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 Preface

In the year 2000 my book Radar Systems Analysis and Design Using MAT-
LAB1® was published. This book very quickly turned into a bestseller which
prompted the publication of its second edition in the year 2005. At the time of
its publication, it was based on my years of teaching graduate level courses on
radar systems analysis and design including advanced topics in radar signal
processing. The motivation behind it was to introduce a college-suitable com-
prehensive textbook that provides hands-on experience with MATLAB® com-
panion software. Over the years, I have also taught numerous industry courses
on the subject of radar systems. Based on my combined teaching experience
and real-world work at deciBel Research, Inc., the following conclusion has
become very evident to me: There is big appetite and demand for textbooks
and reference books that are primarily focused on aspects of radar signals and
signal processing. Having arrived at this conclusion, I decided to write this
textbook, Radar Signal Analysis and Processing Using MATLAB®, which is
focused on radar signal analysis and processing. 

Unlike other books on the subject, the emphasis is not on signal processing
per se, but on signals and signal processing in the context of radar applications.
Many good textbooks are already available on signal processing but not on sig-
nal processing as it applies to radar applications. This new textbook has many
desirable features that include clear and concise presentation of the theory and
companion user-friendly MATLAB code. This code is reconfigurable to dem-
onstrate the theory and perform the associated analysis/design trades as well as
allow users to vary the inputs in order to better analyze their relevant and
unique requirements. This new book should serve as a reference book or as a
textbook for a graduate level courses on the subject. It concentrates on the fun-
damentals and adopts a rigorous mathematical approach of the subject. Many
examples and end of chapter problems are included. Finally, a companion
Instructor’s Manual is also available through the publisher for professors who
adopt this book as a text. The Instructor’s Manual includes many other prob-
lems not listed in the text and their solutions. 

1. All MATLAB® functions and programs provided in this book were developed using MATLAB
R2007b with the Signal Processing Toolbox, on a PC with Windows XP Professional operating
system. 

® MATLAB® is a registered trademark of the The MathWorks, Inc. For product information,
please contact: The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA. Web:
www.mathworks.com. 
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Radar Signal Analysis and Processing Using MATLAB® is written so that it
can be used as a reference book or as a textbook for two graduate level courses
with emphasis on signals and signal processing. Instructors using this book as a
text may choose the following chapter breakdown for their curriculum. Chap-
ters 1 through Chapter 7 can be used for the first course, while Chapters 8
through 11 may be used for the second course. Chapter 11 (Target Tracking),
Chapter 12 (Synthetic Aperture Radar), and Chapter 13 (Radar Cross Section)
from my other book Radar Systems Analysis and Design Using MATLAB®

may also be used to supplement both courses.     

Radar Signal Analysis and Processing Using MATLAB® introduces numer-
ous programs and functions of MATLAB using version R2007a. All MAT-
LAB programs and functions provided in this book can be downloaded from
the CRC Press Website. For this purpose and using your favorite Internet
browser type in www.crcpress.com and hit return. Once you reach the main
CRC Press home page, scroll down to the link called “Electronic Products”
and double click on “Downloads & Updates,” then follow the instructions on
the screen. 

Chapter 1 of this book presents an overview of radar systems operation and
design. The approach is to derive the radar range equation and analyze the dif-
ferent radar parameters in the context of this radar equation. The surveillance
radar equation is derived. Special topics that affect radar signal processing are
presented and analyzed in the context of the radar equation. This includes the
effects of system noise, wave propagation, jamming, and target Radar Cross
Section (RCS). Chapter 2 introduces a top level review of elements of signal
theory that are relevant to radar detection and radar signal processing. It is
assumed that the reader has sufficient and adequate background in signals and
systems as well as in the Fourier transform and its associated properties.

In Chapter 3 a review of random variables and processes is presented.
Instructors using this text may assume that students have already acquired the
necessary background as a prerequisite to this course and, thus, may elect to
omit this chapter from their syllabus, except for Section 3.6. Chapter 4 is
focused on the matched filter. It presents the unique characteristic of the
matched filter and develops a general formula for the output of the matched fil-
ter that is valid for any waveform. Chapters 5 and 6 analyze the output of the
matched filter in the context of the ambiguity function. In Chapter 5 several
analog waveforms are analyzed; this includes the single unmodulated pulse,
the Linear Frequency Modulation (LFM) pulse, unmodulated pulse train, LFM
pulse train, stepped frequency waveforms, and nonlinear FM waveforms.
Chapter 6 is concerned with discrete coded waveforms. In this chapter, unmod-
ulated pulse-train codes are analyzed as well as binary codes, polyphase codes,
and frequency codes. 
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Chapter 7 introduces the subject of radar target detection and pulse integra-
tion. Swerling models are analyzed in the context of noncoherent integration
and the square law detector. The topic of Constant False Alarm Rate (CFAR) is
also presented in detail. Chapter 8 introduces the most common techniques in
radar signal processing. The matched filter receiver as well as the stretch pro-
cessor receiver are analyzed. Chapter 9 is concerned with radar clutter. Com-
prehensive analysis of the subject of clutter is introduced, including the
Moving Target Indicator (MTI). Chapter 10 is primarily concerned with radar
Doppler processing. Both continuous wave and pulsed radars are considered.
Pulse Doppler radars are introduced and analyzed. Chapter 11 is focused on
adaptive array processing. For this purpose, a top level overview of phased
array antennas is first introduced followed by beamforming and the most com-
mon techniques in adaptive array processing. 

   
Bassem R. Mahafza

bmahafza@dbresearch.net
Huntsville, AL
February 2008
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1

Chapter 1 Radar Systems - An 
Overview 

 This chapter presents an overview of radar systems operation and design.
The approach is to introduce few definitions first, followed by detailed deriva-
tion of the radar range equation. Different radar parameters are analyzed in the
context of the radar equation. The search or surveillance radar equation will
also be derived. Where appropriate, a few examples are introduced. Special
topics that affect radar signal processing are also presented and analyzed in the
context of the radar equation. This includes the effects of system noise, wave
propagation, jamming, and target Radar Cross Section (RCS). 

1.1.  Range Measurements
Consider a radar systems that transmits a periodic sequence, with period ,

of square pulses, each of width , shown in Fig. 1.1. The period is referred to
as the Pulse Repetition Interval (PRI) and the inverse of the PRI is called the
Pulse Repetition Frequency (PRF), denoted by . If the peak transmitted
power for each pulse is referred to as , then the average transmitted power
over one full period is 

T
τ

fr
Pt

time

time

transmitted

received pulses

τ
T 1 fr⁄=

pulse 1

Δt

pulse 3pulse 2

τ
pulse 1 
echo

pulse 2 
echo

pulse 3 
echo

 Figure 1.1. Train of transmitted and received pulses.

pulses
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2      Radar Signal Analysis and Processing Using MATLAB

(1.1)

The ratio of the pulse width to the PRI is called transmit duty cycle, denoted by
. The pulse energy is .

The top portion of Fig. 1.1 represents the transmitted sequence of pulses,
while the lower portion represents the received radar echoes reflected from a
target at some range . By measuring the two-way time delay, , the radar
receiver can determine the range as follows:

(1.2)

where:  is the speed of light, and the factor  is used to
account for the round trip (two-way) delay.

The range corresponding to the two-way time delay , where  is the
pulse repetition interval is referred to as the radar unambiguous range, .
Consider the case shown in Fig. 1.2. Echo 1 represents the radar return from a
target at range  due to pulse 1. Echo 2 could be interpreted as the
return from the same target due to pulse 2, or it may be the return from a far-
away target at range  due to pulse 1 again. That is,

(1.3)

 

Pav Pt
τ
T
---×=

dt Ex Ptτ PavT Pav fr⁄= = =

R Δt

R cΔt
2

--------=

c 3 108× m s⁄= 2

Δt T= T
Ru

R1 cΔt 2⁄=

R2

R2a
cΔt
2

--------= or R2b
c T Δt+( )

2
-----------------------=

transmitted pulses

received pulses

τ
T

pulse 1

Δt

pulse 2

echo1  echo 2 

R1
cΔt
2

--------=

Ru

R2b

Δt

time or range

time or range

t 0= t 1 fr⁄=

 Figure 1.2. Illustrating range ambiguity.

R2a
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Range Resolution 3

Clearly, range ambiguity is associated with echo 2. Once a pulse is transmitted,
the radar must wait a sufficient length of time so that returns from targets at
maximum range are back before the next pulse is emitted. It follows that the
maximum unambiguous range must correspond to half of the PRI:

(1.4)

Example: 

A certain airborne pulsed radar has peak power  and uses two

PRFs,  and . What are the required pulse widths
for each PRF so that the average transmitted power is constant and is equal to

? Compute the pulse energy in each case.

Solution: 

Since  is constant, both PRFs have the same duty cycle,

 

The pulse repetition intervals are

It follows that

1.2.  Range Resolution
Range resolution, denoted as , is a radar metric that describes its ability

to detect targets in close proximity to each other as distinct objects. Radar sys-

Ru cT
2
--- c

2fr
------= =

Pt 10KW=

fr1 10KHz= fr2 30KHz=

1500Watts

Pav

dt
1500

10 103×
-------------------- 0.15= =

T1
1

10 103×
-------------------- 0.1ms= =

T2
1

30 103×
-------------------- 0.0333ms= =

τ1 0.15 T1× 15μs= =

τ2 0.15 T2× 5μs= =

Ex1 Ptτ1 10 103× 15 10 6–×× 0.15 Joules= = =

Ex2 P2τ2 10 103× 5 10 6–×× 0.05 Joules= = =

ΔR
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4      Radar Signal Analysis and Processing Using MATLAB

tems are normally designed to operate between a minimum range  and
maximum range . The distance between  and  along the radar
line of sight is divided into  range bins (gates), each of width ,

(1.5)

Targets separated by at least  will be completely resolved in range. 

In order to derive an exact expression for , consider two targets located
at ranges  and , corresponding to time delays  and , respectively.
This is illustrated in Fig. 1.3. Denote the difference between those two ranges
as :

(1.6)

The question that needs to be answered is: What is the minimum time, , such
that target 1 at  and target 2 at  will appear completely resolved in range
(different range bins)? In other words, what is the minimum ?

Rmin
Rmax Rmin Rmax

M ΔR

M
Rmax Rmin–

ΔR
----------------------------=

ΔR

ΔR
R1 R2 t1 t2

ΔR

ΔR R2 R1– c
t2 t1–( )

2
------------------ cδt

2
----= = =

δt
R1 R2

ΔR

incident pulse

combined 

cτ

3
2
---cτ

return 
tgt1

tgt1 tgt2

cτ
4
-----

tgt1 tgt2

cτ
2
-----

(a)

(b)

reflected pulses

cτcτ

return 
tgt1

return 
tgt2

R2

R2

R1

R1

return 
tgt2

shaded area has returns
from both targets

 Figure 1.3. (a) Two unresolved targets. (b) Two resolved targets.

reflected
 pulse
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Doppler Frequency 5

First, assume that the two targets are separated by ,  is the pulse
width. In this case, when the pulse trailing edge strikes target 2, the leading
edge would have traveled backward a distance , and the returned pulse
would be composed of returns from both targets (i.e., unresolved return), as
shown in Fig. 1.3a. If the two targets are at least  apart, then as the pulse
trailing edge strikes the first target, the leading edge will start to return from
target 2, and two distinct returned pulses will be produced, as illustrated by
Fig. 1.3b. This means  should be greater or equal to . Since the radar
bandwidth  is equal to , then

(1.7)

In general, radar users and designers alike seek to minimize  in order to
enhance the radar performance. As suggested by Eq. (1.7), in order to achieve
fine range resolution one must minimize the pulse width. This will reduce the
average transmitted power and increase the operating bandwidth. Achieving
fine range resolution while maintaining adequate average transmitted power
can be accomplished by using pulse compression techniques.

Example: 

A radar system has an unambiguous range of 100 Km and a bandwidth 0.5
MHz. Compute the required PRF, PRI, , and .

Solution:

  

  

It follows,   

  

  

1.3.  Doppler Frequency
Radars use Doppler frequency to extract target radial velocity (range rate), as

well as to distinguish between moving and stationary targets or objects, such as
clutter. The Doppler phenomenon describes the shift in the center frequency of

cτ 4⁄ τ

cτ

cτ 2⁄

ΔR cτ 2⁄
B 1 τ⁄

ΔR cτ
2
----- c

2B
-------= =

ΔR

ΔR τ

PRF c
2Ru
--------- 3 108×

2 105×
----------------- 1500 Hz= = =

PRI 1
PRF
----------- 1

1500
------------ 0.6667 ms= = =

ΔR c
2B
------- 3 108×

2 0.5 106××
------------------------------- 300 m= = =

τ 2ΔR
c

----------- 2 300×

3 108×
------------------ 2 μs= = =

chapter1.fm  Page 5  Monday, May 19, 2008  6:32 PM



6      Radar Signal Analysis and Processing Using MATLAB

an incident waveform due to the target motion with respect to the source of
radiation. Depending on the direction of the target’s motion, this frequency
shift may be positive or negative. A waveform incident on a target has
equiphase wavefronts separated by , the wavelength. A closing target will
cause the reflected equiphase wavefronts to get closer to each other (smaller
wavelength). Alternatively, an opening or receding target (moving away from
the radar) will cause the reflected equiphase wavefronts to expand (larger
wavelength), as illustrated in Fig. 1.4.

The result formula for the Doppler frequency can be derived with the help of
Fig. 1.5. Assume a target closing on the radar with radial velocity (target veloc-
ity component along the radar line of sight) . Let  refer to the range at time

 (time reference); then the range to the target at any time  is

(1.8)

Assume a radar transmitted signal given by

(1.9)

where  is the radar operating center frequency. It follows that the signal
received by the radar is 

(1.10)

λ

λ λ′>

λ′λ

reflected

λ′

incident

opening target 

closing target

λ

λ λ′<

 Figure 1.4. Effect of target motion on the reflected equiphase waveforms.

v R0
t0 t

R t( ) R0 v– t=

x t( ) A 2πf0t( )cos=

f0

xr t( ) x t φ t( )–( )=
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Doppler Frequency 7

where 

(1.11)

Substituting Eq. (1.9) and Eq. (1.11) into Eq. (1.10) and collecting terms yields

(1.12)

where  is a constant. The phase term 

(1.13)

is used to measure initial target detection range, and the term  repre-
sents a frequency shift due to target velocity (i.e., Doppler frequency shift).
The Doppler frequency is given by

(1.14)

where  is the wavelength given by

(1.15)

Figure 1.5. Closing target with velocity v.

R
v

R0

φ t( ) 2
c
--- R0 vt–( )=

xr t( ) Ar 2π f0t f0–
2R0

c
--------- 2f0vt

c
------------+⎝ ⎠

⎛ ⎞cos=

Ar

ψ0 2πf0
2R0

c
---------=

2f0v c⁄

fd
2f0v

c
---------- 2v

λ
------= =

λ

λ c
f0
---=
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8      Radar Signal Analysis and Processing Using MATLAB

 Note that if the target were going away from the radar (opening or receding
target), then

(1.16)

as illustrated in Fig. 1.6.

In general the target Doppler frequency depends on the target velocity com-
ponent in the direction of the radar (radial velocity). Figure 1.7 shows three tar-
gets all having velocity . Target 1 has zero Doppler shift; target 2 has
maximum Doppler frequency as defined in Eq. (1.15). The amount of Doppler
frequency of target 3 is , where  is the radial velocity;
and  is the total angle between the radar line of sight and the target.

A more general expression for  that accounts for the total angle between
the radar and the target is

(1.17)

fd
2f0v

c
----------– 2v

λ
------–= =

f0

fd

f0

fd

frequency frequency

am
pl

itu
de

am
pl

itu
de

closing target receding target

Figure 1.6. Spectra of received signal showing Doppler shift.

v

fd 2v θcos λ⁄= v θcos
θ

fd

fd
2v
λ
------ θcos=

θ
v v

v

Figure 1.7. Target 1 generates zero Doppler. Target 2 generates 
 maximum Doppler. Target 3 is in between. 

tgt1 tgt2 tgt3
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Doppler Frequency 9

and for an opening target is

(1.18)

where . The angles  and  are, respectively, the ele-
vation and azimuth angles; see Fig. 1.8.

Example: 

Compute the Doppler frequency measured by the radar shown in the figure
below.

Solution: 

The relative radial velocity between the radar and the target is .
Using Eq. (1.15) yields

  

fd
2– v
λ

--------- θcos=

θcos θecos θacos= θe θa

v
θa θe

 Figure 1.8. Radial velocity is proportional to the azimuth and elevation angles.

vradar = 250 m/sec 

vtgt = 175 m/sec 

line of sight

target

λ 0.03m=

vradar vtgt+

fd 2 250 175+( )
0.03

----------------------------- 28.3KHz= =
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10      Radar Signal Analysis and Processing Using MATLAB

Similarly, if the target were opening, the Doppler frequency is

  

1.4.  Coherence
A radar is said to be coherent if the phase of any two transmitted pulses is

consistent; i.e., there is a continuity in the signal phase from one pulse to the
next. One can view coherence as the radar’s ability to maintain an integer mul-
tiple of wavelengths between the equiphase wavefront from the end of one
pulse to the equiphase wavefront at the beginning of the next pulse. Coherency
can be achieved by using a STAble Local Oscillator (STALO). A radar is said
to be coherent-on-receive or quasi-coherent if it stores in its memory a record
of the phases of all transmitted pulses. In this case, the receiver phase reference
is normally the phase of the most recently transmitted pulse.

Coherence also refers to the radar’s ability to accurately measure (extract)
the received signal phase. Since Doppler represents a frequency shift in the
received signal, only coherent or coherent-on-receive radars can extract Dop-
pler information. This is because the instantaneous frequency of a signal is pro-
portional to the time derivative of the signal phase. 

1.5.  The Radar Equation
Consider a radar with an isotropic antenna (one that radiates energy equally

in all directions). Since these kinds of antennas have a spherical radiation pat-
tern, we can define the peak power density (power per unit area) at any point in
space as

(1.19)

The power density at range  away from the radar (assuming a lossless propa-
gation medium) is

(1.20)

where  is the peak transmitted power and  is the surface area of a
sphere of radius . Radar systems utilize directional antennas in order to
increase the power density in a certain direction. Directional antennas are usu-
ally characterized by the antenna gain  and the antenna effective aperture

. They are related by

 (1.21)

fd 2250 175–
0.03

------------------------ 5KHz= =

PD
Peak transmitted power

area of a sphere
-------------------------------------------------------------------= watts

m2
--------------

R

PD Pt 4πR2( )⁄=

Pt 4πR2

R

G
Ae

G 4πAe( ) λ2⁄=

chapter1.fm  Page 10  Monday, May 19, 2008  6:32 PM



The Radar Equation 11

where  is the wavelength. The relationship between the antenna’s effective
aperture  and the physical aperture  is

(1.22)

 is referred to as the aperture efficiency, and good antennas require .
In this book we will assume, unless otherwise noted, that  and  are the
same. We will also assume that antennas have the same gain in the transmitting
and receiving modes. In practice,  is widely accepted. 

The gain is also related to the antenna’s azimuth and elevation beam widths
by

(1.23)

where  and depends on the physical aperture shape; the angles  and
 are the antenna’s elevation and azimuth beam widths, respectively, in radi-

ans. When the antenna has a continuous aperture, an excellent approximation
of Eq. (1.23) can be written as 

(1.24)

where in this case the azimuth and elevation beam widths are given in degrees.

The power density at a distance  away from a radar using a directive
antenna of gain  is then given by

(1.25)

When the radar radiated energy impinges on a target, the induced surface cur-
rents on that target radiate electromagnetic energy in all directions. The amount
of the radiated energy is proportional to the target size, orientation, physical
shape, and material, which are all lumped together in one target-specific
parameter called the Radar Cross Section (RCS) denoted by . 

The radar cross section is defined as the ratio of the power reflected back to
the radar to the power density incident on the target,

(1.26)

where  is the power reflected from the target. The total power delivered to
the radar receiver at the back-end of the antenna is 

λ
Ae A

Ae ρA
0 ρ 1≤ ≤

=

ρ ρ 1→
A Ae

ρ 0.7≈

G K 4π
θeθa
-----------=

K 1≤ θe
θa

G 26000
θeθa

---------------≈

R
G

PD
PtG

4πR2
-------------=

σ

σ
Pr

PD
------ m2=

Pr
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12      Radar Signal Analysis and Processing Using MATLAB

(1.27)

Substituting the value of  from Eq. (1.21) into Eq. (1.27) yields

(1.28)

Let  denote the minimum detectable signal power. It follows that the
maximum radar range  is

(1.29)

Equation (1.29) suggests that in order to double the radar maximum range one
must increase the peak transmitted power  sixteen times; or equivalently,
one must increase the effective aperture four times.

In practical situations the returned signals received by the radar will be cor-
rupted with noise, which introduces unwanted voltages at all radar frequencies.
Noise is random in nature and can be described by its Power Spectral Density
(PSD) function. The noise power  is a function of the radar operating band-
width, . More precisely

(1.30)

The receiver input noise power is

(1.31)

where  is Boltzmann’s constant,
and  is the receiver input noise temperature in degrees Kelvin. It is
always desirable that the minimum detectable signal ( ) be greater than the
noise power. The sensitivity of a radar receiver is normally described by a fig-
ure of merit called the noise figure  (see Section 1.9 for details). The noise
figure is defined as

(1.32)

 and  are, respectively, the Signal to Noise Ratios (SNR) at the
input and output of the receiver. The input signal power is ; and the input
noise power immediately at the antenna terminal is . The values  and 
are, respectively, the output signal and noise power.

Pr
PtGσ

4πR2( )
2

-------------------- Ae=

Ae

Pr
PtG

2λ2σ

4π( )3R4
----------------------=

Smin
Rmax

Rmax
PtG

2λ2σ

4π( )3Smin

------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

1 4⁄

=

Pt

N
B

N Noise PSD B×=

Ni kT0B=

k 1.38 10 23–× Joule degree⁄ Kelvin=
T0 290=

Smin

F

F
SNR( )i

SNR( )o
------------------

Si Ni⁄
So No⁄
---------------= =

SNR( )i SNR( )o
Si

Ni So No
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The Radar Equation 13

The receiver effective noise temperature excluding the antenna is (see Sec-
tion 1.9) 

(1.33)

where  is the receiver noise figure. It follows that the total effective system
noise temperature  is given by

(1.34)

where  is the antenna temperature. 

In many radar applications it is desirable to set the antenna temperature 
to  and thus, Eq. (1.34) is reduced to 

(1.35)

Using Eq. (1.35) and Eq. (1.31) in Eq. (1.32) yields

(1.36)

The minimum detectable signal power can be written as 

(1.37)

The radar detection threshold is set equal to the minimum output SNR,
. Substituting Eq. (1.37) in Eq. (1.29) gives

(1.38)

or equivalently,

(1.39)

In general, radar losses denoted as  reduce the overall SNR, and hence 

(1.40)

Equivalently, Eq. (1.40) can be rewritten using Eq. (1.35) as

(1.41)

Te T0 F 1–( )=

F
Ts

Ts Te Ta+ T0 F 1–( ) Ta+ T0F T0– Ta+= = =

Ta

Ta
T0

Ts T0F=

Si kT0BF SNR( )o=

Smin kT0BF SNR( )omin
=

SNR( )omin

Rmax
PtG

2λ2σ

4π( )3kT0BF SNR( )omin

------------------------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞ 1 4⁄

=

SNR( )omin

PtG
2λ2σ

4π( )3kT0BFRmax
4

------------------------------------------=

L

SNR( )o
PtG

2λ2σ

4π( )3kT0BFLR4
----------------------------------------=

SNR( )o
PtG

2λ2σ

4π( )3kTsBLR4
------------------------------------=
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14      Radar Signal Analysis and Processing Using MATLAB

In this book, the antenna temperature is assumed to be negligible; therefore,
Eq. (1.40) will be dominantly used as the Radar Equation. 

Example:

Given a certain C-band radar with the following parameters: Peak power
, operating frequency , antenna gain ,

effective temperature , noise figure , pulse width
. The radar threshold is . Assume target cross

section . Compute the maximum range.

Solution:

The radar bandwidth is

The wavelength is

From Eq. (1.40) we have

where, before summing, the dB calculations are carried out for each of the
individual parameters on the right-hand side. We can now construct the fol-
lowing table with all parameters computed in dB:

It follows that

Thus, the maximum detection range is . 

