
Practical Guide to Logistic Regression covers the key points of the basic 
logistic regression model and illustrates how to use it properly to model a binary 
response variable. This powerful methodology can be used to analyze data from 
various fields, including medical and health outcomes research, business analytics 
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and classifications, and determine the odds of one value of a predictor compared 
to another.
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models in research, and writing about the subject, the author focuses on the 
most important features of the logistic model. He explains how to construct a 
logistic model, interpret coefficients and odds ratios, predict probabilities and 
their standard errors based on the model, and evaluate the model as to its fit. 
Using a variety of real data examples, mostly from health outcomes, the author 
offers a basic step-by-step guide to developing and interpreting observation and 
grouped logistic models as well as penalized and exact logistic regression. He 
also gives a step-by-step guide to modeling Bayesian logistic regression.

R statistical software is used throughout the book to display the statistical models 
while SAS and Stata codes for all examples are included at the end of each 
chapter. The example code can be adapted to your own analyses. All the code is 
also available on the author’s web site.
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approach, with R, JAGS, Stata, and SAS codes provided for example 
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Preface

Logistic regression is one of the most used statistical procedures in research. 
It is a component of nearly all, if not all, general purpose commercial statis-
tical packages, and is regarded as one of the most important statistical rou-
tines in fields such as health-care analysis, medical statistics, credit rating, 
ecology, social statistics and econometrics, and other similar areas. Logistic 
regression has also been considered by many analysts to be an important 
procedure in predictive analytics, as well as in the longer established Six 
Sigma movement.

There is a good reason for this popularity. Unlike traditional linear or nor-
mal regression, logistic regression is appropriate for modeling a binary vari-
able. As we shall discuss in more detail in the first chapter, a binary variable 
has only two values—1 and 0. These values may be thought of as “success” 
and “failure,” or of any other type of “positive” and “non-positive” dichotomy. 
If an analyst models a 1/0 binary variable on one or more predictors using 
linear regression, the assumptions upon which the linear model is based are 
violated. That is, the linear model taught in Introduction to Statistics courses 
is not appropriate for modeling binary data. We shall discuss why this is the 
case later in the book.

Logistic regression is typically used by researchers and analysts in general 
for three purposes:

	 1.	To predict the probability that the outcome or response variable 
equals 1

	 2.	To categorize outcomes or predictions
	 3.	To access the odds or risk associated with model predictors

The logistic model is unique in being able to accommodate all three of 
these goals. The foremost emphasis of this book is to help guide the analyst 
in utilizing the capabilities of the logistic model, and thereby to help analysts 
to better understand their data, to make appropriate predictions and classifi-
cations, and to determine the odds of one value of a predictor compared to 
another. In addition, I shall recommend an approach to logistic regression 
modeling that satisfies problems that some “data science” analysts find with 
traditional logistic modeling.
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This book is aimed at the working analyst or researcher who finds that 
they need some guidance when modeling binary response data. It is also of 
value for those who have not used logistic regression in the past, and who are 
not familiar with how it is to be implemented. I assume, however, that the 
reader has taken a basic course in statistics, including instruction on applying 
linear regression to study data. It is sufficient if you have learned this on your 
own. There are a number of excellent books and free online tutorials related to 
regression that can provide this background.

I think of this book as a basic guidebook, as well as a tutorial between you 
and me. I have spent many years teaching logistic regression, using logistic-
based models in research, and writing books and articles about the subject. 
I have applied logistic regression in a wide variety of contexts—for medical 
and health outcomes research, in ecology, fisheries, astronomy, transporta-
tion, insurance, economics, recreation, sports, and in a number of other areas. 
Since 2003, I have also taught both the month-long Logistic Regression and 
Advanced Logistic Regression courses for Statistics.com, a comprehensive 
online statistical education program. Throughout this process I have learned 
what the stumbling blocks and problem areas are for most analysts when using 
logistic regression to model data. Since those taking my courses are located at 
research sites and universities throughout the world, I have been able to gain 
a rather synoptic view of the methodology and of its use in research in a wide 
variety of applications.

In this volume, I share with you my experiences in using logistic regres-
sion, and aim to provide you with the fundamental logic of the model and its 
appropriate application. I have written it to be the book I wish I had read when 
first learning about the model. It is much smaller and concise than my 656 
page Logistic Regression Models (Chapman & Hall/CRC, 2009), which is a 
general reference to the full range of logistic-based models. Rather, this book 
focuses on how best to understand the key points of the basic logistic regres-
sion model and how to use it properly to model a binary response variable. I 
do not discuss the esoteric details of estimation or provide detailed analysis of 
the literature regarding various modeling strategies in this volume, but rather 
I focus on the most important features of the logistic model—how to construct 
a logistic model, how to interpret coefficients and odds ratios, how to predict 
probabilities based on the model, and how to evaluate the model as to its fit. I 
also provide a final chapter on Bayesian logistic regression, providing an over-
view of how it differs from the traditional frequentist tradition. An important 
component of our examination of Bayesian modeling will be a step-by-step 
guide through JAGS code for modeling real German health outcomes data. 
The reader should be able to attain a basic understanding of how Bayesian 
logistic regression models can be developed and interpreted—and be able to 
develop their own models using the explanation in the book as a guideline. 
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Resources for how to learn how to model slightly more complicated models 
will be provided—where to go for the next step. Bayesian modeling is hav-
ing a continually increasing role in research, and every analyst should at least 
become acquainted with how to understand this class of models, and with how 
to program basic Bayesian logistic models when doing so is advisable.

R statistical software is used to display all but one statistical model dis-
cussed in the book—exact logistic regression. Otherwise R is used for all data 
management, models, postestimation fit analyses, tests, and graphics related 
to our discussion of logistic regression in the book. SAS and Stata code for 
all examples is provided at the conclusion of each chapter. Complete Stata 
and SAS code and output, including graphics and tables, is provided on the 
book’s web site. R code is also provided on the book’s web site, as well as in 
the LOGIT package posted on CRAN.

R is used in the majority of newly published texts on statistics, as well as 
for examples in most articles found in statistics journals published since 2005. 
R is open ware, meaning that it is possible for users to inspect the actual code 
used in the analysis and modeling process. It is also free, costing nothing to 
download into one’s computer. A host of free resources is available to learn R, 
and blogs exist that can be used to ask others how to perform various opera-
tions. It is currently the most popular statistical software worldwide; hence, it 
makes sense to use it for examples in this relatively brief monograph on logis-
tic regression. But as indicated, SAS and Stata users have the complete code 
to replicate all of the R examples in the text itself. The code is in both printed 
format as well as electronic format for immediate download and use.

A caveat: Keep in mind that when copying code from a PDF document, or 
even from a document using a different font from that which is compatible with 
R or Stata, you will likely find that a few characters need to be retyped in order 
to successfully execute. For example, when pasting program code from a PDF 
or word document into the R editor, characters such as “quotation marks” and 
“minus signs” may not convert properly. To remedy this, you need to retype the 
quotation or minus sign in the code you are using.

It is also important to remember that this monograph is not about R, or 
any specific statistical software package. We will foremost be interested in 
the logic of logistic modeling. The examples displayed are aimed to clarify 
the modeling process. The R language, although popular and powerful, is 
nevertheless tricky. It is easy to make mistakes, and R is rather unforgiving 
when you do. I therefore give some space to explaining the R code used in the 
modeling and evaluative process when the code may not be clear. The goal is 
to provide you with code you can use directly, or adapt as needed, in order to 
make your modeling tasks both easier and more productive.

I have chosen to provide Stata code at the end of each chapter since Stata 
is one of the most popular and to my mind powerful statistical packages on the 
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commercial market. It has free technical support and well-used blog and user 
LISTSERV sites. In addition, it is relatively easy to program statistical proce-
dures and tests yourself using Stata’s programming language. As a result, Stata 
has more programs devoted to varieties of logistic-based routines than any 
other statistical package. Bob Muenchen of the University of Tennessee and I 
have pointed out similarities and differences between Stata and R in our 530 
page book, R for Stata Users (Springer, 2010). It is a book to help Stata users 
learn R, and for R users to more easily learn Stata. The book is published in 
hardback, paperback, and electronic formats.

I should acknowledge that I have used Stata for over a quarter of a century, 
authoring the initial versions of several procedures now in commercial Stata 
including the first logistic (1990) and glm (1993) commands. I also founded the 
Stata Technical Bulletin in 1991, serving as its first editor. The STB became 
enhanced to the Stata Journal in 1999. I also used to teach S-Plus courses for 
the manufacturer of the package in the late 1980s and early 1990s, traveling 
to various sites in the United States and Canada for some 4 years. The S and 
S-Plus communities have largely evolved to become R users during the past 
decade to decade and a half. In addition, I also programmed various macros in 
SAS and gave presentations at SUGI, thus have a background in SAS as well. 
However, since it has been a while since I have used SAS on a regular basis, 
I invited Yang Liu, a professional SAS programmer and MS statistician to 
replicate the R code used for examples in the text into SAS. He has provided 
the reader with complete programming code, not just snippets of code that 
one finds in many other texts. The SAS/Stat GENMOD Procedure and Proc 
Logistic were the two most used SAS procedures for this project. Yang also 
reviewed proof pages with me, checking for needed amendments.

The R data sets and user authored functions and scripts are available for 
download and installation from the CRAN package, LOGIT. The LOGIT pack-
age will also have the data, functions, and scripts for both the first (2009) and 
second (forthcoming 2016) edition of the author’s Logistic Regression Models 
(Chapman & Hall/CRC). Data files in Stata, SAS, SPSS, Excel and csv format, 
as well as Stata commands and ado/do files are located on the author’s web site:

http://works.bepress.com/joseph_hilbe/
as well as on the publishers web site for the book:
http://www.crcpress.com/product/isbn/9781498709576

An Errata and Comments PDF as well as other resource material and “hand-
outs” related to logistic regression will also be available on my Bepress web site.

I wish to acknowledge the following colleagues for their input into the cre-
ation of this book. Rafael S. de Souza (astrophysicist, Eötvös Loránd University, 
Hungary) and Yang Liu (Baylor Scott & White Health). My collaborative work 
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with James W. Hardin (associate professor of Biostatistics, University of South 
Carolina) over the past 15 years has indirectly contributed to this book as well. 
Our collaboration has involved coauthoring five books, a number of book chap-
ters and journal articles, and numerous discussions on statistical programming 
and modeling. My work with Alain Zuur (CEO, Highlands Statistics, Scotland, 
UK) also contributed to this book. We coauthored a book in 2013 related to 
Bayesian modeling that has greatly influenced my subsequent work in the area. 
I should also acknowledge Peter Bruce (CEO, Institute for Statistics Education, 
Statistics.com), who first suggested that I write this book for use in my web 
course on Logistic Regression. Dr. de Souza provided two new R functions he 
authored for the book’s classification statistics and graphics in Chapter 4 called 
ROCtest and confusion_stat. These are very nicely written and useful func-
tions that enhance R’s logistic modeling capabilities. Yang Liu is responsible 
for all of the SAS code provided in the book, testing it against the R functions, 
tests, and graphics presented throughout the text. He also wrote SAS code and 
full output for all examples in the text, which are on the book’s website, and 
thoroughly reviewed the entire book for errata and suggested amendments at 
the proof stage. I also acknowledge Shawn Casper (Managing Director, Praxis 
Reliability Consulting, LLC, Monroe, MI) who also read the entire manuscript, 
checking text and code, and offering a number of helpful suggestions to the 
book, Dr. Jamie Riggs (Predictive Analytics Masters Program, Northwestern 
University) for reviewing early chapters when the book started to take form, 
and Pat McKinley, who identified a number of items needing amendment. I 
am most grateful for her editorial expertise. I need to also mention Judith M. 
Simon, Project Editor, CRC Press, who was responsible for the overall pro-
duction of the book, and Syed Mohamad Shajahan, Deputy Manager, Techset 
Composition, Chennai, India, who was responsible for the actual page set-up 
and production of the book. Both did an outstanding job in helping create this 
book, and in tolerating the many amendments I made to it. Ulrike Gömping, 
book reviews editor, Journal of Statistical Software, also provided very useful 
input. Robert Calver, statistics editor at Chapman & Hall/CRC, has been more 
helpful than I can express here. He has been my editor since 2002, a position at 
which he truly excels, and is a good friend.

I dedicate this text to Heidi and Sirr Hilbe. Heidi died over 40 years ago, 
but was my best companion at the time I authored my first text in 1970 some 45 
years ago, and warrants my recognition. Sirr has been my constant companion 
since his birth in 2007, and keeps me sane as I write yet another book. Sirr is a 
small white Maltese, but this takes nothing away from his unique contribution 
to this text.

Joseph M. Hilbe
Florence, AZ
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1

1Statistical 
Models

Statistics: Statistics may generically be 
understood as the science of collecting 
and analyzing data for the purpose of 

classification, prediction, and of attempting 
to quantify and understand the uncertainty 

inherent in phenomena underlying data
(Hilbe, 2014)

1.1  WHAT IS A STATISTICAL MODEL?

A model is typically thought of as a simplification of a more complex situation. 
The focus of a model is to abstract the most important or key features from 
what is being modeled so that we may more clearly understand the modeled 
situation, or see how it relates to other aspects of reality. There are a variety of 
different types of models though, but each type still represents an approxima-
tion or simplification of something more detailed.

Statistics deals with data, which can be notoriously messy and complex. 
A statistical model is a simplification of some data situation, whether the data 
are about the weather, health outcomes, or the number of frogs killed on a 
highway over a period of a year. Data can be about nearly anything that can be 
measured or tested. In order to be measured though, data must be numerically 
expressed; that is, a statistical model is a means to simplify or clarify numbers.

The models we are going to be discussing in this monograph are called 
parametric statistical models. As such they are each based on an underlying 
probability distribution. Since probability distributions are characterized and 
defined by parameters, models based on them are referred to as parametric 
models. The fundamental idea of a parametric model is that the data to be 
modeled by an analyst are in fact generated by an underlying probability 



2  Practical Guide to Logistic Regression

distribution function or PDF. The analyst does not usually observe the entire 
range of data defined by the underlying PDF, called the population data, but 
rather observes a random sample from the underlying data. If the sample of 
data is truly representative of the population data, the sample data will be 
described by the same PDF as the population data, and have the same values 
of its parameters, which are initially unknown.

Parameters define the specific mean or location (shape) and perhaps scale 
of the PDF that best describes the population data, as well as the distribution of 
the random sample from the population. A statistical model is the relationship 
between the parameters of the underlying PDF of the population data and the 
estimates made by an analyst of those parameters.

Regression is one of the most common ways of estimating the true param-
eters in as unbiased manner as possible. That is, regression is typically used 
to establish an accurate model of the population data. Measurement error can 
creep into the calculations at nearly every step, and the random sample we are 
testing may not fully resemble the underlying population of data, nor its true 
parameters. The regression modeling process is a method used to understand 
and control the uncertainty inherent in estimating the true parameters of the 
distribution describing the population data. This is important since the predic-
tions we make from a model are assumed to come from this population.

Finally, there are typically only a limited range of PDFs which analysts 
use to describe the population data, from which the data we are analyzing is 
assumed to be derived. If the variable we are modeling, called the response 
term (y), is binary (0,1), then we will want to use a Bernoulli probability distri-
bution to describe the data. The Bernoulli distribution, as we discuss in more 
detail in the next section, consists of a series of 1s and 0s. If the variable we 
wish to model is continuous and appears normally distributed, then we assume 
that it can be best modeled using a Gaussian (normal) distribution. This is a 
pretty straightforward relationship. Other probability distributions commonly 
used in modeling are the lognormal, binomial, exponential, Poisson, negative 
binomial, gamma, inverse Gaussian, and beta PDFs. Mixtures of distributions 
are also constructed to describe data. The lognormal, negative binomial, and 
beta binomial distributions are such mixture distributions—but they are nev-
ertheless completely valid PDFs and have the same basic assumptions as do 
other PDFs.

I should also mention that probability distributions do not all have the 
same parameters. The Bernoulli, exponential, and Poisson distributions are 
single parameter distributions, and models directly based on them are single 
parameter models. That parameter is the mean or location parameter. The nor-
mal, lognormal, gamma, inverse Gaussian, beta, beta binomial, binomial, and 
negative binomial distributions are two parameter models. The first four of 
these are continuous distributions with mean (shape) and scale (variability) 
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parameters. The binomial, beta, and beta binomial distributions will be dis-
cussed later when discussing grouped logistic regression.

The catcher in this is that a probability distribution has various assump-
tions. If these assumptions are violated, the estimates we make of the param-
eters are biased, and may be incorrect. Statisticians have worked out a number 
of adjustments for what may be called “violations of distributional assump-
tions,” which are important for an analyst to use when modeling data exhibit-
ing problems. I’ll mention these assumptions shortly, and we will address them 
in more detail as we progress through the book.

I fully realize that the above description of a statistical model—of a para-
metric statistical model—is not the way we normally understand the modeling 
process, and it may be a bit confusing. But it is in general the way statisticians 
think of statistical modeling, and is the basis of the frequency-based tradition 
of statistical modeling. Keep these relationships in mind as we describe logis-
tic regression.

1.2  BASICS OF LOGISTIC 
REGRESSION MODELING

Logistic regression is foremost used to model a binary (0,1) variable based on 
one or more other variables, called predictors. The binary variable being mod-
eled is generally referred to as the response variable, or the dependent variable. 
I shall use the term “response” for the variable being modeled since it has now 
become the preferred way of designating it. For a model to fit the data well, it 
is assumed that

The predictors are uncorrelated with one another.
That they are significantly related to the response.
That the observations or data elements of a model are also uncorrelated.

As discussed in the previous section, the response is also assumed to fit 
closely to an underlying probability distribution from which the response is 
a theoretical sample. The goal of a model is to estimate the true parameter(s) 
of the underlying PDF of the model based on the response as adjusted by its 
predictors. In the case of logistic regression, the response is binary (0,1) and 
follows a Bernoulli probability distribution. Since the Bernoulli distribution is 
a subset of the more general binomial distribution, logistic regression is recog-
nized as a member of the binomial family of regression models. A comprehen-
sive analysis of these relationships is provided in Hilbe (2009).
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In this monograph, I assume that the reader is familiar with the basics of 
regression. However, I shall address the fundamentals of constructing, inter-
preting, fitting, and evaluating a logistic model in subsequent chapters. I shall 
also describe how to predict fitted values from the estimated model. Logistic 
regression is particularly valuable in that the predictions made from a fitted 
model are probabilities, constrained to be within the range of values 0–1. 
More accurately, a logistic regression model predicts the probability that the 
response has a value of 1 given a specific set of predictor values. Interpretation 
of logistic model coefficients usually involves their exponentiation, which 
allows them to be understood as odds ratios. This capability is unique to the 
class of logistic models, whether observation-based format or in grouped for-
mat. The fact that a logistic model can be used to assess the odds ratio of 
predictors, and also can be used to determine the probability of the response 
occurring based on specific predictor values, called covariate patterns, is the 
prime reason it has enjoyed such popularity in the statistical community for 
the past several decades.

1.3  THE BERNOULLI DISTRIBUTION

I have emphasized that binary response logistic regression is based on the 
Bernoulli probability distribution, which consists of a distribution of 1s and 
0s. The probability function can be expressed for a random sample as
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(1.1)

where the joint PDF is the product, Π, of each observation in the data being 
modeled, symbolized by the subscript i. Usually the product term is dropped 
as being understood since all joint probability functions are products across 
the independent components of their respective distributions. We may then 
characterize the Bernoulli distribution for a single observation as

	 f y p p pi i i
y

i
yi i( ; ) ( )= − −1 1

	 (1.2)

where y is the response variable being modeled and p is the probability that y 
has the value of 1. Again, 1 generally indicates a success, or that the event of 
interest has occurred. y only has values of 1 or 0, whereas p has values ranging 
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from 0 to 1. p is many times symbolized as π or as μ. In fact, we shall be using 
the μ symbolization for the predicted mean or fit throughout most of the book.

A probability function generates or produces data on the basis of known 
parameters. That’s the meaning of f(y; p). What is needed in order to estimate 
the true parameters of the population data is to estimate the parameters on the 
basis of known data. After all we are modeling known data—and attempting 
to estimate parameter(s). We do this by inverting the order of y and p in the 
PDF. We attempt to calculate p on the basis of y. This relationship is called the 
likelihood function.

Statisticians may characterize the likelihood function as

	 L p y p pi i i
y

i
yi i( ; ) ( )= − −1 1

	 (1.3)

but usually parameterize the structure of the likelihood function by putting it 
into what is called exponential family form. Mathematically it is identical to 
Equation 1.3 above.

	

L p y y
p

p
pi

i

i
i

i

n

( ; ) exp ln ln( )= −






−






=

∏ 1
1

1

+
	

(1.4)

Note that “ln” is a symbol for the natural log of an expression. It is also 
symbolized as “log.” Keep in mind that it differs from “log to the base 10,” 
or “log10.” The exponentiation of a logged value is the value itself; that is, 
exp(ln(x)) = x, or eln(x) = x.

Statisticians usually take the log of both sides of the likelihood function, 
creating what is called the log-likelihood function. Doing this allows a sum-
mation across observations rather than multiplication. This makes it much 
easier for the algorithms used to estimate distribution parameters to converge; 
that is, to solve for the estimates. The Bernoulli log-likelihood function can be 
displayed as

	

L( ; ) ( )p y y
p

p
p

i

n

i
i

i
i= −







+ −






=

∑
1

1
1ln ln

	

(1.5)

The model parameters may be determined by simple calculus. Take the 
derivative of the log-likelihood function, set to 0, and solve. The problem is 
that the solution must be obtained iteratively, but for most all modeling situa-
tions, the solution takes only a few iterations to find the appropriate parameter 
estimates. The details of estimation can be found in Hilbe (2009). We need not 
worry about them in this discussion.
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One of the nice features of presenting the log-likelihood function in expo-
nential form is that we may abstract from it a link function as well as the 
mean and variance functions of the underlying Bernoulli distribution. The link 
function, which I’ll discuss shortly, is whatever follows the y of the first term 
of the right-hand side of Equation 1.5. Here it is log(p/(1 − p)). The mean of 
the distribution can be obtained as the derivative of the negative of the second 
term with respect to the link. The second derivative yields the variance. For the 
Bernoulli distribution, these values are

	

Mean

Variance

=
= = − = −

=µ
µ µ µ

p

V p p( ) ( ) ( )1 1  

In the case of Bernoulli-based logistic regression, the mean is symbolized 
as μ (mu) and variance as μ(1 − μ). The above link and log-likelihood func-
tions are many times expressed in terms of μ as well. It is important to note 
that strictly speaking the estimated p or μ should be symbolized as p̂  and ˆ ,µ  
respectively. p and μ are typically reserved for the true population values. 
However, for ease of interpretation, I will use the symbol μ in place of µ̂  
throughout the book.

I should also mention that for grouped logistic regression, which we 
address in Chapter 5, μ and p are not the same, with μ defined as n ⋅ p. But I’ll 
delay making this distinction until we begin discussing grouped models.

Let us look at a logistic regression and how it differs from normal or 
ordinary linear regression. Recall that a regression attempts to understand a 
response variable on the basis of one of more predictors or explanatory vari-
ables. This is usually symbolized as

	
ŷ x x xi i i p ip= + + + +β β β β0 1 1 2 2 �

	
(1.6)

where y-hat, or ŷ, is the sum of the terms in the regression. The sum of regres-
sion terms is also referred to as the linear predictor, or xb. Each βx is a term 
indicating the value of a predictor, x, and its coefficient, β. In linear regression, 
which is based in matrix form on the Gaussian or normal probability distri-
bution, ŷ is the predicted value of the regression model as well as the linear 
predictor. j indicates the number of predictors in a model. There is a linear 
relationship between the predicted or fitted values of the model and the terms 
on the right-hand side of Equation 1.6—the linear predictor. ˆ .y xb=  This is 
not the case for logistic regression.
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The linear predictor of the logistic model is

	
x b x x xi i i p ip= + + + +β β β β0 1 1 2 2 �

	
(1.7)

However, the fitted or predicted value of the logistic model is based on the 
link function, log(μ/(1 − μ)). In order to establish a linear relationship of the 
predicted value, μ, and the linear predictor, we have the following relationship:

	
ln

µ
µ β β β βi

i
i i i p ipx b x x x

1 0 1 1 2 2−






= = + + + +�
	

(1.8)

where μ, like p, is the probability that the response value y is equal to 1. 
It can also be thought of as the probability of the presence or occurrence 
of some characteristic, while 1 − p can be thought of as the probability of 
the absence of that characteristic. Notice that μ/(1 − μ), or p/(1 − p), is the 
formula for odds. The odds of something occurring is the probability of its 
success or presence divided by the probability of its failure or absence, 1 − p. 
If μ = 0.7, (1 − μ) = 0.3. μ + (1 − μ) always equals 1. The log of the odds has 
been called by statisticians the logit function, from which the term logistic 
regression derives.

In order to determine μ on the basis of the linear predictor, xb, we solve 
the logit function for μ, without displaying subscripts, as

	
µ = + = + −

exp( )
exp( )

xb
xb xb1

1
1 exp( )	

(1.9)

The equations in (1.9) above are very important, and will be frequently 
used in our later discussion. Once a logistic model is solved, we may calculate 
the linear predictor, xb, and then apply either equation to determine the pre-
dicted value, μ for each observation in the model.

1.4  METHODS OF ESTIMATION

Maximum likelihood estimation, MLE, is the standard method used by stat-
isticians for estimating the parameter estimates of a logistic model. Other 
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methods may be used as well, but some variety of MLE is used by nearly all 
statistical software for logistic regression. There is a subset of MLE though 
that can be used if the underlying model PDF is a member of the single param-
eter exponential family of distributions. The Bernoulli distribution is an expo-
nential family member. As such, logistic regression can also be done from 
within the framework of generalized linear models or GLM. GLM allows for 
a much simplified manner of calculating parameter estimates, and is used in 
R with the glm function as the default method for logistic regression. It is a 
function in the R stats package, which is a base R package. Stata also has a 
glm command, providing the full range of GLM-based models, as well as full 
maximum likelihood estimate commands logit and logistic. The SAS Genmod 
procedure is a GLM-based procedure, and Proc Logistic is similar to Stata’s 
logit and logistic commands. In Python, one may use the statsmodels Logit 
function for logistic regression.

Since R’s default logistic regression is part of the glm function, we shall 
examine the basics of how it works. The glm function uses an iterative re-
weighted least squares (IRLS) algorithm to estimate the predictor coefficients 
of a logistic regression. The logic of a stand-alone R algorithm that can be 
used for logistic regression is given in Table 1.1. It is based on IRLS. I have 
annotated each line to assist in understanding how it works. You certainly do 
not have to understand the code to continue with the book. I have provided the 
code for those who are proficient in R programming. The code is adapted from 
Hilbe and Robinson (2013).

R users can paste the code from the table into the “New Script” editor. 
The code is an entire function titled irls_logit. The code is also available on 
the book’s website, listed as irls_logit.r. Select the entire code, right click your 
mouse, and click on “Run line or selection.” This places the code into active 
memory. To show what a logistic regression model looks like, we can load 
some data and execute the function. We shall use the medpar data set, which 
is 1991 Arizona inpatient Medicare (U.S. senior citizen national health plan) 
data. The data consist of cardiovascular disease patient information from a 
single diagnostic group. For privacy purposes, I did not disclose the diagnostic 
group to which the data are classified.

los:	 length of stay (nights) in the hospital (continuous)
hmo:	� 1 = patient a member of a Health Maintenance Organization; 

0 = private pay
white:	� 1 = patient identifies self as white; 0 = non-white
died:	� 1 = patient dies while hospitalized; 0 = did not die during this 

period
age80:	1 = patient age 80 and over; 0 = less than 80
type:	 type of admission—1 = elective; 2 = urgent; 3 = emergency
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> library(LOGIT)
> data(medpar)
> head(medpar)
  los hmo white died age80 type provnum
1   4   0     1    0     0    1  030001
2   9   1     1    0     0    1  030001
3   3   1     1    1     1    1  030001
4   9   0     1    0     0    1  030001
5   1   0     1    1     1    1  030001
6   4   0     1    1     0    1  030001

We may run the model using the following code:

> mylogit <- irls_logit(died ~ hmo + white, data=medpar)
> mylogit
$coef
X(Intercept)         Xhmo       Xwhite
 -0.92618620  -0.01224648   0.30338724

$se

X(Intercept)         Xhmo       Xwhite
   0.1973903    0.1489251    0.2051795

Just typing the model name we assigned, mylogit, displays the coefficients 
and standard errors of the model. We can make a table of estimates, standard 
errors, z-statistic, p-value, and confidence intervals by using the code:

> coef <- mylogit$coef
> se <- mylogit$se
> zscore <- coef / se
> pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
> loci <- coef − 1.96 * se
> upci <- coef + 1.96 * se
> coeftab <- data.frame(coef, se, zscore, pvalue, loci, upci)
> round(coeftab, 4)
                coef     se  zscore pvalue    loci    upci
X(Intercept)  −0.9262 0.1974 −4.6922 0.0000 −1.3131 −0.5393
Xhmo          −0.0122 0.1489 −0.0822 0.9345 −0.3041  0.2796
Xwhite           0.3034    0.2052     1.4786 0.1392 −0.0988  0.7055

Running the same data using R’s glm function produces the following 
output. I have deleted some ancillary output.
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> glmlogit <- glm(died ~ hmo + white, family=binomial, 
              data=medpar)
> summary(glmlogit)
                    .   .   .
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) −0.92619    0.19739  −4.692  2.7e-06 ***
hmo         −0.01225    0.14893  −0.082    0.934
white        0.30339    0.20518   1.479    0.139
---
    Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1920.6 on 1492 degrees of freedom
AIC: 1926.6

The confidence intervals must be calculated separately. To obtain model-
based standard errors, we use the confint.default function. Using the confint 
function produces what are called profile confidence intervals. We shall dis-
cuss these later in Chapter 2, Section 2.3.

> confint.default(glmlogit)
                  2.5 %     97.5 %
(Intercept) −1.31306417 −0.5393082
hmo         −0.30413424  0.2796413
white       −0.09875728  0.7055318

Again, I have displayed a full logistic regression model output to show 
where we are headed in our discussion of logistic regression. The output is 
very similar to that of ordinary linear regression. Interpretation, however, is 
different. How coefficients, standard errors, and so forth are to be interpreted 
will concern us in the following chapters.

SAS CODE

/* Section 1.4 */
*Import medpar as a temporary dataset;
proc import datafile=“c:\data\medpar.dta” out=medpar 
dbms=dta replace;
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run;

*Print the first six observations;
proc print data=medpar (obs=6);
run;

*Build the logistic model;
proc genmod data=medpar descending;
	 model died=hmo white/ dist=binomial link=logit;
run;

*Another way to build the logistic model;
proc logistic data=medpar descending;
	 model died=hmo white / clparm=both;
run;

STATA CODE

. use medpar

. glm died hmo white, fam(bin) nolog
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2Logistic Models
Single Predictor

2.1 � MODELS WITH A BINARY PREDICTOR

The simplest way to begin understanding logistic regression is to apply it to a 
single binary predictor. That is, the model we shall use will consist of a binary 
(0,1) response variable, y, and a binary (0,1) predictor, x. In addition, the data 
set we define will have 9 observations. Recall from linear regression that a 
response and predictor are paired when setting up a regression. Using R we 
assign various 1s and 0s to each y and x.

> y <- c(1,1,0,0,1,0,0,1,1)
> x <- c(0,1,1,1,0,0,1,0,1)

These values will be placed into a data set named xdta. Then we subject it to 
the irls_logit function displayed in the previous chapter.

> xdta <- data.frame(y,x)
> logit1 <- irls_logit(y ~ x, data=xdta)

The model name is logit1. Using the code to create the nice looking “standard” 
regression output that was shown before, we have

> coef <- logit1$coef
> se <- logit1$se
> zscore <- coef / se
> pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
> loci <- coef - 1.96 * se
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> upci <- coef + 1.96 * se
> coeftab <- data.frame(coef, se, zscore, pvalue, loci, upci)
> round(coeftab, 4)
               coef     se  zscore pvalue    loci   upci
X(Intercept) 1.0986 1.1547  0.9514 0.3414 -1.1646 3.3618
Xx	 -1.5041 1.4720 -1.0218 0.3069 -4.3891 1.3810

The coefficient or slope of x is −1.5041 with a standard error of 1.472. 
The intercept value is 1.0986. The intercept is the value of the model when the 
value of x is zero.

