
Practical Guide to Logistic Regression covers the key points of the basic
logistic regression model and illustrates how to use it properly to model a binary
response variable. This powerful methodology can be used to analyze data from
various fields, including medical and health outcomes research, business analytics
and data science, ecology, fisheries, astronomy, transportation, insurance,
economics, recreation, and sports. By harnessing the capabilities of the logistic
model, analysts can better understand their data, make appropriate predictions
and classifications, and determine the odds of one value of a predictor compared
to another.

Drawing on his many years of teaching logistic regression, using logistic-based
models in research, and writing about the subject, the author focuses on the
most important features of the logistic model. He explains how to construct a
logistic model, interpret coefficients and odds ratios, predict probabilities and
their standard errors based on the model, and evaluate the model as to its fit.
Using a variety of real data examples, mostly from health outcomes, the author
offers a basic step-by-step guide to developing and interpreting observation and
grouped logistic models as well as penalized and exact logistic regression. He
also gives a step-by-step guide to modeling Bayesian logistic regression.

R statistical software is used throughout the book to display the statistical models
while SAS and Stata codes for all examples are included at the end of each
chapter. The example code can be adapted to your own analyses. All the code is
also available on the author’s web site.

Features
• Gives practical guidance on constructing, modeling, interpreting, and

evaluating binary response data using logistic regression
• Explores solutions to common stumbling blocks when using logistic

regression to model data
• Compares Bayesian logistic regression to the traditional frequentist

approach, with R, JAGS, Stata, and SAS codes provided for example
Bayesian logistic models

• Includes complete Stata, SAS, and R codes in the text and on the author’s
website, enabling you to adapt the code as needed and thus make your
modeling tasks easier and more productive

• Provides new R functions and data in the LOGIT package on CRAN

K24999

w w w . c r c p r e s s . c o m

Statistics

Practical G
uid

e to Lo
gistic Regressio

n

Joseph M. Hilbe
H

ilb
e

Practical Guide to
Logistic
Regression

K24999_cover.indd 1 6/8/15 10:06 AM

Practical Guide to
Logistic
Regression

Joseph M. Hilbe
Jet Propulsion Laboratory

California Institute of Technology, USA

and

Arizona State University, USA

Practical Guide to
Logistic
Regression

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20160303

International Standard Book Number-13: 978-1-4987-0958-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface ix
Author xv

 1 Statistical Models 1
1.1 What Is a Statistical Model? 1
1.2 Basics of Logistic Regression Modeling 3
1.3 The Bernoulli Distribution 4
1.4 Methods of Estimation 7
SAS Code 11
Stata Code 12

 2 Logistic Models: Single Predictor 13
2.1 Models with a Binary Predictor 13
2.2 Predictions, Probabilities, and Odds Ratios 18
2.3 Basic Model Statistics 20

2.3.1 Standard Errors 20
2.3.2 z Statistics 23
2.3.3 p-Values 23
2.3.4 Confidence Intervals 24

2.4 Models with a Categorical Predictor 28
2.5 Models with a Continuous Predictor 32

2.5.1 Varieties of Continuous Predictors 32
2.5.2 A Simple GAM 33
2.5.3 Centering 34
2.5.4 Standardization 36

2.6 Prediction 37
2.6.1 Basics of Model Prediction 37
2.6.2 Prediction Confidence Intervals 39

SAS Code 41
Stata Code 47

 3 Logistic Models: Multiple Predictors 49
3.1 Selection and Interpretation of Predictors 49
3.2 Statistics in a Logistic Model 52

vi Contents

3.3 Information Criterion Tests 58
3.3.1 Akaike Information Criterion 58
3.3.2 Finite Sample 59
3.3.3 Bayesian Information Criterion 60
3.3.4 Other Information Criterion Tests 60

3.4 The Model Fitting Process: Adjusting Standard Errors 61
3.4.1 Scaling Standard Errors 61
3.4.2 Robust or Sandwich Variance Estimators 63
3.4.3 Bootstrapping 64

3.5 Risk Factors, Confounders, Effect Modifiers,
and Interactions 65

SAS Code 67
Stata Code 70

 4 Testing and Fitting a Logistic Model 71
4.1 Checking Logistic Model Fit 71

4.1.1 Pearson Chi2 Goodness-of-Fit Test 71
4.1.2 Likelihood Ratio Test 72
4.1.3 Residual Analysis 73
4.1.4 Conditional Effects Plot 79

4.2 Classification Statistics 81
4.2.1 S–S Plot 84
4.2.2 ROC Analysis 84
4.2.3 Confusion Matrix 86

4.3 Hosmer–Lemeshow Statistic 88
4.4 Models with Unbalanced Data and Perfect Prediction 91
4.5 Exact Logistic Regression 93
4.6 Modeling Table Data 96
SAS Code 101
Stata Code 105

 5 Grouped Logistic Regression 107
5.1 The Binomial Probability Distribution Function 107
5.2 From Observation to Grouped Data 109
5.3 Identifying and Adjusting for Extra Dispersion 113
5.4 Modeling and Interpretation of Grouped Logistic

Regression 115
5.5 Beta-Binomial Regression 117
SAS Code 123
Stata Code 125

Contents vii

 6 Bayesian Logistic Regression 127
6.1 A Brief Overview of Bayesian Methodology 127
6.2 Examples: Bayesian Logistic Regression 130

6.2.1 Bayesian Logistic Regression Using R 130
6.2.2 Bayesian Logistic Regression Using JAGS 137
6.2.3 Bayesian Logistic Regression with
 Informative Priors 143

SAS Code 147
Stata Code 148
Concluding Comments 149

References 151

ix

Preface

Logistic regression is one of the most used statistical procedures in research.
It is a component of nearly all, if not all, general purpose commercial statis-
tical packages, and is regarded as one of the most important statistical rou-
tines in fields such as health-care analysis, medical statistics, credit rating,
ecology, social statistics and econometrics, and other similar areas. Logistic
regression has also been considered by many analysts to be an important
procedure in predictive analytics, as well as in the longer established Six
Sigma movement.

There is a good reason for this popularity. Unlike traditional linear or nor-
mal regression, logistic regression is appropriate for modeling a binary vari-
able. As we shall discuss in more detail in the first chapter, a binary variable
has only two values—1 and 0. These values may be thought of as “success”
and “failure,” or of any other type of “positive” and “non-positive” dichotomy.
If an analyst models a 1/0 binary variable on one or more predictors using
linear regression, the assumptions upon which the linear model is based are
violated. That is, the linear model taught in Introduction to Statistics courses
is not appropriate for modeling binary data. We shall discuss why this is the
case later in the book.

Logistic regression is typically used by researchers and analysts in general
for three purposes:

 1. To predict the probability that the outcome or response variable
equals 1

 2. To categorize outcomes or predictions
 3. To access the odds or risk associated with model predictors

The logistic model is unique in being able to accommodate all three of
these goals. The foremost emphasis of this book is to help guide the analyst
in utilizing the capabilities of the logistic model, and thereby to help analysts
to better understand their data, to make appropriate predictions and classifi-
cations, and to determine the odds of one value of a predictor compared to
another. In addition, I shall recommend an approach to logistic regression
modeling that satisfies problems that some “data science” analysts find with
traditional logistic modeling.

x Preface

This book is aimed at the working analyst or researcher who finds that
they need some guidance when modeling binary response data. It is also of
value for those who have not used logistic regression in the past, and who are
not familiar with how it is to be implemented. I assume, however, that the
reader has taken a basic course in statistics, including instruction on applying
linear regression to study data. It is sufficient if you have learned this on your
own. There are a number of excellent books and free online tutorials related to
regression that can provide this background.

I think of this book as a basic guidebook, as well as a tutorial between you
and me. I have spent many years teaching logistic regression, using logistic-
based models in research, and writing books and articles about the subject.
I have applied logistic regression in a wide variety of contexts—for medical
and health outcomes research, in ecology, fisheries, astronomy, transporta-
tion, insurance, economics, recreation, sports, and in a number of other areas.
Since 2003, I have also taught both the month-long Logistic Regression and
Advanced Logistic Regression courses for Statistics.com, a comprehensive
online statistical education program. Throughout this process I have learned
what the stumbling blocks and problem areas are for most analysts when using
logistic regression to model data. Since those taking my courses are located at
research sites and universities throughout the world, I have been able to gain
a rather synoptic view of the methodology and of its use in research in a wide
variety of applications.

In this volume, I share with you my experiences in using logistic regres-
sion, and aim to provide you with the fundamental logic of the model and its
appropriate application. I have written it to be the book I wish I had read when
first learning about the model. It is much smaller and concise than my 656
page Logistic Regression Models (Chapman & Hall/CRC, 2009), which is a
general reference to the full range of logistic-based models. Rather, this book
focuses on how best to understand the key points of the basic logistic regres-
sion model and how to use it properly to model a binary response variable. I
do not discuss the esoteric details of estimation or provide detailed analysis of
the literature regarding various modeling strategies in this volume, but rather
I focus on the most important features of the logistic model—how to construct
a logistic model, how to interpret coefficients and odds ratios, how to predict
probabilities based on the model, and how to evaluate the model as to its fit. I
also provide a final chapter on Bayesian logistic regression, providing an over-
view of how it differs from the traditional frequentist tradition. An important
component of our examination of Bayesian modeling will be a step-by-step
guide through JAGS code for modeling real German health outcomes data.
The reader should be able to attain a basic understanding of how Bayesian
logistic regression models can be developed and interpreted—and be able to
develop their own models using the explanation in the book as a guideline.

Preface xi

Resources for how to learn how to model slightly more complicated models
will be provided—where to go for the next step. Bayesian modeling is hav-
ing a continually increasing role in research, and every analyst should at least
become acquainted with how to understand this class of models, and with how
to program basic Bayesian logistic models when doing so is advisable.

R statistical software is used to display all but one statistical model dis-
cussed in the book—exact logistic regression. Otherwise R is used for all data
management, models, postestimation fit analyses, tests, and graphics related
to our discussion of logistic regression in the book. SAS and Stata code for
all examples is provided at the conclusion of each chapter. Complete Stata
and SAS code and output, including graphics and tables, is provided on the
book’s web site. R code is also provided on the book’s web site, as well as in
the LOGIT package posted on CRAN.

R is used in the majority of newly published texts on statistics, as well as
for examples in most articles found in statistics journals published since 2005.
R is open ware, meaning that it is possible for users to inspect the actual code
used in the analysis and modeling process. It is also free, costing nothing to
download into one’s computer. A host of free resources is available to learn R,
and blogs exist that can be used to ask others how to perform various opera-
tions. It is currently the most popular statistical software worldwide; hence, it
makes sense to use it for examples in this relatively brief monograph on logis-
tic regression. But as indicated, SAS and Stata users have the complete code
to replicate all of the R examples in the text itself. The code is in both printed
format as well as electronic format for immediate download and use.

A caveat: Keep in mind that when copying code from a PDF document, or
even from a document using a different font from that which is compatible with
R or Stata, you will likely find that a few characters need to be retyped in order
to successfully execute. For example, when pasting program code from a PDF
or word document into the R editor, characters such as “quotation marks” and
“minus signs” may not convert properly. To remedy this, you need to retype the
quotation or minus sign in the code you are using.

It is also important to remember that this monograph is not about R, or
any specific statistical software package. We will foremost be interested in
the logic of logistic modeling. The examples displayed are aimed to clarify
the modeling process. The R language, although popular and powerful, is
nevertheless tricky. It is easy to make mistakes, and R is rather unforgiving
when you do. I therefore give some space to explaining the R code used in the
modeling and evaluative process when the code may not be clear. The goal is
to provide you with code you can use directly, or adapt as needed, in order to
make your modeling tasks both easier and more productive.

I have chosen to provide Stata code at the end of each chapter since Stata
is one of the most popular and to my mind powerful statistical packages on the

xii Preface

commercial market. It has free technical support and well-used blog and user
LISTSERV sites. In addition, it is relatively easy to program statistical proce-
dures and tests yourself using Stata’s programming language. As a result, Stata
has more programs devoted to varieties of logistic-based routines than any
other statistical package. Bob Muenchen of the University of Tennessee and I
have pointed out similarities and differences between Stata and R in our 530
page book, R for Stata Users (Springer, 2010). It is a book to help Stata users
learn R, and for R users to more easily learn Stata. The book is published in
hardback, paperback, and electronic formats.

I should acknowledge that I have used Stata for over a quarter of a century,
authoring the initial versions of several procedures now in commercial Stata
including the first logistic (1990) and glm (1993) commands. I also founded the
Stata Technical Bulletin in 1991, serving as its first editor. The STB became
enhanced to the Stata Journal in 1999. I also used to teach S-Plus courses for
the manufacturer of the package in the late 1980s and early 1990s, traveling
to various sites in the United States and Canada for some 4 years. The S and
S-Plus communities have largely evolved to become R users during the past
decade to decade and a half. In addition, I also programmed various macros in
SAS and gave presentations at SUGI, thus have a background in SAS as well.
However, since it has been a while since I have used SAS on a regular basis,
I invited Yang Liu, a professional SAS programmer and MS statistician to
replicate the R code used for examples in the text into SAS. He has provided
the reader with complete programming code, not just snippets of code that
one finds in many other texts. The SAS/Stat GENMOD Procedure and Proc
Logistic were the two most used SAS procedures for this project. Yang also
reviewed proof pages with me, checking for needed amendments.

The R data sets and user authored functions and scripts are available for
download and installation from the CRAN package, LOGIT. The LOGIT pack-
age will also have the data, functions, and scripts for both the first (2009) and
second (forthcoming 2016) edition of the author’s Logistic Regression Models
(Chapman & Hall/CRC). Data files in Stata, SAS, SPSS, Excel and csv format,
as well as Stata commands and ado/do files are located on the author’s web site:

http://works.bepress.com/joseph_hilbe/
as well as on the publishers web site for the book:
http://www.crcpress.com/product/isbn/9781498709576

An Errata and Comments PDF as well as other resource material and “hand-
outs” related to logistic regression will also be available on my Bepress web site.

I wish to acknowledge the following colleagues for their input into the cre-
ation of this book. Rafael S. de Souza (astrophysicist, Eötvös Loránd University,
Hungary) and Yang Liu (Baylor Scott & White Health). My collaborative work

Preface xiii

with James W. Hardin (associate professor of Biostatistics, University of South
Carolina) over the past 15 years has indirectly contributed to this book as well.
Our collaboration has involved coauthoring five books, a number of book chap-
ters and journal articles, and numerous discussions on statistical programming
and modeling. My work with Alain Zuur (CEO, Highlands Statistics, Scotland,
UK) also contributed to this book. We coauthored a book in 2013 related to
Bayesian modeling that has greatly influenced my subsequent work in the area.
I should also acknowledge Peter Bruce (CEO, Institute for Statistics Education,
Statistics.com), who first suggested that I write this book for use in my web
course on Logistic Regression. Dr. de Souza provided two new R functions he
authored for the book’s classification statistics and graphics in Chapter 4 called
ROCtest and confusion_stat. These are very nicely written and useful func-
tions that enhance R’s logistic modeling capabilities. Yang Liu is responsible
for all of the SAS code provided in the book, testing it against the R functions,
tests, and graphics presented throughout the text. He also wrote SAS code and
full output for all examples in the text, which are on the book’s website, and
thoroughly reviewed the entire book for errata and suggested amendments at
the proof stage. I also acknowledge Shawn Casper (Managing Director, Praxis
Reliability Consulting, LLC, Monroe, MI) who also read the entire manuscript,
checking text and code, and offering a number of helpful suggestions to the
book, Dr. Jamie Riggs (Predictive Analytics Masters Program, Northwestern
University) for reviewing early chapters when the book started to take form,
and Pat McKinley, who identified a number of items needing amendment. I
am most grateful for her editorial expertise. I need to also mention Judith M.
Simon, Project Editor, CRC Press, who was responsible for the overall pro-
duction of the book, and Syed Mohamad Shajahan, Deputy Manager, Techset
Composition, Chennai, India, who was responsible for the actual page set-up
and production of the book. Both did an outstanding job in helping create this
book, and in tolerating the many amendments I made to it. Ulrike Gömping,
book reviews editor, Journal of Statistical Software, also provided very useful
input. Robert Calver, statistics editor at Chapman & Hall/CRC, has been more
helpful than I can express here. He has been my editor since 2002, a position at
which he truly excels, and is a good friend.

I dedicate this text to Heidi and Sirr Hilbe. Heidi died over 40 years ago,
but was my best companion at the time I authored my first text in 1970 some 45
years ago, and warrants my recognition. Sirr has been my constant companion
since his birth in 2007, and keeps me sane as I write yet another book. Sirr is a
small white Maltese, but this takes nothing away from his unique contribution
to this text.

Joseph M. Hilbe
Florence, AZ

xv

Author

Joseph M. Hilbe (1944–) is a Solar System
Ambassador with NASA’s Jet Propulsion
Laboratory, California Institute of Technology,
an adjunct professor of statistics at Arizona
State University, and emeritus professor at
the University of Hawaii. He is currently
president of the International Astrostatistics
Association, is an elected Fellow of the
American Statistical Association, is an
Elected Member of the International
Statistical Institute and Full Member of the
American Astronomical Society. Professor

Hilbe is one of the leading statisticians in modeling discrete and longitudinal
data, and has authored a number of books in these areas including best sell-
ers, Logistic Regression Models (Chapman & Hall/CRC, 2009), two editions of
Negative Binomial Regression (Cambridge University Press, 2007, 2011), and
Modeling Count Data (Cambridge University Press, 2014).

Other statistics books by Joseph M. Hilbe:

Generalized Linear Models and Extensions (2001, 2007, 2013, 2016;
with J. Hardin)

Methods of Statistical Model Estimation (2013; with A. Robinson)
Generalized Estimating Equations (2003, 2013; with J. Hardin)
Quasi-Least Squares Regression (2014; with J. Shults)
R for Stata Users (2010; with R. Muenchen)
A Beginner’s Guide to GLM and GLMM with R: A Frequentist and

Bayesian Perspective for Ecologists (2013; with A. Zuur and E.
Ieno)

Astrostatistical Challenges for the New Astronomy (2013)
Practical Predictive Analytics and Decisioning Systems for Medicine

(2015; with L. Miner, P. Bolding, M. Goldstein, T. Hill, R. Nesbit,
N. Walton, and G. Miner)

Solutions Manual for Logistic Regression Models (2009)

1

1Statistical
Models

Statistics: Statistics may generically be
understood as the science of collecting
and analyzing data for the purpose of

classification, prediction, and of attempting
to quantify and understand the uncertainty

inherent in phenomena underlying data
(Hilbe, 2014)

1.1 WHAT IS A STATISTICAL MODEL?

A model is typically thought of as a simplification of a more complex situation.
The focus of a model is to abstract the most important or key features from
what is being modeled so that we may more clearly understand the modeled
situation, or see how it relates to other aspects of reality. There are a variety of
different types of models though, but each type still represents an approxima-
tion or simplification of something more detailed.

Statistics deals with data, which can be notoriously messy and complex.
A statistical model is a simplification of some data situation, whether the data
are about the weather, health outcomes, or the number of frogs killed on a
highway over a period of a year. Data can be about nearly anything that can be
measured or tested. In order to be measured though, data must be numerically
expressed; that is, a statistical model is a means to simplify or clarify numbers.

The models we are going to be discussing in this monograph are called
parametric statistical models. As such they are each based on an underlying
probability distribution. Since probability distributions are characterized and
defined by parameters, models based on them are referred to as parametric
models. The fundamental idea of a parametric model is that the data to be
modeled by an analyst are in fact generated by an underlying probability

2 Practical Guide to Logistic Regression

distribution function or PDF. The analyst does not usually observe the entire
range of data defined by the underlying PDF, called the population data, but
rather observes a random sample from the underlying data. If the sample of
data is truly representative of the population data, the sample data will be
described by the same PDF as the population data, and have the same values
of its parameters, which are initially unknown.

Parameters define the specific mean or location (shape) and perhaps scale
of the PDF that best describes the population data, as well as the distribution of
the random sample from the population. A statistical model is the relationship
between the parameters of the underlying PDF of the population data and the
estimates made by an analyst of those parameters.

Regression is one of the most common ways of estimating the true param-
eters in as unbiased manner as possible. That is, regression is typically used
to establish an accurate model of the population data. Measurement error can
creep into the calculations at nearly every step, and the random sample we are
testing may not fully resemble the underlying population of data, nor its true
parameters. The regression modeling process is a method used to understand
and control the uncertainty inherent in estimating the true parameters of the
distribution describing the population data. This is important since the predic-
tions we make from a model are assumed to come from this population.

Finally, there are typically only a limited range of PDFs which analysts
use to describe the population data, from which the data we are analyzing is
assumed to be derived. If the variable we are modeling, called the response
term (y), is binary (0,1), then we will want to use a Bernoulli probability distri-
bution to describe the data. The Bernoulli distribution, as we discuss in more
detail in the next section, consists of a series of 1s and 0s. If the variable we
wish to model is continuous and appears normally distributed, then we assume
that it can be best modeled using a Gaussian (normal) distribution. This is a
pretty straightforward relationship. Other probability distributions commonly
used in modeling are the lognormal, binomial, exponential, Poisson, negative
binomial, gamma, inverse Gaussian, and beta PDFs. Mixtures of distributions
are also constructed to describe data. The lognormal, negative binomial, and
beta binomial distributions are such mixture distributions—but they are nev-
ertheless completely valid PDFs and have the same basic assumptions as do
other PDFs.

I should also mention that probability distributions do not all have the
same parameters. The Bernoulli, exponential, and Poisson distributions are
single parameter distributions, and models directly based on them are single
parameter models. That parameter is the mean or location parameter. The nor-
mal, lognormal, gamma, inverse Gaussian, beta, beta binomial, binomial, and
negative binomial distributions are two parameter models. The first four of
these are continuous distributions with mean (shape) and scale (variability)

1 • Statistical Models 3

parameters. The binomial, beta, and beta binomial distributions will be dis-
cussed later when discussing grouped logistic regression.

The catcher in this is that a probability distribution has various assump-
tions. If these assumptions are violated, the estimates we make of the param-
eters are biased, and may be incorrect. Statisticians have worked out a number
of adjustments for what may be called “violations of distributional assump-
tions,” which are important for an analyst to use when modeling data exhibit-
ing problems. I’ll mention these assumptions shortly, and we will address them
in more detail as we progress through the book.

I fully realize that the above description of a statistical model—of a para-
metric statistical model—is not the way we normally understand the modeling
process, and it may be a bit confusing. But it is in general the way statisticians
think of statistical modeling, and is the basis of the frequency-based tradition
of statistical modeling. Keep these relationships in mind as we describe logis-
tic regression.

1.2 BASICS OF LOGISTIC
REGRESSION MODELING

Logistic regression is foremost used to model a binary (0,1) variable based on
one or more other variables, called predictors. The binary variable being mod-
eled is generally referred to as the response variable, or the dependent variable.
I shall use the term “response” for the variable being modeled since it has now
become the preferred way of designating it. For a model to fit the data well, it
is assumed that

The predictors are uncorrelated with one another.
That they are significantly related to the response.
That the observations or data elements of a model are also uncorrelated.

As discussed in the previous section, the response is also assumed to fit
closely to an underlying probability distribution from which the response is
a theoretical sample. The goal of a model is to estimate the true parameter(s)
of the underlying PDF of the model based on the response as adjusted by its
predictors. In the case of logistic regression, the response is binary (0,1) and
follows a Bernoulli probability distribution. Since the Bernoulli distribution is
a subset of the more general binomial distribution, logistic regression is recog-
nized as a member of the binomial family of regression models. A comprehen-
sive analysis of these relationships is provided in Hilbe (2009).

4 Practical Guide to Logistic Regression

In this monograph, I assume that the reader is familiar with the basics of
regression. However, I shall address the fundamentals of constructing, inter-
preting, fitting, and evaluating a logistic model in subsequent chapters. I shall
also describe how to predict fitted values from the estimated model. Logistic
regression is particularly valuable in that the predictions made from a fitted
model are probabilities, constrained to be within the range of values 0–1.
More accurately, a logistic regression model predicts the probability that the
response has a value of 1 given a specific set of predictor values. Interpretation
of logistic model coefficients usually involves their exponentiation, which
allows them to be understood as odds ratios. This capability is unique to the
class of logistic models, whether observation-based format or in grouped for-
mat. The fact that a logistic model can be used to assess the odds ratio of
predictors, and also can be used to determine the probability of the response
occurring based on specific predictor values, called covariate patterns, is the
prime reason it has enjoyed such popularity in the statistical community for
the past several decades.

1.3 THE BERNOULLI DISTRIBUTION

I have emphasized that binary response logistic regression is based on the
Bernoulli probability distribution, which consists of a distribution of 1s and
0s. The probability function can be expressed for a random sample as

f y p p p
i

n

i
y

i
yi i(;) ()= −

=

−∏
1

11

(1.1)

where the joint PDF is the product, Π, of each observation in the data being
modeled, symbolized by the subscript i. Usually the product term is dropped
as being understood since all joint probability functions are products across
the independent components of their respective distributions. We may then
characterize the Bernoulli distribution for a single observation as

 f y p p pi i i
y

i
yi i(;) ()= − −1 1

 (1.2)

where y is the response variable being modeled and p is the probability that y
has the value of 1. Again, 1 generally indicates a success, or that the event of
interest has occurred. y only has values of 1 or 0, whereas p has values ranging

1 • Statistical Models 5

from 0 to 1. p is many times symbolized as π or as μ. In fact, we shall be using
the μ symbolization for the predicted mean or fit throughout most of the book.

A probability function generates or produces data on the basis of known
parameters. That’s the meaning of f(y; p). What is needed in order to estimate
the true parameters of the population data is to estimate the parameters on the
basis of known data. After all we are modeling known data—and attempting
to estimate parameter(s). We do this by inverting the order of y and p in the
PDF. We attempt to calculate p on the basis of y. This relationship is called the
likelihood function.

Statisticians may characterize the likelihood function as

 L p y p pi i i
y

i
yi i(;) ()= − −1 1

 (1.3)

but usually parameterize the structure of the likelihood function by putting it
into what is called exponential family form. Mathematically it is identical to
Equation 1.3 above.

L p y y
p

p
pi

i

i
i

i

n

(;) exp ln ln()= −

−

=

∏ 1
1

1

+

(1.4)

Note that “ln” is a symbol for the natural log of an expression. It is also
symbolized as “log.” Keep in mind that it differs from “log to the base 10,”
or “log10.” The exponentiation of a logged value is the value itself; that is,
exp(ln(x)) = x, or eln(x) = x.

Statisticians usually take the log of both sides of the likelihood function,
creating what is called the log-likelihood function. Doing this allows a sum-
mation across observations rather than multiplication. This makes it much
easier for the algorithms used to estimate distribution parameters to converge;
that is, to solve for the estimates. The Bernoulli log-likelihood function can be
displayed as

L(;) ()p y y
p

p
p

i

n

i
i

i
i= −

+ −

=

∑
1

1
1ln ln

(1.5)

The model parameters may be determined by simple calculus. Take the
derivative of the log-likelihood function, set to 0, and solve. The problem is
that the solution must be obtained iteratively, but for most all modeling situa-
tions, the solution takes only a few iterations to find the appropriate parameter
estimates. The details of estimation can be found in Hilbe (2009). We need not
worry about them in this discussion.

6 Practical Guide to Logistic Regression

One of the nice features of presenting the log-likelihood function in expo-
nential form is that we may abstract from it a link function as well as the
mean and variance functions of the underlying Bernoulli distribution. The link
function, which I’ll discuss shortly, is whatever follows the y of the first term
of the right-hand side of Equation 1.5. Here it is log(p/(1 − p)). The mean of
the distribution can be obtained as the derivative of the negative of the second
term with respect to the link. The second derivative yields the variance. For the
Bernoulli distribution, these values are

Mean

Variance

=
= = − = −

=µ
µ µ µ

p

V p p() () ()1 1

In the case of Bernoulli-based logistic regression, the mean is symbolized
as μ (mu) and variance as μ(1 − μ). The above link and log-likelihood func-
tions are many times expressed in terms of μ as well. It is important to note
that strictly speaking the estimated p or μ should be symbolized as p̂ and ˆ ,µ
respectively. p and μ are typically reserved for the true population values.
However, for ease of interpretation, I will use the symbol μ in place of µ̂
throughout the book.

I should also mention that for grouped logistic regression, which we
address in Chapter 5, μ and p are not the same, with μ defined as n ⋅ p. But I’ll
delay making this distinction until we begin discussing grouped models.

Let us look at a logistic regression and how it differs from normal or
ordinary linear regression. Recall that a regression attempts to understand a
response variable on the basis of one of more predictors or explanatory vari-
ables. This is usually symbolized as

ŷ x x xi i i p ip= + + + +β β β β0 1 1 2 2 �

(1.6)

where y-hat, or ŷ, is the sum of the terms in the regression. The sum of regres-
sion terms is also referred to as the linear predictor, or xb. Each βx is a term
indicating the value of a predictor, x, and its coefficient, β. In linear regression,
which is based in matrix form on the Gaussian or normal probability distri-
bution, ŷ is the predicted value of the regression model as well as the linear
predictor. j indicates the number of predictors in a model. There is a linear
relationship between the predicted or fitted values of the model and the terms
on the right-hand side of Equation 1.6—the linear predictor. ˆ .y xb= This is
not the case for logistic regression.

1 • Statistical Models 7

The linear predictor of the logistic model is

x b x x xi i i p ip= + + + +β β β β0 1 1 2 2 �

(1.7)

However, the fitted or predicted value of the logistic model is based on the
link function, log(μ/(1 − μ)). In order to establish a linear relationship of the
predicted value, μ, and the linear predictor, we have the following relationship:

ln

µ
µ β β β βi

i
i i i p ipx b x x x

1 0 1 1 2 2−

= = + + + +�

(1.8)

where μ, like p, is the probability that the response value y is equal to 1.
It can also be thought of as the probability of the presence or occurrence
of some characteristic, while 1 − p can be thought of as the probability of
the absence of that characteristic. Notice that μ/(1 − μ), or p/(1 − p), is the
formula for odds. The odds of something occurring is the probability of its
success or presence divided by the probability of its failure or absence, 1 − p.
If μ = 0.7, (1 − μ) = 0.3. μ + (1 − μ) always equals 1. The log of the odds has
been called by statisticians the logit function, from which the term logistic
regression derives.

In order to determine μ on the basis of the linear predictor, xb, we solve
the logit function for μ, without displaying subscripts, as

µ = + = + −

exp()
exp()

xb
xb xb1

1
1 exp()

(1.9)

The equations in (1.9) above are very important, and will be frequently
used in our later discussion. Once a logistic model is solved, we may calculate
the linear predictor, xb, and then apply either equation to determine the pre-
dicted value, μ for each observation in the model.

1.4 METHODS OF ESTIMATION

Maximum likelihood estimation, MLE, is the standard method used by stat-
isticians for estimating the parameter estimates of a logistic model. Other

8 Practical Guide to Logistic Regression

methods may be used as well, but some variety of MLE is used by nearly all
statistical software for logistic regression. There is a subset of MLE though
that can be used if the underlying model PDF is a member of the single param-
eter exponential family of distributions. The Bernoulli distribution is an expo-
nential family member. As such, logistic regression can also be done from
within the framework of generalized linear models or GLM. GLM allows for
a much simplified manner of calculating parameter estimates, and is used in
R with the glm function as the default method for logistic regression. It is a
function in the R stats package, which is a base R package. Stata also has a
glm command, providing the full range of GLM-based models, as well as full
maximum likelihood estimate commands logit and logistic. The SAS Genmod
procedure is a GLM-based procedure, and Proc Logistic is similar to Stata’s
logit and logistic commands. In Python, one may use the statsmodels Logit
function for logistic regression.

Since R’s default logistic regression is part of the glm function, we shall
examine the basics of how it works. The glm function uses an iterative re-
weighted least squares (IRLS) algorithm to estimate the predictor coefficients
of a logistic regression. The logic of a stand-alone R algorithm that can be
used for logistic regression is given in Table 1.1. It is based on IRLS. I have
annotated each line to assist in understanding how it works. You certainly do
not have to understand the code to continue with the book. I have provided the
code for those who are proficient in R programming. The code is adapted from
Hilbe and Robinson (2013).