 

Pt 1.5MW= f0 5.6GHz= G 45dB=
T0 290K= F 3dB=

τ 0.2μ sec= SNR( )min 20dB=
σ 0.1m2=

B 1
τ
--- 1

0.2 10 6–×
------------------------ 5MHz= = =

λ c
f0
--- 3 108×

5.6 109×
---------------------- 0.054m= = =

R4( )dB Pt G2 λ2 σ 4π( )3 kT0B F SNR( )omin
––––+ + +( )dB=

Pt λ2 G2 kT0B 4π( )3 F SNR( )omin
σ

61.761 25.421– 90dB 136.987– 32.976 3dB 20dB 10–

R4 61.761 90 25.352– 10– 32.976– 136.987 3– 20–+ + 197.420dB= =

R4 10 197.420 10⁄( ) 55.208 1018× m4= =

R 55.208 1018×4 86.199Km= =

86.2Km
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The Radar Equation 15

Figure 1.9 shows plots of the SNR versus detection range for the following
parameters: Peak power , operating frequency ,
antenna gain , radar losses , and noise figure .
The radar bandwidth is . The radar minimum and maximum
detection ranges are and . This figure can be
reproduced using the following MATLAB code which utilizes MATLAB func-
tion “radar_eq.m.”

close all; 
clear all
pt = 1.5e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 45.0; % antenna gain in dB
sigma = 0.1; % radar cross section in m squared
b = 5.0e+6; % radar operating bandwidth in Hz
nf = 3.0; %  noise figure in dB
loss = 6.0; % radar losses in dB
range = linspace(25e3,165e3,1000); 
snr = radar_eq(pt, freq, g, sigma, b, nf, loss, range);
rangekm  = range ./ 1000;
plot(rangekm,snr,'linewidth',1.5)
grid; 
xlabel ('Detection range in Km'); 
ylabel ('SNR in dB');

Pt 1.5MW= f0 5.6GHz=
G 45dB= L 6dB= F 3dB=

B 5MHz=
Rmin 25Km= Rmax 165Km=

 Figure 1.9. SNR versus detection range.
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16      Radar Signal Analysis and Processing Using MATLAB

1.6.  Surveillance Radar Equation
The first task a certain radar system has to accomplish is to continuously

scan a specified volume in space searching for targets of interest. Once detec-
tion is established, target information such as range, angular position, and pos-
sibly target velocity are extracted by the radar signal and data processors.
Depending on the radar design and antenna, different search patterns can be
adopted. 

Search volumes are normally specified by a search solid angle  in steradi-
ans, as illustrated in Fig. 1.10. Define the radar search volume extent for both
azimuth and elevation as  and . Consequently, the search volume is
computed as 

(1.42)

where both  and  are given in degrees. The radar antenna  beam-
width can be expressed in terms of its azimuth and elevation beam widths 
and , respectively. It follows that the antenna solid angle coverage is 
and, thus, the number of antenna beam positions  required to cover a solid
angle  is 

(1.43)

In order to develop the search radar equation, start with Eq. (140). Using the
relations  and , where  is the PRI and  is the pulse
width, yields

Ω

ΘA ΘE

Ω ΘAΘE( ) 57.296( )2⁄ steradians=

ΘA ΘE 3dB
θa

θe θaθe
nB

Ω

nB
Ω
θaθe
-----------=

τ 1 B⁄= Pt PavT τ⁄= T τ

search
 volume

antenna
beam width

Ω

θ3dB

 Figure 1.10. A cut in space showing the antenna beam width and the 
search volume.
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(1.44)

Define the time it takes the radar to scan a volume defined by the solid angle
 as the scan time . The time on target can then be expressed in terms of
 as

(1.45)

Assume that during a single scan only one pulse per beam per PRI illuminates
the target. It follows that  and, thus, Eq. (1.44) can be written as 

(1.46)

Substituting Eq. (1.21) and Eq. (1.45) into Eq. (1.46) and collecting terms yield
the search radar equation (based on a single pulse per beam per PRI) as

(1.47)

The quantity  in Eq. (1.47) is known as the power aperture product. In
practice, the power aperture product (PAP) is widely used to categorize the
radar’s ability to fulfill its search mission. Normally, a power aperture product
is computed to meet a predetermined SNR and radar cross section for a given
search volume defined by .

Figure 1.11 shows a plot of the PAP versus detection range. using the follow-
ing parameters:

This figure can be reproduced using the following MATLAB code which uti-
lizes the MATLAB function “power_aperture.m.” 

close all;
clear all;
tsc = 2.5; % scan time is 2.5 seconds
sigma = 0.1; % radar cross section in m squared
te = 900.0; % effective noise temperature in Kelvin
snr = 15; % desired SNR in dB
nf = 6.0; % noise figure in dB

SNR T
τ
---

PavG2λ2στ

4π( )3kT0FLR4
------------------------------------=

Ω Tsc
Tsc

Ti
Tsc

nB
-------

Tsc

Ω
-------θaθe= =

Ti T=

SNR
PavG2λ2σ

4π( )3kT0FLR4
------------------------------------

Tsc

Ω
-------θaθe=

SNR
PavAeσ

4πkT0FLR4
-----------------------------

Tsc

Ω
-------=

PavA

Ω

σ Tsc θe θa= R F L+ SNR

0.1 m2 2.5sec 2° 250Km 13dB 15dB
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18      Radar Signal Analysis and Processing Using MATLAB

loss = 7.0; % radar losses in dB
az_angle = 2; % search volume azimuth extent in degrees
el_angle = 2; % search volume elevation extent in degrees
range = linspace(20e3,250e3,1000); 
pap = power_aperture(snr,tsc,sigma/10,range,nf,loss,az_angle,el_angle);
rangekm  = range ./ 1000;
plot(rangekm,pap,'linewidth',1.5)
grid
xlabel ('Detection range in Km');
ylabel ('Power aperture product in dB');

Example: 

Compute the power aperture product corresponding to the radar that has the
following parameters: Scan time , noise figure , losses

, search volume , range of interest
, and required SNR . Assume that . 

Solution:
Note that  corresponds to a search sector that is three
fourths of a hemisphere. Thus, we conclude that  and .
Using the MATLAB function “power_aperture.m” with the following syntax: 

 Figure 1.11. Power aperture product versus detection range.

Tsc 2s= F 8dB=
L 6dB= Ω 7.4 steradians=
R 75Km= 20dB σ 3.162m2=

Ω 7.4 steradians=
Θa 180°= Θe 135°=
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PAP = power_aperture(20, 2, 3.162, 75e3, 8, 6, 180, 135)

one computes the power aperture product as 36.2 dB.

Example:

Compute the power aperture product for an X-band radar with the following
parameters: Signal-to-noise ratio ; losses ; search
volume ; scan time ; noise figure . Assume a

 target cross section, and range . Also, compute the
peak transmitted power corresponding to 30% duty factor if the antenna gain
is 45 dB. Assume a circular aperture.

Solution:

The angular coverage is  in both azimuth and elevation. It follows that the
solid angle coverage is 

Note that the factor  converts degrees into steradians. When
the aperture is circular Eq. (1.47) is reduced to (details are left as an exercise)

It follows that

Then the power aperture product is

Now, assume the radar wavelength to be , then 

 

SNR 15dB= L 8dB=
Ω 2°= Tsc 2.5s= F 5dB=

10dBsm– R 250Km=

2°

Ω 2 2×

57.23( )2
-------------------- 29.132dB–= =

360 2π⁄ 57.23=

SNR( )dB Pav A σ Tsc 16 R4– kT0– L– F– Ω––+ + +( )dB=

σ Tsc 16 R4 kT0

10– 3.979 12.041 215.918 203.977–

15 Pav A 10– 3.979 12.041– 215.918– 203.977 5– 8– 29.133+ + + +=

Pav A+ 38.716dB=

λ 0.03m=

A Gλ2

4π
---------- 3.550dB= =

Pav A– 38.716+ 35.166dB= =

Pav 103.5166 3285.489W= =
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20      Radar Signal Analysis and Processing Using MATLAB

1.7. Radar Cross Section
Electromagnetic waves are normally diffracted or scattered in all directions

when incident on a target. These scattered waves are broken down into two
parts. The first part is made of waves that have the same polarization as the
receiving antenna. The other portion of the scattered waves will have a differ-
ent polarization to which the receiving antenna does not respond. The two
polarizations are orthogonal and are referred to as the Principal Polarization
(PP) and Orthogonal Polarization (OP), respectively. The intensity of the back-
scattered energy that has the same polarization as the radar’s receiving antenna
is used to define the target RCS. When a target is illuminated by RF energy, it
acts like a virtual antenna and will have near and far scattered fields. Waves
reflected and measured in the near field are, in general, spherical. Alterna-
tively, in the far field the wavefronts are decomposed into a linear combination
of plane waves. Assume the power density of a wave incident on a target
located at range  away from the radar is , as illustrated in Fig. 1.12. The
amount of reflected power from the target is 

(1.48)

where  denotes the target cross section. Define  as the power density of
the scattered waves at the receiving antenna. It follows that

Pt
Pav

dt
-------- 3285.489

0.3
---------------------- 10.9512KW= = =

R PDi

Pr σPDi=

σ PDr

 Figure 1.12. Scattering object located at range .R

Radar

R

Radar

R scattering object

radar
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(1.49)

Equating Eqs. (1.48) and (1.49) yields

(1.50)

and in order to ensure that the radar receiving antenna is in the far field (i.e.,
scattered waves received by the antenna are planar), Eq. (1.50) is modified to

(1.51)

The RCS defined by Eq. (1.51) is often referred to as either the monostatic
RCS, the backscattered RCS, or simply target RCS. 

The backscattered RCS is measured from all waves scattered in the direction
of the radar and has the same polarization as the receiving antenna. It repre-
sents a portion of the total scattered target RCS , where . Assuming a
spherical coordinate system defined by ( ), then at range  the target
scattered cross section is a function of ( ). Let the angles ( ) define the
direction of propagation of the incident waves. Also, let the angles ( )
define the direction of propagation of the scattered waves. The special case,
when  and , defines the monostatic RCS. The RCS measured
by the radar at angles  and  is called the bistatic RCS. 

The total target scattered RCS is given by

(1.52)

The amount of backscattered waves from a target is proportional to the ratio
of the target extent (size) to the wavelength, , of the incident waves. In fact, a
radar will not be able to detect targets much smaller than its operating wave-
length. The frequency region, where the target extent and the wavelength are
comparable, is referred to as the Rayleigh region. Alternatively, the frequency
region where the target extent is much larger than the radar operating wave-
length is referred to as the optical region. 

1.7.1. RCS Dependency on Aspect Angle and Frequency

Radar cross section fluctuates as a function of radar aspect angle and fre-
quency. For the purpose of illustration, isotropic point scatterers are consid-
ered. Consider the geometry shown in Fig. 1.13. In this case, two unity ( )

PDr Pr 4πR2( )⁄=

σ 4πR2 PDr

PDi
--------⎝ ⎠
⎛ ⎞=

σ 4πR2 PDr

PDi
--------⎝ ⎠
⎛ ⎞

R ∞→
lim=

σt σt σ>
ρ θ ϕ, , ρ

θ ϕ, θi ϕi,
θs ϕs,

θs θi= ϕs ϕi=
θs θi≠ ϕs ϕi≠

σt
1

4π
------ σ θs ϕs,( ) θssin θd ϕsd

θs 0=

π

∫
ϕs 0=

2π

∫=
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1m2
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isotropic scatterers are aligned and placed along the radar line of sight (zero
aspect angle) at a far field range . The spacing between the two scatterers is 1
meter. The radar aspect angle is then changed from zero to 180 degrees, and
the composite RCS of the two scatterers measured by the radar is computed. 

This composite RCS consists of the superposition of the two individual radar
cross sections. At zero aspect angle, the composite RCS is . Taking scat-
terer-1 as a phase reference, when the aspect angle is varied, the composite
RCS is modified by the phase that corresponds to the electrical spacing
between the two scatterers. For example, at aspect angle , the electrical
spacing between the two scatterers is

(1.53)

 is the radar operating wavelength.

Figure 1.14 shows the composite RCS corresponding to this experiment.
This plot can be reproduced using the MATLAB code listed below. As clearly
indicated by Fig. 1.14, RCS is dependent on the radar aspect angle; thus,
knowledge of this constructive and destructive interference between the indi-
vidual scatterers can be very critical when a radar tries to extract the RCS of
complex or maneuvering targets. This is true for two reasons. First, the aspect
angle may be continuously changing. Second, complex target RCS can be
viewed to be made up from contributions of many individual scattering points
distributed on the target surface. These scattering points are often called scat-
tering centers. Many approximate RCS prediction methods generate a set of
scattering centers that define the backscattering characteristics of such com-
plex targets. The figures can be reproduced using the following MATLAB pro-
gram.

R

 

radar

radar line of sight

1m

radar

radar line of sight 0.707m

(a)

(b)

scat1 scat2

 Figure 1.13. RCS dependency on aspect angle. (a) Zero aspect angle, zero 
electrical spacing. (b) aspect angle,  electrical spacing.45° 1.414λ

2m2

10°

elec spacing– 2 1.0 10°( )cos×( )×
λ

--------------------------------------------------=

λ
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clear all; close all;
% This program produces Fig. 1.14. This code demonstrates the effect of aspect angle
% on RCS. The radar is observing two unity point scatterers separated by scat_spacing. 
% Initially the two scatterers are aligned with radar line of sight. The aspect angle is
% changed from 0 degrees to 180 degrees and the equivalent RCS is computed. 
% The RCS as measured by the radar versus aspect angle is then plotted.
scat_spacing = 0.25; % 0.25 meter scatterers spacing
freq = 8e9; % operating frequency
eps = 0.00001;
wavelength = 3.0e+8 / freq;
% Compute aspect angle vector
aspect_degrees = linspace(0, 180, 500); 
aspect_radians = (pi/180) .* aspect_degrees;
% Compute electrical scatterer spacing vector in wavelength units
elec_spacing = (2.0 * scat_spacing / wavelength) .* cos(aspect_radians);
% Compute RCS (rcs = RCS_scat1 + RCS_scat2)
% Scat1 is taken as phase reference point
rcs = abs(1.0 + cos((2.0 * pi) .* elec_spacing) + i * sin((2.0 * pi) .* elec_spacing));
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS in dBsm 
% Plot RCS versus aspect angle
figure (1);
plot(aspect_degrees,rcs);

 Figure 1.14. Illustration of RCS dependency on aspect angle.

chapter1.fm  Page 23  Monday, May 19, 2008  6:32 PM



24      Radar Signal Analysis and Processing Using MATLAB

grid; xlabel('aspect angle in degrees'); ylabel('RCS in dBsm');
title(' Frequency is 8GHz; scatterer spacing is 0.25m');

Next, to demonstrate RCS dependency on frequency, consider the experi-
ment shown in Fig. 1.15. In this case, two far field unity isotropic scatterers are
aligned with radar line of sight, and the composite RCS is measured by the
radar as the frequency is varied from 8 GHz to 12.5 GHz (X-band). Figs. 1.16
and 1.17 show the composite RCS versus frequency for scatterer spacing of
0.25 and 0.75 meters. The figures can be reproduced using the following MAT-
LAB function. 

clear all; close all;
% This program demonstrates the dependency of RCS on wavelength 
% The radar line of sight is aligned with the two scatterers
% A plot of RCS variation versus frequency if produced
eps = 0.0001;
scat_spacing = 0.25;
freql = 8e9;
frequ = 12.5e9;
freq = linspace(freql,frequ,500);
wavelength = 3.0e+8 ./ freq;
% Compute electrical scatterer spacing vector in wavelength units
elec_spacing = 2.0 * scat_spacing ./ wavelength;
% Compute RCS (RCS = RCS_scat1 + RCS_scat2) 
rcs = abs (  1 + cos((2.0 * pi) .* elec_spacing) ... 
            + i * sin((2.0 * pi) .* elec_spacing));
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS ins dBsm
% Plot RCS versus frequency
figure (1);
plot(freq./1e9,rcs);
grid;
xlabel('Frequency in GHz');
ylabel('RCS in dBsm');
% title(' X=Band; scatterer spacing is 0.25 m'); % Fig. 1.16
% title(' X=Band; scatterer spacing is 0.75 m'); % Fig. 1.17

radar

radar line of sight

dist

scat1 scat2

 Figure 1.15. Experiment setup which demonstrates RCS 
dependency on frequency; dist = 0.25, or 0.75 m.
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 Figure 1.16. Illustration of RCS dependency on frequency.

 Figure 1.17. Illustration of RCS dependency on frequency.
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1.7.2. RCS Dependency on Polarization

Normalized Electric Field

In most radar simulations, it is desirable to obtain the complex-valued elec-
tric field scattered by the target at the radar. In such cases, it is useful to use a
quantity called the normalized electric field. It is assumed that the incident
electric field has a magnitude of unity and is phase centered at a point at the
target (usually the center of gravity). More precisely,

(1.54)

where  is the direction of incidence and  a location at the target, each with
respect to the phase center. The normalized scattered field is then given by

(1.55)

The quantity  is independent of radar and target location. It may be com-
bined with an incident magnitude and phase.

Polarization

The x and y electric field components for a wave traveling along the positive
z direction are given by

(1.56)

(1.57)

where ,  is the wave frequency, the angle  is the time phase
angle at which  leads , and finally,  and  are, respectively, the wave
amplitudes along the x and y directions. When two or more electromagnetic
waves combine, their electric fields are integrated vectorially at each point in
space for any specified time. In general, the combined vector traces an ellipse
when observed in the x-y plane. This is illustrated in Fig. 1.18.

The ratio of the major to the minor axes of the polarization ellipse is called
the Axial Ratio (AR). When AR is unity, the polarization ellipse becomes a cir-
cle, and the resultant wave is then called circularly polarized. Alternatively,
when  and , the wave becomes linearly polarized.

Equations (1.56) and (1.57) can be combined to give the instantaneous total
electric field,

(1.58)

Ei e
jk ri r⋅( )

=

ri r

Es σEi=

Es

Ex E1 ωt kz–( )sin=

Ey E2 ωt kz– δ+( )sin=

k 2π λ⁄= ω δ
Ey Ex E1 E2

E1 0= AR ∞=

E âxE1 ωt kz–( )sin âyE2 ωt kz– δ+( )sin+=
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 where  and  are unit vectors along the x and y directions, respectively. At
,  and , then by replacing

 by the ratio  and by using trigonometry properties Eq. (1.58)
can be rewritten as

 (1.59)

which has no dependency on .

In the most general case, the polarization ellipse may have any orientation,
as illustrated in Fig. 1.19. The angle  is called the tilt angle of the ellipse. In
this case, AR is given by 

    (1.60)

When , the wave is said to be linearly polarized in the y direction,
while if , the wave is said to be linearly polarized in the x direction.
Polarization can also be linear at an angle of  when  and

. When  and , the wave is said to be Left Circu-
larly Polarized (LCP), while if  the wave is said to Right Circularly
Polarized (RCP). It is a common notation to call the linear polarizations along
the x and y directions by the names horizontal and vertical polarizations,
respectively. 

 Figure 1.18. Electric field components along the x and y directions. 
The positive z direction is out of the page.
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âx ây
z 0= Ex E1 ωt( )sin= Ey E2 ωt δ+( )sin=

ωt( )sin Ex E1⁄

Ex
2

E1
2

-----
2ExEy δcos

E1E2
---------------------------–

Ey
2

E2
2

-----+ δsin( )2=

ωt

ξ

AR OA
OB
--------= 1 AR ∞≤ ≤( )

E1 0=
E2 0=

45° E1 E2=
ξ 45°= E1 E2= δ 90°=

δ 90°–=

chapter1.fm  Page 27  Monday, May 19, 2008  6:32 PM
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In general, an arbitrarily polarized electric field may be written as the sum of
two circularly polarized fields. More precisely,

(1.61)

where  and  are the RCP and LCP fields, respectively. Similarly, the
RCP and LCP waves can be written as

(1.62)

(1.63)

where  and  are the fields with vertical and horizontal polarizations,
respectively. Combining Eqs. (1.62) and (1.63) yields

(1.64)

(1.65)

Using matrix notation, Eqs. (1.64) and (1.65) can be rewritten as

(1.66)

 Figure 1.19. Polarization ellipse in the general case.
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(1.67)

For many targets the scattered waves will have different polarization than the
incident waves. This phenomenon is known as depolarization or cross-polar-
ization. However, perfect reflectors reflect waves in such a fashion that an inci-
dent wave with horizontal polarization remains horizontal, and an incident
wave with vertical polarization remains vertical but is phase shifted .
Additionally, an incident wave that is RCP becomes LCP when reflected, and a
wave that is LCP becomes RCP after reflection from a perfect reflector. There-
fore, when a radar uses LCP waves for transmission, the receiving antenna
needs to be RCP polarized in order to capture the PP RCS, and LCP to measure
the OP RCS.

Target Scattering Matrix

Target backscattered RCS is commonly described by a matrix known as the
scattering matrix and is denoted by . When an arbitrarily linearly polarized
wave is incident on a target, the backscattered field is then given by

(1.68)

The superscripts  and  denote incident and scattered fields. The quantities
 are in general complex and the subscripts 1 and 2 represent any combina-

tion of orthogonal polarizations. More precisely, , and .
From Eq. (1.50), the backscattered RCS is related to the scattering matrix com-
ponents by the following relation:

(1.69)

It follows that once a scattering matrix is specified, the target backscattered
RCS can be computed for any combination of transmitting and receiving polar-
izations. The reader is advised to see Ruck et al. (1970) for ways to calculate
the scattering matrix . Rewriting Eq. (1.69) in terms of the different possi-
ble orthogonal polarizations yields

(1.70)
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(1.71)

By using the transformation matrix  in Eq. (1.66), the circular scattering
elements can be computed from the linear scattering elements

(1.72)

and the individual components are 

(1.73)

(1.74)

(1.75)

(1.76)

Similarly, the linear scattering elements are given by

(1.77)

and the individual components are

(1.78)

(1.79)

 (1.80)

(1.81)
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1.8.  Radar Equation with Jamming
Any deliberate electronic effort intended to disturb normal radar operation is

usually referred to as an Electronic Countermeasure (ECM). This may also
include chaff, radar decoys, radar RCS alterations (e.g., radio frequency
absorbing materials), and of course, radar jamming. 

Jammers can be categorized into two general types: (1) barrage jammers and
(2) deceptive jammers (repeaters). When strong jamming is present, detection
capability is determined by receiver signal-to-noise plus interference ratio
rather than SNR. In fact, in most cases, detection is established based on the
signal-to-interference ratio alone.

Barrage jammers attempt to increase the noise level across the entire radar
operating bandwidth. Consequently, this lowers the receiver SNR and, in turn,
makes it difficult to detect the desired targets. This is the reason barrage jam-
mers are often called maskers (since they mask the target returns). Barrage
jammers can be deployed in the main beam or in the sidelobes of the radar
antenna. If a barrage jammer is located in the radar main beam, it can take
advantage of the antenna maximum gain to amplify the broadcasted noise sig-
nal. Alternatively, sidelobe barrage jammers must either use more power or
operate at a much shorter range than main-beam jammers. Main-beam barrage
jammers can either be deployed on-board the attacking vehicle or act as an
escort to the target. Sidelobe jammers are often deployed to interfere with a
specific radar, and since they do not stay close to the target, they have a wide
variety of stand-off deployment options. 

Repeater jammers carry receiving devices on board in order to analyze the
radar’s transmission and then send back false target-like signals in order to
confuse the radar. There are two common types of repeater jammers: spot noise
repeaters and deceptive repeaters. The spot noise repeater measures the trans-
mitted radar signal bandwidth and then jams only a specific range of frequen-
cies. The deceptive repeater sends back altered signals that make the target
appear in some false position (ghosts). These ghosts may appear at different
ranges or angles than the actual target. Furthermore, there may be several
ghosts created by a single jammer. By not having to jam the entire radar band-
width, repeater jammers are able to make more efficient use of their jamming
power. Radar frequency agility may be the only way possible to defeat spot
noise repeaters.

In general a jammer can be identified by its effective operating bandwidth
 and by its Effective Radiated Power (ERP), which is proportional to the

jammer transmitter power . More precisely,

(1.82)

BJ
PJ

ERP PJGJ LJ⁄=
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where  is the jammer antenna gain and  is the total jammer loss. The
effect of a jammer on a radar is measured by the Signal-to-Jammer ratio (S/J).