Using R’s glm function, the above data may be modeled using logistic 
regression as

> glm(y~ x, family = binomial, data = xdta)

Call: glm(formula = y ~ x, family = binomial, data = xdta)

Coefficients:
(Intercept)	 x
	 1.099	 -1.504

Degrees of Freedom: 8 Total (i.e. Null); 7 Residual
Null Deviance:	 12.37
Residual Deviance:   11.23	 AIC: 15.23

More complete model results can be obtained by assigning the model a 
name, and then summarizing it with the summary function. We will name the 
model logit2.

> logit2 <- glm(y~ x, family = binomial, data = xdta)
> summary(logit2)

Call:
glm(formula = y ~ x, family = binomial, data = xdta)

Deviance Residuals:
	 Min	 1Q	 Median	 3Q	 Max
	 -1.6651	 -1.0108	 0.7585	 0.7585	 1.3537

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept)	 1.099	 1.155	 0.951	 0.341
x	 -1.504	 1.472	 -1.022	 0.307

(Dispersion parameter for binomial family taken to be 1)
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	 Null deviance: 12.365 on 8 degrees of freedom
Residual deviance: 11.229 on 7 degrees of freedom
AIC: 15.229

Model-based confidence intervals may be displayed by

> confint.default(logit2)
	 2.5 % 97.5 %
(Intercept) -1.164557 3.361782
x	 -4.389065 1.380910

A more efficient way of displaying a logistic regression using R is to 
encapsulate the summary function around the regression. It will be the way I 
typically display example results using R.

> summary(logit2 <- glm(y~ x, family = binomial, data = xdta))

 . . .

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept)	 1.099	 1.155	 0.951	 0.341
x	 -1.504	 1.472	 -1.022	 0.307

 . .
	 Null deviance: 12.365 on 8 degrees of freedom
Residual deviance: 11.229 on 7 degrees of freedom
AIC: 15.229

There are a number of ancillary statistics which are associated with mod-
eling data with logistic regression. I will show how to do this as we prog-
ress, and functions and scripts for all logistic statistics, fit tests, graphics, and 
tables are provided on the books web site, as well as in the LOGIT package 
that accompanies this book. The LOGIT package will also have the data, 
functions and scripts for the second edition of Logistic Regression Models 
(Hilbe, 2016).

For now we will focus on the meaning of the single binary predictor 
model. The coefficient of predictor x is −1.504077. A coefficient is a slope. It 
is the amount of the rate of change in y based on a one-unit change in x. When 
x is binary, it is the amount of change in y when x moves from 0 to 1 in value. 
But what is changed?

Recall that the linear predictor, xb, of a logistic model is defined as 
log(μ/(1 − μ)). This expression is called the log-odds or logit. It is the logistic 
link function, and is the basis for interpreting logistic model coefficients. 
The interpretation of x is that when x changes from 0 to 1, the log-odds of 
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y changes by −1.504. This interpretation, although accurate, means little to 
most analysts.

What happens if we exponentiate log(μ/(1 − μ))? The result is simply 
μ/(1 − μ), which is interpreted as the odds of μ, with μ being the probability 
that y = 1, and 1 − μ being the probability that y = 0 (the probability that y is not 
1). By exponentiating the coefficient of x we may interpret the result as follows:

The odds ratio of x = = 1 is the ratio of the odds of x = 1 to the odds of x = 0.

The odds of y given x = 1 is exp(−1.504077) or 0.22222 times greater 
than the odds of x = 0. This is the same as saying that the odds of x = 0 is 
1/exp(−1.504077) or 4.5 times greater than x = 1. The exponentiation of the 
intercept is not an odds ratio, but rather only an odds. Here it is exp(1.098612) 
or 3.0.

Another way of demonstrating this relationship is by constructing a table 
from the variables y and x.

> table(y,x)
   x
y   0 1
  0 1 3
  1 3 2

To add margin sums, use the code

> addmargins(table(y,x))
     x
y     0 1 Sum
  0   1 3   4
  1   3 2   5
  Sum 4 5   9

The odds of x = 1 is defined as “the value of x = 1 when y = 1 divided by 
the value of x = 1 when y = 0.” Here the odds of x = 1 is 2/3, or

Odds x = 1
> 2/3
[1] 0.6666667

The odds of x = 0 is,

Odds x = 0
> 3/1
[1] 3
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Creating a ratio of values we have

Odds Ratio x = 1 to x = 0
> (2/3)/(3/1)
[1] 0.2222222

That is…

To obtain the odds of x = 1: for x = 1, take the ratio of y = 1 to y = 0, or 
2/3 = 0.666667.
To obtain the odds of x = 0: for x = 0, take the ratio of y = 1 to y = 0, or 3/1 = 3.

To obtain the odds ratio of x = 1 to x = 0, divide. Therefore, 0.666667/3 = 
0.222222
The intercept is the odds of y = 1 divided by y = 0 for x = 0, or 3.

The relationship of the logistic odds ratio and coefficient is:

ln(Odds Ratio) = coefficient

exp(coefficient) = odds ratio

Calculating the odds ratio and odds-intercept from the logit2 model 
results,

Odds Ratio and Odds Intercept
> exp(logit2$coef)
(Intercept)	 x
  3.0000000	 0.2222222

Now we can reverse the relationships by taking the natural log of both.

Coefficient of x from Odds Ratio of x
> log(0.222222222)
[1] −1.504077

Intercept from Odds of Intercept
> log(3)
[1] 1.098612
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2.2 ​ PREDICTIONS, PROBABILITIES, 
AND ODDS RATIOS

I mentioned before that unlike linear regression, the model linear predictors 
and fitted values differ for logistic regression. If μ is understood as the pre-
dicted mean, or fitted value:

	 Linear regression	 μ = x′β
	 Logistic regression	 μ = exp(x′β)/(1 + exp(x′β))

	 or	 μ = 1/(1 + exp(−x′β))

For the logistic model, μ is defined as the probability that y = 1, where y is 
the symbol for the model response term.

> logit2 <- glm( y ~ x, family = binomial, data = xdta)

> coef(logit2)
(Intercept)           x
   1.098612   -1.504077

LINEAR PREDICTOR WHEN X = 1
> 1.098612 -1.504077*1
[1] -0.405465

LINEAR PREDICTOR WHEN X = 0
> 1.098612 -1.504077*0
[1] 1.098612

We use R’s post-glm function for calculating the linear predictor. The 
code below generates linear predictor values for all observations in the model. 
Remember that R has several ways that certain important statistics can be 
obtained.

> xb <- logit2$linear.predictors

The inverse logistic link function is used to calculate μ.

> mu <- 1/(1 + exp(-xb))

From the predicted probability that y = 1, or μ, the odds for each level of 
x may be calculated.

> o <- mu/(1-mu)



2  •  Logistic Models: Single Predictor  19

Let us now check the relationship of x to o, noting the values of o for the 
two values of x.

> check_o <-data.frame(x,o)
> round(check_o, 3)
	 x	 o
1	 0	 3.000
2	 1	 0.667
3	 1	 0.667
4	 1	 0.667
5	 0	 3.000
6	 0	 3.000
7	 1	 0.667
8	 0	 3.000
9	 1	 0.667

Recall that the odds ratio of x is the ratio of x = 1/x = 0. The odds of the 
intercept is the value of o when x = 0. In order to obtain the odds ratio of x 
when x = 1, we divide 0.667/3. So that we do not have rounding problems with 
the calculations, o = 0.667 will be indicated as o < 1. We will create a variable 
called or that retains the odds-intercept value (x = 0) or 3.0 and selectively 
changes each value of o < 1 to 0.667/3. The corresponding model coefficient 
may be determined by logging each value of or.

> or <- o
> or[or< 1] <- (.6666667/3)
> coeff <- log(or)

Finally we shall create a table of statistics, including all of the relevant 
values we have just calculated.

> data1 <-data.frame(y,x,xb,mu,o,or,coeff)
> round(data1,4)
	 y	 x	 xb	 mu	 o	 or	 coeff
1	 1	 0	 1.0986	 0.75	 3.0000	 3.0000	 1.0986
2	 1	 1	 -0.4055	 0.40	 0.6667	 0.2222	 -1.5041
3	 0	 1	 -0.4055	 0.40	 0.6667	 0.2222	 -1.5041
4	 0	 1	 -0.4055	 0.40	 0.6667	 0.2222	 -1.5041
5	 1	 0	 1.0986	 0.75	 3.0000	 3.0000	 1.0986
6	 0	 0	 1.0986	 0.75	 3.0000	 3.0000	 1.0986
7	 0	 1	 -0.4055	 0.40	 0.6667	 0.2222	 -1.5041
8	 1	 0	 1.0986	 0.75	 3.0000	 3.0000	 1.0986
9	 1	 1	 -0.4055	 0.40	 0.6667	 0.2222	 -1.5041

What we find is that from the model linear predictor and probabilities we 
calculated the model odds ratios and coefficients. Adding additional predictors 
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and formatting predictors as categorical and continuous allow us to do the 
same thing as we did for a single binary predictor—it is just a bit more com-
plex. See the PDF document, “Calculating Odds Ratios from Probabilities” on 
the author’s web site for the book. My goal here is to demonstrate how odds, 
odds ratios, coefficients and probabilities relate with one another in a logistic 
model. You can also understand why the model coefficients are referred to as 
parameter estimates. Each coefficient contributes to the mean parameter being 
estimated by the logistic model. Likewise, we may also see how the fitted val-
ues, or probabilities, all relate as components of the mean parameter estimated 
by the model.

2.3  BASIC MODEL STATISTICS

The output provided by most statistical software for logistic regression involves 
a display of basic model statistics as well as several statistics that are impor-
tant for assessing model fit. The basic model statistics nearly always include 
the model intercept, one or more coefficients and associated standard errors, 
z statistics, p-values, and confidence intervals. Exponentiated logistic coeffi-
cients are referred to as odds ratios. I refer to the exponentiated intercept as 
the odds-intercept.

We have already displayed all of these statistics and calculated each by 
hand using R software. However, except for coefficients and odds ratios little 
has thus far been said about them.

R’s glm function utilizes a summary function to display logistic model 
coefficients/odds ratios, standard errors, z statistics, and p-values. A separate 
function is required to obtain confidence intervals. Model-based confidence 
intervals are calculated using confint.default(), but the preferred way of pro-
ducing confidence intervals with glm is by use of the confint() function. As we 
shall discuss later, confint calculates profile confidence intervals. These are 
much more complicated to calculate, but are definitely to be preferred over 
simple model-based intervals.

2.3.1 ​ Standard Errors

Standard errors provide the analyst with information concerning the variabil-
ity of the coefficient. If a coefficient is an estimate of the true coefficient or 
slope that exists within the underlying probability distribution describing the 
data being analyzed, then the standard error tells us about the accuracy of 
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the “point” estimate of the coefficient. Essentially it allows us to determine 
if the coefficient is significantly different from 0. A coefficient of 0 indicates 
no effect, and contributes nothing to understanding the response variable of 
interest.

On the basis of the maximum likelihood estimates, the standard errors 
derive from the negative inverse Hessian matrix, or the second derivatives of 
the log-likelihood function. Specifically, the standard errors are the square 
roots of the diagonal elements of the model negative inverse Hessian matrix. 
This matrix is also commonly referred to by analysts as the variance–covari-
ance matrix. It can be obtained in R by using the vcov function

> summary(logit2 <- glm(y ~ x, family = binomial, 
data = xdta)))

 . . .

Coefficients:
	 Estimate Std. Error z value Pr(>|z|)
(Intercept)	 1.099	 1.155	 0.951	 0.341
x	 -1.504	 1.472	 -1.022	 0.307

 . . .

> vcov(logit2)
	 (Intercept)	 x
(Intercept)	 1.333331	 -1.333331
x	 -1.333331	 2.166664

The diagonal elements are 1.3333 for the intercept and 2.16666 for predic-
tor x. These are the variances of the intercept and of x.

> diag(vcov(logit2))
(Intercept)	 x
	 1.333331	 2.166664

Taking the square root of the variances gives us the model standard errors.

> sqrt(diag(vcov(logit2)))
	(Intercept)	 x
	 1.154700	 1.471959

These values are identical to the standard errors shown in the logit2 results 
table. Note that when using R’s glm function, the only feasible way to calculate 
model standard errors is by use of the sqrt(diag(vcov(modelname))) 
method. The modelname$se call made following the irls_logit function 
from Table 1.1 cannot be used with glm.

Analysts many times make adjustments to model standard errors when they 
suspect excess correlation in the data. Correlation can be derived from a variety 
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of sources. One of the earliest adjustments made to standard errors was called 
scaling. R’s glm function provides built in scaling of binomial and Poisson 
regression standard errors through the use of the quasibinomial and quasipois-
son options. Scaled standard errors are produced as the product of the model 
standard errors and square root of the Pearson dispersion statistic. Coefficients 
are left unchanged. Scaling is discussed in detail in Chapter 3, Section 3.4.1.

> summary(logitsc <- glm( y ~ x, family = quasibinomial, data = xdta))

Coefficients:
            Estimate Std.  Error  t value  Pr(>|t|)
(Intercept)	 1.099	 1.309	   0.839	 0.429
x	 -1.504	 1.669	  -0.901	 0.397

(Dispersion parameter for quasibinomial family taken to be 
1.285715)

I will explain more about the Pearson statistic, the Pearson dispersion, 
scaling, and other ways of adjusting standard errors when we discuss model 
fit. However, the scaled standard error for x in the above model logitsc is 
calculated from model logit2 by

> 1.471959 * sqrt(1.285715)
[1] 1.669045

based on the formula I described. The dispersion statistic is displayed in the 
final line of the quasibinomial model output above. Regardless, many analysts 
advise that standard errors be adjusted by default. If data are not excessively 
correlated, scaled standard errors, for example, reduce to model standard errors.

The standard errors of odds ratios cannot be abstracted from a variance–
covariance matrix. One calculates odds ratio standard errors using what stat-
isticians call the delta method. See Hilbe (2009, 2016) for details. When the 
delta method is used for odds ratios, as well as for risk or rate ratios, the cal-
culation is simple.

	 SEOR  =  exp(β)*SEcoef

Standard errors of odds ratios are calculated by multiplying the odds ratio 
by the coefficient standard error. Starting from the logit2 model, odds ratios 
and their corresponding standard errors maybe calculated by,

> logit2 <- glm( y ~ x, family = binomial, data = xdta)
> coef <- logit2$coefficients            # coefficients
> or <- exp(logit2$coefficients)         # odds ratios
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> se <- sqrt(diag(vcov(logit2)))  # coefficient SE
> delta <- or*se                  �# delta method,SE of OR
> ortab <- data.frame(or, delta)
> round(ortab, 4)
                or    delta
(Intercept) 3.0000 3.4641
x           0.2222 0.3271

2.3.2 ​ z Statistics

The z statistic is the ratio of a coefficient to its standard error.

> zscore <- coef/se

The reason this statistic is called z is due to its assumption as being nor-
mally distributed. For linear regression models, we use the t statistic instead. 
The z statistic for odds ratio models is identical to that of standard coefficient 
models. Large values of z typically indicate a predictor that significantly con-
tributes to the model; that is, to the understanding of the response.

2.3.3  p-Values

The p-value of a logistic model is usually misinterpreted. It is also typically 
given more credence than it should have. First, though, let us look at how it is 
calculated.

> pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)

The p-value is a two-tail test of the z statistic. It tests the null hypothesis 
that the associated coefficient value is 0. More exactly, p is the probability of 
obtaining a coefficient value at least as extreme as the observed coefficient 
given the assumption that β = 0. The smaller the p-value, the more likely β ≠ 0. 
The standard “level of significance” for most studies is p = 0.05. Values of 
less than 0.05 indicate that the null hypothesis of no relationship between the 
predictor and response is false. That is, p-values less than 0.05 indicate that 
the predictor significantly contributes to the model. Values greater than 0.05 
indicate that the null hypothesis has not been rejected and that the predictor 
does not contribute to the model.

A cutoff of 0.05 means that one out of every 20 times the coefficient on 
average will not reject the null hypothesis; that is, that the coefficient is in 
fact not significant when we thought it was. For many scientific disciplines, 
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this is not a strict enough criterion. In astrostatistics, for example, preferred 
criteria of statistical significance range from 0.01 to 0.001. There are a number 
of issues related to power and false positives when discussing an appropriate 
criterion for a p-value. Determine what criterion makes sense for the type of 
study in which you are engaged rather than simply apply a 0.05 criterion with-
out question.

Regression software assumes that the p-value is based on a two-tailed 
test. In some studies a one-tailed test is more appropriate. You predict that the 
direction of the coefficient in question goes only in one direction. When this 
is the case be sure to divide the displayed p-value by 2 prior to assessing its 
significance.

2.3.4  Confidence Intervals

Model based 95% confidence intervals are calculated as follows:

> loci <- coef - qnorm(.975) * se
> upci <- coef + qnorm(.975) * se

where qnorm is the outside 2.5% of the observations from each side of the 
normal distribution.

> qnorm(.975)
[1] 1.959964

Together the distribution excludes 5% of the distribution, or 0.05. Many 
times analysts will use 1.96 instead of the qnorm function when calculating 
confidence intervals. The confidence intervals for odds ratios are exponen-
tiations of the coefficient-based confidence intervals. Combining everything 
together, we can use the code below to produce a table displaying the odds 
ratio of x and the odds-intercept together with their related standard errors, z 
statistics, p-values, and confidence intervals. I should mention that the model-
based confidence intervals we have been discussing are also referred to as 
Wald confidence intervals.

Calculation of Odds Ratio and Associated Model Statistics
> coef <- logit2$coef
> se <- sqrt(diag(vcov(logit2)))
> zscore <- coef / se
> or <- exp(coef)
> delta <- or * se
> pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
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> loci <- coef - qnorm(.975) * se
> upci <- coef + qnorm(.975) * se
> ortab <- data.frame(or, delta, zscore, pvalue, exp(loci), 
	 exp(upci))
> round(ortab, 4)
                or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 3.0000 3.4641 0.9514 0.3414 0.3121 28.8405
x           0.2222 0.3271 -1.0218 0.3069 0.0124 3.9785

Unfortunately, R users must program a table of odds ratio statistics as I 
have above. The summary function following glm displays a coefficient table 
of logistic model base statistics, but there is no function that automatically 
displays a table of odds ratio statistics. We can create an R function to do 
just that. We shall call it toOR.R (see Table 2.1), where the OR component of 
toOR must be in capitals. R is case sensitive. I will place the toOR function 
into the LOGIT package so that it can be used automatically anytime the 
package is installed and loaded into memory. It can be used following the use 
of glm with the binomial family and default logit function. I will also place 
the function on the book’s web site.

After estimation of a logistic regression using glm—for example, the 
logit2 model—type

> toOR(logit2)

                 or  delta  zscore   pvalue exp.loci.  exp.upci.
(Intercept) 3.0000 3.4641  0.9514 0.3414    0.3121   28.8405
x           0.2222 0.3271 -1.0218 0.3069    0.0124    3.9785

TABLE 2.1  toOR function

toOR <- function(object, ...) {
     coef <- object$coef
       se <- sqrt(diag(vcov(object)))
       zscore <- coef / se
     or <- exp(coef)
       delta <- or * se
     pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
     loci <- coef - qnorm(.975) * se
     upci <- coef + qnorm(.975) * se
     ortab <- data.frame(or, delta, zscore, pvalue, 

exp(loci), exp(upci))
     round(ortab, 4)
}
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We may use the function on medpar data

> data(medpar) # assumes library(COUNT)or library(LOGIT) loaded
> smlogit <- �glm(died ~ white + los + factor(type), 

family = binomial, data = medpar)
> summary(smlogit)

 . . .

Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)   -0.716364   0.218040  -3.285  0.00102 **
white          0.305238   0.208926   1.461  0.14402
los           -0.037226   0.007797  -4.775  1.80e-06 ***
factor(type)2  0.416257   0.144034   2.890  0.00385 **
factor(type)3  0.929994   0.228411   4.072  4.67e-05 ***

> toOR(smlogit)
                     or   delta   zscore  pvalue  exp.loci. exp.upci.
(Intercept)   0.4885 0.1065 -3.2855 0.0010     0.3186    0.7490
white         1.3569 0.2835  1.4610 0.1440     0.9010    2.0436
los           0.9635 0.0075 -4.7747 0.0000     0.9488    0.9783
factor(type)2 1.5163 0.2184  2.8900 0.0039      1.1433    2.0109
factor(type)3 2.5345 0.5789  4.0716 0.0000     1.6198    3.9657

Confidence intervals are very important when interpreting a logistic 
model, as well as any regression model. By looking at the low and high range 
of a predictor’s confidence interval an analyst can determine if the predictor 
contributes to the model.

Remember that a regression p-value is an assessment of whether we may 
“significantly” reject the null hypothesis that the coefficient (β) is equal to 0. 
If the confidence interval of a predictor includes 0, then we cannot be signifi-
cantly sure that the coefficient is not really 0 in value. For odds ratios, since the 
confidence intervals are exponentiations of the coefficient confidence inter-
vals, having the range of the confidence interval include 1 is evidence that the 
null hypothesis has not been rejected. The confidence intervals for logit2 odds 
ratio model above both include 1—0.0124123 to 3.9788526 and 0.3120602 to 
28.84059. Note that the p-values for both x and the intercept are approximately 
0.3. 0.3 far exceeds the 0.05 criterion of significance.

How is the confidence interval to be interpreted? If zero is not within the 
lower and upper limits of the confidence interval of a coefficient, we cannot 
conclude that we are 95% sure that the coefficient is “significant”; that is, that 
the associated p-value is truly under 0.05. Many analysts interpret confidence 
intervals in such a manner, but they should not.
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The traditional logistic regression model we are discussing here is based 
on a frequency interpretation of statistics. As such the confidence intervals 
must be interpreted in the same manner. If the coefficient of a logistic model 
predictor has a p-value under 0.05, the associated confidence interval will not 
include zero. The interpretation is

Wald Confidence Intervals
If we repeat the modeling analysis a very large number of times, the true 
coefficient would be within the range of the lower and upper levels of the 
confidence interval 95 times out of 100.

I earlier mentioned that the use of confint() following R’s glm displays 
profile confidence intervals. confint.default() produces standard confidence 
intervals, based on the normal distribution. Profile confidence intervals are 
based on the Chi2 distribution. Profile confidence intervals are particularly 
important to use when there are relatively few observations in the model, as 
well as when the data are unbalanced. For example, if a logistic model has 30 
observations, but the response variable consists of 26 ones and only 4 zeros, 
the data are unbalanced. Ideally a logistic response variable should have rela-
tively equal numbers of 1s to 0s. Likewise, if a binary predictor has nearly all 
1s or 0s, the model is unbalanced, and adjustments may need to be made to 
the model.

In any case, profile confidence intervals are derived as the inverse of the 
likelihood ratio test defined as

	 Likelihood ratio test }reduced full= − −2{L L

This is a test we will use later when assessing the significance of adding, 
or dropping, a predictor or group of predictors from a model. The log-likeli-
hood of a model with all of the predictors is subtracted from the log-likelihood 
of a model with fewer predictors. The result is multiplied by “ − 2.” The sig-
nificance of the test is based on the Chi2 distribution, whose arguments are the 
likelihood ratio test statistic and degrees of freedom. The degrees of freedom 
consists of how many predictors there are between the full and reduced mod-
els. If a single predictor is being evaluated, there is one degree of freedom. 
The likelihood ratio test is preferred to the standard Wald assessment based on 
regression coefficient or odds ratio p-values. We shall discuss the test further 
in Chapter 4, Section 4.2.

For now you need only know that profile confidence intervals are the 
inversion of the likelihood ratio test. The statistic is not simple to produce 
by hand, but easy to display using the confint function. It should be noted 
that when the predictors are significant and the logistic model is well fit, 
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Wald or model-based confidence intervals differ little from profile confi-
dence intervals. In the case of the logit2 model where neither x nor the 
intercept are significant and there are only nine observations in the model, 
we expect for there to be a somewhat substantial difference in confidence 
interval values.

Wald or Model-Based Confidence Intervals
> confint.default(logit2)
                2.5 %   97.5 %
(Intercept) -1.164557 3.361782
x           -4.389065 1.380910

Profile Confidence Intervals
> confint(logit2)
Waiting for profiling to be done...
                 2.5 %   97.5 %
(Intercept) -0.9568748 4.105099
x           -4.9264210 1.219928

Stata’s pllf command produces profile confidence intervals, but only for con-
tinuous predictors.

Scaled, sandwich or robust, and bootstrapped-based confidence inter-
vals will be discussed in Chapter 4, and compared with profile confidence 
intervals. We shall discuss which should be used given a particular type of 
data.

2.4 ​ MODELS WITH A 
CATEGORICAL PREDICTOR

For our discussion of a logistic model with a single categorical predictor I shall 
return to the medpar data described in Chapter 1. I provided an introductory 
logistic model of died on white and hmo, which are all binary variables. Type, 
on the other hand, is a categorical variable with three levels. As indicated ear-
lier, type = 1 signifies a patient who electively chose to be admitted to a hospi-
tal, type = 2 is used for patients who were admitted to the hospital as “urgent,” 
and type = 3 is reserved for those patients who were admitted as emergency. 
provnum is a string variable designating the hospital provider number of the 
patients whose data are given in the respective lines or observations. I will use 
only died (1 = died while hospitalized) and type in this section.
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> library(LOGIT)
> data(medpar)
> head(medpar)
  los hmo white died age80 type provnum
1   4   0     1    0     0    1  030001
2   9   1     1    0     0    1  030001
3   3   1     1    1     1    1  030001
4   9   0     1    0     0    1  030001
5   1   0     1    1     1    1  030001
6   4   0     1    1     0    1  030001

We can check how many are in each level of type

> table(medpar$type)

   1    2    3
1134  265   96

and we can find out the percentage in each level

> prop.table( table(medpar$type))

         1          2          3
0.75852843 0.17725753 0.06421405

A no-frills frequency table may be produced by a little programming.

> Cnt <- table(medpar$type)
> Freq <- prop.table( table(medpar$type))
> typetab <- data.frame(Cnt, Freq)
> my1 <- typetab[ ,1:2]
> Pct <- typetab[ ,4]
> data.frame(my1, Pct)

  Var1 Freq        Pct
1    1 1134 0.75852843
2    2  265 0.17725753
3    3   96 0.06421405

Statisticians have handled categorical predictors in a variety of ways. 
When used with regression, and in particular with logistic regression, cate-
gorical predictors are nearly always factored into separate indicator or dummy 
variables. Each indicator variable has a value of 1 or 0 except for the reference 
level, which is excluded from the regression.

Think of each level except the reference as the x = 1 level with the ref-
erence variable as x = 0. If level 1 of a categorical predictor is taken as the 
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reference level, then level 2 is interpreted with reference to level 1. Level 3 is 
also interpreted with reference to level 1. Level 1 is the default reference level 
for both R’s glm function and Stata’s regression commands. SAS uses the high-
est level as the default reference. Here it would be level 3.

It is advised to use either the lowest or highest level as the reference, in 
particular whichever of the two has the most observations. But of even more 
importance, the reference level should be chosen which makes most sense for 
the data being modeled.

You may let the software define your levels, or you may create them your-
self. If there is the likelihood that levels may have to be combined, then it may 
be wise to create separate indicator variables for the levels. First though, let us 
let the software create internal indicator variables, which are dropped at the 
conclusion of the display to screen.

> summary(�logit3 <- glm( died ~ factor(type), family = binomial, 
data = medpar))

 . . .

Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)   -0.74924    0.06361 -11.779  < 2e-16 ***
factor(type)2  0.31222    0.14097   2.215 0.02677 *
factor(type)3  0.62407    0.21419   2.914 0.00357 **
—-
    Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1911.1 on 1492 degrees of freedom
AIC: 1917.1

Note how the factor function excluded factor type1 (elective) from the 
output. It is the reference level though and is used to interpret both type2 
(urgent) and type3 (emergency). I shall exponentiate the coefficients of type2 
and type3 in order to better interpret the model. Both will be interpreted as 
odds ratios, with the denominator of the ratio being the reference level.

> exp(coef(logit3))
  (Intercept) factor(type)2 factor(type)3
    0.4727273     1.3664596     1.8665158

The interpretation is

•	 Urgent admission patients have a near 37% greater odds of dying in 
the hospital than do elective admissions.

•	 Emergency admission patients have a near 87% greater odds of dying 
in the hospital than do elective admissions.
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Analysts many times find that they must change the reference levels of 
a categorical predictor. This may be done with the following code. We will 
change from the default reference level 1 to a reference level 3 using the relevel 
function.

> medpar$type <- factor(medpar$type)
> medpar$type <- relevel(medpar$type, ref=3)
> logit4 <- glm( died~factor(type), family=binomial, 
                 data=medpar)
> exp(coef(logit4))
  (Intercept) factor(type)1 factor(type)2
    0.8823529     0.5357576     0.7320911

Interpretation changes to read

•	 Elective patients have about half the odds of dying in the hospital 
than do emergency patients.

•	 Urgent patients have about a three quarters of the odds of dying in 
the hospital than do emergency patients.

I mentioned that indicator or dummy variables can be created by hand, 
and levels merged if necessary. This occurs when, for example, the level 2 
coefficient (or odds ratio) is not significant compared to reference level 1. We 
see this with the model where type = 3 is the reference level. From looking at 
the models, it appears that levels 2 and 3 may not be statistically different from 
one another, and may be merged. I caution you from concluding this though 
since we may want to adjust the standard errors, resulting in changed p-values, 
for extra correlation in the data, or for some other reason we shall discuss in 
Chapter 4. However, on the surface it appears that patients who were admitted 
as urgent are not significantly different from emergency patients with respect 
to death while hospitalized.

I mentioned before that combining levels is required if two levels do not 
significantly differ from one another. In fact, when the emergency level of type 
is the reference, level 2 (urgent) does not appear to be significant, indicating 
that type levels 2 and 3 might be combined. With R this can be done as

> table(medpar$type)

   1    2    3
1134  265   96

> medpar$type[medpar$type = =3] <- 2 # reclassify level 3 as level 2
> table(medpar$type)
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   1    2
1134  361

> summary(�logit6 <- glm(died~ factor(type), family = binomial, 
data = medpar))

 . . .

Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)   -0.74924    0.06361 -11.779  < 2e-16 ***
factor(type)2  0.39660    0.12440   3.188  0.00143 **

2.5  MODELS WITH A 
CONTINUOUS PREDICTOR

2.5.1 ​ Varieties of Continuous Predictors

A continuous predictor can take negative as well as zero and positive numeric 
values. Continuous predictors cause more problems for analysts than do dis-
crete predictors; that is, binary and categorical predictors. The distribution 
or shape that a continuous variable takes may not be appropriate for includ-
ing in a logistic model unless it is transformed in some manner. The key 
concept to remember is that a continuous predictor must be what is referred 
to by statisticians as “linear in the logit.” This means that the continuous 
predictor needs to have a linear relationship with the logistic link function, 
log(μ/(1 − μ)). A variable that is highly curved will not generally be linear 
in the logit.

Another feature of a continuous predictor to check is its range. If the pre-
dictor is, for example, years of age from 21 to 65, it is better to center or even 
standardize it. We will discuss these operations and their rationale later in this 
chapter. I mentioned these two problems areas related to continuous predictors 
because they seem to cause problems for many analysts.

One of the foremost problems in dealing with continuous predictors in 
regression models has to do with the fact that a single coefficient represents 
the entire range of values. Recall that a regression coefficient is nothing more 
than a slope; that is, the rate of change in the response for a one-unit change 
in the predictor. This rate of change is assumed to be the same at any point in 
the variable. We can assume this since the logistic link function linearizes the 
relationship between the linear predictor and fitted value.
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What happens when a predictor is curved like a parabola? Analysts typ-
ically transform the variable by squaring it, and entering both the original 
variable and squared variable in the model. Other transforms are commonly 
applied to continuous predictors including the square root, inverse, inverse 
square, and log. Probably the most common transform is the log transform.

There are downsides when transforming a continuous predictor. The 
major problem is interpretability. We must incorporate the transform made to 
a variable into its interpretation. For a log transform, we need to affirm that 
for a one-unit change in the predictor the response changes by the log of the 
response. Some analysts apply complex transforms to straighten out or linear-
ize the relationship between the logit and predictor. But when it comes time to 
interpreting the meaning of the coefficient they are at a loss.

