.4. 1.5 and so on) do not necessarily order at the same point in 
time. as they are not served by warehouse 2.1. 0 

Under the Installation Stock logic in a linear supply chain, the inventory 
position at the warehouse n decreases (and thus can reach the reorder point 
Ek)  if and only if warehouse n - 1 places an order. Thus a necessary though 
not sufficient condition for warehouse n to cross the reorder point and place an 
order is that warehouse n - 1 places an order. Obviously. for this to happen. 
warehouse n - 2 must place an order. and so on, until we reach the warehouse 
in the first echelon. 

On the contrary. the Echelon Stock logic is not bound to be nested. In- 
deed. when warehouse n - 1 places an order to  the warehouse n, the inventory 
position of the latter warehouse remains unchanged. The reduction in the 
inventory position at warehouse n is counterbalanced by the increase in the 
inventory position at warehouse n - 1. So orders from direct customers drive 
replenishments under the Installation Stock logic, whereas they do not drive 
replenishments under the Echelon Stock logic (they are actually irrelevant fir 
the Inventory Position). So what drives orders in the Echelon Stock logic? 
The only event that reduces the Echelon Stock Inventory Position is final 
demand: that is. the exit of inventories from the supply chain. Orders and de- 
liveries within the (downstream) supply chain do not matter from an Echelon 
Stock perspective. So in general, warehouse n can reach the Echelon Stock 
reorder point even when warehouse n - 1 is not ordering. This. obviously, 
does not mean that the Echelon Stock policy cannot be nested, if parameters 
are selected properly. It simply means that it can also be nonnested, while 
the Installation stock policy is bound to  be nested. 
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Concept 6.4 Whale under the Installataon Stock logac orders are drzven by 
the anternal demand, under the Echelon :to& they are drwen by final (exter- 
nal) demand.  

In our following analysis we assume that the reorder levels are such that 
IP; - Rk is an integer multiple of Q n - l .  so that we exactly reach the reorder 
lel-el RI, (orders from the customer n - 1 as well as deliLeries from the supplier 
n + 1 are multiple of this quantum of demand). h> reorder level Rk + y with 
0 5 y 5 Qri-l creates exactly the same p(-lttern of orders. The one difference 
is that in this latter case the order is placed nlien the inventory position is g 
units below the reorder point rather than c.qual to  the reorder point. So iri any 
n-ay the minimum iiiventorv position is R;l, and we can make this a>suinption 
for the sake of clarity without any loss of geiieralitj. 

Example 6.8 Let us consider a warehouse that receives weekly order5 for 
10 units at a time and places orders for 40 units a t  a time. Also. let us assume 
that the initial inventory position is 20 units. If we set the reorder point to 
10 units. then n-e place an order in week 1. The inventory position incieases 
by 40 units. reaching 50 units at time 1. Then it drops by 10 units each week. 
so that a second order is placed at time 5 .  Following the saiiie logic. n-e can 
draw the conclusion that orders are placed at  time 1. 5. 9. 13. 17. m d  so on. 
Now let us check what happens if we set the reorder point to 13 (01 any level 
greater than 10 and lower than 20). The inventor) position drops from 20 to 
10 at time 1. So it crosses the reorder point and an order is placed exact1)- at 
time 1. So at  time 1 the inventory position increases up to 50. Then again it 
drops by 10 units a t  time, 2 .  3. 4. and finally a t  time 5 it drops froin 20 to 
10 units. crossing the reorder point. So even when we set the reorder point 
to 13 units. we place orders in periods 1. 5. 9. 13. 17, and so on. *4s we can 
see, setting the reorder point to 10 or 13 (as well as any other value between 
10 and 20) is basically the same. 0 

Property 2. A n  Installation Stock policy can be replaced by an appropriate Echelon 
Stock policy that creates the same pattern of orders The Installation logic is 
nested and thus we know that if warehouse n is placing an order at time t o .  
then all warehouses 1 to  ri - 1 are doing the rame. So at time t i .  that is. just 
after all orders have been placed. the Installation Stock inventor) position of 
the generic warehouse k with 1 5 k 5 n is Ri + Q h  . It'ith this information we 
can compute the Echelon inventory position at warehouse n at time t i  that 
is the sum of the Installation inventory position of all warehouses froin 1 to 
n :  

12. 

k = l  

If the Echelon Stock logic wants to mimic the Installation Stock one. then it 
needs to order the same quantities at the same points in time. To iiiake sure 
that the Echelon Stock logic orders the saiiie quantities the Installation Stock 
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logic orders. we just need to use the same lot size. To make sure that the 
Echelon Stock logic orders a t  the same points in time the Installation Stock 
logic orders. we shall make sure that it reaches the echelon reorder point RE 
at time t o  and thus that the inventory position at  time t,f is just equal to  
IP,",to,=RE + Q,.7 Also, from equation (6.1). we know the Echelon Stock at 

this point in time. So we just need to make sure that 

n 

hence 

n,- 1 

k=l 
So an appropriate selection of a parameters can make sure that the Echelon 

Stock logic leads to order the same quantities the Installation Stock logic 
orders at the same points in time the Installation Stock logic orders them. So 
the Echelon Stock can mimic the Installation Stock logic (in a linear system). 

Property 3. A nested Echelon Stock policy can be replaced by an appropriate 
lnstallation Stock one. Not all Echelon Stock policies are nested, but those 
that are nested can always be replaced by an appropriate Installation Stock 
policy. Indeed, non-nested Echelon Stock policy cannot be possibly imitated 
by Installation Stock policies. In non-nested policies. warehouse n can place 
an order even when warehouse n - 1 does not place an order. This cannot 
possibly happen under Installation Stock policies simply because they are 
nested. 

But now let us turn our attention to nested policies and let us try to select 
the parameters of an Installation Stock policy in such a way that it can mimic 
a nested Echelon Stock one. Let us start with the first warehouse. In the case 
of the first warehouse we just need to make sure that Ri = RT. Indeed. in 
the case of the first warehouse there is no downstream inventories to add and 
thus the two logics are basically the same thing. 

As to other warehouses, the generic warehouse n orders a t  time t o  when 
the Echelon inventory position reaches the reorder point RE and immediately 
bounces back to IPe - = RE + Qn. Since the Echelon Stock policj- is nested, 

we know the same equation holds for all 1 5 k < n (IPi,t: = Re, + Q k )  and 

in particular for n - 1. 
This means that when we look at the distribution system from an Instal- 

lation Stock perspective, the inventory position of warehouse n just after the 

n.t, 

7Actually, to  write this equation. we shall make an additional assumption. We shall assume 
tha t  final demand is a continuous process or IP:,o - RE is an integer multiple of Qn-l to 
make sure that the echelon policy reaches exactly the  reorder level at  time t o ,  
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order is placed in t o  is 

that is. the inventory position of warehouse n minus the sum of all downstream 
inventory positions. 

Novi to make sure that the Installation Stock logic places orders exactly 
when the Echelon logic places them. we just need to select an Installation 
Stock reorder point such that the inventory position right after the order is 
placed in t o  is equal to (6.4). Hence we just need to set 

thus the Installation reorder point 

makes sure that the Installation Stock policy perfectly mimics the nested 
Echelon Stock one. 

Properties 2 and 3 show that the Installation policy with a continuous fi- 
nal demand and a linear supply chain structure is basically a special case of 
the Echelon logic. However, when the two logics lead to the same decisions 
(how much and when to  order) and thu:, to  the same performance. vie defi- 
nitely prefer the Installation Stock logic since it only requires local information 
while the Echelon logic requires each marehoiise to have prompt and precise 
information on the inventory position in all n - 1 downstream warehouses. 

Example 6.9 Let us consider a linear distribution network with 3 echelons. 
where lot sizes are 2 .  4. and 8 units, respectively. for warehouses 1. 2. and 3. 
Also. let us assume that the replenishnieiit LT is 1 period for all three ware- 
houses and the Installation reorder points are 2 units for all three narehouser 
(Ra = 2 ,  V k )  \Ye assume the initial inventory levels are 4. 6. and 10 units. 
respectivelv. and final consumer demand is one unit per period. 

0 LYarehouse 1 orders two units at time 2. 4. 6. 8. etc. (see figure 6.4). 

0 The Installation Stock Inventon- Position in m-arehouse 2 tlrops to  4 
units at  time t = 2 .  Then it further drops to 2 units at  time f = 4 
So at time t = 4 we reach the reorder point and we iinrnediately place 
an order for 4 units that take the in\-entory position back to 6 Given 
the demand pattern. the warehouse reorders in periods 4, 8, 12. 16, etc. 
(see figure 6.5). 

0 The imentory position in the third warehouse drops to 6 units at time 
4. then to 2 units at time 8 when i t  reaches the reorder point, and we 
place an order for 8 units. and the inventory position is taken back to 
10 units (see figure 6.6). 
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f ig. 6.4 Installation Inventory Position in the first warehouse. 
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f ig. 6.5 Installation Inventory Position in the second warehouse. 
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Fig. 6 6 Installation Inventory Pcsition in the third warehouse. 

Let us now check how the Echelons Stock logic can re-create the same 
ordering pattern. Lot sizes in this case too are 2 ,  4, and 8 units for warehouses 
1. 2 .  and 3 respectively. The initial inventor) position is 4. 10 (= 6 + 4). and 
20 (= 10+6+4).  The Echelon reorder point for the first warehouse equals the 
Installation reorder point. as there is no downstrearn inventory in the case of 
the first echelon so the Echelon and Installation Stock are basically the same. 
RT = Rt = 2 .  

As to the second warehouse. we would like this warehouse to place an order 
in period 4. Equation (6.3) suggests t h i t  we set the Echelon reorder point 
for the second warehouse to R; = Ri + R; + Q1 = 2 + 2 + 2 = 6. -4ctually, 
we know that only final demand decreases the Echelon inventory position In 
this case demand is continuous. constant, and equal to  one-unit-per-period 
(see figure 6 7) Thus. the initial Echelon inventory position drops at a one 
unit per period rate and reaches the reorder point R; = 6 right a t  time t = 3 .  
just like in the case of Installation Stock logic. Obviously, once the inventory 
position reaches the reorder point. we place an order for 4 units and the 
Echelon inventory position bounces back to 10 units. lye can follow a similar 
logic to draw the conclusion that the Echelon Stock logic. too (with RE = 6). 
leads us to place orders for 4 units at times 3 .  8. 12. 16. etc. (see 6.8). 

Finall). we can use equation (6.3) again to set the reorder point for ware- 
house 3. RZ = Ri + R! + Ri + Q 2  + Q1 = 2 + 2 + 2 4 4 + 2 = 12.  The initial 
Echelon inventory position is 20 units In this case, too. the final demand i b  

the one variable that reduces the inventory position at a one-unit-per-period 
rate. So the inventory position reaches the reorder point 0111) at time t = 8. 
when an order for 8 units is placed and the inventor) position is taken back 
to 20 units. The Echelon Stock logic (with RZ = 12) leads us to ordei at time 
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Fig. 6.7 Echelon inventory position in the first warehouse. 
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Fig. 6.8 Echelon inventory position in the second warehouse. 

8. 16, 24, etc. (see 6.9). J%'e were able to design an Echelon stock (Q, R) that 
mimics an Installation stock (Q. R) policy. 0 

So far we have underlined the similarities between the two logics. Let us 

The Echelon policy can create non nested patterns of orders that in some 
now focus on the differences. 

instances might be superior to  the nested ones, as example 6.10 shows. 

Example 6.10 Let us consider a two-echelon distribution system with de- 
terministic. continuous, and constant demand for one unit per period and 
a delivery LT of two periods and one period for the first and second ware- 
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Fig. 6.9 Echelon inventory position in the third warehouse. 

house. respectively. Also, let us assume that the lot size is 5 units for the first 
warehouse and 10 units for the second warehouse. 

Given our assumptions, the first warehouse shall place an order when only 
two units are left as they are needed to cwer demand over the replenishnient 
LT (see chapter 4) The case of the second warehouse is slightlj different, as 
we shall order one period in advance of 1 he actual shipment to warehouse 1. 
For example. if initial Installation inventories are 7 and 5 units respectively. 
narehouse 1 orders 5 units at time t = 5 .  10. 15, 20. etc. (see figure 6.10). So 
the 5 units initially in warehouse 2 are shipped to  warehouse 1 at  time t = 5 
11-arehouse 2 mill get ready to  ship 5 more units at time t = 10 So warehouse 
2 should not order up to time t = 9. If we order 10 units at time t = 9 they 
are delivered at time t = 10 when 5 of tE,em are also forwarded to warehouse 
1 Thus the optimal policy we have just designed is actually non-nested since 
warehouse 2 orders a t  time t = 9 when warehouse 1 does not place any order 
(see figure 6.11). So no Installation policy (no matter which parameters we 
select) can generate an optimal pattern of orders. as all Installation Stock 
policies are nested and the optimal solution is not nested. 

On the contrary, we can find the parameters of an Echelon Stock policy to 
place orders at time t = 5 ,  10. 15. etc. i n  the first warehouse. and t = 9. 19. 
29. etc. in the second warehouse. 

The initial Echelon inventory position is obviouslj 7 for the first warehouse 
and 12 (IP,",, = 7 + 5 = 12) for the second one. The Echelon imentorj 
position decreases by one unit per period in both warehouies (both inventory 
positions are drixen by the final demand). The right reorder quantity for 
the first warehouse is obviously R; = 2 (see comments above) 111 the case 
of the second m-arehouse. we know we want to  place an order at time t = 9 
and we know that a t  that time the Echelon inventory position has reached 3 
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Fig. 6.10 On hand inventory and inventory position in the first warehouse. 
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Fig. 6.11 On hand inventory and inventory position in the second warehouse. 
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f lg. 6 12 Echelon Inventory Position for the second warehouse with R; = 3 .  

(IP;9 = IP?, - 9 .  d = 12 - 9 .  1 = 3) .  So we just need to  set the Echelon 
reorder point of the second warehouse to  3 (R;). Also, notice that this result 
is fairly logical: the system suggests that we reorder when in the distribution 
system consisting of 2 warehouses. only 3 units are left. These 3 units are 
actually needed to cover demand over the total LT of three periods. that is. 
the time it takes to move products from the external supplier to mxehouse 2 
(one period) and from warehouse 2 to warehouse 1 (two periods). 0 

Finall). the Echelon Stock logic has another significant advantage: man- 
agers of the upstream warehouses can immediately observe any increase (or 
decrease) in demand. Indeed. an increase in demand immediately reduces the 
Echeloii inventory position of all Warehouses. 

Concept 6.5 T h e  Echelon Stock logzc zs more flexible as zt can generate both 
nested and non-nested polzczes. Also,  the Echelon stock logic can ammedaately 
spot any change an final demand.  smce  Jinal demand has a darecf ampact on 
the Echelon stock anventory posatzon. 

In an Installation Stock system. if inventories in the lower echelons of the 
supply chain can initially absorb the increase in demand. then nianagers of 
upstream echelons hardly notice the change. Managers of upstream echelons 
notice the change only when the orders coming from downstream warehouses 
increase. So the whole supply chain might figure out that  demand h i  changed 
quite slomly. The tighter informative requirements of the Echelon Stock logic 
also mean that this logic tends to  give decision makers in the upstream portion 
of the supply chain real-time information. &o. while the Echelon Stock 
logic provides decision makers with first-hand information on current demand. 
in the Installation Stock logic the information on final deinand on11 comes 



324 MANAGING INVENTORIES IN MULTIECHELON SUPPLY CHAINS 

through orders from downstream warehouses. This information can be both 
delayed and distorted by the ordering policies (see next section for a deeper 
analysis of this phenomenon) of downstream warehouses. 

Concept 6.6 I n  the Installation Stock policy the information o n  any  change 
in final consumer demand is  delayed and possibly made  noisy b y  the st0ckin.g 
decisions of the downstream warehouses. 

In summary, in the case of linear (and convergent) distribution systems, the 
Echelon Stock logic is more flexible than the Installation Stock logic and thus 
can offer better performance. However. in the case of divergent distribution 
chains the benefits of (i) a broader perspective on the inventory level of the 
whole chain, (ii) better information on final demand. and (iii) a more flexible 
ordering system are counterbalanced by the inability to capture and manage 
unbalances in the distribution of the inventories among warehouses in the 
same echelon (see example 6.6). 

6.3 COORDINATION IN THE SUPPLY CHAIN: THE BULLWHIP 
EFFECT 

One of the major issues in multiechelon supply chains is the coordination 
of decisions among planners of the various warehouses (for a more general 
discussion of coordination among decision makers. see next chapter). 

As we have just discussed, one approach to  coordination is to simplify the 
planning problem and manage each single warehouse as if it were independent. 
This simplistic approach is often used when various warehouses in the supply 
chain belong to different companies or different organizations. However. even 
within a company or institution different parts of the organization might have 
partially contrasting objectives or lack of coordination. 

A first apparent effect of such a simplistic solution is that each decision 
maker looks for locally optimal solutions and practices that,  however. might 
turn into global inefficiencies. 

A second, even more pervasive effect is the so-called Bullwhzp effect also 
known as the Forrester effect (Forrester is an NIT professor that first investi- 
gated the effect through Industrzal Dynamzcs) .  The bullwhip effect produces 
an increase in demand variability as we move upstream in the supply chain. 
This effect makes the demand for components more variable than the demand 
for the finished product at the retail stores or at the distributors. 

Classic examples of this phenomenon are Pampers diapers and Barilla 
pasta. For both products. end-consumer consumption is quite flat (there is 
no sharp seasonality nor sharp trend. a t  least in most developed countries), as 
both products meet basic physiological needs. This relatively flat consump- 
tion drives purchases a t  the retail stores. However. these purchases show some 
fluctuations due to  trade promotions, i.e., price promotions at  retail stores. 
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Fig. 6.13 Pattern of orders at various stages of the supply chain in the Beer Game 

Such promotions tend to shift demand among brands. as many consumers are 
willing to  switch from one brand to the other. and over time since many con- 
sumers forward-buy their best-preferred brands during promotions (at least 
for durable goods). Such variability indL.ced by promotions is even wider up- 
stream. Orders from the retailer to the manufacturer and finally orders from 
the manufacturer's warehouse to  the product,ion plant, are even more variable. 

This phenomenon is described and studied through the Beer Game. which 
was designed in the 1960 at  the SIIT to re-create in a simple simulation the 
dynamics that create unpredictable demand variability. which creates uncer- 
tainty in supply chains (see [4]). Figure 6.13 shows the typical pat'tern of 
orders in a supply chain wit,h four players: the retailer, the distributor. the 
wholesaler. and the manufact,urer. 

Demand variability in the upstream portion of the supply chain creates sev- 
eral inefficieiicies. First. in any inventor:,. policy an increase in impredictable 
variabilit,y (i.e.. uncertainty) requires an increase in safety stocks (or. more 
in general. in slacks such as spare capacity) required to  gain a giveii service 
level. 

In the remainder of this section n-e !identify the root causes of this phe- 
nomenon and suggest some actions to remove t,heni or mitigate their effects. 

Lot sizing and planning In lower echelons of the distribution chaini. order5 
are small. For example. an average family buys a few kilograms of pasta per 
week (at least in Italy). Various families make purchase decision5 rather in- 
dependently. and the sum of all their orders tends to be a relatively stable 
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random variable. However, in the upper echelons of the supply chain. single 
stores, grocery chains. distributors, and manufacturers have quite sizable in- 
centives to  buy in large quantities. For example, a (Q. R) policy suggests that  
we buy in large quantities to  reduce the ordering costs. 

Correlation among orders coming from different players in the same echelon 
of the supply chain (say. correlation among consumers or correlation in orders 
coming from various stores) can further increase variability. For example. 
consumers tend to  spend more on grocery products right after salaries are 
paid. In Italy most companies pay the salary either at the end of the month 
or at the beginning of the following month. So we have the so-called “effect 
of the fourth week”; that is, many consumers run out of money toward the 
end of the month and postpone some purchases until the beginning of the 
following month.’ Also. retailers, distributors or manufacturers might have 
some sort of incentive to reduce their inventories or increase their turnover 
toward the end of the quarter, thus creating an anomaly in the collection of 
orders. 

Example 6.11 In the distribution of grocery products to  small retail stores 
(so-called “mom and pop” stores). salespersons have some incentives to reach 
quarterly sales targets that often push them to collect as many orders as 
they can toward the end of the quarter, thus creating an anonialous peak in 
demand toward the end of the quarter. On the other hand, some salespersons 
that have already reached their target tend not to collect orders in the last 
few days of the quarter (actually some of them tend to  collect the orders but 
do not key them into the system). The idea is that  sales targets for future 
quarters are often based upon sales in past quarters: thus the higher the sales 
in the past, the higher the targets for the future. Also. if they keep some 
orders for the next quarter. they can have a jump start and thus are more 
likely to  meet the sales target for the next quarter. 0 

Example 6.12 A distributor of electronic components in Italy stops order- 
ing and shipping products towards the end of the year (they basically do not 
place orders in November and December and do not ship goods in December) 
because of odd incentives. This company is the national distributor for a 
major Danish producer of components. The distributor has signed a contract 
with the manufacturer with a significant bonus based on sell-in targets. In 
other words, the distributor gets a bonus if it orders more than a minimal 
monetary amount per year. The sell-in target for 2007 is based upon sales for 
2006. So this creates an incentive not to  place orders toward the end of the 
year (in case, like in recent years, they have already ordered enough to meet 
the current year’s sales target). 

sNotice tha t  this effect is particularly strong in time of recession or limited economic growth 
and for grocery products, whereas it is far less sensible for other product categories such as 
luxury products bought by customers with no major financial constraints. 
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Also. this privately held company post pones many deliveries to the begin- 
ning of the following year to postpone turnover and taxes. 

Other companies in this business might have a similar behavior. thus gen- 
erating odd end-of-year effects. Finall?;. we shall notice that other companies 
have similar behaviors for opposite reasons. Some public companies try to  
postpone purchases a t  the end of the year to  reduce the inventories and thus 
the working capital so that they look leaner and thus can get more favorable 
evaluations from the market. 0 

lye can address this issue in several m-ays. 

1. Reduce the fixed orderzng cost. As we have already discussed in chapter 
4. fixed ordering costs give an incentive to  buy in large quantities. Thus 
reducing fixed costs reduces the optimal lot size. So automation of 
all order-related activities such as planning. quality inspections. and 
administrative activities (e.g. ~ one can substitute traditional tools such 
a fax machines and data entry with business to business online orders) 
can reduce the fixed ordering fees end reduce the lot sizes. 

2 .  Consolzdate transportation. Part of the fixed ordering costs comes from 
transportation. Some manufacturers give customers that place orders 
for full truckloads some additional discounts. since transportation of full 
trucks is more efficient. The flipside of this policy is that it tends to  cre- 
ate large and infrequent orders that  contribute to demand variability 
and uncertainty. A solution to  this tradeoff between transpoitation effi- 
ciency and demand variability is to  consolidate in a single truck various 
products from various suppliers (a:, we have discussed in chapter 2 )  or 
deliveries to  several customers (see chapter 8). In the first case. the cus- 
tomer might consolidate the transportation and collect the goods from 
various suppliers. On the contrary. in the latter case the third part? 
provider of transportation services can consolidate transports to  fully 
load the truck. 

3 .  Reduce correlatzon among order potterns of varzous customers. To re- 
duce demand variability. me shall make sure that customers place orders 
at different points in time. So we shall reduce any incentive to place or- 
ders at specific points in time. Obxiously. it is relatilely ea5v to reduce 
the salespersons incentives to collect orders a t  the end of the Sear. On 
the coiitrary. it is relatively hard to work on financial problems of inanv 
families that postpone purchases at the end of the month. Service in- 
dustries with high fixed costs and a relativelv inflexible capacity S U C ~  as 
telecom and electric energy have designed specific tariffs to make s i re  
that demand fluctuations are smoothed out. ET en in more t i  aditioiial 
services. we have similar patterns with some furniture retailers reducing 
prices during lorn demand periods. Notice that furniture is iiot subject 
to iudden changes in fashion. so these initiatives do not aiiii at selling 



328 MANAGING INVENTORIES IN MULTIECHELON SUPPLY CHAINS 

goods left over; instead they aim at increasing demand in low demand 
periods (such as the end of December. oddly) to cover fixed costs such 
as personnel, energy, and real estate. 

4. Increase homogenezty zn cus tomer  and order sazes. Finally to  reduce 
demand variability we shall have a large number of independent sources 
of demand; that  is, a fairly large number of customers served from a 
single warehouse. There are several ways to reach this objective. Ob- 
viously, one can increase the number of customers, but this has little 
to  do with logistics, though we have to  acknowledge that this simplifies 
supply chain management. lloving to  more supply-chain-related issues, 
one can reduce the number of warehouses in each echelon of the supply 
chain to make sure that the number of "customers" served by each ware- 
house increases and variations in the ordering patterns smooth out. One 
important prerequisite for this to happen is that  all customers have a 
comparable size. otherwise any variability in the orders of one customer 
can hardly be counterbalanced by orders from any other customer (met- 
rics for market concentration such Herfindal's or Gini's indexes in the 
economics literature can be very effective for this purpose; e.g.. see [ a ] ) .  

Forecasting In a multiechelon supply chain the instability of forecast can con- 
tribute to increase variability in the upstream stages of the supply chain. Let 
us consider a situation where each decision maker only "sees" orders from di- 
rect customers with no information whatsoever on the final consumer demand 
(see the Installation Stock policy). In these circumstances, orders from direct 
customers is the one and only relevant piece of information to make a demand 
forecast. This can create significant distortions in the flow of information in 
the chain. Indeed. as we have learned in the previous chapters. planners place 
orders to  optimize their inventories. So they are basically inventory decisions 
of the customer that.  nevertheless they are interpreted as demand signals by 
the supplier. simply because he/she has no other information on demand. Let 
us try to understand what goes on in a supply chain and let us try to  under- 
stand how information on final demand gets distorted as it is transmitted in 
the chain. Let us assume that final demand increases by A d .  Such an increase 
can lead the retailer to increase orders by far more than Ad. He/she increases 
orders for the following reasons: 

1. He/she Replenishes inventories that went down more than he/she ex- 
pected. 

2 .  The recent increase in demand leads him/her to increase the demand 
forecast and target inventory levels. 

3. The recent unpredicted increase in demand might lead him/her to up- 
date the estimate of demand uncertainty and thus the need for safety 
stocks (if, as it is often the case, the economics of the business suggest 
him/her to overstock). 
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Notice that in these contexts the retailer makes locally rational decisions 
(as we have seen, there are several good reasons to  increase orders more than 
demand has increased) that the distributor can read as a signal on final con- 
sumer demand. Obviously, a similar process goes on between the distributors 
and manufacturers and between manufacturers and suppliers of raw materials. 

Also. often forecasters (or the tools they use) tend to read a temporary 
increase in demand as a permanent trend. So. while the increase in derriaiid 
Ad can be temporary or a one-time-only increase. forecasting tools niiglit 
interpret that as a sign of a constant trend. So the forecasting inethod can 
(at one extreme) project a growth of Ad units per period. Such a reading 
of the demand signal would further increase the order size and would lead 
upstream decision makers. in their turn, to overstate demand. 

Such an excess demand at  the end of the day turns into inventory holding 
costs. Indeed. when each player overstates the orders he/she receives. me can 
easily get into a situation where the upt,tream portion of the supply chain 
(say manufacturers) produces far more than final consumers require. In these 
circumstances, inventories build up ratheli quickly. 

Let us now check what we can do to reduce the impact of demand fore- 
casting on the Bullwhip effect: 

1. Share information on final consumer demand. First. all players in 
the supply chain can receive information on the final consumer de- 
mand. This way we decouple information flows and inventory deci- 
sions. Though new technologies are making such exchange of informa- 
tion cheaper and cheaper. very often signing contract,s for the exchange 
of informat,ioii might be hard. Indeed, downstream players (e.g. re- 
tailers) own the information and they shall release it to  the upstream 
players. Unfortunately. such an iriformat,ion directly only solves the 
problems of t,he upstream players t,hat, are confronted with the high 
variability created by the Bullwhip effect. In the long run. a more sta- 
ble demand can make production more effective and lead to a reduction 
in price: but the link is very weak and the retailer might wonder who 
is going t,o take advantage of the increase in efficiency. Is this going to 
increase the manufacturer's profit,s? Is it leading to a reduct,iori in whole- 
sale price that competing ret,ailers a:re going to enjoy as well? Costs a i d  
risks of such exchanges of consumer data are very clear and often beri- 
efits for the retailers are too unclear. So, a key to the success of these 
initiatives is a clear plan to share thle benefits they cerkinly create. For 
example, some retailers get paid for the information. others receive a 
better service and so on. Also, such an exchange of iriforniation raises 
some confidentiality issues. For example, a manufacturer niight use the 
data he/she received from a retailer to prove to  another retailer that' a 
new product is in high demand in a given area. ClearlS-, this is a secret 
the retailer would like to preserve. 
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A further step beyond the simple exchange of information is to  share 
forecasts in such a way that various players in the supply chain make 
their decisions independently. but at the very least they share the same 
vision of what the future will bring. These practices are often called 
Collaboratzue Forecastang (also known as CPFR. that is Collaborative 
Planning Forecasting and Replenishment). With these practices the re- 
tailer can leverage on some information the producer only has. such as 
advertising campaigns. while the producer can leverage on some infor- 
mation that the retailer only has, like promotions of competing products 
or planned retail price during the promotion (a 50% price reduction is 
much more effective than a 20% one). Indeed. a retailer that plans a 
promotion for fresh filled pasta of brand A might suggest the manufac- 
turer of brand B that he/she expects a short-term reduction in sales 
volume. 

2 .  Vendor Managed Inventory (VhII). An alternative solution to  sharing 
consumer demand data  or forecasts is to  give a single decision maker the 
decision rights on all echelons in the supply chain. In particular, we call 
this practice Vendor Managed Inventory in case the supplier controls 
inventories at the distributor's or retailer's warehouses. These practices 
obviously make sure that all decisions in the supply chain are based on 
a single and consistent forecast. However. we shall also notice that these 
agreements might face a couple of problems. 

First. they might be subject to incentive problems (see next chapter for 
a deeper discussion on incentives problems). In all inventory models for 
uncertain demand we have analyzed so far. the optimal quantity depends 
on the inventory (holding) cost and the cost of the stockout. However, 
the cost of a stockout might be substantial for the manufacturer while 
it might be negligible for the retailer since margins are often different 
and many consumers are verj- willing to  substitute stocked out items in 
many categories of grocery product. So the manufacturer has a greater 
incentive to  reduce stockouts than the retailer has. This partially ex- 
plains why decision rights are allocated to the manufacturer rather than 
to  the retailer. Also, this partially explains why the manufacturers in- 
crease the service level and make sure that retailers' warehouses have 
a very high service level (99%+ service level is not uncommon at  the 
warehouses under VMI) but then the retail stores fail to  turn this into 
a high service level on the shelves, simply because it is not as impor- 
tant for them. To make sure that these systems work we need to make 
sure that all inventory-related costs are on the shoulders of the decision 
maker. For example. when a manufacturer manages the distributor's 
inventories through VNI. he/she shall be held accountable for the in- 
ventory investment he/she generates: otherwise the manufacturer might 
have an insane incentive to  increase inventories up to unreasonable levels 
simply because they are free for him/her. A second major concern ac- 
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tually regards information. When we move decision rights in the chain. 
we also want to make sure that the one decision maker has all rele- 
vant pieces of information (as well as skills and systems) to make the 
best possible decision. So. as we move decision rights in the chain we 
shall also make sure that relevant pieces of information are moved to  
the right point in a timely fashion. The next chapter discusses in some 
more detail economic reasons why it might make sense to adopt VNI. 

3 .  Reductaon zn LT. Long LTs lengthen the forecasting horizon. Hence: 

0 Long LTs increase the uncertaintl- in a single time bucket. because 
a forecast for the near future tends to  be more accurate than a 
forecast for the far future. 

0 Long LTs increase the out of control period that safetl- stocks shall 
cover (think of (Q. R)  or S systems). So a reduction in LTs reduces 
the forecasting horizon and thus the need to invest in safety stocks. 

Pricing policies Piice promotions can create demand variability upstream. 
Trade piornotions perturb the consuiners' purchasing process. For iionperish- 
able products such as canned food or dry pasta. consuiners tend to forward 
buj- (and to some extent increase the consumption of these products). Also. 
such price promotions generate further disturbances within the supply chain. 
Indeed. during trade promotions. producers reduce the wholesale price since 
an increase in demand benefits both the producer and the retailer and thus 
both contribute to  the reduction of the final consumer price. However. such a 
temporary price reduction prompts the retailer to  forward buy to  stock inven- 
tories at a relatively low price and sell them at a full price once the promotion 
is over. By doing so. the distributor further increases the peak in demand 
caused bl- the trade promotion. 

A rather radical solution to  this cause of the Bullwhip effect is the Every- 
Day-LowPrice  (EDLP) policl. Some retailers keep a constant and relati\ely 
low piice foi all of their assortment rather than periodically (usually prorno- 
tioiis last a couple of weeks) reduce the selling price of some items. The price 
these retailers charge is lower than the standard price other retailers charge in 
off-proinotion periods. though it is higher than the promotional price. TYhile 
price proniotioris try to drive traffic into the store by advertising some items 
111th a \e r>  low price for a limited period of time.g the EDLP policy tries to 
attract customers by prornising a low ticket for the average shopping basket. 
The ke) idea is that a more stable demand is easier to manage, and such ease 
of niariageinerit can increase efficiency and ieduce costs. So basically EDLP 
ien-aids customers for the stabilitv of their purchases with a lower price (of an 

"Some discount retailers in Italy have started to  offer deep discounts on a couple of items 
at a t h e  (say an electric drill and a specific kind of sneakers) for one day only t o  drixe 
traffic on specific low demand days. 
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average shopping basket. though other retailers might have a lower price of an 
itern 011 promotion) The best-known case of EDLP is LYal-Mart, todap the 
largeit retailer in the world. These strategies do not always work. For exam- 
ple. in Italy. Barilla tried such strategies with the help of some US managers 
arid reduced both price promotions and gadgets. However. they discovered 
that EDLP works only for products and purchases that are planned rationally 
like dry pasta. On the contrary. this strategy does not nork for impulse pur- 
chases 5uch as cakes arid snacks for kids. For these products. rnotivatioiis are 
hardly ratiorial and have a lot to do with the fun content and emotions such 
<is the feeling that we give our children the -best" food available lo 

Allocation of  capacity Custoniers actually place orders t,o control the quantitj- 
tlie supplier delivers them. So in some instances they overstate their needs to 
get a higher priority and thus a better service. Indeed, in case the supplier does 
not have enough goods t,o meet the demand from all customers. the supplier 
verJ- often allocates the limit,ed amount, of goods (or the limited capacity 
to inanufacture/distribut,e them) proport,ionally to the orders that customers 
have placed. 

Such a policy might, look reasonable since it allocat,es more inventories 
or capacity to the customers that requested more goods and t,hus are more 
relevant and/or need more products. But this allocation policy creates an 
insane incentive to overstate demand in periods of high demand (and prod- 
uct scarcity). thus contributing to  the Bullwhip effect. For this to happen. 
customers (say retailers) must realize that the supplier (say manufacturer) is 
riiriiiirig short of inventories. Once this vicious circle starts. it is reall). hard 
to stop it. It is basically a self-fulfilling prophecy. JVhen customers expect 
a stockout. the\- overstate their orders to get a larger share of the limited 
inventories (capacity). But this actually creates a stockout. 

This practice can distort final consumer demand since customers use orders 
to signal they want a large share of the limited quantity available rat,her than 
to signal the optimal quantity. let alone final consumer demand. Sooner or 
later. the supplier recovers from the stockout. often after investing in extra 
capacity for a demand that is act,ually not there. Once the crisis is ol-er. 
the supplier can actually deliver the whole quantitl- customers have ordered. 
All of a sudden deliveries are excessive since the customer has overstated 
orders presuming that the supplier could not deliver the whole quantit,!;. So 
either tlie customer cancels excessive orders and the supplier is left with excess 
inventories (or spare capacity). or the customer accepts t,he deliveries and 
his/lier inventories go through the roof. So to reduce the invent,ory level the 

'"Sotice tha t  on page 327 we suggest the use of pricing strategies. However. tlie objective 
and the  net effect in tha t  case is just the  opposite of standard price promotions. In tha t  
case wve change price over time t o  flatten demand. whereas price promotions in the grocery 
business boost demand variability. 
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supplier stops ordering for a while and after a peak in demand we have zero 
orders for a while (see figure 6.13).11 

Jl-e can manage allocation problems in several ways: 

1. Choose dzfferent allocataon craterza such as past  sales or sell-out.  A first 
option we might have is to destroy the incentive to overstate orders to  
get a larger share of the limited capacity. For example. on" can use 
past sales or sell-out (that is, units or dollars sold to the final consumer 
or the customer's customer). These variables still give larger customers 
higher priority but do not distort their ordering policies. 

2 .  Cancelataon polzczes and  less flexzbzlity tn order changes.  Often cus- 
tomers can modify orders even shortlj- before they are delivered. From 
a marketing and sales perspective. such practice persuades customers to 
place orders with more confidence and disposes them to select suppliers 
that offer this sort of flexibility. However. this greater willingness to 
place orders shall be contrasted with their informative content, that  is. 
with the information we can extract for planning purposes. If a cus- 
tomer knows that he/she can reserve inventories or capacity for free by 
placing an order. the customer has all kinds of incentives to place an 
order that exceeds his/her actual need by far. So the supplier can hardly 
understand what actual future demand is going to look like. So one shall 
always carefully consider the tradeoff between the flexibilitl- me give to  
our clients and the ability to promptly collect reliable information on 
future demand. 

Finally. ~e can dramatically reduce the Bullwhip effect by removing some 
of the echelons in the supply chain. Such an alternative shall be actually 
quite carefully considered as we shall ponder, SVhat are the functions each 
warehouse is performing. and who else in the supply chain can perform them 
in case me remove the warehouse? One exaniple of how effectile such a decision 
can be is Dell computers. today one of the largest manufacturers of computers 
in the world. Dell sells directly through the Internet and catalogues to avoid 
the expensive inventory buildup in the distribution chain (in this business. 
goods lose value very quickly. so the holding cost is substantial). A4t each single 
store the demand for each single product variant is relatively low and thus 
demand at the item/store level tends to be fairly variable. unsold inventories 
tend to be high and thus the holding/obsolescence cost is substantial. 

The succesb of Dell inspired many companies to follow suit in other indus- 
tries such as furniture or grocery But many of them simply failed. Indeed. 

".A related problem regards the penalties for lack of service. SIany suppliers agree to  pay 
the  customer for lack of service. So if orders are not fulfilled, the  supplier must pa?- a given 
fee. This again gives the  retailer an insane incentive t o  overstate the orders in peak times. 
as he/she can basically get a discount for large orders t ha t  can cause a stockollt. 
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they tried to  remove the so-called middle-manl that  is, the intermediary be- 
tween the consumer and the producer. But the success of these initiatives 
depends on several issues. among which: 

T h e  value of t he  product that  shall make the delivery at the customer's 
place economically sound (i.e.. not too high as compared to  the cost of 
the good) and quick enough: 

Touch  and feel content  of t he  product that  shall be bought without try- 
ing, touching, and feeling it: certainly a PC can be easily described (to 
a person that knows the basic variables that describe a PC) through an 
Internet screen with some pictures and a list of technical features while 
a piece of furniture can hardly be fully described through a computer 
screen even to  the most expert person (even companies in the business 
only buy goods once they see a sample); 

Vurzety of t he  a s so r tmen t  at  varzous levels of the supply cham.  When we 
remove one echelon of the supply chain. we save the inventories held in 
that echelon. Clearly. the greater the variety of items held in that eche- 
lon. the greater the savings. The case of Dell really tells a long story on 
this variable. Though Dell is considered to be a make-to-order manufac- 
turer with no inventories. it actually carries (and/or lets suppliers carry) 
inventories. The one big difference is that  other manufacturers carry (or 
used to  carry) finished goods in the distribution chain while Dell carries 
components in the central warehouses that feed the production plant. 
So what is the advantage? The number of different components is rela- 
tively small. while the number of finished products one can generate by 
combining these components is basically infinite. Dell carries inventories 
only at the production plant while other manufacturers carry (or let the 
retailers carry) inventories in many locations. While Dell needs to plan 
actually a few item/location combinations with a relatively high and sta- 
ble demand, most competitors need to plan thousands of item/location 
combinations with relatively low and variable demand. 

Also. the case of online furniture retailing is telling. Often traditional 
furniture retailers do not carry large quantities of inventories. Prod- 
ucts are often displayed in the store in a specific style/material/color 
combination. while the material/color variants (and in some cases slight 
variations in design such handles) are only presented through samples 
or catalogues. Products purchased by the consumer are then made to 
order. So taking the retailers out of the supply chain saves very lit- 
tle inventories and does not reduce the Bullwhip effect. Obviously. we 
can save on retailers' margins, but we shall check what their functions 
are. They guarantee a very efficient primary transportation to the re- 
tailer's warehouse. They manage the secondary transportation to  the 
consumer's place. Retailers make this secondary transportation much 
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more efficient. as they often transport goods coming from vaiioiis sup- 
pliers. Retailers often repair small damages (such as scratches on leather 
sofas) that have occurred during the transportation and handling. This 
latter function is crucial in a business where products are rather frail. 
and it is hard to  pack them effectively. They often make sure the prod- 
uct is repaired before the customers can see it and thus make sure that 
customers are 100% satisfied while they actuall? receile a product that 
has been repaired. Hence selling furniture directly through the Internet 
is just not as effective as selling PCs on the Internet.”. 

6.4 A LINEAR DISTRIBUTION CHAIN WITH T W O  ECHELONS 
A N D  CERTAIN D E M A N D :  T H E  TWO-STAGE ECONOMIC 
ORDER Q U A N T I T Y  

So far in our analysis of a inultiechelon supply chain. we have considered lot 
sizes as a given. SYe now wonder horn to set the lot sizes. and we consider a 
fairly simple supply chain consisting of two echelons and one warehouse per 
echelon. SYe assume that demand is deterministic. continuous. and constant. 
like in the case of the EOQ model. Also. we assume that the unit price is 
constant (no price discounts), and thus the only relevant costs for our purposes 
are ordering and holding costs for the two warehouses. To model our problem. 
me introduce the following notations: 

0 A1 and A’ are the fixed ordering costs in the downstream and upstream 
warehouse, respecti\-ely: 

0 h l  and ha are the unit inventory holding cost in the downstream and 
upstream warehouse respectively: we assume hl > h2. as. in general. 
downstream warehouses are smaller and closer to the final consumer 
(thus usually in areas with higher costs of real estate) and the down- 
stream warehouse stocks inventories with more value added (e.g.. trans- 
portation or bulk lots have been broken down in the upper cchelons). 
Anyn-ay. in case h2 2 hl.  clearly the optimal policy is to keep inveri- 
toiies only in the downstream warehouse where they are both cheaper 
and closer to  the final consumer (and thus can offer a better service). 

Moreover. we assume. without any loss of generality. that LTs arc’ zero. .4s 
we have shown in the case of a single warehouse (see section 4.4). the only 
difference between zero LTs and nonzero LTs is that in the latter case me need 
to place an order before inventories drop to zero. But the actual holding cost 

12[8] and [6] provide an extensive analysis of the root causes of the bullwhip effr,ct and this 
section is partially based on these references. For more quantitative models on the hullwhip 
effect see. for example. 171 and [3] 
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Fig. 6.14 Structure of the two-echelon linear supply chain. 

and ordering costs (as well as the optimal lot sizes) do not change. and thus 
our results can be applied in the case of nonzero LTs too. Our assumption just 
simplifies the model, since the inventory position equals inventories physically 
on hand. 

We first write the cost functions for the two warehouses separately, so that 
we can compare two scenarios: 

0 In the first scenario the cost functions of the two warehouses are opti- 
mized separately. 

0 In the second scenario the cost functions of the two warehouse are op- 

The cost function of the first (downstream) warehouse Ctot,l is exactly the 

timized jointly. 

cost function we have developed for the EOQ model: 

Clearly, in this case the optimal order quantity is 

For the second (upstream) warehouse, things are slightly more complex. 
We cannot use the EOQ model. since in this case demand is not continuous 
but rather consists of lots of size Q1. 

Just like in section 6.2. we assume that Qz = jQz. j E Z+; that is. we 
assume that the lot size of the upstream warehouse is an integer multiple of 
the lot size for the downstream warehouse. 
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Fig 6 15 Inventory position and inventories on hand in the first warcihouse 

To build some intuition on the inventory dynamics in t,he second warehouse: 
we refer to  example 6.13. 

Example 6.13 Let us consider a product whose demand is 10 units per 
period, Q2 = 300. and Q1 = 100. If we assume that init,ial inventories are 
100 and 200 units, respectively, the first warehouse places orders at time t = 

10; 20. 30 and so on (see figwe 6.15). lITarehoiise 2 runs out of inventories 
a t  time t = 20 but there is a need for additional inventories only at time 30. 
when warehouse 2 orders and receives 300 units. 100 of which immediat,ely go 
tjo warehouse 1 (see figure 6.16). So inventories in the upstream warehouse 
do not fluctuate between 0 and 300 unit but vary between 0 and Q 2  - Q1 = 
300 - 100 = 200 with an average of 100 units (rather than 150). 0. 

SIore in general, the upstream warehouse places an order to receive the 
quantity Q 2  when it needs to  ship a quantity Q1 to t,he first warehouse. So 
inventories vary between 0 and Q 2  -Q1 = (j-1)Ql. The inventory level in the 
second warehouse remains constant at, each level 0 Q1! 1 Q 1  

for Q l / d  periods. Thus the ayerage inventory level is w, 
As a consequence. the cost function for the second warehouse is 

This cost function is convex in 3 .  So the manager of the second wartshouse can 
relax the problem and find a solution in X +  so that a (generally) non-integer 
solution is found as follows: 
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Fig 6.16 Inventory position and inventories on hand in the second warehouse 

Once we have found this optimal solution (that in general is not integer 
and thus not feasible), we shall just consider the two closest integers and 
check which one minimizes the cost function. Indeed, we can leverage on the 
convexity of the cost function to  rule out any other integer solution. 

Example 6.14 Let us consider an European company that imports goods 
from the Far East and has a bonded warehouse where goods can be held before 
import duties are paid. The fixed cost of ordering to  the Asian supplier (A2) is 
8.000€. Once duties are paid and goods clear customs, they are shipped to  the 
warehouse nearby the city of Turin. A delivery from the bonded warehouse to  
the warehouse nearby Turin costs roughly 2.000€ (Al). This cost covers both 
administrative costs and transportation. Monthly demand for the product is 
8000 pcs. Holding one unit in the bonded warehouse for a month costs 4€. 
while holding it in the warehouse nearby Turin costs 5€ because of the greater 
capital investment due to import duties. 

The manager of the first warehouse buys in lots of size 

= 800pcs. 

and thus the total cost of the first warehouse is 

= 

= 4000€/month. 

d m  = J2 .2000€. 800 pcs/month .5€/(pcs . month) 
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Given this decision of the manager of the first warehouse. the manager of the 
second warehouse sets the parameter through equation (6.9): 

* 2 .8000€ 800 pcs/month 3 = -  
4 € / ( p a  . month) 

So the two candidate integer values are 2 and 3. Lf-e can identifl the best 
solution through equation (6.8): 

800 1 .800 
Ct,t,2(2) = 8000- + 4 - 2 = 5600€/month. 

2 .  800 
2 . 8 0 0  + 4. - = 5866€/month. 

800 
Ctot,2 (3) = 8000 - 

3.800 2 

Thus. the solution is Q1 = 800 and Q 2  = 2 . 800 = 1600, and total cost is 
9600€/month. 0 

&ow we can check that minimizing the two cost functions separately leads to  
suboptimal results. \Ye write the cost function for the whole supply chain arid 
find the optimal solution: 

d 
J . Q i  

Qi d 
Ctot = A1 - + hl . - + A ~ .  - + h 2 .  (J' - 2 1)Q1 2 Q1 

(6.10) = (A1 + $) & + ( h l  t (j - 1)hp) -. Qi 2 

The cost function resembles the EOQ problem where ordering and holding 
costs are: 

A2 A = A1+- 
3 

h = hi + (j- l)h2. 

Each j orders from warehouse 1, warehouse 2 places 1 order. Thus each 
ordering cycle in warehouse 1 costs Al but it also implies an indirect cost 
that is a fraction l / j  of the ordering cost A2 of the second warehouse. As to  
holding costs: the average inventory level in t,he first warehouse is Q1/2. while 
the average inventory level in the second warehouse is (j - 1)Q1/2. that is. 
j - 1 times higher. This means that for each unit held in the first warehouse 
we hold j - 1 units in t'he second warehouse. and thus increasing the in\-entory 
level of the first warehouse by one unit causes an increase of j - 1 uiiits in t,he 
second warehouse. So we do not need any further math and simplJ- resort to 
t,he EOQ model to derive the optimal quantity Q; :  

(6.11) 
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We can take the derivative of equation (6.10) with respect to j :  

hence, rearranging terms and substituting the generic quantity Q1 with the 
optimal quantity Q;:  

ac ta t  - 
- 

aj Q T  2 

hence 

Hence, 

(6.12) 

Before we proceed and try to  implement the solution, we want to restate the 
problem with an Echelon stock logic. From an echelon stock standpoint we 
consider units in the first warehouse to  be in the second warehouse as well. 
Thus the Echelon stock holding cost el for the first warehouse is just the 
incremental holding cost; that is. the difference between the cost of holding 
one unit in the first warehouse minus the cost of holding one unit in the second 
warehouse (hl - hz). Indeed, units that are physically in the first warehouse 
already pay a holding cost hp. since they are part of the echelon stock of the 
second warehouse (though they are physically in the first warehouse). This 
variable has a clear economic reading. It is the incremental cost of holding 
one unit in the downstream warehouse ( 2 )  rather than in the upstream one 

(1): 

el = hi - ha, 
e2 = ha. 

We can restate the cost functions with echelon holding costs as follows: 

- d QI 

Q1 
c&.i - Ai . - + el-, 2 

where the average echelon inventory level for the second warehouse is j .  Q1/2. 
Indeed, the Echelon Stock logic implies that the inventory level is not affected 
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by the transfer of Q1 units to the first warehouse. Also. inventories are only 
influenced by the final demand and vary linearly between 0 and Q 2  = j . Q1. 

Hence the total cost is 

We can use the EOQ model to  derive the optimal lot size for the first echelon: 

(6.13) 

and for the total cost when the optimal lot &T is selected: 

(6.14) 

In this case too. the total cost function is convex in J and thus vie can relax 
the problem. find the optimal j in lR+, and finally check which of the two 
closest integers minimize the total cost. The cost function reaches its mini- 
mum where the function under the square root reaches its minimum. Thus 
the unconstrained optimal solution J is 

(6.15) 

Equation (6.15) is just a reformulated version of equation (6.12) (this must be 
the case given that it is still the same problem) where we use Echelon holding 
costs (el and e2)  instead of Installation holding costs (hl  and h2). lloreover, 
here the result is derived more elegantly. The final step is to  round J *  and 
check whether the floor of j *  rather than the ceiling of J *  are the best integer 
solution. 

Example 6.15 Going back to example 6.14. we now check whether the min- 
imization of total costs for the whole chain suggests a different and more effi- 
cient solution. If we minimize total costs. we can choose through equation 
(6.15): 

j *  = = 1; 

thus the lot size for the two echelons is basicallj- the same and is equal to 



342 MANAGING INVENTORIES IN MULTIECHELON SUPPLY CHAINS 

for a total cost of 8944.3€/month, well below the cost of 9600€/month for 
the disjoint optimization. 

Lf'e shall notice, though, that this solution involves higher costs for the first 
warehouse. Indeed. if we choose a lot size Q1 = 1 7 8 8 . 9 ~ ~ ~ .  the cost for the 
first warehouse reaches 2000 . 800/1788.9 + 5 1788.9/2 = 5366.6€/month, 
definitely more than the 4000€/month for the disjoint optimization. In this 
latter case the cost for the first warehouse is higher since when we look for 
a solution we account for the effects that the lot sizing decisions of the first 
warehouse generates on the second one. This increase in the costs of the fmt 
warehouse raises some issues on how the saving of a joint optimization should 
be split. in case the two warehouses belong to  different organizations. 0 

Concept 6.7 Integrated management  of a supply chain increases the e f i -  
ciency of the whole supply chain. However, this does not  automatically turn 
in to  a benefit for  each and every player in the chain. This  i s  why we of ten  
shall carefully consider the incentives and potential gains fo r  each player when 
we suggest a greater degree of integration (see chapter 7 ) .  

6.5 ARBORESCENT CHAIN WITH TWO ECHELONS: TRANSIT 
POINT WITH UNCERTAIN DEMAND 

As we have discussed in the second chapter. one of the key roles of distribution 
warehouses (also known as distribution centers) is to consolidate traffic and 
increase the efficiency (e.g., through a greater utilization of cargo space or the 
usage of larger trucks) of transportation from points of production to points of 
consumption. In addition. in distribution warehouses we can prepare assorted 
deliveries with tens of different products for a single store (or local warehouse) 
and increase the delivery frequency of each single product while still keeping 
the cost of transportation under control. 

Distribution warehouses also play other functions. For example, they hold 
inventories that can be immediately delivered where demand is higher than 
we initially expected. Also they manage to  deal with very large purchase 
quantities, since any inventories exceeding the immediate need of the lower 
echelons can be stored in the warehouse for a while. 

However. some warehouses are designed not to perform these other func- 
tions and only perform the first one. They are designed to  receive large 
quantities (say a full truck or a container) of a given product (or a limited 
assortment). We call the transportation of goods from the production site 
to the distribution center primary transportation. These warehouses immedi- 
ately use these deliveries to feed smaller trucks (typically with a broader as- 
sortment since we load them with goods coming from various suppliers) that 
then deliver the products to  stores and customers. We call this secondary 
transport at ion. 
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Example 6.16 For example, the Carrefour group, like most other grocery 
chains. uses transit points for fresh food, while it uses traditional narehouses 
for packaged goods. In the transit point for fresh food, they receive goods in 
the late afternoon full trucks from their suppliers. They might receive a full 
truck of vegetables. one full truck of fresh fish. one full truck of meat. and so 
on. In a few hours these products are mixed and ready for delivery to stores. 
Each store receives only one delivery of a single truck that carries vegetables. 
fresh fish, meat ~ and so on. 0 

These nodes of the network are called transat pomts ,  transshzpment poznts 
or cross-dockzng centers. In these centers. inventories are not stocked and 
thus usually there are no shelves. However, the large lots received are broken 
down into smaller quantities that are then used to prepare a mixed cargo for 
secondary transportation. The term transit point really means that goods 
only transit in the n arehouse. 

In this section we discuss how one can manage a transit point and show 
ho\t a transit point can help us manage demand uncertainty. bye investigate 
the case of a single product and thus we cannot fully capture the savings on 
transportation costs due to consolidation of a mix of products. As to savings 
on transportation. we refer to chapter 2.  

For the sake of simplicity we investigate a two echelons supply chain where 
the transit point serves I stores (local warehouses). Each store has a btochastic 
demand with expected value m, and standard deviation c?. lye call LT2 the 
delivery lead time to the transit point. and we call LTI the delivery lead 
time from the transit point to the stores. Finally. we assume a review period 
7 for the transit point and a S Echelon Stock inventory policy (notice that 
the transit point has basically no inventories and thus the Installation Stock 
policy would hard11 make sense). 

Under these assumptions we first describe how the system works and then 
try to  build a model of it and prescribe how to run it. The first question 
we need to  answer is. iyhat  is the out-of-control-period for the transit point? 
And what is the out-of-control-period for the local stores? 

Let us consider an order placed by the transit point at time t o .  This order is 
delivered to  the transit point at time t o  + LT2. At the transit point the goods 
are allocated to  single stores where they are delivered at time t o  + LT2 + LTl 
(see figure 6.17). 

In a system like this one. it does not make sense to set the inventory levels 
at the stores. as all goods received by the transit point must be iinmediately 
shipped to  the stores. So the real question becomes how we allocate the goods 
we have just received to  the stores. 

To manage this supply chain we have to make two decisions. 

0 First. we have to choose the inventory policy for the transit point. in 
this specific case we have to  select the appropriate level of the Echelon 
Stock order up to level 5’. 



344 MANAGING INVENTORIES IN MULTIECHELON SUPPLY CHAINS 

First order is 

delivered at the 
transit point 

First order 
is placed First order is 

delivered at the c 4 + stores Second order is 

4 +delivered at the 
LT, transit point 

~ _LT, LT, 

' Secondorder LT2 

is piaced 

Second order is 
delivered at the 

transit point 

Fig. 6.17 Timeline of the inventory planning problem in case of a two-echelon supply 
chain with a transit point. 

0 Second. we have to define a policy to  allocate to stores the inventories 
we receive at the transit point. 

Selecting the Echelon Stock order up to level S. As to the first problem, we 
shall first understand what demand inventories need to cover and thus what 
demand we shall use to  set the order up to point S.  The order we place in t o  
is delivered at the stores at time t o  + LT2 + LTl. The following order placed 
at  time t o  + T is then delivered at  the stores at time t o  + T + LT2 + LT1. So 
inventories ordered in time t o  shall cover demand up to  the next delivery in 
time t o  + 7 + LT2 + LT1 and thus shall cover the whole out-of-control period 
r + LT2 + LT1. 

The question then becomes, What is the relevant demand over the out 
of control period? The problem is all but trivial. IVhile the expected value 
is obviously (r  + LT2 + LT1) . C,'=, m,, understanding what is the relevant 
standard deviation is a more complex issue. We shall understand whether 
inventories shall (i) cover demand uncertainty for each single store or (ii) 
cover it at the chain level. In other words, we shall understand whether we 
want to  (i) take the sum of all I standard deviations rather than (ii) take the 
standard deviation of the sum of all I demands (see chapter 2 ) .  

To answer this question, we shall carefully study the flow of goods in the 
chain and understand: 

When and where a unit of inventories can be used at  all stores (is fungible 
for all stores) and thus can cover demand fluctuation wherever they 
happen; 

0 When and where, on the contrary, inventories can only be used to meet 
demand in a given store and thus can cover demand fluctuations at  that 
store only. 



ARBORESCENT CHAIN: TRANSlT POINT WITH UNCERTAIN DEMAND 345 

Goods ordered at  time t o  are allocated to a specific store only when they 
are received in the transit point at time t o  + LT2. Up to this point in time. 
goods can be used to rebalance inventories among the stores as we can allocate 
more units to  stores that have experienced a peak in demand. Up to t o  + LT2 
we really do not care about the distribution of demand among the I btores but 
rather are interested in the overall demand for the network of I stores. Indeed. 
when one of the I stores faces an unpredicted peak in demand while another 
store experienced a period of low demand, the two variations compensate and 
cancel out. 11-e simply allocate more inventories to the former store and less 
imentories to the latter. What might cause some concerns is a demand above 
the initial expectations for the whole chain of I stores. In this case we cannot 
allocate more inventories to  one store and less to another. All stores (say) 
need more than we expected and the incoming order is just not enough. 

At time to+LT2. inventories are allocated to  each single store: and from this 
point in time. up to  t o  +T+ LT2 +LTl each single store has a limited and fixed 
quantity of goods to meet demand. During this time interval (to + LT2. t o  + 
T + LT2 + LTl) an increase in demand at one store cannot be possibly be 
counterbalanced by a decrease at another store since excess inventories in the 
latter cannot be used to meet demand in the former (if horizontal shipments 
are not allowed, like in all our models). 

Hence, the order up to level S shall cover demand for the whole chain over 
a period LT2 and shall cover demand from each single store over a period 
LTI + T .  

Let us now introduce some notations. 1i-e call o the standard deviation of 
demand for the whole chain. LYhen demands are independent across stores, 
we have 

TYe call 5 the sum of standard deviations. that  is. the sum of demand uncer- 
tainties for each single store: 

So the relevant demand distribution to set the order-up-to-level S is a 
random variable with expected value 

I 

(T + LT2 + LTI) . c m,. 
2=1 

and. if we assume demand is not correlated over time. with a standard devi- 
ation 

JLT2 . o2 + (LT1 + T )  C 2 .  
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Once we have identified the demand distribution, we can set the order-up-to- 
level S using the heuristics we have designed in 5.6. In this case 

h . r  
Pu 

1 - F ( S )  = -> (6.16) 

where pu is the penalty cost for stockouts.14 

Example 6.17 Let us consider a company with a review period r of one 
week, a delivery lead time to the central transit point LT2 of 2 weeks. and a 
lead time of 1 week to  transfer goods from the transit point to  the 9 stores 
LTI of 1 week. Each of the 9 stores has a normally distributed demand with 
expected demand 100 and standard deviation 25. We also assume that the 
margin of the product is 1€ and the holding cost for 1 week is 0.142. 