Consider a radar system whose detection range  in the absence of jamming
is governed by

(1.83)

The term Range Reduction Factor (RRF) refers to the reduction in the radar
detection range due to jamming. More precisely, in the presence of jamming
the effective radar detection range is

(1.84)

In order to compute RRF, consider a radar characterized by Eq. (1.83) and a
barrage jammer whose output power spectral density is  (i.e., Gaussian-
like). Then the amount of jammer power in the radar receiver is

(1.85)

where  is the jammer effective temperature. It follows that the total jammer
plus noise power in the radar receiver is given by 

(1.86)

In this case, the radar detection range is now limited by the receiver signal-to-
noise plus interference ratio rather than SNR. More precisely,

(1.87)

The amount of reduction in the signal-to-noise plus interference ratio because
of the jammer effect can be computed from the difference between Eqs. (1.83)
and (1.87). It is expressed (in dB) by

 (1.88)

Consequently, the RRF is 

(1.89)

Figures 1.20 a and b show typical value for the RRF versus the radar wave-
length and detection range using the following parameters

GJ LJ

R

SNR
PtG

2λ2σ

4π( )3kTsBrLR4
--------------------------------------=

Rdj R RRF×=

Jo

J kTJBr=

TJ

Ni J+ kTsBr kTJBr+=

S
J N+
-------------⎝ ⎠
⎛ ⎞ PtG

2λ2σ

4π( )3k Ts TJ+( )BrLR4
-------------------------------------------------------=

ϒ 10.0 1
TJ

Ts
-----+⎝ ⎠

⎛ ⎞log×=

RRF 10
ϒ–

40
------

=

chapter1.fm  Page 32  Monday, May 19, 2008  6:32 PM



Radar Equation with Jamming 33

This figure can be reproduced using the following MATLAB code

clear all;
close all;
te = 730.0; % radar effective temp in Kelvin
pj  = 15; % jammer peak power in W
gj = 3.0; % jammer antenna gain in dB
g = 40.0; % radar antenna gain
freq = 10.0e+9; % radar operating frequency in Hz
bj  = 1.0e+6; % radar operating bandwidth in Hz
rangej = 400.0; % radar to jammer range in Km
lossj = 1.0; % jammer losses in dB
c = 3.0e+8;
k = 1.38e-23;
lambda = c / freq;
gj_10 = 10^( gj/10);
g_10 = 10^( g/10);
lossj_10 = 10^(lossj/10);
index = 0;
for wavelength = .01:.001:1
   index = index +1;
   jamer_temp = (pj * gj_10 * g_10 *wavelength^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (rangej * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / te));
   rrf(index) = 10^(-delta /40.0); 
end
w = 0.01:.001:1;
figure (1)
semilogx(w,rrf,'k')
grid
xlabel ('Wavelength in meters')
ylabel ('Range reduction factor')
index = 0;

Symbol Value

te 500 kelvin

pj 500 KW

gj 3 dB

g 45 dB

freq 10 GHz

bj 10 MHZ

rangej 750 Km

lossj 1 dB
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for ran =rangej*.3:10:rangej*2
   index = index + 1;
   jamer_temp = (pj * gj_10 * g_10 *lambda^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (ran * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / te));
   rrf1(index) = 10^(-delta /40.0);
end
figure(2)
ranvar = rangej*.3:10:rangej*2 ;
plot(ranvar,rrf1,'k')
grid
xlabel ('Radar to jammer range in Km')
ylabel ('Range reduction factor')
index = 0;
for pjvar = pj*.01:100:pj*2
   index = index + 1;
   jamer_temp = (pjvar * gj_10 * g_10 *lambda^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (rangej * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / te));
   rrf2(index) = 10^(-delta /40.0);
end

 Figure 1.20a. Range reduction factor versus radar to jammer range. This 
plot was generated using the function “range_red_factor.m.”
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1.9. Noise Figure
Any signal other than the target returns in the radar receiver is considered to

be noise. This includes interfering signals from outside the radar and thermal
noise generated within the receiver itself. Thermal noise (thermal agitation of
electrons) and shot noise (variation in carrier density of a semiconductor) are
the two main internal noise sources within a radar receiver. 

The power spectral density of thermal noise is given by 

(1.90)

where  is the absolute value of the frequency in radians per second,  is the
temperature of the conducting medium in degrees Kelvin,  is Boltzman’s
constant, and  is Plank’s constant ( ). When the
condition  is true, it can be shown that Eq. (1.90) is approxi-
mated by 

(1.91)

 Figure 1.20b. Range reduction factor versus radar operating wavelength. This 
plot was generated using the function “range_red_factor.m.”
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This approximation is widely accepted, since, in practice, radar systems oper-
ate at frequencies less than ; and, for example, if , then

. 

The mean-square noise voltage (noise power) generated across a 
resistance is then

(1.92)

where  is the system bandwidth. Any electrical system containing thermal
noise and having input resistance  can be replaced by an equivalent noise-
less system with a series combination of a noise equivalent voltage source and
a noiseless input resistor  added at its input. This is illustrated in Fig. 1.21. 

The amount of noise power that can physically be extracted from  is one
fourth the value computed in Eq. (1.92). Consider a noisy system with power
gain , as shown in Fig. 1.22. The noise figure is defined by

(1.93)

100GHz T 290K=
2πkT h⁄ 6000GHz≈
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∫ 4kTB= =

B
Rin

Rin
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systemn2〈 〉 4kTBRin=
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Figure 1.21. Noiseless system with an input noise voltage source.
                                  

n2〈 〉

AP

FdB 10 total noise power out
noise power out due to Rin alone
-------------------------------------------------------------------------------------------------log=

Rin

n2〈 〉

AP

      Figure 1.22. Noisy amplifier replaced by its noiseless equivalent   
and an input voltage source in series with a resistor.
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More precisely,

(1.94)

where  and  are, respectively, the noise power at the output and input of
the system.

If we define the input and output signal power by  and , respectively,
then the power gain is

(1.95)

It follows that

(1.96)

where

(1.97)

Thus, the noise figure is the loss in the signal-to-noise ratio due to the added
thermal noise of the amplifier .

One can also express the noise figure in terms of the system’s effective tem-
perature . Consider the amplifier shown in Fig. 1.22, and let its effective
temperature be . Assume the input noise temperature is . Thus, the input
noise power is 

(1.98)

and the output noise power is

(1.99)

where the first term on the right-hand side of Eq. (1.99) corresponds to the
input noise, and the latter term is due to thermal noise generated inside the sys-
tem. It follows that the noise figure can be expressed as

(1.100)

Equivalently, we can write 

(1.101)
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Example: 

An amplifier has a 4dB noise figure; the bandwidth is . Calcu-
late the input signal power that yields a unity SNR at the output. Assume

 and an input resistance of one ohm.

Solution: 

The input noise power is

Assuming a voltage signal, then the input noise mean squared voltage is 

 

From the noise figure definition we get

and 

Finally,

Consider a cascaded system as in Fig. 1.23. Network 1 is defined by noise
figure , power gain , bandwidth , and temperature . Similarly, net-
work 2 is defined by , , , and . Assume the input noise has temper-
ature .

B 500 KHz=

T0 290K=
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Figure 1.23. Cascaded linear system.

network 1
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The output signal power is 

(1.102)

The input and output noise powers are, respectively, given by

(1.103)

(1.104)

where the three terms on the right-hand side of Eq. (1.104), respectively, corre-
spond to the input noise power, thermal noise generated inside network 1, and
thermal noise generated inside network 2.

Now if we use the relation  along with Eq. (1.02), we can
express the overall output noise power as

(1.105)

It follows that the overall noise figure for the cascaded system is 

(1.106)

In general, for an n-stage system we get

(1.107)

Also, the n-stage system effective temperatures can be computed as 

(1.108)

As suggested by Eq. (1.107) and Eq. (1.108), the overall noise figure is mainly
dominated by the first stage. Thus, radar receivers employ low noise power
amplifiers in the first stage in order to minimize the overall receiver noise fig-
ure. However, for radar systems that are built for low RCS operations every
stage should be included in the analysis.

Example: 

A radar receiver consists of an antenna with cable loss , an
RF amplifier with , and gain , followed by a mixer
whose noise figure is  and conversion loss , and finally,
an integrated circuit IF amplifier with  and gain . Find
the overall noise figure.
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Solution: 

From Eq. (1.107) we have

It follows that

1.10. Effects of the Earth’s Surface on the Radar
Equation

So far, in developing the radar equation it was implicitly assumed that the
radar electromagnetic waves travel as if they were in free space. Furthermore,
all analysis presented did not account for the effects of the earth’s atmosphere
nor the effects of the earth’s surface. Despite the fact that “free space analysis”
may be adequate to provide a general understanding of radar systems, it is only
an approximation. In order to accurately predict radar performance, we must
modify free space analysis to include the effects of the earth and its atmo-
sphere. Radar clutter is not considered to be part of this analysis. This is true
because clutter is almost always assumed to be a distributed target that can be
dealt with by the radar signal processor separately. Clutter is the subject of dis-
cussion in a later chapter of this book.

In this chapter, the effects of the earth’s atmosphere are considered first.
Then, the effect of the earth’ surface on the radar equation is analyzed. The
earth’s surface impact on the radar equation manifests itself by introducing an
additional power term in the radar equation. This term is called the pattern
propagation factor and is denoted by symbol . The propagation factor, can
actually introduce constructive as well as distructive interference in the SNR
depending on the radar frequency and the geometry under consideration. In
general, the pattern propagation factor is defined by

(1.109a)
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where  is the electric field in the medium and  is the free space electric
field. In this case the radar equation is now given by

(1.109b)

1.10.1.  Earth’s Atmosphere

The earth’s atmosphere is composed of several layers, as illustrated in Fig.
1.24. The first layer, which extends in altitude to about 20 Km, is known as the
troposphere. Electromagnetic waves refract (bend downward) as they travel in
the troposphere. The troposphere refractive effect is related to its dielectric
constant, which is a function of pressure, temperature, water vapor, and gas-
eous content. Additionally, due to gases and water vapor in the atmosphere,
radar energy suffers a loss. This loss is known as the atmospheric attenuation.
Atmospheric attenuation increases significantly in the presence of rain, fog,
dust, and clouds. 

The region above the troposphere (altitude from 20 to 50 Km) behaves like
free space, and thus little refraction occurs in this region. This region is known
as the interference zone. The ionosphere extends from about 50 Km to about
600 Km. It has very low gas density compared to the troposphere. It contains a
significant amount of ionized free electrons. The ionization is primarily caused
by the sun’s ultraviolet and X-rays. This presence of free electrons in the iono-
sphere affects electromagnetic wave propagation in different ways. These

E E0

SNR( )o
PtG

2λ2σ

4π( )3kT0BFLR4
----------------------------------------F4=

Figure 1.24. Earth’s atmosphere geometry.
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effects include refraction, absorption, noise emission, and polarization rotation.
The degree of degradation depends heavily on the frequency of the incident
waves. For example, frequencies lower than about 4 to 6 MHz are completely
reflected from the lower region of the ionosphere. Frequencies higher than 30
MHz may penetrate the ionosphere with some level of attenuation. In general,
as the frequency is increased the ionosphere’s effects become less prominent.
The region below the horizon, close to the earth’s surface, is called the diffrac-
tion region. Diffraction is a term used to describe the bending of radar waves
around physical objects. Two types of diffraction are common. They are knife
edge and cylinder edge diffraction.

In order to effectively study the effects of the atmosphere on the propagation
of radar waves, it is necessary to have accurate knowledge of the height-varia-
tion of the index of refracting in the troposphere and the ionosphere. The index
of refraction is a function of the geographic location on the earth, weather, time
of day or night, and the season of the year. Therefore, analyzing the atmo-
spheric propagation effects under all parametric conditions is an overwhelming
task. Typically, this problem is simplified by analyzing atmospheric models
that are representative of an average of atmospheric conditions. 

1.10.2.  Refraction

In free space, electromagnetic waves travel in straight lines. However, in the
presence of the earth’s atmosphere, they bend (refract), as illustrated in Fig.
1.25. Refraction is a term used to describe the deviation of radar wave propa-
gation from a straight line. The deviation from straight line propagation is
caused by the variation of the index of refraction. The index of refraction is
defined as 

(1.110)n c v⁄=

horizon

earth’s surface

refracted ray path

free space ray path

 Figure 1.25. Bending of radio waves due to the variation in the 
atmosphere index of refraction.
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where  is the velocity of electromagnetic waves in free space and  is the
wave group velocity in the medium. Close to the earth’s surface the index of
refraction is almost unity; however, with increasing altitude the index of refrac-
tion decreases gradually. 

The discussion presented in this chapter assumes a well-mixed atmosphere,
where the index of refraction decreases in a smooth monotonic fashion with
height. The rate of change of the earth’s index of refraction  with altitude 
is normally referred to as the refractivity gradient, . As a result of the
negative rate of change in , electromagnetic waves travel at slightly
higher velocities in the upper troposphere than in the lower part. As a result of
this, waves traveling horizontally in the troposphere gradually bend down-
ward. In general, since the rate of change in the refractivity index is very slight,
waves do not curve downward appreciably unless they travel very long dis-
tances through the troposphere.

 Refraction affects radar waves in two different ways depending on height.
For targets that have altitudes typically above 100 meters, the effect of refrac-
tion is illustrated in Fig. 1.26. In this case, refraction imposes limitations on the
radar’s capability to measure target position. Refraction introduces an error in
measuring the elevation angle. In a well mixed atmosphere, the refractivity
gradient close to the earth’s surface is almost constant. However, temperature
changes and humidity lapses close to the earth’s surface may cause serious
changes in the refractivity profile. When the refractivity index becomes large
enough, electromagnetic waves bend around the curve of the earth beyond the
expected curvature due to earth surface. This phenomenon is called ducting
and is illustrated in Fig. 1.27. Ducting can be extensive over the sea surface
during a hot summer.

c v

n h
dn dh⁄

dn dh⁄

 Figure 1.26. Refraction high altitude effect on electromagnetic waves.
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Stratified Atmospheric Refraction Model

An approximation method for calculating the range measurement errors and
the time-delay errors experienced by radar waves due to refraction is pre-
sented. This method is referred to as the “stratified atmospheric model” and is
capable of producing very accurate theoretical estimates of the propagation
errors. The basic assumption for this approach is that the atmosphere is strati-
fied into  spherical layers, each of thickness , and a
constant refractive index , as illustrated in Fig. 1.28. In
this figure,  is the apparent elevation angle and  is the true elevation
angle. The free space path is denoted by , while the refracted path is com-
posed of . From the figure,

(1.111)

where  is the actual radius of the earth and is equal to 6375 Km. Using the
law of sines, the angle of incidence  is given by

(1.112)

Using Snell’s law for spherically symmetrical surfaces, the  angle, , that
the ray makes with the horizon in layer  is given by

(1.113)

Consequently,

(1.114)

 Figure 1.27. Refraction low altitude effect on electromagnetic waves.
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From Eq. (1.112) one can write the general expression for the angle of inci-
dence. More precisely,

(1.115)

Applying the law of sines of the direct path  yields

(1.116)
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 Figure 1.28. Atmosphere stratification.
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(1.117)

(1.118)

The refraction angle error is measured as the difference between the apparent
and true elevation angles. Thus, it is given by

(1.119)

Note that for , 

(1.120)

Furthermore, when ,

(1.121)

Now, in order to determine the time-delay error due to refraction, refer again
to Fig. 1.28. The time it takes an electromagnetic wave to travel through a
given layer, , is defined as  where

(1.122)

and where  is the phase velocity in the  layer and is defined by

(1.123)

It follows that the total time of travel of the refracted wave in a stratified atmo-
sphere is given by

(1.124)

The free space travel time of an unrefracted wave is denoted by , 

(1.125)

Therefore, the range error  that results from refraction is

(1.126)
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By using the law of cosines one computes  as

(1.127)

The results stated in Eqs. (1.125) and (1.26) are valid only in the tropo-
sphere. In the ionosphere, which is a dispersive medium, the index of refrac-
tion is also a function of frequency. In this case, the group velocity must be
used when estimating the range errors of radar measurements. Thus, the total
time of travel in the medium is now given by

(1.128)

Finally, the range error in the ionosphere is 

(1.129)

1.10.3. Four-Third Earth Model 

An effective and fairly accurate technique for dealing with refraction is to
replace the actual earth with an imaginary earth whose radius is ,
where  is the actual earth radius, and  is 

(1.130)

When the refractivity gradient is assumed to be constant with altitude and is
equal to  per meter, then . Using an effective earth radius

 produces what is known as the “four-third earth model.” In
general, choosing 

(1.131)

produces a propagation model where waves travel in straight lines. Selecting
the correct value for  depends heavily on the region’s meteorological condi-
tions. At low altitudes (typically less than 10 Km) when using the 4/3 earth
model, one can assume that radar waves (beams) travel in straight lines and do
not refract. This is illustrated in Fig. 1.29.

1.10.4. Ground Reflection 

When radar waves are reflected from the earth’s surface, they suffer a loss in
amplitude and a change in phase. Three factors that contribute to these changes
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they are the smooth surface reflection coefficient, the divergence factor due to
earth’s curvature, and the surface roughness.

Smooth Surface Reflection Coefficient

The smooth surface reflection coefficient depends on the frequency, the sur-
face dielectric coefficient, and the radar grazing angle. The vertical polariza-
tion and the horizontal polarization reflection coefficients are 

(1.132)

(1.133)

where  is the grazing angle (incident angle) and  is the complex dielectric
constant of the surface, and are given by

(1.134)

where  is the wavelength and  the medium conductivity in mhos/meter.
Typical values of  and  can be found tabulated in the literature.

Note that when , we get

ro
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radar target

unrefracted beam

refracted beam
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 Figure 1.29. Geometry for 4/3 earth.
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(1.135)

while when the grazing angle is very small ( ), we have

(1.136)

Tables 1.1 and 1.2 show some typical values for the electromagnetic proper-
ties of soil and sea water. Figure 1.30 shows the corresponding magnitude plots
for  and , while Fig. 1.31 shows the phase plots for seawater at 
where  and  at X-band. The plots shown in these figures
show the general typical behavior of the reflection coefficient. 

Observation of Fig. 1.30 indicates the following conclusions: (1) The magni-
tude of the reflection coefficient with horizontal polarization is equal to unity
at very small grazing angles and it decreases monotonically as the angle is
increased. (2) The magnitude of the vertical polarization has a well-defined
minimum. The angle that corresponds to this condition is called Brewster’s

Γh
1 ε–
1 ε+
---------------- ε ε–

ε ε+
---------------– Γv–= = =

ψg 0≈

Γh 1– Γv= =

Γh Γv 28°C
ε' 65= ε'' 30.7=

Moisture content by volume 
0.3% 10% 20% 30% Frequency 

GHz ε′  ε ′′  ε′  ε ′′  ε′  ε ′′  ε′  ε ′′  
0.3 2.9 0.071 6.0 0.45 10.5 0.75 16.7 1.2 
3.0 2.9 0.027 6.0 0.40 10.5 1.1 16.7 2.0 
8.0 2.8 0.032 5.8 0.87 10.3 2.5 15.3 4.1 
14.0 2.8 0.350 5.6 1.14 9.4 3.7 12.6 6.3 
24 2.6 0.030 4.9 1.15 7.7 4.8 9.6 8.5 

 

Table 1.1. Electromagnetic properties of soil.

Table 1.2. Electromagnetic properties of sea water. 

Temperature 
CT o0=  CT o10=  CT o20=  Frequency 

GHz 
ε′  ε ′′  ε ′  ε ′′  ε ′  ε ′′  

0.1 77.8 522 75.6 684 72.5 864 
1.0 77.0 59.4 75.2 73.8 72.3 90.0 
2.0 74.0 41.4 74.0 45.0 71.6 50.4 
3.0 71.0 38.4 72.1 38.4 70.5 40.2 
4.0 66.5 39.6 69.5 36.9 69.1 36.0 
6.0 56.5 42.0 63.2 39.0 65.4 36.0 
8.0 47.0 42.8 56.2 40.5 60.8 36.0 
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polarization angle. For this reason, airborne radars in the look-down mode uti-
lize mainly vertical polarization to significantly reduce the terrain bounce
reflections. (3) For horizontal polarization the phase is almost ; however, for
vertical polarization the phase changes to zero around the Brewster’s angle. (4)
For very small angles (less than ) both  and  are nearly one;

and  are nearly . Thus, little difference in the propagation of hori-
zontally or vertically polarized waves exists at low grazing angles. Figure 1.30
can be reproduced using the following MATLAB code.

close all; clear all
psi = 0.01:0.05:90;
[rh,rv] = ref_coef (psi, 65,30.7);
gamamodv = abs(rv); gamamodh = abs(rh); subplot(2,1,1)
plot(psi,gamamodv,'k',psi,gamamodh,'k -.','linewidth',1.5); grid
legend ('Vertical Polarization', 'Horizontal Polarization')
title('Reflection coefficient - magnitude')
pv = -angle(rv); ph = angle(rh); subplot(2,1,2)
plot(psi,pv,'k',psi,ph,'k -.','linewidth',1.5); grid
legend ('Vertical Polarizatio', 'Horizontal Polarization')
title('Reflection coefficient - phase'); xlabel('Grazing angle in degrees');

Figures 1.31 and 1.32 show the magnitudes of the horizontal and vertical
reflection coefficients as a function of grazing angle for four soils at 8 GHz. 

π

2° Γh Γv
Γh∠ Γv∠ π

Γ∠

Figure 1.30. Reflection coefficient magnitude.

Γ
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 Figure 1.31. Vertical reflection coefficient for soil at 8 GHz.

 Figure 1.32. Horizontal reflection coefficient for soil at 8 GHz.
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Divergence

The overall reflection coefficient is also affected by the round earth diver-
gence factor, . When an electromagnetic wave is incident on a round earth
surface, the reflected wave diverges because of the earth’s curvature. This is
illustrated in Fig. 1.33. Due to divergence the reflected energy is defocused,
and the radar power density is reduced. The divergence factor can be derived
using geometrical considerations. 

The divergence factor can be expressed as

(1.137)

where all the parameters in Eq. (1.137) are defined in Fig. 1.34. Since the graz-
ing  is always small when the divergence  is very large, the following
approximation is adequate in most radar cases of interest:

(1.138)

Rough Surface Reflection

In addition to divergence, surface roughness also affects the reflection coef-
ficient. Surface roughness is given by 

(1.139)
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 Figure 1.33. Illustration of divergence. Solid line: Ray perimeter for 
spherical earth. Dashed line: Ray perimeter for flat earth. 
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where  is the root mean square (rms) surface height irregularity. Another
form for the rough surface reflection coefficient that is more consistent with
experimental results is given by

(1.140)

(1.141)

where  is the modified Bessel function of order zero. 

Total Reflection Coefficient

In general, rays reflected from rough surfaces undergo changes in phase and
amplitude, which results in the diffused (noncoherent) portion of the reflected
signal. Combining the effects of smooth surface reflection coefficient, diver-
gence, and the rough surface reflection coefficient, one express the total reflec-
tion coefficient  as

(1.142)

 is the horizontal or vertical smooth surface reflection coefficient,  is
divergence, and  is the rough surface reflection coefficient.

1.10.5. The Pattern Propagation Factor - Flat Earth

Consider the geometry shown in Fig. 1.35. The radar is located at height .
The target is at range , and is located at a height . The grazing angle is .
The radar energy emanating from its antenna will reach the target via two
paths: the “direct path”  and the “indirect path” . 
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 Figure 1.34. Definition of variables in Eq. (1.137).
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The lengths of the paths  and  are normally very close to one
another and thus, the difference between the two paths is very small. Denote
the direct path as , the indirect path as , and the difference as

. It follows that the phase difference between the two paths is
given by 

(1.143)

where  is the radar wavelength. 

The indirect signal amplitude arriving at the target is less than the signal
amplitude arriving via the direct path. This is because the antenna gain in the
direction of the indirect path is less than that along the direct path, and because
the signal reflected from the earth’s surface at point  is modified in ampli-
tude and phase in accordance to the earth’s reflection coefficient, . The earth
reflection coefficient is given by

(1.144)

where  is less than unity and  describes the phase shift induced on the indi-
rect path signal due to surface roughness.

The direct signal (in volts) arriving at the target via the direct path can be
written as

(1.145)

where the time harmonic term  represents the signal’s time depen-
dency, and the exponential term  represents the signal spatial
phase. The indirect signal at the target is 

(1.146)

where  is the surface reflection coefficient. Therefore, the overall
signal arriving at the target is 

(1.147)

Due to reflections from the earth’s surface, the overall signal strength is then
modified at the target by the ratio of the signal strength in the presence of earth
to the signal strength at the target in free space. From Eq. (1.147) the modulus
of this ratio is the propagation factor is 
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(1.148)

which can be rewritten as

(1.149)

where . Using Euler’s identity ( ), Eq.
(1.149) can be written as

(1.150)

It follows that the signal power at the target is modified by the factor . By
using reciprocity, the signal power at the radar is computed by multiplying the
radar equation by the factor . In the following two sections we will develop
exact expressions for the propagation factor for flat and curved earth.

In order to calculate the propagation factor defined in Eq. (1.150), consider
the geometry of Fig. 1.35; the direct and indirect paths are computed as

(1.151)

(1.152)

which can be approximated using the truncated binomial series expansion as

(1.153)

(1.154)

This approximation is valid for low grazing angles, where . It follows
that

(1.155)

Substituting Eq. (1.155) into Eq. (1.143) yields the phase difference due to
multipath propagation between the two signals (direct and indirect) arriving at
the target. More precisely,

(1.156)
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As a special case, assume smooth surface with reflection coefficient
. This assumption means that waves reflected from the surface suffer

no amplitude loss, and that the induced surface phase shift is equal to . It
follows that

(1.157)

Substituting Eq. (1.156) into Eq. (1.157) yields

(1.158)

By using reciprocity, the expression for the propagation factor at the radar is
then given by

(1.159)

Finally, the signal power at the radar is computed by multiplying the radar
equation by the factor :

(1.160)

Since the sine function varies between  and , the signal power will then
vary between  and . Therefore, the fourth power relation between signal
power and the target range results in varying the target range from  to twice
the actual range in free space. In addition to that, the field strength at the radar
will now have holes that correspond to the nulls of the propagation factor. 

The nulls of the propagation factor occur when the sine is equal to zero.
More precisely, 

(1.161)

where . The maxima occur at 

(1.162)

The target heights that produce nulls in the propagation factor are
, and the peaks are produced from target

heights . Therefore, due to the presence of sur-
face reflections, the antenna elevation coverage is transformed into a lobed pat-
tern structure. 
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For small angles, Eq. (1.160) can be approximated by 

(1.163)

Thus, the received signal power varies as the eighth power of the range instead
of the fourth power. Also, the factor  is now replaced by .