Linearizing a predictor in the context of logistic regression is more dif-
ficult than it is for linear regression where the linear predictor and fitted value 
are identical. In addition, other predictors in the model may affect the relation-
ship of the fit and predictor. Partial residual plots and the use of generalized 
additive models (GAMs) are typically used to assess the best way to transform 
a continuous predictor. We shall discuss these tests in more detail in Chapter 3.

The interpretation of a continuous predictor is based on the same logic 
as for binary and categorical predictors. An odds ratio is the ratio of the odds 
when x = 1 to the odds when x = 0. For a binary predictor this is simple. For 
a multilevel categorical predictor, the reference level is the x = 0 level. For a 
continuous predictor, the lower value of two contiguous values in the predictor 
is the reference; the higher is the x = 1 level. For an age predictor, calculate the 
odds of age = 21 compared to the odds of age 20. The ratio odds(21)/odds(20) 
is the odds ratio, which is the same value for all pairs of values in the predictor. 
If the odds ratio for age is 1.01 and response is died, we can assert that the odds 
of death is 1% greater for each 1 year greater age of a patient.

2.5.2 ​ A Simple GAM

I mentioned before, when including a continuous predictor into a logistic 
model, it is assumed that the slope or rate of change in the response for a one-
unit change in the predictor is the same throughout the entire range of predic-
tor values. It may be preferred to factor a continuous predictor at the points 
where its slope changes in any substantial manner. There is loss of information 
when this is done, but there is perhaps a gain in accuracy when interpreting 
the coefficient. GAMs is a widely used method to check the underling shape 
of a continuous predictor, adjusted by other predictors (none here), within the 
framework of a particular GLM family model: for example, logistic regression. 
For an example let us evaluate the variable los in the medpar data. LOS is an 
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acronym for Length of Stay, referring to nights in the hospital. los ranges from 
1 to 116. A cubic spline is used to smooth the shape of the distribution of los. 
This is accomplished by using the S operator.

> summary(medpar$los)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  1.000   4.000   8.000   9.854  13.000 116.000

> library(mgcv)
> diedgam <- gam(died ~ s(los), family = binomial, data = medpar)
> summary(diedgam)

 . . .

Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.69195    0.05733  -12.07   <2e-16 ***

Approximate significance of smooth terms:
         edf Ref.df Chi.sq p-value
s(los) 7.424  8.292  116.8  <2e-16 ***

R-sq.(adj) = 0.0873 Deviance explained = 6.75%
UBRE = 0.21064 Scale est. = 1 n = 1495
> plot(diedgam)

Note that no other predictors are in this model. Adding others may well 
alter the shape of the splines. The edf statistic indicates the “effective degrees 
of freedom.” It is a value that determines the shape of the curves. An edf of 1 
indicates a straight line; 8 and higher is a highly curved shape. The graph has 
an edf of 7.424, which is rather high. See Zuur (2012) for a complete analysis 
of GAM using R.

If this was all the data I had to work with, based on the change of slope 
points in Figure 2.1, I would be tempted to factor los into four intervals with 
three slopes at 10, 52, and 90. Each of the four levels would be part of a cat-
egorical predictor with the lowest level as the reference. If the slopes differ 
considerably across levels, we should use it for modeling the effect of los rather 
than model the continuous predictor.

2.5.3 ​ Centering

A continuous predictor whose lowest value is not close to 0 should likely be 
centered. For example, we use the badhealth data from the COUNT package.

> data(badhealth)
> head(badhealth)
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  numvisit badh age
1       30    0  58
2       20    0  54
3       16    0  44
4       20    0  57
5       15    0  33
6       15    0  28

badh is a binary variable, and indicates that a patient has “bad health,” what-
ever that may mean. numvisit, or number of visits to the doctor during the year 
1984, and age, are continuous variables. Number of visits ranges from 0 to 40, 
and the age range of patients is from 20 to 60.

> table(badhealth$badh)

   0    1
1015  112

> summary(badhealth$age)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  20.00   28.00   35.00   37.23   46.00   60.00
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FIGURE 2.1  GAM model of los.
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> summary(badhealth$numvisit)
   Min. 1st Qu.  Median    Mean 3rd Qu.     Max.
  0.000   0.000   1.000   2.353   3.000  40.000

Centering allows a better interpretation for a predictor like age. Centering a 
continuous predictor with its low value not close to 0 is recommended when the 
variable is used in an interaction, as well as when it is used in a Bayesian model.

Centering is accomplished by subtracting the mean of the variable from 
each value of the variable. That is:

	 Centering: xi − mean(xi)

> cage <- badhealth$age - mean(badhealth$age)
> summary(cage)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
-17.230  -9.229  -2.229   0.000   8.771  22.770

The same result can be determined by use of the scale function.

> cenage <- scale(badhealth$age, center = TRUE, scale = FALSE)

Comparing the coefficients for models with age and centered age (cage):

> bad1 <- glm(badh ~ age, family = binomial, data = badhealth)
> bad2 <- glm(badh ~ cage, family = binomial, data = badhealth)
> badtab <- data.frame(bad1$coefficients, bad2$coefficients)
> badtab
            bad1.coefficients bad2.coefficients
(Intercept)       -4.58866278       -2.37171785
age                0.05954899        0.05954899

2.5.4 ​ Standardization

Standardization of continuous predictors is important when other continuous 
predictors in your model are recorded on entirely different scales. The way this 
is done is by dividing the centered variable by the variable standard deviation. 
Use of R’s scale function makes this easy:

> sage <- scale(badhealth$age)
> bad3 <- glm(badh ~ sage, family = binomial, data = badhealth)

The standard, centered, and standardized coefficient values for the bad-
health data may be summarized in the following table. The intercept changes 
when a predictor such as age is centered. When a predictor is standardized 
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both the intercept and predictor coefficients are changed with respect to a stan-
dard model. Note that the intercept remains the same when a predictor is either 
centered or standardized.

> badtab2 <- data.frame(bad1$coefficients, 
bad2$coefficients, bad3$coefficients)
> badtab2
          bad1.coefficients bad2.coefficients bad3.coefficients
(Intercept)     -4.58866278       -2.37171785         -2.3717178
age              0.05954899        0.05954899          0.6448512

Again, standardization is warranted when two or more continuous predic-
tors in a model are measured on different scales, making it difficult to compare 
them. Interpretation is in terms of standard deviation units, making it chal-
lenging to interpret the coefficients. However, if the main point of creating a 
model is to predict observations not in data, or establish probabilities to obser-
vations in the data, then interpretations of coefficients may not be important. It 
depends on why one is modeling the data.

•	 If the goal of modeling is to understand the relationship between the 
predictor and response in terms of odds ratios, then care must be 
taken when transforming individual predictors.

•	 If the goal of modeling is to assign probabilities to observations 
in the data, or to calculate probabilities for observations not in the 
model—but which could be—then optimally transforming predic-
tors is important.

2.6 ​ PREDICTION

2.6.1 ​ Basics of Model Prediction

Prediction is accomplished the same whether we have 1 or greater than 10 
predictors in a model. Each predictor is evaluated as adjusted by the other 
predictors in the model. We discussed the prediction in Chapter 1 in terms of 
how to calculate the fitted value or probability that y = 1 for a logistic model. 
We will discuss it again later when we evaluate multivariable models and 
model fit. For now, I shall show how to calculate a predicted probability for 
a single predictor, how to calculate probabilities for specific predictor values, 
and then in the next subsection how to construct a confidence interval and 
graph of a prediction.



38  Practical Guide to Logistic Regression

> summary(�logit7 <- glm(died ~ white, family = binomial, 
data = medpar))

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)  -0.9273     0.1969  -4.710 2.48e-06 ***
white         0.3025     0.2049   1.476     0.14
—-
    Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1920.6 on 1493 degrees of freedom
AIC: 1924.6

> exp(coef(logit7))
(Intercept)       white
  0.3956044   1.3532548

White patients have a 35% greater odds of death while hospitalized than 
do nonwhite patients.

LINEAR PREDICTOR
> etab <- predict(logit7)

FITTED VALUE; PROBABILITY THAT DIED = =1
> fitb <- logit7$fitted.value

TABULATION OF PROBABILITIES
> table(fitb)
fitb
0.283464566929547 0.348684210526331
              127              1368

1368 white patients have an approximate 0.349 probability of dying within 
the hospital. Nonwhite patients have some 0.283 probability of dying. Since 
the predictor is binary, there are only two predicted values.

Let us model died on los, a continuous predictor.

> summary(�logit8 <- glm(died ~ los, family = binomial, 
data = medpar))

Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.361707   0.088436  -4.090 4.31e-05 ***
los         -0.030483   0.007691  -3.964 7.38e-05 ***
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    Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1904.6 on 1493 degrees of freedom
AIC: 1908.6

> exp(coef(logit8))
(Intercept)         los
  0.6964864   0.9699768

> etac <- predict(logit8)
> fitc <- logit8$fitted.value
> summary(fitc)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
0.01988 0.31910 0.35310 0.34310 0.38140 0.40320

The predicted values of died given los range from 0.02 to 0.40.
If we wish to determine the probability of death while hospitalized for a 

patient who has stayed in the hospital for 20 days, multiply the coefficient on 
los by 20, add the intercept to obtain the linear predictor for los at 20 days. 
Apply the inverse logit link to obtain the predicted probability.

> xb20 <- -0.361707 - 0.030483*20
> mu20 <- 1/(1 + exp(-xb20))
> mu20
[1] 0.2746081

The probability is 0.275. A patient who stays in the hospital for 20 days 
has a 27% probability of dying while hospitalized—given a specific disease 
from this data.

2.6.2 ​ Prediction Confidence Intervals

We next calculate the standard error of the linear predictor. We use the predict 
function with the type = “link” and se.fit = TRUE options to place the 
predictions on the scale of the linear predictor, and to guarantee that the lpred 
object is in fact the standard error of the linear prediction.

> lpred <- predict(�logit8, newdata = medpar, type = “link”, 
se.fit = TRUE)

Now we calculate the 95% confidence interval of the linear predictor. As 
mentioned earlier, we assume that both sides of the distribution are used in 
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determining the confidence interval, which means that 0.025 is taken from 
each tail of the distribution. In terms of the normal distribution, we see that

> up <- lpred$fit + (qnorm(.975) * lpred$se.fit)
> lo <- lpred$fit - (qnorm(.975) * lpred$se.fit)
> eta <- lpred$fit

We may use the inverse logistic link function to convert the above three 
statistics to the probability scale. We could also use the true inverse logit link 
function, exp(xb)/(1 + exp(xb)) or 1/(1 + exp(−xb)), to convert these to the prob-
ability scale. It is easier to simply use the linkinv function. A summary of each 
is displayed based on the following code.

> upci <- logit8$family$linkinv(up)
> mu <- logit8$family$linkinv(eta)
> loci <- logit8$family$linkinv(lo)

> summary(loci)
     Min.  1st Qu.  Median     Mean  3rd Qu.     Max.
0.004015 0.293000 0.328700 0.312900 0.350900 0.364900

> summary(mu)
   Min. 1st Qu. Median     Mean 3rd Qu.    Max.
0.01988 0.31910 0.35310 0.34310 0.38140 0.40320

> summary(upci)
   Min. 1st Qu. Median     Mean 3rd Qu.    Max.
0.09265 0.34640 0.37820 0.37540 0.41280 0.44260

The mean of the lower 95% confidence interval is 0.313, the mean of μ is 
0.343, and the mean of the upper confidence interval is 0.375. A simple R plot 
of the predicted probability of death for days in the hospital for patients in this 
data is displayed as (Figure 2.2):

> layout(1)
> plot(medpar$los, mu, col = 1)
> lines(medpar$los, loci, col = 2, type = ‘p’)
> lines(medpar$los,upci, col = 3, type = ‘p’)

We next discuss logistic models with more than one predictor. These are 
the types of models that are in fact employed in real-life studies and projects. 
Understanding single predictor models, however, provides a solid basis for 
understanding more complex models.
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SAS CODE

/* Section 2.1 */

*Create a new dataset with binary variables x and y;
data xdta;
	 input x y @@;
	 datalines;
 1 1 0 0 1 0 0 1 1
 0 1 1 1 0 0 1 0 1
 ;
 run;

*Build the logistic model;
proc genmod data=xdta descending;
	 model y=x / dist=binomial link=logit;
	 output out=residual resdev=deviance;
run;

*Another way to build the logistic model;
proc logistic data=xdta descending;
	 model y=x / clparm=both;
	 output out=residual resdev=deviance;
run;
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FIGURE 2.2  ​Predicted probability of death by length of stay.
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*Statistics of deviance residual;
proc means data=residual min q1 median q3 max maxdec=4;
	 var deviance;
run;

*Generate a table of y by x;
proc freq data=xdta;
	 tables y*x / norow nocol nocum nopercent;
run;

*Expb option provides the odds ratio;
proc genmod data=xdta descending;
	 model y=x / dist=binomial link=logit;
	 estimate “Intercept” Intercept 1 / exp;
	 estimate “x” x 1 / exp;
run;

/* Section 2.2 */

*Refer to proc genmod in section 2.1 to build the logistic model;

*Create a dataset to make calculations;
data data1;
	 set xdta;
	 if x=1 then xb=1.0986-1.5041*1;
	 else if x=0 then xb=1.0986-1.5041*0;
	 mu=1/(1+exp(-xb));
	 o=mu/(1-mu);
	 or=o;
	 if or < 1 then or=0.667/3;
	 coeff=log(or);
	 format mu 4.2 o or xb coeff 7.4;
run;

*Print the dataset;
proc print data=data1;
	 var x o;
run;

*Print the whole dataset;
proc print data=data1;
run;

/* Section 2.3 */

*Build the logistic model- covb option provides var-cov matrix;
proc genmod data=xdta descending;
	 model y=x / dist=binomial  link=logit covb;
run;

*Use SAS interactive matrix language;
proc iml;
	 vcov={1.33333 -1.33333,
	      -1.33333  2.16667};
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	 se=sqrt(diag(vcov));
	 print se;
quit;

*Logistic regression with OIM standard error;
proc surveylogistic data=xdta;
	 model y(event=’1’)=x;
run;

*Refer to proc genmod in section 2.3 to obtain var-cov matrix;

*Calculations of odds ratio and model statistics;
proc iml;
	 vcov={1.33333 -1.33333,
	      -1.33333  2.16667};
	 coef={1.0986, -1.5041};
	 or=exp(coef);
	 se=sqrt(diag(vcov));
	 ose=se*or;
	 print or [format = 7.4] ose [format = 7.4];

	 zscore=coef/se;
	 delta=ose;
	 z=zscore[,+];
	 pvalue=2*(1-probnorm((abs(z))));
	 print z pvalue;

	 se1=se[,+];
	 loci=coef-quantile(‘normal’, 0.975)*se1;
	 upci=coef+quantile(‘normal’, 0.975)*se1;
	 expl=exp(loci);
	 expu=exp(upci);
	 print or [format=7.4] delta [format=7.4] z [format=7.4]
            pvalue [format=7.4] expl [format=7.4] expu [format=7.4];
quit;

*Clparm=both provides both PL and Wald confidence intervals;
proc logistic data=xdta descending;
	 model y=x / clparm=both;
run;

/* Section 2.4 */

*Refer to the code in section 1.4 to import and print medpar dataset;

*Generate the frequency table of type and output the dataset;
proc freq data=medpar;
	 tables type / out=freq;
run;

*Build the logistic model with class;
proc genmod data=medpar descending;
	 class type (ref=’1’) / param = ref;
	 model died=type / dist=binomial link=logit;
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	 estimate “Intercept” Intercept 1 / exp;
	 estimate “type2” type 1 0 / exp;
	 estimate “type3” type 0 1 / exp;
	 output out=residual resdev=deviance;
run;

*Set up format for variable type;
proc format;
	 value typefmt 1=”Elective Admit”
		        2=”Urgent Admit”
		        3=”Emergency Admit”;
run;

*Logistic regression with controlled reference;
proc genmod data=medpar descending;
	 class type (ref=’Elective Admit’) / param = ref;
	 model died=type / dist=binomial link=logit;
	 estimate “Intercept” Intercept 1 / exp;
	 estimate “type2” type 1 0 / exp;
	 estimate “type3” type 0 1 / exp;
	 format type typefmt.;
run;

*Logistic regression with controlled reference;
proc genmod data=medpar descending;
	 class type (ref=’Emergency Admit’) / param = ref;
	 model died=type / dist=binomial link=logit;
	 estimate “Intercept” Intercept 1 / exp;
	 estimate “type2” type 1 0 / exp;
	 estimate “type3” type 0 1 / exp;
	 format type typefmt.;
run;

*Refer to proc freq in section 2.4 to generate the frequency table;

*Re-categorized variable type;
data medpar1;
	 set medpar;
	 if type in (2,3) then type=2;
run;

*Refer to proc freq in section 2.4 to generate the frequency table;

*Logistic regression with re-categorized type;
proc genmod data=medpar1 descending;
	 class type (ref=’1’) / param = ref;
	 model died=type / dist=binomial link=logit;
	 estimate “Intercept” Intercept 1 / exp;
	 estimate “type2” type 1 0 / exp;
	 estimate “type3” type 0 1 / exp;
run;
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/* Section 2.5 */

*Summary for variable los;
proc means data=medpar min q1 median mean q3 max maxdec=3;
	 var los;
run;

*Build the generalized additive model;
proc gam data=medpar;
	 model died (event=’1’)=spline(los) / dist=binomial;
run;

*Refer to the code in section 1.4 to import and print badhealth 
dataset;

*Refer to proc freq in section 2.4 to generate the frequency table;

*Summary for variable age;
proc means data=badhealth min q1 median mean q3 max maxdec=2;
	 var age;
	 output out=center mean=;
run;

*Create a macro variable;
proc sql;
	 select age into: mean
	 from center;
quit;

*Refer to proc means in section 2.5 to summarize numvisit;

*Center the age;
data badhealth1;
	 set badhealth;
	 cage=age-&mean;
run;

*Refer to proc means in section 2.5 to summarize centered age;

*Provide the std;
proc means data=badhealth std;
	 var age;
	 output out=stderror std=;
run;

*Create a macro variable;
proc sql;
	 select age into: std
	 from stderror;
quit;

*Scale age with a different way;
proc standard data=badhealth mean=0 std=&std out=cenage;
var age;
run;
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*Build the logistic model;
proc genmod data=badhealth descending;
	 model badh=age / dist=binomial link=logit;
run;

*Build the logistic model with centered age;
proc genmod data=badhealth1 descending ;
	 model badh=cage / dist=binomial  link=logit;
run;

*Standardize age and output the sage dataset;
proc standard data=badhealth mean=0 std=1 out=sage;
	 var age;
run;

*Build the logistic model with standardized age;
proc genmod data=sage descending ;
	 model badh=age / dist=binomial  link=logit;
run;

/* Section 2.6 */

*Build the logistic model and output model prediction;
proc genmod data=medpar descending;
	 model died=white / dist=binomial link=logit;
	 output out=etab pred=fitb;
run;

*Refer to proc freq in section 2.4 to generate the frequency table;

*Build the logistic model and output model prediction;
proc genmod data=medpar descending;
	 model died=white / dist=binomial link=logit;
	 output out=etac pred=fitc;
run;

*Refer to proc means in section 2.5 to summarize fitc;

*Create a dataset to make calculations;
data prob;
	 xb20=-0.3617 - 0.0305*20;
	 mu20=1/(1+exp(-xb20));
run;

*Print the variable mu20;
proc print data=prob;
	 var mu20;
run;

*Build the logistic model and output confidence intervals;
proc genmod data=medpar descending;
	 model died=los / dist=binomial  link=logit;
	 output out=cl pred=mu lower=loci upper=upci;
run;
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*Summary for confidence intervals;
proc means data=cl min q1 median mean q3 max maxdec=5;
	 var loci mu upci;
run;

*Graph scatter plot;
proc sgplot data=cl;
	 scatter x=los y=mu;
	 scatter x=los y=loci;
	 scatter x=los y=upci;
run;

STATA CODE

2.1
. use xdta
. list
. glm y x, fam(bin) nolog
. table y x
. tab y x
. glm y x, fam(bin) eform nolog nohead

2.2
. glm y x, fam(bin) nolog nohead
. di 1.098612 - 1.504077*1
. di 1.098612 - 1.504077*0
. predict xb, xb
. predict mu
. gen o = mu/(1-mu)
. gen or = .6666667/3 if o < 1
. replace or = o if or = =.
. gen coef = log(or)
. l y x xb mu o or coef

2.3
. glm y x, fam(bin) nolog nohead
. estat vce
. glm y x, fam(bin) nolog nohead scale(x2)
. glm y x, fam(bin) nolog nohead eform
. di normal(-abs(_b[x]/_se[x]))*2            // p-value for x
. di normal(-abs(_b[_cons]/_se[_cons]))*2    // p-value for intercept
. use medpar, clear
. glm died white los i.type, fam(bin) nolog nohead
. glm died white los i.type, fam(bin) nolog nohead eform

2.4
. use medpar, clear
. list in 1/6
. tab type
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. glm died i.type, fam(bin) nolog nohead

. glm died i.type, fam(bin) nolog nohead eform

. glm died b3.type, fam(bin) nolog nohead

. tab type, gen(type)

. gen type23 = type2 | type3

. tab type23

2.5
. use badhealth, clear
. list in 1/6
. tab badh
. summary age
. summary numvis
. egen meanage = mean(age)
. gen cage = age - meanage
. * or: center age, pre(c)
. glm badh cage, fam(bin) nolog nohead
. center age, pre(s) stand
. glm badh sage, fam(bin) nolog nohead

2.6
. glm died white, fam(bin) nolog nohead
. glm died white, fam(bin) nolog nohead eform
. predict etab, xb
. predict fitb, mu
. tab fitb
. glm died los, fam(bin)
. glm died los, fam(bin) eform
. predict etac, xb
. predict fitc
. summary fitc
. use medpar
. glm died los, family(bin) nolog
. predict eta, xb                  // linear predictor; eta
. predict se_eta, stdp             // standard error of the prediction
. gen mu = exp(eta)/(1 + exp(eta))   // or: predict mu
. gen low = eta - invnormal(0.975) * se_eta
. gen up = eta + invnormal(0.975) * se_eta
. gen lci = exp(low)/(1 + exp(low))
. gen uci = exp(up)/(1 + exp(up))
. sum lci mu uci
. scatter mu lci uci los
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3Logistic Models
Multiple Predictors

3.1  SELECTION AND INTERPRETATION 
OF PREDICTORS

The logic of modeling data with logistic regression changes very little when 
more predictors are added to a model. The basic logistic regression formula we 
displayed becomes more meaningful when there is more than one predictor in 
a model. Equation 3.1 below expresses the relationship of each predictor to the 
predicted linear predictor, ′xi β, or ηi. It is more accurate to symbolize the pre-
dicted linear predictor as η̂i  or as ′xi β,  but we shall not employ the hat symbol 
on η or β for ease of interpretation, as we have done so for the predicted prob-
ability, ˆ .µ  We shall remember from the context that the expression is predicted 
or estimated, and not simply given as raw data.
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(3.1)

With respect to logistic regression, each β in Equation 3.1 above indi-
cates a separate coefficient, or slope. Each is interpreted as a partial deriva-
tive in calculus. When a predictor is being interpreted, it is in terms of its 
associated coefficient or rate of change with respect to the response. Each 
coefficient assumes that when it is interpreted, the other predictors are held 
as constant.

Each term, or x′β, in the regression equation indicates that for a one-unit 
change in the predictor, x, the log-odds of the response changes by β, given that 
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the other terms in the model are held constant. When the logistic regression 
term is exponentiated, interpretation is given in terms of an odds ratio, rather 
than log-odds. We can see this in Equation 3.2 below, which results by expo-
nentiating each side of Equation 3.1.
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or
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(3.3)

An example will help clarify what is meant when interpreting a logistic 
regression model. Let’s use data from the social sciences regarding the rela-
tionship of whether a person identifies themselves as religious. Our main inter-
est will be in assessing how level of education affects religiosity. We’ll also 
adjust by gender (male), age, and whether the person in the study has children 
(kids). There are 601 subjects in the study, so there is no concern about sample 
size. The data are in the edrelig data set.

A study subject’s level of education is a categorical variable with three 
fairly equal-sized levels: AA, BA, and MA/PhD. All subjects have achieved at 
least an associate’s degree at a 2-year institution. A tabulation of the educlevel 
predictor is shown below, together with the top six values of all variables in 
the data.

> data(edrelig)
> head(edrelig)
  male age kids educlevel religious
1    1  37    0    MA/PhD         0
2    0  27    0        AA         1
3    1  27    0    MA/PhD         0
4    0  32    1        AA         0
5    0  27    1        BA         0
6    1  57    1    MA/PhD         1

> table(edrelig$educlevel)

    AA     BA MA/PhD
   205    204    192

Male and kids are both binary predictors, having values of 0 and 1. 1 indi-
cates (most always) that the name of the predictor is the case. For instance, 
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the binary predictor male is 1 = male and 0 = female. Kids = 1 if the subject 
has children, and 0 if they have no children. Age is a categorical variable with 
levels as 5-year age groups. The range is from 17 to 57. I will interpret age, 
however, as a continuous predictor, with each ascending age as a 5-year period.

We model the data as before, but simply add more predictors in the model. 
The categorical educlevel predictor is factored into its three levels, with the 
lowest level, AA, as the reference. It is not displayed in model output.

>  summary(ed1 <- glm(religious ~ age + male + kids + factor(educlevel),
+       family = binomial, data = edrelig))

Coefficients:
	 Estimate Std. Error z value Pr(>|z|)
(Intercept)	 −1.43522	 0.32996	 −4.350	 1.36e-05	***
age	  0.03983	 0.01036	  3.845	 0.000121	***
male	  0.18997	 0.18572	  1.023	 0.306381
kids	  0.12393	 0.21037	  0.589	 0.555790
factor(educlevel)BA	 −0.47231	 0.20822	 −2.268	 0.023313	*
factor(educlevel)MA/PhD	 −0.49543	 0.22621	 −2.190	 0.028513	*
---
    Null deviance: 822.21 on 600 degrees of freedom
Residual deviance: 792.84 on 595 degrees of freedom
AIC: 804.84

The odds ratios are obtained by:

> or <- exp(coef(ed1))
> round(or,4)
	 (Intercept)	 age	 male
	 0.2381	 1.0406	 1.2092
	 kids	� factor(educlevel)BA factor(educlevel)MA/PhD

	 1.1319	 0.6236	 0.6093

Or we can view the entire table of odds ratio estimates and associated 
statistics using the code developed in the previous chapter.

> coef <- ed1$coef
> se <- sqrt(diag(vcov(ed1)))
> zscore <- coef / se
> or <- exp(coef)
> delta <- or * se
> pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
> loci <- coef - qnorm(.975) * se
> upci <- coef + qnorm(.975) * se
> ortab <- data.frame(or, delta, zscore, pvalue, exp(loci), exp(upci))
> round(ortab, 4)
	 or delta zscore  pvalue   exp.loci. exp.upci.
(Intercept)             0.2381 0.0786 -4.3497 0.0000    0.1247    0.4545
age                     1.0406 0.0108  3.8449 0.0001    1.0197    1.0620
male                    1.2092 0.2246  1.0228 0.3064    0.8403    1.7402
kids                    1.1319 0.2381  0.5891 0.5558    0.7495    1.7096
factor(educlevel)BA     0.6236 0.1298 -2.2683 0.0233    0.4146    0.9378
factor(educlevel)MA/PhD 0.6093 0.1378 -2.1902 0.0285    0.3911    0.9493
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Since we are including more than a single predictor in this model, it’s wise 
to check additional model statistics. Interpretation gives us the following, with 
the understanding that the values of the other predictors in the model are held 
constant.

> 1/.6235619
[1] 1.60369

> 1/.6093109
[1] 1.641198

Notice that I switched the interpretation of the levels of educlevel so that 
they are positive. I could have said that those with a BA have 40% less odds of 
being religious than are those with a highest degree of AA. The interpretation 
is not going to be understood as well as if I express a positive relationship. I 
recommend employing a positive interpretation of odds ratio if it makes sense 
in the context of the study.

3.2  STATISTICS IN A LOGISTIC MODEL

When logistic regression is used from within GLM software, the output is 
pretty much the same regardless of the software package used for the model-
ing process. R is an exception though. The logic of basic R is to display the 
minimum for the statistical procedure being executed, but provide options by 
which the user can display additional statistics. The R summary function is 

age Subjects in a higher 5-year age group have a 4% greater odds of 
being religious than those in the lower age division, assuming 
that the values of other predictors are constant (at their mean).

male Males have a some 21% greater odds of being religious than 
females.

kids Study subjects having children have a 13% higher odds of being 
religious than are those without children.

educlevel Those in the study whose highest degree is a BA have a 60% 
greater odds of being nonreligious compared to those whose 
highest degree is an AA.

Those in the study whose highest degree is a MA/PhD have a 64% 
greater odds of being nonreligious compared to those whose 
highest degree is an AA.
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such an option, providing substantially more model statistics than are provided 
by simply using the glm function when modeling a logistic regression. In this 
section, we define and discuss the various GLM statistics that are provided in 
the R’s summary function. Stata, SAS, SPSS, Limdep, and other GLM soft-
ware generally provide the same statistics.

I shall display the ed1 model we just estimated, removing the coefficient 
table from our view. We are only interested here in the ancillary model statis-
tics that can be used for evaluating model fit.

R

> summary(ed1 <- glm(religious ~ age + male + kids+ factor(educlevel),
+        family = binomial, data = edrelig))

Deviance Residuals:
    Min       1Q   Median       3Q      Max
-1.6877  -1.0359  -0.8467   1.2388   1.6452

 . . .
    Null deviance: 822.21  on 600  degrees of freedom
Residual deviance: 792.84  on 595  degrees of freedom
AIC: 804.84

R provides a summary table of deviance statistics, together with null and 
residual deviance statistics and their respective degrees of freedom. Stata also 
has a deviance statistic, and the corresponding degrees of freedom. These were 
thought to be very important statistics needed for fit analysis, but their impor-
tant has waned in recent times.

The deviance statistic is based on the log-likelihood. Keep in mind that 
many fit statistics are based on the log-likelihood function. Stata displays the 
log-likelihood together with the table of estimates. R’s glm function does not 
have the log-likelihood saved post estimation statistic.

Recall that the Bernoulli distribution log-likelihood can be given in expo-
nential family form as
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The deviance is calculated as a goodness-of-fit test for GLM models, 
and is defined as twice the difference between the saturated log-likelihood 
minus the full log-likelihood. The saturated model has a parameter for each 
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observation in the model. This means that a y replaces every μ in the log-
likelihood function.
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The Bernoulli deviance is expressed as:

Logistic Model Deviance Statistic:
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(3.6)

For GLM models, including logistic regression, the deviance statistic is 
the basis of model convergence. Since the GLM estimating algorithm is itera-
tive, convergence is achieved when the difference between two deviance val-
ues reaches a threshold criterion, usually set at 0.000001.

When convergence is achieved, the values of the coefficients, of mu, eta, 
and other statistics are at their optimal values.

The other main use of the deviance statistic is as a goodness-of-fit test. 
The “residual” deviance is the value of D that can be calculated following 
model convergence. Each observation will have a calculated value of Di as 
y*ln(y/μ) + (1 − y)*ln[(1 − y)/(1 − μ)]. Sum the Ds across all observations and 
multiply by 2—that’s the deviance statistic. The value of the deviance statis-
tic for an intercept only model; that is, a model with no predictors, is called 
the null deviance. The null degrees of freedom is the total observations in 
the model minus the intercept, or n − 1. The residual degrees of freedom is n 
minus the number of predictors in the model, including the intercept. For the 
example model, there are 601 observations and six predictors: age, male, kids, 
educlevel(BA), educlevel(MA/PhD), and the intercept. The reference level is 
not counted. The null deviance degrees of freedom (dof) is 600 and residual 
dof is 595. A traditional fit statistic we shall discuss in the next chapter is based 
on the Chi2 distribution of the deviance with a dof of the residual deviance.

The Pearson Chi2 goodness-of-fit statistic is defined as the square of the 
raw residual divided by the variance statistic. The raw residual is the value of 
the response, y, minus the mean (μ). The Bernoulli variance function for the 
logistic regression model is μ(1 − μ). Therefore,

Pearson Chi2 GOF Statistic:
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Logistic Model Pearson Chi2 GOF Statistic (based on the Bernoulli distribution):
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The degrees of freedom for the Pearson statistic are the same as for the 
deviance. For count models, the dispersion statistic is defined as the Pearson 
Chi2 statistic divided by the residual dof. Values greater than 1 indicate pos-
sible overdispersion. The same is the case with grouped logistic models—a 
topic we shall discuss in Chapter 5. The deviance dispersion can also be used 
for binomial models—again a subject to which we shall later return.