In this case, the demand we use to set the order-up-to-level has an expected 
value equal to  the out-of-control period (r + LT2 + LTl) times the sum of 
expected demands for the 1 stores E:=l E(d,). i.e.. (1 + 2 + 1) .9 .100 = 3600. 

If we assume that stores are independent and there is no autocorrelation, 
the standard deviation of demand is 

JLT2 . a' + (LTi + r )  62 = 4 2 .  ( 9 .  252) + (1 + 1) ( 9 .  25)' = 335.41. 

We look at the economics of the company to choose the optimal type I service 
level through formula (6.16): 

0.1 ' 1 
1 

1 - F ( S )  = - = 0.1: 

I30ther authors suggest t o  set S in such a way that F ( S )  = *. This solution traces 
back to the newsvendor problem. The above solution and the one we suggest make basically 
different assumptions on the holding cost. We assume that  we incur the full (see note 20 
on page 274) stock holding cost even if the marginal unit is sold before the end of the 
planning cycle. Other authors assume (implicitly or explicitly) that  the company incurs 
the holding cost only if the product is left unsold a t  the end of the planning cycle. In this 
situation the inventory problem resembles the newsvendor one. More formally. under our 
simplifying assumptions the expected marginal return is (1 - F(S)) m and the marginal 
cost of inventories is deterministic (h 7 ) .  In the alternative model the holding cost is 
stochastic and has an expected value F ( S )  . h. T .  Obviously the truth lies in between these 
two extremes. We hold inventories for the whole cycle and thus pay the full holding cost 
h T when we do not sell the marginal unit: while we carry the item for a portion of the 
planning cycle when we sell it by the end of the cycle (see note 20 on page 274). Clearly, one 
approximation might work better than the other according to the service level we provide. 
The higher the service level the more frequently the marginal unit is carried for the whole 
planning cycle; and even when it is sold, it gets sold towards the end of the planning cycle 
and thus our assumption works better. 
I4Notice that  the transit point "per se" does not guarantee that  we can postpone the 
allocation of inventories among stores up to  time t o  + T .  Some US retail chains use transit 
points t o  consolidate transports of products imported from Asia but make firm decision on 
inventory allocation when they place the purchase order. This way they lose flexibility but 
gain efficiency. The expensive handling operations can be performed in Asia rather than in 
the USA with substantial savings. So the usage of the transit point t o  postpone decisions 
on allocation of inventories rather than the transit point per se guarantees a reduction in 
the inventories required to gain a given service level target. 
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thus F ( S )  = 0.9. and if the probability distribution is normal we can use 
tables for the standardized normal distribution and choose 2 = 1.28 and thut 
set S to S = 3600 + 1.28 335.41 = 4029.32. 

Notice that if we allocate the inventories to stores when we place the order 
in to  (say. we import in pre-set boxes of goods tagged to the final destination). 
rather than when we receive the goods (say in t o  + LT2). the inventories 
required to gain a 90% increase. Indeed. in this case each store i5 basically 
independent arid we shall set the inventor) level for each store and simply add 
up the requirements for each store. So, each store sets an order-up-to-level 
S, to  cover demand over the out-of-control period of 3 weeks. So each store z 
needs and order-up-to-level S, = (1 + 2 + 1) . 100 + 1.28&%? = 463. for a 
total of 4176 (9 464) units for the network of 9 stores. 

The transit point creates efficiency. since inventoiies shall only cover the 
uncertainty on the aggregate demand for the network of I sores and thus a 
peak of demand in a store can be counterbalanced by a low demand in another 
store. JYe simply allocate more inventories to the former store and less to the 
latter one. On the contrary. once products are allocated to  single stores. a 
peak in demand at one store is not counter-balanced by a low demand at  
another store. as each single store can only rely on the imentories that have 
been allotted to i t .  0 

Concept 6.8 In a supply c h a m  m t h  a transzt poznt. w e  can postpone deci-  
szons on the allocatzon of znventorzes t o  s tor fs  T h u s  we can set  anventory 
levels accordlng t o  the aggregate demand  and.  thanks t o  risk pooling. reduce 
the  uncertaanty and thus  reduce the  need f o r  safety stocks.  

Allocation of  inventories t o  stores L5-e have set the Echelon Stock inventor) 
target for the transit point, but we still have one open question: How do we 
allocate goods among the stores? 

Before n-e get into the details of horn to allocate inventories. we shall un- 
derstand nliat is the relevant demand distribution. 

Figure 6.17 shows that the order placed in time to is allocated to stores at 
time to + LT2% it reaches the store at time t o  + LT2 + LT1. arid the successive 
order is delivered to stores at time t o  + T + LT2 + LT1. Inventories we allocate 
to  stoles at time t o  + LT2 shall cover demand up to t o  + T + LT2 I LTI and 
thus they shall covei the out of control period LT1 + 7 .  

To solve the allocation problem. we refer to  section 5.4.1 arid as5ume that 
the size of the stockout. rather than its occurrence. matters. The ianie logic 
n-e have dei-eloped in that case applies to this case. as we face an allocation 
of a limited amount of coimnoii resources (in this case. im-entories delilered 
to  the transit point). 

If we assume that all stores share similar costs of stockout (say riiargini) arid 
holding costs (this assumption is very reasonable in many retail chains), we 
shall allocate the incoming order in such a way that all stores share the same 
type I service level. Unit Q + 1 is sold with a probability 1 - F(Q). If store 1 
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has a higher service level than store 2 ,  then we have 1 - Fl(Q1) < 1 - F’(Q2) 
and thus we would rather allocate a marginal unit of inventories to store 2 
(with a lower service level) than to store 1 (with a high service level). 

So, we just want to use the allocation process suggested in section 5.2.1 for 
the multi-item newsvendor problem. In this case we allocate inventories of 
one item to stores, rather than a common resource to various products, but 
still the logic is the same. 

The budget, i.e., the total amount of common resources. we must allocate 
is the overall inventories level k in the downstream supply chain (on hand plus 
any goods in transit, i.e., the sum of inventory positions for all stores) plus 
inventories entering the transit point, while r ,  = 1;Vi. Shipments to store 
z are equal to the optimal inventory level for store i minus initial inventory 
position for the store. 

If expected demand in a store drops sharply while others experience a sig- 
nificant increase in demand and horizontal shipments are not allowed, the 
optimal allocation might turn out to be unfeasible. Some stores might indeed 
have already more inventories than they should have under the optimal al- 
location and if horizontal shipments are not allowed, we cannot reduce the 
inventory position immediately but simply have to wait for demand to pro- 
gressively consume inventories. This means that some of the inventories that 
other stores would need are stuck in the store with excess inventories. This re- 
ally means that the whole allocation plan is unfeasible and shall be reviewed, 
as example 6.18 shows. 

Example 6.18 Let us assume store 1 has 1000 units. while the other 2 
stores in the chain only have 100 units on hand. Let us assume that the 3 
stores face a similar demand distribution and the same economics. Also let 
us assume there is no in transit inventory between the transit point and the 
stores. Finally. the transit point is receiving 600 units and shall allocate them 
to the stores. 

Obviously, the optimal solution is to evenly distribute inventories among 
the stores: (1000 + 100 + 100 + 600)/3 = 600 units. However, in the first store 
we already have more than 600 units (1000 units) and horizontal shipments 
are not allowed, so this solution in unfeasible. Still, it provides us with a 
precious piece of information: We shall not ship any goods to store 1. We 
just allocate the 600 units the transit point is receiving to stores 2 and 3, so 
we take their inventory position to 400 units. The service level for stores 2 
and 3 is still significantly below the service level of store 1 (whose inventory 
position is 1000 units), but we would need horizontal shipments to improve 
our solution. 0 

If the current inventory position of any store exceeds the optimal inventory 
position, we would need to ship a negative quantity (i.e., ship some units 
from that store to other stores). If that is not possible, we exclude stores 
that should receive a negative shipment from our allocation and reallocate 
inventories only among stores that in the previous run had a positive shipment. 
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In other words, we rule out stores that quite obviously should not receive any 
goods and we allocate incoming goods only among the stores that might need 
some inventories. 

To illustrate an allocation algorithm. we introduce the following notations: 

0 Sh, is the shipment to store z .  

0 0, is a dummy variable (0/1) that captures whether we want to ship 
any good to  store i. 

0 V is the total amount of inventories that  is entering the transit point 
and shall be allocated to stores. 

A possible allocation policy is based on Lagrangian multipliers (i.e., oppor- 
tunity cost) X of the budget constraint. Kotice that in this case we have to  
allocate all goods we receive in the warehouse, so the multiplier X cnn be both 
positive and negative. Indeed. in some instances we deliver to  the stores more 
goods that would be required simply because we need to allocate all goods we 
have 

1. 

2 .  

3 .  

4. 

5 .  

6. 

7.  

8. 

received. 

0, = 1: Vz. so initially we consider all stores as potential candidates for 
the shipment of a portion of the goods we are receiving at  the transit 
point. 

X = 0. so initially me assume that inventories have a zero opportunit) 
cost. 

The total amount of inventories to  allocate is k = C;'=, IP, . 0, + V .  
Notice that we only consider the inventory position of the stores that 
we consider to be part of the allocation. Once a store i is renioved from 
the allocation process (0, = 0) its inventories are removed as well. The 
store basically exits the allocation game. 

I If current solution is such that C,=, Q L  5 k .  increase the opportunity 
cost of inventories (capacity) A; otherwise reduce A. 

If the solution meets (with a given tolerance) the constraint C,=, Q, = k 
proceed: otherwise goto 4: this step guarantees that we cdii find an 
optimal allocation among the active stores (0, = 1). but itill there i5 
no guarantee that the solution is feasible 

U'e calculate the shipment for each store. Vz. Sh,  = Qz - El .  

IF the shipment is negative. then we draw the conclusion that we \hall 
not ship any goods to the store that is excluded from the allocation: 'dz, 
if Sh,  < 0. then 0, = 0. 

I 
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9. If in the previous step any store was excluded from the allocation process 
taking 0, from 1 to 0. goto step 2, otherwise stop. 

In the specific case of normal demand distribution and cost of inventories h, 
and cost of stockout E(d,) equal for all stores, we want all stores to reach the 
same type I service level: thus, all stores shall reach the same quantile in their 
respective demand distribution and thus use the same standardized value z .  
Hence 

and thus 

(6.17) 

where 0, = 1 for stores that actually receive some goods from the central 
transit point. 

Example 6.19 Let us consider a network of 11 stores with a normally dis- 
tributed monthly demand. The expected monthly demand is 100 units, while 
the standard deviation is 20 units. The inventory position for stores 1-5 is 
50 units, the inventory position for stores 6-10 is 100 units. and the inven- 
tory position for the 11th store is 200 units. Stores share the same prices, 
purchasing costs, and holding costs. The LT to  replenish the transit point is 
2 months, while the LT to deliver stores from the transit point is 1 month. 
Goods are ordered to the suppliers once a month. LVe are receiving 350 units 
at the transit point and we shall allocate them to the 11 stores. The 11 stores 
face the same demand distribution, and thus we know that the optimal solu- 
tion is to provide them with the same inventory position. So we simply divide 
the sum of all inventories in the system or entering the system by 11. Over- 
all inventories currently in the downstream portion of the supply chain are 
50.5+ 100.5+200+350 = 1300. that  is 118.18 units per store. Unfortunately 
the 11th store already has 200 units and, when horizontal shipments are not 
allowed, the solution is unfeasible. This really means that we do not want to  
ship any goods to store 11 and thus we allocate the incoming goods to the 
first 10 stores only. In this case the overall inventories in the set of stores 
we currently consider for allocation is 50 . 5 + 100 . 5 + 350 = 1100. Thus we 
want to  have 110 units in each of the first 10 stores and we ship 60 (110 - 50) 
units in each of the first 5 stores, and ship 10 (110 - 100) for stores 6 to 10. 
Notice that the total shipment is 350 units, which is exactly the quantity we 
are receiving at  the transit point. 0 

Example 6.20 Let us consider a network of 3 stores. Stores have a normally 
distributed demand with an expected value of 100, 200. and 100. respectively, 
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and standard deviations 20. 20. and 30. respectively. The delivery lead time 
to  the stores is 2 weeks. The company places orders (and thus receives goods) 
every two weeks. Stores share prices. purchase. and holding costs. The inven- 
tory position of the 3 stores is currently 60. 100. and 40 units, respectively. 
The transit point is receiving 270 units. 

1Yhen goods are received. the total amount of inventories in the (down- 
stream15) distribution chain is 60 + 100 + 40 + 270 = 470. This amount of 
inventories is used to reach a common service level in the 3 stores. 1%-e u5e 
equation (6.17) to  find the optimal solution: 

= 1  
470 - (100 + 200 + 100) z =  

20 + 20 + 30 

The optimal inventory positions for the 3 stores are 100+1.20 = 120. 200+ 1. 
20 = 220. and 100 + 1 ' 3 0  = 130 respectively. So we shall ship 120 - 60 = 60. 
220 - 100 = 120. and 130 - 40 = 90 units to  the three stores respectively. 
Once again notice that the total shipment to  the three stores is 70 + 120 + 80. 
that is exactly the 270 units that are entering the transit point. 0 

6.6 A TWO-ECHELON SUPPLY CHAIN IN CASE OF STOCHASTIC 
D E M A N D  

Let us consider a stochastic extension of the problems addressed in the previ- 
ous section. 161Ye now assume that the marehouse in the second whelon ac- 
tually carries inventories and is not just a transit point. Though this problem 
resembles the previous one. inventories in the upstream warehouse increase 
the complexity of the system and. as a consequence, the complexity of our 
model. 

Under uncertain conditions. there is no guarantee that when the down- 
stream marehouse (echelon 1) places an order. it can be actually fulfilled by 
the upstream warehouse (echelon 2).  Hence, even if we assume deterministic 
lead times for materials handling and transportation. we might still face a 
delay in the delivery to the downstream warehouse simply because the central 
warehouse might be stocked out. So demand uncertainty creates an uncer- 
tainty in delivery lead times. 

To show this concept, we analyse a simplistic case where the downstream 
narehouses use a one-for-one logic; that  is. when they sell one unit. they older 
one unit. In other words, they use an S policy with continuous re\iem Under 
this assumption, the demand at  the central narehouse is simpl? the sum of 

"Notice tha t  we do  not account for any outstandingorder the transit point has already sent 
to  the supplier. It is part of the  inventory position of the  transit point but it is irrelevant 
for the  allocation problem. 
"This section was inspired by [5]. 
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demands from all stores. Indeed, orders from store i are just equal to demand 
at  store i .  This simplifies our model substantially, as we do not need to model 
the ordering policy of the stores. 

Finally, we assume that the central warehouse adopts a ( Q 3  R) policy and 
an Installation Stock logic. 

We adopt the following notations: 

0 1, is the (deterministic) transportation and handling time to deliver to 
store 2: that is. the Lead Time in case the central warehouse has enough 
inventories to  immediately fulfill the order coming from store i ;  to build 
our intuition we can assume that this is the time required to handle the 
goods, load the truck. and deliver. We basically start our clock when 
goods are available in the central warehouse for delivery. 

0 L, is the (stochastic) delivery lead time of an order placed by store i ;  it 
is the time elapsed from the time the order is placed up to  the delivery 
of goods at the warehouse: so it includes any waiting time at the central 
warehouse in case the product is currently stocked out (this is actually 
the random portion of this delivery lead time). 

0 B(Q,R) is the average backorder in the central warehouse and thus is 
the queue (waiting line) an order finds (on the average) at the central 
warehouse. l 7  

0 W(Q.R)  is the average time the order waits a t  the central warehouse 
because the product is stocked out. 

In order to  proceed, we need to  find a relationship between the average 
backorder B(Q. R) and the waiting time W(Q,  R).  We shall use Little's law. 
a fundamental equation in queuing theory. It links the average waiting line 
A, the average waiting time W .  and the throughput 8 (average number of 
customers served per unit of time, e.g.. hour): 

A = B W .  

In our case, backorders are basically a waiting line and the throughput is 
demand at  the central warehouse, that is, the sum of demands from all stores. 

Hence, applying Little's law to our problem, we find that the average wait- 
ing time is the ratio between the average Backorder and demand. as it is the 

I7Notice that  the definition of average backorder depends on both R and Q, while the 
backorder at the end of the cycle n(R) only depends on the reorder point R. In this case we 
try to capture the average number of customers (units ordered) that are waiting for their 
order t o  be fulfilled on the average rather than a t  the end of the planning cycle (that is, 
the point in time where we expect the longest queue). B(Q,R)  looks at the average queue 
during the whole planning cycle and thus depends on the duration of the cycle as well. 
Clearly. Q determines the average duration of the planning cycle. 
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average rate of arrival of inventories and. thus. the rate at which customers 
are served: 

On the average , the delivery lead time for orders placed by store z is equal to 
the deterministic component 1, plus the stochastic time we wait at the central 
warehouse. So the expected deliver! lead time is equal to  1, plus the expected 
waitiiig time II*(Q. R):  

E(L , )  = I ,  + W ( Q .  R). (6.18) 

JYe can use this delivery lead time to store z to  set the order up to point 
S,. One could be tempted to treat this random delivery lead time as if it 
was determiiiistic and equal to E(L , )  = 1, + L17(Q. R). This implicitly means 
that we assume that all orders wait W ( Q . R )  units of time at the central 
warehouse, while some orders do not wait at all since the product i i  available 
immediately. and others wait much more than Lt-(Q.R). Il'e know that a 
fraction of orders equal to the type I1 service level. 3. is immediately fulfilled. 
For these orders. the delivery lead time equals I , .  On the contrary. orders 
that  are not fulfilled immediately might wait much more than W ( Q .  R). So 
the distribution of delivery lead times is definitely complex and can hardly be 
modeled properly. In other words, the waiting time is zero with a probabi1it)- 
3 and follows an unknown distribution with a probability 1 - 3. However. 
we can build a simplified model of this distribution of waiting times. liTe 
can assume that the waiting times at the central warehouse are zero when 
the product is in stock, but are equal to a constant a when the product is 
stocked-out We basically a s u m e  that the waiting time follows n binomial 
distribution (with one single draw. v, hich is also called Bernoulli distribution 
see -4.3.1 on page 446). The waiting time is zero with a probability 3 and 
equals a constant a with a probability 1 - 3. 

Now we need to set the parameter a of this simplified distribution. IT-e can 
select a in such a way that the expected value of the binomial distribution 
(see figure 6.19) equals the expected value of the actual distributioii of waiting 
times (see figure 6.18). This process is called moment matchang. 1i.e basically 
replace the actual and complex distribution with a simplified one. but me make 
sure that the moments (in this case the first moment. that 15. the expected 
value) of the simplified distribution match those of the more complex and 
realistic one. 

So vie set a in such a way that 

E ( L )  = 1, + W(Q. R) = 3.1,  + (1 - 3) ' ( 1 7  + a): 
heiice 

TT'(Q. R) 
a =  

1-3 ' 
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Fig. 6.18 Actual distribution of the LT1 

5 4  a 

Fig. 6.19 Simplified distribution of LT1. 

X 
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Once we have selected a. we can use it to  estimate the variability of the time 
stores have to  wait for the delivery. Basic statistics tells u5 that the binomial 
distribution with one draw has a standard deviation 

(6.19) 
3 

1 - 3  
Var(Lz) = 3 (1 - 3) a* = -I$"(Q, R):  

hence 

Concept 6.9 The samplzfied model shows that stockouts at the ceiitral ware- 
house zncrease both the expectatzon (6.19) and the standard devzation (6.20) 
of delavery lead tame t o  the stores. Indeed. some orders are fulfilled zmmrdz- 
ately. whale others shall watt at the central warehouse for  the product to be 
replenashed. 

This situation poses a iiem challenge: \Ve have to  model uncertain LTs. 
Indeed. when we plan inventories at the stores. we do not exactly know what 
period of time the inventory should cover and thus we do not know the rele- 
vant demand distribution. For example. inventories might cover demand for 
two weeks or maybe three weeks. Statistically. this means that the relevant 
demand distribution is the sum of an uncertain number of random variables 
(demands for each period of time). The following example illustrates this 
rather complex concept. 

Example 6.21 Let us consider a store that receives goods froni a central 
warehouse. The central warehouse delivers in one week (with a 70% probabil- 
ity) or two weeks (with a 30% probability) according to the availability of the 
product. hlso we assume that the retailer follows a continuous re\piew polics 
so that inventories shall only cover the LT (e.g.. he uses a ( Q , R )  policy or 
the S policy Lvith continuous review: that is. he orders as soon as a customer 
buys one unit). We assume that weekly demand is a normal distribution with 
expected value 100 and standard deviation 20. Demand is not correlated over 
time 

Under these assumptions the probability distribution of demand is bimodal 
(see figure 6.20): that  is. demand is drawn from a normal distribution n i th  
expected value 100 and standard deviation 20, with a 70% probabilitl. and 
it is drawn from a normal distribution with expected value 200 aiid standard 
deviation 4. 20. with a 30% probability. 

This means that the expected value of demand during the LT really depends 
on the duration of the LT. Severtheless. we can compute the overall expected 
value acrobs the two scenarios of 70%~100t30!?%~200 = 130. Now. to calculate 
the standard deviation. we shall resort to  the law of transport of moments. 
Here we derive the final result in full detail for the sake of completeness: 
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fig. 6.20 Bimodal demand distribution of over the LT. 

J--30 

where 

f o o  

0.7 1, ~ N ( I O O , Z O ) ( ~ )  (x - 130I2 dx 

+x 

= 0.7 1, ~N(IO~,ZO)(Z) [(z - 100) - (100 - 130)12 dx 

= 0 . 7 / _  ~N(IOO.ZO)(Z) [(x - 
t o c  + 2 .  30(x - 100) + (100 - 130)2] dz 

= 0.7 (20' + 0 + 302) = 910, 

since: 
+cr: s-, ~.v(I~o,~o)(z)(x-- dx is by definition the standard deviation of 

0 ~ ~ ~ f ; \ ; ( l o 0 , 2 0 ) ( ~ )  . 3 0 ( ~  - 100) dx is zero because the expected value of 

the demand that follows the distribution N(100.20); 

the distribution is 100: 
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0 ~ f ~ f A ~ - ( 1 0 0 , 2 0 ) ( x )  . (100 - 130)2dz = (100 - 130)2 = 302 since it is a 
constant times the integral of a probability density over its support. 

Similarly. 

2 +x 

0.3 /, fN(200 , f i20 ) (z )  [(z - 200)2 - 2 . 7 0 .  (x - 200) + 702] dz 

= 0.3.  ( 2 .  202 + 0 + 702) = 1710. 

and thus the variance of demand over the LT is 910 + 1710 = 2620 and 
standard deviation is v'%% = 51.2, which is actually far greater than the 
variance of demand in a week. as we might face two very different demand 
scenarios. 0 

We can reach the same result following the same process described in exam- 
ple A.14, on page 474. If the duration of the LT and demand are independent 
random variables and demand is not autocorrelated, the variance of demand 
over the LT is 

Var(dLT) = E ( L T )  . Var(d) + Var(LT) . E(d)2. (6.20) 

where E(LT) and E(d) are, respectively, the expected value of the LT and 
of demand in the unit of time. The first term models demand uncertainty. 
while the second term models LT uncertainty. Equation (6.20) can be applied 
whenever LT is uncertain. So equation (6.20) can be applied both ( i )  when the 
uncertainty is an endogenous variable and the manager can control through 
the service level 3 of the central warehouse and (ii) when it is an exogenous 
variable due to unreliable suppliers or uncertainty in transportatioii lead times 
(say weather or strikes). 

Example 6.22 Going back to  example 6.21 we can check that equation 
(6.20) correctly estimates the variability of demand over an uncertain LT. In- 
deed. LT has a binomial distribution and thus its variance is 0.7. (1 -0 .7) .1  = 

0.21 and its expected value is 1 . 0.7 + 2 . 0.3 = 1.3 (see appendix A.3.1 on 
page sec:exdiscretedistrib. Thus the variability of demand over the LT is 

Var(dLr) = 1.3 .  202 + 0.21 . 1002 = 2620. 

which confirms the above calculations. 

Orice we have obtained the relevant demand distribution vie can set the order 
up to level for the stores through the heuristics we have designed in section 
5.6. 

0 
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7 
Incentives in the Supp ly  

Chain 

7.1 INTRODUCTION 

In the previous chapter we introduced the issue of multiechelon supply chains. 
A4s we have said, there are two major topics in multiechelon supply chains: 

0 On the one hand. in multiechelon supply chains, planning pioblenis are 
quite complex. so we need rather complex planning processes and tools: 
this is what we called the engineers' perspective of the multiechelon 
supply chain problem. It is a hard problem and so we need .'engineers" 
to find a solution that then all the players in the chain will be willing 
to  implement, simply because it is a *.good solution." 

0 On the other hand. decision makers in the supply chain might have at 
least partially different objectives. so they might not care about a good 
solution that minimizes the total cost for the whole chain if it contrasts 
with their own objectives. This is a very common case in a supply chain 
where different players belong to  different companies. In this case, un- 
derstandably. the various decision makers consider the profitability (or 
value creation) of their company as the primary objective. If-hat is even 
more interesting is that these problems arise even among organizational 
units of the same given company. Indeed, decision makers might control 
a fraction of the overall company. Large companies ha\-e rather com- 
plex organizational structures with various organizational units. Each 
of them is usually controlled on a given set of performance metrics: the 
bonus. tenure in the current position. future career. and income of nian- 
agers usually depend on such metrics. So. the managers of the various 

359 
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organizational units tend to have different objectives rather than a con- 
current interest in the profit of their company (e.g.. see footnote 6.1 on 
page 305). This is what we called in chapter 6 the economists' perspec- 
tive: people are bright and can find solutions even to rather complex 
problems. However. they are selfish and tend to  do what is in their best 
interest. Economists call these incentive problems. This is basically the 
perspective we adopt in this chapter. For the sake of simplicity, in our 
models we assume that the objective the various decision makers try to  
maximize is the profit of their organization. In other words. we assume 
that either organizations are independent and profit maximizing compa- 
nies or they are different organizational units within the same company 
but each of them is judged on profit. 

In the models we present in this chapter we basically ignore inventory plan- 
ning or transportation issues. In particular, in all our models the time variable 
does not play a role, we basically assume the problem to be static. This really 
means that the models presented here are simplistic and are designed to  be 
thought-provoking and informative rather than to  provide tools or solutions. 

In the remainder of this chapter we present models that show a variety of 
incentives problems; that  is. we describe the conflicts among decision makers 
on several decisions. These conflicts lead decision makers to  make locally 
optimal decisions that turn into a suboptimal performance. In section 7.2 we 
show the contrast of incentives between a producer and a retailer when setting 
the final price of a product. In section 7 .3 .  we investigate how things change 
when a single producer provides the product to  various retailers. In section 
7.4 we discuss the contrast of interest on stocking decisions. In section 7.5 we 
finally discuss the incentive to deploy an effort to  increase demand through 
better product design, additional product features. or better service at the 
retail outlet. 

In each of these sections we basically compare the performance (profit) of a 
fully integrated chain where a single decision maker interested in the profit of 
the supply chain makes all decisions with those of a nonintegrated chain where 
each decision maker makes his/her own decisions to  maximize the profit of 
his/her own organization. The one difference between the situations we con- 
trast is that in the latter case we only reach local optima. So the vertically 
integrated case is bound to  lead to  superior (or at least equal) performance. 
We show that under standard conditions (e.g.. standard contracts among the 
organizations in the supply chain) the vertically integrated supply chain out- 
performs the disintegrated one. This actually does not mean that we suggest 
that the vertically integrated solution is always the first best solution. There 
are several reasons why a company might want to  focus on core activities and 
thus resort to partners to  distribute or manufacture products. Actually, over 
the past decades we have seen a general trend towards outsourcing. and thus 
the issue of suppliers' and distributors' management has become more and 
more relevant. We acknowledge that our models do not fully capture vari- 
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Fig. 7.1 Demand function. 

ables that lead companies to outsource some activities and thus reduce the 
degree of vertical integration. In practice, the disintegrated chain (and decen- 
tralized decision making) can lead to substantial technical and/or econoniic 
advantages (such as lower cost of labor, specialized know how etc.). In our 
models we deliberately ignore these issues to  highlight the decision making is- 
sues that arise in a vertically disintegrated chain. So we do not suggest using 
the niodels to make a decision on vertical integration. In our perspective the 
degree of vertical integration (integrated vs. disintegrated chain) is a given. 
Our models are simply meant to show that in the disintegrated chain some 
incentive issues arise and shall be accounted for. Also, in each section we show 
what are the basic remedies to the problems we highlight. Lye basically show 
that there are counterintuitive solutions that give all players (maiiufacturers 
and retailers in our models) a common interest in the global performance of 
the chain. This leads to a global optimum even in a disintegrated chain. 

7.2 DECISIONS O N  PRICE: DOUBLE MARGINALIZATION 

Let us consider a one-product supply chain that consists of two stages. In 
the first stage the product is manufactured, while in the second stage it is 
sold to consumers a t  a retail store. IVe assume that the marginal (variable) 
production cost is c. while selling the product at the retail store has a zero 
marginal unit cost. Also. let us assume that the demand for the product is 
deterministic and linear. In particular. we assume that (see figure 7.1) 
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1 Manufacturing 1 

Retailing ++ 
Boundaries of the 
organization 

f ig. 7.2 Structure of the supply chain in the case of vertically integrated organization. 

where d is the demand per unit of time and p is the price the final consumer 
pays. We also assume that the decision makers perfectly know this demand 
curve. Finally, this supply chain is a monopolist. The manufacturing stage 
is the only one production plant for the product. and the retailing stage is 
the only store selling the product. In other words, in this simple initial model 
we do not have any strategic interaction among competing manufacturers or 
competing retailers (see next section for the case of competing retailers). 

7.2.1 

In the first scenario the two operations (manufacturing and retailing) are 
performed by a single company that is vertically integrated (see figure 7.2). 
Also, we assume that within this company no incentive problem arises, so 
that either there is one decision maker or all decision makers share the same 
objective: maximization of the company profits. 

In our scenario the company needs to  set the price to maximize profit. The 
profit function is 

The first best solution: the vertically integrated firm 

T = d .  ( p  - C) - F C  = (1 - p )  ( p  - C) - FC.  (7 .2)  

We look for optimal conditions and thus fixed costs FC are irrelevant, if 
they do not make the optimal profit negative. For the sake of simplicity we 
assume FC = 0. To find the optimal price, we simply take the derivative of 
the profit function with respect to  p :  
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hence 

(7.4) 
l + c  

2 
p" = - 

so by substituting p with p* = 

quantity and by substituting in 7.2 we can derive the optimal profit:' 
in (7.1) we can derive the optimal 

(1 - c)2 
- - 

4 .  

In our simplistic model this is the first best solutzon where the single relevant 
decision (final price) is taken with a global perspective on the Lvliole supply 
chain. In the next section m-e discuss how the situation changes as the supply 
chain in disintegrated.* 

7.2.2 The vertically disintegrated case: independent manufacturer and 
retailer 

In this section we investigate a slightly different scenario. 11-e assume that 
manufacturing and retail distribution are performed by two separate organiza- 
tions (e.g.. two companies) with separate objectives. Each of the two players 
wants to  optimize the profit of his/her organization (e.g.% his/her company). 
and the product is sold to the retailer at a wholesale price p,. 50 the cost 
function of the retailer is linear. 

In this case. we shall describe the decisions the two decision makers face. 
Both the retailer and the wholesaler need to  set a price. The retailer sets the 

'In the more general case where manufacturing faces a marginal cost c and the retailer 
faces a marginal cost r .  the  marginal cost for the  company becomes c + r and thus the 

optimal price is p" = w. optimal demand is d' = 7 and the  optimal profit 1 - ( c +  r )  

is TT- - il - y r)l' 
'Notice tha t  t o  make the  model work properly we need to  assume tha t  the marginal cost c 
is lower than one: otherwise this market simply does not exist as the  production cost of one 
unit is larger than  the  maximum value of the product for the  single consumer tha t  values 
the product the most. This entails tha t  c < p < 1. Yotice tha t .  as one would expect. the  
price is an increasing function of c. while the demand as well as the  profit is a decreasing 
function of c. 
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A Manufacturer . . . . 

Boundaries of the I pw organizations 

Fig 7.3 
zations: one manufacturer and one retailer. 

Structure of the supply chain in the case of vertically disintegrated organi- 

final price p ,  while the manufacturer sets the wholesale price p,. When setting 
the wholesale price the manufacturer shall understand what the reaction of 
the retailer will be: The manufacturer shall understand how many units of the 
product the retailer is going to  purchase at various levels of the wholesale price 
p,. To do so. the manufacturer shall anticipate the behavior of the retailer 
and understand how he/she reacts to any change in the wholesale price p ,  
(economists call this process backward induction, meaning that we shall start 
our analysis from the player that  makes the decisions at a later stage, since the 
player that  makes the first decision shall understand the reactions to  his/her 
moves before he/she can make the optimal decision). So we start our analysis 
by investigating the decisions of the retailer to  understand how he/she reacts 
to  any change in the wholesale price p,. 

The decisions of the retailer Given our assumptions, the profit function of the 
retailer riTr is 

so the structure of the profit function resembles (7.1), where c is replaced 
by p,. Indeed. the only one difference between the retailer in this case and 
the vertically integrated firm in the previous case is that the retailer faces a 
marginal cost p ,  rather than a marginal cost c. This really means that we 
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can derive optimal price. quantity. and profit by substituting c with p w :  

the decision ( p * )  and the profit ( T ~ )  of the retailer depend on the wholesale 
price ( p U , )  the manufacturer charges. Oddly. the manufacturer can "control" 
the behavior of the manufacturer through p,. 

The decisions o f  the manufacturer The manufacturer should set the wholesale 
price to maximize his/her profit while keeping in mind that the decisions of the 
retailer change according to the price he/she decides to charge. In particular. 
the manufacturer should estimate the demand curve. Actually. given that 
the final consumers' demand is deterministic. the retailer buys exactly the 

quantity that he/she can sell. So the quantity d* = 7 is the demand 
curve for the manufacturer. Hence, the profit function o the manufacturer 
7rm is 

Once again this function resembles ( 7 . 2 )  where p is replaced by p ,  (the factor 
1/2 is irrelevant when we look for the optimal price pw) and thus the optimal 
price for the manufacturer is 

l + c  
2 

p:, = - 

and the optimal profit for the manufacturer is: 

* 1 - c  1 - c  ( 1 - q  
- rrn = - ,  - - ~ 4 2 8 '  

(7.7) 

Understandably. the profit of the manufacturer is lower than the profit of the 
vertically integrated firm. In the next subsection we investigate whether the 
profits the manufacturer fails to make are made by the retailer or. vice versa, 
are simply lost. 

Performance o f  the vertically disintegrated chain At this stage, n e  can put 
together the information about the manufacturer's pricing policv and the 
retailer's reaction to draw conclusions on the performance of this supply chain 
(structure and contracts). 

and the retailer charges 

the final consumer a price p* = +. so the final consumers' price is 

We know that the manufacturer charges p;  = 

I +  
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* 3+c p =-- - 
2 4 '  (7.9) 

Notice that this final consumer price is higher than in the vertically inte- 
grated case ((1 +c) /2)  since c < 1. Also, a higher price means that consumers 
buy a smaller quantity: They buy (1 - c)/4 in this case, while they buy 
(1 - c)/2 in the vertically integrated one. 

This is a first relevant finding. The consumers are definztely better 08 wzth 
u vertacally zntegruted firm, as they buy twice the quantity at a lower price. 
This result might look somehow odd. Indeed. in basic courses in economics we 
learn that monopolists (like the vertically integrated firm) take advantage of 
consumers, while this finding suggests that one monopolist is better than two 
firms. Indeed, in the model both companies are monopolist in their respective 
position: The model simply suggests that two monopolists are even worse than 
a single one. When we see this result we are tempted to  draw the conclusion 
that consumers are worse off since the industry (in our case the supply chain) 
is making more profit (basically. the consumers have to  feed two companies 
rather than just one). This is actually a zero sum game perspective. As we 
shall see, the industry is making less profits as well. so this is a negative sum 
game! We have already seen that the manufacturer makes a profit 

Given the price the manufacturer charges, the retailer makes a profit 

(7.10) 

(7.11) 

Hence. the total profit 7rtot for the supply chain (manufacturer and retailer) 
is 

(1 - p W I 2  - - 3(1 - c ) ~  
= 

4 16 ' 
(7.12) 

which is lower than the profit for the vertically integrated firm 

So the disintegration reduces the profits for the industry, raises final price. 
and reduces the quantity bought. reducing the welfare of the c o n s ~ m e r s . ~  So 

Economists use the expression surplus of the consumer. The meaning of this economic 
concept is basically the  following. The aggregate demand curve for a given product shows 
tha t  different consumers value the  product differently. In our example. some consumers 
value it 1 and others value it 0. Consumers tha t  buy the  product at  a given price p are 
those tha t  value the  product at the  very least p .  Others simply prefer t o  keep their money. 
.4mong those tha t  buy the  product, some value it more than  they paid for it and thus enjoy 
a surplus. m'hen a company cannot price discriminate like in our example, the  sum of all 
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Fig. 7.4 Consumer surplus (see footnote 3 on page 366). 

who is better off? Basically, no one is better off this is a second best solution 
for all players. Then the question becomes, How is this happening? What is 
driving this? 

This is the so-called double-marginalization problem. In other words, two 
players do a marginal analysis and find opt'imal prices. The retailer perceives 
a variable cost p ,  that is higher than the actual variable cost of the chain c 
and then tends to charge a final price that is higher than the optimal one. 
On t'he other hand. by doing so the retailer reduces the demand for the whole 
chain and thus the manufacturer sees a demand that is smaller than it could 
potentially be. The two decision makers make locally optimal decisions that. 
howeyer. turn into a global disaster for all parties. 

Concept 7.1 T h e  presence of intermediar ies  in a supply cha in  can  lead t o  
dis tor t ion of incentives:  In a disintegrated supply cha in  each player  t r ies  t o  
m a x i m i z e  i t s  o w n  profit and disregards t h e  effects of his /her  decisions o n  other  
players  (as  well as  o n  the  consumer) .  S u c h  misa l ignmen t  of incent ives  can lead 
t o  a relatively high pr ice  that  reduces the  surplus of the  consumer.  Also, the  
misa l ignmen t  of incent ives  reduces the  profits  of t he  f i r m s  in the supply chain.  
So these incent ive issues  tend t o  have negative effects  both f o r  companies  and 
consumers .  

*Also. it is rat,her int,eresting to focus on the tradeoff the manufacturer faces. 
On the one hand, the manufacturer can easily solve the double marginalization 

these surpluses is simply the integral over all consumers tha t  actually bought the item of the 
demand curve (actual value of the product for a given consumer) minus the price actually 
paid for the item. In the  case of a linear demand like in our example. it is thc area of the 
triangle highlighted in figure 7.4. 
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problem by reducing the wholesale price p ,  down to c. In this case actually 
the double marginalization basically disappears. The retailer sees a marginal 
cost that is just the marginal cost for the whole supply chain, and as a result 
he/she charges an optimal price: 

1+p,  - l + c  p * = - - -  
2 2 ’  

(7.13) 

which is actually the optimal price that leads to the maximum profit for the 
whole supply chain. So the manufacturer can lead the retailer to choose the 
optimal price and maximize the profits for the whole supply chain. However. 
there is a major issue: In this case the unit margin for the manufacturer is 
zero and thus the profit is just zero. So the manufacturer can make the supply 
chain behave optimally at the expenses of his/her own profit, which is actually 
a very unlikely scenario. 

On the other hand, the manufacturer can maximize the unit margin p ,  - c 
and, at one extreme, set p ,  = 1. In this case, however, the demand simply 
fades away and drops to  zero. 

The manufacturer would like to  (i) take a large share of the total profit of 
the chain and (ii) make sure that profits are maximized. Unfortunately, he/she 
tries to  achieve these contrasting objectives with a single lever - that is. the 
wholesale price. While to maximize total profit for the chain the manufacturer 
shall keep the wholesale price low to avoid the double marginalization problem. 
to  take a large share of the total profit the manufacturer shall increase p ,  up 
to  a point where p = p,. that  is. p = p,=l. 

So the manufacturer basically cannot have the cake and eat it too. With a 
single lever p , .  he/she can either have the cake or eat it. The best solution is 
actually a compromise where the price generates a good profit for the chain 
but a t  the same time guarantees that a significant portion of it is gained by 
the manufacturer rather than by the retailer.4 

*Notice that in the more general case of a production cost c and a distribution cost r .  the 
retailer sees a marginal cost p ,  + r and thus charges a price p’ = w, so that  the 
demand from the consumer is d* = I-”; - ? ,  Then the profit for the manufacturer is 

and thus the optimal wholesale price is 

and the optimal final consumer price is 

l + p : , + r  - 3 + c + r  p’ = - 
2 2 

Notice that  we can rewrite the above final price as 

3 + c  r 

2 2  + -, p* = - 
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7.2.3 

JVhen one encounters the double-marginalization problem. intuition suggests 
that there must be a way out of it. since none is better off in the second 
scenario we have investigated. 

Actually. there are several ways out. A common feature of all solutions 
we are going to discuss is that they re-design incentive schemes. In other 
words. we want to  redesign the rules of the game so that all plal-erb (decision 
makers) change their behavior and we can reach an optimal (or at the least 
better) solution. The key idea is that  the manufacturer and the retailer choose 
high prices and end up with relatively low profits simply because they have 
an incentive for this suboptimal behavior and if incentives are changed their 
objectives and behavior are going to  change a5 well. 

A way out: designing incentive schemes 

Let u5 now discuss several ways out. 

Change the structure of the supply chain The first and obvious solution is 
to change the structure of the supply chain and go back to the vertically 
integrated case. Clearly t'his solution solves the problem structurally. In 
many industries, many companies are going toward this solution, as they are 
opening more and more single-brand stores such as (a) Bulgari. Cartier, etc.. 
in luxury and (b) Adidas, Nike, etc., in the sportswear business. However. as 
we have discussed in the introduction t'o this chapter, this is often a hardly 
viable solution. Empirical evidence tells us that, retailers exist and often they 
are not part of a manufacturing company. This is because often retailers 
perform functions that our model fails to capture such as: 

0 product selection: that is they act as agents for the customers and se- 
lect product,s that, customers can hardly judge on their own. This is 
a typical function performed in some multibrand specialty stores such 
as wine bars, where the owner of t,he wine bar has the technical ability 
to judge the product and repet,itively purchases from a series of wine 
producers and sells to a series of loyal customers. This way he acts as 
an intermediary that builds reputation both upstream and downstream 
and reduces t,he incentive of t,he producers to free ride. 

creation, of a wide assortment: in man>- instances the value of a single 
product is limited as compared to the search cost ~~ that is. the cost to 
look for, locate. purchase. and transport the product. A classic example 
of this phenomenon is grocery. Customers rather pay the retailer to 
create a wide assortment and transport products from various suppliers 

and compare it with the  price of the  vertically integrated solution p *  = = lsc + 2 ' As we can see. the  double marginalization has an  effect only on the  marginal costs of 
x e  manufacturer. xvhereas it has no effect whatsoever on the marginal costs at  the  retailer. 
Indeed. for these latter costs there is no double marginalization, since the  retailer "sees" 
the  actual marginal cost r rather than  an  overstated wholesale price p u .  > c. 

+ 2" + 
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than buy single products from single suppliers at a lower cost. Simply 
because shopping at many single-brand stores - one selling Palmolive 
products, the second selling only P&G products and another one selling 
only Barilla products - might be very expensive (in terms of cost of 
transport and time consumed). Think of visiting 15 stores during your 
weekly shopping trip rather than a single supermarket! 

Our model fails to capture such problems, since we have a single product 
model. So. in the model, we ignore issues that might make the vertical in- 
tegration a hardly viable solution. This really means that there is a need 
for a retailer. In principle the retailer could be just a consortium of manu- 
facturers. However, one can easily understand how hard it would be for all 
consorted manufacturers to  control the retailing consortium and make sure 
the consortium acts in the best interest of each single producer. Writing a 
contract between the consortium and each single manufacturer is basically 
impossible. Also. even if we assume a contract was written. controlling it and 
enforcing it in a court is actually quite hard and definitely very expensive. 
Finally, we should notice that even in those cases where other variables not 
included in our simplistic model lead us to  choose a vertically disintegrated 
supply chain, still the problem of double marginalization stays and we need 
to find a solution to this issue. When the solution cannot possibly be struc- 
tural, it must be contractual. that  is. we shall rewrite the contract between 
the manufacturer and the retailer in such a way that they are led to  set the 
optimal price and can gain optimal results. In other words. when we still have 
two decision makers. we would better make sure their incentives lead them in 
the right direction. otherwise performance drops. 

A second solution is to  adopt more complex and subtle contracts between 
the supplier and the manufacturer to make sure they act in the best interest 
of the supply chain and make sure that the -cake is as big as it can possibly 
be." As we have already discussed, a single lever p ,  is just not enough to 
achieve two contrasting objectives (unit margins and large quantities sold). 
So we need a more complex pricing strategy. This is what economists call 
the two-part tar28 that is. a pricing strategy with two parts. Basically. these 
contracts use two parameters to achieve the two contrasting objectives. 

Franchising contracts A first example of these two-part tariffs is the so-called 
franchzszng contract. Under this contract the manufacturer, called franchzsor. 
sells the retailer, called franchzsee. both the goods and the right to sell them. 

The franchisor can sell products a t  marginal cost p ,  = c to make sure 
that the retailer has the right incentives to set the retail price appropriately 
at p = (1 + c ) / 2  and maximizes the profit for the chain ((1 - ~ ) ~ / 4 ) .  Once 
such a profit is generated, the franchisor can use a second parameter in the 
contract that is a fixed fee F :  that  is, the right to  sell the products of the 
franchisor. We just need to set F = (1 - ~ ) ~ / 4  - E to  move a large portion of 
the optimal profit upstream. In real-life applications the fixed fee is actually 
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just a mean to split the supp1)- chairi profit between the two paities. The 
actual split depends obviously on the bargaining power of each paity. But in 
general we can keep the marginal cost at a minimum to reduce the double 
marginalization problem and then use a second leyer to move the iliaximized 
profit within the supply chain appropriately. 

Quantity discounts 
Under such a contract the cost of marginal quantities is very low (at one ex- 
treme equal to the marginal production cost) to provide the retailer with an 
incentil-e to increase the quantity and reduce the selling price.6 On the other 
hand. the first units sold can ha\-e a fairly high price to move the profits 
upstream. 

Let 11s consider a case where the producer asks for a price p ,  for the first 
Q1 units (with Q1 < (1 - c ) / 2 .  that is lower than the optimal quantity for the 
vertically integrated supply chain) and then charges only the marginal cost c 
for any unit on top of this. In this case the profit function of the retailer is7 

Another example of two-part tariffs are yuantzty dlscountL5.' 

The above equation basically resembles equation (7.2) other than for a 
basically fixed cost Q1 . (p,, - c). This really means that when fixed cost are 
not excessive.8 the retailer simply selects the optimal price p" = (1 + c)/2 and 
the optimal quantity d* = (1 - ~ ) ~ / 2 .  This means that the retailcr makes a 
profit 

and the manufacturer can reduce the profit of the retailer and iiicrease its 
profit by appropriately selecting Q1 and p ,  in such a way that the retailer's 
profit is reduced to a small quantity E: 

Q1 ' (pw - c) = t. 7ir=-- (7.15) 
(1 + c)2 

4 

51n this context we consider the  marginal units price discount while the all units is ineffective 
in this scenario. 
6Kotice tha t  from the  incentive standpoint franchising contracts and marginal nnit quantity 
discounts are basically the  same. F + c can be interpreted as the very high cost of the first 
unit. 
'Kotice tha t  this is the profit function for d > & I .  to  be precise we shall also consider the 
option t o  purchase a quantity below & I .  

'Indeed, the  retailer might have the  option to  exit the  market in case of negative profits by 
buying zero units. 
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Resale price maintenance Finally, another solution is to contractually set the 
final price p :  that is, sell the product to the retailer if and only if he/she charges 
the optimal price. This is the so-called resale przce mazntenance. Under these 
contracts the manufacturer sells to  the retailer at a price p ,  = and the 
contract also forces the retailer to  sell at  a price p = p ,  or a price p 5 p,. 
Finally, an equivalent solution is to contractually set a minimum quantity 
q 2 9. This solution is basically equivalent to  a large all unit discount. 
Notice that in many countries fixing the final price contractually might be 
considered illegal (it is a restraint to  price competition in the retailing stage 
of the supply chain). Manufacturers can only .‘suggest” a price the retailer 
should charge the final consumer. Though the final price cannot be included 
in the contract, many manufacturers check the final price of the product and 
at times take the decision not to  sell the product to the retailers that set a 
price that significantly differs from the one they suggest. 

So as intuition suggests there are several fixes to the double marginalization 
problem. 

Concept 7.2 Once w e  acknowledge that the  presence of intermediar ies  can 
raise incent ive problems, we  can  design contractual solutions,  such  as  f ranchis-  
ing contracts,  quant i ty  discounts,  or fixed consumer  pr ices  that  can re-build 
a n  incentive for all par t ies  t o  set  a n  opt imal  price and m a k e  sure that  the 
supply chain gains opt imal  prof i ts  (and increases t h e  consumer  surplus).  In 
a sentence a supply chain can  be profitable only i f  we  m a k e  sure  that  every 
company o n  it has  reasons t o  pull  in the  s a m e  d i r e ~ t i o n . ~  

7.3 DECISION ON PRICE IN A COMPETITIVE ENVIRONMENT 

In this section we still discuss the pricing decisions in a supply chain. However. 
we make a small change to the model we have investigated. In this section 
we assume that in the supply chain there is just one manufacturer of the 
homogeneous product and a large number n of retail outlets (see figure 7.5). 
We assume zero search cost and homogeneous products. Thus we assume 
that consumers select retailers solely on price. In this case too, we compare 
the vertically integrated case with the vertically disintegrated one. Obviously. 
we do not need to  recalculate the optimal policy in the case of the vertically 
integrated firm. The company still chooses to  charge the same final price 
p* = + in all n stores. 

gThe last sentence is adapted from [5 ]  that  also provides some interesting real life examples 
on incentives issues in supply chain management. 
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Fig. 7.5 A supply chain with a Competitive retailing sector 

7.3.1 The vertically disintegrated supply chain: independent 
manufacturer and retailer. 

On the contrary. we shall investigate the vertically disintegrated chain. In this 
case. indeed. the situation changes. since the retail market is competitive. To 
understand this supply chain we shall resort to basic economic theory. 

Basic economic theory is outside the scope of this book. For example. we 
refer to [3] for a more precise analysis of perfect markets Here we simply re- 
call the basic intuition behind the perfect market model. The model assumes 
that a large number n of competing firms sells an homogeneous product and 
use a homogeneous technology and thus share a common cost structure Con- 
sumers have a perfect information and easy access to all suppliers. So they 
select the supplier on price. since it is the one differentiating variable. Under 
these assumptions any competing firm that reduces the price belov competi- 
tors takes all the demand, and any company that increases the price above 
competition loses all the demand. Thus all companies charge the same price. 
This really means that all companies cut the price to  the very minimum to 
increase demand. immediately followed by competition." At steady state, in 
such markets the final price is equal to the marginal cost: that is. companies 

"Notice tha t  this is just to build intuition. as economists might challenge this statement. 
They might argue tha t  in this model, companies are pure price takers and are riot aware 
of strategic interaction with their competitors. So they are not aware tha t  competitors will 
react t o  their actions. 
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make no profit". They cannot reduce the price below the marginal cost. 
as they would have a negative profit. But they also cannot increase it. be- 
cause they would lose all the demand and would be basically out of business. 
Economists say that in such a business the companies are just przce takers ,  as 
they have no latitude on price. they simply charge the standard price to  the 
consumer. 

This downstream competition has several consequences for our supply chain. 
Like in the previous case. we shall start the analysis from the final stage of the 
supply chain (backward induction). In this case the analysis is really simple. 
All retailers charge a price p equal to their marginal cost p,. So each of the n 
retailers gets a portion l/n of the overall aggregate demand d = 1 - p  = 1 -pU 
and makes no profit whatsoever. Thus the profit for the manufacturer is 

TTn = (pw - c) ( l  -p,) .  (7.16) 

We know that this equation resembles equation (7.2) and thus the optimal 
wholesale price is 

l + C  
P w  = - 2 '  

(7.17) 

Hence also the final price p is optimally set to  p* = pk, = y, and so the 

aggregate demand for the industry is d* = (1 - p * )  = and the profit for 
the manufacturer (and the whole supply chain as the retailers make no profit) 

(1 - c)2 
4 .  is 7rh = (1 - p * ) ( p *  - c) = 

The results deserve a couple of comments. As the reader has probably 
already noticed, in this case even a very simple and linear pricing policy leads 
to  an optimal price. So when there is a large number of retailers, the vertically 
disintegrated supply chain performs just as well as the vertically integrated 
firm. What are the economic interpretations of this apparently odd result? 

A first, technical reading is that  in a perfect market the retailers do not 
make any margin and thus though there are two echelons in the supply chain. 
one actually does not increase the price. A second, more managerial reading is 
that there are two players but actually one is simply a przce t ake r  that makes 
no actual decision. So in this case. coordination of decisions is rather trivial, 
since there is only one actual decision maker. 

Concept 7.3 T h e  double marginal izat ion problem depends o n  the  marke t  
structure.  If the retailing stage i s  a competit ive marke t  (with n o  search costs) 
t h e n  t h e  double marginal izat ion problem simply f ades  away. More  in general, 
incent ive issues might depend o n  t h e  structure of t h e  supply chain and of t he  
marke t s .  

I1Again an economist might argue tha t  companies make no extra-profit, tha t  is the make 
no profit on top of those minimal profits tha t  reward the capital investment and the efforts 
of the entrepreneur 
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7.4 DECISION ON INVENTORIES: THE NEWSVENDOR PROBLEM 

In this section m-e investigate the impact of the supply chain structure on 
inyentory decisions. l2 To isolate this issue from other decisions. we assunie 
that the final price is fixed (say by law or there's a standard price in the 
market. like for newspapers that in Italy basically share the saint' common 
price). Also. to  make inventory decisions relevant we assume that demand is 
uncertain. 

First me have the exogenous 
demand y. then we have the production quantity Q %  and finally we have 
sales V .  In the previous sections. we had a single variable since we had 
assumed a deterministic demand and thus purchase quantity was exactly equal 
to  demand and sales. 

In our model we assume that the expected demand is still 1 - p .  hut in this 
case the demand is variable and is uniformly distributed between 0 and 2 - 2 p  
( f ( x )  = 1 / ( 2  - 2 p ) ) .  To keep the problem simple, me assume the product 
expires like newspapers. so that we can consider our inventory problem to 
be static: that is, the one purchase decision on a single period (day) has no 
impact whatsoever the next period (da l ) .  In other words we face a multi- 
echelon newsvendor problem (see 5 . 2  for the classic newsvendor problem). 
Actually. we have already discussed the issues that arise while setting prices 
in a supply chain and thus ignore them in this section by fixing the price p .  

In this case we shall use three variables. 

7.4.1 

The vertically integrated firm has basically one decision to make: how manv 
units Q to purchase. 

The newsvendor problem suggests balancing the cost of a stockout and the 
cost of inventories in such a way that the type I service level is SL = $&. 
where m is the cost of a stockout and c is the cost of excess inventories. 

In our simple ca5e the cost of a stockout for the vertically integrated firm 
is p - c and the cost of inventories is c. as we assume that inventories ha\-e no 
salvage s-alue. This means that the vertically integrated firm shall provide a 
service level S L  = 7. Cnder our simplistic assumptions the company shall 

stock a percentage 7 of the maximum potential demand 2 - 2p .  So the 
optimal stocking quantity is 

The first best solution: the vertically integrated firm 

12Notice tha t  even issues discussed in section 6.4 can fall under this unibrelia. \\.-bile in 
this section we present inventory planning issues in a static and uncertain enyironment. in 
section 6.4 we present the  same issue in a dynamic and certain environment. 
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7.4.2 The vertically disintegrated case: independent manufacturer and 
retailer 

In this case the retailer purchases copies of the newspaper in the early morning 
from the manufacturer and tries to sell them during the day. So, the retailer 
makes the stocking decision and runs the inventory risks. This is actually a 
very important issue. In our model we assume that decision makers are risk 
neutral. so this allocation of risks in the supply chain has no effect, but when 
players show different attitudes towards risks. we shall carefully consider the 
allocation of risks in the supply chain. 

In the vertically disintegrated case. the retailer faces a decision problem 
that resembles the one of the vertically integrated company. The one difference 
is that the marginal cost of the retailer is p,. So the quantity the retailer 
decides to stock is Q: = . ( 2  - 2p). This quantity is also the demand for 
the manufacturer. 

Given the stocking decision of the retailer, the profit function for the man- 
ufacturer is 

2P) . (PW - (7.18) 

So the manufacturer charges a wholesale price p ,  that  maximizes his/her 
profit: 

dT, 2 - 2 p  
8PW P 

(P - p ,  - p ,  + c) = 0, -- - -. 

and the optimal wholesale price is 

P + C  p:, = -. 
2 

(7.19) 

(7.20) 

The manufacturer charges a wholesale price that is halfway between the final 
consumer price p and the marginal cost. This finding deserves some comments. 
Equation (7.18) suggests that once again the wholesale price performs two 
functions. On the one hand, the manufacturer would like to  increase the 
wholesale price to  increase the marginp,-c he/she makes. On the other hand, 
the wholesale price performs a second function: It sets the retailer's incentives 
to  stock large quantities. So the manufacturer would be tempted to  reduce 
the wholesale price p ,  to  increase the stocking quantity Q: = . (2 - 2 p ) .  

Like in the case of decisions on price. the manufacturer tries to  achieve 
contrasting objectives with a single lever p,. He/she can set p ,  = c and lead 
the retailer to stock the optimal quantity but the manufacturer has no margin 
and thus makes no profit. On the other hand, the manufacturer can set p ,  = p 
and maximize margins, but in this case the retailer has no incentive to stock 
and this reduces demand to zero. The optimal solution mediates between these 
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two contrasting objectives and actually is halfway between the t n o  extreme 
(and ineffective) solutions me just discussed (p, = p and p, = c).13 

Given this wholesale price p c  % the retailer stocks a quantity 

In other mords, in this situation the stocking quantity is 50% lower than the 
optimal one, and the service level is reduced by 50% as well. Clearly. this 
is not good news for the consumers that are verj likely not to find the item 
they want (at  the least at the end of the day). Is this more profitable for 
the industry? Actually it is not. Indeed. we can show that for the n-hole 
supply chain it would be appropriate to increase the stocking quantity above 
the current level QT = 7 ( I  - p). 

Ilk can go back to  the intuition behind the basic newsvendor problem 
and show that the chain profit increases if we increase the stocking quantity 
marginally. The probability of not selling a marginal unit is ( p  - c 1/2p while 
the probability selling it is ( p + c ) / 2 p .  The cost of lost sales is ( p - c )  while the 
cost of excess inventories is c. So what we gain by increasing the inventory 
level marginally is p - c times the probability that we actually sell the addi- 
tional marginal quantity. iYhat we lose is the cost of inventories c times the 
probability ( p  - c ) / 2 p  that we are not going to sell the additional quantity. 
Hence. the marginal profit of an increase in inventories is 

(7.21) 

Increasing the stocking quantity increases the profit for the chain and the 
solution Q* is suboptimal. Unfortunately. what is good for the supply chain 
is not good for the one decision maker, the retailer. 

Like in section 7 . 2  the vert,ically disintegrated supply chain leads to sub- 
optimal performance. since it provides bad incentives to  t'he players. The 
manufacturer charges a wholesale price p,, above the marginal cost to gain a 
profit. Howel-er, such a wholesale price reduces the retailer's margin and thus 
reduces the incentive for the retailer to  stock. This leads to a reduction in the 
retailer's stocking quantity, in service level for the consumers. and in profits 
for the chain. Like in previous cases. this is a bad situation for all pla!-ers. 
and irituit,ion suggests there must be a way out. 

13.Actually. the optimal wholesale price depends on the  demand and cost functions. So the 
fact tha t  the optimal solution is halfway between marginal cost and consumer price is just  
a pure chance. In general though. it is within this range. 
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7.4.3 

As we have seen in section 7.2. a first solution can be vertical integration of 
companies. As we already discussed. this solution has several consequences 
our simplistic models fail to  capture. So we consider the structure of the 
supply chain as a given and we try to  find other, contractual rather than 
structural. solutions. 