R users can paste the code from the table into the “New Script” editor.
The code is an entire function titled irls_logit. The code is also available on
the book’s website, listed as irls_logit.r. Select the entire code, right click your
mouse, and click on “Run line or selection.” This places the code into active
memory. To show what a logistic regression model looks like, we can load
some data and execute the function. We shall use the medpar data set, which
is 1991 Arizona inpatient Medicare (U.S. senior citizen national health plan)
data. The data consist of cardiovascular disease patient information from a
single diagnostic group. For privacy purposes, I did not disclose the diagnostic
group to which the data are classified.

los: length of stay (nights) in the hospital (continuous)
hmo: 1 = patient a member of a Health Maintenance Organization;

0 = private pay
white: 1 = patient identifies self as white; 0 = non-white
died: 1 = patient dies while hospitalized; 0 = did not die during this

period
age80: 1 = patient age 80 and over; 0 = less than 80
type: type of admission—1 = elective; 2 = urgent; 3 = emergency

1 • Statistical Models 9
TA

B
LE

 1
.1

 R

fu
nc

tio
n

fo
r

lo
gi

st
ic

 r
eg

re
ss

io
n

i
r
l
s
_
l
o
g
i
t

<
-

f
u
n
c
t
i
o
n
(
f
o
r
m
u
l
a
,

d
a
t
a
,

t
o
l
=
.
0
0
0
0
0
1
)

{

#

s
e
t

o
p
t
i
o
n

d
e
f
a
u
l
t

v
a
l
u
e
s

m
f

<
-

m
o
d
e
l
.
f
r
a
m
e
(
f
o
r
m
u
l
a
,

d
a
t
a
)

#

d
e
f
i
n
e

m
o
d
e
l

f
r
a
m
e

a
s

m
f

y

<
-

m
o
d
e
l
.
r
e
s
p
o
n
s
e
(
m
f
,

“
n
u
m
e
r
i
c
”
)

#

s
e
t

m
o
d
e
l

r
e
s
p
o
n
s
e
s

a
s

y

X

<
-

m
o
d
e
l
.
m
a
t
r
i
x
(
f
o
r
m
u
l
a
,

d
a
t
a

=

d
a
t
a
)

#

d
e
f
i
n
e

X

a
s

m
a
t
r
i
x

o
f

d
a
t
a

i
f

(
a
n
y
(
i
s
.
n
a
(
c
b
i
n
d
(
y
,

X
)
)
)
)

s
t
o
p
(
“
S
o
m
e

d
a
t
a

a
r
e

m
i
s
s
i
n
g
.
”
)

#

d
e
l
e
t
e

m
i
s
s
i
n
g

d
a
t
a

m
u

<
-

(
y

+

.
5
)
/
2

#

i
n
i
t
i
a
l
i
z
e

m
u

e
t
a

<
-

l
o
g
(
m
u
/
(
1
-
m
u
)
)

#

i
n
i
t
i
a
l
i
z
e

l
i
n
e
a
r

p
r
e
d
i
c
t
o
r

d
e
v

<
-

2
*
s
u
m
(
y
*
l
o
g
(
1
/
m
u
)

+

(
1
-
y
)
*
l
o
g
(
1
/
(
1
-
m
u
)
)

)

#

i
n
i
t
i
a
l
i
z
e

d
e
v
i
a
n
c
e

d
e
l
t
a
d

<
-

1

#

i
n
i
t
i
a
l
i
z
e

d
e
l
t
a
d

i

<
-

1

#

i
n
i
t
i
a
l
i
z
e

i
=
1

i
t
e
r
a
c
t
i
o
n

l
o
g

w
h
i
l
e

(
a
b
s
(
d
e
l
t
a
d
)

>

t
o
l

)

{

#

s
t
a
r
t

I
R
L
S

l
o
o
p

w

<
-

m
u
*
(
1
-
m
u
)

#

w
e
i
g
h
t

-

v
a
r
i
a
n
c
e

z

<
-

e
t
a
 +
 (
y

-

m
u
)
/
w

#

w
o
r
k
i
n
g

r
e
s
p
o
n
s
e

m
o
d

<
-

l
m
(
z

~

X
-
1
,

w
e
i
g
h
t
s
=
w
)

#

w
e
i
g
h
t
e
d

l
i
n
e
a
r

r
e
g
r
e
s
s
i
o
n

e
t
a

<
-

m
o
d
$
f
i
t

#

l
i
n
e
a
r

p
r
e
d
i
c
t
o
r
s

f
r
o
m

m
o
d

m
u

<
-

1
/
(
1

+

e
x
p
(
-
e
t
a
)
)

#

f
i
t
t
e
d

v
a
l
u
e
s
;

p
r
o
b
a
b
i
l
i
t
i
e
s

d
e
v
.
o
l
d

<
-

d
e
v

#

s
e
t
u
p

f
o
r

c
o
n
v
e
r
g
e
n
c
e

d
e
v

<
-

2
*
s
u
m
(
y
*
l
o
g
(
1
/
m
u
)
 +
 (
1
-
y
)
*
l
o
g
(
1
/
(
1
-
m
u
)
)

)

#

d
e
v
i
a
n
c
e

–

b
a
s
i
s

o
f

c
o
n
v
e
r
g
e
n
c
e

d
e
l
t
a
d

<
-

d
e
v

-

d
e
v
.
o
l
d

#

c
a
l
c

d
i
f
f
e
r
e
n
c
e

n
e
w

&

o
l
d

d
e
v

c
a
t
(
i
,

c
o
e
f
(
m
o
d
)

,

d
e
l
t
a
d
,

“
\
n
”
)

#

i
t
e
r
a
t
i
o
n

l
o
g

i

<
-

i
+
1

#

u
p
d
a
t
e

i
t
e
r
a
t
i
o
n

n
u
m
b
e
r

}

#

e
n
d

I
R
L
S

l
o
o
p

b
e
t
a

<
-

m
o
d
$
c
o
e
f

#

s
a
v
e

c
o
e
f
f
i
c
i
e
n
t
s

p
r

<
-

s
u
m
(
r
e
s
i
d
u
a
l
s
(
m
o
d
,

t
y
p
e
=
“
p
e
a
r
s
o
n
”
)
^
2
)

#

c
a
l
c

P
e
a
r
s
o
n

d
i
s
p
e
r
s
i
o
n

p
r
d
i
s
p

<
-

p
r
/
m
o
d
$
d
f
.
r
e
s
i
d
u
a
l

#

c
a
l
c

P
e
a
r
s
o
n

d
i
s
p
e
r
s
i
o
n

r
e
t
u
r
n
(
l
i
s
t
(
c
o
e
f
 =
 c
o
e
f
(
m
o
d
)
,

s
e

=

s
q
r
t
(
d
i
a
g
(
v
c
o
v
(
m
o
d
)
)
)
/
s
q
r
t
(
p
r
d
i
s
p
)
)
)

#

d
i
s
p
l
a
y

o
f

c
o
e
f

a
n
d

S
E

}

#

e
n
d

i
r
l
s
_
l
o
g
i
t

f
u
n
c
t
i
o
n

10 Practical Guide to Logistic Regression

> library(LOGIT)
> data(medpar)
> head(medpar)
 los hmo white died age80 type provnum
1 4 0 1 0 0 1 030001
2 9 1 1 0 0 1 030001
3 3 1 1 1 1 1 030001
4 9 0 1 0 0 1 030001
5 1 0 1 1 1 1 030001
6 4 0 1 1 0 1 030001

We may run the model using the following code:

> mylogit <- irls_logit(died ~ hmo + white, data=medpar)
> mylogit
$coef
X(Intercept) Xhmo Xwhite
 -0.92618620 -0.01224648 0.30338724

$se

X(Intercept) Xhmo Xwhite
 0.1973903 0.1489251 0.2051795

Just typing the model name we assigned, mylogit, displays the coefficients
and standard errors of the model. We can make a table of estimates, standard
errors, z-statistic, p-value, and confidence intervals by using the code:

> coef <- mylogit$coef
> se <- mylogit$se
> zscore <- coef / se
> pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
> loci <- coef − 1.96 * se
> upci <- coef + 1.96 * se
> coeftab <- data.frame(coef, se, zscore, pvalue, loci, upci)
> round(coeftab, 4)
 coef se zscore pvalue loci upci
X(Intercept) −0.9262 0.1974 −4.6922 0.0000 −1.3131 −0.5393
Xhmo −0.0122 0.1489 −0.0822 0.9345 −0.3041 0.2796
Xwhite 0.3034 0.2052 1.4786 0.1392 −0.0988 0.7055

Running the same data using R’s glm function produces the following
output. I have deleted some ancillary output.

1 • Statistical Models 11

> glmlogit <- glm(died ~ hmo + white, family=binomial,
 data=medpar)
> summary(glmlogit)
 . . .
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) −0.92619 0.19739 −4.692 2.7e-06 ***
hmo −0.01225 0.14893 −0.082 0.934
white 0.30339 0.20518 1.479 0.139

 Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1920.6 on 1492 degrees of freedom
AIC: 1926.6

The confidence intervals must be calculated separately. To obtain model-
based standard errors, we use the confint.default function. Using the confint
function produces what are called profile confidence intervals. We shall dis-
cuss these later in Chapter 2, Section 2.3.

> confint.default(glmlogit)
 2.5 % 97.5 %
(Intercept) −1.31306417 −0.5393082
hmo −0.30413424 0.2796413
white −0.09875728 0.7055318

Again, I have displayed a full logistic regression model output to show
where we are headed in our discussion of logistic regression. The output is
very similar to that of ordinary linear regression. Interpretation, however, is
different. How coefficients, standard errors, and so forth are to be interpreted
will concern us in the following chapters.

SAS CODE

/* Section 1.4 */
*Import medpar as a temporary dataset;
proc import datafile=“c:\data\medpar.dta” out=medpar
dbms=dta replace;

12 Practical Guide to Logistic Regression

run;

*Print the first six observations;
proc print data=medpar (obs=6);
run;

*Build the logistic model;
proc genmod data=medpar descending;
 model died=hmo white/ dist=binomial link=logit;
run;

*Another way to build the logistic model;
proc logistic data=medpar descending;
 model died=hmo white / clparm=both;
run;

STATA CODE

. use medpar

. glm died hmo white, fam(bin) nolog

13

2Logistic Models
Single Predictor

2.1 MODELS WITH A BINARY PREDICTOR

The simplest way to begin understanding logistic regression is to apply it to a
single binary predictor. That is, the model we shall use will consist of a binary
(0,1) response variable, y, and a binary (0,1) predictor, x. In addition, the data
set we define will have 9 observations. Recall from linear regression that a
response and predictor are paired when setting up a regression. Using R we
assign various 1s and 0s to each y and x.

> y <- c(1,1,0,0,1,0,0,1,1)
> x <- c(0,1,1,1,0,0,1,0,1)

These values will be placed into a data set named xdta. Then we subject it to
the irls_logit function displayed in the previous chapter.

> xdta <- data.frame(y,x)
> logit1 <- irls_logit(y ~ x, data=xdta)

The model name is logit1. Using the code to create the nice looking “standard”
regression output that was shown before, we have

> coef <- logit1$coef
> se <- logit1$se
> zscore <- coef / se
> pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
> loci <- coef - 1.96 * se

14 Practical Guide to Logistic Regression

> upci <- coef + 1.96 * se
> coeftab <- data.frame(coef, se, zscore, pvalue, loci, upci)
> round(coeftab, 4)
 coef se zscore pvalue loci upci
X(Intercept) 1.0986 1.1547 0.9514 0.3414 -1.1646 3.3618
Xx -1.5041 1.4720 -1.0218 0.3069 -4.3891 1.3810

The coefficient or slope of x is −1.5041 with a standard error of 1.472.
The intercept value is 1.0986. The intercept is the value of the model when the
value of x is zero.

Using R’s glm function, the above data may be modeled using logistic
regression as

> glm(y~ x, family = binomial, data = xdta)

Call: glm(formula = y ~ x, family = binomial, data = xdta)

Coefficients:
(Intercept) x
 1.099 -1.504

Degrees of Freedom: 8 Total (i.e. Null); 7 Residual
Null Deviance: 12.37
Residual Deviance: 11.23 AIC: 15.23

More complete model results can be obtained by assigning the model a
name, and then summarizing it with the summary function. We will name the
model logit2.

> logit2 <- glm(y~ x, family = binomial, data = xdta)
> summary(logit2)

Call:
glm(formula = y ~ x, family = binomial, data = xdta)

Deviance Residuals:
 Min 1Q Median 3Q Max
 -1.6651 -1.0108 0.7585 0.7585 1.3537

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.099 1.155 0.951 0.341
x -1.504 1.472 -1.022 0.307

(Dispersion parameter for binomial family taken to be 1)

2 • Logistic Models: Single Predictor 15

 Null deviance: 12.365 on 8 degrees of freedom
Residual deviance: 11.229 on 7 degrees of freedom
AIC: 15.229

Model-based confidence intervals may be displayed by

> confint.default(logit2)
 2.5 % 97.5 %
(Intercept) -1.164557 3.361782
x -4.389065 1.380910

A more efficient way of displaying a logistic regression using R is to
encapsulate the summary function around the regression. It will be the way I
typically display example results using R.

> summary(logit2 <- glm(y~ x, family = binomial, data = xdta))

 . . .

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.099 1.155 0.951 0.341
x -1.504 1.472 -1.022 0.307

 . .
 Null deviance: 12.365 on 8 degrees of freedom
Residual deviance: 11.229 on 7 degrees of freedom
AIC: 15.229

There are a number of ancillary statistics which are associated with mod-
eling data with logistic regression. I will show how to do this as we prog-
ress, and functions and scripts for all logistic statistics, fit tests, graphics, and
tables are provided on the books web site, as well as in the LOGIT package
that accompanies this book. The LOGIT package will also have the data,
functions and scripts for the second edition of Logistic Regression Models
(Hilbe, 2016).

For now we will focus on the meaning of the single binary predictor
model. The coefficient of predictor x is −1.504077. A coefficient is a slope. It
is the amount of the rate of change in y based on a one-unit change in x. When
x is binary, it is the amount of change in y when x moves from 0 to 1 in value.
But what is changed?

Recall that the linear predictor, xb, of a logistic model is defined as
log(μ/(1 − μ)). This expression is called the log-odds or logit. It is the logistic
link function, and is the basis for interpreting logistic model coefficients.
The interpretation of x is that when x changes from 0 to 1, the log-odds of

16 Practical Guide to Logistic Regression

y changes by −1.504. This interpretation, although accurate, means little to
most analysts.

What happens if we exponentiate log(μ/(1 − μ))? The result is simply
μ/(1 − μ), which is interpreted as the odds of μ, with μ being the probability
that y = 1, and 1 − μ being the probability that y = 0 (the probability that y is not
1). By exponentiating the coefficient of x we may interpret the result as follows:

The odds ratio of x = = 1 is the ratio of the odds of x = 1 to the odds of x = 0.

The odds of y given x = 1 is exp(−1.504077) or 0.22222 times greater
than the odds of x = 0. This is the same as saying that the odds of x = 0 is
1/exp(−1.504077) or 4.5 times greater than x = 1. The exponentiation of the
intercept is not an odds ratio, but rather only an odds. Here it is exp(1.098612)
or 3.0.

Another way of demonstrating this relationship is by constructing a table
from the variables y and x.

> table(y,x)
 x
y 0 1
 0 1 3
 1 3 2

To add margin sums, use the code

> addmargins(table(y,x))
 x
y 0 1 Sum
 0 1 3 4
 1 3 2 5
 Sum 4 5 9

The odds of x = 1 is defined as “the value of x = 1 when y = 1 divided by
the value of x = 1 when y = 0.” Here the odds of x = 1 is 2/3, or

Odds x = 1
> 2/3
[1] 0.6666667

The odds of x = 0 is,

Odds x = 0
> 3/1
[1] 3

2 • Logistic Models: Single Predictor 17

Creating a ratio of values we have

Odds Ratio x = 1 to x = 0
> (2/3)/(3/1)
[1] 0.2222222

That is…

To obtain the odds of x = 1: for x = 1, take the ratio of y = 1 to y = 0, or
2/3 = 0.666667.
To obtain the odds of x = 0: for x = 0, take the ratio of y = 1 to y = 0, or 3/1 = 3.

To obtain the odds ratio of x = 1 to x = 0, divide. Therefore, 0.666667/3 =
0.222222
The intercept is the odds of y = 1 divided by y = 0 for x = 0, or 3.

The relationship of the logistic odds ratio and coefficient is:

ln(Odds Ratio) = coefficient

exp(coefficient) = odds ratio

Calculating the odds ratio and odds-intercept from the logit2 model
results,

Odds Ratio and Odds Intercept
> exp(logit2$coef)
(Intercept) x
 3.0000000 0.2222222

Now we can reverse the relationships by taking the natural log of both.

Coefficient of x from Odds Ratio of x
> log(0.222222222)
[1] −1.504077

Intercept from Odds of Intercept
> log(3)
[1] 1.098612

18 Practical Guide to Logistic Regression

2.2 PREDICTIONS, PROBABILITIES,
AND ODDS RATIOS

I mentioned before that unlike linear regression, the model linear predictors
and fitted values differ for logistic regression. If μ is understood as the pre-
dicted mean, or fitted value:

 Linear regression μ = x′β
 Logistic regression μ = exp(x′β)/(1 + exp(x′β))

 or μ = 1/(1 + exp(−x′β))

For the logistic model, μ is defined as the probability that y = 1, where y is
the symbol for the model response term.

> logit2 <- glm(y ~ x, family = binomial, data = xdta)

> coef(logit2)
(Intercept) x
 1.098612 -1.504077

LINEAR PREDICTOR WHEN X = 1
> 1.098612 -1.504077*1
[1] -0.405465

LINEAR PREDICTOR WHEN X = 0
> 1.098612 -1.504077*0
[1] 1.098612

We use R’s post-glm function for calculating the linear predictor. The
code below generates linear predictor values for all observations in the model.
Remember that R has several ways that certain important statistics can be
obtained.

> xb <- logit2$linear.predictors

The inverse logistic link function is used to calculate μ.

> mu <- 1/(1 + exp(-xb))

From the predicted probability that y = 1, or μ, the odds for each level of
x may be calculated.

> o <- mu/(1-mu)

2 • Logistic Models: Single Predictor 19

Let us now check the relationship of x to o, noting the values of o for the
two values of x.

> check_o <-data.frame(x,o)
> round(check_o, 3)
 x o
1 0 3.000
2 1 0.667
3 1 0.667
4 1 0.667
5 0 3.000
6 0 3.000
7 1 0.667
8 0 3.000
9 1 0.667

Recall that the odds ratio of x is the ratio of x = 1/x = 0. The odds of the
intercept is the value of o when x = 0. In order to obtain the odds ratio of x
when x = 1, we divide 0.667/3. So that we do not have rounding problems with
the calculations, o = 0.667 will be indicated as o < 1. We will create a variable
called or that retains the odds-intercept value (x = 0) or 3.0 and selectively
changes each value of o < 1 to 0.667/3. The corresponding model coefficient
may be determined by logging each value of or.

> or <- o
> or[or< 1] <- (.6666667/3)
> coeff <- log(or)

Finally we shall create a table of statistics, including all of the relevant
values we have just calculated.

> data1 <-data.frame(y,x,xb,mu,o,or,coeff)
> round(data1,4)
 y x xb mu o or coeff
1 1 0 1.0986 0.75 3.0000 3.0000 1.0986
2 1 1 -0.4055 0.40 0.6667 0.2222 -1.5041
3 0 1 -0.4055 0.40 0.6667 0.2222 -1.5041
4 0 1 -0.4055 0.40 0.6667 0.2222 -1.5041
5 1 0 1.0986 0.75 3.0000 3.0000 1.0986
6 0 0 1.0986 0.75 3.0000 3.0000 1.0986
7 0 1 -0.4055 0.40 0.6667 0.2222 -1.5041
8 1 0 1.0986 0.75 3.0000 3.0000 1.0986
9 1 1 -0.4055 0.40 0.6667 0.2222 -1.5041

What we find is that from the model linear predictor and probabilities we
calculated the model odds ratios and coefficients. Adding additional predictors

20 Practical Guide to Logistic Regression

and formatting predictors as categorical and continuous allow us to do the
same thing as we did for a single binary predictor—it is just a bit more com-
plex. See the PDF document, “Calculating Odds Ratios from Probabilities” on
the author’s web site for the book. My goal here is to demonstrate how odds,
odds ratios, coefficients and probabilities relate with one another in a logistic
model. You can also understand why the model coefficients are referred to as
parameter estimates. Each coefficient contributes to the mean parameter being
estimated by the logistic model. Likewise, we may also see how the fitted val-
ues, or probabilities, all relate as components of the mean parameter estimated
by the model.

2.3 BASIC MODEL STATISTICS

The output provided by most statistical software for logistic regression involves
a display of basic model statistics as well as several statistics that are impor-
tant for assessing model fit. The basic model statistics nearly always include
the model intercept, one or more coefficients and associated standard errors,
z statistics, p-values, and confidence intervals. Exponentiated logistic coeffi-
cients are referred to as odds ratios. I refer to the exponentiated intercept as
the odds-intercept.

We have already displayed all of these statistics and calculated each by
hand using R software. However, except for coefficients and odds ratios little
has thus far been said about them.

R’s glm function utilizes a summary function to display logistic model
coefficients/odds ratios, standard errors, z statistics, and p-values. A separate
function is required to obtain confidence intervals. Model-based confidence
intervals are calculated using confint.default(), but the preferred way of pro-
ducing confidence intervals with glm is by use of the confint() function. As we
shall discuss later, confint calculates profile confidence intervals. These are
much more complicated to calculate, but are definitely to be preferred over
simple model-based intervals.

2.3.1 Standard Errors

Standard errors provide the analyst with information concerning the variabil-
ity of the coefficient. If a coefficient is an estimate of the true coefficient or
slope that exists within the underlying probability distribution describing the
data being analyzed, then the standard error tells us about the accuracy of

2 • Logistic Models: Single Predictor 21

the “point” estimate of the coefficient. Essentially it allows us to determine
if the coefficient is significantly different from 0. A coefficient of 0 indicates
no effect, and contributes nothing to understanding the response variable of
interest.

On the basis of the maximum likelihood estimates, the standard errors
derive from the negative inverse Hessian matrix, or the second derivatives of
the log-likelihood function. Specifically, the standard errors are the square
roots of the diagonal elements of the model negative inverse Hessian matrix.
This matrix is also commonly referred to by analysts as the variance–covari-
ance matrix. It can be obtained in R by using the vcov function

> summary(logit2 <- glm(y ~ x, family = binomial,
data = xdta)))

 . . .

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.099 1.155 0.951 0.341
x -1.504 1.472 -1.022 0.307

 . . .

> vcov(logit2)
 (Intercept) x
(Intercept) 1.333331 -1.333331
x -1.333331 2.166664

The diagonal elements are 1.3333 for the intercept and 2.16666 for predic-
tor x. These are the variances of the intercept and of x.

> diag(vcov(logit2))
(Intercept) x
 1.333331 2.166664

Taking the square root of the variances gives us the model standard errors.

> sqrt(diag(vcov(logit2)))
 (Intercept) x
 1.154700 1.471959

These values are identical to the standard errors shown in the logit2 results
table. Note that when using R’s glm function, the only feasible way to calculate
model standard errors is by use of the sqrt(diag(vcov(modelname)))
method. The modelname$se call made following the irls_logit function
from Table 1.1 cannot be used with glm.

Analysts many times make adjustments to model standard errors when they
suspect excess correlation in the data. Correlation can be derived from a variety

22 Practical Guide to Logistic Regression

of sources. One of the earliest adjustments made to standard errors was called
scaling. R’s glm function provides built in scaling of binomial and Poisson
regression standard errors through the use of the quasibinomial and quasipois-
son options. Scaled standard errors are produced as the product of the model
standard errors and square root of the Pearson dispersion statistic. Coefficients
are left unchanged. Scaling is discussed in detail in Chapter 3, Section 3.4.1.

> summary(logitsc <- glm(y ~ x, family = quasibinomial, data = xdta))

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.099 1.309 0.839 0.429
x -1.504 1.669 -0.901 0.397

(Dispersion parameter for quasibinomial family taken to be
1.285715)

I will explain more about the Pearson statistic, the Pearson dispersion,
scaling, and other ways of adjusting standard errors when we discuss model
fit. However, the scaled standard error for x in the above model logitsc is
calculated from model logit2 by

> 1.471959 * sqrt(1.285715)
[1] 1.669045

based on the formula I described. The dispersion statistic is displayed in the
final line of the quasibinomial model output above. Regardless, many analysts
advise that standard errors be adjusted by default. If data are not excessively
correlated, scaled standard errors, for example, reduce to model standard errors.

The standard errors of odds ratios cannot be abstracted from a variance–
covariance matrix. One calculates odds ratio standard errors using what stat-
isticians call the delta method. See Hilbe (2009, 2016) for details. When the
delta method is used for odds ratios, as well as for risk or rate ratios, the cal-
culation is simple.

 SEOR = exp(β)*SEcoef

Standard errors of odds ratios are calculated by multiplying the odds ratio
by the coefficient standard error. Starting from the logit2 model, odds ratios
and their corresponding standard errors maybe calculated by,

> logit2 <- glm(y ~ x, family = binomial, data = xdta)
> coef <- logit2$coefficients # coefficients
> or <- exp(logit2$coefficients) # odds ratios

2 • Logistic Models: Single Predictor 23

> se <- sqrt(diag(vcov(logit2))) # coefficient SE
> delta <- or*se # delta method,SE of OR
> ortab <- data.frame(or, delta)
> round(ortab, 4)
 or delta
(Intercept) 3.0000 3.4641
x 0.2222 0.3271

2.3.2 z Statistics

The z statistic is the ratio of a coefficient to its standard error.

> zscore <- coef/se

The reason this statistic is called z is due to its assumption as being nor-
mally distributed. For linear regression models, we use the t statistic instead.
The z statistic for odds ratio models is identical to that of standard coefficient
models. Large values of z typically indicate a predictor that significantly con-
tributes to the model; that is, to the understanding of the response.

2.3.3 p-Values

The p-value of a logistic model is usually misinterpreted. It is also typically
given more credence than it should have. First, though, let us look at how it is
calculated.

> pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)

The p-value is a two-tail test of the z statistic. It tests the null hypothesis
that the associated coefficient value is 0. More exactly, p is the probability of
obtaining a coefficient value at least as extreme as the observed coefficient
given the assumption that β = 0. The smaller the p-value, the more likely β ≠ 0.
The standard “level of significance” for most studies is p = 0.05. Values of
less than 0.05 indicate that the null hypothesis of no relationship between the
predictor and response is false. That is, p-values less than 0.05 indicate that
the predictor significantly contributes to the model. Values greater than 0.05
indicate that the null hypothesis has not been rejected and that the predictor
does not contribute to the model.

A cutoff of 0.05 means that one out of every 20 times the coefficient on
average will not reject the null hypothesis; that is, that the coefficient is in
fact not significant when we thought it was. For many scientific disciplines,

24 Practical Guide to Logistic Regression

this is not a strict enough criterion. In astrostatistics, for example, preferred
criteria of statistical significance range from 0.01 to 0.001. There are a number
of issues related to power and false positives when discussing an appropriate
criterion for a p-value. Determine what criterion makes sense for the type of
study in which you are engaged rather than simply apply a 0.05 criterion with-
out question.

Regression software assumes that the p-value is based on a two-tailed
test. In some studies a one-tailed test is more appropriate. You predict that the
direction of the coefficient in question goes only in one direction. When this
is the case be sure to divide the displayed p-value by 2 prior to assessing its
significance.

2.3.4 Confidence Intervals

Model based 95% confidence intervals are calculated as follows:

> loci <- coef - qnorm(.975) * se
> upci <- coef + qnorm(.975) * se

where qnorm is the outside 2.5% of the observations from each side of the
normal distribution.

> qnorm(.975)
[1] 1.959964

Together the distribution excludes 5% of the distribution, or 0.05. Many
times analysts will use 1.96 instead of the qnorm function when calculating
confidence intervals. The confidence intervals for odds ratios are exponen-
tiations of the coefficient-based confidence intervals. Combining everything
together, we can use the code below to produce a table displaying the odds
ratio of x and the odds-intercept together with their related standard errors, z
statistics, p-values, and confidence intervals. I should mention that the model-
based confidence intervals we have been discussing are also referred to as
Wald confidence intervals.

Calculation of Odds Ratio and Associated Model Statistics
> coef <- logit2$coef
> se <- sqrt(diag(vcov(logit2)))
> zscore <- coef / se
> or <- exp(coef)
> delta <- or * se
> pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)

2 • Logistic Models: Single Predictor 25

> loci <- coef - qnorm(.975) * se
> upci <- coef + qnorm(.975) * se
> ortab <- data.frame(or, delta, zscore, pvalue, exp(loci),
 exp(upci))
> round(ortab, 4)
 or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 3.0000 3.4641 0.9514 0.3414 0.3121 28.8405
x 0.2222 0.3271 -1.0218 0.3069 0.0124 3.9785

Unfortunately, R users must program a table of odds ratio statistics as I
have above. The summary function following glm displays a coefficient table
of logistic model base statistics, but there is no function that automatically
displays a table of odds ratio statistics. We can create an R function to do
just that. We shall call it toOR.R (see Table 2.1), where the OR component of
toOR must be in capitals. R is case sensitive. I will place the toOR function
into the LOGIT package so that it can be used automatically anytime the
package is installed and loaded into memory. It can be used following the use
of glm with the binomial family and default logit function. I will also place
the function on the book’s web site.

After estimation of a logistic regression using glm—for example, the
logit2 model—type

> toOR(logit2)

 or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 3.0000 3.4641 0.9514 0.3414 0.3121 28.8405
x 0.2222 0.3271 -1.0218 0.3069 0.0124 3.9785

TABLE 2.1 toOR function

toOR <- function(object, ...) {
 coef <- object$coef
 se <- sqrt(diag(vcov(object)))
 zscore <- coef / se
 or <- exp(coef)
 delta <- or * se
 pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
 loci <- coef - qnorm(.975) * se
 upci <- coef + qnorm(.975) * se
 ortab <- data.frame(or, delta, zscore, pvalue,

exp(loci), exp(upci))
 round(ortab, 4)
}

26 Practical Guide to Logistic Regression

We may use the function on medpar data

> data(medpar) # assumes library(COUNT)or library(LOGIT) loaded
> smlogit <- glm(died ~ white + los + factor(type),

family = binomial, data = medpar)
> summary(smlogit)

 . . .

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.716364 0.218040 -3.285 0.00102 **
white 0.305238 0.208926 1.461 0.14402
los -0.037226 0.007797 -4.775 1.80e-06 ***
factor(type)2 0.416257 0.144034 2.890 0.00385 **
factor(type)3 0.929994 0.228411 4.072 4.67e-05 ***

> toOR(smlogit)
 or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 0.4885 0.1065 -3.2855 0.0010 0.3186 0.7490
white 1.3569 0.2835 1.4610 0.1440 0.9010 2.0436
los 0.9635 0.0075 -4.7747 0.0000 0.9488 0.9783
factor(type)2 1.5163 0.2184 2.8900 0.0039 1.1433 2.0109
factor(type)3 2.5345 0.5789 4.0716 0.0000 1.6198 3.9657

Confidence intervals are very important when interpreting a logistic
model, as well as any regression model. By looking at the low and high range
of a predictor’s confidence interval an analyst can determine if the predictor
contributes to the model.

Remember that a regression p-value is an assessment of whether we may
“significantly” reject the null hypothesis that the coefficient (β) is equal to 0.
If the confidence interval of a predictor includes 0, then we cannot be signifi-
cantly sure that the coefficient is not really 0 in value. For odds ratios, since the
confidence intervals are exponentiations of the coefficient confidence inter-
vals, having the range of the confidence interval include 1 is evidence that the
null hypothesis has not been rejected. The confidence intervals for logit2 odds
ratio model above both include 1—0.0124123 to 3.9788526 and 0.3120602 to
28.84059. Note that the p-values for both x and the intercept are approximately
0.3. 0.3 far exceeds the 0.05 criterion of significance.

How is the confidence interval to be interpreted? If zero is not within the
lower and upper limits of the confidence interval of a coefficient, we cannot
conclude that we are 95% sure that the coefficient is “significant”; that is, that
the associated p-value is truly under 0.05. Many analysts interpret confidence
intervals in such a manner, but they should not.

2 • Logistic Models: Single Predictor 27

The traditional logistic regression model we are discussing here is based
on a frequency interpretation of statistics. As such the confidence intervals
must be interpreted in the same manner. If the coefficient of a logistic model
predictor has a p-value under 0.05, the associated confidence interval will not
include zero. The interpretation is

Wald Confidence Intervals
If we repeat the modeling analysis a very large number of times, the true
coefficient would be within the range of the lower and upper levels of the
confidence interval 95 times out of 100.

I earlier mentioned that the use of confint() following R’s glm displays
profile confidence intervals. confint.default() produces standard confidence
intervals, based on the normal distribution. Profile confidence intervals are
based on the Chi2 distribution. Profile confidence intervals are particularly
important to use when there are relatively few observations in the model, as
well as when the data are unbalanced. For example, if a logistic model has 30
observations, but the response variable consists of 26 ones and only 4 zeros,
the data are unbalanced. Ideally a logistic response variable should have rela-
tively equal numbers of 1s to 0s. Likewise, if a binary predictor has nearly all
1s or 0s, the model is unbalanced, and adjustments may need to be made to
the model.

In any case, profile confidence intervals are derived as the inverse of the
likelihood ratio test defined as

 Likelihood ratio test }reduced full= − −2{L L

This is a test we will use later when assessing the significance of adding,
or dropping, a predictor or group of predictors from a model. The log-likeli-
hood of a model with all of the predictors is subtracted from the log-likelihood
of a model with fewer predictors. The result is multiplied by “ − 2.” The sig-
nificance of the test is based on the Chi2 distribution, whose arguments are the
likelihood ratio test statistic and degrees of freedom. The degrees of freedom
consists of how many predictors there are between the full and reduced mod-
els. If a single predictor is being evaluated, there is one degree of freedom.
The likelihood ratio test is preferred to the standard Wald assessment based on
regression coefficient or odds ratio p-values. We shall discuss the test further
in Chapter 4, Section 4.2.

For now you need only know that profile confidence intervals are the
inversion of the likelihood ratio test. The statistic is not simple to produce
by hand, but easy to display using the confint function. It should be noted
that when the predictors are significant and the logistic model is well fit,

28 Practical Guide to Logistic Regression

Wald or model-based confidence intervals differ little from profile confi-
dence intervals. In the case of the logit2 model where neither x nor the
intercept are significant and there are only nine observations in the model,
we expect for there to be a somewhat substantial difference in confidence
interval values.

Wald or Model-Based Confidence Intervals
> confint.default(logit2)
 2.5 % 97.5 %
(Intercept) -1.164557 3.361782
x -4.389065 1.380910

Profile Confidence Intervals
> confint(logit2)
Waiting for profiling to be done...
 2.5 % 97.5 %
(Intercept) -0.9568748 4.105099
x -4.9264210 1.219928

Stata’s pllf command produces profile confidence intervals, but only for con-
tinuous predictors.

Scaled, sandwich or robust, and bootstrapped-based confidence inter-
vals will be discussed in Chapter 4, and compared with profile confidence
intervals. We shall discuss which should be used given a particular type of
data.

2.4 MODELS WITH A
CATEGORICAL PREDICTOR

For our discussion of a logistic model with a single categorical predictor I shall
return to the medpar data described in Chapter 1. I provided an introductory
logistic model of died on white and hmo, which are all binary variables. Type,
on the other hand, is a categorical variable with three levels. As indicated ear-
lier, type = 1 signifies a patient who electively chose to be admitted to a hospi-
tal, type = 2 is used for patients who were admitted to the hospital as “urgent,”
and type = 3 is reserved for those patients who were admitted as emergency.
provnum is a string variable designating the hospital provider number of the
patients whose data are given in the respective lines or observations. I will use
only died (1 = died while hospitalized) and type in this section.

2 • Logistic Models: Single Predictor 29

> library(LOGIT)
> data(medpar)
> head(medpar)
 los hmo white died age80 type provnum
1 4 0 1 0 0 1 030001
2 9 1 1 0 0 1 030001
3 3 1 1 1 1 1 030001
4 9 0 1 0 0 1 030001
5 1 0 1 1 1 1 030001
6 4 0 1 1 0 1 030001

We can check how many are in each level of type

> table(medpar$type)

 1 2 3
1134 265 96

and we can find out the percentage in each level

> prop.table(table(medpar$type))

 1 2 3
0.75852843 0.17725753 0.06421405

A no-frills frequency table may be produced by a little programming.

> Cnt <- table(medpar$type)
> Freq <- prop.table(table(medpar$type))
> typetab <- data.frame(Cnt, Freq)
> my1 <- typetab[,1:2]
> Pct <- typetab[,4]
> data.frame(my1, Pct)

 Var1 Freq Pct
1 1 1134 0.75852843
2 2 265 0.17725753
3 3 96 0.06421405

Statisticians have handled categorical predictors in a variety of ways.
When used with regression, and in particular with logistic regression, cate-
gorical predictors are nearly always factored into separate indicator or dummy
variables. Each indicator variable has a value of 1 or 0 except for the reference
level, which is excluded from the regression.

Think of each level except the reference as the x = 1 level with the ref-
erence variable as x = 0. If level 1 of a categorical predictor is taken as the

30 Practical Guide to Logistic Regression

reference level, then level 2 is interpreted with reference to level 1. Level 3 is
also interpreted with reference to level 1. Level 1 is the default reference level
for both R’s glm function and Stata’s regression commands. SAS uses the high-
est level as the default reference. Here it would be level 3.

It is advised to use either the lowest or highest level as the reference, in
particular whichever of the two has the most observations. But of even more
importance, the reference level should be chosen which makes most sense for
the data being modeled.

You may let the software define your levels, or you may create them your-
self. If there is the likelihood that levels may have to be combined, then it may
be wise to create separate indicator variables for the levels. First though, let us
let the software create internal indicator variables, which are dropped at the
conclusion of the display to screen.

> summary(logit3 <- glm(died ~ factor(type), family = binomial,
data = medpar))

 . . .