I mentioned earlier that raw residuals are defined as “y − μ.” All other 
residuals are adjustments to this basic residual. The Pearson residual, for 
example, is defined as:

Pearson Residual:
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It is important to know that the sum of the squared Pearson residuals is 
the Pearson Chi2 statistic:
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In fact, the way programmers calculate the Pearson Chi2 statistic is by 
summing the squared Pearson residuals.

> pr <- resid(ed1, type = “pearson”) # calculates Pearson residuals
> pchi2 <- sum(residuals(ed1, type = “pearson”)^2)
> disp <- pchi2/ed1$df.residual
> c(pchi2, disp)
[1] 600.179386 1.008705

Unfortunately neither the Pearson Chi2 statistic nor the Pearson disper-
sion is directly available from R. Strangely though, the Pearson dispersion is 
used to generate what are called quasibinomial models; that is, logistic models 
with too much or too little correlation in the data. See Hilbe (2009) and Hilbe 
and Robinson (2013) for a detailed discussion of this topic.
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I created a function that calculates the Pearson Chi2 and dispersion fol-
lowing glm estimation. Called P__disp (double underscore), it is a function 
in the COUNT and LOGIT packages. If the name of the model of concern is 
mymodel, type P__disp(mymodel) on the command line.

Deviance residuals are calculated on the basis of the deviance statistic 
defined above. For binary logistic regression, deviance residuals take the form of

If y = 1,
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If y = 0,
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Using R’s built-in deviance residual option for glm models, we may calcu-
late a summary of the values as,

> dr <-resid(ed1, type=“deviance”)
> round(summary(dr),4)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
−1.6880 −1.0360 −0.8467 −0.0434  1.2390  1.6450

Note the closeness of the residual values to what is displayed in the ed1 
model output at the beginning of this section.

I should also mention that the above output for Pearson residuals informs us 
that the dispersion parameter for the model is 1 (1.008705). The logistic model is 
based on the Bernoulli distribution with only a mean parameter. There is no scale 
parameter for the Bernoulli distribution. The same is the case for the Poisson 
count model. In such a case the software reports that the value is 1, which means 
that it cannot affect the other model statistics or the mean parameter. It is sta-
tistically preferred to use the term scale in this context than it is dispersion, for 
reasons that go beyond this text. See Hilbe (2011) or Hilbe (2014) for details.

The glm function fails to display or save the log-likelihood function, 
although it is used in the calculation of other saved statistics. By back-coding 
other statistics an analyst can calculate a statistic such as the log-likelihood 
which is given at the start of this section. For the ed1 model,

Log-likelihood:

> (ed1$df.null - ed1$df.residual + 1) - ed1$aic/2
[1] -396.4198
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Other important statistics which will be required when we set up residual 
analysis are the hat matrix diagonal and standardized Pearson and standardized 
deviance residuals. 

The hat matrix diagonal is defined as:

	 h hat W X X WX X W= = ′ ′−1 2 1 1 2/ /( ) 	 (3.13)

with W as a weight defined as diag{1/(μ(1 − μ))*ln(μ/(1 − μ))2} and X as the 
predictor matrix. The hat statistic can also be calculated as the Bernoulli vari-
ance times the square of the standard error of prediction. R does not have a 
precalculated function for the standard error of the predicted value, but several 
other statistical packages do; for example, Stata, SAS. The R glm function does 
have, however, a function to calculate hat values, as we can observe below. 
Note that standardization of the Pearson and deviance residuals is accom-
plished by dividing them each by the square root of 1 − hat.

Hat Matrix Diagonal Influence Statistic:

> hat <- hatvalues(ed1)
> summary(hat)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
0.006333 0.007721 0.009291 0.009983 0.011220 0.037910 

Standardize Pearson Residual:

> stpr <- pr/sqrt(1-hat)
> summary(stpr)
     Min.   1st Qu.    Median     Mean   3rd Qu.     Max.
-1.791000 -0.845700 -0.660300 -0.002086 1.078000 1.705000

Standardized Deviance Residual:

> stdr <- dr/sqrt(1-hat)
> summary(stdr)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
-1.70200 -1.04000 -0.85150 -0.04356 1.24300   1.65600

R’s glm function saves other statistics as well. To identify statistics that 
can be used following an R function, type ?glm or ? followed by the function 
name, and a help file will appear with information about model used and saved 
values. All CRAN functions should have a help document associated with the 
function, but packages and functions that are not part of the CRAN family 
have no such requirements. Nearly all Stata commands or functions have asso-
ciated help. For general help on glm type, “help glm.”
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3.3  INFORMATION CRITERION TESTS

Information criterion tests are single statistics by which analysts may com-
pare models. Models with lower values of the same information criterion are 
considered better fitted models. A number of information tests have been pub-
lished, but only a few are frequently used in research reports.

3.3.1  Akaike Information Criterion

The Akaike information criterion (AIC) test, named after Japanese statistician 
Hirotsugu Akaike (1927–2009), is perhaps the most well-known and well used 
information statistic in current research. What may seem surprising to many 
readers is that there are a plethora of journal articles detailing studies proving 
how poor the AIC test is in assessing which of two models is the better fit-
ted. Even Akaike himself later developed another criterion which he preferred 
to the original. However, it is his original 1973 version that is used by most 
researchers and that is found in most journals to assess comparative model fit.

The traditional AIC statistic is found in two versions:

	 AIC or= − + − −( )2 2 2L Lk k 	 (3.14)

or

	
AIC or= − + − −( )2 2 2L Lk

n
k

n 	
(3.15)

where L is the model log-likelihood, k is the number of parameter estimates 
in the model, and n is the number of observations in the model. For logistic 
regression, parameter estimates are the same as predictors, including the inter-
cept. Using the medpar data set described earlier, we model died on

> data(medpar)
> summary(mymod <- glm(died ~ white + hmo + los + factor(type),
+                  family = binomial,
+                  data = medpar))

Coefficients:
               Estimate Std. Error z value Pr(>|z|)    
(Intercept)   -0.720149   0.219073  -3.287  0.00101 ** 
white          0.303663   0.209120   1.452  0.14647    
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hmo            0.027204   0.151242   0.180  0.85725    
los           -0.037193   0.007799  -4.769 1.85e-06 ***
factor(type)2  0.417873   0.144318   2.896  0.00379 ** 
factor(type)3  0.933819   0.229412   4.070 4.69e-05 ***

    Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1881.2 on 1489 degrees of freedom
AIC: 1893.2

Using R and the values of the log-likelihood and the number of predictors, 
we may calculate the AIC as:

> -2*( -940.5755 -6)
[1] 1893.151

This is the same value that is displayed in the glm output. It should be 
noted that of all the information criteria that have been formulated, this ver-
sion of the AIC is the only one that does not adjust the log-likelihood by n, the 
number of observations in the model. All others adjust by some variation of 
number of predictors and observations. If the AIC is used to compare models, 
where n is different (which normally should not be the case), then the test will 
be mistaken. Using the version of AIC where the statistic is divided by n is 
then preferable—and similar to that of other criterion tests. The AIC statistic, 
captured from the postestimation statistics following the execution of glm, is 
displayed below, as is AICn. These statistics are also part of the modelfit func-
tion described below.

AIC – from postestimation statistics
> mymod$aic
[1] 1893.151

AICn – AIC divided by n
> aicn <- mymod$aic/(mymod$df.null + 1)
> aicn
[1] 1.266322

3.3.2  Finite Sample

Finite sample AIC was designed to compare logistic models. It is rarely used 
in reports, but is important to know. It is defined as:

	
FAIC

/= − − − + − −{[ ( )] ( )}2 1 1L k k k n k
n 	

(3.16)
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3.3.3  Bayesian Information Criterion

The Schwarz Bayesian information criterion (BIC) is the most used BIC test 
found in the literature. Developed by Gideon Schwarz in 1978, its value differs 
little from the AIC statistic. Most statisticians prefer the use of this statistic, 
but the AIC nevertheless appears to be more popular. My recommendation is 
to test models with both statistics. If the values substantially differ, it is likely 
that the model is mis-specified. Another binomial link may be required; for 
example, probit, complementary loglog, or loglog.

	 BIC ln= − + ( )2L k n 	 (3.17)

The BIC is not available in the default R software, but it can be obtained 
by using the modelfit function in the COUNT package. Following the mymod 
model above, an analyst should type

> modelfit(mymod)
$AIC
[1] 1893.151

$AICn
[1] 1.266322

$BIC
[1] 1925.01

$BICqh
[1] 1.272677

The BIC statistic is given as 1925.01, which is the same value displayed in 
the Stata estat ic post-estimation command. Keep in mind that size compari-
son between the AIC and BIC statistics are not statistically meaningful.

3.3.4 ​ Other Information Criterion Tests

The Hannan and Quinn BIC statistic, first developed in 1979, is provided in the 
modelfit output. It has a value similar to AIC/n. If the two statistics differ by 
much, this is an indication of mis-specification.

Another test statistic developed for correlated data is called the AICH sta-
tistic. See Hilbe (2014) for a full discussion:

	
AICH = − + − − + + + +

− − −2
4 2 1 2

2

2

L
( )( )( )p pk p p k p k

n p k 	
(3.18)
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3.4  THE MODEL FITTING PROCESS: 
ADJUSTING STANDARD ERRORS

When dealing with logistic models we must be concerned, among other 
things, with data that may be more correlated than is allowed by the underly-
ing Bernoulli distribution. If the data are taken from clusters of items; for 
example, litters of pups, galaxies, schools within a city, and so forth, the inde-
pendence of observations criterion of the Bernoulli PDF and likelihood is vio-
lated. Standard errors based on this distribution will be biased, indicating that 
a predictor significantly contributes to a model when it in fact does not.

Other distributional problems can exist as well. We need not describe 
them all here. Just be aware that it is wise to check for problems that the model 
has with the data. Fortunately, we do not have to identify every problem that 
may exist in the data in order to produce a well-fitted model. At times per-
forming various adjustments to the model at the outset will allow the analyst 
to model the data without having to be concerned about the particular cause.

3.4.1  Scaling Standard Errors

I described why we may need to scale standard errors in Chapter 2, Section 
2.3.1, and also gave an example of how to do it. To repeat, if the data are 
correlated or somehow do not meet the distribution requirements of the PDF 
underlying the model, the standard errors displayed in model results are likely 
biased. When we scale standard errors, we are adjusting them to the values 
they would have if there was not extra correlation or some other problem with 
the data. Scaling was designed to deal with excess correlation in the data, but 
it also can be used to address other unknown problems.

R users may scale the standard errors of a logistic model by using the qua-
sibinomial “family” with the glm function. Scaling is accomplished by mul-
tiplying the square root of the Pearson dispersion by the standard error of the 
model. When we discussed scaling in Chapter 2, we had not yet discussed the 
dispersion statistic, which is essential the operation.

Let’s use the mymod example we have been using in this chapter to show 
how to scale standard errors. By creating them by hand, it will allow us to 
better understand what they are doing. First, let’s show a table with the model 
coefficients and model standard errors

> coef <- mymod$coefficients
> se <- sqrt(diag(vcov(mymod)))
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> coefse <- data.frame(coef, se)
> coefse
                     coef         se
(Intercept)   -0.72014852 0.21907288
white          0.30366254 0.20912002
hmo            0.02720413 0.15124225
los           -0.03719338 0.00779851
factor(type)2  0.41787319 0.14431763
factor(type)3  0.93381912 0.22941205

Next we create Pearson dispersion statistics and multiply their square root 
by se above.

> pr <- resid(mymod, type = “pearson”)
> pchi2 <- sum(residuals(mymod, type = “pearson”)^2)
> disp <- pchi2/mymod$df.residual
> scse <- se*sqrt(disp)
> newcoefse <- data.frame( coef, se, scse)
> newcoefse
                     coef         se        scse
(Intercept)   -0.72014852 0.21907288 0.221301687
white          0.30366254 0.20912002 0.211247566
hmo            0.02720413 0.15124225 0.152780959
los           -0.03719338 0.00779851 0.007877851
factor(type)2  0.41787319 0.14431763 0.145785892
factor(type)3  0.93381912 0.22941205 0.231746042

We can now check to see if the quasibinomial “family” option produces 
scaled standard errors

> summary(qmymod <- glm(died ~ white + hmo + los + factor(type),
+                  family = quasibinomial,
+                  data = medpar))

                        .    .    .
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)   -0.720149   0.221302  -3.254  0.00116  ** 
white          0.303663   0.211248   1.437  0.15079    
hmo            0.027204   0.152781   0.178  0.85870    
los           -0.037193   0.007878  -4.721  2.56e-06 ***
factor(type)2  0.417873   0.145786   2.866  0.00421  ** 
factor(type)3  0.933819   0.231746   4.029  5.87e-05 ***
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---(Dispersion parameter for quasibinomial family 
taken to be 1.020452)

    Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1881.2 on 1489 degrees of freedom
AIC: NA

The standard errors displayed in the quasibinomial model are identical to 
the scaled standard errors we created by hand. Remember that there is no true 
quasibinomial GLM family. Quasibinomial is not a separate PDF. It is simply 
an operation to provide scaled standard errors on a binomial model such as 
logistic regression.

When an analyst models a logistic regression with scaled standard errors, 
the resultant standard errors will be identical to model-based standard errors 
if there are no distributional problems with the data. In other words, a logistic 
model is not adversely affected if standard errors are scaled when they do not 
need it. 

A caveat when using R’s quasibinomial family: p-values are based on t 
and not z as they should be. As a result a predictor p-value may be >0.05 and 
its confidence interval not include 0. Our toOR function used with quasibi-
nomial models provides correct values. To see this occur, model the grouped 
quasibinomial model: sick <- c(77,19,47,48,16,31); cases <- c(458,147,494,384, 
127,464); feed <- c(1,2,3,1,2,3); gender <- c(1,1,1,0,0,0).

3.4.2  Robust or Sandwich Variance Estimators

Scaling was the foremost method of adjusting standard errors for many years—
until analysts began to use what are called robust or sandwich standard errors. 
Like scaling, using robust standard errors only affects the model when there 
are problems with the model-based standard errors. If there is none, then the 
robust standard error reduces to the model-based errors. Many statisticians 
recommend that robust or sandwich standard errors be used as a default.

I shall use the same data to model a logistic regression with sandwich or 
robust standard errors. The sandwich package must be installed and loaded 
before being able to create sandwich standard errors.

>library(sandwich)
> rmymod <- glm(died ~ white + hmo + los + factor(type),
	 family = binomial, data = medpar)
> rse <- sqrt(diag(vcovHC(rmymod, type = “HC0”)))

The robust standard errors are stored in rse. We’ll add those to the table of 
standard errors we have been expanding.
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> newcoefse2 <- data.frame( coef, se, scse, rse)
> newcoefse2
                     coef         se        scse         rse
(Intercept)   -0.72014852 0.21907288 0.221301687 0.219434958
white          0.30366254 0.20912002 0.211247566 0.210398430
hmo            0.02720413 0.15124225 0.152780959 0.150972915
los           -0.03719338 0.00779851 0.007877851 0.009726677
factor(type)2  0.41787319 0.14431763 0.145785892 0.145242836
factor(type)3  0.93381912 0.22941205 0.231746042 0.229306158

It should be mentioned that models evaluating longitudinal and clustered 
data like Generalized Estimating Equations always assume that there is more 
correlation within longitudinal units or panels, or within cluster panels, than 
between them. The assumption is that panels or clusters are independent of 
one another; that is, there is no correlation between them. The correlation in 
the data comes from within the panels. This does not always occur though, 
but because correlation is assumed to exist within panels, standard errors of 
predictors are assumed to entail correlation, and need to be adjusted using a 
sandwich variance estimator.

3.4.3  Bootstrapping

Bootstrapping is an entire area of statistics in itself. Here we are discussing 
bootstrapped standard errors. Statisticians have devised number of ways to 
bootstrap. I shall develop a function that will bootstrap the model standard 
errors. I set the number of bootstraps at 100, but it could have been higher for 
perhaps a bit more accuracy.

>library(boot)
> bootmod <- glm(died ~ white + hmo + los + factor(type),
                family=binomial, data=medpar)
> t <- function ( x, i) {
  xx <- x[i,]
  �bsglm <- glm(died ~ white + hmo + los + factor(type), 
family = binomial, data = medpar)

  return(sqrt(diag(vcov(bsglm))))
  }
> bse <- boot(medpar, t, R = 100)
> sqrt(diag(vcov(bootmod)))
> bootse < - apply(bse$t, 2, mean)

The bootstrapped standard errors are in the vector, bootse. We’ll attach 
them to the table of standard errors which we keep expanding as we add more 
types of adjustments.
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>newcoefse3 <- data.frame( coef, se, scse, rse, bootse)
> round(newcoefse3, 6)
                  coef       se     scse      rse   bootse
(Intercept)  -0.720149 0.219073 0.221302 0.219435 0.219073
white         0.303663 0.209120 0.211248 0.210398 0.209120
hmo           0.027204 0.151242 0.152781 0.150973 0.151242
los          -0.037193 0.007799 0.007878 0.009727 0.007799
factor(type)2 0.417873 0.144318 0.145786 0.145243 0.144318
factor(type)3 0.933819 0.229412 0.231746 0.229306 0.229412

The bootstrap algorithm incorporates a great deal of randomness into the 
calculations, and it generally takes some time to calculate. Each run of the 
model produces different standard error results. Most analysts appear to prefer 
employing sandwich standard errors.

3.5  RISK FACTORS, CONFOUNDERS, 
EFFECT MODIFIERS, AND INTERACTIONS

There are a few terms that are commonly employed when modeling data using 
logistic regression. Analysts should be aware of their meanings. When a logis-
tic model is being estimated, it is traditionally recognized that the binary vari-
able being modeled is referred to as the response term. There is also a single 
term that is thought to be of foremost interest to the model. This term is known 
as a risk factor and is usually binary or categorical. For instance, suppose 
a model for which “died within a specific period” is the response, and we 
have a variable which is a type of physical impairment called myocardial; for 
example, with myocardial = 1 indicating that the subject had an anterior site 
heart attack, and myocardial = 0 signifying that the damage to the heart is at a 
nonanterior site. We want to model died in order to determine whether anterior 
or nonanterior site heart attacks have a higher probability of death. We are 
modeling died, but are foremost interested in how levels of myocardial bear on 
the probability of death. Myocardial is called a risk factor.

The model may also include a predictor which significantly relates to the 
response, as well as to the risk factor. However, our primary interest is not to 
learn about this predictor, which is called a confounder. The inclusion or exclu-
sion of a confounder has a significant effect on the coefficient of the risk factor.

An effect modifier is a predictor that interacts with the risk factor. The 
risk factor and effect modifier are the main effects terms of an interaction 
which is used to explain the response. An interaction term, of course, is con-
structed when the levels of one predictor influence the response in a different 
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manner based on the levels of another predictor. Suppose that the response 
term is death and we have predictors white and los. These are variables in 
the medpar data. If we believe that the probability of death based on length 
of stay in the hospital varies by racial classification, then we need to incor-
porate an interaction term of white × los into the model. The main effects 
only model is:

> summary(y0 <- glm(died~ white + los, family = binomial,
	 data = medpar))

Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.598683   0.213268  -2.807    0.005   **
white        0.252681   0.206552   1.223    0.221
los         -0.029987   0.007704  -3.893    9.92e-05 ***

Note that los is significant, but white is not. Let’s create an interaction of 
white and los called wxl. We insert it into the model, making sure to include 
the main effects terms as well.

> wxl <- medpar$white * medpar$los

> summary(y1 <- glm(died~ white + los + wxl, 
family = binomial, data = medpar))
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.04834    0.28024  -3.741 0.000183 ***
white        0.77092    0.29560   2.608 0.009107 **
los          0.01002    0.01619   0.619 0.535986
wxl         -0.04776    0.01829  -2.611 0.009035 **

The interaction term is significant. It makes no difference if the main 
effects terms are significant or not. Only the interaction term is interpreted 
for this model. We calculate the odds ratios of the interaction of white and los 
from 1 to 40 as:

	 ORinteraction white wxl los= +exp( * [ : ])β β 1 40 	 (3.19)

That is, we add the slope of the binary predictor to the product of the slope 
of the interaction and the value(s) of the continuous predictor, exponentiating 
the whole.

# Odds ratios of death for a white patient for length of stay 1–40 days.
# Note that odds of death decreases with length of stay.
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> ior <- exp(0.77092 + (-0.04776*1:40))
> ior
 [1] 2.0609355 1.9648187 1.8731846 1.7858241 1.7025379 1.6231359 1.5474370
 [8] 1.4752685 1.4064658 1.3408718 1.2783370 1.2187186 1.1618807 1.1076936
[15] 1.0560336 1.0067829 0.9598291 0.9150652 0.8723889 0.8317029 0.7929144
[22] 0.7559349 0.7206800 0.6870694 0.6550262 0.6244775 0.5953535 0.5675877
[29] 0.5411169 0.5158806 0.4918212 0.4688839 0.4470164 0.4261687 0.4062933
[36] 0.3873448 0.3692800 0.3520578 0.3356387 0.3199854

Interactions for Binary × Binary. Binary × Categorical, Binary × 
Continuous, Categorical × Categorical, Categorical × Continuous, and 
Continuous × Continuous may be developed, as well as three-level interac-
tions. See Hilbe (2009) for a thorough analysis of interactions. For now, keep 
in mind that when incorporating an interaction term into your model, be sure 
to include the terms making up the interaction in the model, but don’t worry 
about their interpretation or significance. Interpret the interaction based on 
levels of particular values of the terms. When LOS is 14, we may interpret the 
odds ratio of the interaction term as:

White patients who were in the hospital for 14 days have a some 10% greater 
odds of death than do non-white patients who were in the hospital for 14 
days.

SAS CODE

/* Section 3.1 */

*Refer to the code in section 1.4 to import and print edrelig dataset;
*Refer to proc freq in section 2.4 to generate the frequency table;
*Build logistic model and obtain odds ratio & covariance matrix;
proc genmod data = edrelig descending;
      class educlevel (ref = ‘AA’) / param = ref;
      model religious = age male kids educlevel/dist = binomial
            link = logit covb;
      estimate “Intercept” Intercept 1 / exp;
      estimate “Age” age 1 / exp;
      estimate “Male” male 1 / exp;
      estimate “Kid” kids 1 / exp;
      estimate “BA” educlevel 1 0 / exp;
      estimate “MA/PhD” educlevel 0 1 / exp;
run;

*Refer to proc iml in section 2.3 and the full code is provided 
online;
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/* Section 3.2 */

*Build the logistic model and obtain the deviance residual;
proc genmod data = edrelig descending;
    class educlevel (ref = ‘AA’) / param = ref;
    model religious = age male kids educlevel/dist = binomial link = logit;
    output out = residual resdev = deviance;
run;

*Refer to proc means in section 2.5 to summarize deviance residual;
*Build the logistic model and obtain the Person residual;
proc genmod data = edrelig descending;
    class educlevel (ref = ‘AA’) / param = ref;
    model religious = age male kids educlevel/dist = binomial link = logit;
    output out = residuals reschi = pearson;
run;

*Pearson Chi2 statistic;
proc sql;
    create table pr as
    select sum(pearson**2) as pchi2, sum(pearson**2)/595 as disp
    from residuals;
quit;

*Refer to proc print in section 2.2 to print dataset pr-Chi2 
statistic;
*Build the logistic model and obtain statistic;
proc genmod data = edrelig descending;
    class educlevel (ref = ‘AA’) / param = ref;
    model religious = age male kids educlevel/dist = binomial link = logit;
    output out = obstats leverage = hat stdreschi = stdp
    stdresdev = stddev;
run;

*Summary for statistic;
proc means data = obstats min q1 median mean q3 max maxdec = 6;
      var hat stdp stddev;
run;
/* Section 3.3 */

*Build the logistic model with class;
proc genmod data = medpar descending;
      class type (ref = ‘1’) / param = ref;
      model died = white hmo los type / dist = binomial link = logit covb;
run;

/* Section 3.4 */

*Refer to proc iml in section 2.3 and the full code is provided online;
*Sort the dataset;
proc sort data = medpar;
	 by descending type;
run;
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*Use quasilikelihood function to generate scaling standard error;
proc glimmix data = medpar order = data;
    class type;
    model died (event = ‘1’) = white hmo los type/dist = binary link = logit
          solution;
    random _RESIDUAL_;
run;

*Generate the robust standard errors;
proc surveylogistic data = medpar;
      class type (ref = ‘1’) / param = ref;
      model died (event = ‘1’) = white hmo los type;
run;

*Generate the bootstrapped standard errors;
%macro bootstrap (Nsamples);
proc surveyselect data = medpar out = boot
      seed = 30459584 method = urs samprate = 1 rep = &nsamples.;
run;

proc genmod data = boot descending;
      class type (ref = ‘1’) / param = ref;
      model died =white hmo los type / dist = binomial link = logit;
      freq numberhits;
      by replicate;
      ods output ParameterEstimates = est;
run;

data est1;
      set est;
      parameter1 = parameter;
      if parameter = “Scale” then delete;
      if level1 = 2 then parameter1 = “type2”;
      else if level1 = 3 then parameter1 = “type3”;
run;

proc means data = est1 mean;
      class parameter1;
      var StdErr;
run;
%mend;
%bootstrap(100);

/* Section 3.5 */

*Refer to proc genmod in section 1.4 to build the logistic model;
*Build the logistic model with interaction;
proc genmod data = medpar descending;
      model died =white los white*los/ dist = binomial link = logit;
run;

*Generate odds ratios for los from 1 to 40;
data ior;
      do i = 1 to 40;
      or = exp(0.7709 + (-0.0478*i));
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      output;
      end;
run;

*Refer to proc print in section 2.2 to print dataset ior;

STATA CODE

3.1
. use edrelig, clear
. glm religious age male kids i.educlevel, fam(bin) nolog nohead eform
. glm religious age male kids i.educlevel, fam(bin) nolog eform

3.2
. e(deviance)	 // deviance
. e(deviance_p)	 // Pearson Chi2
. e(dispers_p)	 // Pearson dispersion
. di e(ll)	 // log-likelihood
. gen loglike = e(ll)
. scalar loglik = e(ll)
. di loglik
. predict h, hat
. sum(h)	 // hat matrix diagonal
. predict stpr, pear stand
. sum stpr	 // stand. Pearson residual
. predict stdr, dev stand
. sum stdr	 // stand deviance residual

3.3
. use medpar, clear
. qui glm died white hmo los i.type, fam(bin)
. estat ic
. abic

3.4
. glm died white hmo los i.type, fam(bin) scale(x2) nolog nohead
. glm died white hmo los i.type, fam(bin) vce(robust) nolog nohead
. glm died white hmo los i.type, fam(bin) vce(boot) nolog nohead

3.5
. glm died white los, fam(bin) nolog nohead
. gen wxl <- white*los
. glm died white los wxl, fam(bin) nolog nohead
. glm died white los wxl, fam(bin) nolog nohead eform
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4Testing and 
Fitting a 
Logistic Model

4.1  CHECKING LOGISTIC MODEL FIT

4.1.1  Pearson Chi2 Goodness-of-Fit Test

I earlier mentioned that the Pearson Chi2 statistic, when divided by the 
residual degrees of freedom, provides a check on the correlation in the data. 
The idea is to observe if the result is much above the value of 1.0. That is, 
a well-fitted model should have the values of the Pearson Chi2 statistic and 
residual degrees of freedom closely the same. The closer in value, the better 
the fit.

	

Pearson 2
Residual

Chi
dof

~ .1 0

This test, as we shall later discuss, is extremely useful for evaluating 
extra dispersion in grouped logistic models, but for the observation-based 
models we are now discussing it is not. A large discrepancy from the value 
of 1, though, does indicate general extra dispersion or extra correlation in the 
data, for which use of sandwich or scaled standard errors is an appropriate 
remedy.

A traditional Pearson Chi2 goodness-of-fit (GOF) test, however, is 
commonly used to assess model fit. It does this by leaving the value of the 
Pearson Chi2 statistic alone, considering it instead to be Chi2 distributed with 
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the residual degrees of freedom defining the Chi2 degrees of freedom. The 
p-values are based on the distribution, 1-pchisq(pchi2,df)

	 Chi Chi rdof2(Pearson 2, )

We may code the Pearson Chi2 GOF test, creating a little table based on 
the mymod model, as:

> pr <- sum(residuals(mymod, type=“pearson”)^2)
> df <-mymod$df.residual
> p_value <- pchisq(pr, mymod$df.residual, lower=F)
> print(matrix(c(“Pearson Chi GOF”,“Chi2”,“df”,“p-value”, “ ”,
+           round(pr,4),df, round(p_value,4)), ncol=2))
     [,1]              [,2]
[1,] “Pearson Chi GOF” “ ”
[2,] “Chi2”            “1519.4517”
[3,] “df”              “1489”
[4,] “p-value”         “0.2855”

This test is still found in many books, articles, and in research reports. 
Analysts should be aware however, that many statisticians no longer rely on 
this test as a global fit test. Rather than using a single test to approve or disap-
prove a model as well fit, statisticians now prefer to employ a variety of tests 
to evaluate a model. The distributional assumptions upon which tests like this 
are based are not always met, or are only loosely met, which tends to bias test 
results. Care needs to be taken when accepting test results.

With a p > .05, the Pearson Chi2 GOF test indicates that we can reject the 
hypothesis that the model is not well-fitted. In short, we may use the test 
result to support an acceptance of the model.

4.1.2  Likelihood Ratio Test

In Chapter 2, Section 2.3, we defined the likelihood ratio test as:

	 Likelihood ratio test 2{  }reduced full= − L L– 	 (4.1)

Using the drop1 function, an analyst may assess which model of many 
nested models are better fitted. For example, we create a full model using the 
medpar data. Each predictor is dropped from the model in turn, providing a 
display of the deviance, Akaike information criterion (AIC), likelihood ratio 
test statistic, and associated p-value.

> summary(mymod <- glm(died ~ white + los + hmo + factor(type),
                             family = binomial,
                             data = medpar))
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Coefficients:
              Estimate    Std. Error z value Pr(>|z|)
(Intercept)   -0.720149   0.219073  -3.287   0.00101 **
white          0.303663   0.209120   1.452   0.14647
los           -0.037193   0.007799  -4.769   1.85e-06 ***
hmo            0.027204   0.151242   0.180   0.85725
factor(type)2  0.417873   0.144318   2.896   0.00379 **
factor(type)3  0.933819   0.229412   4.070   4.69e-05 ***

Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1881.2 on 1489 degrees of freedom
AIC: 1893.2

> drop1(mymod, test=”Chi”)
Single term deletions

Model:
died ~ white + los + +hmo + factor(type)
             Df Deviance    AIC     LRT  Pr(>Chi)
<none>            1881.2 1893.2
white         1   1883.3 1893.3  2.1778    0.1400
los           1   1907.9 1917.9 26.7599 2.304e-07 ***
hmo           1   1881.2 1891.2  0.0323    0.8574
factor(type)  2   1902.9 1910.9 21.7717 1.872e-05 ***

4.1.3  Residual Analysis

The analysis of residuals plays an important role in assessing logistic model 
fit. The analyst can see how the model fits rather than simply looking at a 
statistic. Analysts have devised a number of residuals to view the relationships 
in a logistic model. Most all residuals that are used in logistic regression were 
discussed in Chapter 3, Section 3.2, although a couple were not. Table 4.1 sum-
marizes the foremost logistic regression residuals. Table 4.2 gives the R code 
for producing them. We will only use a few of these residuals in this book, but 
all have been used in various contexts to analyze the worth of a logistic model. 
Finally, I shall give the code and graphics for several of the foremost used 
residual analyses used in publications.