Like in the case of decisions on prices, we discovered that the manufacturer 
is trying to achieve two contrasting objectives (make margins and give the 
retailer incentives to  stock) with a single lever (the wholesale price pw,). 

So a first reasonable solution is to adopt two-part tariffs so that both ob- 
jectives can be sought. 

A way out: designing incentives and reallocating decision rights 

Franchising contracts. Franchising contracts again can be a very good option. 
The key idea is again to  sell the product at marginal cost c to give the retailer 
the incentive to stock the optimal quantity for the whole chain Q* = 7 ( 2  - 
2p). This solution leads to optimal profits for the whole chain. Then a fixed 
fee F that the retailer pays to  the manufacturer can be used to  move profits 
upstream. So in this case one lever (the wholesale price p, = c) is used to 
give the retailer the incentive to stock the right quantity and a second lever 
(the fixed fee F )  is used to distribute the profits in the chain. 

Buy-back contracts. A second option is to use the wholesale price p ,  to make 
a profit and use a second lever to give the retailer an incentive to stock the 
optimal quantity. The intuition behind these contracts is that we increase 
the willingness of the retailer to  invest in inventories by decreasing the cost 
of excess inventories. So, while in the franchising contract we increase the 
willingness to  invest by increasing the cost of a stockout (i.e., increasing the 
margins) in this case we act on the other economic parameter of the newsven- 
dor model: the cost of excess inventories. Under these contracts, basically 
the manufacturer offers to buy back the inventories left over at the end of the 
day (or selling period more in general). Basically in this case too, the pricing 
policy consists of two parameters. The manufacturer sells the newspaper to 
the retailer at a wholesale price p ,  early in the morning and buys back the 
units unsold at the end of the day at a buy-back price p b .  Basically. we reduce 
the cost of a stockout to p ,  -pb.  s o  any pricing policy (p,.ph) such that the 
optimal type I service level for the retailer equals the optimal type I service 
level for the vertically integrated firm leads to an optimal stocking quantity 
Q* and thus to optimal profits for the chain: 

- P - P w  - P - P w  (Pu.Pb)IP~ - - 
P (P-Pw) + (Pw - p b )  ( p - p h ) '  

Thus. the buy-back price is a function of the wholesale price p,: 
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IYliile an infinite number of pricing strategies ( p K . p b )  is just as good to  fix 
the retailer's incentives to stock. they are ver? different from the standpoint 
of the manufacturer's profit Clearly among these couples the manufacturer 
wants to choose a couple with a very high pu. to increase unit mnrgins arid 
thus profits. 

So the optimal policy for the manufacturer is to charge a piice p u  = p - t 
. Such a pricing policy build5 the right and a buy back price P b  = p . 

incentive to stock and at the same time creates a profit for the manufacturcr. 
So. quite interestingly, the manufacturer has an incentive to pay for the unsold 
goods. Intuition would suggest that  the manufacturer would rather not pay 
for the unsold inventories at tlie ietailer \Thy should one want to pay for 
goods that at the end of the day lost most of their value? A deepcr anallsis 
shows that buying the unsold goods is actually in the best inteiest of the 
manufacturer. 

Finally. we shall conclude this section v,ith a note on contracts that do not 
solve this issue. In section 7.2 we suggested s o l ~ i n g  the double marginalization 
issue by fixing the final price p contractually. I l e  shall acknomledgc that this 
solution is actually completely ineffective in the case of uncertain demand. 
Indeed. in our simple model we assume the price to be fixed. but still the 
stocking problem has arisen. 

- € - - C  

P - C  

Example 7.1 These contracts are often used in several industries tvhere the 
cost of inventories is substantial to give the retailer an incentive to stock 
appropriately. A classic example is the electronics business. where products 
lose value month by month. In this business, the OEM share tlie cost of 
excess inventories with the retailers and refund a portion of the products' 
loss of value. -4 similar practice is fairly common in the fresh food business. 
Large companies such as Nest16 partially refund the cost of expired food to the 
retailers. These practices aim at  providing the retailers with an appropriate 
incentix-e to stock inventories. SIanufacturers could give up some margin to 
reach the same objective but they rather buy products back. 0 

Revenue sharing contracts. Anot,her partial solution to the double marginal- 
ization problem is t,o adopt profit sharing contracts. In these two-part tariffs 
the manufacturer charges a low wholesale price p,. = c and get paid a percen- 
age of the final revenues. In other words the manufacturer is paid partially 
on the sell-out and partially on the sell-in. 

These coritract,s can generate a better incentive for the retailer to stock. 
However, they never re-creat,e t,he whole incentive to  stock the optinial quan- 
tity. since a portion of the final consumer price (that exceeds the marginal cost 
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of the manufacturer) is given to the manufacturer. thus reducing the retailer's 
incentive to  stock. However. these contracts have two other beneficial effects 

First these contracts distribute the risk among the players in the supply 
chain. In these contracts uncertainty on the final demand has an effect on 
both parties rather than on just the retailer. So, these contracts can adapt 
to the inclination toward risk of the two players. So these contracts can be 
an effective mean to  re-allocate risks in the supply chain according to  the 
ability/willingness to  accept risk. 

Also, demand fluctuations can be partially random. but they might par- 
tially be due to actions of both the retailer and the manufacturer. Such efforts 
might be hardly contractable. meaning that it might be hard to write a con- 
tract that (i)  fully describes the efforts of the two parties and (ii) can be en- 
forced before a court. In these fairly common circumstances, these contracts 
give both the manufacturer and the retailer a partial incentive to  increase 
demand the way they can.14 For example, the retailer might provide more 
selling effort, allocate more space in the store, or put the item in the front 
window. On the other hand, the manufacturer can spend more on advertising, 
add extra features. or add extra contents. 

Section 7.5 discusses the issue of efforts in supply chains. 

Example 7.2 These contracts are used in the media business. Blockbuster 
noticed very frequent stockouts of top movies (premieres) during the week- 
ends. Nevertheless, purchasing more copies of the movies was not profitable 
for Blockbuster. DVDs have a very low marginal production cost. since the 
vast majority of costs are fixed (think of the production cost of the first unit). 
Thus Blockbuster has signed a revenue sharing agreement with the movies' 
majors to share the revenues of DVD rents. This new contract gives the majors 
an incentive to reduce stockouts in order to increase the revenues shared. So 
they reduce the wholesale price to  increase Blockbuster's incentive to stock. 
As a consequence, this new contract changes the incentives of Blockbuster to  
stock DVDs, and it increases the availability of copies for the consumers (even 
during times of peak demand such as the first few weekends after the launch of 
the DVD): also, the turnover increases in a business where the marginal cost is 
basically negligible. thus increasing the profits for the chain. It is interesting 
to notice that only technology made this deal a viable option. Indeed, the two 
parties need to make sure that total revenues is a certified number so that 
revenues can be shared fairly. A third party provider of technology certifies the 
revenues and thus makes the total revenues observable to the manufacturer 
(they are obviously observable to the retailer) and thus the revenue sharing 
contract a viable option. In economics we would say that technology is making 
revenues a contractable variable. that  is a variable that can be included in a 
contract (see also [ 5 ] ) .  

I4In case the wholesale price exceeds the marginal cost of the manufacturer, as it is very 
often the  case. 
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Re-allocation ofdecision rights. Anot,her, more radical solution is to reallocate 
decision right's in the supply chain. In other words, we keep the supply chain 
s t ruchre and thus we keep the number of players constant. However, the 
rights to  make decisions are changed. One option in this context is to move 
the right to make inventory planning decisions upstream. This is t,he so-called 
Vendor LIanaged Inventories. Under such contracts t,he manufacturer holds 
the right to make decisions on inventories. A simple reallocation of decision 
right,s would lead to  a scary incentive scheme without a reallocation of the 
cost of inventories. Think of what would happen if t,he manufacturer makes 
decisions on rehilers' inventories. The manufacturer would be in a position 
t,o freely increase deliveries and thus turnover at the expenses of the retailer 
that, might carry unnecessary inventories. Usually these agreements require a 
change in the allocation of cost of inventories among players. Often retailers 
give the manufactmers a maximum budget for the inventory investment to  
make sure they do not over-invest in inventories as they do not, pay for the 
holding cost. Another solution is to agree that the retailer pays for the sell-out 
(units sold to  the consumer or delivered from the cent,ral dist,ribution center 
to  the stores) rather than for the sell-in (units delivered t,o the retailer's DC) 
so that the manufacturer pays for excess inventories and t,hus has no insane 
incentive to overstock. 

These contracts are very popular nowadays. and some companies such as 
Procter and Gamble have proven that t,liey can be very effective. if properly 
deployed. However. there are several caveats. 

First,, these contracts work only if the retailer provides the manufacturer 
with the inforniat,ion required to make invent,ory decisions effectively. Some of 
these pieces of inforniation are easy to transfer such as sell-out dat'a. Others 
are somehow more problematic. For example. information about the pronio- 
tion of a compet,ing subst,itute product can be crucial to plan inventories. but 
t,he retailer might not want/should not give the manufacturer this relevant 
piece of information. Also, a retailer might have some qualitative information 
that the producer lacks, such as roadworks around the store. new openings of 
competing stores. et,c. On the other hand. the manufact'urer might have some 
other pieces of private inforniation such as the launch of new products in tlie 
same cat,egory of new advertising campaigns. 

More in general. when we allocate decision rights in the supply chain, we 
shall always wonder who has the right information (and skills) to make better 
decisions. Second, we shall wonder who has the right incentives to  inake ap- 
propriate decisions. One example can show some problems these contracts can 
have. Retailers often sell products from competing manufacturers. Often con- 
sumers are quite ndling to switch among brands and substitute +tacked-out 
products (see [l]). However. such substitut,ion reduces the cost of a stockout 
for the retailer, but it does not change (or might even increase) tlie cost of a 
stockout for the manufacturers (see [ A ] ) .  This really means that the 1nan11- 
facturers tend to overinvest in inventories. as they t,arget a serx-ict, level that  
is greater than the optimal one for the whole suppll- chain. Nore in general. 
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when allocating decision rights. we should carefully study incentives to  over- 
invest/underinvest in inventories as well as the availability of relevant pieces 
of information and skills. 

Concept 7.4 I n  a disintegrated chain the inventory and service levels drop 
below the optimal point since the retailer only sees a fraction of the total 
margin and thus is  less willing to invest i n  inventories. Franchising, buy-back 
and VMI  contracts rebuild an  incentive to invest an inventories and gain a 
better service. 

Example 7.3 l5  To make the problem simple. let us think about sales of 
a newspaper in a small town where this is the only newspaper sold. The 
final consumer price for the newspaper is l€. For newspapers. usually the 
marginal production cost is rather low, and in our example we assume that 
the marginal production cost c is 0.2€. 

Let us assume that demand is uniformly distributed between 0 and 200. 
with an expected level of 100 units ( f ( z )  = 1/200). 

The first best solution: the vertically integrated firm. 
As we have learned in section 5 . 2  the newsvendor has an 80-cent cost of a 

stockout and a 20-cent cost of inventories (we assume that the salvage value 
is zero). and thus the optimal type I service level is 80%. Given the uniformly 
distributed demand. the optimal stocking quantity Q* is 160 units, as in 80% 
of the cases the demand is lower than or equal to 160 units. 

Given the demand distribution and the stocking quantity, we can compute 
the expected sales E(V): 

200 1 
160- dy 

1 6 0  2oo 
E(V) = L l 6 O  Y-dY+ 2:o 

1 [(c) + 160 (200 - 160) 
160 

- - 
200 0 

= 96. 

Expected sales are 96 units. and given the stocking quantity of 160. the ex- 
pected inventories left over is 64 (160-96). This means that the total expected 
profit for the vertically integrated chain is 96units . 0.80€/unit - 64units . 
O.2O€/unit = 64€. 

The vertically disintegrated chain: independent manufacturer and 
retailer 

Now let us assume that the manufacturer (editor) figures out that retailing 
is just a different business and that he/she is not interested in it or is not 
good at it. So the manufacturer (editor) starts selling through a retailer. Let 

"This example is adapted from the Hamptonshire express case (see [4]) 
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Fig 7.6 Demand distribution and optimal stocking quantit? 

us assume that the manufacturer charges the retailer a price p ,  = 0.8 and 
the retailer makes the inventory planning decision before the newspaper starts 
selling. Under this contract the retailer has a low cost of stockout (he/she 
loses 0.2€ for each unit of demand lost) and a high cost of inventoiies (he/she 
loses 0.8€ for each unit of excess inventories). This real11 means that the 
retailer has all incentives to  understock. The optimal target service level for 
the retailer is 20% and thus the optimal stocking quantity is just 40 units, 
way below the optimal quantity for the chain and far less than the expected 
demand (100 units). 

LVith such a low stocking quantity the profit for the manufacturer is 1-ery 
lon-: 

;r,,% = 40 units. (0.8€/unit - 0.2€/unit) = 2 4 E  (7.22) 

Let us check the profit for the retailer. Expected sales are 

1 - - [($) + 4 0 ( 2 0 0 - 4 0 )  
10 

200 0 

= 36 



384 INCENTIVES IN THE SUPPLY CHAIN 

Given the stocking quantity of 40 units, 4 are left unsold. on the average. and 
the expected profit for the retailer is16 

E(7rr) = 36 units . (l€/unit - 0.8€/unit) - 4 units 0.8€/unit = 4€. 

The total profit for the chain drops to 28€ (compare it to  the 64 units for the 
integrated channel). Also consumers have a lower service level (20% instead 
of 80%) and experience very frequent stockouts. 

Let us check the efficacy of the buy back contracts. Let us assume that 
the manufacturer charges 0.992€ and buys the units left unsold at 0.99€. In 
this case the retailer's margin is 0.008€ and the cost of inventories is 0.002€. 
Hence the optimal service level for the retailer is 80%(0.008/(0.008+ 0.002)). 
Thus the stocking quantity is 160 units and the whole supply chain makes 
optimal profits. Also, the manufacturer is the one that makes the bulk of the 
profits. The retailer's expected profit is 

E(7rT) = 96 units . (1 - 0.992)€/unit + 64 units . (0.992 - 0.99)€/unit = 0.64€, 

while the manufacturer sells 160 units at 0.9992 €/unit. 96 are actually sold 
and thus entail only the manufacturing cost of 0.2 €/unit, and the remaining 
63 entail a buy back cost of 0.99 €/unit on top of the manufacturing cost: 

7rm = 160 units . (0.992 - 0.2)€/unit - 64 units . 0.99€/unit = 63.36€. 

Thus the total profit for the supply chain is 64. and it is actually equal to the 
profit of the vertically integrated firm. 0 

7.5 DECISION O N  EFFORT TO PRODUCE AND SELL THE 
PRODUCT 

As we briefly discussed in the previous section, demand depends not only 
on price but also on other decisions both at the retailing stage and at the 
manufacturing stage. As we mentioned on the one hand, one can improve 
the store look and size. hire more salespersons. train the salespersons. add 
services such as home delivery, and include customization of the products 
(e.g.. assembling the add-on peripherals of a PC or sizing the sleeves of shirts 
to customers). On the other hand, one can make more/better advertising, add 
new features to  the product. update the design of the product more frequently. 
and so 

l6Notice that the retailer runs the  inventory risk so the retailer's profit is uncertain. while 
the  manufacturer's profit is certain. So in this case we take the expectation, while we had 
no expectation in the case of the manufacturer. 
I7Notice tha t  even the inventory investment can be interpreted as a sort of effort t o  increase 
sales. However, given the focus of this book, we think it is worth investigating the issue of 
the  inventory investment separately. 
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TVe can call these actions efforts to  improve sales at  the retailing and rnan- 
ufacturing stage of the supply chain. In our discussion we first focus on the 
efforts at the retailing stage and later discuss a situation where we have both 
efforts at the manufacturing and retailing stage 

Also. the cost of effort can be both a variable cost or a fixed co,st." For 
example the assistance at  the retail store is an effort from the retailer (s,) and 
it generates a variable cost, as it is proportional to the number of customers 
served. On the contrary the look and size of the store tends to be a fixed cost, 
as one does not need to increase the size of the store or the number of lights 
as the number of visitors and customers increases.lg Similarly. mr' can have 
both fixed and xariable costs of effort at the manufacturing stage. Examples 
of fixed costs are advertising campaigns, sponsorships. efforts in the design 
stage. Examples of variable costs are new product features and optionals (saj 
air conditioning in a car or a camera in a cellular phone). 

In our initial model we only have promotional effort from the retailing itage. 
IT-e can formally build a model on promotional effort at the downstream stage 
of the supply chain through the banable s,. *41so let us assume that the coit 
e,[s,) is variable rather than fixed. For example, let us assume that this is 
the cost of the time the salespersons spend with each customer. The effort 
increases demand d ( p ,  5,). which is a function of both final consuiiier price p 
and promotional effort , s7 .  Finally, let us assume that d ( p .  s,) is concave in s,. 
as we have decreasing returns of the sales effort. *&o. let us assume that the 
cost function is linear or convex. So there are diminishing marginal returns 
of the effort s, and constant or increasing marginal cost of effort f,. 

7.5.1 The first best solution: the vertically integrated firm 

Given our assumptions. the profit for the vertically integrated chain is 

So we can find the optimal effort for the vertically integrated firrii by taking 
the derivative of the above equation with respect to s r :  

therefore 

I8Here by variable we mean tha t  the  unit cost depends on the effort. biit s i ich cost is 
incurred for each unit sold. So the cost varies proportionally to deniand. 
IYThis holds unless the space in the store is the  binding constraint tha t  censors sales. which 
is a fairly rare situation. 
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The above equation suggests that  the vertically integrated firm would in- 
crease the promotional effort up to  a point where the marginal increase in 
demand [ d d ( p ,  s,)/ds,] is counterbalanced by the marginal cost of the effort 
[e/(s,)d(p. S T ) ] .  

7.5.2 The vertically disintegrated case: independent retailer and 
manufacturer 

Now let us check what happens when the retailer and the manufacturer are 
independent organizations that maximize their own profit (and use simple 
linear contracts). 

The manufacturer charges a wholesale price p ,  > c to  make some margins 
and thus some profits. The drawback of this policy is that the retailer sees 
only a portion ( p  - p,) of the total chain margin ( p  - c) and thus has a lower 
incentive to promote the item.20 Indeed. the profit function for the retailer is 

and thus the optimal solution for the retailer is 

The above equation suggests that the marginal return for the effort is smaller 
for the retailer [ ( p  - p ,  - er(s , ) ) ]  than for the vertically integral firm [ ( p  - 
c - e r ( s , ) ) ] %  and thus. under the very reasonable assumption of diminishing 
returns of the promotional effort, the retailer chooses a level of effort that is 
lower than in the vertically integrated case. The side effects of this decision are 
lower demand. lower service for the consumers (and thus a reduction of their 
welfare). and lower profits for the chain. Why is this all happening? Once 
again the decision maker fails to fully capture the benefits of his decisions for 
the chain. Basically. the retailer overlooks the beneficial effects of the increase 
in demand he/she can cause on the manufacturer profit. He/she only sees a 
benefit p - p ,  - e,(s,) rather than the actual benefit p - c - e,(s,). 

A very easy solution to the above problem would be to contractually set 
this level of effort deployed by the retailer. Unfortunately. these variables can 
hardly be set in a contract. How do you measure the time a salesperson spends 
with a consumer? How do you measure the quality of a salesperson? And 
even if you write these variables in a contract, it can hardly be enforced in a 
court and thus it tends to  be ineffective. Incentives are much more effective 
means to  control efforts. 

*ONotice that this resembles the issues we have discussed in the previous section. Indeed. 
inventory investment can be interpreted as one of the means to  increase sales. We have 
discussed it as i t  is a very relevant issue for the specific focus of this book. 
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Example 7.4 One way out of this is to  make sure that the rnanrifacturer 
paSs a portion of the promotional effort in the itores. Large grocery stores 
(supermarkets and hyperniarkets) tend to be self-service environments with 
limited sales service. However. m hen a nev  product is launched. borne man- 
ufacturers pay for salespersons that in1 ites the potential consume15 that are 
visiting the store to try the product (usually at a launch price lower than the 
full price). So, quite interestingly. manufacturers in this business recognize 
that retailers make a suboptiinal selling effort and thus they supplement the 
retailer's effort with their own personnel. 0 

So far we have investigated a case where the retailer's effort influence5 
demand and the cost of effort is variable. Let us now investigate the caqe 
where of the retailer's effort generates a fixed rather than a vaiiable cost 
through an exainple. 

Example 7.5 Let us consider a supply chain a here the final coiisumer de- 
mand depends on both the final price p and the promotional effort s, at  the 
retail store. IVe assume the demand function to be 

d = l - p + J ; .  (7 23)  

lye  assuiiie that the marginal cost of production is c. ,41so. we assume that 
the promotional effort entails a cost 0 . 5 ~ ~  (imagine that the cost is related to 
the size and look of the store rather than the time spent assisting i w h  single 
customer). 

The first best solution: the vertically integrated chain 

grated firm is 

Hence we can find the optimal price and promotional effort by taking the 
derivative with respect to p and sT.  

Given the above assumptions. the profit function for the verticallj inte- 

T = (1 - p +  6) ' ( p -  c) - 0.5.  s,. (7 2 5 )  

dT 
- -  - c - p f l  - p + J s , = o .  
aP 

(7.26) 

thus 

& = p - c  

and by substituting in (7.26). p* = 1 and thus fl = 1 - c. 

(7.25) : 
IYe can now find the optimal profit by substituting p* and s: in equation 

TTi* = (1 - p* + &) ' (p*  - c) - 0.5 ' s ;  
= 

= 0.5(1 - c)*.  
(1 - c)' - 0.5(1 - c)' 
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The vertically disintegrated case: independent manufacturer and 
retailer . 

Now let us investigate the case of the vertically disintegrated supply chain. 
As we have learned in previous sections we start by analyzing the decisions of 
the retailer. 

The profit function for the retailer resembles the profit function for the 
whole supply chain with one minor difference: the marginal cost is pw rather 
than c. 

7rr = (1 - p  + 6) ' ( p - p , )  -0 .5 .  S,. (7.27) 

Thus the optimal final price and promotional effort for the retailer are p* = 1 
and fi = 1 - p ,  and demand is d" = 1 -pw. This is then the demand curve 
for the manufacturer that  tries to  set the wholesale price to generate demand 
but at the same time he/she tries to  generate margins ( p w  - c). The profit 
function of the manufacturer (which in this example has no promotional effort 
and thus no effort-related cost) is 

Trn = (1 - p w ) ( p w  - c). (7.28) 

and the optimal wholesale price for the manufacturer is p;  = *. 
Now we can go back to  the retailer and check how he reacts to  this level of 
the wholesale price. The retailer charges an optimal price p* = 1, but he/she 

makes less effort to  sell the product (*= 1 -& = *) than the vertically 

integrated company does (a = 1 - c). 
Let us now check the profits of the retailer and the manufacturer by sub- 

stituting p * .  p ; ,  and sf in equations (7.27) and (7.28). 

7rr = (1 - p + 6) ' ( p  - pw ) - 0.5 . s, 
2 

0.5 (9) 1 - c  1 - c  
2 2 

- . - -  - - 

- (1 - c)2 - 
8 .  

1 - c  1 - c  
2 2 

4 '  

T ,  = (1 - P.w)(Pw - c )  
-.- - - 

- (1 - c)2 
- 

3(1 - c ) ~  so the total profit for the whole chain is 8. 
Once again we shall now sit back and read the results carefully. As usual. 

things get worse with the vertically disintegrated chain. Consumers get a 
lower service (in our example they shop in smaller and less fancy stores), the 
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profit for the chain is reduced. and the final price remains unchanged. It is 
rather interesting to compare these findings with those of section 7 2 .  In both 
cases the profit for the chain drops by 25%. However. in this latter case this 
is not due to  an inappropriate increase in final consumer price (both in the 
vertically integrated and in the vertically disintegrated case the price is 1).21 
but rather to a lower than optimal promotional effort. So quite interestingly 
the suboptimal decision variable is different in the two cases. but the basic 
dynamics are the same. The party that makes the decision sees only a portion 
( p  - p,) of the overall margin ( p  - c) and thus makes decisions that are in 
his/her best interest but reduce the size of the overall cake. [I 

7.5.3 

As usual we have a situation where nobody wins. the consumer gets a worse 
service. and the manufacturer and the retailer make relatively less profits. 
There must be a way out. 

A way out: designing incentive schemes. 

Franchising contracts A solution is to  re-create an incentive for the retailer to  
deploy an optimal service by giving the retailer all the margins. Again like in 
the previous cases we can design a franchising contract where the wtailer pays 
a variable price p ,  = e and a fixed fee F .  The fixed fee distributes the profit 
in the chain while the low variable wholesale price re-creates an <tppropriate 
incentive to  provide the optimal sales effort. Again. like in previous cases. 
these contracts leave all uncertainties on the shoulders of the retailer So. 
these contracts raise major concerns when the retailer is risk ad\erse (or at 
the least more risk adverse than the manufacturer). 22  

Example 7.6 Let us now check whether the franchising contracts can solve 
the problem we have discussed in example 7.5. Let us assume thdt the man- 
ufacturer charges a wholesale price pIL = e. This re-creates the retailer's 
incentive to make an optimal effort. as the retailer's profit function rewinbles 
equation ( 7 . 2 5 ) .  So both the final price and the retailer's effoit are opti- 
mal: p = 1 and s, = G. Clearly such a policy makes sure that the 
retailer's profit is just equal to the optimal profit for the whole chain (as we 
said. retailer's profit function is just the whole chain's profit function in case 
p ,  = c). However, the manufacturer's profit is zero. since the unit margin is 
zero ( p ,  - c = 0). So we use the fixed fee F to move (some) profits upstream 
by setting F = 0.5(1 - c ) ~  - E .  

21Notice tha t  this is a rather obvious result: indeed. all fixed costs have 110 impact on the  
price tha t  is set through a marginal analysis. On the  contrary. variable costs o f  service tend 
to  have an  impact on price. 
22Kotice tha t  when the  manufacturer as well has an ability t o  influence thc demand this 
solution completely destroys his/her incentives to  work hard to  increase dernarid. So actually 
we might want to  balance the  incentives t o  increase demand according to  the parties' ability 
to  influence demand (see next subsection). 
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Quantity discounts Another option is to give quantity discounts. that is, 
charge a low wholesale price p ,  = c only for marginal quantities. The first 
few units bought make sure that the manufacturer makes a profit, while the 
last few units sold create a marginal incentive for the retailer to deploy an 
optimal sales effort (see section 7.2). Notice that the mznzmum order quan- 
tzty contract where the manufacturer refuses to  sell less than a given minimum 
quantity is basically a variant of quantity discounts, where first few units have 
a very high price that make the purchase of small quantities economically not 
sound.23 Finally, we shall notice that other solutions do not work. Again 

fixing the final consumer price contractually does not solve this problem. As 
example 7 . 3  shows, setting the final price in the vertically disintegrated case 
is no guarantee of optimal solution. Actually, the key issue is to  make sure 
that the retailer (more in general, the party that can influence the demand 
through its efforts) has the right incentive to work hard to  increase demand. 
Setting the final price contractually gives no guarantee that this is going to  
happen. 

Concept 7.5 In a disintegrated chain the  promotional  effort  might be sub- 
optimal.  T h e  retailer migh t  hire less salespersons and less experienced ones 
t h a n  in a vertically integrated chain.  Stores migh t  be less appealing and the  
manufacturer  migh t  spend relatively little on ,  say;  advertising. T h i s  reduces 
both the  profits of t h e  indus t ry  and the  welfare of t he  consumer.  W e l l  designed 
contracts can; a t  t he  least partially,  solve this  problem and give all parties a n  
incentive t o  deploy a greater sales effort .  

7.5.4 

So far we have discussed the case where the retailing stage can increase de- 
mand through a promotional (sales) effort. More in general. we can improve 
demand both at the retail outlet and at the manufacturing stage (e.g.. we can 
add new features, improve conformance quality etc.). So we slightly change 
our model and introduce a second variable s ,  that captures the effort the man- 
ufacturer makes to  increase demand by adding extra features to  the product, 
by improving the product quality or through an advertising campaign. In our 
example, we assume that the effort at the retail store creates a variable cost 
(e.g.. think of the sales assistance in a store) e,(s,) while the effort from the 
manufacturing organization is a fixed cost (e.g., think of an advertising cam- 
paign or an effort to improve the look of the product) e , ( ~ , ) . ~ ~  Again we 

The case of efforts both at  the upstream and downstream stage 

23N~t i ce  that even the franchising contracts can be interpreted as a specific kind of quantity 
discounts, where the first unit costs F + p , ;  while successive units cost p ,  to  the  retailer. 
24iTotice tha t  the  basic issue we raise in this section does not change when we change the 
assumption on whether the cost of the  effort is variable or fixed. We suggest tha t  the  
reader checks how the  model changes when the  cost of effort at  the  retail outlet is fixed 
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assume that demand function is concave in sT and s,. while the cost functions 
are linear (or increasing) 

The first best solution: the vertically integrated chain 
for the whole chain is 

In this case the profit 

r t o t  1 [ P -  c - e,(s,)] . d(p. 3,. sm) - e m ( S m ) .  (7.29) 

\Ye can find the optimal efforts by taking the derivative with respect to s,  
and sm:  

The vertically disintegrated chain. independent manufacturer and retailer Let 
us now investigate the case of independent manufacturer and retailer. In this 
scenario, the manufacturer makes two decisions: (i)  the wholesales price pu 
and (ii) the manufacturer’s effort em. The retailer makes two decisions: ( i )  
the final consumer price p and (ii) the retailer’s effort e,. 

In this case. the two parties have the following profit functions: 

7r, = (pu - c) . d ( p .  s;.  s,) - e,(sm): 
T, = ( P  - P ,  - e,(s,)) . d ( p .  s,. sk).  

Therefore they find the optimal efforts s;“. arid s& by taking the derivative 
with respect to e ,  and e m :  

Basically. the profit function of retailer is equal to the profit function of 
the previous case. The retailer does not pay for the effort the manufacturer 
makes. So like in the previous case the retailer makes a suboptimal effort since 
the reward he/she gets is only a portion [ p - p u  - e ,  (s,)] of the chain’s benefit 
[ p  - c - e,(sr)].” As we have learned. franchising contiacts m t h  p u  = L 

(e.g., store size and look) and the cost of effort at  the nianufacturiiig stage is variable (e .g . .  
more product features or optiorials and thus more variable costs). 
25Notice that  while the retailer makes a suboptimal effort the manufacturer might make 
a less-than-optimal but also a more-than-optimal effort. On the one hand. he ignores a 
portion of the marginal revenues since his/her profit depends on the wholesale price rather 
than on the final price p .  On the other hand. he also ignores part of the marginal cost 
e,  ( s r ) .  
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are very effective means to re-create the retailer's incentive to make an opti- 
mal effort. Unfortunately, while this policy maximizes the retailer's incentive 
to promote the item. it completely destroys the manufacturer's incentive to 
make an effort to  improve the product or invest in an expensive advertising 
campaign [see equation (7.33)]. Actually, in this case there seems to be no 
way out. We need a very low wholesale price to give the retailer incentives 
to make an effort in the store, and we need a high wholesale price to  give 
the manufacturer an incentive to invest in advertising and product design. 
Clearly. if the demand function is much more sensitive to  one of the two ef- 
forts (say the manufacturer's effort) rather than to the other, there is a fairly 
easy way out: We can set the wholesale price to  give the right incentive to  
the decision maker (in our example the manufacturer) that  matters the most. 
In this case we deliberately ignore one of the two efforts (in our example the 
retailer's effort). So this solution works only to  the extent that one of the two 
efforts is actually negligible. In the more general case. we need a wholesale 
price that is at the same time very high [p, = p - e,(s:)] to give the man- 
ufacturer the right incentive [i.e., make sure that equation (7.33) is equal to 
equation (7.31)] and very low ( p ,  = c) to  give the retailer the right incentive 
[i.e., make sure that equation (7.32) is equal to  equation (7.30)]. In this case 
clearly two-part tariffs do not work. Indeed. in this case the wholesale price 
shall perform three functions: (i) it moves profits in the chain. (ii) it sets the 
retailer's incentives to deploy an effort, and (iii) it sets the manufacturer's 
incentives to deploy an effort. And two parameters cannot possibly enable 
us to achieve three objectives at once. This apparently unsolvable problem 
actually has a solution. We just need to be creative. We just need a third 
party that buys from the manufacturer at a marginal price p,, = p - e,(s:) 
and sells to the retailer at a marginal price p,, = c (see figure 7.7).  To make 
ends meet, the third party shall also charge a fixed fee F to the retailer. So 
the third party pays p,, . d = [ p  - e,(s;)]  . d to  the manufacturer and is paid 
p,, . d = F + c . d by the retailer. Finally, the fixed fee F moves the profits 
upstream and makes sure all parties have a nonzero profit (in particular the 
retailer's profit sets an upperbound to  F and the third party's profit sets an 
lower bound to F) .26  

2 6 [ 2 ]  shows that  this solution might still face some problems as the manufacturer and the 
retailer might take advantage of the intermediary. Indeed, the intermediary's marginal 
profit is negative as his/her margins are negative and this means he/she is basically giving 
the other two companies an incentive to  increase the quantity above the optimal quantity, 
simply because the retailer and the manufacturer get some margin from the consumer and 
from the intermediary. Indeed, if the intermediary has a negative margin, the retailer and 
the manufacturer are gaining a positive margin as demand increase. This means that a t  
the optimum quantity. the retailer and the manufacturer are not gaining any margin from 
the consumer. but are still gaining some margin from the intermediary. Thus they have an 
insane incentive to further increase the quantity. 
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I c  
Manufacturer 0 
Third party rcl 
Retailer 9 

f ig. 7.7 Supply chain with a third party providing right incentives for all playcrs 

7.6 CONCLUDING REMARKS 

Though this is not, a book on economics and  incentive^^^. in this chapter we 
provide some basic information on t,he issue of incentives in supply chains. 
The issue of incent,ives is very important: as it drives behavior both within 
companies and among companies. So, the issues presented in this rhapter are 
Jrery relevant in all multiechelon supply chains no matter whethw they cut 
the borders of companies or lie within the boundaries of a company. 

This chapter does not, advocate vert,ical integration of supply rhains. JVe 
acknowledge that there are very good reasons why companies decide to out- 
source and/or to split the overall company into independent organizational 
units. This chapter simp117 suggests that this wise decision raises some issues 
t,hat deserve some attention. The disintegration of the supply chain implies 
that several independent players make their decisions (pricing. inventory. or 
effort) independently, to optimize their own profit (or. more in gcneral, per- 
formance metrics). 

Under these circumstances, using standard linear prices can be fairly inef- 
fective. as single plavers only see a fraction of the benefit of their actions (e.g.. 

27For a comprehensive book on these topics we refer to [6] 
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the retailer sees a unit margin p - p ,  rather than an unit margin p - c. with 
p > pw > c). Economists call these externalities. meaning that the decisions 
of one player have side effects on other players and he/she fails to  account for 
that. For example, in our model with promotional effort. the retailer makes 
a suboptimal effort because he does not account for the increase in the man- 
ufacturer's profit that the increase in demand creates. In other words, each 
player tries to maximize his/her slice of the cake, but by doing so. he/she is 
shrinking the cake. 

On the contrary, we shall think about the incentives that contracts give to  
all players (managers of organizational units of a company rather than owners 
and managers of independent companies) ~ since these incentives tend to drive 
people's behavior. As we have seen in all our sections on pricing. inventory 
planning. and promotional effort. the behavior of decision makers depends on 
the rules of the game. Appropriately designed contracts align incentives and 
make sure that all players contribute to making the cake as large as possible. 

Also, we shall acknowledge that monetary/formal incentives schemes are 
not the only way to  drive behavior. In recent weeks in an Italian newspaper. 
a manager was suggesting that the ..clan" attitude can help the effectiveness 
of a company. The idea is that a feeling of belonging to a group of people (in 
our case a supply chain) can drive behaviors and make sure that all decisions 
are made to maximize the wealth of the group (in our case the profit of the 
supply chain). 14-hile we do acknowledge the role of these "soft" issues. in this 
chapter we only discuss how economic incentives drive behavior. 

While in other chapters we provide tools and methods. in this chapter we 
present only stylized models that are designed to provide insights, intuitions, 
and guidelines rather than tools. This is at least partially due to the fact 
that this body of knowledge is relatively recent and thus robust models are 
still far from real life applications. Nevertheless. the basic ideas and concepts 
that these models provide are proven to be effective, as some of the examples 
discussed in the chapter show. A manager needs to adjust and fine-tune these 
concepts to his/her specific environment where efforts on both parties. uncer- 
tainties, and pricing might all play a role. Finally, the design of incentives 
through contracts actually depends on laws that might be country-specific. 
though the basic economic rules we have discussed in this chapter are general. 
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Vehicle Routing 

In this chapter we consider a typically operational problem, i.e.. the optimal 
planning of routes for a set of vehicles; each vehicle is used for multiple deliv- 
eries within its route. Such a problem has a lot of variations and is known as 
VRP (Vehzcle Routzrig Problem). In the simplest version of the problem. we 
have a set of customers located over some geographic region: each customer 
should be delivered a given amount of goods. Each customer is associated 
with a point in the region of interest: we know the distances between any pair 
of customer locations. Another point of interest is the deposit from which 
goods must be transported by a fleet of vehicles with limited capacity: the de- 
parture point of these vehicles is the deposit. and we also know the distance 
between the deposit and any customer location. We would like to deliver 
the required amount to all of the customers at minimum cost: the total cost 
function can depend. e.g.. on the total miles traveled by the vehicles. on the 
total travel time. or on a combination of both. For the sake of simplicity. in 
most of the chapter we assume that only mileage is relevant. lz'e are facing a 
twofold problem: On the one hand, we must assign a subset of customers to  
each vehicle. subject to capacity constraints: on the other one. we should plan 
a route for each vehicle. i.e.. a sequence of customers. in order to minimize 
the traveled distance. Typically. such a problem makes sense over relatively 
short distances and time spans. The amount demanded by each customer 
is small enough. with respect to vehicles' capacity. to  accommodate multiple 
deliveries: otherwise we would resort to  a point-to-point transportation mode. 

M-hat we have outlined is just the basic VRP. as there are man! complica- 
tions in practice, in terms of both costs and constraints. Costs can be linked 
to both space and time: there can be a fixed cost for using a vehicle: as to  

39 7 
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constraints, delivery might be subject to time windows: the vehicle fleet may 
be heterogeneous, and capacity can be multidimensional (volume and weight). 
Still. even the basic VRP is hard to solve to optimality. unless very sophisti- 
cated approaches are used. Hence, we will just describe basic principles that 
can be used for the development of heuristics. These principles should be 
regarded as building blocks for heuristics aimed at more realistic versions of 
VRP. Optimization modeling can also be used, but naive mixed-integer mod- 
els have weak continuous relaxations; hence, use of commercial branch and 
bound packages is ineffective and ad hoc strategies must be employed, which 
are definitely outside of the scope of an introductory book. Still. optimization 
models can be used to  address parts of a VRP within clever decomposition 
strategies (see section 8.3.2). 

Since we are interested in distribution, we just deal with deliveries. but the 
VRP is formally equivalent to a problem in which we want t o  collect goods: 
a more complicated task pops up when we have a mixed delivery/collection 
problem. as is the case with some postal services offering package collection 
to  subscribers. Yet another related problem deals with fixed routzng, in which 
we have to determine a set of routes which will then be followed regularly. 
This is more of a tactical than an operational problem. As an example of a 
more strategic issue, we may consider fleet sizing problems. 

VRP is a classic among network routing problems. In section 8.1 we give 
an introduction to routing problems. If we have one vehicle with infinite ca- 
pacity, VRP boils down to the classical Traveling Salesperson Problem (TSP). 
Solution methods for TSP can be somehow adapted to deal with VRP; indeed. 
TSP is a component of VRP. This is why we devote section 8.2 to illustrate 
some basic heuristics for solving TSP. Then we use these heuristics as build- 
ing blocks t o  cope with basic VRP in section 8.3. Finally. in section 8.4 we 
illustrate a few complications arising in more realistic versions of VRP. 

As a general remark, for the sake of simplicity, in this chapter we assume 
determznastzc problems; we do not associate any uncertainty with demand, as 
we consider short-term operational problems, whereby customers have placed 
orders and we must just deliver the required goods. However, demand uncer- 
tainty can play a role in more tactical problems such as fixed routing. Demand 
uncertainty may play a role even in the short-term; in fact, there are goods 
which are not ordered from the warehouse. but it is the driver himself which 
receives orders on the spot. when visiting retailers (as a practical example. 
consider how fresh milk and butter are delivered to small retail stores). By 
the same token. we do not consider uncertainty in the traveling time: in urban 
transportation, delivery may be heavily affected by traffic jams or accidents. 

8.1 NETWORK ROUTING PROBLEMS: THE TSP 

Network routing is a general header for a very wide class of problems. Within 
distribution logistics, we typically adopt network routing models to tackle 
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service scheduling problem. aimed at finding the optimal use of transportation 
resources (e.g.. trucks) to delivei some goods to a set of customers located on 
a region. which is modeled a5 a network.' 

From section 2.2. we recall that a network is a graph with additional in- 
formation. A graph consists of a set of nodes and arcs. In our caye. nodes 
correspond to locations (retail stores or vehicle deposits). An information 
which may be associated with each node corresponding to a customer is the 
amount of demand. Formally. arcs are ordered pairs of nodes: they can be 
used to represent the possibility of traveling from one node to another one. 
and the information associated with the arc can be distance. traveling time. or 
cost. TYe also recall that a graph can be directed or undirected. In a directed 
graph. we have oriented arcs. i.e.. node pairs are ordered. An oriented arc is 
typically represented as an arrow. whereas a line is used when the orientation 
is irrelevant. V'e should also mention that for undirected graphs we should 
use the term ver tex .  rather than node. and edge. rather than arc, since latter 
terms are reserved to  directed graphs. However. we mill use just one pair of 
terms to keep it simple 

In vehicle routing problems. arcs are oriented if the distance (01 traveling 
time, or cost) from node z to node J does not equal the distance from J to z.  
This may sound odd. but in a urban transportation problem one-way street 
may have that effect. On a geographical scale, if the nodes represent Los 
Angeles and Boston. we may argue that the distance is symmetric.' In this 
chapter we only deal with symmetric problems for the sake of simplicity. 

To make things concrete, let us consider the five points depicted in the left 
part of figure 8.1. Think of those points as cities. or points within a city. that 
must be visited in order to deliver goods to customers In the right part of 
the figure. we give the coordinates of each point, with respect to an arbitrary 
point of reference. The essential information is the distance between nodes. 
The real-life distance between two points may be hard to compute, because of 
roads. natural obstacles. etc.: if we assume that the plain Euclidean distance 
is a good proxy for distance. we get the distance matrix illustrated in the 
right part of figure 8.2 (distances have been rounded to the nearest integer). 
A distance matrix is a handy way to collect distance information. In our case. 
the distance matrix is symmetric by construction: hence. we may just show 
the upper triangle of the matrix. as we did in figure 8.2. The left part of the 
figure illustrates the corresponding network, with undirected arcs depicted as 
lines joining nodes: in a sense. this representation is abstract. in that node 
placement in the figure has no physical interpretation. 

'Actually. network routing can refer to  quite different problems. such as opt irriizirig the  
layout in VLSI (Very Large Scale Integrated) circuits. 
21t is worth noting tha t  costs in transportation problems might not be symmetric even if 
distances are. If there is more goods flow in one of the  two directions. e.g.. from Detroit to 
Kew York; demand/offer mechanisms may induce asymmetric transportation fares. 
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Fig. 8.1 Map and coordinates of five points on a region. 
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Fig. 8.2 Network and distance matrix for a symmetric network with five nodes. 

Given a network, a node routing problem calls for finding the optimal 
way of visiting nodes, with respect to a given criterion, subject to  certain 
restrictions. A prototypical node routing problem is the Truvelzng Salesperson 
Problem, or TSP for short. In this problem, the salesperson lives in a city 
and must visit all of the other cities in the network before coming back home: 
each city (or customer) must be visited once. The traveling route is closed. 
and it is typically referred to  as a tour. Among the many possible tours, she 
would like to find one with a minimal total traveled distance. The network 
in figure 8.2 may represent represents a simple TSP. whereby the salesperson 
lives in city 1 and must visit the other four cities in a clever sequence. The 
distance matrix can be interpreted literally. but it could also represent travel 
times; whatever the case. we interpret the labels associated to  arcs as costs: 
the cost may also depend on both time and space. The cost for going from 
city z to  city is c , ~ .  and we have already noted that the matrix in the figure 
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f ig.  8.3 Simple network to illustrate issues in representing network distances. 

is symmetric. Il-hen c,g = cJ1 .  for all z and 3 .  we have a symmetric TSP: 
otherwise we hale  an asymmetric TSP. also denoted by ATSP. 

As we pointed out. one of the cities should be regarded as the city where the 
salesperson lives and must get back to: however. due to the clclical nature 
of the problem. m-hich city is the starting point is irrelevant. For instance. 
the tours (1 ,2 ,3 .4 .5 ,1)  and (2.3.4.5.1.2)  have the same total length. As 
a consequence. if there are n cities, there are n!  permutations of them. but 
only (n - l)! possible solutions for the TSP: actually, in the symmetric case. 
there are only half of that ,  because we may travel any tour in t u o  ma 
obtaining the same mileage. Formally. a cycle Tisiting all of the nodes of a 
graph exact1)- once is called a Humzltonzun cycle. So. TSP calls for finding 
the shortest Hamiltonian cycle. 

The restriction that a city must be visited exactly once may sound illogical. 
After all. if three cities (say 7 .  k .  and J )  are geographically arranged on a line, 
it may be advantageous to travel from the first one, to  the second one. then 
to  the third one. and finally tralel back to the first city passing through the 
second one. In more concrete terms, if there is a convenient freeway joining 
three cities. it might well be the case that vie travel twice through a city. 
Consider for instance the network of figure 8 3, and assume for simplicity that 
all of the distances between neighboring cities are 1 The optimal solution of 
the TSP is obviously to start from city 1: go through cities 2. 3. and 4: then 
go to cit3 5, going through 3 and 2 again: finally. get back home. This may 
not look like a Hamiltonian cycle. but it is if n-e build the network in a more 
abstract way. Froin the point of view of an abstra network. like the one in 
figure 8.2. we trai-el from city 4 to  city 5 "directl* along an arc of length 
3. 1%-hich is the sum of the distances between cities 4 and 3. 3 and 2 .  and 
finally 2 and 5. This may be the only way of reaching cit) 5 from city 4. 01 

maybe just the optimal way. The bottom line is that  the abstract network 
representation includes a ..full" distance matrix. with no empty entries even 
though some cities are not directly linked. The distance matrix consists of 
optzmal distances between pairs of nodes. 

The distance matrix. since it is an "optimal" distance matrix rather than 
the direct translation of a map. must satisfy a rather obvious requirenient. 
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which is called triangularity property: 

The distance from i to j cannot be larger than the distance from i to k plus 
the distance from k to  j .  We may have an equality in the aforementioned 
case of three cities arranged in sequence on a line. If we are dealing with a 
full matrix of triangular distances, we may look for a Hamiltonian cycle in 
the associated network: a city will be visited twice if it is optimal in the real 
world. but we do not see this on the abstract network model. which should 
not be taken too literally. 

We consider solution methods for the symmetric TSP in section 8.2. Then. 
in section 8.3. we generalize the TSP by associating a demand information 
with each node. If customers must be served by finite-capacity vehicles, it 
is unlikely that all of the customers may be served by just one tour. If the 
overall demand cannot fit one vehicle, we must use multiple tours or multiple 
vehicles. This generalization leads to the Vehicle Routing Problem. which is 
the core of this chapter. However, we should at least mention the existence 
of other network routing problems, while referring to  [3] for a full account of 
network routing. 

8.1.1 Other network routing problems 

In this chapter we only consider very basic symmetric node routing problems. 
but it is worth noting that node routing problems have lots of applications 
outside the logistics field. A symmetric TSP can be used to find the optimal 
path planning for a robot which has to visit a set of points in space to take 
measurements or to carry out spot welding operations. An asymmetric TSP 
can be used to  model sequence-dependent setup times in a machine scheduling 
problem; if you produce black paint after a batch of white paint, maybe you 
do not need to wash the machine too accurately: going the other way around 
is not that easy, as producing white paint after a batch of black one requires 
a thorough setup. Similar considerations apply when producing vermouth or, 
in the textile industry. when we deal with both cheap wool and cashmere. 
A few concepts we use in solving symmetric problems may also be used to 
cope with asymmetric problems, but the latter typically require more care, 
depending on the solution algorithm we use. 

It should also be mentioned that sometimes we have to  cope with arc (or 
edge) routing problems. Consider a postman in charge of visiting all houses 
within a portion of a city. Since houses are arranged linearly along streets. it 
may be much better to  represent his problem as the one of visiting all of the 
arcs a t  least once. rather than the nodes (which are used in this setting to 
represent crossroads). Ideally, the postman should visit all of the arcs once, 
along what we call a Eulerzan cycle. Actually. a strictly Eulerian cycle may 
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not exist.3 The prototypical arc routing problem is the Chinese Postman 
Problem. i.e.. the problem asking for the shortest tour of a graph n hich visits 
each arc (actually. edge) at least once. 

Finally. we associate arcs with either time. space. or cost information. 
IYhen dealing with very complex transportation scheduling problems. one 
may develop a space-time network. On such a network. some arcs represent 
movement in space and other arcs represent movement in time. This niodeling 
framework is important if we want to manage. e.g.. the flow of freight wagons 
on a railroad network (see [16]). Further coiiiplications arise when you also 
consider tlie many constraints you may ha\-e on the crews to be scheduled on 
trains or aircrafts. 

8.2 SOLUTION M E T H O D S  FOR S Y M M E T R I C  TSP 

In this section we describe basic heuristic principles for the solution of sym- 
metric TSP. The principles we illustrate are not the most advanced ones. but 
they are useful to build iutuition and pave the way for the dexelopmeiit of 
heuristics aimed at VRP. Conceptually. TSP is a trivial problem. Find the 
best sequence of stops in a set of cities. filathematically. we have to find 
the best solution within a finite set of permutations of “cities.” 11-e could 
simply enumerate all of them and spot the best one. Unfortunatc.ly. such a 
simple-minded approach is not practically feasible but for very small prob- 
lein instances. If a-e have 25 cities. there are 24!/2 RZ 3.1 . dternative 
solutions. Assuming that we are able to  generate and evaluate one billion 
solutions per second. it would take something like 9.84 million years to get 
the optimal tour. If you have to  dispatch a fleet of vehicles each and every 
morning, you need a seriously faster decision approach. 

In section B.6.1 we illustrate the branch and bound method a-, a way to 
solve optimization problems with a combinatorial component % without resort- 
ing to complete enumeration. In principle. we could build a mixed-integer 
linear programming model with binary variables modeling the sequencing de- 
cisions and use a good commercial solver implementing LP-based 1)ranch and 
bound. However. we have also pointed out that  the efficiency of these methods 
relies on the quality of lower bounds: simple TSP model formulations have 
very weak relaxations. and unless very sophisticated and ad hoc modeling 
frameworks and solution methods are used. finding tlie optimal solution is 
very hard. We will not pursue such approaches. which are hardlv available 
in commercial software, as we prefer to illustrate some p n n a p l e s  which lend 
themselves to generalizations when coping with additional constraints that 
are important for a real-life VRP. Anyway. Tve should keep in niiiid that n-e 

3RIany of us have checked this as children, trying to draw certain geometric figures always 
keeping the  pencil in contact with the  paper, without passing twice on the sanie segment. 
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could ask someone to  come up with an algorithmic black box able to  solve a 
TSP to optimality for not-too-large problems; this can be handy in devising 
decomposition-based methods. 

There is a huge literature on solution methods for TSP. but the methods 
we consider here can be broadly classified into two categories: 

1. Constructive methods aim at building a tour by expanding a partial 
route according to  some reasonable criterion: such methods build one 
solution directly. We illustrate two basic constructive approaches in 
sections 8.2.1 and 8.2.2. 

2.  Iterative methods start from a given solution and try to  improve the 
initial tour by generating a sequence of alternative solutions; clearly, 
iterative methods are more time-consuming and require a constructive 
method to get a starting point. Nevertheless, the resulting gain in solu- 
tion quality may be remarkable. We outline iterative methods based on 
local search in section 8.2.3. 

8.2.1 Nearest-neighbor heuristic 

The nearest-neaghbor heuristic is arguably the simplest heuristic that may 
come to mind to solve TSP. m7e select a city acting as a starting point, and 
we grow a partial sequence by appending cities at  the end of it. To select 
the next city to visit. we always choose the closest one to the last city we 
visited (ruling out those we have already visited). Then. after visiting all of 
the cities, we close the route by going back to  the starting point. 

The procedure can be formally stated as follows: 

Step 0: initialization. Let N = { 1 ,2 ,3 , .  . . , n }  be the set of cities we want 
to  visit. Choose a starting point z o  E N: let V = N\z" be the set of 
cities we still have to visit and let S = (2') the current partial ~equence .~  

Step 1: choose the next city. Let i' be the last city in the partial sequence 
S.  Find the closest city j* in V .  i.e.. solve argmin,EVc,l 3 .  If there are 
alternative optima, break ties arbitrarily. 

Step 2: expand partial sequence. Append city j* at the end of the par- 
tial sequence (S  + ( S , j * ) )  and cancel it from the set of cities yet to  
visit (V + V\J*). 

Step 3. If V = 0. i.e.. there is no city left to  visit. close the route by appending 
the initial city at the end of the sequence ( S  + (S,z")): otherwise, go 
to step 1. 

4We recall that the  \ operator denotes set difference 
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Example 8.1 Let us apply the nearest-nelghbor heuristic to the problem of 
figures 8.1 and 8.2. starting from city 1. The closest city to 1 is city 5, and 
the partial sequence so far is (1.5). Among the remaining cities. the closest 
one to  city 5 is 3: the partial sequence is expanded to (1.5.3).  From city 3 me 
should go to city 2. and finally we have to  terminate the sequence with city 
4. The complete tour is (1. 5.3.2.4.1).  with total length 132. 

Actually, it is easy to see from the figures that this is not the optimal 
solution. From the map. the tour ( 1 . 3 . 5 . 2 . 4 , l )  looks more sensible: indeed. 
its length is 124. and it turns out that this is really the optimal tour In this 
trilial case. we see quite clearly what is wrong with the nearest-neighbor: lye 
should have gone from node 1 to node 3, but we were too greedy Ure may 
also see that the method might yield different solutions. depending on the 
starting point. If we start from city 5, we get the tour (5.3.  1 . 4 . 2 . 5 ) .  which is 
equivalent to (1 ,3 .5 .2 ,4 .1) .  IVe could try all of the possible starting points 
and keep the best result. However. even this cannot guarantee the optimality 
of the solution we get 0 

The nearest-neighbor heuristic is conceptually simple, easy to implement. and 
quite fast. The bad news is that  it is a greedy heuristic. and there is no 
guarantee on the optimality of the solution we get. Choosing what looks 
best for the current decision we have to  make (select the next city) does riot 
ensure the optimality of the whole tour. A clear danger is disregarding some 
inconvenient city. leaving it to the last steps of the procedure. The quality of 
the overall solution can thus deteriorate significantly. as the inconvmient city 
(which may demand a substantial cost to  visit) is going to be inserted at  the 
last step of the procedure: this means that the most critical city is practically 
inserted in a random position in the tour. 

8.2.2 I nsertion-based heuristics 

The nearest-neighbor approach has many obvious limitations. which we have 
already mentioned. An additional one is the fact that it allows US to append 
a city only at the end of the current sequence. L$-e could allow iniertions in 
any point in the sequence. Since we must get back to  the starting point, it 
would be even better to expand a closed route. rather than an open sequence 
that n e  close at the last step of the procedure. This idea leads to  insertion 
heuristics. nhich are still very simple. At each step of the algorithm. we hale 
a set V of residual cities to visit and a partial tour I: what we need is to select 
an arc ( L . ] )  in 7.  which should be "opened" to allow insertion of A new tit) 
between 1 and 1. leading to a subsequence ( 7 .  k .  J ) .  Actual1)-. giveii a partial 
route. we have to  make two decisions: 

1. which city k E V to  insert in 7: 

2. the insertion point. i.e.. between which cities 2 and j already in I we 
should insert k .  
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Since we assume that the triangularity property holds, inserting a new city can 
only increase the total length of the current partial route. Hence, a reasonable 
criterion is to make decisions in such a way as to  minimize the incremental 
cost of the insertion. The incremental cost of inserting city k between i and 
j is 

This additional length is typically called extra mileage. 
The first point we must take care of is how to find the initial partial route. 

One possibility is selecting the shortest arc (i. J )  and let 7 = (i. 3. i )  be the 
initial partial route. To find the next city to insert in the partial route. we 
may search V for the closest city to 7 ,  i.e., we may solve 

C t k  C k j  - c t g .  (8.2) 

Then, given the new city (breaking ties arbitrarily), we may look for the best 
insertion point by minimizing extra mileage. The procedure is repeated until 
we have the complete tour. 

Example 8.2 Let us consider the TSP of figure 8.2 again. The are two cities 
in the initial route. Choosing the shortest arc in the network. we set the initial 
route as 7 = (3.5.3). The closest city to  those included in 7 is city 1. For 
now. there is no substantial degree of freedom in choosing the insertion point, 
and we update the partial route 7 = ( 3 . 5 , l .  3). This route is equivalent to  
7 = (3 , l .  5 ,3) ,  since the problem is symmetric and the way we travel the tour 
is irrelevant. 

Now the closest city to those in 7 is city 4, since its distance from city 1 is 
28. whereas the distance betwzen cities 2 and 5 is 29. Yow we must find the 
optimal insertion point among the three following possibilities: 

~ 3 4  + ~ 4 5  - ~ 3 5  = 48 + 36 - 14 = 70. 

C j 4  + C q l  - C51 = 36 + 28 - 15 = 49, 

~ 1 4  + ~ 4 3  - ~ 1 3  = 28 + 48 - 21 = 55. 

Hence. we set 7 = (3.5.4.1.3).  Note that there is no need to reevaluate 
the whole tour after insertion. as only the incremental cost of the insertion is 
needed to make the decision. Finally, we have to accommodate city 2: 

~ 3 2  + ~ 2 5  - ~ 3 5  = 43 + 29 - 14 = 58, 

C52 + C24 - C j 4  = 29 + 32 - 36 = 25, 

C42 + C21 - C41 = 32 i- 36 - 28 = 40, 

C12 + c 2 3  - C13 = 36 i- 43 - 21 = 58. 

The final route we get is (3 ,5 ,2 ,4 .  1 ,3) .  with total length 124. 0 
In this case, we get the optimal solution. but this is not guaranteed in general. 
as the insertion-based heuristic is still a greedy heuristic. We could represent 
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our basic constructive procedures as a greed)- \my to  explore a search tree. 
a concept that  we introduce in section B.6 1 on branch and bound methods. 
In a branch and bound method, we prune a branch of the search tree only if 
we are sure that it cannot lead to  an optimal solution. In greedy heuristics. 
we basically select the most promising branch. forgetting about the others. 
However. we could reduce the myopic behalior of greedy heuristics by adopt- 
ing a look-ahead strategy. whereby we explore the consequence of a choice 
by examining its consequences a few steps further. A further issur. concerns 
breaking ties when we have to make a decision. In insertion-baied prote- 
dures. m-e might have two insertion points with the same extra mileage: in 
the nearest-neighbor heuristic. we may have two or more cities witli the same 
distance from the last one in the partial sequence. In such a cabe. we could 
explore the consequences of each alternative a bit deeper in the search tree. 
rather than breaking ties arbitrarily and take a basically random branch. 

In the specific case of the insertion-based approach above. vie may also 
try to  improve results. at some additional computing cost. by considering all 
possible pairs consisting of a new city to insert and its insertion poirit. In fact, 
in the procedure above me select a city, and then me explore possible insertion 
points: me could find the optimal insertion point for each city. and only after 
evaluation of the result we make a decision. Another variation on the theme 
is the choice of the initial two-city tour: n-e could start froni the two farthest 
cities. rather than from the closest pair. 

8.2.3 Local search methods 

The t n o  approaches n-e have just considered are constructive. in that the) di- 
rectly build one solution. with a possibly greedy logic. An alternative consists 
of examining a sequence of solutions. The basic idea is trying to improve a 
given solution using some simple recipe. 11e can perturb the solution accord- 
ing to a predefined set of rules, which define a nezghborhood of the current 
solution: the name stems from the fact that we just apply small changes to 
the current solution. For instance. since a TSP solution is basicallv a perinu- 
tation of cities. me could consider slvapping pairs of cities in the toiir. Having 
defined the neighborhood structure. we may look for the best solution within 
the neighborhood of the current tour. This new candidate solution may be an 
improleinent or not. In the first case, we set the candidate as the new current 
solution and we repeat the procedure: otherwise we stop. 

