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Preface

Thisisthe second volumeinthe Principlesof Modern Radar series. Whilethefirst volume,
Principles of Modern Radar: Basic Principles provides fundamental discussions of radar
operation, Principles of Modern Radar: Advanced Techniques discusses key aspects of
radar signal processing, waveforms, and other important radar techniques critical to the
performance of current and future radar systems. It will serve as an excellent reference for
the practicing radar engineer or graduate student needing to advance their understanding
of how radar is utilized, managed, and operated.

What this Book Addresses

Modern radar systems are remarkably sophisticated. They can be configured in numerous
ways to accomplish avariety of missions. As aresult, radar is a highly multidisciplinary
field with experts specializing in phenomenol ogy, antenna technology, receivers or trans-
mitters, waveforms, digital design, detection, estimation and imaging agorithms, elec-
tronic protection, tracking, target identification, multi-sensor fusion, systems engineering,
test and eval uation, and concepts of operation. In addition to tremendous advancesin com-
puting technology, atrend is afoot in radar to move the digitization step closer and closer
to the antenna element. This places great emphasis on the importance of the collection
approach, sensor topology, and the particular algorithms and techniques applied to the
incoming data to produce a superior product.

Principles of Modern Radar: Advanced Techniques addresses this aforementioned
trend and the most important aspects of modern radar systems, including quite cur-
rent subtopics. Readers will find modern treatment of multi-input/multi-output (MIMO)
radar, compressive sensing, passive histatic radar, signal processing, and dismount/human
detection via radar. The chapters are organized in five sections: waveforms and spec-
trum, synthetic aperture radar, array processing and interference mitigation techniques,
post-processing considerations, and emerging techniques.

Why this Book was Written

We and radar practitioners are aware of many very fine single subject radar reference
books that build from core principles with in-depth treatment, and most of them are
referenced within this book for further reading. However, we and SciTech felt strongly
that sel ected advanced radar topics could be gathered and organized logically into asingle
volume. Moreover, such a volume could incorporate textbook elements, most notably
problem sets, for use within academic programs and training classes often taught, and
necessarily so, within industry and government. Even practicing engineers engaged in
self-study appreciate logical development of topics and problems with answers to test
their understanding. Very few advanced radar books, however, are written in a textbook
style and include problem sets. The chief impediment to the advanced radar textbook idea

XV
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has always been the unlikelihood of any one, two, or even three authors possessing such
abroad, yet deep, knowledge of, and experience with, so many advanced radar subjects.
We are very proud to say that the chapters in this volume are written by noted expertsin
the radar field, all of whom are active researchers in their areas of expertise and most of
whom are also instructors of short courses for practicing engineers. We are thankful to
each of the contributing authors who share our vision of a long-needed advanced radar
book covering a diverse array of topics in a clear, coherent, and consistent framework.
Their unwavering dedication to quality and content — evidenced by their multiple rewrites
in response to reviews and the volume editors’ suggestions for improvements — inspires
usall.

How the Content was Developed

Each chapter has al so been thoroughly vetted for content and technical accuracy by outside
radar experts who volunteered to take part in SciTech Publishing’'s community review
process. All of the chaptersreceived multiplereviewsat different phasesin the devel opment
cycle, starting with chapter outlines and proceeding through multiple manuscript drafts.
It is most evident that the quality of Principles of Modern Radar: Advanced Techniques
has been tremendously improved by the selfless and enthusiastic work of the volunteer
engineers, scientists, and mathematicians who invested their own time to review book
chapters, sometimes individually and sometimesin related chapter sequences, al to help
develop ahigh quality and long-lasting single source advanced radar book. The reviewers
of the manuscript are gratefully acknowledged and listed by name in later pages of this
opening section.

The History of the POMR Series

It should be no surprisethat organizing and publishing abook of this natureisasignificant
and challenging undertaking. It is an interesting fact that the Principles of Modern Radar
seriesevolved fromtheinitial goal of asinglebook. From early reviewsand the enthusiasm
of chapter contributor candidates, the single book became two: POMR: Basic Principles,
published in early 2010, and the planned “ advanced applications and techniques’, which
then became three. Why? The second volume had grown to over 30 planned chapters,
and it quickly became apparent that we needed to divide the second volume into two
distinct volumes: Advanced Techniques and Radar Applications. Over the past two years,
aschapterswerewritten, reviewed, and revised, Advanced Techniquesedged slightly ahead
in progress and became our primary focus over the past nine months. Principlesof Modern
Radar: Radar Applications therefore follows the issuance of this book.

Acknowledgements

Aseditorsfor thisvolume, we are very grateful to the SciTech Publishing team. We thank
them for their support, professionalism, and certainly their patience. We are especially
appreciativethat the publisher, Dudley Kay, President and Editorial Director, set thehighest
expectations on book quality as his primary goal. Robert Lawless, Production Manager,
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tracked, organized, and refined the many disparate elements to bring them together as
a coherent and consistent whole. Brent Beckley, Sales and Marketing Director, helped
gather and manage the unusually numerous volunteer reviewers as an explicitly stated
“community effort” and consequently understood our content and audience objectives far
in advance of publication.

Most importantly, we are thankful to our familiesfor their patience, love, and support
aswe prepared materials, revised, reviewed, coordinated, and repeated. Thisbook, in part,
represents time away from the ones we love and would not have been possible without
their understanding and willingness to support our passion for engineering.

To our Readers

We hopethereader will enjoy thisbook as much asweenjoyed putting it together. It should
beclearly evident to all that read these pagesthat radar isan exciting, dynamic, and fruitful
discipline. We expect the future of radar holds even more adventure and promise.

Pleasereport errorsand refinements. Weknow from the publication of thefirst volume,
POMR: Basic Principles, that even the most diligently reviewed and edited book is bound
to contain errorsin thefirst printing. It can be frustrating to see such errors persist evenin
many subsequent printings. We have come to appreciate how committed and meticulous
SciTech Publishing is about correcting errors, and even making subtle refinements, with
each printing of the book. So, it remains a“community effort” to catch and correct errors
and improve the book. You may send your suspected errors and suggestions to:

pomr2@scitechpub.com

This email will reach us and SciTech concurrently so we can confer and confirm
the modifications gathered for scheduled reprints. You are always welcome to contact us
individually as well.

Bill Melvin
Georgia Institute of Technology
Atlanta, GA
william.melvin@gtri.gatech.edu

Jim Scheer

Georgia Institute of Technology
Atlanta, GA
jim.scheer@gtri.gatech.edu
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| | INTRODUCTION

Modern radar systems are highly complex, leveraging the latest advances in technology
and relying on sophisticated algorithms and processing techniques to yield exceptional
products. Principals of Modern Radar [1] is the first in a series, covering basic radar
concepts, radar signal characteristics, radar subsystems, and basic radar signal processing.
Thistext isthe second in the series and contains advanced techniques, including the most
recent developments in the radar community. Specifically, much of Principles of Modern
Radar: Advanced Techniques discusses radar signal processing methods essential to the
successof current and futureradar systems. A pplying thesetechniquesmay requirespecific
hardware configurations or radar topologies, as discussed herein.

Principles of Modern Radar: Advanced Techniques focuses on five critical radar
topics:

» Waveformsand spectrum, including advanced pul se compression techniques to pro-
vide high resolution or tailor the compressed waveform’s impulse response; jointly
optimized or adapted transmit waveforms with complementary receive processing;
multi-input, multi-output (MIMO) radar leveraging advances in waveform generation
and multichannel antenna technology; and, compressive sensing.

» Synthetic apertureradar (SAR) theory and processing techniquesfor stripmap, spot-
light, and interferometric modes.

» Array processing and interference mitigation techniques based on multichannel
processing methods, including adaptive digital beamforming (ADBF) for interference
suppression and space-time adaptive processing (STAP) for target detection in clutter,
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as well as space-time coded apertures for mission-tailored beampatterns. Electronic
protection considerations are also broadly discussed in this section.

» Post-processing consider ations, including the application of polarimetry to enhance
the radar product, automatic target recognition, and multitarget tracking.

* Emerging techniques for dismounted personnel target detection and passive radar
processing strategies.

| | RADAR MODES

Radar systemsare designed to detect, |ocate, characterize, and, in some cases, track targets
of interest. Radar applications and specific modes are diverse. For example, radars are
used on aircraft, missiles, satellites, ships, ground vehicles, and tripods. They attempt to
detect, locate, characterize, and possibly track aircraft, missiles, ships, satellites, personnel,
metallic objects, moving ground vehicles, buried objects—even mold growing within
building walls. With such a wide variety of radar platforms and targets, the process of
taxonomizing specific radars and their goalsis adaunting task. However, considering two
primary radar super modes is often genera enough to cover most radar objectives. The
techniquesin this text correspond to one or both of these modes:

» Moving target indication (MTI): the detection, location, characterization, and tracking
of moving objects, such as missiles, aircraft, ground vehicles, and personnel (so-called
dismounts).

* Imaging radar: the high-resolution estimation of the electromagnetic backscatter from
stationary or moving objectsthat yields aspatial image of thetarget in one, two, or even
higher dimensions. One-dimensional images are called high-range resolution (HRR)
profiles, whereas two-dimensional views are called synthetic aperture radar (SAR)
images. When the radar is stationary and the target is moving or when both platforms
aremoving, thecorresponding imaging modeisusually calledinverse synthetic aperture
radar (ISAR).

Inthe MTI mode, dotson adisplay arethe primary radar product. Figure 1-1isan example
of ground target detections on a topographical map obtained via a ground moving target
indication (GMTI) airborne radar mode.

The quality of each dot is a result of the system design and signal processing ap-
plied to the received reflections from target and clutter as well as the system’s ability to
mitigate radio frequency interference (RFI). Radar detection is based on two models, or
hypotheses: the null hypothesis, Hy; and the alternative hypothesis, H;. The null hypoth-
esis presumes the target is not present in the chosen radar data, whereas the aternative
hypothesis correspondsto the case of target signal embedded in interfering signalsconsis-
tent with the null hypothesis (viz., clutter, jamming, other interference, and uncorrelated
noise responses). Each of the signals under the null hypothesis caseis stochastic: the com-
plex envelope of thereturnisderived from aparticular statistical distribution and followsa
certain temporal behavior. For example, the return from agiven clutter patch iscommonly
assumed to have a complex envel ope drawn from a Rayleigh distribution (complex Gaus-
sian voltage) and a voltage response that decorrel ates over time according to aBillingsley
model [2] for an overland collection or Gaussian correlation model over water [3]. Like-
wise, thetarget responseisstochastic. The corresponding H; distribution typically appears
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displacedrelativeto thenull hypothesis condition dueto ashift inthemean but isotherwise
overlapping.

The overlap between the null and alternative hypothesis distributions|eadsto ambigu-
ity in the decision-making process. a decision region (determined by a threshold setting)
corresponding to one model may also lead to a false declaration of the opposite model.
These false declarations are either false alarms (the alternative hypothesisis chosen when
infact no target is present) or missed detections (the null hypothesisis chosen whenin fact
atarget is present). The optimal detector follows from the likelihood ratio test (LRT) and
involves operations on collected radar signals (usually after some preprocessing); a suffi-
cient statistic, ¥ (x), isacanonical detector formulation[4, 5]. dentifying theregion where
sufficient statistic outputs likely correspond to the alternative versus null hypotheses with
a specified Type | error (false alarm rate) requires knowledge of the joint probability dis-
tributions under both hypotheses: py, )+, iSthe probability density function (PDF) for the
null hypothesis, and py, x) 1, iSthe PDF for the alternative hypothesis. The decision region
istypically chosen so that if ¢ (x) > n, where n is the detection threshold, the alternative
hypothesisischosen; otherwise, ¢ (x) < n, correspondsto selection of thenull hypothesis.

Figure 1-2 depictsthe detection process. Theareaunder py )+, to theright of n gives
the probability of detection (Pp), whereas the area under py ) H, to the right of » gives
the probability of false alarm (Pra). As seen from this depiction, the two distributions
overlap, and the only way to increase Pp isto lower  and accept a higher Pga.

Alternately, one might ask if there isa strategy to increase the separation between the
null and alternative hypothesis distributions. Generally, this increased separation can be
achieved via the appropriate exploitation of the radar measurement space, or degrees of
freedom (DoFs), and advanced processing methods like ADBF and STAP. The objective
in exploiting DoFs is to identify a measurement space where the target and interference
(e.g., clutter, jamming) are separable. For example, spatial and fast-time DoFs are used
to efficiently mitigate the impact of wideband noise jamming on the detection of atarget
located in proximity to thejammer, but till at aslightly different angleof arrival. Advanced
processing methods combine the measurement DoFsin the most effective manner possible

FIGURE 1-1 =
GMTI radar
detections (called
dots) shown in local,
plan view co-
ordinates on
topological map as
typically seen from
an airborne
surveillance platform
(after http://en
.wikipedia.org/wiki/
Joint_STARS).
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FIGURE 1-2 = Radar detection involves discriminating between the null (Ho) and alternative
(H1) hypotheses. This figure depicts Hy and H; probability density functions for the sufficient
decision statistic, along with threshold setting, n. The probability of false alarm, Pr4, is the
area under the null hypothesis distribution curve to the right of the threshold, whereas the
probability of detection is the area under the alternative hypothesis curve to the right of .
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to enhance MTI performance. The net objective of DoF selection and advanced processing
methods in MTI radar is to increase the separation of the two distributions in Figure 1-2.
Major sections of this text are devoted to examining these sophisticated techniques of
critical importance to modern radar functionality.

The imaging radar mode typically involves moving the radar through angle while
viewing a stationary target [6, 7]. (In the HRR case, a wideband waveform is used to
characterize the target range response at that particular viewing angle.) As the radar moves
through angle, the range between each of the various scatterers comprising the scene will
vary in a manner consistent with the changing geometry. The changing range results
in a time-varying phase that multiplies a complex gain term proportional to the square
root of the scatterer’s radar cross section (RCS). Each resolvable scattering cell in the
unambiguous region of interest exhibits a unique phase history. Figure 1-3 depicts a SAR
collection geometry, where Lsag 18 the synthetic aperture length, r, is the range from
the aperture reference point to scene center, r(f) is the time-varying range to a scatterer
of interest, v, is the platform velocity in the x-direction, 7 is the independent variable
time, and ¢.(7) is the time-varying cone angle measured from the platform velocity vector
aligned with the x-axis. From this figure, the reader can envision the time variation of r (f)
(or ¢(1)) as the platform moves along the synthetic aperture baseline.
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The received radar signal is the summation of the returns from multiple, resolvable
scattererswithin the scene. (Unresolvabl e scattererswithin each cell add coherently, yield-
ing an effect known as speckle where some distributed scatterer responses appear brighter
than others.) A matched filter designed to the phase history of a specified scattering cell,
appropriately normalized and projected into the ground plane, yields an estimate of the
corresponding RCS.

Figure 1-4 isan example of a1 m spotlight SAR image collected at the M ojave Desert
AirportinCalifornia, USA; thereader will noticefeaturescorresponding totarmac, aircraft
on the tarmac (bright spots on top of the darker regions), aircraft hangars, and fencelines.
This image is plotted in the ground plane, where the x-axis corresponds to cross-range
and the y-axisis downrange.

Precisely constructing the matched filter for each scatterer isreliant on perfect knowl-
edge of the scene geometry, platform attitude, and hardware characteristics as well as
correct assumptions on the scattering behavior (viz., no interaction between scattering
cells consistent with the Born approximation). Errors in this knowledge lead to degraded
image quality. Additionally, applying the precise matched filter can prove computationally
burdensome. SAR a gorithms focus on compensating for certain types of collection errors
and approximating the matched filter to mitigate computational loading. Additional SAR
goals can involve extracting additional information, such as the target height. The theory
of imaging radar and important processing techniques and approaches to enhance image
quality are discussed extensively in this text.

I <] | RADAR AND SYSTEM TOPOLOGIES

Most fiel ded radar systems are monostatic: the transmitter and receiver are col ocated, with
the scattering phenomenol ogy uniquely dependent on the angle of incidence and reflection
being equal. In some cases, there may be the appearance of significant separation between

FIGURE 1-4 =
Spotlight SAR image
of Mojave Desert
Airport at 1 m
resolution, where
bright areas indicate
fence lines, sides of
buildings, and
aircraft on the
tarmac (after [8], ©
2004 IEEE).
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transmitter and receiver, yet the relative separation is small compared with the typical
detection range; the phenomenology is still monostatic in nature. Over-the-horizon radar
(OTHR) isan example of this case. Also, when the transmitter and receiver arelocated on
different parts of an aircraft, thisis considered monostatic.

In the bistatic radar topology [9], the transmitter and receiver are separated a consid-
erable distance such that scattering phenomenology differs from the monostatic case. For
aerospace bistatic systems, the ground clutter spectral characteristics also appear much
more complicated than in the monostatic configuration. Bistatic radars also may be co-
operative or noncooperative. A cooperative bistatic radar controls, manages, or selectsits
source of illumination. In contrast, a noncooperative bistatic radar, sometimes called a
passive bistatic radar, employs transmit sources of opportunity, such as cell towers, tele-
vision and radio transmitters, and other radar systems. While the bistatic radar may not
control its source of illumination, modern radar technology still allows these systems to
apply coherent signal processing methods.

Multistatic radar involves multiple receivers and possibly transmitters. Multistatic
radar provides adiversity of spatial measurements, which can be used to minimize target
fading, improvetarget geolocation [ 10], and possibly enhance target recognition. Because
the multistatic radar can use multipletransmittersand receivers, it issometimes considered
amulti-input, multi-output (MIMO) configuration.

However, thetypical MIM O configuration isusually monostaticin natureand involves
transmitting different, ideally uncorrelated, waveforms from each antenna subaperture.
The ability to coherently transmit different waveforms from each subaperture leads to
spatial diversity on transmit, which effectively leads to a secondary phase modulation
on the received target signal that can potentially improve target location performance.
MIMO radar may also have some advantages for sparse arrays—dealing with timing
and position uncertainty and possibly mitigating spatial ambiguity—and enhancing SAR
coverage rates. Fully adaptive MIMO provides the opportunity for improved detection by
attempting to match the illumination waveform to the target class of interest. MIMO isan
area of current, active research within the radar community, and its benefits are till being
benchmarked.

This text considers monostatic, bistatic, and MIMO radar configurations. Advances
in processing technology and techniques are key enablers for bistatic and MIMO radar
topologies and are also central to significant improvements in monostatic radar perfor-
mance.

| | TOPICS IN ADVANCED TECHNIQUES

This section provides brief commentary on the major contributions of this text.

1.4.1 Waveforms and Spectrum

Pulse compression waveforms are used in radar systems primarily to achieve the range
resolution of a physically shorter pulse width while providing acceptable average power
corresponding to the longer pulse. Low probability of intercept is another consideration.
A number of modulations are available and are intended to provide the most appropriate
ambiguity function for the application at hand. The ambiguity function characterizes the
waveform rangeimpul seresponseanditssensitivity to Doppler modulation. Thewaveform
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resolutionisinversely proportional to the waveform bandwidth. Achieving high resolution
within receiver bandwidth and other hardware constraintsis yet another driving factor.

Chapter 2, “Advanced Pulse Compression Waveform Modulations and Techniques,”
describes in detail three classes of waveforms intended to provide high resolution while
averting receiver bandwidth and/or anal og-to-digital converter (ADC) limitations. These
waveforms include stretch processing, stepped chirped, and stepped frequency. Stretch
processing essentially starts the radar signal processing chain within the analog receive
hardware, beating the incoming waveform with a modulation that converts range delay to
spatial frequency. Thedigital processing stage appliesan ADC operating at alower sample
rate, but fully covering the lower bandwidth spectrum corresponding to a particular range
swath of interest, and a Fourier transform to pulse compress the data. In this case, swath
width istraded for the higher resolution corresponding to the transmit bandwidth. Stepped
chirp is a coherent waveform using a series of chirps of modest bandwidth and pulse
width at offset transmit frequencies. Each chirp istransmitted at a chosen pulse repetition
interval (PRI) and received by aradar front end matched to the chirp bandwidth and center
frequency. The digital signal processor synthesizes a waveform generally corresponding
to the concatenated bandwidth of all the received chirp signals. The stepped chirp ap-
proach thereby alows for very high resolution using radar hardware with much lower
instantaneous bandwidth. Stepped chirp requires increased control over the radar oscilla
tor and timing sequence and amodest increase in processing complexity. The range swath
is limited by the chosen PRI, and target Doppler is another factor limiting performance.
Stepped chirp has application to high resolution SAR systems.

Stepped frequency is also discussed in Chapter 2. The stepped frequency waveformis
amodulation of choice in instrumentation radars. The waveform generator sends a series
of narrowband frequenciesthrough the transmitter for aspecified target viewing angle. The
narrowband receiver collects each frequency and reconstructs a waveform corresponding
to the composite, much higher bandwidth signal. Stepped chirp waveforms are not espe-
cially Doppler tolerant, requiring compensation for any scatterer motion (e.g., turntable
movement). Chapter 2 also covers waveforms of a particular bandwidth whose design or
receive processing tailors the sidelobe response while minimizing signal-to-noise ratio
(SNR) loss. This analysis includes nonlinear frequency modulated (NLFM) waveforms
and mismatched filtering methods. Quadriphase coded waveforms are al'so examined asa
means to manage spectral sidelobes and thus mitigate el ectromagnetic interference (EMI)
among different electronic systems.

For decades, radar systems have applied adaptive signal processing within the receive
signal processing chain. Constant false alarm rate (CFAR) algorithms are the prime ex-
ample: they estimate the ambient disturbance power and then apply athreshold multiplier,
which is afunction of the CFAR method and number of training samples, to set a detec-
tion threshold that ideally leads to a design false alarm rate [11, 12]. ADBF and STAP
are more recent examples, where the signal processor modifies spatial or spatio-temporal
weights in response to changes in the interference or clutter environment in an attempt
to maximize output signal-to-interference-plus-noise ratio (SINR). CFAR, ADBF, and
STAP have improved radar performance immensely. Chapter 3, “Optimal and Adaptive
MIMO Waveform Design,” considers extending the success of adapt-on-receive methods
to the joint adaptation of both transmit and receive characteristics. As mentioned earlier,
radar detection enhancement islargely dependent on choosing the appropriate radar DoFs
and modifying the system response to the changing interference environment to instanta-
neously improve output SINR. Extending thisideato the transmit side suggests modifying
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the waveform frequency, spatial, temporal, and polarimetric features. Chapter 3 discusses
the approach to design jointly optimized transmit waveforms and receive processing to
maximize SINR. The transmit waveform, for example, can be optimized to shape spectral
content to avoid bands where interference is present or to place energy where a specific
target response may be greatest. The adaptation of the transmit waveform can prove chal-
lenging, but in this era of readily available auxiliary data (e.g., map data, information on
building layouts), knowledge-aided pseudo-optimizations may prove quite useful [13].

Chapter 3 generalizes the transmit waveform adaptation over the spatial domain
through the appropriately configured vector formulation to handle MIMO configurations.
The concept of MIMO radar from the system perspective is then discussed in further
detail in Chapter 4, “MIMO Radar.” MIMO radar, as described herein, generally refers
to a monostatic radar with the ability to transmit different waveforms from a number of
antenna subapertures and collect all reflected transmissions with a multichannel receive
array. Unlike Chapter 3, Chapter 4 focuses on deterministic waveforms with ideally low
cross-correlation functions. Moreover, it explores the benefits of the additional phase di-
versity on transmit, which has the potential to enhance the system’s ability to resolve
targetsin angle. The benefits of theseincreased spatial DoFs have application to SAR and
MTI radar: MIMO radar may, under the right circumstances, increase SAR area coverage
rateand | ead to potentially better minimum detectable vel ocity (MDV) for afixed coverage
ratein the MTI mode.

Chapter 5, “Radar Applications of Sparse Reconstruction and Compressed Sensing,”
covers the last topic in the waveforms and spectrum section of this text. The idea behind
compressed sensing theory is that a desired radar signal can be represented relatively
sparsely—with a small number of basis functions—and that this compression can be
achieved or enhanced through the measurement process. As presented in Chapter 5, the
theory of compressed sensing presumes a linear signal model of the formy = Ax +
e, where y is the vector of measurements, A is a matrix whose columns represent the
measurement bases, x is the complex valued signal vector of interest, and e is additive
noise. For example, x may be the vector of complex gain terms proportional to the square
root of thereflectivity values of various points on the earth’ssurface, the columns of A then
represent the unique phase history of each point, andy isthe vector of radar measurements
to be converted into a radar image. Sparse reconstruction is focused on efficiently and
accurately solving for thetrue value of x through regularization. Asemphasized in Chapter
5, sparse reconstruction is not compressed sensing; rather, compressed sensing combines
sparse reconstruction with constraints on the measurement matrix. These constraints are
often satisfied through randomization of the measured signal, for reasons described in
mathematical detail withinthechapter. The benefitsof compressed sensing to modern radar
include the potential to reduce the vast amount of data collected by the radar while still
being ableto generate aproduct comparableto that resulting from Nyquist ssmpled signals.

1.4.2 Synthetic Aperture Radar

SAR systems sample aparticul ar, fixed scene and then employ signal processing methods
to convert the measurements to estimates of the reflectivity of each resolvable pixel of in-
terest. SAR can be applied to remote sensing (e.g., Earth resources management), military
missions, and planetary exploration.

The two primary SAR modes are called stripmap and spotlight. The distinction is a
result of the manner by which dataare collected and processed; otherwise, the objective of
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FIGURE 1-5 = Comparison of stripmap and spotlight SAR collection geometries, where Lsar
is the length of the synthetic aperture, and 6, is the integration angle. In stripmap mode, the
antenna beam “drags” through the scene of interest, whereas in spotlight mode the beam is
continually re-steered to the center of the scene of interest.

each mode (viz., estimate the scene reflectivity) remains the same. Figure 1-5 shows
the basic stripmap and spotlight mode collection geometries. The integration angle, the
angle over which data are collected, is given as 6. SAR systems generally achieve
down-range resolution consistent with the inverse of the transmit waveform bandwidth
and cross-range resolution that is proportional to the ratio of the signal wavelength to
twice the integration angle.

AsFigure 1-5 indicates, the spotlight mode focuses a higher gain beam at a particular
point on the earth’s surface. The beam is steered to the center of the scene as the platform
takes samples over angle. The spotlight mode is the most popular when fine resolution is
needed, since largeintegration angleis possible. Chapter 6, “ Spotlight Synthetic Aperture
Radar,” discusses spotlight imaging and corresponding algorithms. The primary viewpoint
is that collected data represent the Fourier transform of the scene reflectivity. The polar
formatting algorithm is a mainstay of spotlight image formation and is used to compen-
sate for scatterer motion- through- resolution- cells (MTRC). Polar formatting resamples
data collected along radia lines corresponding to each measurement angle onto a two-
dimensiona grid. Essentialy, atwo-dimensional inverse Fourier transform yields aradar
image. Chapter 6 also explores multiplicative noise ratio (MNR), a key SAR metric that
isafunction of quantization noise, integrated sidelobe level, and ambiguity ratio. It varies
as afunction of signal strength in accordance with its constituent elements. Covered in
this chapter also are the impact of phase errors and the most common autofocus methods
used to improve image quality: phase difference autofocus and phase gradient autofocus.
Autofocusis an adaptive method used to enhance image quality.

Stripmap mode and corresponding algorithms are discussed in Chapter 7, “ Strip Map
SAR.” The stripmap mode surveys the passing terrain using a sidelooking collection
geometry. Stripmap mode has important application to large scene imaging for remote
sensing (e.g., to examine deforestation, characteristics of polar ice, etc.). Chapter 7 dis-
cusses stripmap image formation algorithms in a sequence of increasingly sophisticated
methods. The starting point is Doppler beam sharpening (DBS), which forms a range-
Doppler map from the collected data over relatively small integration angle at long range
and exploits the coupling between scatterer angle and Doppler frequency. Unfortunately,
DBS image quality is limited by the occurrence of nonlinear phase as integration angle
increases. Although the phase function is hyperbolic, an azimuth dechirp based nominally
on aquadratic phase assumption is possible. Combining enhancementsin range resolution
withintegration angle, range migration becomesaconcern. DBSperformanceisextensible
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to higher-resolution imaging by introducing range migration compensation and azimuth
dechirp into the signal processing chain. However, higher-quality imagery requires better
approximationsto theindividual point scatterer matched filter. Range-Doppler algorithms
provide responses that more closely correspond to the scatterer point spread response
(PSR), even precisely matching scatterer responses at certain ranges. Depth of focus—the
range swath over which the PSR approximation yields acceptable image quality—is a
primary limitation of such methods. The range migration algorithm (RMA) is presented
as the culmination of the various stripmap SAR imaging formation methods discussed in
this chapter. RMA makes no approximations to the PSR and is computationally efficient;
it isthe method of choice for higher-resolution stripmap imagery.

Interferometric SAR (InSAR or IFSAR) involves coherent exploitation of SAR im-
agery to derive terrain height information. Generally, terrain height is measured using
pairs of SAR complex imagery (or multiple coherent collects) at slightly offset baselines,
as described in Chapter 8, “Interferometric SAR and Coherent Exploitation.” The offset
basdline provides diversity in range measurements as input into the InSAR terrain height
estimation process. INSAR processing involves registration, phase unwrapping, and sev-
eral other stepsto calibrate the pixel height estimate. Airborne and spaceborne radar have
successfully provided digital elevation maps (DEMs) for anumber of years. Chapter 8 also
describes other related techniques involving coherent exploitation of multiple, registered
SAR collections, including coherent change detection and subsidence measurement.

1.4.3 Array Processing and Interference Mitigation Techniques

Section 1.2 suggests that measurement diversity and the ability to adapt to the chang-
ing characteristics of the interference environment are critical to enhanced detection and
imaging performance.

Chapter 9, “Adaptive Digital Beamforming,” introduces the fundamentals of adap-
tive array radar technology. The concept of adapting an array of antennas to suppress
interference dates to the late 1950s—with the work of Howells and Applebaum [14]—
and has formed the basis for much of the field of adaptive signal processing. Advances
in sensor and computing technology in recent years have led to increased emphasis on
ADBF research and development.

Radar systems must provide adequate power-aperture to detect a target of a given
RCS at a specified maximum range. Additionally, the radar must provide a mechanism
to suppress interference and clutter. ADBF is used to suppress directional sources of
RFI. The radar receive antenna design must include multiple spatial channels, which
are used to discriminate the direction of arrival of a propagating electromagnetic wave.
Digita beamforming uses the flexibility of digital signal processing to form multiple,
simultaneous beams; the steering vector used to focus the array of antenna elements in
a given direction corresponds to the spatial matched filter that maximizes output SNR.
When colored noise is present, adapting the elements of the array to tailor the receive
pattern is essential, as the RFl may be many orders of magnitude stronger than the
target signal. ADBF attempts to maximize the array’s output SINR (the “I” indicates
colored noise is present) by weighting array elements using estimates of the interfer-
ence environment. The corresponding adaptive pattern, for example, will show nulls on
sources of RFI—to within the limits of spatial channel availability—while forming a
beam in the desired target direction. ADBF leads to significant performance improve-
ment over the conventional solution when the target and RFI are sufficiently separated
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in space. The required separation at which improvement is possible can be fractions of a
beamwidth.

Chapter 9 comprehensively addresses ADBF theory and practical considerations.
Multiple approaches to adapt the array are given, including the Wiener filter formulation;
the maximum SINR weighting; constrained optimization, including the minimum vari-
ance distortionless response (MVDR) beamformer; the generalized sidelobe canceller,
which is an approach to convert a constrained optimization into unconstrained form; and
derivative and eigenvector constraints. Additionally, this chapter outlines a number of
available approachesto calculate the weight vector in practice, including the batch sample
matrix inverse (SMI) method and iterative methods. Element-level and subarray-based
array architectures are explored, including key challenges associated with grating lobe ef-
fects. Chapter 9 a so describesimportant hardware and computational considerations. The
chapter culminates by describing several important adaptive antenna topologies, such as
the sidelobe and beamspace cancellers, and considers methods for wideband cancellation
based on space- and fast-time or sub-band architectures.

Chapter 10, “Clutter Cancellation Using Space-Time Adaptive Processing,” describes
key issues in two-dimensional adaptive filtering using spatial and slow-time degrees of
freedom to mitigate ground clutter. STAP is a generalization of ADBF techniquesto two
dimensions and is an important technology for aerospace radar searching for targets com-
peting with stationary clutter reflections. This chapter formulates the space-time signal
vector, discusses approachesto characterize space-time signal s, and then devel ops aspace-
time ground clutter model. It is shown that ground clutter exhibits a distinct coupling in
angle and Doppler; the STAP detection strategy isto identify signalswhose angle-Doppler
behavior differs from that of stationary clutter. In this vein, Chapter 10 then explains the
essence of space-time processing, including key performance metrics such as probability
of detection, SINR, SINR loss, and improvement factor. Several space-time adaptive algo-
rithms are described as extensions of their one-dimensional counterparts given in Chap-
ter 9. The chapter then covers STAP architectures, including reduced-dimension STAP
and reduced-rank STAP. The reduced-dimension strategy is the most practical method
of implementing STAP due to significant reduction in computational burden and train-
ing data requirements as well as performance benchmarking closely to the bound set
by the joint-domain, optimal space-time processor. Benchmark results are given in the
chapter using the SINR loss metric. A maximum likelihood estimator of target angle
and Doppler response is given and is shown to integrate closely with the standard STAP
solution. The chapter concludes with a summary of an end-to-end detection architec-
ture and the practical issues of nonstationary or heterogeneous clutter impacts on STAP
implementation.

Itisimportant to point out that both ADBF and STAP exhibit super-resol ution perfor-
mance: they have the ability to null signals to within a fraction of a beamwidth, thereby
providing acceptable performance even when the interference or competing clutter are
within the mainlobe of the target beam. This makes them important in radar system de-
sign trades, where advanced signal processing coupled with modest size aperture replaces
large, costly, conventional antenna systems.

Chapter 11, * Space-Time Coding for Active Antenna Systems,” describes space-time
coding for multichannel arrays. This chapter primarily focuses on several limitations of
the traditional approach to antenna transmit and receive—such as beamshape conflicts
for multiple mission performance—and considers the flexibility afforded by transmitting
different waveformsthrough separate spatial channels. In this sense, Chapter 11 combines

11
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key MIMO elements of Chapters 3 and 4; however, itisuniquein that it primarily focuses
onarray designissuesinmoredetail thanthe prior chaptersand providesseveral additional,
practical applications. Moreover, this chapter looks at several waveform selectionsdistinct
from Chapter 4 and assesses their impact on array performance.

Chapter 12, “Electronic Protection,” discusses general strategies to protect the radar
system from hostile denial or manipulation of the el ectromagneti c spectrum. It commences
with detailed discussion of the two foremost classes of electronic attack (EA): noncoher-
ent, or noise, jamming; and coherent jamming. A noncoherent jammer degrades radar
sensitivity by injecting a noise-like waveform into the radar receiver; depending on the
jammer configuration, the basic goal is to deny either the radar detection or range. A co-
herent jammer receives, delays, modulates, and retransmits the radar waveform; this EA
approach takes advantage of radar signal processing gain, thusallowing the EA designer to
employ much lower effective radiated power (ERP) than in the noncoherent jamming case.
Coherent EA goals include masking and deception. A number of jammer deployments
(e.g., stand-in, escort, distributed) are possible for both classes of jamming. Critical jam-
mer formulae are subsequently given in Chapter 12. After the nature of EA is delineated,
the goals and features of electronic protection (EP) are then comprehensively discussed.
EP takes place throughout the radar implementation and can include the use of waveform
diversity, low sidelobe or adaptive receive antenna designs, specialized signal processing
methods, specific hardware designs, and variable radar concepts of operation (CONOPs).
The EP attempts to deny the EA, including its electronic support (ES), key information
needed to maximize effectiveness (e.g., operating frequency or waveform modulation) or
to make the radar robust to the jamming signal (e.g., high dynamic range, adaptive jam-
mer cancellation). The most effective EP methods are anticipatory, staying ahead of the
deployed EA technique and thus minimizing degradation to the radar product in spectrally
contested el ectromagnetic environments. Chapter 12 comprehensively discusses a variety
of EP techniques. Adaptive digital beamforming, described in Chapter 9, is but one of
many EPs; detailed understanding of ADBF from Chapter 9 is useful in comprehending
aspects of the broad EP vantage of Chapter 12.

1.4.4 Post-Processing Considerations

Radar post-processing involves estimating target parameters, such as angle and range
rate; placing the target in track; and determining the target class or specific features. Of-
tentimes, angle and Doppler estimation is considered part of the front-end radar signal
processing, since it closely integrates with the antenna design and these parameter esti-
mates may be used to mitigate false alarms (e.g., the processor may excise a detection
if the corresponding angle-Doppler response is too close to the clutter ridge [13, 15]).
In typical, modern radar design, the post-processor ingests target detections and parame-
ters and tracks the target trgjectory or accepts complex range profiles, SAR imagery, and
Doppler spectrato automatically recognize the target type. This section is primarily fo-
cused on automatic target recognition (ATR) and multi-target tracking. Radar polarimetry
isalso discussed in this part of the text, as ATR serves as a primary driver of polarimetric
diversity.

Chapter 13, “Introduction to Radar Polarimetry,” discussesthe polarimetric properties
of propagating waves and their interactions with radar targets. Key concepts include the
various forms of linear, circular, and elliptical polarization and the polarization scattering
matrix (PSM). The PSM is a complete description of the scattering object’s polarimetric
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properties and is an important consideration in ATR, remote sensing, and system design
to mitigate certain classes of clutter and interference.

A primer on target identification is given in Chapter 14, “Automatic Target Recogni-
tion.” Here a unified framework is given for ATR involving the following four steps:

* ldentify the target set of interest.
» Select the feature set to enhance the probability of correct classification.

» Observe the feature set, which involves collecting the appropriate measurements to
enhance target identification.

» Test the measurements for those features corresponding to a particular target or target
class.

Example target features might include a specific engine modulation encoded onto
the Doppler signature or a specific combination of target bright spots and polarimetric
behavior in complex SAR imagery. Different target sets must exhibit different features
in the measurement domain if the processor is to achieve acceptable target recognition
performance. Theradar employsavariety of strategiesto collect measurementsappropriate
to separate the features of one type of target or class from another. HRR profiles, for
example, measure the range response of the target and might uncover a specific distance
between two dominant scatterers unique to that target class; fully polarimetric, complex
SAR imagery encodes a number of details about the target that the processor correlates
with library templates, where the shortest deterministic or statistical distance leads to a
particular target declaration. And, assuggested earlier, the Doppler spectrum of anairborne
target may disclose characteristics of aparticular engine construction, hence revealing the
target class. Chapter 14 considers each of these unified stepsin extensive detail.

After atarget has been detected, target parameter measurements—typically of target
range, velocity, and angle—are assembled into tracks. The measurements are sometimes
called dots, as they instantaneously appear as such on an operator display. The accuracy
of each measurement is affected by the radar system design, target characteristics and ge-
ometry, and other environmental considerations such as clutter and interferenceresidue. A
challengingissueintarget tracking ishandling multiple, closely spaced targets. Chapter 15,
“Multitarget, Multisensor Tracking,” discussesthisimportant radar topicin detail. It intro-
ducesfundamental track concepts, including the interpretation of the track covariance and
measurement-to-track association concepts. Track filtering involves propagating the state
forward in time and then updating the state with a new measurement after the association
step. The extended Kalman filter (EKF) is one track filtering method detailed in the early
sectionsof the chapter. One of itslimitationsisthat it appliesthe same propagation function
to al targets, which may not be applicable to the multitarget environment. The multiple-
hypothesis tracker (MHT) is used in multitarget tracking scenarios due to its ability to
mitigate measurement-to-track association ambiguity; a significant portion of Chapter 15
isdevoted to developingthe MHT. Also, theinteracting multiplemodel (IMM) isdescribed
asaway to mitigate mismatch between the presumed and actual target dynamical behavior.
Thischapter also covers multisensor tracking, which sometimesisalso called track fusion.

1.4.5 Emerging Techniques

As aresult of the maturation of subsystem technology—especially antenna and comput-
ing capability—the class of targets of interest in air-to-ground radar has quickly evolved
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from large collections of vehicles to single large vehicles to personal conveyance to dis-
mounts. Dismounts, as the name suggests, are walking or running humans. Chapter 16,
“Human Detection with Radar: Dismount Detection,” explores methodsto detect and char-
acterize human targets. It first develops a time-varying, human RCS model. This model
approximates the target response as the superposition of the returns from the head, torso,
upper and lower arms, and upper and lower legs. The Thalman model characterizes tar-
get locomotion. The corresponding spectrogram of the dismount target is quite unique,
exhibiting a time-varying sinusoidal Doppler response corresponding to the torso, with
distinct, semiperiodic responses resulting from appendage reflections. The challenging
aspect of the dismount response isthat it is generally weak compared with typical ground
vehicles. Moreover, the response time variation suggests that traditional approaches to
pulse integration are not viable: as the energy smears over Doppler, a single Doppler
hypothesisis inappropriate. On the positive side, though, the uniqueness of the dismount
response is exploitable: the key isto employ model-based matched filters that search for
plausible dismount returns in the collected radar measurements. Considering all possible
dismount responsesis a combinatorial challenge. Chapter 16 discusses practical matched
filter strategies based on efficiently estimating dismount model parameters, which is ex-
tensible to dictionary-based approaches, such as orthogonal matching pursuit.

Passivebistatic radar (PBR), or passive coherent radar (PCR) asitissometimescalled,
involves exploiting transmitters of opportunity—such as those on cell phone towers, car-
ried by satellites, and used for direct broadcast communications—and, generally, lower-
cost receivers to detect moving targets or image fixed scenes. The vast improvements in
digital signal processing technology serve asthe enabler for PCR. Chapter 17, “Advanced
Processing Methods for Passive Bistatic Radar Systems,” discusses such PBR signal pro-
cessing strategies. These primary steps include beamforming the reference channel and
surveillance channel, mitigating clutter and interference, match filtering the surveillance
channel usingwaveforminformationinthereferencechannel, and then forming and thresh-
olding arange-Doppler map. System performance is determined by a number of factors,
including the two-dimensional cross-correlation function (viz., the ambiguity function)
for the passive waveform. This topic is considered at length, along with comprehensive
discussion of practical PBR processing strategies and issues.

| | COMMENTS

This text is generally organized by technical area, as described in Section 1.1 and sum-
marized in Table 1-1, covering a number of contemporary topics. The topics primarily
emphasize processing techniques that tend to serve as critical driversin enhancing radar
performancewhen combined with the appropriate measurement DoFs. M easurement DoFs
set the physical limit on agorithm performance; the separation of target features, clut-
ter response, and interference in the measurement domain is key to improved detection,
estimation, and identification performance, thereby ultimately yielding better tracking ca-
pability. Electronic protection expands on the idea of exploiting measurement DoFsto all
aspects of the radar design to provide resilience to electronic attack.

As seen from Table 1-1, this text broadly covers the most important, current, and
emerging radar techniques. In this regard, Principles of Modern Radar: Advanced Tech-
niques will serve as an invaluable reference for the student and radar practitioner.
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TABLE 1-1 = Summary of Text Organization by Technical Area and Chapter

Technical Area Chapters Topics

Waveforms and spectrum 2,3,4,5 Advanced pulse compression, MIMO
techniques, compressive sensing

Synthetic aperture radar 6,7,8 Stripmap SAR, spotlight SAR,

(SAR) interferometric SAR, imaging or coherent
exploitation algorithms

Array processing and 9, 10,11, 12 Adaptive digital beamforming, space-time

interference mitigation adaptive processing for clutter mitigation,

techniques space-time MIMO coded apertures for
multimode radar, electronic protection

Post-processing 13,14, 15 Polarimetry, automatic target recognition,

considerations multitarget and multisensor tracking

Emerging techniques 16, 17 Human or dismount detection and

characterization, passive bistatic radar
processing methods

Each chapter ends with problem sets the interested reader may elect to solve. While

a number of these may be solved in a traditional sense with pen and paper, many aso
requirethe use of MATLAB or ancther suitable programming language. With an emphasis
on processing techniques, the best strategy to master the material herein is the hands-on
approach.
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| | INTRODUCTION

This chapter surveys some of the more advanced pul se compression (PC) waveform mod-
ulations and techniques applied in modern radar systems, including stretch processing,
stepped chirp waveforms, nonlinear frequency modulated (NLFM) waveforms, stepped
frequency (SF) waveforms, quadriphase codes, and mismatched filters (MMFs) applied
to phase codes. Fundamentals of phase and frequency modulated PC waveforms are
coveredin[1].

In high range resolution systems, the waveform’s instantaneous bandwidth places
challenging requirements on the transmit/receive hardware and the signal processor.
Stretch processing [2—6] is applied to a wideband linear frequency modulated (LFM)
waveform to reduce the requirements levied on the analog-to-digital converter (ADC),
data bus, and signal processor while maintaining the range resolution afforded by the
transmit bandwidth.

Waveforms composed of narrowband pul sesare used to accommodate bandwi dth con-
straintsimposed by hardware or processing limitations; however, in these instantaneously
narrowband systems, fine range resol ution may be achieved through interpul se frequency
modulation. Waveforms exhibiting these properties include stepped chirp [7—15] and SF
[16-18] waveforms.
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LFM waveforms|[1] exhibit unique properties that are advantageousin many systems
and applications; however, a shortcoming is high range sidelobes. Amplitude tapers are
applied to reduce the sidelobes at the expense of degraded resolution and alossin asignal-
to-noiseratio (SNR). NLFM waveforms [19-26] achieve low-range sidelobes without the
need to apply an amplitude taper and without the corresponding lossin SNR.

The spectrum of a phase-coded waveform composed of rectangular-shaped chips
exhibits significant energy outside the nominal waveform bandwidth [1]. The out-of-band
energy isasource of electromagnetic interference (EMI). Quadriphase codes [27-31] are
designed to reduce the spectral energy outside the passband while maintaining good range
sidel obe performance and a near constant envel ope.

A matched filter is commonly applied to a phase-coded waveform. The sidelobes of
the range compressed response are thus governed by the code. However, in some cases, a
mismatched filter [32—-35] is used to further reduce or shape the response.

2.1.1 Organization

The chapter begins with an examination of stretch processing, which is used to reduce the
sampling rate required in fine range resolution systems employing LFM waveforms. The
technique is examined in Section 2 as well as performance metrics including data rate
and throughput, range resolution, range window extent, processing gain, range-Doppler
coupling, and sidelobes.

In Section 3, the stepped chirp waveform is explored as an alternative wideband LFM
waveform with reduced transmit and receiveintrapul se bandwidth requirements. The mul-
tiple pulse waveform and receiver architecture as well astechniques for stitching together
the compositewaveformwithin the signal processor aredescribed. Thewaveformisshown
to achieve a range resolution commensurate with the composite waveform bandwidth.

NLFM waveforms achieve low sidelobes via frequency modulation and avoid the
SNR loss associated with applying an amplitude taper. Approaches for designing and
synthesizing NLFM waveforms are examined in Section 4. In addition, examples are used
to demonstrate achieved sidel obe performance and Doppler intolerance.

Stepped frequency waveforms are presented in Section 5 as signals composed of
narrowband pulses, each with a different transmit center frequency, that are combined
coherently to achieve fine range resolution. Processing steps, achieved range resolution,
and waveform trades are explored.

Advanced phase code modulations and techniques are also examined. Quadriphase
encoding is presented in Section 6 as a transformation applied to a biphase code to reduce
the waveform'’s spectral sidebands while preserving its range sidelobe performance. The
lower sidebandsreduce EMI. Mismatched filtersare applied in Section 7 to reduceor tailor
the sidel obe response of aphase-coded waveform. Sidel obe performance, processing loss,
and Doppler tolerance are investigated.