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.74924 0.06361 -11.779 < 2e-16 ***
factor(type)2 0.31222 0.14097 2.215 0.02677 *
factor(type)3 0.62407 0.21419 2.914 0.00357 **
—-
 Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1911.1 on 1492 degrees of freedom
AIC: 1917.1

Note how the factor function excluded factor type1 (elective) from the
output. It is the reference level though and is used to interpret both type2
(urgent) and type3 (emergency). I shall exponentiate the coefficients of type2
and type3 in order to better interpret the model. Both will be interpreted as
odds ratios, with the denominator of the ratio being the reference level.

> exp(coef(logit3))
 (Intercept) factor(type)2 factor(type)3
 0.4727273 1.3664596 1.8665158

The interpretation is

• Urgent admission patients have a near 37% greater odds of dying in
the hospital than do elective admissions.

• Emergency admission patients have a near 87% greater odds of dying
in the hospital than do elective admissions.

2 • Logistic Models: Single Predictor 31

Analysts many times find that they must change the reference levels of
a categorical predictor. This may be done with the following code. We will
change from the default reference level 1 to a reference level 3 using the relevel
function.

> medpar$type <- factor(medpar$type)
> medpar$type <- relevel(medpar$type, ref=3)
> logit4 <- glm(died~factor(type), family=binomial,
 data=medpar)
> exp(coef(logit4))
 (Intercept) factor(type)1 factor(type)2
 0.8823529 0.5357576 0.7320911

Interpretation changes to read

• Elective patients have about half the odds of dying in the hospital
than do emergency patients.

• Urgent patients have about a three quarters of the odds of dying in
the hospital than do emergency patients.

I mentioned that indicator or dummy variables can be created by hand,
and levels merged if necessary. This occurs when, for example, the level 2
coefficient (or odds ratio) is not significant compared to reference level 1. We
see this with the model where type = 3 is the reference level. From looking at
the models, it appears that levels 2 and 3 may not be statistically different from
one another, and may be merged. I caution you from concluding this though
since we may want to adjust the standard errors, resulting in changed p-values,
for extra correlation in the data, or for some other reason we shall discuss in
Chapter 4. However, on the surface it appears that patients who were admitted
as urgent are not significantly different from emergency patients with respect
to death while hospitalized.

I mentioned before that combining levels is required if two levels do not
significantly differ from one another. In fact, when the emergency level of type
is the reference, level 2 (urgent) does not appear to be significant, indicating
that type levels 2 and 3 might be combined. With R this can be done as

> table(medpar$type)

 1 2 3
1134 265 96

> medpar$type[medpar$type = =3] <- 2 # reclassify level 3 as level 2
> table(medpar$type)

32 Practical Guide to Logistic Regression

 1 2
1134 361

> summary(logit6 <- glm(died~ factor(type), family = binomial,
data = medpar))

 . . .

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.74924 0.06361 -11.779 < 2e-16 ***
factor(type)2 0.39660 0.12440 3.188 0.00143 **

2.5 MODELS WITH A
CONTINUOUS PREDICTOR

2.5.1 Varieties of Continuous Predictors

A continuous predictor can take negative as well as zero and positive numeric
values. Continuous predictors cause more problems for analysts than do dis-
crete predictors; that is, binary and categorical predictors. The distribution
or shape that a continuous variable takes may not be appropriate for includ-
ing in a logistic model unless it is transformed in some manner. The key
concept to remember is that a continuous predictor must be what is referred
to by statisticians as “linear in the logit.” This means that the continuous
predictor needs to have a linear relationship with the logistic link function,
log(μ/(1 − μ)). A variable that is highly curved will not generally be linear
in the logit.

Another feature of a continuous predictor to check is its range. If the pre-
dictor is, for example, years of age from 21 to 65, it is better to center or even
standardize it. We will discuss these operations and their rationale later in this
chapter. I mentioned these two problems areas related to continuous predictors
because they seem to cause problems for many analysts.

One of the foremost problems in dealing with continuous predictors in
regression models has to do with the fact that a single coefficient represents
the entire range of values. Recall that a regression coefficient is nothing more
than a slope; that is, the rate of change in the response for a one-unit change
in the predictor. This rate of change is assumed to be the same at any point in
the variable. We can assume this since the logistic link function linearizes the
relationship between the linear predictor and fitted value.

2 • Logistic Models: Single Predictor 33

What happens when a predictor is curved like a parabola? Analysts typ-
ically transform the variable by squaring it, and entering both the original
variable and squared variable in the model. Other transforms are commonly
applied to continuous predictors including the square root, inverse, inverse
square, and log. Probably the most common transform is the log transform.

There are downsides when transforming a continuous predictor. The
major problem is interpretability. We must incorporate the transform made to
a variable into its interpretation. For a log transform, we need to affirm that
for a one-unit change in the predictor the response changes by the log of the
response. Some analysts apply complex transforms to straighten out or linear-
ize the relationship between the logit and predictor. But when it comes time to
interpreting the meaning of the coefficient they are at a loss.

Linearizing a predictor in the context of logistic regression is more dif-
ficult than it is for linear regression where the linear predictor and fitted value
are identical. In addition, other predictors in the model may affect the relation-
ship of the fit and predictor. Partial residual plots and the use of generalized
additive models (GAMs) are typically used to assess the best way to transform
a continuous predictor. We shall discuss these tests in more detail in Chapter 3.

The interpretation of a continuous predictor is based on the same logic
as for binary and categorical predictors. An odds ratio is the ratio of the odds
when x = 1 to the odds when x = 0. For a binary predictor this is simple. For
a multilevel categorical predictor, the reference level is the x = 0 level. For a
continuous predictor, the lower value of two contiguous values in the predictor
is the reference; the higher is the x = 1 level. For an age predictor, calculate the
odds of age = 21 compared to the odds of age 20. The ratio odds(21)/odds(20)
is the odds ratio, which is the same value for all pairs of values in the predictor.
If the odds ratio for age is 1.01 and response is died, we can assert that the odds
of death is 1% greater for each 1 year greater age of a patient.

2.5.2 A Simple GAM

I mentioned before, when including a continuous predictor into a logistic
model, it is assumed that the slope or rate of change in the response for a one-
unit change in the predictor is the same throughout the entire range of predic-
tor values. It may be preferred to factor a continuous predictor at the points
where its slope changes in any substantial manner. There is loss of information
when this is done, but there is perhaps a gain in accuracy when interpreting
the coefficient. GAMs is a widely used method to check the underling shape
of a continuous predictor, adjusted by other predictors (none here), within the
framework of a particular GLM family model: for example, logistic regression.
For an example let us evaluate the variable los in the medpar data. LOS is an

34 Practical Guide to Logistic Regression

acronym for Length of Stay, referring to nights in the hospital. los ranges from
1 to 116. A cubic spline is used to smooth the shape of the distribution of los.
This is accomplished by using the S operator.

> summary(medpar$los)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 4.000 8.000 9.854 13.000 116.000

> library(mgcv)
> diedgam <- gam(died ~ s(los), family = binomial, data = medpar)
> summary(diedgam)

 . . .

Parametric coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.69195 0.05733 -12.07 <2e-16 ***

Approximate significance of smooth terms:
 edf Ref.df Chi.sq p-value
s(los) 7.424 8.292 116.8 <2e-16 ***

R-sq.(adj) = 0.0873 Deviance explained = 6.75%
UBRE = 0.21064 Scale est. = 1 n = 1495
> plot(diedgam)

Note that no other predictors are in this model. Adding others may well
alter the shape of the splines. The edf statistic indicates the “effective degrees
of freedom.” It is a value that determines the shape of the curves. An edf of 1
indicates a straight line; 8 and higher is a highly curved shape. The graph has
an edf of 7.424, which is rather high. See Zuur (2012) for a complete analysis
of GAM using R.

If this was all the data I had to work with, based on the change of slope
points in Figure 2.1, I would be tempted to factor los into four intervals with
three slopes at 10, 52, and 90. Each of the four levels would be part of a cat-
egorical predictor with the lowest level as the reference. If the slopes differ
considerably across levels, we should use it for modeling the effect of los rather
than model the continuous predictor.

2.5.3 Centering

A continuous predictor whose lowest value is not close to 0 should likely be
centered. For example, we use the badhealth data from the COUNT package.

> data(badhealth)
> head(badhealth)

2 • Logistic Models: Single Predictor 35

 numvisit badh age
1 30 0 58
2 20 0 54
3 16 0 44
4 20 0 57
5 15 0 33
6 15 0 28

badh is a binary variable, and indicates that a patient has “bad health,” what-
ever that may mean. numvisit, or number of visits to the doctor during the year
1984, and age, are continuous variables. Number of visits ranges from 0 to 40,
and the age range of patients is from 20 to 60.

> table(badhealth$badh)

 0 1
1015 112

> summary(badhealth$age)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 20.00 28.00 35.00 37.23 46.00 60.00

0 20 40 60 80 100 120

–10

–5

0

5

los

s(
lo

s,7
.4

2)

FIGURE 2.1 GAM model of los.

36 Practical Guide to Logistic Regression

> summary(badhealth$numvisit)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.000 0.000 1.000 2.353 3.000 40.000

Centering allows a better interpretation for a predictor like age. Centering a
continuous predictor with its low value not close to 0 is recommended when the
variable is used in an interaction, as well as when it is used in a Bayesian model.

Centering is accomplished by subtracting the mean of the variable from
each value of the variable. That is:

 Centering: xi − mean(xi)

> cage <- badhealth$age - mean(badhealth$age)
> summary(cage)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-17.230 -9.229 -2.229 0.000 8.771 22.770

The same result can be determined by use of the scale function.

> cenage <- scale(badhealth$age, center = TRUE, scale = FALSE)

Comparing the coefficients for models with age and centered age (cage):

> bad1 <- glm(badh ~ age, family = binomial, data = badhealth)
> bad2 <- glm(badh ~ cage, family = binomial, data = badhealth)
> badtab <- data.frame(bad1$coefficients, bad2$coefficients)
> badtab
 bad1.coefficients bad2.coefficients
(Intercept) -4.58866278 -2.37171785
age 0.05954899 0.05954899

2.5.4 Standardization

Standardization of continuous predictors is important when other continuous
predictors in your model are recorded on entirely different scales. The way this
is done is by dividing the centered variable by the variable standard deviation.
Use of R’s scale function makes this easy:

> sage <- scale(badhealth$age)
> bad3 <- glm(badh ~ sage, family = binomial, data = badhealth)

The standard, centered, and standardized coefficient values for the bad-
health data may be summarized in the following table. The intercept changes
when a predictor such as age is centered. When a predictor is standardized

2 • Logistic Models: Single Predictor 37

both the intercept and predictor coefficients are changed with respect to a stan-
dard model. Note that the intercept remains the same when a predictor is either
centered or standardized.

> badtab2 <- data.frame(bad1$coefficients,
bad2$coefficients, bad3$coefficients)
> badtab2
 bad1.coefficients bad2.coefficients bad3.coefficients
(Intercept) -4.58866278 -2.37171785 -2.3717178
age 0.05954899 0.05954899 0.6448512

Again, standardization is warranted when two or more continuous predic-
tors in a model are measured on different scales, making it difficult to compare
them. Interpretation is in terms of standard deviation units, making it chal-
lenging to interpret the coefficients. However, if the main point of creating a
model is to predict observations not in data, or establish probabilities to obser-
vations in the data, then interpretations of coefficients may not be important. It
depends on why one is modeling the data.

• If the goal of modeling is to understand the relationship between the
predictor and response in terms of odds ratios, then care must be
taken when transforming individual predictors.

• If the goal of modeling is to assign probabilities to observations
in the data, or to calculate probabilities for observations not in the
model—but which could be—then optimally transforming predic-
tors is important.

2.6 PREDICTION

2.6.1 Basics of Model Prediction

Prediction is accomplished the same whether we have 1 or greater than 10
predictors in a model. Each predictor is evaluated as adjusted by the other
predictors in the model. We discussed the prediction in Chapter 1 in terms of
how to calculate the fitted value or probability that y = 1 for a logistic model.
We will discuss it again later when we evaluate multivariable models and
model fit. For now, I shall show how to calculate a predicted probability for
a single predictor, how to calculate probabilities for specific predictor values,
and then in the next subsection how to construct a confidence interval and
graph of a prediction.

38 Practical Guide to Logistic Regression

> summary(logit7 <- glm(died ~ white, family = binomial,
data = medpar))

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.9273 0.1969 -4.710 2.48e-06 ***
white 0.3025 0.2049 1.476 0.14
—-
 Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1920.6 on 1493 degrees of freedom
AIC: 1924.6

> exp(coef(logit7))
(Intercept) white
 0.3956044 1.3532548

White patients have a 35% greater odds of death while hospitalized than
do nonwhite patients.

LINEAR PREDICTOR
> etab <- predict(logit7)

FITTED VALUE; PROBABILITY THAT DIED = =1
> fitb <- logit7$fitted.value

TABULATION OF PROBABILITIES
> table(fitb)
fitb
0.283464566929547 0.348684210526331
 127 1368

1368 white patients have an approximate 0.349 probability of dying within
the hospital. Nonwhite patients have some 0.283 probability of dying. Since
the predictor is binary, there are only two predicted values.

Let us model died on los, a continuous predictor.

> summary(logit8 <- glm(died ~ los, family = binomial,
data = medpar))

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.361707 0.088436 -4.090 4.31e-05 ***
los -0.030483 0.007691 -3.964 7.38e-05 ***

2 • Logistic Models: Single Predictor 39

 Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1904.6 on 1493 degrees of freedom
AIC: 1908.6

> exp(coef(logit8))
(Intercept) los
 0.6964864 0.9699768

> etac <- predict(logit8)
> fitc <- logit8$fitted.value
> summary(fitc)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01988 0.31910 0.35310 0.34310 0.38140 0.40320

The predicted values of died given los range from 0.02 to 0.40.
If we wish to determine the probability of death while hospitalized for a

patient who has stayed in the hospital for 20 days, multiply the coefficient on
los by 20, add the intercept to obtain the linear predictor for los at 20 days.
Apply the inverse logit link to obtain the predicted probability.

> xb20 <- -0.361707 - 0.030483*20
> mu20 <- 1/(1 + exp(-xb20))
> mu20
[1] 0.2746081

The probability is 0.275. A patient who stays in the hospital for 20 days
has a 27% probability of dying while hospitalized—given a specific disease
from this data.

2.6.2 Prediction Confidence Intervals

We next calculate the standard error of the linear predictor. We use the predict
function with the type = “link” and se.fit = TRUE options to place the
predictions on the scale of the linear predictor, and to guarantee that the lpred
object is in fact the standard error of the linear prediction.

> lpred <- predict(logit8, newdata = medpar, type = “link”,
se.fit = TRUE)

Now we calculate the 95% confidence interval of the linear predictor. As
mentioned earlier, we assume that both sides of the distribution are used in

40 Practical Guide to Logistic Regression

determining the confidence interval, which means that 0.025 is taken from
each tail of the distribution. In terms of the normal distribution, we see that

> up <- lpred$fit + (qnorm(.975) * lpred$se.fit)
> lo <- lpred$fit - (qnorm(.975) * lpred$se.fit)
> eta <- lpred$fit

We may use the inverse logistic link function to convert the above three
statistics to the probability scale. We could also use the true inverse logit link
function, exp(xb)/(1 + exp(xb)) or 1/(1 + exp(−xb)), to convert these to the prob-
ability scale. It is easier to simply use the linkinv function. A summary of each
is displayed based on the following code.

> upci <- logit8$family$linkinv(up)
> mu <- logit8$family$linkinv(eta)
> loci <- logit8$family$linkinv(lo)

> summary(loci)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.004015 0.293000 0.328700 0.312900 0.350900 0.364900

> summary(mu)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01988 0.31910 0.35310 0.34310 0.38140 0.40320

> summary(upci)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.09265 0.34640 0.37820 0.37540 0.41280 0.44260

The mean of the lower 95% confidence interval is 0.313, the mean of μ is
0.343, and the mean of the upper confidence interval is 0.375. A simple R plot
of the predicted probability of death for days in the hospital for patients in this
data is displayed as (Figure 2.2):

> layout(1)
> plot(medpar$los, mu, col = 1)
> lines(medpar$los, loci, col = 2, type = ‘p’)
> lines(medpar$los,upci, col = 3, type = ‘p’)

We next discuss logistic models with more than one predictor. These are
the types of models that are in fact employed in real-life studies and projects.
Understanding single predictor models, however, provides a solid basis for
understanding more complex models.

2 • Logistic Models: Single Predictor 41

SAS CODE

/* Section 2.1 */

*Create a new dataset with binary variables x and y;
data xdta;
 input x y @@;
 datalines;
 1 1 0 0 1 0 0 1 1
 0 1 1 1 0 0 1 0 1
 ;
 run;

*Build the logistic model;
proc genmod data=xdta descending;
 model y=x / dist=binomial link=logit;
 output out=residual resdev=deviance;
run;

*Another way to build the logistic model;
proc logistic data=xdta descending;
 model y=x / clparm=both;
 output out=residual resdev=deviance;
run;

0 20 40 60 80 100 120

0.1

0.2

0.3

0.4

Medpar$los

m
u

FIGURE 2.2 Predicted probability of death by length of stay.

42 Practical Guide to Logistic Regression

*Statistics of deviance residual;
proc means data=residual min q1 median q3 max maxdec=4;
 var deviance;
run;

*Generate a table of y by x;
proc freq data=xdta;
 tables y*x / norow nocol nocum nopercent;
run;

*Expb option provides the odds ratio;
proc genmod data=xdta descending;
 model y=x / dist=binomial link=logit;
 estimate “Intercept” Intercept 1 / exp;
 estimate “x” x 1 / exp;
run;

/* Section 2.2 */

*Refer to proc genmod in section 2.1 to build the logistic model;

*Create a dataset to make calculations;
data data1;
 set xdta;
 if x=1 then xb=1.0986-1.5041*1;
 else if x=0 then xb=1.0986-1.5041*0;
 mu=1/(1+exp(-xb));
 o=mu/(1-mu);
 or=o;
 if or < 1 then or=0.667/3;
 coeff=log(or);
 format mu 4.2 o or xb coeff 7.4;
run;

*Print the dataset;
proc print data=data1;
 var x o;
run;

*Print the whole dataset;
proc print data=data1;
run;

/* Section 2.3 */

*Build the logistic model- covb option provides var-cov matrix;
proc genmod data=xdta descending;
 model y=x / dist=binomial link=logit covb;
run;

*Use SAS interactive matrix language;
proc iml;
 vcov={1.33333 -1.33333,
 -1.33333 2.16667};

2 • Logistic Models: Single Predictor 43

 se=sqrt(diag(vcov));
 print se;
quit;

*Logistic regression with OIM standard error;
proc surveylogistic data=xdta;
 model y(event=’1’)=x;
run;

*Refer to proc genmod in section 2.3 to obtain var-cov matrix;

*Calculations of odds ratio and model statistics;
proc iml;
 vcov={1.33333 -1.33333,
 -1.33333 2.16667};
 coef={1.0986, -1.5041};
 or=exp(coef);
 se=sqrt(diag(vcov));
 ose=se*or;
 print or [format = 7.4] ose [format = 7.4];

 zscore=coef/se;
 delta=ose;
 z=zscore[,+];
 pvalue=2*(1-probnorm((abs(z))));
 print z pvalue;

 se1=se[,+];
 loci=coef-quantile(‘normal’, 0.975)*se1;
 upci=coef+quantile(‘normal’, 0.975)*se1;
 expl=exp(loci);
 expu=exp(upci);
 print or [format=7.4] delta [format=7.4] z [format=7.4]
 pvalue [format=7.4] expl [format=7.4] expu [format=7.4];
quit;

*Clparm=both provides both PL and Wald confidence intervals;
proc logistic data=xdta descending;
 model y=x / clparm=both;
run;

/* Section 2.4 */

*Refer to the code in section 1.4 to import and print medpar dataset;

*Generate the frequency table of type and output the dataset;
proc freq data=medpar;
 tables type / out=freq;
run;

*Build the logistic model with class;
proc genmod data=medpar descending;
 class type (ref=’1’) / param = ref;
 model died=type / dist=binomial link=logit;

44 Practical Guide to Logistic Regression

 estimate “Intercept” Intercept 1 / exp;
 estimate “type2” type 1 0 / exp;
 estimate “type3” type 0 1 / exp;
 output out=residual resdev=deviance;
run;

*Set up format for variable type;
proc format;
 value typefmt 1=”Elective Admit”
 2=”Urgent Admit”
 3=”Emergency Admit”;
run;

*Logistic regression with controlled reference;
proc genmod data=medpar descending;
 class type (ref=’Elective Admit’) / param = ref;
 model died=type / dist=binomial link=logit;
 estimate “Intercept” Intercept 1 / exp;
 estimate “type2” type 1 0 / exp;
 estimate “type3” type 0 1 / exp;
 format type typefmt.;
run;

*Logistic regression with controlled reference;
proc genmod data=medpar descending;
 class type (ref=’Emergency Admit’) / param = ref;
 model died=type / dist=binomial link=logit;
 estimate “Intercept” Intercept 1 / exp;
 estimate “type2” type 1 0 / exp;
 estimate “type3” type 0 1 / exp;
 format type typefmt.;
run;

*Refer to proc freq in section 2.4 to generate the frequency table;

*Re-categorized variable type;
data medpar1;
 set medpar;
 if type in (2,3) then type=2;
run;

*Refer to proc freq in section 2.4 to generate the frequency table;

*Logistic regression with re-categorized type;
proc genmod data=medpar1 descending;
 class type (ref=’1’) / param = ref;
 model died=type / dist=binomial link=logit;
 estimate “Intercept” Intercept 1 / exp;
 estimate “type2” type 1 0 / exp;
 estimate “type3” type 0 1 / exp;
run;

2 • Logistic Models: Single Predictor 45

/* Section 2.5 */

*Summary for variable los;
proc means data=medpar min q1 median mean q3 max maxdec=3;
 var los;
run;

*Build the generalized additive model;
proc gam data=medpar;
 model died (event=’1’)=spline(los) / dist=binomial;
run;

*Refer to the code in section 1.4 to import and print badhealth
dataset;

*Refer to proc freq in section 2.4 to generate the frequency table;

*Summary for variable age;
proc means data=badhealth min q1 median mean q3 max maxdec=2;
 var age;
 output out=center mean=;
run;

*Create a macro variable;
proc sql;
 select age into: mean
 from center;
quit;

*Refer to proc means in section 2.5 to summarize numvisit;

*Center the age;
data badhealth1;
 set badhealth;
 cage=age-&mean;
run;

*Refer to proc means in section 2.5 to summarize centered age;

*Provide the std;
proc means data=badhealth std;
 var age;
 output out=stderror std=;
run;

*Create a macro variable;
proc sql;
 select age into: std
 from stderror;
quit;

*Scale age with a different way;
proc standard data=badhealth mean=0 std=&std out=cenage;
var age;
run;

46 Practical Guide to Logistic Regression

*Build the logistic model;
proc genmod data=badhealth descending;
 model badh=age / dist=binomial link=logit;
run;

*Build the logistic model with centered age;
proc genmod data=badhealth1 descending ;
 model badh=cage / dist=binomial link=logit;
run;

*Standardize age and output the sage dataset;
proc standard data=badhealth mean=0 std=1 out=sage;
 var age;
run;

*Build the logistic model with standardized age;
proc genmod data=sage descending ;
 model badh=age / dist=binomial link=logit;
run;

/* Section 2.6 */

*Build the logistic model and output model prediction;
proc genmod data=medpar descending;
 model died=white / dist=binomial link=logit;
 output out=etab pred=fitb;
run;

*Refer to proc freq in section 2.4 to generate the frequency table;

*Build the logistic model and output model prediction;
proc genmod data=medpar descending;
 model died=white / dist=binomial link=logit;
 output out=etac pred=fitc;
run;

*Refer to proc means in section 2.5 to summarize fitc;

*Create a dataset to make calculations;
data prob;
 xb20=-0.3617 - 0.0305*20;
 mu20=1/(1+exp(-xb20));
run;

*Print the variable mu20;
proc print data=prob;
 var mu20;
run;

*Build the logistic model and output confidence intervals;
proc genmod data=medpar descending;
 model died=los / dist=binomial link=logit;
 output out=cl pred=mu lower=loci upper=upci;
run;

2 • Logistic Models: Single Predictor 47

*Summary for confidence intervals;
proc means data=cl min q1 median mean q3 max maxdec=5;
 var loci mu upci;
run;

*Graph scatter plot;
proc sgplot data=cl;
 scatter x=los y=mu;
 scatter x=los y=loci;
 scatter x=los y=upci;
run;

STATA CODE

2.1
. use xdta
. list
. glm y x, fam(bin) nolog
. table y x
. tab y x
. glm y x, fam(bin) eform nolog nohead

2.2
. glm y x, fam(bin) nolog nohead
. di 1.098612 - 1.504077*1
. di 1.098612 - 1.504077*0
. predict xb, xb
. predict mu
. gen o = mu/(1-mu)
. gen or = .6666667/3 if o < 1
. replace or = o if or = =.
. gen coef = log(or)
. l y x xb mu o or coef

2.3
. glm y x, fam(bin) nolog nohead
. estat vce
. glm y x, fam(bin) nolog nohead scale(x2)
. glm y x, fam(bin) nolog nohead eform
. di normal(-abs(_b[x]/_se[x]))*2 // p-value for x
. di normal(-abs(_b[_cons]/_se[_cons]))*2 // p-value for intercept
. use medpar, clear
. glm died white los i.type, fam(bin) nolog nohead
. glm died white los i.type, fam(bin) nolog nohead eform

2.4
. use medpar, clear
. list in 1/6
. tab type

48 Practical Guide to Logistic Regression

. glm died i.type, fam(bin) nolog nohead

. glm died i.type, fam(bin) nolog nohead eform

. glm died b3.type, fam(bin) nolog nohead

. tab type, gen(type)

. gen type23 = type2 | type3

. tab type23

2.5
. use badhealth, clear
. list in 1/6
. tab badh
. summary age
. summary numvis
. egen meanage = mean(age)
. gen cage = age - meanage
. * or: center age, pre(c)
. glm badh cage, fam(bin) nolog nohead
. center age, pre(s) stand
. glm badh sage, fam(bin) nolog nohead

2.6
. glm died white, fam(bin) nolog nohead
. glm died white, fam(bin) nolog nohead eform
. predict etab, xb
. predict fitb, mu
. tab fitb
. glm died los, fam(bin)
. glm died los, fam(bin) eform
. predict etac, xb
. predict fitc
. summary fitc
. use medpar
. glm died los, family(bin) nolog
. predict eta, xb // linear predictor; eta
. predict se_eta, stdp // standard error of the prediction
. gen mu = exp(eta)/(1 + exp(eta)) // or: predict mu
. gen low = eta - invnormal(0.975) * se_eta
. gen up = eta + invnormal(0.975) * se_eta
. gen lci = exp(low)/(1 + exp(low))
. gen uci = exp(up)/(1 + exp(up))
. sum lci mu uci
. scatter mu lci uci los

49

3Logistic Models
Multiple Predictors

3.1 SELECTION AND INTERPRETATION
OF PREDICTORS

The logic of modeling data with logistic regression changes very little when
more predictors are added to a model. The basic logistic regression formula we
displayed becomes more meaningful when there is more than one predictor in
a model. Equation 3.1 below expresses the relationship of each predictor to the
predicted linear predictor, ′xi β, or ηi. It is more accurate to symbolize the pre-
dicted linear predictor as η̂i or as ′xi β, but we shall not employ the hat symbol
on η or β for ease of interpretation, as we have done so for the predicted prob-
ability, ˆ .µ We shall remember from the context that the expression is predicted
or estimated, and not simply given as raw data.

ln

µ
µ η β β β βi

i
i i i i p ipx b x x x

1 0 1 1 2 2−

= = = + + + +�

(3.1)

With respect to logistic regression, each β in Equation 3.1 above indi-
cates a separate coefficient, or slope. Each is interpreted as a partial deriva-
tive in calculus. When a predictor is being interpreted, it is in terms of its
associated coefficient or rate of change with respect to the response. Each
coefficient assumes that when it is interpreted, the other predictors are held
as constant.

Each term, or x′β, in the regression equation indicates that for a one-unit
change in the predictor, x, the log-odds of the response changes by β, given that

50 Practical Guide to Logistic Regression

the other terms in the model are held constant. When the logistic regression
term is exponentiated, interpretation is given in terms of an odds ratio, rather
than log-odds. We can see this in Equation 3.2 below, which results by expo-
nentiating each side of Equation 3.1.

µ
µ

β β β βi

i

x x xi i p ip

1
0 1 1 2 2

− = + + + +e �

(3.2)

or

µ
µ β β β βi

i
i i p ipx x x

1 0 1 1 2 2− = + + + +exp()�

(3.3)

An example will help clarify what is meant when interpreting a logistic
regression model. Let’s use data from the social sciences regarding the rela-
tionship of whether a person identifies themselves as religious. Our main inter-
est will be in assessing how level of education affects religiosity. We’ll also
adjust by gender (male), age, and whether the person in the study has children
(kids). There are 601 subjects in the study, so there is no concern about sample
size. The data are in the edrelig data set.

A study subject’s level of education is a categorical variable with three
fairly equal-sized levels: AA, BA, and MA/PhD. All subjects have achieved at
least an associate’s degree at a 2-year institution. A tabulation of the educlevel
predictor is shown below, together with the top six values of all variables in
the data.

> data(edrelig)
> head(edrelig)
 male age kids educlevel religious
1 1 37 0 MA/PhD 0
2 0 27 0 AA 1
3 1 27 0 MA/PhD 0
4 0 32 1 AA 0
5 0 27 1 BA 0
6 1 57 1 MA/PhD 1

> table(edrelig$educlevel)

 AA BA MA/PhD
 205 204 192

Male and kids are both binary predictors, having values of 0 and 1. 1 indi-
cates (most always) that the name of the predictor is the case. For instance,

3 • Logistic Models: Multiple Predictors 51

the binary predictor male is 1 = male and 0 = female. Kids = 1 if the subject
has children, and 0 if they have no children. Age is a categorical variable with
levels as 5-year age groups. The range is from 17 to 57. I will interpret age,
however, as a continuous predictor, with each ascending age as a 5-year period.

We model the data as before, but simply add more predictors in the model.
The categorical educlevel predictor is factored into its three levels, with the
lowest level, AA, as the reference. It is not displayed in model output.

> summary(ed1 <- glm(religious ~ age + male + kids + factor(educlevel),
+ family = binomial, data = edrelig))

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) −1.43522 0.32996 −4.350 1.36e-05 ***
age 0.03983 0.01036 3.845 0.000121 ***
male 0.18997 0.18572 1.023 0.306381
kids 0.12393 0.21037 0.589 0.555790
factor(educlevel)BA −0.47231 0.20822 −2.268 0.023313 *
factor(educlevel)MA/PhD −0.49543 0.22621 −2.190 0.028513 *

 Null deviance: 822.21 on 600 degrees of freedom
Residual deviance: 792.84 on 595 degrees of freedom
AIC: 804.84

The odds ratios are obtained by:

> or <- exp(coef(ed1))
> round(or,4)
 (Intercept) age male
 0.2381 1.0406 1.2092
 kids factor(educlevel)BA factor(educlevel)MA/PhD

 1.1319 0.6236 0.6093

Or we can view the entire table of odds ratio estimates and associated
statistics using the code developed in the previous chapter.

> coef <- ed1$coef
> se <- sqrt(diag(vcov(ed1)))
> zscore <- coef / se
> or <- exp(coef)
> delta <- or * se
> pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
> loci <- coef - qnorm(.975) * se
> upci <- coef + qnorm(.975) * se
> ortab <- data.frame(or, delta, zscore, pvalue, exp(loci), exp(upci))
> round(ortab, 4)
 or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 0.2381 0.0786 -4.3497 0.0000 0.1247 0.4545
age 1.0406 0.0108 3.8449 0.0001 1.0197 1.0620
male 1.2092 0.2246 1.0228 0.3064 0.8403 1.7402
kids 1.1319 0.2381 0.5891 0.5558 0.7495 1.7096
factor(educlevel)BA 0.6236 0.1298 -2.2683 0.0233 0.4146 0.9378
factor(educlevel)MA/PhD 0.6093 0.1378 -2.1902 0.0285 0.3911 0.9493

52 Practical Guide to Logistic Regression

Since we are including more than a single predictor in this model, it’s wise
to check additional model statistics. Interpretation gives us the following, with
the understanding that the values of the other predictors in the model are held
constant.

> 1/.6235619
[1] 1.60369

> 1/.6093109
[1] 1.641198

Notice that I switched the interpretation of the levels of educlevel so that
they are positive. I could have said that those with a BA have 40% less odds of
being religious than are those with a highest degree of AA. The interpretation
is not going to be understood as well as if I express a positive relationship. I
recommend employing a positive interpretation of odds ratio if it makes sense
in the context of the study.

3.2 STATISTICS IN A LOGISTIC MODEL

When logistic regression is used from within GLM software, the output is
pretty much the same regardless of the software package used for the model-
ing process. R is an exception though. The logic of basic R is to display the
minimum for the statistical procedure being executed, but provide options by
which the user can display additional statistics. The R summary function is

age Subjects in a higher 5-year age group have a 4% greater odds of
being religious than those in the lower age division, assuming
that the values of other predictors are constant (at their mean).

male Males have a some 21% greater odds of being religious than
females.

kids Study subjects having children have a 13% higher odds of being
religious than are those without children.

educlevel Those in the study whose highest degree is a BA have a 60%
greater odds of being nonreligious compared to those whose
highest degree is an AA.

Those in the study whose highest degree is a MA/PhD have a 64%
greater odds of being nonreligious compared to those whose
highest degree is an AA.

3 • Logistic Models: Multiple Predictors 53

such an option, providing substantially more model statistics than are provided
by simply using the glm function when modeling a logistic regression. In this
section, we define and discuss the various GLM statistics that are provided in
the R’s summary function. Stata, SAS, SPSS, Limdep, and other GLM soft-
ware generally provide the same statistics.

I shall display the ed1 model we just estimated, removing the coefficient
table from our view. We are only interested here in the ancillary model statis-
tics that can be used for evaluating model fit.

R

> summary(ed1 <- glm(religious ~ age + male + kids+ factor(educlevel),
+ family = binomial, data = edrelig))

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.6877 -1.0359 -0.8467 1.2388 1.6452

 . . .
 Null deviance: 822.21 on 600 degrees of freedom
Residual deviance: 792.84 on 595 degrees of freedom
AIC: 804.84

R provides a summary table of deviance statistics, together with null and
residual deviance statistics and their respective degrees of freedom. Stata also
has a deviance statistic, and the corresponding degrees of freedom. These were
thought to be very important statistics needed for fit analysis, but their impor-
tant has waned in recent times.

The deviance statistic is based on the log-likelihood. Keep in mind that
many fit statistics are based on the log-likelihood function. Stata displays the
log-likelihood together with the table of estimates. R’s glm function does not
have the log-likelihood saved post estimation statistic.

Recall that the Bernoulli distribution log-likelihood can be given in expo-
nential family form as

L(;) ()µ µ
µ µi i

i

n

i
i

i
iy y= −

+ −
=

∑
1

1
1ln ln

(3.4)

The deviance is calculated as a goodness-of-fit test for GLM models,
and is defined as twice the difference between the saturated log-likelihood
minus the full log-likelihood. The saturated model has a parameter for each

54 Practical Guide to Logistic Regression

observation in the model. This means that a y replaces every μ in the log-
likelihood function.