This ver) simple approach is called iterative improvement and is the 
simplest example of a large family of methods collectivel; called local search 
methods. Since we only search locally in  the neighborhood of the current 
solution. we might well get stuck in a locally optimal solution that is far 
less performing than the globally optimal one. 15e should note that "locally" 
means "with respect to  the neighborhood structure * *  In figure 8.4 me illustrate 
the issue conceptually If we are minimizing a nonconvex cost function f(x). 
and we are at point J L .  there is no way to  escape from this local optimum and 
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XL XG 

Fig. 8.4 Getting stuck in a local minimum. 

get to the global optimum 26. if we just look to the left and to  the right and 
accept only improving steps. In local search, we cannot really draw a picture 
like that,  because we are moving within a space whose dzscrete points are, 
e.g.. tours on a network; nevertheless. with respect to some "weird" topology, 
we may have lack of convexity in the cost function. possibly leading a local 
improvement procedure into bad local optima. Clearly, there is a tradeoff 
between computational requirements and the richness of the neighborhood 
structure (in the limit, a somewhat expensive neighborhood could require the 
complete enumeration of the feasible solutions). On the one hand, defining 
a small neighborhood is very efficient computationally. but it can leave us 
in a very bad local optimum. On the other hand. a very rich neighborhood 
structure opens inany more search paths. but it can be too demanding from 
a computational point of view. 

Indeed. the art of local search consists of devising a parsimonious, yet ef- 
fective neighborhood structure. For instance. in the TSP case we could swap 
pairs of consecutive cities in the sequence, which is a rather limited neighbor- 
hood structure. A richer, and quite effective, neighborhood structure is known 
as 2-opt. Given a complete tour, we consider all pairs of nonconsecutive arcs. 
They are canceled and substituted by two alternative arcs in such a way that 
we obtain another tour. The idea is illustrated in figure 8.5. We see that the 
two canceled arcs are substituted by arcs "crossing" each other (remember 
that the network we draw need not be taken as a pictorial representation of 
the underlying geography). The idea can be generalized by canceling k arcs 
and replacing them in all possible ways. The k-opt approach, for k > 2 ,  
tends to  get more complex and time-consuming, and significant advantages in 
terms of quality are not guaranteed. 
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Fig 8 5 
tion is depicted in the upper-left corner. 

A4n example of neighborhood generated by the 2-opt rule: the current solu- 

Example 8.3 U’e consider once more the TSP of figure 8.2, and we tackle 
it by a 2-opt approach starting from the tour (1 ,2 .3 .4 .5 .1) .  whose total 
length is 178. We must compute the total length of each neighboring tour. a5 
depicted in figure 8.5:j 

(1. 2. 5 ,4 ,3 .1)  + 170. 

(1. 2.3. 5.4. 1) + 157. 

(1 .3 .2 .4 .5 .  1) + 147. 

(1 .4 .3 .2 .5 .1)  + 163. 

( 1 . 2 . 4 . 3 . 5 , l )  + 145. 

The best tour in this set is (1.2.4.3-5,  1). which gets to be the new current 
tour. Then we evaluate the new neighborhood: 

(1. 2. 5.3.4.  I) + 155. 

(1. 2 .4 ,5 .3 .  1) + 139. 

(1 .4 ,2 .3 .5% 1) + 132, 

(1 .3 .4 .2 .5 .1)  + 145. 

(1 .2 .3 .4% 5.1) + 178. 

5F?oni an implementation point of view, this task can he made extremely efficient by proper 
use of da ta  structures. also avoiding the  recomputation of total  length from scratch and 
just evaluating an  incrernentai cost: see [18]. 
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Xote that the last solution in this neighborhood is just the initial tour. The 
new current solution is (1 .4 ,2 .3 ,5 .  l), with total length 132. Repeating the 
procedure one more time, we get 

(1 .4 .5 .3 ,2 .1)  + 157, 

(1 ,4 ,2 .5 .3 ,1 )  ---t 124. 

( 1 , 2 . 4 , 3 , 5 , 1 )  145, 
(1 ,3 ,2.4.5.1)  --f 147, 

( 1 . 4 , 3 , 2 , 5 . 1 )  + 163. 

We leave to the reader the task to  verify that no further improvements can be 
obtained. Since we cannot find any improving tour, the algorithm stops. 0 

In this lucky example. we actually end up with the optimal solution, but we 
do not know that (in this small case. we may prove that 124 is the optimal 
length by complete enumeration). In general. this does not happen, and the 
solution we stop at  may depend on the initial tour. The difficulty is that the 
search process may get stuck into a local optimum, and there is no way out 
because we only accept improving perturbations (see figure 8.4). There are a 
couple of ideas that may come to our mind to  overcome this difficulty: 

0 We could start the search from different initial tours. possibly generated 
by alternative constructive heuristics or by random generation. The 
idea of generating multiple starting points randomly leads to  GRASP 
(Greedy Randomized Adaptive Search Procedure) methods. 

0 We may try to overcome the tendency to get stuck in local optima by 
allowing nonimproving perturbations according to a sensible strategy. 
In fact, looking back at figure 8.4. we see that in order to travel from 
XL to XG. we must accept a temporary increase in cost. 

The last idea has lead to  a fairly wide family of local search approaches, which 
we just outline below, referring the interested reader to  references at  the end 
of the chapter. 

0 In simulated annealing, optimization is interpreted as an energy min- 
imization process. In classical mechanics, a physical system evolves in 
such a way as to minimize its energy: A ball subject to  gravity force 
will roll into a hole. minimizing its potential energy. and will stay there. 
There is no way a ball can pop up from the hole all by itself. In opti- 
mization terms. this means that if the ball rolls into a local minimum. 
it gets stuck there. In Statistical Mechanics, under the effect of thermal 
noise. there is some probability that a system will find itself in a higher 
energy state without external intervention. The probability of this up- 
ward jump increases with temperature and decreases with the size of the 
jump. i.e., the energy difference between the two states. Annealing is a 
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technological process whereby a material is slowly cooled. allowing it to 
escape from local minima and to reach a lower energy level. If we cool 
the material too fast, we get a glass: if the cooling process is slow. vie 
get a good crystal structure when the final temperature is so low that 
the system cannot change configuration an?-more. Simulated annealing 
exploits this idea for optimization. allowing nonimproving perturbations 
according to a stochastic mechanism. Given a current solution with cost 
Cold. we randomly sample an alternative solution in its neigliborhood. 
n-ith cost C,,, . The alternative solution is accepted with probability 
given bj 

where T is a control parameter acting as a temperature. which is de- 
creased according to a cooling schedule. \Ye see that at high tempera- 
tures. the search process is free to wander and explore the solution space. 
whereas at low temperatures it works just like local improvement. STTlien 
the algorithm freezes, the best solution visited will be reported. 

0 Another idea for a stochastic search mechanism is mimicking biological 
evolution. rather than statistical mechanics. In genetic algorithms. 
unlike other local search mechanisms. we work on a popwlatzon of so- 
lutions. Only the best members within the current population have a 
high chance of surviving: The current population evolves bs- crossover 
(offspring are created from two parents) and mutation (a raiidom per- 
turbation is applied) mechanisms. whereby probability of selection and 
survival depends on the quality of each solution. In this case. we need 
a way to  map a solution to a data  structure. which works like a chro- 
mosome, whose genes are the features of a solution (or the parameters 
of an algorithm to build a solution). The mechanisms for crossover and 
mutation define the neighborhood structure for this stochastic search 
algorithm. 

0 5Iaybe the most widely applied local search mechanism, as far as TSP 
and VRP are concerned, is tabu search. This approach. unlike the 
previous two. need not be stochastic. The rationale is that the best 
solut,ion in the neighborhood of the current one should be accepted. in 
order to escape from local minima. while biasing the search process to- 
wards good solutions. The trouble with this simple idea is that cycling 
is most likelv to  occur: When escaping from a local minimum. we accept 
a nonimproi-ing alternat,ive, but the best solution in the neighborhood 
of this Iiew solution may well be the prei-ious local optimum. To avoid 
cycling, we use a data structure to store some attributes of each solution 
me visit, or some feature of the perturbations we apply to  get tliem. This 
data structure works as a tabu list,. which forbids revisiting solutions OT 

applying perturbations undoing what we have just accomplished. The 
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tabu list is a sort of short-term memory, as only the most recent tabu 
attributes are kept there. in order to  avoid restricting the search process 
too much. Long-term memory mechanisms have been proposed to  im- 
prove the ability of diversifying search by exploring new regions of the 
solution space. 

Local search algorithms look conceptually simple, but in fact getting them to 
work properly requires a fair amount of skill and ingenuity, not to  mention 
experience. Defining a good neighborhood structure, as well as setting the 
parameters governing the algorithm. is not trivial. To get a feeling for the 
subtle issues we may have to face. consider the application of the 2-opt 
neighborhood structure to an asymmetric TSP. If we cross arcs, like we did 
in figure 8.5, the consequence is that we actually invert part of the sequence; 
in other words, part of the tour is traveled clockwise rather than counter- 
clockwise (and vice versa). This is not relevant in the symmetric case. but 
when the distance matrix is not symmetric, the new solution may be radically 
different from the previous one. We face a similar issue when dealing with 
time-windows in a VRP; even if distances do not change, changing the time 
instants at which we visit customers may have adverse effects. In practice, 
some knowledge of network and graph optimization may be needed in order to 
find a good heuristic for a complex case: common sense is not always enough. 

8.3 SOLUTION METHODS FOR BASIC VRP 

VRP is a generalization of TSP, accounting for multiple vehicles whose routes 
are subject to additional constraints. There is a set of n customers; each 
customer is located on a node in a network. To serve customers, we have 
a fleet of vehicles located in node 0. We consider a fleet of homogeneous 
vehicles, each featuring the same capacity, and one deposit: real-life problems 
may require relaxing such assumptions. A known demand d,. z = 1,. . . . n. 
is associated with customer 2 .  Demand need not be necessarily associated to 
one item type: what is really important is that demand is measured in the 
same units as vehicle capacity. Just like in TSP. we would like to  minimize 
distance traveled (or time. or cost); but unlike TSP, each vehicle has a finite 
capacity, in terms of volume and/or weight. This is what creates the need 
for multiple vehicles and/or multiple routes. because we cannot serve all of 
the customers with one route. We have to develop a set of routes. starting 
and terminating at  the deposit. which can be carried out sequentially by one 
vehicle, or in parallel by a set of vehicles. 

Given such assumptions, our input data are a symmetric distance (or travel 
cost) matrix. the demand per customer. and the vehicles' capacity: the num- 
ber of vehicles may be given or not, depending on the specific assumptions 
about the way routes are carried out. We want to  find a set of routes mini- 
mizing total distance traveled, subject to vehicle capacity constraints. In the 
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n 

f ig. 8 6 Example of solution of a VRP. 

basic VRP. we do not consider additional constraints such as the maximuni 
route duration. which is just another capacity constraint ~ or time windows for 
serving customers. Another important simplification is that we sequence cus- 
tomers within each route. but we do not really schedule routes. For instance. 
suppose that early in the morning we devise five routes. Any route can be ex- 
ecuted within the current working day. but we have just four vehicles. Hence. 
we should decide which routes should be carried out today, and which one will 
be carried out tomorrow. Clearly. this may depend on priorities associated 
with customers: alternatively. we could try to devise hvo routes that can be 
carried out by the same vehicle wit'hin one working day. by returning to the 
deposit between the two routes. N-e see that such timing issues might be 
rather complicated. In the basic VRP, we either assume that the number of 
vehicles is unlimited. or we try to find a solution serving all of the customers 
with a given number of vehicles. reporting infeasibility otherwise. 

Despite all of these severe limitat'ions, the basic VRP is a tougli problem: 
arid tackling it paves the way for solution of more realistic versions. Figure 
8.6 illust,rates one solution of a VRP. The figure points out the twofold riatiire 
of VRP. The solution consists of two elements. since each rout,e consists of a 
subset of custoniers and the sequence according to which they are visited by 
the vehicle. Given the first element, we have one TSP per vehiclt,. This can 
be exploited in decomposition st,rategies: it also suggests that TSP heuristics 
can provide some basic principles to tackle VRP as well. VRP heuristics. too. 
can be construct,ive or iterative. If-e do not consider local search methods for 
YRP: because de rig neighborhood structures coping with both dimensions 
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of the problem (i.e.. allocation of customers to  routes and sequencing within 
each route) is not trivial. even though the effort in doing so can be quite 
rewarding. 

8.3.1 Constructive methods for VRP 

Constructive methods for VRP are based on the idea of growing routes accord- 
ing to various patterns and based on various criteria.6 To classify constructive 
methods. we should begin by drawing the line between 

0 sequential algorithms. in which one route is grown at a time, until all 
customers have been routed. and 

0 parallel algorithms, in which several routes are grown together. 

Parallel algorithms. in turn, can be classified into two subcategories: 

1. We may start from a set of small routes. one per customer. and we pro- 
ceed by merging routes. The procedure stops when vehicles’ capacities 
prevent us from coalescing routes. One clear disadvantage of this ap- 
proach is that  we have no control over the number of routes we end up 
with. which may be larger than the number of available vehicles. 

2 .  In order to overcome the aforementioned disadvantage, we may fix the 
number of routes a priori, say m. The number of routes can be the 
number of vehicles we plan to use. Typically. we use m well-selected 
customers to  devise an initial set of “seed“ routes. each one consisting 
of one customer. Then we proceed by selecting one customer at  a time. 
which is inserted in one of the m growing routes. 

Finally, we have to specify the criteria we use in growing routes. There are 
many of them, but we illustrate the two fundamental ones by referring to 
figure 8.7. 

0 The savings criterion. The rationale behind the savings criterion is that  
if two customers, say z and 1. are served by two vehicles along separate 
routes, the two vehicles have to drive from the deposit to  the customer 
and back. Hence. the total traveled distance amounts to cot +cZo +co3 + 
c30. If the two routes are merged and the two customers are served by 
the same vehicle, the new total length will be C O ~ + C , ~  +c,o, with a saving 
st3 = C,O + cg3 - cZg. Referring to figure 8.7. we cancel the two dashed 
arcs. replacing them with arc ( i , j ) .  Actually, the argument, as it is 
stated, applies only to routes consisting of one customer visit. In fact, it 
can be applied more generally, provided that customers i and 3 are the 
first or the last on their respective routes (see figure 8.8: remember that 

6This section relies heavily on material from [7] 



SOLUTlON METHODS FOR BASIC VRP 415 

savings extra mileage 

Fig. 8.7 Illustrating savings and extra-mileage criteria. 

n 

savings extra mileage 

Fig. 8.7 Illustrating savings and extra-mileage criteria. 

f ig 8 8 Merging two partial routes by the end points. 

we are just considering symmetric problems; hence, being last or first in 
the route is actually the same thing). This idea can be used to merge 
partial routes together. provided that capacity constraints are satisfied; 
according to this metric. we should give priority to the merger with the 
largest saving. Another relevant point is that by merging routes, we 
decrease the number of required vehicles. 

0 The extra-mileage criterion. J1-e ha\-e already niet the extra-mileage 
criterion when discussing insertion-based heuristics for TSP (see section 
5.2.2). Here the idea is inserting customer k on the path from customer 
2 to  3 .  incurring an increase of the route length given by e l k 3  = CZk + 
ckj - cz3. Referring again to figure 8.7 (right side). we get rid of the 
dashed arc and insert two arcs. in such a way that extra mileage eak7 is 
niiriiinal . 
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Table 8.1 Distance matrix and customer demand for example 8.4 

c , ~  0 1 2  3 4 5 6 7 

0 -  
1 
2 
3 
4 
5 
6 
7 

4 2 4 3 3 5 6  
- 2 7 4 6 5 3  

- 5 4 4 3 4  i 1 2 3 4 5 6 7  

di 9 6 14 8 9 6 5 
- 3 1 6 9  

- 3 7 7  
- 5 8  

- 5  

Table 8.2 Savings matrix for example 8.4 

rLj  1 2  3 4 5 6 7 

1 - 4 1 3 1 4 7  
2 - 1 1 1 4 4  
3 - 4 6 2 1  
4 - 3 1 2  
5 - 3 1  
6 - 6  
7 - 

To illustrate the concepts above in a concrete setting. we may describe an 
early algorithm for VRP, known under the names of Clarke and The 
method is based on the savings criterion, and it is a parallel algorithm of the 
first type. i.e.. it is based on the coalescence of smaller routes. 

Example 8.4 Clarke-Wright's algorithm is best illustrated by a small ex- 
ample, whose input data are displayed in table 8.1. The distance matrix is 
symmetric and we assume that vehicles' capacity is 20. To begin with, we 
may compute a savings matrix, with an entry for each pair of customers; the 
result is reported in table 8.2. Since we always join customers when they are 
placed at an endpoint of a route, this savings matrix can be computed once 
for all. Actually, not all of its entries are relevant: For instance. customers 
1 and 3 cannot be served by the same vehicle, because their total demand is 
9 + 14 = 23, which exceeds vehicle capacity. The starting set of routes is 

(0.1.0): (0,2.0):  (0.3.0):  (0,4.0):  (0.5.0):  (0,6.0):  (0.7,O). 

7See  the  original reference [ 8 ] .  
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Sle see from table 8.2 that 7 is the largest saving. and it is obtained by joining 
customers 1 and 7. leading to the new set of routes: 

(0 .1 ,7 .0) :  (0 ,2 ,0 ) :  (0.3.0):  (0.4,O): (0. 5.0) ;  (0,G. 0). 

Then the table shows that two savings amount to  6, but the one associated 
with customers 3 and 5 is not compatible with vehicle capacity. IS'e should 
check if joining customers 6 and 7 is feasible. since the latter customer is 
already on the same route as customer 1: the total demand for these three 
customers equals the vehicle capacity; hence. we may get rid of cuhtomers 1, 
6. and 7. Now. current routes are 

(0.1.7,G.O): (0 .2 .0) :  (0 ,3 .0) :  (0.4.0): (0.5.0).  

The best feasible option is merging customers 4 and 5 .  with a saving of 3. 
Joining them. we get 

(0 ,1 ,7 ,6 .0) :  (0 .2 .0) :  (0.3.0):  (0 .4 .5 .0 ) .  

Now, neither customer 2 nor customer 3 fits the route (0.4.5.0): all we can do 
is merging customers 2 and 3. which yields the final set of routes: 

0 (0 .1 .7 ,6,0) ;  (0 .2 .3 .0) :  (0.4,j.O). 

Clarke and SVright's algorithm is conceptually quite easy. and it played a 
prominent historical role, but it suffers froin a few limit,ations. To hegin with. 
when we merge routes: we do so only by joining a pairs of customers at, the 
endpoints of their respect'ive route (see figure 8.8). hlaybe. inserting new 
customers in arbitrary points of a route could be advantageous. Furthermore. 
there is no control over the number of routes we end up with; in the example 
above, me could not use less than three vehicles anyway, but in general; if we 
have a given number of vehicles and we have to serve all of the customers in 
parallel, we would like to make sure that, t,he number of routes is kept under 
control. 

\Ye can also exploit the ideas behind the insertion-based heuristic for TSP 
(see section 8.2.2) to come up with a sequential algorithm based on extra 
mileage. The idea is growing one route by inserting one custonier at a time: the 
customer anti its insertion point are determined by rnininiizirig extra mileage, 
provided that the vehicle capacity constraint is satisfied. The current route 
may be closed m-her, there is no way to  insert, any other customer: then we 
start again with a new route. A pot,ential weakness of such an idea is that. in 
order to sat,urate the current route. we could be forced to add a X-erJ- distant 
customer. This may happen if there is a small residual capacity 011 the truck 
and the only customer with a small demand. fitting the residual mpacity, is 
really far from the cluster of customers in the current route. This may be a 
good reason to prefer a parallel approach. in which we select which customer 
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to insert. on which route. and at which point. If we wish to use m vehicles, it 
is natural to  start from m seed routes, each consisting of one customer. We 
can grow the routes using the extra-mileage criterion: this way. we can control 
the number of vehicles we use (assuming we can serve all of the customers 
with that number of vehicles). If there is a fixed cost associated with each 
vehicle, we may change the number of seed routes, trading off the number of 
vehicles against total distance traveled. 

A common issue with parallel approaches of the second kind is the selec- 
tion of seed customers. A sensible rule is that they should be distant from 
the deposit and distant from each other. The rationale behind the first re- 
quirement is that distant customers are an inconveniency. but they must be 
served anyway; it is better t o  include them in a route immediately. in order 
to avoid late insertions that may generate a large increase of the route length. 
Furthermore. it is natural to  think that if customers are far away from each 
other, they are best served by separate routes. Hence, let us denote by gJ, 
j = 1.. . . . m, the seeds to initialize the desired m routes. The first seed 
is selected by maximizing its distance from the deposit. Then, after having 
selected the first k seeds. the next seed g k + l  is found by solving 

In plain terms, the new seed maximizes the minimum distance between itself 
and the deposit and the other seeds. The idea is illustrated in figure 8.9. 
under the assumption of Euclidean distances. Customer 1 is the first seed 
we would select, since it is the farthest one from the deposit. Customers 3, 
4, and 5 do not make good seeds because they are close to the deposit. The 
next farthest node in the network is associated with customer 2 .  However, 
this node is close to customer 1: it is reasonable to assume that they will be 
served by the same route. The second seed we should select is customer 6, 
which is far from both node 0 and node 1. Of course, this is just a sensible 
heuristic, which only considers distance. One could also consider demand size 
with respect to vehicle capacity: I t  may be not advisable to leave customers 
with large demand to late insertions, as they may be hard to fit to residual 
capacity. 

We see that there is room for a large variety of combinations of heuristics 
principles. Since we may grow routes using extra-mileage or savings criteria. a 
natural question is whether one of them performs best. As expected, there is 
no easy answer. and the result may depend on the problem instance. To get an 
intuitive feeling for the underlying issues. we may have a look at  picture 8.10, 
which illustrates a rather artificial but instructive example (see [7]) .  We have 
four customers, located on an equilateral triangle: here we consider Euclidean 
distance. i.e.. we assume that the distances we see in the drawing correspond 
to  the real ones. Each customer demand is 1. and vehicle capacity is 2: so. each 
route should serve two customers. If we start with four separate one-customer 
routes. and we merge them in parallel using a savings criterion, we end up with 
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Fig. 8.9 Selecting seeds for parallel constructive heuristics. 

10 

Saving criterion: total length 42 

Extra-mileage criterion: total length 40 

Fig. 8.10 -4lternative criteria to merge routes (case 1) 
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Extra-mileage criterion: 
total length 40 

Saving criterion: 
total length 35 

Fig. 8.11 Alternative criteria to  merge routes (case 2) .  

the solution illustrated in the upper part of figure 8.10. with total length 42. 
Note that the largest saving (10 + 10 - 10 = 10) is obtained by joining the two 
farthest customers; this leads to a long an "circumferential" route. If we use 
extra mileage. e.g.. starting from two seed routes associated to the farthest 
customers, we get the solution in the lower part of the figure, with total 
length 40; this happens because we can serve the two closer customers with no 
extra mileage. In this problem instance, the extra-mileage criterion performs 
better. but if we shrink the bottom angle and reduce horizontal distances in 
the triangle. as illustrated in figure 8.11, we get a different conclusion. In this 
second case. we still get total length 40 when using extra mileage. whereas 
the saving criterion yields a solution with total length 35. By the way, this 
second solution has lower total length. but it could be unsatisfactory in terms 
of workload balance: One driver gets a much easier task than the other one, 
an issue that we do not consider here. but may play a very important role. 
This example is clearly artificial. but it helps in building intuition about the 
qualitative properties of routes developed using the two criteria. We see from 
figures 8.10 and 8.11 that saving yields '*circumferential" routes. This happens 
because the savings criterion may consider joining far customers attractive. 
In fact. Clarke and Wright's algorithm was included in an early software tool 
for VRP, developed by IBhl in the 1970s. This package, called VPSX. was 
sometimes criticized by practitioners just because of the circumferential nature 
of proposed routes. On the contrary, when looking for small extra-mileage. it 
is natural to get more *'radial" patterns. 

The bottom line of the discussion so far is that  it may be difficult to  devise a 
robust method based on a single heuristic principle. Occasionally. any heuristic 
may yield a very poor solution. One way out of this difficulty is combining 
heuristic principles. possibly introducing one or more parameters which may 
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be adjusted as needed. One such idea is introducing a modified saving 

where the parameter Q tends to penalize the inclusion of long arcs in the 
route, even if they yield large savings. This may prevent the creation of too 
circumferential routes. This is a simple example of parameterized criterion. 
and quite complex criteria have been proposed in the literature. Choosing the 
right value of one or more parameters is a tough task. but since constructive 
heuristics are quite fast, probably the best idea is simply using brute force 
and running the heuristic for several values of the parameter. keeping the best 
solution. Then, the solution can be further refined by local search. 

8.3.2 Decomposition methods for VRP: cluster first, route second 

VRP is a twofold problem with a clusterzng component (i.e.. assigning a group 
of customers to each vehicle) and a routing component (i.e.. finding the best 
route for each vehicle). Since the second problem dimension boils down to 
a set of TSP problems, which vie may deal with rather effectively. the idea 
of decomposing the overall problem into two subproblems is quite natural. 
Various decomposition methods have been proposed and can be classified 
into two broad categories: 

1. In route-first, cluster-second methods we first find one tour covering 
all of the customers, e.g.. using some TSP solution method: then, we 
partition the resulting tour into routes compatible with vehicles' capac- 
ity. 

2 .  In cluster-first, route-second methods we first assign customers to  
vehicles. subject to  capacity constraints, and then we solve one TSP per 
7-ehicle. 

Here we outline a couple of possible implementations of the second principle. 
An early and intuitive sequential decomposition method. due to Gillett and 

Miller.8 is called the sweep method. The approach has a strong geometric 
motivation. which is illustrated in figure 8.12. M'e draw a ray from the de- 
posit. and we rotate the ray clockwise or counterclockwise; in doing so, we 
"sweep" customers in an order depending on their location. \Yhenever the 
ray passes over a customer. this is included in the current cluster and the pro- 
cess continue5 until n e  find a customer which cannot be fitted to the residual 
vehicle capacity. Tlieii vie form a cluster by grouping the "swept" customers: 
we route thii  subsei of customers by solving the corresponding TSP. and we 
proceed bj  forming and routing the next cluster. 1f-e see that this approach 
is sequential in nature. which means that vie have no control over the number 

sSee the  original reference [ll] 
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0 

0 0 

0 

Fig. 8.12 Applying the sweep method to  a Euclidean VRP. 

of routes we will end up with: maybe by swapping and reassigning customers 
between clusters, we could reduce the number of routes. However, even if 
there exists a set of feasible routes involving a given number m vehicles. there 
is no guarantee that we will be able to find it. A further limitation of the 
approach is that it relies on a geometric argument; figure 8.12 should be re- 
ally interpreted as a map of customer locations. If distances between nodes 
are strongly related to the Euclidean distances between points on the map, 
the result may be satisfactory. However. if the nature of terrain and roads is 
such that Euclidean distances are not closely related to actual distances. the 
quality of results could be low. 

Nore recent and sophisticated decomposition-based methods have been 
proposed to  overcome the limitations above. by exploiting partial mathemat- 
ical modeling of VRP. Modeling the VRP by integer programming is possi- 
ble, but not effective. unless nontrivial modeling and solution approaches are 
adopted. However, we may build a partial model, e.g.. in order to  assign 
customers to vehicles, leaving the routing task to a TSP solver. We illustrate 
here an idea due to  Fisher and Jaikumar [lo].  which exploits a prototypical 
combinatorial optimization model known as generalzzed assagnment. In this 
problem we are given a set of n jobs which must be carried out on a set of m 
machines (typically, m < n). Machines need not be identical: For each pair 
consisting of job a = 1, .  . . , n and machine k = 1.. . . . m, we have a processing 
time p &  and a cost c&. We would like to carry out the whole set of jobs at 
minimal cost. but we might not be able to assign each job to  the cheapest 
machine, because of capacity constraints: Each machine k is available for Rh 
time units. We can build an integer programming model by introducing a set 
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of binary decision variables y ,k .  set to 1 if job i is assigned to machine k .  0 
otherwise: 

n m  

i=l k=l 
m 

k=l 
n 

k =  l . . . . .  m. 
2 = 1  

yak  E (0. I}. 

The objective function (8.4) is total cost; constraint (8.5) makes sure that each 
job is assigned to exactly one machine. and (8.6) is the capacity constraint for 
each machine. This literal description of generalized assignment leaves room 
to many interpretations. In the VRP case, we may interpret jobs as customers 
to be served and machines as vehicles. So far, we have assumed that vehicles 
are identical. and we stick to this case denoting the vehicle capacity by R: 
however. we see an immediate advantage of this approach. which helps in 
getting rid of many limitations. lye may also include restrictions on the type 
of vehicle that can be used to serve a customer (e.g.. because large trucks 
cannot be used in old town centers). Denoting the demand from customer z 
by d,. zn prznczple we can write the following model: 

m 

k=l 
m 

k = l  
n 

C d , y i k  5 R. k = 1. . . . . m. 
2 = 1  

Yak  E (0. 1). 

This is just a generalized assignment problem with a weird objective function 
Here vector yk consists of all of the decision variables yzk associated with 
vehicle k From a conceptual point of view. we may imagine a function f ( y h )  

which yields the optimal tour length obtained by solving to optimcLlitv a TSP 
restricted to  the cusl oiners assigned to \-ehicle k If we were really able to write 
such a function analytically. the model above ITould be a morking model for 
VRP. Of course. we are not that lucky. but we can try to approximate function 
f ( . )  in a way which is  suitable to  solution by linear integer programming: 

n 

i = l  
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The parameter g& should be an approximation of the cost of assigning cus- 
tomer i to vehicle k .  Clearly, such a linear function cannot really capture 
the interactions among various assignments, which influence each other when 
solving the TSP. However, we can try to  find a suitable value if we assume 
that a set of m customer seeds is given. Such seeds play the same role as in 
constructive parallel heuristics of type 2 (i.e., those based on growing a given 
number of routes), and they could be selected by the logic behind expression 
(8.3) on page 418; we select nz seeds by finding a subset of m customers which 
are far from the deposit and far from each other. Given the seeds. which are 
associated with the m routes, we may estimate the cost of inserting customer 
z in any route by computing the extra mileage with respect to  the deposit 0 
and the seed ol~ ( k  = 1..  . . . rn) of that route: 

gzk = COz + cz,g~ - cO,ui,. 

Yow that we have a linear approximation of the TSP cost, we may solve the 
generalized assignment problem by branch-and-bound, or by ad hoc methods 
if problem size precludes using a commercial integer programming package; 
then we solve one TSP for each vehicle. A noteworthy feature of the approach 
is that if there exists a feasible solution using m vehicles, we will find one: 
constructive heuristics do not offer such a guarantee. Another important 
remark is that the generalized assignment formulation. as we have already 
pointed out, can be extended to  cope with heterogeneous vehicles and to 
model some additional constraints on the vehicles that  can be used to serve 
a customer (some goods need freezer trucks, or separate sections because of 
mutual incompatibility: for instance, think of food and chemicals). 

A later extension of the generalized assignment approach was proposed by 
Bramel and Simchi-Levi [6], in order to avoid the a przorz selection of seeds. 
In order to integrate seed selection with customer clustering. they proposed 
a concentrator locatzon formulation. Let us introduce the following decision 
variables: 

1 
z3 = { 0 otherwise; 

1 
0 otherwise. 

if customer j is selected as a seed. 

if customer i is assinged to  a route, whose seed is customer j ,  
Yz:, = { 

We also need the cost coefficients: 

g t j  1 coz + czj - c03, uj = 2 ~ 0 3 .  

The first cost is a familiar extra mileage, whereas the second one is associated 
to the selection of customer j as a seed; the cost is approximated by the 
distance of a round trip from deposit to customer J and back. The resulting 
optimization model is 

7 l n  n 
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n 

s.t. C z I = m .  
j=1 

n 

i= l  
n 

- y y z J = l .  i = l  . . . . ,  n .  (8.10) 
3=1 

yZJ 5 z3> ? , I  = 1. . . n .  (8.11) 

Y Z J .  ZJ E (0, I}. 

The objective function (8.7) is total cost: constraint (8.8) enforces the selection 
of a given number m of seeds; constraints (8.9) and (8.10) are essentially 
the same as the generalized assignment formulation: finally, constraint (8.11) 
states that if customer J is not selected as a seed, we cannot assign any 
customer 7 to  it (i.e.> to the route associated with seed J ) .  

8.4 ADDIT IONAL FEATURES O F  REAL-LIFE VRP 

In the previous section we have considered solution approaches for the basic 
VRP. Typical routing problems have several additional features that make 
their solution a bit tougher. even though the heuristic principles n e  have just 
outlined can be adapted. In the following list. we illustrate a fern of these 
complications. 

0 In the basic VRP. given a set of customers along with their demand. we 
have to  build a brand new set of routes: if the demand pattern changes. 
the set of routes may change as well. From an organizational point of 
vie\\--. this may be an inconveniency. Hence. at a more tactical level. one 
ma) try to  come up with a set of fixed routes which are traveled several 
times. Such fixed routing problems may also be formulated and solved 
in the case of uncertain demand. 

0 IT-e have taken the number of vehicles as given (or irrelevant). In fleet 
planning problems. the aim is sizing a fleet of vehicles. This type of 
problem is also relevant in point-to-point transportation. 

0 '1Se ha\-e considered a static. deterministic. and single-period problem. 
Depending on the practical context, uncertainty may affect travel times 
and/or deniand. One simple approach to tackle the first soiirce of un- 
certainty would be introducing slack time by judiciously oi-erestimating 
travel times. Demand uncertainty can be tackled by similar means. 
However. the real issue is arguably the real-time management for such a 
problem; this calls for efficient real-time data collection and an effective 
organization in order to adapt routes and delivery on-the-flv. Dealing 
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with uncertainty may result in a tough, dynamic and stochastic problem. 
Even if we rule out uncertainty, we may have to  cope with a multiperiod 
problem, whereby we have to develop routes for a few consecutive peri- 
ods; as we have already noted in the book, multiperiod problems need 
not be dynamic in the sense of adapting to  uncertain events. 

0 We have considered a symmetric distance matrix, whereas sometimes 
the underlying TSP structure is asymmetric. Apart from adjustments 
in solution algorithms. a difficult issue is filling the matrix with reliable 
data. In the past, one possibility was computing plain Euclidean dis- 
tances and then inflating them by coefficients modeling the difficulty of 
the terrain. Given technological advancement. geographic information 
systems are now typically exploited to  this aim. This can also be done 
at  the single customer address level. e.g., analyzing the ZIP code, by a 
process called geocodzng. 

The maximum tour length in terms of time and space may be a con- 
straining factor, and not only capacity. Capacity is actually multidi- 
mensional. involving both weight and volume, potentially for separate 
parts of the truck, such as refrigerated and nonrefrigerated. Exploit- 
ing the available volume is an optimization problem in itself. for which 
software packages have been developed. We should emphasize however, 
that such an optimization is desirable for point-to-point service. but it 
may get into the way of unloading stuff in multiple delivery problems 
such as VRP: Having fully loaded the truck is of little use. if the parcel 
of the first customer in the route lies at the unreachable bottom of the 
truckload. 

0 The objective function of a real VRP may involve multiple costs, and 
not only distance. Some desirable features of a route may hardly be 
expressed in monetary terms. If not all of the customers can be ac- 
commodated for delivery today, we must decide which ones will be 
served tomorrow. Moreover. overtime driver cost may by quantified. 
but workload balance issues in human resource management may be 
hardly turned into a cost. The flexibility of local search in dealing with 
complex objectives may be used to advantage. 

We may have multiple deposits and heterogeneous vehicles (possibly 
Cluster-first. route-second methods may be with separate sections). 

adapted in some cases. 

In inventory routing problems, vehicle routing is coupled with in- 
ventory management. In basic VRP, we consider customer demand as 
given; but if inventories are taken into account. a brand new dimension 
is open. offering both degrees of freedom and additional complexity. If 
inventory is available a t  customer nodes. we may better manage vehicle 
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capacity. by delivering flexible quantities depending on current inven- 
tory state. ITe may also better cope with demand uncertainty. The 
price me pay for such opportunities is the difficulty of the integrated 
problem. 

0 Last but not least, delivery may be subject to time windows. linked 
to traffic conditions, customer's requirement ~ or to the availaliility of an 
unloading bay. This places additional constraints on solution methods. 

Given all of these complexity factors, the staggering amount of scientific lit- 
erature on VRP is no surprise. One way to  cope with real-life \.RPs is to 
extend and adapt the heuristic principles we have briefly illustrated. Local 
search approaches are certainly an interesting wal- to tackle generalized ver- 
sions of the basic VRP. However. sometimes constraints are so tight that even 
finding a feaszble solution is difficult. In this case, sophisticated mathematical 
modeling and solution approaches can offer some advantage. Sincc this level 
of sophistication requires advanced optimization concepts, in the next section 
we just offer some clues on how constructive heuristics can be extended to 
cope with time windows. Whatever solution approach vie take. we should 
bear in mind that real-life VRPs may be subject to  significant uncertainty 
and ill-defined objectives linked to  human factors: hence, solution approaches 
must be cast within a well-designed decision support system. 

8.4.1 

In the VRP with time ~ i n d o r n ~ s . ~  each customer z = 1..  . . . n, is associated 
with an interval [e,. l , ] .  whose endpoints are the earlzest tzrrie anti the latest 
tzme for the start of service (in our case. unloading the vehicle). In practice. 
multiple time windows may be associated with a single customer. Lrt s,  be the 
duration of service and t,, be the time to  travel from customer z to custonier 
3 .  If the vehicle arrives early with respect to the time window. then it must 
wait. Hence. if b, denotes the start of service for customer 2 .  and the vehicle 
visits customer 

Constructive methods for the VRP with time windows 

after customer z a 3 .  we have 

b, = max{e,, b, + sz + t t3}.  

In the basic VRP n e  were deliberately ambiguous in using a "cost" c , ~  which 
could be related to  space. or time. or a mixture of both. For the \-RP with 
time window. we mist  take both time and space into account; we will denote 
the distance betweeri customers z and 1 by qL,. 

Based on our knowledge of constructive heuristics. one of the first ideas 
that may come to our mind is to build routes sequentially. using ail extension 
of the nearest-neighbor TSP approach. In this case. "nearest" mixes both 

gThis section is based on [17]. t o  which we refer for a full treatment 



428 VEHICLE ROUTING 

space and time considerations. We recall that in this algorithm customers are 
always appended at the end of the growing route. which may be a limitation. 
Let i be the last visited customer: we must define a hybrid measure c , ~  of 
"closeness" between i and j .  One possibility is the following: 

where: 

the weights A, are non-negative and sum up to one (actually. we must 
just give two weights): 

q,, is the distance between customers z and 3 ;  

0 the quantity 
T,, = b, - (bz + sz) 

takes into account the time difference between the end of service at  z 
and the beginning of service at J (if J follows z on the route): 

the quantity 
uzj = 1, - (b ,  + s, + t 2 3 )  

measures the time slack we still have for service at  customer 3 ,  i.e.. how 
much time remains to the end of its time window (the smaller vZ3, the 
more urgent it is serving J after z; hence. this factor works in the same 
way as the previous two in making service of 3 after z desirable). 

This generalized metric is used as a simple priority rule to append customers 
to the current route. When no more customers can be appended, because the 
vehicle is full or no time window is compatible. we close the current route and 
start a new one. Clearly, we have no direct control on the number of routes 
we build. and the algorithm looks quite greedy. In any metric depending on 
weights, parameter fine-tuning is an issue. However, in this case we just have 
to  select a combination of two parameters ranging between 0 and 1; since a 
greedy procedure is very fast. we may simply carry out a grid search, trying 
several weight combinations and plucking the best solution found. 

Given the already familiar limitations of nearest-neighbor, we may consider 
adapting insertion-based heuristics. Consider a partial route 0. i l ,  22 .  . . . . z,. 0. 
starting and terminating at  deposit 0. We may work at two levels: 

1. For each unrouted customer u, we compute the best insertion point in 
the partial route (provided vehicle capacity is not exceeded), according 
to  some metric. 

2 .  We select the best customer to  insert, applying some metric. which need 
not be the same as in the previous point. 

IVe should note that inserting a customer my imply a time shift for all of the 
following customers along the route. 
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To evaluate the opportunity of inserting customer u between z and 3 .  we 
can adapt the following metric (which should be niiniinized to find the best 
insertion point): 

where ci and p are parameters to be chosen. The parameter Q: must be selected 
in the range [O. 11 and controls the relative weight we assign to spaccl vs. time 
considerations. In fact, the first term in the sum is linked to extra mileage: 
indeed, it is be the familiar extra mileage if p = 1. The additional parameter 
p allows for extra fine-tuning of the heuristics: actually. such coefficients are 
common in variations of insertion heuristics for TSP. The second term includes 
the difference between the new start time of service at  customer 3 .  if we insert 
u. denoted by b J u .  and the current start time b,. This term tries to capture 
the time shift effect clue to insertion. provided that the insertion is feasible 
with respect to  time windows. 

To select the customer u to insert, given the best insertion point above. n-e 
may consider the following metric (to be maximized): 

where X is a parameter to be chosen. If we select parameters p = ce = 1 and 
X = 2 .  this metric measures the saving in terms of traveled distance if  we serve 
customer u between i and j rather than serving u directly from the deposit. 
An alternative choice is 

where Rd(u) and &(u) are total distance and total time of the current route 
if n-e insert 71. respectively; the parameter 3 must be selected in the range 
[O. 11 and has essential the same meaning as the parameter Q. above. This 
metric, which should be minimized, tries to capture more fully the effect of 
the insertion. 

These very simple rules. and related variants. have a definite advantage 
in terms of CPU time and conceptual simplicity They might not be very 
effective in tightly constrained problems. If we do not want to resort to 
complex mathematic>. we could also consider local search algoritlirns. but 
theie are additional complications when we trv to apply something like a 
2-opt neighborhood structure to a VRP with time windon-s. SYhen we delete 
and cross a pair of arcs. we invert the direction of borne part of the ioute. this 
is irrelevant in terms of distance. provided that the problem is s~mmetr ic .  
but it is definitely relevant in terms of time windoms Ke-\,erthel~ss. inanj 
clever approaches have been proposed over the years. v,-hich are dwcribed in 
the references listed at  the end of the chapter. 
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8.5 FINAL REMARKS 

In this chapter we have considered basic VRP as a straightforward extension 
of classical TSP. The interest of these network routing problems has spurred 
a significant amount of work. which is documented by a vast literature where 
a wide array of methods is presented. It is hard to tell if there is one best ap- 
proach. On the one hand. very sophisticated mathematical approaches have 
been developed. and despite technical intricacy. their potential for economic 
impact must be carefully considered. On the other hand. the variety of con- 
straints and complicating features has led software developers to  privilege 
simpler and possibly more adaptable approaches. What we tried to  accom- 
plish in this chapter is just to  get the reader acquainted with the conceptual 
foundations of these approaches. 

We should also raise a couple of general points, whose practical importance 
cannot be overemphasized. The first one is that we have considered VRP as 
an off-line scheduling problem. In practice, disruptions and uncertainty are a 
way of life: hence, it is essential to  develop suitable user interfaces to  manage 
such situations. Such decision support systems must also rely on proper data 
collection from the field: new satellite-based technologies are being exploited 
for this task. Last. but not least. we have just considered cost minimization. 
Environmental issues should remind us that proper transportation manage- 
ment and organization has a significant impact. which goes beyond the bottom 
line of a single firm. 

8.6 FOR FURTHER READING 

0 We did not consider mathematically sophisticated approaches to solve 
the TSP, which include branch and bound methods based on Lagrangian 
relaxation (i.e., the relaxation of complicating constraints by Lagrangian 
multipliers; see section B.4) and branch and cut methods (i.e., branch 
and bound methods in which constraints. i.e., cuts, are added to strength- 
en the lower bound we get from the continuous relaxation; see section 
B.6.1). A not-so-recent. but still relevant reference book is [14]. 

0 An overview of local search methods for combinatorial optimization can 
be found in [ 11 ; a recent survey is [ 5 ] .  A specific reference on tabu search 
is [ la];  see [15] for an application of GRASP to the TSP. 

0 An excellent survey on early approaches to  VRP can be found in [7].  
from which we have taken part of section 8.3 (in particular, the examples 
and the discussion associated with figures 8.10 and 8.11). 

0 A more recent survey. which also includes approaches based on mathe- 
matical programming, can be found in [9]. See also [19]. 

For VRP under uncertain demand see, e.g., [4]. 
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0 For a complete description of simple heuristics for VRP viith time win- 
dows, see [17]: we have just hinted at  a few basic concepts in section 
8.4.1. 

0 Some commercially available software packages for VRP are just based 
on principles we have outlined, but the complexity of real-life VRP can 
only be appreciated by having a look at the data requirements to define 
a problem. Uany complicating constraints must be addressed, and the 
data we have taken for granted. such as the distance matrix, may require 
a link to a geographic information system. For instance. you can have 
a look a t  the web site h t t p :  //www . bes t rou te s  .corn/ 

0 Many commercial tools of VRP are ..closed" products. There is also 
the possibility of using software components to tailor a specific applica- 
tion. This is the approach taken by the ILOG Dispatcher library (see 
h t t p  : //www . ilog . corn/) 

0 For routing applications in transportation by aircraft or railway. see [a] 
and [ 131 ~ respectively. 
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Appendix A 
A Quick Tour of 

Probability and Statistics 

The tools of Probability Theory and Statistics are essential in formulating 
and solving several problems in Distribution Logistics. The main reason for 
this need is uncertainty in demand. even though other uncertain factors that 
may affect a supply chain are lead time, price, and exchange rates in an 
international context. This appendix aims at  recalling. in a reasonably concise 
manner. the fundamental concepts that we use in the main body of the book. 
It goes without saying that we do not intend the following treatment as a 
substitute for a serious study of the matter, which is often subtle and requires 
nontrivial concepts for a deep and thorough exposition. Hence. a t ’  illustrate 
the main ideas by examples. including some counterexamples n-hose purpose is 
to  point out some potential traps of intuitive thinking, to show some common 
misunderstandings, and to underline some pitfalls of the most used tools. if-e 
refer the interested reader to  the references for a deeper and more rigorous 
treatment. 

The probability o €  an event is a fairly intuitive concept: it may refer to the 
frequency at which a random event occurb, or it may stem from a subjective 
assessment. For instance, characterizing demand uncertaint) for a brand new 
product may require a different approach than for a aell-established one. with 

433 
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a long history of sales. In the axiomatic approach to probability theory, in 
order to provide a sound foundation, a sample space is defined and proba- 
bilities are associated with subsets corresponding to  events. These concepts 
are introduced in section A . l .  Given this conceptual framework. section A.2 
introduces the fundamental ideas of conditional probability and independent 
events. Then, we proceed to  treat random variables. both discrete (section 
A.3) and continuous (section A.4). and to  describe some common probability 
distributions such as geometric. binomial. Poisson. exponential. and normal. 

The generalization to  the multivariate case of jointly distributed random 
variables is the subject of section A.5, which is then expanded in section 
A.6, where we deal with fundamental issues such as independence between 
random variables, conditional expectation, covariance, and correlation: we 
also introduce useful distributions which are built on the basis of the normal. 
such as chi-square and Student's t ,  as well as the central limit theorem. 

When we consider jointly distributed random variables, we may think of 
random realizations of different phenomena at the same time (e.g.. sales of 
different items in the same week) or successive realizations of the same phe- 
nomenon over time (e.g.. sales of the same item over a range of time periods). 
The last idea leads us to  the concept of a stochastic process. which is briefly 
described in section A.7. 

In probability theory, we assume that a large body of knowledge is available, 
and we ask possibly complex questions about expected values, probabilities, 
etc. In practice, such knowledge is a scarce commodity. and we must extract 
it from empirical data. Then, on this basis, we may also try to come up 
with inferences about unknown parameters or forecasts. This leads us into 
the realm of Statistics. which rests on the theory of probability. but it is the 
empirical side of the coin. We will deal with the most relevant topics for our 
applications, such as parameter estimation and confidence intervals (section 
A.8).  hypothesis testing (A.9), and simple linear regression (A.lO). These 
concepts play a key role in demand forecasting. The aim of simple linear 
regression is to use one variable to  explain the behavior of another variable of 
interest. Of course, one can use multiple explanatory variables; this leads to  
multiple linear regression, which is the topic of web section W.A. l l .  

In this appendix we illustrate more ideas than we actually use in the main 
body of the text. One good reason for doing so is to  provide the reader with 
a stronger background. Another reason is to  pave the way for more web 
supplements, that we will include over time in the book web page. 

A . l  SAMPLE SPACE, EVENTS, AND PROBABILITY 

The starting point in defining probability according to the axiomatic approach 
is a sample space, which we denote by R ,  representing the set of possible 
outcomes w E R of a random experiment or of a sequence of random experi- 
ments. Intuitively, an event is something that.  depending on the outcome of 
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the random experiment. may happen or not. Formally. an event E is a sub5et 
of the relevant sample space: note that an event need not be a single element 
of the sample space. which is just a particular case. 

Example A . l  The best-known example is dice thron-ing. LVhen throwing a 
dice. the outcome will be an element of the following sample space: 

R = {1.2.3,4.5.6}.  

The definition of events depends on our purpose and on what we may know 
about the outcome of the random experiment. as our ability to  observe results 
may be partial. If what we are interested in is just whether the outcome is 
an even or an odd number, we define the following events: 

Even = {2.4,6}. Odd = (1.3. j}. 

\Ye see that the two events are subsets of the sample space Q. If we combine 
several experiments. by throwing the same dice repeatedly or a pair of dice. 
we may define more complex sample spaces and events. 0 

The next logical step is assigning a probabilitl- to events. In order to do so in 
a consistent way. we would like to  be able to work with the following concepts: 

0 The probability that an event does not occur. To this aim. given an 
event E C Q .  it is natural to consider its complement EC = Q\E.l 
Jl-ith reference to  example A.1. Efen = Odd. 

0 The probability that a t  least one of two (or more) events occurs. In this 
case it is natural to  exploit the concept of set unzon. 

0 The probability that two (or more) events occur jointly. To this aim we 
exploit the concept of set zntersectzon. 

This allows us to work on events by using elementary set operations. but in 
order to do so in a consistent way. we must require some additional conditions. 
In fact. we should require that by working with complements. differences. 
unions. and intersections of events we get other events. To formalize this 
requirement. given a sample space 0. we define a family of events F 3  i.e.. 
a set of subsets of (1. Such a family of events must satisfy the following 
properties2 

0 If an event is an element of the family F. then its complement is too. 

E E 7 + E~ E F. 

lThe  \ operator denotes the  difference between two sets: The set B\A corisists of the 
elements of B which do not  belong to  A. 
2Technically. these requirements lead us to consider a f ie ld  of sets. 
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Note that RC = 0, and vice versa, which justify the inclusion of the 
empty set 0 in 3. 

0 If two events belong to  3, then their union does too: 

E l ,  E2 E 3 + El U E2 E 3 

0 If two events belong to 3, the same holds for their intersection: 

If the intersection of two events is empty, i.e., El n Ez = 0, the two 
events are said mutually exclusive or disjoint. 

We may extend the above requirements by considering the union and inter- 
sections of an arbitrary number of  event^.^ 

Finally, armed with a sample space R and a suitable family of events 3. 
we may associate a probability measure P ( E )  to  each event E E 3. The 
probability measure is a function mapping an event to  a real number in the 
interval from 0 to  1. The probability measure, together with the other in- 
gredients. defines a probability space (R, 3, P). We should note that,  given a 
sample space, we may define different families of events. The choice depends 
on our purpose and on the available information. i.e., what we may observe: 
hence. several probability spaces may be defined on the basis of the same 
sample space. 

The probability measure must satisfy the following conditions: 

1. 0 5 P ( E )  5 1, for any event E E 3; 

2. P(R)  = 1; 

3. for each sequence of mutually exclusive events El .  E2. E3 , . .  ., i.e.. such 
that E,  n E3 = 0, for i # j .  we have 

The first and second conditions are fairly self-explanatory: The probability of 
an event can be neither negative nor larger than 1, or 100%; the probability 
of the sample space is 1, because "something must occur anyway." To get a 
feeling for the third one, let us refer to a pair of dzsjoint sets El and E2. In 

3 ~ ~ m  a mathematical point of view, passing from an  arbitrary but finite number of events 
t o  an  infinite (but countable) family of sets requires some care. We go from a field to a 
a-algebra. which is beyond our scope. 
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such a case, it sounds reasonable to say that the probability of the union of 
the two sets is the sum of the two probabilities: 

P (El u E2) = P(E1) + P(E2). 

The third property generalizes the idea and allows us to express the probability 
of any event by decomposing it into a set of disjoint events. 

Given these basic properties of a probability measure. we can prove all of 
the properties. which we intuitively associate to the concept of probability, as 
well as some less intuitive ones. We now give a few illustrative examples. 

0 Given the probability of an event E ,  what is the probability of its com- 
plement EC? Since E U EC = R and the two sets are disjoint. applying 
property 3 yields 

which implies P(Ec) = 1 - P(E). This is a rather intuitive property. 
but it may be very useful. If computing the probability of an event 
is difficult or time-consuming, it may be convenient to compute the 
probability of its complenient. and then to use the property to get what 
we are interested in. 

P(E) + P(EC) = P(Q) = 1. 

0 From elementary set theory, we know that intersection can be expressed 
on the basis of union and complement: 

Hence, the three properties enable us to work with intersection too. i.e.. 
the probability that pairs of events occur together. Sometimes. instead 
of notation P(.F1 n E2). the joint probability of two events is denoted 
by P(E1 . Ez) or P(E1E2). 

0 For two overlapping events, we cannot say that the probability of the 
union event is the sum of the two probabilities. To see this. consider a 
deck of poker cards. and imagine drawing a card at random. if-hat is 
the probability of getting a king or a spade? Out of the 5 2  cards. we 
ha\-e four kings and thirteen spades, but the answer is not (4 + 13)/52; 
we should not count the king of spades twice. In other words. we should 
not count the intersection of the two sets twice. Indeed. it is easy to 
show that 

P(E1 U E2) = P(E1) + P(E2) - P(E1 n E2). 

lye leave this a5 an exercise. (Hint: Kote that El U E2 = El u (E2\E1).) 

E2. then P(E1) 5 P(E2) (if El occurs. then E2 occurs 
too for sure. but the converse does not hold). Indeed. in such a case we 
may write E2 == El U (&\El). Since the two sets are disjoint. P(E2) = 
P(E1) + P(E2,El). which implies P(E2) - P(E1) = P(E2\E1) L 0. 
proving the claim. 

0 Finally. if El 
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A.2 CONDITIONAL PROBABILITY AND INDEPENDENCE 

When one considers a pair of events, a natural question is whether information 
about one of them tells us something about the probability that the other one 
occurs. For instance, in the dice throwing case. we know that P( l )  = P(2) = 
1/6 if the dice is fair. But if we have partial knowledge. e.g., we know that 
event Even occurred. we also know for sure that the outcome cannot be 1, 
whereas there are increased chances that the result has been 2 .  As a practical 
example, knowing that a customer purchases a certain product may tell us 
something about the probability that she will buy another one. particularly if 
they are complements or substitutes. A striking example of how past purchase 
information can be exploited is familiar to  customers of online sellers such 
as Amazon.com: After you buy a few books, they are able to  send rather 
accurate recommendations for related titles. based on observed patterns of 
other customers. The formalization of such an idea leads us to the concept of 
conditional probability of an event E given the occurrence of another event 
G. 

DEFINITION A . l  (Conditional probability) T h e  probability of event 
E ,  conditional o n  the occurrence of event G: is  denoted as P(E 1 G) and i s  
given by 

P( E n G )  
P(G) ' 

P(E  I G )  = 

As an intuitive justification. if we know that event G has occurred, then we 
also know that E occurs if and only if the joint event E n  G occurs. hloreover, 
G becomes the new sample space, and we have to renormalize the probability 
dividing it by P(G) (since this probability is generally less than 1. this amounts 
to increasing the ratio). We should note that the definition above makes sense 
only if P(G) > 0. 

As a simple example, we may compute the conditional probability 

In this case. the conditional probability is larger than the unconditional prob- 
ability P(2). In other cases. the information on G does not tell us anything 
about the probability of E .  If throw a pair of dice, the number shown by 
one of them does not tell us anything about the other one. In this case 
P(E I G) = P(E). i.e., conditional and unconditional probabilities are the 
same. This leads us to the property characterizing independent events. 

DEFINITION A.2 (Independent events) T w o  events E and G are said 
independent if 

P(E n G) = P ( E )  . P(G). 
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TTe see that the joint probability of two independent events is simply the 
product of the individual probabilities. This idea generalizes fairlv easily to  
an arbitrary number of events. but we believe it is also useful to bee the real 
meaning of independence in terms of znforrnatson. If E and G are independent 
events. we obtain 

The following examples aim at reinforcing the understanding of this concept. 

Example A.2 Two disjoint events cannot be independent. In fact, if we 
know that one of them has occurred. we have quite a good amount of infor- 
mation about the other one. because its occurrence can be ruled out Formally. 
if E n G = 0. we know P(E n G) = 0 # P(E) . P(G); moreover. P(E 1 G) = 0. 

By the same token. if G c F ,  the two events cannot be independent. since 
if G occurs. then F occurs as well. Formally. 

P (EnG)  P(G) -- - - 
P(G) P(G) 

P(E I G) = 
0 

Independence is a concept that can be extended to several events. 

DEFINITION A.3 Events El. Ea E:, are sazd zndependent zf .  gaven 
any arbztrary subset E,, . E J 2 %  . . . . Ejn, of thzs farndy of events, with m 5 S, 
we have 

n %"# 1 = P(E,l) ' P(E.72 1 
TYe should stress that the meaning of the above definition is that knowledge 
about any subset of events does not tell us anything about the remaining ones. 
lye should also stress that the definition requires that joint probabilities may 
be factored into the product of individual probabilities for any subset of the 
given family. Intuition may be misleading. For instance. it is trnipting to 
think that if all events are pairwise independent. then they are independent, 
but this is false in g-neral. The example below illustrates this point. 

Example A.3 Let us consider three pairwise independent events. 4 simple 
example is provided by the draw of an integer number between 1 and 3 .  
assuming that the four outcomes are equally likely. IVe see that the events 
A = (1 .2) .  B = (1.3). C = (1.4) have the same probability. 1 / 2  It is also 
easy to see that these events are pairwise independent: 

P(A n B) = 1/4 = P(A) . P(B). 

P(B n C) = 1/4 = P(B) . P(C). 
P(A n C )  = 1/4 = P(A) . P(C). 
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Fig. A . l  Partitioning an event into disjoint subsets. 

However, 

P(A n B n C) = P((1)) = 1/4 # P(A) . P(B) . P(C). 

To really get the point, it is useful to reason in terms of information and 
conditional probabilities. For instance, P(A I B )  = P(A) = 1/2;  because 
knowing that B occurred does not provide us with any additional information 
about occurrence of event A. However, P(A 1 (BnC))  = 1 # P(A).P(BnC),  
because if we know that the event (B n C) occurred, then necessarily the 
number 1 has been drawn. so A occurred for sure. 0 

Consider a finite partition of a sample space R ,  i.e., a set of events 

mutually exclusive (empty intersections) and collectively exhaustive (their 
union yields 0) ;  formally, 

n 

Ha n HJ = 8, for i # j ,  and u H, = 0. 

Any event E can be partitioned too, on the basis of the partition of 0. by 
putting together intersections of the form E n H,. Clearly, 

a=1 

n 

E = U ( ~ n  H,) . 
a=1 

This idea is illustrated in figure A.l .  Since the elements of the partition are 
disjoint, given the third property of a probability measure. we have 



CONDlTlONAL PROBABlLlTY A N D  lNDEPENDENCE 441 

If we rewrite this sum in terms of conditional probabilities. extending the idea 
to  an infinite countable partitioning. we get the following useful theorem. 

THEOREM A.4 (Theorem of total probabilities) Conszder a partztzon 
of a sample space R .  z.e., a f amz ly  of mutua l ly  dzgoznt and co l lec twly  exhaus- 
tzve subsets H I ,  Hz. H3. .  . .. Then, for a n y  event  E C R ,  we hatie 

x 

a = 1  

The following example shows how the theorem can be used to compute prob- 
abilities by conditioning. 