2.1.2 Key Points
Important concepts devel oped throughout the chapter are summarized as follows:

» Stretch processing is atechnique applied to a wideband LFM waveform to reduce the
required processing bandwidth while maintaining the range resolution afforded by the
transmit bandwidth.



2.1 | Introduction

Stretch processing isapplied in many high-resolution systemsincluding synthetic aper-
ture radars (SARS).

A stepped chirp waveform consists of several LFM pulses that are shifted in frequency
by a constant offset. The waveform provides a reduction in instantaneous bandwidth
on both transmit and receive.

The stepped chirp waveform is sampled at the single pulse bandwidth and is recon-
structed in the signal processor to achieve a range resolution commensurate with the
composite waveform bandwidth.

NLFM waveforms employ frequency modulation to shape the spectrum and thereby
reduce the range sidelobes. These waveforms do not require an amplitude taper as
commonly used with an LFM waveform and thus avoid the associated SNR |oss.

NLFM waveforms are less Doppler tolerant than their LFM counterparts.

Stepped frequency waveforms achieve alow instantaneous bandwidth on both transmit
and receive. These narrowband signals are used to lessen hardware and processor
requirements. Fine range resolution is achieved by stepping the frequency of each
pulse to create a synthetic wideband waveform.

An SF waveform is transmitted over a relatively long time interval, thus limiting its
application; however, SF waveforms are used in some wideband instrumentation radar
systems.

Quadriphase codes exhibit low spectral sidelobes and thus help to mitigate EMI.

Quadriphase codes are created by transforming a biphase code into a four-phase code
and applying a subpulse with a half-cosine shape. The subpulses overlap creating a
nearly constant envelope.

Mismatched filters may be designed and applied to phase codesto reducetheintegrated
and peak sidelobe responses with minimal loss in SNR. Mismatched filters may also
be used to intentionally shape the sidel obe response.

The performance of mismatched filtersis sensitive to uncompensated Doppler shifts.

2.1.3 Notation

2.1.3.1 Common Variables
Variables used throughout the chapter are as follows:

t
J
T
fo
Q
c
T
tq
Fs
w

time

V-1

3.14159265. ..

transmit center frequency

frequency in radians per second

speed of light

pulse length

time delay associated with a point target
analog-to-digital converter sampling rate
frequency in radians per sample
analog-to-digital converter sampling period
Doppler shift

Af  frequency step size
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T pulse repetition interval

tqe  group delay
SR rangeresolution
AR range window extent

2.1.3.2 Stretch Processing
Variables associated with stretch processing are as follows:

X (1) transmit waveform

f1 center frequency of first oscillator

B LFM waveform’s swept bandwidth

01 phase of the first local oscillator

f2 center frequency of the second oscillator

0, phase of the second local oscillator

LO,ix  second oscillator signal used to synthesize transmit signal

trew time delay on receive, referenced to the center of the range window

LO1,c, first oscillator signal applied on receive
LO,c, Second oscillator signal applied on receive
X (t) received signal

y () received signal after mixer stages

Aty time delay relative to the center of the range window
10 residual video phase

0 composite phase after deramp operation

fb beat frequency

Y () spectrum of the deramped signal
Ym (R2)  spectrum magnitude

d d=—1(1—-|Atyl/7)

Qpeak location of sinc’s main lobe peak

Qnull location of sinc’sfirst null

5Q difference between Qpeax and Q) in radians per second
5f difference between Qpeax and Qpyi in hertz

Sty time-delay resolution

NRss Signal-to-noiseratio loss

Aty time duration associated with a range window
Br low-pass filter bandwidth

Y (w) spectrum of the sampled signal

y (n) sampled received signa

n sample index

N number of samples collected from a single point scatterer
Ym (w)  magnitude of the spectrum

Ar range delay relative to the center of the range window

Sw Rayleigh resolution in radians per sample

k discrete Fourier transform (DFT) bin index

Y (k) discrete Fourier transform

M discrete Fourier transform size

Nnoise ~ Number of samples containing thermal noise collected
over the receive window
NRg signal-to-noise ratio using a filter with bandwidth g
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signal-to-noise ratio at the output of afilter with bandwidth B
signal-to-noise ratio at the output of the DFT

freguency in hertz

beat frequency including Doppler shift

time delay offset associated with range-Doppler coupling

2.1.3.3 Stepped Chirp Waveforms
Variables associated with stepped chirp waveforms are as follows:

B

Nsc

n

Xtx (1)
B

Bsc
Xrey (1)
LOrc (1)
Xgg (1)
p

Xgg (M)
m

Te

Yn (M)
Yn (M)
Zy (M)
®n
z(m)
X ()
X ()
X* (w)
Yn (@)
SforT
k

K

P

LFM intrapulse swept bandwidth

number of pulses comprising a stepped chirp waveform

pulse index

transmit waveform

single-pul se bandwidth

stepped chirp waveform’s composite bandwidth

received waveform

local oscillator signal applied to received waveform

received waveform mixed to baseband

new pulse index

sampled received waveform

sample index

time interval supporting the pulse width and receive window
samples collected from the n-th pulse

interpolated signal associated with the n-th pulse

output of the digital mixer operation associated with the n-th pulse
phase correction applied to the n-th pulse

frequency shifted, phase corrected, and time-aligned stepped chirp waveform
DTFT of the n-th received pulse

DTFT of asampled baseband LFM waveform

spectrum of the matched filter

spectrum of the n-th pulse having applied a matched filter on receive
DFT binsize

DFT bin index

length of DFT

an integer

2.1.3.4 Nonlinear Frequency Modulated Waveforms
Variables associated with NFLM waveforms are as follows:

X (t)
a)

¢ (1)

X (Q)

| X (2)]
0 (£2)
B

W (Q)
h

notional waveform

waveform’s time-domain amplitude response

waveform’s time-domain phase response

waveform’s spectrum

magnitude of the spectrum

spectrum phase

bandwidth over which the waveform’s frequency is swept

cosine on a pedestal weighting function defined in the frequency domain
parameter associated with cosine on a pedestal tapers
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Whayior (€2)  Taylor weighting function defined in the frequency domain

Fm

Taylor coefficients

Taylor coefficient index

n-bar used to define a Taylor weighting function

peak sidelobe ratio

average term in Fourier series

Fourier series coefficient for even signals

Fourier series coefficient for odd signals

fundamental frequency associated with a periodic signal

2.1.3.5 Stepped Frequency Waveforms
Variables associated with SF waveforms as follows:

N

Ro

0

n

A6

X (n)
X (w)
WR,
R

Sw
wk
R«

X (k)
k

M

Rgate
L

Ra

X (n)
Vst

I shift
'spread
I'spread
v

~

v
Xcorrect

number of pulses

range to a stationary point target

measured phase

pulse index

phase difference between two pulses

sample collected from the n-th pulse

DTFT of sampled returns

frequency in radians per sample; corresponds to the target’s range
range

Rayleigh resolution in radians per sample

k-th discrete frequency

k-th discrete range

discrete Fourier transform

DFT bin index

size of DFT

location of range gate

physical length of atarget

ambiguous range

samples containing a Doppler shift

displacement in range due to a Doppler shift
normalized range displacement due to a Doppler shift
spread in range due to a Doppler shift

normalized range spread due to a Doppler shift

radial velocity

estimate of radial velocity

correction factor applied to compensate for a Doppler shift

2.1.3.6 Quadriphase Codes
Variables associated with quadriphase codes are as follows:

Cn

On

S

N
p)

Tc

biphase code indexed by n

guadriphase code generated from parent biphase code
avariable having avalue of 1 or -1

length of biphase code

subpul se envelope

subpulse width of a biphase code
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¢ (t)
y (t)
P (22
m(t)
QBR
a
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complex signal formed by the quadriphase transformation

envelope or magnitude of z (t)

phase of z (t)

quadriphase code transmitted by a radar and centered at baseband
) spectrum of the half-cosine subpulse

autocorrelation of half-cosine subpulse

ratio of quadriphase to biphase peak sidelobe

peak sidelobe of biphase code

2.1.3.7 Mismatched Filters
Variables associated with mismatched filters are as follows;

Ck

ES2eINOKMP LRSI ZIINRT

elements of a biphase or polyphase code indexed by k

phase code element index

length of the phase code

coefficients associated with an M length finite impulse response filter
filter coefficient index

length of filter

output having applied a mismatched filter to a phase code

n-th output sample index

desired mismatch filtered response

error signal or difference between desired response and actual response
sum of the squared error

column vector containing the filtered response

matrix containing shifted copies of the phase code

column vector containing the mismatched filter

Hermitian operator

column vector containing the desired response

weighting matrix

an element of the weighting matrix

2.1.4 Acronyms

Acro

nyms used in this chapter are as follows:

ADC analog-to-digital converter

BTQ

bi phase-to-quadriphase

COHO coherent oscillator

Cw
DFT

continuous wave
discrete Fourier transform

DTFT  discrete time Fourier transform

EMI

electromagnetic interference

ENOB effective number of bits

FD
FFT

frequency domain
fast Fourier transform

FMCW frequency modulated continuous wave

FSK

frequency shift keying

HRR high-resolution range

IF

intermediate frequency
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ISR integrated sidelobe ratio
LFM linear frequency modulated
LPG lossin processing gain

LS least squares

MF matched filter

MISR  minimum integrated sidelobe ratio
MMF  mismatched filter

MPS  minimum peak sidelobe
MSK  minimum shift keying
NLFM  nonlinear frequency modulated
PC pulse compression

PRF pulse repetition frequency
PRI pulse repetition interval

PSP principle of stationary phase
PSR peak sidelobe ratio

RF radio frequency

SAR  synthetic aperture radar
SNR  signal-to-noiseratio

SF stepped freguency

TD time domain

WLS  weighted least squares

| | STRETCH PROCESSING

2.2.1 Introduction

Radar systemsemploy fineresolution when forming atarget’srange profile. These systems
are, by nature, wideband given that range resolution isinversely proportional to waveform
bandwidth [1]. Resolutions on the order of a half foot or less are common, requiring a
1 GHz or greater bandwidth. Designing and building hardware to support instantaneous
(i.e., intrapulse) wideband waveforms is challenging.

Stretch processing [2—6] isatechnique applied to an LFM waveform [1] to reduce the
bandwidth requiredto processthesignal (i.e., processing bandwidth) whilemaintaining the
range resol ution afforded by the waveform’stransmit bandwidth. The system’s processing
bandwidth is defined by the ADC'’s sampling rate. SARs and other fine range resolution
systems often employ stretch processing.

2.2.2 Processing Bandwidth

ADCsarerequired to sample at arate equal to or greater than the waveform bandwidth to
satisfy the Nyquist criteria, and even higher rates are needed to support direct intermediate
frequency (IF) sampling [36]. Technology places constraints on the achievable sampling
rate and effective number of bits (ENOB) [37-39]. Asthe sampling rate isincreased, the
trend is toward lower ENOB. An ADC’s ENOB affects the radar’s dynamic range and
guantization noise. Thus, both the ADC’s sampling rate and ENOB are considered when
selecting adevice.
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The data bus and signal processor’s requirements are driven by the data rate and the
number of samples collected per pulse. The minimum number of samplesis equal to the
waveform’ stime—bandwidth product. For pul se compression waveforms, time—bandwidth
products range from 2 to 1,000,000 or even greater. For an LFM waveformwith a10 psec
pulsewidth and a1 GHz bandwidth, the minimum number of samplesto process per pulse
is 10,000. The data bus and signal processor must be sized to transfer and process large
guantities of datain real time, which may be achallenge. Stretch processing reduces both
the data rate and number of samples to process while maintaining the range resolution
afforded by the transmit bandwidth.

2.2.3 Technique Overview

Caputi [2] developed the stretch processing technique, which converts a received LFM
pulse into a tone whose frequency is fixed and is proportional to the target’s time delay.
A filter with a passband |ess than the waveform’s bandwidth is used to limit the range of
frequencies passed to the ADC. Limiting the processing bandwidth constrains the range
of observable time delays or, equivalently, the size of the range window. In general, the
constraint or limitation placed on the range window is acceptable when thereisknowledge
of the distanceto thetarget or areato beimaged. For example, a missile defense radar may
employ stretch processing to image atarget that is already under track. In a SAR system,
the size and location of the areato be imaged is known. The samples at the output of the
ADC are processed using a discrete Fourier transform (DFT) that compresses the returns
in range. The range resolution at the output of the DFT is inversely proportional to the
transmit bandwidth and is not limited by the reduced ADC sampling rate.

2.2.4 Implementation

Stretch processing is uniquely associated with an LFM waveform and isimplemented in
both pulsed and frequency modulated continuous wave (FMCW) radar systems. In this
chapter, the focusis placed on pulsed systems. A modern implementation consists of the
following:

1. Thetransmission of awideband, linear frequency modulated waveform

2. A mixing operation on receive that converts the received waveform into a set of tones
with frequencies proportional to the relative time delay between scatterers

3. A filter following the mixer to limit the highest frequency passed to the ADC
4. An ADC sampling at arate proportional to the filter bandwidth
5. A DFT to compress the received waveform

Each step is examined in the following sections.

2.2.4.1 Transmit Waveform
Consider an LFM waveform, centered at an IF, fq,

2
x(t):cos<2nf1t+né <t—%> +91) O<t<rt (2.0)
T

where g is the bandwidth over which the waveform is swept, t is the pulse length, and
0, is the phase of the oscillator used to generate f;. Approaches for synthesizing an
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LFM waveform include the use of a voltage-controlled oscillator or a digital waveform
generator. In this example, a heterodyne transmit/receive architecture with two mixer
stages is employed. A homodyne (single-stage) receiver or a heterodyne receiver with
more than two stages may also be used.

On transmit, the IF signal is mixed to an RF using a second oscillator, which is

LOy i =cos(2rfot +6,) t>0 (2.2)

and is mixed with the signal in equation (1) to produce

2
X(t) = cos <2n(f1+ fo)t +né (t - %) +91+02> O<t<rt (2.3)
T

with the lower sideband removed viafiltering and the result scaled to unit amplitude. The
signal is now centered at an RF fo = f; + f,. The transmit signal propagates through
space and is reflected by targets and clutter.

2.2.4.2 Receiver

In a pulsed system, the receive action is timed to coincide with a specific time delay tycy,
which is referenced to the center of the range window. Signals reflected toward the radar
are mixed on receive with a copy of the transmit modulation. Consider the return from a
point target located at time delay tq

2
X,»(t)=COS<27T(f1+ fz)(t—td)-i-ﬂé ((t— %) —td> +91+92> g<t<tg+r
T

24
Thefirst receive oscillator consists of anintermediate frequency, f,, and alinear frequency
modulated component that matches the transmit waveform

2
LOlerv = COS (27'[f2t + j‘[é ((t — %) - trc,)) + 92) ter S t S ter + T (2.5)
T

The output of the first mixer is

y(t) = cos (271 f(t —tyg) — 2 foty + ng (—2 <t — %) (tg — trey) + (t§ — t,zcv)) + 91>

(2.6)

wheretc, <t < (tcp + T — tg) for atime delay less than or equal to the center of the
receive window, (i.e, trcy, — 7 < tg < tie), andty <t < (t + 1) for atime delay
greater than or equa to the center of the receive window, (i.e, trc, < tg < trc, + 7).
The upper sideband associated with the mixer output is removed via filtering, and the
signal is centered at an IF f;. Note that the amplitude of the return, which is dependent
on the target’s RCS and radar parameters, is suppressed to simplify the expressions. The
stretch processor is linear; thus, the following analysis applies equally to a superposition
of returns from targets at different delays.

Thesignal andtiming relationshipsareillustrated in Figure 2-1. Thereceive oscillator,
in Figure 2-1, is centered at RF for illustrative purposes. The homodyne representation is
easier to depict and yields equivalent baseband results. The receive oscillator isturned on
attimet;c,. Thereturnsfrom two targets are present at timedelaystq, and ty, respectively.
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The signal in equation (2.6) is moved to baseband by mixing it with a second receive
oscillator

LOs,ey =cosQufit +6;) t>0 @.7)
The mixing operation produces
T
y(t) = cos (—2;: (fi+ o)t +7r§ (—2 (z - ;) (ta —trer) + (7 — t}cv)» (2.8)
where trey <t < (v +T—tg) fortey — 1 <ty < tyand ty <t <ty + 7 for
trey <tg < tpey +T.
To simplify the expression, let Aty = ty—t,c, and ¢ = 7B/t (17 — t2.,). The quadratic

phase, ¢, is known as the residual video phase (RVP) and is a potential source of blurring
in SAR imagery [40]. Making the proposed substitutions, equation (2.8) reduces to

y(t) = cos (—27: (i + ) ta +n§ (—2 (t - %) Atd> i ¢) (2.9)
Arranging terms yields
y(t) = cos (—2néAtdt —2n(fi + fo)ta + Zngtd + go) (2.10)
z

Grouping the constant phase terms, let 8 = =27 (f1 + f2)ta + 27w B/2A14 + ¢. Equation
(2.10) reduces to

y(t) = cos <2n§Atdt — 9) (2.11)

where lrcv =1 < (trcv T td) for (frev —7) S lg S Ly and <t =< (trcv + 7) for
trey < ta < (ter + 7). The change of the argument’s sign in equation (2.11) is valid since
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FIGURE 2-1 = With
stretch processing,
the radar mixes
received waveforms
with a copy of the
transmit modulation.
The receive
oscillator is turned
on at a time delay
corresponding to the
center of the range
window.
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FIGURE 2-2 =
Mixing the receive
signal with the local
oscillator produces a
tone or beat
frequency
proportional to the
relative time delay
between the target
and the center of the
range window.
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the cosine is an even function. Mixing the received signal with a copy of the transmit
modulation produces a sinusoid in equation (2.11) with beat frequency

B

fo=—Au (2.12)

As illustrated in Figure 2-2, the beat frequency represents the difference in instantaneous
frequency between the oscillator ramp and the received signal. The process of converting
an LFM waveform into a sinusoid via the mixing operation is referred to as deramping.

The processor measures time relative to the center of the range window. One may
compute absolute time delay by adding the time delay associated with center of the range
window, as measured via the system’s reference clock, to the time delay measured by the
stretch processor. In this architecture, the receiver is designed to limit the processed time
delays such that Af; < 7 and thus f; < B. The approach and reason for limiting the
processed time delay is discussed in Section 2.2.4.8.

2.2.4.3 Processor Architecture

The receiver and signal processor components are depicted in Figure 2-3. The beat fre-
quency is generated in the first mixer stage and includes a frequency offset, f;. The signal
is then mixed to baseband using a coherent detector. The coherent detector, consisting
of in-phase and quadrature channels, provides a means for distinguishing returns from
scatterers located at time delays less than #,., from those located at time delays greater
than f,,. The analytical representation of the baseband signal is

y(t) = exp (j (anAtdt = 9))

where frey <t < (frep +7T —tg) fOortrey — v < tg < tipandty <1t < b, + 7 for
Irco <lg <Ly + 7.

The low-pass filter preceding the ADC limits the maximum beat frequency, and the
basis for selecting the filter’s bandwidth is presented in Section 2.2.4.8. The ADC is re-
quired to sample at a rate equal to or greater than the filter bandwidth. To address the filter’s
roll-off at the band edges, a sampling rate slightly greater than the filter bandwidth may
be selected. Sampled returns are compressed in range by applying a DFT to the signal. An
amplitude weighting may also be applied, prior to the DFT, to reduce the range sidelobes.

(2.13)
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Receive Oscillator
with LFM Sweep
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2.2.4.4 Spectrum of the Baseband Signal

Before examining the signal at the output of the DFT, let’s begin by applying the Fourier
transform to the continuous-time, complex sinusoid in equation (2.13), which represents
the return from a point target after the deramp operation. The spectrum of the signal
provides valuable insight into principles associated with the stretch processor. The results
will be analogous to the sampled returns processed using a DFT.

Consider the case where f,., — t < 4 < I, . The Fourier transform of the signal in
equation (2.13) is

ta+t

Y ()= / exp (] (ZnéAtdt = 0)) exp (—jt) dt (2.14)

trev

Evaluating the integral yields

ﬂ fa+71
exp (j (27t—Atd — Q) t)
Y(Q) = i exp (—j6) (2.15)

j (2n£m,, it sz)
T

frev

and for tyey <ty <tlyep +71

ﬂ trev+T
exp (j <2n—Atd = SZ) t)
Y(Q) = & exp (—j6) (2.16)

j (thtd = sz)

ta
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FIGURE 2-3 = The
stretch processor
consists of a
deramp operation, a
low-pass filter to
limit the maximum
beat frequency, and
a DFT to compress
the returns in range.
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FIGURE 2-4 = The
stretch processor
produces a sinc
response at the
output of the DFT.
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3 -5 0 5 10
Q1/2n

The expressions in equations (2.15) and (2.16) reduce to

dsin ((2;: EA:,, - Q) d/2)
Yu(Q) = i

(2nf-md = 52) d/2

(2.17)

where d = —7(1 — J%l) and 0 < |Aty] < 7. Equation (2.17) contains a sinc function
and represents the range compressed response associated with a scatterer located at time
delay 4. A plot of the compressed response is presented in Figure 2-4 with the target
located in the center of the range window (Af; = 0). The response consists of a main lobe
and a sidelobe structure. Range resolution is proportional to the width of the main lobe,
and the peak sidelobes occur adjacent to the main lobe and are 13.2 dB below the peak of
the response.

2.2.4.5 Range Resolution

The Rayleigh criterion [1] is often used to quantify range resolution and is defined as
the distance between the peak and first null of the compressed response. The response in
equation (2.17) has a peak value at Qpeqx = 27 /7 Aly, and the first null, nearest the peak,
occurs when

(27[£Atd — Qnull) d
T
2

=+ (2.18)

or

2 B
Quut = :1:7 + 27 —Atly (2.19)
T



2.2 | Stretch Processing

The separation between the peak and first null is

21

Equation (2.20) representsthe Rayleigh resolutioninradians per second, and theresolution
inhertzis

1
dl
Consider two point targets separated in time by 8ty. The corresponding difference in

beat frequenciesis sty 8/t. Setting the frequency resolution achieved by the compressed
response in equation (2.17) equa to the differencein beat frequencies

1 B

sf (2.21)

— = =6t 222
] = oo (2.22)
and solving for the time-delay resolution
1 1
fMyg=-—++ 2.23
T
or in terms of range resolution is
1
SR= L - (2.24)

28 (1_ |Atd|>
T

where c isthe speed of light. Now, consider a scatterer located at atime delay equal to the
center of the range window (i.e., ty = t;¢, Or Aty = 0). The resultant range resolutionis

8 Ratgmo = % (2.25)
For scattererslocated at time delayslessthan or greater thant, ¢, range resol ution degrades
by afactor of 1/(1 — |Aty|/7) asshown in equation (2.24). The lossin resolution occurs
because the receive oscillator extends only over atime interval equal to the original pulse
length. A return at a range other than the center of the range window mixes with the
oscillator, producing a tone whose duration is less than the original pulse length. The
shortened sinusoid achieves less frequency resolution and correspondingly less range
resolution.

2.2.4.6 SNR Loss

In addition to the degradation in resolution, aloss in SNR occurs when the sinusoid (or
mixing product) is shortened in time:

|Aty]
T

NR gss =1 — O<|Atyl <t (2.26)

2.2.4.7 Oscillator Over Sweep

The loss in SNR and degradation in resolution may be eliminated by extending the os-
cillator sweep to accommodate the size of the range window, asillustrated in Figure 2-5.
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FIGURE 2-5 = A
stretch processor
employs an over
sweep to account
for the size of the
range window.
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Consider a range window, AR, with corresponding time extent, Af,,,, centered about #,.,,.
To preserve the mixer product, the ends of the oscillator sweep are extended by At,,, /2.
The mixer product is shown starting at time delay f; and ending at time delay ; + 7.
A scatterer located anywhere within the range window will produce a mixer product of
duration 7 and thus will achieve the finest range resolution and maximum SNR afforded
by the transmit waveform.

2.2.4.8 Filter Bandwidth

Within the receiver, a low-pass filter precedes the ADC and serves to limit the range of
beat frequencies and thus the size of the range window. To reduce the requirements placed
on the ADC, data bus, and signal processor, the filter bandwidth is intentionally chosen to
be less than the bandwidth of the LFM waveform. Consider a range window of extent AR.
The filter bandwidth required to pass beat frequencies associated with scatterers located
within the range window is

_ B2AR
_‘!' &

Br (2.27)

In general, the pulse width and range window are chosen such that 2AR /¢ <« 7 and as a
result B <« B. The ADC samples at a rate, F;, where

F; > Br (2.28)

The real advantage associated with stretch processing is the relationship F; < B. Stretch
processing allows range window extent to be traded for a reduced sampling rate (i.e., pro-
cessing bandwidth) while achieving a range resolution afforded by the transmit bandwidth.

2.2.4.9 Compressed Range Response

A high-resolution range (HRR) profile is created by computing the power spectrum asso-
ciated with the complex samples, y (n), at the output of the ADC in Figure 2-3. The DFT
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isapplied in the signal processor to compute the spectrum and is a sampled version of the
discrete time Fourier transform (DTFT),

N-1

Y (@) =) yn)exp(—jnw) (2.29)
n=0

where w is continuous. Sampling the received signal in equation (2.13) produces
y(n):exp(jZnéAtd (nT5)> exp(—jo) n=0,1...,(N=-1) (2.30)
T

where Ty isthe ADC sampling period, and Fs = 1/Ts. If no oversweep is employed, the
number of samples, N, collected from a specific scatterer is a function of the scatterer’'s
relative position within the receive window

N = {Fst (1— 'At‘”ﬂ (2.31)

T

and if an oversweep of the oscillator is employed, the number of samplesis independent
of time delay

N = [Fer] (2.32)

Applying the DTFT to the sampled signal in equation (2.30), the magnitude of the re-

sponseis
n(y (o= 2 220)
Yu (@) = Sin(}( _2_715,3Atd>) (2.33)
2\ K ¢

The response in equation (2.33) is known as a digital sinc function or Dirichlet function.
The spectrum is periodic in 2, and a single period is defined over —7 < w < 7. The
shape of the response is very similar to that in equation (2.17) and matches the shape of
the main lobe and near-in sidel obes. The conversion from digital frequency, w, to relative
timedelay is

Fs t
Aty =w—— 2.34
D (2.34)
and the conversion to relative range delay is
Fstc
Ar =w——— 2.35
“on B2 (2:35)

The achieved range resolution is a function of the main lobe width in equation (2.33).
If the relative time delay is zero, the peak occurs at w = 0, and the first null occurs at
N /2w = 7. The Rayleigh resolution [1] is then

_271

< (2.36)

Sw
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Range resolution is related to frequency resolution via

SR= ———— 2.3
N 27 B2 (237)
or
Fst c
SR = — (2.38)
At
P (=)
T
If an oversweep is employed, the resulting range resolution is
Fst ¢
= — 2.39
[Fst] 28 ( )

If Fst isan integer, then §Ris exactly equal to ¢/28.

2.2.4.10 Discrete Fourier Transform

A DTFT may not be implemented in a signal processor given that  is continuous, but a
DFT may be applied and is efficiently implemented using afast Fourier transform (FFT)
[41]. The DFT samplesthe DTFT response at equally spaced frequencies defined by

K
wk=2n"M k=01....(M—1) (2.40)

where M > N. The DFT isdefined as

N-1

Y(k)=§y(n)exp(—j2nnmk) k=0,1,...,(M=1) (2.41)

For M > N, zero padding is assumed.
The DFT of the signal in equation (2.30), which may be obtained by sampling the

DTFT in equation (2.33), is
)
2\ M Fs t

Y (k)| = n(l <2nk 5 ,BAtd>) (2.42)
2\ M Fs
Time delay isrelated to the k-th DFT bin via
AMe=TRE k=01, M-1 (2.43)
B M

Note that increasing M decreases the DFT bin spacing resulting in a decrease in straddle
loss[1]. Range resolution is governed by the continuous spectrum in equation (2.33) and
not the sampled response associated with the DFT in equation (2.42).

2.2.5 Example System Parameters

Table 2-1 contains a comparison of stretch and correlation processing [1] for a notional
radar employing a1 GHz LFM waveform with a 100 usec pulse width. In both instances,
the nominal range resolution is 0.15 meters.
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TABLE 2-1 = A Comparison of the Parameter Values Associated with Correlation and
Stretch Processing

Parameter Correlation Processing Stretch Processing
Pulse width (j.sec) 100 100
Waveform bandwidth (MHz) 1000 1000

Range resolution (m) 0.15 0.15
Baseband filter bandwidth (MHZz) 1000 100
Processing bandwidth (MHZz) 1000 100
Processing time—bandwidth product (minimum) 100,000 10,000

Range window (km) al range 15

A correlator supports the processing of all ranges. The minimum filter bandwidth is
based on the waveform bandwidth and in this example is 1 GHz. The minimum number
of samplesto processis egual to the product of the sampling rate and the pulse width and
is 100,000.

With the stretch processor, the filter bandwidth is reduced here by afactor of 10 and
isset at 100 MHz. The ADC sampling rate and processing bandwidth are also reduced,
leading to areduction in datarate and throughput requirements. The range window isthen
limited by the low-pass filter to 1.5 km. A reduction in processing bandwidth is achieved
at acost of limiting the size of the range window.

2.2.6 Processing Gain

Stretch processing achieves a pulse compression gain equal to the waveform time—
bandwidth product. To prove this, consider a stretch processor where the sampling rate is
equal to thefilter bandwidth. When an oversweep is applied, the complex tone associated
with a point target consists of N samples defined by

N = [Bg1] (2.44)

The number of noise samples collected over a processing window is

2AR
Nnoise = BF |7 + ?

(2.45)
A sampling rate greater than the filter bandwidth increases the number of samples, but the
noise samples are correlated. Thus, the additional samples do not translate into an SNR
gain.

Consider an LFM waveform with bandwidth 8 that is passed through alinear phase
filter with the same bandwidth. The SNR at the output of the filter is denoted SNRg. In
the stretch processor, the deramp signal (mixer product) is passed through alinear phase
filter with bandwidth B to limit the range of frequencies. The SNR at the output of the
filter is

NRg, = SNFzﬂBﬁF (2.46)

Since Br < B, the signal experiences an SNR gain.
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FIGURE 2-6 = A
time misalignment of
the mixing products
results in
asymmetric
weighting when a
taper is applied.
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The DFT provides additional gain by coherently processing the received signal.
Coherent signals experience a power gain through the DFT equal to N2. In contrast,
thermal noise experiences a power gain equal to Npy,;s.. The SNR gain through the DFT
is then N2/N, ;5. At the output of the DFT, the resultant SNR is

ﬂ 2

SNRprr = SNRg— (2.47)
? BF Nnoise

With stretch processing, 2AR/c <« 7. Therefore, the number noise samples is approxi-

mately

Npoise = BFt. (2.48)

Substituting equations (2.44) and (2.48) into equation (2.47), we arrive at an expression
for the SNR gain achieved by a signal having passed through the filter and DFT

SNRprr = SNRﬁBiBFr = SNRgft (2.49)
F

The pulse compression gain, B, at the output of the stretch processor is equivalent to that
achieved with correlation processing [1].

2.2.7 Range-Sidelobe Suppression

In radar, sidelobes may mask the presence of a smaller scatterer or degrade the overall
quality of an image. Range sidelobes are reduced by applying an amplitude taper to the
data prior to the DFT. As with correlation processing, the amplitude taper reduces the
sidelobes at the expense of degraded resolution and a loss in SNR [1].

Scatterers located at different ranges produce returns that are not aligned in time
and as a consequence experience an asymmetric weighting when a taper is applied. An
asymmetric weighting degrades the sidelobe response. The length of the amplitude taper
may be matched to the pulse width or the collection time (pulse width + range window

Taper matched to pulse width + receive window

/\

Taper matched to pulse width

./\

Mixer products
at different
time-delays
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extent) as illustrated in Figure 2-6. The degree of distortion in the compressed response
is a function of two metrics: (1) the ratio of the range window extent to the pulse width
(with smaller ratios resulting in the least amount of distortion); and (2) the alignment of
the taper relative to a specific time delay. The distortion is thus time-delay dependent. For
cases where the pulse width is much longer than the range window, the effects are often
ignored.

Kellog [42] describes a technique for time aligning the deramped signals using a
dispersive filter. The filter is applied prior to the weighting and has a group delay equal to

i = —% f (2.50)

where f is frequency in hertz.

2.2.8 Range-Doppler Coupling

The stretch processed LFM waveform exhibits range-Doppler coupling. Figure 2-7 shows
the impact of Doppler shift on the beat frequency. The frequency separation between the
local oscillator and the LFM return is modified by the Doppler shift, f;. The resultant beat
frequency is

==l 2.51)
and the additional time delay or offset due to the Doppler shift is
¥
t)=——fa (2.52)
B

The offset in equation (2.52) is equivalent to the range-Doppler coupling observed when
correlation processing is applied [1]. To avoid eclipsing, the filter’s bandwidth must be
sized to accommodate the largest beat frequency plus the largest anticipated Doppler shift.

2.2.9 Summary

Stretch processing is implemented in modern, high-resolution radar systems to reduce
processing requirements without sacrificing range resolution. The technique is applied to
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FIGURE 2-7 = The
beat frequency is
modified by a
Doppler shift
resulting in an error
in the reported range
to the target.
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awideband LFM waveform on receive and converts relative time delay into frequency. A
filter limits the frequencies passed to the ADC and defines the processing bandwidth. The
filter bandwidth is chosen to be less than the transmit bandwidth. The sampled waveform
iscompressed using a DFT, and the resultant range resolution isinversely proportiona to
the transmit bandwidth. The filter does limit the size of the range window to afraction of
the pulse width; however, in high-resolution systemsthe range to the target or imaged area
is known with sufficient precision to position the window about the region of interest.

| | STEPPED CHIRP WAVEFORMS

2.3.1 Introduction

As the name implies, a stepped chirp waveform [7—15] consists of LFM pulses that are
stepped in frequency to reduce the waveform’s instantaneous bandwidth. On transmit,
the waveform'’s reduced intrapul se bandwidth |essens dispersion effects in some systems
(e.g., awideband, phased array radar that does not employ time delay units). On receive,
the stepped chirp waveform supports alower sampling rate, similar to stretch processing,
but does not limit the size of the range window. The waveform is composed of Ngc LFM
pulses, each with swept bandwidth, 8, that are separated in time by the pulse repetition
interval (PRI) and that partially overlap or are contiguous in frequency. Successive pulses
are separated in frequency by aconstant offset, Af. In practice, the number of pulsesused
to construct the waveform is relatively small (e.g., 1 < Ny < 10).

On receive, each pulse is mixed to baseband or to a common intermediate frequency
and sampled arate sufficient to support theintrapul se bandwidth. The compositewaveform
isreconstructed inthe signal processor by shifting the returnsby the appropriate frequency
offset and stitching them together to form a coherent wideband signal. The bandwidth of
the composite waveform, B, is 8 + (Nsc — 1) Af. Therequirements placed on the ADC
sample rate are driven by the single pulse bandwidth, 8, and the range window extent
is limited by the PRI and not the low pass filter as in the case of stretch processing. As
expected, the waveform'’s reconstruction does increase the computational requirements
levied on the signal processor. With a stepped chirp waveform, the pulse repetition fre-
guency (PRF) must be increased by afactor of Ng. to maintain the effective rate required
to support multiple-pul se, coherent processing (e.g., SAR or Doppler processing) [10].

2.3.2 Transmit Waveform

The stepped chirp waveform consists of Ngc LFM pulses, each with swept bandwidth 8,
that are shifted in frequency from pulse-to-pulse by a constant frequency offset Af where
AT < g asillustrated in Figure 2-8. The n-th transmit pulse is modeled as

2
Xix (1) = cos (2:1 (fo+ (=(Nsc — D)/24n) Af)t + ng (t — %) ) (2.53)

where0 <t < 7,and 0 < n < (Ng — 1), and fg isthe transmit center frequency. Time
in equation (2.53) is referenced to the beginning of each pulse, but the individual pulses
are separated by the PRI, T, where T > 7. In the text, an odd number of pulsesis used
to develop a mathematical model, but a similar analysis applies for an even number of
pulses.
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2.3.3 Received Waveform

Consider a point target located at time delay #,. After transmitting the pulse in equa-
tion (2.53), the received pulse (at RF) is

i )’
Xreo(t) = coS (271 (Jot Wee = D2+ M AN —ta) +7_ | C—la) — 5
(2.54)
wheref; <t <t +1t;and 0 <n < (N, — 1). Within the receiver, the signal is mixed to
baseband or to a common IF. The local oscillator used to mix the signal to baseband is

LOyey(t) = cos2r(fo + (=(Nsc — 1)/2+n)Af)) (2.55)

wherety <t <t +1tyand 0 <n < (Ns. — 1). A homodyne architecture is employed to
simply the expressions, but a heterodyne architecture may also be applied. The received
baseband signal is

2
xg5(t) = cos (—2n(fo+ (—(Nse = D/2 + m)Af)t +n§ ((t —tg) - g) ) (2.56)

where f; <t <t +1tz,and 0 < n < (Nsg — 1). Assuming in-phase and quadrature
channels, the received signal may be written in complex form:

2
xpp(t) = exp (—j27 (fo+ (= (Nsc — 1)/2+n) Af) ta) exp (jng ((t —la) — %) )
(2.57)
The target and radar are assumed stationary during the transmission and reception of
the stepped chirp waveform. Berens [9] discusses the issue of relative motion and the
compensation required to properly process the waveform.
Rearranging terms, the baseband signal in equation (2.57) is

2
Xa5(t) = exp (— j27 fota) exp (— j2 pAfota) exp ( jné ((r gy %) ) (2.58)

where p = n—(Ns. — 1)/2,and — (Nsc — 1)/2 < p < (Ng — 1)/2. With each pulse cen-
tered at baseband, the ADC has to support only the single-pulse instantaneous bandwidth
or Fy > B. The reduced sampling rate is a key benefit of this waveform. As discussed
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FIGURE 2-8 = A
notional stepped
chirp waveform
consisting of three
pulses and a
frequency step size
Af.
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in Section 2.2.2, alower sampling rate implies that the ADC is capable of supporting a
higher ENOB. Sampling the continuous signal in equation (2.58) yields

. . . B//m \?
Xgg (M) = exp (—j 27 fotg) exp (— j 27 pA fotg) exp (Jn; ((F — td) — 5) ) (2.59)

where [Fstg] < m < [Fs(r +tg)]. The signal in equation (2.59) contains two phase
terms, 27 foty and 2 pA foty, that are constant over a pulse. The second term, 2 pA foty,
varies pulse to pulse and must be accounted for when reconstructing the wider bandwidth
signal within the signal processor.

Thediscussion hasfocused onapoint target located at aparticular timedelay; however,
aradar collects returns over arange window. To accumulate these returns, the receiver is
active over the time interval

2AR
Te=7+=— (2.60)

The samples collected over the range window from the n-th pulse are y,(m) where
2AR

and include the return collected from the point target in equation (2.59).

2.3.4 Processing Options

The objective is to create, within the signal processor, a composite waveform that ex-
hibits a range resolution commensurate with composite waveform’s transmit bandwidth
by properly combining the Ng; baseband returns in equation (2.59). A means for inter-
polating in time and shifting in frequency the received pulses is required. In addition,
careful consideration must be given to coherently combining the returns and accounting
for phase differences between pul ses. Both time-domain (TD) and frequency-domain (FD)
approaches are described in the literature [ 7, 8, 10, 11] and are covered in subsequent sec-
tions. An example of a stepped chirp waveform processed in the frequency domain isalso
presented. The analysis focuses on the return from a point target, but the processis linear
and is applicable to a superposition of returns at different delays.

2.3.4.1 Time Domain

The TD approach for processing a stepped chirp waveform is discussed in [7, 8], and the
steps are outlined here for compl eteness:

1. When implementing the TD approach, it is assumed that the frequency step size is
equal to the pulse bandwidth (i.e., Af = ).

2. In the signal processor, the first step is to up-sample (i.e., interpolate) the baseband
signals in eguation (2.59) by a factor of Ng.. The interpolation may be implemented
using afiniteimpul seresponse (FIR) filter. Theinterpolated signal isrequired to support
the compositewaveform bandwidth and isdenoted y;, (m). Theinterpolated pul seshave
afrequency support defined by —7 NgcFs < © < 7 Ny Fs.
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3. A frequency shift isapplied to each pul se by mixing the pulse with acomplex sinusoid
having alinear phase response. The mixer product is
2AR
O, ceey |:Nsch <T + T)]

2:62)

4. Next aphase correction is applied to each pulse to force a continuous phase transition
between pulses. For an odd number of pulses, the phase correction applied to the n-th
pulseis

) m
zn(m):y;](m)@(p<127rpAf ) m
NSCFS

((Nsc—1)/2)—n
on= 2Bt > i for0<n =<((Nc—1)/2) -1 (2.63)
i=1
and
n—(Nsc—1)/2
pn=2rpr > (-1 for(Ng—1/2+D)<n<(Ne—1 (264
i=1
To reduce the number of operations, the phase correction may be applied prior to the
interpolation step.
5. The frequency-shifted and phase-corrected pulses are then time aligned via

Nsc—1
z(M) = Y 2z, (M — NNgFr) (2.65)
n=0
Thetime alignment places areguirement on the product Fst to be an integer. Note that
z,(m) = 0form < Oandfor m > [Fs (v + 2AR/0)]

2.3.4.2 Frequency Domain

The FD approachisdefinedin[10, 11]. In most instances, the frequency step sizeischosen
to belessthan or equa to the pulse bandwidth (i.e., Af < ). A continuous or overlapped
frequency response preventstheintroduction of gapsin the composite waveform spectrum,
which would increase the range sidel obes.

The FD approach is introduced starting with the pulses received from a point target
at time delay tq. The pulses have been mixed to baseband and sampled. The spectrum of
the sampled signal in equation (2.59) is

Xn (w) = exp (—] 2 fotq) exp (—j2r pAftg) X (o) exp (—jwFstg) (2.66)

where —7 < w < 7 and

2
X(w):DTFT{exp<jn§(Fm—%>>} O<m<[Fsr]  (267)

The filter matched to a pulse with spectrum X () is X* (w), where the asterisk denotes
the conjugate operator. Applying the filter to the pulses in equation (2.66)

Yo (@) = exp (—j 27 fotg) exp (— | 2 pA fg) | X (0)|° exp (— joFstq) (2.68)

Equation (2.68) represents the match filtered spectrum for the n-th pulse. On receive,
each pulse is mixed and centered at baseband. To reconstruct the waveform, the pulses
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are shifted by their respective frequency offsets, pAf. Shifting the n-th spectrum by
2npAf /Fs

2

quu—z”ﬁAf>==em042nmm>ap«42npAnw
S

2 pAf
X _
(w Fe >

exp(—| (wFs — 27 pAf)ty) (2.69)

and after reducing terms

2
exp(—joFsty) (2.70)

Yh (a) - ZﬂEAf > = exp (— ]2 folq)
S

where (—m + 2rpAf/Fs) < w < (i + 2rpAf /Fs). Notethat the phaseterm 2z pAfty
in equation (2.68) has been removed by the shifting operation. Its removal is necessary to
coherently combine the pulses. The match filtered and frequency shifted spectra contain
aconstant phase term that is a function of fy and ty and alinear phase term proportional
to ty. The linear phase term positions the response in time after the inverse transform is
applied.

The spectra in equation (2.70) are a result of applying the DTFT. To compute the
spectrainside a signal processor, the DFT is applied. The K-length DFT is constructed
by sampling the spectrum in equation (2.70) at wx = 27k/K, —K/2 <k < K/2 - 1to

yield
2exp <—j27r£F t >
K std
(2.71)

To align the pulse spectra, the frequency step size must be an integer multiple of the DFT
bin size. The size of aDFT bin is found by computing

F
Sforr = KS (2.72)

The frequency step size, Af, istherefore constrained to be

2rpAf
X(w_ F >

S

k  27pAf
Y, (27— —
”(”K Fe

)=am4hm@

X (2%5 3 anAf)
K Fs

Af = Péfort (2.73)

where P is an integer. Substituting equations (2.72) and (2.73) into equation (2.71)

k P 7 ok

(2.74)
where (—K/2+ pP) < k < (K/2— 1+ pP). Shifting the spectra has increased the

i . . K Nee — D P
sizeof the DFT to K + (N — 1) P, and the effective samplerateis Fs T (Ne =D P

Zero padding may be applied in the frequency domain to force a power of 2 sige FFT or
to further interpolate the match filtered time-domain response.

At this point, the spectra have been shifted, and a matched filter has been applied
to each pulse. The next step is to properly stitch together the shifted spectra to form a
composite spectrum that achieves the desired main lobe and sidel obe response when the
inverse transform is applied. The stitching processisillustrated in Figure 2-9 using three

k P .
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pulses. A matched filter has been applied to each pulse, and the spectra are shifted by
—Af, 0, and Af, respectively. The trick is to stitch together the overlapping spectra in a
manner that creates a “smooth” spectral response. An approach is to select the midpoint
of the overlap between pulses n and n + 1 and to use the spectrum associated with pulse n
for frequency bins to the left of (and including) the midpoint and the spectrum associated
with pulse n 4 1 to the right of the midpoint.

Having stitched together the subspulse spectra as illustrated in the lower plot of
Figure 2-9, the shape of the composite spectrum approximates a rectangle. An inverse
DFT is then applied to the spectrum to create the range compressed response. With a
rectangular-shaped spectrum, the transform is a sinc. A weighting may be applied to the
spectrum to reduce the range sidelobes. The composite bandwidth is

Bse =B+ (Nsc — 1) Af (2.75)

In the absence of a weighting, the Rayleigh range resolution achieved by the stepped chirp

waveform is
c

T 2B+ (Nee— DAS)
2.3.4.3 Summary of Frequency-Domain Processing Steps

As noted in the previous section, several constraints are placed on the waveform when
implementing FD processing:

SR (2.76)

1. The frequency step size must be an integer multiple of the DFT bin size to support
proper alignment of the spectra.

2. The frequency step size is constrained such that Af < B to prevent gaps in the spectrum,
which elevate the range sidelobes.

The following steps are implemented in the signal processor to reconstruct the waveform
and to create a compressed response:

1. A DFT is applied to the received samples associated with each pulse.

2. A matched filter is applied to each pulse in the frequency domain.

3. The spectra are shifted by the appropriate frequency offset (as described in equa-
tion (2.74) for an odd number of pulses).

4. The shifted spectra are “stitched” together to create a composite spectrum approximat-
ing a rectangular shape.
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FIGURE 2-9 = The
spectra of the
stepped chirp pulses
are stitched together
to form a composite,
rectangular-shaped
spectrum.
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FIGURE 2-10 = The
stepped chirp
waveform consists
of three LFM pulses.
The spectrum of a
single LFM pulse
with a 300 MHz
bandwidth and a

1 psec pulse length
is plotted.

FIGURE 2-11 = The
three spectra are
aligned within the
signal processor.
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5. An amplitude weighting may be applied to reduce the range sidelobes.

6. Additional zeros may be appended to the spectrum to produce an interpolated response
in the time domain and to satisfy a power of 2 or other size FFT requirement.

7. An inverse DFT is then applied to the composite spectrum to create the range com-
pressed response.

2.3.4.4 Frequency-Domain Example

An example illustrates the resolution achieved by the waveform. Consider a stepped chirp
waveform consisting of three LFM pulses each with a 300 MHz bandwidth and a 1 pusec
pulse length. The frequency step is 240 MHz. Figure 2-10 contains a plot of the spectrum
associated with a single pulse centered at baseband. Each pulse exhibits the same spectrum
except for a constant phase term as discussed in Section 2.3.4.2. A matched filter is
applied to each waveform in the frequency domain, and the three spectra are shifted by
the appropriate offset as shown in Figure 2-11. The spectra are then stitched together to
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create a smooth composite spectrum that resembles a rectangle. The stitching processis
describedin Section 2.3.4.2. Next, therange compressed responseisobtained by taking the
inverse DFT. A portion of the compressed response is shown in Figure 2-13, and themain
lobe and adjacent sidelobes are plotted in Figure 2-14. Using the composite bandwidth
defined in equation (2.75) and §R = ¢/2Bs, the computed resolution is 0.192 meters,
which is very close to the Rayleigh resolution achieved by the stepped chirp waveformin
Figure 2-14. If desired, an amplitude taper may be applied to the composite spectrum in
Figure 2-12 to reduce the range sidel obes.