The Anscombe residuals require calculation of an incomplete beta 
function, which is not part of the default R package. An ibeta function is 
displayed below, together with code to calculate Anscombe residuals for 
the mymod model above. Paste the top lines into the R editor and run. ans 
consists of logistic Anscombe residuals. They are identical to Stata and SAS 
results.
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y <- medpar$died ; mu <- mymod$fitted.value
a <- .666667 ;  b <- .666667
ibeta<- function(x,a,b){ pbeta(x,a,b)*beta(a,b) }
A <- ibeta(y,a,b) ;  B <- ibeta(mu,a,b)
ans <- (A-B)/ (mu*(1-mu))^(1/6) 

> summary(ans)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-1.5450 -1.0090 -0.9020 -0.0872  1.5310  3.2270 

Residual analysis for logistic models is usually based on what are known as 
n-asymptotics. However,  some statisticians suggest that residuals should be 
based on m-asymptotically formatted data. Data in observation-based form; 
that is, one observation or case per line, are in n-asymptotic format. The 
datasets we have been using thus far for examples are in n-asymptotic form. 
m-asymptotic data occurs when observations with the same values for all 

TABLE 4.1  Residuals for Bernoulli logistic regression

Raw r y – μ
Pearson r p ( )/y − −µ µ µ( )1

Deviance rd

2 1 1∑ ={ }( )In / ifµ y

2 1 1 0∑ − ={ }( )In( / ) ifµ y

Stand. Pearson r sp r

h

p

1 −

Stand. deviance r sd r

h

d

1 −

Likelihood r l
sgn( ) ( ) ( )( )y h r h rp d− + −µ 2 21

Anscombe r A A y A( ) ( )
{ } /

−
−

µ
µ µ( )1 1 6
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Hilbe, 2009).
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predictors are considered as a single observation, but with an extra variable in 
the data signifying the number of n-asymptotic observations having the same 
covariate pattern.  For example, let us consider the 1495 observation medpar 
data for which we have kept only white, hmo, and type as predictors for died. 
There are 1495 observations for the data in this format. In m-asymptotic for-
mat the data appears as:  

   white  hmo  type      m
1      0    0     1     72
2      0    0     2     33
3      0    0     3     10
4      0    1     1      8
5      0    1     2      4
6      1    0     1    857
7      1    0     2    201
8      1    0     3     83
9      1    1     1    197
10     1    1     2     27
11     1    1     3      3

There are several ways to reduce the three variable subset of the medpar data 
to m-asymptotic form. I will show a way that maintains the died response 
variable, which is renamed dead due to it not being a binary variable, and then 
show how to duplicate the above table. 

> data(medpar)

TABLE 4.2  Residual code

mu <- mymod$fitted.value           # predicted probability; fit

r <- medpar$died – mu              # raw residual

dr <-resid(mymod, type=“deviance”) # deviance resid

pr <- resid(mymod, type=“pearson”) # Pearson resid            

hat <- hatvalues(mymod)            # hat matrix diagonal

stdr <- dr/sqrt(1-hat)             # standardized deviance

stpr <- pr/sqrt(1-hat)             # standardized Pearson

deltadev <- dr^2 + hat*stpr^2      # Δ deviance 

deltaChi2 <- stpr^2                # Δ Pearson

deltaBeta <- (pr^2*hat/(1-hat)^2)  # Δ beta

ncoef <- length(coef(mymod))       # number coefficients

# Cooke’s distance

cookD <- (pr^2 * hat) / ((1-hat)^2 * ncoef * summary(mymod)$dispersion)
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> test <- subset(medpar, select = c(died, white, hmo, type))
> white <- factor(test$white)
> hmo   <-  factor(test$hmo)
> type  <- factor(test$type)
> mylgg <- na.omit(data.frame(cast(melt(test, measure=”died”),
+      white + hmo + type ~ ., 
+      function(x) {c(alive=sum(x==0), dead=sum(x==1))} )))
> mylgg$m <- mylgg$alive + mylgg$dead
> mylgg 
   white hmo type alive dead   m
1      0   0    1    55   17  72
2      0   0    2    22   11  33
3      0   0    3     6    4  10
4      0   1    1     7    1   8
5      0   1    2     1    3   4
6      1   0    1   580  277 857
7      1   0    2   119   82 201
8      1   0    3    43   40  83
9      1   1    1   128   69 197
10     1   1    2    19    8  27
11     1   1    3     2    1   3

The code above produced the 11 covariate pattern m-asymptotic data, but I 
also provide dead and alive, which can be used for grouped logistic models 
in the next chapter. m is simply the sum of alive and dead. For example, look 
at the top line. With m = 72, we know that there were 72 times in the reduced 
medpar data for which white=0, hmo=0, and type=1. For that covariate pat-
tern, died=1 (dead) occurred 17 times and died=0 (alive) occurred 55 times. 

To obtain the identical covariate pattern list where only white, hmo, type, 
and m are displayed, the following code reproduces the table. 

> white <- mylgg$white
> hmo<- mylgg$hmo
> type <- mylgg$type
> m <- mylgg$m
> m_data <- data.frame(white, hmo,type,m)
> m_data
    white  hmo  type    m
1       0    0     1   72
2       0    0     2   33
3       0    0     3   10
4       0    1     1    8
5       0    1     2    4
6       1    0     1  857
7       1    0     2  201
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8       1    0     3   83
9       1    1     1  197
10      1    1     2   27
11      1    1     3    3

It should be noted that all but one possible separate covariate pattern exists in 
this data. Only the covariate pattern, [white=0, hmo=1, type=3] is not part of 
the medpar dataset. It is therefore not in the m-asymptotic data format. 

I will provide codes for Figures 4.1 through 4.3 that are important when 
evaluating logistic models as to their fit. Since R’s glm function does not use 
a m-asymptotic format for residual analysis, I shall discuss the traditional 
n-asymptotic method. Bear in mind that when there are continuous predic-
tors in the model, m-asymptotic data tend to reduce to n-asymptotic data. 
Continuous predictors usually have many more values in them than do binary 
and categorical predictors. A model with two or three continuous predictors 
typically results in a model where there is no difference between m-asymptotic 
and n-asymptotic formats. Residual analysis on observation-based data is the 
traditional manner of executing the plots, and are the standard way of graphing 
in R. I am adding los (length of stay; number of days in hospital) back into the 
model to remain consistent with earlier modeling we have done on the medpar 
data.

You may choose to construct residual graphs using m-asymptotic meth-
ods. The code to do this was provided above. However, we shall keep with 
the standard methods in this chapter. In the next chapter on grouped logistic 
models, m-asymptotics is built into the model. 

R code for creating the standard residuals found in literature related to 
logistic regression is given in Table 4.2. Code for creating a simple squared 
standardized deviance residual versus mu graphic (Figure 4.1) is given as:

data(medpar)
mymod <- glm(died ~ white + hmo + los + factor(type), 
             family=binomial, data=medpar)
summary(mymod)
mu <- mymod$fitted.value           # �predicted value; 

probability that 
died==1

dr <-resid(mymod, type=”deviance”) # deviance residual
hat <- hatvalues(mymod)            # hat matrix diagonal
stdr <- dr/sqrt(1-hat)             # �standardized 

deviance residual
plot(mu, stdr^2)                  
abline(h = 4, col=”red”)
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Analysts commonly use the plot of the square of the standardized deviance 
residuals versus mu to check for outliers in a fitted logistic model. Values in 
the plot greater than 4 are considered outliers. The values on the vertical axis 
are in terms of standard deviations of the residual. The horizontal axis are pre-
dicted probabilities. All figures here are based on the medpar data. 

Another good way of identifying outliers based on a residual graph is by 
use of Anscombe residuals versus mu, or the predicted probability that the 
response is equal to 1. Anscombe residuals adjust the residuals so that they are 
as normally distributed as possible. This is important when using 2, or 4 when 
the residual is squared, as a criterion for specifying an observation as an out-
lier. It is the 95% criterion so commonly used by statisticians for determining 
statistical significance. Figure 4.2 is not much different from Figure 4.1 when 
squared standardized deviance residuals are used in the graph. The Anscombe 
plot is preferred.

> plot(mu, ans^2)
> abline(h = 4, lty = “dotted”)

A leverage or influence plot (Figure 4.3) may be constructed as:

> plot(stpr, hat)                 
> abline(v=0, col=”red”)

Large hat values indicate covariate patterns that differ from average covari-
ate patterns. Values on the horizontal extremes are high residuals. Values that 
are high on the hat scale, and low on the residual scale; that is, high in the 
middle and close to the zero-line do not fit the model well. They are also dif-
ficult to detect as influential when using other graphics. There are some seven 
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observations that fit this characterization. They can be identified by selecting 
hat values greater than 0.4 and squared residual values of |2|.  

A wide variety of graphics may be constructed from the residuals given in 
Table 4.2.  See Hilbe (2009), Bilger and Loughin (2015), Smithson and Merkle 
(2014), and Collett (2003) for examples.

4.1.4  Conditional Effects Plot

A nice feature of logistic regression is its ability to allow an analyst to plot the 
predicted probability of an outcome on a continuous predictor, factored across 
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levels of another categorical predictor. Many times the categorical predictor is 
binary so that two curves of the continuous predictor are displayed, but more 
than two levels are possible. The conditional effects plot produces this type of 
graphic, which is quite valuable in understanding the relationship of the prob-
ability of the outcome on important predictors.

For an example I use the medpar data, modeling the probability of death 
by length of stay in the hospital, factored by the type of admission. The three 
levels of the variable type in the data are (1) elective, (2) urgent, and (3) emer-
gency. Level 1 has been employed as the reference level. In the conditional 
effects plot, however, each level of type is used to produce a curve of the prob-
ability of death for a given length of stay in the hospital. The plot shows three 
length of stay curves—one for each level of type.

The variable type is a single variable in the data. The first thing we must 
do is convert the factor variable into three numeric levels. Then the data are 
modeled and the predicted values of los are created for each level of type. I 
have placed the code in Table 4.3 so that it can be placed in the R [File > “New 
Script”] editor and executed. 

The figure created is displayed as Figure 4.4. The probability curves make 
sense, with the left most being “elective” admissions, which one expects to have 
a less lengthy hospital stay than for more serious admission types. “Urgent” 
admissions is the middle curve and “emergency” the right most, which has both 
a longer length of stay and also a higher probability of death. When patients are 
in the hospital for a long time their risk of death is no longer as differentiated.

TABLE 4.3  Code for creating a conditional effects plot

data(medpar)

admit < - as.numeric(medpar$type) #convert factor to level values

cep < - glm(died ~ los + admit, data = medpar, family = binomial)

K1 < - coef(cep)[1] + coef(cep)[2]*medpar$los + coef(cep)[3]*1

R1 < - 1/(1 + exp(-K1))

K2 < - coef(cep)[1] + coef(cep)[2]*medpar$los + coef(cep)[3]*2

R2 < - 1/(1 + exp(-K2))

K3 < - coef(cep)[1] + coef(cep)[2]*medpar$los + coef(cep)[3]*3

R3 < - 1/(1 + exp(-K3))

layout(1)

plot(medpar$los, R1, col = 1, main = ‘P[Death] while hospitalized’,

 � sub= “Black = 1; Red = 2; Yellow = 3”, ylab = ‘Type of Admission’, 
xlab = ‘LOS’, ylim = c(0,0.4))

lines(medpar$los, R2, col = 2, type = ‘p’)

lines(medpar$los, R3, col = 3, type = ‘p’)
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4.2  CLASSIFICATION STATISTICS

Logistic regression is many times used as a classification tool. However, it 
should be noted that the ability to classify or discriminate between the two 
levels of the response variable is due more to the degree of separation between 
the levels and size of the regression coefficients than it is to the logistic model 
itself. Discriminate analysis and other classification schemes can also do a 
good job in classifying and are not logistic models. On the other hand, logistic 
models are easy to work with and are robust in the classification results they 
provide the analyst.

There are three basic or standard types of classification tools used with 
logistic regression—the sensitivity–specificity (S–S) plot, the receiver opera-
tor characteristic (ROC) curve, and a confusion table. We will address each 
of these in this section. Each of these tests is based on a cut point, which 
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determines the optimal probability value with which to separate predicted ver-
sus observed successes (1) or failures (0).

For an example we shall continue with the model used for residual analy-
sis earlier in the chapter. It is based on the medpar data, with died as the 
response variable and white, hmo, los and levels of type as the predictors. We 
then obtain predicted probabilities that died = =1, which is the definition of 
mu. The goal is then to determine how well the predicted probabilities actu-
ally predict classification as died = =1, and how well they predict died = =0. 
Analysts are not only interested in correct prediction though, but also in such 
issues as what percentage of times does the predictor incorrectly classify the 
outcome. I advise the reader to remember though that logistic models that clas-
sify well are not always well-fitted models. If your interest is strictly to produce 
the best classification scheme, do not be as much concerned about model fit. In 
keeping with this same logic, a well-fitted logistic model may not clearly dif-
ferentiate the two levels of the response. It’s valuable if a model accomplishes 
both fit and classification power, but it need not be the case.

Now to our example model:

> mymod <- glm(died ~ white + hmo + los + factor(type), 
                       family=binomial, 
                       data=medpar)

> mu <- predict(mymod, type=”response”)
> mean(medpar$died)
[1] 0.3431438

Analysts traditionally use the mean of the predicted value as the cut point. 
Values greater than 0.3431438 should predict that died = =1; values lower 
should predict died = =0. For confusion matrices, the mean of the response, 
or mean of the prediction, will be a better cut point than the default 0.5 value 
set with most software. If the response variable being modeled has substan-
tially more or less 1’s than 0’s, a 0.5 cut point will produce terrible results. I 
shall provide a better criterion for the cut point shortly, but the mean is a good 
default criterion.

Analysts can use the percentage at which levels of died relate to mu being 
greater or less than 0.3431438 to calculate such statistics as specificity and 
sensitivity. These are terms that originate in epidemiology, although tests like 
the ROC statistic and curve were first derived in signal theory. Using our 
example, we have patients who died (D) and those who did not (~D). The 
probability of being predicted to die given that the patient has died is called 
model sensitivity. The probability of being predicted to stay alive, given the 
fact that the patient remained alive is referred to as model specificity. In epi-
demiology, the term sensitivity refers to the probability of testing positive 
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for having a disease given that the patient in fact has the disease. Specificity 
refers to when a patient tests negative for a disease when they in fact do not 
have the disease. Terms such as false positive refers to when a patient tests 
positive for a disease even though they do not have it. False negatives happen 
when a patient tests negative for a disease, even though they actually have it. 
These are all important statistics in classification analysis, but model sensi-
tivity and specificity are generally regarded as the most important results. 
However, false positive and false negative are used with the main statistics 
for creating the ROC curve. Each of these statistics can easily be calculated 
from a confusion matrix. All three of these classification tools intimately 
relate with one another.

The key point is that determining the correct cut point provides the 
grounds for correctly predicting the above statistics, given an estimated model. 
The cut point is usually close to the mean of the predicted values, but is not 
usually the same value as the mean. Another way of determining the proper 
cut point is to choose a point at which the specificity and sensitivity are clos-
est in values. As you will see though, formulae have been designed to find the 
optimal cut point, which is usually at or near the site where the sensitivity and 
specificity are the closest.

The Sensitivity-Specificity (S-S) plot and ROC plot and tests are com-
ponents of the ROC_test function. The classification or confusion matrix is 
displayed using the confusion_stat function. Both of these functions are 
part of the LOGIT package on CRAN. When LOGIT has been loaded into 
memory the functions are automatically available to the analyst.

> library(LOGIT)
> data(medpar)
> mymod <- glm(died ~ los + white + hmo + factor(type), 
               family=binomial, data=medpar)

We shall start with the S–S plot, which is typically used to establish the 
cut point used in ROC and confusion matrix tests. The cut point used in ROC_
test is based on Youden’s J statistic (Youden, 1950). The optimal cut point is 
defined as the threshold that maximizes the distance to the identity (diagnonal) 
line of the ROC curve. The optimality criterion is based on:

max(sensitivities + specificities)

Other criteria have been suggested in the literature. Perhaps the most 
noted alternative is:

min((1 - sensitivities)^2 + (1- specificities)^2)

Both criteria give remarkably close cut points.
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4.2.1  S–S Plot

An S–S plot is a graph of the full range of sensitivity and specificity values that 
occur for cut-point values ranging from 0 to 1. The intersection of sensitivity 
and specificity values indicates the point at which the two statistics are closest 
in value. The graphic, indicates that 0.364 is that point. The associated $cut sta-
tistic that is displayed in the non-graphical output is more exact, having a value 
of 0.363812. This is the cut point we shall later use with the confusion matrix, 
from which false-positive and related statistics may be calculated (Figure 4.5).

> out1 < -ROCtest(mymod,10,type = “Sensitivity”)
> out1

$cut
[1] 0.363812

4.2.2  ROC Analysis

Receiver operator characteristic curves are generally used when statisticians 
wish to determine the predictive power of the model. It is also used for clas-
sification purposes. The ROC curve is understood as the optimal relationship 
of the model sensitivity by one minus the specificity. Note that the code used in 
4.2.1 must be used prior to using the code for ROC analysis. Statistics required 
for ROC analysis are calculated in the S-S plot test.
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When using ROC analysis, the analyst should look at both the ROC sta-
tistic as well as at the plot of the sensitivity versus one minus the specificity. 
A model with no predictive power has a slope of 1. This represents an ROC 
statistic of 0.5. Values from 0.5 to 0.65 have little predictive power. Values 
from 0.65 to 0.80 have moderate predictive value. Many logistic models fit into 
this range. Values greater than 0.8 and less than 0.9 are generally regarded as 
having strong predictive power. Values of 0.9 and greater indicate the highest 
amount of predictive power, but models rarely achieve values in this range. 
The model is a better classifier with greater values of the ROC statistic, or area 
under the curve (AUC). Beware of over-fitting with such models. Validating 
the model with a validation sample or samples is recommended. See Hilbe 
(2009) for details.

ROC is a test on the response term and fitted probability. SAS users should 
note that the ROC statistic described here is referred to as Harrell’s C statistic.

The ROCtest function is used to determine that the predictive power of 
the model is 0.607. Note that the type = “ROC” option is given to obtain the 
test statistic and graphic. Due to the sampling nature of the statistics, the cut 
point for the ROC curve differs slightly from that of the S–S plot (Figure 4.6).

> out2 <- ROCtest(mymod, fold = 10, type = “ROC”)
> out2

$cut
[1] 0.3614538
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FIGURE 4.6  Receiver operator characteristic curve.
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Note that a cutoff value of 0.3615 is used for the AUC statistic. Given 
that died indicates that a patient died while hospitalized, the AUC statistic 
can be interpreted as follows: The estimated probability is 0.61 that patients 
who die have a higher probability of death (higher mu) than patients who are 
alive. This value is very low. A ROC statistic of 0.5 indicates that the model 
has no predictive power at all. For our model there is some predictive power, 
but not a lot.

4.2.3  Confusion Matrix

The traditional logistic regression classification table is given by the so-called 
confusion matrix of correctly and incorrectly predicted fitted values. The 
matrix may be obtained following the use of the previous options of ROC_test 
by typing

> confusion_stat(out1$Predicted,out1$Observed)

A confusion matrix of values is immediately displayed on screen, together 
with values for correctly predicted (accuracy), sensitivity, and specificity. The 
cut point from the S–S plot is used as the confusion matrix cut point.

$matrix
     obs    0    1  Sum
pred                   
0         794  293 1087
1         188  220  408
Sum       982  513 1495

$statistics
   Accuracy Sensitivity Specificity 
  0.6782609   0.4288499   0.8085540   

Other statistics that can be drawn from the confusion matrix and that can 
be of value in classification analysis are listed below. Recall from earlier dis-
cussion that D = patient died while in hospital (outcome = 1) and ~D = patient 
did not die in hospital (outcomes = 0).

Positive predictive value	 :	 220/408 =0.5392157 = 53.92%
Negative predictive value	  :	794/1087 = 0.7304508 = 73.05%
False-positive rate for true ~D	 :	 188/982 = 0.1914460 = 19.14%
False-positive rate for true D	 :	 293/513 = 0.5711501 = 57.12%
False-positive rate for classified positives   :	 188/408 = 0.4607843 = 46.08%
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False-negative rate for classified
negatives	 : 293/1087 = 0.2695482 = 26.95%

An alternative way in which confusion matrices have been constructed is 
based on the closeness in sensitivity and specificity values. That is, either the 
analyst or an algorithm determines when the sensitivity and specificity values 
are closest, and then constructs a matrix based on the implications of those 
values. An example of this method can be made from the PresenceAbsence 
package and function. The cut point, or threshold, is 0.351, which is not much 
different from the cut point of 0.3638 we used in the ROC_test function. The 
difference in matrix values and the associated sensitivity and specificity values 
are rather marked though. I added the marginals to provide an easier under-
standing of various ancillary statistics which may be generated from the con-
fusion matrix.

> library(PresenceAbsence)
> mymod <- glm(died ~ white + hmo + los + factor(type), 
+           family=binomial, data=medpar)
> mu <- predict(mymod, type=”response”)
> �cmxdf <- data.frame(id=1:nrow(medpar), died=as.
vector(medpar$died), 

+    pred=as.vector(mu))
> cmx(cmxdf, threshold=0.351,which.model=1)  
# a function in PresenceAbsence

        Observed    Total
predicted   1   0
        1 292 378    670
        0 221 604    825
Total     513 982   1495

The correctly predicted value, or accuracy, is (292 + 604)/1495 or 59.93%. 
Sensitivity is 292/(292 + 221) or 56.72% and specificity is 604/(378 + 604) or 
61.51%. Note that the sensitivity (56.72%) and specificity (61.51%) are fairly 
close in values—they are as close as we can obtain. If we use the same algo-
rithm with the cut point of 0.363812 calculated by the S–S plot using the crite-
rion described at the beginning of this section, the values are

> cmx(cmxdf, threshold=0.363812,which.model=1)

         observed
predicted   1   0   Total
        1 252 233     485
        0 261 749    1010
Total     513 982    1495
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with an accuracy of 66.96%, a sensitivity of (252/513) 49.12%, and a specific-
ity of (749/982) 76.27%. The small difference in cut point results in a size-
able difference in classification values. The values of accuracy, sensitivity, 
and specificity obtained using the S–S plot criterion are similar to the values 
obtained in our last matrix with the same cut point: accuracy = 67.83%, sensi-
tivity = 42.88%, and specificity = 80.86%. Given the variability in results due 
to sampling, these results can be said to be the same.

Classification is a foremost goal of logistic modeling for those in indus-
tries such as credit scoring, banking, ecology, and even astronomy, to name a 
few. I refer you to Hilbe (2009), Bilger and Loughin (2015), or De Souza et al. 
(2015) for additional details regarding these tests.

4.3  HOSMER–LEMESHOW STATISTIC

The Hosmer–Lemeshow (H–L) test was designed by their creators as a GOF test 
to assess the differences between the observed and expected or predicted probabil-
ities as categorized across levels of predicted values. The predicted probabilities of 
the model are divided into a specified number of groups—usually 10. That is, the 
range of predicted probabilities is collapsed into 10 groups or quantiles of prob-
abilities. Each group is a range of probabilities. The observed number of 0s and 
1s are calculated for each group, and are compared to the count of predicted prob-
abilities of 0s and 1s for each group. The absolute differences are summed, result-
ing in an H–L Chi2 statistic. The degrees of freedom are the number of groups less 
two. The p-values greater than 0.05 indicate a well-fitted model. One rejects the 
null hypothesis that the observed and predicted probabilities are the same.

The H–L Chi2 test is very sensitive to the way in which tied values are han-
dled. Various software implementations handle ties in different ways. Due to this 
the H–L statistic and p-values for two versions of the test may differ, sometimes 
by quite a bit. It is also important to have at least five observations in each group in 
order to generate a meaningful Chi2 statistic. When this is not the case, reduce the 
number of groups to 8, or perhaps 6. I suggest that you use the statistic three times, 
with 8, 10, and 12 groups for moderate to large sized data sets. Check to deter-
mine if the tests show a well-fitted, or not well-fitted, model for all three groups.

The medpar data will be used for an example of this test. I first display the 
summary results of a logistic model:

> data(medpar)
> summary (mymod <- (�glm(died ~ white + los  + hmo + 

factor(type), family=binomial, 
data=medpar))
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Coefficients:
               Estimate Std. Error z value Pr(>|z|)    
(Intercept)   -0.720149   0.219073  -3.287  0.00101 ** 
white          0.303663   0.209120   1.452  0.14647    
los           -0.037193   0.007799  -4.769 1.85e-06 ***
hmo            0.027204   0.151242   0.180  0.85725    
factor(type)2  0.417873   0.144318   2.896  0.00379 ** 
factor(type)3  0.933819   0.229412   4.070 4.69e-05 ***
---
    Null deviance: 1922.9  on 1494  degrees of freedom
Residual deviance: 1881.2  on 1489  degrees of freedom
AIC: 1893.2

The HLTest function that is used below for a Hosmer-Lemeshow test on 
the above model is adapted from Bilger and Loughlin (2015). I have placed the 
function with acknowledgement in the LOGIT package for your ease of use.

> library (LOGIT)  # or source (“HLTest.R”)
> HLChi10 <- HLTest(obj = mymod,g= 10)
> cbind(HLChi10$observed, round(HLChi10$expect, digits = 1))
                Y0  Y1 Y0hat Y1hat
[0.0219,0.252] 108  43 119.1  31.9
(0.252,0.289]  106  42 107.7  40.3
(0.289,0.31]   116  40 109.3  46.7
(0.31,0.328]   106  37  97.7  45.3
(0.328,0.343]  123  43 110.5  55.5
(0.343,0.354]  113  38  98.1  52.9
(0.354,0.371]  124  41 104.8  60.2
(0.371,0.388]   53 105  97.3  60.7
(0.388,0.445]   53  47  58.9  41.1
(0.445,0.618]   80  77  78.5  78.5
> HLChi10

    Hosmer and Lemeshow goodness-of-fit test with 10 bins

data:  mymod
X2 = 82.8324, df = 8, p-value = 1.31e-14

The p-value approximates 0, which is far under the criterion of 0.05. 
It appears that the model is not well fitted. We can inspect the relationships 
between Y1 and Y1Hat (observed died and associated predicted died, or mu), 
and between Y0 and Y0hat (observed died = 0, and corresponding predicted 
died). Some of the pairs are close, but many are not. One of the worst fitted 
pairs are in the probability range 0.371–0.388, with Y1–Y1hat as 105–60.7, 
and Y0–Y0hat at 53–97.3. The second group, 0.252–0.289, is well fitted: Y1–
Y1hat 42–40.3 and Y0–Y0hat 106–107.7. But too many groups are marginal 
to poor.
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If we divide up the response probability space into 12 divisions the results 
appear as:

> HLChi12 <- HLTest(obj = mymod,g= 12)
> HLChi12

    Hosmer and Lemeshow goodness-of-fit test with 12 bins

data:  mymod
X2 = 84.8001, df = 10, p-value = 5.718e-14

> cbind(HL$observed, round(HL$expect, digits = 1))
                Y0 Y1 Y0hat Y1hat
[0.0219,0.246]  87 38  99.6  25.4
(0.246,0.278]   94 31  92.0  33.0
(0.278,0.297]   97 37  95.1  38.9
(0.297,0.313]  103 38  97.5  43.5
(0.313,0.329]  101 35  91.8  44.2
(0.329,0.343]   77 26  68.2  34.8
(0.343,0.354]  113 38  98.1  52.9
(0.354,0.362]   75 15  57.5  32.5
(0.362,0.38]    79 55  84.0  50.0
(0.38,0.391]    35 80  70.4  44.6
(0.391,0.454]   62 58  69.0  51.0
(0.454,0.618]   59 62  58.7  62.3

The Chi2 test again indicates that the model is ill fitted.
In order to show how different code can result in different results, I 

used code for the H–L test in Hilbe (2009). Rather than groups defined 
and displayed by range, they are calculated as ranges, but the mean of the 
groups is displayed in output. The number of observations in each group is 
also given.

This code will develop three H–L tables, with 8, 10, and 12 groups. The 
12 group table is displayed below.

> medpar2<- na.omit(medpar) # drop obs with missing value(s)
> hlGOF.test(�medpar2$died, predict(mymod, medpar2, 

type=’response’), breaks=12)

For # Cuts = 12   # Data = 1495 
Cut # Total #Patterns # Resp. # Pred. Mean Resp. Mean Pred. 
1      125     61       38     25.39   0.30400   0.20311 
2      124     24       31     32.72   0.25000   0.26384 
3      125     14       35     36.16   0.28000   0.28929 
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4      124     15       34     38.05   0.27419   0.30689 
5      125     11       31     40.10   0.24800   0.32079 
6      125      9       33     41.76   0.26400   0.33409 
7      124      7       29     43.16   0.23387   0.34806 
8      125      5       26     44.80   0.20800   0.35843 
9      124     11       44     46.08   0.35484   0.37160 
10     125     10       89     48.33   0.71200   0.38660 
11     124     20       59     52.32   0.47581   0.42191 
12     125     32       64     64.14   0.51200   0.51310 
Total # Data: 1495  Total over cuts: 1495 
Chisq: 91.32444   d.f.: 10  p-value:  0.00000

The p-value again tells us that the model is not well fitted. The statistics 
are similar, but not identical to the table shown earlier. The H–L test is nice 
summary test to use on a logistic model, but interpret it with care.

4.4  MODELS WITH UNBALANCED 
DATA AND PERFECT PREDICTION

When the data set you wish to model has few observations, few predictors, and 
are categorical in nature, it is possible that perfect prediction exists between 
the predictors and response. That is, for a given covariate pattern only one 
outcome occurs. Maximum likelihood estimation does not work well in such 
circumstances. One or more of the coefficients become very large, and stan-
dard errors may explode to huge sizes as well. Coefficient values may also be 
displayed with no value given. When this occurs it is nearly always the case 
that perfect prediction exists in the data.

Consider a real data set consisting of HIV drug data. The response is 
given as the number of patients in a study who became infected with HIV. 
There are two predictors, cd4 and cd8, each with three levels–0, 1, and 2. The 
data is weighted by the number of cases having the same pattern of covariates; 
that is, with the values of cd4 and cd8 the same.

The data, called hiv, is downloaded into R’s memory from its original 
format as a Stata data set.

> library(Hmisc)
> data(hivlgold)
> hiv
   infec cases cd4 cd8
1      0     3   0   0
2      0     8   1   1
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3      0     2   2   2
4      0     5   1   0
5      0     2   2   0
6      0    13   2   1
7      1     1   0   2
8      1     2   1   2
9      1     4   0   0
10     1     4   1   1
11     1     1   2   2
12     1     2   1   0

Next, we model the data as a weighted logistic regression. Level 0 of both 
cd4 and cd8 are the reference levels.

> myhiv <- glm(infec ~ factor(cd4) + factor(cd8), 
+               family=binomial, weights=cases, data=hiv)
> summary(myhiv)

                  .    .    .
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)     0.2877     0.7638   0.377    0.706
factor(cd4)1   -1.2040     1.1328  -1.063    0.288
factor(cd4)2  -20.3297  2501.3306  -0.008    0.994
factor(cd8)1    0.2231     1.0368   0.215    0.830
factor(cd8)2   19.3488  2501.3306   0.008    0.994

    Null deviance: 57.251  on 11  degrees of freedom
Residual deviance: 37.032  on  7  degrees of freedom
AIC: 47.032

Look at the highest level of both cd4 and cd8. The coefficient values are 
extremely high compared to level 2, and the standard errors of both are over 
100 times greater than their associated coefficient. None of the Wald p-values 
are significant. The model appears to be ill fitted, to say the least.

Penalized logistic regression was developed to resolve the problem of 
perfect prediction. Heinze and Schemper (2002) amended a method designed 
by David Firth (1993) to solve the so-called “problem of separation,” which 
results in at least one parameter becoming infinite, or very large compared 
to other predictors or levels of predictors in a model. See Hilbe (2009) for a 
discussion of the technical details of the method.

The same data as above are modeled using Firth’s penalized logistic 
regression. The function, logistf() is found in the logistf package on CRAN.

> firth <- logistf(infec ~ factor(cd4) + factor(cd8), weights=cases, data=hiv)
> firth
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logistf(formula = infec ~ factor(cd4) + factor(cd8), data = hiv, 
    weights = cases)
Model fitted by Penalized ML
Confidence intervals and p-values by Profile Likelihood 

                   coef  se(coef) lower 0.95 upper 0.95      Chisq           p
(Intercept)   0.2431531 0.7556851 -1.1725243  1.7422757 0.11676459 0.732570400
factor(cd4)1 -1.0206696 1.0903625 -3.2183884  0.9721743 0.98925098 0.319925511
factor(cd4)2 -4.0139131 1.7546659 -9.1437134 -1.1309059 8.42543351 0.003700084
factor(cd8)1  0.1320063 0.9852859 -1.7257106  2.1418014 0.01905676 0.890203896
factor(cd8)2  3.2265668 1.7200153  0.4644354  8.3696176 5.57992109 0.018167541

Likelihood ratio test=16.42534 on 4 df, p=0.00249844, n=47

The coefficients appear normal with nothing out of the ordinary. Interestingly 
the p-values of the second level of cd4 and cd8, which failed in standard logistic 
regression, are statistically significant for the penalized logit model. The likeli-
hood ratio test informs us that the penalized model is also not well fitted.