Example A.4 A lazy professor, rather than administering serious exams, 
adopts a multiple choice quiz. Actually, even if a student gives the correct 
answer. there is still no guarantee that he really knows the subject. because 
he may try a random answer and succeed by sheer luck. Let m be the number 
of multiple answers (and let p be the probability that the student knows the 
exact answer (hence. 1 - p  is the probability that he will take his chances with 
a random answer). Let K be the event “the student knows,” and let OK be 
the event “correct answer.“ Assuming that when the student tries at random, 
any choice is equally likely, we may write 

P(K) = p .  
P(0K 1 K )  = 1. 

P(0K 1 KC) = l / m  

However, in order to understand if the test is reliable enough, what we would 
like to assess is the conditional probability P(K I O K ) .  To this aim. we may 
use the theorem of total probabilities as follows: 

- P - mP - - 

1 , p +  ( l / rn) ( l  - p )  1 + ( m  - 1)p‘ 

where the first two lines follow by definition, and the third line results from 
applying the theorem of total probabilities. Note that we assume P(OK 1 
K) = 1. i.e.. we disregard the impact of emotional factors. For instance. if 
p = 112 and m = 3, 1 hen P(K I OK) = 314. 0 

In tackling the previous example. we have actually proved a particular case 
of the following Bayes‘ theorem. 
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THEOREM A.5 (Bayes’ theorem) If HI, Hz, H3,. . . ~ H, is  a partition 
of the sample space R and E is  a n  event, then  the following holds: 

A.3 DISCRETE R A N D O M  VARIABLES 

When working with events, we basically ask questions whose answer may be 
“yes” or ”no“ (e.g., did we meet all customers’ demand this week?) and we 
reason about the probability of each answer (what is the probability that we 
will not lose customer orders during the next couple of months?). Sometimes, 
we may also need more quantitative answers; this is the case. e.g., when we 
want to forecast future demand in order to properly plan inventories and we 
also need some measure of confidence in such a forecast. 

The case of 
dice throwing is very simple, since the outcome of the random experiment is 
naturally linked to  the number shown by the dice. More generally, a ran- 
dom variable is a function mapping the events within a probability space 
to  numbers. If the possible numerical values are a discrete finite set or the 
set of integer numbers. we speak of discrete random variables. In logistics. 
discrete random variables yield suitable models to capture the variability of 
demands for items which are naturally sold in discrete units and relatively 
low volumes (e.g., expensive spare parts for large equipments or slow-moving 
items). When the demand volume is large, even if the goods are sold in dis- 
crete units, a continuous model may be a reasonable approximation: we deal 
with continuous random variables. which are functions mapping events to real 
numbers. in the next section. 

In mathematically inclined books, the notation X ( d )  is often used in order 
to  point out that a random variable is a function mapping events to  numbers. 
We will not be that rigorous. but the least we can do is to distinguish very 
clearly a random variable from i t5  realization. i.e.. the numerical value taken 
by the random variable. To this aim, we mostly follow the typical notation 
whereby capital letters such as X are used to denote a random variable, 
whereas the corresponding lowercase IC denotes a numerical value assumed by 
the variable. To get the point, assume that we are interested in the probability 
that a random variable takes a value less than 10: the notation P{X < 10) 
should be used, whereas P{x < 10) makes no sense. When using Greek 
letters. it may be convenient to adopt the notation Z (random variable) and 6 

(realization): this notation is quite common in Economics. 
Now we may start wondering how we may reason on random variables in 

probabilistic terms. From a theoretical point of view, a probability measure 
is not really associated with a random variable. but rather with the events in 
the underlying probability space. However, in relatively simple applications. 

Formally. we should associate numerical values to events. 
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this point of view is left implicit. An event that is natural11 linked to the 
realization of a random variable is {X x}. The probability of this event 
defines the cumulative distribution function (or CDF for short) of the 
random variable X :  

F,y(x) = P{X 5 x } .  

IYe have seen before that if event F is included in event G. then P(F) 5 P(G) 
An immediate consequence is that the cumulative distribution function is 
a nondecreasing function with respect to its argument. Furthermore. if we 
denote by 2 , .  I = 1.2.3 the possible values of a discrete random variable. 
assuming that they are labeled in an increasing order. so that 2,  <: zl+l. we 
also see 

F x ( r )  = 0 if z < 2 1  

and 

lim F x ( r , )  = 1. (A.1) 
l’+X 

The cumulative distribution function for a discrete random variable. is a non- 
decreasing piecem-ise constant function. with discontinuities corresponding to 
possible values of the realization (see example A.5 below). 

In the discrete case. we inay assign a probability to the event {X = xl}. 
x hich results in a probability mass function, or PLIF for short. associating 
a probability with each possible outcome: 

p x ( 2 , )  = P{X = XL}. 

We should note again that a probability measure is actually associated with 
the events { X  = x~}. and only through the function mapping events to num- 
bers we may speak of the “probability of a value.“4 

The link between PLIF and CDF is two-way. GiTen the lattei. we inay 
recover the former: 

P x ( J , )  = P{X L z,} - P{X < X,} = F*x(zz) - Fx(rt-1). 

In other words. the jumps in the distribution function are exactly the prob- 
abilities of the corresponding values. On the other hand. given the PAIF. we 
may build the CDF: 

Fx(a) = P{X I a} = c P X ( Z 7 ) .  
2 ,  < a  

Example A.5 Consider the cumulative distribution and the probability i nas  
fuiictioiis for a random variable directly linked to  dice throwing. They are 
shown in figure A.2. The mass function assigns the same probabilit) (1/6) 

“This point may get a bit thorny when dealing with continuous random variables or with 
sequences of random variables over time. From a rigorous point of view. additional technical 
conditions are required. 



444 A QUICK TOUR OF PROBABILITY AND STATISTICS 

- 316 
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0 1 2 3 4 5 6 X 

0 1 2 3 4 5 6 X 

Fig. A.2 Cumulative distribution and probability mass functions for dice throwing. 

to  each value, and by calculating the cumulative sum we get the distribution 
function, which jumps on the six possible values. The jump height is exactly 
given by the probabilities. We may also note that the distribution function is 
continuous from the right, whereas it has discontinuities from the left. 0 

An immediate consequence of the conditions we require for a probability 
measure is 

2=1 

Here and in the following, if there is a finite set of N possible values, the sum 
should be rewritten as EL,. Of course, this property is just a rewriting of 
(A.1). 

Both the CDF and the PNF contain the whole knowledge about a discrete 
random variable. In applications, it may be more natural to work on the mass 
function, as it is intuitively related to the phenomenon we wish to  model. We 
would also like to come up with a few numbers summarizing some basic fea- 
tures of the random variable, such as which value we could use as a prediction 
of the outcome and how values are dispersed. The concept of moment of a 
random variable is used to this aim. 

DEFINITION A.6 (Moment of a discrete random variable) Given a 
discrete random variable X ,  with probability mass  func t ion  p x ( . ) ,  i t s  m o m e n t  
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o,f o r d e r  k is  def ined  by 
x 

(k) - Px = c ZFPX (2,). 

a = l  

Often. to  ease notation, we use p ,  instead of p~ (z,). The first few moments of 
a random variable allow us to capture some (not all) of its essential features. 
The expected value E[X] is the first-order moment: 

z = 1  

Intuitively. the expected value is a location measure of a probability distribu- 
tion and it is what we should expect “on the average.” An important property 
of expected value is linearity: 

E [ a X  + 5’1 = a E[X] + 3. 

where cy and 3 are arbitrary numbers. 
Another very important quantity is variance: 

Var(X) = E[(X - E[X])’]. 

Variance is often denoted by a’; its square root u is called standard devi- 
ation. It is important to note that variance is non-negative by definition: it 
can be zero in the “degenerate“ case of a constant random variable. which 
is quite predictable. In fact, variance and standard deviation are dispersion 
measures. since they are related to  deviations with respect to thr expected 
value. Deviations are squared to  avoid cancelation between deviations with 
different signs. Standard deviation has the advantage of being expressed in 
the same unit of measurement as expected value. In practice, it may be diffi- 
cult to get a true feeling for a deviation in absolute terms: Can we say that a 
standard deviation of 10 is large or small? Kot really. since it make5 a big dif- 
ference whether the expected value is 5 or 1000 . To overcome thii  difficulty. 
the coefficient of variation may be used. which is defined as 

and is often given squared. c$. A value close to zero suggests a low variability. 
Unlike x-ariance. the coefficient of variation does not depend on the chosen unit 
of measurement. A pair of important properties of variance are shown in the 
following example. 

Example A.6 Quite often. to calculate variance. we use the following prop- 
erty: 

Var(X) = E[X2] - E2[X] .  
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To show this, we just need to  rewrite the definition of variance: 

Var(X) = E[(X - E[X])’] 
= 

= 

= 

= E[X2] - E’[X]. 

E[X2 - 2X . E[X] + E’[X]] 

E[X2] - E[2X. E[X]] + E[E’[X]] 

E[X2] - 2 .  E[X] . E[X] + E2[X] 

Here it is important to realize that the expected value E[X] is a number and 
it can be taken outside the expectation operator. 

By the same token we can see that 

Var(aX + 0 1  = E [(ax t o - E [ ~ X  + a])’] 
= E [(ax + p - aE[X] - @])’I 
= E [a’ ( X  - E[X])’] 

= a2Var(X).  

This second property shows that shifting a random variable by a given amount 
has no influence on its dispersion (it has on its location, of course) and that 
variance. unlike expected value, is a nonlinear operator. 

In a similar way. we may consider a function of a random variable. The 
expected value of the function g(X) of the random variable X is 

0 

rn 

2=1 

For instance, the moment of order k is actually the expected value of X raised 
to the corresponding power: p$)  = E[X‘]]. 

A.3.1 

In this section we recall some common distributions of discrete random vari- 
ables. limiting ourselves to those which are more commonly applied in distri- 
bution logistics. It is very important to realize that a practically relevant issue 
is to analyze available data to  figure out which distribution can reasonably 
model the phenomenon of interest. In this textbook we will not dwell deeply 
in such a fundamental issue. 

A few examples of discrete distributions 

Uniform distribution The uniform distribution assigns the same probability 
mass to  all possible values. p ( x l )  = p .  like in dice throwing. Clearly, this is 
possible only if a finite number N of values are considered. From the condition 

N 
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we immediately see p = l/!V'. 

Bernoulli distribution A Bernoulli random variable stems from the idea of a 
random experiment, which can result in a success with probability p or in a 
failure with probability 1 - p .  If we assign to  the random variable X the value 
1 in case of a success and 0 in case of a failure, we get the PAIF: 

p x ( 0 )  = P{X = O} = 1 - p ,  
px(1) ?E P{X = l} = p .  

\Ve can calculate expected value 

E[X] = 1 . p + 0 . (1 - p )  = p 

and variance 

Var(X) = E[X2] - E2 [XI = [ 1' . p + O2 (1 - p ) ]  - p 2  = p (  1 - p ) .  

This makes sense: The variance is zero for p = 1 and p = 0 (there is no 
uncertainty on the outcome of each experiment). and it is maximized for 
p =  112. 

Geometric distribution The geometric distribution is a straightforward exten- 
sion of the Bernoulli distribution: it is obtained by thinking of repeating a 
sequence of identical and independent experiments until we get the first suc- 
cess. The number of experiments we carry out is a random variable. whose 
PLIF is 

p ,  = P{X = i }  = (1 - p)t- 'p .  (A.3) 
where p is the probability of success. To understand (A.3). we note that 
X = z if we have z - 1 failures before getting the first success. nhich stops 
the experiment. 15-e should also note that this distribution has an infinite 
support. i.e., there are infinite values that the variable can take with strictly 
positive probability. Figure A.3 shows the PLIF of a geometric variable with 
parameter p = 0.2. 

To compute the expected value of a geometric variable. it is useful to recall 
a couple of properties of the geometric series. which hold for o E (0. l).5 The 
first propert\. 

x 
1 C0-L -. 

1 - 0  
2=0 

can be justified by writing 
x x 

'This condition is needed to ensure convergence of the series to a finite value. 



448 A QUICK TOUR OF PROBABILITY AND STATISTICS 

-0 5 10 15 20 25 30 35 

Fig. A.3 Probability mass function of a geometric random variable with p = 0.2. 

and rearranging to  obtain S.  The second property is obtained by taking the 
derivative of the series with respect to  a ,  term-by-term: 

The first property of the geometric series allows us to  prove that the (A.3) 
makes sense, i.e., the sum of the probabilities is 1 (this is left as an exercise 
to  the reader). The second one is useful to compute the expected value: 

It is worth noting that the expected number of trials grows when the success 
probability is decreased. We will consider again the variance of a geometric 
random variable in example A.13 on page 473, as an example of computing 
moments by conditioning. 

The binomial distribution The idea, as in the case of the geometric variable, 
is to repeat independent experiments. but here we carry out a given number 
n of experiments and we count the number of successes. The PNlF is 

where we use the binomial coefficient 

n! 
(n  - r ) ! r !  ' 
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Fig. A.4 Probability mass function of two binomial random variables. 

To see why this coefficient should be used, we should consider that there 
are many ways in which we may have T successes and n - r failures: which 
experiment succeeds or fails is irrelevant. We have n! permutations of the ex- 
periment.6 (n - T ) !  permutations of failures. and T !  perrnutations of successes: 
but the specific order of each permutation is irrelevant. This distribution has 
finite support and depends on two parameters. Figure A.4 S ~ O T T . ~  the PAIF 
for n = 30. and p == 0.2. p = 0.4. Using properties of sum3 of iiidependerit 
random variables (s1.e section A.5). it is easy to show that 

E[X] = n p ,  Var(X) = n p ( 1  - P) 

6\Ve recall thedefinit ionofthefactorialofanintegernumber.  n! G n . ( n - l ) . ( n - 2 )  . . .  2 . 1 ;  
by convention. O! = 1. 
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Fig. A.5 Probability mass function of a Poisson random variable. 

The binomial variable. just like the geometric variable, has a “physical” mo- 
tivation; we may disregard this motivation and. given empirical data on the 
demand for an item sold in small volumes, we may find the parameters n and 
p yielding the best fit of the theoretical model against the real data. 

Poisson distribution 
rameter A. and it may take values on the set (0 .  l. 2 , 3 , .  . .}. The PMF is 

The Poisson random variable is characterized by a pa- 

Despite the apparent complexity of this function, it is straightforward to check 
that it meets the fundamental requirement of a PMF: 

Now we may also compute the expected value: 

30 xi xz-1 

E[X] = zie-’, = Ae-’ ___ 
a .  (i - l)! 

i=O i=l 

k=O 

It is a bit more tedious to prove that variance has the same value, Var(X) = A. 
Figure A.5 shows the PMF of a Poisson random variable for A = 5. 

In order to  get a grasp of why this distribution is relevant, it is essential 
to  understand the physical meaning of the parameter A, which is also the 
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expected value. Suppose that we want to model the number of customers 
or orders arriving during a certain time interval. ilny customer arrival is 
an event, and it is natural to  measure the flow intensity of requests by an 
arrival rate, which is the average number of customers arriving per unit time. 
The Poisson distribution is a possible model for such a phenomenon. which 
is suitable when arrivals are independent among thern and uniform over time 
with average rate A. In practice. we often consider a parameter A t .  where X is 
the event rate in the time unit and t is a time span of interest. Lye will see that 
the Poisson distribution is strictly linked to the exponential distribution and 
to  the Poisson stochastic process, which are described in the following. The 
Poisson distribution can also be thought as the limit of a binomial variable for 
p + 0 and n + +m. In other words. if we have a large number of customers 
and each one of thern orders an item. over a time interval. with a Lery small 
probability. the aggregate demand will be Poisson distributed. 

Empirical distributions So far. we have considered "theoretical" distributions. 
which have t'heir roots in a simple random process and are characterized by 
one or two numerical parameters; more complicated distributions. depending 
on more parameters. niay be devised. Sometimes. however! none among the 
known theoretical dktributions seems to fit the available data. In such a case, 
a possible alternative is to settle for an empirical distribut,ion, whereby the 
mass function is given by a vector of probabilities p,. i = 1. . . . . N. which 
are obtained by analyzing the empirical frequencies of the observed outcomes. 
This is fairly straightforward to do. but it is essential to keep in mind a couple 
of liniit,ations and pitfalls. 

0 Oft'en. theoretical distributions do not fit empirical data. because these 
are affected bjr several underlying phenomena. The possibility of us- 
ing an empirical distribution should not prevent us from understanding 
the root causes of the lack of fit: and sometimes the random phenom- 
ena should not; be confused. A typical example is demand affected by 
promotional sales. If time period with full and discounted prices are 
alternated, this is likely to  have a significant impact on the demand 
distribution. 

0 Another issue is that a simple-minded approach to devising an empirical 
distribution does not consider at  all the possibility of having realizations 
of the random variable outside the range observed so far. In some cases. 
to account for extreme realizations. a mixture of empirical and theoret- 
ical distributions may be used to add some ..tail" t,o the distribution. A 
similar problem occurs if we build a distribution on a subjective basis, 
e.g.: considering demand forecasts by several experts for a brand new 
product, lacking a demand history suit,able for statist,ical analysis. If we 
denote by Dk the forecast of expert k .  k = 1. . . . . we could consider a 
crude distribution where each discrete value has probability l /M. This 
makes sense if we believe that the experts are equally reliable and each 
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guess is as good as the other ones. However, this automatically rules 
out any value outside the minimum and maximum of Dh. 

A.4 CONTINUOUS RANDOM VARIABLES 

If a random variable takes values on a continuous set, such as the real line 
R = (-m. +x) or a bounded interval [a, b ] ,  we speak of a continuous ran- 
dom variable. From a logical point of view. introducing continuous random 
variables follows the same steps as in the discrete case, but there are some 
technical complications due to  the fact that the range now is noncountable. 
For instance, we cannot say that there is a finite probability that the ran- 
dom variable takes a specific value, as this probability is zero. The key issue 
is that the probability mass is not concentrated on discrete points, but it is 
distributed on a continuous range. and this requires using slightly different 
concepts. As usual. we will rely on intuition without bothering too much 
about rigorous arguments. 

A good starting point is the cumulative distribution function, Fx(x) = 
P{X 5 x}, which can be defined just as in the discrete case. Actually here, 
unlike the discrete case, there is no practical difference between a strict in- 
equality or not, since P{X < .} = P{X < .}; however, it is preferable to 
maintain conceptual uniformity. As we said, we cannot speak of a probability 
mass, but we may define a related concept. Consider a bounded interval [a, b ] ;  
then, given the CDF, we may write 

P{u I x 5 b }  = P{X I b }  - P{X < u }  = Fx(b) - Fx(a). 

Under some conditions, we may come up with a probability density func- 
tion, or PDF for short, such that we may also write 

b 
P{u < x 5 b }  = s, fay(.) d z .  

Now we may see why, in the continuous case, we have 

P{u < x < b} = P{a < x I b }  = P{u 5 x < b }  = P{a < x < b } .  

The reason is that including an extreme point of the integration interval. 
i.e.. a set of zero measure, does not change the integral. More generally, the 
density function f x ( . )  allows us to  associate a subset B of the real line with 
a probability 

r 

P{X E B }  = fx(.) dx. ll3 
As usual, note that X is a random variable and that z is an irrelevant inte- 
gration variable. 
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The PDF is non-negative and. in strict analogy with condition (A.2), the 
following condition must hold: 

+cc 

s_,fx(x) dx = 1. 

The support of the distribution is the subset of R where the density is strictly 
positive. 

To get an intuitive feeling for the meaning of the PDF, let us consider a 
small interval ( a ?  a $- 6z). Then we have 

a+bx 
P{X cs (u .  a + 62)) = f x ( y )  dy M fx(a) 6z. 

This probability goes to zero when 6x + 0. Hence, we see that the PDF does 
tell us where the realization of a continuous random variable is more or less 
likely to  happen. bul; the probability of getting a single real number is always 
zero. 

To see the link between PDF and CDF. we may consider 

P{a :I x 5 b }  = fx(z) d z  = F x ( b )  - F x ( a )  i" 
and take the limit a + -m: 

b 

F ( b )  = P{X 5 b }  = lp dx. 
Going the other way around. 

d F ( z )  = f ( x ) .  
dX 

which is a consequence of the fundamental theorem of Calculus. 
Intuitively. the main difference between discrete and continuous variables 

is that in the former case we have discrete sums involving a mass function. 
whereas in the latter we have integrals (i.e.. the limit of a sum) involving a 
density. Given a CDF. in the discrete case we get a PMF by taking differences, 
i.e.. by considering increments. By the same token. in the continuous case me 
get the PDF by taking the derivative of the CDF. which is the limit of an 
incremental ratio.7 

Keeping the intuition above in mind. we may follow the same path we have 
seen in the discrete case and define the moment of order k for a continuous 
random variable: cx: 

p$)  = E[Xk] = / x k f x ( x )  dx.  
J - X  

7A bridge between these two worlds can be  built by resorting to  "impulse functions.'' which 
concentrate the  probability mass on a discrete set of points. This is necessary to  deal with 
mixed distributions. pa.rtly discrete and partly continuous, which are not used in this book. 
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By the same token, we may define the following concepts: 

0 The expected value of a continuous random variable X, 

tX 

0 The expected value of a function of a continuous random variable. 

With reference to the second concept. it is important to  stress that ,  in general, 
the expected value of the function is n o t  the same as the function of the 
expected value: 

E[g(X)I f S(E[Xl).  (A.7) 

The two values are the same for an affine function. given the linearity of the 
expected value operator. but nothing can be said in general for nonlinear 
functions. We will stress this concept again in counterexample A.8 on page 
457. 

Variance is defined as a (central) moment of second order, just like in the 
discrete case: 

+a2 

(x - E[X])2 fx(x) dx = E[X2] - E2[X]. 1, Var(X) E 

We should not take for granted that variance always exists, as this integral 
may diverge for certain heavy-tailed distributions. It is worth recalling that 
there are other quantities summarizing some features of a distribution, such 
as mode and median. 

DEFINITION A.7 T h e  mode of a dastrzbutzon 1s defined as t h e  poant 
where the  denszty f x ( x )  zs maxzmzzed (af the  m a x t m u m  exasts). 

Given this definition, it is tempting to  say that the mode is the most likely 
value among those the random variable may assume. To begin with. this 
idea makes no sense for a continuous variable. as all values have the same 
probability (zero), whereas in the discrete case it could sound more convincing. 
However. the idea of "most likely" value should be made more precise, as 
shown in the following example. 

Example A.7 Given a density function f x ( x ) .  say that we must provide 
a good forecast a for the value that the random variable X will take. To 
rationalize the problem. we rnust first clarify what a "good" forecast is. One 
possible criterion to measure the quality of a forecast is the mean square 
error, or LISE for short: 

E[(X - a) ' ] .  
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X 

F ig  A.6 An example of multiniodal density. 

i.e., the expected value of the error in the forecast. which we square to avoid 
compensation between errors by excess or by defect. Hence. we should solve 
the following optimization problem: 

minE[(X - 
a 

Rewriting SISE as 

E[X2 - 2aX + a’] = E[X’] - 2aE[X] + a2 

and setting the derivative with respect to  a to zero. we gets 

a* = E;X; 

\Ye see that the best forecast, according to the AISE criterion. is not the mode 
but the expected value. 0 

As we will see in the following. all of the common theoretical distributions 
have a single mode. in the sense that the density has a single global maxi- 
mum, rather than multiple local maxima. Sometimes, when analyzing real 
data. we may find multimodal distributions such as the one depictrd in figure 
A.6. which features a local maximum as well. A typical task, given a set of 
empirical data, is finding a theoretical distribution fitting the data in some 
‘.best“ way. Of course, we could do without this effort by building an empiri- 
cal density. but this could result in some undesirable overfitting. Hence. quite 
often spurious modes are “leveled off“ by using a theoretical single-mode dis- 
tribution. However. sometimes a more careful analysis is needed, as different 
modes can be linked to  different elements of a phenomenon. which deserve 

8We are taking for granted tha t  this first-order condition is sufficient. For a proper treat- 
nient of optimization methods. see appendix B. 
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careful modeling. One significant case in distribution logistics is the distri- 
bution of lead time. When ordering items from a supplier, we may observe a 
typical value of lead time, with some fluctuations due, e.g., to transportation 
delays. Occasionally, a much larger lead time can be observed, leading to 
a secondary mode. This may be the result of occasional stockouts suffered 
by the supplier, which result in unusually long lead times and need proper 
modeling. 

DEFINITION A.8 The median, for a continuous distribution, is a value 
mx such that 

1 
Fx(mx) = 2 '  

Mode, median, and expected value may be the same for a distribution charac- 
terized by a symmetric density, but they are different in general.g The median 
is a specific case of quantile. 

DEFINITION A.9 Given a continuous random variable X ,  with cumula- 
tive distribution function FX (x), the a-quantile is the smallest number such 
that 

Fx(x,) = Q, 

with Q E [0, 11. 

In other words, to  the left of x, we have an area Q below the graph of the 
density. In the definition we account for pathological cases, but for typical 
distributions the CDF is invertible and there is a unique quantile satisfying 
the equation in the definition: x, = F~'(Q). 

Some more care is needed for discrete distributions, since we might not find 
a possible realization x, such that 

k=l 

To see this, consider a distribution over the set {0,1,2.3.4},  with probability 
mass function po = 0.1, p l  = 0.4, p2 = 0.3, p 3  = 0.1, and p4 = 0.1, and try 
to  find the quantile with probability level 0.85. Hence, we should modify the 
definition, so that the quantile x, is the smallest number such that Fx(2,) 2 
a.  In the example, we have 20.85 = xo.go = 3. To get a feeling for the rationale 
behind this definition, think of this distribution as a demand distribution, 
and ask yourself which inventory level would guarantee a 85% probability of 
meeting demand from stock. 

gIt  is interestingto note; with reference to  example A.7, that the median is the best forecast 
for X if we take the mean absolute deviation E[1 X - 01 11, rather than WISE, as a metric. 
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By the same token, if we want to  define the median in the discrete case, 
we should find a number such that the following inequalities are satisfied: 

A.4.1 Some continuous distributions 

Uniform distribution 
stant density function on this support: 

A uniform variable on the interval [a> b] features a con- 

l / ( b  - a) if x E [a. b ] .  
otherwise. 

A commonly used notation to  say that a random variable X ha5 this distri- 
bution is X - U [ a .  bl,  or X - U ( a ,  b ) .  It is easy to see that 

and 

Example A.8 We show here a case to  illustrate what we pointed out con- 
cerning relationship (A.7) .  i.e., that the expected value of a function is not, in 
general, the function of the expected value. Consider the function g ( x )  = x2 
and a random variable X uniformly distributed over the interval 1-1. 11. Its 
PDF is f x ( x )  = 1/2- on the support. and E[X] = 0. Hence, g(E[X]) = 0. 
Howel-er, 

1 
3 0 

The uniform distribution is commonly used in computer simulation. since 
pseudorandoni numbers U - U(0.1) are the basis to sample from an arbitrary 
distribution. In practice, its use is often justified by lack of knowledge. LYhen 
we just know a range for an uncertain quantity. the uniform distribution could 
be our only choice. Tkiangular distributions are often used for the same reason: 
in this case. we basically give the support ( a .  b )  and the mode c. i e.. a lower 
and an upper bound on possible values. as well as the "most likely" value (in 
a very loose sense, a j  we have already clarified). 
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Exponential distribution An exponential random variable can only take non- 
negative values. i.e.. its support is [ O ,  +x). The name stems from the func- 
tional form of its density, 

where X > 0 is a given parameter. and the notation X N exp(l/X) is often 
used." The CDF is 

and the expected value is 

1 
X 

It is worth noting that the expected value is quite different from the mode. 
which is zero. It can be shown that variance for the exponential distribution 
is 1/X2. implying that the coefficient of variation is ex = 1. 

Unlike the uniform distribution. there are typically good physical reasons 
to adopt this distribution to model a random quantity. A common use is to  
model interarrival times. e.g.. the time elapsing between two consecutive ar- 
rivals of customer orders. Note that X is. within this interpretation. the order 
arrival rate and that the mean interarrival time is 1 / X .  There is a strong link 
with the Poisson distribution: When the interarrival times are exponentially 
distributed with rate A, the number of orders received in a time interval of 
length t is a discrete random variable following a Poisson distribution with 
parameter At. Furthermore, we will see later that  this phenomenon corre- 
sponds to a common stochastic process. which is unsurprisingly known as the 
Poisson process. 

In example A.15 on page 475 we will see that the exponential distribu- 
tion enjoys a very peculiar property known as *'lack of memory." Roughly 
speaking, this says that whatever time interval we observe without any ar- 
rival occurring. the distribution of the time we must wait until the next arrival 
is always the same. To get the point, imagine that we use the exponential 
distribution to model time between failures of an equipment. Lack of memory 
implies that  even if the machine has been in use for a long time, this does not 
mean that it is more likely to have a failure in the near future. We should 
note the big difference with a uniform distribution. If we know that time 
between failures is uniformly distributed between, say, 50 and 70 hours. and 
we also know that 69 hours have elapsed since the last failure, we must expect 
the next failure within one hour. If the time between failures is exponentially 

l0We are assuming that the parameter used in the notation is the  expected value. 
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Fig. A. 7 PDF of normal random variables with p = 0 and 0 = 1. 0 = 3. 

distributed and 69 hours have elapsed. we cannot conclude anything. since 
from a probabilistic point of view the machine is brand new. If we think of 
purely random failures. due to bad luck, the exponential distribution may be 
a plausible model. but definitely not if wear is a factor. 

Normal (Gaussian) distribution The nornial distribution characterizes what is 
arguably the best-known type of random variable. Its support is the whole 
real line and its PDF is the bell-shaped function 

with parameters p and 0: the density is symmetrical with respect to the point 
with abscissa p A few calculations show the meaning of the two parameters: 

E[X] = p ,  Var[X] = 02.  

Often. the notation I{ 
4 s  we said. the parameter p is a location measure of the distribution. 

whereas o is a dispersion measure and tells how much the density IS concen- 
trated around the expected value. In figure A.7 we show the PDF for tuo  
normal distributions x i th  1-1 = 0 and 0 = 1.3. iespectively. In this cil\e mode. 
median. and expected value are the same. 

In applications. a .iery special role i5 plaj-ed hl- the standard normal dis- 
tribution, characterized by parameters 1-1 = 0 and 0 = 1. The reason of its 

LV(p. 0') is used." 

llWe should note a potential ambiguity here. Sometimes. the riotation X - .V(,u. u) is 
used. Indeed, the second parameter characterizing a normal distribution can equivalently 
be u or m 2 .  
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importance is that  if we are able to  work with a standard normal in terms of 
quantiles and distribution function, then we are able to work with a generic 
normal variable. This is important. as the CDF is the integral of the bell- 
shaped function above. for which no analytical formula is known. The key 
point is that .  given the properties of expected value and variance, if X is 
normal with parameters p and o, then cyX + p has normal distribution with 
parameters ap  + p and ao. In particular. Z = ( X  - p ) / o  is a standard nor- 
mal. We may also go the other way around. starting from 2 - N(0 .  l) ,  and 
obtain a generic normal variable X - N ( p .  02) by considering X = p + 02. 

Although the general CDF for a normal variable is not known analytically, 
efficient numerical approximations (and fairly accurate tables) are widely 
available for the standard normal case: 

@(z) = P{Z 5 z} = - e-”I2 d z .  

These tables and numerical procedures also yield the quantiles zq defined by 

for a probability level q E ( 0 , l ) .  The tables are often given with different 
conventions. which may be confusing at  first sight. However. given the sym- 
metry of the standard normal distribution, any ambiguity is readily resolved. 
A common notation, which is ubiquitous in Statistics, is ~ 1 - ~ ,  where cy is a 
relatively small number (say. 0.1 or 0.05) and it is intended that the quantile 
z l p a  leaves to  its left an area 1 - cy under the graph of the density, whereas 
cy is the area under the right tail. 

Sometimes we are interested in a symmetric interval around the origin, 
such that cy is the probability that a realization of the random variable will 
fall outside the interval. Then, we should cut two symmetric tails, each one 
with an area 0 / 2  under the CDF, to the left and to  the right. Given the 
symmetry of the density, we have 

The idea is illustrated in figure A.8. The statistical tables also give quantiles 
for other relevant distributions in Statistics, which are obtained from the 
standard normal. as we shall see in section A.6.3. 

Example A.9 The knowledge of the CDF and the quantiles for a standard 
normal yields all the required values for a generic normal. In fact. if X is 
normal with parameters p and o, we know that Z = ( X  - p ) / o  is a standard 
normal. Hence. for instance, 
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Fig. A 8  Quantiles of the normal distribution. 

Suppose that X - ?i(3,16) and that we are interested in the probability 
P{2 < X < 7 ) .  Looking at the statistical tables, we obtain 

= Q(1) - @(-1/4) 
= @(1) - [l - @(1/4)] 
= 0.8413 + 0.5987 - 1 

= 0.4400. 

When we are interested in the quantiles, the relationship above implies that  
if we want the quantile zq for X N -V(p .02) ,  all we have to do is find the 
corresponding quantile zq for the standard normal and compute 

xq = /i + o z q .  0 

A. 5 J 0 I N T LY D I STR I B U T E  D RAN D 0 M VARIABLES 

So far. we have considered a single random variable. but in distribution logis- 
tics we typically work with several variables a t  a time. For instance. we may 
be interested in the sales of a given item over several days or weeks. or in the 
demand for several, possibly related items within the same period. It is very 
important to figure out which relationship, if any. may link these variables. 
For the sake of simplicity. we will only deal with the case of two random 
variables mith a joini distribution. leaving the general case as a relatively 
straightforward extension. 

The pathway to  define all the relevant concepts for two jointly distributed 
random variables X and Y is similar to the ca5e of a single variable. The 
starting point consists of joint events { X  5 r }  n {Y 5 y}. to  which a prob- 
ability measure is associated. Given random variables X and Y .  we must 
specify the joint CDF 
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where we use the simpler notation {X 1. 5, Y 5 y} for the joint event, instead 
of intersection. Just as in the case of a single random variable, this CDF 
collects all the relevant information: however. we may also find mass and 
density function very useful. 

In the discrete case. we may define the PPLIF: 

PX,Y(X,.YJ) = P{X = Z 2 , Y  = Y J } .  

Under some technical conditions. we may come up with a PDF fx,y(z, y) in 
the continuous case, such that,  given a region D in the two-dimensional plane, 
we have 

With respect to the single variable case, a new concept is the marginal dis- 
tribution for the two variables, which is obtained as follows for the continuous 
case: 

P{X E A} = P{X E A. Y E (-X, +30)} = 

where 
+30 

fx(2) = s_, fX,Y ( 2 .  Y) dY 

is the marginal density for X .  The marginal density fy(y) is obtained by 
the same token, and the discrete case is similar as well. It is very important 
to realize that. given the joint density. we may find the two marginals. but 
we cannot really go the other way around. Quite different joint distributions 
may have the same pair of marginal distributions, and this depends on the 
relationship between the two variables, which we will investigate later. 

The definition of expected value, variance, and moments is similar to  the 
scalar case. Given a function g(X. Y) of the two random variables, its expected 
value is 

in the discrete case, 
Z . 7  

g(x, y)fx.y (z. y) dy dz in the continuous case. 

Given the linearity of the sum and integral operators, we may see that the 
expected value of a linear combination of random variables is the same linear 
combination of the expected values. Formally. if we define a random variable 

n 

i=l 
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where the numbers A, are the weights in the linear combination, its expected 
value is 

n 

2 = 1  

This result does not apply. in general, to variance: 

Var(X + Y )  # Var(X) + Var(Y). 

By the same token. in general. 

\Ye may have an equality in some cases. which require the introduction of the 
concept of independence. 

A.6 INDEPENDENCE, COVARIANCE, A N D  CONDITIONAL 
EX P E CTAT I 0 N 

A.6.1 Independent random variables 

Independence among random variables is directly related to the familiar con- 
cept of independence between events. Two random variables X and Y are 
independent if the two events {X 5 x} and {Y 5 y} are independent, i.e.. if 
for any x and y we have 

\Ye see that independence allows us to  factorize the joint CDF into the product 
of the individual CDFs. A consequence of this condition is that ,  in the discrete 
and continuous case. we may also factorize the PZIF and the PDF into the 
product of marginals: 

This allows us to  decompose double sums and double integrals. so that 

A further consequence is that. for a set of mutually independent raiidom 
variables, we have 
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We should note that a similar expression applies to  the expected values of 
a linear combination of random variables; however, the formula for the ex- 
pected value does not rely on any assumption about independence and holds 
in general. In particular, for independent variables X and Y we have 

Var (X + Y) = Var (X) + Var (Y) . 

Note that we may sum variances, but not standard deviations: 

ox+y = 40% + .$. 
The next example illustrates an interesting consequence of these properties. 

Example A.10 Consider a set of i.i.d. random variables X,, i = 1, . . . , n, 
with expected value ,LL and variance u2.  By “i.i.d.” we mean independent 
and identically distributed. In Statistics (see section A.8), we are commonly 
interested in their average 

1 ”  z = - c x  n 2 )  

z=1 

which is a random variable as well. Let us compute the expected value and 
variance of 2. From the linearity of expectation, we immediately see 

As far as variance is concerned, given our assumption of independence, we 
have 

. ”  9 

If we evaluate the squared coefficient of variation, we see 

c 2 - p  Var(Z) - - - o2 - - cR - ’- E2[Z] n 2 p 2  n ’ 

which shows an intuitive property of the average of independent variables: It 
is often ”less uncertain” than the individual realizations. 

It is very important to point out the difference between 

Var(nX,) = n202 

and 
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If we mere to  simulate the first case, we would take one realization (or sample) 
of a random variable. and we would just multiply it by n. In the second case. 
we take n independent realizations and we sum them. Intuitively. the second 
case is less subject to random variability. As a practical illustratioii. consider 
the random daily demand for an item, assuming that demands in different days 
are independent. Weekly demand is obtained by summing daily demands and 
not by taking daily demand and multiplying it by the number of days in a 
week. 0 

A.6.2 Covariance ;and correlation 

If two random variables are not independent: it is natural to investigate their 
degree of dependence, which means how can we measure it and how can we 
take advantage of it. The second task leads to statistical modeling, which 
we will investigate Liter in the simplest case of linear regression. The first 
task is not as easy as3 it may seem: as capturing dependence is a tricky issue. 
Nevert,heless, we may settle for a less ambitious t,ask and try to figure out a way 
to  characterize the .*concordance" between random variables. For instance. 
suppose that the ran(clom variable X tends to  assume "large" values whenever 
Y does the same. Nore precisely, sa?; that in most joint realizations ( X ,  Y ) ,  
both values tend to be either larger or smaller than the respective expected 
values. Mre could try to come up with a measure of this association.12 One 
intuitive measure of this link is covariance: 

COV(X, Y )  E E[(X - E[X])(Y - E[Y])]. 

We have positive covariance when the events { X  > E[X]} and {Y > E[Y]} 
tend to occur together, as well as the events { X  < E[X]} and {Y < E[Y]}: 
because the signs of the two factors in the product t,end to be the same. If 
the signs tend to  be different. we have a negative covariance. 

For instance, if two products are complements. it is natural to  expect pos- 
itive covariance between their demands; negative covariance can be expected 
if they are substitutes. Similarly. if we observe over time t,he demand for an 
item whose long- or mid-term consumption is steady, a day of high demand 
should be typically followed bj- a day with low demand (as an example. con- 
sider the weekly demand of diapers if there is a promotional sale during one 
week). 

From a computational point of view: it is very handy to express covariance 
as follows: 

Cov(X. Y )  E E [(X - E[X]) . (Y - E[Y])] 

''Strictly speaking. we obtain a measure of concordance. rather than a measure of depen- 
dence: the latter should be something in the  range [O. 11; whereas as will shall see. correlation 
is in the  range [-l> 11: furthermore. a measure of dependence should meet somc' reasonable 
requirements which are beyond the  scope of the  book. 



466 A QUKK TOUR OF PROBABILITY AND STATlSTlCS 

= E [XY - E[X] . Y - X . E [Y] + E[X] . E[Y]I 

= E[XY] - E[X] . E[Y]. 

We easily see that if two variables are independent, then their covariance is 
zero. since independence implies E[XY] = E [ X ] .  E[Y]. However, the converse 
is not true in general. as we may see from the following example. 

Example A.11 Let us consider a uniform random variable on the interval 
[-1. 11; its expected value is zero and the density function is. on its support, 
constant and given by f x ( z )  = 1/2.  Now, let a random variable Y be given 
by 

Y = JiTF. 
Clearly. there is a very strong dependence between X and Y. because, given 
the realization of X, the other one is perfectly predictable. However, their 
covariance is zero. We have seen that 

COV(X, Y) = E[XY] - E[X]E[Y], 

but E[X] = 0 and 

1 1 

E[XY] = / : d m .  5 dz = 0, 

because of the symmetry of the integrand function, which is an odd function. 
in the sense that f ( - z )  = - f ( x ) .  

The key issue is that covariance is not really a good measure of dependence. 
It is only able to get a h e a r  association between random variables, whereas 
in this case there is a very nonlinear link. since points with coordinates (X, Y)  
lie on the upper half of the unit circumference X2 + Y2 = 1. A more intuitive 
explanation is that  if Y > E[Y]. then we may have either X > E[X] or 
X < E[X]. 0 

The following properties. whose proof is recommended as an exercise, are very 
useful: 

0 Cov(X. X) = Var(X), 

0 Cov(X. Y)  = Cov(Y, X), 

0 Cov(aX, Y) = a Cov(Y, X), 

0 Cov(X, Y + 2) = Cov(X. Y )  + Cov(X. 2). 

Using such properties, or the definitions. we may show 

Var(X + Y) 

Var(X - Y) 

= 

= 

Var(X) + Var(Y) + 2 Cov(X. Y),  

Var(X) + Var(Y) - 2 Cov(X. Y).  
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By the way. we point out that variances are always summed. even if we take 
differences of random variables: otherwise, we could end up with a negative 
variance. which is impossible. Alore generally. for an arbitrary sum of random 
variables: 

n 

2 = 1  3 < 2  

\Ve see that,  in the case of mutually independent variables, the variance above 
boils down to the sum of variances. 

A further issue with variance is that its value depends on how we measure 
the underlying quantities. We cannot say that a covariance of 100 is large or 
small. To define a measure which is independent on the unit of measure. we 
may introduce the correlation coefficient p x , y :  

It can be shown that the correlation coefficient takes values in the interval 
[-1.11. A value close to 1 shows a strong degree of positive correlation: a 
value close to  -1 shcws a strong degree of negative Correlation. If correlation 
is zero. we speak of uncorrelated variables. 'IVe stress again that uncorrelated 
variables need not be independent. A notable case in which lack of correlation 
implies independence is the multivariable normal distribution: If two jointly 
normal variables are uncorrelated. they are independent too. 

A.6.3 Distribution!j obtained from the normal and the central limit 
theorem 

In general, if vie sum identically distributed random variables. we do not get 
a random variable with the same distribution. For instance. if we sum two 
i.i.d. uniform random variables, we do not get a uniform random variable. By 
the same token, summing independent exponential variables. we do not get 
an exponential variable. If we allow the possibility of dependencies among the 
variables. the issue can get really complicated. 

*4 most notable exception is the normal distribution. If we sum independent 
normal random variables. we still get a normal ~ a r i a b 1 e . l ~  If we take a linear 
combination. with weights A,. of a set independent normal variables X,, z = 

1. . . . . n. with parameters pz and oL. we get a normal random variable 

n 

z=1 

I3Proving this requires the  introduction of moment generating function, which is beyond 
our scope. 
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with 
n n 

E[X] = Xipi , Var(X) = Afof. 
i=l i=l 

It is important to  note that this result does not require independence. If 
we have jointly normal random variables, any linear combination of them is 
still normal; the covariances affect the variance of the linear combination. 
If we group variances and covariances in a matrix E, with elements oZ3 = 
Cov(X,. XI), ozz = Cov(X,. X,) = Var(X,) = of, we may see that 

Var(X) = X’EX, 

where X is a column vector grouping coefficients Xi .  

complex patterns, we find some useful distributions. 
If we combine independent standard normal variables according to  more 

Lognormal distribution A random variable X is said to  have a lognormal 
distribution if ln(X) is normal (note the use of natural logarithm). In other 
words. if Y is normal with parameters ,Y and 02, then X = e y  is lognormal. 
There is a link between the parameters of the lognormal variable and those 
of the underlying normal variable. For instance, it can be shown that 

Hence, if Y N N(-02/2. 02), then E[X] = 1. This suggests using a lognormal 
variable with unit expected value to model random errors in a multiplicative 
model, whereas a normal variable with zero expected value would model ran- 
dom errors in an additive model (see section A.10.6). More generally, the 
normal distribution enjoys the nice property that by summing normal vari- 
ables, we still get a normal variable: a similar property holds when we multiply 
lognormal random variables. 

Chi-square distribution 
normal variables. The random variable X defined as 

Let 2,. i = 1 . .  . . . n. be standard and independent 

is certainly not normal, as it cannot take negative values. This variable is 
called chi-square with n degrees of freedom and is often denoted by x:. 

S7e note that the expected value of a squared standard normal is 

E[Z2] = Var(2) + E2[Z] = 1, 

from which we immediately see 

E[X] = n. 
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0 5 15 10 

Fig A 9 PDF of two chi-square random variables with 4 and 8 degrees of freedom. 
respective11 : the  variable with 4 degrees of freedom is less uncertain and has a higher 
mode. 

It can also be shown that 

Var(X) = 2n. 

Quantiles of chi-square variables are tabulated for several degrees of freedom. 
Figure A.9 shows the PDF for a chi-square variable with 4 and 8 degrees of 
freedom. 

Student's t distribution If Z and xi are a standard normal and a chi-square 
with n degrees of freedom, respectively. and they are also mutuallv indepen- 
dent. the random variable 

has a Student's t distribution with n degrees of freedom. One could m-onder 
Lvhy this weird ratio plays a practical role; we will see why later. when we 
consider parameter mtimation and confidence intervals. 

The density of the t distribution is bell-shaped and it looks much like a 
standard nornial: the main differences lie in its heavier tail and in a lower 
mode. In figure A.10 we show the densities of TI and Tj random variables. 
along a standard normal 2. lTre see that for increasing n. the tail5 of T, get 
thinner and the density tends to a standard normal. In fact. for large n the 
two distributions arc' virtually identical. 

It can be shown that 
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Fig. A.10 PDF of Student’s t distribution. with n = 1 (dash-dotted line) and n = 5 
(dashed line). compared with a standard normal (continuous line). 

Statistical tables are available for quantiles t ~ - ~ , , ,  i.e., numbers satisfying the 
condition 

P{T, 5 tl-cu.n} = 1 - Q. 

F distribution 
with n and m degrees of freedom, respectively, to get a variable defined as 

Finally, if we combine two independent chi-square variables 

we obtain the F distribution with n and m degrees of freedom. This distribu- 
tion too has applications in Statistics, which has motivated the compilation 
of tables yielding quantiles. 

Central l imit theorem We have stressed that,  by summing identical random 
variables. we do not get a similar distribution in general. However. if we sum a 
large number of i.i.d. random variables (please note independence), we obtain a 
distribution which gets closer and closer to  a normal. This observation, which 
can be formalized as follows, contributes to explain the role of the normal 
distribution: When a phenomenon results from the sum of a large number of 
independent components, a normal distribution can make a good model. 

This result is known as central limit theorem. A rigorous statement of 
the theorem requires some concepts of stochastic convergence, but we may try 
to clarify the sense of the theorem. Consider a sequence X I ,  X,. . . . , X ,  of 
i.i.d. random variables, with expected value p and standard deviation LT. For 
n going to infinity, it can be shown that the sum 

x1 +xz + . . . +  x, 
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has a distribution which is approximately normal with expected value n p  and 
standard deviation ,/&. In other words. the variable 

xl+ X2 + ’ ’ ’ + x, - n p  
f i g  

tends to a standard normal distribution. A little more precisely. we have 

where @(x) is the ClDF of a standard normal. To illustrate the practical con- 
sequence of the theorem. if we have a large number of independent customers 
who order a certain item. we may assume that the overall demand can be 
modeled b) a normal random variable. Such an assumption must be \Tali- 
dated by proper statistical procedures, or at least checked in terms of basic 
tests. For instance. if the standard deviation is too large with respect to  the 
expected value, there is a non-negligible chance of a negative demand, which 
makes no sense: in such a case. an asymmetric demand distribution would 
probably be a better model. 

A.6.4 Conditional expectation 

In section A.2 we have introduced conditional probabilities. When we deal 
with random variables, we may introduce the concept of conditional expecta- 
tion. which is essentially the expected value of a variable X ,  given knowledge 
of the realization of another variable Y .  As a practical example. 1I.e might 
wonder what is the expected demand for ice cream (random variable X )  as 
a function of temperature (random variable Y ) .  \Yhat we really get is a ran- 
dom variable denoted by E [ X  1 Y ] .  Conditional expectation is actually a very 
subtle concept in probability theory. which requires some nontriT-ial techni- 
cal machinery when continuous random variables or stochastic processes (see 
next section) are involved. However. we may start from the discrete case to  
build intuition heuristically. 

We would like to know how the event {Y = y} influences the distribution 
of X .  IVorking along the lines of conditional probability, we may introduce a 
conditional probability inass function: 

Then, we may define conditional expectation: 

It is a useful exercise to check that. if X and Y are independent. then E(X 1 
Y = y) = E(X). \Vet cannot really extend this concept directly to continuous 
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random variables, as the event {Y = y} has zero probability. What we can 
do is to define a conditional density 

which yields the conditional expectation 

+m 

E[X I y = Y1 = / Zf.XJY(Z 1 Y)dX. ( A . l l )  

Example A.12 Suppose that the joint density of two continuous random 
variables is 

-32 

f X , Y  ( 2 ,  Y) = K ( z  + Y), 
where 0 5 z, y 5 1 and K is a normalization constant such that integrating 
the density over its support we get 1. To compute E(X 1 Y ) ,  the first step is 
finding the marginal density of Y: 

Hence, the conditional density is 

and we actually see that knowledge of the constant K is not needed. Applying 
the definition14 ( A . l l ) ,  we get 

From this example, we see that we get a function of y. The notation E(X I 
Y = y) points out that if the realization of the random variable Y is y, then 
we have a number which is the conditional expected value of X .  The notation 
E(X 1 Y )  actually shows that this is a random variable, which is actually the 
best forecast we can come up with, as a function of Y. Indeed, conditional 
expectation is all about the proper use of (partial) information. 

If we interpret E(X 1 Y )  as a random variable, then it is natural to con- 
sider its expected value (expectation, in this case, is with respect to y ) .  A 
fundamental property of conditional expectation is 

E[X] = E[E[X 1 Y]]. (A.12) 

I4Readers with a background in measure-theoretic probability would object that  this is not 
really the definition. which requires a way to model information by some a-algebra, but 
please bear with us. 
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ilre may clarify the meaning of (A.12) by rewriting it explicitly: 

CE[X I Y = yj]P{Y = yJ} in the discrete case. 

E[X 1 Y = y]fy(y)  dy in the continuous case. 

iVe will not prove thLis property, but at least in the discrete case we may see 
a link with the theorem of total probabilities theorem. 

Equation (A.12) is very relevant from a practical point of view. Among 
other things. it may be exploited as a trick of the trade to compute expected 
values when a direcl approach looks too difficult. In the following we will 
show a few applications of this technique. 

Example A.13 In the previous sections we have considered the geometric 
distribution with parameter p and we have proved that its expected value is 

1 
E[X] = -. 

P 
To this aim. we have used some familiar properties of the geometric series. 
but there is a much more straightforward way to obtain the same result by 
conditioning on the outcome of the first trial (the reader should recall the 
physical motivation of this distribution). If the first trial is a success. and 
this occurs with probability p ,  we have X = 1 because we have just attained 
our success and we stop the sequence of trials immediately. Otherwise, we 
have already failed once, and we must try again. However. since experiments 
are independent, we are just back to square one, and the expected number of 
trials to go is the same as before. Formally: 

E[X] = E[X ~ OK].F’{OK}+E[X 1 NOK].P{NOK} = l . ~ + ( l + E [ X ] ) ( l - p ) .  

from which we immediately get E[X] = l / p ,  which confirms our previous 
result. The real bonus, though, comes when computing variance. As a pre- 
liminary step, we have 

E[X2] = 

= 1 2 . p + E [ ( 1 + X ) 2 ] ( l - p )  

= p t (1 + 2EjXj + E[X2])(1 - P )  
= p+ ( 1 + 2 / p ) ( l - p ) + E [ X 2 ] ( 1 - ~ ) ~  

E[X2 1 OK] . P{OK} + E[X2 1 NOK] . P{YOK} 

which yields 

Then we immediately obtain 

2 - P  E[X2] = -. 
P2 

2 - p  1 1 - p  

P2 P2 P2  
- Var(X) = E[X2] - E2[X] = - - - - -. 
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Example A.14 Here we generalize the result obtained in example A.10 on 
page 464, by considering a random variable defined as 

N 

where now N is a discrete random variable. with known expected value and 
variance, rather than a number: we also assume that N is independent from 
variables X , ,  which are niutually independent as well. In other words, we 
consider a sum of a random number of random variables, and we want to 
come up with its expected value and variance. This is practically relevant, for 
instance, when we want to sum the demand over a random number of time 
periods corresponding to  a random procurement lead time. 

By conditioning with respect to N .  we have 

We start from the inner conditional expectation: 

- T I  1 

where in the second-to-last step we have used the independence between N 
and X,. Hence, we have 

E E X 1  N = N E [ X , ] ,  [Il ~ 1 
and. by computing the overall expectation. 

E EX = E[NE[X,]] = E[N].  E[X,]. [:: ,I 
This result is fairly intuitive, actually. and one could wonder if we took un- 
necessary pains in using conditioning arguments. However, when we consider 
variance. things are a bit more difficult. Using the same technique, and some 
patience. we can arrive at the result: 

We should note the imperfect symmetry of this formula. where expectations 
and variances of the involved variables are combined in a way that boils down 
to (A.lO) when N is a number, in which case its variance is zero. U 
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M-hen we have introduced the exponential distribution. we have hinted at its 
‘.lack of memory” property. Now m-e may get a clear picture of what we meant. 

Example A.15 Consider an exponential random variable X with parameter 
A. and say that X models the random life of some equipment (or a light bulb) 
whose average life is 1/X.  From the cumulative distribution function (A.8) we 
see that 

P{X > t }  = e - x f .  

This makes sense, as this probability goes to zero when t increases. with a 
speed which is large when expected life is short. Xow suppose that,  after light- 
ing the bulb. we notice that it is alive and kicking at time t :  we could wonder 
what its expected residual life is, given this information. In general. after a 
long time of work. the death of a piece of equipment gets closer and closer l’ 
To formalize the problem. we should consider the conditional probability that 
the overall life of the light bulb is larger than t + s: 

P{(x  > t + S )  n ( X  > t ) }  
P{X > t }  P { X > t + s / X > t }  = 

- P { X > t + s }  

e-X(t+s) 

e-x t  

- 

P{X > t }  
- - 

- e - X S  

= P{X > s}. 

- 

TVe see a rather surprising result: The elapsed time t does not influence the 
residual life s and. after a time span of length t .  the light bulb is statistically 
identical to  a brand new one. This is why we speak of lack of memory in the 
exponential distribution. which makes it suitable to  model certain “purely 
random” phenomena. but not situations such as failures due to wear. 0 

A.7 STOCHASTIC PROCESSES 

TYhen we think of the joint distribution of random variables. we mav naturally 
think of the realization of several phenomena at the same time. However, we 
may also be interested in the successive realizations of a single phenomenon 
over time. i.e., a collection of random variables indexed by time The time 
index can take integer values. for instance, when we are interested in observing 
daily or weekly demand for an item. so that time is discretized in time buckets. 

15Everi more so in case of early burnout. which is typical of former Engineering students 
like the  authors. 
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In such a case we will use notat#ion like 

xt , t = 0 , 1 , 2 , 3 , 4  ) " "  (A.13) 

The sequence of random variables (-4.13) is a discrete-time stochastic pro- 
cess. When the integer parameter does not represent time. we may speak of 
a discrete-parameter process. In some loose sense, the stochastic process is a 
generalization of deterministic functions of time. in that for any value of t it 
yields a random variable (which is a function itself) rather than a number. If 
we observe a sequential realization of the random variables over time, we get 
a sample path of the process. 

Naive thinking would draw us to the conclusion that. in order to charac- 
terize a stochastic process, we should give the marginal distribution of X T  
for all the relevant time instants t .  Actually, this is not enough, as we should 
consider the joznt distribution of the random variables. This may be very 
hard in general, and it is customary to  look for relatively simple cases. The 
easiest one is arguably the case in which all the random variables are mutually 
independent. 

Example A.16 (Gaussian processes) A common class of stochastic pro- 
cesses consists of sequences of random variables whose marginal distribution 
is normal, which is why they deserve the name of Gaussian processes. To 
be precise, we should say that a Gaussian process requires that the random 
variables X t ,  , Xt,. . . . . Xtm have a joint normal distribution for any possible 
choice of time instants t l .  t 2 . .  . . , t,. but for the sake of simplicity we will 
put in the same bag any process for which the marginal distribution of X t  is 
normal. However. it is important to  realize that in doing so we are consider- 
ing processes which may be very different in nature. Consider the stochastic 
process 

where < is standard normal variable. In our loose sense. we may say that this 
is a Gaussian process, since X t  is normal with expected value 0 and variance 
t2 .  However, it is a somewhat degenerate process. since uncertainty is linked 
to the realization of a single random variable. If we know the value of X t  for a 
single time instant, then we can figure out the whole sample path. Figure A . l l  
illustrates this point by showing a few sample paths of this process. A quite 
different process is obtained if all variables X t  are normal with parameters p 
and o2 and mutually independent. Figure A.12 shows a sample path of the 
process Xt = t . Z t ,  where E"t - N(0, l ) .  However, the marginal distributions of 
the individual random variables Xt are exactly the same for both processes. 

0 
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Ftg. A 11 Sample paths of the stochastic process X t  = t I E ,  F - K(O.1). 
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fig. A 12 Sample path of process Xi = t E t .  where Et - S ( O . 1 ) .  
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The example above deals with processes such that the expected value of Xt is 
constant.16 In practice. we should expect trends (e.g., for recently developed 
products) and/or seasonality (e.g.. for ice cream). A process with constant 
statistical properties is probably easier to deal with, but we should clarify 
what we mean exactly. 

DEFINITION A.10 A stochastic process Xt i s  said to  be weakly sta- 
tionary, or  second-order stationary, if the expected value is  constant, ie., 
E[Xt] = p,  and the covariance Cov(Xf,Xt+s),  for all s = 0 , 1 , 2 , 3 ; .  . ., does 
not depend o n  t .  

This definition deserves a few comments. 

To begin with, we speak of weak stationarity because we are only consid- 
ering the first two moments of the relevant random variables; whereas 
stationarity in general has to  do with joint distribution of every possible 
subset of random variables. 

The second condition has two implications. 

1. By setting s = 0, we see that variance is constant too. as Var(Xt) = 
Cov(Xt.Xt) = 02.  Hence. the two processes in example A.16 are 
not really stationary, since variance changes with time. 

2. The second point is that  the covariance between Xt, and Xt, de- 
pends only on the time distance 1 t l  - t 2  1 ,  i.e.. on the width of the 
time interval we consider, but not on where this interval is placed. 

The second implication of definition A.10 suggests that we should reflect a 
bit on the link between two random variables Xt and Xt+s. In example 
A.16 we just considered two extreme cases: In the first one, knowledge of Xt 
implies perfect knowledge of Xt+$ for any s; in the second one, because of 
independence, such a knowledge does not tell us anything. It is reasonable to 
guess that there are many interesting intermediate cases. 

Example A.17 Consider a small shop with one clerk. Customers arrive 
according to some probabilistic law. and if the clerk is busy with another 
customer, they wait in a queue. To keep it simple. assume that the shop is 
open 2417, so that there is no issue with closing periods. The service time is 
also a random variable, characterized by some suitable distribution. Let W k  be 
the waiting time of the kth customer: if we consider the sequence of waiting 
times for k = 1 , 2 , 3 ,  . . ., we obtain a discrete-parameter stochastic process. 
Can we say that the variables W’k are independent? Ruling out pathological 

I6We should stress that ,  for the “degenerate“ process; it is the unconditional expectation 
which is constant and equal to  zero; conditional expectation is quite different, since a very 
little knowledge results in a deterministic function of time. 
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cases. the general ariswer is no. If customer k undergoes a long waiting time. 
then we may conclude that this unlucky customer probably arrived at a time 
in which the system is congested and there is a long queue. Hence. we might 
expect that the waiting time for customer k + 1 will be large too. However. 
if the clerk. on the long term, is able to serve all of the customer. sooner 
or later this congestion will be resolved. Hence, we should expect that  the 
waiting times of two faraway customers. say LT7k and l/tjC+1000. are practically 
independent. In other words. intuition suggests that  the random variables W'k 

and W,+, should have some positive correlation and that this tends to fade 
out for increasing values of s. 0 

The last example motivates the following definition. 