2.3.5 Summary

The stepped chirp waveform is designed to reduce instantaneous bandwidth requirements
on both transmit and receive. The waveform consists of several LFM pulses separated in
frequency by aconstant offset. Each pul seis mixed to baseband and sampled at arate com-
mensurate with the single-pul se bandwidth. The multiple-pulsewaveformisreconstructed

meters
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FIGURE 2-12 = The
overlapping spectra

are stitched together
to form a composite
spectrum.

FIGURE 2-13 = The
stepped chirp
waveform’s range
compressed
response resembles
a sinc.
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FIGURE 2-14 = The
main lobe of the
stepped chirp
waveform exhibits
enhanced range
resolution.
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within the signal processor to create a wider bandwidth signal with enhanced range res-
olution. The range window is not limited as in the case of stretch processing; however, a
higher PRF may be required to support the additional pulses. In addition, compensation
[9] for relative motion is required as part of the waveform reconstruction process.

i | NONLINEAR FREQUENCY
MODULATED WAVEFORMS

Therelatively high range sidel obes associated with an LFM waveform are aby-product of
the spectrum’s shape, which approximates arectangle. An amplitude taper may be applied
to shape the spectrum and reduce the sidel obes at a cost of degraded resolution and aloss
in SNR, the latter of which ranges from a few tenths of a dB for light weightings (e.g.,
—20 dB) to greater than 1 dB for heavier weightings (e.g., —40 dB). NLFM waveforms
[19-26] achievelow range sidel obes by shaping the spectrum using frequency modul ation.
The modulation is applied over a constant time-domain envelope; therefore, a loss in
SNR is not incurred. With both LFM and NLFM waveforms, degraded range resolution
is associated with spectral shaping. NLFM waveforms exhibit range-Doppler coupling
similar to that observed in an LFM waveform with the caveat that an NLFM waveform
exhibits a degraded sidelobe response in the presence of a small fractional Doppler shift.
In this text, the term fractional Doppler refers to the ratio of the Doppler shift to the
waveform'’sintrapul se bandwidth. NLFM waveforms are considered less Doppler tolerant
than their LFM counterparts.

Theupper panel in Figure 2-15 containsaplot of an NLFM waveform’sinstantaneous
frequency (solid line) asafunction of time. The pulsewidth is t, and the swept bandwidth
is 8. The bottom panel contains an idealized plot of an NLFM waveform’s spectrum. The
slope of the response is higher at the ends than in the middle of the pulse. The slope
maps inversely into the amount of time spent at a given frequency. The more time spent
at a particular frequency (corresponding to a shallow slope), the more power allocated
to that frequency. An NLFM waveform shapes its spectrum by varying the slope of the
instantaneous frequency. The tapered spectrum produces a match filtered response with
range sidel obes defined by the shape of the square of the spectrum’s envelope. In contrast,
the slope of an LFM waveform’s instantaneous frequency is a constant (dashed line in
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FIGURE 2-15 = The slope of the instantaneous frequency varies with time, producing a
shaped spectrum. The upper box contains a plot of the instantaneous frequency for an NFLM
(solid curve) and an LFM (dashed curve) waveform. The lower box contains a plot of a spectrum
that might be generated by an NLFM waveform.

Figure 2-15). The LFM waveform distributes its power evenly over bandwidth, creating a
rectangular shaped spectrum.

The design of an NLFM waveform consists of mapping the desired spectral shape into
an instantaneous frequency response. Several approaches for designing and synthesizing
NLFM waveforms are explored in the following sections.

2.4.1 Functional Relationships
Key and others [19, 20, 26] derived a set of relationships that aid in the design of NLFM
waveforms. The process starts by defining a generic waveform with time-domain response
x(t) = a(t)exp (jo(t)) (2.77)
where a(f) is the amplitude envelope, and ¢ (?) is the phase response. The waveform’s
spectrum is
X () =X ()] exp (jO () (2.78)
where | X (£2)] is the spectrum’s magnitude, and 8 (£2) is the phase response. The time and
spectral domains are related through the Fourier transform where
o0
X ()= / a(t)exp (jo (1)) exp (—jr)dt (2.79)
—00
2.4.1.1 Principle of Stationary Phase

Key [19, 26] applies Kelvin’s principle of stationary phase (PSP) to derive a set of para-
metric equations that relate the amplitude and phase functions in the two domains. The
PSP states that the primary contribution to X (£2) in equation (2.79) occurs when

% (@) —Qt)=0 (2.80)
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or
Q=¢'(t) (2.81)

where a single prime denotes the first derivative with respect to the independent variable.

Therelationship in equation (2.81) suggests that the derivative of the phase function (i.e.,

the instantaneous frequency) at a given value of timet determines the spectral response

at agiven frequency © and that 2 and t are one-to-one provided ¢’ (t) is monotonic.
Applying the inverse Fourier transform to the waveform spectrum

1 . .
X(t) = E/ X ()] exp (16 () exp (j Q) AL (2.82)

and again using the PSP, Key [19] derives a similar relationship
t=-0'(Q) (2.83)

relating time and the derivative of the spectrum’s phase.

Group delay is ameasure of the relative time delay between awaveform’s frequency
components. Group delay, tyq, isformally defined as the negative of the first derivative of
the spectrum’s phase function, or tyg = —6’ (€2). If the group delay is a constant, then all
frequencies aretime coincident. If the group delay islinear, the frequency of the waveform
varies linearly with time and produces a rectangular-shaped spectrum asin the case of an
LFM waveform. Higher-order group delays may be used to shape awaveform’s spectrum.

2.4.1.2 Inverse Functions

An inverse relationship between instantaneous frequency and group delay exists. To show
this, solve equation (2.81) for t

t=¢"1Q) (2.84)
Equating equations (2.83) and (2.84)
Q) = -0 (Q) (2.85)
or equivalently
¢'(t) = —0""(t) (2.86)

Asillustrated in Figure 2-16, equations (2.85) and (2.86) define an inverse relationship
between group del ay and i nstantaneous frequency that iscommonly exploitedinthedesign
of NLFM waveforms. Cook [26] states that the inverse relationship may be visualized by
rotating a plot of the group delay (versus frequency) clockwise by 90° and flipping the
result about the frequency axisto obtain aplot of instantaneousfrequency versustime. The
graphical technique may be applied in a computer to transform samples of awaveform’'s
group delay versus frequency into an instantaneous frequency versus time response.

2.4.1.3 Parametric Equations

Key [19] uses equations (2.79), (2.81), (2.82), and (2.83), a Taylor series expansion, and
several approximationsto arrive at the following parametric relationships:

az(t)
l@” ()]

X (Q)I? ~ 2 (2.87)



2.4 | Nonlinear Frequency Modulated Waveforms 51

0.5 — FIGURE 2-16 = An
04l [==== group delay ¥l inverse relationship
’ instantaneous freq Pe 3 between
03+ s instantaneous
& e 7 frequency and group
§ = K delay exists, and the
g< o1t / property may be
28 £ exploited in the
S g 7 design of NLFM
g g -0l 4 waveforms.
s 8 0
—0.3 [ I/
’l
-04 e
—0.5 W 1
0.5 0 0.5

time (normalized by 7)

and

2
o 1oy e XD
27 |07 (2)|
where a double prime denotes the second derivative with respect to the independent vari-
able. These equations provide a link between the waveform’s time and frequency domains.
The first derivative of the time-domain phase function, ¢ (), is the waveform’s instanta-
neous frequency, and in equation (2.87), the second derivative is the slope of the instanta-
neous frequency. For radar waveforms, the time-domain envelope, a(t), is assumed to be
constant. In equation (2.87), a relationship exists between the slope of the instantaneous
frequency at a given time, #, and magnitude of the spectral response at a specific frequency,
€2;. The subscript ¢ affixed to €2 denotes the correspondence. Equation (2.88) defines a sim-
ilar relationship between the second derivative of the frequency-domain phase response
and the magnitude of the spectrum.

(2.88)

2.4.2 Design Approaches

To synthesize an NLFM waveform, a continuous or discrete instantiation of the time-
domain phase function ¢ (7)is required. Several approaches [19-23, 26] for constructing
¢ (t) are described in the literature. Each of these approaches begins with the selection of
an amplitude taper whose Fourier transform would produce the desired sidelobe response.
Common tapers include Taylor and cosine on a pedestal weightings. Cosine on a pedestal
tapers are of the form

W () = h + (1 — h) cos? (%) B <Q<np (2.89)

where the Hamming taper is defined for ~ = 0.08 and exhibits a peak sidelobe of —42.8 dB.
The Taylor weighting function is defined in Section 2.4.3.

Given an amplitude taper and Key’s [19] parametric equations, ¢ (f) may be synthe-
sized using an inverse relationship between group delay and instantaneous frequency or
using the inverse Fourier transform. Both approaches are covered in the following sections.
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2.4.2.1 Inverse Function

Equations (2.85) and (2.86) define an inverse rel ationship between group delay and instan-
taneous frequency. Group delay is obtained by integrating a closed form expression of the
amplitudetaper. Therelationship between6” (2) and | X (2)| isdefinedin equation (2.88).
The resulting expression for group delay (i.e., —0’ (2)) is generally not invertible. How-
ever, Cook’s [26] graphical inversion technique may be applied to samples of the group
delay to construct adiscrete time instantiation of ¢'(t). The response may then be numeri-
cally integrated to obtain samplesof ¢ (t). A closed-form expression may also be obtained
by fitting the samples of ¢’(t) to amodel and integrating the response to obtain ¢ (t). An
exampleis provided in Section 2.4.3.

2.4.2.2 Fourier Approach

Newton [21] recognized that the Fourier relationship in equation (2.82) could be used to
construct ¢ (t) given | X (£2)| and 0 (£2). The spectrum’s phase is obtained by integrating
twice over the square of the spectrum magnitude. An inverse DFT is applied to samples
of the spectrum to obtain discrete time samples of a(t)and ¢(t). In many instances,
the transform produces a time-varying envelope a(t), which Newton replaces with a
constant. The spectrum of the time- and frequency-constrained waveform exp (j¢(t))
exhibits amplitude ripples that tend to elevate the range sidelobes. Newton applied a
mismatched or inverse filter to compensate for the ripples. The loss associated with the
mismatched filter (~0.2 dB) is significantly less than that associated with a traditional
amplitude taper. Newton proposed combing an NLFM with a light taper to achieve the
desired sidel obe response.

2.4.3 Design Example

A processfor creating an NLFM waveform is demonstrated using the inverse rel ationship
in equation (2.86) and the parametric relationship in equation (2.88). Consider awaveform
with a constant time-domain envelope and a —40 dB peak sidelobe requirement. The
waveform is expected to sweep its instantaneous frequency from —8/2to /2 during the
timeinterval —t/2 <t < t/2and Bt > 1. The specific bandwidth and pulse length are
undefined at the moment and are left as variables.

A Taylor weighting is chosen to meet the sidelobe requirement and is defined as

n-1

Wrayior () = G{1+ 25" Fimcos (m;: ;2)} —AB <Q <7p (2.90)
m=1

The coefficients F, are

(_1)m+l l—[ﬁ—l 1 _ m2
n=1 S(D2+ (n—0.5)?) _
5 , m=12...,(n—1)
Fin = 21 (1 - 1)
n=1 n2
n#m
0, m>n

(2.91)
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where
1
D = = cosh™! [10~ PSR/20] (2.92)
T
n2
== (2.93)
D2+ (n—0.5)
and
1
G= — (2.94)
1+2% Fn
m=1

The exact shape of the Taylor weighting is a function of the desired peak sidelobe ratio
(PSR) and a parameter n. The Taylor weighting in equation (2.90) is centered at baseband
and extends over the frequency range —n8 < Q < mB. The square of the spectrum
magnitude in equation (2.88) is set equal to equation (2.90) or

IX ()12 = Wraylor () (2.95)

The requirement for a constant time-domain envelope is satisfied by setting the envelope
equal to 1 or

a’(t) =1 (2.96)
Integrating equation (2.88) with respect to 2 yields
a4t 22 ﬁ Fm (msz)
B
The waveform’s group delay is
—k —ap=Q=np

- ZZ ﬂF’“ Cn%z) (2.98)

The constants k; and k, are obtained by eva uz;tti ng the group delay at the borundary
condltl ons. Evaluating equation (2.98) at tgg = —~ When Q= —np,andattyy = - When
= nB,yields

0 (Q) = +ke —ap<Q<nB (297

ks
tyg = =0 (Q) = —2—G

ko =0 (2.99)
and

ki=—— (2.100)

—nB<Q=<nB (2.101)
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FIGURE 2-17 = The
waveform’s
nonlinear frequency
response will
generate a Taylor
weighted spectrum.
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At this point, we want to implement the graphical technique proposed by Cook [26].
First, the group delay in equation (2.101) is evaluated at equally spaced points in Q.
Next, a numerical interpolation is performed on the samples to obtain equally spaced
pointsintime (i.e., group delay) that map to specific values of the independent frequency
variable, 2. The time samples are then multiplied by —1 (flipping them about the group
delay axis) and circularly rotated Ieft to right (e.g., a clockwise rotation of arow vector
containing the samples) creating new function with time as the new independent variable
and instantaneous frequency as the new dependent variable. Figure 2-17 contains a plot
of the instantaneous frequency obtained from equation (2.101) after applying a cubic
interpolation and the inversion process.
A model for the instantaneous frequency [3] is proposed:

¢'(t) = 2np

M
2
Loy dksin( ”mt)] (2.102)
T me1 T

Equation (2.102) assertsthat the instantaneous frequency may be modeled asalinear term
plusasum of harmonically related and weighted sine functions. To obtain the coefficients
dk, the linear component is first subtracted from both sides of the equation

Pt L 2mt
znﬁ—;_Zdesm< - ) (2.103)

The right side of equation (2.103) represents the first M terms of the Fourier series of
an odd signal. Figure 2-18 contains a plot of the instantaneous frequency with the linear
component removed. The response is odd and may be interpreted as one period of a
periodic function. Harmonic analysisis applied to the signal in Figure 2-18 to obtain the
coefficients dy.

A periodic signal x(t) may be expressed as a sum of weighted of sines and cosines
where

X(t) = ag + 2 _ [by cos(MQot) + di in (MQot)] (2.104)

m=1
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where Q¢ = 27 /7. For odd signals
X(t) =2 de sin(mQot) (2.105)
m=1
The Fourier series coefficients dy are obtained by evaluating the integral
di = / X(t) sin (mpt) dt (2.106)

T

where 7 is one period of the waveform or, in this case, the pulse width. The coefficients
are obtained numerically by replacing theintegral in (2.106) with asummation. Table 2-2

TABLE 2-2 = Coefficients Used to Generate an NLFM Waveform

Index Coefficient Value Index Coefficient Value
1 —0.0570894319 16 0.0003386501
2 0.0198005915 17 —0.0002874351
3 —0.0102418371 18 0.0002451937
4 0.0062655130 19 —0.0002100998
5 —0.0042068327 20 0.0001807551
6 0.0029960800 21 —0.0001560755
7 —0.0022222723 22 0.0001352110
8 0.0016980153 23 —0.0001174887
9 —0.0013271886 24 0.0001023710

10 0.0010560642 25 —0.0000894246
11 —0.0008525769 26 0.0000782981
12 0.0006965787 27 —0.0000687043
13 —0.0005748721 28 0.0000604069
14 0.0004785116 29 —0.0000532106

=
()]

—0.0004012574 30 0.0000469533
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FIGURE 2-18 = The

instantaneous
frequency after

removing the linear

component is
viewed as one

period of a periodic

function and is
modeled using
Fourier series
coefficients.
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FIGURE 2-19 = The
NLFM waveform
exhibits a shaped
spectrum
resembling a Taylor
weighting. The
amplitude ripple is
associated with the
finite time and
frequency extent
constraints placed
on the waveform.

FIGURE 2-20 = The
NLFM waveform
achieves a range
compressed
response with peak
sidelobes slightly
above —40 dB.
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containsthefirst 30 coefficients. No attempt ismadeto determinethe number of coefficients
or the numerical precision needed to achieve a specified level of performance.

The time-domain phase function is obtained by integrating the expression in equa-
tion (2.102)

M
_ B, B 2dy (2nmt)
p(H) = —t mzzjl o cos( = (2.107)
The resultant baseband, complex NLFM waveform is
X(t) =exp(jo(t) (2.108)

The waveform’s spectrum is plotted in Figure 2-19. The envelope of squared spectrum
resembles a Taylor weighting. The ripples in the spectrum are a result of the waveform’s
finite extent imposed in both domains.

Consider an LFM waveform with a 500 MHz swept bandwidth and a 1 usec pulse
length. Applying the matched filter in either the time or frequency domain generates
the compressed response shown in Figure 2-20. The peak sidelobes are approximately

=50 v | v
-60

-0.02 -0.015 -0.01 -0.005 0 0.005  0.01
time (usec)

0.015  0.02
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—37 dB; the goa was —40 dB. The peak sidelobe levels are close to the designed-to
level. The waveform’s time—bandwidth product does have a direct bearing on sidelobe
performance. In general, the higher the time-bandwidth product the closer one gets to the
design-to level. Time—bandwidth products greater than 100 are generally required.

For an LFM waveform with 500 M Hz swept bandwidth, thetime resol ution, measured
at the -4 dB width, is 0.002 usec. A close examination of the response in Figure 2-20
reveals a —4 dB width of 0.0029 psec. The modulation has degraded the resolution by a
factor of 1.45 over that achieved by an LFM swept over the same bandwidth. Of course,
asimilar degradation in resolution occurs when an amplitude taper is applied to an LFM
waveform.

2.4.4 Doppler Analysis

NLFM waveforms are less Doppler tolerant [24—26] than their LFM counterparts. NLFM
waveforms exhibit high near-in sidelobes in the presence of small, uncompensated, frac-
tional Doppler shifts (i.e., fq/8). Doppler shifts on the order of a 1/4 cycle across the
uncompressed pul se width are sufficient to significantly el evate the near-in sidel obes. Fig-
ure 2-21 and 22 contain plots of the compressed response with a 1/4 and full cycle of
Doppler, respectively. The Doppler shifts used in this example (0.25 MHz and 1 MHz,
respectively) are not commonly realized, but several cycles of Doppler may be observed
when employing longer pulses (e.g., 1 msec) operating against fast moving targets. In
this example, the peak sidelobes have increased from —40 dB to approximately —28 dB
and —15 dB, respectively. As with the LFM waveform, aloss in the peak amplitude and
resolution are experienced with increasing Doppler shift. Johnston [24, 25] provides an
excellent discussion on Doppler sensitivity.

2.4.5 Summary

NFLM waveforms achieve low range sidel obes without the SNR loss associated with an
amplitude taper. Frequency modulation is used to shape the waveform’s spectrum, and
the sguare of the spectrum magnitude determines the shape of the time-domain response.
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FIGURE 2-21 = A
quarter cycle of
Doppler shift across
the uncompressed
pulse starts to
elevate the near-in
sidelobes of the
NLFM waveform.
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FIGURE 2-22 = A
full cycle of Doppler
shift across the
uncompressed pulse
increases the near-in
sidelobes of the
NLFM waveform to a
peak value of
—15dB and
displaces the main
lobe by one range
resolution bin.
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NLFM waveforms are less Doppler tolerant than LFM waveforms, and stretch processing

is not an option for NLFM waveforms. The latter two properties may on occasion limit
its application.

|7 | STEPPED FREQUENCY WAVEFORMS

In some applications, a waveform with the following properties is advantageous:

1. A low instantaneous bandwidth on transmit and receive

2. A composite waveform bandwidth that is greater than the waveform’s instantaneous
(intrapulse) bandwidth and that defines the range resolution achieved by the system

3. A relatively short blind range

Waveforms with these properties are beneficial in radar upgrades where additional
bandwidth is desired but where instantaneous bandwidth is limited, in phase-steered
antennas where instantaneous bandwidth increases dispersion loss and other frequency
dependent effects, and in wideband instrumentation radars where the target/clutter envi-
ronment is generally more constrained and known over relatively long time intervals.

An SF waveform [16-18] achieves the aforementioned properties by transmitting
and receiving N narrowband pulses each at a different center frequency and coherently
combining the returns to create a waveform whose composite bandwidth is greater than
the single-pulse bandwidth. Since the waveform’s bandwidth and energy are spread over
several pulses, the duration of a single pulse and resultant blind range are reduced. The
advantages associated with an SF waveform are similar those ascribed to a stepped chirp
wavefom in Section 3, but the processing steps and some of the fundamental properties
are very different. Disadvantages associated with an SF waveform include the additional
time required to transmit and receive N pulses and range ambiguities introduced as a by-
product of the frequency stepping. These shortcomings tend to constrain its application;
however, there are instances where the waveform is the correct one to employ.
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2.5.1 Waveform Description

An SF waveform is composed of N pulses separated from one another in frequency by
Af hertz and in time by T seconds as illustrated in Figure 2-23. The radar transmits a
pulse and then collects samples at specific range gates (or time delays). The process is
repeated for N pulses. A high-resolution range profile is then formed at each range gate.
After processing, the resultant range resolution is inversely proportional to the composite
waveform bandwidth, NAf.

With an SF waveform, there is no restriction on the intrapulse modulation; a continuous
wave (CW) pulse or a pulse employing phase or frequency modulation may be employed.
However, as a part of the trade space, waveform parameters such as pulse width, bandwidth,
PRI, and frequency step size must be selected based on system requirements and the
anticipated target and clutter environment.

2.5.2 Phase Rotation Used to Measure Range

By transmitting pulses centered at different frequencies, an SF waveform exploits phase
changes to resolve returns in range at resolutions finer than that achieved with a single
pulse. For a stationary point target located at range Ry, the measured phase on the first
pulse is

2Ry

where fj is the transmit frequency, and c is the speed of light. Stepping the center frequency
from pulse to pulse by an amount A f* produces a phase rotation

2R 2R
0(n) =2nfo—— +2xnAf== n=0,....,N—1 (2.110)
c c
where n is the pulse index. The phase rotates at a rate
2R
AO=0(n+1)—6(n)=2nAf== (2.111)
c

and provides a mechanism for resolving targets in range. As discussed in Section 2.5.4.2,
the returns are processed using a DFT, which maps the phase rotations into an HRR profile.
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FIGURE 2-23 = A
stepped frequency
waveform consists
of multiple pulses
separated in
frequency by a step
size Af.
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FIGURE 2-24 = An
HRR profile is
formed at each
range gate using a
DFT to compress
the returns from N
pulses.
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2.5.3 Receiver and Processing Architecture

The receiver, the fast and slow time samples, and the signal processing blocks associated
with an SF waveform are depicted in Figure 2-24. In the receiver, the returns from the
n-th pulse are mixed from RF to an intermediate frequency and finally to baseband using
a coherent detector. A matched filter is applied to the received pulse either in the form of
a low-pass filter preceding the ADC for a CW pulse or as a matched filter implemented in
the signal processor for a modulated pulse.

As returns from a pulse are received, a sample is collected at each range gate, and
the process is repeated over N pulses. The columns forming the matrix in Figure 2-24
represent M range gates collected over fast time, and the rows index returns from the n-th
pulse over slow time. After collecting returns from N pulses, a range profile is formed at
each range gate by processing the returns using a DFT. Range sidelobes are reduced by
applying an amplitude weighting.

A single range profile contains resolved returns associated with scatterers located
within a region centered on the range gate and extending a distance defined by twice the
range resolution associated with a single pulse. Multiple range profiles may be concate-
nated to form a composite range profile representing the returns over several range gates.

2.5.4 Creating a Range Profile

2.5.4.1 Compressed Range Response

The range compression or enhanced resolution associated with an SF waveform is achieved
by coherently combining the returns collected from N pulses. For a point target located
at range Ry, the samples are

. 2Ry . 2Ry
X (n) =exp <]2nf07) exp (]ZnnAfT> n=0,...,N—1 (2.112)
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Thefirst term to the right of the equal sign is a constant and is associated with the round-
trip delay and the initial transmit frequency. The second term isacomplex phasor rotating
at arate defined by the frequency step size and the range to the target. The phase rotation
is similar to that observed when employing a pulsed Doppler waveform. To simply the
expressions, the amplitude of the return is set to unity.

Fourier analysisis applied to the complex samplesin equation (2.112) to extract the
location of thereturn in range. Consider the DTFT defined by

N-1

X (@) =) x(n)exp(—jwn) (2.113)
n=0

wherex (n) arethemeasured returnscollected from N pulses, and w isthedigital frequency
with units of radians/sample. The DTFT represents afilter bank tuned over a continuum
of frequencies (or rotation rates), which in this case correspond to different ranges.

The samples are often viewed as being collected in the frequency domain, and the
returns are then transformed to the time (or range) domain. The frequency-domain in-
terpretation is based on the assertion that each pulse is measuring the target’s response
(amplitude and phase) at a different frequency. From this perspective, an inverse DTFT
would naturally be applied; however, it is the rotating phase induced by the change in
frequency that isimportant. Either aforward or inverse DTFT may be applied as long as
the location of the scatterers (either up- or down-range) is correctly interpreted within the
profile, and the return is scaled to account for the DTFT integration gain.

For apoint target located at range Ry, the output of the DTFT isadigital sinc defined

by

(2.114)

2 2R . . . .
where wg, = Zn%ROAf, w = 27— Af, and R is a continuous variable representing

c

range. Equation (2.114) represents the range compressed response. The term wg, centers
the response at a particular range or frequency. The shape of the compressed response is
examined by setting Ry = O or

()
X()| = |—~2 2 (2.115)

(3

A plot of the compressed responseisshown in Figure 2-25. Theresponse consistsof amain
lobe and sidel obe structure with peak sidelobes 13.2 dB below the peak of the main lobe.
The DTFT isperiodic and repeats at multiples of 27 in w; therefore, the range compressed
responseisalso periodic with periodicities spaced by c/2A f. Animplication isthat range
measured at the output of the DTFT is relative to the range gate and not absolute range.
Absolute range is defined by the time delay to the range gate and the relative range offset
within the profile.
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FIGURE 2-25 = A
SF waveform’s
compressed
response is a digital
sinc function.
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Thewaveform’s Rayleigh resolutionisfound by setting the argument of the numerator
in equation (2.115) equal to = and solving for w

2
b =7 (2.116)

wheredw istheresolutionintermsof digital frequency. To convert thefrequency resolution
in equation (2.116) to arange resolution, consider two point targets located at ranges Ry
and R, and separated inrange by § R = |R, — Ry|. The difference in their phase rotation

: 2R _ ' . , .
rates is 2r TM . Equating the rate difference to the frequency resolution defined in
equation (2.116)

and solving for the range difference yields the Rayleigh resolution

c

SR=
2NAT

(2.118)

The range resolution achieved by the SF waveform isinversely proportional to the wave-
form’s composite bandwidth NAf. In this case, the Rayleigh resolution is equivalent to
the main lobe’'s—4 dB width.

2.5.4.2 Discrete Fourier Transform

The DTFT is defined over continuous frequency; however, to realize the compressed
response in digital hardware requires one to evaluate the DTFT at a finite number of
frequenciesover theinterva [0, 2rr). Itiscommon to evaluate the DTFT at equally spaced
frequencies

k
oc=2nr k=0....(M~1) (2.119)
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where M > N. This is equivalent to evaluating the response at equally spaced ranges
defined by

_ C
T 2AfM

Inserting equation (2.119) into (2.113) yields the DFT

R

k k=0,...,(M—1) (2.120)

N-1

X (k) = Zx(n) exp (—j 2%kn> M >N (2.121)

n=0

which is often implemented using an FFT for computational efficiency. For a point target
located at range Ry, the compressed response is a sampled instantiation of the digital sinc
in(2.114) or

. N /27
IX(K)| = 5 k=0,...,(M -1 (2.122)
sin((Vk—wRO>/2>

The DFT isalinear operator; thus, the range profile associated with multiple scatterersis
simply the superposition of the individual responses.

Zero padding is often used in conjunction with a DFT to decrease the filter spacing,
which reduces straddle loss. For M > N, the sequence is said to be zero padded with
M — N zeros. For M = N, thefilters or range bins are spaced by the nominal waveform
resolution c/2NAT.

2.5.4.3 Range Sidelobe Suppression

Range sidelobes associated with large RCS targets may mask the presence of smaller
targets. As noted in Figure 2-24, sidelobes are suppressed by applying an amplitude
weighting to the complex samples collected at a range gate. When selecting an ampli-
tude taper, the associated reduction in resolution and loss in SNR should be taken into
account [36].

2.5.5 Straddle Loss and Range Ambiguities

The range profile generated by an SF waveform may exhibit undesired artifacts as aresult
of ambiguities and straddle loss. The following sections examine these issues and the
impact of waveform parameter selection on performance.

2.5.5.1 Straddle Loss

Straddle loss is introduced at two points in the processing chain: (1) when sampling the
pulse’s match filtered response; and (2) within the DFT. Theloss associated with the DFT
was discussed in Section 2.5.4.2. The loss associated with sampling is examined in this
section. When sampling the return from a pulse, the resultant straddle loss is a function
of the range gate spacing and the single-pulse bandwidth or range resolution. Severa
examples are provided to illustrate the loss.

Inaradar system, range gatesare often spaced by thetransmit pul se’srange resolution.
A similar spacing may be applied to a stepped frequency waveform where the range gates
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FIGURE 2-26 = A
point target’s
matched filtered
response is sampled
at the range gate
spacing.

FIGURE 2-27 =
Scatterers located
on arange gate are
sampled at the peak
of the reponse.
Scatterers not
located on a range
gate experience
straddle loss.
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range

Range gate sample

are separated by ¢t /2 when employing a CW pulse. Consider the match filtered response
for an ideal CW pulse as shown in Figure 2-26. The response extends over a time delay
equal to twice the pulse length (i.e., 27). For a point target, the peak of the response is
located at the target’s range Ry. Four range gates, spaced by ct /2, are depicted in Figure 2-
26. The darkened circles represent the samples collected by the radar and are aligned with
the range gates. A range gate is not constrained to fall on the peak of the response, and the
offset in range between the target, Ry, and the range gate, R, introduces straddle loss.

When forming an HRR profile of a target, straddle loss reduces the apparent RCS
of individual scatterers resulting in a distorted response. To appreciate the impact, let’s
examine two cases: (1) a target consisting of only two scatterers; and (2) a target of length
L consisting of multiple scatterers.

Consider two equal amplitude scatterers located at ranges R; and R, as shown in
Figure 2-27. The radar samples the composite response atrange Rqr.. The second scatterer,
centered at range R, , is aligned with the range gate and is sampled at the peak of its
response. In contrast, the first scatterer experiences a loss due to its misalignment with the
range gate. The amount of loss is a function of the scatterer’s distance from the range gate
and the shape of the pulse’s response.

Next, consider a target of length L, as shown in Figure 2-28. The responses for three
scatterers, located in the center (solid line) and both ends of the target (dashed lines), are
depicted. Since the range gate and the center scatterer are aligned, no straddle loss occurs.
If the pulse width is chosen such that ct/2 = L, the scatterers at the ends of the target
experience a 6 dB loss in SNR or measured RCS. When transmitting a phase code with
rectangular chips, the loss is identical to that of a CW pulse. When employing an LFM
pulse with bandwidth g and ¢/28 = L, the loss is < 4 dB depending on the weighting
applied.

! I I ! ¢t range
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For an isolated target, the loss may be minimized over the target extent using a pulse
with bandwidth such that ¢/28 > L. In a target-rich or extended-clutter environment, the
pulse bandwidth must be carefully chosen to minimize the amount of energy associated
with scatterers located in adjacent ambiguities that folds into the region of interest and
produces ambiguous returns. Range ambiguities are discussed in the next section.

2.5.5.2 Range Ambiguities Associated with Frequency Stepping

An SF waveform exhibits range ambiguities that are a by-product of the frequency stepping.
These ambiguities should not be confused with those associated with the PRI, which are
also present. The ambiguity presents itself in equation (2.112), which is periodic in 2.
The periodicity causes returns located at Ry + mR4 wherem = ... —2,—1,0,1,2, ...
to rotate in phase at the same rate as the target located at range Ry. The ambiguous range
offset R4 is found by setting the phase rotation equal to 27 or

2R4

2rAf — =2n (2.123)
C

and solving for
c

= 3a7 (2.124)

R4

The phase rotation rate repeats or is ambiguous every ¢/2Af in range.
As an example, consider the response associated with two point targets located at
ranges Ro and Ry + ¢/2Af, as shown in Figure 2-29. In this example, the pulse width

time
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FIGURE 2-28 = An
extended target will
experience straddle
loss that varies
along the length of
the target.

FIGURE 2-29 = A
stepped frequency
waveform introduces
ambiguities in range
that are separated
by ¢/2Af.
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FIGURE 2-30 = The
size of the
unambiguous region
must be larger than
the target extent to
prevent unresolvable
ambiguities.
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is 1/Af. The range gate is centered in the first unambiguous region and is labeled Rgaze.
The match filtered responses overlap even though the two targets lie in separate regions.
Since the targets are separated by ¢/2Af, their rotation rates are equivalent. The resultant
range profile will contain a compressed response at range Ry with an amplitude and phase
that is equal to the coherent sum of the two responses.

To increase the size of the unambiguous region, the size of Af may be reduced;
however, for a given bandwidth, reducing the frequency step size increases the number
of pulses and thus the time associated with the waveform. In a dynamic environment,
a limited dwell time is required to prevent returns from decorrelating. For example, a
target moving through one or more resolution bins during a collection interval causes the
response to broaden in range and results in a reduction in achieved SNR. Trades associated
with Af and 7 are examined in the following sections.

2.5.5.3 Ambiguities in a Dynamic Target Environment

In adynamic environment, the location of the target relative to arange ambiguity is not con-
strained. In many cases, the target may straddle two unambiguous regions, as illustrated in
Figure 2-30. The solid and dashed horizontal line segments represent scatterers positioned
along an extended target. Assume that the two line segments represent an aircraft with its
noise oriented toward the left side of the page. The nose section is represented by the solid
line, and the tail section is represented by the dashed line. The unambiguous regions are
spaced by ¢/2Af. The phase rotation rate at the beginning of an unambiguous region is
associated with O hertz, and the phase rotation rate at the upper end of an unambiguous
region is slightly less than A f hertz.

The pulse is sufficiently long to cover the target extent and extends over two ambigu-
ities to minimize straddle loss. The shaded box illustrates how range and frequency are
coupled over an unambiguous region. The darker and lighter regions correspond to lower
and higher frequencies, respectively. Given the relative position of the target, the nose of
the aircraft is at a higher frequency than the tail section. Having collected N samples and
compressed the response, the processed return has the nose and tail sections reversed in
the range profile. To resolve the ambiguity, it is necessary to select ¢/2Af > L.

2.5.5.4 Choosing a Pulse Width in a Target- or Clutter-Rich Environment

In a target- or clutter-rich environment, it is desirable to limit the returns in a range gate
to those associated with objects contained within a region extending ¢/4A f about the
center of the gate. Without this constraint, returns from neighboring ambiguous regions
may fold into the range gate of interest. For a CW pulse, this condition is met by equating
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the size of the unambiguous region to the post-match filtered pulse length 27 or

2t = L (2.125)
Af
and solving for 7 yields
1
T=— (2.126)
2Af

With a phase or frequency modulated pulse, one option is to set the null-to-null range
resolution equal to the unambiguous range extent. For an unweighted LEM pulse, this is
equivalent to

2 £ < (2.127)
28 2Af

or
B =2Af (2.128)

With modulated pulses, low range sidelobes are used to suppress returns from objects
located outside the unambiguous region.

Using the four scatterers in Figure 2-31, the consequences associated with selecting
v = 1/2Af are examined. Scatterer #1 is positioned on a range gate. Scatterer #2 is
located a distance of ¢/8A f from the first scatterer, and similarly scatterer #3 is placed a
distance of c/4A f away. Scatterer #4 is situated at the center of the next range gate, which
is spaced c¢/2Af from the first gate. With r = 1/2Af, measurements taken at a range
gate are associated only with scatterers located within a distance of £c¢/4Af about the
gate. The pulse width prevents ambiguous returns from adjacent regions from folding into
the measurement. A drawback is that scatterers located a distance ¢/8Af from a range
gate experience a straddle loss of 6 dB. For scatterers located between Rga +¢/8Af and
Roate+c/4Af, straddle loss is even more significant. The waveform designer is presented
with a trade-off between suppressing ambiguous returns and reducing straddle loss. How
the designer addresses the trade is dependent on the target and clutter environment. To
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FIGURE 2-31 =
Reducing the pulse
width aids in dealing
with range
ambiguities but
increases straddle
loss.
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address straddle loss, additiona range gates may be inserted within an unambiguous
region, but the result is a higher sampling rate and increased processing.

2.5.5.5 Waveform Parameter Trade Summary

An SF waveform is defined by four principal parameters, whose impact on performance
isinterrelated: pulse repetition interval, number of pulses, frequency step size, and pulse
width. The previous sections addressed some of these relationships. The principal trades
are summarized here for convenience:

1. Pulserepetitioninterval, T:

a. Theminimum PRI is selected to support the maximum unambiguous range.

b. The product of the PRI and the number of pulses, NT, defines the dwell time
associated with thewaveform. Thedwell time should besized to prevent atarget from
moving through more than 1/2 arange resolution cell during a coherent processing
interval.

2. Product of the number of pulses and the frequency step size, NAf:

a. The product defines the waveform’s composite bandwidth.
b. Theradar system’'srange resolution, c/2N A f, dictates the value of NAT.

3. Frequency step size, Af:

a. Definesthe size of the unambiguous region, c/2Af.

b. A small valueof Af increasesthe number of pulsesrequired to achieve the desired
range resolution and correspondingly the waveform’s dwell time.

c. When imaging a target of length L, c/2Af > L is often enforced to resolve am-
biguous returns.

d. Inmany cases, c/2Af defines the range gate spacing.
4. Pulsewidth, t (CW pulse only):

a. With t = 2L /c, the maximum straddle lossis 6 dB across atarget of length L.

b. With t = 1/2Af, returns are localized to a region defined by c/2Af; however,
straddle loss tends to increase.

2.5.6 Impacts of Doppler

The SF waveform has been examined assuming a stationary target and radar. Thisis a
valid assumption in someinstances, for example, aninstrumentation radar used to measure
the HRR profile of a stationary object. In other instances (e.g., atactical application), the
environment is not as constrained, and the effects of relative motion must be considered.

To evaluate the impact of Doppler shift on an SF waveform, first consider the samples
collected from a stationary target as defined in equation (2.112). With relative motion, the
measured range to the target changes pulse to pulse. The range varies as

RMN=Ry—mT n=0...N-1 (2.129)

where v isthe radia component of velocity.
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Inserting (2.129) into equation (2.112)

2(Ro—nmvT)
=)

R(n):exp(jZn(foJrnAf) n=0,...,(N-1) (2.130)

and expanding terms

2 2 2
X(n) = exp(jZﬂ%Ro fo> exp<j2n%R0nAf) exp (—j27r v

(2.131)
Thefirst exponential in (2.131) isaconstant phase term. The second exponential contains
alinear phase term associated with the range to the target. Both of these terms are present
in the zero Doppler case (in equation (2.112)), and the remaining two exponentials are a
direct result of the relative motion between the radar and the target. A Doppler shiftisalso
imparted to the carrier frequency, but the associated phase contribution is small compared
with the values defined in equation (2.131) and is therefore ignored.
The third term in equation (2.131) introduces range-Doppler coupling with the peak
of the response shifted in range by

UTfo
Af

Ishift = (2132)

Normalizing the range shift in equation (2.132) by the waveform’s range resol ution yields

_ 2NvT fp
I'shift = c

(2.133)

which expresses the shift in terms of range resolution cells. The fourth exponentia is
quadratic in n producing a spreading in the compressed response. The maximum spread
occurswhenn = N or

Normalizing the spread in equation (2.134) by the waveform’s range resol ution yields

2
o = 2T @13)
The spreading term produces in a loss in coherent gain and thus a loss in SNR. The
range-Doppler response of a stepped frequency waveform is very similar to an LFM
waveform with exception that the response aliases when the Doppler shift causes arange
displacement greater than c/2Af.
For asingletarget, the effects of Doppler may be mitigated if an estimate of thetarget’s
radial velocity is ascertained via tracking or some other means. A range-independent
correction factor may be applied to the samples prior to applying a DFT:

. 2nT 20T
Xcorrect(n)=exp<1277 c fo>exp<127r c Af) (2.136)

where v is an estimate of the radia velocity. The correction factor is multiplied by the
measured samples in equation (2.131) to remove the undesired terms.

T 2n>vT
fo) exp <—j27r ncv

)
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2.5.7 Summary

An SFwaveformisdesigned to achieveanarrow instantaneous bandwidth on both transmit
and receive to accommodate hardware limitations. Fortunately, a wide bandwidth signal
may be synthesized by the stepping pulses over frequency and coherently processing the
returns. The achieved range resolution is inversely proportional to the total frequency
extent over which the waveform is stepped. The waveform requires a long collection
interval, which often limits its application; however, the waveform is used in some wide-
band instrumentation radars and in some tactical systems. The frequency stepping intro-
duces ambiguitiesin range that must be addressed through judicious waveform parameter
selection.

| | QUADRIPHASE SIGNALS

2.6.1 Introduction

Biphase-coded waveforms are formed by concatenating chips (or subpul ses) and modulat-
ing the phase chip to chip. The phase of each chipiseither 0 or 180 degrees. The spectrum
of the resultant waveform retains many of the characteristics of the constituent subpulse
including high spectral sidelobes. The sidebands of the spectrum are a source of EMI
and have the potential to interfere with other RF systems operating nearby. Quadriphase
waveformswere devel oped by Taylor and Blinchikoff [27] for useinthe AN/TPS-63 radar
to reduce the spectral sidelobes of biphase-coded waveforms while retaining their time-
domain sidel obe performance [28-30]. Quadriphase encoding is similar to the minimum
shift keying (MSK) technique applied in some communication systems and may also be
viewed as a modified version of frequency shift keying (FSK) [31].

The relatively high spectral sidelobes, characteristic of phase-coded signals, are an
artifact of the rectangular subpulses commonly used to synthesize the waveform. A
nonrectangular-shaped subpulse (e.g., a Gaussian-shaped subpulse) may be used to sup-
press the sidelobes, but the waveform's envelope exhibits a time-varying amplitude
response that is undesirable from an energy perspective. Taylor and Blinchikoff [27]
devel oped abiphase-to-quadriphase (BT Q) transformation that produces awaveform with
the following properties:

1. Spectral sidelobeslower than those achieved with a phase-coded waveform employing
rectangular subpulses
2. Time sidelobes near those achieved with a specified biphase-coded waveform

3. A nearly constant amplitude response

2.6.2 BTQ Transformation

The BTQ transformation may be applied to any biphase code. The first step isto select a
biphase code that exhibits the desired range sidelobe response. Next, the biphase codeis
transformed into a four-phase (quadriphase) code:

h=j"Ye n=12....N (2.137)
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TABLE 2-3 = Conversion of a 13-Element Barker Code into a Quadriphase Code

Element Index, n
1 2 3 4 5 6 7 8 9 10 11 12 13
13—-Element Barker Code

1 1 1 1 1 -1 -1 1 1 -1 1 -1 1
13-Element Quadriphase Code

Y SRS (R S T 1 B L j 1

where ¢, is the original biphase code and ¢, € {1, —1}, g, is the resultant quadriphase
code, n is the chip index, s is either 1 or —1, and N is the length of the biphase code. Since
¢, is biphase, the elements of g, are real for odd values of n and imaginary for even values
of n. Table 2-3 contains the transformation for a 13-element biphase Barker code.

The transformation in equation (2.137) is not sufficient by itself to create the desired
spectral response. The next step is to define to a subpulse, p(f), whose shape is a half-cosine

p(t) = cos(mt/27.) —1. <t <t (2.138)

where the quadriphase subpulse width is 27, and z. is the chip width associated with the
biphase-coded waveform.
A complex signal is formed by summing weighted and shifted copies of the subpulse

N
2ty =Y _j*" Ve,p(t —nz,) (2.139)

n=1

where adjacent subpulses overlap in time by 7. seconds. The real and imaginary parts
of the complex signal formed using a 13-element Barker are plotted in Figure 2-32. An
important feature of the quadriphase signal is that the envelope

a(t) = |z(1)] (2.140)

is constant over most of the response, as shown in Figure 2-33. The only exceptions are
the segments at the beginning and end of the waveform. The phase of the complex signal

amplitude

tlz,

FIGURE 2-32 » The quadriphase transformation converts a biphase code into a complex
signal. The chips consist of half-cosine subpulses, and the phase is continuously varying.
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FIGURE 2-33 = The
envelope of the
complex signal is
constant except at
the ends of the
pulse.

FIGURE 2-34 = The
phase of the
quadriphase code
varies linearly across
a chip.
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0.5

magnitude

in equation (2.139) is

(2.141)

o0 — ton-? (Im{z(t)})

Re{z(t)}

and is plotted in Figure 2-34. Over a chip, the phase of the signal varies linearly, whereas
the phase of atraditional phase-coded waveform is constant.

2.6.3 Quadriphase Waveform

In aradar system, the amplitude and phase of the complex signal in equation (2.139) are
used to modulate a sinusoid

y(t) = a(t)cos(¢ (1)) (2.142)

The signal in equation (2.142) is centered at baseband. The signal isthen mixed to an RF
and transmitted.

2.6.4 Waveform Properties

2.6.4.1 Spectrum

With a phase-coded waveform, the chip’s shape determines the envelope of the wave-
form’s spectrum [1]. A similar relationship holds for quadriphase waveforms. Taylor and
Blinchikoff [27] show that the spectrum of a half-cosine pulseis

47,

PP = (_ COS2(Q21e)
T

(2.143)

(e

phase (deg)
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FIGURE 2-35 = The

Quadriphase subpulse shape
Biphase _ determines the basic
envelope of the
-, - — waveform’s
\ 7 \‘ e \\ spectrum.

normalized frequency ( f7,)

Figure 2-35 contains a comparison of the spectrum of a half-cosine pulse of length 27,
and the spectrum of a rectangular pulse of length z.. The half-cosine pulse exhibits lower
sidelobes that roll off at a faster rate than the rectangular pulse.

The actual spectrum of a quadriphase waveform is a function of both the subpulse and
the quadriphase code. The waveform may be expressed as a convolution of the quadriphase
code, with elements spaced by 7., and the half-cosine pulse of length 27z,

N
2(t) = p(t) % »_gad(t — nz) (2.144)

n=1

where * denotes linear convolution. The waveform’s spectrum is the product of the half-
cosine pulse’s spectrum in equation (2.143) and the spectrum of the quadriphase code.
Figure 2-36 contains a comparison the spectrum associated with a 13-element Barker code
and its corresponding quadriphase code. The quadriphase waveform has a narrower band-
width, corresponding to a loss in resolution, but has substantially lower spectral sidelobes.
The peak spectral sidelobe of the quadriphase waveform is approximately —23 dB, com-
pared with approximately —13 dB for a traditional phase code with rectangular subpulses.
The spectral sidelobes of the quadriphase code roll off at 12 dB per octave, whereas the
sidelobes of the sinc response roll off at 6 dB per octave. The BTQ transformation has
achieved the desired goal of reducing the energy in the sidelobes and thus the effects of
EMI. The impact on the match filtered response is examined in the next section.