D y y y
i

n

i i i i= −
=

∑2
1

{ (;) (;)}L L µ

(3.5)

The Bernoulli deviance is expressed as:

Logistic Model Deviance Statistic:

D y
y

y
y

i

n

i
i

i
i

i

i
=

+ − −
−

=
∑2 1

1
1

1

ln lnµ µ()

(3.6)

For GLM models, including logistic regression, the deviance statistic is
the basis of model convergence. Since the GLM estimating algorithm is itera-
tive, convergence is achieved when the difference between two deviance val-
ues reaches a threshold criterion, usually set at 0.000001.

When convergence is achieved, the values of the coefficients, of mu, eta,
and other statistics are at their optimal values.

The other main use of the deviance statistic is as a goodness-of-fit test.
The “residual” deviance is the value of D that can be calculated following
model convergence. Each observation will have a calculated value of Di as
y*ln(y/μ) + (1 − y)*ln[(1 − y)/(1 − μ)]. Sum the Ds across all observations and
multiply by 2—that’s the deviance statistic. The value of the deviance statis-
tic for an intercept only model; that is, a model with no predictors, is called
the null deviance. The null degrees of freedom is the total observations in
the model minus the intercept, or n − 1. The residual degrees of freedom is n
minus the number of predictors in the model, including the intercept. For the
example model, there are 601 observations and six predictors: age, male, kids,
educlevel(BA), educlevel(MA/PhD), and the intercept. The reference level is
not counted. The null deviance degrees of freedom (dof) is 600 and residual
dof is 595. A traditional fit statistic we shall discuss in the next chapter is based
on the Chi2 distribution of the deviance with a dof of the residual deviance.

The Pearson Chi2 goodness-of-fit statistic is defined as the square of the
raw residual divided by the variance statistic. The raw residual is the value of
the response, y, minus the mean (μ). The Bernoulli variance function for the
logistic regression model is μ(1 − μ). Therefore,

Pearson Chi2 GOF Statistic:

 i

n

i i

i

y
V

=
∑ −

1

2()
()

µ
µ

(3.7)

3 • Logistic Models: Multiple Predictors 55

Logistic Model Pearson Chi2 GOF Statistic (based on the Bernoulli distribution):

 i

n

i i

i i

y

=
∑ −

−
1

2

1
()

()
µ

µ µ

(3.8)

The degrees of freedom for the Pearson statistic are the same as for the
deviance. For count models, the dispersion statistic is defined as the Pearson
Chi2 statistic divided by the residual dof. Values greater than 1 indicate pos-
sible overdispersion. The same is the case with grouped logistic models—a
topic we shall discuss in Chapter 5. The deviance dispersion can also be used
for binomial models—again a subject to which we shall later return.

I mentioned earlier that raw residuals are defined as “y − μ.” All other
residuals are adjustments to this basic residual. The Pearson residual, for
example, is defined as:

Pearson Residual:

y −
−
µ

µ µ()1

(3.9)

It is important to know that the sum of the squared Pearson residuals is
the Pearson Chi2 statistic:

Pearson statisticChi
y

i

n

i i

i i

2
1

1

2

= −
−

=
∑ µ

µ µ()

(3.10)

In fact, the way programmers calculate the Pearson Chi2 statistic is by
summing the squared Pearson residuals.

> pr <- resid(ed1, type = “pearson”) # calculates Pearson residuals
> pchi2 <- sum(residuals(ed1, type = “pearson”)^2)
> disp <- pchi2/ed1$df.residual
> c(pchi2, disp)
[1] 600.179386 1.008705

Unfortunately neither the Pearson Chi2 statistic nor the Pearson disper-
sion is directly available from R. Strangely though, the Pearson dispersion is
used to generate what are called quasibinomial models; that is, logistic models
with too much or too little correlation in the data. See Hilbe (2009) and Hilbe
and Robinson (2013) for a detailed discussion of this topic.

56 Practical Guide to Logistic Regression

I created a function that calculates the Pearson Chi2 and dispersion fol-
lowing glm estimation. Called P__disp (double underscore), it is a function
in the COUNT and LOGIT packages. If the name of the model of concern is
mymodel, type P__disp(mymodel) on the command line.

Deviance residuals are calculated on the basis of the deviance statistic
defined above. For binary logistic regression, deviance residuals take the form of

If y = 1,

sign ln() *y −

∑µ µ2

1

(3.11)

If y = 0,

sign ln() *y − −

∑µ µ2

1
1

(3.12)

Using R’s built-in deviance residual option for glm models, we may calcu-
late a summary of the values as,

> dr <-resid(ed1, type=“deviance”)
> round(summary(dr),4)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
−1.6880 −1.0360 −0.8467 −0.0434 1.2390 1.6450

Note the closeness of the residual values to what is displayed in the ed1
model output at the beginning of this section.

I should also mention that the above output for Pearson residuals informs us
that the dispersion parameter for the model is 1 (1.008705). The logistic model is
based on the Bernoulli distribution with only a mean parameter. There is no scale
parameter for the Bernoulli distribution. The same is the case for the Poisson
count model. In such a case the software reports that the value is 1, which means
that it cannot affect the other model statistics or the mean parameter. It is sta-
tistically preferred to use the term scale in this context than it is dispersion, for
reasons that go beyond this text. See Hilbe (2011) or Hilbe (2014) for details.

The glm function fails to display or save the log-likelihood function,
although it is used in the calculation of other saved statistics. By back-coding
other statistics an analyst can calculate a statistic such as the log-likelihood
which is given at the start of this section. For the ed1 model,

Log-likelihood:

> (ed1$df.null - ed1$df.residual + 1) - ed1$aic/2
[1] -396.4198

3 • Logistic Models: Multiple Predictors 57

Other important statistics which will be required when we set up residual
analysis are the hat matrix diagonal and standardized Pearson and standardized
deviance residuals.

The hat matrix diagonal is defined as:

 h hat W X X WX X W= = ′ ′−1 2 1 1 2/ /() (3.13)

with W as a weight defined as diag{1/(μ(1 − μ))*ln(μ/(1 − μ))2} and X as the
predictor matrix. The hat statistic can also be calculated as the Bernoulli vari-
ance times the square of the standard error of prediction. R does not have a
precalculated function for the standard error of the predicted value, but several
other statistical packages do; for example, Stata, SAS. The R glm function does
have, however, a function to calculate hat values, as we can observe below.
Note that standardization of the Pearson and deviance residuals is accom-
plished by dividing them each by the square root of 1 − hat.

Hat Matrix Diagonal Influence Statistic:

> hat <- hatvalues(ed1)
> summary(hat)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.006333 0.007721 0.009291 0.009983 0.011220 0.037910

Standardize Pearson Residual:

> stpr <- pr/sqrt(1-hat)
> summary(stpr)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.791000 -0.845700 -0.660300 -0.002086 1.078000 1.705000

Standardized Deviance Residual:

> stdr <- dr/sqrt(1-hat)
> summary(stdr)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.70200 -1.04000 -0.85150 -0.04356 1.24300 1.65600

R’s glm function saves other statistics as well. To identify statistics that
can be used following an R function, type ?glm or ? followed by the function
name, and a help file will appear with information about model used and saved
values. All CRAN functions should have a help document associated with the
function, but packages and functions that are not part of the CRAN family
have no such requirements. Nearly all Stata commands or functions have asso-
ciated help. For general help on glm type, “help glm.”

58 Practical Guide to Logistic Regression

3.3 INFORMATION CRITERION TESTS

Information criterion tests are single statistics by which analysts may com-
pare models. Models with lower values of the same information criterion are
considered better fitted models. A number of information tests have been pub-
lished, but only a few are frequently used in research reports.

3.3.1 Akaike Information Criterion

The Akaike information criterion (AIC) test, named after Japanese statistician
Hirotsugu Akaike (1927–2009), is perhaps the most well-known and well used
information statistic in current research. What may seem surprising to many
readers is that there are a plethora of journal articles detailing studies proving
how poor the AIC test is in assessing which of two models is the better fit-
ted. Even Akaike himself later developed another criterion which he preferred
to the original. However, it is his original 1973 version that is used by most
researchers and that is found in most journals to assess comparative model fit.

The traditional AIC statistic is found in two versions:

 AIC or= − + − −()2 2 2L Lk k (3.14)

or

AIC or= − + − −()2 2 2L Lk

n
k

n
(3.15)

where L is the model log-likelihood, k is the number of parameter estimates
in the model, and n is the number of observations in the model. For logistic
regression, parameter estimates are the same as predictors, including the inter-
cept. Using the medpar data set described earlier, we model died on

> data(medpar)
> summary(mymod <- glm(died ~ white + hmo + los + factor(type),
+ family = binomial,
+ data = medpar))

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.720149 0.219073 -3.287 0.00101 **
white 0.303663 0.209120 1.452 0.14647

3 • Logistic Models: Multiple Predictors 59

hmo 0.027204 0.151242 0.180 0.85725
los -0.037193 0.007799 -4.769 1.85e-06 ***
factor(type)2 0.417873 0.144318 2.896 0.00379 **
factor(type)3 0.933819 0.229412 4.070 4.69e-05 ***

 Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1881.2 on 1489 degrees of freedom
AIC: 1893.2

Using R and the values of the log-likelihood and the number of predictors,
we may calculate the AIC as:

> -2*(-940.5755 -6)
[1] 1893.151

This is the same value that is displayed in the glm output. It should be
noted that of all the information criteria that have been formulated, this ver-
sion of the AIC is the only one that does not adjust the log-likelihood by n, the
number of observations in the model. All others adjust by some variation of
number of predictors and observations. If the AIC is used to compare models,
where n is different (which normally should not be the case), then the test will
be mistaken. Using the version of AIC where the statistic is divided by n is
then preferable—and similar to that of other criterion tests. The AIC statistic,
captured from the postestimation statistics following the execution of glm, is
displayed below, as is AICn. These statistics are also part of the modelfit func-
tion described below.

AIC – from postestimation statistics
> mymod$aic
[1] 1893.151

AICn – AIC divided by n
> aicn <- mymod$aic/(mymod$df.null + 1)
> aicn
[1] 1.266322

3.3.2 Finite Sample

Finite sample AIC was designed to compare logistic models. It is rarely used
in reports, but is important to know. It is defined as:

FAIC

/= − − − + − −{[()] ()}2 1 1L k k k n k
n

(3.16)

60 Practical Guide to Logistic Regression

3.3.3 Bayesian Information Criterion

The Schwarz Bayesian information criterion (BIC) is the most used BIC test
found in the literature. Developed by Gideon Schwarz in 1978, its value differs
little from the AIC statistic. Most statisticians prefer the use of this statistic,
but the AIC nevertheless appears to be more popular. My recommendation is
to test models with both statistics. If the values substantially differ, it is likely
that the model is mis-specified. Another binomial link may be required; for
example, probit, complementary loglog, or loglog.

 BIC ln= − + ()2L k n (3.17)

The BIC is not available in the default R software, but it can be obtained
by using the modelfit function in the COUNT package. Following the mymod
model above, an analyst should type

> modelfit(mymod)
$AIC
[1] 1893.151

$AICn
[1] 1.266322

$BIC
[1] 1925.01

$BICqh
[1] 1.272677

The BIC statistic is given as 1925.01, which is the same value displayed in
the Stata estat ic post-estimation command. Keep in mind that size compari-
son between the AIC and BIC statistics are not statistically meaningful.

3.3.4 Other Information Criterion Tests

The Hannan and Quinn BIC statistic, first developed in 1979, is provided in the
modelfit output. It has a value similar to AIC/n. If the two statistics differ by
much, this is an indication of mis-specification.

Another test statistic developed for correlated data is called the AICH sta-
tistic. See Hilbe (2014) for a full discussion:

AICH = − + − − + + + +

− − −2
4 2 1 2

2

2

L
()()()p pk p p k p k

n p k
(3.18)

3 • Logistic Models: Multiple Predictors 61

3.4 THE MODEL FITTING PROCESS:
ADJUSTING STANDARD ERRORS

When dealing with logistic models we must be concerned, among other
things, with data that may be more correlated than is allowed by the underly-
ing Bernoulli distribution. If the data are taken from clusters of items; for
example, litters of pups, galaxies, schools within a city, and so forth, the inde-
pendence of observations criterion of the Bernoulli PDF and likelihood is vio-
lated. Standard errors based on this distribution will be biased, indicating that
a predictor significantly contributes to a model when it in fact does not.

Other distributional problems can exist as well. We need not describe
them all here. Just be aware that it is wise to check for problems that the model
has with the data. Fortunately, we do not have to identify every problem that
may exist in the data in order to produce a well-fitted model. At times per-
forming various adjustments to the model at the outset will allow the analyst
to model the data without having to be concerned about the particular cause.

3.4.1 Scaling Standard Errors

I described why we may need to scale standard errors in Chapter 2, Section
2.3.1, and also gave an example of how to do it. To repeat, if the data are
correlated or somehow do not meet the distribution requirements of the PDF
underlying the model, the standard errors displayed in model results are likely
biased. When we scale standard errors, we are adjusting them to the values
they would have if there was not extra correlation or some other problem with
the data. Scaling was designed to deal with excess correlation in the data, but
it also can be used to address other unknown problems.

R users may scale the standard errors of a logistic model by using the qua-
sibinomial “family” with the glm function. Scaling is accomplished by mul-
tiplying the square root of the Pearson dispersion by the standard error of the
model. When we discussed scaling in Chapter 2, we had not yet discussed the
dispersion statistic, which is essential the operation.

Let’s use the mymod example we have been using in this chapter to show
how to scale standard errors. By creating them by hand, it will allow us to
better understand what they are doing. First, let’s show a table with the model
coefficients and model standard errors

> coef <- mymod$coefficients
> se <- sqrt(diag(vcov(mymod)))

62 Practical Guide to Logistic Regression

> coefse <- data.frame(coef, se)
> coefse
 coef se
(Intercept) -0.72014852 0.21907288
white 0.30366254 0.20912002
hmo 0.02720413 0.15124225
los -0.03719338 0.00779851
factor(type)2 0.41787319 0.14431763
factor(type)3 0.93381912 0.22941205

Next we create Pearson dispersion statistics and multiply their square root
by se above.

> pr <- resid(mymod, type = “pearson”)
> pchi2 <- sum(residuals(mymod, type = “pearson”)^2)
> disp <- pchi2/mymod$df.residual
> scse <- se*sqrt(disp)
> newcoefse <- data.frame(coef, se, scse)
> newcoefse
 coef se scse
(Intercept) -0.72014852 0.21907288 0.221301687
white 0.30366254 0.20912002 0.211247566
hmo 0.02720413 0.15124225 0.152780959
los -0.03719338 0.00779851 0.007877851
factor(type)2 0.41787319 0.14431763 0.145785892
factor(type)3 0.93381912 0.22941205 0.231746042

We can now check to see if the quasibinomial “family” option produces
scaled standard errors

> summary(qmymod <- glm(died ~ white + hmo + los + factor(type),
+ family = quasibinomial,
+ data = medpar))

 . . .
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.720149 0.221302 -3.254 0.00116 **
white 0.303663 0.211248 1.437 0.15079
hmo 0.027204 0.152781 0.178 0.85870
los -0.037193 0.007878 -4.721 2.56e-06 ***
factor(type)2 0.417873 0.145786 2.866 0.00421 **
factor(type)3 0.933819 0.231746 4.029 5.87e-05 ***

3 • Logistic Models: Multiple Predictors 63

---(Dispersion parameter for quasibinomial family
taken to be 1.020452)

 Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1881.2 on 1489 degrees of freedom
AIC: NA

The standard errors displayed in the quasibinomial model are identical to
the scaled standard errors we created by hand. Remember that there is no true
quasibinomial GLM family. Quasibinomial is not a separate PDF. It is simply
an operation to provide scaled standard errors on a binomial model such as
logistic regression.

When an analyst models a logistic regression with scaled standard errors,
the resultant standard errors will be identical to model-based standard errors
if there are no distributional problems with the data. In other words, a logistic
model is not adversely affected if standard errors are scaled when they do not
need it.

A caveat when using R’s quasibinomial family: p-values are based on t
and not z as they should be. As a result a predictor p-value may be >0.05 and
its confidence interval not include 0. Our toOR function used with quasibi-
nomial models provides correct values. To see this occur, model the grouped
quasibinomial model: sick <- c(77,19,47,48,16,31); cases <- c(458,147,494,384,
127,464); feed <- c(1,2,3,1,2,3); gender <- c(1,1,1,0,0,0).

3.4.2 Robust or Sandwich Variance Estimators

Scaling was the foremost method of adjusting standard errors for many years—
until analysts began to use what are called robust or sandwich standard errors.
Like scaling, using robust standard errors only affects the model when there
are problems with the model-based standard errors. If there is none, then the
robust standard error reduces to the model-based errors. Many statisticians
recommend that robust or sandwich standard errors be used as a default.

I shall use the same data to model a logistic regression with sandwich or
robust standard errors. The sandwich package must be installed and loaded
before being able to create sandwich standard errors.

>library(sandwich)
> rmymod <- glm(died ~ white + hmo + los + factor(type),
 family = binomial, data = medpar)
> rse <- sqrt(diag(vcovHC(rmymod, type = “HC0”)))

The robust standard errors are stored in rse. We’ll add those to the table of
standard errors we have been expanding.

64 Practical Guide to Logistic Regression

> newcoefse2 <- data.frame(coef, se, scse, rse)
> newcoefse2
 coef se scse rse
(Intercept) -0.72014852 0.21907288 0.221301687 0.219434958
white 0.30366254 0.20912002 0.211247566 0.210398430
hmo 0.02720413 0.15124225 0.152780959 0.150972915
los -0.03719338 0.00779851 0.007877851 0.009726677
factor(type)2 0.41787319 0.14431763 0.145785892 0.145242836
factor(type)3 0.93381912 0.22941205 0.231746042 0.229306158

It should be mentioned that models evaluating longitudinal and clustered
data like Generalized Estimating Equations always assume that there is more
correlation within longitudinal units or panels, or within cluster panels, than
between them. The assumption is that panels or clusters are independent of
one another; that is, there is no correlation between them. The correlation in
the data comes from within the panels. This does not always occur though,
but because correlation is assumed to exist within panels, standard errors of
predictors are assumed to entail correlation, and need to be adjusted using a
sandwich variance estimator.

3.4.3 Bootstrapping

Bootstrapping is an entire area of statistics in itself. Here we are discussing
bootstrapped standard errors. Statisticians have devised number of ways to
bootstrap. I shall develop a function that will bootstrap the model standard
errors. I set the number of bootstraps at 100, but it could have been higher for
perhaps a bit more accuracy.

>library(boot)
> bootmod <- glm(died ~ white + hmo + los + factor(type),
 family=binomial, data=medpar)
> t <- function (x, i) {
 xx <- x[i,]
 bsglm <- glm(died ~ white + hmo + los + factor(type),
family = binomial, data = medpar)

 return(sqrt(diag(vcov(bsglm))))
 }
> bse <- boot(medpar, t, R = 100)
> sqrt(diag(vcov(bootmod)))
> bootse < - apply(bse$t, 2, mean)

The bootstrapped standard errors are in the vector, bootse. We’ll attach
them to the table of standard errors which we keep expanding as we add more
types of adjustments.

3 • Logistic Models: Multiple Predictors 65

>newcoefse3 <- data.frame(coef, se, scse, rse, bootse)
> round(newcoefse3, 6)
 coef se scse rse bootse
(Intercept) -0.720149 0.219073 0.221302 0.219435 0.219073
white 0.303663 0.209120 0.211248 0.210398 0.209120
hmo 0.027204 0.151242 0.152781 0.150973 0.151242
los -0.037193 0.007799 0.007878 0.009727 0.007799
factor(type)2 0.417873 0.144318 0.145786 0.145243 0.144318
factor(type)3 0.933819 0.229412 0.231746 0.229306 0.229412

The bootstrap algorithm incorporates a great deal of randomness into the
calculations, and it generally takes some time to calculate. Each run of the
model produces different standard error results. Most analysts appear to prefer
employing sandwich standard errors.

3.5 RISK FACTORS, CONFOUNDERS,
EFFECT MODIFIERS, AND INTERACTIONS

There are a few terms that are commonly employed when modeling data using
logistic regression. Analysts should be aware of their meanings. When a logis-
tic model is being estimated, it is traditionally recognized that the binary vari-
able being modeled is referred to as the response term. There is also a single
term that is thought to be of foremost interest to the model. This term is known
as a risk factor and is usually binary or categorical. For instance, suppose
a model for which “died within a specific period” is the response, and we
have a variable which is a type of physical impairment called myocardial; for
example, with myocardial = 1 indicating that the subject had an anterior site
heart attack, and myocardial = 0 signifying that the damage to the heart is at a
nonanterior site. We want to model died in order to determine whether anterior
or nonanterior site heart attacks have a higher probability of death. We are
modeling died, but are foremost interested in how levels of myocardial bear on
the probability of death. Myocardial is called a risk factor.

The model may also include a predictor which significantly relates to the
response, as well as to the risk factor. However, our primary interest is not to
learn about this predictor, which is called a confounder. The inclusion or exclu-
sion of a confounder has a significant effect on the coefficient of the risk factor.

An effect modifier is a predictor that interacts with the risk factor. The
risk factor and effect modifier are the main effects terms of an interaction
which is used to explain the response. An interaction term, of course, is con-
structed when the levels of one predictor influence the response in a different

66 Practical Guide to Logistic Regression

manner based on the levels of another predictor. Suppose that the response
term is death and we have predictors white and los. These are variables in
the medpar data. If we believe that the probability of death based on length
of stay in the hospital varies by racial classification, then we need to incor-
porate an interaction term of white × los into the model. The main effects
only model is:

> summary(y0 <- glm(died~ white + los, family = binomial,
 data = medpar))

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.598683 0.213268 -2.807 0.005 **
white 0.252681 0.206552 1.223 0.221
los -0.029987 0.007704 -3.893 9.92e-05 ***

Note that los is significant, but white is not. Let’s create an interaction of
white and los called wxl. We insert it into the model, making sure to include
the main effects terms as well.

> wxl <- medpar$white * medpar$los

> summary(y1 <- glm(died~ white + los + wxl,
family = binomial, data = medpar))
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.04834 0.28024 -3.741 0.000183 ***
white 0.77092 0.29560 2.608 0.009107 **
los 0.01002 0.01619 0.619 0.535986
wxl -0.04776 0.01829 -2.611 0.009035 **

The interaction term is significant. It makes no difference if the main
effects terms are significant or not. Only the interaction term is interpreted
for this model. We calculate the odds ratios of the interaction of white and los
from 1 to 40 as:

 ORinteraction white wxl los= +exp(* [:])β β 1 40 (3.19)

That is, we add the slope of the binary predictor to the product of the slope
of the interaction and the value(s) of the continuous predictor, exponentiating
the whole.

Odds ratios of death for a white patient for length of stay 1–40 days.
Note that odds of death decreases with length of stay.

3 • Logistic Models: Multiple Predictors 67

> ior <- exp(0.77092 + (-0.04776*1:40))
> ior
 [1] 2.0609355 1.9648187 1.8731846 1.7858241 1.7025379 1.6231359 1.5474370
 [8] 1.4752685 1.4064658 1.3408718 1.2783370 1.2187186 1.1618807 1.1076936
[15] 1.0560336 1.0067829 0.9598291 0.9150652 0.8723889 0.8317029 0.7929144
[22] 0.7559349 0.7206800 0.6870694 0.6550262 0.6244775 0.5953535 0.5675877
[29] 0.5411169 0.5158806 0.4918212 0.4688839 0.4470164 0.4261687 0.4062933
[36] 0.3873448 0.3692800 0.3520578 0.3356387 0.3199854

Interactions for Binary × Binary. Binary × Categorical, Binary ×
Continuous, Categorical × Categorical, Categorical × Continuous, and
Continuous × Continuous may be developed, as well as three-level interac-
tions. See Hilbe (2009) for a thorough analysis of interactions. For now, keep
in mind that when incorporating an interaction term into your model, be sure
to include the terms making up the interaction in the model, but don’t worry
about their interpretation or significance. Interpret the interaction based on
levels of particular values of the terms. When LOS is 14, we may interpret the
odds ratio of the interaction term as:

White patients who were in the hospital for 14 days have a some 10% greater
odds of death than do non-white patients who were in the hospital for 14
days.

SAS CODE

/* Section 3.1 */

*Refer to the code in section 1.4 to import and print edrelig dataset;
*Refer to proc freq in section 2.4 to generate the frequency table;
*Build logistic model and obtain odds ratio & covariance matrix;
proc genmod data = edrelig descending;
 class educlevel (ref = ‘AA’) / param = ref;
 model religious = age male kids educlevel/dist = binomial
 link = logit covb;
 estimate “Intercept” Intercept 1 / exp;
 estimate “Age” age 1 / exp;
 estimate “Male” male 1 / exp;
 estimate “Kid” kids 1 / exp;
 estimate “BA” educlevel 1 0 / exp;
 estimate “MA/PhD” educlevel 0 1 / exp;
run;

*Refer to proc iml in section 2.3 and the full code is provided
online;

68 Practical Guide to Logistic Regression

/* Section 3.2 */

*Build the logistic model and obtain the deviance residual;
proc genmod data = edrelig descending;
 class educlevel (ref = ‘AA’) / param = ref;
 model religious = age male kids educlevel/dist = binomial link = logit;
 output out = residual resdev = deviance;
run;

*Refer to proc means in section 2.5 to summarize deviance residual;
*Build the logistic model and obtain the Person residual;
proc genmod data = edrelig descending;
 class educlevel (ref = ‘AA’) / param = ref;
 model religious = age male kids educlevel/dist = binomial link = logit;
 output out = residuals reschi = pearson;
run;

*Pearson Chi2 statistic;
proc sql;
 create table pr as
 select sum(pearson**2) as pchi2, sum(pearson**2)/595 as disp
 from residuals;
quit;

*Refer to proc print in section 2.2 to print dataset pr-Chi2
statistic;
*Build the logistic model and obtain statistic;
proc genmod data = edrelig descending;
 class educlevel (ref = ‘AA’) / param = ref;
 model religious = age male kids educlevel/dist = binomial link = logit;
 output out = obstats leverage = hat stdreschi = stdp
 stdresdev = stddev;
run;

*Summary for statistic;
proc means data = obstats min q1 median mean q3 max maxdec = 6;
 var hat stdp stddev;
run;
/* Section 3.3 */

*Build the logistic model with class;
proc genmod data = medpar descending;
 class type (ref = ‘1’) / param = ref;
 model died = white hmo los type / dist = binomial link = logit covb;
run;

/* Section 3.4 */

*Refer to proc iml in section 2.3 and the full code is provided online;
*Sort the dataset;
proc sort data = medpar;
 by descending type;
run;

3 • Logistic Models: Multiple Predictors 69

*Use quasilikelihood function to generate scaling standard error;
proc glimmix data = medpar order = data;
 class type;
 model died (event = ‘1’) = white hmo los type/dist = binary link = logit
 solution;
 random _RESIDUAL_;
run;

*Generate the robust standard errors;
proc surveylogistic data = medpar;
 class type (ref = ‘1’) / param = ref;
 model died (event = ‘1’) = white hmo los type;
run;

*Generate the bootstrapped standard errors;
%macro bootstrap (Nsamples);
proc surveyselect data = medpar out = boot
 seed = 30459584 method = urs samprate = 1 rep = &nsamples.;
run;

proc genmod data = boot descending;
 class type (ref = ‘1’) / param = ref;
 model died =white hmo los type / dist = binomial link = logit;
 freq numberhits;
 by replicate;
 ods output ParameterEstimates = est;
run;

data est1;
 set est;
 parameter1 = parameter;
 if parameter = “Scale” then delete;
 if level1 = 2 then parameter1 = “type2”;
 else if level1 = 3 then parameter1 = “type3”;
run;

proc means data = est1 mean;
 class parameter1;
 var StdErr;
run;
%mend;
%bootstrap(100);

/* Section 3.5 */

*Refer to proc genmod in section 1.4 to build the logistic model;
*Build the logistic model with interaction;
proc genmod data = medpar descending;
 model died =white los white*los/ dist = binomial link = logit;
run;

*Generate odds ratios for los from 1 to 40;
data ior;
 do i = 1 to 40;
 or = exp(0.7709 + (-0.0478*i));

70 Practical Guide to Logistic Regression

 output;
 end;
run;

*Refer to proc print in section 2.2 to print dataset ior;

STATA CODE

3.1
. use edrelig, clear
. glm religious age male kids i.educlevel, fam(bin) nolog nohead eform
. glm religious age male kids i.educlevel, fam(bin) nolog eform

3.2
. e(deviance) // deviance
. e(deviance_p) // Pearson Chi2
. e(dispers_p) // Pearson dispersion
. di e(ll) // log-likelihood
. gen loglike = e(ll)
. scalar loglik = e(ll)
. di loglik
. predict h, hat
. sum(h) // hat matrix diagonal
. predict stpr, pear stand
. sum stpr // stand. Pearson residual
. predict stdr, dev stand
. sum stdr // stand deviance residual

3.3
. use medpar, clear
. qui glm died white hmo los i.type, fam(bin)
. estat ic
. abic

3.4
. glm died white hmo los i.type, fam(bin) scale(x2) nolog nohead
. glm died white hmo los i.type, fam(bin) vce(robust) nolog nohead
. glm died white hmo los i.type, fam(bin) vce(boot) nolog nohead

3.5
. glm died white los, fam(bin) nolog nohead
. gen wxl <- white*los
. glm died white los wxl, fam(bin) nolog nohead
. glm died white los wxl, fam(bin) nolog nohead eform

71

4Testing and
Fitting a
Logistic Model

4.1 CHECKING LOGISTIC MODEL FIT

4.1.1 Pearson Chi2 Goodness-of-Fit Test

I earlier mentioned that the Pearson Chi2 statistic, when divided by the
residual degrees of freedom, provides a check on the correlation in the data.
The idea is to observe if the result is much above the value of 1.0. That is,
a well-fitted model should have the values of the Pearson Chi2 statistic and
residual degrees of freedom closely the same. The closer in value, the better
the fit.

Pearson 2
Residual

Chi
dof

~ .1 0

This test, as we shall later discuss, is extremely useful for evaluating
extra dispersion in grouped logistic models, but for the observation-based
models we are now discussing it is not. A large discrepancy from the value
of 1, though, does indicate general extra dispersion or extra correlation in the
data, for which use of sandwich or scaled standard errors is an appropriate
remedy.

A traditional Pearson Chi2 goodness-of-fit (GOF) test, however, is
commonly used to assess model fit. It does this by leaving the value of the
Pearson Chi2 statistic alone, considering it instead to be Chi2 distributed with

72 Practical Guide to Logistic Regression

the residual degrees of freedom defining the Chi2 degrees of freedom. The
p- values are based on the distribution, 1-pchisq(pchi2,df)

 Chi Chi rdof2(Pearson 2,)

We may code the Pearson Chi2 GOF test, creating a little table based on
the mymod model, as:

> pr <- sum(residuals(mymod, type=“pearson”)^2)
> df <-mymod$df.residual
> p_value <- pchisq(pr, mymod$df.residual, lower=F)
> print(matrix(c(“Pearson Chi GOF”,“Chi2”,“df”,“p-value”, “ ”,
+ round(pr,4),df, round(p_value,4)), ncol=2))
 [,1] [,2]
[1,] “Pearson Chi GOF” “ ”
[2,] “Chi2” “1519.4517”
[3,] “df” “1489”
[4,] “p-value” “0.2855”

This test is still found in many books, articles, and in research reports.
Analysts should be aware however, that many statisticians no longer rely on
this test as a global fit test. Rather than using a single test to approve or disap-
prove a model as well fit, statisticians now prefer to employ a variety of tests
to evaluate a model. The distributional assumptions upon which tests like this
are based are not always met, or are only loosely met, which tends to bias test
results. Care needs to be taken when accepting test results.

With a p > .05, the Pearson Chi2 GOF test indicates that we can reject the
hypothesis that the model is not well-fitted. In short, we may use the test
result to support an acceptance of the model.

4.1.2 Likelihood Ratio Test

In Chapter 2, Section 2.3, we defined the likelihood ratio test as:

 Likelihood ratio test 2{ }reduced full= − L L– (4.1)

Using the drop1 function, an analyst may assess which model of many
nested models are better fitted. For example, we create a full model using the
medpar data. Each predictor is dropped from the model in turn, providing a
display of the deviance, Akaike information criterion (AIC), likelihood ratio
test statistic, and associated p-value.

> summary(mymod <- glm(died ~ white + los + hmo + factor(type),
 family = binomial,
 data = medpar))

4 • Testing and Fitting a Logistic Model 73

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.720149 0.219073 -3.287 0.00101 **
white 0.303663 0.209120 1.452 0.14647
los -0.037193 0.007799 -4.769 1.85e-06 ***
hmo 0.027204 0.151242 0.180 0.85725
factor(type)2 0.417873 0.144318 2.896 0.00379 **
factor(type)3 0.933819 0.229412 4.070 4.69e-05 ***

Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1881.2 on 1489 degrees of freedom
AIC: 1893.2

> drop1(mymod, test=”Chi”)
Single term deletions

Model:
died ~ white + los + +hmo + factor(type)
 Df Deviance AIC LRT Pr(>Chi)
<none> 1881.2 1893.2
white 1 1883.3 1893.3 2.1778 0.1400
los 1 1907.9 1917.9 26.7599 2.304e-07 ***
hmo 1 1881.2 1891.2 0.0323 0.8574
factor(type) 2 1902.9 1910.9 21.7717 1.872e-05 ***

4.1.3 Residual Analysis

The analysis of residuals plays an important role in assessing logistic model
fit. The analyst can see how the model fits rather than simply looking at a
statistic. Analysts have devised a number of residuals to view the relationships
in a logistic model. Most all residuals that are used in logistic regression were
discussed in Chapter 3, Section 3.2, although a couple were not. Table 4.1 sum-
marizes the foremost logistic regression residuals. Table 4.2 gives the R code
for producing them. We will only use a few of these residuals in this book, but
all have been used in various contexts to analyze the worth of a logistic model.
Finally, I shall give the code and graphics for several of the foremost used
residual analyses used in publications.

The Anscombe residuals require calculation of an incomplete beta
function, which is not part of the default R package. An ibeta function is
displayed below, together with code to calculate Anscombe residuals for
the mymod model above. Paste the top lines into the R editor and run. ans
consists of logistic Anscombe residuals. They are identical to Stata and SAS
results.

74 Practical Guide to Logistic Regression

y <- medpar$died ; mu <- mymod$fitted.value
a <- .666667 ; b <- .666667
ibeta<- function(x,a,b){ pbeta(x,a,b)*beta(a,b) }
A <- ibeta(y,a,b) ; B <- ibeta(mu,a,b)
ans <- (A-B)/ (mu*(1-mu))^(1/6)

> summary(ans)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.5450 -1.0090 -0.9020 -0.0872 1.5310 3.2270

Residual analysis for logistic models is usually based on what are known as
n-asymptotics. However, some statisticians suggest that residuals should be
based on m-asymptotically formatted data. Data in observation-based form;
that is, one observation or case per line, are in n-asymptotic format. The
datasets we have been using thus far for examples are in n-asymptotic form.
m-asymptotic data occurs when observations with the same values for all

TABLE 4.1 Residuals for Bernoulli logistic regression

Raw r y – μ
Pearson r p ()/y − −µ µ µ()1

Deviance rd

2 1 1∑ ={ }()In / ifµ y

2 1 1 0∑ − ={ }()In(/) ifµ y

Stand. Pearson r sp r

h

p

1 −

Stand. deviance r sd r

h

d

1 −

Likelihood r l
sgn() () ()()y h r h rp d− + −µ 2 21

Anscombe r A A y A() ()
{ } /

−
−

µ
µ µ()1 1 6

where A(z) = Beta(2/3, 2/3)*{IncompleteBeta(z, 2/3, 2/3), and z = (y; μ)
Beta(2/3, 2/3) = 2.05339. When z = 1, the function reduces to the Beta (see
Hilbe, 2009).