1.10.6. The Pattern Propagation Factor - Spherical Earth

In order to model the effects of multipath propagation on radar performance
more accurately, we need to remove the flat earth condition and account for the
earth’s curvature. When considering round earth, electromagnetic waves travel
in curved paths because of the atmospheric refraction. And as mentioned ear-
lier, the most commonly used approach to mitigating the effects of atmospheric
refraction is to replace the actual earth by an imaginary earth such that electro-
magnetic waves travel in straight lines. The fictitious effective earth radius is

(1.164)

where  is a constant and  is the actual earth radius. Using the geometry in
Fig. 1.36, the direct and indirect path difference is 

(1.165)

The propagation factor is computed by using  from Eq. (1.150). To com-
pute ( , , and ), the following cubic equation must first be solved for

:

(1.166)

The solution is

 (1.167)

where

(1.168)

(1.169)

Next, we solve for , , and . From Fig. 1.36 (assume flat 4/3 earth
and use small angle approximation),
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(1.170)

(1.171)

Using the law of cosines to the triangles ABO and BOC yields

(1.172)

(1.173)

Eqs. (1.172) and (1.173) can be written in the following simpler forms:
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 Figure 1.36. Geometry associated with multipath propagation over round earth.
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(1.174)

(1.175)

Using the law of cosines on the triangle AOC yields

(1.176)

Additionally

(1.177)

Substituting Eqs. (1.174) through (1.176) directly into Eq. (1.165) may not
be conducive to numerical accuracy. A more suitable form for the computation
of  is then derived. The detailed derivation is in Blake (1980). The results
are listed below. For better numerical accuracy use the following expression to
compute :

 (1.178)

where

(1.179)

MATLAB Program “multipath.m”

The MATLAB program “multipath.m” calculates the two-way propagation
factor using the 4/3 earth model for spherical earth. It assumes a known free
space radar-to-target range. It can be easily modified to assume a known true
spherical earth ground range between the radar and the target. Additionally,
this program generates three types of plots. They are (1) the propagation factor
as a function of range, (2) the free space relative signal level versus range, and
(3) the relative signal level with multipath effects included. This program uses
the equations presented in the previous few sections and includes the effects of
the total surface reflection coefficient . Finally, it can also be easily modi-
fied to plot the propagation factor versus target height at a fixed target range. 

Using this program, Fig. 1.37 presents a plot for the propagation factor loss
versus range using , , and . In this
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example, vertical polarization is assumed. Divergence effects are not included;
neither is the reflection coefficient. More precisely in this example

 is assumed.

1.10.7. Diffraction

The analysis that led to creating the multipath model described in the previ-
ous section applies only to ground reflections from the intermediate region, as
illustrated in Fig. 1.38. The effects of ground reflection below the radar hori-
zon is governed by another physical phenomenon referred to as diffraction.
The diffraction model requires calculations of the Airy function and its roots.
For this purpose, the numerical approximation presented in Shatz and Poly-
chronopoulos1 is adopted. This numerical algorithm, described by Shatz and
Polychronopoulos, is very accurate and its implementation using MATLAB is
straight forward.

1. Shatz, M. P., and Polychronopoulos, G. H., An Algorithm for Evaluation of Radar 
Propagation in the Spherical Earth Diffraction Region. IEEE Transactions on 
Antenna and Propagation, Vol. 38, August 1990, pp. 1249-1252.

D Γt 1= =

 Figure 1.37. Effect of multipath on the radar sensitivity. 
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Define the following parameters,

(1.180)

where  is the radar altitude,  is target altitude,  is range to the target, 
and  are normalizing factors given by

(1.181)

(1.182)

 is the wavelength and  is the effective earth radius. Let  denote the
Airy function defined by

(1.183)

The general expression for the propagation factor in the diffraction region is
equal to

(1.184)

where  are defined in Eq. (1.180) and 

(1.185)

 Figure 1.38. Diffraction region.
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where  is the nth root of the Airy function and  is the first derivative of
the Airy function. Shatz and Polychronopoulos showed that Eq. (1.184) can be
approximated by

 (1.186)

where

(1.187)

Shatz and Polychronopoulos showed that sum in Eq. (1.186) represents
accurate computation of the propagation factor within the diffraction region. In
this book, a MATLAB program called “diffraction.m” was written by this
author to implement Eq. (1.86) where the sum is terminated at  for
accurate computation. For this purpose, another MATLAB function called
“airyzo1.m” was used to compute the roots of Airy function and the roots of its
first derivative. Figure 1.39 (after Shatz) shows a typical output generated by
this program for , , and . 

This figure can be reproduced using the following MATLAB code.

% Figure 1.39 or Figure 1.40
clc
clear all
close all
freq =167e6;
hr = 8000; 
ht = 1000;
R = linspace(400e3,600e3,200); % range in Km
nt =1500; % number of point used in calculating infinite series
F = diffraction(freq, hr, ht, R, nt);
figure(1)
plot(R/1000,10*log10(abs(F).^2),'k','linewidth',1)
grid 
xlabel('Range in Km')
ylabel('One way propagation factor in dB')
title('frequency = 167MHz; hr = 8000 m; ht = 1000m')

Figure 1.40 is similar to Fig. 1.39 except in this case the following parameters
are used: , , and . Figure
1.41 shows a plot for the propagation factor using the same parameters in Fig.
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1.40; however, in this figure, both intermediate and diffraction regions are
shown.

 

Figure 1.39. Propagation factor in the diffraction region. 

Figure 1.40. Propagation factor in the diffraction region. 
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1.11. Atmospheric Attenuation
Electromagnetic waves travel in free space without suffering any energy

loss. Alternatively, due to gases and water vapor in the atmosphere, radar
energy suffers a loss. This loss is known as atmospheric attenuation. Atmo-
spheric attenuation increases significantly in the presence of rain, fog, dust,
and clouds. Most of the lost radar energy is normally absorbed by gases and
water vapor and transformed into heat, while a small portion of this lost energy
is used in molecular transformation of the atmosphere particles. 

The two-way atmospheric attenuation over a range  can be expressed as

(1.188)

where  is the one-way attenuation coefficient. Water vapor attenuation peaks
at about , while attenuation due to oxygen peaks at between  and

. Atmospheric attenuation is severe for frequencies higher than
. This is the reason ground-based radars rarely use frequencies higher

than . Atmospheric attenuation is a function range, frequency, and ele-
vation angle. Figure 1.42 shows a typical two-way atmospheric attenuation
plot versus range at , with the elevation angle as a parameter.

Figure 1.41. Propagation factor. 
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1.12.  MATLAB Program Listings
This section presents listings for all the MATLAB programs used to produce

all of the MATLAB-generated figures in this chapter. They are listed in the
same order they appear in the text.

1.12.1. MATLAB Function “range_resolution.m”

The MATLAB function “range_resolution.m” calculates range resolution;
its syntax is as follows:

[delta_R] = range_resolution(var, indicator)

where

Symbol Description Units Status

var, indicator bandwidth, “hz” Hz, none inputs

var, indicator pulse width, “s’’ seconds, none inputs

delta_R range resolution meters output
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Figure 1.42. Attenuation versus range; frequency is 3 GHz. 
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MATLAB Function “range_resolution.m” Listing

function [delta_R] = range_resolution(bandwidth, indicator)
% This function computes radar range resolution in meters
% the bandwidth must be in Hz ==> indicator = Hz.
% Bandwidth may be equal to (1/pulse width)==> indicator = seconds
c = 3.e+8; % speed of light
if(indicator == 'hz')
   delta_R = c / 2.0 / bandwidth; 
else
   delta_R = c * bandwidth / 2.0;
end
return

1.12.2. MATLAB Function “radar_eq.m”

The function “radar_eq.m” implements Eq. (1.40); its syntax is as follows:

[snr] = radar_eq (pt, freq, g, sigma, b, nf, loss, range)

where

MATLAB Function “radar_eq.m” Listing

function [snr] = radar_eq(pt, freq, g, sigma, b, nf, loss, range)
% This program implements Eq. (1.40)
c = 3.0e+8; % speed of light
lambda = c / freq; % wavelength
p_peak = 10*log10(pt); % convert peak power to dB
lambda_sqdb = 10*log10(lambda^2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB
four_pi_cub = 10*log10((4.0 * pi)^3); % (4pi)^3 in dB

Symbol Description Units Status

pt peak power Watts input

freq radar center frequency Hz input

g antenna gain dB input

sigma target cross section m2 input

b bandwidth Hz input

nf noise figure dB input

loss radar losses dB input

range target range (can be either a sin-
gle value or a vector)

meters input

snr SNR (single value or a vector, 
depending on the input range)

dB output
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k_db = 10*log10(1.38e-23); % Boltzmann's constant in dB
to_db = 10*log10(290); % noise temp. in dB
b_db = 10*log10(b); % bandwidth in dB
range_pwr4_db = 10*log10(range.^4); % vector of target range^4 in dB
% Implement Equation (1.63)
num = p_peak + g + g + lambda_sqdb + sigmadb;
den = four_pi_cub + k_db + to_db + b_db + nf + loss + range_pwr4_db;
snr = num - den;
return

1.12.3. MATLAB Function “power_aperture.m”

The function “power_aperture.m” implements the search radar equation
given in Eq. (1.47); its syntax is as follows:

PAP = power_aperture (snr, tsc, sigma, range, nf, loss, az_angle, el_angle)

where

MATLAB Function “power_aperture.m” Listing

function PAP = power_aperture(snr,tsc,sigma,range,nf,loss,az_angle,el_angle)
% This program implements Eq. (1.47)
Tsc = 10*log10(tsc); % convert Tsc into dB
Sigma = 10*log10(sigma); % convert sigma to dB
four_pi = 10*log10(4.0 * pi); % (4pi) in dB
k_db = 10*log10(1.38e-23); % Boltzmann's constant in dB
To = 10*log10(290); % noise temp. in dB
range_pwr4_db = 10*log10(range.^4); % target range^4 in dB
omega = (az_angle/57.296) * (el_angle / 57.296); 
% compute search volume in steraradians
Omega = 10*log10(omega); % search volume in dB
% implement Eq. (1.79)
PAP = snr + four_pi + k_db + To + nf + loss + range_pwr4_db + Omega ...

Symbol Description Units Status

snr sensitivity snr dB input

tsc scan time seconds input

sigma target cross section m2 input

range target range meters input

nf noise figure dB input

loss radar losses dB input

az_angle search volume azimuth extent degrees input

el_angle search volume elevation extent degrees input

PAP power aperture product dB output
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    - Sigma - Tsc;
return

1.12.4. MATLAB Function “range_red_factor.m”

The function “range_red_factor.m” implements Eqs. (1.88) and (1.89). This
function generates plots of RRF versus (1) the radar operating frequency, (2)
radar to jammer range, and (3) jammer power. Its syntax is as follows:

[RRF] = range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)

where

MATLAB Function “range_red_factor.m” Listing

function RRF = range_red_factor (ts, pj, gj, g, freq, bj, rangej, lossj)
% This function computes the range reduction factor and produces
% plots of RRF versus wavelength, radar to jammer range, and jammer power 
c = 3.0e+8;
k = 1.38e-23;
lambda = c / freq;
gj_10 = 10^( gj/10);
g_10 = 10^( g/10);
lossj_10 = 10^(lossj/10);
index = 0;
for wavelength = .01:.001:1
   index = index +1;
   jamer_temp = (pj * gj_10 * g_10 *wavelength^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (rangej * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / ts));
   rrf(index) = 10^(-delta /40.0); 
end
w = 0.01:.001:1;
figure (1)
semilogx(w,rrf,'k')

Symbol Description Units Status

te radar effective temperature K input

pj jammer peak power W input

gj jammer antenna gain dB input

g radar antenna gain on jammer dB input

freq radar operating frequency Hz input

bj jammer bandwidth Hz input

rangej radar to jammer range Km input

lossj jammer losses dB input

chapter1.fm  Page 69  Monday, May 19, 2008  6:32 PM



70      Radar Signal Analysis and Processing Using MATLAB

grid
xlabel ('Wavelength in meters')
ylabel ('Range reduction factor')
index = 0;
for ran =rangej*.3:10:rangej*2
   index = index + 1;
   jamer_temp = (pj * gj_10 * g_10 *lambda^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (ran * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / ts));
   rrf1(index) = 10^(-delta /40.0);
end
figure(2)
ranvar = rangej*.3:10:rangej*2 ;
plot(ranvar,rrf1,'k')
grid
xlabel ('Radar to jammer range in Km')
ylabel ('Range reduction factor')
index = 0;
for pjvar = pj*.01:100:pj*2
   index = index + 1;
   jamer_temp = (pjvar * gj_10 * g_10 *lambda^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (rangej * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / ts));
   rrf2(index) = 10^(-delta /40.0);
end
figure(3)
pjvar = pj*.01:100:pj*2;
plot(pjvar,rrf2,'k')
grid
xlabel ('Jammer peak power in Watts')
ylabel ('Range reduction factor')

1.12.5. MATLAB Function “ref_coef.m” 

The function “ref_coef.m” calculates the horizontal and vertical magnitude
and phase response of the reflection coefficient. The syntax is as follows

[rh,rv] = ref_coef (psi, epsp, epspp)

where

Symbol Description Status

psi grazing angle in degrees (can be a vector or 

a scalar)

input

epsp inputε′
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MATLAB Function “ref_coef.m” Listing

function [rh,rv] = ref_coef (psi, epsp, epspp)
eps = epsp - i .* epspp; 
psirad = psi.*(pi./180.);
arg1 = eps - (cos(psirad).^2);
arg2 = sqrt(arg1);
arg3 = sin(psirad);
arg4 = eps.*arg3;
rv = (arg4-arg2)./(arg4+arg2);
rh = (arg3-arg2)./(arg3+arg2);

1.12.6. MATLAB Function “divergence.m”

The MATLAB function “divergence.m” calculates the divergence. The syn-
tax is as follows:

D = divergence (psi, r1, r2, hr, ht)

where

MATLAB Function “divergence.m” Listing

function [D] = divergence(psi, r1, r2, hr, ht)
% calculates divergence
%       inputs  %%%%%%%%%%%%%%%%%%%%%%
%   r1  ground range between radar and specular point in Km
%   r2  ground range between specular point and target in Km
%   psi grazing angle in degrees
%       parameters  %%%%%%%%%%%%%%%%%%%
%   re  4/3 earth radius 4/3 * 6375 Km

epspp input

rh horizontal reflection coefficient complex vector output

rv vertical reflection coefficient complex vector output

Symbol Description Status

psi grazing angle in degrees (can be vector or scalar) input

r1 ground range between radar and specular point in Km input

r2 ground range between specular point and target in Km input

hr radar height in meters input

ht target height in meters input

D divergence output

Symbol Description Status

ε″
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%   r = r1 + r2
psi = psi .* pi ./180; % psi in radians
re = (4/3) * 6375e3;
r = r1 + r2;
arg1 = re .*  r . *  sin(psi) ;
arg2 = ((2 .* r1 .* r2 ./ cos(psi)) + re .* r. * sin(psi)) .* (1+hr./re) .* (1+ht./re);
D = sqrt(arg1 ./ arg2);
return

1.12.7. MATLAB Function “surf_rough.m”

The MATLAB function “surf_rough.m” calculates the surface roughness
reflection coefficient. The syntax is as follows:

Sr = surf_rough (hrms, freq, psi)

where

MATLAB Function “surf_rough.m” Listing

function Sr = surf_rough(hrms, freq, psi)
clight = 3e8;
psi = psi .* pi ./ 180; % angle in radians
lambda = clight / freq; % wavelength
g = (2.* pi .* hrms .* sin(psi) ./ lambda).^2;
Sr = exp(-2 .* g);
return

1.12.8. MATLAB Program “multipath.m” 
% This program calculates and plots the propagation factor versus
% target range with a fixed target height.
% The free space radar-to-target range is assumed to be known.
clear all; 
close all;
eps = 0.01;
%%%%%%%%%%%%% input %%%%%%%%%%%%%%%%
ro = 6375e3; % earth radius
re = ro * 4 /3; % 4/3 earth radius
freq = 3000e6; % frequency

Symbol Description Status

hrms surface rms roughness value in meters input

freq frequency in Hz input

psi grazing angle in degrees input

Sr surface roughness coefficient output
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lambda = 3.0e8 / freq; % wavelength
hr = 30.48; % radar height in meters
ht = 2 .* hr; % target height in meters
Rd1 = linspace(2e3, 55e3, 500); % slant range 3 to 55 Km 500 points
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine whether the traget is beyond the radar's line of sight
range_to_horizon = sqrt(2*re) * (sqrt(ht) + sqrt(hr)); % range to horizon
index = find(Rd1 > range_to_horizon);
if isempty(index);
    Rd = Rd1;
else
    Rd = Rd1(1:index(1)-1);
    fprintf('****** WARNING ****** \n')
    fprintf('Maximum range is beyond radar line of sight. \n')
    fprintf('Target is in diffraction region \n')
    fprintf('****** WARNING ****** \n')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
val1 = Rd.^2 - (ht -hr).^2;
val2 = 4 .* (re + hr) .* (re + ht);
r = 2 .* re .* asin(sqrt(val1 ./ val2));
phi = r ./ re; 
p = sqrt(re .* (ht + hr) + (r.^2 ./4)) .* 2 ./ sqrt(3); 
exci = asin((2 .* re .* r .* (ht - hr) ./ p.^3)); 
r1 = (r ./ 2) - p .* sin(exci ./3);
phi1 = r1 ./ re; 
r2 = r - r1;
phi2 = r2 ./ re; 
R1 = sqrt( re.^2 + (re + hr).^2 - 2 .* re .* (re + hr) .* cos(phi1)); 
R2 = sqrt( re.^2 + (re + ht).^2 - 2 .* re .* (re + ht) .* cos(phi2)); 
psi = asin((2 .* re .* hr + hr^2 - R1.^2) ./ (2 .* re .* R1));
deltaR = R1 + R2 - Rd; 
%%%%%%%%%%%%% input surface roughness %%%%%%%%%%%%%%%%
hrms = 1;  
psi = psi .* 180 ./ pi;
[Sr] = surf_rough(hrms, freq, psi);
%%%%%%%%%%%%% input divergence %%%%%%%%%%%%%%%%
[D] = divergence(psi, r1, r2, hr, ht);
%%%%%%%%%%%%% input smooth earth ref. coefficient %%%%%%%%%%%
epsp = 50;
epspp = 15;
[rh,rv] = ref_coef (psi, epsp, epspp);
D = 1;
 Sr =1;
gamav = abs(rv);
phv = angle(rv);
gamah = abs(rh);
phh = angle (rh);
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gamav =1;
phv = pi;
Gamma_mod = gamav .* D .* Sr; 
Gamma_phase = phv; %
rho = Gamma_mod;
delta_phi = 2 .* pi .* deltaR  ./ lambda; 
alpha = delta_phi + phv;
F = sqrt( 1 + rho.^2 + 2 .* rho .* cos( alpha)); 
Ro = 185.2e3; % reference range in Km
F_free = 40 .* log10(Ro ./ Rd);
F_dbr = 40 .* log10( F .* Ro ./ Rd);
F_db = 40 .* log10( eps + F );
figure(1)
plot(Rd./1000, F_db,'k','linewidth',1)
grid
xlabel('slant range in Km')
ylabel('propagation factor in dB')
axis tight
axis([2 55 -60 20])
figure(2)
plot(Rd./1000, F_dbr,'k',Rd./1000, F_free,'k-.','linewidth',1)
grid
xlabel('slant range in Km')
ylabel('Propagation factor in dB')
axis tight
axis([2 55 -40 80])
legend('with multipath','free space')
title('frequency = 3GHz; ht = 60 m; hr = 30 m')

1.12.9. MATLAB Program “diffraction.m” 

This function utilizes Shatz’s model to calculate the propagation factor in the
diffraction region. It utilizes the MATLAB function “airy.m” which is part of
the Signal Processing Toolbox. Its syntax is as follows

F = diffraction(freq, hr, ht, R, nt);

where

% Generalized spherical earth propagation factor calculations

Symbol Description Status

freq radar operating frequency Hz

hr radar height meters

ht target height meters
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MATLAB Program “diffraction.m” Listing

function F = diffraction(freq, hr, ht,R,nt);
%   Generalized spherical earth propagation factor calculations
%   After Shatz: Michael P. Shatz, and George H. Polychronopoulos, An
%   Algorithm for Elevation of Radar Propagation in the Spherical Earth 
%   Diffraction Region. IEEE Transactions on Antenna and Propagation, 
%   VOL. 38, NO.8, August 1990.
format long
re = 6373e3 * (4/3); % 4/3 earth radius in Km
[an] = airyzo1(nt);% calculate the roots of the Airy function
c = 3.0e8; % speed of light
lambda = c/freq; % wavelength
r0 = (re*re*lambda / pi)^(1/3);
h0 = 0.5 * (re*lambda*lambda/pi/pi)^(1/3);
y = hr / h0;
z = ht / h0;
%%%%%%%%%%%%
par1 = exp(sqrt(-1)*pi/3);
pary1 = ((2/3).*(an + y .* par1).^(1.5));
    pary = exp(pary1);
    parz1 = ((2/3).*(an + z .* par1).^(1.5));
    parz = exp(parz1);
    f1n = airy(an + y * par1) .* airy(an + z * par1) .* pary .*parz ;
    f1d = par1 .* par1 .* airy(1,an) .* airy(1,an);
    f1 = f1n ./ f1d;
    index = find(f1<1e6);
%%%%%%%%%%%%
F = zeros(1,size(R,2));
for range = 1:size(R,2)
    x(range) = R(range)/r0;
    f2 = exp(0.5 .* (sqrt(3) +sqrt(-1)) .*an.*x(range) - pary1 -parz1);
    victor = f1(index) .* f2(index);
    fsum = sum(victor);
    F(range) = 2 .*sqrt(pi.*x(range)) .* fsum;
end

R range over which to calculate the propagation factor Km

nt number of data point is the series given in Eq. (1.186) none

F propagation factor in diffraction region dB

Symbol Description Status
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1.12.10. MATLAB Program “airyzo1.m”  

The function “airyzo1.m” was developed to compute the roots of the Airy
function. Its syntax is as follows:

[an] = airyzo1(nt)

where the input nt is the number of required roots, and the output [an] is the
roots (zeros) vector.

MATLAB Program “airyzo1.m” Listing

function [an] = airyzo1(nt)
%   This program is a modified version of a function obtained from 
%   free internet source www.mathworks.com/matlabcentral/fileexchange/
%   modified by B. Mahafza (bmahafza@dbresearch.net) in 2005
%       ==============================
%   Purpose: This program computes the first nt zeros of Airy
%   functions Ai(x)
%   Input :  nt    --- Total number of zeros
%   Output:  an ---    first nt roots for Ai(x)
format long
an = zeros(1,nt);
xb = zeros(1,nt);
ii = linspace(1,nt,nt);
u = 3.0.*pi.*(4.0.*ii-1)./8.0;
u1 = 1./(u.*u);
rt0 = -(u.*u).^(1.0./3.0).*((((-15.5902.*u1+.929844).* ...
u1-.138889).*u1+.10416667).*u1+1.0);
rt = 1.0e100;
while(abs((rt-rt0)./rt)> 1.e-12);
x = rt0;
ai = airy(0,x);
ad = airy(1,x);
rt=rt0-ai./ad; 
if(abs((rt-rt0)./rt)> 1.e-12);
rt0 = rt;
end;
end;
an(ii)= rt;
end

1.12.11. MATLAB Program “fig_31_32.m”

% This program produces Figs. 1.31 and 1.32
close all
clear all
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psi = 0.01:0.25:90;
epsp = [2.8];
epspp = [0.032];% 0.87 2.5 4.1];
[rh1,rv1] = ref_coef(psi, epsp,epspp);
gamamodv1 = abs(rv1);
gamamodh1 = abs(rh1);
epsp = [5.8] ;
epspp = [0.87];
[rh2,rv2] = ref_coef(psi, epsp,epspp);
gamamodv2 = abs(rv2);
gamamodh2 = abs(rh2);
epsp = [10.3];
epspp = [2.5];
[rh3,rv3] = ref_coef(psi, epsp,epspp);
gamamodv3 = abs(rv3);
gamamodh3 = abs(rh3);
epsp = [15.3];
epspp = [4.1];
[rh4,rv4] = ref_coef(psi, epsp,epspp);
gamamodv4 = abs(rv4);
gamamodh4 = abs(rh4);
figure(1)
semilogx(psi,gamamodh1,'k',psi,gamamodh2,'k-.’, ...
psi,gamamodh3,'k.',psi,gamamodh4,'k:','linewidth',1.5);
grid
xlabel('grazing angle - degrees');
ylabel('reflection coefficient - amplitude')
legend('moisture = 0.3%','moisture = 10%%','moisture = 20%','moisture = 30%')
title('horizontal polarization')
% legend ('Vertical Polarization','Horizontal Polarization')
% pv = -angle(rv);
% ph = angle(rh);
% figure(2)
% plot(psi,pv,'k',psi,ph,'k -.');
% grid
% xlabel('grazing angle - degrees');
% ylabel('reflection coefficient - pahse')
% legend ('Vertical Polarization','Horizontal Polarization')

Problems
1.1. (a) Calculate the maximum unambiguous range for a pulsed radar with
PRF of  and . (b) What are the corresponding PRIs?

1.2. For the same radar in Problem 1.1, assume a duty cycle of 30% and
peak power of . Compute the average power and the amount of radiated
energy during the first .

200Hz 750Hz

5KW
20ms
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1.3. A certain pulsed radar uses pulse width . Compute the corre-
sponding range resolution.

1.4. An X-band radar uses PRF of . Compute the unambiguous
range and the required bandwidth so that the range resolution is . What is
the duty cycle?