FIGURE 2-36 = The

Quadriphase || waveform’s
Biphase spectrum is the
product of the
. 1 subpulse’s and
£ F_,,ﬁ- code’s spectra.

normalized frequency (/7. )
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FIGURE 2-37 = The
quadriphase code
exhibits peak
sidelobes equal to
the 13-element
Barker code. The
main lobe of the
quadriphase code is
broadened, resulting
in aloss of
resolution.
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2.6.4.2 Match Filtered Response

As previously noted, the main lobe of the quadriphase spectrum in Figure 2-36 is nar-
rower than that of the biphase code, corresponding to a slight reduction in bandwidth and
manifesting as a loss in resolution. The match filtered responses for the quadriphase and
biphase-coded waveforms are plotted in Figure 2-37. The quadriphase waveform exhibits
a wider main lobe and thus a loss in range resolution. Taylor and Blinchikoff [27] predict
the broadened response by examining the half-cosine’s autocorrelation response

m(t) <1 I )cosm + tcsinnlt|
=T —_—— - -
¢ 2Tc 2Tc w 21’(‘

—2t. <t <2t (2.145)

The main lobe width measured at the 6 dB point is approximately 1.54 7. compared with
7. for arectangular subpulse. The corresponding 3 dB points are 1.1 . and 0.58 .. for the
quadriphase and rectangular subpulses, respectively.

For an ideal biphase-coded waveform with rectangular chips, the sidelobes are defined
entirely by the code sequence. With Taylor and Blinchikoff’s [27] quadriphase waveform,
adjacent subpulses overlap resulting in cross-talk and a slight degradation in sidelobe
performance. The ratio of the quadriphase peak sidelobe to the biphase peak sidelobe is

2\’ 1\?
OBR = l+(—) (1——)
b4 a
where a is the peak sidelobe of the biphase code. For Barker codes, the peak sidelobe
is 1 and thus OBR = 1 (i.e., the peak sidelobes of the biphase and quadriphase codes

are identical). For non-Barker codes, the ratio may approach a maximum value of 1.185
(or 1.48 dB).

(2.146)

2.6.4.3 Ambiguity Surface

While the sidelobe structure of a quadriphase waveform is quite similar to its parent biphase
code, Levanon and Freedman [30] show that its response in the presence of a Doppler
shift is quite different. A quadriphase code derived using a 13-element Barker exhibits
a range-Doppler coupled ridge similar to an LEM waveform, whereas the biphase code
exhibits a distorted thumbtack response. In general, the ambiguity surface of a quadriphase
code may be quite different from that of the parent biphase code.
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2.6.5 Summary

Quadriphase codes achieve lower spectral sidel obes than traditional phase codes employ-
ing rectangular subpulses. The lower sidel obes reduce the potential for EMI. Quadriphase
codes are generated by applying atransformation to the biphase code and using subpul ses
shaped as half-cosines. The subpulses are overlapped to create anearly constant envelope.
The peak sidel obe performanceisat or near that achi eved by the biphase code. At most, the
peak sidelobeincreases by 1.48 dB. At the 3 dB point, the main lobe increases by afactor
1.9 corresponding to aloss in range resolution. The ambiguity surface of a quadriphase
code may be quite different from that associated with the parent biphase code.

| | MISMATCHED FILTERS

2.7.1 Introduction

Phase codes exhibit a sidelobe response defined by the code sequence. MMFs may be
applied to reduce or shape the sidelobes at the expense of a dlight loss in SNR. This
section examines the design of mismatched filters applied to a phase-coded waveform to
tailor the sidel obes.

2.7.2 Performance Metrics

When evaluating mismatched filter performance, three metrics are often used: PSR; in-
tegrated sidelobe ratio (ISR); and loss in processing gain (LPG). PSR is defined as the
square of the largest sidelobe divided by the square of the main lobe peak. ISR is the
energy in the sidelobes (i.e. the sum of the squares of all the sidelobes) normalized by
the square of the main lobe peak. LPG is the ratio of the square of the main lobe peak
when employing mismatched filtering to the square of the main lobe peak when employing
matched filtering and is equivalent to the lossin SNR.

2.7.3 Mismatched Filter Approaches

MM Fsmay be designed to minimizethel SR, toreducethe PSR, or to tailor specificregions
of the sidelobe response. The process of creating a filter is examined in the following
sections.

2.7.3.1 Minimum ISR Filter

The lowest ISR known for a binary sequence is —11.49 dB, which is achieved by a
13-element Barker code; for longer binary sequences, the lowest achieved ISR is ap-
proximately -8 dB [43, 44]. A mismatched filter may be applied that achievesalower ISR
and that in many cases also yields alower PSR. The filter is derived as the least squares
solution to an overdetermined set of equations used to model adesired sidel obe response.
Consider aphase code ¢, wherek = 0, ..., K — 1, and aFIR filter with coefficients
ZmWherem=0,...,M —1land M > K. Thefiltered response is

K-1
Vo= GZnk N=0...K+M=2 (2.147)
k=0
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The desired filtered response is d,, where
and

dh=0 n#£p (2.149)

wherep = (M + K)/2for M + K anevennumber,and p= (M + K — 1)/2for M + K
an odd number. The error between the desired response and the response achieved using
thefilter is

en = dn - yn (2.150)

and the sum of the squared errorsis

K+M-2

E= ) (th—w)? (2.151)

n=0

Thefilter operation in equation (2.147) may be written using matrix notation
y=Cz (2.152)

where yisacolumnvector containing thefiltered responsewithdimension (K + M — 1) x
1, C isamatrix with dimension (K + M — 1) x M whose rows contain delayed copies
of the phase code, and z is a column vector containing the filter coefficients. An example
of the C matrix is

(o} 0 ce 0
C, C - 0
C= (2.153)
o ... Ck Ck_1
o ... 0 CK

The sum of the squared error may be expressed using matrix notation
E=d—-y@-y" (2.154)

where d isavector with dimension (K + M — 1) x 1 containing the desired response, and
H denotes Hermitian transpose. A least squares (L S) solution [44] to the overdetermined
set of eguations may be obtained which minimizes the squared error and thus the ISR.
The LSfilter coefficients are

z=(c"c)~ictd (2.155)

2.7.3.2 Minimum ISR Example

A few examples are used to examine minimum ISR (MISR) filters and their properties.
A 27-element MISR filter is generated using a 13-element Barker code. The compressed
responsesfor a13-element Barker having applied amatched filter and a 27-element MISR
filter are plotted in Figure 2-38. As previously noted, this particular Barker code exhibits
a-11.5 dB ISR. Using the MISR filter, the ISR is reduced by 8.3 dB, and the PSR is
reduced by approximately 6 dB. The LPG is 0.18 dB, which is small compared with the
loss associated with atypical weighting function.
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The filter length may be increased to achieve lower sidelobes, but the link between
sidelobe suppression and filter size is code dependent. Codes with a low match filtered PSR
generally exhibit a more rapid reduction in sidelobes with increasing filter length, but even
codes with similar match filtered characteristics exhibit varying degrees of performance.
Searches [33, 46, 47] may be performed to identify codes that perform well with MMFs. In
many instances, these codes exhibit better MMF sidelobe performance than codes selected
solely on the basis of their match filtered properties.

Figure 2-39 contains the ISR and PSR for a 48-element minimum peak sidelobe (MPS)
code [48] as a function of filter length. The 48-element MPS code is provided in Table 2.4.
Applying a 400-element MISR filter, the LPG is approximately 1.5 dB. A biphase code
optimized to exhibit low sidelobes when combined with MMF filtering is provided in
Table 2-4. Figure 2-40 contains a plot of the code’s performance as a function of filter
length. Applying a 400-element filter, the LPG is approximately 0.86 dB.

TABLE 2-4 m Phase Codes Used in Mismatched Filter Examples

Code Type Elements (Octal Representation)
48-element MPS code 0526554171447763

48-element optimized code for MMF 2522332235416377

64-element MPS code 0061243076734133115722
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FIGURE 2-38 = The
optimal ISR filter
exhibits a lower PSR
and ISR than the
match filtered
13-element Barker
code.

FIGURE 2-39 = The
PSR and ISR
decrease with
increasing filter
length. In this
example, an MISR is
applied to a
48-element MPS
code.
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FIGURE 2-40 = A
MISR filter is applied
to a 48-element
code optimized to
perform well with
mismatched filtering.
The PSR and ISR are
significantly reduced
compared with the
48-element MPS
code employing an
MISR filter.
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TABLE 2-5 = Performance of MMFs Applied to a 48-Element MPS Code and an
Optimized Code

48-Element MPS Code 48-Element Optimized Code for MMF

LPG (dB) ISR(dB) PSR(dB) LPG(dB) ISR(dB) PSR (dB)
MF 0.00 -7.9 —24.1 0.00 -7.35 -19.6
MMF-100 0.66 -132 -26.2 0.79 -19.3 -29.5
MMF-200 1.10 -19.2 -34.1 0.86 -39.2 -50.5
MMEF-300 1.32 22.1 -38.6 0.86 -60.0 -72.5
MMF-400 1.47 239 —40.6 0.86 -77.0 -89.0

The performance achieved using different filter lengths is summarized in Table 2-5.
The first set of metrics (LPG, ISR, and PSR) is associated with the MPS code and the
second set with the optimized code. Although the MPS code has better matched filter
performance, the optimized code has better mismatched filter performance.

2.7.3.3 Doppler Tolerance

The performance achieved with mismatched filtering degrades quickly in the presence
of a Doppler shift. Figure 2-41 shows the effect of Doppler on the optimized 48-element
sequence and a 250-element MISR filter. The horizontal axis defines the number of cycles,
Jat.across the uncompressed pulse length, 7. The PSR and ISR degrade quickly even with
only a 1/100 cycle of Doppler over the uncompressed pulse. In general, MMF performance
is very sensitive to Doppler.

2.7.3.4 Tailoring the Sidelobe Response

The filterin equation (2.155) may be generalized to tailor the sidelobe response. A weighted
least squares solution provides a mechanism for assigning a relative weight to each side-
lobe. Larger weights indicate a higher degree of importance in meeting the desired side-
lobe response, whereas smaller weights imply less importance. The weighted least squares
filter is

z=(CHiwC)~'c"d (2.156)
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FIGURE 2-41 = A small fractional Doppler shift has a dramatic impact on MMF performance.
The plot shows the degraded performance of the optimized 48-element code and a
250-element MISR filter as a function of the number of cycles of Doppler shift across a pulse.

where W isadiagonal weighting matrix whose elements are the weights assigned to each
sidelobe

wg 0 O 0
0O w2 O 0
W = 0 0 0 (2.157)
. . . WK +M—2 0
0O 0 0 O WK+M—1

and w > 0.

For a given code and filter length, the weighted LS (WL S) solution does not achieve
an ISR lower than the MLS solution, but the sidelobe energy is distributed in a desired
manner. Consider an application where near-in sidelobes (i.e., those closest to the main
lobe) are more detrimental than distant sidelobes. To create a response with low near-in
sidelobes, W is defined with the larger weights assigned to the near-in sidel obes. Thefilter
will suppress the near-in sidelobes at the expense of higher sidel obes elsewhere. A filter
used to create this type of response is termed a null-region filter.

Figure 2-42 contains the compressed responses for a 130-element null-region filter
and an MISR filter both derived for a 64-element MPS code [49]. The codeis provided in
Table 2-4. For the null-region filter, the 40 sidelobes on either side of the main lobe are
assigned aweight of 10, and the remaining sidel obes are assigned aweight of 1. Thefilter
suppresses the near-in sidel obes to a peak value of approximately —70 dB. The remaining
sidel obes approach the level s achieved with the MI SR filter. For the null-region filter, ISR
and PSR increase by 2.2 dB and 4.6 dB, respectively, and the LPG increases by 0.63 dB.
By adjusting the weights assigned to the near-in sidelobes, it is possible to find a balance
between the suppression achieved in the null region and other performance metrics.

2.7.3.5 Reduced Peak Sidelobe Filters

Mismatched filters may also be designed to reduce the PSR to a desired level. Such a
filter may be obtained using linear programming [32] or through an iterative process [34]

79



FIGURE 2-43 = The
peak sidelobes may
be reduced through
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CHAPTER 2 | Advanced Pulse Compression Waveform Modulations

T
Null region
.......... Optimal ISR| |

dB

Hii
Tl
Tetne
T
%"
B
i
.I".

'==Nﬂﬂm..

- MTITRITTT .

avasnan
——_ey

—80

P ]

~100 1 1 1 1 1 1
—100 =20 0 20 40 60 80 100

compression bin

FIGURE 2-42 m A WLS filter may be used to create a null-region filter that suppresses the
near-in sidelobes. The null-region filter is applied to a 64-element MPS code and is designed
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employing the WLS equations. The steps involved in the iterative WLS approach are as
follows:

1. The MISR filter is obtained using equation (2.155) for a given phase code and filter
length.

2. The weighted LS solution is obtained using equation (2.156). The weights are assigned
the magnitude of the sidelobes obtained for the filtered response in step 1. A small offset
is added to each weight to prevent any zero or near-zero values.

3. Step 2 is repeated until the filter achieves a peak sidelobe level within some tolerance
of the desired value.

A filter obtained via this approach will tend to suppress the higher sidelobes, and if repeated
a number of times the sidelobes will approach a flat response.

The compression of a 64-bit MPS code (defined in Table 2-4) using a 130-element
reduced PSR filter is shown in Figure 2-43. The filter reduces the PSR by 8.3 dB; however,
the ISR increases by 2.3 dB, and the LPG increases by 0.26 dB. A number of the sidelobes
are higher than those associated with the optimal ISR filter, yet the PSR is reduced. As
the peak sidelobe is reduced, the energy in the sidelobe region is distributed more evenly
among the remaining sidelobes. The observed ISR is equal to or greater than that achieved
with the optimal ISR filter.
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2.7.4 Summary

While matched filters provide the maximum SNR for a given code length, MMFs are
capable of providing substantialy lower sidelobes with only a dight increase in SNR
loss. MMFs may be designed to minimize ISR, to reduce PSR, and to tailor the sidelobe
response. Extremely low sidelobes are possible, but MMFs are not Doppler tolerant. A
small fractional Doppler shift quickly degrades sidel obe performance.

| | FURTHER READING

The references serve as agood resource for further reading. Stretch processing is covered
in radar and waveform texts [3, 4] and in several SAR texts [5, 6, 40]. Stepped chirp
waveforms are relatively new and are not addressed in most radar texts. The reader is
encouraged to start with the papers by Lord and others [7, 8, 10-13]. The initial work in
NLFM design performed by Key and others[19-21] is summarized in two excellent texts
[26, 50]. Papers by Johnston [24, 25] are also recommended for those interested in the
Doppler intolerance associated with NLFM waveforms.

Stepped frequency waveforms are presented in a coherent fashion in the textbook
by Wehner [18] and in the chapter by Lane [17]. The origina paper by Taylor and
Blinchikoff [27] provides background on the motivation behind the development of the
quadriphasewaveform aswell asderivationsfor some of the equationsin thistext. Levanon
and Mozeson [51] describe other band-limiting techniques, in addition to quadriphase,
and describe the ambiguity surface for a quadriphase waveform. The various MMF de-
signs are covered at length in [32—35]. Early approaches to MMF design are covered in
[52, 53], and more recently an adaptive approach was described in [54].
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| PROBLEMS

A synthetic aperture radar employs stretch processing. The radar achieves an un-
weighted, Rayleigh range resolution of 0.2 m. The system is designed to support a
200 m range window, and the pulse width is 10 usec. What is the filter bandwidth
required to support the specified range window?

. Inasystem employing stretch processing, the range to the center of the window is 25

km. A target islocated within thewindow at arange of 25.02 km. The LFM waveform
has 1.2 GHz bandwidth and a pulse width of 150 usec. What is the beat frequency
associated with the target?

A radar system employsastepped chirp waveform. Thewaveform consistsof 4 pul ses.
Theintrapulse LFM waveform bandwidth is 250 MHz, and the pulsewidthis1 usec.
The constant frequency offset is 200 MHz. Assume an amplitude taper is not applied.
What is the Rayleigh range resol ution achieved by the waveform?

A system is designed to reconstruct a stepped chirp waveform by operating on the
waveform in the frequency domain. The ADC samples at a 350 MHz rate, and the
DFT sizeis 700. What constraint is placed on the frequency step size Af?

Using the coefficientsin Table 2-2 and equation (107), construct an NLFM waveform
with atime-bandwidth product of 50 (e.g., 8 = 50MHzand r = 1 usec). What isthe
peak sidelobe ratio achieved by the waveform? Next, construct an NLFM waveform
with atime-bandwidth product of 250 (e.g., 8 = 250 MHz and r = 1 usec)?What is
the peak sidelobe ratio achieved by the waveform? I's there an observed relationship
between time-bandwidth product and the resultant sidel obe levels? Explain.

Using the coefficientsin Table 2-2 and equation (107), construct an NLFM waveform
with a 200 MHz swept bandwidth and a 2 usec pulse. Apply a 1/2 cycle of Doppler
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2.10 | Problems

shift across the pulse. Generate the compressed response having applied the zero
Doppler matched filter. What is the loss in processing gain, the shift in the location
of the main lobe peak, and the increase in the peak sidelobe induced by the Doppler
shift?

A stepped frequency waveform is used to image a 10 m long target. To avoid range
ambiguities across the target, what isthe largest Af that may be applied? Using the
maximum value of Af needed to avoid range ambiguities, calculate the number of
pulses required to achieve an unweighted, Rayleigh range resolution of 0.1 m.

Thefive-element Barker codeis[111-11].

a. Convert thisto afour-phase sequence using the BTQ transformation.
b. What isthe maximum element-to-element phase changein the resulting sequence?
The 48-element MPS code used in section 2.7.3.2 (and given in Table 4) has a peak

sidelobe level of 3. What is the peak sidelobe of the corresponding quadriphase
waveform?

Compute the optimal ISR filter of length 5 for the five-element Barker code (see
problem 8).

A filter is needed to suppress the two sidel obes on either side of the main lobe. The
other sidelobes are less important. Use the five-element Barker code provided in
problem 8 and assume a 5-element filter.

a. Define an appropriate weighting matrix for the WL Sfilter. Use weight values of 1
and 10 along the diagonal.

b. Compute the filter and plot the range compressed response.
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| | INTRODUCTION

Recent advances in radar front-end hardware such as solid-state transmitters, digital ar-
bitrary waveform generators (DAWGS), active electronically scanned arrays (AESAS),
and high-performance embedded computing (HPEC) have afforded an opportunity to re-
examine the design of what and how aradar transmits its spatio-temporal radio frequency
(RF) signals. Conventional modern radars generally use nonadaptive transmit configura-
tions that typically optimize some metric associated with a multidimensional ambiguity
function (e.g., range, Doppler, angle [1]) and do not adapt the transmitter to an ever-
changing target and interference channel. Common examples include the very popular
constant modulus linear frequency modulated (LFM) waveform and low sidelobe trans-
mit antennas[1]. However, since the output signal-to-interference-plus-noiseratio (SINR)
depends on the transmit characteristics, it is natural to ask: for a given channel model,
what is the optimum transmit/receive configuration?

Adaptive processing has long been implemented in the receive chain of radar, begin-
ning with automatic gain control and cell-averaging constant false alarm rate (CA-CFAR)
[2] all the way to today’s space-time adaptive processing (STAP) [3]. However, adaptivity
in the transmit chain is virtually nonexistent, save for mode adaptivity such as switching
in different nonadaptive waveforms such as pulse repetition frequency (PRF) and band-
width. This chapter develops the basic theory of optimal transmit/receive design using
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a multi-input, multi-output (MIMO) formulation that can account for al potential de-
grees of freedom (DOFs) such as waveform (fast-time), angle, and polarization. Various
applications and examples are provided to further illustrate the potential impact of joint
transmit/receive adaptivity.

3.1.1 Organization

This chapter is organized as follows. Section 3.2 introduces the basic MIMO channel
formulation and derives the optimal transmitter/receiver configuration for the additive
colored noise (ACN) case. Severa examples exercising different DOFs (fast-time, spa-
tial) are then presented to illustrate the basic theory and demonstrate the flexibility of the
formulation. Next in Section 3.3, the formalism is extended to account for the basic maxi-
mizing signal-to-clutter ratio (SCR) problem. In Section 3.4, abasic theory for optimizing
transmit/receive configuration for the target 1D problem is introduced. The concept of
constrained MIM O waveform design is addressed in Section 3.5 to account for important
real-world constraints such as constant modulus. Finally, in Section 3.6, the idea of adap-
tive MIMO waveform design isintroduced when the channel must be estimated on thefly.

3.1.2 Key Points

» Fundamental theory for optimum MIMO waveform design

* MIMO waveforms for maximum SINR (additive colored noise case)
* MIMO waveforms for maximizing signal to clutter

* MIMO waveforms for target 1D

» Constrained optimum MIMO waveform design

» Adaptive MIMO waveform design

3.1.3 Acronyms

Acronyms that are commonly used in this chapter include the following:

ACN additive colored noise

AGCN additive Gaussian colored noise

AOCA angle-of-arriva

CA-CFAR cell-averaging constant false alarm ratio
CNR clutter-to-noise ratio

DOFs degrees-of-freedom

FIR finite impul se response

GMTI ground moving target indication

HVT high value target

i.i.d independent and identically distributed
LTI Linear Time Invariant

PRF pul se repetition frequency

Rx receiver

SAR synthetic aperture radar

SCR signal-to-clutter ratio

SINR signal-to-interference-plus-noise ratio
SNR signal-to-noise ratio

STAP space-time adaptive processing

Tx transmitter

ULA uniform linear array
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<7 | oPTIMUM MIMO WAVEFORM DESIGN FOR
THE ADDITIVE COLORED NOISE CASE

Consider the basic radar block diagram in Figure 3-1. A generally complex-valued and mul-
tidimensional transmit signal, s € CN, (i.e., an N-dimensional multi-input (MI) signal),
interacts with a target denoted by the target transfer matrix Hy € CM>N_ The resulting
M-dimensional multi-output (MO) signal (echo), y € C¥, is then received along with
ACN n € CM. The vector-matrix formulation is completely general inasmuch as any
combination of spatial and temporal dimensions can be represented.

For example, the N-dimensional input vector s could represent the N complex (i.e.,
in-phase/quadrature, or I/Q [4]) samples of a single-channel transmit waveforms(7), that s,

s(ty)
5(12)

(3.1)

S =

s(Tn)

The corresponding target transfer matrix, Hr, would thus contain the corresponding
samples of the complex target impulse response, 2z (), which for the causal linear time-
invariant (LTT) case would have the form [5]

h[O] 0 0 -~ 0
h[1] R[O] 0 .- 0

Hy = h[2] h[1] Af0] --- 0 (3.2)
h[N.—l] h[i] h[.0]

Transmitter(s) Receivers(s)
“Channel”
- Targets, =
Jamming, Noise .
“Target” Optimum | pegection
secV yeC + Statistic
Hy w —_—
+
Receiver
HT e CMXN weC M

N eCM~ ReMM
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FIGURE 3-1 =
Fundamental
multichannel radar
block diagram for
the AGCN case. Our
objective is to
design both the
transmit (i.e., s) and
receive (i.e., w)
functions so as to
maximize the output
SINR given the
channel
characteristics.
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FIGURE 3-2 = The
optimum receiver for
the ACN case
consists of a
whitening filter
followed by a white
noise matched filter.
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Without loss of generality we have assumed uniformtimesampling, thatis, tx = (k—1)T,
where T is asuitably chosen sampling interval [6]. Note also that for convenience and a
significant reduction in mathematical nomenclature overhead N = M is used, which is
the same number of transmit/receive DOF (e.g., time, space). The reader isencouraged to,
where desired, reinstate the inequality and confirm that the underlying equations derived
throughout this chapter have the same basic form except for differing vector and matrix
dimensionalities. Also note that in general Ht is stochastic.

Theformalismisreadily extensibleto the multiple-transmitter, multiple-receiver case.
For example, if there are three independent transmit/receive channels (e.g., an AESA),
then the input vector s of Figure 3-1 would have the form

S1
s | eCN (3.3)
S

S=

where s € CNdenotes the samples (asin (3.1)) of the transmitted waveform out of the
i -th transmit channel. The corresponding target transfer matrix would in general have the
form

Hx1 Hx» Has e 3NN (3.4)

Hii Hip His
Hr =
Hay Hz Has

where the submatrix H; j € CN*N isthe transfer matrix between thei-th receiveand j-th
transmit channels for all time samples of the waveform.

These examples make clear that the matrix—vector, input—output formalism is com-
pletely universal and can accommodate whatever transmit/receive DOF desired. Returning
to Figure 3-1, we now wish to jointly optimize the transmit/receive functions. Wewill find
it convenient to work backward: to begin by optimizing the receiver as a function of the
input and then finally optimizing the input and thus the overall output SINR.

For any finite norm input s, the receiver that maximizes output SINR for the ACN
case is the so-called whitening (or colored noise) matched filter, as shown in Figure 3-2
[7]. Note that for the additive Gaussian colored noise (AGCN) case, this receiver is also
statistically optimum [7].

If R e CN*N denotesthetotal interference covariance matrix associated with n, which
is further assumed to be independent of s and Hermitian positive definite [8] (guaranteed
in practice due to ever-present receiver noise [7]), then the corresponding whitening filter

' Hy=R-% :

Whitening Matched '

y+n, :
ey e [ % ——

! Filter Filter '

' Target

Echo
Z=7Z5+Z, \ /
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isgiven by [7]:
1
Hw =R2 (35)

The reader should verify the whitening properties of (3.5) (see problem 2 and [9]).
The output of the linear whitening filter, z € CN, will consist of signal and noise
components, zg, z, respectively, given by

Z = Zs+Zn
= H,Hrs+ Hyn

whereys € CN denotes the target echo as shown in Figure 3-2 (i.e., the output of Hr).

Since the noise has been whitened viaalinear—in this case full-rank—transformation
[7]), thefina receiver stage consists of awhite noise matched filter of the form (to within
amultiplicative scalar)

WZ = Zs € (CN (3-7)

The corresponding output SNR is thus given by

% zs|2

V4

SNRy = ————
var (W;zp)

|75z 2
var (Z'szn)
L2

|Z/s24|

= - 3.8
E{Z'sznZnzs} (38)

2
|Z's7s|
ZsE{znZn)zs

_ 12525

Z'sZs
7

wherevar(-) denotesthevariance. Notethat dueto thewhitening operation E{z,Z,} = 1.

In words, the output SNR is proportional to the energy in the whitened target echo.
This fact is key to optimizing the input function: Chose s (the input) to maximize the
energy in the whitened target echo:

max |Z'szs| (3.9
{s}

Substituting zs = H,, Hysinto (3.9) yields the objective function that explicitly depends
on the input

max IS (H'H) | (3.10)
S
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where
H 2 H,Hr (3.11)

Recognizing that (3.10) involves the magnitude of the inner product of two vectors s
and (H'H)s, we readily have from the Cauchy—Schwarz theorem [10] the condition that
smust satisfy to yield a maximum, namely, s must be collinear with (H'H)s:

(H'H) Sopt = AmaxSopt (3.12)

In other words, the optimum input s,y must be an eigenvector of (H’'H) with associated
maximum eigenval ue.

The previous set of input—output design equations represents the absolute optimum
that any combination of transmit/receive operations can achieve and thus are fundamen-
tally important in ascertaining the value of advanced adaptive methods (e.g., adaptive
waveforms, transmit/receive beamforming). Note aso that (3.12) can be generalized to
the case where the target response is random:

E{ H'H }Sopt = )“maxsopt (3-13)

In this case, sopr maximizes the expected value of the output SINR.

Next we illustrate the application of the previously given optimum design equations
to the additive colored noise problem arising from a broadband multipath interference
source.

EXAMPLE 3.1

Additive Colored Noise Example Arising from Broadband Multipath
Interference

This example illustrates the optimum transmit/receive configuration for maximizing output
SINR in the presence of colored noise interference arising from a multipath broadband noise
source. More specifically, for the single transmit/receive channel case, it derives the optimum
transmit pulse modulation (i.e., pulse shape).

Figure 3-3 illustrates a nominally broadband white noise source undergoing a series of
multi path scatteringsthat in turn col ors the noise spectrum [ 11]. Assuming (for simplicity) that
the multipath reflections are dominated by several discrete specular reflections, the resultant
signal can be viewed as the output of a causal tapped delay linefilter (i.e., an FIR filter [5]) of
the form

himplK] = 08[K] + e18[k — 1] + - - - + argq_18[k — q — 1] (3.14)

that is driven by white noise. The corresponding input-output transfer Hp, € CN*N is thus
given by

himplO] 0 . 0

Hop = | Mol Nimol0) 5 (3.15)

hopIN =1 -+ ip[d]  hinp[O]
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In terms of the multipath transfer matrix, H,;, the colored noise interference covariance matrix
is given by
E{nn'} = E{H,,v'H,,}
= HupE{vw'}H,,
— HmP Hr'np
=R

(3.16)

where the driving white noise source v € CV is a zero mean complex vector random variable
with an identity covariance matrix:

E{vv'} =1 (3.17)

Assuming a unity gain point target at the origin, that is, hr[k] = 8[k], yields a target
transfer matrix Hy € CV*Ngiven by

hr[0] 0 0
Hy= hr[1] hr[0]
- . 0 (3.18)
hr[N —11  ---  hye[1]  h7[0]

=

While certainly a more complex (and thus realistic) target model could be assumed, we wish
to focus on the impact the colored noise has on shaping the optimum transmit pulse. We will
introduce more complex target response models in the target ID section.

Figure 3-4 shows the in-band interference spectrum for the case when oy = 1,0 =
0.9, as = 0.5, a;p = 0.2, and all other coefficients are set to zero. The total number of fast-time
(range bin) samples was set to both a short-pulse case of N = 11 (Figure 3-4a) and a long-pulse
caseof N = 100 (Figure 3-4b). Note that the multipath colors the otherwise flat noise spectrum.
Also displayed is the spectrum of a conventional (and thus nonoptimized) LFM pulse with a
time—bandwidth product,fz, of 5 (Figure 3-4a) and 50 (Figure 3-4b), respectively [12, 13].
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FIGURE 3-3 =
lllustration of
colored noise
interference resulting
from a broadband
(i.e., white noise)
source undergoing
multipath reflections.
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FIGURE 3-4 =
Spectra of the
colored noise
interference along
with conventional
and optimal pulse
modulations.

(@) Short-pulse case
where total duration
for the LFM and
optimum pulse are
set to 11 range bins
(fast-time taps).

(b) Long-pulse case
where total duration
for the LFM and
optimum pulse are
set to 100 range
bins. Note that in
both cases the
optimum pulse
attempts to
anti-match to the
colored noise
spectrum under the
frequency resolution
constraint set by the
total pulse width.
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Given R from (3.16), the corresponding whitening filter H,,is given by

1
H, = R 2

0.5

(3.19)

Combining (3.19) with (3.18), the total composite channel transfer matrix H isthus given by

1
H=H,Hr =H, =R 2

Substituting (3.20) into (3.12) yields

R_lsopt = )\Sopt

(3.20)

(3.21)
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That is, the optimum transmit waveform is the maximum eigenfunction associated with the
inverse of the interference covariance matrix. The reader should verify that this is aso the
minimum eigenfunction of the original covariance matrix R and thus can be computed without
matrix inversion.

Displayedin Figures 3-4aand 3-4b are the spectraof the optimum transmit pul sesobtained
by solving (3.21) for the maximum eigenfunction—eigenvalue pair for the aforementioned
short- and long-pul se cases, respectively. Note how the optimum transmit spectrum naturally
emphasizes portions of the spectrum where the interference is weak—which is an intuitively
satisfying result.

The SINR gain of the optimum short pulse, SINRq, relative to that of a nonoptimized
chirp pulse, SINR_gwm, IS

SINR
SINRgn 2 =% _ 70dB 3.22
%N SINRLEM (3.22)
while for the long-pulse case
SINR
SINRgain = ——® _ 24.1dB 3.23
gain SINR_ ( )

The increase in SINR for the long-pulse case is to be expected since it has finer spectral
resolution and can therefore more precisely shape the transmit modulation to antimatch the
interference. Of course, the unconstrained optimum pulse has certain practical deficiencies
(e.g., poorer resolution, compression sidelobes) compared with a conventional pulse. We will
revisit these issuesin Section 3.5 where constrained optimization is introduced.

Example 3.1 is similar in spirit to the spectral notching waveform design problem
that arises when strong co-channel narrowband interferers are present [14]. In this caseit
isdesirable not only to filter out the interference on receive but also to choose a transmit
waveform that minimizes energy in the co-channel bands. The reader is encouraged to
experiment with different notched spectraand pulselength assumptionsand to apply (3.12)
asin example 3.1. Non-impulsive target models can aso be readily incorporated.

| | OPTIMUM MIMO DESIGN FOR MAXIMIZING
SIGNAL-TO-CLUTTER RATIO

Thejoint MIMO optimization of thetransmit and receive functionsfor the general additive
colored noise plus clutter (signal-dependent noise) has been shown to result in a highly
nonlinear problem [15] (though efficient iterative methods have been devel oped to solve
these equations [15]). In practice, however, there is often a natural “separation princi-
ple’ between additive colored noise (signal independent) and clutter (signal dependent).
For example, narrowband electromagnetic interference (EMI) resulting from co-channel
interference might require fast-time receiver and transmit spectral notching [14], leav-
ing the slow-time or spatial DOF available for clutter suppression. Similarly, adaptive
beamforming for broadband jammer nulling can be separated from the clutter suppression
problem in a two-stage approach (see, e.g., [16]). We will thus concentrate in this section
on the clutter dominant case and focus solely on maximizing the output signal-to-clutter
ratio (SCR).
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FIGURE 3-5

Radar signal block
diagram for the
clutter dominant
case illustrating the
direct dependency
of the clutter signal
on the transmitted
signal.
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Unlike the previous colored noise case in Section 3.2, clutter (i.e., channel reverber-
ations) is a form of signal-dependent noise [17, 18] since the clutter returns depend on
the transmit signal characteristics (e.g., transmit antenna pattern and strength, operating
frequencies, bandwidths, polarization). Referring to Figure 3-5, the corresponding SCR
at the input to the receiver is given by

r— EVyr)
E{ycYe}
_ SE{HiHr}s
~ SE{H{Hc}s

(3.24)

where H, € CN*N denotes the clutter transfer matrix, which is generally taken to be
stochastic. Equation (3.24) is a generalized Rayleigh quotient [8] that is maximized when
sisasolution to the generalized eigenvalue problem

E{HtHr}s=AE{H{H:}s (3.25)
with corresponding maximum eigenvalue. When E { H.H. } is positive definite, (3.25) can
be converted to an ordinary eigenvalue problem of the form we have aready encountered,
specificaly,

E{H{H.} 'E{HfHr}s=1s (3.26)
Applying equations (3.25) and (3.26) to the full-up space-time clutter suppression of
ground movingtargetindicator (GMTI) clutter isavailablein[19]. Dueto spacelimitations,

we will instead consider its application to the sidel obe target suppression problem, which
isvery closely related to the ground clutter interference issue.

EXAMPLE 3.2

Sidelobe Target Suppression

Consider a narrowband N = 16 element uniform linear array (ULA) with half-wavelength
interelement spacing and a quiescent pattern (Figure 3-6). In addition to the desired target at
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anormalized angle of 6 = 0, there are strong sidelobe targets at 6; = —0.3, 6, = +0.1, 63 =
+0.25, where anormalized angle is defined as

éd

) 5 siné (3.27)
In(3.27) d istheinterelement spacing of the UL A, and A isthe operating wavel ength (consi stent
units and narrowband operation assumed).

The presence of these targets (possibly large clutter discretes) could have been previously
detected, thus making their AOAs are known. Also, their strong sidelobes could potentially
mask weaker mainlobe targets. With this knowledge, it is desired to minimize any energy
from these targets leaking into the mainbeam detection of the target of interest by nulling on
transmit, or placing transmit antenna pattern nulls in the directions of the unwanted targets.

For the case at hand, the (m, n)-th elements of the target and interferer transfer matrices
are given, respectively, by

[Hr]mn = €* (const.) (3.29)
[Helmn = a1€/27M 0L | gp@i2rMm-mi g gi2n(m-ns (3.29)

where ¢ is an overall bulk delay (two way propagation) that does not affect the solution to
(3.25) and will thus be subsequently ignored, and [ Hc] ,  isthe (m, n)-th element of the clutter
transfer matrix and consists of thelinear superposition of thethreetarget returnsresulting from
transmitting a narrowband signal from the n-th transmit element and receiving it on the m-th
receive element of a ULA that uses the same array for transmit and receive [3, 13]. Note that
in practice there would be a random relative phase between the signals in (3.29), which for
convenience we have ignored but which can easily be accommodated by taking the expected
value of the kernel H/H. .

Solving (3.25) for the optimum eigenvector yiel ds the transmit pattern that maximizesthe
SCR, which isthe pattern also displayed in Figure 3-6. The competing target amplitudes were
set to 40 dB relative to the desired target and O dB of diagonal loading was added to H/Hc
to improve numerical conditioning and allow for its inversion. Although this is somewhat
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FIGURE 3-6
lllustration of
proactive sidelobe
target blanking on
transmit achieved by
maximizing the SCR.
Note the presence of
nulls in the directions
of competing targets
while preserving the
desired mainbeam
response.
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arbitrary, it does provide a mechanism for controlling null depth, that in practiceis limited by
the amount of transmit channel mismatch [20]. Note the presence of transmit antenna pattern
nullsin the directions of the competing targets as desired.

EXAMPLE 3.3

Optimal Pulse Shape for Maximizing SCR

Inthissimple example, werigorously verify anintuitively obviousresult regarding pul se shape
and detecting apoint target in uniform clutter: the best waveform for detecting a point target in
independent and identically distributed (i.i.d) clutter isitself animpulse (i.e., awaveform with
maximal resolution), awell-known result rigorously proven by Manasse [21] using adifferent
method.

Consider a unity point target, arbitrarily chosen to be at the temporal origin. Its corre-
sponding impulse response and transfer matrix are respectively given by

ht[n] = $[n] (3.30)
and

Hr = Inxn (3.31)
where Iy« N denotesthe N x N identity matrix. For uniformly distributed clutter, the corre-

sponding impulse response is of the form

N-1

he[n] = #idln — K] (3.32)
k=0

where ; denotes the complex reflectivity random variable of the clutter contained in thei-th
range cell (i.e., fast-time tap). The corresponding transfer matrix is given by

o 0 0O ... 0
" Yo
H. = V2 71 Yo (3.33)
YN-1 VN2 IN-3 0 PO

Assuming that the 3 values arei.i.d., we have
E{#7i} = Pesli — ] (3.34)
and thus
AN _ 0, [ 7& J
E{[HCHC]i,]—}—{(NJrl_i)PC,i=j (3.35)

where[]; ; denotesthe (i, j)-th element of the transfer matrix. Notethat (3.35) is also diagonal
(and thus invertible), but with nonequal diagonal elements.
Finally, substituting (3.31) and (3.35) into (3.26) yields

E{AFc) 's=1s (3.36)
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where
d 0 0
N 11 0 d
E{AF} "= . (3.37)
Pe -
0 dn
and
d=(N+i-17? (3.38)

It isreadily verified that the solution to (3.36) yielding the maximum eigenvalue is given by

s= (3.39)

Thus the optimum pulse shape for detecting a point target isitself an impulse. This should be
immediately obvious since it is the shape that excites the range bin only with the target and
zeros out all other range bin returns that contain competing clutter.

Of course, transmitting a short pulse (much less an impulse) is problematic in the real
world (e.g., creating extremely high peak power pulses) thus an approximation to ashort pulse
in the form of a spread spectrum waveform (e.g., LFM) is often employed [12]. This example
asoilluminatesthat in uniform random clutter nothing isgained by sophisticated pul se shaping
for apoint target other than to maximize bandwidth (i.e., rangeresolution) [21]. Theinterested
reader is referred to [19] for further examples of optimizing other DOF (e.g., angle-Doppler)
for the clutter mitigation problem.

Up to this point we have been focused on judiciously choosing the transmit/receive
DOF to maximize SINR or SCR. In the next section we will extend this framework to the
target identification problem.

| | OPTIMUM MIMO DESIGN FOR TARGET
IDENTIFICATION

Consider the problem of determining target type when two possibilitiesexist (the multitar-
get caseisaddressed later in this section). Thiscan be cast asaclassical binary hypothesis
testing problem [7]:

(Targetl) Hi: yi1+n=Hgs+n

(Target 2) H2 . yz +n= HT25+ n (340)

where Hr,, Hy, denote the target transfer matrices for targets 1 and 2, respectively. For
the AGCN case, the well-known optimum receiver decision structure consists of a bank
of matched filters, each tuned to a different target assumption, followed by comparator as
showninFigure3-7[7]. Notethat (3.40) presupposesthat either Target 1 or 2ispresent, but
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FIGURE 3-7 =
Optimal receiver
structure for the
binary (two-target)
hypothesis testing
AGCN problem.
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not both. Also, it has been tacitly assumed that a binary detection test has been conducted
to ensure that a target is indeed present [7]. Alternatively, the null hypothesis (no target
present) can be included in the test as a separate hypothesis.

Figure 3-8 illustrates the situation at hand. If Target-1 is present, the observed signal
y1+nwill tend to cluster about the #1 point in observation space—which could include any
number of dimensions relevant to the target ID problem (e.g., fast-time, angle, Doppler,
polarization). The uncertainty sphere (generally ellipsoid for AGCN case) surrounding #1
in Figure 3-7 represents the 1-sigma probability for the additive noise n—and similarly for
#2. Clearly, if y; and y, are relatively well separated, the probability of correct classification
is commensurately high.

Significantly, y; and y» depend on the transmit signal s, as shown in (3.40). Conse-
quently, it should be possible to select an s that maximizes the separation between y; and
¥, thereby maximizing the probability of correct classification under modest assumptions
regarding the conditional probability density functions (PDFs) (e.g., unimodality), that is,

max  |d'd]| (3.41)
{s}
Target-2
3
Received Signal 4
Observation Space
Target-1 ,(;oi‘”
e e '

“Uncertainty Sphere”
due to Noise, Modeling

Errors, etc.
> T
Distance Metric:
=2

r

FIGURE 3-8 = |llustration of the two-target ID problem. The goal of the joint
transmitter/receiver design is to maximally separate the received signals in observation
space, which in turn maximizes the probability of correct classification for the additive
unimodal monotonic distributed noise case (e.g., AGCN).
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where
d= Y1i—Y2
(e s @42
2 Hs
and where
H 2 Hy, — Hy, (3.43)

Substituting (3.42) into (3.41) yields
max |SH'HS| (3.44)
S
Thisis precisely of the form (3.10) and thus has a solution yielding maximum separation
given by

(H'H) Sopt = AmaxSopt (3.45)

It is noted that (3.45) has an interesting interpretation: Sy is that transmit input that
maximally separates the target responses and is thus the maximum eigenfunction of the
transfer kernel H’H formed by the difference between the target transfer matrices (i.e.,

(3.43)). Again if the composite target transfer matrix is stochastic, H'H is replaced with
its expected value E{H'H } in (3.45).

EXAMPLE 3.4

Two-Target Identification Example

Let hy[n] and ho[n] denotetheimpul seresponsesof targets#1 and #2, respectively (Figure 3-9).
Figure 3-10 shows two different (normalized) transmit waveforms—LFM and optimum
(per (3.46))—along with their corresponding normalized separation norms of 0.45 and 1,

1

— Target 1

0.8 1R\ —— Target 2
\

\
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04FL 1|
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FIGURE 3-9
Target impulse
responses utilized
for the two-target
identification
problem.
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FIGURE 3-10
Transmit waveforms
employed in the
two-target
identification
example.

FIGURE 3-11
Comparison of the
two-target difference
spectrum and the
optimum pulse
spectrum. Note that
the optimum pulse
emphasizes parts of
the spectrum where
the two targets differ
the most.
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respectively, which corresponds to 6.9 dB improvement in separation. To determine the rel-
ative probabilities of correct classification for the different transmit waveforms, one would
first need to set the SNR level, which fixes the conditional PDF herein assumed to be circular
Gaussian, and then to measure the amount of overlap to calculate the probability [7].

An examination of Figure 3-11 reveals the mechanism by which enhanced separation is
achieved. It shows the Fourier spectrum of H(w) = Hr,(w) — Hr,(w), aong with that of
Sopt(w). Note that Sypr(w) places more energy in spectral regions where H (w) is large (i.e.,
spectral regions where the difference between targets is large, which is again an intuitively
appealing result).

While pulse modulation was used to illustrate the optimum transmit design equations,
we could theoretically have used any transmit DOF (e.g., polarization). The choice clearly
depends on the application at hand.
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Multitarget Case Given L targets in general, we wish to ensure that the L-target re-
sponse spheres are maximally separated (an inverse sphere packing problem [22]). To
accomplish this, we would like to jointly maximize the norms of the set of separations
{idijll [i=21:L; j=i+1:L}h

L L
max > > [dijdi]

(3.46)
i=1j=i+1
Since, by definition, d;;is given by
dij = (Hy, — Hr)s= Hijs (3.47)
(3.46) can be rewritten as
L L
max > > H Hij s2 dKs (3.48)
i=1j=i+1

Since K € CN*N jsthe sum of positive semidefinite matrices, it sharesthis same property,
and thus the optimum transmit input satisfies

Ksopt = )hmaxsopt (3-49)

EXAMPLE 3.5

Multitarget Identification

Figure 3-12 depicts the impulse responses of three different targets, two of which are the
same as in Example 3.4. Solving (3.48) and (3.49) yields an optimally separating waveform
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FIGURE 3-12
Target impulse
responses used for
the three-target
identification
problem.
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whose average separation defined by (3.46) is 1.0. This is compared with 0.47 for the LFM
of Example 3.4, animprovement of 6.5 dB, which is dightly less than the previous two-target
example. Asexpected, the optimum waveform significantly outperformsthe unoptimized pulse
waveform such asthe LFM.

| | CONSTRAINED OPTIMUM MIMO RADAR

Often there are anumber of practical considerations may preclude transmitting the uncon-
strained optimum sol utionsdevel oped so far. Wewill thusconsider two casesof constrained
optimization: linear and nonlinear.

Case 3.1: Linear Constraints
Consider the linearly constrained version of the input optimization problem:

max |SH'HSs| (3.50)
S;
subjectto: Gs=0 (3.51)

where G € C2*N, To avoid the overly constrained casg, it is assumed that Q < N. For
example, therows of G could represent steering vectors associated with known interferers
such as unwanted targets or clutter discretes to which we wish to apply transmit nulls.

Equation (3.51) definesthefeasible solution subspacefor the constrained optimization
prablem. It is straightforward to verify that the projection operator

P=1-G (GG)'G (352

projectsany x € CN into thefeasible subspace[23]. Thus, we can first apply the projection
operator then perform an unconstrained subspace optimization to obtain the solution to
(3.50) and (3.51), that is,
max |SP'H'HPs| (3.53)
S

From (3.53) it is readily apparent that the constrained optimum transmit input satisfies

EXAMPLE 3.6

Prenulling on Transmit

If there are known AOAs for which it is desired not to transmit (e.g., unwanted targets, clut-
ter discrete, keep-out zones), it is possible to formulate a linearly constrained optimization
accordingly. _ _

Assume that thereisadesired target at 6 aswell as two keep-out angles (normalized) 6,
and 6. The corresponding elements of the target transfer matrix Hr € CN*N, assuming an
N-element ULA, are thus given by

[Hrlp = €270 (3.55)

where [Hr], , denotes the (m, n)-th element of the target transfer matrix.
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The keep-out constraints have the form

0=Gs
IR s (3.56)
= e
where
1_
ejZTrelk
SIS : (357)
i 2r(N=Déy,

Figure 3-13 shows the resulting constrained optimum transmit pattern for the case where
0r =0, 6, = —0.25, 9, = 0.4. As expected apesk is placed in the desired target direction
with nulls simultaneously placed in the keep-out directions.