Cooks’ distance rCD hr
C h

p

n ()1 2−
, Cn = number of coefficients

Delta Pearson ΔChi2 ()r sd 2

Delta deviance ΔDev ()rd 2 + h ()r sp 2

Delta beta Δβ h r
h

p()
()

2

21 −

4 • Testing and Fitting a Logistic Model 75

predictors are considered as a single observation, but with an extra variable in
the data signifying the number of n-asymptotic observations having the same
covariate pattern. For example, let us consider the 1495 observation medpar
data for which we have kept only white, hmo, and type as predictors for died.
There are 1495 observations for the data in this format. In m-asymptotic for-
mat the data appears as:

 white hmo type m
1 0 0 1 72
2 0 0 2 33
3 0 0 3 10
4 0 1 1 8
5 0 1 2 4
6 1 0 1 857
7 1 0 2 201
8 1 0 3 83
9 1 1 1 197
10 1 1 2 27
11 1 1 3 3

There are several ways to reduce the three variable subset of the medpar data
to m-asymptotic form. I will show a way that maintains the died response
variable, which is renamed dead due to it not being a binary variable, and then
show how to duplicate the above table.

> data(medpar)

TABLE 4.2 Residual code

mu <- mymod$fitted.value # predicted probability; fit

r <- medpar$died – mu # raw residual

dr <-resid(mymod, type=“deviance”) # deviance resid

pr <- resid(mymod, type=“pearson”) # Pearson resid

hat <- hatvalues(mymod) # hat matrix diagonal

stdr <- dr/sqrt(1-hat) # standardized deviance

stpr <- pr/sqrt(1-hat) # standardized Pearson

deltadev <- dr^2 + hat*stpr^2 # Δ deviance

deltaChi2 <- stpr^2 # Δ Pearson

deltaBeta <- (pr^2*hat/(1-hat)^2) # Δ beta

ncoef <- length(coef(mymod)) # number coefficients

Cooke’s distance

cookD <- (pr^2 * hat) / ((1-hat)^2 * ncoef * summary(mymod)$dispersion)

76 Practical Guide to Logistic Regression

> test <- subset(medpar, select = c(died, white, hmo, type))
> white <- factor(test$white)
> hmo <- factor(test$hmo)
> type <- factor(test$type)
> mylgg <- na.omit(data.frame(cast(melt(test, measure=”died”),
+ white + hmo + type ~ .,
+ function(x) {c(alive=sum(x==0), dead=sum(x==1))})))
> mylgg$m <- mylgg$alive + mylgg$dead
> mylgg
 white hmo type alive dead m
1 0 0 1 55 17 72
2 0 0 2 22 11 33
3 0 0 3 6 4 10
4 0 1 1 7 1 8
5 0 1 2 1 3 4
6 1 0 1 580 277 857
7 1 0 2 119 82 201
8 1 0 3 43 40 83
9 1 1 1 128 69 197
10 1 1 2 19 8 27
11 1 1 3 2 1 3

The code above produced the 11 covariate pattern m-asymptotic data, but I
also provide dead and alive, which can be used for grouped logistic models
in the next chapter. m is simply the sum of alive and dead. For example, look
at the top line. With m = 72, we know that there were 72 times in the reduced
medpar data for which white=0, hmo=0, and type=1. For that covariate pat-
tern, died=1 (dead) occurred 17 times and died=0 (alive) occurred 55 times.

To obtain the identical covariate pattern list where only white, hmo, type,
and m are displayed, the following code reproduces the table.

> white <- mylgg$white
> hmo<- mylgg$hmo
> type <- mylgg$type
> m <- mylgg$m
> m_data <- data.frame(white, hmo,type,m)
> m_data
 white hmo type m
1 0 0 1 72
2 0 0 2 33
3 0 0 3 10
4 0 1 1 8
5 0 1 2 4
6 1 0 1 857
7 1 0 2 201

4 • Testing and Fitting a Logistic Model 77

8 1 0 3 83
9 1 1 1 197
10 1 1 2 27
11 1 1 3 3

It should be noted that all but one possible separate covariate pattern exists in
this data. Only the covariate pattern, [white=0, hmo=1, type=3] is not part of
the medpar dataset. It is therefore not in the m-asymptotic data format.

I will provide codes for Figures 4.1 through 4.3 that are important when
evaluating logistic models as to their fit. Since R’s glm function does not use
a m-asymptotic format for residual analysis, I shall discuss the traditional
n-asymptotic method. Bear in mind that when there are continuous predic-
tors in the model, m-asymptotic data tend to reduce to n-asymptotic data.
Continuous predictors usually have many more values in them than do binary
and categorical predictors. A model with two or three continuous predictors
typically results in a model where there is no difference between m-asymptotic
and n-asymptotic formats. Residual analysis on observation-based data is the
traditional manner of executing the plots, and are the standard way of graphing
in R. I am adding los (length of stay; number of days in hospital) back into the
model to remain consistent with earlier modeling we have done on the medpar
data.

You may choose to construct residual graphs using m-asymptotic meth-
ods. The code to do this was provided above. However, we shall keep with
the standard methods in this chapter. In the next chapter on grouped logistic
models, m-asymptotics is built into the model.

R code for creating the standard residuals found in literature related to
logistic regression is given in Table 4.2. Code for creating a simple squared
standardized deviance residual versus mu graphic (Figure 4.1) is given as:

data(medpar)
mymod <- glm(died ~ white + hmo + los + factor(type),
 family=binomial, data=medpar)
summary(mymod)
mu <- mymod$fitted.value # predicted value;

probability that
died==1

dr <-resid(mymod, type=”deviance”) # deviance residual
hat <- hatvalues(mymod) # hat matrix diagonal
stdr <- dr/sqrt(1-hat) # standardized

deviance residual
plot(mu, stdr^2)
abline(h = 4, col=”red”)

78 Practical Guide to Logistic Regression

Analysts commonly use the plot of the square of the standardized deviance
residuals versus mu to check for outliers in a fitted logistic model. Values in
the plot greater than 4 are considered outliers. The values on the vertical axis
are in terms of standard deviations of the residual. The horizontal axis are pre-
dicted probabilities. All figures here are based on the medpar data.

Another good way of identifying outliers based on a residual graph is by
use of Anscombe residuals versus mu, or the predicted probability that the
response is equal to 1. Anscombe residuals adjust the residuals so that they are
as normally distributed as possible. This is important when using 2, or 4 when
the residual is squared, as a criterion for specifying an observation as an out-
lier. It is the 95% criterion so commonly used by statisticians for determining
statistical significance. Figure 4.2 is not much different from Figure 4.1 when
squared standardized deviance residuals are used in the graph. The Anscombe
plot is preferred.

> plot(mu, ans^2)
> abline(h = 4, lty = “dotted”)

A leverage or influence plot (Figure 4.3) may be constructed as:

> plot(stpr, hat)
> abline(v=0, col=”red”)

Large hat values indicate covariate patterns that differ from average covari-
ate patterns. Values on the horizontal extremes are high residuals. Values that
are high on the hat scale, and low on the residual scale; that is, high in the
middle and close to the zero-line do not fit the model well. They are also dif-
ficult to detect as influential when using other graphics. There are some seven

4

5

6

3st
dr

∧ 2

2

1

0
0.0 0.1 0.2 0.3

mu
0.4 0.5 0.6

FIGURE 4.1 Squared standardized deviance versus mu.

4 • Testing and Fitting a Logistic Model 79

observations that fit this characterization. They can be identified by selecting
hat values greater than 0.4 and squared residual values of |2|.

A wide variety of graphics may be constructed from the residuals given in
Table 4.2. See Hilbe (2009), Bilger and Loughin (2015), Smithson and Merkle
(2014), and Collett (2003) for examples.

4.1.4 Conditional Effects Plot

A nice feature of logistic regression is its ability to allow an analyst to plot the
predicted probability of an outcome on a continuous predictor, factored across

–1 0 1 2 3 4 5

0.005

0.010

0.015

0.020

stpr

ha
t

FIGURE 4.3 Leverage plot.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

2

4

6

8

10

mu

an
s^

2

FIGURE 4.2 Anscombe versus mu plot. Values >4 are outliers.

80 Practical Guide to Logistic Regression

levels of another categorical predictor. Many times the categorical predictor is
binary so that two curves of the continuous predictor are displayed, but more
than two levels are possible. The conditional effects plot produces this type of
graphic, which is quite valuable in understanding the relationship of the prob-
ability of the outcome on important predictors.

For an example I use the medpar data, modeling the probability of death
by length of stay in the hospital, factored by the type of admission. The three
levels of the variable type in the data are (1) elective, (2) urgent, and (3) emer-
gency. Level 1 has been employed as the reference level. In the conditional
effects plot, however, each level of type is used to produce a curve of the prob-
ability of death for a given length of stay in the hospital. The plot shows three
length of stay curves—one for each level of type.

The variable type is a single variable in the data. The first thing we must
do is convert the factor variable into three numeric levels. Then the data are
modeled and the predicted values of los are created for each level of type. I
have placed the code in Table 4.3 so that it can be placed in the R [File > “New
Script”] editor and executed.

The figure created is displayed as Figure 4.4. The probability curves make
sense, with the left most being “elective” admissions, which one expects to have
a less lengthy hospital stay than for more serious admission types. “Urgent”
admissions is the middle curve and “emergency” the right most, which has both
a longer length of stay and also a higher probability of death. When patients are
in the hospital for a long time their risk of death is no longer as differentiated.

TABLE 4.3 Code for creating a conditional effects plot

data(medpar)

admit < - as.numeric(medpar$type) #convert factor to level values

cep < - glm(died ~ los + admit, data = medpar, family = binomial)

K1 < - coef(cep)[1] + coef(cep)[2]*medpar$los + coef(cep)[3]*1

R1 < - 1/(1 + exp(-K1))

K2 < - coef(cep)[1] + coef(cep)[2]*medpar$los + coef(cep)[3]*2

R2 < - 1/(1 + exp(-K2))

K3 < - coef(cep)[1] + coef(cep)[2]*medpar$los + coef(cep)[3]*3

R3 < - 1/(1 + exp(-K3))

layout(1)

plot(medpar$los, R1, col = 1, main = ‘P[Death] while hospitalized’,

 sub= “Black = 1; Red = 2; Yellow = 3”, ylab = ‘Type of Admission’,
xlab = ‘LOS’, ylim = c(0,0.4))

lines(medpar$los, R2, col = 2, type = ‘p’)

lines(medpar$los, R3, col = 3, type = ‘p’)

4 • Testing and Fitting a Logistic Model 81

4.2 CLASSIFICATION STATISTICS

Logistic regression is many times used as a classification tool. However, it
should be noted that the ability to classify or discriminate between the two
levels of the response variable is due more to the degree of separation between
the levels and size of the regression coefficients than it is to the logistic model
itself. Discriminate analysis and other classification schemes can also do a
good job in classifying and are not logistic models. On the other hand, logistic
models are easy to work with and are robust in the classification results they
provide the analyst.

There are three basic or standard types of classification tools used with
logistic regression—the sensitivity–specificity (S–S) plot, the receiver opera-
tor characteristic (ROC) curve, and a confusion table. We will address each
of these in this section. Each of these tests is based on a cut point, which

0 20 40 60 80 100 120

0.0

0.1

0.2

0.3

0.4

P[Death] while hospitalized

Black=1; Gray=2; Light gray=3
LOS

Ty
pe

 o
f a

dm
iss

io
n

FIGURE 4.4 P[Death] while hospitalized.

82 Practical Guide to Logistic Regression

determines the optimal probability value with which to separate predicted ver-
sus observed successes (1) or failures (0).

For an example we shall continue with the model used for residual analy-
sis earlier in the chapter. It is based on the medpar data, with died as the
response variable and white, hmo, los and levels of type as the predictors. We
then obtain predicted probabilities that died = =1, which is the definition of
mu. The goal is then to determine how well the predicted probabilities actu-
ally predict classification as died = =1, and how well they predict died = =0.
Analysts are not only interested in correct prediction though, but also in such
issues as what percentage of times does the predictor incorrectly classify the
outcome. I advise the reader to remember though that logistic models that clas-
sify well are not always well-fitted models. If your interest is strictly to produce
the best classification scheme, do not be as much concerned about model fit. In
keeping with this same logic, a well-fitted logistic model may not clearly dif-
ferentiate the two levels of the response. It’s valuable if a model accomplishes
both fit and classification power, but it need not be the case.

Now to our example model:

> mymod <- glm(died ~ white + hmo + los + factor(type),
 family=binomial,
 data=medpar)

> mu <- predict(mymod, type=”response”)
> mean(medpar$died)
[1] 0.3431438

Analysts traditionally use the mean of the predicted value as the cut point.
Values greater than 0.3431438 should predict that died = =1; values lower
should predict died = =0. For confusion matrices, the mean of the response,
or mean of the prediction, will be a better cut point than the default 0.5 value
set with most software. If the response variable being modeled has substan-
tially more or less 1’s than 0’s, a 0.5 cut point will produce terrible results. I
shall provide a better criterion for the cut point shortly, but the mean is a good
default criterion.

Analysts can use the percentage at which levels of died relate to mu being
greater or less than 0.3431438 to calculate such statistics as specificity and
sensitivity. These are terms that originate in epidemiology, although tests like
the ROC statistic and curve were first derived in signal theory. Using our
example, we have patients who died (D) and those who did not (~D). The
probability of being predicted to die given that the patient has died is called
model sensitivity. The probability of being predicted to stay alive, given the
fact that the patient remained alive is referred to as model specificity. In epi-
demiology, the term sensitivity refers to the probability of testing positive

4 • Testing and Fitting a Logistic Model 83

for having a disease given that the patient in fact has the disease. Specificity
refers to when a patient tests negative for a disease when they in fact do not
have the disease. Terms such as false positive refers to when a patient tests
positive for a disease even though they do not have it. False negatives happen
when a patient tests negative for a disease, even though they actually have it.
These are all important statistics in classification analysis, but model sensi-
tivity and specificity are generally regarded as the most important results.
However, false positive and false negative are used with the main statistics
for creating the ROC curve. Each of these statistics can easily be calculated
from a confusion matrix. All three of these classification tools intimately
relate with one another.

The key point is that determining the correct cut point provides the
grounds for correctly predicting the above statistics, given an estimated model.
The cut point is usually close to the mean of the predicted values, but is not
usually the same value as the mean. Another way of determining the proper
cut point is to choose a point at which the specificity and sensitivity are clos-
est in values. As you will see though, formulae have been designed to find the
optimal cut point, which is usually at or near the site where the sensitivity and
specificity are the closest.

The Sensitivity-Specificity (S-S) plot and ROC plot and tests are com-
ponents of the ROC_test function. The classification or confusion matrix is
displayed using the confusion_stat function. Both of these functions are
part of the LOGIT package on CRAN. When LOGIT has been loaded into
memory the functions are automatically available to the analyst.

> library(LOGIT)
> data(medpar)
> mymod <- glm(died ~ los + white + hmo + factor(type),
 family=binomial, data=medpar)

We shall start with the S–S plot, which is typically used to establish the
cut point used in ROC and confusion matrix tests. The cut point used in ROC_
test is based on Youden’s J statistic (Youden, 1950). The optimal cut point is
defined as the threshold that maximizes the distance to the identity (diagnonal)
line of the ROC curve. The optimality criterion is based on:

max(sensitivities + specificities)

Other criteria have been suggested in the literature. Perhaps the most
noted alternative is:

min((1 - sensitivities)^2 + (1- specificities)^2)

Both criteria give remarkably close cut points.

84 Practical Guide to Logistic Regression

4.2.1 S–S Plot

An S–S plot is a graph of the full range of sensitivity and specificity values that
occur for cut-point values ranging from 0 to 1. The intersection of sensitivity
and specificity values indicates the point at which the two statistics are closest
in value. The graphic, indicates that 0.364 is that point. The associated $cut sta-
tistic that is displayed in the non-graphical output is more exact, having a value
of 0.363812. This is the cut point we shall later use with the confusion matrix,
from which false-positive and related statistics may be calculated (Figure 4.5).

> out1 < -ROCtest(mymod,10,type = “Sensitivity”)
> out1

$cut
[1] 0.363812

4.2.2 ROC Analysis

Receiver operator characteristic curves are generally used when statisticians
wish to determine the predictive power of the model. It is also used for clas-
sification purposes. The ROC curve is understood as the optimal relationship
of the model sensitivity by one minus the specificity. Note that the code used in
4.2.1 must be used prior to using the code for ROC analysis. Statistics required
for ROC analysis are calculated in the S-S plot test.

0.75

0.50

0.25

0.00 0.25 0.36 0.50 0.75

Cut point: 0.364

Probability cutoff

Se
ns

iti
vi

ty
/s

pe
ci

fic
ity

1.00

1.00

Sensitivity Specificity

FIGURE 4.5 Sensitivity–specificity plot.

4 • Testing and Fitting a Logistic Model 85

When using ROC analysis, the analyst should look at both the ROC sta-
tistic as well as at the plot of the sensitivity versus one minus the specificity.
A model with no predictive power has a slope of 1. This represents an ROC
statistic of 0.5. Values from 0.5 to 0.65 have little predictive power. Values
from 0.65 to 0.80 have moderate predictive value. Many logistic models fit into
this range. Values greater than 0.8 and less than 0.9 are generally regarded as
having strong predictive power. Values of 0.9 and greater indicate the highest
amount of predictive power, but models rarely achieve values in this range.
The model is a better classifier with greater values of the ROC statistic, or area
under the curve (AUC). Beware of over-fitting with such models. Validating
the model with a validation sample or samples is recommended. See Hilbe
(2009) for details.

ROC is a test on the response term and fitted probability. SAS users should
note that the ROC statistic described here is referred to as Harrell’s C statistic.

The ROCtest function is used to determine that the predictive power of
the model is 0.607. Note that the type = “ROC” option is given to obtain the
test statistic and graphic. Due to the sampling nature of the statistics, the cut
point for the ROC curve differs slightly from that of the S–S plot (Figure 4.6).

> out2 <- ROCtest(mymod, fold = 10, type = “ROC”)
> out2

$cut
[1] 0.3614538

0.75

0.50

0.25

0.00

0.00

0.25 0.50 0.75

AUC: 0.607

Se
ns

iti
vi

ty

1.00

1.00

1-Specificity

FIGURE 4.6 Receiver operator characteristic curve.

86 Practical Guide to Logistic Regression

Note that a cutoff value of 0.3615 is used for the AUC statistic. Given
that died indicates that a patient died while hospitalized, the AUC statistic
can be interpreted as follows: The estimated probability is 0.61 that patients
who die have a higher probability of death (higher mu) than patients who are
alive. This value is very low. A ROC statistic of 0.5 indicates that the model
has no predictive power at all. For our model there is some predictive power,
but not a lot.

4.2.3 Confusion Matrix

The traditional logistic regression classification table is given by the so-called
confusion matrix of correctly and incorrectly predicted fitted values. The
matrix may be obtained following the use of the previous options of ROC_test
by typing

> confusion_stat(out1$Predicted,out1$Observed)

A confusion matrix of values is immediately displayed on screen, together
with values for correctly predicted (accuracy), sensitivity, and specificity. The
cut point from the S–S plot is used as the confusion matrix cut point.

$matrix
 obs 0 1 Sum
pred
0 794 293 1087
1 188 220 408
Sum 982 513 1495

$statistics
 Accuracy Sensitivity Specificity
 0.6782609 0.4288499 0.8085540

Other statistics that can be drawn from the confusion matrix and that can
be of value in classification analysis are listed below. Recall from earlier dis-
cussion that D = patient died while in hospital (outcome = 1) and ~D = patient
did not die in hospital (outcomes = 0).

Positive predictive value : 220/408 =0.5392157 = 53.92%
Negative predictive value : 794/1087 = 0.7304508 = 73.05%
False-positive rate for true ~D : 188/982 = 0.1914460 = 19.14%
False-positive rate for true D : 293/513 = 0.5711501 = 57.12%
False-positive rate for classified positives : 188/408 = 0.4607843 = 46.08%

4 • Testing and Fitting a Logistic Model 87

False-negative rate for classified
negatives : 293/1087 = 0.2695482 = 26.95%

An alternative way in which confusion matrices have been constructed is
based on the closeness in sensitivity and specificity values. That is, either the
analyst or an algorithm determines when the sensitivity and specificity values
are closest, and then constructs a matrix based on the implications of those
values. An example of this method can be made from the PresenceAbsence
package and function. The cut point, or threshold, is 0.351, which is not much
different from the cut point of 0.3638 we used in the ROC_test function. The
difference in matrix values and the associated sensitivity and specificity values
are rather marked though. I added the marginals to provide an easier under-
standing of various ancillary statistics which may be generated from the con-
fusion matrix.

> library(PresenceAbsence)
> mymod <- glm(died ~ white + hmo + los + factor(type),
+ family=binomial, data=medpar)
> mu <- predict(mymod, type=”response”)
> cmxdf <- data.frame(id=1:nrow(medpar), died=as.
vector(medpar$died),

+ pred=as.vector(mu))
> cmx(cmxdf, threshold=0.351,which.model=1)
a function in PresenceAbsence

 Observed Total
predicted 1 0
 1 292 378 670
 0 221 604 825
Total 513 982 1495

The correctly predicted value, or accuracy, is (292 + 604)/1495 or 59.93%.
Sensitivity is 292/(292 + 221) or 56.72% and specificity is 604/(378 + 604) or
61.51%. Note that the sensitivity (56.72%) and specificity (61.51%) are fairly
close in values—they are as close as we can obtain. If we use the same algo-
rithm with the cut point of 0.363812 calculated by the S–S plot using the crite-
rion described at the beginning of this section, the values are

> cmx(cmxdf, threshold=0.363812,which.model=1)

 observed
predicted 1 0 Total
 1 252 233 485
 0 261 749 1010
Total 513 982 1495

88 Practical Guide to Logistic Regression

with an accuracy of 66.96%, a sensitivity of (252/513) 49.12%, and a specific-
ity of (749/982) 76.27%. The small difference in cut point results in a size-
able difference in classification values. The values of accuracy, sensitivity,
and specificity obtained using the S–S plot criterion are similar to the values
obtained in our last matrix with the same cut point: accuracy = 67.83%, sensi-
tivity = 42.88%, and specificity = 80.86%. Given the variability in results due
to sampling, these results can be said to be the same.

Classification is a foremost goal of logistic modeling for those in indus-
tries such as credit scoring, banking, ecology, and even astronomy, to name a
few. I refer you to Hilbe (2009), Bilger and Loughin (2015), or De Souza et al.
(2015) for additional details regarding these tests.

4.3 HOSMER–LEMESHOW STATISTIC

The Hosmer–Lemeshow (H–L) test was designed by their creators as a GOF test
to assess the differences between the observed and expected or predicted probabil-
ities as categorized across levels of predicted values. The predicted probabilities of
the model are divided into a specified number of groups—usually 10. That is, the
range of predicted probabilities is collapsed into 10 groups or quantiles of prob-
abilities. Each group is a range of probabilities. The observed number of 0s and
1s are calculated for each group, and are compared to the count of predicted prob-
abilities of 0s and 1s for each group. The absolute differences are summed, result-
ing in an H–L Chi2 statistic. The degrees of freedom are the number of groups less
two. The p-values greater than 0.05 indicate a well-fitted model. One rejects the
null hypothesis that the observed and predicted probabilities are the same.

The H–L Chi2 test is very sensitive to the way in which tied values are han-
dled. Various software implementations handle ties in different ways. Due to this
the H–L statistic and p-values for two versions of the test may differ, sometimes
by quite a bit. It is also important to have at least five observations in each group in
order to generate a meaningful Chi2 statistic. When this is not the case, reduce the
number of groups to 8, or perhaps 6. I suggest that you use the statistic three times,
with 8, 10, and 12 groups for moderate to large sized data sets. Check to deter-
mine if the tests show a well-fitted, or not well-fitted, model for all three groups.

The medpar data will be used for an example of this test. I first display the
summary results of a logistic model:

> data(medpar)
> summary (mymod <- (glm(died ~ white + los + hmo +

factor(type), family=binomial,
data=medpar))

4 • Testing and Fitting a Logistic Model 89

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.720149 0.219073 -3.287 0.00101 **
white 0.303663 0.209120 1.452 0.14647
los -0.037193 0.007799 -4.769 1.85e-06 ***
hmo 0.027204 0.151242 0.180 0.85725
factor(type)2 0.417873 0.144318 2.896 0.00379 **
factor(type)3 0.933819 0.229412 4.070 4.69e-05 ***

 Null deviance: 1922.9 on 1494 degrees of freedom
Residual deviance: 1881.2 on 1489 degrees of freedom
AIC: 1893.2

The HLTest function that is used below for a Hosmer-Lemeshow test on
the above model is adapted from Bilger and Loughlin (2015). I have placed the
function with acknowledgement in the LOGIT package for your ease of use.

> library (LOGIT) # or source (“HLTest.R”)
> HLChi10 <- HLTest(obj = mymod,g= 10)
> cbind(HLChi10$observed, round(HLChi10$expect, digits = 1))
 Y0 Y1 Y0hat Y1hat
[0.0219,0.252] 108 43 119.1 31.9
(0.252,0.289] 106 42 107.7 40.3
(0.289,0.31] 116 40 109.3 46.7
(0.31,0.328] 106 37 97.7 45.3
(0.328,0.343] 123 43 110.5 55.5
(0.343,0.354] 113 38 98.1 52.9
(0.354,0.371] 124 41 104.8 60.2
(0.371,0.388] 53 105 97.3 60.7
(0.388,0.445] 53 47 58.9 41.1
(0.445,0.618] 80 77 78.5 78.5
> HLChi10

 Hosmer and Lemeshow goodness-of-fit test with 10 bins

data: mymod
X2 = 82.8324, df = 8, p-value = 1.31e-14

The p-value approximates 0, which is far under the criterion of 0.05.
It appears that the model is not well fitted. We can inspect the relationships
between Y1 and Y1Hat (observed died and associated predicted died, or mu),
and between Y0 and Y0hat (observed died = 0, and corresponding predicted
died). Some of the pairs are close, but many are not. One of the worst fitted
pairs are in the probability range 0.371–0.388, with Y1–Y1hat as 105–60.7,
and Y0–Y0hat at 53–97.3. The second group, 0.252–0.289, is well fitted: Y1–
Y1hat 42–40.3 and Y0–Y0hat 106–107.7. But too many groups are marginal
to poor.

90 Practical Guide to Logistic Regression

If we divide up the response probability space into 12 divisions the results
appear as:

> HLChi12 <- HLTest(obj = mymod,g= 12)
> HLChi12

 Hosmer and Lemeshow goodness-of-fit test with 12 bins

data: mymod
X2 = 84.8001, df = 10, p-value = 5.718e-14

> cbind(HL$observed, round(HL$expect, digits = 1))
 Y0 Y1 Y0hat Y1hat
[0.0219,0.246] 87 38 99.6 25.4
(0.246,0.278] 94 31 92.0 33.0
(0.278,0.297] 97 37 95.1 38.9
(0.297,0.313] 103 38 97.5 43.5
(0.313,0.329] 101 35 91.8 44.2
(0.329,0.343] 77 26 68.2 34.8
(0.343,0.354] 113 38 98.1 52.9
(0.354,0.362] 75 15 57.5 32.5
(0.362,0.38] 79 55 84.0 50.0
(0.38,0.391] 35 80 70.4 44.6
(0.391,0.454] 62 58 69.0 51.0
(0.454,0.618] 59 62 58.7 62.3

The Chi2 test again indicates that the model is ill fitted.
In order to show how different code can result in different results, I

used code for the H–L test in Hilbe (2009). Rather than groups defined
and displayed by range, they are calculated as ranges, but the mean of the
groups is displayed in output. The number of observations in each group is
also given.

This code will develop three H–L tables, with 8, 10, and 12 groups. The
12 group table is displayed below.

> medpar2<- na.omit(medpar) # drop obs with missing value(s)
> hlGOF.test(medpar2$died, predict(mymod, medpar2,

type=’response’), breaks=12)

For # Cuts = 12 # Data = 1495
Cut # Total #Patterns # Resp. # Pred. Mean Resp. Mean Pred.
1 125 61 38 25.39 0.30400 0.20311
2 124 24 31 32.72 0.25000 0.26384
3 125 14 35 36.16 0.28000 0.28929

4 • Testing and Fitting a Logistic Model 91

4 124 15 34 38.05 0.27419 0.30689
5 125 11 31 40.10 0.24800 0.32079
6 125 9 33 41.76 0.26400 0.33409
7 124 7 29 43.16 0.23387 0.34806
8 125 5 26 44.80 0.20800 0.35843
9 124 11 44 46.08 0.35484 0.37160
10 125 10 89 48.33 0.71200 0.38660
11 124 20 59 52.32 0.47581 0.42191
12 125 32 64 64.14 0.51200 0.51310
Total # Data: 1495 Total over cuts: 1495
Chisq: 91.32444 d.f.: 10 p-value: 0.00000

The p-value again tells us that the model is not well fitted. The statistics
are similar, but not identical to the table shown earlier. The H–L test is nice
summary test to use on a logistic model, but interpret it with care.

4.4 MODELS WITH UNBALANCED
DATA AND PERFECT PREDICTION

When the data set you wish to model has few observations, few predictors, and
are categorical in nature, it is possible that perfect prediction exists between
the predictors and response. That is, for a given covariate pattern only one
outcome occurs. Maximum likelihood estimation does not work well in such
circumstances. One or more of the coefficients become very large, and stan-
dard errors may explode to huge sizes as well. Coefficient values may also be
displayed with no value given. When this occurs it is nearly always the case
that perfect prediction exists in the data.

Consider a real data set consisting of HIV drug data. The response is
given as the number of patients in a study who became infected with HIV.
There are two predictors, cd4 and cd8, each with three levels–0, 1, and 2. The
data is weighted by the number of cases having the same pattern of covariates;
that is, with the values of cd4 and cd8 the same.

The data, called hiv, is downloaded into R’s memory from its original
format as a Stata data set.

> library(Hmisc)
> data(hivlgold)
> hiv
 infec cases cd4 cd8
1 0 3 0 0
2 0 8 1 1

92 Practical Guide to Logistic Regression

3 0 2 2 2
4 0 5 1 0
5 0 2 2 0
6 0 13 2 1
7 1 1 0 2
8 1 2 1 2
9 1 4 0 0
10 1 4 1 1
11 1 1 2 2
12 1 2 1 0

Next, we model the data as a weighted logistic regression. Level 0 of both
cd4 and cd8 are the reference levels.

> myhiv <- glm(infec ~ factor(cd4) + factor(cd8),
+ family=binomial, weights=cases, data=hiv)
> summary(myhiv)

 . . .
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.2877 0.7638 0.377 0.706
factor(cd4)1 -1.2040 1.1328 -1.063 0.288
factor(cd4)2 -20.3297 2501.3306 -0.008 0.994
factor(cd8)1 0.2231 1.0368 0.215 0.830
factor(cd8)2 19.3488 2501.3306 0.008 0.994

 Null deviance: 57.251 on 11 degrees of freedom
Residual deviance: 37.032 on 7 degrees of freedom
AIC: 47.032

Look at the highest level of both cd4 and cd8. The coefficient values are
extremely high compared to level 2, and the standard errors of both are over
100 times greater than their associated coefficient. None of the Wald p-values
are significant. The model appears to be ill fitted, to say the least.

Penalized logistic regression was developed to resolve the problem of
perfect prediction. Heinze and Schemper (2002) amended a method designed
by David Firth (1993) to solve the so-called “problem of separation,” which
results in at least one parameter becoming infinite, or very large compared
to other predictors or levels of predictors in a model. See Hilbe (2009) for a
discussion of the technical details of the method.

The same data as above are modeled using Firth’s penalized logistic
regression. The function, logistf() is found in the logistf package on CRAN.

> firth <- logistf(infec ~ factor(cd4) + factor(cd8), weights=cases, data=hiv)
> firth

4 • Testing and Fitting a Logistic Model 93

logistf(formula = infec ~ factor(cd4) + factor(cd8), data = hiv,
 weights = cases)
Model fitted by Penalized ML
Confidence intervals and p-values by Profile Likelihood

 coef se(coef) lower 0.95 upper 0.95 Chisq p
(Intercept) 0.2431531 0.7556851 -1.1725243 1.7422757 0.11676459 0.732570400
factor(cd4)1 -1.0206696 1.0903625 -3.2183884 0.9721743 0.98925098 0.319925511
factor(cd4)2 -4.0139131 1.7546659 -9.1437134 -1.1309059 8.42543351 0.003700084
factor(cd8)1 0.1320063 0.9852859 -1.7257106 2.1418014 0.01905676 0.890203896
factor(cd8)2 3.2265668 1.7200153 0.4644354 8.3696176 5.57992109 0.018167541

Likelihood ratio test=16.42534 on 4 df, p=0.00249844, n=47

The coefficients appear normal with nothing out of the ordinary. Interestingly
the p-values of the second level of cd4 and cd8, which failed in standard logistic
regression, are statistically significant for the penalized logit model. The likeli-
hood ratio test informs us that the penalized model is also not well fitted.

Penalized logistic regression many times produces significant results when
standard logistic regression does not. If you find that there is perfect prediction
in your model, or that the data is highly unbalanced; for example, nearly all 1s
or 0s for a binary variable, penalized logistic regression may be the only viable
way of modeling it. Those analysts who model mostly small data sets are more
likely to have separation problems than those who model larger data.

4.5 EXACT LOGISTIC REGRESSION

Exact logistic regression is a method of constructing the Bernoulli distribu-
tion such that it is completely determined. The method is unlike maximum
likelihood or iteratively reweighted least squares (IRLS) which are asymptotic
methods of estimation. The model coefficients and p-values are accurate, but
at a cost of involving a large number of permutations.

Exact logistic and exact Poisson regressions were originally written for the
Cytel Corporation product named LogXact in the late 1990s. SAS, SPSS, and
Stata statistical software soon incorporated the procedures into their commercial
packages. R’s elrm package is the closest R has come to providing R users with
this functionality. It is a difficult function to employ and I have not been able to
obtain results similar to those of the other packages. I will use Stata’s exlogistic
command for an example of the method and its results. The SAS version of the
code is at the end of this chapter; the results are the same as Stata output.

Exact logistic regression is typically used by analysts when the size of the
data being modeled is too small to yield well-fitted results. It is also used when
the data are ill balanced, however, it is not to be used when there is perfect

94 Practical Guide to Logistic Regression

prediction in the model. When that occurs penalized logistic regression should
be used—as we discussed in the previous section.