Penalized logistic regression many times produces significant results when 
standard logistic regression does not. If you find that there is perfect prediction 
in your model, or that the data is highly unbalanced; for example, nearly all 1s 
or 0s for a binary variable, penalized logistic regression may be the only viable 
way of modeling it. Those analysts who model mostly small data sets are more 
likely to have separation problems than those who model larger data.

4.5  EXACT LOGISTIC REGRESSION

Exact logistic regression is a method of constructing the Bernoulli distribu-
tion such that it is completely determined. The method is unlike maximum 
likelihood or iteratively reweighted least squares (IRLS) which are asymptotic 
methods of estimation. The model coefficients and p-values are accurate, but 
at a cost of involving a large number of permutations.

Exact logistic and exact Poisson regressions were originally written for the 
Cytel Corporation product named LogXact in the late 1990s. SAS, SPSS, and 
Stata statistical software soon incorporated the procedures into their commercial 
packages. R’s elrm package is the closest R has come to providing R users with 
this functionality. It is a difficult function to employ and I have not been able to 
obtain results similar to those of the other packages. I will use Stata’s exlogistic 
command for an example of the method and its results. The SAS version of the 
code is at the end of this chapter; the results are the same as Stata output.

Exact logistic regression is typically used by analysts when the size of the 
data being modeled is too small to yield well-fitted results. It is also used when 
the data are ill balanced, however, it is not to be used when there is perfect 
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prediction in the model. When that occurs penalized logistic regression should 
be used—as we discussed in the previous section.

For an example of exact logistic regression, I shall use Arizona hospital 
data collected in 1991. The data consist of a random sample of heart procedures 
referred to as CABG and PTCA. CABG is an acronym meaning coronary artery 
bypass grafting surgery and PTCA refers to percutaneous transluminal coronary 
angioplasty. It is a nonsurgical method of placing a type of balloon into a coronary 
artery in order to clear blockage caused by cholesterol. It is a substantially less 
severe procedure than CABG. We will model the probability of death within 48 h 
of the procedure on 34 patients who sustained either a CABG or PTCA. The vari-
able procedure is 1 for CABG and 0 for PTCA. It is adjusted in the model by the 
type of admission. Type = 1 is an emergency or urgent admit, and 0 is an elective 
admission. Other variables in the data are not used. Patients are all older than 65.

> data(azcabgptca34)
> head(azheart)
     died procedure age gender los     type
1    Died      CABG  65   Male  10 Elective
2 Survive      CABG  69   Male   7 Emer/Urg
3 Survive      PTCA  76 Female   7 Emer/Urg
4 Survive      CABG  65   Male   8 Elective
5 Survive      PTCA  69   Male   1 Elective
6 Survive      CABG  67   Male   7 Emer/Urg

A cross-tabulation of died on procedure is given as:

> library(Hmisc)
> table(azheart$died, azheart$procedure)

          PTCA CABG
  Survive   19    9
  Died       1    5

It is clear from the tabulation that more patients died having a CAGB than 
with a PTCA. A table of died on type of admission is displayed as:

> table(azheart$died, azheart$type)

          Elective Emer/Urg
  Survive       17       11
  Died           4        2

First we shall use a logistic regression to model died on procedure and type. 
The model results are displayed in terms of odds ratios and associated statistics.
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> exlr <- glm(�died ~ procedure + type, family=binomial, 
data=azheart)

> toOR(exlr)
                   or   delta  zscore pvalue exp.loci. exp.upci.
(Intercept)    0.0389  0.0482 -2.6170 0.0089    0.0034    0.4424
procedureCABG 12.6548 15.7958  2.0334 0.0420    1.0959  146.1267
typeEmer/Urg   1.7186  1.9296  0.4823 0.6296    0.1903   15.5201

Note that there appears to be a statistically significant relationship between 
the probability of death and type of procedure (p = 0.0420). Type of admission 
does not contribute to the model. Given the size of the data and adjusting for 
the possibility of correlation in the data we next model the same data as a 
“quasibinomial” model. Earlier in the book I indicated that the quasibinomial 
option is nothing more than scaling (multiplying) the logistic model standard 
errors by the square root of the Pearson dispersion statistic.

> exlr1 <- glm(�died ~ procedure + type, family=quasibinomial, 
data=azheart)

> toOR(exlr1)
                   or   delta  zscore pvalue exp.loci. exp.upci.
(Intercept)    0.0389  0.0478 -2.6420 0.0082    0.0035    0.4324
procedureCABG 12.6548 15.6466  2.0528 0.0401    1.1216  142.7874
typeEmer/Urg   1.7186  1.9114  0.4869 0.6264    0.1943   15.2007

The p-value of procedure is further reduced by scaling. The same is the 
case when the standard errors are adjusted by sandwich or robust variance 
estimators (not shown). We might accept procedure as a significant predic-
tor of the probability of death—if it were not for the small sample size. If we 
took another sample from the population of procedures would we have similar 
results? It is wise to set aside a validation sample to test our primary model. 
But suppose that we do not have access to additional data? We subject the data 
to modeling with an exact logistic regression. The Stata code and output are 
given below.

. exlogistic died procedure type, nolog

Exact logistic regression        Number of obs =       34
                                 Model score   = 5.355253
                                 Pr >= score   =   0.0864

died     Odds Ratio Suff. 2*Pr(Suff.) [95% Conf. Interval]

procedure 10.33644    5    0.0679     .8880104   589.8112
type      1.656699    2    1.0000     .1005901    28.38678

The results show that procedure is not a significant predictor of died at 
the p = 0.05 criterion. This should not be surprising. Note that the odds ratio 
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of procedure diminished from 12.65 to 10.33. In addition, the model score 
statistic given in the header statistics informs us that the model does not fit the 
data well (p > 0.05).

When modeling small and/or unbalanced data, it is suggested to employ 
exact statistical methods if they are available.

4.6  MODELING TABLE DATA

We have touched on modeling data in table format at various points in the 
book. The subject is not discussed in other texts on logistic regression, but the 
problem comes up in the real life experience of many analysts. I shall therefore 
discuss data that are recorded in tables and how one should best convert it to 
a format suitable for modeling as a logistic model. We will start with the sim-
plest table, a two-by-two table.

Suppose we have table data in the generic form below:

Table Format

                  x
               0     1

      0        4     5
y        
      1        6     8

This table has two variables, y and x. It is in summary form. That is, the 
above table is a summary of data and can be made into two variables when put 
into the following format.

Grouped Format

y      x       count

0      0         4
0      1         5
1      0         6
1      1         8

The cell (x = 0; y = 0), or (0,0) in the above table has a value of 4; the cell 
(x = 1; y = 1), or (1,1) has a value of 8. This indicates that if the data were in 
observation-level form, there would be four observations having a pattern of 



4  •  Testing and Fitting a Logistic Model  97

x,y values of 0,0. If we are modeling the data, with y as the binary response and 
x as a binary predictor, the observation-level data appears as:

Observation-Level Format

      y    x
 1.   0    0
 2.   0    0
 3.   0    0
 4.   0    0
 5.   0    1
 6.   0    1
 7.   0    1
 8.   0    1
 9.   0    1
10.   1    0
11.   1    0
12.   1    0
13.   1    0
14.   1    0
15.   1    0
16.   1    1
17.   1    1
18.   1    1
19.   1    1
20.   1    1
21.   1    1
22.   1    1
23.   1    1

The above data give us the identical information as we have in the “y-x 
count” table above it, as well as in the initial table. Each of these three formats 
yield the identical information. If the analyst simply sums the values of the 
numbers in the cells, or sums the values of the count variable, he/she will know 
the number of observations in the observation-level data set. 4 + 5 + 6 + 8 
indeed sums to 23.

Note that many times we see table data converted to grouped data in the 
following format:

y      x       count

1      1         8
1      0         6
0      1         5
0      0         4
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I tend to structure grouped data in this manner. But as long as an analyst is 
consistent, there is no difference in the methods. What is important to remem-
ber is that if there are only two binary variables in a table, y and x, and if y is 
the response variable to be modeled, then it is placed as the left-most column 
with p2 levels. p is the number of binary variables, in this case 22 = 4.

The data in grouped format are modeled as a frequency weighted regres-
sion. Since y is binary, it will be modeled as a logistic regression, although it 
also may be modeled as a probit, complimentary loglog, or loglog regression. 
The key is to enter the counts as a frequency weight.

> y <- c(1,1,0,0)
> x <- c(1,0,1,0)
> count <- c(8,6,5,4)
> mydata <- data.frame(y,x,count)

> mymodel <- glm(�y ~ x, weights=count, family=binomial, 
data=mydata)

> summary(mymodel)

               .    .   .
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)  0.40547    0.64550   0.628     0.53
x            0.06454    0.86120   0.075     0.94

    Null deviance: 30.789  on 3  degrees of freedom
Residual deviance: 30.783  on 2  degrees of freedom
AIC: 34.783

The logistic coefficients are x = 0.06454 and intercept as 0.40547.  
Exponentiation gives the following values:

> exp(coef(mymodel))
(Intercept)           x 
   1.500000    1.066667 

To check the above calculations the odds ratio may be calculated directly 
from the original table data as well. Recall that the odds ratio of predictor x is 
the ratio of the odds of y = 1 divided by the odds of y = 0. The odds of y = 1 is 
the ratio of x = 1 to x = 0 when y = 1, and the odds of y = 0 is the ratio of x = 1 
to x = 0 when y = 0.

                  x
               0     1

      0        4     5
y       
      1        6     8
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> (8/5)/(6/4)
[1] 1.066667

which is the value calculated as x above. Recalling our discussion earlier in 
the text, the intercept odds is the denominator of the ratio we just calculated to 
determine the odds ratio of x.

> 6/4
[1] 1.5

which confirms the calculation from R.
When tables are more complex the same logic used in creating the 2 × 2 

table remains. For instance, consider a table of summary data that relates the 
pass–failure rate among males and females in an introductory to statistics 
course at Noclue University. The goal is to determine if studying for the final 
or going to a party or just sleeping instead had a bearing on passing. There are 
18 males and 18 females, for a class of 36.

                              Gender
                    Female                  Male
            sleep   party   study   sleep   party   study

 fail         3       4       2       2       4       3
Grade  
 pass         2       1       6       3       2       4

The data have a binary response, Grade, with levels of Fail and Pass, 
Gender has two levels (Female and Male) and student Type has three levels 
(sleep, party, and study). I suggest that the response of interest, Pass, be giv-
ing the value of 1, with Fail assigned 0. For Gender, Female = 0 and Male = 1. 
Type: Sleep = 1, Party = 2, and Study = 3. Multiply the levels for the total 
number of levels or groups in the data. 2 * 2 * 3 = 12. The response vari-
able then will have six 0s and six 1s. When a table has predictors with more 
than two levels, I recommend using the 0,1 format for setting up the data for 
analysis.

A binary variable will split its values between the next higher level. 
Therefore, Gender will have alternating 0s and 1s for each half of Grade. 
Since Type has three levels, 1–2–3 is assigned for each level of Gender. 
Finally, assign the appropriate count value to each pattern of variables. The 
first level represents Grade = Fail; Gender = Female; Type = Sleep. We move 
from the upper left of the top row across the columns of the row, then move 
to the next row.
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      Grade   Gender    Type    Count
1:     0        0        1        3
2:     0        0        2        4
3:     0        0        3        2
4:     0        1        1        2
5:     0        1        2        4
6:     0        1        3        3
7:     1        0        1        2
8:     1        0        2        1
9:     1        0        3        6
10:    1        1        1        3
11:    1        1        2        2
12:    1        1        3        4

> grade  <- c(0,0,0,0,0,0,1,1,1,1,1,1)
> gender <- c(0,0,0,1,1,1,0,0,0,1,1,1)
> type   <- c(1,2,3,1,2,3,1,2,3,1,2,3)
> count  <- c(3,4,2,2,4,3,2,1,6,3,2,4)

> mydata2 <-data.frame(grade, gender, type, count)
> mymod3 <- glm(grade ~ gender + factor(type), 
                        weights=count,
                        family=binomial, 
                        data=mydata2)
> summary(mymod3)
                  .    .    .
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)   -0.04941    0.72517  -0.068    0.946
gender         0.09883    0.70889   0.139    0.889
factor(type)2 -0.98587    0.92758  -1.063    0.288
factor(type)3  0.69685    0.83742   0.832    0.405

    Null deviance: 49.907  on 11  degrees of freedom
Residual deviance: 45.830  on  8  degrees of freedom
AIC: 53.83

> toOR(mymod3)
                or    delta  zscore   pvalue exp.loci. exp.upci.
(Intercept)   0.9518 0.6902 -0.0681 0.9457 0.2298      3.9428
gender        1.1039 0.7825  0.1394 0.8891 0.2751      4.4292
factor(type)2 0.3731 0.3461 -1.0628 0.2879 0.0606      2.2983
factor(type)3 2.0074 1.6811  0.8321 0.4053 0.3889     10.3622

This output is a complete logistic model of the table. Predicted values 
and residuals as defined in the section on residuals in this chapter can be 
used to further evaluate the model. As it exists, though, the model is a poor 
one. However, other table data can lead to a model that is well fitted and 
meaningful.
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SAS CODE

/* Section 4.1 */

*Build the logistic model and obtain the Person residual;
proc genmod data=medpar descending;
	 class type (ref=’1’) / param=ref;
	 model died=white hmo los type / dist=binomial link=logit;
	 output out=residuals reschi=pearson;
run;

*Pearson Chi2 statistic;
proc sql;
	 create table pr as 
	 select sum(pearson**2) as pchi2, 1489 as df, 
	 1-probchi(sum(pearson**2), 1489) as pvalue
	 from residuals;
quit;

*Refer to proc print in section 2.2 to print dataset pr-Chi2 statistic;

*Type3 option provides the likelihood ratio test;
proc genmod data=medpar descending;
	 class type (ref=’1’) / param=ref;
	 model died=white hmo los type / dist=binomial link=logit type3;
run;

*Anscombe residuals can be obtained as a model output in the SAS/Insight, 
not in SAS command language; 

*Create new variables;
data mylgg;
set medpar;
if died=1 then dead=1;
else if died=0 then alive=1;
drop died;
m=sum(alive, dead);
run;

*Transform the dataset;
proc sql;
	 create table mylgg1 as 
	� select white as white, hmo as hmo, type as type, count(alive) as 

alive, count(dead) as dead, count(m) as m 
	 from mylgg
	 group by white, hmo, type;
quit;

*Obstats option provides all the residuals and statistics in Table 4.2;
proc genmod data=medpar descending;
	 class type (ref=’1’) / param=ref;
	 model died=white hmo los type / dist=binomial link=logit obstats;
	 ods output obstats=stats;
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run;

*Square the standardized deviance residual;
data stats1;
	 set stats;
	 stresdev2=stresdev**2;
run;

*Plot the square of standardized deviance residuals and mu;
proc gplot data=stats1;
	 symbol v=circle color=black;
	 plot stresdev2*pred / vref=4 cvref=red;
run;

*Plot the leverage and std Pearson residual;
proc gplot data=stats1;
	 symbol v=circle color=black;
	 plot leverage*streschi / href=0 chref=red;
run;

*Sort the dataset;
proc sort data=medpar out=medpar1;
	 by white hmo los type;
run;

*Calculate the sum of the dead;
proc means data=medpar1 sum;
	 by white hmo los type;
	 var died;
	 output out=summary sum=dead;
run;

*Create a new variable alive;
data summary1;
	 set summary;
	 alive=_freq_-dead;
	 drop _type_ _freq_;
run;

*Refer to proc print in section 2.2 to print dataset summary1;

*Build the logistic model with numeric variables;
proc genmod data=medpar descending;
	 model died=los type/dist=binomial link=logit;
run;

*Output the los;
proc freq data=medpar;
	 tables los/out=los;
run;

*Prepare for the conditional effects plot;
data effect;
	 set los;
	 k1=-0.8714+(-0.0376)*los+0.4386*1;
	 r1=1/(1+exp(-k1));
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	 k2=-0.8714+(-0.0376)*los+0.4386*2;
	 r2=1/(1+exp(-k2));
	 k3=-0.8714+(-0.0376)*los+0.4386*3;
	 r3=1/(1+exp(-k3));
run;

*Graph the conditional effects plot;
proc sgplot data=effect;
	 scatter x=los y=r1;
	 scatter x=los y=r2;
	 scatter x=los y=r3;
	 xaxis label=’LOS’;
	 yaxis label=’Type of Admission’ grid values=(0 to 0.4 by 0.1); 
 	 title ‘P[Death] within 48 hr admission’;
run;

/* Section 4.2 */

*Build the logistic model and output model prediction;
proc genmod data=medpar descending; 
	 class type (ref=’1’) / param=ref;
	 model died=white hmo los type / dist=binomial link=logit;
	 output out=fit pred=mu;
run;

*Refer to proc means in section 2.5 to calculate the mean;

*Build the logistic model and output classification table & ROC curve;
proc logistic data=medpar descending plots(only)=ROC; 
	 class type (ref=’1’) / param=ref;
	 model died=white hmo los type / outroc=ROCdata ctable pprob=(0 to   
            1 by 0.0025);
	 ods output classification=ctable;
run;

*Sensitivity and specificity plot;
symbol1 interpol=join color=vibg height=0.1 width=2;
symbol2 interpol=join color=depk height=0.1 width=2;
axis1 label=(“Probability”) order=(0 to 1 by 0.25);
axis2 label=(angle=90 “Sensitivity Specificity %”) order=(0 to 100 by 25);    
proc gplot data=ctable;
	 plot sensitivity*problevel specificity*problevel / 
	 overlay haxis=axis1 vaxis=axis2 legend;
run; 

*Approximate cutoff point can be found when sensitivity and specificity 
are closest/equal in the classification table;  

/* Section 4.3 */

*Lackfit option provides the Hosmer-Lemeshow GOF test;
proc logistic data=medpar descending; 
	 class type (ref=’1’) / param=ref;
	 model died=white hmo los type / lackfit;
run;

/* Section 4.4 */
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*Refer to the code in section 1.4 to import HIV dataset;

*Build the weighted logistic model;
proc genmod data=HIV descending; 
	 class cd4 (ref=’0’) cd8 (ref=’0’) / param = ref;
	 weight cases;
	 model infec= cd4 cd8 / dist=binomial link=logit;
run;

*Build the Firth’s penalized logistic model;
proc logistic data=HIV descending; 
	 class cd4 (ref=’0’) cd8 (ref=’0’) / param = ref;	
	 weight cases;
	 model infec= cd4 cd8 / firth clodds=pl;
run;

/* Section 4.5 */

*Refer to the code in section 1.4 to import and print azheart dataset;

*Generate a table of died by procedure and type;
proc freq data=azheart;
	 tables died*procedure died*type / norow nocol nocum nopercent;
run;

*Build the logistic model and obtain odds ratio & statistics;
proc genmod data=azheart descending;
	 model died=procedure type / dist=binomial link=logit;
	 estimate “Intercept” Intercept 1 / exp;
	 estimate “Procedure” procedure 1 / exp;
	 estimate “Type” type 1 / exp;
run;

*Build the quasibinomial logistic model;
proc glimmix data=azheart;
	 model died (event=’1’)=procedure type/dist=binary link=logit  
         solution covb;
	 random _RESIDUAL_;
run; 

*Refer to proc iml in section 2.3 and the full code is provided online;

*Build the exact logistic model;
proc genmod data=azheart descending;
	 model died=procedure type / dist=binomial link=logit;
	 exact procedure type / estimate=both;
run;

/* Section 4.6 */

*Refer to data step in section 2.1 if manually input mydata dataset;

*Build the logistic model with weight and obtain odds ratio;
proc genmod data=mydata descending;
	 weight count;
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	 model y=x / dist=binomial link=logit;
	 estimate “Intercept” Intercept 1 / exp;
	 estimate “x” x 1 / exp;
run;

*Refer to data step in section 2.1 if manually input mydata2 dataset;

*Build the logistic model with weight and obtain odds ratio;
proc genmod data=mydata2 descending;
	 class type (ref=’1’) / param=ref;
	 weight count;
	 model grade=gender type / dist=binomial link=logit;
	 estimate “Intercept” Intercept 1 / exp;
	 estimate “Gender” gender 1 / exp;
	 estimate “Type2” type 1 0 / exp;
	 estimate “Type3” type 0 1 / exp;
run;

STATA CODE

4.1
. use medpar
. xi: logit died white los hmo i.type, nolog
. lrdrop1
. qui logit died white hmo los i.type, nolog
. estimates store A
. qui logit died white hmo los, nolog
. estimates store B
. lrtest A B
. predict mu
. gen died – mu                   # raw residual
. predict dev, deviance           # deviance resid
. predict pear, residuals         # Pearson resid
. predict, hat, hat               # hat matrix diagonal
. gen stddev = dev/sqrt(1-hat)    # standardized deviance
. predict, stpear, rstandard      # standardized Pearson
. predict deltadev, ddeviance     # delta deviance 
. predict dx2, dx2                # delta Pearson
. predict dbeta, dbeta            # delta beta
. scatter stdev^2 mu
. scatter hat stpear
. qui glm died los admit, fam(bin)
. gen L1= _b[_cons] +_b[los]*los + _b[admit]*1  # Cond. effects plot
. gen Y1 = 1/(1+exp(-L1))
. gen L2 = _b[_cons] +_b[los]*los + _b[admit]*0
. gen Y1 = 1/(1+exp(-L2))
. scatter Y1 Y2 age, title(“Prob of death w/I 48 hrs by admit type”)

4.2
. glm died white hmo los i.type, fam(bin)
. predict mu
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. mean died

. logit died white hmo los i.type, nolog

. lsens, genprob(cut) gensens(sen) genspec(spec)

. lroc

. estat classification, cut(.351)

4.3
. estat gof, table group(10)
. estat gof, table group(12)

4.4
. use hiv1gold
. list
. glm infec i.cd4 i.cd8 [fw=cases], fam(bin) 
. firthlogit infec i.cd4 i.cd8 [fw=cases], nolog

4.5
. use azcabgptca34
. list in 1/6
. table died procedure
. table died type
. glm died procedure type, fam(bin) nolog
. glm died procedure type,fam(bin) scale(x2) nolog
. exlogistic died procedure type, nolog

4.6
. use pgmydata
. glm y x [fw=count], fam(bin) nolog
. glm y x [fw=count], fam(bin) nolog eform
. use phmydata2
. glm grade gender i.type [fw=count], fam9bin) nolog nohead
. glm grade gender i.type [fw=count], fam9bin) nolog nohead eform
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5Grouped 
Logistic 
Regression 

5.1  THE BINOMIAL PROBABILITY 
DISTRIBUTION FUNCTION

Grouped logistic regression is based on the binomial probability distribution. 
Recall that standard logistic regression is based on the Bernoulli distribution, 
which is a subset of the binomial. As such, the standard logistic model is a 
subset of the grouped. The key concept involved is the binomial probability 
distribution function (PDF), which is defined as:
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The product sign is assumed to be in front of the right-hand side terms. In 
exponential family form, the above expression becomes:
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The symbol n represents the number of observations in a given covari-
ate pattern. We have discussed covariate patterns before when dealing with 
residuals in the last chapter. For Bernoulli response logistic models, the model 
is estimated on the basis of observations. Only when analyzing the fit of the 
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model is the data put into covariate patterns and evaluated by observation-
based residuals. Here the PDF itself is in covariate pattern structure.

The first derivative of the cumulant, −n ln(1 − p), with respect to the link, 
ln(p/(1 − p)), is the mean, which for the binomial distribution is

	 Mean = μ = np

and the second derivative of the cumulant with respect to the link is the 
variance.

	 Variance = V(Y) = np(1 − p)

or, in terms of μ

	
Variance = = −





= −V
n

n( ) ( )µ µ µ µ µ1 n

The link function in terms of μ is
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The inverse link, which defines μ in terms of η, or xb, is
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The log-likelihood function, with subscripts indicating individual 
observations
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Finally, the deviance statistic is defined as:
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5.2  FROM OBSERVATION 
TO GROUPED DATA

Many data sets we have to model are structured in the following format:

y   cases x1   x2   x3
1   3     1    0    1
1   1     1    1    1
2   2     0    0    1
0   1     0    1    1
2   2     1    0    0
0   1     0    1    0

x1, x2, and x3 are all binary predictors. The variable cases have values that 
inform us of the number of times these three binary predictors have the same 
values—if the data were in observation format. y indicates how many of the 
number of cases with the same covariate pattern have 1 as a value for y. The 
first line represents three observations having x1 = 1, x2 = 0, and x3 = 1. One 
of the three observations has y = 1, and two have y = 0. In observation format 
the above grouped data set appears as

y     x1    x2    x3         Line from grouped data above
1     1     0     1                      1
0     1     0     1                      1
0     1     0     1                      1
1     1     1     1                      2
1     0     0     1                      3
1     0     0     1                      3
0     0     1     1                      4
1     1     0     0                      5
1     1     0     0                      5
0     0     1     0                      6

This data set is in observation-based form, with y as 0 or 1. But you should 
be able to clearly see that both of the data sets are identical, providing exactly 
the same information. We shall model both to be sure. To do so, both must be 
put into separate data frames.

Observation Data

> y  <- c(1,0,0,1,1,1,0,1,1,0)
> x1 <- c(1,1,1,1,0,0,0,1,1,0)
> x2 <- c(0,0,0,1,0,0,1,0,0,1)
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> x3 <- c(1,1,1,1,1,1,1,0,0,0)
> obser <- data.frame(y,x1,x2,x3)
> xx1 < - glm(y ~ x1 + x2 + x3, family = binomial, data = obser)
> summary(xx1)
           .    .    .
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)   1.2050     1.8348   0.657    0.511
x1            0.1714     1.4909   0.115    0.908
x2           -1.5972     1.6011  -0.998    0.318
x3           -0.5499     1.5817  -0.348    0.728

    Null deviance: 13.46 on 9 degrees of freedom
Residual deviance: 12.05 on 6 degrees of freedom
AIC: 20.05

Grouped Data

> y     <- c(1,1,2,0,2,0)
> cases <- c(3,1,2,1,2,1)
> x1    <- c(1,1,0,0,1,0)
> x2    <- c(0,1,0,1,0,1)
> x3    <- c(1,1,1,1,0,0)
> grp   <- data.frame(y,cases,x1,x2,x3)
> grp$noty <- grp$cases – grp$y
> xx2 <- glm( cbind(y, noty) ~ x1 + x2 + x3, family = binomial, data = grp)
> summary(xx2)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)   1.2050     1.8348   0.657    0.511
x1            0.1714     1.4909   0.115    0.908
x2           -1.5972     1.6011  -0.998    0.318
x3           -0.5499     1.5817  -0.348    0.728

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 9.6411 on 5 degrees of freedom
Residual deviance: 8.2310 on 2 degrees of freedom
AIC: 17.853

The coefficients, standard errors, z values, and p-values are identical. 
However, the ancillary deviance and AIC statistics differ due to the number 
of observations in each model. But the information in the two data sets is the 
same. This point is important to remember.

Note that the response variable is cbind(y, noty) rather than y as in the 
standard model. R users tend to prefer having the response be formatted in 
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terms of two columns of data—one for the number of 1s for a given covari-
ate pattern, and the second for the number of 0s (not 1s). It is the only logistic 
regression software I know of that allows this manner of formatting the bino-
mial response. However, one can create a variable representing the cbind(y, 
noty) and run it as a single term response. The results will be identical.

> grp2 <- cbind(grp$y, grp$noty)
> summary(xx3 <- glm( grp2 ~ x1 + x2 + x3, family = binomial, data = grp))

           .    .    .
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)   1.2050     1.8348   0.657    0.511
x1            0.1714     1.4909   0.115    0.908
x2           -1.5972     1.6011  -0.998    0.318
x3           -0.5499     1.5817  -0.348    0.728

In a manner more similar to that used in other statistical packages, the bino-
mial denominator, cases, may be employed directly into the response—but 
only if it is also used as a weighting variable. The following code produces the 
same output as above,

> summary(xx4 <- glm( y/cases ~ x1 + x2 + x3, family = binomial,
                               weights = cases, data = grp))
           .    .    .
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)   1.2050     1.8348   0.657    0.511
x1            0.1714     1.4909   0.115    0.908
x2           -1.5972     1.6011  -0.998    0.318
x3           -0.5499     1.5817  -0.348    0.728

The advantage of using this method is that the analyst does not have 
to create the noty variable. The downside is that some postestimation func-
tions do not accept being based on a weighted model. Be aware that there are 
alternatives and use the one that works best for your purposes. The cbind()
response appears to be the most popular, and seems to be used more in pub-
lished research.

Stata and SAS use the grouping variable; for example, cases, as the variable 
n in the binomial formulae listed in the last section and as given in the example 
directly above. The binomial response can be thought of as y = numerator and 
cases = denominator. Of course these term names will differ depending on 
the data being modeled. Check the end of this chapter for how Stata and SAS 
handle the binomial denominator.



112  Practical Guide to Logistic Regression

At times a data set may be too large to simply transcribe an observation 
to grouped format. We will see later in this chapter why converting a categori-
cal observation logistic model to a grouped model is desirable. In any case, 
using the code discussed in Chapter 4, Section 4.1.3, we may convert the above 
observation data set, obser, to a cbind()-based grouped format and run. I will 
show the data again for clarity.

> y  <- c(1,0,0,1,1,1,0,1,1,0)	
> x1 <- c(1,1,1,1,0,0,0,1,1,0)
> x2 <- c(0,0,0,1,0,0,1,0,0,1)
> x3 <- c(1,1,1,1,1,1,1,0,0,0)
> obser <- data.frame(y,x1,x2,x3)
> xx1 < - glm(y ~ x1 + x2 + x3, family = binomial, data = obser)

> library(reshape)
> obser$x1 <- factor(obser$x1)
> obser$x2 <- factor(obser$x2)
> obser$x3 <- factor(obser$x3)
> grp <- na.omit(data.frame(cast(melt(obser, measure = “y”),
    x1 + x2 + x3 ~ .,
    function(x) { c(notyg = sum(x = =0), yg = sum(x = =1))} )))
> grp
  x1 x2 x3 notyg yg
1  0  0  1     0  2
2  0  1  0     1  0
3  0  1  1     1  0
4  1  0  0     0  2
5  1  0  1     2  1
6  1  1  1     0  1

> bin <- glm( cbind(notyg, yg) ~ x1 + x2 + x3, famil = binomial, data = grp)
> summary(bin)
 . . .
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)  -1.2050     1.8348  -0.657    0.511
x11          -0.1714     1.4909  -0.115    0.908
x21           1.5972     1.6011   0.998    0.318
x31           0.5499     1.5817   0.348    0.728

           .    .    .

The code used to convert an observation to a grouped data set is the same 
code that can convert an n-asymptotic data set to m-symptotic for residual 
analysis. You can use the above code as a paradigm for converting any obser-
vation data to grouped format.



5  •  Grouped Logistic Regression   113

5.3  IDENTIFYING AND ADJUSTING 
FOR EXTRA DISPERSION

Grouped logistic regression models can have more correlation in the data than 
is allowed on the basis of binomial distributional assumptions. If data is gath-
ered in panels or is clustered, there is likely more correlation within clusters 
than between them. This fact violates the criterion of independence of obser-
vations that is required of probability functions. In such a situation the data is 
commonly said to be overdispersed.

It is often written that a binary response logistic model cannot be over-
dispersed because it lacks a separate parameter for the variance; for example, 
the variance parameter, σ2, in the normal linear regression or Gaussian model. 
Given a specific value for the mean, μ, one directly knows the value of the 
variance, μ(1 − μ). If μ = 0.3, then the variance is equal to 0.21. In one sense 
this is definitely the case, but in another it is not. If you are familiar with 
count models, and the Poisson model in particular, you know that the Poisson 
mean and variance functions are identical, that is, mean = μ; variance = μ. Yet 
statisticians commonly discuss Poisson overdispersion—when there is more 
variability in the data than is allowed by the Poisson distributional assumption 
of the equality of the mean and variance. Adjustments are made to the Poisson 
model to adjust for overdispersion in the count data.