Case 3.2: Nonlinear Constraints
In practice other generally nonlinear constraints may arise. One family of such constraints
relates to the admissibility of transmit waveforms, such as the class of constant modulus
and stepped frequency waveforms[12], to name but a few.

For example, if itisdesired to transmit awaveform that is nominally of the LFM type
(or any other prescribed type) but that is allowed to modestly deviate to better match the
channel characteristics, then the nonlinear constrained optimization has the form

max |SH'HS| (3.58)
S|
subject to:||s— Siemll < 8 (3.59)
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FIGURE 3-13
Example of a linearly
constrained
optimization in
which two interferers
are removed via the
projection
optimization
approach.
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FIGURE 3-14 = lllustration of a constrained optimization in which the signal should lie within
a subspace (in this case convex) defined to be close to a prescribed transmit input (in this
case an LFM waveform). The optimum relaxed projection is the point closest to the
unconstrained optimum but still residing in the subspace.

The previous and similar problems cannot generally be solved in closed form. However,
approximate methods can yield satisfactory results, and we will consider two here that are
based on very different approaches. These simpler methods could form the basis of more
complex methods, such as seeding nonlinear search methods.

Relaxed Projection Approach  Figure 3-14 depicts the constrained optimization problem
in (3.58) and (3.59). It shows the general situation in which the unconstrained optimum
solution does not reside within the constrained (i.e., admissible) subspace £2. In this
particular case, the admissible subspace is a convex set [24], defined as

Q={s:Ils - szrmll < 8} (3.60)

From Figure 3-14 it is also immediately evident that the admissible waveform closest (in
a normed sense) to the unconstrained optimum s, lies on the surface of € along the
direction i,, which is the unit norm vector that points from Szpys t0 Sop, i.€.,

A Sopt — SLFM

fp =77 (3.61)
15cpt = sce]
Thus, the constrained waveform that is closest in norm to s, is given by
§0pt = Sy + 0i, (3.62)

Note that if § is allowed to relax to the point where § = ||so,,, — stM”, then S,pr = Sopr.

EXAMPLE 3.7

Relaxed Projection Example

Here an LFM similarity constraint is imposed on the multipath interference problem consid-
ered in Example 3.1. Specifically, in Figure 3-15, we plot the loss in SINR relative to the
unconstrained long-pulse optimum solution originally obtained in Example 3.1 as a function
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25 FIGURE 3-15
lllustration of the
relaxed projection
20 method for
constrained

o optimization. The
§ 15 F plot shows the SINR
5 improvement relative
o to the unoptimized
g 10F LFM waveform of
B example 3.1 versus
& the normalized
g 5r relaxation parameter
2 5. Note that for even
a modest relaxation
0 of 20% a nearly
10 dB gain in
5 . . . . . . . . performance is
0 01 02 03 04 05 06 07 08 09 1 achieved.
Normalized Delta
of §, whichisvaried between 0 < § < ||Sopt — S_em |l Note that for this example improvement
generally monotonically increases with increasing § (except for a very small region near the
origin) and that sizeable SINR improvements can be achieved for relatively modest values
of the relaxation parameter. In other words, a waveform with LFM-like properties can be
constructed that still achieves significant SINR performance gains relative to an unoptimized
LFM.
Figure 3-16 shows the spectra of the unoptimized LFM of example 3.1 along with the
unconstrained optimum and the rel axed projection pulse with a20% rel axation parameter. Note
how the relaxed pulse is significantly closer to the original LFM spectrum yet still achieves
nearly a 10 dB improvement in SINR relative to the LFM waveform.
15 FIGURE 3-16

Comparison of the
pulse spectra for the
original LFM,
unconstrained
optimum, and 20%
relaxed projection.
Note how the
relaxed pulse retains
LFM-like spectral

\ characteristics (and
thus enhanced

\ resolution for

/ example) yet still
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Constant Modulus and the Method of Stationary Phase As has become apparent from
the previous examples, spectral shaping playsakey rolein achieving matching gains. The
stationary phase method has been applied to the problem of creating anonlinear frequency
modulated (NLFM) pulse (and thus constant modulus in the sense that the modulus of
the baseband complex envelope is constant, i.e., |S(t)| = constant) with a prescribed
magnitude spectrum [5, 12].

Specifically, under fairly general conditions[5, 12] itispossibleto relateinstantaneous
frequency w of aNLFM waveform totimet [5, 12]:

w t
1 2
Z/ IS()] dw_k/dt_kt 69

0
te[0, T]

where | S(w)| is the magnitude spectrum of the optimum pulse. Here we have assumed a
constant modulusfor theNL FM waveformresultinginaintegral that issimply proportional
totime (see 5, 12] for the more general nonconstant modulus case) as well as afinite and
causal pulse.

Solving for w as afunction of t in (3.63) yields the frequency modulation that will
result in atransmit pulse with a magnitude spectrum equal to | S(w)|, to within numerical
and other theoretical limitations [5, 12].

EXAMPLE 3.8

NLFM to Achieve Constant Modulus

Here we use the method of stationary phase to design a constant modulus NLFM pulse that
matches the magnitude spectrum of the optimum pulse derived for the multipath interference
problem considered in Example 3.1.

Figure 3-17 shows the solution to (3.63) (i.e., w versust) along with the optimum pulse
spectrum from Example 3.1 (long-pulse case). Note that as one would intuit, the frequency
modulation dwells at frequencies where peaks in the optimum pulse spectrum occur and
conversely note the regions in which the modulation speeds up to avoid frequencies where the
optimum pulse spectrum has nulls or lower energy content.

The constant modulus NLFM waveform so constructed was able to achieve an output
SINR that waswithin 6.0 dB of optimum compared with a24 dB loss using an LFM waveform
of same energy and duration.

It is natural to ask if a NLFM waveform with the same spectral magnitude as the
optimum pulse (but not necessarily the same phase) will enjoy some (if not all) of the
matching gains. For the steady-state case (infinite time duration) thisisindeed true, since
from Parseval’s [5] theorem the output energy is related to only the spectral magnitudes
(i.e., without their phases) of the input pulse and channel transfer function, that is,

17 2oy 1 T 2 2
g_/ Y (@) dw—z_/ IH (@) S(@) Pdo (364)
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Optimum Pulse Spectrum

Magnitude (dB)

Frequency

0.0

Instantaneous Frequency
(Normalized)

05 I
0.0 T t

whereY (w), H (w), and S(w) denotetheFourier transformsof the channel output, channel
impulse response, and input pulse, respectively. Note that the output energy in (3.64)
depends on the spectral magnitude of the input pul se (steady-state)—not the phase. Thus,
intheory an NL FM waveform that exactly matchesthe optimum pul se magnitude spectrum
will achieve the same matching gainsin the steady-state limit (infinite pul se duration) for
all square integrable (finite norm) functions.

| | ADAPTIVE MIMO RADAR

Section 3.2 derived the optimal multidimensional transmit/receive (i.e., MIMO) design
equationsthat assumed exact knowledge (deterministic or statistical) of the channel (target
and interference). However, asthosefamiliar with real-world radar arewell aware, channel
characterization in large part must be performed on the fly, or adaptively. Thisis simply
aresult of the dynamic nature of real-world targets and especially interference.

While a plethora of techniques have been devel oped for radar receiver adaptivity, es-
timating requisite channel characteristics for adapting the transmit function—especially
for transmit-dependent interference such as clutter—is arelatively new endeavor. In this
chapter, we explore severa approaches for addressing the adaptive MIMO optimization
problem.
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FIGURE 3-17
lllustration of the use
of the method of
stationary phase to
create a constant
modulus NLFM
pulse whose
spectral magnitude
matches that of the
optimum pulse. The
NLFM pulse was
able to achieve an
output SINR that
was within 6.0 dB
of the optimum
compared with a
24 dB loss using an
LFM waveform of
same energy and
duration.
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FIGURE 3-18 =
lllustration of a
common method for
estimating the
interference
statistics for the
additive transmit-
independent

case.
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In Section 3.6.1, we introduce techniques for the case when the channel characteristics
are independent of the transmit input—an example of which is additive colored noise jam-
ming. Perhaps not surprisingly, given the transmit independence, the channel estimation
techniques are essentially those often invoked in receive-only adaptivity (e.g., STAP [3]).

Section 3.6.2 introduces adaptive MIMO techniques for dynamic transmit array cal-
ibration, including the special case of cohere on target. This latter method enables the
cohering of RF transmissions of distributed radars for a specific high-value target (HVT)
of interest. The methods using the orthogonality approach to waveform design first in-
troduced by Bliss and Forsythe [25] can thus be viewed as a means for estimating the
MIMO channel. However, once an estimate of the channel is made, the optimum MIMO
transmit/receive functions should be employed.

3.6.1 Transmit-Independent Channel Estimation

As mentioned previously, a multitude of techniques has been developed for the so-called
transmit-independent case. A classic example is additive noise jamming [20]. For the
case where no a priori knowledge is available, the baseline method of sample covariance
estimation—and its many variants such as diagonal loading and principal components
[26, 27]—is often used. In addition to its statistical optimality properties (it is the maxi-
mum likelihood solution for the i.i.d. additive Gaussian noise case [7]), efficient parallel
processing implementations have been developed facilitating its real-time operation [28].

Figure 3-18 depicts acommon procedure for estimating additive, transmit-independent
interference statistics. Specifically, the interference covariance matrix, R € CV*V _is ap-
proximated by R € CV*N where

1
R= ZZ XKy (3.65)

qe2

where x, € C" denotes the N-dimensional receive array snapshot (e.g., spatial, spatiotem-
poral) corresponding to the g-th independent temporal sample (e.g., a range or Doppler
bin), and L denotes the number of i.i.d. samples selected from a suitable set of training
samples €2 to form the summation. As depicted in Figure 3-18, this training region is often
chosen to be close in range to the range cell of interest (though there are many variants of
this). If, moreover, the selected samples are Gaussian and i.i.d., then (3.65) can be shown
to provide the maximum likelihood estimate of R [7]. We illustrate this approach in the
following example.

Array
Snapshot Vector —|

+*.*.*.  Range

Test Cell

“Guard” Cells

Xi2
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SINR Loss (dB)

-4 | | | | | | | | |

5 10 15 20 25 30 35 40 45 50
EXAMPLE 3.9

Number of Training Samples
Adaptive Multipath Interference Mitigation

Thisis arepeat of example 3.1 with the notable exception of unknown interference statistics
that must be estimated on the fly. As a consequence, an estimate of the covariance matrix
isused in (3.5) for the whitening filter rather than the actual covariance, as was the case in
Section 3.2.

Plotted in Figure 3-19 is the overall output SINR loss relative to the optimum for the
short-pulse case of example 3.1 as a function of the number of independent samples used in
(3.65). The results shown were based on 50 Monte Carlo trials (root mean sgquare average)
with a jammer-to-noise ratio of 50 dB and a small amount of diagonal loading to alow for
inversion when the number of samplesis less than 11 (positive semidefinite case).

Itisinteresting to note the rapid convergence and contrast thiswith SINR loss performance
for adaptive beamforming, which is generaly significantly slower because we are estimating
the single dominant eigenval ue—eigenvector pair. For an authoritative examination of principal
components estimation and convergence properties, see [29].

3.6.2 Dynamic MIMO Calibration

Perhaps the earliest MIMO radar techniques have their origins in transmit antenna array
calibration [30, 31]. While techniques for estimating the receive array manifold using
cooperative or noncooperative sources have existed for quite sometime [30], methods for
dynamically calibrating the transmit array manifold (e.g., AESAS) in situ are relatively
recent devel opments [31].

Figure 3-20 provides an example of using MIMO techniques to dynamically cali-
brate an AESA radar. Orthogonal waveforms are simultaneously transmitted from each
transmit/receive site of an AESA (typically a single subarray AESA). A cooperative re-
ceiver then decodes each individual signal, calculates the relative phases (or time delays),
and transmits this information back to the radar. By repeating this process for different
orientations, a detailed look-up table for the transmit steering vectors can be constructed
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FIGURE 3-19

Effect of sample
support on output
SINR loss for the
multipath
interference scenario
of example 3.1.
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FIGURE 3-20 =
lllustration of a
MIMO-based in situ
calibration
technique for an
AESA radar [30, 31].
(@) Conventional
receive array
calibration using a
known in-band
illuminator. (b) The
MIMO approach for
calibrating the
transmit array. (From
Steinberg and Yadin
[380] and Guerci and
Jaska [31]. With
permission.)
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onboard the radar platform. This in situ approach is basically a necessity for very large
AESAs in space since rigidity, which requires mass/weight, is not sufficient to maintain
prelaunch calibration [31].

EXAMPLE 3.10

MIMO Cohere-on-Target

An interesting special case of the previously mentioned dynamic in situ calibration procedure
is when transmit calibration is performed for a distributed radar focused on a single HVT, as
described by Coutts et al. [32].

Consider Figure 3-21, which depicts an airborne HVT that can be detected simultaneously
by two geographically disparate radars. Given the HVT nature of the target, it is desired to
have the two radars work coherently to maximize the overall SNR at each radar. To achieve
on-target coherency, the two waveforms from each radar need to interfere constructively. To
accomplish this, however, requires precise knowledge of the transmit pathways to a fraction
of a wavelength [32]—essentially a dynamic calibration.
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High Value Target

Radar #2

Radar #1 » #2 Waveform

#1 Waveform

Drawing on MIMO-based calibration concepts, the requisite relative time delays between
the two radars (as seen by the target) can be estimated by simultaneously transmitting orthog-
onal waveforms, which are then detected and processed in each radar as follows:

* Ateach radar, the known one-way time delay to the target is subtracted from the total transit
time for the sister radar (precise time synchronization is assumed). The remaining time
delay is thus due to the first leg of the bistatic path (see Figure 3-21).

* By precompensating a joint waveform in each radar, the two waveforms can be made to
cohere on the target—resulting in a 3 dB SNR boost (ideally). If the previous procedure is
repeated for N radars, as much as a 10log N dB gain in SNR is theoretically achievable.

While relatively straightforward to describe, the aforementioned procedure is replete with
many real-world difficulties including target motion compensation to a fraction of a wavelength
and precise phase and timing stability.

As mentioned previously, the orthogonal waveform MIMO radar approach can pro-
vide a means for adaptively estimating the composite target-interference channel since the
individual input-output responses can, under certain circumstances, be resolved simultane-
ously. However, once an estimate of the composite channel is achieved, the optimal MIMO
transmit/receive configuration derived in this chapter should be employed to maximize
SINR.

| SUMMARY

In this chapter, the fundamental theory for joint optimization of the transmit and receive
functions was developed from first principles and applied to the maximization of SINR,
SCR, and correct classification for the target ID problem. Constrained optimization was
introduced to address additional requirements that often arise in practice, such as the use
of constant modulus waveforms to maximize transmitter efficiency. Lastly, basic adaptive
methods were introduced to address the real-world issue of estimating the requisite channel
information required when it is not available a priori.

113

FIGURE 3-21 =
lllustration of the
MIMO
cohere-on-target
approach for
maximizing
distributed radar
performance. (From
Coutts et al. [32].
With permission.)
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| FURTHER READING

Further in-depth detail s and examples on optimum and adaptive MIM O waveform design,
including knowledge-ai ded methods, can befoundin[19]. Further detailsontheorthogonal
MIMO approach can be found in [25].
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| PROBLEMS

1

A noncasual impulse response can have nonzero val ues for negative time indices, that
is, h(—k) # 0 for some positive k value. This can arise when the impulse response
is not associated with time, such as the case when k is a spatial index or when time
samples are processed in batch (buffered) fashion. Rederive the H matrix of equation
(3.2) when the impul se response has values from —M to M.

1
2. Verify that the whitening filter of equation (3.5) (i.e., H, = R 2) indeed results

in a unity variance diagonal output noise covariance, that is, cov(H,,n) = |, where
cov(-) denotes the covariance operator. (Hint: H,, is not arandom variable and thus
is unaffected by the expectation operator.)
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3. Assume atarget has atransfer matrix given by

- ]

Yoz 1

a. What isthe optimum input (eigenfunction) that maximizes SNR for thewhite noise
case?

b. If we interpret H,, as a target response polarization matrix in a H-V (horizon-
tal and vertical) basis, what is the optimum polarization direction, assuming H-
polarization corresponds to O degrees and V corresponds to 90 degrees?

. The original formulation of equation (3.12) wasin the analog domain [33, 34].

a. Assuming the composite channel transfer function (impulse response) is given by
the real valued LTI response h(t), show that the optimum transmit function s(t)
that maximizes output SNR satisfies

T
/o S(12)K (72, T1)d72 = AS(T1)
where
Nl
K(Tl, ‘62) = / h(t—l’l)h(t — ‘Ez)dt
0

and where it is assumed that the pulse duration and receiver integration times are
equaltoT.

b. Repeat assuming that the impulse response is complex valued.

. Using MATLAB or some other suitable numerical processing software, compute the

H matrices for the short- and long-pul se cases of example 3.1 and verify the results
for the optimum transmit waveforms (short and long).

. Repeat example 3.3 assuming that the target now spanstwo rangebins, that is, §[n] +

8[n—1]. Doestheresult make sensein terms of minimizing interference from clutter?

. For the two-target optimum ID problem, show that:

a. Maximizing the norm of the separation metric d 2 y1 — Y2 inequation (3.42) is
statistically optimum for the additive white noise case assuming a unimodal PDF
and monotonic distribution function.

b. Extend this to the additive colored noise case (same PDF and distribution as-
sumptions) and show that the separation metric to maximize is now the difference
between the whitened target echo responses.

. The energy in the whitened target echo for the infinite duration case is given by

i/ 1Y (@)?do = i/ IH (@) 2S(@) 2 do
27r7 2717

whereY (w), H (w), S(w)arethe Fourier transforms of the whitened target echo, com-
posite channel transfer function, and input (transmit) waveform, respectively. Show
that the input S(w) that maximizes the output energy satisfies |S(w)| o« |H (w)| [35].



3.10 | Problems

9. A constrained optimum MIMO approach can be developed based on recognizing
that the N-dimensional eigenspectrum of the generally positive definite composite
channel kernel H'H (or E{H’H } for thestochastic case) formsacontinuumfor which
some number k of eigenfunctions (and corresponding eigenvalues) retain matching
properties.

a. Assume that k orthonormal eigenfunctions of H'H, denoted by ug, ... uk, with
associated eigenvalues Ay > Ay > ... > A¢ > 0, are available and have bet-
ter matching properties than, say, a nominal nonadaptive quiescent waveform s;.
Derive an expression for the waveform s, that resides in the matched subspace
spanned by the k best eigenvectors. The resulting waveform can be viewed as a
type of constrained optimization in which the properties of the nomina waveform
(e.g., good range sidelobes) are traded for better SNR (see, e.g., [36]).

b. Show thatinthelimitask — N, the matched subspace waveforms, — s;. (Hint:
Theeigenfunctionsof apositivedefinite (Hermitian) matrix form acompletebasis.)
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| | INTRODUCTION

Radar systems have long used multiple antennas on receive to increase performance, but
theideaof using multipletransmit antennasto emit acollection of independent waveforms
isrelatively new. Such aradar is called a multiple-input, multiple-output (MIMO) radar
because it probesits environment by applying multiple inputs and observing multiple out-
puts. Inspired by the success of MIMO techniques at improving wireless communications,
researchers have been actively investigating the potential of MIMO radar since the turn of
the century [1].

In a sense, a MIMO radar is a natural extension of the phased array antenna that
has been used by radar systems for decades [2]. A phased array consists of a number of
radiating elements. Each element transmits the same signal except that a phase shift (or
time delay) isapplied so that abeam is steered in a particular direction. In aphased array,
the signals transmitted from each element are perfectly correlated. A MIMO radar is a
generalization of aphased array in that the signals need not be correlated from element to
element.

4.1.1 Organization

First, a brief overview of the MIMO radar concept is provided. The utility of transmit-
ting orthogona waveforms is motivated by introducing the idea of the MIMO virtual
array. A signal processing framework is then established, which provides insight into the
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performance of aMIMO radar that transmits signals with arbitrary correlation properties.
A brief discussion of MIMO radar waveformsis provided. Finally, applications of MIMO
techniques to particular radar modes are described.

Some key points that will be discussed in this chapter include the following:

A MIMO radar uses multiple transmit elements that emit independent waveforms and
observes the returns from a scene of interest using multiple receive elements.

* A MIMO radar with closely spaced antennasis an extension of the traditional phased
array. Standard array configurations preserve receive degrees of freedom by digitizing
signals observed by multiple, spatially diverse channels. If aradar could transmit or-
thogonal waveforms with spatial diversity, transmit degrees of freedom would aso be
preserved, leading to amore flexible radar system.

* A MIMO radar with widely separated antennas is an extension of the bistatic radar
concept. Each bistatic pair of radars observes a statistically independent realization
of target reflectivity that may allow tracking to continue where it would otherwise be
interrupted by target fading or an unfavorable geometry.

» The enhanced angular resolution provided by a MIMO radar can be understood by
considering how, using multiple transmitted waveforms, a larger virtual array can be
synthesized compared with using a single transmit phase center.

» The characteristics of a MIMO radar are described by the correlation between the
transmitted signals. A phased array transmits perfectly correlated waveforms to form
anarrow, high gain beam. By using uncorrelated waveforms, aMIMO radar trades off
this peak gain for a more flexible antenna that can digitally resteer its transmit beam
and provide enhanced resol ution.

4.1.2 Notation

The conjugate of ascalar, z, isdenoted z*. The Hermitian (conjugate) transpose of amatrix,
A, isdenoted AH. The pseudoinverse of amatrix, A, isdenoted A*+. The Kronecker product
of two matrices, A and B, isdenoted A ® B. The N x N identity matrix is denoted | .
Frequently used variables that are found in this chapter include

M = number of transmit elements/subarrays

N = number of receive elements/subarrays

6 = anglerelative to the array (¢ = 0 is broadside)

6o = angle used for digital beamforming

6 = angle used for analog beamforming

a(0) = transmit steering vector corresponding to angle 6 (length: M)

b (6) = receive steering vector corresponding to angle 6 (length: N)

A () = MIMO channel matrix (size: N x M)

¢m (1) = waveform used by transmitter m

¢ (t) = vector of waveforms used by each transmitter (length: M)

y (t;0) = vector of signals observed by each receiver for atarget at angle 6 (length: N)

n (t) = vector of receiver noise signals (length: N)

Ry = MIMO signal correlation matrix (size: M x M)
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Z (0) = vector of data samples in the target range bin for each transmit/receive pair after
matched filtering for a target at angle 8 (length: M N)

e = vector of filtered receiver noise in the target range bin (length: M N)
s (8) = MIMO steering vector for angle 6 (length: MN)
R. = MIMO noise covariance matrix (size: MN x MN)

4.1.3 Acronyms

Commonly used acronyms that are found in this chapter include

ACR area coverage rate

CDM  code division multiplexing
FDM  frequency division multiplexing
GMTI  ground moving target indication
LFM  linear frequency modulation
MIMO multiple-input, multiple-output
MTI moving target indication

PRF pulse repetition frequency

PSF point spread function

SAR synthetic aperture radar

SIMO  single-input, multiple-output
SINR  signal-to-interference-plus-noise ratio
SISO  single-input, single-output

SNR signal-to-noise ratio

TDM  time division multiplexing

¥ | AN OVERVIEW OF MIMO RADAR

A MIMO radar is characterized by its ability to emit independent signals from multiple
spatially diverse transmit elements and to observe the returns from multiple spatially
diverse receive elements. The operation of a MIMO radar is illustrated in Figure 4-1. The
idea of exploiting transmit diversity in a radar system is not new (e.g., see [3]), and similar
concepts have been discussed in other contexts [4,5]; however, the theory developed in
the past decade has leveraged the mathematical framework developed by the wireless
communications community to characterize the performance of MIMO radar systems.
MIMO radars are typically divided into two classes depending on the separation be-
tween their elements. The distinction lies in whether we can assume that the returns from

1)

FIGURE 4-1 = MIMO radar signal model. Each radiating element transmits an independent
signal. On receive, each element observes the echo of each transmitted signal.
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each target will be correlated from element to element. Supposethat only asingletargetis
illuminated and observed by the elementsof aMIM O radar. If the elementsarewidely sep-
arated, perhaps distributed among anumber of radar platforms, then each transmit/receive
pair may observe uncorrelated echoes from the target due to aspect-dependent backscat-
tering phenomena. On the other hand, if the elements are colocated on a single platform,
they may be suitably close to observe the target from essentially the same aspect.

In a MIMO radar with widely separated antennas, each transmit/receive pair is as-
sumed to observe an independent realization of the target reflectivity. This may be consid-
ered as an extension of the concept of a bistatic radar system, which consists of asingle
transmitter and a single receiver that are separated by a great distance, to include the pos-
siblity of using multiple transmitters and multiple receivers. This configuration has been
called statistical MIMO, since it seeks to exploit this variation to improve detection and
estimation performance. The use of widely spaced, multistatic systems was presented in
the MIMO context in [6], but such techniques have along history [7].

Assessing the utility of MIMO with widely separated antennasis not straightforward,
sinceit relies on a system-level analysisto consider trade-offs between coverage rate and
tracking utility since multiple radars must cooperate rather than operate independently.
Also, many of the interesting chalenges in realizing such systems are concerned with
being able to share large volumes of data between distributed radar systems. For these
reasons, MIMO radar with widely separated antennas will not be covered in thefollowing
discussion. A review of these techniquesis provided in [8].

Instead, we will focus on MIMO radars in which the transmit/receive elements are
closely spaced. We can therefore assume that the returns due to a particular target are
correlated from element to element, which enables coherent processing across the MIMO
array. For thisreason, MIMO radars with widely separated antennas may be referred to as
non-coherent MIMO while those with closely spaced antennas are called coherent MIMO
radars.

Conventional array antenna technologies enable digital beamforming on receive by
digitizing multiple spatial channels. This allows the receive beampattern to be resteered,
but, since the beampattern is the product of the transmit beampattern and the receive
beampattern, this has limited utility; a beam cannot be formed in a direction in which
no energy was transmitted. Using MIMO techniques, the transmit beampattern may be
resteered aswell. Just as digitizing multiple channel s on receive preserves receive degrees
of freedom, transmitting orthogonal waveforms preserves transmit degrees of freedom.
This concept of transmit beampattern flexibility will be developed in the following, asit
iskey to leveraging MIMO to enhance the capability of aradar system.

| | THE MIMO VIRTUAL ARRAY

One way to interpret the ability of aMIMO radar to improve performance is to consider
the virtual array corresponding to the physical array used by the radar. We will see how,
by transmitting M orthogona waveforms, a MIMO radar can synthesize an array that is
M timeslarger thanif asingletransmit phase center isused. Just asusing aphysically larger
antenna may provide a more desirable beampattern and improved resolution properties,
synthesizing a larger virtual antenna provides these benefits as well.

An array antenna can be considered as a set of pseudo-bistatic systems (the term
bistaticistypically reserved for radars that operate with transmitters and receiversthat are
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separated by great distances). Inasense, theinformation observed by anarray antennaisthe
difference in path lengths between transmit/receive pairs as a function of angle of arrival.
It can be shown, under reasonabl e assumptions, that apseudo-bistatic transmit/receive pair
isequivalent to amonostatic system that islocated directly between the bistatic transmitter
and receiver.

This is valid as long as the target is in the far field; that is, the range to the target
is much greater than the size of the transmit and receive arrays. Let Xt and xr dencte
the position of a transmit element and receive element, respectively, given in Cartesian
coordinatesrelative to the center of thearray. If u isaunit vector that points from the array
center to atarget in the far field, and if the signal is narrowband relative to the size of the
array, then the receiver at xg observes essentially the same signal aswould be observed at
the array center up to a phase shift. For thistransmit/receive pair, the observed phase shift
is

4 T [ XT+XR
i ( 2 >
where A is the wavelength corresponding to the radar center frequency. Observe that this
phase shift is the same as would be observed if the transmitter and receiver were both
located at (X1 + XR) /2, the point directly between them.

The set of al virtual elements that correspond to a set of physical transmit/receive
eementsiscalled thevirtual array. Thisissimilar to the coarray described in [4]. If the M

transmit elements of aMIMO radar have positionsdescribed by X1 1, . .., Xt.m and the N
receive elementsby Xg 1, ..., Xr.N, then the virtual array isthe set of positions
X X
{w:mzlw.,M;nzlw.,N} (4.1)

In generd, if M transmitters (using M orthogona waveforms) are used and N receive
channels are used, then the number of virtual phase centers will be MN. These virtua
phase centers may not all be distinct depending on the array topology.

Inaphased array, thereisessentially onetransmit element sincethetransmitted signals
are perfectly correlated. After transmission, the radar cannot differentiate between signals
transmitted from different elements. So, the virtual array is generated only by a single
physical transmit element, as in the upper left of Figure 4-2. Note that the length of the
virtual array is about half of the length of the physical phased array.

Now, suppose that the radar has multiple transmit elements and that each is capable
of transmitting a waveform that is orthogonal to all of the others. Two waveforms, ¢ (t)
and ¢, (1), are said to be orthogonal if

/_ $1 (1) ¢ (1) dt =0 4.2

Essentially, afilter matched to the waveform ¢, will completely reject any contribution
due to ¢, and vice versa. Since the transmitted signals are assumed to be orthogonal,
the receiver is able to process the contribution of each transmitter independently; by
applying afilter matched to a particular transmitted waveform, the contributions from all
of the other transmitted waveforms are removed due to their orthogonality. The impact
of correlations between the waveforms when they are not perfectly orthogona will be
discussed in subsequent sections.
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FIGURE 4-2 = Filled

Examples of

physical arrays and @
corresponding

virtual arrays. In all I Phased Array lMIMO
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are M = 3 transmit

elementsand N =3 ‘.‘ .‘A/\

receive elements.

lMIMO

In this way, the same array can synthesize the larger virtual array in the upper right of
Figure 4-2 by transmitting orthogonal instead of correlated waveforms. Note that some of
the virtual elements overlap. The sparse array at the bottom of the figure shows an example
where the virtual array is both filled and has no redundancy. This configuration is called
a Nyquist array in [9], since it is critically sampled in the spatial sense.

|UFE | MIMO RADAR SIGNAL PROCESSING

While adistinction is made in the literature between single-input, single-output (SISO) and
single-input, multiple-output (SIMO) systems and the general case of a MIMO system,
all may be analyzed using a unified framework. This allows the phased array (SIMO) and
orthogonal waveform cases to be treated as special cases of a MIMO radar. A signal model
will be developed to accommodate these different cases where each will be characterized
by its transmitted signal correlation matrix. A procedure for digital beamforming will be
derived, and the resulting characteristics will be presented.

4.4.1 Signal Model

Consider a radar system that uses an array antenna for transmit and receive. Suppose that
this array is partitioned into a number of subarrays. A subarray could be a portion of an
active electronically scanned array (AESA) or simply a directional horn or a reflector
antenna. Let M be the number of transmit subarrays and N be the number of receive
subarrays.

For a particular pulse, the signal transmitted by subarray m is denoted ¢,, (). We will
assume that the total transmitted energy is unity for a given pulse, that is,

M 00
3 / (6m OF dt = 1 3)

m=1""
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The peak transmit power of the radar and other elements of the radar range equation will
be accounted for el sewhere. Each of these M transmitted waveformswill reflect off targets
in the scene, and the echoes will be observed by each of the N receivers.

If the narrowband assumptionisvalid (i.e., the array issmall relative to the bandwidth
of the signal), then each subarray observes the same signal up to a phase shift. It is the
information encoded in this phase shift from subarray to subarray that allowsbeamforming
to be implemented. For a particular wavelength and for a particular angle of interest 9,
we can form the corresponding steering vector that describes these phase shifts. In the
MIMO case, we will need two steering vectors. the length-M transmit steering vector,
a(0); and the length-N receive steering vector, b (0). Assume that each element of the
steering vectorsis unit-magnitude. Consequently, we have

la@l?= M, [lb@®]?=N (4.4)

Note that, for this analysis, we assume that the signals are narrowband, but this model
could be extended to include wideband effects.

We now seek a model for the data observed from a single point target. Consider a
target at an angle 6 that has a signal-to-noise ratio (SNR) of y and a bulk phase shift of
Y. The signal observed by receiver n due to this target may be written

M
Yo (50) = V€ Br (0) Y am () ¢m (t) + 1 (1) (4.5)

m=1

where an, (0) and by, (9) are, respectively, elements of the transmit steering vector a (6)
and the receive steering vector b (9) corresponding to the angle 6, and n,, (t) is receiver
noise. Of course, a radar operates in three-dimensional space, which requires that two
angles be specified. In this treatment, only one angle, 6, is considered for clarity.

This data model includes only a single target and assumes that the processor has
knowledge of the range of the target. In general, thisis not a practical assumption, since
one purpose of aradar system is to measure the range to a target. This is accomplished
by hypothesizing a number of target ranges and processing each range bin independently.
So, if atarget is present in a particular range bin, then the assumption of known rangeis
meaningful.

The signal presented in (4.5) describes the observation of one of the N receive subar-
rays. Thedataobserved by al of the receivers may be written more compactly by grouping
the data so that each element of a (column) vector corresponds to a receive subarray. Let
& (1) be a(column) vector where each of the M elements is the waveform transmitted by
aparticular subarray.

¢1 (D)
dO=| (4.6)

owm (1)
Thesignal observed by aMIMO radar corresponding to atarget at an angle 6 iswritten
y(6;0) = veVb @) a® b ) +n () (4.7)

where b and a are the receive and transmit steering vectors, respectively. We can define
the MIMO channel matrix, A (6), in terms of the transmit steering vector, a(6), and the
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FIGURE 4-3 =
MIMO radar signal
processor. A filter
matched to each
transmitted signal is
applied to each
received signal. If M
signals are
transmitted and N
signals are received,
then this results in
MN data streams. In
this example,

M =N =3.
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receive steering vector, b (6), by

A®B)=b(@B)a@)" (4.8)
This matrix describes the phase shift observed by each transmit/receive pair due to a target
at angle 6.

We have also grouped the noise observations {», (f)} into the vector m (¢). For now,
we assume that these vectors are samples of a circularly symmetric (temporally) white
noise process, m (f), which is assumed to have identity (spatial) covariance.

En@n®"] =1 (4.9)
With these normalizations, the SNR observed by a single transmit/receive element pair in
(4.7) is seen to be y. Note that the gain due to the subarrays and other components of the
radar range equation are accounted for by the quantity y.

To resolve targets in range, a filter matched to each of the M transmitted signals is
applied to each of the N received signals. A block diagram of this operation is shown in
Figure 4-3. It is through this mechanism that a MIMO radar is able to retain any transmit
degrees of freedom that it may possess through the transmission of (generally) uncorrelated
waveforms. The result of this processing, at the range bin of interest, is the N x M matrix
given by

Z®) 2 /wy(t;e)tb(t)H dt
—o0 (4.10)

= ﬁe""’A @)Ry +E
where E is the receiver noise after matched filtering, which will in general be spatially

correlated, and Ry is the M x M MIMO signal correlation matrix, which describes the
correlation among the transmitted waveforms. This matrix is given by

R¢é/ b () d O dt (4.11)

> 2y (D)
> Z3) (f)

» Z3) (1)
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— {50

> Z)5 (D)
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where the integral of the matrix is computed element-wise. Each element of this matrix
describesthe correlation between two of the transmitted waveforms. Aswill be discussed
later, this matrix characterizes the performance attributes of aMIMO radar.

The N x M data matrix given in (4.10) may be vectorized by stacking the columns
of Z. Thisyields

Z(6) 2 Vec{Z 6)}

. (4.12)

= Jye’ (R; ® |N) Vec(A ()} + e
where e £ Vec {E}, and the operator ® is the Kronecker product. The following, well-
known relationship between the vectorization operator and the Kronecker product was
used [10]: if A isan arbitrary N x K matrix and B isan arbitrary K x M matrix, then we

have
Vec{AB} = (Im ® A) Vec{B}
(4.13)
= (BT® IN)Vec{A}

We can define the MIM O steering vector, s(0), for an angle 6 in terms of the MIMO
channel matrix, A (6)

s0) 2 (R; ® |N) Vec (A (0)) (4.14)
The covariance matrix of the noise vector is
Re 2 E [ed
e = E[ee] (4.15)
= R; ® In

These definitions allow us to write the MIMO signal model after matched filter pro-
cessing as

z(0) = y€"s®) +e (4.16)

where the MIMO steering vector is given in (4.14) and the noise covariance matrix in
(4.15).

If theradar transmits orthogonal waveforms each of unit-power, thenthe MIMO signal
correlation matrix is an identity matrix (R, = I). For this special case, the data vector is

z, (0) = Jy€V Vec{A (0)) + e (4.17)

where the covariance matrix of the noise is spatially white. By transmitting orthogonal
waveforms, the radar retainsitstransmit degreesof freedominthat it hasafull observation
of the full MIMO steering matrix, A ().

It is obvious from this signa model and the MIMO steering vector of (4.14) that the
MIMO signal correlation matrix, Ry, characterizes the performance of aMIMO radar.

4.4.2 MIMO Signal Correlation Matrix

Asisevident from the definitionin (4.11) and the preceding discussion, the MIM O signal
correlation matrix, Ry, isthe M x M matrix that describes the (zero-lag) cross- and
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auto-correlations of the M transmitted waveforms, {¢m (t)}. The element in row m and
column m’ describes the response of waveform m when the matched filter corresponding
to waveform m'’ is applied. This element of the matrix may be written

R 2 / b (1) 7 (1) dlt (4.18)

Since a phased array is a special case of MIMO radar, it also possesses a MIMO
signal correlation matrix. Let ¢g (t) be the radar waveform used by aphased array system.
Each subarray will transmit this signal but with a phase shift applied to steer the beam in
aparticular direction. To steer a beam in the direction 6o, the transmitted signals may be
written

dpa (1) = @ (Bo) po (1) (4.19)

where a (0) isthe transmit steering vector corresponding to the direction 6. To satisfy the
energy constraint of (4.3), the signal ¢q (t) must be normalized so that

o0 1
/ o (D)7 dt = o (4.20)
The signal correlation matrix is found to be
1 x (D x« (7 \H

This steering angle, 6o, must be chosen by the phased array before transmitting since this
isaform of analog beamforming. Asthe phased array scansits transmit beam from dwell
to dwell, the signal correlation matrix will change, but it will remain rank-1.

Note that the correlation matrix is scaled so that the trace (the sum of the diagonal
elements) of the correlation matrix is 1. Thisis required so that the signal-to-noise ratio
remains y regardless of the structure of the MIMO correlation matrix. In effect, this
enforces a constant transmit power between designs to allow reasonable comparisons.

Consider now the case where each subarray transmits one of a suite of orthogonal
waveforms; the correlation matrix is full-rank. If orthogonal waveforms are used, each
with equal power, then the correlation matrix is a scaled identity matrix,

Ry/1 = ol (4.2
Another example is when the array is spoiled on transmit. To cover a larger area,
the transmit beamwidth may be increased by applying a phase taper across the array or
by transmitting out of a single subarray. In the latter case, the transmitted waveforms are
considered to be identically zero for al but one subarray. This approach is referred to
as spoiling on transmit since it effectively spoils the transmit beampattern of the phased
array by trading peak gain for awider coverage area. The signal correlation matrix of the
spoiled phased array, Ry, spil, 1S rank-1, just as in the unspoiled phased array case. In the
context of synthetic aperture radar (SAR), aswell asin synthetic aperture sonar, an array
that uses a single element on transmit and multiple elements on receiveisreferredto asa
Vernier array.
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Consider the case of three transmitters (M = 3). The MIMO signal correlation ma-
trices for the phased array (steered to broadside), the spoiled phased array, and the radar
using orthogonal waveforms are

1/3 1/3 1/3 000 /3 0 0
Rypa= [1/3 1/3 1/3|.Rygai= [0 1 0|, Ryu=| 0 1/3 0
1/3 1/3 1/3 000 0 0 1/3

By considering the extreme cases of the phased array (rank-1 correlation matrix) and
theradar using orthogonal waveforms (full-rank correlation matrix), the effect of the signal
correlation matrix on the energy transmitted can be observed. Asiswell-known, a phased
array radar transmits most of its energy in a particular direction. Of course, to accomplish
this without violating laws of physics, energy is not transmitted in other directions. On
the other hand, aradar transmitting orthogonal waveforms emits energy in all directions
with similar power (subject to the pattern of the subarray).

An example of the radiated power as afunction of angle comparing the phased array
and the radar using orthogonal waveforms is presented in Figure 4-4. As expected, the
phased array transmits a set of waveforms that cohere in a desired direction and destruc-
tively interferein other directions. The spoiled phased array usesasingle (omnidirectional)
element, so ho beamforming gainis provided. Similarly, the radar using orthogonal wave-
forms transmits uncorrelated waveforms. Unlike the phased array, these signals do not
coherein any preferred direction.

There is a continuum of signal correlation matrices between these extremes of com-
pletely uncorrelated and perfectly correlated waveforms. 1t will be shown that, by choosing
the correlation among the signals transmitted by a MIMO radar, peak gain can be traded
for alarger access area through transmit resteering.

Average Radiated Power
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FIGURE 4-4
Average radiated
power as a function
of angle. Assume
that M = 10
elements are used
on transmit, the
elements are spaced
at half-wavelength
intervals, and each
element is
omnidirectional.
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4.4.3 MIMO Spatial Beamforming

A model has been developed, given by (4.16), that describes the characteristics of the
signal observed by a MIMO radar due to a target at a particular angle, 6. This can be
used to construct a spatial beamformer that selects signals due to targets at a direction of
interest, 6, while attempting to reject signals due to targets arriving from other angles.

Let w (6p) be the spatial weights that are chosen to steer a beam in the direction 6.
The output of the linear beamformer described by the weights w (6p) when a target is
present at an angle & may be written

W (60)" 2 (0) = 7€ W (60)" s(0) +w (60)" e (4.23)
Signa oise

Thegoal isto choose aset of spatial weights, w, that maximizesthe output signal-to-noise
ratio.

" 2
[w )" (R] @ In)Vec (A ©))]

SNRyt =
M W (00T (RT @ )W (6o)

(4.24)

It iswell-known (see[11]) that the optimal weights, w (6p), satisfy the equations
ReW (69) = S(6o) (4.25)

where the MIMO steering vector, s, and the noise covariance matrix, Re, were given in
(4.14) and (4.15), respectively.

The solution of thisoptimization problemisstraightforward so long as Re isfull-rank,
but thisisthe case only when the MIMO signal correlation matrix, Ry, isfull-rank. Aswas
seen in the previous section, in the case of the phased array, the MIMO signal correlation
matrix is rank-1, so (except for the degenerate case of M = 1) no unique set of spatial
weights is optimal since there is an infinite set of spatial weights that achieve the same
output SNR.

When the signal correlation matrix is not full-rank, the matrix R hasanontrivial null
space. If, for aparticular angle of interest, the vectorized steering matrix Vec {A (6p)}, lies
in this null space, then the MIMO steering vector is zero and the constrained optimization
prablem cannot be solved; a beam cannot be formed in the direction 6.

It is not surprising that a beam can be formed in every direction only when the
transmitted signals are orthogonal. This is because when the signals are correlated with
each other, likeinaphased array, energy isnot radiated in some directions corresponding to
nullsof thetransmit pattern. Itisprecisely at these angleswhere no energy wastransmitted
that no beam can be formed.

If abeam can be formed in the direction 6, the appropriate spatial weights are

W (6p) = Vec {A (o) Ry R;} (4.26)

where X+ denotesthe pseudoinverse of amatrix, X [12]. If amatrix isfull-rank, thenitsin-
verse and pseudoinverse coincide, in which casethe appropriate spatial weightsaresimply
the vectorized MIMO channel matrix, A (6p), corresponding to the angle of interest, 6.
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4.4.4 MIMO Gain

The array factor describes the pattern of an array antenna if each subarray was omnidi-
rectional. The array factor of a MIMO radar in the direction & when the beamforming
weights are steered to the direction 6y is defined by

W (60)™ s(6)

\/W (60)™ Rew (60)

When the optimal weightsare used, thismay bewrittenin termsof theMIMO steering
matrix A or, aternatively, in terms of the transmit/receive steering vectors a and b.

Vec (A (60)}" (R} ® 1) Vec{A ()
V/Vec(A (@)1 (R} @ In) Vec (A (o)}

_ ( a(0)" RTa () ) <b(90)Hb(9)> (4.29)

/2" RTa @) VN

In general, the array factor will be complex valued. The gain of an antenna is the
magnitude-squared of the array pattern in addition to the gain of the subarrays. The
antennagain G (0; 6p) describes the increase in SNR that a target at angle 6 will receive
if abeam isdigitally steered in the direction 6.

If it is assumed that all of the transmit subarrays and receive subarrays of a MIMO
array antenna are identical, then the (two-way) gain of the MIMO radar is

f (0;60) 2 (4.27)

f(0;60) =

(4.28)

2
a(op)" R;a(e)] b (60" b (9)\2
G (0;60) = | Etx (9) 260" RTa (fo) <ERX ) T) (4.30)
ReceiveGain

TransmitGain
where Erx (8) and Egx (6) are the (one-way) subarray gains on transmit and receive,
respectively. It isimportant to observe that the transmit gain is strongly dependent on the
signal correlation matrix, R,. A similar development is presented in [13].

4.4.5 Phased Array versus Orthogonal Waveforms

We have shown that the transmit gain of an array antenna can be controlled by design of
the MIMO signal correlation matrix. The two extreme cases are considered: the phased
array (rank-1 matrix) and orthogonal waveforms (full-rank matrix). These matrices were
givenin (4.21) and (4.22).

The gain for these two cases can be computed using (4.30). The gains of the phased
array, Gpa, and of the radar using orthogonal waveforms, G, are found to be

~ 2
a(60)" a(0)

7 b 60)" b ©)[°
Gea (000, 0) = | Erx (0) (ERX(Q)M

N

v ) (4.31)

H 2
a(6o) a()
MZ

G1(0;00) = | Erx ()

b (60)" b (0)|°
N

(ERX ®) ) (4.32)
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FIGURE 4-5
MIMO array factor
on transmit. This
example
corresponds to an
array with 10
subarrays where
each subarray has
20 A/2 spaced
elements.
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Recall that 6, is the angle to which the beam is digitally steered and that 6, isthe direction
to which the phased array steered the beam on transmit. The receiver is free to vary 6
with digital processing, but 6 is fixed.

As should be expected, the receive gains are identical between the phased array and
orthogonal waveforms, but there are two key differences between the transmit gain terms.
First, since the phased array transmits a concentrated beam in the direction 6o, it is unable
to apply any digital steering of the transmit beam; the phased array has already decided
in which direction to send energy. On the other hand, the radar that employs orthogonal
signalsis able to resteer the transmit beam to any angle (so long as the subarray pattern
permitted energy to be radiated in that direction).

However, the cost of doing thisis evident. The phased array realizes atransmit beam-
forming gain that providesanincreasein SNR by afactor of M, the number of transmitting
subarrays. This benefit islost by the radar that uses orthogonal signals.

These differences are illustrated in Figure 4-5, where the array factors of a MIMO
radar employing orthogonal waveformsaswell asatraditional phased array are presented.

The performance of an array antenna for use in a radar system is well quantified
by considering three gain patterns. the steered response, the beampattern, and the point
spread function. These describe the ability of the data collected by the system to be used
to digitally form beams in desired directions with desired properties.

The steered response and the beampattern quantify the degree to which the antenna
can be digitally steered to an angle of interest as well as the ability to reject returns from
undesired angles. Given an angle of interest, the steered response describes the ability
of the array to observe signals arriving from that direction when the array is steered to
that direction of interest, while the beampattern describes the ability of the array to reject
targets from other angles[14]. The distinctions between these patterns are summarized in
Table 4-1.