DEFINITION A . l l  (Autocovariance and autocorrelation) 
Given a weakly stattonary stochastzc process Xt , the functaon 

C ( s )  = Cov(Xt. X,,,) 

as called autocovaraance of the process wtth delay s .  T h e  functton 

zs culled autocorrelatzon functzon. 

lye should note that because of how it is defined, autocovariance depends only 
on s. which is justified for a stationary process. The definition of autocorre- 
lation relies on the fact that variance is constant, which implies 

Even from this cursory and crude treatment, we may see that stochastic 
processes are a thorny object to deal with. since in general we should describe 
the joint distribution of all the involved random variables. For this reason. 
whenever it is practically acceptable, we should work with processes in which 
mutual dependence among random variables is at least limited to a simple 
structure. if not absent a t  all. Lye have a relatively easy case when the process 
"memory" is limited to its last value. Formally. 

E[Xt+i 1 Xt. Xt-1. Xt--2, Xt--3%. . .] = E[Xt+l 1 Xi]. 
A process meeting this condition is said a Markov process. A typical ex- 
ample of Markov process is 

x, = Xt-1 + t t .  
where Elt is a normal random variable and all variables tt are mutually inde- 
pendent. Figure A.13 shows two sample paths in the case it -- lY(0, l ) :  a 
process like this is also called random walk. 
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Fig. A.13 Two sample paths of the process X t  = Xt-1 + E t ,  with initial condition 
X O  = 0 and E t  N N(0, l ) .  

So far, we have dealt with discrete-time processes, but the time param- 
eter may also be represented by a real number. In such a case we have a 
continuous-time stochastic process 

In principle, the definitions we have given above for stationarity, autocovari- 
ance, and autocorrelation have a straightforward extension to the continuous- 
time case. Actually, continuous-time processes require a much more complex 
machinery for a deep understanding. Here we limit ourselves to considering a 
very common and useful process, which is known as Poisson process. 

Example A.18 The Poisson process is an example of counting process, i.e., 
a stochastic process N ( t )  counting the number of events occurred in the time 
interval [O,t]. Such a process starts from zero and has unit increments over 
time. We may use such a process to model order or customer arrivals. The 
Poisson process is obtained when we make specific assumptions about the 
interarrival times of customers. Let X k ?  k = 1 , 2 , 3 , 4 .  . . ., be the interarrival 
time between customer k - 1 and customer k :  by convention. X I  is the arrival 
time of the first customer after the start time t = 0. We obtain a Poisson 
process if we assume that variables X I ,  are mutually independent and all 
exponentially distributed with parameter A, which is in this case the arrival 
rate, i.e., the average number of customers arriving per unit time. A sample 
path is illustrated in figure A.14: we see that the process “jumps” whenever 
a customer arrives, so that sample paths are piecewise constant. 

We have already mentioned the link between Poisson and exponential dis- 
tributions and the Poisson process. If we consider a time interval [t l , ta] ,  
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fig. A.14 Sample path of the Poisson process. 

with t l  < t 2 ,  then the number of customers arrived in this interval, i.e.. 
*V(t,) - N ( t l ) ,  has F'oisson distribution with parameter X ( t 2  - t l ) .  Further- 
more. if we consider another time interval [ t 3 .  t 4 ] ,  where t 3  < t 4 .  which is 
disjoint from the previous one, i.e.. ( t 2  < t 3 ) .  then the random variables 
!V(t,) - N(t1)  and Ar(t,) - N(t3 )  are independent. We say that the Poisson 
process has stataonary and andependent increments. 

The Poisson process is a useful model to represent the random arrival of 
customers who have no mutual relationships at all. This is a consequence of 
the lack of memory of the exponential distribution. which we have illustrated 
in example A.15 on page 475. 

The model can be generalized to  better fit reality. For instance. if we 
observe the arrival process of customers a t  a big retail store. we easily observe 
variations in the arrival rate. If we introduce a time-varying rate X ( t ) .  we get 
the so-called inhomogeneous Poisson process. Furthermore, if we consider 
not only customer (or order) arrivals. but the demanded quantities as well, we 
see the opportunity of associating another random variable, the quantity per 
order, with each customer. The cumulative quantity demanded D ( t )  in the 
time interval [O. t ]  is another stochastic process, which is known as compound 
Poisson process. The sample paths of this process would be qualitatively 
similar to  those in figure A.14. but the jumps would be random variables. 
This is a possible model for demand. when sale volumes are not large enough 
to  warrant use of a normal distribution. 0 

A.8 PARAMETER E S T I M A T I O N  

In this section we enttir the realm of Statistics, which. in a sense. goes the other 
way around with respect to probability theory. In the latter. we assume perfect 
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knowledge of essential properties of a phenomenon. e.g., encoded in the density 
function of a random variable, and we ask possibly complicated questions 
about the probability of occurrence of an event of interest. Whatever the 
questions, in probability theory we take for granted that we have knowledge 
of parameters such as expected value and variance. In Statistics. it is raw 
data we start from, and we would like to build a probability distribution; we 
do n o t  really know expected values or variances, and we would like to come up 
with some sound procedure to estimate them, to qualify the reliability of such 
estimates, and to  test hypotheses about them. This does not mean that we 
discard probability theory: on the contrary, this is the conceptual foundation 
for such “sound” procedures, but the mindset is completely different. In 
Statistics. we aim at  squeezing information out of available data. and this 
may require some finesse in understanding which data are relevant, which 
ones should be discarded, and how they can be related. 

The basic problem we consider in this section is parameter estimation. 
with specific reference to the estimation of an expected value. The starting 
point is a set of data;  these can be obtained. e.g.. by historical demand data. 
by a survey where customers have been interviewed, or by computer-based 
experiments with Monte Carlo simulation. A formalization of the vague idea 
of “a set of data” is needed to rely on a sound probabilistic foundation. and 
this yields the concept of a random sample. 

D E F I N I T I O N  A.12 (Random sample) If X I ,  X2 . X ,  are zndepen- 
dent  r andom varzables characterzzed by the  s a m e  CDF F x ,  t h e n  they  are a 
r a n d o m  sample.  

In other words, the elements of the random sample are a sequence of i.i.d. 
random variables. It is very important to stress the role of zndependence in 
the definition above. All of the following concepts depend critically on this 
assumption. It may well be the case that there is correlation in a practical 
sample, but then a blindfolded application of naive statistical procedures may 
lead to  erroneous conclusions and a possible business disaster. Furthermore, 
we also assume that the data are somewhat homogeneous. since they are iden- 
tically distributed. Clearly. if the data have been observed under completely 
different settings, the conclusions we draw from their analysis may be severely 
flawed. 

Given a random sample, we typically summarize the data by using some 
recipe. Formally, we compute a statistic. 

D E F I N I T I O N  A.13 (Statistic) A statistic zs a r a n d o m  varzable whose 
value IS determaned by a r andom sample.  

In other words. a statistic is basically a function of a random sample. As a 
concrete example. the most common statistic is the sample mean: 

l n  x = - E X i .  
n 

a = 1  

(A.14) 
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The sample mean should not be regarded as a number. but as a randoin 
variable. Assume that the expected value of the random variables in the 
sample is p. Then the expected value of the sample mean. as we know from 
example A.10 on page 463. is 

E [X]  = p .  

This property justifirs using the sample mean x as one possible estimator 
of the expected value p Hence. we are using realizations of a randoin yariable 
to  estimate the unknown value of a number. and a natural question is. LVInich 
properties make a good estimator? The first one is that an estimator should 
be unbzased. in the sense that its expected kalue is the parameter we wish to  
estimate. As we have seen. the sample mean is an unbiased estimator of the 
expected value. However, there are other issues in using an estimator. since 
this is a random varidble with some variance: of course. we would like to have 
estimators with small variance. From example 4.10. we know the variance of 
sample mean, 

(A.15) ~ a r [ X ]  = -, 

where 0’ is the variance of each single element X ,  in the random sample. As 
it is reasonable to  expect, this variance decreases for an increasing size of the 
sample. However, we insist again that the last property relies on independence 
in the sample. wherea unbiasedness of the saniple mean does not. 

Equation (A.15) icj useful in drawing some conclusions on how reliable an 
estimate is. but it relies on another parameter, 0.  which is typicall) unknown 
as well. The typical estimator for variance is sample variance: 

2 
n 

(A.16) 

This formula can be understood as a sample counterpart of the definition of 
variance: It is basically an average squared deviation with respect to sample 
mean. From a computational point of view. the following rearrangement can 
be useful: 

(A.17) 

The sample standard deviation is just S.  the square root of sample vari- 
ance. ZVe note again that these estimators are random variables. and we 
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should make sure that they are unbiased, i.e., E[S2] = o2 This is the reason 
for the apparently odd denominator in (A.16), which is n - 1 rather than n. 
From the rearrangement above we see 

l n  
E [s2] = - n - 1  ( X E  [X:] - nE [y2]) 

2 = 1  

Actually. the need for the denominator n - 1 stems from the fact that we 
are measuring deviations against w rather than p. From an intuitive point 
of view, we could say that the need to  estimate the unknown expected value 
implies that we "lose one degree of freedom'' in the n available data in the 
sample. This point of view can be made rigorous, but we will settle for the 
intuitive sense. 

Now that we know something about expected value and variance of the 
sample mean, we can dig deeper and ask questions about its distribution. 
Finding the distribution of an estimator can be a tricky issue since, as we have 
seen. summing random variables with a given distribution need not result in 
a random variable with the same distribution. However. we may at least look 
for some partial results. To begin with. the central limit theorem says that 
for a large sample, the distribution of the sample mean tends to  a normal. We 
also know that if we are actually sampling from a normal distribution, then 
the sample mean will be normal too for any size of the sample. 

Sample variance is a bit trickier, even if we assume normal samples. From 
an intuitive point of view, we see from equation (A.17) that it involves squares 
of normal variables. Given what we know about the chi-square and Student's 
t distribution. the following theorem, which summarizes basic results on the 
distribution of the estimators we have considered. should not come as a sur- 
prise. l7 

THEOREM A.14 Let  X1 , . . . , X ,  be a r a n d o m  sample f r o m  a no rma l  dis- 
t r ibut ion wi th  expected value p and variance 02.  T h e n :  

1. T h e  sample m e a n  x has no rma l  dis t r ibut ion wi th  expected value p and 
variance o2 In. 

2. T h e  r andom variable ( n  - 1)S2/a2 has chi-square distribution wi th  n - 1 
degrees of f reedom. 

3. Sample  m e a n  and sample variance are independent  r a n d o m  variables. 

I7See. e.g.. [4] for a proof. 
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4.  The random variable 
x-p 

s/ fi 
has t distribution with n - 1 degrees of freedom. 

The third statement above is somewhat surprising. since sample mean and 
sample variance are statistics depending on the same random variables, but 
it is essential in establishing the last distributional result, which will play a 
fundamental role in the following. We should note that if the true variance 
were known. we could work with the statistic 

ffl& ' 
which is a standard normal. If the random sample is not normal, the results 
above do not hold for a small sample. We will rely on central limit theorem 
in justifying the application of statistical procedures, which are valid for a 
normal sample, to a large non-normal sample. This is enough for what we 
do in the main body of the book, but this heuristic approach should not be 
applied to other problems without due care. 

A.8.1 Sample covariance and correlation 

In applications, we are often interested in modeling the relationships among 
different variables: For instance. we would like to estimate the impact of ad- 
vertising on sales, or of temperature on ice cream demand. The amount of ad5 
and the temperature are treated as explanatory varzables, in that they con- 
tribute to explain demand. In section A.10 we will discuss regression models 
in some detail, but it is useful to start discussing here the sample counterparts 
of covariance and coefficient of correlation, which we have introduced in sec- 
tion A.6.2 to  investigate the link among random variables. Indeed. one test 
that we can carry out to check the impact of a variable on another one is es- 
timating their coefficient of correlation. As with expected value and variance. 
we assume that we lack knowledge of the probability distributions involved. 
and we must analyze empirical data to come up with estimates. It is impor- 
tant to realize that our sample must consist of joznt realizations of variables 
X and Y .  If we want to investigate the impact of temperature on ice cream 
demand. n-e must have pairs of observation taken in the same place at the 
same time: clearly. mixing observations is no use. 

Just as we have defined sample variance in equation (A.16). we may define 
sample covariance S X ~  between random variables X and Y :  

l n  c (Xi - X ) ( X  - F), sxy = - 
n - 1  

(A.18) 
i = l  
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where 72 is the size of the sample, i.e.. the number of pairs. This definition is 
also consistent with sample variance, since 5’: = S X X .  

To estimate the (coefficient of) correlation pxy between X and Y. we may 
use sample coefficient of correlation, or sample correlation for short: 

n 

\ z = 1  \ z = 1  

(A.19) 
where factors n-1 cancel each other. Once again, we stress that the estimators 
we have just defined are r a n d o m  varaables depending on the random sample 
we take. 

As in the case of sample variance, we have to  include a term n - 1 to 
make the estimators unbiased. Checking unbiasedness is left as an exercise, 
but one could wonder why we should divide by n - 1 and not n - 2 ,  given 
that we rely here on the estimates of two parameters, the expected values 
of both X and Y .  Apart from a formal proof, which we omit, one intuitive 
check is that using n - 1 is required for consistency with sample variance. As 
another intuitive argument. we could note that the minimal size of the sample 
to get an estimate of variance, covariance, and correlation is two; otherwise, 
we cannot compute any deviation from the mean. We will see that in linear 
regression the minimal sample size is actually three. and there we will see a 
n - 2 factor come into play. 

The sample coefficient of correlation. just as its probabilistic counterpart, 
is adimensional and it lies in the range [-1. 11. We recall that  this is not really 
a measure of dependence, but a measure of concordance in the deviations with 
respect to the means. The sample correlation tells us if a positive (negative) 
deviation of Y with respect to is associated with a positive (negative) 
deviation of X from x. A positive coefficient suggests that ,  on average, when 
Y is larger than 7, then also X is larger than x; similarly, when Y is smaller 
than P. also X is smaller than x on average (see figure A.15). On the 
contrary, a negative coefficient of correlation suggests that  when Y is larger 
than y.  X is smaller than x, and vice versa. A case of negatave correlatzon 
is illustrated in figure A.16. When none of these patterns occurs, we have no 
correlation, like in figure A.17. Clearly. if we want to  use these tools for 
forecasting, a very small correlation tells that .  probably, the variable X is not 
very useful in predicting Y. since apparently there is no relationship. On the 
contrary. a strong (in absolute sign) correlation suggests that there is a strong 
link and that maybe X can be very useful in predicting Y .  

Correlation analysis is very useful. but like any other tool we must be well 
aware of its pitfalls and limitations to use it properly. 
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Fig. A.15 A case of correlation 0.8 
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Fig. A.16 A case of correlation -0.8. 
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Fig. A.17 A case of correlation 0. 

0 In the first place, the concept of correlation is often confused with cau- 
satzon. When X and Y are correlated, it is tempting to conclude that X 
“causes” Y .  This may be true, but it is knowledge of the phenomenon 
that allows to  draw such a conclusion. Correlation; per  se,  does not 
measure anything but a s y m m e t r i c  association. In fact, the definition of 
covariance and correlation is symmetric: SXY = S X Y .  It may even be 
the case that there is a third variable. say 2, which is actually causing 
Y and is correlated with X; this lurking variable effect can lead us to an 
erroneous conclusion. As a well-known example, assume that X is the 
amount of spending in advertisements, 2 is the amount of discount in 
promotional sales, and Y is demand. We might observe an increase in 
demand due to ads, leading us to  conclude that advertisements are very 
useful. However, it migh t  be the case that the real cause of the increase 
in demand is the reduction in price which is often associated to ads in 
order to  boost sales. 

0 We have already pointed out that ,  in general, lack of correlation does 
not imply independence. When the relationship between X and Y is 
nonlinear, the coefficient of correlation could not reflect this link at all. 
An example is shown in figure A.18, where we may see that there is 
indeed a link between the two variables, but sample correlation is prac- 
tically zero. This happens because when Y is larger than its mean. X 
can be larger or smaller than its mean (see also example A . l l  on page 
466). In the last part of this appendix we will outline some nonlin- 
ear transformations of data which could be useful to overcome. at least 
partially, this limitation. 
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Fig. A.18 A nonlinear relationship between X and Y .  

Table A . l  An example of negative correlation 

i 1  2 3' 4 5 6 7  8 9 10 

x 9  6 1r3 2 7 3 2  5 6 2 
y 7.9 7.5 13.6 16.8 8.1 15 9.8 12.8 15.8 17.7 

0 Finally, peculiar data can have a very large impact on the analysis. In 
fact. when we hme a single observation ( X t .  y Z )  which is quite far from 
the average. the terms X ,  - x and/or U, - 7 may be much larger. in 
absolute value. than the other terms in the sum. This issue is often called 
"King Kong" or .'Big Apple" effect. lg The following example shows the 
care that should be taken in presence of a peculiar observation. 

Example A.19 Consider a sample consisting of ten observations of temper- 
ature and demand for an item, as displayed in table A. l .  These data are 
depicted in figure A.19, which suggests a negative correlation: the sample cor- 
relation is indeed -0 37. and this would support the belief that temperature 
has a negative effect on demand for this item. 

But now suppose that we include another observation. as in table X.2 and 
the corresponding figxe A.20. Based on the sample correlation, which is now 
positive (0.85). conclusions could be quite different. Actually, this would be 

18Statistics on towns in the  USA may be affected by the  inclusion of NY, which has peculiar 
characteristics. 
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Fig. A.19 Pictorial representation of the data  in table A . l :  sample correlation is 
-0.47. 

Table A.2 Example of positive correlation due t o  the King Kong effect 

i 1 2  3 4 5 6 7 8  9 10 11 

x 9  6 10 2 7 3 2  5 6 2 40 
y 7.9 7.5 13.6 16.8 8.1 15 9.8 12.8 15.8 17.7 42.5 

somewhat careless: What we can say is that in the one observation in which 
we had a very high temperature, we observed a large demand. However, we 
cannot really conclude that in the normal range, a larger temperature leads 
to  an increase in demand. 0 

A.8.2 Confidence intervals 

The sample mean is a point estimator for the expected value; since it is subject 
to some variance, it would be nice to have some measure of how much we can 
trust that single number. The same consideration applies to any estimator, 
and the typical additional information which is associated comes in the form 
of a confidence interval. Roughly speaking, a confidence interval is a range 
in which the true. unknown parameter should lie with some probability. This 
probability is known as confidence level: if the confidence level is 1 - C Y .  

where o is a relatively small value such as 0.01 or 0.05, then we can say that 
the confidence interval contains the "true" value with probability 1 - C Y .  The 
following definition formalizes the definition of a confidence interval. 
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Fig. A.20 Pictorial representation of the data  in table A.2: sample correlation is now 
0.85. 

DEFINITION A.15 Let  the confidence level be 1-a.  A confidence znterval 
for  a pa rame te r  0 zs 1% pazr of statastzcs TI and  T2. such thatlg 

P(T1 5 0 5 T2) = 1 - a.  

This is a general definition of a confidence interval. which takes a more specific 
forni depending on how we estimate the parameter and on possible additional 
assumptions on the distribution of samples 

If we are dealing with a normal sample. with unknown expected value 
and variance, which are estimated b) sample mean and sample variance. we 
observed that the statistic 

F - p  

s/ fi 
has t distribution with n - 1 degrees of freedom. Hence, if we denote by 
t l - e / 2  n-l the (1 - a/2)-quantile o f t  distribution. we have 

which can be rearranged as 

lYIn the statement we ta.ke for granted tha t  TI 5 T2. In general. an inequality involving 
random variables is potentially critical. and we should require tha t  it holds with probability 
one. 
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We see that the interval 

(A.20) 

is a confidence interval for the expected value p. with confidence level 1 - a.  
It is essential to grasp the meaning of a confidence interval, which has a 
probabilistic interpretation. In fact, the confidence interval is the outcome 
of a random sampling experiment. All we can say is that if we repeat the 
random sampling a large number of times, the true value would fall within 
the confidence interval in a fraction (1 - a)% of the experiments. There is a 
probability cy that  p lies outside the interval, either to the left or to the right. 
We consider quantiles with probability 1 - a/2 because symmetry of Student's 
distribution implies that  the probabilities associated to the right and left tails 
are equal. 

Example A.20 Let us consider the random sample 

(43. 79. 26. 137. 45. 55, 93, 52, 46. 17}, 

under the assumption that it comes from a normal distribution, and let us 
compute a 95% confidence interval for the expected value. We have 

n = 10, x = 59.3, S = 35.2422, 

and from statistical tables (or from a suitable piece of software) we may get 

By straightforward application of (A.20)) we obtain the confidence interval 
(34.0893. 84.5107). 0 

From a qualitative point of view, we can observe the following: 

0 The larger the confidence level 1 - a ,  the larger the confidence interval; 
in other words. a wider interval is required to  be "almost sure" that it 
includes the true value. 

0 The interval is large when the underlying variability 0 of the elements 
of the sample is large. 

0 The interval shrinks when we increase the number of samples 

0 m'hen the sample is very large, we may use the quantiles ~ 1 - ~ / 2  from 
the standard normal distribution. 

Given these observations, we could conclude that when we really need a tight 
interval. we must accept the cost of a large sample. Actually. this need not be 
always true. In stochastic simulation on a computer, we may sometimes ex- 
ploit different sampling mechanisms to reduce the variance d' of the elements 
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in the sample. In other cases. there might be competing ways to estimate 
a parameter: it turns out that. sometimes, there is a biased estimator with 
lower variance. If the bias tends to disappear when the size of the sample 
increases. this estimator may be preferable. 

Once again. we stress that all we have said for confidence intervals holds 
under the assumption of a normal sample. consisting of independent random 
variables. If the sample is not normal, then we may invoke the central limit 
theorem and say that the confidence interval could be a fairly accurate ap- 
proximation for a large sample: otherwise, different forms of intervals should 
be devised, particularly if the underlying distribution is very skewed and the 
sample is small. The next example shows how the general theory can be 
adapted to  cope with a specific case. 

Example A.21 Say that we are interested in estimating the fraction of a 
population meeting a certain condition, e.g.. they like a certain product. Of 
course. what we should do is take a sample. ask a question. and calculate the 
fraction of yes”  answers over the total. More formally, what we are doing is 
estimating the parameter p of a Bernoulli random variable (see section A.3.1). 
If we denote the size of the sample by n. we know that the number X of “k-es” 
answers is a binomial variable, with expected value n p  and variance np(l - p ) .  
For a suitably large sample. thanks to  the central limit theorem, we may say 
that 

from which we may build an approximate confidence interval, 

where lj = X / n .  In this case. we see a different way to  estimate variance. since 
expected value and variance are related in a very specific way. However. we 
may still use much of what we know. at least when the sample is large. 0 

The following example shows that care is needed to ensure independence. 

Example A.22 b r e  use again example A.17, where a simple queuing system 
was considered. A typical problem in this field is determining the number of 
servers. i.e., clerks. in such a way to avoid long waiting times that lead to  
customer dissatisfaction. What we can do. among other things. is 5imulating 
the queuing system for different numbers of servers. in order to c1sses5 the 
tradeoff between systmi cost and service quality. 1-1 possible measure of service 
quality is the expected value of the waiting time. This can be estimated 
by a suitably long experiment. but how long exactly‘? TYe could simulate 
the process until n customers have been served. collect the waiting time \ T i  
for each customer k = 1.. . . , n. and use the formula (A.20) to check if the 
confidence interval is small enough. In doing so. we might make at  least three 
mistakes at the same time. 



494 A QUICK TOUR OF PROBABlLlTY AND STATlSTlCS 

1. To begin with. if we start our simulation with an empty system. we have 
a transient phase that may affect our statistics. We should wonder if 
we should discard the first data to  avoid this issue. A similar problem 
niust be dealt with when simulating inventory control systems. as the 
initial inventory may play a role. unless the simulation experiment is 
very long. In the shop case, this may be not an issue if the shop opens, 
say, at 9 a.m. and closes at 5 p.m.. because in such a case reaching the 
steady state is not an issue. 

2 .  A more general issue is that the waiting times are unlikely to be normally 
distributed, and the confidence interval will only be an approximation: 
as we have said, however. this is fairly good for a large sample. 

3. Actually, the really serious mistake is that ,  as we have pointed out in 
example A.17. waiting time of successive customers are not independent 
random variables. What may happen is that  sample variance underes- 
timates the true variance, and the width of confidence interval is un- 
derestimated as well. The net result is that we are overconfident in our 
conclusions. 

In practice. the way out of the last issue is the batch method. We simulate m 
samples. each one consisting of n customers, amounting to nm customers for 
the whole experiment, and we consider the m sample means 

Each sample mean m' is, at least approximately, independent from the other 
ones, and we may apply the standard procedure on them. The good news is 
that  they should have a rather small variance and, thanks to the central limit 
theorem, they are more or less normal, providing further justification for the 
approach. 0 

A.9 HYPOTHESIS TESTING 

Parameter estimation can be used to  address questions like "What is the 
average demand for a given item?" or "What is the average useful life of this 
product?" If a sample is available, we may also build a confidence interval 
to  assess the reliability of the estimate. A different but related issue must 
be tackled when, for instance, a manufacturer claims that his product has an 
average life of p = 100 hours. and a skeptical customer does not trust his 
claim. One thing she could do is run a statistical experiment in order to have 
a check. Suppose that the estimated average life is 99 hours: can she sue the 
manufacturer? Kot really. since the sample mean is a random variable, and 
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it might well be the case that an “unlucky“ sample leads to  a result which 
is smaller than the true value. On the other hand, if the result were 101. Tie 
would be willing to  ti-ust the manufacturer. but we could be wrong as well. 
However. if the sample mean were 50 hours. we could be somewhat suspicious 
about the truth of the claim. because such a large discrepancy with respect 
to the claim is hardly attributable to randomness in the sample. 

TVhen facing such an issue, we run a twofold risk: On the one hand, we 
could reject a claim Rhich is in fact true; on the other one, we could accept a 
claim which is false. Hence, we need a sound theoretical basis to make well- 
informed decisions. S’k’e illustrate here a procedure for hypothesis testing. 
In the literature, the term szgnzficance testzng is also used, e.g., when we want 
to  check if the sample correlation coefficient is significant. Here we mainly deal 
with hypotheses about the mean of a normally distributed population. but we 
will also outline different tests. Formally, we postulate a null hypothesis 
Ho. which is tested against an alternative hypothesis HI. The overall idea 
is analyzing the properties of a certain statistic under the assumption that 
the null hypothesis is true. In our case. we use properties of the sample 
mean assuming that the random sample comes from a normal population 
with expected \-alue 1-1 = ~ 0 %  where PO comes from the null hypothesis. Then, 
by checking the sample mean. we see if it is consistent with Ho; if it looks 
severely inconsistent. we reject the null hypothesis, keeping under some control 
the probability of rejecting Ho when. in fact, it is true (i.e.* the probability of a 
type I error). Tlre do not consider here the risk of accepting a false hypothesis 
(a type I1 error). 

To formalize the problem in a more general setting. we consider a popula- 
tion which is distributed according to  a density (or cumulative distribution) 
Fe. depending on an unknown parameter 0. which in our case is the expected 
value, but it need not be in general. lye  formulate a null hypothesis, denoted 
by Ho. such as Ho : 6’ = 1. or Ho : 0 5 1. Then. we take a random sample of 
size n from the population. denoted by (XI. X2 . X,) . To ascertain if the 
sample is **compatible” with the null hypothesis, we build a region C E R“. 
called rejection region. according to a suitable criterion; then we accept Ho 
if(X1.Xz . . . . .  X,) $ C , o r w e r e j e c t i t i f ( X l . X z  . . . . .  X,) E C .  \%-ebuildthe 
rejection region in such a way that we have a small probability a of rejecting 
a true hypothesis: in other words, if Ho is indeed true. the sample may hap- 
pen to fall in the rejection region, but it is unlikely. The number (I is called 
significance level. 

To be more concrete. let us consider testing a hypothesis about the expected 
value p of a normally distributed population. assuming that the variance o2 
is unknown as well. Say that the null hypothesis is 

Ho : P = Po, 

which we test againsi the alternative 

H1 : P # Po. 
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Table A.3 Sample data for hypothesis testing 

5.00 1.82 15.95 -13.74 9.28 13.96 12.31 10.78 5.40 11.77 

Intuitively. we should reject HO if the sample mean x is "far" from po (both 
larger or smaller). To make "far" clearer, we build the test statistic 

fi(F - Po) 
S '  TS = 

where S is the sample standard deviation. From section A.8 we know that 
if the null hypothesis is  true and if the population is actually normal. the 
statistic TS has t distribution with n - 1 degrees of freedom. Hence, 

where we use the notation P,, to  emphasize that we compute this probability 
under the probability measure assumed in Ho.  Wrapping everything up, the 
procedure prescribes the following, for a given significance level a: 

ExampIe A.23 Consider the data listed in table A.3. Actually, these data 
have been obtained by running a generator of pseudorandom variates. and 
they are samples from a normal distribution with expected value 5 and stan- 
dard deviation 10. Now. suppose we forget about what we know, and let us 
test the hypothesis that p = 5. with a significance level cu = 0.1. To begin 
with, we compute the sample statistics: 

n = 10, x = 7.253. S = 8.5757. 

Note that the sample mean looks rather large with respect to po = 5, but this 
intuitive feeling must be carefully checked, taking the large variability and the 
limited sample size into account. The test statistic is 

= 0.8308, 
m ( 7 . 2 5 3  - 5) 

8.5757 
TS = 

and this should be compared with the quantile t 1 - ~ / 2 , ~ - 1  = t0 .95 ,g  = 1.8331. 
Since TS < 1.8331, we cannot reject the hypothesis with that significance 
level. I] 
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iVe may notice some similarity with confidence intervals. Indeed: in the case 
above we might argue that we reject the hypothesis if PO does not, fall within 
the confidence interval. However. the underlying thinking is a bit different. at 
least in principle. Furthermore. we should use a different rejection region if 
the hypothesis is different, leading to  a one-sided. rather than two-sided. test. 
Consider. for instance, the following iiull hypothesis 

ffo : I-r 5 Po 

HI : P > Po 
against the alternative 

In this case we build the test under the assuniption 1-1, = 110. but the rejection 
region is only one of t,he two t,ails: 

Intuit,ively, in this case we reject, Ho if the sample mean is suspiciously large. 
Also note the use of a quantile with probabilitl- level (1-a) instead of (1-a/2). 
We trust, that the reader will now find the symmetric case rather easy to figure 
out,. A‘hat may be not so easy to figure out is, JVhich is the appropriate 
hypothesis tm use when tackling a real-life business problem? Sometimes the 
answer is obvious. For instance. if the unknowii parameter is the average life 
of an item. we should not complain if this is larger than claimed. Hence, we 
may argue t,hat in such a case we should test something like Ho : 2 p o ,  
complaining with the manufacturer only if the test &atistic gets stranded on 
the left tail. In other cases; t,he answer might not be that obvious. 

Another tricky point is finding a suitable value of n. Not,e that, tlie larger 
the value of n. the easier it is to  reject the null hypothesis. This happens 
because the rejection region increases with a .  So: we could find a case in which 
we accept (or. bett,er said, we cannot, reject) the null hypothesis if a = 0.05. 
but we reject it, if me set a = 0.06. This is clearly a critical situation, because 
t,he right confidence level is nowhere engraved on a rock. A useful concept 
from this point of view is the p-value. In a two-sided test. the p-valiie is given 
by the probability t,kiat a va,riable Tn-l, i.e.; following a t distribiition with 
n - 1 degrees of freedom. is in absolute value larger than the value of tlie 
statistic TS: 

p = 2 .  P{T,-I 2: t I } .  
if TS = t .  In practice. the p-value is a ”crit,ical” significance level. iii the sense 
that the hypothesis would be accept,ed for all significance levels smaller than 
P .  

Example A.24 In example A.23, we coiild not reject the mill hypothesis 
with a signifirance level Q = 0.1. With a different significance level. we could 
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Table A.4 
is unknown: TS is the test statistic and CY is the significance level 

Hypothesis testing about the mean of a normal population, when variance 

Ho HI TS Test with Level CY pValue if TS = t 

reach a different conclusion. For instance. if cy = 0.5. we must use the quantile 
t0.75.9 = 0.7027. resulting in a rejection. However, we have a 50% probability 
of rejecting a true hypothesis, because the rejection region is large. To spot 
the “critical” significance level, we may compute the p-value: 

p = 2 .  P(T9 2 0.8308) = 2.0.2138 = 0.4276 

We see that we may reject the hypothesis only if we accept a t  least a 42.76% 
probability of a type I error. 0 

The p-value for one-sided tests is found using a similar logic, where only one 
tail of the Student distribution is considered. Table A.4 summarizes what we 
have discussed. If the variance were known, the reasoning is again the same, 
but we should use the quantiles from the standard normal distribution. 

A.9.1 An example of a nonparametric test: the chi-square test 

In the main body of the book, we often assume that the demand for a certain 
item is normally distributed. However, this should not be taken for granted, 
and the claim should be tested in some way. When we test if experimental 
data fit a given probability distribution. we are not really testing a hypothe- 
sis about a parameter or two: in fact, we are running a nonparametric test. 
The chi-square test is one example of such a test. The idea is fairly intuitive, 
although the technicalities may require some care. We could divide the range 
of realizations in J disjoint intervals, and compute the probability that a ran- 
dom variable distributed according to that distribution falls in each interval. 
Then, we may calculate the number E, of observations (out of n) that should 
fall in interval j, j = 1,. . . , J .  if the assumed distribution is indeed the true 
one. This number should be compared against the number 0, of observations 
which actually fall in interval j: a large discrepancy would suggest that the 
hypothesis about the underlying distribution should be rejected. 

Like any statistical test, the chi-square test relies on a distributional prop- 
erty of a statistic. It can be shown that for a large number of samples, the 
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statistic 

(0, - E d 2  
J 

x2 =c E3 
3=1  

has (approximately) a chi-square distribution. But what about the degrees 
of freedom? This is 1 he tricky part of the procedure. as this depends on the 
number of parameters of the distribution that we have estimated using the 
data. If no parameter has been estimated. the degrees of freedom are J - 1. 
Otherwise. the distributional results are more complicated. byhatever the 
case, the intuitive idea of the test is that if x2  > xi,,. where cy is the level of 
significance and k is a suitable number of degrees of freedom, the hypothesis 
should be rejected. Indeed. if the hypothesis were true, x2 should be close to  
zero: a large value leads to  rejection of the hypothesis. 

A.9.2 Testing hypotheses about the difference in the mean of two 
populations 

Sometimes. we have to run a test concerning two (or more) populations. For 
instance, we could wonder if two markets for a given product are really dif- 
ferent in terms of expected demand. Alternatively. after the reengineering of 
our business processes, we could wonder if the performances are significantly 
different. In both cases, the rationalization of the problem calls for assessing 
the difference between two expected values. 1-11 - 1-12. where 1-11 and 1-12 are the 
expected values of two random variables. U’e consider here how we can build 
a confidence interval for this difference: running a test of hypothesis requires 
a fairly straightforward adaptation. IVhat we should do exactly depends on 
a number of issues: 

0 Is the number of samples, from both populations. large or small? 

0 Are the two variances known? If they are not, can we assume that they 
are equal? 

0 Are the samples from the two populations independent? 

0 Are the two populations normal? 

Depending on the answers to these questions. we may exploit certain distri- 
butional results about the statistic 

x1- x,. (A.21) 

i.e.. the difference between the two sample means. Let 721 arid 712 be the two 
sample sizes. respectively. 

If the two samples are both large and mutually independent. the statistic 
(A.21) is, at least approximately. normally distributed. Furthermore. inde- 
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pendence allows to  estimate the standard deviation of the difference by 

where Sf and ,922 are the two sample variances. Then, the following confidence 
interval can be built: 

c -  

(Xl - X2) % z 1 - a / 2 s ~ 1 - ~ z  

Based on these estimates, it is also easy to test if the two populations are 
significantly different (in this case. the test boils down to checking if the 
origin lies within the confidence interval). 

With small samples (say n1. n2 < 30), the procedure is not as simple. A 
relatively easy case is when we may assume that the two variances in the two 
populations are the same. To estimate the standard deviation, we may pool 
the observations. 

n1 - 1,s; + (nz - 1)s; 
nl + n2 - 2 

and use 

t o  build a confidence interval 
- -  

(Xl - X2) * tn1+nz-2,1-a/2. s,-l-xz. 

We see that we are relying on Student's t distribution; we know that. strictly 
speaking, this requires that the two populations are normal. Also note the 
number of degrees of freedom. If the two variances are different, we may also 
use the same distribution, but we must estimate the degrees of freedom. A 
(nontrivial) distributional result justifies the following estimate: 

(?i+%)* NZ 

-(%) 1 +&(%) f =  2 2 '  

lvl - 1 

Since f need not be an integer, we may round it down (which makes sense 
because with fewer degrees of freedom the confidence interval is larger and 
more conservative) and build the confidence interval 
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All of the above procedures rely on the independence between the two pop- 
ulations. Now assume, on the contrary. that the samples are strictly related. 
Such a case occurs when the observations actually pawed.  For instance. if 
we draw random demand scenarios and we evaluate the performance of two 
management policies. we have paired samples Xi1) and X f ) ,  which are the 
performances of policies 1 and 2 ,  respectively. in scenario k .  The case of paired 
samples requires working directly on the differences 

computing the statistics 

- 1 "  
D =  - C D k .  n 

k = 1  

and building the confidence interval 

A.10 SIMPLE LINIEAR REGRESSION 

We considered the sample correlation coefficient in section A.8.1 as a way to 
assess the possible role of a variable X in explaining the dynamics governing 
a phenomenon measured by another variable Y. However, from a forecasting 
point of view. this is J10t enough, as we would also like to predict which value 
of Y we may expect corresponding to  a certain level of Xo the independent 
variable X .  In order to do so. we must come up with an explicit link. in the 
form of a functional dependence. between Y (e.g., demand) and the explana- 
tory variable X (e.g.% outside temperature). The simplest tool to analjze such 
links is simple linear regression, which assumes a functional relationship 
such as 

Y = a + b X .  (A.22) 

Tie speak of "regression" because we try to  identify suitable values a and b 
in such a way that the niodel is consistent with a set of empirical observa- 
tions. It is -linear" because we are using a linear2' function to model the 
relationship between variables: we should recall that  correlation captures liii- 
ear associations, but it may fail to point out nonlinear associations. It is 
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Fig. A.21 Regression lines with different levels of "sample fit." 

"simple" because there is only one explanatory variable; we may (and typi- 
cally should) also build multiple regression models in which more factors are 
used to explain the values assumed by a variable of interest. 

In the rest of this appendix we illustrate simple linear regression in some 
detail. Multiple and nonlinear regression will not be considered in detail: We 
just describe a simple way to  use linear regression to estimate a nonlinear 
relationship in section A.10.6, and we outline multiple linear regression in 
web section W.A.11. We also emphasize that the mathematical tools we will 
use. per  se, do not assign a precise role to variables: The model captures 
an association. and we interpret X as the cause and Y as the effect; but we 
could switch these two roles. and the mathematics would just be the same. 
Regression is a very useful but dangerous tool. as by playing with numbers 
one may build models which have really no meaning at all. Hence. we will try 
to  point out all the pitfalls of simple-minded linear regression. 

The starting point of linear regression is a set of empirical observations, i.e.. 
pairs ( X t .  y Z ) .  In general, if we have three or more points. it will be impossible 
to find a pair of coefficients a and b ensuring a perfect fit by a linear function.21 
What we can do, for instance. is to find the "best" coefficients a and b in such a 
way that the theoretical model. the regression line, is as close as possible to  the 
empirical data. For instance. a look at  figure A.21 shows a set of data which 
is more consistent with line Y = 10 + 5X than line Y = 100 + X .  To make 
the idea more concrete. we must explicitly specify a distance measure between 

"Of course, we might consider the idea of assuming a complicated functional form, with 
a lot of coefficients which ensure enough degrees of freedom to get an almost perfect fit. 
Unfortunately. this "overfitting" process is sensitive to  noise. among other things, and it is 
rarely advisable. 
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the prediction we get from the theoretical model, Y, = a + bX,. and the n 
empirical observations of X ed Y :  we will use the sum of squared deviations 
as a measure, leading to  the least squares method. In the next section vie 
do so without referring to  statistical concepts at all. as the approach can be 
cast within the framework of function approximation, which is an important 
branch of Numerical Analysis. Then. we will introduce statistical concepts. 
which are needed to evaluate the reliability of the predictions we obtain from 
a linear regression model. 

A . l O . l  Best fitting by least squares 

Say that we have a set of n points (xz, y,). z = 1.. . . . n. These points can 
be the result of empirical measures or simulation experiments. but for now 
we treat them as numbers. Please note the use of lowercase letters; we are 
not (yet) considering our data points as the outcome of random sampling. 
Sle postulate a functional form. say y = f ( x ) .  and we look for the function 
which yields the best approximation of the given data. within some class of 
functions and with respect to a given criterion. In the case of linear regression. 
we consider the class of affine functions like 

y = f(x) = a + bz, 

and we look for the "optimal" pair of coefficients a and b. In general. a perfect 
fit is impossible to obtain with a reasonably simple model. and we will have 
some deviation between the theoretical prediction and the empirical data. lye 
define a residual e, as 

e, = y, - f ( ~ )  = yZ - ( a  + bx,). (A.23) 

IVe should aggregate the n residuals in order to  come up with a single number 
playing the role of a distance. There are different and sensible ways for doing 
so. but the most common one is by summing the squared residuals: 

n n 

2 = 1  2 = 1  

where SS stands for Sum of Squared residuals. Then. the approximation 
problem boils down to an optimization problem requiring the miniinization 
of SS with respect to a and b. Of course. we square the residuals in order 
to avoid cancelation between positive and negative values. but we could also 
take absolute values. One reason to prefer squared residuals is that they lead 
to  an analytical solution. whereas absolute deviations call for a numerical 
solution by linear programming. An analytical solution allows for an easier 
interpretation. and It paves the way for the application of statistical tools. 
Summing squared rwiduals is equivalent to  taking an average. as dividing 
the objective function by n does not change the solution of the optimization 
problem. lye could also consider a worst-case error. leading to a min-max 
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optimization problem; this is more appropriate in other applications, but it 
calls again for a numerical solution. 

To find the optimal values of a and b; we just need to  enforce the first-order 
optimality conditions.22 The first condition. with respect to a. is 

n 

- -  - - c 2 (yi - a - bxi) 
ass 
da 

i=l 

/ n  n n \  

= - 2  [ x y i - x a - x b s i )  
\i=1 i=l i=l  1 
/ n  n \  

which yields 
1 "  l n  

a" = - x y i  - b - x x i  = ?j- bz! 
n n 

i=l i=l 

(A.25) 

where Z and Tj are the average values of x and y: formally. they are similar to 
sample means. This condition. by the way. tells us that the barycenter (5,Tj) 
of the experimental data lies on the regression line. which does make sense. 
The optimality condition with respect to  b reads 

We can plug the optimal value a* into this condition: 

,./ n n n n n n \  

Rearranging this condition, we get 

22They are sufficient conditions, as the objective function is convex with respect t o  the 
decision variables: see appendix B. 
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The second rewriting is easill- obtained by dividing both numerator and de- 
nominator by n, and it may be easier to remember. As we anticipated. we 
find explicit expressions for a* and b*, which can be interpreted intuitively to 
improve our understanding of the results. To ease the notation, we will drop 
the asterisk * and denote the optinial value of coefficients by a and b. 

lye  begin by rewriting the formula (A.26). Using the same trick. i.e., b? 
dividing both numer&or and denominator by n, we may see that 

n n n 

i = l  i=l 2 = 1  

Now, we can use the rather obvious identities 

to  subtract a zero term from both the numerator and denominator of the 
fraction and to  rearrange: 

i=l i = l  

(A.27) 

In the last line. we have used the notations Sx, Sy. SZy. and rZY Formally. 
these quantities are ,similar to sample standard deviations. covariances. and 
correlation coefficients, but the interpretation is different here as we are deal- 
ing with numbers and not with random samples: still, the notation is quite 
handy and tells us a lot. When we cast regression within a statistical mod- 
eling framework. we will point out what should be considered a5 a random 
variable by using uppercase letters when appropriate 

This way of writing the regression coefficient b suggests an interesting ge- 
ometrical interpretation. In fact, it plays the role of an incremental ratio 
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f ig. A.22 Geometrical interpretation of coefficient b (case 1) 

between y and x. In elementary analytical geometry, the slope of a line pass- 
ing through points Pl(z1; y1) and Pz(22;y2) is 

(A.28) 

In linear regression, the terms A, and Az are replaced by the terms S, and 
S,. which basically measure the observed variability in y and x. Moreover, 
the "correlation coefficient" tells us if, for increasing values of x. the values of 
y tend to increase (positive correlation), to decrease (negative correlation), or 
are not affected at  all (no correlation). Clearly. we have a positive slope in the 
first case. a negative slope in the second case, and a horizontal line in the last 
case. The last case does not necessarily imply that there is no link between 
the two variables: We should recall here figure A.18 on page 489: correlation 
is just a measure of linear association, and in that case linear regression will 
not pick up the link between the two variables. 

To get a feeling for equation (A.28). it is also useful to fix a correlation 
coefficient and to see how b changes when the ratio between S, and S, varies. 
In figures A.22. A.23, and A.24 we show three cases with high correlation, 
namely 0.9: however. in the first case, S, is definitely larger than S,, they are 
practically equal in the second one. and S, is larger than S, in the last case. 

A.10.2 

So far. we have dealt with linear regression as an approximation problem, 
without any reference to  statistical concepts. However. when we plug a value 
xo in the regression line to obtain a forecast, we would like to  see something 
like a confidence interval. Before doing so. we should also check if the re- 

Analyzing properties of regression estimators 
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Fig. A.23 Geometrical interpretation of coefficient b (case 2 )  
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Fig A 24 Geometrical interpretation of coefficient b (case 3) .  
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gression has some significance and if the coefficients a and b can be trusted. 
In order to do so. we must make some assumptions about the way data are 
generated. The statistical model we will consider is the following: 

y, = Q + $x, + E , ,  i = 1, .  . . ,n ,  (A.29) 

where Q and 4 are unknown parameters we have to  estimate. and the E ,  are 
random varaables meeting the following conditions: 

0 All the variables E ,  are mutually independent and identically distributed 
with expected value zero and standard deviation u, = uc,  for all 1 .  

Each random variable E ,  is also independent from x, which is considered 
as a number. 

The last remark deserves some comment. We consider the variable as a num- 
ber, which makes sense if it represents a quantity, such as price, which is under 
the control of a decision maker. It is also possible to  build regression models 
in which random variables X ,  are considered. This second approach makes 
sense when X is not under our control, as in the case of outside temperature. 
or when we measure a quantity x subject to  some measurement error. We will 
deal with the easier case for the sake of simplicity, but the basic results are 
the same, if the random variables E ,  and X ,  are independent. Whatever the 
choice. Y,  is definitely a random variable and. given the assumptions above. 

for some value of z,. Basically. random variables E ,  play the role of an error. 
Errors, in this model, are a sort of catch-all for what is intrinsically random 
or what we are not able (or willing) to  take into account.23 The assump- 
tions above on errors have the basic meaning that we are not missing some 
significant pattern with our very simple model. 

From a notational point of view. it would be advisable to denote the errors 
by EZ in order to separate the random variable from its realization. We refrain 
from doing so to avoid heavy notation. What is really important is that ,  in this 
context. Greek letters are associated what what we don't know and what we 
cannot observe. We assume that the "true" data generating process is given as 
in equation (A.29), but we ignore the values of the parameters ct and p, which 
are unknown numbers. When we take a random sample, consisting of pairs 
of observations (z,, Y,).  we are implicitly sampling E,, but the realizations of 
the errors are not directly observable. What we can do is build estzmators 
a and b, which are random variables. for the unknown parameters Q and 0. 
Again, we are departing from our usual notation and use lowercase a and b 

231n Physics, there has been a very heated debate between the likes of Einstein and Bohr 
about randomness. Is it an  intrinsic feature of Nature. or is it the result of our lack of 
knowledge? 
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to  denote random variables, just to avoid unnecessary burden. Given values 
of the estimators. WI: may evaluate the residuals 

e7 = Y, - (a + bx,) 

To summarize. we use Roman letters ( u .  b,  e,) to refer to what we may estimate 
and observe and ultimately use for forecasting: Greek letters a .  3. E, refer to 
unknown iiuinbers and unobservable random variables. 

Now the natural questions to ask concern the quality of u and b as estima- 
tors of a and 3. We should check bias first, i.e.. we verify that E[b] = 3 and 
E[a] = 0% given the assumptions above about the data generating process. 
Then. we should imestigate their variability and their effects on the predic- 
tive ability of our model. To this aim. we refer again to formulas (A.25) and 
(A.26). where we plug random variables Y, where numbers y p  occur. 

Biasedness The first issue me tackle is whether E[b] = 3 or not. The first 
step is rewriting the formula (A.27) in our context. nhere a random variable 
Y, replaces the number y7: 

n 

C(5, - 5) ( y  - Y) 

a = l  
71 c ( x 2  - 5) . [a + 32, + F ,  - (a + $33 + F)] 

c ( 2 ,  - Z)* 

2 = 1  - - 
n 

a=l 
n c (& - z) ' [3 (2 ,  - z )  + ( E ,  - F ) ]  

c ( X L  - zI2 

c ( J 7  - F )  ( € 2  - 5 )  

c ( x *  - 5)2 

- t=1 
- 

n 

2 = 1  

n 

= 3 +  (A.30) 

r = l  

Here Z is the average of the 2, .  and t is the sample mean of the errors. over 
the n observations. JVe see that b is given by the sum of 3 and a random term 
depending on the errors E, .  \Ye should essentially prove that the expected 
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value of this random term is zero: 

n c (xi - a) ( € 2  - F) 

n 1 = P + E  I i=l 

C(Xi -q2 I 
i = l  J 

n C (xi - a) . E [c2 - 51 

B +  =p+o.  ,=l 

n 1 
- n  c (Xi - a) (Ei - E )  
i=l 

i=l J 

C (xi - q2 
i=l 

In the manipulations above, we have used the fact that  P and x, are numbers 
and can be taken outside the expectation; then we rely on the assumption 
that the expected value of the errors is zero, as well as the expected value of 
their sample mean. 

The same line of reasoning can be adopted to prove the desired property 
of a. We rewrite (A.25) in the assumed context: 

i=l k l  

Now we must take the expected value of both the terms above. We note that 
a is given by the sum of three terms. The first one is a number and can be 
taken outside the expectation: in the second term. the x ,  are numbers as well, 
and we may use the just proven fact that  E[b] = 0: finally we have the sum 
of errors. whose expected value is zero. Wrapping everything up. we have 

1 1 
= Q + - E [p - b] x ,  + - E [ E , ]  = 0 ,  n n 

%=I 2 = 1  

Estimation errors Now we have some guarantee about the quality of the esti- 
mators we build by the linear regression approach: Provided that the assump- 
tions about the data generating process are true, the estimators are unbiased. 
This is good news, but we should also have an idea about their variability. A 
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useful waj- to  frame the issue is considering the standard error of estimate. 
denoted by See and defined as 

Seeb = \,/-. See, = Jm. 
Recalling that E[Z2 1 = Var(Z) + E2[Z]. for any random variable 2. and that 
our estimators are unbiased. we also see that 

A similar relationship holds for See,, a ,  and a .  
From the (ideal) point of view of someone endowed with knowledge of the 

parameters cy and 3% See measures the dispersion of the estimator around its 
expected value. From our (real) point of view. See is a valuable tool in going 
beyond a point estimator: we can build confidence intervals. test hypotheses, 
and even try building a probability distribution for a predicted outcome. The 
bottom line is that if See, and Seeb are small enough. then we could start 
consider the possibility of trusting our model: otherwise. great care must be 
taken in taking business decisions. 

To quantify the estimation error. we start with the parameter 3. Recalling 
equation (A.30). 

n 77 

i= l  2 = 1  

we may proceed as follo~vs: 

Seeb 

1 r n  1 
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I n 

In the manipulations above we have taken advantage of the nature of the x, 
(numbers) and of the errors E ,  (mutually independent and with fixed standard 
deviation a,). 

The careful reader will notice that there is a problem with the formula 
above: How do we know aE,  if we cannot observe the errors but just the 
residuals? The answer is that we should estimate this standard deviation as 
well. but this does not prevent a practical use of See. Before doing so, it is 
useful to interpret the result we have obtained. 

As expected, the reliability of our estimate of the slope of the linear 
law describing our phenomenon depends on intrinsic variability of the 
phenomenon itself. If random variability is low, and the n observations 
are very close to  the line Y = Q + px, then estimating the slope is a 
fairly easy task. Indeed, we see that Seeb is proportional to  aE .  

Another fairly intuitive observation is that the more observations we 
have. the better. In fact, for each observation we have. the denominator 
of the ratio above increases, reducing Seeb. 

A less obvious observation is that our ability to  estimate the slope de- 
pends on where the observations are placed. We note that a t  the de- 
nominator of the ratio there is a term similar to a variance. which is in 
fact the (nonrandom) variability of the observations 2, .  If the points 2, 
are close to each other, i.e.. they are close to their average z. we have a 
small denominator. It is difficult to  see the impact of small variations 
of z on Y, because this effect is *'buried" in noise. If the observed range 
of x is wide enough. assessing the impact of x on Y is easier. 

The last point is illustrated in the following example. 

Example A.25 Say that we want to use simple linear regression to  investi- 
gate the relationship between outside temperature and ice cream consumption. 
Simple linear regression is but the simplest approach, as other factors may 
play a role, leading to multiple regression: furthermore. the relationship need 
not be linear. Leaving these caveats aside. our task is certainly difficult if all 
we have is a set of data whereby temperature. measured in Celsius degrees, 
lies between 22" and 22.5".  Even if the relationship is linear. with slope D.  
we should expect a rather small difference 0 0.5 in the consumption for the 
two extreme temperatures in the range. The slope ,O should be positive. but 
in a random sample we might have enough noise to  get a negative estimated 
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slope b. The task would be probably easier if we had a sample in the range 
between 10" and 30". The difference 3(30 - 10) should be large enough to 
avoid, at least, a negative estimated slope because of randomness. D 

The example suggests that we should have observations over a large range of 
the explanatory variable 2 ,  in order to  get a good estimate of slope. However, 
it is worth noting that in many cases a linear relationship may hold over a 
limited range: if the model is nonlinear, a linear one may be at best a 
suitable local approxunation. Hence. by taking a wide sample we might run 
into a different kind of trouble, namely poor fit. Furthermore. we should be 
very careful when we extrapolate a prediction, i.e., when we consider some- 
thing like Yo = a + b ~ .  where 20 lies outside the range of observed values. For 
instance, the model considered in the example above would probablj suggest 
that on very cold days we have negative ice cream consumption! 

In order to  assess the estimation error for a ,  we may follow the same route 
we took for the slope. The starting point is 

- 1: 1 "  
a = Y - bz = - Fb ( a  + 9z, + tz)  - bz = Q + ( 3  - b)z+ - CE2. 

n 
2 = 1  

n '1 
2 - = l  

To get closer to  See, we observe that 

This expression is quite complex, but actually we can show that the last 
term is null. Focusing on this term. and rewriting b - 9 in order to see the 
contribution of errors. we obtain 

n 

n 

z = 1  
n 

n n  c c cov ((z, - 2) t , .  € J )  
i=l 7 = 1  
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n n 

i=l 
n = 0, n 

- - i=l - - 

2=1 z = 1  

where we have exploited the mutual independence between the errors E ,  and 
the fact that their variance does not depend on the observations. Now, plug- 
ging the expression of Seeb, we obtain 

(A.31) 

This formula too lends itself to a useful interpretation. as we see that we have 
two terms under the square root. The second one is basically linked to  the 
average contribution of random error E ,  whereas the first one is linked to the 
error in the estimate of p. Let us get a closer look at both terms. 

Suppose, for a moment, that  we have been pretty good at estimating 
the slope, i.e.. b = p. If in the sample we observed. the errors have been 
positive on average (C:& E ,  > 0), we will arguably tend to  estimate an 
intercept a which is larger than the true one, Q, because we observed a 
set of points which are on average above the ideal line Y = Q + Px. On 
the contrary, if the errors have been negative on average (Zr=l E ,  < 0). 
we have basically observed a set of points below the ideal line, and the 
estimate a will turn out smaller than the true intercept a ;  in this last 
case, the estimated line will lie below the ideal one. This error in the 
“vertical” placement of the line will be smaller when the number n of 
samples is large. This is basically what the term a,/&, in See, tells us. 
The idea is illustrated in figure A.25, where we see that the observations 
of the dependent variable Y are more often than not above the ideal line; 
this is due to an “excess” of positive observations of the random error. 
leading to  an estimated line above the ideal one. 

To see the second phenomenon contributing to  the error in estimating 
a. let us assume that we had an “ideal” sample of errors, E:=l E ,  = 0. 
The first term in See, tells us that even in this case, we will have an 
error in the estimate of a due to errors in the estimate of the slope. As 
we see from the expression of the estimator a. the regression line goes 
through the barycenter ( Z , Y )  of the n observations. This implies that  
if the estimated value b is larger than the true slope 0. the estimate 
a will be smaller than a ,  for the case > 0. On the contrary, if we 
underestimate the slope p, i.e., the estimated line is “flatter” than the 
ideal one. the estimate a will be larger than a.  for a positive average 
value Z. Basically. if the average error is zero, then we have a rotation 
of the ideal line around the barycenter of the observation. which in this 
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The effect of an error in the estimate of the slope 3 on the estimate of the 

case lies on both the ideal and the estimated line. We may get a better 
picture of this phenomenon by having a look at figure -4.26. Clearly, 
the larger the error in the estimate of the slope. the larger the error in 
a ,  but this also depends on the barycenter 5 of the observations of the 
independent variable. If this is large. the slope error ( 3  - b )  has a larger 
impact because the **lever arm," i.e., the distance beheen  the vertical 
coordinate axis and the center of rotation, is large. In the opposite limit 
case, i.e., when ( z  = 0),  the impact of this rotation in the intercept 
a is null. We can see this in figure A.27. where the barycenter of the 
observations. ( F .  Y). lies on the vertical axis. 
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stiniated line: y=23+0 8x 
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Fig. A.27 The effect of an error in the estimate of the slope P on the estimate of the 
intercept o ( 2 ) .  

The last missing piece in the puzzle is how we can estimate the standard 
deviation oe of the random errors, which are not directly observable. The 
only viable approach we have is to rely on the residuals e, as a proxy for the 
errors 6,. Each residual is. for a given value x,, the deviation between the 
theoretically predicted value. = a +)z,, and the observed one, Y,. Note 
that if we trust the estimated model, Y, is the expected value of Y,; hence. 
in order to  assess the variability of the errors, it is reasonable to consider the 
variability of the observations with respect to  their expected value. Another 
way to  get the picture is by noting that the assumptions behind the statistical 
model imply that 0," = Var(Y,), but the variance of the observed value Y, is 
a squared deviation with respect to  an expected value which depends on x,. 
This reasoning leads to the following estimate: 

(A.32) 

This is basically a sample standard deviation; the only point which could raise 
a few eyebrows is the denominator. which is n - 2 rather than n - 1. The 
serious way to see this is by showing that with that term the estimator of oe 
is unbiased. A first (very) intuitive argument runs as follows. What is the 
minimal number of observations to  analyze the standard error? If we had just 
n = 2 observations, we could say nothing, because in such a case the observed 
points would exactly spot one line, and there would be no deviation between Y, 
and g. If we had n or n - 1 at  the denominator, the conclusion would be that 
whenever we have n = 2, estimated random variability is zero, which makes 
no sense. The term n - 2 points out that with just two observations we cannot 
say anything. as we have a ratio O / O .  It is only from the third sample on that 
we can say something. Of course. this argument is just an interpretation and 
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7%/e A.5 First data set for example A.26 

i 1  2 3 4  5 6  7 8 9 10 11 

x 0  1 2 3 4 5  6 7 8  9 10 
y 100 104 111 114 121 125 129 133 141 137 150 

Table A 6 Second data set for example A.26 

i 1  2 3' 4 5  6 7 8  9 10 11 

x o  1 2: 3 4  5 6 7 8 9 10 
y 73 125 149 91 95 175 93 118 125 193 133 

not a proof. Another intuitive way to  interpret the formula runs in terms of 
degrees of freedom. :In this case, we are estimating two parameters, o and 3. 
of the model. and this consumes some available inforination in the observed 
sample: t,his result,s in the loss of two degrees of freedom. 