For an example of exact logistic regression, I shall use Arizona hospital
data collected in 1991. The data consist of a random sample of heart procedures
referred to as CABG and PTCA. CABG is an acronym meaning coronary artery
bypass grafting surgery and PTCA refers to percutaneous transluminal coronary
angioplasty. It is a nonsurgical method of placing a type of balloon into a coronary
artery in order to clear blockage caused by cholesterol. It is a substantially less
severe procedure than CABG. We will model the probability of death within 48 h
of the procedure on 34 patients who sustained either a CABG or PTCA. The vari-
able procedure is 1 for CABG and 0 for PTCA. It is adjusted in the model by the
type of admission. Type = 1 is an emergency or urgent admit, and 0 is an elective
admission. Other variables in the data are not used. Patients are all older than 65.

> data(azcabgptca34)
> head(azheart)
 died procedure age gender los type
1 Died CABG 65 Male 10 Elective
2 Survive CABG 69 Male 7 Emer/Urg
3 Survive PTCA 76 Female 7 Emer/Urg
4 Survive CABG 65 Male 8 Elective
5 Survive PTCA 69 Male 1 Elective
6 Survive CABG 67 Male 7 Emer/Urg

A cross-tabulation of died on procedure is given as:

> library(Hmisc)
> table(azheart$died, azheart$procedure)

 PTCA CABG
 Survive 19 9
 Died 1 5

It is clear from the tabulation that more patients died having a CAGB than
with a PTCA. A table of died on type of admission is displayed as:

> table(azheart$died, azheart$type)

 Elective Emer/Urg
 Survive 17 11
 Died 4 2

First we shall use a logistic regression to model died on procedure and type.
The model results are displayed in terms of odds ratios and associated statistics.

4 • Testing and Fitting a Logistic Model 95

> exlr <- glm(died ~ procedure + type, family=binomial,
data=azheart)

> toOR(exlr)
 or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 0.0389 0.0482 -2.6170 0.0089 0.0034 0.4424
procedureCABG 12.6548 15.7958 2.0334 0.0420 1.0959 146.1267
typeEmer/Urg 1.7186 1.9296 0.4823 0.6296 0.1903 15.5201

Note that there appears to be a statistically significant relationship between
the probability of death and type of procedure (p = 0.0420). Type of admission
does not contribute to the model. Given the size of the data and adjusting for
the possibility of correlation in the data we next model the same data as a
“quasibinomial” model. Earlier in the book I indicated that the quasibinomial
option is nothing more than scaling (multiplying) the logistic model standard
errors by the square root of the Pearson dispersion statistic.

> exlr1 <- glm(died ~ procedure + type, family=quasibinomial,
data=azheart)

> toOR(exlr1)
 or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 0.0389 0.0478 -2.6420 0.0082 0.0035 0.4324
procedureCABG 12.6548 15.6466 2.0528 0.0401 1.1216 142.7874
typeEmer/Urg 1.7186 1.9114 0.4869 0.6264 0.1943 15.2007

The p-value of procedure is further reduced by scaling. The same is the
case when the standard errors are adjusted by sandwich or robust variance
estimators (not shown). We might accept procedure as a significant predic-
tor of the probability of death—if it were not for the small sample size. If we
took another sample from the population of procedures would we have similar
results? It is wise to set aside a validation sample to test our primary model.
But suppose that we do not have access to additional data? We subject the data
to modeling with an exact logistic regression. The Stata code and output are
given below.

. exlogistic died procedure type, nolog

Exact logistic regression Number of obs = 34
 Model score = 5.355253
 Pr >= score = 0.0864

died Odds Ratio Suff. 2*Pr(Suff.) [95% Conf. Interval]

procedure 10.33644 5 0.0679 .8880104 589.8112
type 1.656699 2 1.0000 .1005901 28.38678

The results show that procedure is not a significant predictor of died at
the p = 0.05 criterion. This should not be surprising. Note that the odds ratio

96 Practical Guide to Logistic Regression

of procedure diminished from 12.65 to 10.33. In addition, the model score
statistic given in the header statistics informs us that the model does not fit the
data well (p > 0.05).

When modeling small and/or unbalanced data, it is suggested to employ
exact statistical methods if they are available.

4.6 MODELING TABLE DATA

We have touched on modeling data in table format at various points in the
book. The subject is not discussed in other texts on logistic regression, but the
problem comes up in the real life experience of many analysts. I shall therefore
discuss data that are recorded in tables and how one should best convert it to
a format suitable for modeling as a logistic model. We will start with the sim-
plest table, a two-by-two table.

Suppose we have table data in the generic form below:

Table Format

 x
 0 1

 0 4 5
y
 1 6 8

This table has two variables, y and x. It is in summary form. That is, the
above table is a summary of data and can be made into two variables when put
into the following format.

Grouped Format

y x count

0 0 4
0 1 5
1 0 6
1 1 8

The cell (x = 0; y = 0), or (0,0) in the above table has a value of 4; the cell
(x = 1; y = 1), or (1,1) has a value of 8. This indicates that if the data were in
observation-level form, there would be four observations having a pattern of

4 • Testing and Fitting a Logistic Model 97

x,y values of 0,0. If we are modeling the data, with y as the binary response and
x as a binary predictor, the observation-level data appears as:

Observation-Level Format

 y x
 1. 0 0
 2. 0 0
 3. 0 0
 4. 0 0
 5. 0 1
 6. 0 1
 7. 0 1
 8. 0 1
 9. 0 1
10. 1 0
11. 1 0
12. 1 0
13. 1 0
14. 1 0
15. 1 0
16. 1 1
17. 1 1
18. 1 1
19. 1 1
20. 1 1
21. 1 1
22. 1 1
23. 1 1

The above data give us the identical information as we have in the “y-x
count” table above it, as well as in the initial table. Each of these three formats
yield the identical information. If the analyst simply sums the values of the
numbers in the cells, or sums the values of the count variable, he/she will know
the number of observations in the observation-level data set. 4 + 5 + 6 + 8
indeed sums to 23.

Note that many times we see table data converted to grouped data in the
following format:

y x count

1 1 8
1 0 6
0 1 5
0 0 4

98 Practical Guide to Logistic Regression

I tend to structure grouped data in this manner. But as long as an analyst is
consistent, there is no difference in the methods. What is important to remem-
ber is that if there are only two binary variables in a table, y and x, and if y is
the response variable to be modeled, then it is placed as the left-most column
with p2 levels. p is the number of binary variables, in this case 22 = 4.

The data in grouped format are modeled as a frequency weighted regres-
sion. Since y is binary, it will be modeled as a logistic regression, although it
also may be modeled as a probit, complimentary loglog, or loglog regression.
The key is to enter the counts as a frequency weight.

> y <- c(1,1,0,0)
> x <- c(1,0,1,0)
> count <- c(8,6,5,4)
> mydata <- data.frame(y,x,count)

> mymodel <- glm(y ~ x, weights=count, family=binomial,
data=mydata)

> summary(mymodel)

 . . .
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.40547 0.64550 0.628 0.53
x 0.06454 0.86120 0.075 0.94

 Null deviance: 30.789 on 3 degrees of freedom
Residual deviance: 30.783 on 2 degrees of freedom
AIC: 34.783

The logistic coefficients are x = 0.06454 and intercept as 0.40547.
Exponentiation gives the following values:

> exp(coef(mymodel))
(Intercept) x
 1.500000 1.066667

To check the above calculations the odds ratio may be calculated directly
from the original table data as well. Recall that the odds ratio of predictor x is
the ratio of the odds of y = 1 divided by the odds of y = 0. The odds of y = 1 is
the ratio of x = 1 to x = 0 when y = 1, and the odds of y = 0 is the ratio of x = 1
to x = 0 when y = 0.

 x
 0 1

 0 4 5
y
 1 6 8

4 • Testing and Fitting a Logistic Model 99

> (8/5)/(6/4)
[1] 1.066667

which is the value calculated as x above. Recalling our discussion earlier in
the text, the intercept odds is the denominator of the ratio we just calculated to
determine the odds ratio of x.

> 6/4
[1] 1.5

which confirms the calculation from R.
When tables are more complex the same logic used in creating the 2 × 2

table remains. For instance, consider a table of summary data that relates the
pass–failure rate among males and females in an introductory to statistics
course at Noclue University. The goal is to determine if studying for the final
or going to a party or just sleeping instead had a bearing on passing. There are
18 males and 18 females, for a class of 36.

 Gender
 Female Male
 sleep party study sleep party study

 fail 3 4 2 2 4 3
Grade
 pass 2 1 6 3 2 4

The data have a binary response, Grade, with levels of Fail and Pass,
Gender has two levels (Female and Male) and student Type has three levels
(sleep, party, and study). I suggest that the response of interest, Pass, be giv-
ing the value of 1, with Fail assigned 0. For Gender, Female = 0 and Male = 1.
Type: Sleep = 1, Party = 2, and Study = 3. Multiply the levels for the total
number of levels or groups in the data. 2 * 2 * 3 = 12. The response vari-
able then will have six 0s and six 1s. When a table has predictors with more
than two levels, I recommend using the 0,1 format for setting up the data for
analysis.

A binary variable will split its values between the next higher level.
Therefore, Gender will have alternating 0s and 1s for each half of Grade.
Since Type has three levels, 1–2–3 is assigned for each level of Gender.
Finally, assign the appropriate count value to each pattern of variables. The
first level represents Grade = Fail; Gender = Female; Type = Sleep. We move
from the upper left of the top row across the columns of the row, then move
to the next row.

100 Practical Guide to Logistic Regression

 Grade Gender Type Count
1: 0 0 1 3
2: 0 0 2 4
3: 0 0 3 2
4: 0 1 1 2
5: 0 1 2 4
6: 0 1 3 3
7: 1 0 1 2
8: 1 0 2 1
9: 1 0 3 6
10: 1 1 1 3
11: 1 1 2 2
12: 1 1 3 4

> grade <- c(0,0,0,0,0,0,1,1,1,1,1,1)
> gender <- c(0,0,0,1,1,1,0,0,0,1,1,1)
> type <- c(1,2,3,1,2,3,1,2,3,1,2,3)
> count <- c(3,4,2,2,4,3,2,1,6,3,2,4)

> mydata2 <-data.frame(grade, gender, type, count)
> mymod3 <- glm(grade ~ gender + factor(type),
 weights=count,
 family=binomial,
 data=mydata2)
> summary(mymod3)
 . . .
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.04941 0.72517 -0.068 0.946
gender 0.09883 0.70889 0.139 0.889
factor(type)2 -0.98587 0.92758 -1.063 0.288
factor(type)3 0.69685 0.83742 0.832 0.405

 Null deviance: 49.907 on 11 degrees of freedom
Residual deviance: 45.830 on 8 degrees of freedom
AIC: 53.83

> toOR(mymod3)
 or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 0.9518 0.6902 -0.0681 0.9457 0.2298 3.9428
gender 1.1039 0.7825 0.1394 0.8891 0.2751 4.4292
factor(type)2 0.3731 0.3461 -1.0628 0.2879 0.0606 2.2983
factor(type)3 2.0074 1.6811 0.8321 0.4053 0.3889 10.3622

This output is a complete logistic model of the table. Predicted values
and residuals as defined in the section on residuals in this chapter can be
used to further evaluate the model. As it exists, though, the model is a poor
one. However, other table data can lead to a model that is well fitted and
meaningful.

4 • Testing and Fitting a Logistic Model 101

SAS CODE

/* Section 4.1 */

*Build the logistic model and obtain the Person residual;
proc genmod data=medpar descending;
 class type (ref=’1’) / param=ref;
 model died=white hmo los type / dist=binomial link=logit;
 output out=residuals reschi=pearson;
run;

*Pearson Chi2 statistic;
proc sql;
 create table pr as
 select sum(pearson**2) as pchi2, 1489 as df,
 1-probchi(sum(pearson**2), 1489) as pvalue
 from residuals;
quit;

*Refer to proc print in section 2.2 to print dataset pr-Chi2 statistic;

*Type3 option provides the likelihood ratio test;
proc genmod data=medpar descending;
 class type (ref=’1’) / param=ref;
 model died=white hmo los type / dist=binomial link=logit type3;
run;

*Anscombe residuals can be obtained as a model output in the SAS/Insight,
not in SAS command language;

*Create new variables;
data mylgg;
set medpar;
if died=1 then dead=1;
else if died=0 then alive=1;
drop died;
m=sum(alive, dead);
run;

*Transform the dataset;
proc sql;
 create table mylgg1 as
 select white as white, hmo as hmo, type as type, count(alive) as

alive, count(dead) as dead, count(m) as m
 from mylgg
 group by white, hmo, type;
quit;

*Obstats option provides all the residuals and statistics in Table 4.2;
proc genmod data=medpar descending;
 class type (ref=’1’) / param=ref;
 model died=white hmo los type / dist=binomial link=logit obstats;
 ods output obstats=stats;

102 Practical Guide to Logistic Regression

run;

*Square the standardized deviance residual;
data stats1;
 set stats;
 stresdev2=stresdev**2;
run;

*Plot the square of standardized deviance residuals and mu;
proc gplot data=stats1;
 symbol v=circle color=black;
 plot stresdev2*pred / vref=4 cvref=red;
run;

*Plot the leverage and std Pearson residual;
proc gplot data=stats1;
 symbol v=circle color=black;
 plot leverage*streschi / href=0 chref=red;
run;

*Sort the dataset;
proc sort data=medpar out=medpar1;
 by white hmo los type;
run;

*Calculate the sum of the dead;
proc means data=medpar1 sum;
 by white hmo los type;
 var died;
 output out=summary sum=dead;
run;

*Create a new variable alive;
data summary1;
 set summary;
 alive=_freq_-dead;
 drop _type_ _freq_;
run;

*Refer to proc print in section 2.2 to print dataset summary1;

*Build the logistic model with numeric variables;
proc genmod data=medpar descending;
 model died=los type/dist=binomial link=logit;
run;

*Output the los;
proc freq data=medpar;
 tables los/out=los;
run;

*Prepare for the conditional effects plot;
data effect;
 set los;
 k1=-0.8714+(-0.0376)*los+0.4386*1;
 r1=1/(1+exp(-k1));

4 • Testing and Fitting a Logistic Model 103

 k2=-0.8714+(-0.0376)*los+0.4386*2;
 r2=1/(1+exp(-k2));
 k3=-0.8714+(-0.0376)*los+0.4386*3;
 r3=1/(1+exp(-k3));
run;

*Graph the conditional effects plot;
proc sgplot data=effect;
 scatter x=los y=r1;
 scatter x=los y=r2;
 scatter x=los y=r3;
 xaxis label=’LOS’;
 yaxis label=’Type of Admission’ grid values=(0 to 0.4 by 0.1);
 title ‘P[Death] within 48 hr admission’;
run;

/* Section 4.2 */

*Build the logistic model and output model prediction;
proc genmod data=medpar descending;
 class type (ref=’1’) / param=ref;
 model died=white hmo los type / dist=binomial link=logit;
 output out=fit pred=mu;
run;

*Refer to proc means in section 2.5 to calculate the mean;

*Build the logistic model and output classification table & ROC curve;
proc logistic data=medpar descending plots(only)=ROC;
 class type (ref=’1’) / param=ref;
 model died=white hmo los type / outroc=ROCdata ctable pprob=(0 to
 1 by 0.0025);
 ods output classification=ctable;
run;

*Sensitivity and specificity plot;
symbol1 interpol=join color=vibg height=0.1 width=2;
symbol2 interpol=join color=depk height=0.1 width=2;
axis1 label=(“Probability”) order=(0 to 1 by 0.25);
axis2 label=(angle=90 “Sensitivity Specificity %”) order=(0 to 100 by 25);
proc gplot data=ctable;
 plot sensitivity*problevel specificity*problevel /
 overlay haxis=axis1 vaxis=axis2 legend;
run;

*Approximate cutoff point can be found when sensitivity and specificity
are closest/equal in the classification table;

/* Section 4.3 */

*Lackfit option provides the Hosmer-Lemeshow GOF test;
proc logistic data=medpar descending;
 class type (ref=’1’) / param=ref;
 model died=white hmo los type / lackfit;
run;

/* Section 4.4 */

104 Practical Guide to Logistic Regression

*Refer to the code in section 1.4 to import HIV dataset;

*Build the weighted logistic model;
proc genmod data=HIV descending;
 class cd4 (ref=’0’) cd8 (ref=’0’) / param = ref;
 weight cases;
 model infec= cd4 cd8 / dist=binomial link=logit;
run;

*Build the Firth’s penalized logistic model;
proc logistic data=HIV descending;
 class cd4 (ref=’0’) cd8 (ref=’0’) / param = ref;
 weight cases;
 model infec= cd4 cd8 / firth clodds=pl;
run;

/* Section 4.5 */

*Refer to the code in section 1.4 to import and print azheart dataset;

*Generate a table of died by procedure and type;
proc freq data=azheart;
 tables died*procedure died*type / norow nocol nocum nopercent;
run;

*Build the logistic model and obtain odds ratio & statistics;
proc genmod data=azheart descending;
 model died=procedure type / dist=binomial link=logit;
 estimate “Intercept” Intercept 1 / exp;
 estimate “Procedure” procedure 1 / exp;
 estimate “Type” type 1 / exp;
run;

*Build the quasibinomial logistic model;
proc glimmix data=azheart;
 model died (event=’1’)=procedure type/dist=binary link=logit
 solution covb;
 random _RESIDUAL_;
run;

*Refer to proc iml in section 2.3 and the full code is provided online;

*Build the exact logistic model;
proc genmod data=azheart descending;
 model died=procedure type / dist=binomial link=logit;
 exact procedure type / estimate=both;
run;

/* Section 4.6 */

*Refer to data step in section 2.1 if manually input mydata dataset;

*Build the logistic model with weight and obtain odds ratio;
proc genmod data=mydata descending;
 weight count;

4 • Testing and Fitting a Logistic Model 105

 model y=x / dist=binomial link=logit;
 estimate “Intercept” Intercept 1 / exp;
 estimate “x” x 1 / exp;
run;

*Refer to data step in section 2.1 if manually input mydata2 dataset;

*Build the logistic model with weight and obtain odds ratio;
proc genmod data=mydata2 descending;
 class type (ref=’1’) / param=ref;
 weight count;
 model grade=gender type / dist=binomial link=logit;
 estimate “Intercept” Intercept 1 / exp;
 estimate “Gender” gender 1 / exp;
 estimate “Type2” type 1 0 / exp;
 estimate “Type3” type 0 1 / exp;
run;

STATA CODE

4.1
. use medpar
. xi: logit died white los hmo i.type, nolog
. lrdrop1
. qui logit died white hmo los i.type, nolog
. estimates store A
. qui logit died white hmo los, nolog
. estimates store B
. lrtest A B
. predict mu
. gen died – mu # raw residual
. predict dev, deviance # deviance resid
. predict pear, residuals # Pearson resid
. predict, hat, hat # hat matrix diagonal
. gen stddev = dev/sqrt(1-hat) # standardized deviance
. predict, stpear, rstandard # standardized Pearson
. predict deltadev, ddeviance # delta deviance
. predict dx2, dx2 # delta Pearson
. predict dbeta, dbeta # delta beta
. scatter stdev^2 mu
. scatter hat stpear
. qui glm died los admit, fam(bin)
. gen L1= _b[_cons] +_b[los]*los + _b[admit]*1 # Cond. effects plot
. gen Y1 = 1/(1+exp(-L1))
. gen L2 = _b[_cons] +_b[los]*los + _b[admit]*0
. gen Y1 = 1/(1+exp(-L2))
. scatter Y1 Y2 age, title(“Prob of death w/I 48 hrs by admit type”)

4.2
. glm died white hmo los i.type, fam(bin)
. predict mu

106 Practical Guide to Logistic Regression

. mean died

. logit died white hmo los i.type, nolog

. lsens, genprob(cut) gensens(sen) genspec(spec)

. lroc

. estat classification, cut(.351)

4.3
. estat gof, table group(10)
. estat gof, table group(12)

4.4
. use hiv1gold
. list
. glm infec i.cd4 i.cd8 [fw=cases], fam(bin)
. firthlogit infec i.cd4 i.cd8 [fw=cases], nolog

4.5
. use azcabgptca34
. list in 1/6
. table died procedure
. table died type
. glm died procedure type, fam(bin) nolog
. glm died procedure type,fam(bin) scale(x2) nolog
. exlogistic died procedure type, nolog

4.6
. use pgmydata
. glm y x [fw=count], fam(bin) nolog
. glm y x [fw=count], fam(bin) nolog eform
. use phmydata2
. glm grade gender i.type [fw=count], fam9bin) nolog nohead
. glm grade gender i.type [fw=count], fam9bin) nolog nohead eform

107

5Grouped
Logistic
Regression

5.1 THE BINOMIAL PROBABILITY
DISTRIBUTION FUNCTION

Grouped logistic regression is based on the binomial probability distribution.
Recall that standard logistic regression is based on the Bernoulli distribution,
which is a subset of the binomial. As such, the standard logistic model is a
subset of the grouped. The key concept involved is the binomial probability
distribution function (PDF), which is defined as:

f y p n

n

y
p py n y(; ,) ()=

− −1

(5.1)

The product sign is assumed to be in front of the right-hand side terms. In
exponential family form, the above expression becomes:

f y p n y
p

p
n p

n

y
(; ,) exp ()= −

+ − +

 ln ln ln

1
1

(5.2)

The symbol n represents the number of observations in a given covari-
ate pattern. We have discussed covariate patterns before when dealing with
residuals in the last chapter. For Bernoulli response logistic models, the model
is estimated on the basis of observations. Only when analyzing the fit of the

108 Practical Guide to Logistic Regression

model is the data put into covariate patterns and evaluated by observation-
based residuals. Here the PDF itself is in covariate pattern structure.

The first derivative of the cumulant, −n ln(1 − p), with respect to the link,
ln(p/(1 − p)), is the mean, which for the binomial distribution is

 Mean = μ = np

and the second derivative of the cumulant with respect to the link is the
variance.

 Variance = V(Y) = np(1 − p)

or, in terms of μ

Variance = = −

= −V
n

n() ()µ µ µ µ µ1 n

The link function in terms of μ is

Link ln= −

µ
µn

The inverse link, which defines μ in terms of η, or xb, is

Inverse link

exp
 exp

exp
= + − = +

n
xb

n xb
xb1 1()

()
()

The log-likelihood function, with subscripts indicating individual
observations

L(; ,) ()µ µ
µ µi i iy n y n

n

y
i

m

i
i

i
i i= −

+ − +

=
∑

1
1

1 lnln ln

(5.3)

Finally, the deviance statistic is defined as:

D y
y

n y
n y
n

i

m

i
i

i
i i

i i

i i
=

+ − −
−

=

∑2
1

 ln lnµ µ()

(5.4)

5 • Grouped Logistic Regression 109

5.2 FROM OBSERVATION
TO GROUPED DATA

Many data sets we have to model are structured in the following format:

y cases x1 x2 x3
1 3 1 0 1
1 1 1 1 1
2 2 0 0 1
0 1 0 1 1
2 2 1 0 0
0 1 0 1 0

x1, x2, and x3 are all binary predictors. The variable cases have values that
inform us of the number of times these three binary predictors have the same
values—if the data were in observation format. y indicates how many of the
number of cases with the same covariate pattern have 1 as a value for y. The
first line represents three observations having x1 = 1, x2 = 0, and x3 = 1. One
of the three observations has y = 1, and two have y = 0. In observation format
the above grouped data set appears as

y x1 x2 x3 Line from grouped data above
1 1 0 1 1
0 1 0 1 1
0 1 0 1 1
1 1 1 1 2
1 0 0 1 3
1 0 0 1 3
0 0 1 1 4
1 1 0 0 5
1 1 0 0 5
0 0 1 0 6

This data set is in observation-based form, with y as 0 or 1. But you should
be able to clearly see that both of the data sets are identical, providing exactly
the same information. We shall model both to be sure. To do so, both must be
put into separate data frames.

Observation Data

> y <- c(1,0,0,1,1,1,0,1,1,0)
> x1 <- c(1,1,1,1,0,0,0,1,1,0)
> x2 <- c(0,0,0,1,0,0,1,0,0,1)

110 Practical Guide to Logistic Regression

> x3 <- c(1,1,1,1,1,1,1,0,0,0)
> obser <- data.frame(y,x1,x2,x3)
> xx1 < - glm(y ~ x1 + x2 + x3, family = binomial, data = obser)
> summary(xx1)
 . . .
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.2050 1.8348 0.657 0.511
x1 0.1714 1.4909 0.115 0.908
x2 -1.5972 1.6011 -0.998 0.318
x3 -0.5499 1.5817 -0.348 0.728

 Null deviance: 13.46 on 9 degrees of freedom
Residual deviance: 12.05 on 6 degrees of freedom
AIC: 20.05

Grouped Data

> y <- c(1,1,2,0,2,0)
> cases <- c(3,1,2,1,2,1)
> x1 <- c(1,1,0,0,1,0)
> x2 <- c(0,1,0,1,0,1)
> x3 <- c(1,1,1,1,0,0)
> grp <- data.frame(y,cases,x1,x2,x3)
> grp$noty <- grp$cases – grp$y
> xx2 <- glm(cbind(y, noty) ~ x1 + x2 + x3, family = binomial, data = grp)
> summary(xx2)

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.2050 1.8348 0.657 0.511
x1 0.1714 1.4909 0.115 0.908
x2 -1.5972 1.6011 -0.998 0.318
x3 -0.5499 1.5817 -0.348 0.728

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 9.6411 on 5 degrees of freedom
Residual deviance: 8.2310 on 2 degrees of freedom
AIC: 17.853

The coefficients, standard errors, z values, and p-values are identical.
However, the ancillary deviance and AIC statistics differ due to the number
of observations in each model. But the information in the two data sets is the
same. This point is important to remember.

Note that the response variable is cbind(y, noty) rather than y as in the
standard model. R users tend to prefer having the response be formatted in

5 • Grouped Logistic Regression 111

terms of two columns of data—one for the number of 1s for a given covari-
ate pattern, and the second for the number of 0s (not 1s). It is the only logistic
regression software I know of that allows this manner of formatting the bino-
mial response. However, one can create a variable representing the cbind(y,
noty) and run it as a single term response. The results will be identical.

> grp2 <- cbind(grpy, grpnoty)
> summary(xx3 <- glm(grp2 ~ x1 + x2 + x3, family = binomial, data = grp))

 . . .
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.2050 1.8348 0.657 0.511
x1 0.1714 1.4909 0.115 0.908
x2 -1.5972 1.6011 -0.998 0.318
x3 -0.5499 1.5817 -0.348 0.728

In a manner more similar to that used in other statistical packages, the bino-
mial denominator, cases, may be employed directly into the response—but
only if it is also used as a weighting variable. The following code produces the
same output as above,

> summary(xx4 <- glm(y/cases ~ x1 + x2 + x3, family = binomial,
 weights = cases, data = grp))
 . . .
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.2050 1.8348 0.657 0.511
x1 0.1714 1.4909 0.115 0.908
x2 -1.5972 1.6011 -0.998 0.318
x3 -0.5499 1.5817 -0.348 0.728

The advantage of using this method is that the analyst does not have
to create the noty variable. The downside is that some postestimation func-
tions do not accept being based on a weighted model. Be aware that there are
alternatives and use the one that works best for your purposes. The cbind()
response appears to be the most popular, and seems to be used more in pub-
lished research.

Stata and SAS use the grouping variable; for example, cases, as the variable
n in the binomial formulae listed in the last section and as given in the example
directly above. The binomial response can be thought of as y = numerator and
cases = denominator. Of course these term names will differ depending on
the data being modeled. Check the end of this chapter for how Stata and SAS
handle the binomial denominator.

112 Practical Guide to Logistic Regression

At times a data set may be too large to simply transcribe an observation
to grouped format. We will see later in this chapter why converting a categori-
cal observation logistic model to a grouped model is desirable. In any case,
using the code discussed in Chapter 4, Section 4.1.3, we may convert the above
observation data set, obser, to a cbind()-based grouped format and run. I will
show the data again for clarity.

> y <- c(1,0,0,1,1,1,0,1,1,0)
> x1 <- c(1,1,1,1,0,0,0,1,1,0)
> x2 <- c(0,0,0,1,0,0,1,0,0,1)
> x3 <- c(1,1,1,1,1,1,1,0,0,0)
> obser <- data.frame(y,x1,x2,x3)
> xx1 < - glm(y ~ x1 + x2 + x3, family = binomial, data = obser)

> library(reshape)
> obser$x1 <- factor(obser$x1)
> obser$x2 <- factor(obser$x2)
> obser$x3 <- factor(obser$x3)
> grp <- na.omit(data.frame(cast(melt(obser, measure = “y”),
 x1 + x2 + x3 ~ .,
 function(x) { c(notyg = sum(x = =0), yg = sum(x = =1))})))
> grp
 x1 x2 x3 notyg yg
1 0 0 1 0 2
2 0 1 0 1 0
3 0 1 1 1 0
4 1 0 0 0 2
5 1 0 1 2 1
6 1 1 1 0 1

> bin <- glm(cbind(notyg, yg) ~ x1 + x2 + x3, famil = binomial, data = grp)
> summary(bin)
 . . .
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.2050 1.8348 -0.657 0.511
x11 -0.1714 1.4909 -0.115 0.908
x21 1.5972 1.6011 0.998 0.318
x31 0.5499 1.5817 0.348 0.728

 . . .

The code used to convert an observation to a grouped data set is the same
code that can convert an n-asymptotic data set to m-symptotic for residual
analysis. You can use the above code as a paradigm for converting any obser-
vation data to grouped format.

5 • Grouped Logistic Regression 113

5.3 IDENTIFYING AND ADJUSTING
FOR EXTRA DISPERSION

Grouped logistic regression models can have more correlation in the data than
is allowed on the basis of binomial distributional assumptions. If data is gath-
ered in panels or is clustered, there is likely more correlation within clusters
than between them. This fact violates the criterion of independence of obser-
vations that is required of probability functions. In such a situation the data is
commonly said to be overdispersed.

It is often written that a binary response logistic model cannot be over-
dispersed because it lacks a separate parameter for the variance; for example,
the variance parameter, σ2, in the normal linear regression or Gaussian model.
Given a specific value for the mean, μ, one directly knows the value of the
variance, μ(1 − μ). If μ = 0.3, then the variance is equal to 0.21. In one sense
this is definitely the case, but in another it is not. If you are familiar with
count models, and the Poisson model in particular, you know that the Poisson
mean and variance functions are identical, that is, mean = μ; variance = μ. Yet
statisticians commonly discuss Poisson overdispersion—when there is more
variability in the data than is allowed by the Poisson distributional assumption
of the equality of the mean and variance. Adjustments are made to the Poisson
model to adjust for overdispersion in the count data.

In a similar manner to count data, binary response data can also be cor-
related, leading to extra dispersion in the data. In R, the glm function models
such binomial data with a quasibinomial “family,” as it uses the quasipois-
son “family” for overdispersed Poisson data. Both methods scale the model
standard errors by the square root of the dispersion statistic. It is a post hoc
method applied after estimation. The grouped logistic model adds a binomial
denominator to the model; e.g., as in the cases variable we used in the last
section. The point here is that we have seen that the data in observation for-
mat (binary response) is identical to the data in grouped format (binomial
response). Modeling both give the identical coefficients and standard errors.
If a binomial model is overdispersed, the observation based model must also
have intrinsic extra correlation. In Hilbe (2009) I call this type of binary model
correlation implicit overdispersion. The fact that analysts employ scaling,
robust or sandwich adjustors, and so forth, to correlated binary models belies
the fact that they are adjusting for extra correlation or overdispersion in the
data. Remember that a Bernoulli model is a binomial or grouped model—but
one with a binomial denominator of 1. This indicates that each observation is
a separate denominator.

114 Practical Guide to Logistic Regression

Analysts can actually create a model that specifically adds an extra
parameter to the model that adjusts for the extra correlation or overdispersion
in the data. For the Poisson model, the negative binomial model serves this
purpose. It is a two-parameter model. The beta binomial is a two-parameter
logistic model, with the extra heterogeneity parameter adjusting for extra cor-
relation in the data. Other two- and three-parameter models have also been
developed to account for Poisson and binomial overdispersion, but they need
not concern us here (Hilbe, 2014). We shall discuss the beta binomial later in
this chapter.

How is binomial overdispersion identified? The easiest way is by using the
Pearson dispersion statistic. Let us view the dispersion statistic on the grouped
binomial model we created above from observation data.

> P__disp(bin)

Pearson Chi2 = 6.630003
Dispersion = 3.315001

Any value of the dispersion greater than 1 indicates extra variation in the
data. That is, it indicates more variation than is allowed by the binomial PDF
which underlies the model. Recall that the dispersion statistic is the Pearson
statistic divided by the residual degrees of freedom, which is defined as the
number of observations in the model less coefficients (predictors, intercept,
extra parameters). The product of the square root of the dispersion by the
standard error of each predictor in grouped logistic model produces a quasi-
binomial grouped logistic model. It adjusts the standard errors of the model.
Sandwich and bootstrapped standard errors may be used as well to adjust for
overdispersed grouped logistic models.

A caveat should be given regarding the identification of overdispersed
data. I mentioned that for grouped logistic models that a dispersion statistic
greater than 1 indicates overdispersion, or unaccounted for variation in the
data. However, there are times that models appear to be overdispersed, but are
in fact not. A grouped logistic model dispersion statistic may be greater than 1,
but the model data can itself be adjusted to eliminate the perceived overdisper-
sion. Apparent overdispersion occurs in the following conditions:

Apparent Overdispersion

• The model is missing a needed predictor.
• The model requires one or more interactions of predictors.
• A predictor needs to be transformed to a different scale; log(x).
• The link is misspecified (the data should be modeled as probit or

cloglog).
• There are existing outliers in the data.

5 • Grouped Logistic Regression 115

Examples of how these indicators of apparent overdispersion affect logis-
tic models are given in Hilbe (2009).

Guideline

If a grouped logistic model has a dispersion statistic greater than 1, check
each of the 5 indicators of apparent overdispersion to determine if applying
them reduces the dispersion to approximately 1. If it does, the data are not
truly overdispersed. Adjust the model accordingly. If the dispersion statistic
of a grouped logistic model is less than 1, the data is under-dispersed. This
type of extra-dispersion is more rare, and is usually dealt with by scaling or
using robust SEs.

5.4 MODELING AND INTERPRETATION
OF GROUPED LOGISTIC REGRESSION

Modeling and interpreting grouped logistic models is the same as for binary
response, or observation-based models. The graphics that one develops will
be a bit different from the ones developed that are based on a binary response
model. Using the mylgg model we developed in Chapter 4, Section 4.1.3 when
discussing residual analysis, we shall plot the same leverage versus standard-
ized Pearson residuals (Figure 5.1) and standardized deviance residuals versus
mu (Figure 5.2) as done in Chapter 4. However, this time the standardized
residuals in Figure 5.2 are not squared. For a binary response model, squaring
the standardized residuals provides for an easier interpretation. Note the dif-
ference due to the grouped format of the data.

> fit <- glm(cbind(dead, alive) ~ white + hmo + los + factor(type),
 family = binomial, data = mylgg)
> mu <- fit$fitted.value # predicted probability
> hat <- hatvalues(fit) # hat matrix diagnoal
> dr <- resid(fit, type = “deviance”) # deviance residuals
> pr <- resid(fit, type = “pearson”) # Pearson residuals
> stdr <- dr/sqrt(1-hat) # standardized deviance
> stpr <- pr/sqrt(1-hat) # standardized Pearson

> plot(stpr, hat) # leverage plot
> abline(v = 0, col = “red”)

The interpretation of the hat statistics is the same as in Chapter 4. In
Figure 5.2, notice the more scattered nature of the standardized deviance
residuals. This is due to the variety of covariate patterns. Covariate patterns
higher than the line at 2 are outliers, and do not fit the model.