Let Ggx (0;60) be the gain of the receive array in the direction 6 when it is digitally
steered to the angle 6. The steered response eval uates this gain for the case when 6 = 6,
that is, the gain is evaluated in the direction that the array has been digitally steered. If the
array is steered to the angle 0y, then the beampattern evaluated at 6 describes how much
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Quantity Description

Definition

Steered response
Beampattern

Ability to digitally resteer antenna
Ability to reject targets from undesired angles
Point spread function  Ability to resolve closely spaced targets

Gi1(6) =
G1 (8:60) =
G3 (60:0) =

{G8;0):0 € OB}
{G (8;6p) : 6 € O} for fixed 6y
{G (8;6) : 6y € Op} for fixed &

energy is observed from this direction #. Note that a different beampattern is provided for

each steered angle 6.

The steered response and beampattern of a radar employing a phased array are com-
pared to those of a system using orthogonal waveforms in Figure 4-6. It can be seen from
the steered responses that, by using orthogonal waveforms, the radar is able to access a
much larger area by resteering its transmit beam, but this comes at a cost of peak gain.
This can also be achieved by using the established technique of spoiling the beam on
transmit through using a single subarray on transmit. The advantage of orthogonal wave-
forms is evident from the beampattern. By transmitting orthogonal waveforms, a radar
can realize the same steered response offered by spoiling on transmit, but it can preserve

the beampattern of the unspoiled phased array.
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FIGURE 4-6 =
Comparison of
phased array and
orthogonal
waveforms. The
subarray size is 10A.
Each configuration
uses M =10
transmit subarrays.
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FIGURE 4-7
Two-way angular
point spread
functions. The
phased array
resolves targets in
angle using only
receive degrees of
freedom. For the
orthogonal
waveform cases, the
filled configuration
provides enhanced
sidelobe
performance and the
sparse configuration
provides improved
angular resolution.
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The (angular) point spread function (PSF) quantifiesthe angular resol ution capability
of an array antenna system. Suppose that atarget is present and located at some angle 6.
To evauate the PSF at angle 0y, a beamformer designed for this angle of interest 6y is
applied to data containing atarget at angle 6. This quantifies the degree to which atarget
located at 6 will obscure atarget located at 6.

Comparing the transmit PSF of the phased array to the orthogonal waveforms in
Figure 4-6, we see that the phased array (regardless of spoiling) provides no angular
resolution on transmit. If, on the other hand, orthogonal waveforms are used and the
radar can preserve its transmit degrees of freedom, then angular resolution is possible on
transmit.

The PSF isrelated to the ambiguity function that isfamiliar from the radar literature.
The standard radar ambiguity function describes the response due to atarget with apartic-
ular range and Doppler in nearby range and Doppler bins. This idea was extended to the
MIMO casein [15], where an ambiguity function in terms of range, Doppler, and angleis
developed.

Let us now reconsider the sparse configuration presented in Figure 4-2. The (two-
way) PSF for the sparse array using orthogonal waveforms is presented in Figure 4-7.
As predicted by the virtual array analysis, the sparse array is able to provide enhanced
resolutionsinceit providesan effectively larger array than thefilled configuration. Notethat
orthogonal waveformsare reguired to use the sparse configuration; otherwise, the sparsity
would introduce undesirable grating lobes. The filled configuration provides improved
sidelobe performance, since a taper is effectively applied to the aperture as a result of
overlapping virtual phase centers.

These results demonstrate the ability of a radar to use orthogonal waveforms to im-
prove performance. Even if truly orthogonal waveforms are not practical, this analysis
may be repeated for a given set of waveforms using the appropriate signal correlation
matrix to quantify the impact of this nonorthogonality with the framework that has been
developed.
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We have seen how the choice of transmitted waveforms determines the characteristics of
aMIMO radar by considering the correlation matrix, Rg. The challenge of MIMO radar
is to design families of waveforms that possess a desired correlation matrix. Also, note
that the previous analysis considered only the zero-lag correlation matrix. By extending
this analysis to consider the correlation matrix as a function of delay, we can study the
behavior of the range sidelobes. An open research topic is to identify waveforms that
enabl e the benefits of MIMO radar without unacceptably compromising other aspects of
radar performance.

4.5.1 Classes of Waveforms for MIMO Radar

Three techniques exist to minimize the cross-correlation among a suite of waveforms,
which correspond to exploiting orthogonality in time, frequency, and/or code.

Time Division Multiplexing (TDM) An obvious method to decorrelate waveformsisto
simply transmit them at different times. Thisis possible in some applications, but in
others it may not be compatible with requirements of the radar timeline. This will
also increase data handling reguirements since each transmitted waveform must be
digitized separately.

Frequency Division Multiplexing (FDM) Another natural way to limit correlation be-
tween waveforms is to offset them in frequency. The drawback of this is apparent
in systems that rely on coherent processing across a number of frequencies. In such
cases, the target reflectivities may vary if the chosen frequency istoo large, limiting
coherent gain. Also, coherent imaging techniqueslike SAR rely on each spatial sample
having the same frequency support; otherwise, artifacts will be present in the image.

Code Division Multiplexing (CDM) In wireless communications, it is frequently nec-
essary for a number of usersto access a particular frequency band at the same time.
A common solution is to apply code division multiple access (CDMA) techniques.
Even though each user transmits at the same time and at the same frequency, each
signal is modulated by a unique phase code.
Another approach for CDM is to employ noise like waveforms. These have the
drawback that they may have a high peak-to-average power-ratio, which requires
transmit amplifiers that are more linear and thus have lower gain.

The synthesis of waveforms that are reasonably orthogonal that possess desired side-
loberesponsesisakey challengein therealization of aMIMO radar system. It isimportant
toredlizethat different radar applications have different sidel obe requirements. For exam-
ple, in moving target indication (M TI) radar, the peak sideloberatio is paramount. Thisis
contrasted with applications where a continuum of scatterersis expected, asin SAR and
weather radar, where the integrated sidel obe ratio tends to drive performance.

Some may argue that TDM and FDM are not properly MIMO waveforms. They
are included here to emphasize that MIMO radar is a generalization of traditional radar
systems. For example, a number of radars operating cooperatively using difference fre-
quencies may be considered as a single MIMO radar system. The utility of developing a
theory of MIMO radar is to discuss this and many other configurations using a common
framework. Including these waveforms greatly expands the class of MIMO radars.
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FIGURE 4-8
Time-frequency
representation of
the up- and
down-chirps. In
each case, the
bandwidth is

50 MHz and the

pulse width is 5 us.
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4.5.2 MIMO Range Response

In the previous section, we described the angular point spread function of aMIMO radar,
which described the sidel obes of the effective antenna pattern. Similar sidel obe structures
will exist in the range domain, just as they do in traditional radar systems.

We extend the definition of the MIMO signal correlation matrix of (4.11) to

Re2 [“pmen—ota (4.33)

Note that our analysis of the spatia characteristics of a MIMO radar focused on the
case where T = 0, the range bin of interest. This dependence on lag, =, will allow usto
characterizetheinfluenceatarget at aparticular rangewill havein binsup- and down-range.

The range response of a set of MIMO waveforms with correlation matrix Ry (7) is
given by

a(bo)" Ry (H)a (o)

hit.6;60) =
/a0 R; (0)a (o)

(4.34)

Thisresult is extended to consider a Doppler offset in addition to arange offset in [15].

4.5.3 Example: Up- and Down-Chirp

Since many radar systems use linear frequency modulated (LFM) waveforms, also called
an LFM chirp, anatural method for generating two approximately orthogonal waveforms
is to use one chirp with increasing frequency and another with decreasing frequency.
Time-frequency representations describing a notional pair of such signas is shown in
Figure 4-8. Note that these signals possess the same frequency support.

Up Chirp Down Chirp

- 145 - 45

- 40 - 40

Frequency (MHz)
Frequency (MHz)

1 2 3 4 1 2 3 4
Time (us) Time (us)
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Asshown in Figure 4-9, each waveform has adesirabl e auto-correl ation, and the peak
of the cross-correlation is well below that of the auto-correlation. However, the cross-
correlation does not decay as the delay offset increases. This is apparent in the range
response, which for a broadside target is the sum of the auto- and cross-correlations, as
stated in (4.34).

The resulting range response when using an up- and a down-chirp as MIMO wave-
forms has the same range sidelobe structure near the peak as a single LFM, where the
auto-correlation function dominates the MIMO range response. Instead of decaying to
very low levels the contribution of the cross-correlation of the waveforms is apparent,
even for relatively large delays.

From thisanalysis, we see that the simple case of an up- and down-chirp may provide
acceptable peak sidelobe performance. Another figure of merit in waveform design is
the integrated sidelobe level, which characterizes not ssimply the largest sidelobe but also
includes the effect of al of the sidelobe energy. Clearly, the integrated sidelobe level is
compromised by transmitting the second quasi-orthogonal LFM waveform.

This example of two waveforms was presented not as arecommendation for usein a
MIMO radar but instead to present an exampl e of the analysisthat is required in choosing
waveforms. We have seen previously that the zero-lag of the correlation matrix in (4.33),
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FIGURE 4-9 = The
correlation
properties and range
response of the up-
and down-chirp
waveforms.
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namely, Ry (0), characterizes the antenna performance of aMIMO radar. Also, the struc-
ture of the matrix Ry (7) for  # O characterizes the range sidel obe performance, which
is also critical to the operational utility of aradar system. The MIMO signa correlation
matrix once again describes the capability of a set of waveforms to realize an effective
MIMO radar.

| | APPLICATIONS OF MIMO RADAR

Sincethe phased array isaspecial case of aMIMO radar, numerous such radar systemsare
currently operational. However, radars that attempt to transmit orthogonal waveforms are
experimental at thetime of thiswriting. ExamplesincludeaMIMO synthetic apertureradar
(SAR) lab experiment described in [16] and aflight tested MIMO ground moving target
indication (GTMI) system, which is documented in [17]. This section will demonstrate
how the methods devel oped above may be applied to assess the performance of aMIMO
radar when tasked with a particular mission.

4.6.1 MIMO SAR

A SAR systemisableto form ahigh-resolution map of the earth’s surface. Traditionally, a
very large antenna was required to achieve desirable image resolutions, but SAR systems
accomplish this with a reasonably sized antenna by transmitting pulses while moving
the antenna that effectively sample the desired aperture [18]. This technique has been
employed in numerous imaging radar systems since the 1950s, but it is clear that these
systems may be improved by using MIMO radar techniques.

Phased array antennas have been used in SAR systems, primarily to provide enhanced
flexibility with electronic scanning. The utility of these spatial degrees of freedom has
been in the mitigation of range and Doppler ambiguities, which can severely impair image
quality and limit areacoveragerates. However, to reali ze these benefits, transmit gain must
be sacrificed. Unlike the problem of detecting targets against a benign clutter background,
SAR systemsareoften not limited by additive, thermal noise. Instead, performanceisoften
driven by multiplicative noisesources[19]. Asweshall see, mitigating multiplicativenoise,
such asfrom Doppler ambiguous clutter, introduces constraints on SAR systemsthat limit
the quality or quantity of the generated imagery. Further, we will see how MIMO SAR
can relax some of these requirements and improve the system performance.

To maximize area coverage rate, a SAR system may operate in a stripmap mode
where it is able to continuously image as the sensor moves forward with a speed of v.
A fundamental limit constrains the achievable cross-range resolution and area coverage
rate of such a system. Let Rgyan denote the depth of the range swath that is collected.
The rate at which a map is formed is described by the area coverage rate, calculated by
ACR £ vRgyah.

The extent of the range swath is limited by the radar’s ability to unambiguously
measure range. Suppose that the radar transmits pulses with a pul se repetition frequency
(PRF) of fj, (expressed in pulses per unit time). Thislimitsthe range swath to be Royah <
(c/2) /fp, where c is the speed of waveform propagation.

Let 1/5x bethe along-track sampling rate where

5x 2 v/f, (4.35)
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is the distance that the platform travel s between pulses. In many cases, along-track sam-
pling requirementsare thelimiting factor for areacoveragerate. Thisoccurswhen thetime
of flight of the pulse is large relative to the antenna size and the platform velocity. Also,
aong-track sampling may be limited by the throughput provided by the downlink, which
prevents data from being collected beyond a certain rate. In these cases, the along-track
sampling requirements impose an upper bound on achievable area coverage rate:

ACR < §xc/2 (4.36)

SAR systems resolve targets in cross-range by exploiting the pulse-to-pulse phase
variation across the imaged scene. If the along-track sampling rate is insufficient to un-
ambiguously sample this Doppler frequency, returns from two very different cross-range
locations will have the same phase progression. As a result, when an image is formed,
undesired energy from these ambiguous returns will appear to be at the same location
as the desired return. The impact of this on image quality is captured by computing the
along-track ambiguity-to-signal ratio [20], which is a significant source of multiplicative
noise in SAR imagery and can seriously degrade image contrast.

The along-track sampling rate must be sufficiently large to handle the Doppler band-
width of the illuminated scene. Consequently, the impact of these ambiguitiesis a strong
function of the radiation pattern of the antenna, which acts as a spatial filter. A larger an-
tennawill have a narrower beampattern that rejects returns with Doppler frequencies far
from zero. If an antenna of length D is used for transmit and receive, then the along-track
sampling rate used in practice typically correspondsto §x < D/2, though é6x = D/4is
preferred.

Increasing the antennasize allowslower a ong-track sampling rates and thus provides
increased area coverage (see (4.36)). However, it results in lower along-track resolution
for stripmap (or a smaller scene size for spotlight SAR) because a larger antenna has a
narrower beamwidth. For stripmap, this means that the target of interest isilluminated for
ashorter amount of timelimiting the integration angle and therefore limits resol ution. (For
spotlight, thisresultsin asmaller image sinceasmaller patch onthegroundisilluminated).
The finest cross-range resolution, Acr, isrelated to the antenna size by the inequality

Acr > % (4.37)
In practice, this bound may be relaxed by applying a weighting to the antenna, which
effectively broadensthe mainlobe, however, it isstill proportional to theantennalength, D.

We see that using a larger antenna allows us to use a lower PRF, thus achieving a
higher area coverage rate but also resulting in coarser resolution. A standard approach to
improve area coverage while preserving resolution is to employ a Vernier array [21]. In
this configuration, a single radiating element is used on transmit and multiple elements
are used on receive.

A Vernier array can beimplemented by using aphased array that isspoiled on transmit.
This array is divided into a number of subarrays. On transmit, a single subarray is used
to illuminate a large area on the ground, but on receive N subarrays are used and are
digitized to form N spatialy diverse receive channels. If D is the length of a subarray,
then the effective array length is ND. This array requires the along-track sampling rate
corresponding to asubarray of length N D but can still provide the cross-range resolution
of an antenna of length D. For afixed velocity, by using N subarrays on receive, the radar
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TABLE 4-2 = Properties of the virtual arrays
corresponding to physical arrays with M transmitters
and N receivers.

Configuration Length Spacing
Vernier array N x D/2 D/2
Dense MIMO N x D/2 1/M x D/2
Sparse MIMO MN x D/2 D/2

can use a PRF that is decreased by afactor of N without impacting image quality and can
realize a potential increase in area coverage rate.

The properties of the virtual arraysfor these designs are given in Table 4-2. Note that
the Vernier array isaspecia case of either adense MIMO array or asparse MIMO array.
Theresultsin thetable for the MIM O configurations coincide with the Vernier array when
M=1

TheDense MIMO Array Consider areceive array that consists of N receive elements
that are of length D and spaced at an interval of D so that the receive array is con-
tiguous. The SAR system uses M transmit elements that are spaced by D/M. The
corresponding virtual array is sampled at an interval of 1/M x D /2. Note that the
effective length of the dense MIMO array isthe same asthe corresponding Vernier ar-
ray. However, ahigher along-track sampling rate can be achieved by thedense MIMO
array if it uses the same PRF as the Vernier array.

The Sparse MIMO Array Once again, begin with aVernier array of N elements. Now,
distribute the M transmitters such that there is a separation of N D between transmit
subarrays. In this case, the spacing between virtual phase centersis D/2, asin the
Vernier array case, but the resulting virtual array is M times as long as that of the
Vernier array. This allows the sparse MIMO array to use aPRF that is M times lower
than the Vernier array case, which provides acommensurate increase in areacoverage
rate.

Note that the sparse MIMO array is presented in the bottom of Figure 4-2. The dense
MIMO array issimilar to the thefilled MIMO array, but the spacing between the transmit
phase centersis such that they must fit between the first two receive phase centers.

An example of MIMO SAR is presented in [16]. An analysis of MIMO SAR collec-
tion approachesis found in [22]. These concepts for MIMO SAR can a so be extended to
synthetic aperture sonar (SAS) systems[23], which face tremendous challengesin main-
taining sufficient along-track sampling rates with reasonable area coverage rates to the
relatively slow speed at which sound propagates.

4.6.2 MIMO GMTI

By studying the angular PSF and the steered response, we saw that a MIMO radar has
improved angular resolution and has the ability to resteer its transmit beam digitally to
enable a higher area coverage rate compared with the phased array. We will see that
this provides enhanced detection of slow moving targetsin the presence of strong clutter
returns for ground moving target indication (GMTI) radar systems.

Recall that the enhanced capability afforded by transmitting orthogonal waveforms
comes at the cost of SNR. However, in the case of GMTI, for example, this may be



4.6 | Applicationsof MIMO Radar

recovered by dwelling longer. Just asthe phased array usesanarrow pencil beam to scan a
surveillancearea, aMIMO radar isableto digitally emul ate this. While the power observed
ontheground at any given instant will belower for the radar using orthogonal waveforms,
it will cover alarger area. Consequently, a radar transmitting M orthogonal waveforms
will have an SNR that is lower than a phased array by afactor of M, but the target may
remain in the beam for M times aslong since the transmit beam islarger. Unlikein SAR,
where we incurred a penalty of M in terms of SNR, this may be recovered in GMTI, so
long as the target returns remain coherent during the processing interval.

By examining the angle ambiguity function (or point spread function) for MIMO
radar, we have demonstrated that a radar using orthogonal waveforms has superior an-
gular resolution. In addition, with its ability to digitally resteer the transmit beam, it
can dwell on a particular target for alonger period of time, thereby providing improved
Doppler resolution while preserving area coveragerate. By transmitting orthogonal wave-
forms, a GMTI system is able to more effectively reject clutter and detect slow moving
targets.

Note that this improved Doppler resolution could also be achieved by spoiling on
transmit. However, recall that the angular resolution of the phased array is not improved
by spoiling.

The key figure of merit in GMTI is signal-to-interference plus noise ratio (SINR)
loss [24]. For atarget at a particular angle and velocity (more precisely, a target with
a space-time steering vector s), the SINR loss measures the drop in SNR as a result
of ground clutter. It is defined as the ratio of SINR (target vs. clutter-plus-noise) to SNR
(target vs. noise). If the clutter-plus-noise space-time covariance matrix is R and the noise-
only space-time covariance matrix is Ry, then the SINR loss for atarget with space-time
steering vector sisgiven by

§R1s

SINR =
SHRy's

(4.38)

In Figure 4-10, a single angle bin is considered. Since the radar using orthogonal
waveforms has better angular resolution than the phased array, the orthogonal waveforms
angle bin containsasmaller angular extent. Asaresult, clutter is present at fewer Doppler
frequencies within thisangle bin. This allows the detection of slow moving targets and an
improvement of minimum detectable velocity (MDV).

4.6.3 Distributed Apertures

A phased array uses a set of radiating elements to transmit a high gain beam in adesired
direction, which obvioudly requires a high degree of synchronization among the transmit
elements and awell calibrated system. There has been interest in extending this function-
ality to acollection of platforms that may be distributed over some area. A key challenge
using such a distributed aperture to beamform on transmit is maintaining the required
coherence from platform to platform.

One approach to solving this problem can be considered inaMIMO context. We have
seen how, by transmitting orthogonal waveforms, a MIMO radar can digitally resteer its
transmit beam. If the waveforms are orthogonal, then transmit degrees-of-freedom are
preserved for manipulation after reception. An example of this approach as applied to a
constellation of radar satellitesis presented in [25].
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FIGURE 4-10 = Notional SINR loss for GMTI. If SINR loss is near 0 dB, then a target with the
velocity corresponding to that Doppler frequency is easily detected in the presence of clutter.
The SINR loss for orthogonal waveforms is significantly lower than that for the conventional
phased array for many frequencies, so an improved minimum detectable velocity is expected.

4.6.4 Beampattern Synthesis

Phased array radars that employ digital beamforming on receive are able to spoil their
beam on transmit to cover alarger area. In doing so, the search rate may be increased at
the cost of signal-to-noise ratio. While thisis typically accomplished by applying a phase
taper acrossthearray, thiscan also be considered inaMIMO context. Asdescribed in [26],
beam spoiling by transmitting orthogonal waveforms relaxes some of the requirements on
the radar hardware when clutter is limiting detection performance.

Asdescribed before, the transmit beampatternsthat may be synthesized areafunction
of the MIMO signal correlation matrix, R4. To synthesize a desired pattern, the appro-
priate correlation matrix must be identified. Further, a suite of signals must be found that
possesses these correlations. Some examples of such techniques are presented in [27,28].

| | SUMMARY

As is hopefully evident from this chapter, analysis of the utility of MIMO techniques
for a particular radar application may not be straightforward. It should aso be clear that
transmitting orthogonal waveforms is not advantageous in every situation. The primary
goal of this chapter has been to provide a framework for evaluating the appropriateness
of a particular suite of MIMO waveforms for a specific radar mission. This is necessary
to decideif performance will be enhanced by using aMIMO radar instead of atraditional
phased array configuration.

By synthesizing virtual phase centers, we saw how a MIMO radar can provide en-
hanced angular resolution. This may be of utility in the case of GMTI and air-to-air radar.
A similar analysis revealed the ability of a MIMO radar to trade peak gain for a more
flexible transmit pattern. An application to SAR was presented.
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The performance of aMIMO radar was quantified by examining three standard quan-
tities in array processing: the steered response, the beampattern, and the (angular) point
spread function. By evaluating these patterns, the ability of an antenna to perform its
competing roles of enhancing gain in some directions while rejecting signals for others
while providing alarge access area is determined.

A key result was to demonstrate that the performance of a MIMO radar system is
characterized by its transmitted signal correlation matrix, Ry4. This alows us to quantify
the impact on performance when truly orthogonal waveforms are not available. It also
alowsthetraditional phased array architecture to be analyzed as a subset of MIMO radar.
Thisinsightiscomforting: if an analysisisconducted to optimize R, apossible outcomeis
that the phased array is proven to bethe optimal configurationin some cases; in other cases,
as we have seen, transmitting orthogonal waveforms provides tremendous performance
benefits. Since all radars are MIMO radars, the question is not whether to use a phased
array or aMIMO radar but rather what signal correlation matrix is optimal ?

| | FURTHER READING

Just like MIM O communicationsbeforeit, MIMO radar hasreceived much attentioninthe
research literature. A comprehensive summary of current research into MIMO radar can
be found in the book edited by Li and Stoica[29]. For areview of MIMO with colocated
antennas, see [30].
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| PROBLEMS

1. What distinguishes aMIMO radar from a phased array radar?

. Trueor false: A radar transmitting orthogonal waveforms will observe the same SNR
for aparticular target as a phased array radar using the same integration time.

. Show that the optimal spatial weightsin (4.26) satisfy the normal equations, given by

(4.25). The following facts may be useful:

» Thepseudoinverseisat least aweak inverse:t AATA = A

¢ The psuedoinverse of a transposed matrix is the transpose of its pseudoinverse:
(AT)" = (A")T

e The matrix product of two Kronecker products is the Kronecker product of the
matrix products: (A ® B) (C ® D) = (AC) ® (BD) for suitably sized matrices.

. Consider aset of M signals, s; (), ..., su (1), defined by

sm<t)é{

form = 1,..., M. Using the definition given in (4.2), show that these signals are
mutally orthogonal.

. Duplicate the gain patterns shown in Figure 4-6. Assume that the transmit and receive
arrays are uniform linear arrays. For the elements of the steering vector, s(6), use

Fexp{i2rTt}, forte[0,T)

0, otherwise

S‘n (9) — i 277 SiN(0) Xm

where X, isthe location of element m along the x-axis, in units of wavelengths.
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| | INTRODUCTION

Sparse reconstruction and design through randomization have played significant roles
in the history of radar signal processing. A recent series of theoretical and algorithmic
results known as compressive or compressed sensing (CS) hasignited renewed interest in
applying these ideas to radar problems. A flurry of research has explored the application
of CS approaches as well as closely related sparse reconstruction (SR) techniques to a
wide range of radar problems. This chapter will provide some historical context for CS,
describe the existing theoretical results and current research directions, highlight severa
key agorithms that have emerged from these investigations, and offer a few examples of
the application of these ideas to radar.

5.1.1 Organization

The chapter is organized into three sections. Section 5.2 develops the motivation and
theoretical framework for SR and CS. We attempt to motivate these ideas from a radar
perspectivewhileal so highlightingintuitionsand connectionswith basic linear algebraand
optimization theory. Section 5.3 explores the myriad of available algorithms for solving
SR problems and the provable performance guarantees associated with these algorithms
when used in conjunction with measurementswhich satisfy CSdesign criteria. Section 5.4
concludes with a selection of examples that illustrate how to apply these ideas to radar
problems.
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5.1.2 Key Points

Many interesting radar problemsin imaging, detection, tracking, and identification can
beformulatedinalinear model framework that isamenableto SR and CStechniques. In
fact, thelinear model framework isnot limited to point scatterer assumptions, free-space
propagation, or weak scattering scenes.

Radar signals often exhibit sparsity or compressibility in a known basis, such as
the basis of point scatterers for high frequency synthetic aperture radar (SAR)
data.

Many radar problems are underdetermined and must be regularized with additional in-
formation to obtai n unigque solutions. Sparsity in aknown basisrepresentsone appealing
candidate but leads to intractable NP-hard optimization problems.

A key notion in CS theory is to overcome the combinatorial complexity of seeking
sparse solutions through convex relaxation with the £, norm.

SR by itself is not CS. CS involves combining SR algorithms with constraints on
the measurement process, typically satisfied through randomization, which leads to
provable performance guarantees.

CS performance guarantees are predicated on conditions on the forward operator like
the restricted isometry property or mutual coherence.

A wide range of SR algorithms are available.

Penalized least squares techniques directly solve a convex (or nonconvex) relaxation
of the £, optimization problem and offer excellent performance coupled with relatively
high computational burden.

Iterative thresholding methods offer simplified algorithms with performance guaran-
tees, but in some casestheseguaranteesareweaker than thosefor penalized|east squares.

Greedy algorithmsoffer faster heuristic approachesto SR problemsthat providelimited
performance guarantees.

New trends in CS include approaches inspired by Bayesian and information theoretic
approaches.

Many CS guarantees are sufficient, conservative guarantees. SR agorithms may pro-
ducedesirableresultsfor radar problems even when the conditions for these guarantees
are not met. Phase transition plots offer a concise method for representing typical
numerical agorithm performance on problems of interest.

By incorporating structured sparsity information, CS performance can be further
enhanced.

5.1.3 Notation
Variables used in this chapter include the following:

x"'® — true value of the unknown vector

A = the forward operator relating unknowns to measurements
y = the vector of collected measurements

e = the additive disturbance signal

N = number of e ementsin the unknown vector
M = number of measurements collected

s = ||x""*||,, the sparsity of the unknown vector
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8 = M/N, the undersampling ratio
o =s/M, the normalized sparsity
o = the energy bound on the additive disturbance signal e

fo = radar center frequency (Hz)

A = wavelength (meters)

wg = 27 T, center frequency in (radians per second)
¢ = speed of light (meters per second)

d = array inter element spacing (meters)

f =c/A, frequency (Hz)

k = 27 /), wavenumber (radians per meter)
J = number of spatial channels

K = number of slow-time pulses

L = number of range gatesin fast time

T = slow-time sampling period (seconds).

5.1.4 Acronyms

Acronyms used in this chapter include the following:
AMP approximate message passing

BP basis pursuit

BPDN basis pursuit denoising

CoSaMP  compressive sampling matching pursuits

CPI coherent processing interval
Cs compressed sensing

DFT discrete Fourier transform
DLS data least squares

DWT discrete wavelet transform
EM expectation maximization

FISTA fast iterative shrinkage-thresholding algorithm
FOCUSS focal undetermined system solver

IHT iterative hard thresholding
IRLS iterative reweighted least squares
ISTA iterative shrinkage-thresholding algorithm

LaMP lattice matching pursuit
LASSO least absolute shrinkage and selection operator

MAP maximum a posteriori
MIMO multiple input multiple output
ML maximum likelihood

MM majorization minimization
MMSE  minimum mean squared error
MP matching pursuits

MTI moving target indication

NESTA  Nesterov’'sagorithm
OMP orthogona matching pursuits

PSF point spread function
RIC restricted isometry constant
RIP restricted isometry property

SAR synthetic aperture radar

Introduction
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SP subspace pursuit

SR sparse reconstruction

STAP  space time adaptive processing
SVD singular value decomposition
TV total variation

ULA uniform linear array.

| | CS THEORY

The origin of the name compressed sensing liesin a particular interpretation of CS algo-
rithms as an approach to signal compression. Many systems sample asignal of interest at
arate above the Nyquist sampling rate dictated by the signal’s bandwidth. This sampled
signal is then transformed to a basis where a few large coefficients contain most of the
signal’s energy. JPEG2000 is an excellent example of this sort of processing, relying on a
wavel et transformation. The signal can then be compressed by encoding only these large
signal coefficients and their locations.

Since the signal can be encoded with just a few coefficients, it seems natural to ask
if the relatively large number of measurements is required in the first place. The original
sampling rate was dictated by Nyquist sampling theory to guarantee the preservation of
an arbitrary band-limited signal. However, perhaps one can use the knowledge that the
signal will be represented by only afew nonzero componentsin aknown basis, such asa
wavel et transform, to reduce the required data acquisition. It turns out that, under certain
conditions, arelatively small number of randomized or specially designed measurements
of thesignal can be used to reconstruct this sparse representation. The key isthat we do not
need to know which coefficients are nonzero; we require knowledge only of the basis or
dictionary from which these elements or atoms are drawn. In fact, in the case of noiseless
signals, this reconstruction from areduced data set will actually be perfect! Furthermore,
we shall seethat the reconstruction of the signal will be well-behaved both in the presence
of noise and when the signal is only approximately sparse. Because a reduced data set is
being collected and compression is accomplished through the sampling procedure itself,
this process is termed compressed sensing.

This combination of randomized measurements with a sparse representation forms
the heart of CS. Indeed, CS combines measurement randomization with SR to provide
performanceguaranteesfor solvingill-posed linear inverseproblems|[1,2]. Wewill explore
theimplicationsand interpretation of this statement at length throughout this chapter. First,
we will define the problem of interest and explore its relevance to radar.

5.2.1 The Linear Model

Many radar signal processing problems can be represented with a linear measurement
model. In particular, consider an unknown complex-valued signal of interest x™¢ e CN.
We collect a set of measurements of the signal y € CM using a forward model or mea-
surement operator A € CM*N with additive noise e € CM, that is,

y=Ax"*te (5.1

Our fundamental goal will be to solve the inverse problem of determining the vector x!f“e
from the noisy measurements y. As we will see, even in the noise-free case e = 0, this
prablem is nontrivial with multiple feasible solutions.
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We define the €, norm of a vector as ||x||, = (X |x;|?)"/?. For p = 2, the £, norm is
the traditional notion of Euclidean distance and represents the energy in a signal. We shall
see that the £; norm, sometimes referred to as the taxicab norm since it is the distance
one must travel between two locations on a grid of roads, plays a special role in CS. We
also define, through a mild abuse of notation, the £y norm to be the number of nonzero
components in the vector.! We similarly define ||x||,, as the magnitude of the largest
coefficient in x. Figure 5-1 depicts the unit balls (i.e., the set of points with norm one) in
two dimensions for several values of p.

We will denote the sparsity, or number of nonzero coefficients, of the unknown signal
ass = ||x"||,. We will also assume that the energy of the additive noise term is bounded
as |le]|, < o. In addition, it is convenient to assume that each column of A has unit £,
norm. This assumption does not sacrifice any generality because a simple rescaling of x
can be used to normalize the columns if needed.

The problems of interest are typically ill-posed in the sense that M < N. Put another
way, there are fewer equations than unknowns, and the solution is not unique. We shall
return to this topic in detail in Section 5.2.3.

For now, we define the undersampling ratio § = M/N to quantify the severity of the
undetermined nature of the operator A. As § — 1 the problem becomes fundamentally
easier to solve because more measurements are available per unknown. Similarly, we define
the normalized sparsity as p = s /M. As p — 1 the problem becomes fundamentally more
difficult to solve since we need to recover more nonzero coefficient values for the same
number of measurements. A sharp change in algorithm performance in terms of § and p
is referred to as a phase transition and will be discussed in more depth in Section 5.3.5.2.

5.2.2 The Linear Model in Radar

The linear model defined in (5.1) can be used to describe a wide range of radar signal
processing applications. Indeed, any radar data set that obeys an approximately linear

IThis name is selected since lim p—0 llx[lp = lix[lo- However, the £ norm is not a norm, since [jax[lp =
[|xlo for any scalar @ # 0. In fact, £, ceases to be a norm for p < 1 because it violates the triangle
inequality. For this reason £, with p < 1 is referred to as a pseudo-norm.
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balls, that is,

{x : x|, = 1}, for
various values of p.
Notice that the unit
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FIGURE 5-2 = A notional depiction of a collection geometry for RF tomography. Each of the
antennas transmits RF signals whose echoes are received and processed by all of the nodes.
Some form of coding or time/frequency multiplexing is used to make the signals distinguishable
at the receivers. This separability is depicted here with different coloring on the transmitted
waveforms.

relationship between the signal of interest and the measured data can be captured in this
framework. One key assumption is that multiple scattering by the target objects can be
neglected, a common assumption referred to as the Born approximation? [4].

Intuitively, one can consider the matrix A asadictionary whose k-th column, or atom,
represents the data that would be collected if only asingle element of x!'“® were nonzero.
Our goal of inferring x'"“® from y can thus be viewed as the task of finding the dictionary
entries that best describe the collected data. To make this idea concrete, we will briefly
sketch two examples of expressing radar data in this framework. The reader isreferred to
the literature or earlier chaptersin this series for more detailed radar data models.

5.2.2.1 Radio Frequency Tomography Example

We will now consider a frequency-domain example using several spatially distributed
narrowband sensors. A radio frequency (RF) tomographic system illuminates a scene
with several spatialy distributed radar transmitters. The echoes from these sensors are
received by aconstellation of radar receiversfor subsequent processing. Figure 5-2 depicts
anotional scene with a network of these distributed sensors. Even traditional monostatic
SAR can be easily viewed in atomographic framework (see e.g., [5]).

Data from a set of M arbitrary-geometry bistatic scattering experiments will be pro-
cessed jointly to image a scene. Each scattering experiment will use a receiver located

2Another method of model linearization is the Rytov approximation [3], which linearizes the nonlinear
equation satisfied by the phase of the scalar field. For most radar applications the Born approximation is
appropriate, and it is by far the most commonly used model. Thus, wewill limit our discussion of linear
approximations to the single-scattering setting. As we will show in Section 5.4.4, thiswill not preclude
the consideration of multiple-scattering scenarios.
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at position r,, € R3 and atransmitter at t,, € R® operating at wavenumber ky, = wm/C =
27 fm/c, where c is the speed of propagation. The RF transmission frequency is given in
hertz as f,. Datain this format can of course be synthesized from a pulsed system by
match filtering and transforming the processed signal to the frequency domain. One can
think of these data as phase history datafor a multistatic SAR collection after dechirp or
deramp processing [5,6].

Consider anisotropic point scatterer located at an arbitrary positionq € R3. Assuming
scalar wave propagati on governed by the Helmholtz equation, the Green’ sfunction (section
7.3 of [7]) describing the spherical wave emanating from a point source t,, and impinging
on the point q is given by

G K ejk(nlltqullz 52
(e G K) = et — al 52

To obtain the field received by a point source with an arbitrary transmit waveform
am(k) = [ am(t)e’kdt, the frequency-domain Green’sfunction G(tm, d, km) ismodu-
lated by the compl ex-val ued frequency-domain waveform? a, (ky); thusthefield received
at point g isam(km)G(tm, g, km). Similarly, if the scattering potential at q isgivenby x(q),
then the measured field for scattering experiment m from the single point target would be

Ym == X(q)am(km)G(tm, CI, km)G(Q» M'm, km) (5-3)

The antenna patternsfor the transmit and receive antennas are omitted for simplicity. If we
linearize the scalar data model using the Born approximation [9] and discretize the scene
into N voxels with locations g, and reflectivities x = [x(q1)X(q2) ... x(qn)]", then we
can obtain the total measured field for experiment m as

N
Ym = Y X(An)am(Kn) G (tm, Gn, km)G(Gn, Fm, ki) (5.4)

n=1

We can express the complete data collection in the form of (5.1) by defining A € CM*N
with Apn = am(Km)G(tm, an, Km)G(Qn, r'm, km) and denoting the additive measurement
noisease.

The inner products of the columns of A can be related to values of the familiar
point spread function (PSF) from SAR imaging [10]. Under the far-field assumption
[Itll2 > |lqll2, the PSF reduces to the standard form encountered in parallel-ray computed
tomography [6,11]. An example of this development in the time domain with arbitrary
waveforms can be found in [12].

5.2.2.2 The Ambiguity Function

We next present two moving target indication (MTI) examples. The first example models
the datafor a single pulse using asingle radar channel to discriminate delay and Doppler.
The two-dimensional function describing the coupling between delay and Doppler for a
radar waveform is known as the ambiguity function.

Consider the case of aradar with narrow fractional bandwidth and monostatic oper-
ation, that is, co-located transmitter and receiver antennas. Working in the time domain,

3Thisisbecause Green’sfunctionisafundamental solution [8] to the scalar wave equation (V2 +k2)G =
—3, where § isthe Dirac delta function.
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consider a complex baseband pulse, u(t), modulated in quadrature by a carrier with fre-
quency, wo = 27 fo, to yield the transmit waveform, p(t) = Re{u(t)d“o'}, where Re{}
denotesthereal operator. The echo of the transmitted pul se waveform encodes backscatter
energy from the illuminated scene. Assume the illuminated scene consists of scatterers at
ranger withradial velocity, v. We can parametrize the complex scene reflectivity interms
of delay and Doppler as x(t, ), where t(r) = %’ isthe round-trip propagation time, and
w(v) = Z‘UT‘J” isthe Doppler shift. The total received signal backscattered from the scene
after quadrature demodulation is the baseband signal

Vo (t) = //x(r, o)U(t — e 1“'drde + na(t) (5.5)

where the constant phase terms have been absorbed into the reflectivity, and ng(t) repre-
sents the circular white complex Gaussian baseband noise.

Our goal isto determine the reflectivity function x(t, w) fromthereceived data yg(t).
Thismodel can be discretized to obtain aset of equationsintheform (5.1). If wediscretize
the scene reflectivity function x over delay and Doppler on agrid of points, {tm, wm}, tO
produce the vector x and sampl e the received baseband signal yg and noise ng(t) at times
{tm} to obtain y and e, we obtain the linear system of equations

y=Ax+e (5.6)

Each column & of A thus represents the received waveform for a scatterer with given
Doppler and range (i.e., delay), and all columns share the same £, norm, under the far-
field assumption.

One simple approach to locating targets in the delay-Doppler plane is to derive a
test statistic for a single hypothesized target at a particular delay-Doppler combination.
We will pursue this approach briefly to highlight a connection between CS theory and
traditional radar practice. Recall that the likelihood ratio test statistic for the existence of
asingletarget with delay t’ and Doppler frequency «' is the matched filter output [13],

x (T, @) = /yB(t)u*(t — 7hel“tdt

= //X(r, w)A(t — 7', 0 — o')drdw +/nB(t)u*(t —hel“tdt (5.7)

wheretheradar ambiguity function A(z, ») isgivenby A(t, w) = [u(t)u*(t — T)elotdt,
Thus, the output of the matched filter isthe convolution of thereflectivity f (z, w) withthe
radar ambiguity function A(z, ), plus afiltered copy of the baseband noise. The shape
of the ambiguity function can be adjusted by varying the pulse waveform u(t). However,
shaping of the ambiguity function is subject to atotal volume constraint:

/ / IA(t, 0)Pdrdo = [u(t)|2 (5.8)

Thus, while the waveform can be designed to reshape the ambiguity function to satisfy
design criteria, improving the ambiguity response in one region will necessarily push
energy into other parts of the delay-Doppler plane. For example, making the peak of the
response narrower will typically raise the sidelobe levels. The sampled matched filter
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outputs can be written
x=A"y (5.9)

Theinner products of the columnsof A, denoted by a;, are samples of the ambiguity func-
tion: |af'aj| = | A(ti — 7}, wi — w;)|. Thisrelationshipisacrucial point in understanding
the connection between CS and radar signal processing, as we will seeiin Section 5.2.5.

5.2.2.3 Multichannel Example

Now consider processing multiple pulses with a multichannel phased array radar. In con-
trast to the previous example, assume that matched filtering has already been performed
ontheindividual pulsesin fast time and focus on modeling thetarget responsein the slow-
time* and channel dimensions. This phased array will transmit a series of pulses steered
to aregion of interest on the ground.® The echoes from these pulses will be received on
multiple channels connected to subarrays of the antenna. By coherently processing these
returns, range, velocity, and angular bearing information can be extracted about moving
targets. An MTI system treats nonmoving objects as undesirable clutter and attempts to
suppress these returns using techniques like space-time adaptive processing (STAP) [15].
Figure 5-3 depicts anotional MTI scenario.

To be specific, consider a monostatic uniform linear array (ULA) consisting of J
channels spaced equally at d meters apart. A coherent processing interval (CPl) for this
system consists of data collected over K slow-time pulses with a sampling period of T
secondsand L fast timerangebins. We shall assumethat the systemisnarrowband (i.e., the
bandwidth B <« fo), where fo = 7 isthe center frequency,® and that pulse compression
has already been performed. In addition, motion during a given pulse will be neglected.’

Wewill consider thedatacollected for asinglerange gate. The spatial -channel samples
for pulse k will be denoted as a vector yy € C?, while the complete space-time snapshot
will be denoted y € C’K, where the data have been pul se-wise concatenated, that is,

y=[vl v3..yx]"

For aCPI, we thus collect M = JK measurements of the unknown scene.

4Slow time refers to the relatively long intervals between successive pulses from a coherent radar. Fast
timerefersto the time scale at which the electromagnetic pul se travel s across the scene of interest, which
is the same as range up to a scale factor when propagation is in a homogenous medium, such as free
space.

50ur development here assumes that all the elements in the phased array transmit the same waveform
during a given pulse, with the exception of phase shifts to steer the beam in the desired illumination
direction. A more general approach involves using distinct waveforms on each of the transmit channels.
Thismultiple-input multiple-output (MIMO) approach hasrecently received significant attention; seefor
example [14].

6This assumption allows time delays to be well approximated as phase shifts, which creates a corre-
spondence between target velocity and the output bins of afast Fourier transform (FFT) with respect to
slow-time.

"This so-called stop-and-hop approximation is very reasonable for the short pulses associated with MTI
platforms[16].

155



156 CHAPTER 5 | Radar Applications of Sparse Reconstruction

Pulse

FIGURE 5-3 = (a) A simple depiction of an MTI data collection scenario. The targets of
interest are the moving vehicles on the road network. (b) A notional rendering of the data
cube collected during a CPI. Each element in the cube is a single complex-valued sample.
The three dimensions are channels, pulses, and range. Similar diagrams are used to describe
MTI data sets, along with much more detail, in [15,16].

At a given range, the response of the array over the CPI to a point target can be
characterized with a space-time steering vector. First, consider a target response arriving
at elevation angle 6 and azimuth angle ¢ as measured by J spatial channels. Since the
array is linear in the azimuth plane, there is a conical ambiguity in the arrival direction
of a given signal characterized by the cone angle 6. = cos™* (cosé sing). The spatial
frequency observed by the array for a given cone angleis then

d
fs = 5 C0S6.

The spatial steering vector for a given cone angleisthen as € C7, given by
a(fo) = [1 exp(j2rfy) ... exp(j2r(I —Dfg]"

wherewe have sel ected thefirst el ement asthe zero-phasereferencefor thearray. Similarly,
we can define the normalized Doppler frequency as

f_2vT
=7

where v isthe velocity of the target. The temporal steering vector describing the response
of asingle element across K time samples to atarget at normalized Doppler fqy isthen
given asthe length K vector

a(f)=[1 exp(j2rfy) ... exp(j2r(K —1)fg)]"
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The combined space-time steering vector for atarget isthen given asthe Kronecker product
of the temporal and spatia steering vectors, that is,

a(fs, fg) = a;(fg) ® as(fy)

For agiven range bin, the vector a( fs, fy) representsthe datathat the radar would collect
over a CPl if only a single target having unit scattering amplitude were present at the
angle-Doppler location encoded by fs and fq. Specificaly, the steering vector a( fs, fq)
corresponds to a single column of the A matrix for thisMTI problem.

Let us discretize the frequency variables into Ns > J spatial frequency bins and
Ng > K Doppler frequency bins spaced uniformly across the allowed ranges for each
variable to obtain N = NsNg unigque steering vectors. We can organize the resulting
steering vectors into a matrix A € CM*N, Neglecting range ambiguities, we can define
the scene reflectivity function at a given range as x € CN, where the rows of x are
indexed by angle-Doppler pairs® (fs, fg). We then obtain the linear relationship between
the collected data and the scene of interest as

y=Ax+e

where ein this case will include the thermal noise, clutter, and other interference signals.
A more realistic formulation would include measured steering vectors in the matrix A.
Thus, we see that the data for a multichannel pulsed radar problem can be placed easily
into the framework (5.1).

5.2.2.4 Comments

Theoverall messageisthat most radar signal processing tasks can be expressed in terms of
the linear model (5.1). Additional examples and detailed references can be found in [17].

We should also mention that both of these examples have used the “standard” basis
for the signal of interest: voxels for SAR imaging and delay-Doppler cells for MTI. In
many cases, the signal of interest might not be sparse in this domain. For example, a
SAR image might be sparse in awavelet transform or abasis of canonical scatterers.® As
another example, in [18], the authors explore the use of curvelets for compressing formed
SAR images. Suppose that the signal is actually sparse in abasis ¥ such that x = Ve,
with e sparse. In this case, we can simply redefine the linear problem as

y = AWa + e (5.10)

to obtain a model in the same form with the forward operator AW. Indeed, many of the
early CS papers were written with this framework in mind with A = ®W¥, where @ is
the measurement operator, and ¥ is the sparse basis. In this framework, one attempts to
define ameasurement operator ® that is“incoherent” from the basis ¥. We will not dwell
on thisinterpretation of the problem and refer the interested reader to, for example, [19].

8Notethat x inthiscontext isthe sameimagereflectivity function usedin common STAPapplications[15].

9Selection of the appropriate sparse basis is problem dependent, and we refer the reader to the literature
for more detailed explorations.
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5.2.3 Regularization of the Linear Model through Sparsity

We now turn our attention to the inverse problem of estimating x'"“® from the noisy data
y. As mentioned in Section 5.2.1, since § < 1, the problem is underdetermined. Let us
consider for amoment the noise-free case with e = 0. Then, y = Ax"®. SinceM < N,
the matrix A has a nullspace defined as null(A) = {x : Ax = 0}. Notice that for al x
in the nullspace of A, we see that A(x + x'"'®) = 0+ y = y. Thus, we cannot hope to
identify x"“® uniquely from y given no other information, since there are infinitely many
signals that will result in the same set of collected data.