Now. we are ready t'o evaluate the standard estimation errors of the regres- 
sion parameters. This turns out t,o be essential in building confidence intervals 
and testing hypot heaes. 

Example A.26 Reliability of estimators a and b. To build some in- 
tuition as far as See is concerned, let us consider t,he t,wo data sets given in 
tables A.5 and A.6. To distinguish the two cases: we will use subscript 1 for 
the estimates referred to  the first data set of table A.5 and subscript 2 for 
the data set of table A.6. Using equations (A.25) and (A.26): we obtain the 
following estimators: 

= 99.64, bl = 5.07. a2 = 99.32, b2 = 5.06. 

wee that' the regression coefficients are essentially the same. even if the 
data look quite different. How different exactly can be seen in figures A 2 8  
and A.29. In the first case. the observed points lie almost exactly on a line; 
in t,he second one. we see a lot of variabilit,).. The two situations are clearly 
discriminated when we compute the See for the four parameters: 

See,, = 0.688, Seebl = 0.116, See,, = 19.53. Seeb, = 3.30. 

J1-e see that large standard errors. wit,h respect to  the value of the estimators. 
are associated with t,he second data  set. Tt'e could even wonder if the h e a r  
relationship we have estimated is statistically significant. In the next section 
we consider such an issue in a general setting. 0 
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f ig. A.28 Plot of the first data set for example A.26. 
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Fig. A.29 Plot of the second data set for example A.26. 
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A.10.3 Confidence intervals and hypothesis testing for regression 
estimators 

To use regression in a sensible and responsible m y .  we should assess the 
probability distribution of the estimators a and b. This distribution depends 
on the distribution of the errors 6,. If we assume that errors are normally 
distributed, since the estimates a and b basically involve sums of the errors, 
they will be normal too. We use this knowledge in order to: 

0 compute confidence intervals 

test hypotheses 

These related activities are essential in order to  assess the validity of the 
regression model (if the confidence interval for b includes both positive and 
negative values. we are unsure about the effect of the independent variable on 
the output) and to  use regression as a forecasting tool (a one-number forecast 
may be extremely dangerous. and its uncertainty must be qualified). 

In doing so, we must rely on estimates of the volatility oE. As we have 
seen in section A.8.2. Student's t distribution is involved: taking into account 
the form of the estirnator (A.32), we maj- also see that we should use the t 
distribution with n -- 2 degrees of freedom. 

Confidence intervals Although we will never know the exact value of the pa- 
rameters cy and 3. ~ v e  may use See to build a confidence interval including the 
unknown values with probability p ;  to avoid an ambiguous notation. here we 
avoid denoting the confidence level bj 1 - Q 

Example A.27 To illustrate the idea. we use again the data set in tables 
A.5 and A.6. to build confidence intervals for the estimates of a and 3. with 
confidence level p = 95%. 

We have eleven data points: from statistical tables or numerical software 
we obtain the relevant quantile for the t distribution with nine degrees of 
freedom: t o  975 9 x 2.26. Hence. using the standard errors of estimate we 
obtained in example A.26. we may say that,  with probability 0.95> we have in 
the first case 

a - t o  5175 9 . See, = 99.64 - 2.26. 0 688 = 98.09 5 a 5 
a -t t o  975 9 .  See, = 99.64 + 2.26 0.688 = 101.19 

b + t o  975 9. Seeb = 5.07 + 2.26 0.116 = 5.33. 

b - t o  975,9 . Seeb = 5.07 - 2.26. 0.116 = 4.81 5 3 5 

whereas in the second one we have 

a - t o  975 9 . See, = 99.32 - 2.26 19.53 = 52.13 5 a 5 
a -t to 975 9 . See, = 99.32 - 2.26. 19.53 = 146.51 

b - t o  si75 9 . Seeb = 5.06 - 2.26. 3.30 = -2.79 5 3 5 
b -t t o  975 9 Seeb = 5.06 + 2.26 3 30 = 12.93. 
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We see that,  as expected, the confidence intervals for the second data set are 
much larger. What is more important is that even the sign of the slope is 
somewhat dubious. 0 

We should remark that the confidence intervals we obtain rely on several 
assumptions about the random errors in the underlying statistical model, 
and on our ability to estimate their variance. Nevertheless, they are useful 
approximations showing that,  for a given probability p, the standard error of 
estimate has an important impact on our knowledge of parameters cv and p. 

Hypothesis testing Armed with some knowledge about the distribution of the 
estimators, we may also run some hypothesis testing on parameters cy and 0. 
The conceptual background has been given in section A.9. and here we provide 
the reader with a few examples. 

Typical questions we want to answer concern the impact of the explana- 
tory variable on the predicted variable. For instance, if we cannot reject the 
hypothesis /3 = 0, we cannot trust the model too much. Sometimes, we want 
to  check if the effect has some sign; for instance. if we look for support to  
the hypothesis that  a reduction in price has a significant impact on sales. we 
should consider the hypothesis p < 0. Sometimes, it is not trivial to  decide 
if the test is one- or two-sided. Similar questions can be asked as far as 01 is 
concerned. and they are typically of two types: 

1. Can we say that,  with some probability p, the parameter ( a  or p) is 
positive (or negative. or non-null, depending on our problem formula- 
tion)? 

2. What is the maximum confidence level with which we can state some 
property about the parameter? 

If our aim is checking whether a or /3 is nonzero (which amounts to  saying. 
in the second case, that  z has a statistically significant impact on Y ) .  with 
some probability p .  we must essentially check if. a t  confidence level p ,  the 
confidence interval includes 0 or not. Referring to example A.27, we may say 
that, in the first case, both parameters cv and /? are different from zero with 
probability 95%; in the second case we cannot. 

If we are wondering with what probability we can say that a parameter is 
different from zero, we must reason on the maximum width of the confidence 
interval such that the origin is not included: in this case, this is equivalent 
to finding a p-value. If a and b are positive, as in our examples so far. we 
should set the left endpoint of the interval to zero to  obtain the corresponding 
quantile. In the case of a we have 

Given the quantile. we can read the probability level p .  checking tables for 
the t distribution with n - 2 degrees of freedom. 
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Example A.28 The data set of table A.5 yields two values t,,g. for a and 3. 
equal to 144.84 and 43.71. respectively. This implies that the two parameters 
are nonzero with (prxtically) 100% probability. 

The case of the second set, in table A.G. is different. as the two yuantiles 
are 5.08 and 1.53. 'This means that cr is positive with (practically) 100% 
probability, whereas the probability for 3 is only 92%. I] 

A.10.4 

lye  have discussed important properties of the estimators a and b of parani- 
eters a and 3, but of course the real deal is using the explanatory variable IC 
to predict the output Y. For instance. regression analysis could support the 
view that the average price of soft drinks has an impact on the demand for 
salted snacks. because reducing the price of drinks stimulates people to offer 
an aperitif. Based on a suitable amount of data. it is likely that we could 
indeed support this, but of course it is unlikely that this is the only or the 
main factor explaining sales volume of salted snacks. Other factors could be 
the price. the weather, proximity to social or sports events. etc. So. on the one 
hand, the view that the 3 coefficient of the relationship between soft-drink 
price and salted snack sales is significantly negative could be supported by 
proper statistical analysis. but. on the other hand. this does riot imply that 
such a model is a good one. It-e should try to  measure how much variability 
of the output variable can be attributed to an explanatory variable. 

To make this idea concrete, we can measure the correlation between Y,  
and g, By considering the squared correlation coefficient. we may define the 
following R2 statistic. which is based on the sample correlation coefficient 
(A.19): 

Performance measures for linear regression 

By its very definition, R2 is a measure bounded between 0 and 1. It is also 
interesting to rewrite this expression in order to shed some more light 011 i t i  
meaning, paving the way for useful interpretations. il-e know that 

2 = 1  i=l  
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hence, we may rewrite R2 as 

r n  1 2  

R2 = n p- ' )p-F)  i=l n J 
c ( y z  - q2 ' c (p - Y ) 2  
i=l i=l 

2 

- [g[(yz-p)+(p-Y)] i=l (%-")I 
n 

- 2 ( y z  - Y) ' . (I', - P) ' 
2=1 z = 1  

2 [ 5 ( y ,  - I',) (p - Y) + 2 (p - ') (p - Y)] 
- u = l  2 = 1  

n n - c ( y z  - Y)2 . c (2 - Y) ' 
2 = 1  u=1 

Now we prove that the first term in the numerator is actually zero: 
n 

C(yz-R> ( k - Y )  
i=l 

n 

= c [yZ - (u + bzi)] ( a  + bxi - a - bZ) 

= c [yz  - (Y - bz) - bxi] (bxi - bz) 
i=l 

n 

i=l 

= b [ (n  - 1) S,y - b (TI - 1) SE] 

So we end up with the following formula for R': 

2 = 1  

We see that R2 can be interpreted as the ratio of two (sample) variances: the 
"variance" of the forecasts and the variance of real observed data Y,. We 
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f ig  A.31 A geometrical interpretation of the R2 coefficient: a case with R2 = 0.98. 

should note that. by definition. the forecasts lie on a line; when we speak of 
"variance." we actually mean the (nonrandom) variability with respect to the 
average ordinate along the line. In other words. R2 measures the fraction of 
variability which is explained by the regression model Y = a + bx. Referring 
back to our snack sales example. the R2 of a regression against the average 
soft-drink price is likely to  explain a small fraction of variability. 

To improve our feeling for R2, we may have a geometrical look. In figure 
A.30. the forecasts display a lower level of variability than observed data 
Y,: in fact. observations are somewhat placed around the line. but we see a 
lot of variability beyond the variability due to  the slope of the line. Hence, 
there is a lot of variability which is not explained by the model. By comparing 
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figure A.30 against figure A.31. we see that when R2 increases we have a much 
larger ability of explaining the observed data, and unexplained variability is 
quite limited. 

A.10.5 

In running a diagnostic test on the explanatory/predictive ability of a regres- 
sion model, we should not forget that all we have said depends heavily on a 
set of precise assumptions on the random errors. It is therefore essential that 
these assumptions are tested, at least informally, against the observed data. 
We recall the assumptions: 

Verification of the underlying assumptions 

0 E ,  is a random variable with expected value zero 

0 The random variables E ,  are mutually independent and identically dis- 
tributed; in particular they have the same standard deviation. 

0 The distribution of the error E ,  does not depend on x,. 

0 We have perfect knowledge of x, which is not a random variable but is, 
instead. a number and can be measured with no uncertainty. 

There are specific procedures to  check the validity of these assumptions. We 
illustrate here graphical checks, which are useful for a rough-cut analysis and 
reinforce the concepts. 

The assumptions above say that the noise E ,  in the model can be regarded 
as (a) a stochastic process with expected value zero. (b) stationary, (c) not 
autocorrelated. and (d) independent of z. To really check this. we should 
observe the errors, which is not possible, because we do not have knowledge 
of the ideal line Q + 42. We must settle for a proxy of E , ,  i.e., the residual 
ex = U, - ( a  + bx). 

The assumption about the expected value is automatically met, since the 
estimators are such that a = 7 - bZ. To check stationarity and lack of 
autocorrelation, we may plot the residuals. If the assumptions are compatible 
with the data. the plot of the residuals e, should look like figure A.32, where 
we see that they reasonably behave like pure noise. On the contrary. the next 
three figures display plots of residuals which do not support the underlying 
assumptions. 

In figure A.33 we see a pattern which is typically associated to positively 
correlated errors. If we draw a positive error at observation number i, the 
next observation i + 1 is likely to  be affected by a positive error as well. The 
same holds for negative errors, and we see "waves" of positive vs. negative 
residuals. Such a pattern may be observed for at least a couple of reasons. 
The first one is that there is indeed some correlation between consecutive 
observations in time. In such a case subscript z really refers to  time and to  
the order in which observations were taken; the obvious case is when time 
is the explanatory variable. Another possible reason has really little to  do 
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Fig. A.32 Plot of residuals coherent with the regression model assumptions. 

with Statistics: i57e niay also observe a pattern like this when there are non- 
linearities in the observed phenomenon. Consider for instance the nonlinear 
function in figure A.34. and assume we use linear regression to  approximate it. 
using a few sample points (possibly affected by noise). The nonlinear curve is 
somehow cut by the regression line. and this results in a nonrandom pattern 
in the residuals: They have one sign in the middle range of the interval of 2 .  

and the opposite sign near the extreme points. 
Of course, this second case has more to do with the appropriateness of 

selected functional form, and we are somewhat improperly using statistical 
concepts as a diagnostic tool. If so. we should clarify the meaning of the 
subscript i associated with an observation. If the explanatory variable is time. 
subscript z refers to  the position in the chronological sequence of observations. 
and there is no ambiguity. But if we are regressing sales against price. we 
might wish to  sort observations according to the value of the explanatory 
variable: in this case subscript z should not refer to  the order in which me 
took our samples. 

Actually, we are talking about two different issues. and we should pay due 
attention to both of them. Whatever the case. a quantitative check can be 
run b>- estimating the, correlation between e ,  and e,+l.  

Another check concerns the stationarity of the error process. In section A 7  
we have considered weak stationarity of the second order. n-hich basically says 
that we should (at least) check stationarity of the mean and the x-ariance of 
the error process. In figure A.35 we see that the mean error seems dependent 
on i .  If i is actually the time of the observation (but it need not be). we should 
consider running a multiple regression in which time is an explanatory vari- 
able. A quantitative check can be run by estimating the "correlation" between 
e ,  and i. Figure A.36 displays a case in which the errors in the first observa- 
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Fig. A.34 Using linear regression with a nonlinear underlying function results in "au- 
tocorrelated" residuals. 
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Plot of residuals suggesting that the variance of the error process is not 

tions look much smaller, in absolute value. than in the last observations. This 
raises some doubt on the stationarity assumption for variance. A technical 
word used in Econometrics to refer to a situation like this is heteroskedastzc- 
aty. \Ire could probably circumvent the difficulty by assigning more weights 
to  observations with a larger amount of information (i.e.. less noise). but this 
goes beyond the scope of this book. One way to have a quantitative check is 
by estimating the "correlation" between E :  and z. 
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Finally. we should check whether residuals do not depend on x. To this 
aim. we can produce plots of residuals like those in figures A.35 and A.36, 
where the independent variable is x. rather than the observation index or 
time. 

A.10.6 

After the long list of checks and caveats we have seen so far, the reader might 
have the feeling that linear regression is a rather rigid tool, whose practical 
use is hindered by a plethora of assumptions. There are statistical issues. 
which can be somehow circumvented by using more sophisticated techniques. 
We refer the reader to  a book on statistics or econometrics to  appreciate the 
richness of this field. 

Apart from statistical issues, linearity itself is certainly a possibly strong 
limitation, as both Nature and Business are nonlinear. For instance, if we want 
to study the relationship between the amount we spend in advertisements and 
revenue, a linear model could lead to the following two difficulties (at least): 

1. A linear relationship fails to  capture thresholds effects: Below a certain 

Using linear regression to estimate nonlinear relationships 

minimal effort, the message is not perceived at all. 

2 .  A linear relationship fails to  capture saturation effects: Increasing the 
effort beyond a certain limit is useless because of intrinsic limitation in 
the market size and because of competition. The bottom line is that 
there are diminishing marginal returns from the investment. whereas 
a linear model used t o  take decisions could suggest the opportunity of 
increasing the effort too much (at least. if the advertisement costs are 
linear or marginally decreasing). 

If we have to deal with a nonlinear phenomenon. one possibility is to forget 
about a simple linear law and to  develop a theory of nonlinear regression. 
This has indeed been done. but nonlinearity can introduce an array of tech- 
nical complications. Hence. we could try to use linear regression as a tool to  
estimate nonlinear relationships. This may seem to be a hopeless endeavor. 
but an example can prove that we can actually resort to  suitable data trans- 
formations to identify the parameters of a postulated nonlinear relationship 
between x and Y .  

Example A.29 Suppose we have a data set displaying a strong nonlinearity, 
as depicted in figure A.37. In such a case, enforcing a linear regression would 
be less than advisable, but we can try to work with a nonlinear functional form 
lending itself to a data transformation, such that the familiar tool can be used. 
Since we have just dealt with simple linear regression, whereby we estimated 
two parameters, we should use a nonlinear function linking Y and x. in which 
two parameters are used. A typical choice is an exponential functional form 
like 

Y = k x T .  (A.33) 
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Fig. A.37 A nonlinear relationship. 

Fig A 38 Lincarizing ,I nonlinear relationship by a logarithmic transformation. 

To linearize this relai ionship. n-e can exploit a logarithmic transformation: 

l o g y  =log(kz ' )  = logk+- log .7 : .  

Sle see that.  on a logarithmic scale with coordinates l o g y  and log x. we have a 
linear relationship. This should be checked against the actual data by plotting 
them according to the transformed scales. An example of this rough-cut check 
is displaved in figure A.38. This plot suggests that the relationship between 
l o g y  and logz can be captured by a linear model, mhich can be estimated 
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Fig. A.39 Verifying the fit of the assumed functional form. 

by the following linear regression model: 

l o g y  = a + P l o g z  + E ,  (A.34) 

where 

a = logk, 

P = 7. 

(A.35) 

(A.36) 

TVhile the nonlinear transformation is a rather simple trick from a techni- 
cal point of view, the real trouble comes when we consider the statistical 
side of the coin. Since we are using the linear regression machinery on the 
transformed variables (logarithmic, in the case above), we should check the 
familiar assumptions within the transformed model. To check the residuals, 
we can analyze a plot like the one in figure A.39. \Ye will also find confidence 
intervals, but they will refer to  the transformed variables; to get confidence 
intervals in terms of the original variables, we must invert the transformation. 
For instance. the data set we are considering yields the following estimated 
model:24 

l o g y  = 0.58 + 1.93logz + e. (A.37) 

which can be transformed back in terms of the original variables Y and x : ' ~  

(A.38) y = (10' 5 8 )  51.93 . 10' = 3.80. x1 9 3 .  10'. 

241n the estimated model we use the residual e rather than the unobservable error E .  

2 5 ~ ~ m  this equation we see that decimal logarithms have been used: natural logarithms 
can be used as well. but one advantage of decimal logarithms is that  their value is more 
readable in terms of order of magnitude of their argument. 
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Fig-. A.40 Estimated nonlinear relationship. 

The fit of the resulting model can be seen in figure A.40. In this case. it 
turns out that the See for a is 0.04. Let us assume that,  given the degrees of 
freedom and the required confidence level, the right quantile is t = 2 ;  then, 
the confidence interval for a is 0.58 - 2 . 0.04 = 0.5 5 a 5 0.58 + 2 . 0.04 = 

0.66. Actually. this is not a confidence interval for the original demand model 
(A.33), but for the transformed one instead. To get confidence intervals for k .  
me must transform the confidence interval for a back to the original parameter 
k ?  using equation (A.35). Therefore. we can say that the parameter k of model 
(A.33) lies. with that confidence level. in the range from k,,, = 10’ ”-* ’ O4 M 

3.16 to  k,,, = l oo  5f+2 O 4  M 4.57. IVe immediately see that this confidence 
interval. unlike those we are used to. is not symmetrical around the point 
3.80: this happens just because of the nonlinear transformation. a hich more 
often than not results in a lack of symmetry. 

Finally. it is important to understand the role of the error e .  In the trans- 
formed model (A.37) the error is additive with respect to the estimated line. 
IVhen we use the inverse transformation to  get back to  the original variables 2 

and Y .  we see from equation (A.38) that the error is not additive: in fact. we 
have a multiplicative factor 10‘. From a statistical point of view. 11-e assume 
that the error E is independent of IC in the underlying model (A.34); however. 
when we switch back to the original variables, we see that the residuals in the 
original model tend to  grow with 2 (see figure A.41) Note that b\ residuals 
in the original model we mean 

In the figure, we see that the residuals tend to increase. in absolute value. 
when IC increases. From a statistical point of view. if we assume that the 
usual assumptions hold for the linearized model. this happens because there 
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Fig. A.41 Residual plot for model (A.38).  

is a random variable which is not additive in the original model. but it gets 
multiplied by 2 .  From the point of view of least-squares optimization. we did 
not really minimize the sum of squared residuals in the original model, but in 
the transformed model. The residual in the transformed model can be written 
as: 

e, = logy, - log (k27) = log ($) 
The bottom line is that ,  with respect to  the residuals in the original model, we 
assign less weight to the residuals in the transformed model when 2 is large, 
which results in the effect of figure A.41. 0 

The example above shows that using suitable variable transformations is a 
nice way to extend the range of applicability of linear regression: however, this 
raises issues as far as confidence intervals and errors are concerned. This is 
why such transformations should be taken with care, and full-fledged nonlinear 
regression might be a better alternative. 

We close this section by noting that if the error E in the underlying statis- 
tical model is normally distributed. the multiplicative term 10' has lognormal 
distribution. To see this. note that 

and E . In 10 has normal distribution as well. If you use natural rather than 
decimal logarithms, the result follows directly. 
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W . A . l l  MULTIPLE LINEAR REGRESSION 

In simple linear regression we use one explanat or>- variable. whereas in practice 
multiple factors could contribute to explain a phenomenon of interest. This 
suggests the adoption of a multiple regression model. If we want to preserve 
linearity. vie may resort to  the following statistical model: 

m 

where m is the number of explanatory variables. each one associated with 
its J J .  Solving the related least squares problem is not too difficult. but this 
extension is characterized by a few issues and opportunities: 

0 It is tempting to  use as many factors as possible. but this may be a bad 
idea if they are somehow related: this raises issues such as collinearity 
and ill-conditioned regression. 

0 Increasing the number of factors cannot decrease the R2 statistic: how- 
ever. we should come up with a more refined measure. able to capture 
the tradeoff between a possibly increased fit and the issues above wheii 
using too many factors. In other words, we want to understand whether 
a sort of -cost/benefit" ratio justifies the use of more explanatory vari- 
ables. 

0 lye may also use *'categorical" variables. i.e.. variables related to  the 
presence or lack of a certain feature. For instance. we may relate sales 
to the presence of promotions or to peculiar events. This is accomplished 
by using dumm!g explanatory variables. taking values which can be either 
0 or 1. 

In the web section WP deal with all of the points above. 

A.12 

0 

0 

0 

FOR FURTHER READING 

Readers intere\ted in a practical approach to probability theory may 
read. e g.. [5]. which is rich of examples. some of them provided an 
iiispiratiori for examples in this appendix. 

Example A.12 lias been taken from [1]. which is a readable introduction 
for those interested in a more rigorous introduction to tlie nxiomatic 
approach to probabilities. 

-4s far as Statittics is concerned. there are rnariy book\. but an excel- 
lent introduction is [4] ~ which points out the probabilistic fouiidation of 
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Statistics. offers complete and readable proofs, and is a t  an adequate 
level for a reasonably quantitative-minded reader. 

The use of linear regression for forecasting purposes is well illustrated 
in [3]. 

0 Readers interested in a serious introduction to parameter estimation 
and regression analysis can have a look at [ 2 ] ,  which also deals with 
nonlinear regression. See also [6]. 
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Appendix B 
An Even Quicker Tour 

in Mathematical 
Programming 

The objective of this appendix is to get the reader acquainted with uncon- 
strained and constrained optimization models, limiting the exposition to what 
is strictly necessary for the main body of the book. We will use the term Math- 
ematacal Programmang to refer to that subset of Optimization Theory which 
deals with finite-dimensional problems. JYith respect to a full-fledged treat- 
ment, we will cut corners as far as mathematical rigor is concerned; further- 
more. emphasis is on optimization models. rather than optimization methods. 
On the one hand. treating computational optimization methods would require 
too much background and detail: on the other hand. we are typically users of 
off-the-shelf optimization software. and what we normally need is just some 
knowledge of the underlying methods in order to  choose the right one within 
a library and to  understand diagnostics when something goes wrong. 

Another good reason to  present some basic optimization concepts is that. 
sometimes, practitioners use approaches which can be somewhat justified (or 
criticized) as the crude simplification of an optimization model. Given the 

535 
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computational speed of state-of-the-art optimization software and their in- 
tegration as components in commercially available packages, such practices 
may have lost their original justification. Taking for granted that old prac- 
tices should still be used. even without a solid reason, may lead to  poor 
performance. A well-known example is the overstatement of fixed ordering 
costs, which leads to  large lots with an unnecessary increase in on-hand in- 
ventory. Sometimes, just zn tzme practices may make lots obsolete altogether. 
but in other cases the real answer should come from a suitable quantitative 
model. In section 4.6.2 we illustrate this point in detail for a multi-item in- 
ventory management problem. In this case, we use optimization as a means 
to  an end, to illustrate a problem, rather than as a decision-making tool. 
This "conceptual" use of optimization models. which should be contrasted 
to  the "computational" approach. is quite common in Economics. We mill 
sometimes use optimization as a framework to  clarify issues, even if the result 
is not really implemented. Again, to accomplish this limited aim, excessive 
mathematical finesse and deep algorithmic knowledge are not really needed. 

In section B. 1 we introduce the basic elements of optimization model build- 
ing, using a toy production planning problem. A more formal treatment is 
offered in section B.2. Intuitively, we should expect that  the larger an opti- 
mization model. the more CPU time is needed for its solution. In practice, this 
need not be true; a major factor in the difficulty of tackling an optimization 
model is its convexaty. or lack thereof. We introduce basic convexity concepts. 
i.e.. convex sets and convex functions, in section B.3. Another important fac- 
tor is linearity vs. nonlinearity of the model. We consider nonlinear program- 
ming models in section B.4. whose main aim is introducing the shadow przce 
concept; from a theoretical point of view, getting a grasp of shadow prices 
is essential for an economic understanding of optimality conditions, whereas 
from a computational point of view this is important in interpreting the solu- 
tion of a model. We deal with linear programming with continuous decision 
variables in section B.5: if modeling requires the introduction of integrality 
restrictions on the decision variables. solving the model is more difficult, and 
we will see why in section B.6. 

As we have hinted at. optimization modeling in the past had a reputation of 
a pretty academic subject. The situation has changed in recent years. because 
of several reasons. The obvious one (maybe too obvious) is the availability 
of more and more powerful hardware at  decreasing costs, which paves the 
way for the solution of optimization models which were beyond our reach. 
But also software has improved considerably. To begin with. more efficient 
software has been developed. The simplex method for linear programming was 
invented in 1947. whereas branch and bound methods for integer programming 
date back to  the early 1960's: still. there is an ongoing and amazing progress 
in new commercial software releases. Nevertheless, you may have powerful 
hardware and lightning-fast software, but all of this is useless if you lack data. 
As the old adage says, garbage in, garbage out. Kowadays. optimization 
libraries exploit software engineering approaches and come in the form of 
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object-oriented libraries. which can be integrated as components of a firm-wide 
information system. Databases can be accessed. and visualization libraries 
and management tools complete the picture. Indeed, optimization libraries 
are part of well-established ERP packages. which provide the required data 
backbone for a successful application. 

All of this is good. but it does not warrant the conclusion that optimization 
models are a panacea 1i-e should keep in mind at  least a couple of fundamental 
limitations. The first one is that some objectives a manager has in mind 
cannot be easily quantified: furthermore. an optimization model assumes that 
all of the (possibly conflicting) objectives are put in the same basket of a 
single objective function that we maximize or minimize. Sometimes. assessing 
tradeoffs is a thorny issue. which cannot be solved by attaching some weight 
factor to each single facet of the overall problem. As a typical example. 
consider the tradeoff between on-hand inventory and customer service level. 
Assuming the first objective is easy to quantify, the second is not: How much 
does an angry custonier cost? Hard to tell. isn't it? Sometimes, late delivery 
penalties are explicitly written in a contract, but loss-of-goodwill is harder to 
assess. Hence, we may need some help in visualizing the tradeoff. and this 
is the reason for the inclusion of section B.7 on multiobjective optimization. 
whose aim is to spot some ..reasonable" solutions, leaving to the decision- 
maker the task of selecting the most preferred one. 

Another limitation of the models we consider in the appendix is that they 
are all deterministic. i.e.. they rely on perfect knowledge of data. This is 
hardly the case in practice. especially in distribution logistics. where demand 
uncertainty is the problem. In the main body of the text we will hint at  
ways of extending deterministic optimization models to  cope with uncertainty 
represented as a set of alternatile scenarios (see sections 1.5.2 and 2 . 2 . 3 ) .  

B . l  ROLE AND LIMITATIONS OF OPTIMIZATION MODELS 

The best way to get acquainted with optimization models is by a little toy 
example. whereby we want to optimize a production mix.' 

Example B.l Suppose we have been hired by a rather small firm. n hich 
manufactures and sells just two items. PI and P2. Each item requires a gilen 
manufacturing cycle. which involves use of four resource types (machine A. 
B. C .  and D ) .  Kote that A refers to a machine type.  and not to  a physical 
machine: what matters is the overall availability of each resource type. which 
may constrain the amount produced. Table B. l  displajs the single operation 
times for each item on each machine ( T A ~ .  . . , T D )  niea5ured. e.g., in minutes 

ITlie numerical values are taken by an  illustrative example available on 
h t t p :  //www. f ac tory-phys ics  .corn. as a companion to an excellent text in nianufac- 
turing systems modeling and management. [3]. 
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Table B.1 Data for the production mix example 

Item T A  T B  TC T D  cost Price Demand 

Pl 15 15 15 25 45 90 100 
p 2  10 35 5 14 40 100 50 

per piece. We assume that the working calendar and the number of machines 
per type are such that the weekly availability for each resource type is 2400 
minutes per week. Producing a single piece of any item has some cost. which 
may include raw materials and variable manufacturing costs. expressed in 
some monetary unit. say €; this cost is also shown in the table, and we should 
also add a fixed cost of 5000€ per week. This cost is incurred anyway. unless 
we shut the plant down, but this decision is not considered at  our level. What 
we should decide is the production mix. i.e., how many pieces of each type 
we manufacture each week. This approach makes sense if both capacity and 
demand are constant over time. which rules out building inventories. The 
weekly demand for both items is given in the last column of the table, which 
also includes the price at which we may sell each item. Our aim is maximizing 
profit. 

One simple and intuitive way of tackling such a problem is by checking 
which item looks most profitable. If we look at profit contribution. P2 looks 
definitely better than PI (100 - 40 > 90 - 45); hence. one possible idea 
is maximizing the amount we produce of the more profitable item. Let us 
denote by x, the amount produced for item i = 1 , 2 .  What are the factors 
limiting x2? One factor is available capacity. itre have four resources. but one 
of them is the most critical (the bottleneck) as far as P 2  is concerned. A look 
at table B.l shows that the largest requirements of item P 2  is on machine 
B. Hence, to figure out the maximum amount we can produce of P 2 .  we can 
consider the following inequality: 

35x2 5 2400 =+ 2 2  5 68.57. 

Actually, market limitations tell us that we cannot sell more than 50 pieces, 
so we set 2 2  = 50. This decision leaves some room to produce an amount 
x1 of item PI. To find how much we can produce, we should compute the 
residual availability of each resource. given what we must reserve to P 2 .  We 
can write down a system of inequalities. in order to  find out the binding one: 
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JYe see that machine B is still the critical factor: the largest amount we can 
produce is x1 = 43.33. The reader might object that we can just make 33 
pieces. and that all variables x ,  should be restricted to integer values. This is 
certainly true for discrete items produced in sinall quantities; when me pro- 
duce "continuous" items. such as paint. n-e may consider decisions modeled 
by real variables. and this is also true for large-volume discrete itrins. since 
accepting real-valued quantities is a negligible modeling error. T\IP mill see 
that.  whenever possible. continuous variables niake our life much easier: for 
now. let us neglect such issues and sag that real-valued variables are accept- 
able. Since x1 = 43.33 does not exceed the market limit for PI. m-t. can take 
this as a possible solution and calculate profit: 

(90 - 45) x 43.33 + (100 - 40) x 50 - 5000 = -50. 

The bad news is that  profit is negative. so what went wrong? A possible idea 
is that we have not considered resource usage. True. P2 is inore profitable. 
but it uses a larger amount of the bottleneck machine B. Maybe. had we 
taken this into account. P I  would have looked much better than P2. \Ye 
can try this conjecture immediately. bv maximizing production of P I .  If we 
repeat a similar reasoning. we get an even worse solution: in fact. we would 
come up with the solution x1 = 96 and 1'2 = 0. which yields a worse profit: 
45.96 - 5000 = -680. Now. it seems that shutting the plant down is the only 
option. unless we can reduce costs or ask for a higher price. 

Actually. we have the option of building an optimization model. whereby 
we explicitly maximize profit. subject to relevant constraints: 

max 45x1 + 60x2 

s.t. 1521 + 1022 5 2400. 

15x1 + 3 5 ~ 2  5 2400. 

15x1 + 5 2 2  5 2400. 

25x1 + 1522  5 2400. 

0 5 2 1  5 100. 

0 5 2 2  5 50. 

This model includes: 

0 two decision variables. x1 and 2 2 ,  which are restricted to non-negative 
values2: 

0 four capacity constraints. one per resource type: 

0 two market bounds on production: 

2Unless you are really bad with marketing. you do not sell negative quantities 
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an objective function which we wish to maximize 

The objective function. as it is written, is not really profit, which should be 
written as (90 - 45)21 + (100 - 4 0 ) ~  - 5000. Nevertheless, it is easy to  see 
that adding or subtracting a constant term to or from any objective function 
does not change the optimal solution: Shifting the graph of a function up or 
down does not change its minima and maxima. 

The model above is an example of linear programming model. I t  is linear 
because the decision variables occur linearly in the objective function and the 
constraints: You do not see terms such as x:, 21x2, or sinx2, which would 
make the model nonlinear. There is a wide array of software packages to solve 
such a problem numerically. We will discuss their algorithmic foundation very 
briefly in section B.5. but using any of them. we get the following solution: 
ZT = 73.85, xz = 36.92. This solution looks like it came out of the blue, but 
the good news is now profit is positive: 538.46. If you find fractional quantities 
way too annoying. we can add an integrality restriction on decision variables, 
which results in the integer solution X T  = 73  and x; = 37, with profit 505. The 
reduction in profit should not be surprising: Whenever we add a restriction 
to a maximization problem. the value of the objective cannot increase. It is 
tempting to  believe that whenever variables are restricted to  integer values, 
all we have to do is finding the optimal solution in the continuous domain, 
and then round it in a sensible way; unfortunately, we will see in section B.6 
that this is not the case; solving integer programming problems can be very 
hard. 0 
The optimal production mix is a typical linear programming model. and it 
can be easily solved for a large number of items and resources. Still. it looks 
too simplistic as a real-life production planning model. and indeed it is. The 
first difficulty we would face is demand variability: of course we could apply 
the model weekly. updating the demand data,  but this would be quite myopic 
and it would not ensure satisfaction of demand. To begin with. if capacity is 
limited, we could build up inventories when demand is low. in order to meet 
demand when this is larger than capacity. In other words, there is a tradeoff 
between the cost of inventories and the cost of capacity. If we consider capacity 
as given, which is reasonable for short-term planning. we should generalize the 
model (B.l) to a multiperiod model taking demand variability into account. 

When facing a nontrivial rnodeling problem. the starting point is thinking 
of the decisions we must take, and how they can be represented by decision 
variables. Then we try to express constraints on decision variables and to 
write the objective function (e.g.. profit to  maximize or cost to  minimize). In 
the process, we might discover that additional variables are required to express 
a constraint or the objective, and the process may need to be iterated. The 
main ingredient in a multiperiod model is, of course. time. Say that,  for our 
purposes. we need a production plan stating weekly production quantities for 
N items. over a planning horizon of T weeks. There are several reasons why 
we cannot stretch the planning horizon beyond some limit. To begin with, 
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the model could be too hard to solve. but there is a inore important issue: 
uncertainty. \Ye deal with forecasting in chapter 3; it is clear that no demand 
forecast is reliable if it is too far in time. Given uncertainty in demand. we 
should solve the model on a rolling horizon basis. revising decisions on the 
basis of new information; hence stretching the forecasts beyond a certain limit 
is useless. if not dangerous. Also, the choice of the time bucket mu5t be made 
sensibly: we are assuming that a n-eekly time bucket is enough. leaving to 
detailed execution level the timing of the single activities. 

Since what we need is a time-bucketed production plan, we see that the 
most relevant decision variables are the manufactured quantities z,+. for item 
= 1. . . . . and time bucket t = 1,. . . , T .  \Ye can immediately generalize the 

capacity constraints of example B . l .  If we have ;ZT resource types. indexed b) 
m = 1. . . . , we should write a set of inequalities: 

?rtmbrtt 5 Rmtr  m = 1 
1=1 

where T,, is the amount of resource m required for the production of one unit 
of item z and R,t is the availabilityof resource m during time bucket t .  \Ye are 
considering this availabilit) as given. and it could change over time hecaiise of 
planned maintenance. holidays. etc. In a different problem setting. available 
capacity can be a decision variable, rather than a given parameter. Typically. 
there is some uncertainty in execution. because of possible machine break- 
downs: hence, we should leave some slack when stating resource requirements 
and/or availability. All of this may not be relevant for distribution logl5tiCs. 
however. \Yhat is certainly common in distribution as well is demand uncer- 
tainty (chapter 5 deals with inventor! management under uncertainty). For 
the sake of simplicity, we assume that we have quite reliable demand forecasts, 
n-hich allows us to represent the demand for item z during time bucket t by a 
parameter d Z t .  Note that the demand d l t  should not be just directly related 
to manufactured quantities xtt> since production and demand are partially 
decoupled by inventories: in a given week. we may sell less than deinand (if 
we have not enough capacity and inventory), and we may produce more 01 

less than demand. Hence. we need to  introduce two more variables. the sold 
amount z, t .  for each item z and time bucket t .  and the inventory level 17t. a t  
the rnd of time bucket f .  after adding an amount x7t to inventory and selling 
an aniount zit. This last type of clarification is often essential in discrete-time 
models, where we consider the value of variables only at the beginning and at 
the end of time intervals. but not during the time inter~als  themselves. 

Xow we can write down the second type of constraint we met in the optimal 
mix model, i.e., sales cannot exceed demand. 

Kote that unlike the static model, this bound involves sales variables z, t .  not 
production variables x Z t .  Xow we certainll- need some constraint linking the 
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three groups of variables. This is an inventory balance constraint, stating that 
the inventory level a t  the end of a time bucket is given by what was available 
a t  the beginning of the time bucket, plus what has been produced. less what 
has been sold: 

I,t = I ,  t-1 + Z,t - Z,t. vi. t .  

Strictly speaking. we made a mistake as far as time bucket t = 1 is concerned: 
for the first time bucket, the constraint involves the initial inventory level I,o, 
which is not a decision variable. as it is given. This is an essential consideration 
when we really implement decision models using a software tool. but we will 
not pay attention to such issues. Of course. all the involved decision variables 
are restricted to non-negative values. 

Now we are ready to write the last missing piece, i.e., the objective function. 
This must include the weekly inventory holding cost. as well as the variable 
cost and the selling price for each item; if we denote them by h,. c,, and p,. 
respectively. we arrive at  the following linear programming model: 

R' T i V T  N T  

i=l t=l i=l t = l  i=l t=l 

s.t. Iit = Ii.t-1 + - z i t ,  i = 1,.  . . . N ,  t = 1 , .  . . , T,  

What we have here is a simple version of a common model for production 
planning. In chapter 2 we show that this can be the basis of models which 
are also relevant in distribution logistics, even if purchasing rather then man- 
ufacturing is the core problem. In principle, the model can be extended to  
cope with more complex problems, involving the production of components 
and their assembly into end items. Furthermore. we will see that we should 
also consider possible economies of scale, e.g., due to fixed costs associated 
to the setup of each machine. In distribution logistics, we may have similar 
issues with fixed ordering or transportation costs. and they can be tackled by 
introducing binary decision variables. as we illustrate in section 2.2. Clearly, 
each extension increases the computational requirements of solving the model, 
which can spell trouble for large problem instances we meet in real life. Yet. 
there are some more basic issues that we must be well aware of. 

In the model above we have assumed perfect knowledge of all the in- 
volved data. most notably demand. There are a few lucky cases in 
which one may afford the luxury of making strictly to order. In such a 
case. assuming a known demand may make sense. In general. demand 
uncertainty may be very critical. One possibility to tackle the issue is 
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by extending the linear programming framework to deal with uncertain 
scenarios. This is a very challenging and demanding approach. both for 
modeling and computing; we give an example of such an approach in 
section 1.5.2. 

0 Some data are not uncertain in the stochastic sense. but they may still be 
hard to  quantify. The model above is based on a lost-sales assumption: 
If we are not able to serve a customer order immediately from stock. 
it is lost. In practice. it may be difficult to  assess if what we lose is 
just the order or the customer; in the second case. data depend on our 
decisions. Sometimes. backorders are considered: Formally. negative 
inventory levels may be feasible. and they correspond to orders which 
are waiting to be fulfilled. Negative inventories should not be penalized 
by holding costs but by backlog costs. Unfortunately, it may be quite 
difficult to quantify a backlog cost: we deal with such issues in chapter 

0 1J7e have considered sales of different items as unrelated: \That we sell 
or not for an item does not influence sales of other items. This is not 
necessarily truc., especially if products are complements or substitutes. 
If cross-effects are well understood. we can try to  extend the model: 
otherwise. the task may be too difficult. 

0 A multiperiod model may suffer from -end-of-horizon" effects. In the 
model above, it is easy to  see that whatever the optimal solution in 
intermediate periods. we have I,*T = 0: i.e.. inventories are depleted 
during the last time bucket. This happens because. from the model's 
point of view, there is no reason to keep inventories available after the 
end of the world. \Ye may think of circumventing the difficulty by 
taking a suitably large time horizon and using the model in a rolling 
horizon fashion By doing so. it is reasonable to expect that the border 
effect will be less critical. but we pay a price in terms of increased 
computational burden: furthermore. if the planning horizon is too long. 
we lack reliable demand data. 

All of the above limitations can be tackled using sophisticated approaches 
which are beyond the scope of an introductory book. The messagr we want 
to deliver is that  the use of optimization models is always a means to an end. 
and it must be framed within a deczszon process. Optimization models may 
be a very useful support in this process. but they are not the decision process. 

3This means that if our planning horizon consists of T time buckets. we do not wait until 
the end of this horizon to  replan. but instead we replan immediately a t  the heginning of 
the next time period. In practice only the decisions pertaining to  the first time bucket 
are actually implemented. The planning horizon rolls forward, in the sense that it involves 
initially time buckets (1.. . . T ) .  then ( 2 , .  . . . T + 1). ( 3 ; .  . . . T + 2 ) ,  and so on. 



544 AN EVEN QUICKER TOUR IN MATHEMATICAL PROGRAMMING 

The danger is to find an optimal solution for a model, which is quite poor for 
the real problem. This may happen if we neglect implicit constraints, which 
may be difficult to  formalize but make the “optimal” solution hard to imple- 
ment. hloreover. no optimization model. however sophisticated. can overcome 
defects in the organizational structure. If the business process is flawed, math- 
ematical modeling will hardly help. For instance, if the optimization model is 
used in one room by a planner, but in the next room the marketing manager 
decides to launch a campaign based on discounted prices without feeling the 
need of informing anyone, the likely spike in demand will make plans quickly 
obsolete and unusable. On the other hand, sale plans should be compatible 
with available capacity; if economic incentives lead the sales office to  promise 
unrealistic due dates for order fulfillment. long-term customer relationships 
will suffer. 

B.2 OPTIMIZATION MODELS 

The building blocks of an optimization model are: 

0 A set of decision variables. In general, decision variables are collected in 
a vector within some multidimensional space; in the case of the optimal 
mix model. the size of this space is just the number of end items. In 
complex models. the size of the vector can be very large. but finite 
nonetheless. Typically, the term mathematacal programmzng is reserved 
to  optimization models in finite-dimensional  space^.^ 

0 An objective function, which may be a cost to minimize or a profit to 
maximize. 

0 A feasible set, which constrains the decision variables; the feasible set 
depends on technological, economical. and commercial constraints. 

In abstract terms. an optimization model is something like: 

min f ( x )  

s.t. x E s c R”; 
where f is the objective function, x is the vector of decision variables, and 
S is the feasible set. which is a subset of the n-dimensional space Rn. If 
S = R”. we have an unconstrained problem. There is no loss of generality 
in considering only minimization problems: a maximization problem can eas- 
ily be transformed into an equivalent minimization problem by noting that 

4We are ruling out optimal control problems in continuous time; in such a case: we deal 
with functions u(t)  whose domain, t E [O,T]. is not even countable. Also. infinite-horizon 
discrete-time problems. whose feasible set is countable but infinite, are not considered here 
because of their limited role in supply chain management. 
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maxf(x)  = - min(-f(x));  by "equivalent," we mean that the transformed 
problem has the same set of optimal solutions (we should not take for granted 
that there is a unique optimal solution: actually, we should not even take for 
granted that there is an optimal solution). 

Constrained optimization models are built by representing the feasible set 
in a practical way. We have seen the following constraints in the previous 
examples: 

0 Equality constraints, i.e., equations linking decision variables 

0 Inequality constraints. 

0 Constraints stating that some variables should belong to specific sets. 
such as 2 E ZL = (0 .1 .2 .3 .  . . .} for integer variables. 

Solving an optimization problem like (B.3) means finding a global optimizer. 

DEFINITION B.l G w e n  the  optzmuataon problem (B.3). a poznt x* E S 
zs sazd t o  be a global optimizer zf f (x*)  5 f (x) .  f o r  all x E S .  W e  halre 
a local optimizer ff t he  condztaon only holds tn t he  zntersectzon between S 
and a netghborhood of xi. 

IVhen one speaks of an "optimum." a little ambiguity arises. because it is not 
quite clear if we mean the optimizer x* or the optimal value f (x") ;  usually, 
the context clarifies what we really mean. \Ye may also use the notation 
x* = argmin,,s f (x ) .  

Given an optimization model. the following cases may arise5: 

1. There is no optimal solution because the feasible set S is empty: this 
may happen, e.g., when production capacity is small with respect to 
demand and we do not admit lost sales. 

2. There is no optimal solution because the optimum goes to infinity (typ- 
ically, this is due to  a modeling error). 

3. There exists a unique optimizer. 

4. 11-e haTe multiple equivalent optimizers; in such a case. we might wish to  
come up with a "secondary" criterion in order to discriminate between 
solutions which are equally good from the main point of vien . 

The first case is not as unlikely as one might think. It may be the result 
of excessively stringent requirements on the solution But even if it happens 
only every now and then. you may imagine the future of a decision support 

5iVe do not consider rather pathological cases. such as m i n z  subject to  z > 2 .  in which 
there is no optimal solution because the  feasible set is open: in this case z* = 2 is not the 
optimizer. but it solves the related problem i n f s .  
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system which occasionally informs a planner that he should shut everything 
down because there is no solution. The least we should offer is some diagnostic 
about where constraints can be relaxed in order to  restore feasibility. This 
task can be accomplished, e.g., by adopting "elastic" model formulations. 

Example B.2 In section B. l  we developed a multiperiod planning model 
allowing for lost sales. Now assume that your boss insists that  demand must 
be met at all costs. That model could be modified as follows in order to forbid 
both lost sales and backorders: 

Here we want to meet demand at  minimum (inventory holding) cost: since we 
assume that demand must be met, revenue is fixed and profit maximization is 
equivalent to cost minimization (we assume pricing is an outside decision). By 
the way. a typical newcomer's mistake. when trying to  capture the requirement 
"demand must be met." is writing down a constraint like x,t 2 d,t. But such 
a constraint does not make any sense. because it rules out inventory holding, 
and it can only be satisfied by the trivial solution x,t = d,t, which is probably 
not feasible if capacity constraints do matter. Actually, what makes sure 
that demand is met is the non-negativity constraint on inventory level. which 
together with the inventory balance constraint entails It,t-l + x,t L d,t. 

It is clear that meeting demand can be a hard constraint when capacity is 
tight, and we may be unable to find a solution. What we should do is to help 
the decision maker in figuring out where the critical requirements are (which 
demand is too high and when, or which resource is too scarce and when). 
Then, it is up to the decision maker to find a way out. One way to  do so is 
relaxing a constraint by a suitable penalty functzon. For instance, if we define 
a suitably high penalty coefficient p for lost sales. we may write the following 
elastic model formulation: 

r,,xtt i Rmt. m = 1.. . . . M ,  t = 1, .  . . . T. 
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where z,t represent a lost sale for iteni z in time bucket t .  If the penalty 3 
is high enough. whenever the original model is feasible. the optimal solution 
of the elastic formulation is the same as in the previous model, i.e.. zTt = 0. 
If we have some > 0. this means that there is a critical order somewhere. 
Having an idea of where to  look is helpful in supporting a negotiation process 
with some customers. who may be willing to wait a little more for delivery 
or may accept a substitute product. All of these adjustments can actually 
be modeled and explicitlj. represented in an optimization model. but some 
decision makers may find themselves in trouble when required to quantify the 
costs of these actions. 

By the same token. we niay consider relaxing capacity constraints as fol- 
lows: 

5 T,,Xtt 5 Rmt + Omt ~ 
m = 1 

1=1 

where O,t 2 0 plays the role of overtime capacity. If this new variable is 
penalized by a true f>cononiic cost. the resulting model actually represents a 
joint production and capacity planning model: if it is penalized 1)y a large 
coefficient with no real rnorietary value. we have a true perialty function. 1 

Now that we have an idea of how to formulate an optimization model, let US 

consider how we can solve one. What we know from Calculus is that setting 
the first-order derivative to zero, i.e.. enforcing a stationarity condition. may 
be a starting point. 

Example B.3 Let us consider the problem 

B 
m i n f ( z )  = A z  + - - %  s.t. 12 0. 

X 

m-here A and B are strictly positive parameters. In the main body of the text. 
we show that this is the form of a well-known model to  find an “optimal” 
quantity to order. The feasible set includes a troublesome point. z = 0, where 
the objective function is not defined. We could rewrite the feasible set as 
z > 0. but we prefer to  avoid the trouble and note that when r gets smaller 
and smaller, the objective function grows without bound: hence tlie optimal 
solution must lie in the interior of the domain and the constraint is actually 
irrelevant. 

Setting the first-order derivative with respect to  .r to zero, n.r get the 
stationarity condition: 

B 
X2 

f ’ ( z )  = A - - = 0. 

which yields the candidate solution z+ = m. V-e see that indeed 2 -  2 0. 
but to  make sure this is a true minimum. we must check the second-order 
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Since this is positive on the domain of interest. the candidate point is actually 
the global minimizer. 0 

When we have an optimization problem involving several decision variables, 
the stationarity condition would involve all of the first-order derivatives, yield- 
ing a possibly awkward system of nonlinear equations: 

(B.4) 

L$7e recall that we may collect the first order derivatives of a function in a 
vector. called gradient and denoted by Of(x*). Hence, we may rewrite the 
stationarity conditions in the compact form Of(x*) = 0. However, leaving 
aside the possible difficulty of solving this system of equations. this is not 
what we need to solve most optimization problems. 

0 To begin with. stationarity conditions assume that the objective func- 
tion is differentiable, which should not be taken for granted: a practical 
case of a nondifferentiable objective function featuring kinks arises in 
purchasing decisions. when quantity discounts are offered. 

0 If the decision variables are discrete, e.g.. because they are restricted to  
integer values, we cannot rely on the derivative concept. 

0 U7e know that first-order conditions are not sufficient. as they do not 
discriminate mimima, maxima, and saddle points. but they are actually 
not even necessary in constrained optimization. In a linear program- 
ming problem, stationarity cannot play any significant role: to  see why, 
consider an objective function like f(z1.22) = 4521 + 60x2. and notice 
that its gradient is constant and will never vanish. 

In general. it is hard to come up with simple global optimality conditions 
that are both sufficient and necessary. Typically. we settle for weaker condi- 
tions which are just necessary for local optimality. Despite their limitations, 
such conditions are the starting point for the development of numerical opti- 
mization procedures which are widely used.6 There are. however. practically 
relevant cases in which some difficulties can be avoided. These cases exploit 
some properties linked to convexzty, which is the subject of next section. 

6.3 CONVEX SETS AND FUNCTIONS 

The difficulty in solving an optimization problem does depend on the number 
of variables and constraints, but this need not be the main driving factor. 

6We should remark that  typical optimization routines offered in spreadsheets and numerical 
libraries aim a t  local optimization; the end result may depend on the starting point provided 
by the user t o  the search algorithm. 
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Fig. B . l  Illustrating the concept of convex set. 

Nonlinearity is typically more troublesome than linearit,y. but the main dis- 
criminating feature is conuexity, both in the feasible region and the objective 
function. We introduce convex set,s first, then convex functions. The first, con- 
cept is useful to investigate properties of the feasible set of an opt,imizatioii 
problem: the second concept is useful t,o characterize the objective function. 

Informally, a set 5’ c R’z is convex if: taken any pair of points x and y in S. 
all points on the line segment joining x and y lie in 5’ as well. For instance. the 
set 5’1 in figure B. l  is convex, whereas Sz and Ss are not. It is worth noting 
that Ss is an example of the kind of feasible sets we deal wit,h when tackling 
an int,eger programniing problem. Formally, the segment joining two points 
can be described as a linear combination of them. such t,hat t,he weights are 
non-negative and their sum is 1; such a linear combination is called convex 
combinat ion: 

Ax + (1 - X)y 

for X E [O. 11. JITe see that when X is 0 and 1 we get t,he two extreme points 
of the segment. Now we may formally define a convex set. 

DEFINITION B.2 (Convex set) A set S c IFL i s  said convex i f ,  for any 
x . y  E S, we have 

Ax + (1 - X)y E s 
f o r 0  5 X 5 1. 

Let, us consider again set 5’1 in figure B.l:  this set is a polyhedron. i.e.. 
the intersect,ion of a finite number of half spaces (in two dimensions. the 
intersection of half planes). A half space is the subset of points in Rn lying 
on one side of a hyperplane, i.e.: the set of points satisfying a linear inequality 
like 

n 

a = l  

It is easy to  see that a half space is a convex set: a polyhedron is convex 
because intersection is an operation prrserving convexity. Proving this is 
helpful in reinforcing the concepts above. 
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X X X 

Fig. B.2 Illustrating the concept of convex function. 

Example B.4 Let us prove that the intersection of convex sets is a convex 
set. Consider m convex sets S,, j = 1. . . . . m and their intersection: 

,=1 

We know that,  taken any pair of points x and y in set S,, for any j .  convexity 
implies that Ax + (1 - X)y E S,, for any X between 0 and 1. If we take two 
points in the intersection S ,  then the two points belong to  all of the sets S,. 
But then also Ax + (1 - X)y belong, for any X E [O. 11. to  all sets S,; hence. 
this combination belongs to  the intersection S too. 0 

Convexity of sets is readily extended to  convexity of functions. The first 
function in figure B.2 is convex, but the second is not. If we regard these 
functions as costs to be minimized, we see that the first function has one 
local minimizer that is global as well, whereas the second one has two local 
minimizers. and only one of them is the global one. We expect that  local 
minima are a complicating factor both for optimization algorithms and for 
the development of optimality conditions. For instance, stationarity cannot 
discriminate local vs. global optimizers. However. stationarity is a concept 
requiring differentiability, whereas convexity does not. The third function in 
the figure is in fact convex. but it is not everywhere differentiable. Convexity 
of a function is actually linked to the convexity of its epigraph, i.e., the set of 
points above the function graph. If the epigraph of a function is a convex set. 
the function is convex too: this can be formalized as follows. 

DEFINITION B.3 (Convex function) A functzon f : S --f R 2s convex 
on S a f 3  for any x, y E S, we have 

f (Ax + (1 - X)Y) 5 Xf(4 + (1 - X ) f ( Y )  

for 0 6. X 5 1. 

From a geometrical point of view. the condition above tells that  a function is 
convex if. given any pair of points on its graph. the line segment joining them 
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Fig. 5.3 Economy and diseconomy of scale. 

lies above the graph of the function. From an economical point of view. convex 
functions are associated to a diseconomy of scale. The functions in figure B.3 
represent a total cost ~ ( n : )  as a function of the level n: of some activity. such 
as a produced. purchased. or transported quantity. As expected. the cost is 
increasing with respect t o  2 .  but in the function on the right the marginal cost 
is increasing which is exactly what diseconomies of scale are about. On 
the left. we see a function displaying an economy of scale (decreasing marginal 
cost): a typical case occurs when quantity discounts on some purchased item 
are offered by the supplier. This type of function is. in some sense. a comex 
function turned upside down. I%Te say that a function f ( x )  is concave when 
-f(x) is convex. Indeed. concave functions are used. among other things. to 
model economies of scale.8 

]Ire have given a general definition of a convex function. which may be 
hard to check. It is useful to  mention that.  when the fuiiction f ( r )  depends 
on a single variable and is twice differentiable, convexity is equivalent to non- 
negativity of the second-order derivative. If the function represents a cost, the 
condition f ” ( n : )  2 0 for n: E S basically says that marginal cost is increasing. 
Reversing the inequality. we characterize concave functions. The related con- 
dition for functions of several variables is a bit more involved Heie we just 
point out that an affiiie function. such as f ( x )  = a’x + b. is a veir peculiar 
one, as it is both convex and concave. 

In optimization. functions are used both to  represent the objectiT e function 
and to  describe the feasible set. It is interesting to  shed some light on the 
relationship between convex functions and convex sets m hen dealing with an 
iiiequalitj constraint 

71f the cost function is differentiable, the marginal cost is the first-order derivative c’(x). 
‘A relevant example of a concave cost function is the total cost in the economic order 
quantity model. as given in equation (1.2)  on page 23: there is an economy of scale with 
respect to demand. and this is important in distribution logistics. 
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Example B.5 We show that the region S described by the inequality con- 
straint 

g ( 4  i 0 

is a convex set if g is a convex function. 
If x E S. it means that g(x) 5 0; by the same token. if y E S ,  then 

g(y) 5 0. What we want to prove is that Ax + (1 - X)y E S. for all A E [0,1], 
i.e.. that g(Xx + (1 - X)y) I: 0. But. since g is convex, we have 

g(Xx + (1 - X)Y) I: M X )  + (1 - X)g(y) I 0. 

where the last inequality depends on the fact that we are summing non- 
positive terms, which are obtained by multiplying a non-positive quantity by 
a non-negative coefficient. This proves that Ax + (1 - X)y is in S. 0 

The properties we have proved in examples B.4 and B.5 are useful when we 
characterize a feasibility region by inequality constraints, but what about the 
equality constraints h(x) = O? We can regard an equality constraint as a pair 
of inequality constraints h(x) 5 0 and h(x) 4 0. This implies that an equality 
constraint describes a convex set only if h ( x )  both convex and concave and, 
as we have said, this happens only for an affine functiong: 

n 

h(x) = a ix i  + b. 
2=1 

Convexity is a property that makes optimization problems relatively easy. For 
instance, if we want to minimize a convex differentiable function, we get a sim- 
ple necessary and sufficient condition for global optimality in unconstrained 
optimization. 

THEOREM B.4 Consider the unconstrained optimization problem 

min f (x). 

If the objective func t ion  is  convex and differentiable, the stationarity condztion 

X 

Of(x) = 0 

as necessary and suficaent f o r  global optamalaty. 

In fact, the function we considered in example B.3 is convex. and in that 
case stationarity yields the (unique) global minimizer, without the need of 
bothering about local minima. maxima. nor saddle points. If we deal with a 
maximization problem. it is easy to  see that the theorem can be applied by 
requiring concavity of the objective. 

9We typically speak of linear constraints, but the  function is actually linear only if b 0. 
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\$'hen dealing with constrained optimization, stationarity of the objective 
is not necessarily related to optimality. However. we can exploit stationarity 
again by using a trick based on the so called Lagrange multipliers. \Ye do 
this in the next section. where we also bee that in constrained optimization 
we need both a convex objective and a convex feasible set to get a relatively 
easy problem. 

B.4 NONLINEAR PROGRAMMING 

The constrained optimization problem 

min f (x)  iB.5) 
s . t .  h 3 ( X )  = 0. j = 1 . . . . .  m, 

grC(x)<O, k = l  . . . . .  1 

is a nonlinear programming problem if even one function among f .  h,. or yl, 
is nonlinear. The stationarity condition (B.4) for the objective function does 
not help in finding an optimizer (ruling out trivial cases): to see why. a look 
at  the following counterexample suffices: 

min x2.  
25x53 

The obvious optimizer x* = 2 is not a stationarity point. becausr it is the 
lower bound on x that determines the optimal solution: the function is sta- 
tionary at  the origin. but this point is outside the feasible region. However. 
assuming that all of the involved functions are well-behaved enough, in t e r m  
of differentiability. we can try to  use stationarity concepts to  find candidate 
optimal points. 