116 Practical Guide to Logistic Regression

plot(mu, stdr)
abline(h = 4, lty = “dotted”, col = “red”)

–2 0 2 4 6 8
0.00

0.05

0.10

0.15

stpr

ha
t

FIGURE 5.1 Leverage versus standardized Pearson.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

–2

0

2

4

6

8

mu

st
dr

FIGURE 5.2 Standardized deviance versus mu.

5 • Grouped Logistic Regression 117

5.5 BETA-BINOMIAL REGRESSION

Modeling overdispersed binomial data can be developed by assuming that the
binomial mean parameter is itself beta distributed. That is, we provide a prior
beta distribution to μ, the logistic model probability of success, or 1. The beta
distribution, unlike the binomial, is a doubly bounded two-parameter distribution.
This second parameter is employed in the model to adjust for any extra-binomial
correlation found in the data. The two-parameter model, which is based on a
mixture of beta and binomial distributions, is known as beta-binomial regression.

The binomial distribution below is expressed in terms of parameter μ.
This is standard when the binomial distribution is being modeled as a general-
ized linear model (GLM), otherwise the parameter is typically symbolized as
π. Since I will use the glm function in R when modeling the binomial compo-
nent of the beta binomial, we shall employ μ in place of π. Moreover, I shall
not use subscripts with the formulae displayed below unless otherwise noted.

Binomial PDF

f y n

n

y
y n y(; ,) ()µ µ µ=

− −1

(5.5)

As discussed before, the
n

y

 choose function is the binomial coefficient,

which is the normalization term of the binomial PDF. It guarantees that the
function sums to 1.0. This form of the function may also be expressed in terms
of factorials:

n

y

n
y n y

= −
!

!()!
(5.6)

which is easily recognized from basic algebra as a combination. Both terms
can be interpreted as describing the number of ways that y successes can be
distributed among n trials, or observations. Note though that the mean param-
eter, μ, is not a term in the coefficient.

Using the Greek symbol Γ for a gamma function, Γ(), the binomial nor-
malization term from Equation 5.6 above may be expressed as:

Γ
Γ Γ

()
() ()

n
y n y

+
+ − +

1
1 1

(5.7)

118 Practical Guide to Logistic Regression

The log-likelihood function for the binomial model can then be expressed,
with subscripts, as:

L(; ,) { () () () () (µ µ µi i i

i

n

i i i i i iy n y n y n y= + − − + + −
=

∑
1

1 1ln ln ln lnΓ Γ ii

i in y

+

− − +

1

1

)

()}lnΓ (5.8)

The beta distribution is used as the basis of modeling proportional data.
That is, beta data is constrained between 0 and 1—and can be thought of in
this context as the proportion obtained by dividing the binomial numerator by
the denominator. The beta PDF is given below in terms of two shape param-
eters, a and b, although there are a number of different parameterizations.

Beta PDF

f y a b

a b
a b

y ya b(; ,)
()
() ()

()= + −− −Γ
Γ Γ

1 11

(5.9)

where a is the number of successes and b is the number of failures. The ini-
tial term in the function is the normalization constant, comprised of gamma
functions.

The above function can also be parameterized in terms of μ. Since we
plan on having the binomial parameter, μ, itself distributed as beta, we can
parameterize the beta PDF as:

f

a b
a b

a b()
()
() ()

()µ µ µ= + −− −Γ
Γ Γ

1 11

(5.10)

Notice that the kernal of the beta distribution is similar to that of the
binomial kernal.

 µ µ µ µy n y a b() ()~1 11 1− −− − −
 (5.11)

Even the coefficients of the beta and binomial are similar in structure. In
probability theory such a relationship is termed conjugate. The beta distribu-
tion is conjugate to the binomial. This is a very useful property when mixing
distributions, since it generally allows for easier estimation. Conjugacy plays
a particularly important role in Bayesian modeling where a prior conjugate
(beta) distribution of a model coefficient, which is considered to be a ran-
dom variable, is mixed with the (binomial) likelihood to form a beta posterior
distribution.

5 • Grouped Logistic Regression 119

The mean and variance of the beta PDF may be given as:

E y

a
a b

V y
ab

a b a b
() ()

() ()
= + = =

+ + +
µ

2 1
(5.12)

As mentioned before, the beta-binomial distribution is a mixture of the
binomial and beta distributions. The binomial parameter, μ, is distributed as
beta, which adjusts for extra-binomial correlation in the data. The mixture can
be obtained by multiplying the two distributions.

f y a b f y n f y a b(; , ,) (; ,) (; , ,)µ µ µ=

 (5.13)

The result is the beta-binomial probability distribution.

Beta Binomial

f y a b

a b n
a b y n y

y a n(; , ,)
() ()

() () () ()
()µ π µ= + +

+ − + −− − −Γ Γ
Γ Γ Γ Γ

1
1 1

11 yy b+ −1

(5.14)

An alternative parameterization may be given in terms of μ and σ, with
μ = a/(a + b).

f y
n

y n y

y n y

(; ,)
()

() ()
µ σ

σ
µ
σ

µ
σ

= +
+ − +

+

− + −
Γ

Γ Γ

Γ Γ Γ
1

1 1

1 1

+

−

Γ Γ Γn
1 1
σ

µ
σ

µ
σ

(5.15)

with y = 0, 1, 2, … n, and 0 < μ < 1, and σ > 0.
Under this parameterization, the mean and variance of the beta binomial are:

E Y n V Y n n() () () ()= = − + + −

µ µ µ σ
σ1 1

1
1

(5.16)

This is the parameterization that is used in R’s gamlss function (Rigby and
Stasinopoulos, 2005) and in the Stata betabin command (Hardin and Hilbe, 2014).

For an example, we shall use the 1912 Titanic shipping disaster passenger
data. In grouped format, the data are called titanicgrp. The predictors of the
model are:

Age: 1 = adult; 0 = child
Sex: 1 = male; 0 = female
Class: 1st class, 2nd class, 3rd class (we make 3rd class the reference)

120 Practical Guide to Logistic Regression

The response is how many survived given a specific covariate pattern.
Cases represents the number of passengers having the same predictor values.

> data(titanicgrp)
> titanicgrp ; attach(titanicgrp) ; table(class)
 survive cases age sex class
1 1 1 child women 1st class
2 13 13 child women 2nd class
3 14 31 child women 3rd class
4 5 5 child man 1st class
5 11 11 child man 2nd class
6 13 48 child man 3rd class
7 140 144 adults women 1st class
8 80 93 adults women 2nd class
9 76 165 adults women 3rd class
10 57 175 adults man 1st class
11 14 168 adults man 2nd class
12 75 462 adults man 3rd class

Change the default reference to 3rd class

> class03 <- factor(titanicgrp$class,
 levels = c(“3rd class”, “2nd class”, “1st class”))

Set up and run the grouped logistic model

> died <- titanicgrp$cases - titanicgrp$survive
> summary(jhlogit <- glm(cbind(survive,died) ~ age + sex + class03,
 data=titanicgrp, family=binomial))
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.2955 0.2478 5.227 1.72e-07 ***
ageadults -1.0556 0.2427 -4.350 1.36e-05 ***
sexman -2.3695 0.1453 -16.313 < 2e-16 ***
class032nd class 0.7558 0.1753 4.313 1.61e-05 ***
class031st class 1.7664 0.1707 10.347 < 2e-16 ***

 Null deviance: 581.40 on 11 degrees of freedom
Residual deviance: 110.84 on 7 degrees of freedom
AIC: 157.77

> toOR(jhlogit)
 or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 3.6529 0.9053 5.2271 0 2.2473 5.9374

5 • Grouped Logistic Regression 121

ageadults 0.3480 0.0844 -4.3502 0 0.2163 0.5599
sexman 0.0935 0.0136 -16.3129 0 0.0704 0.1243
class032nd class 2.1293 0.3732 4.3126 0 1.5103 3.0021
class031st class 5.8496 0.9986 10.3468 0 4.1861 8.1741

> P__disp(jhlogit)

Pearson Chi2 = 100.8828
Dispersion = 14.41183

All of the predictors appear to significantly contribute to the understand-
ing of passenger survival. The model is severely overdispersed as evidenced by
a dispersion statistic of 14.4.

Next we create sandwich or robust adjustments of the standard errors.
This will adjust for much of the excess correlation in the data. But the disper-
sion is very high.

> library(sandwich)
> or <- exp(coef(jhlogit))
> rse <- sqrt(diag(vcovHC(jhlogit, type = “HC0”))) # robust SEs
> ORrse <- or*rse
> pvalue <- 2*pnorm(abs(or/ORrse), lower.tail = FALSE)
> rotab <- data.frame(or, ORrse, pvalue)
> rotab
 or ORrse pvalue
(Intercept) 3.65285874 2.78134854 0.18906811
ageadults 0.34798085 0.24824238 0.16098137
sexman 0.09353076 0.04414139 0.03409974
class032nd class 2.12934342 1.26408082 0.09208519
class031st class 5.84958983 3.05415838 0.05545591

The robust p-values tell us that age and 2nd class are not significant. 1st
class passengers is marginal, but given the variability in the data we would
keep it in a final model, with a combined 2nd and 3rd class as the reference.
That is, it may be preferred to dichotomize class as a binary predictor with
1 = 1st class and 0 = otherwise.

R output for the beta-binomial model using gamlss is given as displayed
below. Note again that there is a slight difference in estimates. Sigma is the dis-
persion parameter, and can itself be parameterized, having predictors like the
mean or location parameter, mu. The dispersion estimates inform the analyst
which predictors significantly influence the extra correlation in the data, there-
fore influencing the value of sigma. In this form below it is only the intercept
of sigma that is displayed. In this respect, the beta binomial is analogous to
the heterogeneous negative binomial count model (Hilbe, 2011, 2014), and the

122 Practical Guide to Logistic Regression

binomial logistic regression function is analogous to a Poisson, or perhaps a
negative binomial model.

Beta Binomial

> library(gamlss)
> summary(mybb <- gamlss(cbind(survive,died) ~ age + sex + class03,
 data = titanicgrp, family = BB))

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.498 0.6814 2.199 0.063855
ageadults -2.202 0.8205 -2.684 0.031375
sexman -2.177 0.6137 -3.547 0.009377
class032nd class 2.018 0.8222 2.455 0.043800
class031st class 2.760 0.8558 3.225 0.014547

Sigma link function: log
Sigma Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.801 0.7508 -2.399 0.03528

 . . .

Global Deviance: 73.80329
Global Deviance: 73.80329
 SBC: 88.71273

Notice that the AIC statistic is reduced from 157.77 for the grouped logis-
tic model to 85.80 for the beta-binomial model. This is a substantial improve-
ment in model fit. The heterogeneity or dispersion parameter, sigma, is 0.165.

Sigma [gamlss’s sigma is log(sigma)]
> exp(-1.801)
[1] 0.1651337

Odds ratio for beta binomial are inflated compared to the grouped logit,
but the p-values are closely the same.

> exp(coef(mybb))
 (Intercept) ageadults sexman class032nd class
 4.4738797 0.1105858 0.1133972 7.5253615
class031st class
 15.8044343

5 • Grouped Logistic Regression 123

I also calculated robust or sandwich standard errors for the beta-binomial
model. 2nd class and age resulted in nonsignificant p-values. This result is
the same as given with the above robust grouped logit model. gamlss does not
work well with sandwich estimators; the calculations were done using Stata.
See the book’s web site for results.

The beta-binomial model is preferred to the single parameter logistic
model. However, extra correlation still needs to be checked and adjusted. We
should check for an interactive effect between age and sex, and between both
age and sex and class 1. I shall leave that as an exercise for the reader. It
appears, though, from looking at the model main effects only, that females
holding 1st and 2nd class tickets stood the best odds of survival on the Titanic.
If they were female children, they stood even better odds. 3rd class ticket hold-
ers, and in particular 3rd class male passengers fared the worst. It should be
noted that 1st class rooms were very expensive, with the best going for some
US$100,000 in 2015 equivalent purchasing power.

The beta binomial is an important model, and should be considered
for all overdispersed logistic models. In addition, for binomial models with
 probit and complementary loglog links, or with excess zero response values,
Stata’s betabin and zibbin commands (Hardin and Hilbe, 2013) have options
for these models. Perhaps these capabilities will be made available to R users
in the near future. The generalized binomial model is another function suitable
for modeling overdispersed grouped logistic models. The model is available in
Stata (Hardin and Hilbe, 2007) and SAS (Morel and Neerchal, 2012).

SAS CODE

/* Section 5.2 */

*Refer to data step in section 2.1 if manually input
obser dataset;
*Build the logistic model;
proc genmod data = obser descending;
 model y = x1 x2 x3 / dist = binomial link = logit;
run;

*Refer to data step in section 2.1 if manually input grp
dataset;

*Build the logistic model;
proc genmod data = grp descending;

124 Practical Guide to Logistic Regression

 model y/cases = x1 x2 x3 / dist = binomial link = logit;
run;

*Build the logistic model;
proc genmod data = grp descending;
 class x1 (ref = ‘0’) x2 (ref = ‘0’) x3 (ref = ‘0’) / param = ref;
 model y/cases = x1 x2 x3 / dist = binomial link = logit;
run;

/* Section 5.4 */

Refer to proc sort, proc means in section 4.1 to obtain a
new dataset;

*Create a new variable alive;
data summary1;
 set summary;
 alive=_freq_-dead;
 cases=_freq_;
 drop _type_ _freq_;
run;

*Obstats option provides all the residuals and useful
statistics;
proc genmod data=summary1 descending;
 class type (ref=’1’)/ param=ref;
 model dead/cases=white hmo los type / dist=binomial
 link=logit obstats;
 ods output obstats=allstats;
run;

*Plot the leverage and std Pearson residual;
proc gplot data=allstats;
 symbol v=circle color=black;
 plot leverage*streschi / href=0 chref=red;
run;

*Plot the standardized deviance residuals and mu;
proc gplot data=allstats;
 symbol v=circle color=black;
 plot stresdev*pred / vref=2 cvref=red;
run;

/* Section 5.5 */

*Refer to the code in section 1.4 to import and print the
dataset;

5 • Grouped Logistic Regression 125

*Build the logistic model and obtain odds ratio & covariance
matrix;
proc genmod data = titanicgrp descending;
 class class (ref = ‘3’)/ param = ref;
 model survive/cases = age sex class / dist = binomial link = logit
 covb;
 estimate “Intercept” Intercept 1 / exp;
 estimate “ageadults” age 1 / exp;
 estimate “sexman” sex 1 / exp;
 estimate “class” class 1 0 / exp;
 estimate “class” class 0 1 / exp;
run;

*Build the logistic mode with robust adjustment;
proc glimmix data = titanicgrp order = data empirical = hc0;
 class class;
 model survive/cases = age sex class/dist = binomial link = logit
 solution covb;
 random _RESIDUAL_;
run;

*Refer to proc iml in section 2.3 and the full code is provided
online;

*Build the Beta binomial model;
proc fmm data = titanicgrp;
 class class;
 model survive/cases = age sex class / dist = betabinomial;
run;

STATA CODE

5.1
. use obser
. glm y x1 x2 x3, fam(bin) nolog

5.2
. use obser, clear
. glm y x1 x2 x3, fam(bin) nolog nohead
. use grp, clear
. glm y x1 x2 x3, fam(bin cases) nolog nohead
. use obser
. gen cases = 1
. collapse(sum) cases (sum) yg, by(x1 x2 x3)
. glm yg x1 x2 x3, fam(bin cases) nolog nohead

126 Practical Guide to Logistic Regression

5.4
. use phmylgg
. cases = dead + alive
. glm dead white hmo los i.type, fam(bin cases)
. predict mu
. predict hat, hat
. predict dev, deviance
. gen stdev = dev/sqrt(1-hat)
. predict stpr, rstandard
. scatter stpr hat
. gen stdev2 = stdev^2
. scatter stdev2 mu

5.5
. use titanicgrp
. list
. glm died age sex b3.class, fam(bin cases) nolog
. glm, eform
. glm died age sex b3.class, fam(bin cases) vce(robust) nolog
. betabin died age sex b3.class, n(cases) nolog
. gen died = cases-survive

127

6Bayesian
Logistic
Regression

6.1 A BRIEF OVERVIEW OF
BAYESIAN METHODOLOGY

Bayesian methodology would likely not be recognized by the person who is
regarded as the founder of the tradition. Thomas Bayes (1702–1761) was a
British Presbyterian country minister and amateur mathematician who had a
passing interest in what was called inverse probability. Bayes wrote a paper
on the subject, but it was never submitted for publication. He died without
anyone knowing of its existence. Thomas Price, a friend of Bayes, discovered
the paper when going through Bayes’s personal effects. Realizing its impor-
tance, he managed to have it published in the Royal Society’s Philosophical
Transactions in 1764. The method was only accepted as a curiosity and was
largely forgotten until Pierre-Simon Laplace, generally recognized as the
leading mathematician worldwide during this period, discovered it several
decades later and began to employ its central thesis to problems of probability.
However, how Bayes’s inverse probability was employed during this time is
quite different from how analysts currently apply it to regression modeling. For
those who are interested in the origins of Bayesian thinking, and its relation-
ship to the development of probability and statistics in general, I recommend
reading Weisberg (2014) or Mcgrayne (2011).

Inverse probability is simple in theory. Suppose that we know from epide-
miological records that the probability of a person having certain symptoms S
given that they have disease D is 0.8. This relationship may be symbolized as
Pr(S|D) = 0.8. However, most physicians want to know the probability of having
the disease if a patient displays these symptoms, or Pr(D|S). In order to find this

128 Practical Guide to Logistic Regression

out additional information is typically required. The idea is that under certain con-
ditions one may find the inverse probability of an event, usually with the additional
information. The notion of additional information is key to Bayesian methodology.

There are six foremost characteristic features that distinguish Bayesian
regression models from the traditional maximum likelihood models such as
logistic regression. Realize though that these features are simplifications. The
details are somewhat more complicated.

 1. Regression models have slope, intercept, and sigma parameters:
Each parameter has an associated prior.

 2. Parameters Are Randomly Distributed: The regression parameters
to be estimated are themselves randomly distributed. In traditional,
or frequentist-based, logistic regression the estimated parameters
are fixed. All main effects parameter estimates are based on the
same underlying PDF.

 3. Parameters May have Different Distributions: In Bayesian logistic
regression, each parameter is separate, and may be described using
a different distribution.

 4. Parameter Estimates As The Means of a Distribution: When esti-
mating a Bayesian parameter an analyst develops a posterior dis-
tribution from the likelihood and prior distributions. The mean (or
median, mode) of a posterior distribution is regarded as the beta,
parameter estimate, or Bayesian coefficient of the variable.

 5. Credible Sets Used Instead of Confidence Intervals: Equal-tailed
credible sets are usually defined as the outer 0.025 quantiles of the
posterior distribution of a Bayesian parameter. The posterior inter-
vals, or highest posterior density (HPD) region, are used when the
posterior is highly skewed or is bi- or multi-model in shape. There is
a 95% probability that the credible set or posterior mean contains the
true posterior mean. Confidence intervals are based on a frequency
interpretation of statistics as defined in Chapter 2, Section 2.3.4.

 6. Additional or Prior Information: The distribution used as the basis
of a parameter estimate (likelihood) can be mixed with additional
information—information that we know about the variable or
parameter that is independent of the data being used in the model.
This is called a prior distribution. Priors are PDFs that add informa-
tion from outside the data into the model.

The basic formula that defines a Bayesian model is:

f y
f y f

f y
f y f

f y f
(|)

(|) ()
()

(|) ()

(|) ()
θ θ θ θ θ

θ θ θ
= =

∫ d

(6.1)

6 • Bayesian Logistic Regression 129

where f(y|θ) is the likelihood function and f(θ) is the prior distribution. The
denominator, f(y), is the probability of y over all y. Note that the likelihood
and prior distributions are multiplied together. Usually the denominator,
which is the normalization term, drops out of the calculations so that the
posterior distribution or a model predictor is determined by the product of its
likelihood and prior. Again, each predictor can be comprised of a different
posterior.

If an analyst believes that there is no meaningful outside information that
bears on the predictor, a uniform prior will usually be given. When this hap-
pens the prior is not informative.

A prior having a normal distribution with a mean of 0 and very high vari-
ance will also produce a noninformative or diffuse prior. If all predictors in
the model are noninformative, the maximum likelihood results will be nearly
identical to the Bayesian betas. In our first examples below we will use nonin-
formative priors.

I should mention that priors are a way to provide a posterior distribution
with more information than is available in the data itself, as reflected in the
likelihood function. If a prior is weak it will not provide much additional infor-
mation and the posterior will not be much different than it would be with a
completely noninformative prior. In addition, what may serve as an influential
informative prior in a model with few observations may well be weak when
applied to data with a large number of observations.

It is important to remember that priors are not specific bits of information,
but are rather distributions with parameters which are combined with likeli-
hood distributions. A major difficulty most analysts have when employing a
prior in a Bayesian model is to specify the correct parameters of the prior that
describe the additional information being added to the model. Again, priors
may be multiplied with the log-likelihood to form a posterior for each term in
the regression.

There is much more that can be discussed about Bayesian modeling, in
particular Bayesian logistic modeling. But this would take us beyond the scope
we set for this book. I provide the reader with several suggested books on the
subject at the end of the chapter.

To see how Bayesian logistic regression works and is to be understood is
best accomplished through the use of examples. I will show an example using
R’s MCMCpack package (located on CRAN) followed by the modeling of the
same data using JAGS. JAGS is regarded by many in the area as one of the
most powerful, if not the most powerful, Bayesian modeling package. It was
developed from WinBUGS and OpenBUGS and uses much of the same nota-
tion. However, it has more built-in functions and more capabilities than do the
BUGS packages. BUGS is an acronym for “Bayesian inference Using Gibbs
Sampling” and is designed and marketed by the Medical Research Group out of

130 Practical Guide to Logistic Regression

Cambridge University in the United Kingdom. More will be mentioned about
the BUGS packages and JAGS at the start of Chapter 6, Section 6.2.2. Stata 14
was released on April 7, 2015, well after this text was written. Stata now has full
Bayesian capabilities. I was able to include Stata code at the end of this chapter
for Bayesian logistic models with noninformative and Cauchy priors.

6.2 EXAMPLES: BAYESIAN
LOGISTIC REGRESSION

6.2.1 Bayesian Logistic Regression Using R

For an example we shall model the 1984 German health reform data, rwm1984.
Our variable of interest is a patient’s work status. If they are not working, out-
work = 1; if they are employed or are otherwise working, outwork = 0. The
predictors we use to understand outwork are:

docvis : The number of visits made to a physician during the year, from 0
to 121.

female : 1 = female; 0 = male.
kids : 1 = has children; 0 = no children.
age : age, from 25 to 64.

The data are first loaded and the data are renamed R84. We shall view the
data, including other variables in the data set.

> library(MCMCpack)
> library(LOGIT)
> data(rwm1984)
> R84 <- rwm1984

DATA PROFILE
> head(R84)
 docvis hospvis edlevel age outwork female married kids hhninc educ self
1 1 0 3 54 0 0 1 0 3.050 15.0 0
2 0 0 1 44 1 1 1 0 3.050 9.0 0
3 0 0 1 58 1 1 0 0 1.434 11.0 0
4 7 2 1 64 0 0 0 0 1.500 10.5 0
5 6 0 3 30 1 0 0 0 2.400 13.0 0
6 9 0 3 26 1 0 0 0 1.050 13.0 0
 edlevel1 edlevel2 edlevel3 edlevel4
1 0 0 1 0
2 1 0 0 0

6 • Bayesian Logistic Regression 131

3 1 0 0 0
4 1 0 0 0
5 0 0 1 0
6 0 0 1 0

The data have 3874 observations and 15 variables.

> dim(R84)
[1] 3874 15

The response variable, outwork, has 1420 1s and 2454 0s, for a mean of
0.5786.

> table(R84$outwork)
 0 1
2454 1420

Other characteristics of the data to be modeled, including the centering of
both continuous predictors, are given as follows:

SUMMARIES OF THE TWO CONTINUOUS VARIBLES
> summary(R84$docvis)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.000 0.000 1.000 3.163 4.000 121.000

> summary(R84$age)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 25 35 44 44 54 64

CENTER BOTH CONTINUOUS PREDICTORS
> R84$cage <- R84$age - mean(R84$age)
> R84$cdoc <- R84$docvis - mean(R84$docvis)

We shall first model the data based on a standard logistic regression, and
then by a logistic regression with the standard errors scaled by the square root
of the Pearson dispersion. The scaled logistic model, as discussed in the previ-
ous chapter, is sometimes referred to as a “quasibinomial” model. We model
both to determine if there is extra variability in the data that may require
adjustments. The tables of coefficients for each model are not displayed below,
but are stored in myg and myq, respectively. I shall use the toOR function to
display the odds ratios and associated statistics of both models in close prox-
imity. The analyst should inspect the delta (SEs) values to determine if they
differ from each other by much. If they do, then there is variability in the data.
A scaled logistic model, or other adjusted models, should be used on the data,
including a Bayesian model. Which model we use depends on what we think is
the source of the extra correlation.

132 Practical Guide to Logistic Regression

MODEL OF LOGISTIC (g) AND QUASIBINOMIAL (q)
> myg <- glm(outwork ~ cdoc + female + kids + cage,
 family=binomial, data=R84)

> myq <- glm(outwork ~ cdoc + female + kids + cage,
 family=quasibinomial, data=R84)

COMPARISON OF MODEL OUTPUT – ODDS RATIOS
> toOR(myg)
 or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 0.1340 0.0109 -24.7916 0e+00 0.1143 0.1570
cdoc 1.0247 0.0064 3.9012 1e-04 1.0122 1.0374
female 9.5525 0.7906 27.2691 0e+00 8.1222 11.2347
kids 1.4304 0.1287 3.9792 1e-04 1.1992 1.7063
cage 1.0559 0.0044 13.0750 0e+00 1.0473 1.0645

> toOR(myq)
 or delta zscore pvalue exp.loci. exp.upci.
(Intercept) 0.1340 0.0113 -23.7796 0e+00 0.1135 0.1581
cdoc 1.0247 0.0067 3.7420 2e-04 1.0117 1.0379
female 9.5525 0.8242 26.1560 0e+00 8.0663 11.3126
kids 1.4304 0.1342 3.8168 1e-04 1.1902 1.7191
cage 1.0559 0.0046 12.5413 0e+00 1.0469 1.0649

A comparison of the standard errors of the two models shows that there is
not much extra variability in the data. The standard errors are nearly the same.
No adjustments need to be made to the model. However, for pedagogical sake
we shall subject the data to a Bayesian logistic regression.

Recall from Chapter 3, Section 3.4.1 that the quasibinomial “option” in
R’s glm function produces mistaken confidence intervals. Our toOR function
corrects this problem for odds ratios. Log the intervals to obtain correct scaled
confidence intervals.

We use the MCMCpack package, which has the MCMClogit function for
estimating Bayesian logistic models. The algorithms in MCMCpack employ a
random walk version of the Metropolis-Hastings algorithm when estimating a
logistic model. MCMC is an acronym for Markov Chain Monte Carlo, which
is a class of sampling algorithm used to find or determine the mean, stan-
dard deviation, and quantiles of a distribution from which the data to be mod-
eled is theoretically derived or, at least, best described. There are a variety of
algorithms employed by Bayesians which are based on MCMC; for example,
Metropolis-Hastings, Gibbs Sampling.

For our example I shall employ the default multivariate normal priors
on all of the parameters. It is used because we have more than one parameter,

6 • Bayesian Logistic Regression 133

all of which have noninformative priors. It is therefore not necessary to show
them in the formula below.

BAYESIAN ANALYSIS OF MODEL
> mymc <- MCMClogit(outwork ~ cdoc + female + kids + cage,
+ burnin = 5000,
+ mcmc= 100000,
+ data=R84)

burnin is used to tell the algorithm how many of the initial samples should be
discarded before beginning to construct a posterior distribution, from which
the mean, standard deviation, and quantiles are derived. mcmc specifies how
many samples are to be used in the estimation of the posterior. We discard the
first 5000 iterations and keep the next 100,000.

Options many times used in the model are b0 and B0, which repre-
sent the mean and precision of the prior(s). The precision is defined as the
inverse of the variance. As such one typically sees B0 as B0–1. Since we
used the default prior of b0 = 0 and B0 = 0 here, assigning values to b0
and B0 was not required. We could have used b0 = 0 and B0 = 0.00001 as
well, for a mean of 0 and an extremely high variance, which means that
nothing specific is being added to the model. The priors are noninformative,
and therefore do not appreciatively influence the model. That is, the data,
or rather likelihood, is the prime influence on the parameter estimates, not
the priors. An analyst may also use the user.prior.density option to
define their own priors.

The output is given as usual:

> summary(mymc)

Iterations = 5001:105000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1e+05

1. Empirical mean and standard deviation for each variable,
 plus standard error of the mean:

 Mean SD Naive SE Time-series SE
(Intercept) -2.01308 0.080516 2.546e-04 1.021e-03
cdoc 0.02464 0.006246 1.975e-05 7.942e-05
female 2.25923 0.083230 2.632e-04 1.073e-03
kids 0.35749 0.089348 2.825e-04 1.139e-03
cage 0.05444 0.004159 1.315e-05 5.334e-05

134 Practical Guide to Logistic Regression

2. Quantiles for each variable:

 2.5% 25% 50% 75% 97.5%
(Intercept) -2.17202 -2.06720 -2.01287 -1.95843 -1.85674
cdoc 0.01267 0.02034 0.02454 0.02883 0.03704
female 2.09550 2.20357 2.25912 2.31470 2.42444
kids 0.18391 0.29680 0.35791 0.41714 0.53193
cage 0.04630 0.05164 0.05442 0.05723 0.06255

Compare the output above for the noninformative prior with SAS output
on the same data and model. The results are remarkably similar.

Although interpretations differ, the posterior mean values are analogous to
maximum likelihood coefficients, the standard deviations are like standard errors
and the 2.5% and 97.5% quantiles are somewhat similar to confidence intervals.
Here Bayesians refer to the external quantiles as “credible sets” or sometimes as
either “credible intervals” or “posterior intervals.”

Remember that each parameter is considered to be randomly distributed,
and not fixed as is assumed when data are being modeled using standard fre-
quentist-based maximum likelihood methods. As such Bayesians attempt to
develop a distribution for each posterior parameter, the mean of each is the
Bayesian logistic beta. The plots on the right-hand side of Figure 6.1 display

POSTERIOR SUMMARIES

PARAMETER N MEAN
STANDARD
DEVIATION

PERCENTILES

25% 50% 75%

Intercept 100,000 −2.0140 0.0815 −2.0686 −2.0134 −1.9586
Cdoc 100,000 0.0247 0.00632 0.0204 0.0246 0.0289
Female 100,000 2.2605 0.0832 2.2043 2.2602 2.3166
Kids 100,000 0.3596 0.0907 0.2981 0.3590 0.4207
Cage 100,000 0.0545 0.00418 0.0516 0.0545 0.0573

POSTERIOR INTERVALS

PARAMETER ALPHA EQUAL-TAIL INTERVAL HPD INTERVAL

Intercept 0.050 −2.1755 −1.8557 −2.1710 −1.8520
Cdoc 0.050 0.0124 0.0373 0.0124 0.0373
Female 0.050 2.0989 2.4242 2.0971 2.4220
Kids 0.050 0.1831 0.5382 0.1838 0.5386
Cage 0.050 0.0463 0.0628 0.0464 0.0628

6 • Bayesian Logistic Regression 135

2e+04

2.0
0

2

42.4

60
40
20

0

0.03

0.00

0

2

4

–2.3

–2.0

–1.7

Trace of female Density of female

Trace of cdoc Density of cdoc

Trace of (Intercept) Density of (Intercept)

6e+04
Iterations N = 100,000 Bandwidth = 0.008791

Iterations N = 100,000 Bandwidth = 0.0006621

Iterations N = 100,000 Bandwidth = 0.008535

1e+05

2e+04 6e+04 1e+05

2.0 2.2 2.4 2.6

0.00 0.01 0.02 0.03 0.04 0.05

2e+04 6e+04 1e+05 –2.3 –2.2 –2.1 –2.0 –1.9 –1.8 –1.7

Trace of kids

2e+04
0.0

0.04

0.06

0.4

4
3
2
1
0

0

40

80

6e+04
Iterations N= 100,000 bandwidth = 0.009471

1e+05 0.0 0.2 0.4 0.6

2e+04 6e+04
Iterations N= 100,000 bandwidth = 0.0004408

1e+05 0.04 0.05 0.06 0.07

Density of kids

Trace of cage Density of cage

FIGURE 6.1 R trace and density plots of model with noninformative
priors.

136 Practical Guide to Logistic Regression

the distributions of each parameter in the model. The peak of each distribution
is at the point which defines the parameter’s mean. The intercept therefore is
about −2.0, the mean for centered docvis (cdoc) is about 0.025, and for centered
age (cage) at about 0.055. The trace plots on the left side of Figure 6.1 show
time series plots across all iterations. We are looking for the convergence of
the estimation to a single value. When the plot converges or stabilizes without
excessive up and down on the y axis, convergence has been achieved. There
appears to be no abnormality in the sampling draws being made by the MCMC
algorithm in any of the trace plots. This is what we want to observe. In addi-
tion, if there are breaks in the trace, or places where clumps are observed, we
may conclude that the sampling process is not working well.

> plot(mymc) # Creates Figure 6.1

Geweke’s diagnostic test (Geweke, 1992) is a univariate test of the equality
of the means of the first 10% and final 50% of the Markov chain samples from
an MCMC chain which generates the posterior distribution from which Bayesian
means, standard deviations and quantiles derive. Each Geweke statistic is a z
score and is assessed based on the normal PDF. The values in the results below
only provide z scores, not associated p-values. But these are easy to obtain:

> geweke.diag(mymc)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

(Intercept) cdoc female kids cage
 1.0789 -0.8122 0.1736 -0.6669 -1.3006

In the table below, I have created a table of standard model coefficients
and Bayesian means for comparison purposes. More importantly, the second
table is a comparison of the model, scaled model, and Bayesian model stan-
dard errors or standard deviations (for Bayesian models). Notice their close-
ness in value. The data simply have little excess correlation or unaccounted
for variability.