In order to obtain aunique solution to this problem, we need to regul arize the problem
by adding more assumptions about the unknown signal x'"“¢, One common approach isto
find the solution with the minimum energy or £, norm, in which case we would estimate
the signal as

X = argmin ||x||, subjectto Ax =y
X

This formulation yields a unique solution which can be computed in closed form as
% = A'ty, where AT is the Moore-Penrose pseudo-inverse'® of A [20]. While a unique
solutionisobtained, thislow energy assumption may not be reasonable for some problems
of interest. To illustrate this point, consider a simple example with N = 256, M = 75,
and s = 15. For reasons that will become clear later, the matrix A contains entries
drawn randomly from the Gaussian distribution A/ (0, 1). Figure 5-4(a) shows the true
signal and the minimum-energy reconstruction. The £, norm penalizes large values, so
the resulting estimate contains many small coefficients. Put another way, among the infi-
nite number of possible solutions, the ¢, regularization favors solutions which use com-
binations of several atoms with small coefficients in favor of a few large coefficients.
Unfortunately, the signal of interest has precisely this feature—a small number of large
coefficients.

Our original motivation for CS techniques was to exploit signals that could be ex-
pressed with just afew nonzero coefficients. Assuch, it seemsthat we should look for the
solution X with the smallest £ norm. So, we might try to solve the problem

X = argmin ||X|o subjectto Ax =y
X

Unfortunately, the £o norm isnot differentiable or even continuous. Thisproblemisinfact
NP-hard to solve. Put another way, we would need to test every possible combination of
active coefficientsto verify that we havefound the onewiththe smallest £ normthat allows
the signal y to be represented. This combinatorial complexity is intractable for problems
of interesting size, where x may contain thousands or even millions of unknowns. As
a result, we must explore practical methods for performing sparse reconstruction (SR),
which isthe estimation of an unknown signal that is assumed to be sparse.

GjventheSVD as A = UXVH | the Moore-Penrose pseudo-inverseiscalculated as AT = v +tuH,
Since X isadiagona matrix of singular values, = isobtained by simply transposing the matrix and then
taking thereciprocal s of the nonzero diagonal elements. When A hasfull columnrank, the pseudo-inverse
can be computed with the perhaps more familiar expression AT = (AH A)~1AH,
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FIGURE 5-4 = Two reconstructions of a signal with N = 256, M = 75, and s = 15. The
entries of A are generated randomly from a Gaussian distribution and then scaled to yield
unit-norm columns. The true signal is shown with circles, while the estimate is shown with
crosses. Pane (a) shows the minimum £; reconstruction, while pane (b) shows the minimum

£1 reconstruction. A very similar example was shown in [21]. The reconstructions were
computed using the CVX software package [22].

5.2.4 {, Regularization

In Section 5.3 we will explore numerous algorithms for SR. Here, we will explore a
problem formulation that motivates many of these algorithms. L et usreturn to considering
the noisy data case where e # 0 given in (5.1). In this setting, we would like to find the
solution X given by

X = argmin || x|y subjectto |AX — Y|, <o (5.11)
X

However, this problem isonce again NP-hard and effectively impossible to solvefor prob-
lemsof interestinradar signal processing. Asmentioned earlier, theissueisthat the £ norm
isnot amenabl eto optimization. Figure5-1 providesanintuitive alternative: wecan replace
the intractable £o norm with a similar norm for which optimization is simpler. We have
aready seen that the £, norm provides one possibility, but the resulting solutionstend to be
nonsparse. Instead, wewill consider the convex relaxation [23] of (5.11) using the ¢; norm:

X, = argmin||x||; subjectto |AX — y|l, <o (5.12)
X

Wewill refer to this convex optimization problem as Basis Pursuit De-Noising (BPDN). !
By virtue of being a convex cost function with a convex constraint, the problem described
in (5.12) does not suffer from local minima, and a variety of mature techniques exist for
solving the problemin polynomial time[24]. Figure 5-4(b) showsthereconstruction of our
simpleexamplesignal with an £, penalty. In thisnoise-free case, thesignal isreconstructed
perfectly using the ¢1-based cost function. Notice that this optimization problem has an
obvious parameter, o, that could be varied to obtain different solutions. We will explore
thisideain depth in Section 5.3.1.1.

115ee Section 5.3.1.1 for details on our naming convention.
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Regularization using the £1 norm has along history, for example, [25]. We shall dis-
cuss several formulations of the problem described in (5.12) and algorithms for solving it
in Section 5.3.1. When the problem is solved with an ¢, penalty in place of the £, norm,
the result is termed Tikhonov regularization [26],'% which is known in the statistics com-
munity as ridge regression [28]. This formulation has the advantage of offering asimple,
closed-form solution that can be implemented robustly with an SVD [20]. Unfortunately,
asinthe noise-free case, this approach does not promote sparsity in the resulting solutions.
We mention Tikhonov regularization because it has awell-known Bayesian interpretation
using Gaussian priors. It turnsout that the £,-penalized reconstruction can also be derived
using a Bayesian approach.

To cast the estimation of x'"“® in a Bayesian framework, we must adopt priors on the
signal and disturbance. First, we will adopt a Laplacian prior'® on the unknown signal
x'"" and assume that the noise e s circular Gaussian with known covariance %, that is,

e~CN(0, )

A
p(Xtrue) o eXp{_E HXtrueHl}

where the normalization constant on p(x"“®) is omitted for simplicity. Given no other
information, we could set ¥ = |, but we will keep the generality. We can then find the
MAP estimate easily as

X; = argmax p(x]y)
X

PYIX) p(x)

8%
= argmex PCYIX) p(X)

= argmax
X

1 A
= argmax exp{—§ | Ax — yll%} exp{—é ||X||1}
X

= argmin || Ax — YII% + A lIxly
X

where [|x||2 = x" £ ~1x. The resulting optimization problem is precisely what we would
expect given the colored Gaussian noise prior. Since X is a covariance matrix, and hence
positive definite and symmetric, the problem is convex and solvable with a variety of
techniques. Infact, we can factor the inverse of the covariance using the Cholesky decom-
position as X! = R R to obtain

%, = argmin || AX — ylIZ 4+ A X[
X
= argmin ||[RAX — Ry||2 + 4 |Ix|l;
X

— argmin ||Ax — |2 + A 1Ix[ly (5.13)
X

2An account of the early history of Tikhonov regularization, dating to 1955, is given in [27].

13Recent analysis has shown that, while the Laplacian prior leads to several standard reconstruction
agorithms, random draws from this distribution are not compressible. Other priors leading to the same
£1 penalty term but yielding compressible realizations have been investigated. See [29] for details.
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where A = RA, and y = Ry. This problem is equivalent to (5.12) when A is chosen
correctly, as detailed in Section 5.3.1.1. Readers familiar with adaptive processing will
recognize the application of R as a pre-whitening step. Indeed, this processing is the ¢4
version of the typical pre-whitening followed by matched filtering operation used in, for
example, STAP[15,30].

Returning to the geometric interpretation of the problem, examination of Figure 5-1
provides an intuitive geometric reason that the £, norm is effective for obtaining sparse
solutions. In particular, sparse solutions contain numerous zero values and thus lie on the
coordinate axesin several of their dimensions. Sincethe £, unit ball is“spiky” (i.e., more
pointed aong the coordinate axes than the rounded ¢, norm), a potential solution x with
zero entries will tend to have a smaller £1 norm than a non-sparse solution. We could of
course consider p < 1 to obtain ever more “spiky” unit balls, as is considered in [31].
Using p < 1 alows sparse signals to be reconstructed from fewer measurements than
p = 1, but at the expense of solving anon-convex optimization problem that could feature
local minima.

Thisgeometricintuition can beformalized using so-called tubeand cone constraintsas
described in, for example, [1]. Using the authors' terminology, the tube constraint follows
from the inequality constraint in the optimization problem represented in equation (5.12):

AT = Ro)||, < [|AX™ =y, + 1A% — VI

<20

The first line is an application of the triangle inequality satisfied by any norm, and the
second follows from the assumed bound on e and the form of (5.12). Simply put, any
vector x that satisfies [|Ax — y|l, < o must lie in a cylinder centered around Ax'e,
When we solve the optimization problem represented in equation (5.12), we choose the
solution inside this cylinder with the smallest £; norm.

Since X, is a solution to the convex problem described in (5.12) and thus a global
minimum, we obtain the cone constraint™ || X, |, < ||x"“¢||,. Thus, the solution to (5.12)
must lieinsidethe smallest ¢, ball that contains x'"®, Sincethis ¢4 ball is“spiky”, our hope
isthat itsintersection with the cylinder defined by the tube constraint issmall, yielding an
accurate estimate of the sparsesignal x"“©, Theseideasareillustrated intwo dimensionsin
Figure5-5. Theauthorsof [1] go onto provejust such aresult, aperformance guaranteefor
CS. However, sparsity of the true signal is not enough by itself to provide this guarantee.
We will need to make additional assumptions on the matrix A.

5.2.5 Performance Guarantees

We should emphasize at this point that SR by itself is not CS. Instead, CS involves
combining SR algorithmswith constraintsonthemeasurement matrix A, typically satisfied
through randomized measurement strategies, to provide provabl e performance guarantees.
In this section, we will explore several conditions on A that yield performance guarantees
for CS.

14The authors in [1] actually use the name cone constraint for a condition on the reconstruction error
that is derived from this inequality.
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FIGURE 5-5 = A
two-dimensional
illustration of the
tube and cone
constraints. This
figure was adapted
from Figure 5-1in
[11-
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X must lie
in the intersection
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5.2.5.1 Kruskal Rank

Since we are interested in recovering sparse signals x"_ it would be desirable to have
a condition guaranteeing that a sparse solution to our problem is unique. Let us again
consider the noise-free case with ¢ = 0. Our collected data then satisfy y = Ax""¢, where
||x‘"‘e ||0 = §. Suppose that there exists a second solution x, such that y = Ax, and
[[xzllo < 5. We immediately see that

AE™ —x,) = Ax™ — Ax,
=y—y=0

Now notice that ||x’"‘e = .1:,,||0 < 2s by assumption. We have just shown that this vector
must be in the nullspace of the matrix A. Thus, if we require that null(A) contains no
vectors with sparsity less than or equal to 2s, we arrive at a contradiction and conclude
that the sparse solution x™ to y = Ax must be unique. We shall formalize this notion
using the idea of Kruskal rank.

We define the Kruskal rank [32] K(A) as the largest integer such that for all x in
null(4), || x|, > K(A). Put another way, every set of K(A) columns of A is full rank, but
there exists at least 1 set of X'(A) + 1 columns that is linearly dependent. If X(A4) > 2s,
then an s sparse solution to y = Ax is unique. This result was provided, along with
numerous additional facts, in [33].!3

SDonoho and Elad [33] deal with the Spark of A, which is simply the Kruskal rank plus 1.



52 | CSTheory

While the notion of Kruskal rank is important in sparse regularization, it has very
limited utility for the problems of interest to radar practitioners. The regular rank of a
matrix has limited utility, because an arbitrarily small change in the matrix can alter
the rank. Put another way, a matrix can be “almost” rank deficient. In practice, we use
measures like the condition number [20] to assess the sensitivity of matrix operations to
small errors. The problem with Kruskal rank is analogous. If there exists a sparse vector
such that Ax ~ 0, thiswill not violate the Kruskal rank condition. However, when even a
small amount of noiseisadded to the measurements, distinctionsbased on arbitrarily small
differences in the product Ax will not be robust. What we need is a condition on A that
guarantees sparse solutions will be unique, but a so provides robustnessin the presence of
noise. Aswe shall see, this condition will aso guarantee successful sparse reconstruction
when solving the convex relaxation of our £ problem.

5.2.5.2 The Restricted Isometry Property

Anisometry isacontinuous, one-to-oneinvertible mappi ng between metric spacesthat pre-
servesdistances[34]. Asdiscussed in the previous section, wewant to establish acondition
on A that provides robustness for sparse reconstruction. While several conditions are pos-
sible, we shall focus on the restricted isometry property (RIP). In particular, wewill define
the restricted isometry constant (RIC) R, (A) asthe smallest positive constant such that

(1= Ra(A) XI5 < I AXII5 < (1+ Ra(A) lIxI3 (5.14)

for all x suchthat ||x|lo < n.Inother words, the mapping A preservesthe energy in sparse
signalswith n or fewer nonzero coefficientsup to asmall distortion. Werefer to this condi-
tionasRIP, sincetherequired approximateisometry isrestricted tothe set of sparsesignals.

As we can see, this condition avoids the problem of arbitrarily small Ax values for
sparse x that can occur when only the Kruskal rank condition is required. This property
is analogous to a full rank matrix having a small condition number. Indeed, the RIP can
be interpreted as a requirement on the condition number of all submatrices of A with
n or fewer columns. Furthermore, notice that A has Kruskal rank of at least n provided
that Rn(A) < 1. Thus, the RIP guarantees the uniqueness of a sparse solution with any
meaningful RIC. To guarantee good SR performance, a smaller RIC is required.

We are now in a position to state one of the fundamental resultsin CS. If Rys(A) <
V2 —1,then

||Xtrue _ )’Za H2 < Cos—l/z ||Xtrue _ XgueH1 4 Cla (5_15)

where Cy and C; are small positive constants whose values and derivation can be found
in [35].16 Firgt, the term x!“® is the best s sparse approximation to x"“€. Thus, if x"*¢ is
truly sparse, then the first term is zero. If the true signal is not actually sparse, then the
reconstruction remains well behaved. The second term is a small multiple of the noise
energy. If themeasurements y are noisefree, then solving problem described in (5.12) with
o = 0 produces a perfect reconstruction of atruly sparse signal. The theorem requires a

18The reference s, in our opinion, a concise and elegant proof of this result. More detailed and perhaps
pedagogically useful proofs, albeit with slightly inferior guarantees, can befoundin[1]. Thisproof isalso
limited to the real case, but the extension to complex-valued signals, along with slightly less restrictive
RIC results, is provided in [36].
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constraint on R,s(A), even though the signal of interest isassumed to be s sparse, because
the proof, like the previous proof for uniqueness of the sparse solution, relieson preserving
the energy of differences between s-sparse signals.

We should emphasize that this condition is sufficient but not necessary. Indeed, good
reconstructions using (5.12) are often observed with a measurement matrix that does not
even come closeto satisfying the RIP. For example, the authorsin [37] demonstrate recov-
ery of sinusoids in noise using SR with performance approaching the Cramer-Rao lower
bound for estimating sinusoids in noise, despite having the RIC for A approach unity.t’
Nonetheless, RIP offers powerful performance guarantees and a tool for proving results
about various a gorithms, aswe shall seein Section 5.3. Indeed, in some casesthe effort to
prove RIP-based guarantees for an algorithm hasled to improvementsin the algorithm it-
self, such asthe CoSaM P algorithm [39] discussed in Section 5.3.4. Other conditions exist
in the literature, for example, [40-42], and indeed developing less restrictive conditions
isan active area of research.

5.2.5.3 Matrices that Satisfy RIP

At this point, it may seem that we have somehow cheated. We started with an NP-hard
problem, namely finding the solution with the smallest £, norm. Theresult givenin (5.15)
states that we can instead solve the convex relaxation of this problem and, in the noise-free
case, obtain the exact same solution. The missing detail is that we have assumed that A
has agiven RIC. Unfortunately, computing the RIC for agiven matrix isan NP-hard task.
Indeed, it requires computing an SVD of every possible subset of n columns of A. For a
matrix of any meaningful size, thisis effectively impossible.

So, it seems that we may have traded an NP-hard reconstruction task for an NP-hard
measurement design task. Put another way, for our straightforward convex reconstruction
problem to have desirable properties, we must somehow design a measurement matrix A
with aproperty that we cannot even verify. Fortunately, an elegant solution to this problem
exists. Rather than designing A, we will use randomization to generate a matrix that will
satisfy our RIC requirements with very high probability.'8

Numerous authors have explored random matrix constructions that yield acceptable
RICswith high probability. Matrices with entries that are chosen from a uniform random
distribution, a Gaussian distribution,*® aBernoulli distribution, aswell as other examples
satisfy therequired RIP provided that M isgreater than Cslog(N /s) for somedistribution-
dependent constant C [21]. A very important case for radar and medical imaging appli-
cations is that a random selection of the rows of a discrete Fourier transform matrix also
satisfiesasimilar conditionwith M > Cslog*(N) [45]. Furthermore, A canbeconstructed

17See also [38] for an investigation of modifying the RIP property to address performance guaranteesin
situations where the standard RIP is violated.

185averal attempts have been madeto devel op schemesfor constructing A matricesdeterministically with
thedesired RIP properties, for example[47]. However, theseresultsgeneral ly require more measurements
(i.e., larger M) to guarantee the same RIC. See [43] for an example construction based on Reed-Muller
codesthat does not satisfy RIPfor al vectors but preservesthe energy of arandomly drawn sparse vector
with high probability. Expander graphs have also been explored as options for constructing appropriate
forward operators with accompanying fast reconstruction algorithms; see for example [44].

19 ndeed, this result holds for the wider class of sub-Gaussian distributions.
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as ®W, where W is abasis for CN, and ® is a random matrix of one of the mentioned
classes [21]. The proofs of these results rely on probabilistic arguments involving con-
centration of measure, see for example, [46]. Intuitively, the idea is that random vectors
drawn in avery high-dimensional space are unlikely to have large inner products.

For random matrices, we have seen that we need to collect on the order of slog(N/s)
measurements. A simple analog to bit counting may provide some intuition about this
bound. If we have N coefficients with s nonzero values, then there are (%) possible sets
of nonzero coefficients. If we allow ¢y quantization levels for encoding each nonzero
coefficient, then the total number of required bits for this information islog{ (%) + cos}.
If we neglect the bits for encoding the values, we can obtain

ol () -m(3
< Iog{(%a)s} (5.16)

= slog(N/s) + sloge (5.17)

Thus, a simple calculation of the required coding bits yields a leading-order term of the
same form as the number of required measurements predicted by CS theory. Intuitively,
randomization of the A matrix ensures with high probability that each measurement pro-
videsanearly constant increment of new information bits. Thisresultin no way constitutes
aproof but ispresented to provide someintuitiveinsight about the origin of thisexpression.

We should mention that randomization has along history in radar signal processing.
For exampl e, array element positions can be randomized to reducethe sidel obesin sparsely
populated arrays [48-50]. It is also well understood that jittering or staggering the pulse
repetition frequency can eliminate ambiguities [13]. The transmitted waveform itself can
aso be randomized, as in noise radar [51,52], to provide a thumbtack-like ambiguity
function. From aCS perspective, theserandomization techniquescan beviewed asattempts
to reduce the mutual coherence of the forward operator A [17].

5.2.5.4 Mutual Coherence

As pointed out already, estimating and testing the RIC for large M is impractical. A
tractableyet conservative bound on the RIC can be obtained through the mutual coherence
of the columns of A defined as

M(A) = max | AT A

Mutual coherence can be used to guarantee stable inversion through ¢, recovery [53,54],
although these guarantees generally requirefairly small values of s. Furthermore, the RIC
is conservatively bounded by M(A) < Rs(A) < (s — L) M(A). The upper bound is
very loose, as matrices can be constructed for which the RIC is nearly equal to the mutual
coherence over awide range of s values [55].

The mutual coherence is of particular importance in radar signal processing. Recall
from Section 5.2.2.2 that entries of the Gramian matrix A™ A are samples of the radar am-
biguity function. The mutual coherenceissimply themaximum off-diagonal of thismatrix.
Thus, the mutual coherence of aradar system can be reduced by designing the ambiguity
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function appropriately. This view was explored for the ambiguity function, along with
a deterministic approach to constructing waveforms that yield low mutual coherence for
the resulting A, in [56]. In a nutshell, the thumbtack ambiguity functions that are known
to be desirable for radar systems [57] are also beneficial for CS applications. In [12],
the authors use mutual coherence as a surrogate for RIP when designing waveforms for
multistatic SAR imaging. As one might expect, noise waveforms provide good resultsin
both scenarios.?®

The ambiguity function characterizes the response of a matched filter to the radar
data. At the same time, the ambiguity function determines the mutual coherence of the
forward operator A, which provides insights into the efficacy of SR and CS. Thus, CS
does not escape the limitations imposed by the ambiguity function and the associated
matched filter. Note that virtually all SR algorithms include application of the matched
filter AH repeatedly in their implementations. Indeed, SR algorithms leverage knowledge
of the ambiguity function to approximately deconvolve it from the reconstructed signal.
Put another way, SR canyield signal estimates that |ack the sidelobe structure typical of a
matched filtering result, but the extent to which this processwill be successful isinformed
by the ambiguity function.

| | SR ALGORITHMS

In the previous section, we surveyed much of the underlying theory of CS. As we have
seen, CS combines randomized measurements with SR algorithms to obtain performance
guarantees for signa reconstruction. In this section, we will review several examples of
SR algorithmsand their associated CS performance guarantees. It isworth mentioning that
these agorithms can and are used in situations when the sufficient conditions associated
with CS are not satisfied. In spite of this failure to satisfy these conditions, the resulting
reconstructions are often desirable.

One issue is that the traditional CS theory provides error bounds on reconstructing
X' In many radar problems, the signal x'"® represents fine sampling of a parameter
space, such as the set of image voxels or the angle-Doppler plane. In these scenarios,
producing a reconstruction whose nonzero elements are dightly shifted in the vector X
may be perfectly acceptable to a practitioner, as thiswould correspond to asmall error in
estimating the relevant parameter. However, the traditional error definitions of CS would
suggest that this reconstruction is extremely poor.

To give aconcrete exampl e, supposethat our signal of interestisasingletoneinnoise.
The vector x'“® represents the discrete Fourier transform (DFT) of the signal sampled on
afine grid, and A is simply a DFT matrix. If the true signal is zero except for asingle
entry in the first position equal to 1 and X, contains a single 1 in the second position,
then we have amost perfectly reconstructed the signal. The model order is correct with a
single sinusoid, and the frequency has been estimated to an accuracy equal to the sampling
density of our frequency grid. Yet the CS measure of error ||x"*® — X, ||, would be larger

20\\e notethat it is not possible to improve the Kruskal rank of a matrix by left-multiplication; see [58].
This motivates attempts to change the waveform or collection geometry in radar problems to improve
sparse reconstruction performance rather than simply considering linear transformations of the collected
data.
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than the norm of the true signal, suggesting complete failure. See [37] for an excellent
discussion of this issue. This example perhaps suggests why one might consider using a
given SR agorithm even when conditions like RIP are not met, provided that the signal
of interest is still sparse or nearly so. Performance guarantees for these sample parameter
problems remain at least a partially open research problem, although some progress has
been made for the specific DFT casein [59].

We shall consider severa classes of SR agorithms along with examples. New algo-
rithmsare being devel oped and extended at abreathtaking paceinthe CSliterature. |ndeed,
it isnot at all uncommon to see articles improving and extending other articles that are
till available only as preprints. In some cases, multiple generations of this phenomenon
are observed. Thus, while severa current state-of-the-art algorithms will be referenced,
online references can be consulted for new developments before actually employing these
technigues. The good newsisthat awide range of excellent SR algorithmsfor both general
and fairly specific applications are available online for download and immediate use.?
Furthermore, part of the beauty of these SR algorithms is their general simplicity. Sev-
era highly accurate algorithms can be coded in just a few dozen lines in a language like
MATLAB.

Before delving into the collection of algorithms, we will make afew comments about
the required inputs. The SR algorithms we survey will typically require a handful of
parameters along with the data y. Most of the algorithms will require either an explicit
estimate of s or a regularization parameter that is implicitly related to the sparsity. In
many cases, these parameters can be selected with relative ease. In addition, many of
the algorithms are amenable to warm-starting procedures, where a parameter is varied
slowly. The repeated solutions are greatly accelerated by using the solution for a similar
parameter setting to initialize the algorithm. One of the many algorithms leveraging this
ideais Nesterov’s Algorithm (NESTA) [61].

Finally, anissueof particular importanceistherequired information about the forward
operator A. Obviously, providing the matrix A itself allows any required computations to
be completed. However, in many cases, A represents atransform like the DFT or discrete
wavel et transform (DWT), or some other operator that can beimplemented without explicit
calculation and storage of the matrix A. Since the A matrix can easily be tens or even
hundreds of gigabytesin someinteresting problems, the ability to perform multiplications
with A and AH without explicit storage is essential. While some of the SR algorithms
require explicit accessto A itself, many first-order algorithms require only the ability to
multiply agiven vector with A and A, Wewill focus primarily on these algorithms, since
they are the only realistic approaches for many large-scale radar problems.

We will divide our discussion of SR algorithms into a series of subsections. First, we
will discusspenalizedleast squaresmethodsfor solving variantsof (5.12). Wewill thenturn
to fast iterative thresholding methods and closely related reweighting techniques. All of
these approaches have closetiesto (5.12). In contrast, greedy methods leverage heuristics
to obtain very fast algorithms with somewhat weaker performance guarantees. Finaly,
our discussion will briefly address Bayesian approaches to CS, methods for incorporating
signal structure beyond simple sparsity, and approaches for handling uncertainty in the
forward operator A.

2LAn excellent list is maintained in [60].
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5.3.1 Penalized Least Squares

The convex relaxation of the ¢y reconstruction problem given in (5.12) can be viewed
as a penalized least squares problem. We have already seen that this problem arises in
a Bayesian framework by assuming a Gaussian noise prior and a Laplacian signal prior.
This approach has along history, for example, [25], and the use of the £; norm for aradar
problem was specifically proposed at least as early as[62)].

Thegood newsisthat (5.12) isalinear program for real data and a second-order cone
program for complex data[1]. As aresult, accurate and fairly efficient methods such as
interior point agorithms exist to solve (5.12) [24]. Unfortunately, these solvers are not
well suited to the extremely large A matrices in many problems of interest and do not
capitalize on the precise structure of (5.12). As aresult, a host of specialized algorithms
for solving these penalized least squares problems has been created.

This section explores severa of these algorithms. It should be emphasi zed that solvers
guaranteeing a solution to (5.12) or one of the equivalent formulations discussed herein
inherit the RIP-based performance guarantee given in (5.15), provided that A meets the
required RIP requirement.

5.3.1.1 Equivalent Optimization Problems and the Pareto Frontier

First, wewill discuss severa equivalent formulations of (5.12). We will adopt the nomen-
clature and terminology used in [63]. In this framework, the optimization problem solved
in (5.12) isreferred to as basis pursuit de-noising (BPDN), or BP,.. This problem solved
in the noise-free setting with o = 0 is called ssimply basis pursuit (BP), and its solution
is denoted Xgp. The theory of Lagrange multipliersindicates that we can solve an uncon-
strained problem that will yield the same solution, provided that the Lagrange multipler is
selected correctly. We will refer to this unconstrained problem as ¢; penalized quadratic
program and denoteit as QP, . Similarly, we can solve a constrained optimization problem,
but with the constraint placed on the £1 norm of the unknown vector instead of the £, norm
of the reconstruction error, to obtain yet athird equivalent problem. We will use the name
LASSO [64], popular in the statistics community, interchangeably with the notation LS,
for this problem. The three equivalent optimization problems can be written as

(BP,) X, =argmin ||x]||; subjectto |[AX — VY|, <o (5.18)
X

(QP,) &, =argmin A |[X|ly + [|AX — Y3 (5.19)
X

(LS;) X, =argmin |AX — y||,subjectto |[x|; <t (5.20)
X

We note that afourth problem formulation known as the Dantzig selector also appearsin
the literature [65] and can be expressed as

(DS;) %, = argmin ||x||; subjectto ||A"(Ax —y)|. <¢ (5.21)
X

but this problem does not yield the same set of solutions asthe other three. For atreatment
of the relationship between DS, and the other problems, see [41].

Thefirst three problems are all different ways of arriving at the same set of solutions.
To be explicit, the solution to any one of these problems is characterized by atriplet of
values (o, A, t) which renders X, = X; = X.. Unfortunately, it is very difficult to map
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the value of one parameter into the values for the other two. However, once a solution to
one problem is available, we can calculate (to at least some accuracy) the parameters for
the other two solutions.??

First, notice that only a certain range of parameters makes sense. Consider solving
BP, with o = | y|l,. The solution to this problem is obviously X, = 0. Any larger
vaue of o will yield the same solution. Similarly, imagine solving LS, with t = ||Xgp|l;.
(Recall that Xgp is the solution to BP, with o = 0.) In other words, thisis the minimum
£, solution such that AXgp = y. Any larger value of T will produce the same solution.
Thus, the solution with x = 0 corresponds to a large value of A, while the solution Xgp
corresponds to the limit of the solution to QP, as A approaches zero. Values outside this
range will not ater the resulting solution.

The fact that the BP solution is the limit of the solution to QP; is important. The
agorithms that solve the unconstrained problem cannot be used to precisely compute BP
solutions. Algorithms that solve QP, exhibit a fundamental deficiency in solving BP, as
can be seen by their phase transition. See [66] for results on this issue. Notice that this
problem does not arise when dealing with noisy data and solving the problem for o > 0,
as the corresponding positive A then exists. We will emphasize recovery from noisy data
throughout this chapter. In contrast, much of the CS literature centers around solving the
noise-free BP problem. From a coding or compression standpoint, this makes a great deal
of sense. Thisdistinction, o > 0vs. o = 0, colors our discussion, since algorithms that
work beautifully for BPDN may work poorly for BP and vice versa. Indeed, an example
would be the approximate message passing (AMP) agorithm [66], whose development
was at |east partially motivated by theinability of algorithmslike Fast I terative Shrinkage-
Thresholding Algorithm (FISTA) to solve the BP problem exactly.

We can create a plot of || AX — y||, versus [|X||; which is parametrized by A (or by
T Or o) to obtain what is known as the Pareto frontier for our problem of interest. We
will denote the Pareto frontier as ¢ (). This curve represents the minimum £, error that
can be achieved for a given ¢; bound on the solution norm. Pairs above this curve are
sub-optimal, and pairs below the curve are unattainable. It turns out that this curve is
convex. Furthermore, for a given point on the curve, the three parameters associated with
the corresponding solution X are given by ¢ (1) = o = |AX — Y|, T = [|X]ly, and A is
related to the dope of the Pareto curve at that point [63]. In particular, the slope of the
Pareto curve can be calculated explicitly from the solution X at that point as

AHr

7l

9'(v) = —

oo

wherer = y — AX, [63]. Thisexpression is closely related to A, which isgiven by A =
2||APr ||, . asshownin [67].% These results are proven and discussed in detail in [63].
Thus, much like the L-curve [68,69] that may be familiar from Tikhonov regularization,
the parameter A can be viewed as a setting which allows a tradeoff between a family of
Pareto optimal solutions. An example Pareto frontier plot is shown in Figure 5-6. In the
figure, we have labeled the values of the end points already discussed.

22 good discussion of the numerical issues in moving between the parametersis provided in [61]. In a
nutshell, determining A from the solution to one of the constrained problemsisfairly difficult. The other
mappings are somewhat more reliable.

ZNote that the factor of 2 stems from the choice to not include a 1/2 in the definition of X;, in (5.19).
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FIGURE 5-6 = An example of the Pareto frontier for the linear model. Points above the curve
are suboptimal for any choice of the parameters, and those below the curve represent an
unattainable combination of the two cost function terms. At a given point on the curve,

o = [|AX — y|l5, T = ||X]l1, and A is the related to the slope of the curve. The example was
generated using the SPGL1 software [63].

If Aisorthogonal, then we can approximately map A = o/2log N [63,70]. Other-
wise, it is very difficult to determine the value of one parameter given another without
first solving the problem, as discussed at length in [61]. This is significant, because the
parameter is often easier to choose based on physical considerations for the constrained
prablems, particularly BP,, but the constrained problems are generally harder to solve. As
aresult, many algorithms solve the unconstrained problem and accept the penalty of more
difficult parameter selection. As already mentioned, thisissue can be somewhat alleviated
by solving the problem for a series of parameter values using awarm-starting or continua-
tion approach. Aswe shall seein Section 5.4, the unconstrained problemisalso beneficial
in that we can tack on additional penalty terms to enforce various solution properties and
still obtain relatively simple algorithms. Indeed, this addition of multiple penalty termsin
asomewhat ad hoc, albeit effective, manner is common in practice [71-73].

Nonetheless, understanding the Pareto frontier and the relationshi ps between the var-
ious forms of the optimization problem is highly instructive in interpreting the results. In
addition, this explicit mapping between the three problems forms the foundation of the
first algorithm discussed in the following section.

5.3.1.2 Solvers

In the last severa years, a plethora of solvers has been created for attacking the three
£, minimization problems defined in the previous section. We will mention a handful of
those approaches here. Our emphasiswill be on fast algorithmsthat do not require explicit
accessto A and can handle complex-valued signals.

Our first exampleis SPGL 1 [63], the algorithm whose primary reference inspired the
discussion of the Pareto frontier in the previous section. This algorithm seeks solutions to
BP,, whichisaswehavealready mentioned moredifficult than solving QP, . Thea gorithm
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takes special advantage of the structure of the Pareto frontier to obtain the desired solution.
In particular, van den Berg and Friedlander devel op afast projected gradient technique for
obtaining approximate solutions to LS,. The goa is to approximately solve a sequence
of these LASSO problems so that 1, 1, . . . 7x approaches ,,, which is the value for ©
which rendersthe problem equivalent to BP, . While slower than solving the unconstrained
problem, thefast approximate sol utionsto theseintermediate problemsall ow theal gorithm
to solve the BP, in areasonable amount of time.

Let us consider a step of the algorithm starting with zy. First, we compute the corre-
sponding solution )‘('j As discussed already, this provides both the value and an estimate
of the slope of the Pareto curve as

P () = || AR -y,

AHrk
o' () = — || e
‘ (L IPY[
rk=Axk—y (5.22)

Wewill choosethe next parameter valueas tx 1 = 7« + A k. TO compute Ay, the authors
of [63] apply Newton's method. We can linearize the Pareto curve at i to obtain

¢ (1) ~ ¢(r) + ¢' (1) At (5.23)
We set this expression equal to o and solve for the desired step to obtain
Ag = =9 (5.24)
@' (k)

The authors of [63] provide an explicit expression for the duality gap, which provides a
bound on the current iteration error, and prove several results on guaranteed convergence
despite the approximate sol ution of the sub-problems. Further detailscan befoundin [63],
and a MATLAB implementation is readily available online. We should also mention
that the SPGL1 algorithm can be used for solving more genera problems, including
weighted norms, sums of norms, the nuclear norm for matrix-valued unknowns, and other
cases[74].

We will now discuss two closely related algorithms that were developed in the radar
community for SAR imaging for solving generalizations of QP, . The algorithms can be
used to solve the ¢, problem specifically, and hence inherit our RIP-based performance
guarantees, but they can also solve more general problems of potentia interest to radar
practitioners. First, we will consider the algorithm developed in [ 75] which addresses the
modified cost function

% = argmin Aq [|x[15+ A2 [IDIx|[1§ + | Ax — yII3 (5.25)
X

where D is an approximation of the 2-D gradient of the magnitude image whose voxel
values are encoded in |X]|.

This second term, for p = 1, isthetotal variation norm of the magnitude image. The
TV norm is the £; norm of the gradient. In essence, this norm penalizes rapid variation
and tends to produce smooth images. As Cetin and Karl point out, this term can help to
eliminate speckle and promote sharp edgesin SAR imagery. Indeed, TV minimization has
seen broad application in the radar, CS, and image processing communities [76]. Notice
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in (5.25) that the TV norm of the magnitude of the image rather than the complex-valued
reflectivity, is penalized. This choice is made to allow rapid phase variations.?* Notice
also that the £, norm is used with 0 < p < 2. Aswe have mentioned, selecting p < 1
can improve performance but yields a nonconvex problem. Cetin and Karl replace the ¢,
termsin the cost function with differentiabl e approximations, derive an approximation for
the Hessian of the cost function, and implement a quasi-Newton method.

Kragh [77] developed a closely related algorithm (for the case with 1, = 0) along
with additional convergence guarantees leveraging ideas from majorization minimization
(MM).% For the case with no TV penalty, both algorithms®® end up with an iteration of
the form

i1 = [AFA+h&] T Ay (5.26)

whereh(-) isafunctionbased onthe norm choice p. Thematrix inverse can beimplemented
with preconditioned conjugate gradientsto obtain afast algorithm. Noticethat A™ A often
represents a convolution that can be calculated using fast Fourier transforms (FFTs). A
more detailed discussion of these algorithms and references to various extensions to radar
problems of interest, including nonisotropic scattering, can be found in [17].

These algorithms do not begin to cover the plethora of existing solvers. Nonetheless,
these examples have proven useful in radar applications. The next section will consider
thresholding agorithms for SR. As we shall see, these algorithms trade generality for
faster computation while still providing solutions to QP, .

5.3.2 Thresholding Algorithms

Thealgorithmspresented at theend of Section5.3.1.2 both requireinversion of apotentially
massive matrix at each iteration. While fast methods for computing this inverse exist, we
arenow going to consider aclass of algorithmsthat avoidsthisnecessity. These algorithms
will be variations on the iteration

R = {gK — AP (ARK — )} (5.27)

where n{-} is a thresholding function. The motivation for considering an agorithm of
this form becomes apparent if we examine the cost function for QP,. First, for ease of
discussion let us define two functions that represent the two terms in this cost function.
Adopting the notation used in [79]

f(x) = [|AX — ylI3
g(x) = A [IX]l1

24| magine, for example, the phase response of aflat plate to see intuitively why penalizing variation in
the phase would be problematic.

25MM relies on replacing the cost function of interest with a surrogate function that is strictly greater
(hence mgjorization) but easier to minimize (hence minimization). The ideais to majorize the function
near the current estimate, minimize the resulting approximation, and repeat. The perhaps more famil-
iar expectation maximization algorithm is actually a specia case of MM, as detailed in an excellent
tutorial [78].

2 particular step size must be selected to obtain this form for the algorithm in [75]. It is also worth
emphasizing that this version can handle the more general problem with A # 0. The resulting algorithm
simply uses a more complicated expression for the function h.
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Thefunction f (-) isdifferentiable, and we can easily obtain its gradient as
Vix) =2A" (Ax —y)

Notice that this term appearsin our generic thresholding iteration (5.27). Indeed, we can
rewrite thisiteration as

R = {R* — uv £ (RY) (5.28)

Now, the nature of the thresholding algorithms becomes obvious. At each iteration, we
take a step of size u?’ in the negative gradient direction of the ¢, portion of our cost
function. We then apply a thresholding operation that tweaks these steps to account for
the £, portion of the cost function encoded in g(-).

5.3.2.1 Soft Thresholding

Wewill consider two choicesfor thethreshol ding function that yield different performance
characteristics and guarantees. The first is the soft thresholding operation defined for a

scalar as
<|X| —oz) ,
X, if|x]|>a
ns(X, @) = { X (5.29)

0, otherwise

In other words, the amplitude of the scalar is reduced by « or set to zero if the amplitude
is aready o or less. Notice that we can apply this operation to real or complex data.
When acting on a vector, the function ns(-, ) operates component-wise. The first soft
threshold algorithm we will consider is the iterative shrinkage-thresholding algorithm
(ISTA), which has been developed and studied by several authors. We will follow the
treatment provided in [79] which demonstrates that ISTA isaMM agorithm. To seethis,
consider the majorization?® of f (x) + g(x) at the point b given by

Qp(x, b) = T (b)+ Re{(x — b, Vi (b))} + g IX=bl2+gx) (530

where P istwice the maximum eigenvalue of A™ A. Thisvalueisthe smallest Lipschitz
constant of f (x), which can be easily determined using the power iteration [20] without
explicit access to this potentially enormous matrix.

We can use this function to majorize our cost function at b = X¥. The next step in
defining an MM agorithm is to minimize this majorization. We can compute the unique
minimizer of this function for afixed b as

argmin Qp(x, b) = argmin Re{(x — b, Vf(b))} + g Ix — blI? + g(x)

= argmin g(x)+g(x—b,x—b)+g <<x—b, Vf(b)>+<Vf(b),x—b>)

P P
P<Vf(b) Vf(b)>

2\ P P

2IThe step size u can be chosen using a variety of adaptive methods.
28t isverified in [79, Lemma2.1] that Qp (X, b) majorizes f(x) + g(x) at b.
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2

1
X — (b—BVf(b)>

2 H
X — (b—BA (Ab— y))

=]

= argmin g(x) + )
X 2

2

P
= argmin A ||x||; + ) (5.31)
X

2
= s <b— %AH(Ab— y), %) (5.32)

Notice that the term in parenthesis in (5.31) is a constant for fixed b. Thus, the mini-
mization in (5.31) can be carried out component-wise, yielding a simple analytical solu-
tion that corresponds to the application of the soft threshold. Combining these ideas, we
obtain ISTA

2 A
"k+l= "k__AH A"k_ -~
REH = g (x S At AR~ ) P)

Unfortunately, ISTA has been shown to enjoy only asublinear, that is proportional to
1/k, rate of convergence [79, Theorem 3.1]. Beck and Teboulle [79] propose a modified
fast ISTA (FISTA) that uses avery simple modification to obtain a quadratic convergence
rate. FISTA requires nearly identical computational cost, particularly for a large-scale
problem, and is given by

Z2=%%=0
tt=1
2 A
ok k H K
X = 22— —=A"(AZ" - vy, —
775( ) ( Y) P)
(el _ 14 /14 4(t%)2
N 2
k+1 _ gk Lok ok-1
7T =X"4+ P, (X" =X""9)

Intuitively, this algorithm uses knowledge of the previous two iterates to take faster steps
toward the global minimum. No additional applications of A and A" are required com-
pared with |STA, and thus the computational cost of this modification is negligiblefor the
large-scale problems of interest.

ISTA and FISTA?® converge to true solutions of QP at sublinear and quadratic con-
vergence rates, respectively. Thus, these algorithms inherit the RIP-based performance
guarantees aready proven for minimization of this cost function, for example (5.15). In-
deed, these algorithms are close cousins of the Kragh algorithm described in the previous
section. The key difference is that the derivation is restricted to the p = 1 norm case to
take advantage of asimple analytical result for the minimization step of the algorithm.

Asafinal noteonthesealgorithms, in[61] theauthorsleverage the same previouswork
that inspired FISTA to derive the NESTA agorithm. This approach provides extremely
fast computation, particularly when the forward operator A enjoys certain properties. In
addition, the provided algorithm can solve more general problems, including minimization

29WWe should mention that the FISTA algorithm given in [79] is more general than the result provided
here, which has been specialized for our problem of interest.
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of the TV norm and nondiagonal weighting onthe ¢, portion of the cost function considered
here. Another strong contribution of [61] isan extensive numerical comparison of several
leading algorithms, including examples not considered in this chapter, on a series of test
problems.

5.3.2.2 Hard Thresholding

We now turn our attention toward hard thresholding algorithms. Iterative Hard Thresh-
olding (IHT) appliesthe operator nn{x, s} after each gradient step. Thishard thresholding
function leaves the s coefficients of x with the largest magnitudes® unchanged and sets
al othersto zero. In particular, the IHT algorithm [80] is given by

R = [R5 — uV £(R9), s} (5.33)

By construction every iteration produces a solution such that [|X*||, < s. Thus, if the
algorithm parameter is set too low, we are guaranteed a priori to never find the correct
solution. Naturally, this choice is analogous to the choice of A, 7, or o when using the ¢,
norm-based algorithms.

A RIP-based performance guaranteefor IHT is provided in [80,Theorem 4]. After we
select the sparsity parameter s for IHT, then provided that Ras(A) < 1/4/32 ~ 0.1768,
we obtain the error bound

thrue _ )A(HZ <7 [thrue _ thrueH2 + 5—1/2 thrue _ thrueH1 + O'] (534)

Thisguaranteeisvery similar totheresultfor BPDN. However, the RIPrequirementismore
stringent, requiring acondition on signals of length 3s instead of 2s, and theresulting error
bound is not astight. While we do obtain aRIP condition of asimilar form, it isimportant
to note that these RIP bounds are sufficient but not necessary conditions. In addition, they
are worst-case results, which may belie the performance observed for typical signals. The
authors make this point at some length in [80] and provide simulations demonstrating
that IHT exhibits inferior performance to BPDN and other ¢, approaches when the RIP
conditionisviolated. Thus, thissimplified algorithm does come at some cost. Nonethel ess,
for sufficiently sparsesignals, IHT performs beautifully and with excellent computational
efficiency. Indeed, the need to store only a small humber of nonzero coefficients at each
iteration is particularly convenient for very large-scale problems. Recent work [81] has
developed variations of IHT leveraging ideas from soft-thresholding schemes like FISTA
with very promising numerical performance and some analytical performance guarantees.

5.3.3 Iterative Reweighting Schemes

Another class of reconstruction algorithms are iterative reweighting schemes. These tech-
niques have along history, for example [82,83], and have seen recent application to radar
problems, for example [12,84]. The basic idea is to solve a sequence of optimization
problems with a weighting matrix applied to the unknown vector. Typically, this weight-
ing matrix is obtained from the previous iteration. These algorithms can typicaly be
derived using an MM framework, athough this perspective is perhaps less intuitive, and
in some cases end up with iterative schemes that are very similar to the Kragh and Cetin

30Equal-amplitude ties can be broken lexicographically.
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approaches discussed in Section 5.3.1.2. An analysis and discussion of one of these iter-
ative reweighted least squares (IRLS) approachesin terms of RIPis provided in [85].

One class of IRLS algorithms solves a sequence of ¢,-regularized problems with a
weighting matrix derived from the previous iterate. An example is the focal underdeter-
mined system solver (FOCUSS) agorithm [86], which predates the work on CS. Here,
we provide an example of an algorithm that solves a sequence of reweighted ¢, problems
as proposed in [87]. In particular, the noisy-data version of the algorithm is given as

K41 = argmin ||W¥x||, subjectto |AX — yl, <o
X
K1
1,1 |)’Z:(|+8

In other words, W is a diagonal matrix with elements equal to the inverses of the am-
plitudes of the elements of the previous iterate®’. The next estimate of x is obtained by
solving a new BP, problem with this weighting matrix applied to x. As a coefficient
becomes small, the weight applied to it will become very large, driving the coefficient
toward zero. In this way, the reweighting scheme promotes sparse solutions. Indeed, this
approach can reconstruct sparse sol utionswith fewer measurementsthan astraightforward
BP, approach. Unfortunately, the price for this performance improvement is the need to
solve a sequence of ¢; optimization problems. These subproblems can be solved with one
of the techniques we have already discussed.

This algorithm can be derived from a MM framework where the cost function to
be minimized is the sum of the logarithms of the absolute values of the coefficients
of x [87]. This function's unit ball is more similar to the ¢, norm than that of the ¢;
norm, intuitively explaining the improved performance. This approach can be extended
to nonconvex minimization with p < 1; see[88].

5.3.4 Greedy Methods

Wenow turn our attention to asomewhat different classof algorithmsfor sparsereconstruc-
tion. Greedy algorithms are principally motivated by computational efficiency, although
they often exhibit somewhat inferior performance to the approaches aready considered.
They do not arise from optimizing an ¢ ,-penalized cost function but instead rely on iter-
ative attempts to identify the support of the unknown vector x'"“¢. Notice that if we know
apriori which elements of x'"“® are nonzero, indexed by the set I, then we can solve the
much easier problem

y=Arxi® e (5.35)

where subscripting by T" indicates that we have thrown away the entries or columns not
includedinT. Since x'"“® is sparse, the matrix A now has many more rowsthan columns.
Put simply, this problem is overdetermined and can be solved easily using least squares.
In particular, we can estimate x'"' as*

R = (ARAR) HAHY (5.36)

31The ¢ factor isincluded to ensure finite weights.
32Naturally we set entries outside the set ™ to zero.
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One can argue that this so-called oracle solution is the best that we can hope to do
given knowledge of I" and no other information, see, for example [1]. Given additional
knowledge about e or x'""¢, we might be able to improve this estimate, but the basic idea
remains that knowledge of the support set greatly simplifies our problem.