In a similar manner to count data, binary response data can also be cor-
related, leading to extra dispersion in the data. In R, the glm function models 
such binomial data with a quasibinomial “family,” as it uses the quasipois-
son “family” for overdispersed Poisson data. Both methods scale the model 
standard errors by the square root of the dispersion statistic. It is a post hoc 
method applied after estimation. The grouped logistic model adds a binomial 
denominator to the model; e.g., as in the cases variable we used in the last 
section. The point here is that we have seen that the data in observation for-
mat (binary response) is identical to the data in grouped format (binomial 
response). Modeling both give the identical coefficients and standard errors. 
If a binomial model is overdispersed, the observation based model must also 
have intrinsic extra correlation. In Hilbe (2009) I call this type of binary model 
correlation implicit overdispersion. The fact that analysts employ scaling, 
robust or sandwich adjustors, and so forth, to correlated binary models belies 
the fact that they are adjusting for extra correlation or overdispersion in the 
data. Remember that a Bernoulli model is a binomial or grouped model—but 
one with a binomial denominator of 1. This indicates that each observation is 
a separate denominator.
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Analysts can actually create a model that specifically adds an extra 
parameter to the model that adjusts for the extra correlation or overdispersion 
in the data. For the Poisson model, the negative binomial model serves this 
purpose. It is a two-parameter model. The beta binomial is a two-parameter 
logistic model, with the extra heterogeneity parameter adjusting for extra cor-
relation in the data. Other two- and three-parameter models have also been 
developed to account for Poisson and binomial overdispersion, but they need 
not concern us here (Hilbe, 2014). We shall discuss the beta binomial later in 
this chapter.

How is binomial overdispersion identified? The easiest way is by using the 
Pearson dispersion statistic. Let us view the dispersion statistic on the grouped 
binomial model we created above from observation data.

> P__disp(bin)

Pearson Chi2 = 6.630003
Dispersion   = 3.315001

Any value of the dispersion greater than 1 indicates extra variation in the 
data. That is, it indicates more variation than is allowed by the binomial PDF 
which underlies the model. Recall that the dispersion statistic is the Pearson 
statistic divided by the residual degrees of freedom, which is defined as the 
number of observations in the model less coefficients (predictors, intercept, 
extra parameters). The product of the square root of the dispersion by the 
standard error of each predictor in grouped logistic model produces a quasi-
binomial grouped logistic model. It adjusts the standard errors of the model. 
Sandwich and bootstrapped standard errors may be used as well to adjust for 
overdispersed grouped logistic models.

A caveat should be given regarding the identification of overdispersed 
data. I mentioned that for grouped logistic models that a dispersion statistic 
greater than 1 indicates overdispersion, or unaccounted for variation in the 
data. However, there are times that models appear to be overdispersed, but are 
in fact not. A grouped logistic model dispersion statistic may be greater than 1, 
but the model data can itself be adjusted to eliminate the perceived overdisper-
sion. Apparent overdispersion occurs in the following conditions:

Apparent Overdispersion

•	 The model is missing a needed predictor.
•	 The model requires one or more interactions of predictors.
•	 A predictor needs to be transformed to a different scale; log(x).
•	 The link is misspecified (the data should be modeled as probit or 

cloglog).
•	 There are existing outliers in the data.
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Examples of how these indicators of apparent overdispersion affect logis-
tic models are given in Hilbe (2009).

Guideline

If a grouped logistic model has a dispersion statistic greater than 1, check 
each of the 5 indicators of apparent overdispersion to determine if applying 
them reduces the dispersion to approximately 1. If it does, the data are not 
truly overdispersed. Adjust the model accordingly. If the dispersion statistic 
of a grouped logistic model is less than 1, the data is under-dispersed. This 
type of extra-dispersion is more rare, and is usually dealt with by scaling or 
using robust SEs.

5.4  MODELING AND INTERPRETATION 
OF GROUPED LOGISTIC REGRESSION

Modeling and interpreting grouped logistic models is the same as for binary 
response, or observation-based models. The graphics that one develops will 
be a bit different from the ones developed that are based on a binary response 
model. Using the mylgg model we developed in Chapter 4, Section 4.1.3 when 
discussing residual analysis, we shall plot the same leverage versus standard-
ized Pearson residuals (Figure 5.1) and standardized deviance residuals versus 
mu (Figure 5.2) as done in Chapter 4. However, this time the standardized 
residuals in Figure 5.2 are not squared. For a binary response model, squaring 
the standardized residuals provides for an easier interpretation. Note the dif-
ference due to the grouped format of the data.

> fit  <- glm( cbind(dead, alive) ~ white + hmo + los + factor(type),
                  family = binomial, data = mylgg)
> mu   <- fit$fitted.value               # predicted probability
> hat  <- hatvalues(fit)                # hat matrix diagnoal
> dr   <- resid(fit, type = “deviance”)   # deviance residuals
> pr   <- resid(fit, type = “pearson”)    # Pearson residuals
> stdr <- dr/sqrt(1-hat)                # standardized deviance
> stpr <- pr/sqrt(1-hat)                # standardized Pearson

> plot(stpr, hat)                      # leverage plot
> abline(v = 0, col = “red”)

The interpretation of the hat statistics is the same as in Chapter 4. In 
Figure 5.2, notice the more scattered nature of the standardized deviance 
residuals. This is due to the variety of covariate patterns. Covariate patterns 
higher than the line at 2 are outliers, and do not fit the model. 
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plot(mu, stdr)
abline(h = 4, lty = “dotted”, col = “red”)

–2 0 2 4 6 8
0.00

0.05

0.10

0.15

stpr

ha
t

FIGURE 5.1  Leverage versus standardized Pearson.
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FIGURE 5.2  Standardized deviance versus mu.



5  •  Grouped Logistic Regression   117

5.5  BETA-BINOMIAL REGRESSION

Modeling overdispersed binomial data can be developed by assuming that the 
binomial mean parameter is itself beta distributed. That is, we provide a prior 
beta distribution to μ, the logistic model probability of success, or 1. The beta 
distribution, unlike the binomial, is a doubly bounded two-parameter distribution. 
This second parameter is employed in the model to adjust for any extra-binomial 
correlation found in the data. The two-parameter model, which is based on a 
mixture of beta and binomial distributions, is known as beta-binomial regression.

The binomial distribution below is expressed in terms of parameter μ. 
This is standard when the binomial distribution is being modeled as a general-
ized linear model (GLM), otherwise the parameter is typically symbolized as 
π. Since I will use the glm function in R when modeling the binomial compo-
nent of the beta binomial, we shall employ μ in place of π. Moreover, I shall 
not use subscripts with the formulae displayed below unless otherwise noted.

Binomial PDF
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As discussed before, the 
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which is the normalization term of the binomial PDF. It guarantees that the 
function sums to 1.0. This form of the function may also be expressed in terms 
of factorials:
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which is easily recognized from basic algebra as a combination. Both terms 
can be interpreted as describing the number of ways that y successes can be 
distributed among n trials, or observations. Note though that the mean param-
eter, μ, is not a term in the coefficient.

Using the Greek symbol Γ for a gamma function, Γ(), the binomial nor-
malization term from Equation 5.6 above may be expressed as:
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The log-likelihood function for the binomial model can then be expressed, 
with subscripts, as:
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The beta distribution is used as the basis of modeling proportional data. 
That is, beta data is constrained between 0 and 1—and can be thought of in 
this context as the proportion obtained by dividing the binomial numerator by 
the denominator. The beta PDF is given below in terms of two shape param-
eters, a and b, although there are a number of different parameterizations.

Beta PDF
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where a is the number of successes and b is the number of failures. The ini-
tial term in the function is the normalization constant, comprised of gamma 
functions.

The above function can also be parameterized in terms of μ. Since we 
plan on having the binomial parameter, μ, itself distributed as beta, we can 
parameterize the beta PDF as:
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(5.10)

Notice that the kernal of the beta distribution is similar to that of the 
binomial kernal.

	 µ µ µ µy n y a b( ) ( )~1 11 1− −− − −
	 (5.11)

Even the coefficients of the beta and binomial are similar in structure. In 
probability theory such a relationship is termed conjugate. The beta distribu-
tion is conjugate to the binomial. This is a very useful property when mixing 
distributions, since it generally allows for easier estimation. Conjugacy plays 
a particularly important role in Bayesian modeling where a prior conjugate 
(beta) distribution of a model coefficient, which is considered to be a ran-
dom variable, is mixed with the (binomial) likelihood to form a beta posterior 
distribution.



5  •  Grouped Logistic Regression   119

The mean and variance of the beta PDF may be given as:
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As mentioned before, the beta-binomial distribution is a mixture of the 
binomial and beta distributions. The binomial parameter, μ, is distributed as 
beta, which adjusts for extra-binomial correlation in the data. The mixture can 
be obtained by multiplying the two distributions.

	
f y a b f y n f y a b( ; , , ) ( ; , ) ( ; , , )µ µ µ=

	 (5.13)

The result is the beta-binomial probability distribution.

Beta Binomial
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An alternative parameterization may be given in terms of μ and σ, with 
μ = a/(a + b).
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with y = 0, 1, 2, … n, and 0 < μ < 1, and σ > 0.
Under this parameterization, the mean and variance of the beta binomial are:
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This is the parameterization that is used in R’s gamlss function (Rigby and 
Stasinopoulos, 2005) and in the Stata betabin command (Hardin and Hilbe, 2014).

For an example, we shall use the 1912 Titanic shipping disaster passenger 
data. In grouped format, the data are called titanicgrp. The predictors of the 
model are:

Age: 1 = adult; 0 = child
Sex: 1 = male; 0 = female
Class: 1st class, 2nd class, 3rd class (we make 3rd class the reference)
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The response is how many survived given a specific covariate pattern. 
Cases represents the number of passengers having the same predictor values.

> data(titanicgrp)
> titanicgrp ; attach(titanicgrp) ; table(class)
   survive cases    age   sex     class
1        1     1  child women 1st class
2       13    13  child women 2nd class
3       14    31  child women 3rd class
4        5     5  child   man 1st class
5       11    11  child   man 2nd class
6       13    48  child   man 3rd class
7      140   144 adults women 1st class
8       80    93 adults women 2nd class
9       76   165 adults women 3rd class
10      57   175 adults   man 1st class
11      14   168 adults   man 2nd class
12      75   462 adults   man 3rd class

Change the default reference to 3rd class

> class03 <- factor(titanicgrp$class,
      levels = c(“3rd class”, “2nd class”, “1st class”))

Set up and run the grouped logistic model

> died <- titanicgrp$cases - titanicgrp$survive
> summary(jhlogit <- glm(cbind(survive,died) ~ age + sex + class03,
                   data=titanicgrp, family=binomial))
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)        1.2955     0.2478   5.227 1.72e-07 ***
ageadults         -1.0556     0.2427  -4.350 1.36e-05 ***
sexman            -2.3695     0.1453 -16.313  < 2e-16 ***
class032nd class   0.7558     0.1753   4.313 1.61e-05 ***
class031st class   1.7664     0.1707  10.347  < 2e-16 ***
---

 Null deviance: 581.40 on 11 degrees of freedom
Residual deviance: 110.84 on 7 degrees of freedom
AIC: 157.77

> toOR(jhlogit)
                     or  delta   zscore pvalue exp.loci. exp.upci.
(Intercept)      3.6529 0.9053   5.2271      0    2.2473    5.9374
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ageadults        0.3480  0.0844  -4.3502      0    0.2163    0.5599
sexman           0.0935  0.0136 -16.3129       0    0.0704    0.1243
class032nd class 2.1293 0.3732   4.3126      0    1.5103    3.0021
class031st class 5.8496 0.9986  10.3468      0    4.1861    8.1741

> P__disp(jhlogit)

Pearson Chi2 = 100.8828
Dispersion   = 14.41183

All of the predictors appear to significantly contribute to the understand-
ing of passenger survival. The model is severely overdispersed as evidenced by  
a dispersion statistic of 14.4.

Next we create sandwich or robust adjustments of the standard errors. 
This will adjust for much of the excess correlation in the data. But the disper-
sion is very high.

> library(sandwich)
> or <- exp(coef(jhlogit))
> rse <- sqrt(diag(vcovHC(jhlogit, type = “HC0”))) # robust SEs
> ORrse <- or*rse
> pvalue <- 2*pnorm(abs(or/ORrse), lower.tail = FALSE)
> rotab <- data.frame(or, ORrse, pvalue)
> rotab
                         or      ORrse     pvalue
(Intercept)      3.65285874 2.78134854 0.18906811
ageadults        0.34798085 0.24824238 0.16098137
sexman           0.09353076 0.04414139 0.03409974
class032nd class 2.12934342 1.26408082 0.09208519
class031st class 5.84958983 3.05415838 0.05545591

The robust p-values tell us that age and 2nd class are not significant. 1st 
class passengers is marginal, but given the variability in the data we would 
keep it in a final model, with a combined 2nd and 3rd class as the reference. 
That is, it may be preferred to dichotomize class as a binary predictor with 
1 = 1st class and 0 = otherwise.

R output for the beta-binomial model using gamlss is given as displayed 
below. Note again that there is a slight difference in estimates. Sigma is the dis-
persion parameter, and can itself be parameterized, having predictors like the 
mean or location parameter, mu. The dispersion estimates inform the analyst 
which predictors significantly influence the extra correlation in the data, there-
fore influencing the value of sigma. In this form below it is only the intercept 
of sigma that is displayed. In this respect, the beta binomial is analogous to 
the heterogeneous negative binomial count model (Hilbe, 2011, 2014), and the 
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binomial logistic regression function is analogous to a Poisson, or perhaps a 
negative binomial model.

Beta Binomial

> library(gamlss)
> summary(mybb <- gamlss(cbind(survive,died) ~ age + sex + class03,
            data = titanicgrp, family = BB))

                  Estimate   Std. Error  t value  Pr(>|t|)
(Intercept)          1.498      0.6814    2.199  0.063855
ageadults           -2.202      0.8205   -2.684  0.031375
sexman              -2.177      0.6137   -3.547  0.009377
class032nd class     2.018      0.8222    2.455  0.043800
class031st class     2.760      0.8558    3.225  0.014547
�

Sigma link function: log
Sigma Coefficients:
             Estimate  Std. Error   t value   Pr(>|t|)
(Intercept)    -1.801      0.7508    -2.399   0.03528
�

              .      .      .

Global Deviance:     73.80329
Global Deviance:     73.80329
            SBC:     88.71273

Notice that the AIC statistic is reduced from 157.77 for the grouped logis-
tic model to 85.80 for the beta-binomial model. This is a substantial improve-
ment in model fit. The heterogeneity or dispersion parameter, sigma, is 0.165.

Sigma [gamlss’s sigma is log(sigma)]
> exp(-1.801)
[1] 0.1651337

Odds ratio for beta binomial are inflated compared to the grouped logit, 
but the p-values are closely the same.

> exp(coef(mybb))
     (Intercept)    ageadults     sexman class032nd class 
       4.4738797    0.1105858     0.1133972     7.5253615 
class031st class
      15.8044343



5  •  Grouped Logistic Regression   123

I also calculated robust or sandwich standard errors for the beta-binomial 
model. 2nd class and age resulted in nonsignificant p-values. This result is 
the same as given with the above robust grouped logit model. gamlss does not 
work well with sandwich estimators; the calculations were done using Stata. 
See the book’s web site for results.

The beta-binomial model is preferred to the single parameter logistic 
model. However, extra correlation still needs to be checked and adjusted. We 
should check for an interactive effect between age and sex, and between both 
age and sex and class 1. I shall leave that as an exercise for the reader. It 
appears, though, from looking at the model main effects only, that females 
holding 1st and 2nd class tickets stood the best odds of survival on the Titanic. 
If they were female children, they stood even better odds. 3rd class ticket hold-
ers, and in particular 3rd class male passengers fared the worst. It should be 
noted that 1st class rooms were very expensive, with the best going for some 
US$100,000 in 2015 equivalent purchasing power.

The beta binomial is an important model, and should be considered 
for all overdispersed logistic models. In addition, for binomial models with 
probit and complementary loglog links, or with excess zero response values, 
Stata’s betabin and zibbin commands (Hardin and Hilbe, 2013) have options 
for these models. Perhaps these capabilities will be made available to R users 
in the near future. The generalized binomial model is another function suitable 
for modeling overdispersed grouped logistic models. The model is available in 
Stata (Hardin and Hilbe, 2007) and SAS (Morel and Neerchal, 2012).

SAS CODE

/* Section 5.2 */

*Refer to data step in section 2.1 if manually input 
obser dataset;
*Build the logistic model;
proc genmod data = obser descending;
     model y = x1 x2 x3 / dist = binomial link = logit;
run;

*Refer to data step in section 2.1 if manually input grp 
dataset;

*Build the logistic model;
proc genmod data = grp descending;
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     model y/cases = x1 x2 x3 / dist = binomial link = logit;
run;

*Build the logistic model;
proc genmod data = grp descending;
     class x1 (ref = ‘0’) x2 (ref = ‘0’) x3 (ref = ‘0’) / param = ref;
     model y/cases = x1 x2 x3 / dist = binomial link = logit;
run;

/* Section 5.4 */

Refer to proc sort, proc means in section 4.1 to obtain a 
new dataset;

*Create a new variable alive;
data summary1;
	 set summary;
	 alive=_freq_-dead;
	 cases=_freq_;	
	 drop _type_ _freq_;
run;

*Obstats option provides all the residuals and useful 
statistics;
proc genmod data=summary1 descending;
	 class type (ref=’1’)/ param=ref;
	 model dead/cases=white hmo los type / dist=binomial
	 link=logit obstats;
	 ods output obstats=allstats;
run;

*Plot the leverage and std Pearson residual;
proc gplot data=allstats;
	 symbol v=circle color=black;
	 plot leverage*streschi / href=0 chref=red;
run;

*Plot the standardized deviance residuals and mu;
proc gplot data=allstats;
      symbol v=circle color=black;
      plot stresdev*pred / vref=2 cvref=red; 
run;

/* Section 5.5 */

*Refer to the code in section 1.4 to import and print the 
dataset;
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*Build the logistic model and obtain odds ratio & covariance 
matrix;
proc genmod data = titanicgrp descending;
       class class (ref = ‘3’)/ param = ref;
      model survive/cases = age sex class / dist = binomial link = logit
      covb;
      estimate “Intercept” Intercept 1 / exp;
      estimate “ageadults” age 1 / exp;
      estimate “sexman” sex 1 / exp;
      estimate “class” class 1 0 / exp;
      estimate “class” class 0 1 / exp;
run;

*Build the logistic mode with robust adjustment;
proc glimmix data = titanicgrp order = data empirical = hc0;
      class class;
      model survive/cases = age sex class/dist = binomial link = logit
      solution covb;
      random _RESIDUAL_;
run;

*Refer to proc iml in section 2.3 and the full code is provided 
online;

*Build the Beta binomial model;
proc fmm data = titanicgrp;
      class class;
      model survive/cases = age sex class / dist = betabinomial;
run;

STATA CODE

5.1
. use obser
. glm y x1 x2 x3, fam(bin) nolog

5.2
. use obser, clear
. glm y x1 x2 x3, fam(bin) nolog nohead
. use grp, clear
. glm y x1 x2 x3, fam(bin cases) nolog nohead
. use obser
. gen cases = 1
. collapse(sum) cases (sum) yg, by(x1 x2 x3)
. glm yg x1 x2 x3, fam(bin cases) nolog nohead
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5.4
. use phmylgg
. cases = dead + alive
. glm dead white hmo los i.type, fam(bin cases)
. predict mu
. predict hat, hat
. predict dev, deviance
. gen stdev = dev/sqrt(1-hat)
. predict stpr, rstandard
. scatter stpr hat
. gen stdev2 = stdev^2
. scatter stdev2 mu

5.5
. use titanicgrp
. list
. glm died age sex b3.class, fam(bin cases) nolog
. glm, eform
. glm died age sex b3.class, fam(bin cases) vce(robust) nolog
. betabin died age sex b3.class, n(cases) nolog
. gen died = cases-survive
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6Bayesian 
Logistic 
Regression

6.1  A BRIEF OVERVIEW OF 
BAYESIAN METHODOLOGY

Bayesian methodology would likely not be recognized by the person who is 
regarded as the founder of the tradition. Thomas Bayes (1702–1761) was a 
British Presbyterian country minister and amateur mathematician who had a 
passing interest in what was called inverse probability. Bayes wrote a paper 
on the subject, but it was never submitted for publication. He died without 
anyone knowing of its existence. Thomas Price, a friend of Bayes, discovered 
the paper when going through Bayes’s personal effects. Realizing its impor-
tance, he managed to have it published in the Royal Society’s Philosophical 
Transactions in 1764. The method was only accepted as a curiosity and was 
largely forgotten until Pierre-Simon Laplace, generally recognized as the 
leading mathematician worldwide during this period, discovered it several 
decades later and began to employ its central thesis to problems of probability. 
However, how Bayes’s inverse probability was employed during this time is 
quite different from how analysts currently apply it to regression modeling. For 
those who are interested in the origins of Bayesian thinking, and its relation-
ship to the development of probability and statistics in general, I recommend 
reading Weisberg (2014) or Mcgrayne (2011).

Inverse probability is simple in theory. Suppose that we know from epide-
miological records that the probability of a person having certain symptoms S 
given that they have disease D is 0.8. This relationship may be symbolized as 
Pr(S|D) = 0.8. However, most physicians want to know the probability of having 
the disease if a patient displays these symptoms, or Pr(D|S). In order to find this 
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out additional information is typically required. The idea is that under certain con-
ditions one may find the inverse probability of an event, usually with the additional 
information. The notion of additional information is key to Bayesian methodology.

There are six foremost characteristic features that distinguish Bayesian 
regression models from the traditional maximum likelihood models such as 
logistic regression. Realize though that these features are simplifications. The 
details are somewhat more complicated.

	 1.	Regression models have slope, intercept, and sigma parameters: 
Each parameter has an associated prior.

	 2.	Parameters Are Randomly Distributed: The regression parameters 
to be estimated are themselves randomly distributed. In traditional, 
or frequentist-based, logistic regression the estimated parameters 
are fixed. All main effects parameter estimates are based on the 
same underlying PDF.

	 3.	Parameters May have Different Distributions: In Bayesian logistic 
regression, each parameter is separate, and may be described using 
a different distribution.

	 4.	Parameter Estimates As The Means of a Distribution: When esti-
mating a Bayesian parameter an analyst develops a posterior dis-
tribution from the likelihood and prior distributions. The mean (or 
median, mode) of a posterior distribution is regarded as the beta, 
parameter estimate, or Bayesian coefficient of the variable.

	 5.	Credible Sets Used Instead of Confidence Intervals: Equal-tailed 
credible sets are usually defined as the outer 0.025 quantiles of the 
posterior distribution of a Bayesian parameter. The posterior inter-
vals, or highest posterior density (HPD) region, are used when the 
posterior is highly skewed or is bi- or multi-model in shape. There is 
a 95% probability that the credible set or posterior mean contains the 
true posterior mean. Confidence intervals are based on a frequency 
interpretation of statistics as defined in Chapter 2, Section 2.3.4. 

	 6.	Additional or Prior Information: The distribution used as the basis 
of a parameter estimate (likelihood) can be mixed with additional 
information—information that we know about the variable or 
parameter that is independent of the data being used in the model. 
This is called a prior distribution. Priors are PDFs that add informa-
tion from outside the data into the model.

The basic formula that defines a Bayesian model is:
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where f(y|θ) is the likelihood function and f(θ) is the prior distribution. The 
denominator, f(y), is the probability of y over all y. Note that the likelihood 
and prior distributions are multiplied together. Usually the denominator, 
which is the normalization term, drops out of the calculations so that the 
posterior distribution or a model predictor is determined by the product of its 
likelihood and prior. Again, each predictor can be comprised of a different 
posterior.

If an analyst believes that there is no meaningful outside information that 
bears on the predictor, a uniform prior will usually be given. When this hap-
pens the prior is not informative.

A prior having a normal distribution with a mean of 0 and very high vari-
ance will also produce a noninformative or diffuse prior. If all predictors in 
the model are noninformative, the maximum likelihood results will be nearly 
identical to the Bayesian betas. In our first examples below we will use nonin-
formative priors.

I should mention that priors are a way to provide a posterior distribution 
with more information than is available in the data itself, as reflected in the 
likelihood function. If a prior is weak it will not provide much additional infor-
mation and the posterior will not be much different than it would be with a 
completely noninformative prior. In addition, what may serve as an influential 
informative prior in a model with few observations may well be weak when 
applied to data with a large number of observations.

It is important to remember that priors are not specific bits of information, 
but are rather distributions with parameters which are combined with likeli-
hood distributions. A major difficulty most analysts have when employing a 
prior in a Bayesian model is to specify the correct parameters of the prior that 
describe the additional information being added to the model. Again, priors 
may be multiplied with the log-likelihood to form a posterior for each term in 
the regression. 

There is much more that can be discussed about Bayesian modeling, in 
particular Bayesian logistic modeling. But this would take us beyond the scope 
we set for this book. I provide the reader with several suggested books on the 
subject at the end of the chapter.

To see how Bayesian logistic regression works and is to be understood is 
best accomplished through the use of examples. I will show an example using 
R’s MCMCpack package (located on CRAN) followed by the modeling of the 
same data using JAGS. JAGS is regarded by many in the area as one of the 
most powerful, if not the most powerful, Bayesian modeling package. It was 
developed from WinBUGS and OpenBUGS and uses much of the same nota-
tion. However, it has more built-in functions and more capabilities than do the 
BUGS packages. BUGS is an acronym for “Bayesian inference Using Gibbs 
Sampling” and is designed and marketed by the Medical Research Group out of 
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Cambridge University in the United Kingdom. More will be mentioned about 
the BUGS packages and JAGS at the start of Chapter 6, Section 6.2.2. Stata 14 
was released on April 7, 2015, well after this text was written. Stata now has full 
Bayesian capabilities. I was able to include Stata code at the end of this chapter 
for Bayesian logistic models with noninformative and Cauchy priors.

6.2  EXAMPLES: BAYESIAN 
LOGISTIC REGRESSION

6.2.1  Bayesian Logistic Regression Using R

For an example we shall model the 1984 German health reform data, rwm1984. 
Our variable of interest is a patient’s work status. If they are not working, out-
work = 1; if they are employed or are otherwise working, outwork = 0. The 
predictors we use to understand outwork are:

docvis	 : �The number of visits made to a physician during the year, from 0 
to 121.

female	 : 1 = female; 0 = male.
kids	 : 1 = has children; 0 = no children.
age	 : age, from 25 to 64.

The data are first loaded and the data are renamed R84. We shall view the 
data, including other variables in the data set.

> library(MCMCpack)
> library(LOGIT)
> data(rwm1984)
> R84 <- rwm1984

# DATA PROFILE
> head(R84)
  docvis hospvis edlevel age outwork female married kids hhninc educ self
1      1       0       3  54       0      0       1    0  3.050 15.0    0
2      0       0       1  44       1      1       1    0  3.050  9.0    0
3      0       0       1  58       1      1       0    0  1.434 11.0    0
4      7       2       1  64       0      0       0    0  1.500 10.5    0
5      6       0       3  30       1      0       0    0  2.400 13.0    0
6      9       0       3  26       1      0       0    0  1.050 13.0    0
  edlevel1 edlevel2 edlevel3 edlevel4
1        0        0        1        0
2        1        0        0        0
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3        1        0        0        0
4        1        0        0        0
5        0        0        1        0
6        0        0        1        0

The data have 3874 observations and 15 variables.

> dim(R84)
[1] 3874   15

The response variable, outwork, has 1420 1s and 2454 0s, for a mean of 
0.5786.

> table(R84$outwork)
   0    1 
2454 1420 

Other characteristics of the data to be modeled, including the centering of 
both continuous predictors, are given as follows:

# SUMMARIES OF THE TWO CONTINUOUS VARIBLES 
> summary(R84$docvis)
   Min.  1st Qu.  Median    Mean   3rd Qu.    Max. 
  0.000   0.000    1.000    3.163   4.000   121.000 

> summary(R84$age)
   Min.  1st Qu.  Median  Mean  3rd Qu.   Max. 
     25    35       44     44     54       64

# CENTER BOTH CONTINUOUS PREDICTORS
> R84$cage <- R84$age - mean(R84$age)
> R84$cdoc <- R84$docvis - mean(R84$docvis)

We shall first model the data based on a standard logistic regression, and 
then by a logistic regression with the standard errors scaled by the square root 
of the Pearson dispersion. The scaled logistic model, as discussed in the previ-
ous chapter, is sometimes referred to as a “quasibinomial” model. We model 
both to determine if there is extra variability in the data that may require 
adjustments. The tables of coefficients for each model are not displayed below, 
but are stored in myg and myq, respectively. I shall use the toOR function to 
display the odds ratios and associated statistics of both models in close prox-
imity. The analyst should inspect the delta (SEs) values to determine if they 
differ from each other by much. If they do, then there is variability in the data. 
A scaled logistic model, or other adjusted models, should be used on the data, 
including a Bayesian model. Which model we use depends on what we think is 
the source of the extra correlation.
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# MODEL OF LOGISTIC (g ) AND QUASIBINOMIAL (q)
> myg <- glm(outwork ~ cdoc + female + kids + cage, 
                 family=binomial, data=R84)

> myq  <- glm(outwork ~ cdoc + female + kids + cage, 
                 family=quasibinomial, data=R84)

# COMPARISON OF MODEL OUTPUT – ODDS RATIOS
> toOR(myg)
                or  delta   zscore pvalue exp.loci. exp.upci.
(Intercept) 0.1340 0.0109 -24.7916  0e+00    0.1143    0.1570
cdoc        1.0247 0.0064   3.9012  1e-04    1.0122    1.0374
female      9.5525 0.7906  27.2691  0e+00    8.1222   11.2347
kids        1.4304 0.1287   3.9792  1e-04    1.1992    1.7063
cage        1.0559 0.0044  13.0750  0e+00    1.0473    1.0645

> toOR(myq)
                or  delta   zscore pvalue exp.loci. exp.upci.
(Intercept) 0.1340 0.0113 -23.7796  0e+00    0.1135    0.1581
cdoc        1.0247 0.0067   3.7420  2e-04    1.0117    1.0379
female      9.5525 0.8242  26.1560  0e+00    8.0663   11.3126
kids        1.4304 0.1342   3.8168  1e-04    1.1902    1.7191
cage        1.0559 0.0046  12.5413  0e+00    1.0469    1.0649

A comparison of the standard errors of the two models shows that there is 
not much extra variability in the data. The standard errors are nearly the same. 
No adjustments need to be made to the model. However, for pedagogical sake 
we shall subject the data to a Bayesian logistic regression.

Recall from Chapter 3, Section 3.4.1 that the quasibinomial “option” in 
R’s glm function produces mistaken confidence intervals. Our toOR function 
corrects this problem for odds ratios. Log the intervals to obtain correct scaled 
confidence intervals.

We use the MCMCpack package, which has the MCMClogit function for 
estimating Bayesian logistic models. The algorithms in MCMCpack employ a 
random walk version of the Metropolis-Hastings algorithm when estimating a 
logistic model. MCMC is an acronym for Markov Chain Monte Carlo, which 
is a class of sampling algorithm used to find or determine the mean, stan-
dard deviation, and quantiles of a distribution from which the data to be mod-
eled is theoretically derived or, at least, best described. There are a variety of 
algorithms employed by Bayesians which are based on MCMC; for example, 
Metropolis-Hastings, Gibbs Sampling.

For our example I shall employ the default multivariate normal priors 
on all of the parameters. It is used because we have more than one parameter, 
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all of which have noninformative priors. It is therefore not necessary to show 
them in the formula below.

# BAYESIAN ANALYSIS OF MODEL
> mymc <- MCMClogit(outwork ~ cdoc + female + kids + cage, 
+                      burnin = 5000,  
+                      mcmc= 100000,
+                      data=R84)

burnin is used to tell the algorithm how many of the initial samples should be 
discarded before beginning to construct a posterior distribution, from which 
the mean, standard deviation, and quantiles are derived. mcmc specifies how 
many samples are to be used in the estimation of the posterior. We discard the 
first 5000 iterations and keep the next 100,000.

Options many times used in the model are b0 and B0, which repre-
sent the mean and precision of the prior(s). The precision is defined as the 
inverse of the variance. As such one typically sees B0 as B0–1. Since we 
used the default prior of b0 = 0 and B0 = 0 here, assigning values to b0 
and B0 was not required. We could have used b0 = 0 and B0 = 0.00001 as 
well, for a mean of 0 and an extremely high variance, which means that 
nothing specific is being added to the model. The priors are noninformative, 
and therefore do not appreciatively influence the model. That is, the data, 
or rather likelihood, is the prime influence on the parameter estimates, not 
the priors. An analyst may also use the user.prior.density option to 
define their own priors.