> Bcoef <- round(colMeans(mymc), 5)
> Bsd <- round(apply(mymc, MARGIN=2, FUN=sd), 5)
> mygcf <- round(coef(myg), 5)
> mygsd <- round(sqrt(diag(vcov(myg))), 5)
> myqsd <- round(sqrt(diag(vcov(myq))), 5)
> myqcf <- round(coef(myq), 5)
> Bcf <- data.frame(mygcf, Bcoef)
> Bsd <- data.frame(mygsd, myqsd, Bsd)

6 • Bayesian Logistic Regression 137

COEFFICIENTS COMPARISON: MODEL AND BAYESIAN
> Bcf
 mygcf Bcoef
(Intercept) -2.01028 -2.01308
cdoc 0.02443 0.02464
female 2.25680 2.25923
kids 0.35798 0.35749
cage 0.05438 0.05444

COMPARISON OF STANDARD ERRORS/SD: MODEL, QUASI, BAYES
> Bsd
 mygsd myqsd Bsd
(Intercept) 0.08109 0.08454 0.08052
cdoc 0.00626 0.00653 0.00625
female 0.08276 0.08628 0.08323
kids 0.08996 0.09379 0.08935
cage 0.00416 0.00434 0.00416

MCMCpack provides basic Bayesian modeling capabilities that can be
easily extended to incorporate prior and more advanced models such as level
2 random effects models. If we had information about the physician names
who patients saw during 1984, we could adjust for a possible physician effect
by making it a random effect. Suppose physician name is stored in the variable
physician. The code for developing a noninformative Bayesian random effects
logistic regression model is simply:

> mymc <- MCMClogit(outwork ~ cdoc + female + kids + cage,
+ random = ~physician,
+ burnin = 5000,
+ mcmc= 100000,
+ data=R84)

6.2.2 Bayesian Logistic Regression Using JAGS

JAGS is a Bayesian modeling package based on Gibbs sampling. In fact,
JAGS, authored by Dutch statistician Martyn Plummer, is an acronym for Just
Another Gibbs Sampler. First released in December 2007, the package can be
run as a stand-alone program, or from within R. We shall demonstrate how it
can be used within R to develop a Bayesian logistic model.

The code below is adapted from code given in Zuur et al. (2013), although
the original code was designed for a completely different distribution and
model. The useful aspect with this code is that it can be adapted to run a

138 Practical Guide to Logistic Regression

number of different models. Of course, our example will be to show its use in
creating a Bayesian logistic model.

First, make sure you have installed JAGS to your computer. It is freeware,
as is R. JAGS is similar to WinBUGS and OpenBUGS, which can also be run
as standalone packages or within the R environment. JAGS is many times pre-
ferred by those in the hard sciences like physics, astronomy, ecology, biology,
and so forth since it is command-line driven, and written in C ++ for speed.
WinBUGS and OpenBUGS are written in Pascal, which tends to run slower
than C ++ implementations, but can be run within the standalone WinBUGS
or OpenBUGS environments, which include menus, help, and so forth. The
BUGS programs are more user-friendly. Both OpenBUGS and JAGS are also
able to run on a variety of platforms, which is advantageous to many users. In
fact, WinBUGS is no longer being developed or supported. The developers are
putting all of their attention to OpenBUGS. Lastly, and what I like about it,
when JAGS is run from within R, the program actually appears as if it is just
another R package. I do not feel as if I am using an outside program.

To start it is necessary to have JAGS in R’s path, and the R2jags package
needs to be installed and loaded. For the first JAGS example you also should
bring two functions contained in jhbayes.R into memory using the source
function.

> library(R2jags)
> source(“c://Rfiles/jhbayes.R”) # or where you store R
files; book’s website

The code in Table 6.1 is specific to the model we have been working with
in the previous section. However, as you can see, it is easily adaptable for other
logistic models. With a change in the log-likelihood, it can also be used with
other distributions and can be further amended to incorporate random effects,
mixed effects, and a host of other models.

Let us walk through the code in Table 6.1. Doing so will make it much
easier for you to use it for other modeling situations.

The top two lines

X <- model.matrix(~ cdoc + female + kids + cage,
 data = R84)
K <- ncol(X)

create a matrix of predictors, X, from the model R84, and a variable, K, which
contains the number of predictors contained in X. A column of 1s for the inter-
cept is also generated by model.matrix().

The next code segment is logit.data, although we may call it anything
we wish. logit.data is a list of the components of the JAGS model we are

6 • Bayesian Logistic Regression 139

TABLE 6.1 JAGS code for Bayesian logistic model

X <- model.matrix(~ cdoc + female + kids + cage,
 data = R84)
K <- ncol(X)
logit.data <- list(Y = R84$outwork,
 N = nrow(R84),
 X = X,
 K = K,
 LogN = log(nrow(R84)),
 b0 = rep(0, K),
 B0 = diag(0.00001, K)
)
sink(“LOGIT.txt”)

cat(“
model{
 # Priors
 beta ~ dmnorm(b0[], B0[,])

 # Likelihood
 for (i in 1:N){
 Y[i] ~ dbern(p[i])
 logit(p[i]) <- max(-20, min(20, eta[i]))
 eta[i] <- inprod(beta[], X[i,])
 LLi[i] <- Y[i] * log(p[i]) +
 (1 - Y[i]) * log(1 - p[i])
 }
 LogL <- sum(LLi[1:N])
 AIC <- -2 * LogL + 2 * K
 BIC <- -2 * LogL + LogN * K
}
“,fill = TRUE)
sink()

INITIAL VALUES – BETAS AND SIGMAS
inits <- function () {
 list(
 beta = rnorm(K, 0, 0.1)
) }
params <- c(“beta”, “LogL”, “AIC”, “BIC”)

JAGs
J0 <- jags(data = logit.data,
 inits = inits,
 parameters = params,
 model.file = “LOGIT.txt”,
 n.thin = 10,
 n.chains = 3,
 n.burnin = 40000,
 n.iter = 50000)

OUTPUT DISPLAYED
out <- J0$BUGSoutput
myB <- MyBUGSOutput(out, c(uNames(“beta”, K), “LogL”, “AIC”, “BIC”))
round(myB, 4)

140 Practical Guide to Logistic Regression

developing. Y is the response variable, N is the number of observations in the
model, X is the predictor, K is the number of predictors, log N is the log of the
number of observations in the model, b0 is the prior mean and B0 the prior
precision, which is the inverse of the variance. b0 and B0 relate to defining
priors. Arguments to b0 and B0 define the mean and variance for each prior in
the model. In the code below, b0 is a vector of K priors, each with a value of 0;
B0 indicates a matrix with a diagonal having K trace terms and a variance of
each having values of 100,000.

logit.data <- list(Y = R84$outwork,
 N = nrow(R84),
 X = X,
 K = K,
 LogN = log(nrow(R84)),
 b0 = rep(0, K),
 B0 = diag(0.00001, K)
)

The next segment contains the terms

sink(“LOGIT.txt”)
cat(“

that puts everything within the model braces, { }, below the code into a text
file called LOGIT.txt.

Priors and the likelihood function are defined within the model parentheses:

model{

We start by defining the priors. The prior betas are all defined as multi-
variately normal. The values we just defined for both b0 and B0 are supplied
to the arguments of dmnorm().

beta ~ dmnorm(b0[], B0[,])

If we wanted to have a uniform prior for each of the predictors, the right
side of the above distribution would be expressed as dunif(-20, 20).

The following code segment defines the likelihood. This is a crucial seg-
ment. The likelihood is calculated across all observations in the model; that
is, from 1 to N.

The first term in the for-loop specifies this to be a logistic regression; that
is, the likelihood across all observations is Bernoulli distributed. The next two
lines provide the link function, logit and eta, which is the linear predictor. It is
formed by the product (inprod) of the beta and X values. The final line within
the parenthesis is the Bernoulli log-likelihood function. The sum of the obser-
vation log-likelihood values produces the model log-likelihood statistic, LogL.

6 • Bayesian Logistic Regression 141

 for (i in 1:N){
 Y[i] ~ dbern(p[i])
 logit(p[i]) <- max(-20, min(20, eta[i]))
 eta[i] <- inprod(beta[], X[i,])
 LLi[i] <- Y[i] * log(p[i]) +
 (1 - Y[i]) * log(1 - p[i])
 }
 LogL <- sum(LLi[1:N])

The Akaike and Bayesian information criteria (AIC and BIC) statistics
are then calculated, and the model parenthesis closes. The fill confirms that the
LOGIT.txt file should contain everything within the parenthesis, and the sink()
function actually saves the file to the working directory.

 AIC <- -2 * LogL + 2 * K
 BIC <- -2 * LogL + LogN * K
}
“,fill = TRUE)
sink()

The inits segment formally defines the initial parameter values, which
are all defined as normally distributed terms with a mean of 0 and variance of
10 (the precision, 1/V, is 0.1). The term params contains the coefficient, log-
likelihood, AIC, and BIC statistics.

inits <- function () {
 list(
 beta = rnorm(K, 0, 0.1)
) }

params <- c(“beta”, “LogL”, “AIC”, “BIC”)

The segment JO is the JAGS function, containing the values and set-
tings we just defined. The JAGS algorithm itself uses the following values to
define the manner in which MCMC sampling occurs. It is the core of the JAGS
function.

Terms we have not defined yet include the n.thin, meaning here that sam-
pling actually keeps every 10th value from the MCMC Gibbs sampler, dis-
carding the others. This is done in case the data are autocorrelated. Thinning
is an attempt to increase sampling efficiency. Keeping one of every 10 samples
for our distribution helps effect randomness. n.chains specifies how many dis-
tributions are being sampled. Chains of sampling are mixed, which assists in
obtaining a distribution that properly characterizes the data. Here we spec-
ify that three chains of sampling are to be run. n.burnin indicates how many

142 Practical Guide to Logistic Regression

sampling values are discarded before values are kept in the posterior distri-
bution. The initial values can vary widely, and skew the results. If all of the
early values were kept, the mean of the posterior distribution could be severely
biased. Discarding a sizeable number of early values helps guarantee a better
posterior. Finally, the n.iter specifies how many values are kept for the poste-
rior distribution, after thinning and discarding of burn-in values.

J0 <- jags(data = logit.data,
 inits = inits,
 parameters = params,
 model.file = “LOGIT.txt”,
 n.thin = 10,
 n.chains = 3,
 n.burnin = 40000,
 n.iter = 50000)

After running the jags function, which we have called J0, typing J0 on
the R command-line will provide raw model results. The final code in Table
6.1 provides nicer looking output. The source code in jhbayes.R is relevant
at this point. jhbayes.r consists of two small functions from the Zuur support
package, MCMCSupportHighstat.R, which comes with Zuur, Hilbe and Ieno
(2013) and is available for other books by Zuur as well. The posterior means,
or betas, the log-likelihood function, and AIC and BIC statistics are displayed,
together with their standard errors and outer 0.025 “credible set.” We specified
that only four decimal digits are displayed. BUGSoutput and MyBUGSOutput
are parts of the R2jags package:

out <- J0$BUGSoutput
myB <- MyBUGSOutput(out, c(uNames(“beta”, K),

“LogL”, “AIC”, “BIC”))
round(myB, 4)

The Bayesian logistic model results are listed in the table below.

> round(myB, 4)
 mean se 2.5% 97.5%
beta[1] -2.0193 0.0824 -2.1760 -1.8609
beta[2] 0.0245 0.0063 0.0128 0.0370
beta[3] 2.2569 0.0843 2.0922 2.4216
beta[4] 0.3685 0.0904 0.1920 0.5415
beta[5] 0.0545 0.0042 0.0466 0.0626
LogL -1961.6258 1.5178 -1965.4037 -1959.5816
AIC 3933.2517 3.0357 3929.1632 3940.8074
BIC 3964.5619 3.0357 3960.4734 3972.1176

Compare the above statistics with the summary table of myg, which was
the model as estimated using the glm function. Note that the AIC values are

6 • Bayesian Logistic Regression 143

statistically identical. This output also matches the SAS results displayed esti-
mated using noninformative priors.

> summary(myg)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.010276 0.081087 -24.792 < 2e-16 ***
cdoc 0.024432 0.006263 3.901 9.57e-05 ***
female 2.256804 0.082760 27.269 < 2e-16 ***
kids 0.357976 0.089962 3.979 6.92e-05 ***
cage 0.054379 0.004159 13.075 < 2e-16 ***

 Null deviance: 5091.1 on 3873 degrees of freedom
Residual deviance: 3918.2 on 3869 degrees of freedom
AIC: 3928.2

A comparison of the frequency-based standard logistic regression and our
two Bayesian models without informative priors reveal nearly identical values.
Note that using two entirely different methods of estimation—maximum like-
lihood and sampling—result in the same values. This tells us that these esti-
mation procedures are valid ways of estimating the true underlying parameter
values of the distribution theoretically generating the data.

> round(cbind(coef(myg), Bcoef, myB[1:K,1]), 4)
 Bcoef
(Intercept) -2.0103 -2.0131 -2.0193
cdoc 0.0244 0.0246 0.0245
female 2.2568 2.2592 2.2569
kids 0.3580 0.3575 0.3685
cage 0.0544 0.0544 0.0545

The example above did not employ an informative prior. For instance,
we could have provided information that reflected our knowledge that docvis
has between 40% and 50% zero counts. We compounded the problem since
docvis was centered, becoming cdoc. The centered values for when docvis = 0
are −3.162881. They are −2.162881 when docvis = 1. We can therefore set up a
prior that we expect 40%–50% zero counts when cdoc is less than −3.

6.2.3 Bayesian Logistic Regression
with Informative Priors

In a regression model the focus is on placing priors on parameters in order to
develop adjusted posterior parameter values. For example, we could set a prior
on the coefficient of cdoc such that we are 75% confident that the coefficient

144 Practical Guide to Logistic Regression

will be between 0.020 and 0.030. Priors are expressed in terms of probability
functions, usually the normal, lognormal, beta, binomial, Bernoulli, Cauchy,
t, gamma, inverse gamma, Poisson, Poisson-gamma, and negative binomial.
The same prior may be set on one or more parameters, and different priors
may be set for separate parameters. Each software package specifies how this
should be coded.

The example below employs a Cauchy prior on all three parameters; that
is, the coefficients on intercept, cdoc, and cage.

beta.0 ~ dt(0,1/(2.5^2),1)
beta.1 ~ dt(0, 1/(2.5^2),1)
beta.2 ~ dt(0, 1/(2.5^2),1)

where 1/(2.5)^2 is equal to 0.16. For those of my readers who have taken
a course in probability, you may recall that the Cauchy corresponds to a
Student’s t distribution, with 2n − 1 degrees of freedom, multiplied by the
value 1/sqrt(s*(2*n − 1)). n and s are the shape and scale parameters, respec-
tively, for the Cauchy distribution. Perhaps the normal might be preferable for
the intercept; the reader may want to check if this is indeed the case (Table
6.2). The code, presented in a slightly different manner from Table 6.1 can be
used for a wide variety of models. The output does not include implementing
the R2jags MyBUGSOutput function that produces nicely formatted results.

load contents of Table 6.2 into memory prior to
running summary() below

> summary(codasamples)

Iterations = 41001:91000
Thinning interval = 1
Number of chains = 3 # <= note that 3 chains are used
Sample size per chain = 50000

1. Empirical mean and standard deviation for each variable,
 plus standard error of the mean:

 Mean SD Naive SE Time-series SE
AIC 5.020e+03 1.996398 0.0051547 7.634e-03
BIC 5.026e+03 1.996398 0.0051547 7.634e-03
LogL -2.509e+03 0.998199 0.0025773 3.817e-03
beta.0 -5.481e-01 0.047049 0.0001215 8.214e-04
beta.1 5.059e-02 0.006352 0.0000164 2.072e-05
beta.2 7.209e-02 7.991224 0.0206333 2.006e-01

2. Quantiles for each variable:

 2.5% 25% 50% 75% 97.5%
AIC 5.018e+03 5.018e+03 5.019e+03 5.020e+03 5.025e+03

6 • Bayesian Logistic Regression 145

TABLE 6.2 JAGS logistic regression with cauchy prior

library(R2jags)
library(COUNT)
data(rwm1984)
R84 <- rwm1984
R84$cage <- R84$age - mean(R84$age)
R84$cdoc <- R84$docvis - mean(R84$docvis)

JAGS component
K <- 1
logit.data <- list(Y = R84$outwork,
 N = nrow(R84),
 cdoc = R84$cdoc,
 cage = R84$cage,
 K=1,
 LogN = log(nrow(R84))
)
GLM.txt<-”
 model{
 #1. Priors
 beta.0~ dt(0,.16, 1)
 beta.1~ dt(0, .16, 1)
 beta.2~ dt(0, .16,1)

 #2. Likelihood
 for (i in 1:N){

 Y[i] ~ dbern(p[i])
 logit(p[i]) <- max(-20, min(20, eta[i]))
 eta[i] <- beta.0+beta.1*cdoc[i]+beta.2*cage[2]

 LLi[i] <- Y[i] * log(p[i]) +
 (1 - Y[i]) * log(1 - p[i])
 }
 LogL <- sum(LLi[1:N])
 AIC <- -2 * LogL + 2 * K
 BIC <- -2 * LogL + LogN * K

 }
 “
INITIAL VALUES - BETAS AND SIGMAS
inits <- function () {
 list(
 beta.0 = 0.1,beta.1=0.1, beta.2=0.1
) }
params <- c(“beta.0”,”beta.1”,”beta.2”,”LogL”, “AIC”, “BIC”)

JAGs
J0 <- jags.model(data = logit.data,
 inits = inits,
 textConnection(GLM.txt),
 n.chains = 3,
 n.adapt=1000)
update(J0, 40000)
codasamples <- coda.samples(J0, params, n.iter = 50000)
summary(codasamples)

146 Practical Guide to Logistic Regression

BIC 5.024e+03 5.024e+03 5.025e+03 5.027e+03 5.031e+03
LogL -2.511e+03 -2.509e+03 -2.508e+03 -2.508e+03 -2.508e+03
beta.0 -6.282e-01 -5.725e-01 -5.476e-01 -5.230e-01 -4.682e-01
beta.1 3.839e-02 4.629e-02 5.050e-02 5.481e-02 6.325e-02
beta.2 -1.112e+01 -9.996e-01 -7.193e-03 9.644e-01 1.070e+01

With normal priors, the output is displayed as:

 #1. Priors
 beta.0 ~ dnorm(0, 0.00001)
 beta.1~dnorm(0, 0.00001)
 beta.2~dnorm(0, 0.00001)

1. Empirical mean and standard deviation for each variable,
 plus standard error of the mean:

 Mean SD Naive SE Time-series SE
AIC 5.020e+03 1.983282 5.121e-03 7.678e-03
BIC 5.026e+03 1.983282 5.121e-03 7.678e-03
LogL -2.509e+03 0.991641 2.560e-03 3.839e-03
beta.0 -5.471e-01 0.044242 1.142e-04 5.766e-04
beta.1 5.058e-02 0.006379 1.647e-05 2.113e-05
beta.2 -1.546e-01 7.041635 1.818e-02 1.412e-01

2. Quantiles for each variable:

 2.5% 25% 50% 75% 97.5%
AIC 5.018e+03 5.018e+03 5.019e+03 5.020e+03 5.025e+03
BIC 5.024e+03 5.024e+03 5.025e+03 5.027e+03 5.031e+03
LogL -2.511e+03 -2.509e+03 -2.508e+03 -2.508e+03 -2.508e+03
beta.0 -6.255e-01 -5.722e-01 -5.473e-01 -5.223e-01 -4.660e-01
beta.1 3.829e-02 4.625e-02 5.051e-02 5.484e-02 6.333e-02
beta.2 -1.235e+01 -1.022e+00 -2.184e-02 9.511e-01 9.943e+00

Notice that the values of the distributional means for each parameter—
intercept, cdoc, and cage—differ, as do other associated statistics. The prior
has indeed changed the model. What this means is that we can provide our
model with a substantial amount of additional information about the predic-
tors used in our logistic model. Generally speaking, it is advisable to have a
prior that is distributionally compatible with the distribution of the parameter
having the prior. The subject is central to Bayesian modeling, but it takes us
beyond the level of this book. My recommendations for taking the next step in
Bayesian modeling include Zuur et al. (2013), Cowles (2013), and Lunn et al.
(2013). More advanced but thorough texts are Christensen et al. (2011) and
Gelman et al. (2014). There are many other excellent texts as well. I should

6 • Bayesian Logistic Regression 147

also mention that Hilbe et al. (2016) will provide a clear analysis of Bayesian
modeling as applied to astronomical data.

SAS CODE

/* Section 6.2 */
*Refer to the code in section 1.4 to import and print rwm1984 dataset;
*Refer to proc freq in section 2.4 to generate the frequency table;
*Summary for continuous variables;
proc means data=rwm1984 min q1 median mean q3 max maxdec=3;
 var docvis age;
 output out=center mean=;
run;

*Create the macro variables;
proc sql;
 select age into: meanage from center;
 select docvis into: meandoc from center;
quit;

*Center the continuous variables;
data R84;
 set rwm1984;
 cage=age-&meanage;
 cdoc=docvis-&meandoc;
run;

*Build the logistic model and obtain odds ratio & statistics;
proc genmod data=R84 descending;
 model outwork=cdoc female kids cage / dist=binomial link=logit;
 estimate “Intercept” Intercept 1 / exp;
 estimate “Cdoc” cdoc 1 / exp;
 estimate “Female” female 1 / exp;
 estimate “Kids” kids 1 / exp;
 estimate “Cage” cage 1 / exp;
run;

*Build the quasibinomial logistic model;
proc glimmix data=R84;
 model outwork (event=’1’)=cdoc female kids cage / dist=binary
 link=logit solution covb;
 random _RESIDUAL_;
run;

*Refer to proc iml in section 2.3 and the full code is provided
online;

148 Practical Guide to Logistic Regression

*Bayesian logistic regression;
proc genmod data=R84 descending;
 model outwork=cdoc female kids cage / dist=binomial link=logit;
 bayes seed=10231995 nbi=5000 nmc=100000
 coeffprior=uniform diagnostics=all
 statistics=(summary interval) plots=all;
run;

*Create the normal prior;
data prior;
 input _type_ $ Intercept cdoc cage;
 datalines;
Var 1e5 1e5 1e5
Mean 0 0 0
;
run;

*Bayesian logistic regression with normal prior;
proc genmod data=R84 descending;
 model outwork=cdoc female kids cage/dist=binomial link=logit;
 bayes seed=10231995 nbi=5000 nmc=100000
 coeffprior=normal(input=prior) diagnostics=all
 statistics=(summary interval) plots=all ;
run;

SAS output Bayesian logistic regression with normal prior.

STATA CODE

. use rwm1984

. center docvis, pre(c)

. rename cdocvis cdoc

. center age, pre(c)

. sum cdoc cage
* Logistic regression: standard and scaled
. glm outwork cdoc female kids cage, fam(bin) eform nolog
. glm outwork cdoc female kids cage, fam(bin) eform scale(x2) nolog
* Non-informative priors, normal(0, 100000)

INDEPENDENT NORMAL PRIOR FOR
REGRESSION COEFFICIENTS

PARAMETER MEAN PRECISION

Intercept 0 0.00001
Cdoc 0 0.00001
Female 0 1E-6
Kids 0 1E-6
Cage 0 0.00001

6 • Bayesian Logistic Regression 149

. bayesmh outwork cdoc female kids cage, likelihood(logit) prior({outwork:},normal(
 0, 100000))
. bayesgraph diagnostics {outwork:}
. bayesstats ic
* Informative priors: Cauchy prior on cdoc and cage; noninformative on others
. bayesmh outwork cdoc female kids cage, likelihood(logit) ///
 prior({outwork:female kids _cons}, normal(0, 100000)) ///
 prior({outwork:cdoc}, ///
 logdensity(ln(6.276)-ln(6.276^2+({outwork_cdoc})^2)-ln(_pi))) ///
 prior({outwork:cage}, ///
 logdensity(ln(11.24)-ln(11.24^2+({outwork_cage})^2)-ln(_pi))) ///
 block({outwork:female kids _cons})
. bayesgraph diagnostics {outwork: cdoc}
. bayesgraph diagnostics {outwork; cage)
. bayesstats ic

Stata 14: Partial Output—Logit Model with
Informative Priors
Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500
 MCMC sample size = 10,000
 Number of obs = 3,874
 Acceptance rate = .1792
 Efficiency: min = .05461
 avg = .07162
Log marginal likelihood = -27363.562 max = .09621

 Equal-tailed
 outwork Mean Std. Dev. MCSE Median [95% Cred. Interval]

 cdoc .0199813 .0055174 .000178 .020052 .0091184 .029969
 female 2.243112 .0815326 .003024 2.241708 2.092979 2.403369
 kids .2936242 .0886074 .003792 .2910353 .1282263 .4675729
 cage .0485316 .0040249 .000149 .048308 .0408274 .0566746
 _cons -1.967223 .0791867 .003202 -1.970386 -2.131315 -1.803809

CONCLUDING COMMENTS

This book is intended as a guidebook to help analysts develop and execute
well-fitted logistic models. In reviewing it now that it is finished, the book can
also be regarded as an excellent way for an analyst to learn R, as well as SAS
and Stata as applied to developing logistic models and associated tests and
data management tasks related to statistical modeling. Several new functions
are found in this book that are new to R—functions that were written to assist
the analyst in producing and testing logistic models. I will frequently use these
functions in my own future logistic modeling endeavors.

I mentioned in the book that when copying code from one electronic for-
mat to another, characters such as quotation marks and minus signs can result

150 Practical Guide to Logistic Regression

in errors. Even copying code from my own saved Word and PDF documents
to R’s editor caused problems. Many times I had to retype quotation marks,
minus signs, and several other symbols in order for R to run properly. I also
should advise you that when in the R editor, it may be wise to “run” long
stretches of code in segments. That is, rather than select the entire program
code, select and run segments of it. I have had students, and those who have
purchased books of mine that include R code, email me that they cannot run
the code. I advise them to run it in segments. Nearly always they email back
that they now have no problems. Of course, at times in the past there have
indeed been errors in the code, but know that the code in this book has all been
successfully run multiple times. Make sure that the proper libraries and data
have been installed and loaded before executing code.

There is a lot of information in the book. However, I did not discuss issues
such as missing values, survey analysis, validation, endogeny, and latent class
models. These are left for my comprehensive book titled, Logistic Regression
Models (2009, Chapman & Hall), which is over 650 pages in length. A forth-
coming second edition will include both Stata and R code in the text with SAS
code as it is with this book. Bayesian logistic regression will be more thor-
oughly examined, with Bayesian analysis of grouped, ordered, multinomial,
hierarchical, and other related models addressed.

I primarily wrote this book to go with a month-long web-based course
I teach with Statistics.com. I have taught the course with them since 2003,
three classes a year, and continually get questions and feedback from research-
ers, analysts, and professors from around the world. I have also taught logistic
regression and given workshops on it for over a quarter a century. In this book,
I have tried to address the most frequent concerns and problem areas that prac-
ticing analysts have informed me about. I feel confident that anyone reading
carefully through this relatively brief monograph will come away from it with
a solid knowledge of how to use logistic regression—both observation based
and grouped. For those who wish to learn more after going through this book,
I recommend my Logistic Regression Models (2009, 2016 in preparation). I
also recommend Bilger and Loughin (2015), which uses R code for exam-
ples, Collett (2003), Dohoo et al. (2012), and for nicely written shorter books
dealing with the logistic regression and GLM in general, Dobson and Barnett
(2008), Hardin and Hilbe (2013), and Smithson and Merkle (2014). Hosmer
et al. (2013) is also a fine reference book on the subject, but there is no code
provided with the book. The other recommended books have code to support
examples, which I very much believe assists the learning process.

I invite readers of this book to email me their comments and suggestions
about it: hilbe//works.bepress.com/joseph_hilbe/, has the data sets used in the
book in various formats, and all of the code used in the book in electronic
format. Both SAS and Stata code and output is also provided.

151

References

Bilder, C.R. and Loughin, T.M. 2015. Analysis of Categorical Data with R. Boca Raton,
FL: Chapman & Hall/CRC.

Christensen, R., Johnson, W., Branscu, A. and Hanson, T.E. 2011. Bayesian Ideas and
Data Analysis. Boca Raton, FL: Chapman & Hall/CRC.

Collett, D. 2003. Modeling Binary Data, 2nd Edn. Boca Raton, FL: Chapman & Hall/CRC.
Cowles. M.K. 2013. Applied Bayesian Statistics. New York, NY: Springer.
De Souza, R.S. Cameron, E., Killedar, M., Hilbe, J., Vilatia, R., Maio, U., Biffi, V., Riggs,

J.D. and Ciardi, B., for the COIN Collaboration. 2015. The overlooked potential
of generalized linear models in astronomy—I: Binomial regression and numeri-
cal simulations, Astronomy & Computing, DOI: 10.1016/j.ascom.2015.04.002.

Dobson, A.J. and Barnett, A.G. 2008. An Introduction to Generalized Linear Models,
3rd Edn. Boca Raton, FL: Chapman & Hall/CRC.

Dohoo, I., Martin, W. and Stryhn, H. 2012. Methods in Epidemiological Research.
Charlottetown, PEI, CA: VER.

Firth, D. 1993. Bias reduction of maximum likelihood estimates, Biometrika 80, 27–28.
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, C.B. 2014.

Bayesian Data Analysis, 3rd Edn. Boca Raton, FL: Chapman & Hall/CRC.
Geweke, J. 1992. Evaluating the accuracy of sampling-based approaches to calculating

posterior moments. In Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M.
(eds.), Bayesian Statistics, 4th Edn. Oxford, UK: Clarendon Press.

Hardin, J.W. and Hilbe, J.M. 2007. Generalized Linear Models and Extensions, 2nd
edition, College Station, TX: Stata Press.

Hardin, J.W. and Hilbe, J.M. 2013. Generalized Linear Models and Extensions, 3rd
Edn., College Station, TX: Stata Press/CRC (4th edition due out in late 2015 or
early 2016).

Hardin, J. W. and Hilbe, J.M. 2014. Estimation and testing of binomial and beta-binomial
regression models with and without zero inflation, Stata Journal 14(2): 292–303.

Heinze, G. and Schemper, M. 2002. A solution to the problem of separation in logistic
regression. Statistics in Medicine 21, 2409–2419.

Hilbe, J.M. 2009. Logistic Regression Models. Boca Raton, FL: Chapman & Hall/CRC.
Hilbe, J.M. 2011. Negative Binomial Regression, 2nd Ed. Cambridge, UK: Cambridge

University Press.
Hilbe, J.M. 2014. Modeling Count Data. New York, NY: Cambridge University Press.
Hilbe, J.M. and Robinson, A.P. 2013. Methods of Statistical Model Estimation. Boca

Raton, FL: Chapman & Hall/CRC.
Hilbe, J.M., de Souza, R.S. and Ishida, E. 2016. Bayesian Models for Astrophysical

Data: Using R/JAGS and Python/Stan. Cambridge, UK: Cambridge University
Press.

Hosmer, D.W., Lemeshow, S. and Sturdivant, R.X. 2013. Applied Logistic Regression,
3rd Edn. Hokoken, NJ: Wiley.

152 References

Lunn, D., Jackson, C., Best, N., Thomas, A. and Speigelhalter, D. 2013. The BUGS
Book. Boca Raton, FL: Chapman & Hall/CRC.

McGrayne, S.B. 2011. The Theory that Would not Die. New Haven, CT: Yale University
Press.

Morel, G. and Neerchal, N.K. 2012. Overdispersion Models in SAS. Carey, NC: SAS
Publishing.

Rigby, R.A. and Stasinopoulos, D.M. 2005. Generalized additive models for location,
scale and shape, (with discussion). JRSS Applied Statistics 54: 507–554.

Smithson, M. and Merkle, E.C. 2014. Generalized Linear Models for Categorical and
Continuous Limited Dependent Variables. Boca Raton, FL: Chapman & Hall/
CRC.

Weisberg, H.I. 2014. Willful Ignorance. Hoboken, NJ: Wiley.
Youden, W.J. 1950. Index for rating diagnostic tests. Cancer 3: 32–35.
Zuur, A.F. 2012. A Beginner’s Guide to Generalized Additive Models with R. Newburgh,

UK: Highlands Statistics.
Zuur, A.F., Hilbe, J.M. and Ieno, E.M. 2013. A Beginner’s Guide to GLM and GLMM

with R: A Frequentist and Bayesian Perspective of Ecologists. Newburgh, UK:
Highlands Statistics.

Practical Guide to Logistic Regression covers the key points of the basic
logistic regression model and illustrates how to use it properly to model a binary
response variable. This powerful methodology can be used to analyze data from
various fields, including medical and health outcomes research, business analytics
and data science, ecology, fisheries, astronomy, transportation, insurance,
economics, recreation, and sports. By harnessing the capabilities of the logistic
model, analysts can better understand their data, make appropriate predictions
and classifications, and determine the odds of one value of a predictor compared
to another.

Drawing on his many years of teaching logistic regression, using logistic-based
models in research, and writing about the subject, the author focuses on the
most important features of the logistic model. He explains how to construct a
logistic model, interpret coefficients and odds ratios, predict probabilities and
their standard errors based on the model, and evaluate the model as to its fit.
Using a variety of real data examples, mostly from health outcomes, the author
offers a basic step-by-step guide to developing and interpreting observation and
grouped logistic models as well as penalized and exact logistic regression. He
also gives a step-by-step guide to modeling Bayesian logistic regression.

R statistical software is used throughout the book to display the statistical models
while SAS and Stata codes for all examples are included at the end of each
chapter. The example code can be adapted to your own analyses. All the code is
also available on the author’s web site.

Features
• Gives practical guidance on constructing, modeling, interpreting, and

evaluating binary response data using logistic regression
• Explores solutions to common stumbling blocks when using logistic

regression to model data
• Compares Bayesian logistic regression to the traditional frequentist

approach, with R, JAGS, Stata, and SAS codes provided for example
Bayesian logistic models

• Includes complete Stata, SAS, and R codes in the text and on the author’s
website, enabling you to adapt the code as needed and thus make your
modeling tasks easier and more productive

• Provides new R functions and data in the LOGIT package on CRAN

K24999

w w w . c r c p r e s s . c o m

Statistics

Practical G
uid

e to Lo
gistic Regressio

n

Joseph M. Hilbe

H
ilb

e

Practical Guide to
Logistic
Regression

K24999_cover.indd 1 6/8/15 10:06 AM

	Contents
	Preface
	Author
	1 Statistical Models
	1.1 What Is A Statistical Model?
	1.2 Basics Of Logistic Regression Modeling
	1.3 The Bernoulli Distribution
	1.4 Methods Of Estimation
	Sas Code
	Stata Code

	2 Logistic Models: Single Predictor
	2.1 Models With A Binary Predictor
	2.2 Predictions, Probabilities, And Odds Ratios
	2.3 Basic Model Statistics
	2.4 Models With A Categorical Predictor
	2.5 Models With A Continuous Predictor
	2.6 Prediction
	Sas Code
	Stata Code

	3 Logistic Models: Multiple Predictors
	3.1 Selection And Interpretation Of Predictors
	3.2 Statistics In A Logistic Model
	3.3 Information Criterion Tests
	3.4 The Model Fitting Process: Adjusting Standard Errors
	3.5 Risk Factors, Confounders, Effect Modifiers, And Interactions
	Sas Code
	Stata Code

	4 Testing and Fitting a Logistic Model
	4.1 Checking Logistic Model Fit
	4.2 Classification Statistics
	4.3 Hosmer–lemeshow Statistic
	4.4 Models With Unbalanced Data And Perfect Prediction
	4.5 Exact Logistic Regression
	4.6 Modeling Table Data
	Sas Code
	Stata Code

	5 Grouped Logistic Regression
	5.1 The Binomial Probability Distribution Function
	5.2 From Observation To Grouped Data
	5.3 Identifying And Adjusting For Extra Dispersion
	5.4 Modeling And Interpretation Of Grouped Logistic Regression
	5.5 Beta-binomial Regression
	Sas Code
	Stata Code

	6 Bayesian Logistic Regression
	6.1 A Brief Overview Of Bayesian Methodology
	6.2 Examples: Bayesian Logistic Regression
	Sas Code
	Stata Code
	Concluding Comments

	References