1.5. Compute the Doppler shift associated with a closing target with veloc-
ity 100, 200, and 350 meters per second. In each case compute the time dilation
factor. Assume that .

1.6. In reference to Fig. 1.8, compute the Doppler frequency for

, , and . Assume that .

1.7. (a) Develop an expression for the minimum PRF of a pulsed radar; (b)
compute  for a closing target whose velocity is . (c) What is the
unambiguous range? Assume that .

1.8. An L-band pulsed radar is designed to have an unambiguous range of
 and range resolution . The maximum resolvable Doppler

frequency corresponds to . Compute the maximum required
pulse width, the PRF, and the average transmitted power if .

1.9. Compute the aperture size for an X-band antenna at .
Assume antenna gain .

1.10. An L-band radar (1500 MHz) uses an antenna whose gain is
. Compute the aperture size. If the radar duty cycle is 

and the average power is , compute the power density at range
.

1.11. For the radar described in Problem 1.9, assume the minimum detect-
able signal is . Compute the radar maximum range for

.

1.12. Consider an L-band radar with the following specifications: operat-
ing frequency , bandwidth , and antenna gain

. Compute the peak power, the pulse width, and the minimum
detectable signal for this radar. Assume target RCS , the single
pulse SNR is , noise figure , temperature , and
maximum range .

1.13. Consider a low PRF C-band radar operating at . The
antenna has a circular aperture with radius . The peak power is

 and the pulse width is . The PRF is , and
the effective temperature is . Assume radar losses  and
target RCS . (a) Calculate the radar’s unambiguous range; (b) cal-
culate the range  that corresponds to ; (c) calculate the SNR at

.

τ 1μs=

3KHz
30m

λ 0.3m=

v 150m s⁄= θa 30°= θe 15°= λ 0.1m=

frmin
400m s⁄

λ 0.2m=

100Km ΔR 100m≤
vt etarg 350m sec⁄≤

Pt 500W=

f0 9GHz=
G 10 20 30 dB, ,=

G 30dB= dt 0.2=
25KW

R 50Km=

5dBm
σ 1.0 10.0 20.0m2, ,=

f0 1500MHz= B 5MHz=
G 5000=

σ 10m2=
15.4dB F 5dB= T0 290K=

Rmax 150Km=

f0 5000MHz=
2m

Pt 1MW= τ 2μs= fr 250Hz=
T0 600K= L 15dB=

σ 10m2=
R0 SNR 0dB=

R 0.75R0=
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1.14. Repeat the second example in Section 1.6 with , ,
and .

1.15. The atmospheric attenuation can be included in the radar equation as
another loss term. Consider an X-band radar whose detection range at 
includes a  atmospheric loss. Calculate the corresponding detec-
tion range with no atmospheric attenuation. 

1.16. Let the maximum unambiguous range for a low PRF radar be .
(a) Calculate the SNR at  and . (b) If a target with

 exists at , what should the target RCS be at
 so that the radar has the same signal strength from both tar-

gets. 

1.17. A Millie-Meter Wave (MMW) radar has the following specifications:
operating frequency , PRF , pulse width

, peak power , noise figure , circular
antenna with diameter , antenna gain , target RCS

, system losses , radar scan time , radar angular
coverage , and atmospheric attenuation . Compute the follow-
ing: (a) wavelength , (b) range resolution , (c) bandwidth , (d) the SNR
as a function of range, (e) the range for which , (f) antenna beam
width, (g) antenna scan rate, (h) time on target, (i) the effective maximum
range when atmospheric attenuation is considered.

1.18. A radar with antenna gain  is subject to a repeater jammer whose
antenna gain is . The repeater illuminates the radar with three fourths of the
incident power on the jammer. (a) Find an expression for the ratio between the
power received by the jammer and the power received by the radar. (b) What is
this ratio when  and ?

1.19. A radar has the following parameters: peak power ,
total losses , operating frequency , PRF ,
duty cycle , circular antenna with diameter , effective aper-
ture is  of physical aperture, noise figure . (a) Derive the various
parameters needed in the radar equation. (b) What is the unambiguous range?
(c) Plot the SNR versus range (1 Km to the radar unambiguous range) for a
5dBsm target, and (d) if the minimum SNR required for detection is 14 dB,
what is the detection range for a 6 dBsm target? What is the detection range if
the SNR threshold requirement is raised to 18 dB?

1.20. A radar has the following parameters: Peak power ;
total losses ; operating frequency ; noise figure

 pulse width ; PRF ; antenna beamwidth
 and . (a) What is the antenna gain? (b) What is the effec-

tive aperture if the aperture efficiency is 60%? (c) Given a 14 dB threshold
detection, what is the detection range for a target whose RCS is ?

Ω 4°= σ 1m2=
R 400Km=

20Km
0.25dB Km⁄

Rmax
1 2⁄( )Rmax 3 4⁄( )Rmax

σ 10m2= R 1 2⁄( )Rmax=
R 3 4⁄( )Rmax=

f0 94GHz= fr 15KHz=
τ 0.05ms= Pt 10W= F 5dB=

D 0.254m= G 30dB=
σ 1m2= L 8dB= Tsc 3s=

200° 3dB Km⁄
λ ΔR B

SNR 15dB=

G
GJ

G GJ 200= = R λ⁄ 105=

Pt 65KW=
L 5dB= fo 8GHz= fr 4KHz=

dt 0.3= D 1m=
0.7 F 8dB=

Pt 50KW=
L 5dB= fo 5.6GHz=

F 10dB= τ 10μs= fr 2KHz=
θaz 1°= θel 5°=

σ 1m2=
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1.21. A certain radar has losses of 5 dB and a receiver noise figure of 10
dB. This radar has a detection coverage requirement that extends over 3/4 of a
hemisphere and must complete it in 3 second. The base line target RCS is 6
dBsm and the minimum SNR is 15 dB. The radar detection range is less than
80 Km. What is the average power aperture product for this radar so that it can
satisfy its mission?

1.22. Assume a bandwidth of . (a) Compute the noise figure for
the three cascaded amplifiers. (b) Compute the effective temperature for the
three cascaded amplifiers. (c) Compute the overall system noise figure.

1.23. An exponential expression for the index of refraction is given by
 where the altitude  is in Km. Calculate

the index of refraction for a well-mixed atmosphere at 10% and 50% of the tro-
posphere.

1.24. A source with equivalent temperature  is followed by
three amplifiers with specifications shown in the table below. 

1.25. Reproduce Figs. 1.30 and 1.31 by using  and (a)
 and  (dry soil); (b)  and  (sea water at

); (c)  and  (lake water at ).

1.26. In reference to Fig. 8.16, assume a radar height of  and a
target height of . The range is . (a) Calculate the
lengths of the direct and indirect paths. (b) Calculate how long it will take a
pulse to reach the target via the direct and indirect paths.

1.27. A radar at altitude  and a target at altitude ,
and assuming a spherical earth, calculate , , and .

1.28. In the previous problem, assuming that you may be able to use the
small grazing angle approximation: (a) Calculate the ratio of the direct to the
indirect signal strengths at the target. (b) If the target is closing on the radar
with velocity , calculate the Doppler shift along the direct and
indirect paths. Assume .

1.29. Derive an asymptotic form for  and  when the grazing angle is
very small.

Amplifier F, dB G, dB Te 

1 You must compute 12 350

2 10 22

3 15 35

150KHz

n 1 315 10 6–× 0.136h–( )exp+= h

T0 290K=

f 8GHz=
ε′ 2.8= ε″ 0.032= ε′ 47= ε″ 19=
0°C ε′ 50.3= ε″ 18= 0°C

hr 100m=
ht 500m= R 20Km=

hr 10m= ht 300m=
r1 r2 ψg

v 300m s⁄=
λ 3cm=

Γh Γv
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1.30. In reference to Fig. 1.37, assume a radar height of  and a
target height of . The range is . (a) Calculate the
lengths of the direct and indirect paths. (b) Calculate how long it will take a
pulse to reach the target via the direct and indirect paths.

1.31. Using the law of cosines, derive Eq. (1.138) from (1.137).

1.32. In the previous problem, assuming that you may be able to use the
small grazing angle approximation. (a) Calculate the ratio of the direct to the
indirect signal strengths at the target. (b) If the target is closing on the radar
with velocity , calculate the Doppler shift along the direct and
indirect paths. Assume .

1.33. In the previous problem, assuming that you may be able to use the
small grazing angle approximation: (a) Calculate the ratio of the direct to the
indirect signal strengths at the target. (b) If the target is closing on the radar
with velocity , calculate the Doppler shift along the direct and
indirect paths. Assume .

1.34. Calculate the range to the horizon corresponding to a radar at 
and  of altitude. Assume 4/3 earth.

1.35. Develop a mathematical expression that can be used to reproduce
Fig. 1.42.

1.36. Modify the MATLAB program “multipath.m” so that it uses the true
spherical ground range between the radar and the target.

1.37. Modify the MATLAB program “multipath.m” so that it accounts for
the radar antenna.

hr 100m=
ht 500m= R 20Km=

v 300m s⁄=
λ 3cm=

v 300m s⁄=
λ 3cm=

5Km
10Km
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Chapter 2 Linear Systems and 
Complex Signal 
Representation 

This chapter presents a top level overview of elements of signal theory that
are relevant to radar detection and radar signal processing. It is assumed that
the reader has sufficient and adequate background in signals and systems as
well as in Fourier transform and its associated properties.    

2.1.  Signal and System Classifications
In general, electrical signals can represent either current or voltage and may

be classified into two main categories: energy signals and power signals.
Energy signals can be deterministic or random, while power signals can be
periodic or random. A signal is said to be random if it is a function of a random
parameter (such as random phase or random amplitude). Additionally, signals
may be divided into lowpass or bandpass signals. Signals that contain very low
frequencies (close to DC) are called lowpass signals; otherwise they are
referred to as bandpass signals. Through modulation, lowpass signals can be
mapped into bandpass signals. 

The average power  for the current or voltage signal  over the interval
 across a  resistor is 

(2.1)

The signal  is said to be a power signal over a very large interval
, if and only if it has finite power and satisfies the relation:

(2.2)

P x t( )
t1 t2,( ) 1Ω

P 1
t2 t1–
-------------- x t( ) 2 td

t1

t2

∫=

x t( )
T t2 t1–=

0 1
T
--- x t( ) 2 t ∞<d

T– 2⁄

T 2⁄

∫T ∞→
lim<
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Using Parseval’s theorem, the energy  dissipated by the current or voltage
signal  across a  resistor, over the interval , is 

(2.3)

The signal  is said to be an energy signal if and only if it has finite
energy,

(2.4)

A signal  is said to be periodic with period  if and only if 

(2.5)

where  is an integer.

Example:

Classify each of the following signals as an energy signal, a power signal, or
neither. All signals are defined over the interval :

, .

Solution:

 

Note that since the cosine function is periodic, the limit is not necessary.

 

2.2.  The Fourier Transform
The Fourier Transform (FT) of the signal  is

(2.6)

or

E
x t( ) 1Ω t1 t2,( )

E x t( ) 2 td

t1

t2

∫=

x t( )

E x t( ) 2 t ∞<d

∞–

∞

∫=

x t( ) T

x t( ) x t nT+( )= for all t

n

∞– t ∞< <( )
x1 t( ) tcos 2tcos+= x2 t( ) α2t2–( )exp=

Px1

1
T
--- tcos 2tcos+( )2 td

T 2⁄–

T 2⁄

∫ 1= = power signal⇒

Ex2
e α2t2–( )

2
td

∞–

∞

∫ 2 e 2α2t2–

0

∞

∫ dt 2 π
2 2α
-------------- 1

α
--- π

2
---= = = = energy signal⇒

x t( )

F x t( ){ } X ω( ) x t( )e jωt– td

∞–

∞

∫= =
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(2.7)

and the Inverse Fourier Transform (IFT) is

(2.8)

or

(2.9)

where, in general,  represents time, while  and  represent fre-
quency in radians per second and Hertz, respectively. In this book we will use
both notations for the transform, as appropriate (i.e.,  or ).

2.3. Systems Classification
Any system can mathematically be represented as a transformation (map-

ping) of an input signal into an output signal. This transformation or mapping
relationship between the input signal  and the corresponding output signal

 can be written as

 (2.10)

The relationship described in Eq. (2.10) can be linear or nonlinear, time invari-
ant or time varying, causal or noncausal, and stable or nonstable systems.
When the input signal is unit impulse (Dirac delta function) , the output
signal is referred to as the system’s impulse response .

2.3.1. Linear and Nonlinear Systems

A system is said to be linear if superposition holds true. More specifically, if

(2.11)

then for a linear system

(2.12)

for any constants . If the relationship in Eq. (2.12) is not true the system
is said to be nonlinear.

F x t( ){ } X f( ) x t( )e j2πf t– td

∞–

∞

∫= =

F 1– X ω( ){ } x t( ) 1
2π
------ X ω( )ejωt ωd

∞–

∞

∫= =

F 1– X f( ){ } x t( ) X f( )ej2πft fd

∞–

∞

∫= =

t ω 2πf= f

X ω( ) X f( )

x t( )
y t( )

y t( ) f x t( ) ∞ t ∞< <–( );[ ]=

δ t( )
h t( )

y1 t( ) f x1 t( )[ ]=

y2 t( ) f x2 t( )[ ]=

f ax1 t( ) bx2 t( )+[ ] ay1 t( ) by2 t( )+=

a b,( )
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2.3.2. Time Invariant and Time Varying Systems

A system is said to be time invariant (or shift invariant) if a time shift at its
input produces the same time shift at its output. That is if 

(2.13)
then

(2.14)

If the above relationship is not true the system is called time varying system.

Any Linear Time Invariant (LTI) system can be described using the convolu-
tion integral between the input signal and the system’s impulse response, as 

(2.15)

where the operator  is used to symbolically describe the convolution inte-
gral. In the frequency domain convolution translates into multiplication. That
is 

(2.16)

 is the FT for  and it is referred to as the system transfer function.

2.3.3. Stable and Nonstable Systems

A system is said to be stable if every bounded input signal produces a
bounded output signal. From Eq. (2.15) 

 (2.17)

If the input signal is bounded, then there is some finite constant  such that

(2.18)

Therefore, 

(2.19)

which can be finite if and only if 

y t( ) f x t( )[ ]=

y t t0–( ) f x t t0–( )[ ] ∞ t0 ∞< <–;=

y t( ) x t u–( )h u( ) ud

∞–

∞

∫ x h⊗= =

⊗

Y f( ) X f( )H f( )=

H f( ) h t( )

y t( ) x t u–( )h u( ) ud

∞–

∞

∫ x t u–( ) h u( ) ud

∞–

∞

∫≤=

K

x t( ) K ∞<≤

y t( ) K h u( ) ud

∞–

∞
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(2.20)

Thus, the requirement for stability is that the impulse response must be abso-
lutely integrable. Otherwise, the system is said to be unstable.

2.3.4. Causal and Noncausal Systems

A causal (or physically realizable) system is one whose output signal does
not begin before the input signal is applied. Thus, the following relationship is
true when the system is causal: 

(2.21)

A system that does not satisfy Eq. (2.21) is said to be noncausal which means it
cannot exist in real world.

2.4.  Signal Representation Using the Fourier Series
A set of functions  is said to be orthogonal over

the interval  if and only if 

(2.22)

where the asterisk indicates complex conjugation and  are constants. If
 for all , then the set  is said to be an orthonormal set. An electrical

signal  can be expressed over the interval  as a weighted sum of a
set of orthogonal functions as 

(2.23)

where  are, in general, complex constants and the orthogonal functions
 are called basis functions. If the integral-square error over the interval

 is equal to zero as  approaches infinity, i.e., 

(2.24)

h u( ) ud

∞–

∞

∫ ∞<

y t0( ) f x t( ) t t0≤;[ ] ∞ t t, 0 ∞< <–;=

S ϕn t( ) n 1 … N, ,=;{ }=
t1 t2,( )

ϕi∗ t( )ϕj t( ) td

t1

t2

∫ ϕi t( )ϕj∗ t( ) td

t1

t2

∫
0 i j≠
λi i j=⎩ ⎭

⎨ ⎬
⎧ ⎫

= =

λi
λi 1= i S

x t( ) t1 t2,( )

x t( ) Xnϕn t( )

n 1=

N

∑≈

Xn
ϕn t( )
t1 t2,( ) N

x t( ) Xnϕn t( )

n 1=

N

∑–

2

td

t1

t2

∫N ∞→
lim 0=
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then the set  is said to be complete, and Eq. (2.23) becomes an
equality. The constants  are computed as

(2.25)

Let the signal  be periodic with period , and let the complete orthogo-
nal set  be 

(2.26)

Then the complex exponential Fourier series of  is

(2.27)

Using Eq. (2.25) yields

(2.28)

The FT of Eq. (2.27) is given by

(2.29)

where  is delta function. When the signal  is real we can compute its
trigonometric Fourier series from Eq. (2.27) as 

(2.30)

(2.31a)

S ϕn t( ){ }=
Xn

Xn

x t( )ϕn∗ t( ) td

t1

t2

∫

ϕn t( ) 2 td

t1

t2

∫

----------------------------------=

x t( ) T
S

S e
j2πnt

T
--------------

n ∞ ∞,–=;
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

x t( )

x t( ) Xne
j2πnt

T
--------------

n ∞–=

∞

∑=

Xn
1
T
--- x t( )e

j– 2πnt
T

-----------------
td

T– 2⁄

T 2⁄

∫=

X ω( ) 2π Xnδ ω 2πn
T

----------–⎝ ⎠
⎛ ⎞

n ∞–=

∞

∑=

δ( ) x t( )

x t( ) a0 an
2πnt

T
------------⎝ ⎠
⎛ ⎞cos

n 1=

∞

∑ bn
2πnt

T
------------⎝ ⎠
⎛ ⎞sin

n 1=

∞

∑+ +=

a0 X0=
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(2.31b)

(2.31c)

The coefficients  are all zeros when the signal  is an odd function of
time. Alternatively, when the signal is an even function of time, then all  are
equal to zero. 

Consider the periodic energy signal defined in Eq. (2.30). The total energy
associated with this signal is then given by

(2.32)

2.5.  Convolution and Correlation Integrals
The convolution  between the signals  and  is defined by

(2.33)

where  is a dummy variable. Convolution is commutative, associative, and
distributive. More precisely,

(2.34)

For the convolution integral to be finite at least one of the two signals must be
an energy signal. The convolution between two signals can be computed using
the FT:

(2.35)

Consider an LTI system with impulse response  and input signal . It
follows that the output signal  is equal to the convolution between the
input signal and the system impulse response, 

an
1
T
--- x t( ) 2πnt

T
------------⎝ ⎠
⎛ ⎞cos td

T– 2⁄

T 2⁄

∫=

bn
1
T
--- x

T– 2⁄

T 2⁄

∫ t( ) 2πnt
T

------------⎝ ⎠
⎛ ⎞sin td=

an x t( )
bn

E 1
T
--- x t( ) 2 td

t0

t0 T+

∫
a0

2

4
-----

an
2

2
-----

bn
2

2
-----+⎝ ⎠

⎛ ⎞

n 1=

∞

∑+= =

ρxh t( ) x t( ) h t( )

ρxh t( ) x t( ) h t( )⊗ x τ( )h t τ–( ) τd

∞–

∞

∫==

τ

x t( ) h t( )⊗ h t( ) x t( )⊗=
x t( ) h t( ) g t( )⊗( )⊗ x t( ) h t( )⊗( ) g t( )⊗ x t( ) h t( ) g t( )⊗( )⊗= =

ρxh t( ) F 1– X ω( )H ω( ){ }=

h t( ) x t( )
y t( )
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(2.36)

The cross-correlation function between the signals  and  is

(2.37)

Again, at least one of the two signals should be an energy signal for the corre-
lation integral to be finite. The cross-correlation function measures the similar-
ity between the two signals. The peak value of  and its spread around
this peak are an indication of how good this similarity is. This similarity is
measured by a factor called the correlation coefficient, denoted by . For
example, consider the signals  and , the correlation coefficient is 

(2.38)

clearly the correlation coefficient is limited to , with
 indicating no similarity while  indicates 100% similarity

between the signals  and .

The cross-correlation integral can be computed as

(2.39)

When , we get the autocorrelation integral, 

(2.40)

Note that the autocorrelation function is denoted by  rather than .
When the signals  and  are power signals, the correlation integral
becomes infinite and, thus, time averaging must be included. More precisely,

y t( ) x τ( )h t τ–( ) τd

∞–

∞

∫ h τ( )x t τ–( ) τd

∞–

∞

∫= =

x t( ) g t( )

Rxg t( ) x∗ τ( )g t τ+( ) τd

∞–

∞

∫ R∗gx t–( ) g∗ τ( )x t τ+( ) τd

∞–

∞

∫= = =

Rxg t( )

Cxg
x t( ) g t( )

Cxg

x t( ) g∗ t( ) td

∞–

∞

∫
2

x t( ) 2 td

∞–

∞

∫ g t( ) 2 td

∞–

∞

∫
---------------------------------------------------- Cgx= =

0 Cxg≤ Cgx= 1≤
Cxg 0= Cxg 1=

x t( ) g t( )

Rxg t( ) F 1– X∗ ω( )G ω( ){ }=

x t( ) g t( )=

Rx t( ) x∗ τ( )x t τ+( ) τd

∞–

∞

∫=

Rx t( ) Rxx t( )
x t( ) g t( )
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(2.41)

2.5.1.  Energy and Power Spectrum Densities 

Consider an energy signal . From Parseval’s theorem, the total energy
associated with this signal is

(2.42)

When  is a voltage signal, the amount of energy dissipated by this signal
when applied across a network of resistance  is

(2.43)

Alternatively, when  is a current signal, we get

(2.44)

The quantity  represents the amount of energy spread per unit fre-
quency across a  resistor; therefore, the Energy Spectrum Density (ESD)
function for the energy signal  is defined as

(2.45)

The ESD at the output of an LTI system when  is at its input is

(2.46)

where  is the FT of the system impulse response, . It follows that the
energy present at the output of the system is 

(2.47)

Rxg t( ) 1
T
---

T ∞→
lim x∗ τ( )g t τ+( ) τd

T 2⁄–

T 2⁄

∫=

x t( )

E x t( ) 2 td

∞–

∞

∫ 1
2π
------ X ω( ) 2 ωd

∞–

∞

∫= =

x t( )
R

E 1
R
--- x t( ) 2 td

∞–

∞

∫ 1
2πR
---------- X ω( ) 2 ωd

∞–

∞

∫= =

x t( )

E R x t( ) 2 td

∞–

∞

∫ R
2π
------ X ω( ) 2 ωd

∞–

∞

∫= =

X ω( ) 2 ωd∫
1Ω

x t( )

ESD X ω( ) 2=

x t( )

Y ω( ) 2 X ω( ) 2 H ω( ) 2=

H ω( ) h t( )

Ey
1

2π
------ X ω( ) 2 H ω( ) 2 ωd

∞–

∞

∫=
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Example: 

The voltage signal  is applied to the input of a lowpass
LTI system. The system bandwidth is , and its input resistance is . If

 over the interval  and zero elsewhere, compute
the energy at the output.

Solution: 
From Eqs. (2.43) and (2.47) we get

 

Using Fourier transform tables and substituting  yields

 

Completing the integration yields

 

Note that an infinite bandwidth would give , only 11% larger.

The total power associated with a power signal  is

(2.48)

The Power Spectrum Density (PSD) function for the signal  is ,
where

(2.49)

It can be shown that 

(2.50)

Let the signals  and  be two periodic signals with period . The
complex exponential Fourier series expansions for those signals are, respec-
tively, given by

x t( ) e 5t– t 0≥;=
5Hz 5Ω

H ω( ) 1= 10– π ω 10π< <( )

Ey
1

2πR
---------- X ω( ) 2 H ω( ) 2 ωd

ω 10π–=

10π

∫=

R 5=

Ey
1

5π
------ 1

ω2 25+
------------------ ωd

0

10π

∫=

Ey
1

25π
--------- 2π( )atanh 0( )atanh–[ ] 0.01799 Joules= =

Ey 0.02=

g t( )

P 1
T
--- g t( ) 2 td

T 2⁄–

T 2⁄

∫T ∞→
lim=

g t( ) Sg ω( )

P 1
T
--- g t( ) 2 td

T 2⁄–

T 2⁄

∫T ∞→
lim 1

2π
------ Sg ω( ) ωd

∞–

∞

∫= =

Sg ω( ) G ω( ) 2

T
------------------

T ∞→
lim=

x t( ) g t( ) T
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(2.51)

(2.52)

The power cross-correlation function  was given in Eq. (2.41) and is
repeated here as Eq. (2.53),

(2.53)

Note that because both signals are periodic the limit is no longer necessary.
Substituting Eqs. (2.51) and (2.52) into Eq. (2.53), collecting terms, and using
the definition of orthogonality, we get

(2.54)

When , Eq. (2.54) becomes the power autocorrelation function,

(2.55)

The power spectrum and cross-power spectrum density functions are then
computed as the FT of Eqs. (2.55) and (2.54), respectively. More precisely,

(2.56)

x t( ) Xne
j2πnt

T
------------

n ∞–=

∞

∑=

g t( ) Gme
j2πmt

T
-------------

m ∞–=

∞

∑=

Rgx t( )

Rgx t( ) 1
T
--- g∗ τ( )x t τ+( ) τd

T 2⁄–

T 2⁄

∫=

Rgx t( ) Gn∗Xne
j2nπt

T
------------

n ∞–=

∞

∑=

x t( ) g t( )=

Rx t( ) Xn
2e

j2nπt
T

------------

n ∞–=

∞

∑ X0
2 2 Xn

2e
j2nπt

T
------------

n 1=

∞

∑+= =

Sx ω( ) 2π Xn
2δ ω 2nπ

T
----------–⎝ ⎠

⎛ ⎞

n ∞–=

∞

∑=

Sgx ω( ) 2π Gn∗Xnδ ω 2nπ
T

----------–⎝ ⎠
⎛ ⎞

n ∞–=

∞

∑=
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The line (or discrete) power spectrum is defined as the plot of  versus ,

where the lines are  apart. The DC power is , and the total

power is .