The output is given as usual:

> summary(mymc)

Iterations = 5001:105000
Thinning interval = 1 
Number of chains = 1 
Sample size per chain = 1e+05 

1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:

                Mean       SD  Naive SE Time-series SE
(Intercept) -2.01308 0.080516 2.546e-04      1.021e-03
cdoc         0.02464 0.006246 1.975e-05      7.942e-05
female       2.25923 0.083230 2.632e-04      1.073e-03
kids         0.35749 0.089348 2.825e-04      1.139e-03
cage         0.05444 0.004159 1.315e-05      5.334e-05
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2. Quantiles for each variable:

                2.5%      25%      50%      75%    97.5%
(Intercept) -2.17202 -2.06720 -2.01287 -1.95843 -1.85674
cdoc         0.01267  0.02034  0.02454  0.02883  0.03704
female       2.09550  2.20357  2.25912  2.31470  2.42444
kids         0.18391  0.29680  0.35791  0.41714  0.53193
cage         0.04630  0.05164  0.05442  0.05723  0.06255

Compare the output above for the noninformative prior with SAS output 
on the same data and model. The results are remarkably similar.

Although interpretations differ, the posterior mean values are analogous to 
maximum likelihood coefficients, the standard deviations are like standard errors 
and the 2.5% and 97.5% quantiles are somewhat similar to confidence intervals. 
Here Bayesians refer to the external quantiles as “credible sets” or sometimes as 
either “credible intervals” or “posterior intervals.”

Remember that each parameter is considered to be randomly distributed, 
and not fixed as is assumed when data are being modeled using standard fre-
quentist-based maximum likelihood methods. As such Bayesians attempt to 
develop a distribution for each posterior parameter, the mean of each is the 
Bayesian logistic beta. The plots on the right-hand side of Figure 6.1 display 

POSTERIOR SUMMARIES

PARAMETER N MEAN
STANDARD 
DEVIATION

PERCENTILES

25% 50% 75%

Intercept 100,000 −2.0140 0.0815 −2.0686 −2.0134 −1.9586
Cdoc 100,000 0.0247 0.00632 0.0204 0.0246 0.0289
Female 100,000 2.2605 0.0832 2.2043 2.2602 2.3166
Kids 100,000 0.3596 0.0907 0.2981 0.3590 0.4207
Cage 100,000 0.0545 0.00418 0.0516 0.0545 0.0573

POSTERIOR INTERVALS

PARAMETER ALPHA EQUAL-TAIL INTERVAL HPD INTERVAL

Intercept 0.050 −2.1755 −1.8557 −2.1710 −1.8520
Cdoc 0.050 0.0124 0.0373 0.0124 0.0373
Female 0.050 2.0989 2.4242 2.0971 2.4220
Kids 0.050 0.1831 0.5382 0.1838 0.5386
Cage 0.050 0.0463 0.0628 0.0464 0.0628
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priors.
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the distributions of each parameter in the model. The peak of each distribution 
is at the point which defines the parameter’s mean. The intercept therefore is 
about −2.0, the mean for centered docvis (cdoc) is about 0.025, and for centered 
age (cage) at about 0.055. The trace plots on the left side of Figure 6.1 show 
time series plots across all iterations. We are looking for the convergence of 
the estimation to a single value. When the plot converges or stabilizes without 
excessive up and down on the y axis, convergence has been achieved. There 
appears to be no abnormality in the sampling draws being made by the MCMC 
algorithm in any of the trace plots. This is what we want to observe. In addi-
tion, if there are breaks in the trace, or places where clumps are observed, we 
may conclude that the sampling process is not working well.

> plot(mymc)     # Creates Figure 6.1

Geweke’s diagnostic test (Geweke, 1992) is a univariate test of the equality 
of the means of the first 10% and final 50% of the Markov chain samples from 
an MCMC chain which generates the posterior distribution from which Bayesian 
means, standard deviations and quantiles derive. Each Geweke statistic is a z 
score and is assessed based on the normal PDF. The values in the results below 
only provide z scores, not associated p-values. But these are easy to obtain:

> geweke.diag(mymc)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5 

(Intercept)      cdoc      female       kids        cage
   1.0789      -0.8122     0.1736     -0.6669     -1.3006

In the table below, I have created a table of standard model coefficients 
and Bayesian means for comparison purposes. More importantly, the second 
table is a comparison of the model, scaled model, and Bayesian model stan-
dard errors or standard deviations (for Bayesian models). Notice their close-
ness in value. The data simply have little excess correlation or unaccounted 
for variability.

> Bcoef <- round(colMeans(mymc), 5)
> Bsd <- round(apply(mymc, MARGIN=2, FUN=sd), 5)
> mygcf <- round(coef(myg), 5)
> mygsd <- round(sqrt(diag(vcov(myg))), 5)
> myqsd <- round(sqrt(diag(vcov(myq))), 5)
> myqcf <- round(coef(myq), 5)
> Bcf <- data.frame(mygcf, Bcoef)
> Bsd <- data.frame(mygsd, myqsd, Bsd)
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# COEFFICIENTS COMPARISON: MODEL AND BAYESIAN
> Bcf
               mygcf    Bcoef
(Intercept) -2.01028 -2.01308
cdoc         0.02443  0.02464
female       2.25680  2.25923
kids         0.35798  0.35749
cage         0.05438  0.05444

# COMPARISON OF STANDARD ERRORS/SD: MODEL, QUASI, BAYES
> Bsd
              mygsd   myqsd     Bsd
(Intercept) 0.08109 0.08454 0.08052
cdoc        0.00626 0.00653 0.00625
female      0.08276 0.08628 0.08323
kids        0.08996 0.09379 0.08935
cage        0.00416 0.00434 0.00416

MCMCpack provides basic Bayesian modeling capabilities that can be 
easily extended to incorporate prior and more advanced models such as level 
2 random effects models. If we had information about the physician names 
who patients saw during 1984, we could adjust for a possible physician effect 
by making it a random effect. Suppose physician name is stored in the variable 
physician. The code for developing a noninformative Bayesian random effects 
logistic regression model is simply:

> mymc <- MCMClogit(outwork ~ cdoc + female + kids + cage,
+                      random = ~physician, 
+                      burnin = 5000,  
+                      mcmc= 100000,
+                      data=R84)

6.2.2  Bayesian Logistic Regression Using JAGS

JAGS is a Bayesian modeling package based on Gibbs sampling. In fact, 
JAGS, authored by Dutch statistician Martyn Plummer, is an acronym for Just 
Another Gibbs Sampler. First released in December 2007, the package can be 
run as a stand-alone program, or from within R. We shall demonstrate how it 
can be used within R to develop a Bayesian logistic model.

The code below is adapted from code given in Zuur et al. (2013), although 
the original code was designed for a completely different distribution and 
model. The useful aspect with this code is that it can be adapted to run a 
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number of different models. Of course, our example will be to show its use in 
creating a Bayesian logistic model.

First, make sure you have installed JAGS to your computer. It is freeware, 
as is R. JAGS is similar to WinBUGS and OpenBUGS, which can also be run 
as standalone packages or within the R environment. JAGS is many times pre-
ferred by those in the hard sciences like physics, astronomy, ecology, biology, 
and so forth since it is command-line driven, and written in C ++ for speed. 
WinBUGS and OpenBUGS are written in Pascal, which tends to run slower 
than C ++ implementations, but can be run within the standalone WinBUGS 
or OpenBUGS environments, which include menus, help, and so forth. The 
BUGS programs are more user-friendly. Both OpenBUGS and JAGS are also 
able to run on a variety of platforms, which is advantageous to many users. In 
fact, WinBUGS is no longer being developed or supported. The developers are 
putting all of their attention to OpenBUGS. Lastly, and what I like about it, 
when JAGS is run from within R, the program actually appears as if it is just 
another R package. I do not feel as if I am using an outside program.

To start it is necessary to have JAGS in R’s path, and the R2jags package 
needs to be installed and loaded. For the first JAGS example you also should 
bring two functions contained in jhbayes.R into memory using the source 
function.

> library(R2jags)
> �source(“c://Rfiles/jhbayes.R”) # or where you store R 
files; book’s website

The code in Table 6.1 is specific to the model we have been working with 
in the previous section. However, as you can see, it is easily adaptable for other 
logistic models. With a change in the log-likelihood, it can also be used with 
other distributions and can be further amended to incorporate random effects, 
mixed effects, and a host of other models.

Let us walk through the code in Table 6.1. Doing so will make it much 
easier for you to use it for other modeling situations.

The top two lines

X <- model.matrix(~ cdoc + female + kids + cage, 
                    data = R84)
K <- ncol(X)

create a matrix of predictors, X, from the model R84, and a variable, K, which 
contains the number of predictors contained in X. A column of 1s for the inter-
cept is also generated by model.matrix().

The next code segment is logit.data, although we may call it anything 
we wish. logit.data is a list of the components of the JAGS model we are 
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TABLE 6.1  JAGS code for Bayesian logistic model

X <- model.matrix(~ cdoc + female + kids + cage, 
                    data = R84)
K <- ncol(X)
logit.data <- list(Y  = R84$outwork,
                 N    = nrow(R84),
                 X    = X,
                 K    = K,
                 LogN = log(nrow(R84)),
                 b0   = rep(0, K),
                 B0   = diag(0.00001, K)
                 )
sink(“LOGIT.txt”)

cat(“
model{
    # Priors
    beta  ~ dmnorm(b0[], B0[,])  

    # Likelihood 
    for (i in 1:N){  
      Y[i] ~ dbern(p[i])
      logit(p[i]) <- max(-20, min(20, eta[i]))  
      eta[i]      <- inprod(beta[], X[i,])
      LLi[i] <- Y[i] * log(p[i]) +
                (1 - Y[i]) * log(1 - p[i])
  } 
  LogL <- sum(LLi[1:N])
  AIC <- -2 * LogL + 2 * K
  BIC <- -2 * LogL + LogN * K
}
“,fill = TRUE)
sink()

# INITIAL VALUES – BETAS AND SIGMAS
inits <- function () {
  list(
    beta  = rnorm(K, 0, 0.1)
    )  }
params <- c(“beta”, “LogL”, “AIC”, “BIC”)

# JAGs 
J0 <- jags(data = logit.data,
           inits = inits,
           parameters = params,
           model.file = “LOGIT.txt”,
           n.thin = 10,
           n.chains = 3,
           n.burnin = 40000,
           n.iter   = 50000)

# OUTPUT DISPLAYED
out <- J0$BUGSoutput
myB <- MyBUGSOutput(out, c(uNames(“beta”, K), “LogL”, “AIC”, “BIC”))
round(myB, 4)
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developing. Y is the response variable, N is the number of observations in the 
model, X is the predictor, K is the number of predictors, log N is the log of the 
number of observations in the model, b0 is the prior mean and B0 the prior 
precision, which is the inverse of the variance. b0 and B0 relate to defining 
priors. Arguments to b0 and B0 define the mean and variance for each prior in 
the model. In the code below, b0 is a vector of K priors, each with a value of 0; 
B0 indicates a matrix with a diagonal having K trace terms and a variance of 
each having values of 100,000.

logit.data <- list(Y  = R84$outwork,
                 N    = nrow(R84),
                 X    = X,
                 K    = K,
                 LogN = log(nrow(R84)),
                 b0   = rep(0, K),
                 B0   = diag(0.00001, K)
                 )

The next segment contains the terms

sink(“LOGIT.txt”)
cat(“

that puts everything within the model braces, { }, below the code into a text 
file called LOGIT.txt.

Priors and the likelihood function are defined within the model parentheses:

model{

We start by defining the priors. The prior betas are all defined as multi-
variately normal. The values we just defined for both b0 and B0 are supplied 
to the arguments of dmnorm().

beta ~ dmnorm(b0[], B0[,])

If we wanted to have a uniform prior for each of the predictors, the right 
side of the above distribution would be expressed as dunif(-20, 20).

The following code segment defines the likelihood. This is a crucial seg-
ment. The likelihood is calculated across all observations in the model; that 
is, from 1 to N.

The first term in the for-loop specifies this to be a logistic regression; that 
is, the likelihood across all observations is Bernoulli distributed. The next two 
lines provide the link function, logit and eta, which is the linear predictor. It is 
formed by the product (inprod) of the beta and X values. The final line within 
the parenthesis is the Bernoulli log-likelihood function. The sum of the obser-
vation log-likelihood values produces the model log-likelihood statistic, LogL.
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   for (i in 1:N){  
      Y[i] ~ dbern(p[i])
      logit(p[i]) <- max(-20, min(20, eta[i]))  
      eta[i]      <- inprod(beta[], X[i,])
      LLi[i] <- Y[i] * log(p[i]) +
                (1 - Y[i]) * log(1 - p[i])
   } 
   LogL <- sum(LLi[1:N])

The Akaike and Bayesian information criteria (AIC and BIC) statistics 
are then calculated, and the model parenthesis closes. The fill confirms that the 
LOGIT.txt file should contain everything within the parenthesis, and the sink() 
function actually saves the file to the working directory.

  AIC <- -2 * LogL + 2 * K
  BIC <- -2 * LogL + LogN * K
}
“,fill = TRUE)
sink()

The inits segment formally defines the initial parameter values, which 
are all defined as normally distributed terms with a mean of 0 and variance of 
10 (the precision, 1/V, is 0.1). The term params contains the coefficient, log-
likelihood, AIC, and BIC statistics.

inits <- function () {
  list(
    beta  = rnorm(K, 0, 0.1)
    )  }

params <- c(“beta”, “LogL”, “AIC”, “BIC”)

The segment JO is the JAGS function, containing the values and set-
tings we just defined. The JAGS algorithm itself uses the following values to 
define the manner in which MCMC sampling occurs. It is the core of the JAGS 
function.

Terms we have not defined yet include the n.thin, meaning here that sam-
pling actually keeps every 10th value from the MCMC Gibbs sampler, dis-
carding the others. This is done in case the data are autocorrelated. Thinning 
is an attempt to increase sampling efficiency. Keeping one of every 10 samples 
for our distribution helps effect randomness. n.chains specifies how many dis-
tributions are being sampled. Chains of sampling are mixed, which assists in 
obtaining a distribution that properly characterizes the data. Here we spec-
ify that three chains of sampling are to be run. n.burnin indicates how many 
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sampling values are discarded before values are kept in the posterior distri-
bution. The initial values can vary widely, and skew the results. If all of the 
early values were kept, the mean of the posterior distribution could be severely 
biased. Discarding a sizeable number of early values helps guarantee a better 
posterior. Finally, the n.iter specifies how many values are kept for the poste-
rior distribution, after thinning and discarding of burn-in values.

J0 <- jags(data = logit.data,
           inits = inits,
           parameters = params,
           model.file = “LOGIT.txt”,
           n.thin = 10,
           n.chains = 3,
           n.burnin = 40000,
           n.iter   = 50000)

After running the jags function, which we have called J0, typing J0 on 
the R command-line will provide raw model results. The final code in Table 
6.1 provides nicer looking output. The source code in jhbayes.R is relevant 
at this point. jhbayes.r consists of two small functions from the Zuur support 
package, MCMCSupportHighstat.R, which comes with Zuur, Hilbe and Ieno 
(2013) and is available for other books by Zuur as well. The posterior means, 
or betas, the log-likelihood function, and AIC and BIC statistics are displayed, 
together with their standard errors and outer 0.025 “credible set.” We specified 
that only four decimal digits are displayed. BUGSoutput and MyBUGSOutput 
are parts of the R2jags package:

out <- J0$BUGSoutput
myB <- �MyBUGSOutput(out, c(uNames(“beta”, K), 

“LogL”, “AIC”, “BIC”))
round(myB, 4)

The Bayesian logistic model results are listed in the table below.

> round(myB, 4)
              mean     se       2.5%      97.5%
beta[1]    -2.0193 0.0824    -2.1760    -1.8609
beta[2]     0.0245 0.0063     0.0128     0.0370
beta[3]     2.2569 0.0843     2.0922     2.4216
beta[4]     0.3685 0.0904     0.1920     0.5415
beta[5]     0.0545 0.0042     0.0466     0.0626
LogL    -1961.6258 1.5178 -1965.4037 -1959.5816
AIC      3933.2517 3.0357  3929.1632  3940.8074
BIC      3964.5619 3.0357  3960.4734  3972.1176

Compare the above statistics with the summary table of myg, which was 
the model as estimated using the glm function. Note that the AIC values are 
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statistically identical. This output also matches the SAS results displayed esti-
mated using noninformative priors.

> summary(myg)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -2.010276   0.081087 -24.792  < 2e-16 ***
cdoc         0.024432   0.006263   3.901 9.57e-05 ***
female       2.256804   0.082760  27.269  < 2e-16 ***
kids         0.357976   0.089962   3.979 6.92e-05 ***
cage         0.054379   0.004159  13.075  < 2e-16 ***
---
    Null deviance: 5091.1  on 3873  degrees of freedom
Residual deviance: 3918.2  on 3869  degrees of freedom
AIC: 3928.2

A comparison of the frequency-based standard logistic regression and our 
two Bayesian models without informative priors reveal nearly identical values. 
Note that using two entirely different methods of estimation—maximum like-
lihood and sampling—result in the same values. This tells us that these esti-
mation procedures are valid ways of estimating the true underlying parameter 
values of the distribution theoretically generating the data.

> round(cbind(coef(myg), Bcoef, myB[1:K,1]), 4)
                      Bcoef        
(Intercept) -2.0103 -2.0131 -2.0193
cdoc         0.0244  0.0246  0.0245
female       2.2568  2.2592  2.2569
kids         0.3580  0.3575  0.3685
cage         0.0544  0.0544  0.0545

The example above did not employ an informative prior. For instance, 
we could have provided information that reflected our knowledge that docvis 
has between 40% and 50% zero counts. We compounded the problem since 
docvis was centered, becoming cdoc. The centered values for when docvis = 0 
are −3.162881. They are −2.162881 when docvis = 1. We can therefore set up a 
prior that we expect 40%–50% zero counts when cdoc is less than −3.

6.2.3 � Bayesian Logistic Regression 
with Informative Priors

In a regression model the focus is on placing priors on parameters in order to 
develop adjusted posterior parameter values. For example, we could set a prior 
on the coefficient of cdoc such that we are 75% confident that the coefficient 
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will be between 0.020 and 0.030. Priors are expressed in terms of probability 
functions, usually the normal, lognormal, beta, binomial, Bernoulli, Cauchy, 
t, gamma, inverse gamma, Poisson, Poisson-gamma, and negative binomial. 
The same prior may be set on one or more parameters, and different priors 
may be set for separate parameters. Each software package specifies how this 
should be coded. 

The example below employs a Cauchy prior on all three parameters; that 
is, the coefficients on intercept, cdoc, and cage.

beta.0 ~ dt(0,1/(2.5^2),1)
beta.1 ~ dt(0, 1/(2.5^2),1)
beta.2 ~ dt(0, 1/(2.5^2),1)

where 1/(2.5)^2 is equal to 0.16. For those of my readers who have taken 
a course in probability, you may recall that the Cauchy corresponds to a 
Student’s t distribution, with 2n − 1 degrees of freedom, multiplied by the 
value 1/sqrt(s*(2*n − 1)). n and s are the shape and scale parameters, respec-
tively, for the Cauchy distribution. Perhaps the normal might be preferable for 
the intercept; the reader may want to check if this is indeed the case (Table 
6.2). The code, presented in a slightly different manner from Table 6.1 can be 
used for a wide variety of models. The output does not include implementing 
the R2jags MyBUGSOutput function that produces nicely formatted results.

#  �load contents of Table 6.2 into memory prior to 
running summary() below

>  summary(codasamples)

Iterations = 41001:91000
Thinning interval = 1 
Number of chains = 3     # <= note that 3 chains are used 
Sample size per chain = 50000 

1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:

             Mean       SD  Naive SE Time-series SE
AIC     5.020e+03 1.996398 0.0051547      7.634e-03
BIC     5.026e+03 1.996398 0.0051547      7.634e-03
LogL   -2.509e+03 0.998199 0.0025773      3.817e-03
beta.0 -5.481e-01 0.047049 0.0001215      8.214e-04
beta.1  5.059e-02 0.006352 0.0000164      2.072e-05
beta.2  7.209e-02 7.991224 0.0206333      2.006e-01

2. Quantiles for each variable:

             2.5%        25%        50%        75%      97.5%
AIC     5.018e+03  5.018e+03  5.019e+03  5.020e+03  5.025e+03
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TABLE 6.2  JAGS logistic regression with cauchy prior

library(R2jags)
library(COUNT)
data(rwm1984)
R84 <- rwm1984
R84$cage <- R84$age - mean(R84$age)
R84$cdoc <- R84$docvis - mean(R84$docvis)

### JAGS component
K <- 1
logit.data <- list(Y  = R84$outwork,
                 N    = nrow(R84),
                 cdoc = R84$cdoc,
                 cage = R84$cage,
                 K=1,
                 LogN = log(nrow(R84))
)
GLM.txt<-”
    model{
    #1. Priors
    beta.0~ dt(0,.16, 1) 
    beta.1~ dt(0, .16, 1)
    beta.2~ dt(0, .16,1)

    #2. Likelihood 
    for (i in 1:N){  

    Y[i] ~ dbern(p[i])
    logit(p[i]) <- max(-20, min(20, eta[i]))  
    eta[i]      <- beta.0+beta.1*cdoc[i]+beta.2*cage[2]

    LLi[i] <- Y[i] * log(p[i]) +
    (1 - Y[i]) * log(1 - p[i])
    } 
    LogL <- sum(LLi[1:N])
    AIC <- -2 * LogL + 2 * K
    BIC <- -2 * LogL + LogN * K
    
    }
    “
# INITIAL VALUES - BETAS AND SIGMAS
inits <- function () {
  list(
    beta.0  = 0.1,beta.1=0.1, beta.2=0.1
  )  }
params <- c(“beta.0”,”beta.1”,”beta.2”,”LogL”, “AIC”, “BIC”)

# JAGs 
J0 <- jags.model(data = logit.data,
           inits = inits,
           textConnection(GLM.txt),
           n.chains = 3,
           n.adapt=1000)
update(J0, 40000)
codasamples <- coda.samples(J0, params, n.iter = 50000)
summary(codasamples)
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BIC     5.024e+03  5.024e+03  5.025e+03  5.027e+03  5.031e+03
LogL   -2.511e+03 -2.509e+03 -2.508e+03 -2.508e+03 -2.508e+03
beta.0 -6.282e-01 -5.725e-01 -5.476e-01 -5.230e-01 -4.682e-01
beta.1  3.839e-02  4.629e-02  5.050e-02  5.481e-02  6.325e-02
beta.2 -1.112e+01 -9.996e-01 -7.193e-03  9.644e-01  1.070e+01

With normal priors, the output is displayed as:

    #1. Priors
    beta.0 ~ dnorm(0, 0.00001) 
    beta.1~dnorm(0, 0.00001)
    beta.2~dnorm(0, 0.00001)

1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:

             Mean       SD  Naive SE Time-series SE
AIC     5.020e+03 1.983282 5.121e-03      7.678e-03
BIC     5.026e+03 1.983282 5.121e-03      7.678e-03
LogL   -2.509e+03 0.991641 2.560e-03      3.839e-03
beta.0 -5.471e-01 0.044242 1.142e-04      5.766e-04
beta.1  5.058e-02 0.006379 1.647e-05      2.113e-05
beta.2 -1.546e-01 7.041635 1.818e-02      1.412e-01

2. Quantiles for each variable:

             2.5%        25%        50%        75%      97.5%
AIC     5.018e+03  5.018e+03  5.019e+03  5.020e+03  5.025e+03
BIC     5.024e+03  5.024e+03  5.025e+03  5.027e+03  5.031e+03
LogL   -2.511e+03 -2.509e+03 -2.508e+03 -2.508e+03 -2.508e+03
beta.0 -6.255e-01 -5.722e-01 -5.473e-01 -5.223e-01 -4.660e-01
beta.1  3.829e-02  4.625e-02  5.051e-02  5.484e-02  6.333e-02
beta.2 -1.235e+01 -1.022e+00 -2.184e-02  9.511e-01  9.943e+00

Notice that the values of the distributional means for each parameter—
intercept, cdoc, and cage—differ, as do other associated statistics. The prior 
has indeed changed the model. What this means is that we can provide our 
model with a substantial amount of additional information about the predic-
tors used in our logistic model. Generally speaking, it is advisable to have a 
prior that is distributionally compatible with the distribution of the parameter 
having the prior. The subject is central to Bayesian modeling, but it takes us 
beyond the level of this book. My recommendations for taking the next step in 
Bayesian modeling include Zuur et al. (2013), Cowles (2013), and Lunn et al. 
(2013). More advanced but thorough texts are Christensen et  al. (2011) and 
Gelman et al. (2014). There are many other excellent texts as well. I should 
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also mention that Hilbe et al. (2016) will provide a clear analysis of Bayesian 
modeling as applied to astronomical data.

SAS CODE

/* Section 6.2 */
*Refer to the code in section 1.4 to import and print rwm1984 dataset;
*Refer to proc freq in section 2.4 to generate the frequency table;
*Summary for continuous variables;
proc means data=rwm1984 min q1 median mean q3 max maxdec=3;
	 var docvis age;
	 output out=center mean=;
run;

*Create the macro variables;
proc sql;
	 select age into: meanage from center;
	 select docvis into: meandoc from center;
quit;

*Center the continuous variables;
data R84;
	 set rwm1984;
	 cage=age-&meanage;
	 cdoc=docvis-&meandoc;
run;

*Build the logistic model and obtain odds ratio & statistics;
proc genmod data=R84 descending;
	 model outwork=cdoc female kids cage / dist=binomial link=logit;
	 estimate “Intercept” Intercept 1 / exp;
	 estimate “Cdoc” cdoc 1 / exp;
	 estimate “Female” female 1 / exp;
	 estimate “Kids” kids 1 / exp;
	 estimate “Cage” cage 1 / exp;
run;

*Build the quasibinomial logistic model;
proc glimmix data=R84;
	 model outwork (event=’1’)=cdoc female kids cage / dist=binary 
	 link=logit solution covb;
	 random _RESIDUAL_;
run;

*Refer to proc iml in section 2.3 and the full code is provided 
online;
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*Bayesian logistic regression;
proc genmod data=R84 descending;
	 model outwork=cdoc female kids cage / dist=binomial link=logit;
	 bayes seed=10231995 nbi=5000 nmc=100000
	 coeffprior=uniform diagnostics=all
	 statistics=(summary interval) plots=all;
run;

*Create the normal prior;
data prior;
	 input _type_ $ Intercept cdoc cage;
	 datalines;
Var 1e5 1e5 1e5
Mean 0 0 0 
;
run;

*Bayesian logistic regression with normal prior;
proc genmod  data=R84 descending;
        model outwork=cdoc female kids cage/dist=binomial link=logit;
        bayes seed=10231995 nbi=5000 nmc=100000
        coeffprior=normal(input=prior) diagnostics=all
        statistics=(summary interval) plots=all ;
run;

SAS output Bayesian logistic regression with normal prior.

STATA CODE

. use rwm1984

. center docvis, pre(c)

. rename cdocvis cdoc

. center age, pre(c)

. sum cdoc cage
* Logistic regression: standard and scaled
. glm outwork cdoc female kids cage, fam(bin) eform nolog
. glm outwork cdoc female kids cage, fam(bin) eform scale(x2) nolog
* Non-informative priors, normal(0, 100000)

INDEPENDENT NORMAL PRIOR FOR 
REGRESSION COEFFICIENTS

PARAMETER MEAN PRECISION

Intercept 0 0.00001
Cdoc 0 0.00001
Female 0 1E-6
Kids 0 1E-6
Cage 0 0.00001
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. bayesmh outwork cdoc female kids cage, likelihood(logit) prior({outwork:},normal(
    0, 100000))
. bayesgraph diagnostics {outwork:}
. bayesstats ic
* Informative priors: Cauchy prior on cdoc and cage; noninformative on others
. bayesmh outwork cdoc female kids cage, likelihood(logit)            ///
        prior({outwork:female kids _cons}, normal(0, 100000))         ///
        prior({outwork:cdoc},                                         ///
        logdensity(ln(6.276)-ln(6.276^2+({outwork_cdoc})^2)-ln(_pi))) ///
        prior({outwork:cage},                                         ///
        logdensity(ln(11.24)-ln(11.24^2+({outwork_cage})^2)-ln(_pi))) ///
        block({outwork:female kids _cons})
. bayesgraph diagnostics {outwork: cdoc}
. bayesgraph diagnostics {outwork; cage)
. bayesstats ic

Stata 14: Partial Output—Logit Model with 
Informative Priors
Bayesian logistic regression                 MCMC iterations  =     12,500
Random-walk Metropolis-Hastings sampling     Burn-in          =      2,500
                                             MCMC sample size =     10,000
                                             Number of obs    =      3,874
                                             Acceptance rate  =      .1792
                                             Efficiency:  min =     .05461
                                                          avg =     .07162
Log marginal likelihood = -27363.562                      max =     .09621

                                                          Equal-tailed
  outwork        Mean   Std. Dev.    MCSE     Median  [95% Cred. Interval]

     cdoc    .0199813   .0055174  .000178    .020052   .0091184    .029969
   female    2.243112   .0815326  .003024   2.241708   2.092979   2.403369
     kids    .2936242   .0886074  .003792   .2910353   .1282263   .4675729
     cage    .0485316   .0040249  .000149    .048308   .0408274   .0566746
    _cons   -1.967223   .0791867  .003202  -1.970386  -2.131315  -1.803809

CONCLUDING COMMENTS

This book is intended as a guidebook to help analysts develop and execute 
well-fitted logistic models. In reviewing it now that it is finished, the book can 
also be regarded as an excellent way for an analyst to learn R, as well as SAS 
and Stata as applied to developing logistic models and associated tests and 
data management tasks related to statistical modeling. Several new functions 
are found in this book that are new to R—functions that were written to assist 
the analyst in producing and testing logistic models. I will frequently use these 
functions in my own future logistic modeling endeavors.

I mentioned in the book that when copying code from one electronic for-
mat to another, characters such as quotation marks and minus signs can result 
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in errors. Even copying code from my own saved Word and PDF documents 
to R’s editor caused problems. Many times I had to retype quotation marks, 
minus signs, and several other symbols in order for R to run properly. I also 
should advise you that when in the R editor, it may be wise to “run” long 
stretches of code in segments. That is, rather than select the entire program 
code, select and run segments of it. I have had students, and those who have 
purchased books of mine that include R code, email me that they cannot run 
the code. I advise them to run it in segments. Nearly always they email back 
that they now have no problems. Of course, at times in the past there have 
indeed been errors in the code, but know that the code in this book has all been 
successfully run multiple times. Make sure that the proper libraries and data 
have been installed and loaded before executing code.

There is a lot of information in the book. However, I did not discuss issues 
such as missing values, survey analysis, validation, endogeny, and latent class 
models. These are left for my comprehensive book titled, Logistic Regression 
Models (2009, Chapman & Hall), which is over 650 pages in length. A forth-
coming second edition will include both Stata and R code in the text with SAS 
code as it is with this book. Bayesian logistic regression will be more thor-
oughly examined, with Bayesian analysis of grouped, ordered, multinomial, 
hierarchical, and other related models addressed.

I primarily wrote this book to go with a month-long web-based course 
I teach with Statistics.com. I have taught the course with them since 2003, 
three classes a year, and continually get questions and feedback from research-
ers, analysts, and professors from around the world. I have also taught logistic 
regression and given workshops on it for over a quarter a century. In this book, 
I have tried to address the most frequent concerns and problem areas that prac-
ticing analysts have informed me about. I feel confident that anyone reading 
carefully through this relatively brief monograph will come away from it with 
a solid knowledge of how to use logistic regression—both observation based 
and grouped. For those who wish to learn more after going through this book, 
I recommend my Logistic Regression Models (2009, 2016 in preparation). I 
also recommend Bilger and Loughin (2015), which uses R code for exam-
ples, Collett (2003), Dohoo et al. (2012), and for nicely written shorter books 
dealing with the logistic regression and GLM in general, Dobson and Barnett 
(2008), Hardin and Hilbe (2013), and Smithson and Merkle (2014). Hosmer 
et al. (2013) is also a fine reference book on the subject, but there is no code 
provided with the book. The other recommended books have code to support 
examples, which I very much believe assists the learning process.

I invite readers of this book to email me their comments and suggestions 
about it: hilbe//works.bepress.com/joseph_hilbe/, has the data sets used in the 
book in various formats, and all of the code used in the book in electronic 
format. Both SAS and Stata code and output is also provided.
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