For the sake of simplicity, we start considering the equality constrained 
case: 

min f (x) (B.6) 
s. t .  h,(x) = 0. = 1..  . . .m,  

which can be dealt with by the classical Lagrange multipliers method 

THEOREM B.5 A s s u m e  that  the functaons f and h, tn problem (B.6) m e r t  
s o m e  dtfferentaabaltty requarements, t ha t  t he  poant x* 2s feaszble.  a n d  that  the 
constraints satasfy a suatable regularaty property zn x* . Then. a necpssary con- 
dztzon for local optzmalaty of x* as that  there  exast numbers  A;. j = 1.. . . .  m .  
called Lagrange multaplaers. such  that  

,=1 
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The reader has certainly noticed that we have been very loose in stating the 
conditions of the theorem. In fact, what we need for the main body of the 
text is the concept of Lagrange multiplier. and since in this book we deal 
with relatively simple problems, we can do without too many technicalities. 
However, it is important to  realize that.  in general. the theorem is somewhat 
weak. It holds under technical conditions," which we do not describe in 
detail; furthermore, it is only a necessary (hence, not sufficient) condition for 
local (hence. not global) optimality. The good news is that  it can be shown 
that the condition of the theorem is necessary and sufficient for a convex 
optimization problem. We say that a minimization problem is convex, if 
its feasible set and objective function are both convex. 

To interpret the condition above, we may observe that it generalizes the 
stationarity condition: the trick is requiring stationarity not for the objective 
function. but for the following Lagrangian function: 

m 

L ( x ,  A) = f (x)  + C X,h,(x) = f(x) + X'h(x). (B.7) 
,=1 

In practice. the "recipe" requires us to augment the objective function by the 
constraints, which are multiplied by the Lagrange multipliers, and to enforce 
stationarity both with respect to the decision variables x: 

m 

V,L(x. A) = Vf(x) + c X,Vh,(x) = 0, (B.8) 
j=1  

and with respect to  the multipliers, which actually yields the constraints again: 

The mechanism can be best clarified by an example, but it is important to 
check that the conditions above are consistent. We have n decision variables 
and m equality constraints (m < n): equations (B.8) and (B.9) yield a system 
of n + m (possibly) nonlinear equations to find the n values x: and the m 
multipliers X j .  

l0That differentiability is required is clear, otherwise we cannot take the derivatives involved 
in the condition. The "regularity" conditions are known in the literature as constraint 
qualificationconditionsand take many forms. One such condition is that  in x* the gradients 
of functions h, are linearly independent. That this condition makes some sense is not too 
difficult t o  understand. The stationarity condition in theorem B.5 states that  the gradient 
of the objective can be expressed as a linear combination of the gradient of the constraints: 
in pathological cases this may be impossible if gradients of the constraints are, e.g., parallel. 
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f ig .  6 .4 
conditions. 

A quadratic programming example: geometrical interpretation of Lagrange 

Example B .6 Consider the quadratic programming problem: 

min 2:: j-2; 

s.t. 2 1  + 2 2  = 4. 

This is called "quadratic" programming because the objective function is a 
quadratic form and the constramts are linear: assuming that the objective 
function is convex. this is the easiest case of nonlinear programming. Since 
this quadratic form is indeed convex. we ma!- use theorem B.5 to find the 
global optimum. \Ye associate the constraint with one multiplier A. and form 
the Lagrangian function: 

C(.Cl. 2 2 .  A) = 2: + z; + A ( 2 l  + x 2  - 4) 
The stationarity conditions: 

= 2 2 1 + A = O .  
dC 

- = 2 2 2 + A  = o .  dC 

8x2 
ac 
aA 

- 
1 

= 2 1 + 2 2 - 4 = 0 .  - 

are a svstem of linear equations. yielding ,cT = 21 = 2 and A" = -4 lye may 
also notice that the equality constraint can also be written as 4 - SI - s2 = 0: 
if we do so. we just have a change in the sign of the multiplier. 

Lye may get an intuitive feeling for the conditions by taking a look at figure 
B.4. where we see the level curves of the objective function (the concentric 
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- 

- 

circles) and the feasible region (a line). From a geometrical point of view, the 
problem calls for finding the closest point to the origin on the line 21 +q = 4. 
We note that the optimizer is where this line is tangent to the level curve 
associated to  the lowest value of the objective. From an analytical point of 
view, the gradient of the objective function f (x)  = 21 + x; is 

= [ ] . a f  
. 8x2 

This gradient. changed in sign, is a vector pointing toward the origin. which 
is the steepest descent direction for the distance. At point x* = ( 2 . 2 )  the 
gradient is [4, 41'. The gradient of the constraint h(x) = 2 1  + x2 - 4 is 

r d h  i 

Note that this vector is orthogonal to the feasible region and is parallel to 
the gradient of the objective at the optimizer. If we multiply the gradient 
of the constraint by A* = -4 and we add the result to  the gradient of the 
objective, we get the null vector, as required. Actually, all of this boils down to 
requiring that the gradient -Of*, i.e., the descent direction for the objective, 
is orthogonal to the constraints a t  the optimizer: this means that further 
improvements could only be obtained by going out of the feasible region, 
which is forbidden. The last condition is what characterizes the optimizer. 

0 

B.4.1 

The case of inequality constraints can be tackled by an approach which is 
similar to the Lagrange multiplier method, even though historically it has 
been developed much later. The basic theorem here is known under the names 
of Kuhn and Tucker. Given our limited aim, we will try to justify their result 
intuitively. Let us consider a problem like 

The case of inequality constraints 

n 

max c f z ( G )  (B.lO) 

s. t .  ~ s 2 ( ~ , )  I b. (B . l l )  

with a single inequality constraint. To be concrete, we interpret the decision 
variables x,, z = 1. . . . , n. as activities yielding a profit ft(x,) and consuming a 

t=l 
n 

2 = 1  
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resource amount gz(x,). The objective function (B.lO) is total profit, and the 
budget constraint (B. 11) says that total resource consumption cannot exceed 
its availability b. Note that the objective function is measured in monetary 
terms. whereas b is measured in resource units. 

Now. there are two possible cases: Either the resource is fully utilized in 
an optimal solution. or it is not. In the case of a resource budget constraint. 
it is likely that the first case will apply. i.e.. the constraint is active in the 
optimal solution: if we accept this hypothesis. for the moment, the inequality 
constraint can be treated as an equality. Then, we can think of applying the 
same approach we have seen for equality constraints. Introducing a multiplier 
p .  we write the Lagrangian function: 

In the case of equality constraint. the way we include the constraints in the 
Lagrangian function is irrelevant. In the case of inequality constraints. this 
is not true. Using economic intuition, we may try to see why the way vie 
have included the constraint makes sense. To this aim. let us interpret the 
Lagrangian function as a profit, for a qaven value of the multiplier p.  This 
function includes a k r m .  pb .  which is constant for a given value of the mul- 
tiplier and can be disregarded. The Lagrangian includes the sun1 of profits, 
minus a coefficient p times the consuniption of the resource. From a dimen- 
sional point of view. we immediately see that the multiplier is a price: money 
per unit resource. If we interpret the multiplier this way, it is also clear that it 
cannot be negative. Indeed. when dealing with equality constraints. the sign 
of the multiplier is not restricted and the constraint can be introduced in the 
Lagrangian in both possible ways: in the case of an inequality constraint. the 
multiplier is restricted in sign and we must pay attention to the sense of the 
inequality. 

Remember that,  for the moment. we are assuming that the resource budget 
is fully utilized at the optimum. What is the right price p* associated with 
the optimal solution? lye should find a resource price such that the overall 
consuniption is equal to the resource availability. no more. no les5. In fact. 
for a given price. the optimization problem could be decomposed into a set of 
n unrelated unconstrained problems, one for each deciiion variable 2 , .  Each 
problem corresponds to the optimization of a single activity in which resource 
availability is taken into account by a resource price which should discourage 
excessive resource usage. Someone should coordinate all of the individual 
decisions, by pricing the resource so that the n independent agents in charge 
of each single activity use the resource in such a way to exactlx coii5unie the 
available budget b. If we exceed the budget. the price should be increased: if we 
do not saturate the resource, then we should decrease the price (if the budget 
constraint is active at  the optimum). \Ye illustrate this type of inteipretation 
in a few places in the main body of the text. 
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But what if the constraint is not active at the optimum? In such a case. 
we have 

n 

2=1 

for the optimal solution x*. We may get this solution by assigning a price 
p* = 0 and solving the unconstrained problem." 

We will further pursue the economic interpretation in the next section. but 
what we have seen suggests a few intuitive conclusions: 

0 When dealing with an inequality constraint g(x )  5 0, the sign of the 
multiplier is restricted and the sense of the inequality is important when 
we add the constraint to the Lagrangian function. 

0 If the multiplier is strictly positive, p* > 0. then the constraint is active, 
g(x*) = 0: if the constraint is inactive, g(x*) < 0. then the multiplier 
must be zero. In other words. at least one of them must be zero, which is 
summarized by the complementary slackness condition p * g ( x * )  = 0. 

All of these intuitive (and far from rigorous) arguments can be summarized 
in the following theorem, which we state for an inequality-constrained mini- 
mization problem like 

min f ( x )  (B.12)  

s.t. g k ( x )  5 0, k = 1 , .  . . , l .  

THEOREM B.6 Assume that the functions f and g3 in problem ( B . 1 2 )  
are suitably dafferentiable, that point x* is feasible, and that the constraints 
satisfy a regularity condition in x*.  Then, a necessary condition for the local 
optimality of x* is that there exist numbers p.;I. 2 0 ,  k = 1, . . . , 1 ,  such that 

I 

O f ( x * )  + c p ; v g k ( x * )  = 0 
k = l  

and 
p ; g k ( x * )  = 0 ,  k = 1..  . . , 1  

These conditions are known as Kuhn-Tucker conditions and are a general- 
ization of the Lagrange conditions for equality-constrained problems. The first 

"It is tempting to  say that if a constraint is not active at the optimal solution. the constraint 
can be eliminated from the model. Actually this not always true. It is possible to build 
counterexamples. such as nonconnvez problems in which by eliminating an inactive constraint 
the optimal solution is still a local optimum, but another point becomes feasible and is the 
new global optimum. What we can say is that  small perturbations of an inactive constraint 
do not change the optimal solutions; we will see more of this interpretation in the next 
section. 
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condition can be interpreted as the stationarity of the Lagrangian function 

I 

C(X. CL) = f(x) + C P k m  = f(x) t CL’dx). 
k = l  

With respect to the equality-constrained case. we must also require non- 
negativity of the multipliers and complementary slackness. 

The remarks we have made about the limitations of theorem B.5 applv here 
as well; in the convex and differentiable case, these conditions enable us to find 
the global optimum. If we have both equality and inequality constraints, we 
form a Lagrangian using all of them, but apply the additional Kuhn-Tucker 
restrictions to inequalities only. 

The theorem applies to a minimization problem. but what if we have a 
maximization problem? The answer can be found in our previous intuitive 
reasoning. In this case. the Lagrangian function should be 

This can be proved mathematically. but it is consistent with economic intu- 
ition For instance. we build the Lagrangian function this way in section 5.2.1. 
when we tackle a multi-item newsvendor problem. 

IYe close this section by warning readers against a common misunderstand- 
ing. IVe have justified Kuhn-Tucker conditions by an economic argument, 
whereby the Lagrangian function was interpreted as a profit. For a gawen 
multiplier p 9  it makes sense to maximize the profit. &ow. in this case. it is 
tempting to say that the stationarity conditions on the Lagrangian function 
are conditions for a maximum of the Lagrangian. By the same token. in an 
equality-constrained problem such as minf (x) .  subject to h(x) = 0. it is 
tempting to say that we look for the minimum of the Lagrangian function 
C(x, A) = f(x) + A’h(x). But it is easy to  see that this is wrong, as the min- 
imum of this Lagrangian function is always --x. To see this, fix an arbitrary 
point xo: we may drive the value of the Lagrangian function to --x just by 
setting A, to +x or -cc. depending on the sign of each constraint /iJ(xo). In 
fact. a deeper study of the subject, leading to  duality theory. shows that n e  
should minimize the Lagrangian function with respect to the original variables 
x. but we should maximize it with respect to  Lagrange multipliers (which are 
restricted in sign for inequality constraints). All of this is beyond the scope 
of this book. 

B.4.2 An economic interpretation of Lagrange multipliers: shadow 

prices 

To introduce Kuhn-Tucker conditions we have suggested an economic inter- 
pretation. i.e.. that Lagrange multipliers express how much a constraint is 
“important“ at the optimum. In this section. we would like to  dig a bit 
deeper into this interpretation. 
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Example B. 7 Consider the quadratic programming problem: 

min (21 - 2)' + ( 2 2  - 

s.t. 21 + 2 2  = b, 

where b is a parameter. and let us investigate how the optimal value changes 
as a function of b. In fact, the optimal value of the objective is a function 
q ( b )  = f ( 2 ; .  x ; ;  b ) .  and in this very simple case we may find this function 
explicitly. To this aim, we may eliminate the constraint in order to get an 
equivalent unconstrained problem. From the constraint we get x2 = b - 2 1  

and plug this into the objective function to obtain 

( 5 1  - 2)2 + ( b  - 2 - 

Then. setting the first-order derivative with respect to  21 to  zero, we get x; = 
b / 2 .  This also implies 24 = b / 2 .  which can be easily checked geometrically, 
since the problem asks for finding a point on the line x1 + x2 = b, such that 
the distance from point ( 2 , 2 )  is minimal. The optimal value as a function of 
b is 

and if we take the derivative with respect to  b we obtain 

This shows that the optimal value will decrease. if we increase b when the line 
is below the point ( 2 . 2 )  (the line gets closer to the point): if the line is above 
that point. increasing b will increase the distance. If we neglect all of this and 
apply the Lagrange multiplier approach, we build the Lagrangian first: 

C ( 2 l l X 2 .  A )  = ( 2 1  - 2)2 + ( 2 2  - 2)' + X ( Z l  + 2 2  - b) .  

and the stationarity conditions are 

- = 2 ( 2 1 - 2 ) + X = O ,  
dC 

I% 1 

which yield 

2;  = 2; = b 
2 '  

A* = 4 - b. 

We see that,  apart from a change in sign, the multiplier is actually the deriva- 
tive of the optimal value with respect to b. 0 



NONLlNEAR PROGRAMMING 561 

The result of the example suggests that  a niultiplier measures the 5ensititity 
of the optimal value with respect to a perturbation of the right-hand side 
of the associated constraint. Indeed. this can be proved in a more general 
setting. The change in sign is not really relevant. as it depends on how we 
build the Lagrangian function. but differentiability of the value function q ( b )  
is an issue. 

Thanks to the complementary slackness condition. we can also extend the 
result to the case of an inequality constraint. If the coiistraint is inactive, 
the sensitivity is zero, because small perturbations of the constraint have no 
effect. Otherm ise. thc. constraint can be substituted by an equality constraint 
and we are back to the case above. with the additional caveat concerning 
the sign of the multiplier. lye may also see why the non-negativity condition 
on the multiplier makes sense: If b is the resource availability and we are 
minimizing cost. ail increase in the availability can only decrease the cost 
(remember the change in sign). lye have also seen that if q is money and b is 
measured in resource units. the multiplier has the dimension of a price. indeed. 
an alternative term to indicate a Lagrange multiplier is shadow price. 

The shadow price tells. to  a first-order approximation. how much the op- 
timal value would change if we could increase the availability of a resource. 
Hence. this also tells the maximum unit price we should be willing to pay for 
one more unit of that resource. If the resource price is larger than the shadow 
price, then the increase in overall cost tern1 in the objecti\e function would be 
more than offset by the increase in profit. If the resource is not fully utilized, 
then there is no point in getting more (the shadow price is zero). 

Of course. this interpretation must be taken with care, as it holds for small 
perturbations, just like any first-order approxiination based on a first-order 
derivative. It can be seen as a sort of marginal analysis. which can be very 
useful in interpreting optimality conditions. 

Example B.8 Let us consider again problem (B.10). Given the additive 
form of both the objective and the constraint. the stationarity conditions 
on the Lagrangian fiiiiction can be written separately for each activity z = 
1..  . . . n:  

which also yields 

(B.13) 

The ratio of partial derivatives is the ratio between the (marginal) increment 
in profit from activity i. if we increase its level. and the increment in resource 
consumption. Equation (B.13) tells that this ratio is given by the multiplier, 
but above all it tells us that in the optimal solution this ratio must be the 
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same for all of the activities. In fact. if this were not the case. i.e.. if there 
were two activities j and k such that 

then x* could not be the optimal solution. because we could increase the 
overall profit by reallocating part of the resource from k to j .  0 

This type of marginal analysis proves very useful in the chapters dealing with 
inventory management. 

B.5 LINEAR PROGRAMMING 

The optimization model (B.5) is a linear programming problem if all of the 
involved functions are linear (strictly speaking, affine). In this case, the model 
has the following form: 

n 

i=l  
n 

Linear unconstrained optimization does not make sense, because the gradi- 
ent is constant and the stationarity condition cannot be met: the optimum 
is unbounded. Linear programming problems are "easy," in the sense that 
quite efficient and reliable algorithms are available to solve them. This de- 
pends partly on the convexity properties of linear programming and partly 
on its geometrical features: The feasible set is a polyhedron. and we can find 
an optimal solution by looking only at  the extreme points (vertices) of the 
polyhedron. 

Example B.9 Let us consider the optimal mix problem (B.l) again and try 
a geometrical solution. A good starting point is observing that the problem 
can be simplified as follows: 

max 45x1 + 60x2 

s.t. 15x1 + 35x2 5 2400, 

25x1 + 15x2 5 2400, 

0 5 5 2  5 50 
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Fig. 8.5 Feasible set for the optimal mix model. 

In fact, it is easy to verify that any mix satisfling the second capacity con- 
straint will also satisfy the first and the third one. To see this. obierve that 
item PI requires the same resource amount on machine groups A, B .  and C .  
while P2 has a higher requirement on B: the availability of resources A. B, 
and C is the same. but only the second one is critical.12 A similar consider- 
ation applies to the market limit for item P I :  Me cannot produce 100 pieces 
of it anyway. because there is not enough capacity on resource D .  

Lye can also verify these observations geometrically, by drawing the fea- 
sible set and checking for redundant constraints. In practice. good software 
solvers do this automatically. In figure B.5 we see the feasible region. which 
is the intersection of three half spaces linked to the three relevant constraints. 
The vertices of this polyhedron are the origin O(O.O) and points i l ( 0 .  50). 
B(43.33.50). C(73.85.36.92), and D(96.0) .  The figure also displays the level 
curves of the profit function, which is increasing along the shown direction. 
lye also see that the highest level of profit is associated to  point C. which is 
indeed the optimal solution. Note that we cannot find the optimal solution 
by reasoning along the lines of example B . l ,  by focusing on one product at a 
time: in fact. this yields points B and D. for which profit is negative. 

Me should also note that by changing selling prices, we could alio change 
the optimal solution. but this would be a vertex anyway. If the profit level 
curves were parallel to a constraint. we would have an infinite number of 
equiLa1ent optimal solutions on a face of the polyhedron. 0 

"T\;e could say that  B is the bottleneck, and we should expect that  the shadow prices for A 
and C turn out zero. There is a whole managerial approach; the Theory of constraints. re- 
volving around the idea of just focusing on relevant constraints. However, spotting relevant 
constraints may be difficult in a very dynamic and complex setting. 
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The classical algorithm to tackle linear programming problems is the simplex 
method, which explores vertices of the feasible polyhedron by a clever strategy, 
until a locally optimal solution is found, which is also a global one, courtesy 
the convexity of the problem. The simplex method was born in 1947, but 
it is continuously improved from a computational point of view. We also 
mention that alternative strategies are available, which explore the interior 
of the feasible region; these interior point methods may be more efficient 
than standard simplex on some type of problems. For all the purposes of this 
book, we may consider linear programming models as problems which can be 
tackled by a reliable, mature, and affordable technology. 

B.6 INTEGER LINEAR PROGRAMMING 

When some or all of the decision variables in a linear programming model are 
restricted to  integer values, we have an integer linear programming prob- 
lem. To be more precise, we have a pure integer programming problem when 
the restriction must be enforced on all of the decision variables, and we have a 
mixed-integer programming problem when some variables are continuous. A 
generic integer variable takes values in the set Z+ = {0,1 ,2 .3 ,4 , .  . .}; the case 
of negative integers is quite rare in applications. Actually the most common 
case involves binary decision variables, which are restricted to  the set (0, l}; 
these variables are so common because they model logical decisions, such as 
“should we open a new distribution center in that city, or not?” Clearly, this 
is an all-or-nothing decision; we cannot open 75% of a distribution center. 

Unlike continuous linear programming, integer programming can be tough. 
The main issue is that the feasible set is nonconvex. In convex programming, 
we have a suitable characterization of an optimal solution; this means that 
if we are handed an optimal solution. it is fairly easy to check that this is 
really the optimal one; for linear programming. this requires adapting the 
Kuhn-Tucker conditions. With integer programming, even if we are handed 
a feasible solution by someone swearing its optimality, there is no easy way 
to  check this claim. Apparently, a trivial strategy can be applied: Disregard 
the integrality restrictions, solve the contznuous relaxatzon of the problem, 
and then round the solution. Indeed. in the very simple optimal mix instance 
we have considered, such a strategy would work. The continuous solution is 
z1 = 73.85 and x2 = 36.92, which is not too far from the optimal integer 
solution x1 = 73 and 2 2  = 37. But the following counterexample proves that 
this is not a generally viable approach. 

Example B. 10 Consider the following pure integer programming problem: 
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If we relax the integrality requirement, i.e.. we just require 2 1 ,  x2 2 0. we can 
apply the simplex method to  find 

x; = 4.5. x; = 4, 

with an optimal objective value 8.5. By relaxing integrality constraints this 
way. we obtain the continuous relaxation of the integer program. The 
reader is invited to try rounding the above solution; unfortunately. the trivially 
rounded solutions are not feasible, and the integer optimum is 

x; = 2 ,  x; = I 

with optimal value 3. We see that the continuous solution is quite far from the 
true integer optimum: in this case it is even difficult to  find a feaszble solution 
by rounding, let alone the optimal one. We invite the reader to check the 
situation graphically to  figure out where the trouble is: The feasible solution 
consists only of points (1.0) and ( 2 . 1 ) .  whereas the convex polyhedron in the 
continuous relaxation is very narrow and includes a lot of non-integer points 
far from these two feasible solutions. 0 

The bottom line is that in integer programming we must resort to some type 
of enumeration in order to  find the optimal solution. Certainly. enumerating 
all of the feasible integer solutions is typically out of the question: even if they 
are finite. the number of feasible integer solutions can be staggering in a real- 
life problem. Luckily enough. the example above does suggest a way to avoid 
complete enumeration of the feasible set. JYe may see that,  in a maximization 
problem, the continuous relaxation yields an optimistic estimate of the optimal 
value of the objective, i.e.. an upper bound. For a minimization problem, the 
continuous relaxation yields a lower bound. This observation is the starting 
point of a class of methods which are collectively known under the label of 
branch and bound methods and are discussed in the following section. Making 
such a method work requires quite a bit of finesse, but getting a grasp of the 
overall idea is not too difficult. We should do so in order to  appreciate the 
potential trouble in solving a large mixed-integer program. However, from 
our point of view. the ability of buzldang a mixed-integer linear programming 
model is more important than the ability of solving i t ;  this task can be left to 
state-of-the-art software packages which are commercially available and are 
continuously improved. Some mixed-integer programs which were way beyond 
the reach of very powerful computers a few years ago can now be routinely 
solved on a desktop PC. Mixed-integer programming models are among the 
main topics of chapter 2 on network design. For this class of applications. 
commercial packages based on branch and bound are actually able to solve real 
problems, at least to near-optimality. Unfortunately, other types of problems. 
such as the vehicle routing problems described in chapter 8. cannot be tackled 
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Fig. 5.6 Search tree for a pure binary programming problem. 

by the same approach. In principle. a mixed-integer programming model can 
be built. but it proves too hard to  solve at  optimality by branch and bound, 
unless very sophisticated and specialized approaches are used. This is why, in 
that case, we typically resort to heuristic approaches. 

B.6.1 Branch and bound methods 

From a certain point of view, some integer programming problems could look 
easier than continuous linear programming models. Consider a pure binary 
problem. i.e., a linear programming problem where all of the variables are 
restricted by 2, E ( 0 ,  l}. i = 1.. . . . n. In such a case. the number of feasible 
solutions is clearly finite, and we could think of enumerating all of them to 
spot the optimal one. We can visualize the search process as in figure B.6, 
where we show a search tree: at each node of the tree we branch on a decision 
variable, which basically amounts to partitioning the feasible set into disjoint 
regions. However, this idea is not really feasible but for small values of n; 
in fact. we might have up to  2n candidates to  test. Many of them would be 
ruled out by constraints, but we see that the complexity of such an algorithm 
is exponential. Furthermore, it is not yet clear how to branch on general 
integer variables (opening a branch for every possible integer value is out of 
the question). nor how to cope with mixed-integer problems. 

What we should aim at is exploring only a small part of the search tree, 
avoiding portions of the feasible set in which we cannot find the optimal 
solution. In other words, we should prune the tree in order to  avoid wasting 
computational effort, but how can we be sure that we cannot find the optimal 
solution in the portion of tree below a certain node? We have already noted 
that if we relax integrality constraints, for a minimization problem, we get a 



INTEGER LINEAR PROGRAMMING 567 

lower bound on the optimal value of the objective. In a pure binary problem. 
this means that if we relax the restriction x, E (0.1) to IC, E [O ,  11. we can 
apply the simplex method to get such a lower bound. Now suppose that.  while 
wandering up and down the tree, we already came across a feasible solution 
whose cost is, say. 100. At present we are considering a node in the tree. in 
which variables x,, i = 1, . . . . k .  have been fixed to a binary value. and we have 
solved the relaxation of the problem with respect to  the remaining variables 
x,, i = k + 1.. . . , n. The optimal value of the relaxation turned out to be 102: 
should we branch on that node? Not really, since the best solution we can 
hope to find in the subtree below that node has cost 102: maybe the optimal 
solution in that subset of the feasible region will turn out even worse than 
that.  Hence. by exploring that subtree we cannot improve what we already 
have in hand: so. we may safely prune that branch. 

This line of reasoning, suitably adapted to  more general integer program- 
ming problems, is the foundation of branch and bound methods. Actually. 
there are many variations on the theme. but all of them rely on two basic 
ingredients: 

1. A brunchzng strategy. which builds a search tree by generating finer and 
finer partitions of the original feasible set. Each branching spawns two 
(or more) subtrees. corresponding to subsets of the feasible region. M’e 
should not miss any opportunity: hence. the subsets must be collectively 
exhaustive of the feasible region. For the stake of efficiency. it is also 
advisable that they are mutually exclusive. This is easy to achieve 
when branching on binary decision variables. A different approach is 
taken when dealing with a generic integer variable. Say that solving the 
continuous relaxation yields a fractional value x; = 3.7 .  iVe can branch 
on this variable by creating two subproblems. one subject to the bound 
x I: 3 and the other one to IC 2 4. respectively. Ruling out pathological 
cases which may happen when the original feasible region is unbounded. 
sooner or later we will end up with a subproblem such that the simplex 
method returns an integer solution. This subproblem is a “leaf” of the 
tree. and we may resume search somewhere else (recording the newly 
found integer solution if it provides us with the best solution so far). 

2 .  A boundzng strategy. which in commercial libraries is based on the con- 
tinuous relaxation of the integer ~ r o b 1 e m . l ~  A bounding strategy helps 
in limiting the search process, during which we keep an zncumbent solu- 
tion. i.e.. the best integer solution found so far: the value of the incum- 
bent solution is. for a minimization problem, an upper bound on the 
optimal value. We compare this upper bound against the lower bound 
of a node to  understand if the latter is worth digging deeper. We must 

’3Several ad hoe strategies have been devised for specific problems. but they have no place 
in a commercial package for general mixed-integer models. 
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stress the fact that  we cannot prune a node by comparing two lower 
bounds. To see why, consider a subproblem PI with lower bound 190 
and a subproblem P2 with lower bound 180. P2 may look more promis- 
ing, and maybe we could consider branching on it first, but we cannot 
eliminate PI from further consideration: it may well be the case that the 
optimal solution of PI has cost 191, whereas P2 yields a solution with 
cost 195. 

An efficient branch and bound method also requires dealing with other issues: 
how to select the next subproblem to tackle; how to solve efficiently a linear 
program after adding a constraint, without starting everything from scratch; 
the selection of the variable we should branch on. Sometimes, we can tackle 
a rather large model by a branch and bound method; somewhat surprisingly, 
there may be smaller problems which prove a much harder nut to crack. The 
main factor is the quality of lower bounds: If they are tight, the pruning pro- 
cess can be effective: otherwise, a lot of useless branches will be explored. This 
is why sometimes we may have to  settle for heuristics. i.e., faster algorithms 
to find a hopefully “good” solution with no guarantee about its optimality. 
We outline a few heuristics for the vehicle routing problem in chapter 8; we 
have to  resort to heuristics in this case because straightforward mixed-integer 
model formulations of this problem yield weak continuous relaxations. Still. 
the range of real-life models that we can tackle by commercial libraries has 
been considerably expanded, also thanks to ways to  reinforce the quality of 
bounds. We will not cover these sophisticated methods, but we illustrate the 
basic approach by a complete example. 

Example B.11 Solving an integer linear program by branch and 
bound. A good candidate to illustrate a full run of branch and bound is 
the optimal mix problem (B.1). whose continuous solution is x; = 73.84. 
x; = 36.92, with profit 538.46: this is an upper bound on the profit from the 
optimal integer solution, since this is a maximization problem. Let Po the 
root problem in the tree, i.e., the problem with the feasible set depicted in 
figure B.5. It is convenient to associate each subproblem with two vectors of 
lower and upper bounds on variables, respectively; for Po we have the original 
market demand bounds 

Lo = [0 01’. Vo = [lo0 501’. 

To partition the feasible region. we may start branching on variable 51, gen- 
erating the two subproblems PI and P2. resulting from the addition of con- 
straints x1 < 73 and 21 2: 74, respectively, which do not eliminate any integer 
solution. The whole search tree is depicted in figure B.7; each subproblem 
corresponds to a rectangle defined by the bounds on variables; we see the ad- 
ditional constraints on each branch, whereas each node contains the optimal 
solution of the relaxed subproblem along with its profit. 

Subproblem PI is characterized by the following bounds on variables: 

L1 = [0 O]’, UI = [73 501’. 
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whereas P2 is associated with 

L2 = [74 01’; U2 = [lo0 501’ 

Solving PI yields 
X; = 73, 

with profit 522.14. From P2 we get 

X; = 37.29. 

X; = 74, X; = 36.67 

with profit 530.00 (rounded within two decimal digits). Both profits are 
smaller than the profit in Po. which is natural since they are obtained af- 
ter including a further restriction. We cannot eliminate either subproblem. 
If we branch from P I ,  we create subproblem P3 with condition 2 2  5 37: its 
bounds on variables are 

L3 = [0 01’. U3 = [73 371’. 

and by applying the simplex method we get our first integer solution: 

XT = 73. x; = 37 

with profit 505. This is a feasible solution. corresponding to a leaf of the tree, 
and it is not necessarily optimal; it just gives a lower bound on the optimal 
profit against which we may compare upper bounds from relaxations. 

From PI, adding the constraint 2 2  2 38. we get subproblem P4. with 
bounds on variables 

L4 = [0 381’. U4 = [73 501’. 

Its continuous solution is 

XT = 71.33. xi = 38 

with profit 490.00. This solution is not integer. but we can get rid of the 
subproblem, since its upper bound is smaller than the lower bound 505; going 
down this branch of the tree, we cannot improve the incumbent solution. It 
is, however. necessary to  branch from subproblem P2, which looks promising 
given its upper bound 530. From P2 we generate subproblems PS and Ps. 
Imposing 2 2  5 36, i.e., 

LS = [74 01’. US = [lo0 36]’, 

yields 

with profit 508, which still looks better than 505. From the other subproblem. 
where 2 2  2 37. we do not get anything as the problem is infeasible: by adding 

X; = 74.40, X; = 36 
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more and more restrictions. we ended up with an empty feasible set. In fact. 
we may see that the rectangle 

Lfj = [74 371’. cfj = [ loo  501’ 

has no intersection with the feasible set. as the lon-er bounds on production 
are such that capacity constraints are violated for machines B and D. 

IVe still have to explore subproblem Ps. by branching on the fractional 
variable XI. By imposing X I  5 74. we get another integer solution. 

X; = 74. x; = 36, 

whose profit is 490 and is not better than the incumbent. The constraint 
x1 2 75 yields another integer solution 

x ;  = 75, x; = 35. 

with profit 475. which is of no use. 
Xow we can conclude that the integer solution 

x ;  = 73. x; = 37 

is indeed the optimal one. IVe see that. in this case. we did a lot of work 
just to prove that the first integer solution we met was the optimal one. This 
may also happen in practical problems. even though a sequence of improving 
incumbents is normally visited before proving optimality. 0 

B.6.2 

As we have already pointed out. integer programming models may pop up 
when there is a need to restrict purchase or production decisions to integer 
quantities, maybe multiples of a standard batch. However. the most comnion 
reason for using such models is by far the inclusion of logical decisions. In the 
remainder of this section we illustrate a few examples of modeling decisions by 
binary variables. The abilitj of using binary variables is essential in modeling 
distribution network design problems. as we illustrate in chapter 2 

Example B.12 Lot sizing with setup times and costs. In this example 
we illustrate the use of binary variables to  model fixed charges. In the multi- 
period planning niodel (B.2) we did not consider the need for machine setup 
before starting production. Suppose that in order to produce a lot of item z. 
we need to  spend a setup time rim for each resource m .  This setup time doe5 
not depend on the lot size. and it gives us an incentive to stock ari item. By 
the same token. we may have a fixed cost fi associated to  each setup for item 
2 .  this may depend. e.g., on material which is scrapped at the btginiiirig of 
a lot because of the need of adjusting machines In purchasing. setup times 
play no role. but we may need to tackle similar issues, e.g.. when there is a 

Model building in integer programming 
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fixed component in the transportation cost. The decision of starting a lot of 
item i at the beginning of time bucket t is a logical decision; either we do it 
or not. In principle, we could introduce a step function such as 

1 i f x > O ,  
0 i f x = O ,  

S(x) = 

which allows us to express fixed charges. Unfortunately, this is a nonlinear and 
discontinuous function; If we want to stick to commercial linear programming 
packages, we must introduce a binary decision variable: 

1 if we carry out a setup for item i during time bucket t. 
6,t = { 0 otherwise, 

and we must figure out a way to link x,t and 6,t using linear constraints. We 
can do this by a typical trick of the trade. based on the aptly named “big- 
M.” Let M be a suitably large constant: more precisely, it should be an upper 
bound on the amount that we can or should produce during a time bucket; 
assuming we can quantify the big-M, we write the following constraint: 

xtt 5 M&t. 

If 6,t = 0, however big the constant M is, this boils down to x,t 5 0; since 
production variables are non-negative, this means that if we do not carry out 
the setup, we cannot produce that item. If 6,t = 1, we get xtt 5 M, which is 
a redundant constraint if M is large enough. In practice. one way to  quantify 
the big-M is to consider that  there is no economic reason to  produce more 
than we can sell in the remaining time to  the end of planning horizon: 

(B.14) 

An alternative approach is based on capacity constraints; if we carry out the 
setup for item i, the largest amount we can produce is bounded as follows: 

This bound is obtained by thinking of allocating to  item i all of the available 
capacity on resource m, minus the setup time. But which resource exactly? 
And how should we choose between this idea and (B.14), which is based on 
demand? From a computational point of view, the smaller the big-M, the 
better. It is not difficult to understand why. If we use a large constant, there 
is nothing wrong logically, but this weakens the bound we get from continuous 
relaxation of the binary setup variables. So, we should select the smallest big- 
M we can. provided this still yields a redundant constraints when Sit = l.14 

‘*Actually. the best strategy is to  reformulate the model completely, using less intuitive 
decision variables, such as the amount we produce during one time bucket t o  meet demand 
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The resulting model is a fairly straightforward extension of (B.2): 

max 

s.t. 

The careful reader could raise one possible objection: Constraint (B.14) is 
not really an exact translation of what we could write using the step function 
d(x). In fact. the model above allows a useless setup, as we can set S = 1 and 
J: = 0. However. such a solution is feasible. but it will never be optimal if 
there is a setup cost. 0 

Example B.13 Multiple choices. In this example we illustrate the use 
of binary variables to  model mutually exclusive logical decisions. Suppose we 
have L alternative suppliers for a raw material that we need to feed a manu- 
facturing process. Each supplier 1 = 1. . . . , L asks a unit price p i .  which need 
not be the same for all suppliers: apart from this variable cost. we should 
also take into account a fixed ordering cost f i .  which may depend on the 
geographic distance of the supplier (think of a fixed component of the trans- 
portation cost). It may well be the case that lower unit prices are associated 
with a distant supplier. so that the tradeoff is not obvious. Assume further 
that we prefer using one supplier for the whole planning horizon; this can be 
justified by organizational reasons and by the need to establish a trustworthy 
relationship. 

The decision of how much, when. and from whom to buy will be a part of 
a possibly large multiperiod model. but let us focus on this purchase decision. 
M'e need first a decision variable xlt expressing how much we buy froin supplier 
1 in time bucket t .  Just like the lot sizing model of the previous example, we 
need a binary decision variable to model the fixed cost component: Let Sit 

be 1 if we buy from supplier 1 in time bucket t .  0 otherwise. To link the two 
decision variables. u-e need a big-A1 constraint % such as 

in a future time bucket. These disaggregated decision variables allow for smaller big-.Ws. 
Sophisticated model formulation is beyond the scope of this book. and we refer the interested 
reader. e.g.. to [ 2 ] .  
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The objective function includes a cost component like 

T L  

t=l 1=1 

Now, we must enforce the selection of (at most) one supplier over the whole 
time horizon. To this aim, we introduce another set of binary variables yl, 
set to 1 if supplier 1 is the lucky one. The selection of at most one supplier is 
modeled by the inequality 

L 

1=1 

where vie are using an inequality to allow for the selection of no supplier: 
if we insist on selecting exactly one supplier, we can rewrite the constraint 
as an equality. However. there should be no trouble with the inequality. 
which is somewhat more general. as other demand satisfaction constraints 
will probably enforce the selection of a supplier. The last step is linking the 
two sets of binary variables: 

T 

&t 5 Th/l. 1 = 1,. . . % L .  (B.16) 
t=7 

Note that we must multiply 7~ by the number of time buckets, to allow for 
purchasing whenever we want, and not just once over the planning horizon. 
We should note that there is an alternative way to express this link, which is 
logically equivalent to (B. 16): 

S l , i y l .  1 = 1  . . . . .  L. t = l ,  . . . ,  T.  (B.17) 

It is easy to  see that both constraints do their job. It could be argued that 
the first idea is better since it involves much less constraints, whereas the 
form (B.17) is disaggregated. In fact, good software libraries. when handed 
an aggregate form like (B.16). reformulate the model automatically by dis- 
aggregating that constraint into the form (B.17). To see why this is a good 
idea, observe that the aggregate form is obtained by summing each single 
inequality over t .  In general. when we sum constraints, we enlarge the feasi- 
bility region.15 In our case, the tu7o feasible sets are the same in the discrete 
domain; otherwise one of the two formulations would not be correct. How- 
ever, when relaxing the integrality constraint. we get a weaker continuous 
relaxation when using the aggregate form. Sometimes. the difference in the 
quality of the bounds we get is so large that branch and bound efficiency is 
remarkably improved by disaggregation. 0 

15For instance, all the points that  satisfy both inequalities gl(x) 5 0 and g2(x) 5 0, also 
satisfy g1(x) +gz(x) 5 0, but not vice versa. 
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8.7 ELEMENTS OF MULTIOBJECTIVE OPTIMIZATION 

All of the optimization concepts and models we have illustrated in this ap- 
pendix rely on two (quite limiting) assumptions: 

1. 411 data are known with certainty. 

2 .  All of the requirements me have on the solution, which are typically in 
mutual conflict, can be aggregated into one objective function. 

Both assumptions are certainly not to be taken for granted. In distribution 
logistics. uncertainty does typically affect demand. At a more strategical level. 
when long-term decisions must be taken within a globalized context. exchange 
rates. prices of raw materials, and selling prices for end items are also affected 
by uncertainty. In the main body of the text we give a few clues on how to 
cope with uncertainty. 

To 
begin with. not everything can be translated to monetary terms. In an era of 
pollution and greenhouse effect. the environmental impact of a transportation 
policy has to play some role, which is not easy to trade off against the pure 
optimization of transportation costs; also the social impact of opening a huge 
commercial center in a neighborhood may be significant, and this is important 
to design a retail network. But even if we stay within the bounds of low-level 
tactical decisions. the economic impact of a lost sale or a delayed shipment 
may be hard to assess. If there is a contract stating precise penalties for 
late delivery. it is easy to  bring everything to  a common monetary measure. 
However, the damage to your image with customers and its long-term impact 
is hard to  assess. In a risky situation. it may be difficult to assess our own 
degree of risk aversion. 

The bottom line is that  it may be hard to  come up with a single objec- 
tive function capturing all of the facets of a complex decision problem. This 
is why multicriteria decision-making and inultiobjective optimization tech- 
niques were born. In this section we illustrate a couple of basic concepts in 
multiobjective optimization. which are essential, e.g., to appreciate different 
modeling approaches we use when managing inventories under uncertainty. 
For the sake of simplicity. assume that we have just two objective functions. 
fl and f 2 ,  both to be minimized. which cannot be aggregated into one ob- 
jective function. From a mathematical point of view. each feasible solution 
is characterized by a 1-ector of objective values; hence. we could consider a 
"vector" optimization problem: 

Also the second assumption is open to quite some bit of criticism. 

s.t. x E s. 
(B.18) 

(B.19) 

However. stated as such. the problem has no meaning. and this is why me 
use "min." Indeed. vectors are not a well-ordered set. unlike the real line. 
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We cannot say that a vector is better than another one: The number 5 is 
larger than the number 2. but we cannot compare vectors [ lo  11’ and [2 51’ 
that easily. True. we can say that a vector is longer, by referring, e.g., to the 
Euclidean concept of vector length. but this amounts to choosing a specific 
norm to scalarize the problem; it is this scalarization that is difficult to  specify. 

As a concrete example, consider the task of selecting a household electric 
appliance, such as a fridge or a washing machine. Among the many factors 
playing a role in our choice, cost is certainly an important one. However. we 
may also consider esthetics of design, reliability. quality of post-sale services. 
capacity (for both fridge and washing machine), and washing time (in the 
second case only). All of these factors are hard to  express as money. But 
even factors that have a definite economic impact are hard to assess for us. 
Think of resource consumption; sure, the energy class of the appliance has 
an impact on our energy bill. but this is difficult to measure because it is 
a future and uncertain cost. Last but not least, some customers are more 
sensitive than others to  the ethics of energy consumption. So, it is difficult 
to  choose between a cheap appliance that consumes a lot of energy and a 
more expensive one which allows a significant energy saving. Nevertheless, 
one thing should be clear, if we consider only price and energy consumption: 
We should not prefer an expensive appliance that consumes huge amounts 
of energy over an alternative that is less expensive and saves a lot. This 
observation alone may not help us in spotting one “optimal” solution, but at 
least it eliminates unreasonable alternatives from further consideration. In 
other words, we should just concentrate on eficaent solutions. 

DEFINITION B.7 Gwen  the vector optamazataon problem (B.18), a feasable 
solutzon x* as saad efficient16 or nondominated solutaon, zf there as no other 
solutaon 2 E S such that 

fl(2) 5 fi(x*) and f2(X) 5 fz(x*) 

wath a stract znequalaty for at least one of the two objectaves. 
nondomanated solutaons as called efficient frontier. 

The idea may be easily grasped by having a look at figure B.8. We see that 
in the case of the figure the is not necessarily one optimal solution, but rather 
a set of “reasonable” solutions to which we may restrict the choice. ruling 
out dominated alternatives. What we can do to  help the decision maker is to 
generate a set of reasonable alternatives. To this aim, we can scalarize the 
problem according to  some strategy, boiling the vector problem down to a 
family of single-objective optimization problems. 

The set of 

160ften we speak of Pareto efficiency, in honor of Italian economist Vilfredo Pareto. who 
studied the allocation of goods among economic agents in these terms. By the way, it is 
worth noting that  although he is best remembered as an economist. he had a degree in 
Engineering. In the 1950s. many scholars who eventually made a big name in Economics 
worked on inventory management and workforce planning. 
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0 

0 

0 

0 dominated solution 

0 nondominated solution 

fig. B.8 Illustrating the concept of efficient solution. 

The first. perhaps more intuitive, approach is to devise a weighted linear 
combination of the two objectives: We define a parameter A, bounded by 0 
and 1, which expresses the relative importance of the objectives: letting X 
span its range, we define and solve a sequence of problems: 

Note that the parameter X has no precise economic meaning. as it is just 
a tool to span the efficient frontier. This approach is clearly intuitive and 
related to  the idea of varying a set of weights. We have the guarantee that 
all of the solutions we generate this way are efficient: however, it does not 
guarantee in general that all of the efficient solutions will be generated. unless 
some condition related to convexity is ~ a t i s f i e d . ' ~  An alternative approach is 
based on the idea of transforming one objective into a constraint In other 
words. we can optimize f1. subject to the constraint that  f 2  cannot exceed 
some limit (or vice versa): 

l7T0 see why. t ry  the  following exercise, with reference t o  figure B.8. Imagine drawing the 
level curves of the  linear combination of objectives when X varies; changing this parameter 
implies a rotation on these lines. and all of the  three efficient solutions are optimal for some 
interval of A. But what happens if the  second efficient solution. i.e.. the one closest to  the 
origin. moves up  along the  north-east direction? 
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Fig. B.9 The efficient frontier. 

s.t. x E s, 
f 2 ( x )  I f2.  

Solving a family of scalar problems for varying values of 7 2 .  we may trace the 
efficient frontier. If we have an optimization problem over continuous decision 
variables, the efficient frontier will look something like figure B.9. I t  is worth 
noting that this second approach does not suffer from the aforementioned 
difficulty with the weighted combination approach, but the most important 
feature, arguably. is that  it is more -readable" for a decision maker." While 
the parameter X has no clear managerial meaning. the parameter f2 is much 
clearer. It is a threshold level, that  might be chosen by having a look at  what 
competitors do. For instance, if we have to trade off service level against the 
cost of our inventories. having an idea of what service level is offered by our 
competitors helps a lot in choosing a sensible threshold. 

We clearly see that optimization modeling in such a context is a tool to 
support decision makers. and not to  replace them. It is up to  an informed 
manager to compare alternatives A and B in figure B.9, to  assess the involved 
tradeoffs, and to decide if the improvement of solution B with respect to  A, 
in terms of the second objective, is enough to compensate the loss in terms of 
the first one 

I 8 0 n  the  other hand, we should also mention tha t  sometimes the  model resulting from a 
convex combination of objectives may be easier to solve from a computational point of view. 
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6.8 FOR FURTHER READING 

0 Example B.10 is taken froin [ 5 ] .  which is good introductory reading for 
solution methods. 

0 A more complete treatment can be found. e.g., in [l]. whereas [7] is an 
excellent reference as far as integer programming is concerned. 

0 Readers interested in optimization models for manufacturing manage- 
ment may also have a look at [2]. 

0 The bibliography on optimization methods is quite rich. but the same 
cannot be said when it comes to model budding. A welcome exception is 
[6]. which deals with a wide class of applications: [4] niay also be useful 
reading. and it is more focused on supply chain management. 

0 From a practical point of view. optimization modeling is of no use if it is 
not complemented by a working knowledge of commercial optimization 
software. We suggest having a look at http: //www . ilog . com, which 
also offers interesting material describing real-life applications. Other 
useful links are: 

http://www.informs.org 

http://www.optimization-online.org 
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affine function. 551 
alternative hypothesis. 495 
anticipation function, 54, 78 
arc. 71 
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assortment, 11. 54 
autocorrelation. 479, 524 
autocovariance. 479 

backlog, 236 
backorder. 236 
backward induction, 374 
Bass model, 177 
Bayes' theorem, 442 
Beer Game, 324 
Bernoulli 

bias (in forecasting). 104 
binary decision variable. 77 
binomial 

binomial coefficient, 448 
bounding strategy, 567 
branch and bound, 78. 567 
branching strategy, 567 

random variable. 447. 493 

random variable. 493 

brand loyalty, 239 
bullwhip effect, 39, 42, 324 
bundle. 66 
bundle of products, 216 

capacity 

CDF. see cumulative distribution 

central limit theorem. 28. 470 
chi-square 

random variable, 468 
chi-square test. 498 
coefficient of correlation. 485 
coefficient of variation. 95, 445 
collaborative planning. forecasting 

competitive factors. 9 
complementary slackness, 558 
component commonality, 38 
concave function, 83. 551 
concordance. 486 
concordance (between random vari- 

conditional 

allocation, 332 

function 

and planning. 330 

ables), 465 
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expectation. 471 
probability. 438. 471 

interval. 490 
level. 490 

confidence 

confidence interval, 506 
constrained optimization. 553 
constraint 

equality, 545 
inequality, 545 

constraint qualification, 554 
constructive method. 404 
continuous random variable, 452 
continuous relaxation, 565, 567 
continuous review. 271 
contracts 

buy-back, 378 
franchising. 378, 389 
quantity discounts, 390 
revenue sharing, 379 
Vendor Managed Inventory, 381 

control variable, 78 
convex 

combination. 86 
function. 504. 550 
hull, 86 
optimization problem, 554 
set, 549 

convex combination, 549 
convexity, 536, 577 
correlation, 467, 521, 525 

correlation coefficient, 58 
cost 

among customers, 327 

average, 12 
backlog, 543 
fixed, 12,  21, 77. 536, 571. 573 
holding. 543 
inventory, 203 
inventory holding. 15, 21 
linear. 1 2  
marginal, 12, 551 
nonlinear, 12, 21 
ordering. 15, 200, 573 

administrative. 200 

receiving. inspection and han- 

setup. 202 
transportation. 201 

dling. 202 

semi-variable. 14 
stockout, 16 
sunk, 13 
transportation, 14 
variable, 13 

counting process. 480 
covariance, 465, 478, 485 
cross-docking, 342 
cross-docking platform, 8 
cumulative distribution function, 443. 

461 
customer goodwill, 239 
customer lifetime value. 239 
CV, see coefficient of variation 

decision variable, 544 
Delivery Lead Time, 10 
Delphi method, 166 
demand 

deterministic. 335 
uncertainty, 351 

demand uncertainty, 56 
dependability, 10 
design variable, 78 
diseconomy of scale. 551 
dispersion measure. 445 
distribution 

F ,  470 
binomial, 448 
chi-square, 484 
empirical. 451, 455 
exponential. 451, 475, 480 
geometric. 447, 473 
lognormal, 468, 532 
normal. 459. 470, 476, 481 
Poisson. 450, 458, 480 
standard normal. 459, 492 
Student’s t ,  469.484. 491,497, 

519 
support, 447 
uniform. 446 
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DLT. see Delivery Lead Time 
double marginalization, 361 

early sales. forecasting through, 172 
echelon stock. 308. 343 
economic order quantity. 19. 56.61. 

551 
economies of scale. 13 
economy of scale. 69. 83. 551 
edge, 71 
EDLP, see everyday low prices 
efficient frontier, 576 
efficient solution. 576 
elastic model formulation, 79. 546 
Enterprise Resource Planning. 3 
EOQ. 

seeeconomic order quan- 
tityl9 

policy, 45 
quantity discount. 223 
two-echelon, 335 
under capacity constraints. 221 

epigraph. 550 
ERP. see Enterprise Resource Plan- 

ning 
error (in regression). 508, 524 
estimator. 483 

event, 434 
unbiased. 483 

disjoint, 436 
independent. 438 
mutually exclusive. 436 

every day low prices. EDLP. 331 
everyday low prices. 30 
expected value, 445, 454 
explanatory variable, 485. 501 
exponential 

random variable. 458 
exponential smoothing 

simple. 128 
ivith seasonality. 144 
with seasonality and trend. 154 
with trend. 138 

extreme point, 562 

factorial, 449 
feasible set. 544 
first-order optimality condition. 504 
fixed charge. 571 
flexibility. 11 

delivery. 11 
order cancellation. 333 
product, 11 
to product innovations. 11 
volume. 11 

flow time, 6 
forecasting, 328 

explanatory models. 119 
causal models. 119 
new products. 166 
qualitative methods. 116. 166 
quantitative methods. 116 

Forrester effect. see bullwhip effect 
function of a random variable, 446. 

454, 462 

generalized assignment. 422 
gradient. 548 
graph. 71 

bipartite. 72 
directed. 71 
undirected. 71 

heterogeneity 
customer. 328 

heteroskedasticity. 527 
heuristics. 568 
horizontal transshipment, 307 
hypothesis testing. 495, 520 

i.i.d. (random variables). 464. 470 
incentives. 359 
incumbent solution. 567 
independent 

events. 438 
random variables. 463. 476 

car. 18. 47 
ebusiness, 17, 91. 334 
electronics. 17. 91. 379 

industry 
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electronics distribution, 326 
entertainment, 380 

furniture, 17 
grocery, 342 
grocey, 386 
luxury, 47, 307 
retail. 10, 17,96, 113, 118, 305- 

307. 326, 334 
spare parts. 39 
white goods. 117, 305 

sharing, 329 

food, 24, 98, 100.303 

informat ion 

initialization. 140, 147, 155 
initialization (of parameters in ex- 

ponential smoothing), 134 
installation stock, 308 
integer linear programming, 564 
interior point method, 564 
intermodal center, 69 
inventory 

(Q,R) model, 270 
allocation, 347 
fixed period, 270 
fixed quantity, 270 
in transit, 61 
in-transit. 29 
on hand, 211 
periodic review, 270 
position, 211 

inventory control system, 494 
inventory policy 

(Q,R). 312. 352 
s, 344 

iterative method, 404 

Kuhn-Tucker conditions, 558 

lack of memory, 481 
Lagrange multiplier, 553 
Lagrangian function, 554 
Lagrangian multiplier, 218 
Lancaster model. 171 
lateral shipment, 9 
lead time 

uncertain, 355 
least-squares method, 84 
linear programming, 54, 71, 503, 

location measure, 445 
logistics 

industrial, 3 
reverse. 4, 9 

540, 562 

lost sales, 236 
lot sizing, 325 
lower bound, 565; 567 
LTL , see transport ation, less-than- 

lurking variable, 488 
truckload 

MAD, see mean absolute deviation 
Make to Order, 46. 91 
Make to Stock, 46, 91 
MAPE, see mean absolute percent- 

marginal distribution, 462, 476 
Markov process. 479 
mean absolute deviation. 104. 110 
mean absolute percentage error, 107 
mean error, 110 
mean error (in forecasting), 104 
mean percentage error, 107 
mean square error. 454 
median, 456. 459 
memory, lack of, 458. 475 
meta-modeling. 84 
mixed-integer programming, 564 
mode, 454. 459, 469 
model 

age error 

analytical, 49 
descriptive, 49 
multiperiod, 35, 44, 540 
multistage, 35, 44 
prescriptive, 48 
simulation, 49 

moment (of a random variable), 444, 
453 

moving average, 120 
MPE, see mean percentage error 
LEE, see mean square error 
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XITO. see Make to Order 
NTS. see hlake to  Stock 
multicriteria decision-making, 575 
rnultiobjective optimization, 575 
multiperiod problem, 426 

nested policy. 313 
network, 71. 399 

arborescent, 7. 55 
convergent, 7 
divergent, see network. arbores- 

cent 
linear, 6 
optimization, 71 
pure distribution. 7 

newsvendor problem, 31. 245 
multi-item. 259 
two-period. 265 

destination. 72 
intermediate. 55 
source. 72 

node routing, 400 
nondominated solution. 576 
nonlinear programming. 84, 553 
nonparametric test. 498 
normal 

null hypothesis, 495 

node. 71 

standard distribution. 28 

objective function, 544 
operational 

optimization 

optimizer 

problem, 43 

nonconvex. 50 

global. 545 
local. 545 

order decoupling point. 47 
ordering cost, 327 

p-value. 497. 520 
paired observations, 501 
parameters selection. 121, 132, 139. 

147 

PDF. see probability density func- 
tion 

penalty coefficient. 79 
penalty function, 546, 547 
performance evaluation 

model, 49 
piecewise-linear function, 84 
plant location. 76 
PNF. see probability mass func- 

Poisson 
tion 

process. 480 
compound, 481 
inhomogeneous. 381 

random variable. 450 
stochastic process. 151 

polyhedron, 549, 562 
postponement. 39. 346 
Pricing policies. 331 
private information. 381 
probability 

distribution. 27 
joint, 437 
measure. 436 

462 
probability density function. 452. 

probability mass function. 443. 462 
problem 

minimum cost flow. 74 
operational. 71 
plant location, 76 
strategic. 42, 71 
tactical, 43 
transportation. 72 

programming 
linear. 73 
stochastic, with recourse. 35 

pull system. 44 
push sj-stem. 44 

quadratic programming. 555 
quality. 9. 18 

conformance. 10 
target. 10 

quantile, 28. 456. 460. 470. 491 
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R2 statistic, 521 
random sample, 482 
random variable, 442 

binomial, 451 
discrete. 442 

random walk, 479 
regression 

multiple linear. 165 
nonlinear, 528 
simple linear. 158. 501 

rejection region. 495 
reorder level. 210 
reorder point, 56, 210 
residual. 503, 509, 524 
revenue management. 4, 50 
risk 

adverse. 38 
averse, 249 
neutral, 38, 249 
pooling. 36. 39, 56, 57, 347 

risk aversion, 575 
RMSE. see root mean square error 
rolling horizon, 35. 543 
root mean square error, 106. 110 
route. 400 

safety stock. 56, 273 
sample 

correlation, 486. 501 
covariance, 485 
fit. 115 
mean, 482 
path, 476 
space, 434 
standard deviation, 483 
test, 115 
variance, 483 

scalarization, 576 
scenario, 78 
search tree, 407 
sell-in, 333 
sell-out, 333 
service, 10 
service level, 16, 28, 537, 578 

type I, 242 

type 11, 243 
shadow price, 219. 561 
significance level, 495 
simple linear regression, see regres- 

simplex method, 564 
simulation, 49, 55 

standard deviation, 445 
standard error of estimate. 511 
standard normal 

random variable, 468 
stationarity (of a stochastic process). 

stationarity condition, 547, 552 
statistic. 482 
statistical model, 508, 520 
stochastic process 

continuous-time, 480 
discrete-parameter, 476 
discrete-time. 476 
Gaussian. 476 
weakly stationary, 478 

stochastic programming 
two-stage, 78 

stock 
cycle, 24 
in-transit, 24 
pipeline, 24 
safety. 28 
seasonal. 25 
speculative, 24 

stockout, 56 
cost. 28 
probability, 28 

store loyalty, 239 
strategy. 9 
supply chain 

supply chain structure 

sion, simple linear 

discrete-event. 49 

478, 525 

arborescent, 342 

convergent, 306 
divergent or arborescent, 306 
linear, 306 
multiechelon, 303, 359 
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support (of a probability distribu- 
tion), 453 

sweep method, 421 

tactical problem. 71 
Theil’s U statistic, 112 
time bucket. 541 
total probabilities (theorem of), 441. 

tour, 400 
transit point. 8. 342 
transport at ion 

473 

consolidation. 327 
full truckload, 41 
less-t han-truckload. 41 
point-to-point. 40 

transportation cost, 572 
transshipment node, 8 
transshipment point. 342 
type I error. 495. 498 
type I1 error, 495 

uncertainty 
delivery. 233 
delivery lead times, 233 
demand. 233 
inventory levels. 233 
subjective, 27 

unconstrained problem. 544 
uncorrelated variables, 467 
uniform 

upper bound. 565. 567 

variabili t >-. 3 24 
Yariance. 445. 454 
Vehicle Routing Problem. 41 
Vendor Managed Inventories. VhII. 

Vendor Managed Inventory. 4 1.38 1 
vertex. 71. 562 
VSII. see Vendor Slanaged Inven- 

VRP. see Vehicle Routing Problem 

yield management, 4 

random variable. 457 

330 

tory. 330 
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