Consider a signal  and its FT . The corresponding autocorrelation
function and power spectrum density are, respectively  and . A few
very useful relations that will be utilized often in this book include

(2.57)

(2.58)

 (2.59)

(2.60)

Note that Eq. (2.57) or Eq. (2.58) represents the total DC power (in the case of
a power signal) or voltage (in the case of an energy signal). Equation (2.59)
represents the signal’s total power (for power signals) or total energy (for
energy signals).

2.6. Bandpass Signals
Signals that contain significant frequency composition at a low frequency

band including DC are called lowpass (LP) signals. Signals that have signifi-
cant frequency composition around some frequency away from the origin are
called bandpass (BP) signals. A real BP signal  can be represented mathe-
matically by

(2.61)

Xn
2 n

Δf 1 T⁄= X0
2

Xn
2

n ∞–=

∞

∑

x t( ) X f( )
Rx t( ) Sx f( )

x 0( ) X f( ) fd

∞–

∞

∫=

x t( ) td

∞–

∞

∫ X 0( )=

Rx 0( ) x t( ) 2 td

∞–

∞

∫ X f( ) 2 fd

∞–

∞

∫ Sx 0( )= = =

Rx t( ) 2 td

∞–

∞

∫ X f( ) 4 fd

∞–

∞

∫=

x t( )

x t( ) r t( ) 2πf0t φx t( )+( )cos=
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where  is the amplitude modulation or envelope,  is the phase modu-
lation,  is the carrier frequency, and both  and  have frequency
components significantly smaller than . The frequency modulation is

(2.62)

and the instantaneous frequency is

(2.63)

If the signal bandwidth is  and  is very large compared to , then the sig-
nal  is referred to as a narrow bandpass signal. 

Bandpass signals can also be represented by two lowpass signals known as
the quadrature components; in this case Eq. (2.61) can be rewritten as

(2.64)

where  and  are real LP signals referred to as the quadrature compo-
nents and are given, respectively, by

(2.65)

2.6.1.  The Analytic Signal (Pre-Envelope) 

Given a real valued signal  its Hilbert transform is

 (2.66)

Observation of Eq. (2.66) indicates that the Hilbert transform is computed as
the convolution between the signals  and . More precisely,

(2.67)

The Fourier transform of  is 

(2.68)

where the function  is given by

r t( ) φx t( )
f0 r t( ) φx t( )

f0

fm t( ) 1
2π
------

td
d φx t( )=

fi t( ) 1
2π
------

td
d 2πf0t φx t( )+( ) f0 fm t( )+= =

B f0 B
x t( )

x t( ) xI t( ) 2πf0tcos xQ t( ) 2πf0tsin–=

xI t( ) xQ t( )

xI t( ) r t( ) φx t( )cos=

xQ t( ) r t( ) φx t( )sin=

x t( )

H x t( ){ } x̂ t( ) 1
π
--- x u( )

t u–
---------- ud

∞–

∞

∫= =

x t( ) h t( ) 1 πt( )⁄=

x̂ t( ) x t( ) 1
πt
-----⊗=

h t( )

FT h t( ){ } FT 1
πt
-----

⎩ ⎭
⎨ ⎬
⎧ ⎫

H ω( ) e
jπ2
---–

ω( )sgn= = =

ω( )sgn
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(2.69)

Thus, the effect of the Hilbert transform is to introduce a phase shift of  on
the spectra of . It follows that,

(2.70)

The analytic signal  corresponding to the real signal  is obtained by
cancelling the negative frequency contents of . Then, by definition

(2.71)

or equivalently,
(2.72)

It follows that

(2.73)

The analytic signal is often referred to as the pre-envelope of  because the
envelope of  can be obtained by simply taking the modulus of . 

2.6.2. Pre-Envelope and Complex Envelope of Bandpass Signals

The Hilbert transform for the bandpass signal defined in Eq. (2.64) is 

(2.74)

The subscript  is used to indicate that  is a bandpass signal. The corre-
sponding bandpass analytic signal (pre-envelope) is then given by 

(2.75)

substituting Eq. (2.64) and Eq. (2.74) into Eq. (2.75) and collecting terms yield

(2.76)

The signal  is the complex envelope of . Thus,
the envelope signal and associated phase deviation are given by

(2.77)

ω( )sgn ω
ω
-------

1 ω 0>;
0 ω; 0=
1– ω 0<;⎩ ⎭

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

= =

π 2⁄
x t( )

FT x̂ t( ){ } X̂ ω( ) X ω( ) j ω( )X ω( )sgn–= =

ψ t( ) x t( )
X ω( )

Ψ ω( )
2X ω( ) ω 0>;
X ω( ) ω; 0=

0 ω 0<;⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

Ψ ω( ) X ω( ) 1 ω( )sgn+( )=

ψ t( ) FT 1– Ψ ω( ){ } x t( ) jx̂ t( )+= =

x t( )
x t( ) ψ t( )

x̂BP t( ) xI t( ) 2sin πf0t xQ t( ) 2cos πf0t+=

BP x t( )

ψBP t( ) xBP t( ) jx̂BP t( )+=

ψBP t( ) xI t( ) jxQ t( )+[ ]e
j2πf0t

x̃BP t( )e
j2πf0t

= =

x̃BP t( ) xI t( ) jxQ t( )+= xBP t( )

a t( ) x̃BP t( ) xI t( ) jxQ t( )+ ψBP t( )= = =
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(2.78)

In the remainder of this text, unless it is indicated to be otherwise, all signals
will be considered to be bandpass signals and consequently the subscript 
will not be used. More specifically, a bandpass signal  and its correspond-
ing pre-envelope (analytic signal) and complex envelope will shown as

(2.79)

(2.80)
(2.81)

Obtaining the complex envelope for any bandpass signal requires extraction
of the quadrature components. Figure 2.1 shows how the quadrature compo-
nents can be extracted from a bandpass signal. First, the bandpass signal is split
into two parts; one part is multiplied by  and the other is multiplied
by . From the figure the two signal  and  are,

(2.82)

(2.83)

Utilizing the appropriate trigonometry identities and after lowpass filtering the
quadrature components are extracted. 

Example: 

Extract the quadrature components, frequency modulation, instantaneous
frequency, analytic signal, and complex envelope for the signals:

(a) ; (b) 

φ t( ) x̃BP t( )( )arg x̃BP t( )∠= =

BP
x t( )

x t( ) xI t( ) 2πf0tcos xQ t( ) 2πf0tsin–=

ψ t( ) x t( ) jx̂ t( )+ x̃ t( )e
j2πf0t

≡=
x̃ t( ) xI t( ) jxQ t( )+=

2 2πf0tcos
2– 2sin πf0t z1 t( ) z2 t( )

z1 t( ) 2xI t( ) 2πf0tcos( )2 2xQ t( ) 2πf0t( )cos 2πf0t( )sin–=

z2 t( ) 2xI t( ) 2πf0t( )cos 2πf0t( )sin 2xQ t( ) 2sin πf0t( )2+–=

LP Filter

LP Filter

2 2πf0tcos
x t( ) xI t( ) 2πf0tcos

xQ t( ) 2πf0tsin–
=

2 2πf0tsin–
xQ t( )

xI t( )

Figure 2.1. Extraction of quadrature components.

z1 t( )

z2 t( )

Local
Oscillator

x t( ) Rect t
τ
--⎝ ⎠
⎛ ⎞ 2πf0t( )cos= x t( ) Rect t

τ
--⎝ ⎠
⎛ ⎞ 2πf0t πB

τ
-------t2+⎝ ⎠

⎛ ⎞cos=
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Solution: 

(a) The quadrature components are extracted as described in Fig. 2.1.
Define , , then 

 

Thus, the output of the LPFs are

From Eq. (2.62) and Eq. (2.63) we get

Finally the complex envelope and the analytic signal are given by

(b)

Thus, the outputs of the LPFs are

z1 t( ) x t( ) 2 2πf0t( )cos×= z2 t( ) x t( ) 2–( ) 2πf0t( )sin×=

z1 t( ) Rect t
τ
--⎝ ⎠
⎛ ⎞ 2πf0t( )cos 2 2πf0t( )cos×

Rect t
τ
--⎝ ⎠
⎛ ⎞ 0( )cos Rect t

τ
--⎝ ⎠
⎛ ⎞ 4πf0t( )cos+

= =

z2 t( ) Rect t
τ
--⎝ ⎠
⎛ ⎞ 2πf0t( )cos 2–( ) 2πf0t( )sin×

Rect t
τ
--⎝ ⎠
⎛ ⎞ 0( )sin R– ect t

τ
--⎝ ⎠
⎛ ⎞ 4πf0t( )sin

= =

xI t( ) Rect t
τ
--⎝ ⎠
⎛ ⎞= xQ t( ); 0=

fm t( ) 0= fi t( ); f0=

x̃ t( ) xI t( ) jxQ t( )+ xI t( ) Rect t
τ
--⎝ ⎠
⎛ ⎞= = =

ψ t( ) x̃ t( )e
j2πf0t

Rect t
τ
--⎝ ⎠
⎛ ⎞ e

j2πf0t
= =

z1 t( ) Rect t
τ
--⎝ ⎠
⎛ ⎞ 2πf0t πB

τ
-------t2+⎝ ⎠

⎛ ⎞cos 2 2πf0t( )cos×

Rect t
τ
--⎝ ⎠
⎛ ⎞ πB

τ
------- t2
⎝ ⎠
⎛ ⎞cos Rect t

τ
--⎝ ⎠
⎛ ⎞ 4πf0t πB

τ
------- t2+⎝ ⎠

⎛ ⎞cos+

= =

z2 t( ) Rect t
τ
--⎝ ⎠
⎛ ⎞ 2πf0t πB

τ
-------t2+⎝ ⎠

⎛ ⎞cos 2–( ) 2πf0t( )sin×

Rect t
τ
--⎝ ⎠
⎛ ⎞ πB

τ
-------t2
⎝ ⎠
⎛ ⎞ Rect t

τ
--⎝ ⎠
⎛ ⎞ 4πf0t πB

τ
-------t2+⎝ ⎠

⎛ ⎞sin–sin

= =
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From Eq. (2.62) and Eq.(2.63) we get

The complex envelope is 

which can be written as

Finally, the analytic signal is 

2.7. Spectra of a Few Common Radar Signals 
The spectrum of a given signal describes the spread of its energy in the fre-
quency domain. An energy signal (finite energy) can be characterized by its
Energy Spectrum Density (ESD) function, while a power signal (finite power)
is characterized by the Power Spectrum Density (PSD) function. The units of
the ESD are Joules/Hertz and the PSD has units Watts/Hertz.

2.7.1. Frequency Modulation Signal

The discussion presented in this section will be restricted to sinusoidal mod-
ulating signals. In this case, the general formula for an FM waveform can be
expressed by

(2.84)

 is the radar operating frequency (carrier frequency),  is the modu-
lating signal,  is a constant, and , where  is the peak
frequency deviation. The phase is given by 
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(2.85)

where  is the FM modulation index given by

(2.86)

Let  be the received radar signal from a target at range . It follows
that

(2.87)

where the delay  is 

(2.88)

 is the speed of light. Radar receivers utilize phase detectors in order to
extract target range from the instantaneous frequency, as illustrated in Fig. 2.2.
A good measurement of the phase detector output  implies a good mea-
surement of  and, hence, range. Consider the FM waveform  given by

(2.89)

which can be written as

(2.90)

where  denotes the real part. Since the signal  is peri-
odic with period , it can be expressed using the complex exponen-
tial Fourier series as

(2.91)

where the Fourier series coefficients  are given by
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Figure 2.2. Extracting range from an FM signal return. K1 is a constant.
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(2.92)

Make the change of variable , and recognize that the Bessel func-
tion of the first kind of order  is

(2.93)

Thus, the Fourier series coefficients are , and consequently Eq.
(2.91) can now be written as 

(2.94)

which is known as the Bessel-Jacobi equation. Figure 2.3 shows a plot of
Bessel functions of the first kind for . The total power in the sig-
nal  is

(2.95)

Substituting Eq. (2.95) into Eq. (2.90) yields
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Figure 2.3. Plot of Bessel functions of order 0, 1, 2, and 3.
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(2.96)

Expanding Eq. (2.96) yields

(2.97)

Finally, since  for  odd and  for  even we
can rewrite Eq. (2.97) as

(2.98)

The spectrum of  is composed of pairs of spectral lines centered at , as
sketched in Fig. 2.4. The spacing between adjacent spectral lines is . The
central spectral line has an amplitude equal to , while the amplitude of
the  spectral line is . As indicated by Eq. (2.98) the bandwidth of
FM signals is infinite. However, the magnitudes of spectral lines of the higher
orders are small, and thus the bandwidth can be approximated (i.e., effective
bandlimited) using Carson’s rule,

(2.99)

When  is small, only  and  have significant values. Thus, we
may approximate Eq. (2.99) by

(2.100)

Finally, for small , the Bessel functions can be approximated by

(2.101)

(2.102)

Thus, Eq. (2.100) may be approximated by

(2.103)
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Example:

 If the modulation index is , give an expression for the signal .

Solution: 

From Bessel function tables  and ;
then using Eq. (2.100) yields

.

Example:
 Consider an FM transmitter with output signal

 . 

The frequency deviation is , and the modulating waveform is
. Determine the FM signal bandwidth. How many spectral

lines will pass through a bandpass filter whose bandwidth is  centered at
?

Solution: 

The peak frequency deviation is . It follows that 

 

However, only seven spectral lines pass through the bandpass filter as illus-
trated in the figure shown below

f0

β 1=

fm f0

β 2=

Figure 2.4. Amplitude line spectra sketch for FM signal.

fm
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B 2 β 1+( )fm≈ 2 5 1+( )× 8× 96Hz= =
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2.7.2. Continuous Wave Signal

Consider a Continuous Wave (CW) waveform given by

(2.104)

The FT of  is 

(2.105)

 is the Dirac delta function. As indicated by the amplitude spectrum
shown in Fig. 2.5, the signal  has infinitesimal bandwidth, located at .

2.7.3. Finite Duration Pulse Signal

Consider the time-domain signal  given by

(2.106)
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 Figure 2.5. Continuous sine wave and its amplitude spectrum.
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(2.107)

The Fourier transform of the  function is

(2.108)

where 

(2.109)

It follows that the FT is 

(2.110)

which can be written as

(2.111)

The amplitude spectrum of  is shown in Fig. 2.6. It is made up of two
 functions, as defined in Eq. (2.108), centered at . 
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 Figure 2.6. Finite duration pulse and its amplitude spectrum.
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2.7.4. Periodic Pulse Signal

In this case, consider the coherent gated CW waveform  given by

(2.112)

The signal  is periodic, with period  (recall that  is the PRF),

of course the condition  is assumed. The FT of the signal  is 

(2.113)

The complex exponential Fourier series of the summation inside Eq. (2.112) is

(2.114)

where the Fourier series coefficients  are given by (see Eq. 2.28)

(2.115)

It follows that

(2.116)

where the relation  was used in Eq. (2.116). Substituting Eq. (2.116)
into Eq. (2.113) yields the FT of . That is
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(2.117)

The amplitude spectrum of  has two parts centered at ; each part
corresponds to the spectrum of the second half of Eq. (2.117). The spectrum of
the summation part is an infinite number of delta functions repeated every ,
where the nth line is modulated in amplitude with the value corresponding to

. Therefore, the overall spectrum consists of an infinite number of
lines separated by  and have  envelope that corresponds to . This
is illustrated in Fig. 2.7, for the positive portion of the spectrum only. 

2.7.5. Finite Duration Pulse Train Signal

Define the function  as 

(2.118)

where 
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 Figure 2.7. Coherent pulse train of infinite length and its associated 
amplitude spectrum (only positive portion of spectrum is shown).
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(2.119)

The amplitude spectrum of the signal  is 

(2.120)

where  is the FT of . This means that the amplitude spectrum of the
signal  is equal to replicas of  centered at . Given this conclu-
sion, we can then focus on computing . 

The signal  can be written as (see top portion of Fig. 2.8)

(2.121)

where

(2.122)

It follows that the FT of Eq. (2.121) can be computed using similar analysis as
that which led to Eq. (2.116). More precisely, 

(2.123)

and the FT of  is

(2.124)

Using these results the FT of  can be written as
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Therefore, the overall spectrum of  consists of a two equal positive and
negative portions, centered at . Each portion is made up of  
functions repeated every  with envelope corresponding to . This
is illustrated in Fig. 2.8, only positive portion of the spectrum is shown. 

2.7.6. Linear Frequency Modulation (LFM) Signal

Frequency or phase modulated signals can be used to achieve much wider
operating bandwidths. Linear Frequency Modulation (LFM) is very commonly
used in most modern radar systems. In this case, the frequency is swept lin-
early across the pulse width, either upward (up-chirp) or downward (down-
chirp). Figure 2.9 shows a typical example of an LFM waveform. The pulse
width is , and the bandwidth is .

 The LFM up-chirp instantaneous phase can be expressed by

(2.126)
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 Figure 2.8. Coherent pulse train of finite length and corresponding 
amplitude spectrum.
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where  is the radar center frequency, and  is the LFM coefficient.
Thus, the instantaneous frequency is 

(2.127)

Similarly, the down-chirp instantaneous phase and frequency are given, respec-
tively, by

(2.128)
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Figure 2.9. Typical LFM waveforms. 
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(2.129)

A typical LFM waveform can be expressed by 

(2.130)

where  denotes a rectangular pulse of width . Remember that the
signal  is the analytic signal for the LMF waveform. It follows that 

(2.131)

(2.132)

The spectrum of the signal  is determined from its complex envelope
. The complex exponential term in Eq. (2.132) introduces a frequency

shift about the center frequency . Taking the FT of  yields

(2.133)

Let , and perform the change of variable
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Thus, Eq. (2.133) can be written as
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(2.138)

The Fresnel integrals, denoted by  and , are defined by

 and (2.139)

Fresnel integrals can be approximated by 

(2.140)

(2.141)

Note that  and . Figure 2.10 shows a plot of
both  and  for . Using Eq. (2.139) into Eq. (2.136) and
performing the integration yield

(2.142)

Figure 2.11 shows typical plots for the LFM real part, imaginary part, and
amplitude spectrum. The square-like spectrum shown in Fig. 2.11c is widely
known as the Fresnel spectrum. 
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 Figure 2.10. Fresnel integrals. 
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 Figure 2.11a. Typical LFM waveform, real part.

 Figure 2.11b. Typical LFM waveform, imaginary part.
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2.8. Signal Bandwidth and Duration
The signal bandwidth is the range of frequency over which the signal has a

nonzero spectrum. In general, any signal can be defined using its duration
(time domain) and bandwidth (frequency domain). A signal is said to be band-
limited if it has finite bandwidth. Signals that have finite durations (timelim-
ited) will have infinite bandwidths, while bandlimited signals have infinite
durations. The extreme case is a continuous sine-wave, whose bandwidth is
infinitesimal.

Radar signal processing can be performed in either time domain or fre-
quency domain. In either case, the radar signal processor assumes signals to be
of finite duration (timelimited) and finite bandwidth (bandlimited). The trouble
with this assumption is that timelimited and bandlimited signals cannot simul-
taneously exist. That is, a signal cannot have finite duration and have finite
bandwidth. Because of this, it is customary to assume that radar signals are
essentially limited in time and frequency. 

Essentially timelimited signals are considered to be very small outside a cer-
tain finite time duration. If the FT of a signal is very small outside a certain
finite frequency bandwidth, the signal is called essentially bandlimited signal.

 Figure 2.11c. Typical spectrum for an LFM waveform; Fresnel spectrum.
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A signal  over the time interval  is said to be essentially timelim-
ited relative to some very small signal level  if and only if

(2.143)

where the interval  is called the effective duration. The effective
duration is defined as

 (2.144)

Similarly, a signal  over the frequency interval  is said to be
essentially bandlimited relative to some small signal level  if and only if

(2.145)

where  is the FT of  and the band  is called the effec-
tive bandwidth. The effective bandwidth is defined as

 (2.146)

Different, but equivalent, definitions for the effective bandwidth and effective
duration can be found in the literature. In this book, the definitions cited in
Burdic1 are adopted. The quantity  is referred to as the time bandwidth
product. In later chapters, it will be clear that large time bandwidth products
are desirable in radar applications since they provide better pulse compression
ratios (or compression gain). 

1. Burdic, W. S., Radar Signal Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1968.
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Range resolution is defined as the reciprocal of the effective bandwidth. In
Chapter 1, prior to introducing the concept of effective duration, the bandwidth
was computed as the reciprocal of the pulsewidth, an approximation that is
widely used and accepted, even though it is not quite 100% accurate. This is
true since using one value or the other for the bandwidth does not make much
difference in the overall calculation of the SNR when using the radar equation.
Doppler resolution is computed as the reciprocal of the effective duration. 

2.8.1. Effective Bandwidth and Duration Calculation

A few examples for computing the effective bandwidth and duration of most
common radar signals are presented in this section. 

Single Pulse

The single pulse was analyzed in the previous section. Consider the single
pulse waveform given by

(2.147)

the effective bandwidth for this signal can be computed using Eq. (2.146). For
this purpose, the denominator of Eq. (2.146) is

(2.148)

and its numerator is computed utilizing Eq. (2.59) as 

(2.149)

Note that this value represents the square of the signal total energy. Therefore,
the effective bandwidth is

 (2.150)

The effective duration for the signal  is
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 (2.151a)

 (2.151b)

Finally, the time bandwidth product for this signal is 

(2.152)

Finite Duration Pulse Train Signal

The finite duration train signal was defined in the previous section; its com-
plex envelope is given by

(2.153)

The corresponding FT is

 (2.154)

The total energy for this signal is

(2.155)

It can be shown (see Problem 2.17) that 

τe

x t( ) 2 td

∞–

∞

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

2

x t( ) 4 td

∞–

∞

∫
---------------------------------=

τe

1( )2 td

τ0– 2⁄

τ0 2⁄

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

2

1( )4 td

τ0– 2⁄

τ0 2⁄

∫

----------------------------------
τ0

2

τ0
---- τ0= = =

Beτe
3

2τ0
--------τ0

3
2
---= =

x t( ) Rect t
NTt
---------⎝ ⎠
⎛ ⎞ Rect t nT–

τ0
--------------⎝ ⎠
⎛ ⎞

n ∞–=

∞

∑=

X f( )
Ttτ0

T
----------Sinc fTt( ) Sinc nfrτ0( )δ f nfr–( )

n ∞–=

∞

∑⊗=

X f( ) 2 fd

∞–

∞

∫
Ttτ0

T
----------=

chapter2.fm  Page 117  Monday, May 19, 2008  6:58 PM



118      Radar Signal Analysis and Processing Using MATLAB

 (2.156)

It follows that the effective bandwidth is

(2.157)

The result of Eq. (2.157) clearly indicates that the effective bandwidth of the
pulse train decreases as the length of the train is increased. This should intu-
itively make a lot of sense, since the bandwidth is inversely proportional to sig-
nal duration. Of course, when  (i.e., single pulse case) Eq. (2.157)
becomes identical to Eq. (2.150); note that in this case the factor  will dis-
appear from Eq. (2.156).