Greedy algorithms attempt to capitalize on thisnotion by identifying the support set of
x'"“®in an iterative manner. Thesetechniques are far older than CS, tracing back to at |east
an iterative deconvolution algorithm known as CLEAN [89], which is equivalent to the
more-recent Matching Pursuits(MP) algorithm[90]. Here, wewill describethe Orthogonal
Matching Pursuits (OMP) agorithm [91] as a typical example of greedy methods. As
already suggested, OM P computes a series of estimates of the support set denoted by T'y.

OMP is based on the idea of viewing A as a dictionary whose columns represent
potential basis elements that can be used to represent the measured vector y. At each
iteration, the residual error term y — AXX is backprojected or multiplied by A™ to obtain
thesignal g = A" (y — A%¥). Thelargest peak in g¥ isidentified and the corresponding
atom is added to the index set, that isI'y,1 = 'k U argmax; |q}‘|. The new estimate of the
signal isthen computed as X** = (Al Ar,,) _lAﬁkH y.

Basically, at each iteration OMP adds to the dictionary the atom that can explain the
largest fraction of the energy still unaccounted for in the reconstruction of X. Figure 5-7
provides an example that may clarify this process. The example involves a single radar
pulse with 500 MHz of bandwidth used to reconstruct a range profile containing three
point targets. The initial set I'g is empty. The top left pane shows the plot of AHy. The
peak of thissignal is selected asthefirst estimate of the signal x'™“¢, and the corresponding
amplitude is computed. The resulting estimate is shown on the top right of the figure.
Notice that the estimate of the amplitude is slightly off from the true value shown with a
cross. At the next iteration, the dominant central peak iseliminated from the backprojected
error, and the algorithm correctly identifies the leftmost target. Notice in the middlie right
pane that the amplitude estimate for the middle target is now correct. OMP reestimates all
of the amplitudes at each iteration, increasing the computational cost but improving the
results compared with MP. The final iteration identifies the third target correctly. Notice
that the third target was smaller than some of the spurious peaks in the top left range
profile, but OMP still exactly reconstructs it after only three iterations.

For very sparsesignalswith desirable A matrices, OM P performswell and requiresless
computation than many other methods. Unfortunately, asdiscussedindetail in[91,92], the
performance guarantees for this algorithm are not as general as the RIP-based guarantees
for algorithms like IHT or BPDN. Indeed, the guarantees lack uniformity and only hold
in general in a probabilistic setting. Two issues with the OMP agorithm are perhaps
responsible for these limitations. The first isthat the algorithm only selects a single atom
at each iteration. The second, and perhaps more crucial limitation, is that the algorithm
cannot correct mistakesin the support selection. Onceanatomisintheset I, it staysthere.

Two virtually identical agorithms—compressive sampling matching pursuits
(CoSaMP) [39] and subspace pursuit (SP) [93]—were developed to overcome these lim-
itations. They select atomsin alarge group at each iteration and include a mechanism for
removing atoms from the dictionary when they are found to be redundant.®* We can then

33These algorithms are closely related to hard-thresholding approaches. Indeed, many of the SR algo-
rithms being developed blur the lines between the classes of algorithms we have used throughout our
discussion.
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FIGURE 5-7 = Anexample application of OMP to a simple radar problem. The signal of interest
is a set of three-point scatterers. The collected data represent the returns from a single pulse
with 500 MHz of bandwidth. Each row depicts a single iteration of the OMP algorithm. The
panes on the left depict the backprojected residual AH(y — AX) at each iteration. The right
panes depict the signal estimate % with a curve and the true signal x'“¢ with crosses.

obtain a RIP-based guarantee of the same form as others that we have seen. In particular,
if R4s(A) < 0.1[39], then

thrue _ 5~(H2 <20 [thrue . thrueH2 + 571/2 thrue _ thrueH1 4 (7] (5.37)

In addition, CoSaMP will converge, assuming exact arithmetic, in at most 6(s + 1) itera-
tions. This guaranteed convergence and numerical simplicity comeat aprice. In particular
the reguirement on the RIC is more stringent and the error bound islooser. A comparison
of IHT, CoSaMP, and BP for noise-free signals can befound in [94]. A detailed numerical
investigation along with parameter tuning strategies comparing CoSaMP and SPto itera-
tive thresholding algorithms can be found in [95]. Aswe shall see one advantage of these
greedy approaches is that they can be easily extended to cases where signal knowledge
beyond simple sparsity is available.

5.3.5 Bayesian Approaches

We have already mentioned theinterpretation of QP, asthe MAP estimate under aLapla-
cian prior. Several effortshave been madeto apply other priorsto the vector x'"*® to achieve
sparse solutions. Many of these approaches seek minimum mean sguare error (MM SE)
estimates of the signal.

5.3.5.1 Averaging Solutions

The first example aong these lines is a randomized version of OMP described in [96].
Instead of always selecting the atom having the largest correlation with the remain-
ing residual, this algorithm selects the next atom at random with a distribution whose
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probability mass values are proportional to the magnitudes of the backprojected residual.
The algorithm is repeated several times, yielding a different solution at each run, and the
solutions are then averaged. This approach is shown to produce a better mean square error
(MSE) than straightforward OMP.

A little reflection reveal s that this approach is attempting to approximate the MM SE
estimate. The true MM SE estimate would be a weighted sum of all possible reconstruc-
tionsscaled by their posterior probabilities. Thisalgorithm avoidsthe calculation of these
posterior probabilities by seeking only a few high probability solutions and assuming
that they are of roughly equal likelihood. In [97], the authors pursue a somewhat more
refined version of thisidea. In particular, they adopt a prior on x'"“® which consists of a
Bernoulli indicator variable that determines whether each coefficient is nonzero. When a
coefficient is nonzero, its amplitude is assumed to be Gaussian. This Bernoulli-Gaussian
prior allowsthe authors to derive an approximation to the MM SE estimate where multiple
candidate sol utions are obtained through arepetitive greedy tree search and then averaged
together with approximationsto their posterior weights. The resulting algorithm compares
favorably to avariety of existing CS algorithms and generalizes the resultsin [96]. In ad-
dition, it can be combined with ageneralized EM schemeto estimate the hyper parameters
associated with the Bernoulli and Gaussian distributions.

5.3.5.2 Graphical Models

A recent trend in CSisto examine algorithms based on belief propagation [98,99]. Belief
propagation involves computing sol utions based on message passing in graphical models
that represent the relationships between priors and measurement variables; see [100] for
an excellent overview. An overview of the application of these methods to CS problems
can be found in [101].

In reality, as aready briefly mentioned, RIP-based performance guarantees are often
fairly conservative and always sufficient, rather than necessary, conditions. Indeed, typical
algorithm performance will often exceed these guarantees even when the RIP property is
not satisfied. Asaresult, many references report algorithm performance in terms of phase
transition plots derived from Monte Carlo simulations. As briefly mentioned earlier, these
plots show the performance of an algorithm for large values of N intermsof § and p. The
origin of thenameliesin thefact that for afixed value of § the performance of an algorithm
will often exhibit avery sharp transition as p isincreased. For example when we fix § in
the noise-free setting, BP will recover signals with nearly 100% probability up to some
critical value of p, asshownin Figure 5-8. For larger p values, the reconstruction will fail
with probability 1[102]. Inthe noisy setting, similar plots can be made depicting isocurves
of constant MSE or other quantities. See [103] for a discussion of phase transitions with
noisy data.

Devel opment of thesealgorithmsisongoing. Wewill briefly mention one recent exam-
ple, approximate message passing (AMP) [66,104—106]. It turns out that £, optimization
obtains a phase transition behavior for the noise-free case that is not matched by iterative
thresholding agorithms.3* AMP adds a small correction term to the ISTA iteration that

34Recall that ISTA and FISTA provide solutionsto BPDN provided that o > 0. Since | STA/FISTA solve
an unconstrained problem, they cannot solve the equality-constrained case reliably.
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FIGURE 5-8 = The figure depicts the probability of exactly reconstructing an unknown signal
from noise-free measurements using BP as a function of § = M/N and p = s/M. The simulation
was done for the small value N = 256 and only 100 Monte Carlo runs to emphasize that this
behavior manifests at relatively short signal sizes. Notice the sharp transition from almost
certain success to almost certain failure. The black line is the theoretical prediction. See [102]
for similar plots and extensive discussion. The reconstructions were computed using the CVX
software package [22].

restores the phase transition performance of BP. The algorithm is termed approximate
message passing because it is derived from a belief propagation approach.

Themost interesting aspect of thiswork isthat belief propagation techniquesnormally
rely on sparsely connected graphs to converge. AMP instead leverages the densely con-
nected graph characteristic of a CS problem to justify approximating the messages passed
on the graph as Gaussian. A series of simplifications then yields the AMP agorithm,
which is nearly equivalent to ISTA except for the inclusion of an additional correction
term within each iteration. The additional term has a history in the statistical physics
community, as discussed in the references; see [107] for adetailed discussion. There has
also been work on applying these techniques in anoisy setting, for example [103]. AMP
has a so been generalized to handle very general signal and measurement modelswith the
Generalized AMP (GAMP) [108]. The graphical models approach to CS problems allows
the incorporation of rich prior information including, for example, structured sparsity.

5.3.6 Structured Sparsity

In our discussions up to this point, we have focused on reconstructing signals x"“® that
are gparse (compressible) in some known dictionary A. One of the most promising re-
search directionsin CSisto incorporate additional information about the signal to further
regularize the problem, providing additional robustness to noise and permitting accurate
reconstructions with ever fewer measurements. Intuitively, one might expect that pos-
sessing additional knowledge about the permissible sparse signals might simplify signa
reconstruction. An excellent analogy can be madeto error-correcting codes[109], wherein
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only a subset of vectors that are well separated is used for communication. This separa-
tion allows the symbols to be accurately distinguished by the receiver. CS techniques that
leverage structured sparsity operate on a similar principle.

Before delving into more elaborate approaches, we mention that the simplest prior
knowledge that we might exploit would be differing prior probabilities on which coef-
ficients of x"'® are nonzero. This information could easily be available in various radar
scenarios and other problems. For example, in a surveillance application looking for ve-
hicles on a road network, it might make sense to drastically reduce the probability of
target presence at large distances from roadways. This approach can be implemented by
replacing A with a diagonal weighting matrix when solving QP, . This modification can
be incorporated into any CS algorithm; see problem 9. Notice that this schemeis closely
related to the iterative reweighting reconstruction algorithms. Indeed, the authorsin [86]
suggest incorporating prior information into the reconstruction weights. As another ex-
ample, in [110] the authors determine optimal weighting schemes for a signal with two
groups of coefficients that share different prior probabilities.

However, we can aso incorporate information about the structure of the sparsity
pattern rather than simply assigning weights to specific elements. An excellent intuitive
example of thisideais found in [111]. The authors seek to detect changes between im-
ages. Naturally, these change detection images will be sparse. However, they will also be
clumpy, in that the nonzero coefficients will tend to occur in tightly clustered groups. The
authors use a Markov random field as a prior on x'"® to promote clustering of nonzero
coefficients. Motivated by the Markov model, they propose an intuitive greedy algorithm
known as LaMP. The algorithm is reminiscent of CoSaMP. The primary differenceisthat
rather than simply pruning to enforce the desired sparsity after computing the error term,
LaMP uses the known structure of the sparsity pattern to determine the most likely sup-
port set for the nonzero coefficients. LaM P performs significantly better than CoSaMP on
signals that satisfy this structural assumption.

Baraniuk et a. [112] extend the RIP framework to deal with structured sparse signals
and provide RIP-like performance guarantees for modified versions of CoSaMP and IHT.
Like the LaMP agorithm, the key to the improved performance is the exploitation of
additional signal structure. For some classes of structured sparsity, the algorithmisableto
reconstruct sparse signals from order s measurements, as opposed to the order slog(N/s)
required by algorithmsthat focus on simple sparsity. In particular, their approach is devel -
oped for signals characterized by wavel et trees and block sparsity. See[113] for additional
discussion of these ideas with connections to graphical models. Block sparsity is also ex-
ploited in [114]. One can also consider the joint sparsity of multiple signalsasin [115].
In [116], the authors address extensions of the RIP condition to address block-sparse
signals and develop recovery algorithms for them.

On afinal note, [117] combines belief-propagation-based CS agorithms with ideas
from turbo equalization [118] to devel op an innovative framework for incorporating struc-
tured sparsity information. The algorithm alternates between two decoding blocks. The
first block exploits the structure of the measurements, while the second block leverages
the known structure of the sparsity patterns. By exchanging soft decisions, that is prob-
abilities that individual elements of x'"“® are nonzero, these two blocks cooperatively
identify the support of the true signal. The paper demonstrates excellent results for sim-
ulations using data derived from a simple Markov chain model. This approach appears
promising for incorporating structural and prior information into SR and related inference
tasks.
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As an aside, SR can be extended beyond the case of a sparse vector or set of jointly
sparse vectors. One intriguing example is the case of reconstructing low-rank matrices
from sparse sampling of their entries, for example [119], as inspired by the so-called
Netflix problem.3 In arelated paper [120], the authors reconstruct a matrix as a sum of
alow rank and an entry-wise sparse matrix. This decomposition can remove impulsive
noise and was very effective for various image processing applications. In [121], a fast
algorithmis proposed that can handl e this decomposition task in the presence of noise and
missing data. As afina example, [122] estimates the covariance matrix of a data set by
assuming that the matrix’s eigen-decomposition can be represented as product of a small
number of Givens rotations.

5.3.7 Matrix Uncertainty and Calibration

Perfect knowledge of the forward operator A cannot reasonably be expected in many
radar applications, where A may include assumptions about calibration, discretization,
and other signal modeling issues. While additive noise can account for some of these
effects, the impact of matrix uncertainty should be given specific attention. Specifically,
we are interested in problems of the form

y=(A+E)x"™ +e (5.38)

where the multiplicative noise E is unknown. Notice that this additional error term can
account for a wide range of signa modeling issues, including calibration, grid error,3
autofocus, sensor placement, and manifold errors. Since the system measurement model
islinear, itisperhapsunsurprising that arel atively straight forward extensiontotheexisting
RIPtheory can offer limited performance guaranteesin the presence of multiplicative error
E [126]. A simple argument in this direction can be made by bounding E and absorbing
its effect into the additive noise e.

However, as observed in [124], basis mismatch and grid errors can lead to significant
performance loss. Thus, algorithms that can compensate for matrix uncertainty directly
have been developed. In £, regularized reconstruction, the approach of total |east squares
is often employed to cope with matrix uncertainty. In [125], the authors extend this idea
to sparse regul arization with an algorithm known as sparsity-cognizant total least squares
(STLS). They provide alow-complexity algorithm that can also cope with some forms of
parametric matrix uncertainty. In [127], the authors propose an algorithm closely related
to the DS that offers promising performancein Monte Carlo trials. Our own work in [128]
leverages GAMP to address matrix uncertainty, including a parametric approach with
closetiesto the work in [125]. Particularly as CSis applied to a wider range of practical

35Netflix created a competition for the development of agorithms for matrix completion in support of
its efforts to predict customer preferences from a small sample of movie ratings.

36CS uses a discretized linear model to circumvent the model order selection problems in traditional
nonlinear parametric approaches, but the potential for grid error is a consequence of the underlying
discretization. Specifically, in parameter estimation, the columns of A represent the system response to
variousvaluesof aparameter sampled on somediscretegrid, for example pixelsinanimageor frequencies
of sinusoids. When the true parameter values lie between these samples, the true signal is not perfectly
represented in the dictionary; indeed, the representation may not even be sparse. See [37,123-125] for
discussions of thistopic.
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problems, algorithms for matrix uncertainty and closely related problems in dictionary
learning [129] will continue to multiply.

5.3.8 Final Thoughts

We have considered a wide range of algorithms for solving SR problems and a variety of
associated CS performance guarantees. The selection of an algorithm for a given problem
will be controlled by avariety of factorsincluding at | east the presence or absence of noise,
the specific desired penalty terms (e.g., €1, £p, TV), prior knowledge on the noise power
and sparsity level, scale of the problem, explicit accessto A, availability of fast operators
for A and AM, desired accuracy, and the required computational speed. Each algorithm
offers an operating point in this vast trade space, and it has been our goa to illustrate a
few examples of the possibilities. Additional algorithms, including approachestailored to
specific problems, abound in the burgeoning CS literature. As asingle example, avariety
of algorithms based on the Bregman distance offer exceptional performance on a wide
range of problems[130,131].

Many of the performance guarantees in the literature are only sufficient conditions.
Thereareat |east three-potential pitfallsto relying on these guarantees. First, they are often
conservative, stemming from the required assumptionsin the proofs and also from the fact
that the analysis is often for a worst-case scenario. Typical signals may exhibit much
better performance in practice. The reader is encouraged to conduct simulations, perhaps
togenerateaphasetransition plot, to eval uate al gorithm performance on aspecific problem.
See [42] for adiscussion of attempts to compute sharp performance bounds for some CS
problems. Second, ashighlighted in our discussion on structured sparsity, theincorporation
of additional prior and structural information can allow reconstruction performance that
significantly exceeds the predictions of the RIP-style bounds. Finally, many SR tasks of
interest in radar involve reconstructing asignal x'™“© that represents an oversampling of a
parameter space, such as a dense sampling of frequency when attempting to reconstruct
sinusoids in noise. Both empirical [37] and some analytical [38] evidence suggests that
SR agorithms can yield meaningful resultsin these scenarios despite the complete failure
of these A operatorsto satisfy the RIP and mutual coherence requirements associated with
CS performance guarantees.

| | SAMPLE RADAR APPLICATIONS

An abundance of radar applications can be found in which SR and CS may prove to
be useful; we mention a small portion of the important work in this area and refer the
reader to the Compressive Radar section of the Rice University CS website [132] for the
latest research. Data link issues are common in airborne SAR applications; specifically,
bandwidth constraints often require significant compression of the acquired phase history
before data can be transmitted to a ground processing station for imaging and target
detection. Many of the proposed techniques follow the sense-then-compress paradigm,
such as Gurbuz et a. [133], who provide a scheme for random undersampling in range-
frequency for ground-penetrating radar (GPR) imaging, the work of Bhattacharya et al.
[134], which provides a range-frequency and Doppler-frequency undersampling scheme,
and Novak's approach [135], which transforms al of the data into the biorthogonal 4.4
wavelet domain before quantizing and randomly undersampling the resulting wavelet
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coefficients.3” On the other hand, Patel et al. [136] compare various randomized slow-
time undersampling schemes, which advantageously enable the SAR to reduce its overall
duty cycle by skipping pulses.

Another potential problemisin the direct measurement of wideband signals; when the
narrowband approximation isinsufficient, standard baseband processing cannot be used to
ease analog-to-digital conversion (ADC); thus many state-of-the-art radars are beginning
to push the limits of ADC hardware. Baraniuk [137] and Romberg [138] suggest the
possibility of randomly undersampling each pulse in fast time, thereby reducing the load
on the ADC with the assumption that each pulse is compressible in a known basis such
asthe point-scatterer dictionary. For an example paper considering analog, that is, infinite
dimensiona signals, from a CS perspective, see[139].

A substantial percentage of radar problems are concerned with obtaining better per-
formance (in terms of, for example, target detections, image resolution) with the same
data; that is, the waveforms and acquisition strategy have already been chosen and thereis
no need to throw away precious data, but we still would like to exploit the underlying data
sparsity for agiven problem. An example of such work isthe PhD research of Cetin [75],
which employed various non quadratically constrained reconstructions schemes (TV, £,
etc.) in order to improve SAR image quality with data collected from DARPA’'s Moving
and Stationary Target Acquisition and Recognition (MSTAR) program [140]. Many of
the application-inspired SR techniques exploit structured sparsity. Significant examples
include the work of Varshney et al. [141], which develops a greedy approach for recon-
structing radar signals composed of anisotropic scattering centers, Cevher et al. [113], who
employ quadtree graphical models for sparse reconstruction of SAR images, as well as
Duarteand Baraniuk [59], who have devel oped MU S| C-based techni questhat significantly
outperform standard SR algorithms for the problem of estimating sinusoids in noise.

It should be noted that one often desires a measure of confidencein agivenimage. As
discussed in Section 5.3.5, the Bayesian framework enables usto estimate posterior prob-
abilitiesfor reconstructed images. Algorithmsfor obtaining radar images with confidence
labels include, for example, the fast Bayesian matching pursuits (FBMP) approach by
Schniter et a. [97] and Bayesian compressive sensing (BCS) algorithm by Ji et al. [142].

Here we illustrate five different radar applications in which SR can improve image
quality, the fifth of which is an application of CS. The first is a moving-target imaging
example in which the target is undergoing random motion that is representative of the
relative motion between a target moving down a dirt road and a SAR antenna flying
aong a planned linear trgjectory. The second example demonstrates the use of SR in
the case of a civilian vehicle; in order to efficiently model the data, dictionary elements
with an anisotropic angular response are required. The third example shows how the
conglomeration of physically meaningful regularization terms (¢4, £2, and TV) can obtain
excellent imaging results for imaging underground scenes. The last imaging example
shows how SR can be utilized in the nonlinear setting, that is, without invoking either
of the Born or Rytov approximations, by solving the far-field relation used in the linear
sampling method (L SM). The final example demonstrates how the transmitted waveform
can be designed to make the scattered data more amenable to sparse reconstruction in the
range-Doppler plane.

37|t is perhaps useful to note that [135] gauged the image-compression performance by the quality of
coherent change detection (CCD) imagery.



5.4 | Sample Radar Applications

We again emphasize that radar applications of CS are becoming increasingly com-
mon in the literature. The reader is encouraged to consult the literature for additional
applications. One area of particular potential interest is the use of CS to estimate time
varying signals, for example [143-145]. By leveraging temporal characteristics of a sig-
nal, these methods can reduce the number of required measurements at any given time
instant for reconstructing the compl ete time-varying signal. These ideas can be applied to
radar problemsin tracking and state estimation.

5.4.1 Moving Target Imaging

We will use the AFRL’s publicly released Backhoe [146] data set to illustrate the ability
of SR to combat the ill-posed nature of 3-D reconstruction from sparse, narrow-angle
data representative of phase history observed from ground moving targets. This data set
is available upon request from the AFRL Virtual Distributed Laboratory (VDL) website
[147]. The data include monostatic returns from a construction backhoe in free space
(exoclutter). The subset of range-compressed data we consider has a center frequency
of 9.6 GHz, 640 MHz of range-frequency bandwidth, and 64 range bins per pulse. The
target is assumed to be moving slow enough for us to neglect within-pulse target motion
and invoke the start—stop approximation. Furthermore, we assume that the motion of the
target has already been determined through an autof ocus routine capabl e of reconstructing
arbitrary target motion [148,149] to concentrate on the SR aspects of the problem. The
relative target—antenna motion gives rise to the smoothly varying path of illumination
directions shown in Figure 5-9 (a). The standard backprojection image A"y is shown
against the target’s CAD model in Figure 5-9 (b).

The scattering phenomenology of man-made targets at microwave frequencies makes
the application of SR techniques, in the context of point-scatterer reflectivity values, a
sensible approach. Specifically, therelatively large size of radar targets compared with the
wavelengthsinvolved allows the data to be parsimoniously represented by asmall number
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FIGURE 5-9 = (a) A possible nonquadratic flight path representative of one induced by a
ground-moving target. (b) The dB-scaled initial image A" y formed from the limited backhoe
data (view is from the nominal radar boresight). The backprojection operator A" was
calculated with a NUFFT.
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of spatialy distributed point-like scatterers [150]. Parametric models based on Keller's
geometric theory of diffraction (GTD) have been shown to give very accurate sparse
representations of radar data [151]. These GTD-based models characterize the scattered
electric field E as a discrete sum of M scattering centers. In the far field, the predicted
monostatic response is of the form

2ik(Iitho—tan)

N
ER) =) Ar(jk/ko)™ RO

n=1

(5.39)

wherek; isthe center wavenumber, t = t/||t|» isthedirection of theplanewave, g, € R3,
and each an € Q is a shape-specific parameter for a canonical target. Formulas for the
complex amplitude A, of several different canonical targets in the bistatic setting are
given in [152,153], and examples of sparse regularization with these more-general GTD-
based parametric modelscan befound in[141,154]. In thefollowing example we use point
scatterersto populatethe matrix A, which correspondsto setting the geometry-specific pa-
rameter « = 0in(5.39). Figure 5-10 comparesthe backproj ection image (Ieft) totheimage
obtained by using the FISTA algorithm to solve QP, withan M x N dictionary A of equis-
paced point scatterers(right). TheimageisN = 128% = 2097152 pixels, and thetotal num-
ber of measurements is M = (number of frequencies per pulse) (number of pulses) =
(64)(65625) = 3.6 x 10°. Thedictionary A has amutual coherence of 0.8142.

We mention two convenient facts regarding efficient computation of the operations
APy, Ax, and A" Ax. First, in the case of far-field point scatterers, the columns of A are
of theform _

Amn oc géman (5.40)

where we have used the notation &, = 2kintm and have neglected the constant amplitude
termsin the denominator of (5.39). From (5.40) itisclear that A isanirregularly sampled
Fourier matrix because although the image locations g, may sometimes be chosen to be
equispaced, the“k-space” datalocations &, in general are nonuniform. Thus, theforward-
and backward-projection operations Ax and AH y can be efficiently computed vianonuni-
form FFT (NUFFT) [155] or unequispaced FFT (USFFT) [156] methods. An overview
of fast Fourier methods in the planar-wavefront SAR setting is given by Andersson et a.
[157], and the spherical-wavefront case is presented in Demanet et al. [158]. Second, in
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FIGURE 5-10 = (a) Backprojection and (b) QP, images, color scale is in dB.
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the case of arectilinear imaging grid, the operator A™ A is acirculant matrix, meaning

(AH A) mn o eigm'(Qm*CIn)
=o(m—n) (5.41)

Circulant matrices are diagonalizable by FFT matrices[20,159]. In our case AH Ax repre-
sents aconvol ution of theimage x with the PSF in the spatial domain. The product AH Ax
can be implemented with FFTs by using the Fourier convolution identity. Specifically, if
we write the PSF in the frequency domain as adiagonal matrix X ps¢ and the FFT matrix
that transforms data from the spatial domain to the spatial-frequency domain as F, then
AR Ax = FH (X4 Fx). In this particular example, exploiting the circulant structure of
A" A within each FISTA iteration amounts to a speed-up by about a factor of two over
the NUFFT-only implementation.

5.4.2 Multipass 3-D Circular SAR

The second example in which sparsity can be exploited iswide-angle 3-D SAR imaging,
in which angularly-dependent dictionary elements must be used due to the glint-like na-
ture of certain target surfaces. Fundamentally the scene is sparse in that it consists of a
two-dimensional surface embedded in R?; thusit seems reasonable to use this prior infor-
mation to address the issue of undersampled data (the aircraft cannot fly enough passes
to densely populate the viewing sphere). The data set we consider isthe AFRL's publicly
released Volumetric SAR Data Set, Version 1.0 [160], which is aso available from the
AFRL VDL website [147]. The pulsed, monostatic, circular SAR collection system used
a 9.6 GHz center-frequency (X band) LFM waveform with 640 MHz bandwidth, corre-
sponding to arange resolution of 0.234 meters. The received data underwent the standard
in-phase/quadrature (1/Q) demodulation, digitization, and match-filtering processes de-
scribed in [161] and were digitally spotlighted [162] to asmall areaincluding a stationary
civilian vehicle. The small size of the scene relative to the antenna location makes the
planar-wavefront approximation extremely accurate.

The 360-degree angular diversity and multi elevational viewsincluded inthisexample
may lead one to ask why regularization is required. The answer is that grating lobes of
the 3-D PSF must be reduced. Despite significant elevational change between passes, the
viewing sphereis undersampled in elevation, which leads to sever grating lobes along the
direction orthogonal to theradar’ srange and cross-rangedirectionsfor any given azimuthal
subaperture. This effect is demonstrated in the backprojection image of Figure 5-11 (a).

Due to the shape of the target, we can expect its scattering behavior to have a strong
view-angle dependence. One method for handling angular anisotropy is to introduce a
point-scatterer fix by using a dictionary of point-like scatterers whose angular support is
defined by arectangular window in azimuth [163,164]. If thedictionary consistsof disjoint
subdictionaries (nonoverlapping subapertures), the objective function in QP, can be split
into several pieces, that is

K
argmin||Ax — ylI5 + 4 Ixlly = agmin >~ || Agxa — ya [y + 2 [Ixall,  (5.42)
k=1

K
=3 (aomin|[Anxs =y +2 bl ) (549
k=1 "K
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FIGURE 5-11 = (a) Backprojection and (b) Mixed MAP-ML images (dB scale).

Equation (5.43) shows that several smaller QP, problems may be solved in parallel—a
big advantage considering the number of dictionary elements that were introduced; this
embarrassingly-parallel formulation gains roughly two orders of magnitude in speed for
realistic subaperture widths.

Given that a 3-D image is obtained for each azimuth window, we need to determine
which value to display for each spatia pixel. This can be accomplished by modeling the
pixelsin each separate image (which we recall can be considered to be a MAP estimate)

= argmin | AaXa — Yallo + > | Xacll (5.44)
k

as independent test statistics for a maximum likelihood (ML) hypothesis test, that is, we
wt38

(X, y,2) = max{ly, |2, ..., Ik} (5.45)

Dueto thefact that the columns of A have equal amplitudes, the ML schemeis equivalent
to the generalized likelihood ratio test (GLRT). A description of the relationship between
the GLRT and standard SAR imaging techniquesisgivenin[166-168]. Inthisexamplewe
used 5-degree windows, which isareasonable amount of expected persistencefor vehicles
at X band, within the hybrid MAP-ML scheme described by (5.44) and (5.45) to obtain
the image in Figure 5-11. The number of datawas M = 1 713 743 and the total image
sizewas N = (number of subapertures)(number of pixels) = (72)(80%) = 36,864,000.

5.4.3 Multistatic Underground Imaging

Another radar imaging problem in which the underlying sparsity of the data gives rise
to useful regularization approaches is GPR. Targets of interest such as underground

38\ should also note that this can be considered a crude way to enforce structure in the dictionary. An
identical dictionary structure and approach can been applied to the moving-target imaging problem; see,
for example [165].
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tunnelsaresimple and have exploitabl e structure, such aswell-defined sharp edgesand low
within-target contrast. In this example we will show how apriori knowledge of structured
gparsity in the data alows us to appropriately regularize the otherwise ill-posed problem
of underground imaging from an array of ultra narrowband antennas.

In all of our previous examples, we have assumed free-space propagation between the

radar antennas and the scattering object while solving for anondispersivetarget refl ectivity

function, V(q) = 1 — €@ (this formulation necessarily assumes that the scattering

S . €0 . . .

material isisotropic and the materials have constant magnetic permeability u, that can be
absorbed into the scattering reflectivity). In the case of GPR, the situation is complicated
by the air—ground interface and possible frequency-dependent attenuation through the
ground. Inthe context of the Born approximation, Deming [ 169] providesan algorithm that
replacesthefree-space Green’ sfunction with onethat moreaccurately model spropagation
through lossy earth. Variousformulations of the Green'sfunction that also include the air—
soil interface effects can be found in [170-173].

Assuming the Born approximation is reasonable and the direct-path contribution to
the data has been removed, ageneric linear model for the above-ground bistatic measured
eectric field (using dipole antennas of length ¢) scattered from isotropic, nhonmagnetic,
homogeneous soil is[174]

ES(y, pr. ) = | wopokdt / / / BT G(yr. . @) - G(. yi. )a V(q)dq  (5.46)
\—.’_/
ElnC

where we have introduced the scalar kg = w/Co, the 3 x 3 dyadic Green's function
G, the transmit and receive locations y, y, € RS, and the vectors a;, by € C3 that
encode the orientation, gain, and phase of the transmit and receive dipoles, respectively.
If P transmitters simultaneously transmit, then the incident field is modeled as E'™ =
ZE=1 G(X', yt,, w)a,, and the measured field (5.46) at the receiver becomes

P
E™(y1.0) =ikt [ [ [BTG0r.q.0)- (ZG(q,ytp,w)atp) V(@)dg
p=1

(5.47)
Equation (5.47) represents alinear equation that can be discretized to solve for the image
V. By unwrapping the 3-D image V into the vector x € CN, concatenating the mea-
surements of the scattered field ES'(y, , w) into avector y € CM with M =(number of
transmit frequencies)(number of transmitter/receiver pairs), and discretizing the forward-
operator A € CM*N into elements A, Whose row number m indexes over al of the
transmitter/receiver/frequency combinations and column number n indexes the voxelsin
the scene, we arrive at our usua ill-posed formulation Ax = .

For our numerical example consider asynthetic transmitter/receiver setupinwhichthe
transmitters and receivers are arranged in a circular array placed on the air-soil interface
30 meters above an L-shaped tunnel (see Figure 5-12 for a top-down view of the sensor
configuration and target). The forward data were simulated with the FDTD simulator
GPRMAX [175] over the 4-7 MHz frequency range with 250 KHz steps. Although no
noisewasintentionally added to the data, the effectsfrom invoking the Born approximation
in the inversion algorithm, discretization errors, and imperfect removal of the direct-path
signal wereincluded. The number of measurementsis M = 360, and the number of pixels
is N = 8405.
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FIGURE 5-12 = (a) Sensor geometry and target and (b) a horizontal cross section of the
Tikhonov-regularized image.

A common way to obtain an image x when A isill-conditioned is to penalize large
values of ||x||2 by solving

min [|AX = Yll2 + e[ X]l2 (5.48)
xeCN

The tuning parameter « in the Tikhonov formulation (5.48) can be chosen by a variety
of methods such as L-curve [69,176], generalized cross-validation [177], or Morozov's
discrepancy principle [178]. Unfortunately, (5.48) fails to obtain a reasonable image (see
Figure 5-12) because in this scenario, ¢, penalization provides an insufficient amount of
apriori information to effectively regularize the problem without destroying the quality
of the solution. Fortunately for the tunnel-detection problem, our a priori knowledge aso
includes sparsity in both the image itself and its spatial gradient as well as physically
motivated upper and lower bounds on the reflectivity.

We consider two different objective functionsthat seek to incorporate thisknowledge.
Thefirstis

min [|AX — Y2 + «lIxll2 + BlIXll1 (5.49)
xeCN
St Tmin S |Xn| S Tmax n= l, cs ey N (550)

To solve the problem (5.49)—(5.50) efficiently, we iteratively project solutions of (5.49)
onto the feasible set (5.50). Decomposing the problem in this manner allows us to choose
from several large-scale solvers (for example, LARS [179] was developed specifically
for (5.49)). We choose to use the FISTA algorithm at each step by rewriting (5.49) and

(5.50) as
. A y
min || o %= [3]] +pein (551)
S.t. Tmin f |Xn| S Tmax» n= 1, ceey N (5.52)

which isthe form of QP, .
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FIGURE 5-13 = (a) The ¢1/¢>-regularized image obtained solving (5.51) and (5.52) and (b) the
£1/€2/ TV -regularized image obtained by solving (5.53) and (5.54). In both cases the
regularization parameters («,8) were chosen empirically.

Another potentially useful formulationisto alsoenforcesparsity inthespatial gradient.
We define the problem

. A y
)[lel H:«/&I :| X — |:O:| 2+a|lx||1e+ﬂ”XHTVe (553)
S.t. Tmin S |Xn| S 'Cmax, n= 1, ceey N (5.54)

where we have defined the smoothed norms (e is a fixed small number)

N
IXlILe =D VIXal2+ € (5.55)
n=1
3(Nx—1)(Ny—1)(Nz—1)
Xirve= S (Va2 +e (556)
n=1

where Ny, Ny, N, denotethe number of imagepixelsinthex, y, z directions, respectively,
and the scalar (Vq|X|)n isthe nth element of the spatial gradient of the image amplitude.
The definition (5.56) was chosen instead of the standard image gradient to allow for rapid
phase oscillations which, as mentioned earlier in Section 5.3.1.2, should be expected in
radar images. The second regularization term in (5.53) isaversion of TV regularization,
which enforces sparsity in the image's spatial gradient. The solution of (5.53) and (5.54)
is solved by iteratively projecting unconstrained solutions of (5.53) onto the feasible set.
The intermediate solutions to (5.53) were obtained with the algorithm described in [75].
See Figure 5-13 for the resulting images when using these modified objective functions.

5.4.4 A Herglotz Kernel Method

There exist radar scenarios in which the Born approximation is not necessarily valid.
Without making the Born approximation, the standard radar imaging problem becomes
nonlinear in the unknown variables (specifically, the unknown reflectivity and the un-
known total electric field appear as a product of unknowns), as can be seen by examining
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the Lippman-Schwinger integral equation for the scalar wave equation [180]. Here we
illustrate one approach for addressing the multiple-scattering issue that is based on the
L SM [181]. The exposition given here, which sketches the resultsin [182,183], considers
the 2-D acoustic-scattering case. We note that this 2-D acoustic formulation can easily be
extended to the 3-D electromagnetic case by using the analogous far-field relation used
in[184,185].

The LSM solves alinear equation satisfied by the far-field data at a single frequency
o = kc. Denote the far-field data for wavenumber k by E..(¥ (6,), ¥ (6;), k), where
¥ (6y) = [cos6;, sinf;] and 7 (6;) = [cosé;, sin6,] are the directions of the transmit and
receive antennas, respectively, and assume we are imaging a target whose support isT.
Thenfor agivenincident planewavefrom direction 7 (6;) and wavenumber Kk, the received
data satisfy [186]

2 el (r/4—ky @)-p)
Eo (¥ (61, Y (6r), K)Gp(6r, K)O, = —— —— (5.57)
8rk
when p e R? iswithin the scene. In (5.57), the unknown variable is the Herglotz kernel
function, gp.* Given a discrete number of antennas (assume all bistatic geometries are
available), we arrive at the linear system F® gl ~ »®(p), where the elements of F®
and v satisfy

F = Ex(7Om), 7(6n). k)
@l (1/4=Ky (6m)- p)
87k

The image is recovered by plotting the indicator function || g<r',‘> |2, which takes on large
valuesfor pixel location p outside™ I' and issmall inside I'. Typically, each p-dependent
system of equationsis solved in parallel by forming the block-diagonal system

v¥(p) =

F gk)... 0 g}g vi'z(pl)
0 F._ .. 0 g v (p2)
. . Pl=1 (5.58)
0 ... 0FW][gk v®(pp)
—_— T/
A X y

which we write as Ax = vy for brevity, where the number of rows of Ais M =
(Number of pixels) x (Number of transmitters) = PT and the number of columns is
N = (Number of pixels)x (Number of receivers) = P R. Notethat the far-field datacom-
poses the A matrix, while y is noiseless. The resulting type of least squares problem is
referred to as adata least squares (DL S) problem [190]. Depending on the characteristics
of the noise, specialized DL S techniques could be used. However, for convenience we
ignore this subtlety and continue with the more common | east-sgquares framework.
Because the validity of (5.58) depends on how well the receiving antennas populate
the viewing sphere, it is clear that this method is very data-hungry and may require

39The function 0p isknown as the Herglotz kernel function because is the kernel of the Herglotz wave
operator (Hg)(p) = [, €% Pg(y)dy.

40The reader may notice that this method is reminiscent of other imaging techniques such asthe MUSIC
algorithm [187]. The techniques are in fact related, and their similarities are discussed in [188,189].
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regularization methods. Much of the LSM-related literature uses Tikhonov regularization
to solve (5.58). Here, we give an examplein which avariant of TV regularization is used
and compare its performance with Tikhonov regularization.

Defining the vector function f (x) : CPR — RP whose n-th element is given by

fo = [1Xp, 13 (5.59)
we solvethe TV problem [183]
min [[AX — y[l +A[ID f (X)]l1 (5.60)
xeCPR

where matrix D computes the differences between adjacent pixel values f,,. For compu-
tational efficiency we solve (5.60) via the alternating minimization approach described
in[191].

We consider the problem of imaging a kite-shaped target from an array of nine trans-
mittersand six receivers. Thetarget boundary and the directions of thetransmit and receive
antennas are given in Figure 5-14. The time-harmonic far-field data were synthesized via
a combined single- and double-layer integral boundary approach along with a Nystrom
method to discretize the integral equations [186]. The wavenumber wask = 1. The re-
sulting Tikhonov- and TV-regularized reconstructions for the SNR = 8 dB case are given
in Figures 5-15a and 5-15b, respectively. In this example, it is clear that the Tikhonov
approach insufficiently regularizes the problem, while TV regularization provides a rea-
sonable image. Due to the DLS form of the inverse problem described in (5.58), which
uses measured data to populate the A matrix, severely undersampled dataintroduce errors
in the reconstructed image in a nonstandard way; instead of introducing grating lobes, we
see the strange artifacts in Figure 5-15. This odd behavior is the result of the fact that a
decrease in data yields a decrease in the number of Herglotz kernel function terms avail-
able to reconstitute the right-hand side of the equation, limiting our ability to effectively
minimize the discrepency term || Ax — y]|.

5.4.5 Single-Pulse Target Detection

In this section, we compute an example that illustrates the power of combining random-
ization with SR. Consider the problem of detecting agroup of targetsin delay (range) and
Doppler using asingle pulse. Naturally, the familiar radar ambiguity function encodesthe
information required for determining how well we can perform this task. A traditional
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FIGURE 5-15 = (a) The Tikhonov-regularized and (b) the TV-regularized image obtained by
solving (5.60). The Tikhonov regularization parameter was chosen by the maximum-curvature
L-curve criterion, while the TV regularization parameter was chosen empirically.

chirp waveform has a ridge-like ambiguity function which leads to familiar issues with
range-Doppler coupling [16]. Here we will instead consider comparison of a Gaussian
pulse with a random, phase-only waveform. The Gaussian pulse is selected so that the
widths of the ambiguity function main peak in delay and Doppler are approximately equal .
The phase only waveform exhibits a thumbtack-like ambiguity function with avery sharp
peak but relatively high and uniform sidel obes.

Our example is based heavily on the results in [56], where performance guarantees
are proven for acubic chirp waveform known asthe Alltop sequence. Theincluded proofs
rely on the unigque properties of Alltop sequenceswith prime length, but the authors point
out that similar results hold for random phase waveforms. A more general discussion
of CS forward operators obtained through random convolution can be found in [192].
We will choose a waveform of length 64 samples. Our dictionary will consist of al
combinationsof 64 shiftsand 64 Doppler shiftsof thiswaveformtoyield N = 642 = 4096.
The received signal has length M = 64, which represents 64 uniform samples of the
received waveform.*! Analytical guaranteesfor reconstruction using thisforward operator
are provided in [56].

The results for this example are provided in Figure 5-16. The two rows show re-
constructions using the Gaussian pulse (top) and the random phase waveform (bottom).
The two images on the left provide matched filter results computed as AH'y, while the
right column provides the solution*? to BP, with o = 0. The Gaussian pulse resultsin a
dictionary with arelatively high mutual coherence of 0.9851. In contrast, the noise wave-
form yields a thumbtack ambiguity function with mutual coherence of only 0.3205. The
matched filter result isarguably better using the Gaussian pulse. The closely spaced targets
are blurred together, but we at least obtain a rough idea of where in the delay-Doppler

“INote that we are assuming circular convolution with the transmitted pulse for simplicity.

42These reconstructions are computed using SPGL 1, but any solver could be used. Herman et al. [56]
used the CV X package for their examples with similar results.
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FIGURE 5-16 = Results for detecting 10 targets in delay-Doppler using a single pulse. Each
plot shows the reconstructed reflectivity as a function of delay and Doppler bins, with delay
on the x-axis. The top row shows results for a Gaussian pulse, while the bottom row is a
random-phase, constant modulus signal. The left column provides matched filter results

AH y, while the right column shows BP,, with o = 0. The bottom right result matches the true
signal almost perfectly.

plane the target energy is localized. The noise waveform’s high sidelobes produce a very
difficult to interpret result with matched filtering. Indeed, the two targets around delay bin
20 are totally submerged in the sidelobes from the stronger targets. We should emphasize
that these simulations are noise-free; the interference is simply coherent addition of the
sidelobes from the targets.

On the other hand, when we use an SR approach, the noise waveform results in a
reconstruction that is essentially perfect as shown on the bottom right There are actually
three targets at delay bin 40 that are in adjacent delay-Doppler cells, and all three are
accurately reconstructed. Even using the SR approach, the Gaussian pulse is not able to
resolve these closely spaced targets. Thus, we clearly see that both SR (the right column)
and randomization (the bottom row) must be combined to fully realize the benefits of
CS. A related example is presented in [12] where a sequence of pulses from a group of
cooperative radars is processed to form SAR images using the FOCUSS algorithm. Similar
performance enhancements are observed when chirp waveforms are replaced with noise
pulses.
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| | SUMMARY

We have shown that many common radar applications, even those that address multiple-
scattering, dispersive media, and other complicated propagation effects, can be expressed
in the standard linear framework for which SR and CS are applicable. Several examples
were given in which the underlying scattering phenomenol ogy dictates that the radar data
are sparsein aknown basis, motivating the use of SR and CStechniques. Although the use
of SR agorithmsin radar predates CS, the CS theory provides theoretical justification of
their use by providing performance guarantees under well-defined measurement require-
ments such as the RIP and mutual coherence constraints. The measurement requirements
themselves are often impossible to verify. However, because they are only sufficient con-
ditions for guaranteed performance, in practice SR techniques work well even without
strictly satisfying RIC or mutual coherence bounds. An added benefit of the CS theory is
that the measurement requirements (which, when combined with SR, constitute CS) may
guide the design of future radars and data acquisition strategies to collect better datafor a
given objective, as demonstrated by the waveform-design example given in the previous
section. Beyond the standard sparsity that is now commonly exploited in the literature,
structured sparsity appearsin avariety of radar applicationsand dictionariesand, whenin-
corporated into the SR agorithm, can be shown to significantly improve the performance
guarantees. Advances in CS for structured, sparse data will undoubtedly play arole in
future CS applications to radar.

Many radar applicationsareoften limited by real-time requirementsand largevolumes
of data, which until recently have made the application of SR to realistic scenarios merely
adream for practicing radar engineers. However, the recent academic interest in CS has
rapidly accelerated research in SR techniques for large-scale problems, bringing many SR
and CS applications within reach. Techniques for SR range from penalized | east-squares
techniques, which have excellent reconstruction performance at the expense of compara-
tively high computational burden, to iterative threshol ding a gorithms that have have mod-
erate computational cost while sometimes compromising their performance guarantees, to
greedy approaches, which are the most computationally efficient but have the poorest per-
formance guarantees (unless the greedy techniques are combined with structured-sparsity
constraints, in which case they can outperform standard ¢; solvers). Many of these tech-
niques are grounded in a Bayesian setting and several can determine confidence levels on
resulting reconstructions, which may prove extremely useful in decision tasksthat rely on
reconstructed images.

| | FURTHER READING

A vast literature on CS has been published in thelast several years, and new devel opments
occur onaweekly or evendaily basis. Anexcellent tutorial on CSideascanbefoundin[21].
We recently coauthored [17], an article summarizing many of the sameideas contained in
this chapter, along with additional historical references and more radar examples. Another
recent survey of CS applications to radar, including examples on pulse compression,
inverse SAR imaging, and direction of arrival estimation, can be found in [193].

Finally, as aluded to already, CSisstill arapidly evolving field. The best sources for
up to date information on current trends and developments can be found online. The Rice
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Compressed Sensing Resources list [132] includes links to tutorials, presentations, and
papers on CS theory and applications. A specific section for CS radar is maintained. A
dlightly less formal although valuable reference can be found on the Nuit Blanche blog,
which reports on developments in CS, provides articles on applications of CS ideas, and
includes an occasionally updated discussion on “ Compressive Sensing: The Big Picture,”
which is a useful starting point in this research area. As already mentioned, an excellent
list of algorithmsis maintained in [60].
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