The effective duration of this signal can be computed using Eq. (2.144).
Again the numerator of Eq. (2.144) represents the square of the total signal
energy given in Eq. (2.155). The denominator of Eq. (2.144) is equal to unity
(see Problem 2.18). Thus, the effective duration is

(2.158)

and the time bandwidth product of this waveform is

(2.159)

LFM Signal

In this case, the LFM complex envelope can be written as

(2.160)

where  and  is the LFM bandwidth. Make a change of variables
, then the modulus of the FT of this signal can be approximated from

Eq. (2.142) as 

(2.161)

Rx t( ) 2 td

∞–

∞

∫ X f( ) 4 fd

∞–

∞

∫= 4
3
---⎝ ⎠
⎛ ⎞ Tt

T
----⎝ ⎠
⎛ ⎞

3 2
3
---⎝ ⎠
⎛ ⎞ τ0( )3≈

Be

Ttτ0

T
----------⎝ ⎠
⎛ ⎞

2

4
3
---⎝ ⎠
⎛ ⎞ Tt

T
----⎝ ⎠
⎛ ⎞

3 2
3
---⎝ ⎠
⎛ ⎞ τ0( )3

-------------------------------------------≈ 3T
4Tt
--------⎝ ⎠
⎛ ⎞ 3

2τ0
--------⎝ ⎠
⎛ ⎞=

Tt T=
3 4⁄

τe
Ttτ0

T
----------=

Beτe
3T
4Tt
--------⎝ ⎠
⎛ ⎞ 3

2τ0
--------⎝ ⎠
⎛ ⎞ Ttτ0

T
----------⎝ ⎠
⎛ ⎞≈ 9

8
---=

x t( ) Rect t
τ0
----⎝ ⎠
⎛ ⎞ ejμπt2

=

μ B τ0⁄= B
μ′ πμ=

X f( ) π
μ′
----- Rect πf

μ′τ0
----------⎝ ⎠
⎛ ⎞≈

chapter2.fm  Page 118  Monday, May 19, 2008  6:58 PM



Discrete Time Systems and Signals 119

The FT of the autocorrelation function is equal to the square of the modulus of
the signal FT, i.e.,

 (2.162)

Therefore, 

(2.163)

also

(2.164)

Then the effective bandwidth is

(2.165)

The effective duration is

 (2.166)

And the time bandwidth product for LFM waveforms is computed as

(2.167)

2.9. Discrete Time Systems and Signals
Advances in computer hardware and in digital technologies completely rev-

olutionized radar systems signal and data processing techniques. Virtually all
modern radar systems use some form of a digital representation (signal sam-
ples) of their received signals for the purposes of signal and data processing.
These samples of a timelimited signal are nothing more than a finite set of

FT Rx τ( ){ } X f( ) 2 π
μ′
-----Rect πf

μ′τ0
----------⎝ ⎠
⎛ ⎞= =

X f( ) 2 fd

∞–

∞

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

2

τ0
2≈

X f( ) 4 fd

∞–

∞

∫
πτ0

μ′
--------≈

Be
τ0

2

πτ0

μ′
--------
--------≈

μ′τ0

π
----------=

τe

x t( ) 2 td

∞–

∞

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

2

x t( ) 4 td

∞–

∞

∫
---------------------------------

1( )2 td

τ0– 2⁄

τ0 2⁄

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

2

1( )4 td

τ0– 2⁄

τ0 2⁄

∫

----------------------------------
τ0

2

τ0
---- τ0= = = =

Beτe
μ′τ0

π
----------τ0≈

μ′τ0
2

π
----------

πμτ0
2

π
------------

Bτ0
2

τ0
-------- Bτ0= = = =

chapter2.fm  Page 119  Monday, May 19, 2008  6:58 PM



120      Radar Signal Analysis and Processing Using MATLAB

numbers (thought of as a vector) that represents discrete values of the continu-
ous time domain signal. These samples are typically obtained by using Analog
to Digital (A/D) conversion devices. Since in the digital world the radar
receiver is now concerned with processing a set of finite numbers, its impulse
response will also compose a set of finite numbers. Consequently, the radar
receiver is now referred to as a discrete system. All input/output signal rela-
tionships are now carried out using discrete time samples. It must also be noted
that just as in the case of continuous time domain systems, the discrete systems
of interest to radar applications must also be causal, stable, and linear time
invariant. 

Consider a continuous lowpass signal that is essentially timelimited with
duration  and bandlimited with bandwidth . This signal (as will be shown
in the next section) can be completely represented by a set of  samples.
Since a finite set of discrete values (samples) is used to represent the signal, it
is common to represent this signal by a finite dimensional vector of the same
size. This vector is denoted by , or simply by the sequence ,

(2.168)

where the superscript  denotes transpose operation. The value  is at least
 for a real lowpass essentially limited signal  of duration  and band-

width . If, however, the signal is complex, then  is at least  and the
components of the vector  are complex. The samples defined in Eq. (2.168)
can be obtained from pulse to pulse samples at a fixed range (i.e., delay) of the
radar echo signal. The PRF is denoted by  and the total observation interval
is ; then  would be equal to . Define the radar receiver transfer func-
tion as the discrete sequence  and the input signal sequence as ; then
the output sequence  is given by the convolution sum

(2.169)

where .

2.9.1. Sampling Theorem

Lowpass Sampling Theorem

In general, it is required to determine the necessary condition such that a sig-
nal can be fully reconstructed from its samples by filtering, or data processing
in general. The answer to this question lies in the sampling theorem, which
may be stated as follows: let the signal  be real-valued essentially band-
limited by the bandwidth ; this signal can be fully reconstructed from its
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samples if the time interval between samples is no greater than . Fig-
ure 2.12 illustrates the sampling process concept. The sampling signal  is
periodic with period , which is called the sampling interval.

The Fourier series expansion of  and the sampled signal  expressed
using this Fourier series definition are, respectively, given by 

(2.170a)

(2.170b)

(2.170b)

Taking the FT of Eq. (2.170b) yields

 (2.171)

where  is the FT of . Therefore, we conclude that the spectral den-
sity, , consists of replicas of  spaced  apart and scaled by
the Fourier series coefficients . A lowpass filter (LPF) of bandwidth  can
then be used to recover the original signal .

When the sampling rate is increased (i.e.,  decreases), the replicas of
 move farther apart from each other. Alternatively, when the sampling

rate is decreased (i.e.,  increases), the replicas get closer to one another. The
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Figure 2.12. Concept of sampling.
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value of  such that the replicas are tangent to one another defines the mini-
mum required sampling rate so that  can be recovered from its samples by
using an LPF. It follows that

(2.172)

The sampling rate defined by Eq. (2.172) is known as the Nyquist sampling
rate. When , the replicas of  overlap and, thus,  cannot
be recovered cleanly from its samples. This is known as aliasing. In practice,
ideal LPF cannot be implemented; hence, practical systems tend to over sam-
ple in order to avoid aliasing.

Example: 

Assume that the sampling signal  is given by .

Compute an expression for .

Solution: 

The signal  is called the Comb function, with exponential Fourier series 

It follows that

Taking the Fourier transform of this equation yields

It is desired to develop a general expression from which any lowpass signal
can be recovered from its samples provided that Eq. (2.172) is satisfied. In
order to do that, let  and  be the desired lowpass signal and its corre-
sponding samples, respectively. Then an expression for  in terms of its
samples can be derived as follows: First, obtain  by filtering the signal

 using an ideal LPF whose transfer function is

(2.173)
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Thus,

(2.174)

The signal  is now obtained from the inverse FT of Eq. (2.174) as

(2.175)

The sampled signal  can be represented using an ideal sampling signal 

(2.176a)

thus, 

 (2.176b)

Substituting Eq. (2.176b) into Eq. (2.175) yields an expression for the signal
 in terms of its samples 

(2.177)

Bandpass Sampling Theorem

It was established in Section 2.6 that any bandpass signal can be expressed
using the quadrature components as provided in Eq. (2.79) through Eq. (2.81).
It follows that it is sufficient to construct the bandpass signal  from sam-
ples of the quadrature components . Let the signal  be
essentially bandlimited with bandwidth , then each of the lowpass signals

 and  are also bandlimited each with bandwidth . Hence, if
either of these lowpass signal is sampled at a rate  then the Nyquist
criterion is not violated. Assume that both quadrature components are sampled
synchronously, that is
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(2.179)

where if the Nyquist rate is satisfied, then  (unity time bandwidth
product). Substituting Eq. (2.178) and Eq. (2.179) into Eq. (2.79) yields

(2.180)

(2.181)

where, of course,  is assumed. This leads to the conclusion that if the
total period over which the signal  is sampled is , then  samples
are required,  samples for  and  samples for . 

2.9.2.  The Z-Transform

The Z-transform is a transformation that maps samples of a discrete time-
domain sequence into a new domain known as the z-domain. It is defined as

(2.182)

where , and for most cases, . It follows that Eq. (2.182) can be
rewritten as

(2.183)
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Convergence (ROC). 
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Example: 

Show that .

Solution: 

Starting with the definition of the Z-transform,

Taking the derivative, with respect to z, of the above equation yields

It follows that

A discrete LTI system has a transfer function  that describes how the
system operates on its input sequence  in order to produce the output
sequence . The output sequence  is computed from the discrete con-
volution between the sequences  and :

(2.184)

However, since practical systems require the sequence  and  to be of
finite length, we can rewrite Eq. (2.184) as

(2.185)

 denotes the input sequence length. The Z-transform of Eq. (2.185) is

(2.186)
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and the discrete system transfer function is

(2.187)

Finally, the transfer function  can be written as

(2.188)

where  is the amplitude response, and  is the phase response.

2.9.3.  The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical operation that
transforms a discrete sequence, usually from the time domain into the fre-
quency domain, in order to explicitly determine the spectral information for the
sequence. The time-domain sequence can be real or complex. The DFT has
finite length  and is periodic with period equal to . The discrete Fourier
transform pairs for the finite sequence  are defined by 

(2.189)

(2.190)

The Fast Fourier Transform (FFT) is not a new kind of transform different
from the DFT. Instead, it is an algorithm used to compute the DFT more effi-
ciently. There are numerous FFT algorithms that can be found in the literature.
In this book we will interchangeably use the DFT and the FFT to mean the
same thing. Furthermore, we will assume radix-2 FFT algorithm, where the
FFT size is equal to  for some integer . 

2.9.4.  Discrete Power Spectrum

Practical discrete systems utilize DFTs of finite length as a means of numer-
ical approximation for the Fourier transform. The input signals must be trun-
cated to a finite duration (denoted by ) before they are sampled. This is
necessary so that a finite length sequence is generated prior to signal process-
ing. Unfortunately, this truncation process may cause some serious problems. 
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To demonstrate this difficulty, consider the time-domain signal
. The spectrum of  consists of two spectral lines at .

Now, when  is truncated to length  seconds and sampled at a rate
, where  is the number of desired samples, we produce the

sequence . 

The spectrum of  would still be composed of the same spectral lines if
 is an integer multiple of  and if the DFT frequency resolution  is an

integer multiple of . Unfortunately, those two conditions are rarely met, and
as a consequence, the spectrum of  spreads over several lines (normally
the spread may extend up to three lines). This is known as spectral leakage.
Since  is normally unknown, this discontinuity caused by an arbitrary choice
of  cannot be avoided. Windowing techniques can be used to mitigate the
effect of this discontinuity by applying smaller weights to samples close to the
edges.

A truncated sequence  can be viewed as one period of some periodic
sequence with period . The discrete Fourier series expansion of  is 

(2.191)

It can be shown that the coefficients  are given by

(2.192)

where  is the DFT of . Therefore, the Discrete Power Spectrum
(DPS) for the bandlimited sequence  is the plot of  versus , where
the lines are  apart,

(2.193a)

 (2.193b)

(2.193c)

Before proceeding to the next section, we will show how to select the FFT
parameters. For this purpose, consider a bandlimited signal  with band-
width . If the signal is not bandlimited, an LPF can be used to eliminate fre-
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quencies greater than . In order to satisfy the sampling theorem, one must
choose a sampling frequency , such that

   (2.194)

The truncated sequence duration  and the total number of samples  are
related by

(2.195)

or equivalently,
(2.196)

It follows that

 (2.197)

and the frequency resolution is

(2.198)

2.9.5.  Windowing Techniques

Truncation of the sequence  can be accomplished by computing the
product

(2.199)

where 

(2.200)

where . The finite sequence  is called a windowing sequence, or
simply a window. The windowing process should not impact the phase
response of the truncated sequence. Consequently, the sequence  must
retain linear phase. This can be accomplished by making the window symmet-
rical with respect to its central point. 

If  for all , we have what is known as the rectangular window. It
leads to the Gibbs phenomenon, which manifests itself as an overshoot and a
ripple before and after a discontinuity. Figure 2.13 shows the amplitude spec-
trum of a rectangular window. Note that the first side-lobe is at 
below the main lobe. Windows that place smaller weights on the samples near
the edges will have less overshoot at the discontinuity points (lower side-
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lobes); hence, they are more desirable than a rectangular window. However,
reduction of the sidelobes is offset by a widening of the main lobe. Therefore,
the proper choice of a windowing sequence is continuous trade-off between
side-lobe reduction and main-lobe widening. Table 2.1 gives a summary of
some commonly used windows with the corresponding impact on main beam
widening and peak reduction.

TABLE 2.1. Common windows

Window
Null-to-Null Beamwidth Rectangular 

Window is the Reference 
Peak 

Reduction

Rectangular 1 1

Hamming 2 0.73

Hanning 2 0.664

Blackman 6 0.577

Kaiser ( 2.76 0.683

Kaiser ( 1.75 0.882

Figure 2.13. Normalized amplitude spectrum for rectangular window. 

β 6 )=

β 3 )=
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The multiplication process defined in Eq. (2.199) is equivalent to cyclic con-
volution in the frequency domain. It follows that  is a smeared (dis-
torted) version of . To minimize this distortion, we would seek windows
that have a narrow main lobe and small side-lobes. Additionally, using a win-
dow other than a rectangular window reduces the power by a factor , where

(2.201)

It follows that the DPS for the sequence  is now given by

(2.202)

(2.202b)

(2.202c)

where  is defined in Eq. (2.193). Table 2.2 lists some common windows. 
Figures 2.14 through 2.16 show the frequency domain characteristics for these 
windows. These plots can be reproduced using the following MATLAB code.

TABLE 2.2. Some common windows. 

Window Expression
First Side-
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Width

Rectangular

Hamming
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%Use this program to reproduce figures 2.14 through 2.16.
clear all; 
close all;
eps = 0.001;
N = 32;
win_rect (1:N) = 1;
win_ham = hamming(N);
win_han = hanning(N);
win_kaiser = kaiser(N, pi);
win_kaiser2 = kaiser(N, 5);
Yrect = abs(fft(win_rect, 256));
Yrectn = Yrect ./ max(Yrect);
Yham = abs(fft(win_ham, 256));
Yhamn = Yham ./ max(Yham);
Yhan = abs(fft(win_han, 256));
Yhann = Yhan ./ max(Yhan);
YK = abs(fft(win_kaiser, 256));
YKn = YK ./ max(YK);
YK2 = abs(fft(win_kaiser2, 256));
YKn2 = YK2 ./ max(YK2);
figure (1)
plot(20*log10(Yrectn+eps),'k')
xlabel('Sample number'); 
ylabel('20*log10(amplitude)')
axis tight; 
grid
figure(2) 
plot(20*log10(Yhamn + eps),'k')
xlabel('Sample number');
 ylabel('20*log10(amplitude)')
grid; 
axis tight
figure (3)
plot(20*log10(Yhann+eps),'k')
xlabel('Sample number');  
ylabel('20*log10(amplitude)'); grid
axis tight
figure(4)
plot(20*log10(YKn+eps),'k')
grid; hold on 
plot(20*log10(YKn2+eps),'k--')
xlabel('Sample number'); 
ylabel('20*log10(amplitude)')
legend('Kaiser par. = \pi','Kaiser par. =5') 
axis tight;  
hold off
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Figure 2.14. Normalized amplitude spectrum for Hamming window. 

Figure 2.15. Normalized amplitude spectrum for Hanning window. 
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2.9.6. Decimation and Interpolation 

Decimation

Typically, radar systems use many signals for different functions, such as
search, track, and discrimination to name a few. All signals are assumed to be
essentially limited; however, since these signals have different functions, they
do not have the same time and bandwidth durations ( ). Earlier in this chap-
ter, it was established that the number of samples required to sufficiently
recover any signal from its samples is . Therefore, it is important to
use an A/D with high enough sampling rate to account for the largest possible
number of samples required. As a result, it is often the case that some radar sig-
nals are sampled at a much higher rate than actually needed. 

The process for decreasing the number of samples for a given sequence is
called decimation. This is because the original data set has been reduced (deci-
mated) in number. The process that increases the number of data samples is
referred to as interpolation. The typical implementation for either operation is
to alter the sampling rate, without violating the Nyquist sampling rate, of the
input sequence. In decimation, the sampling rate is decreased by increasing the

Figure 2.16. Normalized amplitude spectrum for Kaiser window.

τ B,

N 2τB≥
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time steps between successive samples. More precisely, if the  is the original
sampling interval and  is the decimated sampling interval, then

(2.203)

 is the decimation ratio and it is greater than unity. If  is an integer, then
decimation effectively decreases the original sequence by discarding 
samples of  samples. This is illustrated in Fig. 2.17 for .

When  is not an integer, it is then necessary to first perform interpolation
to determine new values for the new sequence. For example, if , then
four out of every five samples in the decimated sequence are between samples
in the original sequence and must be found by interpolation. This is illustrated
in Fig. 2.18 for . In this example, 

(2.204)

which indicates that there are five samples in the decimated sequence for every
eleven samples of the original sequence. Additionally, every fifth sample in the
decimated sequence is equal to every eleventh sample of the original sequence.

Interpolation

Suppose that a signal  whose duration is  seconds has been sampled at
a sampling rate  to obtain a sequence

(2.205)

t1
t2

t2 Dt1=

D D
D 1–( )

D D 3=

original sequence

t1

decimated sequence

t2
t2 3t1=

 Figure 2.17. Decimation with . Every sample of the decimated 
sequence coincides with every third sample of the original sequence. 
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in this case, . Suppose you want to interpolate between the samples
of  to generate a new sequence of size  and sampling interval ,
where . This effectively corresponds to a new sampling frequency

 where . This can be accomplished using Eq. (2.177)
(see Problem 2.33); however, a more efficient interpolation can be performed
using the FFT as will be described in the rest of this section.

Denote the FFT of the sequences  and  by  and .
Assume that the signal  is essentially bandlimited with bandwidth

 where  is an integer and . It follows that in order not
to violate the sampling theorem 

 (2.206)

It is clear that the coefficients of  and  are zero for all .
More precisely,

(2.207)

Therefore, one can easily obtain the new sequence  from  by add-
ing zeros in between the negative and positive frequencies from

(2.208)

and the sequence  is simply generated by computing the inverse DFT of
the sequence . Interpolation can also be applied to the frequency domain

original sequence

decimated sequence

t2 2.2t1=

 Figure 2.18. Decimation with . Every fifth sample of the 
decimated sequence coincides with a sample in the original sequence. 
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sequence. For this purpose, one can simply zero pad the time domain sequence
to the desired size then take the DFT of the newly interpolated sequence. 

Problems
2.1. Classify each of the following signals as an energy signal, a power sig-
nal, or neither. 

(a) ,

(b) ,

(c) ,

(d) .

2.2. A definition for the instantaneous frequency was given in Eq. (2.58). A
more general definition is

  

where Im {.}, indicates imaginary part. Using this definition, calculate the
instantaneous frequency for 

(a) 

(b) 

2.3. Consider the two bandpass signals 

and . Derive an expression for the complex

envelope for the signal .
2.4. Consider the bandpass signal  whose complex envelope is equal to

. Derive an expression for the autocorrelation function

and the power spectrum density for  and . 
2.5. Find the autocorrelation integral of the pulse train

 .

2.6. Compute the discrete convolution  where

  
.
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2.7. Define  and . (a) Compute the

discrete correlations: , , , and . (b) A certain radar transmits

the signal . Assume that the autocorre-

lation  is equal to . Compute and

sketch  and .

2.8. Compute the energy associated with the signal .
2.9. (a) Prove that  and , shown in figure below, are orthogonal

over the interval . (b) Express the signal  as a weighted
sum of  and  over the same time interval

2.10. A periodic signal  is formed by repeating the pulse

 every 10 seconds. (a) What is the Fourier transform of
? (b) Compute the complex Fourier series of . (c) Give an expression

for the autocorrelation function  and the power spectrum density 

2.11. If the Fourier series is

  

define . Compute an expression for the complex Fourier series
expansion of .

2.12. Show that (a) , (b) If  and

, show that , where the average values for

 and  are zeroes.
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∞
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2.13. What is the power spectral density for the signal 
  ?

2.14. Consider the signal

   

and let  and . What are the quadrature components?

2.15. Determine the quadrature components for the signal

 .

2.16. If , determine the autocorrela-

tion functions  and  when .

2.17. Derive Eq. (2.156).
2.18. Prove that the effective duration of a finite pulse train is equal to

, where  is the pulsewidth,  is the PRI, and  is as defined in
Fig. 2.8.
2.19. A certain bandlimited signal has bandwidth . Find the
FFT size required so that the frequency resolution is . Assume
radix 2 FFT and a record length of 1 second. 
2.20. Write an expression for the autocorrelation function , where 

 and . 

Give an expression for the density function .

2.21. An LTI system has impulse response

(a) Find the autocorrelation function . (b) Assume the input of this sys-
tem is . What is the output?

2.22. Let  be the PSD function for the stationary random process
. Compute an expression for the PSD function of 

 .
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2.23. Assume that a certain sequence is determined by its FFT. If the
record length is  and the sampling frequency is , find .

2.24. Prove that

 .

2.25. Show that . Hint: You may utilize the relation

 .

2.26. Compute the Z-transform for 

(a) ,

(b) .

2.27. (a) Write an expression for the FT of . (b) Assume
that you want to compute the modulus of the FT using a DFT of size 512 with
a sampling interval of 1 second. Evaluate the modulus at frequency

. Compare your answer to the theoretical value and compute the
error.

2.28. Generate 512 samples of the signal , using
sampling interval equal to . Compute the resultant spectrum and then
truncate the spectrum at 15 Hz. Generate the time-domain sequence for the
truncated spectrum. Determine the sampling rate of the new sequence.
2.29. Assume that a time-domain sequence generated by using a sampling
interval equal to 0.01 is given by . Deci-
mate this sequence so that the sampling interval is 0.02. 
2.30. Write a MATLAB program to decimate any sequence of finite length
and demonstrate it using the previous problem. 
2.31. You are given a sequence of samples  where
the sampling interval  corresponds to twice the Nyquist rate. Give an expres-
sion to compute the samples of  at a new sampling rate corresponding to

.
2.32. Write a short argument to explain why the matched filter used in
radar application ought to be an LTI filter. 

2ms fs 10KHz= N

Jn z( )

n ∞–=

∞

∑ 1=

J n– z( ) 1–( )nJn z( )=

Jn z( ) 1
π
--- z ysin ny–( )cos yd
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x2 n( ) 1
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x t( ) Rect t 3⁄( )=

80 512⁄( )Hz

x t( ) 2.0e 5t– 4πt( )sin=
0.002

x k( ) 0 2 5 12 5 3 3 1 1 0, ,–, , , , , , ,{ }=
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T

x t( )
T′ 0.7T=
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2.33. A certain bandlimited signal has bandwidth . Find the
FFT size required so that the frequency resolution is . Assume
radix 2 FFT and a record length of 1 second.
2.34. Assume that a certain sequence is determined by its FFT. If the
record length is  and the sampling frequency is , find .

B 20KHz=
Δf 50Hz=

2ms fs 10KHz= N
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Chapter 3 Random Variables 
and Processes 

3.1. Random Variables
Consider an experiment with outcomes defined by a certain sample space.

The rule or functional relationship that maps each point in this sample space
into a real number is called a random variable. Random variables are desig-
nated by capital letters (e.g., ), and a particular value of a random vari-
able is denoted by a lowercase letter (e.g., ). 

The Cumulative Distribution Function (cdf) associated with the random
variable  is denoted as  and is interpreted as the total probability that
the random variable  is less than or equal to the value . More precisely,

(3.1)

The probability that the random variable  is in the interval  is then
given by 

(3.2)

The probability that a random variable  has values in the interval  is

(3.3)

It is often practical to describe a random variable by the derivative of its cdf,
which is called the Probability Density Function (pdf). The pdf of the random
variable  is

(3.4)
or, equivalently,

X Y …, ,
x y …, ,
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X x
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x2
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X

fX x( )
xd

d FX x( )=
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(3.5)

The cdf has the following properties:

(3.6)

Define the  moment for the random variable  as

(3.7)

The first moment, , is called the mean value, while the second moment,
, is called the mean squared value. When the random variable 

represents an electrical signal across a  resistor, then  is the DC com-
ponent, and  is the total average power.

The  central moment is defined as

(3.8)

and, thus, the first central moment is zero. The second central moment is called
the variance and is denoted by the symbol ,

(3.9)

In practice, the random nature of an electrical signal may need to be
described by more than one random variable. In this case, the joint cdf and pdf
functions need to be considered. The joint cdf and pdf for the two random vari-
ables  and  are, respectively, defined by

(3.10)

(3.11)

The marginal cdfs are obtained as follows:
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(3.12)

If the two random variables are statistically independent, then the joint cdfs and
pdfs are, respectively, given by

(3.13)

(3.14)

Let us now consider a case when the two random variables  and  are
mapped into two new variables  and  through some transformations 
and  defined by

(3.15)

The joint pdf, , may be computed based on the invariance of proba-
bility under the transformation. One must first compute the matrix of deriva-
tives; then the new joint pdf is computed as

(3.16)

(3.17)

where the determinant of the matrix of derivatives  is called the Jacobian.
The characteristic function for the random variable  is defined as

(3.18)

The characteristic function can be used to compute the pdf for a sum of inde-
pendent random variables. More precisely, let the random variable  be

(3.19)

where  is a set of independent random variables. It can be
shown that
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=

J
X

CX ω( ) E ejωX[ ] fX x( )ejωx xd

∞–

∞

∫= =

Y

Y X1 X2 … XN+ + +=

Xi ; i 1 … N, ,={ }
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 (3.20)

and the pdf  is computed as the inverse Fourier transform of  (with
the sign of  reversed):

 (3.21)

The characteristic function may also be used to compute the  moment for
the random variable  as

(3.22)

3.2.  Multivariate Gaussian Random Vector
Consider a joint probability for  random variables, . These

variables can be represented as components of an  random column vec-
tor, . More precisely,

(3.23)

where the superscript  indicates the transpose operation. The joint pdf for the
vector  is

(3.24)

The mean vector is defined as

(3.25)

and the covariance is an  matrix given by

(3.26)

Note that if the elements of the vector  are independent, then the covariance
matrix is a diagonal matrix. 

A random vector  is multivariate Gaussian if its pdf is of the form

(3.27)

CY ω( ) CX1
ω( )CX2

ω( )…CXN
ω( )=

fY y( ) CY ω( )
y

fY y( ) 1
2π
------ CY ω( )e jωy– ωd

∞–

∞

∫=

nth
X

E Xn[ ] j–( )n

ωn

n

d
d CX ω( )

ω 0=

=

m X1 X2 … Xm, , ,
m 1×

X

X X1 X2 … Xm

t
=

t
X

fX x( ) fX1 X2 … Xm, , , x1 x2 … xm, , ,( )=

μX E X1[ ] E X2[ ] … E Xm[ ]
t

=

m m×

CX E X Xt[ ] μX μX
t–=

X

X

fX x( ) 1

2π( )m CX

--------------------------------- 1
2
--- x μX–( )tCX

1– x μX–( )–⎝ ⎠
⎛ ⎞exp=
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where  is the mean vector,  is the covariance matrix,  is inverse of
the covariance matrix and  is its determinant, and  is of dimension . If

1 is a  matrix of rank , then the random vector  is a k-vari-
ate Gaussian vector with

(3.28)

(3.29)

The characteristic function for a multivariate Gaussian pdf is defined by

(3.30)

Then the moments for the joint distribution can be obtained by partial differen-
tiation. For example,

(3.31)

Example: 

The vector  is a 4-variate Gaussian with

 and 

Define

Find the distribution of  and the distribution of

1. Note that matrices are denoted by italicized upper case bold face letters, while vec-
tors are denoted by lower and upper regular (not italicized) letters.

μx Cx Cx
1–

Cx X m
A k m× k Y AX=

μY AμX=

CY AΛX At=

CX E j ω1X1 ω2X2 … ωmXm+ + +( ){ }exp[ ]

jμX
t ω 1

2
---ωtCXω–

⎩ ⎭
⎨ ⎬
⎧ ⎫

exp

= =

E X1X2X3[ ]
ω1 ω2∂ ω3∂

3

∂
∂ CX ω1 ω2 ω3, ,( )= at ω 0=

X

μX 2 1 1 0
t

= CX

6 3 2 1
3 4 3 2
2 3 4 3
1 2 3 3

=

X1
X1

X2

= X2
X3

X4

=

X1
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Solution:

 has a bivariate Gaussian distribution with

The vector  can be expressed as

It follows that

A special case of Eq. (3.29) is when the matrix  is given by

(3.32)

It follows that  is a sum of random variables , that is

(3.33)

The finding in Eq. (3.33) leads to the conclusion that the linear sum of Gauss-
ian variables is also a Gaussian variable with mean and variance given by

(3.34)

Y
2X1

X1 2X2+
X3 X4+

=

X1

μX1

2
1

= CX1

6 3
3 4

=

Y

Y
2 0 0 0
1 2 0 0
0 0 1 1

X1

X2

X3

X4

AX= =

μY AμX 4 4 1
t

= =

CY ACX At
24 24 6
24 34 13
6 13 13

= =

A

A a1a2 … am=

Y AX= Xi

Y ai Xi

i 1=

m

∑=

Y a1X1 a2X2 … amXm+ + +=
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(3.35)

and if the variables  are independent then Eq.(3.35) reduces to

(3.36)

finally, in this case, the probability density function  is given by (which
can also be derived from Eq. (3.20))

 (3.37)

where  indicates convolution.

3.2.1. Complex Multivariate Gaussian Random Vector

Consider the complex vector random variable 

(3.38)

where  and  are real random multivariate Gaussian random vectors. The
joint pdf for the complex random vector  is computed from the joint pdf of
the two real vectors. The mean for the vector  is

(3.39)

The covariance matrix is also defined by

(3.40)

where the operator  indicates complex conjugate transpose.

The pdf for the vector  is

(3.41)

with the following three conditions holding true

(3.42)

(3.43)

σY
2 E X X–( )

2
[ ]

E a1 X1 X1–( ) a2 X2 X2–( ) … am Xm Xm–( )+ + +[ ]

= =

Xi

σY
2 a1

2σX1

2 a2
2σX2

2 … am
2 σXm

2+ + +=

fY y( )

fY y( ) fX1
x1( ) fX2

x2( )⊗ …⊗ fXm
xm( )⊗=

⊗

X̃ XI jXQ+=

XI XQ
X̃

X̃

E X̃[ ] E XI[ ] jE XQ[ ]+=

C̃ E X̃ E X̃[ ]–( ) X̃ E X̃[ ]–( )†[ ]=
†

X̃

fX̃ x̃( ) x̃ E x[ ]–( )†C̃ 1– x̃ E x[ ]–( )–[ ]exp
πN C̃

-------------------------------------------------------------------------------------=

E XIi
E XIi
[ ]–( ) XQi

E XQi
[ ]–( )†[ ] 0=

E XIi
E XIi
[ ]–( ) XIk

E XIk
[ ]–( )†[ ]

E XQi
E XQi
[ ]–( ) XQk

E XQk
[ ]–( )†[ ] all i k,;

=
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(3.44)

3.3. Rayleigh Random Variables
 Let  and  be zero mean independent Gaussian random variables with

zero mean and variance . Define two new random variables  and  as

(3.45)

The joint pdf of the two random variables  is

 (3.46)

The joint pdf for the two random variables  is given by

(3.47)

where  is a matrix of derivatives defined by

(3.48)

The determinant of the matrix of derivatives is called the Jacobian, and in this
case it is equal to

(3.49)

Substituting Eqs. (3.46) and (3.49) into Eq. (3.47) and collecting terms yield

(3.50)

The pdf for  alone is obtained by integrating Eq. (3.50) over 

E XIi
E XIi
[ ]–( ) XQk

E XQk
[ ]–( )†[ ]

E– XQi
E XQi
[ ]–( ) XIk

E XIk
[ ]–( )†[ ] all i k≠;

=

XI XQ
σ2 R Φ

XI R Φcos=

XQ R Φsin=

XI XQ;

fXIXQ
xI xQ,( ) 1

2πσ2
------------ xI

2 xQ
2+

2σ2
-----------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp

1
2πσ2
------------ r ϕcos( )2 r ϕsin( )2+

2σ2
--------------------------------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp

= =

R Φ;

fRΦ r ϕ,( ) fXIXQ
xI xQ,( ) J=

J[ ]

J[ ] r∂
∂xI

ϕ∂
∂xI

r∂
∂xQ

ϕ∂
∂xQ

ϕcos r ϕsin–
ϕsin r ϕcos

= =

J r=

fRΦ r ϕ,( ) r
2πσ2
------------ r ϕcos( )2 r ϕsin( )2+

2σ2
--------------------------------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp r
2πσ2
------------ r2

2σ2
---------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp= =

R ϕ
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(3.51)

where the integral inside Eq. (3.51) is equal to ; thus, 

 (3.52)

The pdf described in Eq. (3.52) is referred to as a Rayleigh probability density
function. 

The density function for the random variable  is obtained from

(3.53)

substituting Eq. (3.50) into Eq. (3.53) and performing integration by parts
yields 

(3.54)

which is a uniform probability density function. 

3.4. The Chi-Square Random Variables

3.4.1. Central Chi-Square Random Variable with N Degrees of 
Freedom

Let the random variables  be zero mean, statistically inde-
pendent Gaussian random variable with unity variance. The variable

(3.55)

is called a central chi-square random variable with  degrees of freedom. The
chi-square pdf is 

(3.56)

fR r( ) fRΦ r ϕ,( ) ϕd

0

2π

∫ r
σ2
----- r2

2σ2
---------–

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1

2π
------ ϕd

0

2π

∫exp= =

2π

fR r( ) r
σ2
----- r2

2σ2
---------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp= r 0≥;

Φ

fΦ ϕ( ) f r ϕ,( ) rd

0

r

∫=

fΦ ϕ( ) 1
2π
------ 0 ϕ 2π< <;=

X1 X2 … XN,,,{ }

χN
2 Xi

2

i 1=

N

∑=

N

f
χN

2 x( )
x N 2–( ) 2⁄ e x– 2⁄( )

2N 2⁄ Γ N 2⁄( )
--------------------------------------- x 0≥

0 x 0<⎩
⎪
⎨
⎪
⎧

=
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where the Gamma function is define as

(3.57)

with the following recursion

(3.58)

and 

(3.59)

The mean and variance for the central chi-square are, respectively given by

(3.60)

(3.61)

Hence, the degrees of freedom  is the ratio of twice the squared mean to the
variance

 (3.62)

3.4.2. Noncentral Chi-Square Random Variable with N Degrees of 
Freedom

In the general case, the chi-square random variable requires that the Gauss-
ian random variables  do not have zero means. Define a multi-
variate random variable  such that

 (3.63)

Consider the random variable

(3.64)

the variable  is called the noncentral chi-square random variable with 
degrees of freedom and with a noncentral parameter , where

Γ n( ) λn 1– e λ– λd

0

∞

∫ n 0>;=

Γ n 1+( ) nΓ n( )=

Γ n 1+( ) n!= n; 0 1 2 … and 0!, , , , 1= =

E χN
2[ ] N=

σ
χN

2 2N=

N

N 2E2 χN
2[ ]( ) σ

χN
2⁄=

X1 X2 … XN,,,{ }
Y

Yi Xi μXi
+ i; 1 2 … N, , ,= =

χ′N
2 Yi

2

i 1=

N

∑ Xi μXi
+( )2

i 1=

N

∑= =

χ′N
2 N

λ
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(3.65)

The noncentral chi-square pdf is

(3.66)

where  is the modified Bessel function (or occasionally called the hyperbolic
Bessel function) of the first kind; and the subscripts is referred to as its order.

3.5. Random Processes
A random variable  is by definition a mapping of all possible outcomes of

a random experiment to numbers. When the random variable becomes a func-
tion of both the outcomes of the experiment time, it is called a random process
and is denoted by . Thus, one can view a random process as an ensemble
of time-domain functions that are the outcome of a certain random experiment,
as compared with single real numbers in the case of a random variable.

Since the cdf and pdf of a random process are time dependent, we will denote
them as  and , respectively. The  moment for the random
process  is 

(3.67)

A random process  is referred to as stationary to order one if all its sta-
tistical properties do not change with time. Consequently, ,
where  is a constant. A random process  is called stationary to order two
(or wide-sense stationary) if

(3.68)

for all  and . 

Define the statistical autocorrelation function for the random process 
as

(3.69)

λ μXi
2

i 1=

N

∑ E2 Yi[ ]

i 1=

N

∑= =

f
χ′N

2 x( )
1
2
---⎝ ⎠
⎛ ⎞ x

λ
---⎝ ⎠
⎛ ⎞

N 2–( ) 4⁄
e

x λ+( ) 2⁄–[ ]I N 2–( ) 2⁄ λx( )
x 0≥

0 x 0<⎩
⎪
⎨
⎪
⎧

=

I

X

X t( )

FX x t;( ) fX x t;( ) nth
X t( )

E Xn t( )[ ] xnfX x t;( ) xd

∞–

∞

∫=

X t( )
E X t( )[ ] X=

X X t( )

fX x1 x2 t1 t2,;,( ) fX x1 x2 t1 Δt+ t2 Δt+,;,( )=

t1 t2, Δt

X t( )

ℜX t1 t2,( ) E X t1( )X t2( )[ ]=
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The correlation  is, in general, a function of . As a con-
sequence of the wide-sense stationary definition, the autocorrelation function
depends on the time difference , rather than on absolute time; and
thus, for a wide-sense stationary process we have

(3.70)

If the time average and time correlation functions are equal to the statistical
average and statistical correlation functions, the random process is referred to
as an ergodic random process. The following is true for an ergodic process:

(3.71)

(3.72)

The covariance of two random processes  and  is defined by

(3.73)

which can also be written as

(3.74)

3.6. Bandpass Gaussian Random Process
It is customary to define the bandpass Gaussian random process through its

complex envelope as

(3.75)

where both  and  are lowpass Gaussian random processes with
zero mean and variance . The pdf for a sample  of the complex enve-
lope is the joint pdf for  and . That is,

(3.76)

Now, if both lowpass processes do not have zero mean and instead have a
mean defined by

E X t1( )X t2( )[ ] t1 t2,( )

τ t2 t1–=

E X t( )[ ] X=
ℜX τ( ) E X t( )X t τ+( )[ ]=

1
T
--- x t( ) td

T 2⁄–

T 2⁄

∫T ∞→
lim E X t( )[ ] X= =

1
T
--- x∗ t( )x t τ+( ) td

T 2⁄–

T 2⁄

∫T ∞→
lim ℜX τ( )=

X t( ) Y t( )

CXY t t τ+,( ) E X t( ) E X t( )[ ]–{ } Y t τ+( ) E Y t τ+( )[ ]–{ }[ ]=

CXY t t τ+,( ) ℜXY τ( ) XY–=

X̃ t( ) XI t( ) jXQ t( )+=

XI t( ) XQ t( )
σ2 X̃ t0( )

XI t( ) XQ t( )

fX̃ x̃ t0( )( ) 1
2πσ2
------------ xI

2 t0( ) xQ
2 t0( )+

2σ2
-----------------------------------–exp 1

2πσ2
------------ x̃ t0( ) 2

2σ2
-----------------–exp= =
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(3.77)

the mean complex envelope is 

   (3.78)

It follows that Eq. (3.76) can be rewritten as

(3.79)

Consider a duration of the process than spans the interval . Then this
segment of the complex envelope of the random process can be represented
using a complex random variable vector of at least  elements where

 is the bandwidth of the process. Define

(3.80)

(3.81)

By definition the covariance matrix  is

(3.82)

where

(3.83)

(3.84)

Therefore, the pdf for the segment  is

(3.85)

3.6.1. The Envelope of a Bandpass Gaussian Process

Consider the pdf of a segment of the envelope of a bandpass Gaussian ran-
dom process. This process can expressed as

μ t( ) μI t( ) 2πf0t( )cos jμQ t( ) 2πf0t( )sin+=

μ̃ t( ) μI t( ) jμQ t( )+=

fX̃ x̃ t0( )( ) 1
2πσ2
------------ xI t0( ) μI t0( )–[ ]2 xQ t0( ) μQ t0( )–[ ]2+

2σ2
-------------------------------------------------------------------------------------------–exp

1
2πσ2
------------

x̃ t0( ) μ̃ t0( )–
2

2σ2
-----------------------------------exp

= =

0 T0,{ }

N BT0=
B

X̃i X̃ i
B
---⎝ ⎠
⎛ ⎞ i; 1 2 … BT0, , ,= =

X̃†
X̃1 X̃2 …X̃BT0

=

C̃

C̃ E X̃ μ̃–( ) X̃ μ̃–( )†[ ] 2 C̃I jC̃IQ+( )= =

C̃I E X̃I μ̃I–( ) X̃I μ̃I–( )†[ ]=

C̃IQ E X̃I μ̃I–( ) X̃Q μ̃Q–( )†[ ]=

X̃ t( ) 0 t T0< <;{ }

fX̃ x̃( ) x̃ μ̃–( )†C̃ 1– x̃ μ̃–( )–[ ]exp
πN C̃

------------------------------------------------------------------=
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 (3.86)

where  and  are zero mean independent lowpass Gaussian pro-
cesses. The envelope and phase are respectively denoted by  and ,
where

(3.87)

and 

(3.88)

where 

(3.89)

The two processes  and  are also independent, and their respective
pdfs were derived in Section 3.3 and were given in Eqs. (3.52) and (3.54),
respectively. 

Problems
3.1. Suppose you want to determine an unknown DC voltage  in the
presence of additive white Gaussian noise  of zero mean and variance .
The measured signal is . An estimate of  is computed by
making three independent measurements of  and computing the arithmetic
mean, . (a) Find the mean and variance of the random
variable . (b) Does the estimate of  get better by using ten measure-
ments instead of three? Why?
3.2. Assume the  and  miss distances of darts thrown at a bulls-eye dart
board are Gaussian with zero mean and variance . (a) Determine the proba-
bility that a dart will fall between  and . (b) Determine the radius of
a circle about the bull’s-eye that contains 80% of the darts thrown. (c) Consider
a square with side  in the first quadrant of the board. Determine  so that the
probability that a dart will fall within the square is 0.07.
3.3. (a) A random voltage  has an exponential distribution function

, where . The expected value
. Determine . Consider the network shown in figure

below, where  is a random voltage with zero mean and autocorrelation
function . Find the power spectrum . What is
the transfer function? Find the power spectrum .

X t( ) XI t( ) 2πf0t( )cos XQ t( ) 2πf0t( )sin–=

XI t( ) XQ t( )
R t( ) Φ t( )

R t( ) XI t( )2 XQ t( )2+=

Φ t( )
XQ t( )
XI t( )
-------------⎝ ⎠
⎛ ⎞tan

1–
=

XI t( ) R t( ) Φ t( )( )cos=

XQ t( ) R t( ) Φ t( )( )sin=

R t( ) Φ t( )

vdc
n t( ) σn

2

x t( ) vdc n t( )+= vdc
x t( )

v
˜dc x1 x2 x3+ +( ) 3⁄≈

v
˜dc vdc

X Y
σ2

0.8σ 1.2σ

s s

v t( )
fV v( ) a av–( )exp= a 0>( ) 0 v ∞<≤( );
E V[ ] 0.5= Pr V 0.5>{ }

x t( )
ℜx τ( ) 1 a t–( )exp+= Sx ω( )

Sv ω( )
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3.4. Let  be the PSD function for the stationary random process
. Compute an expression for the PSD function of

 .

3.5. Let  be a random variable with

  

(a) Determine the characteristic function . (b) Using , validate
that  is a proper pdf. (c) Use  to determine the first two moments
of . (d) Calculate the variance of .

3.6. Let the random variable  be written in terms of two other random
variables  and  as follows: . Find the mean and variance for
the new random variable in terms of the other two. 
3.7. Suppose you have the following sequences of statistically independent
Gaussian random variables with zero means and variances . if 

 and . 

Define . Find an expression that  exceeds a threshold value .

3.8. Repeat the previous problem when two single delay line cancellers are
cascaded to produce a double delay line canceller.Let  be a stationary ran-
dom process,  and the autocorrelation .

Define a new random variola  as 

  

Compute  and .

L R

C
x(t)

+
-

v(t)

SX ω( )
X t( )

Y t( ) X t( ) 2X t T–( )–=

X

fX x( )
1
σ
---t3e t– t 0≥

0 elsewhere⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

CX ω( ) CX ω( )
fX x( ) CX ω( )

X X

Z
X Y Z X 3Y+=

σ2

X1 X2 … XN, , , Xi; Ai Θicos= Y1 Y2 … YN, , , Yi; Ai Θisin=

Z Ai
2

i 1=

N

∑= Z vT

X t( )
E X t( )[ ] 1= ℜx τ( ) 3 τ–( )exp+=

Y

Y x t( ) td

0

2

∫=

E Y t( )[ ] σY
2

chapter3.fm  Page 155  Monday, May 19, 2008  7:00 PM



156      Radar Signal Analysis and Processing Using MATLAB

3.9. Consider the single delay line canceller in the figure below. The input
 is a wide sense stationary random process with variance  and mean 

and a covariance matrix . Find the mean and variance and the autocorrela-
tion function of the output .

x t( ) σx
2 μx

Λ
y t( )

∑delay T +

-
x t( ) y t( )
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Chapter 4 The Matched Filter 

4.1. The Matched Filter SNR
The topics of matched filtering and pulse compression (see Chapter 8) are

central to almost all radar systems. In this chapter the focus is the matched fil-
ter. The unique characteristic of the matched filter is that it produces the maxi-
mum achievable instantaneous SNR at its output when a signal plus additive
white noise is present at the input. Maximizing the SNR is key in all radar
applications, as was described in Chapter 1 in the context of the radar equation
and as will be discussed in Chapter 7 in the context of target detection. 

Therefore, it is important to use a radar receiver which can be modeled as an
LTI system that maximizes the signal’s SNR at its output. For this purpose, the
basic radar receiver of interest is often referred to as the matched filter
receiver. The matched filter is an optimum filter in the sense of SNR because
the SNR at its output is maximized at some delay  that corresponds to the
true target range  (i.e., ). Figure 4.1 shows a simplified block
diagram for the radar receiver of interest. 

t0
R0 t0 2R0( ) c⁄=

From Antenna
and Low Noise Matched Envelope

Detector

Threshold vT

Threshold
Detector Decisionxo t( )

Xo f( )
r t( )

Amp.

 Figure 4.1. Simplified block diagram of the radar receiver

Filter
Noncoherent
Integrationxi t( )

Xi f( ) h t( )
H f( )
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In order to derive the general expression for the transfer function and the
impulse response of this optimum filter, adopt the following notation:

 is the optimum filter impulse response
 is the optimum filter transfer function
 is the input signal
 is the FT of the input signal
 is the output signal
 is the FT of the output signal

 is the input noise signal
 is the input noise PSD
 is the out noise signal
 is the output noise PSD

The optimum filter input signal can then be represented by 

(4.1)

where  is an unknown time delay proportional to the target range. The opti-
mum filter output signal is 

 (4.2)

where
(4.3)

 (4.4)

The operator ( ) indicates convolution. The FT of Eq. (4.4) is

 (4.5)

Consequently the signal output at time  can be calculated using the inverse
FT, evaluated at , as

(4.6)

Additionally, the total noise power at the output of the filter is calculated using
Parseval’s theorem as

(4.7)

h t( )
H f( )
xi t( )
Xi f( )
xo t( )
Xo f( )
ni t( )
Ni f( )
no t( )
No f( )

si t( ) xi t t0–( ) ni t( )+=

t0

so t( ) xo t t0–( )= no t( )+

no t( ) ni t( ) h t( )⊗=

xo t( ) xi t( )= h t( )⊗

⊗

Xo f( ) Xi f( )H f( )=

t0
t0

xo t0( ) Xi f( )H f( )e
j2πft0 fd

∞–

∞

∫=

No Ni f( ) H f( ) 2 fd

∞–

∞

∫=
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Since the output signal power at time  is equal to the modulus square of
Eq. (4.6), then the instantaneous SNR at time  is 

(4.8)

Remember Schawrz’s inequality which has the form

(4.9)

The equal sign in Eq. (4.9) applies when  for some arbitrary
constant . Apply Schawrz’s inequality to Eq. (4.8) with the following
assumptions

(4.10)

(4.11)

It follows that the SNR is maximized when

(4.12)

An alternative way of writing Eq. (4.12) is 

(4.13)

The optimum filter impulse response is computed using inverse FT integral 

(4.14)

t0
t0

SNR t0( )

Xi f( )H f( )e
j2πf t0 fd

∞–

∞

∫
2

Ni f( ) H f( ) 2 fd

∞–

∞

∫
------------------------------------------------------------=

X1 f( )X2 f( ) fd

∞–

∞

∫
2

X1 f( ) 2 fd

∞–

∞

∫
------------------------------------------------ X2 f( ) 2 fd

∞–

∞

∫≤

X1 f( ) KX2∗ f( )=
K

X1 f( ) H f( ) Ni f( )=

X2 f( )
Xi f( )e

j2πf t0

Ni f( )
--------------------------=

H f( ) K
Xi∗ f( )e

j– 2πft0

Ni f( )
-------------------------------=

Xi f( )H f( )e
j2πft0 KNi f( ) Xi f( ) 2=

h t( ) K
Xi∗ f( )e

j– 2πft0

Ni f( )
------------------------------- ej2πf t fd

∞–

∞

∫=
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A special case of great interest to radar systems is when the input noise is
bandlimited white noise with PSD given by

(4.15)

 is a constant. The transfer function for this optimum filter is then given by

(4.16)

where the constant  was set equal to . It follows that

(4.17)

which can be written as 

(4.18)

Observation of Eq. (4.18) indicates that the impulse response of the optimum
filter is matched to the input signal, and thus, the term matched filter is used for
this special case. Under these conditions, the maximum instantaneous SNR at
the output of the matched filter is 

(4.19)

and using Parseval’s theorem the numerator in Eq. (4.19) is equal to the input
signal energy, ; consequently one can write the output peak instantaneous
SNR as

(4.20)

Note that Eq. (4.20) is unitless since the unit for  are in Watts per Hertz (or
Joules). Finally, one can draw the conclusion that the peak instantaneous SNR
depends only on the signal energy and input noise power, and is independent of
the waveform utilized by the radar.

 As indicated by Eq. (4.18) the impulse response  may not be causal if
the value for  is less than the signal duration. Thus, an additional time delay
term  is added to ensure causality, where  is the signal duration. Thus,
a realizable matched filter response is given by

Ni f( ) η0 2⁄=

η0

H f( ) Xi∗ f( )e
j– 2πft0=

K η0 2⁄

h t( ) Xi∗ f( )e
j– 2πf t0[ ] ej2πf t fd

∞–

∞

∫=

h t( ) xi∗ t0 t–( )=

SNR t0( )

Xi f( )H f( )e
j2πf t0 fd

∞–

∞

∫
2

η0 2⁄
------------------------------------------------------------=

Ex

SNR t0( )
2Ex

η0
---------=

η0

h t( )
t0

τ0 T≥ T
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(4.21)

The transfer function for this casual filter is

(4.22)

Substituting the right-hand side of Eq. (4.22) into Eq. (4.6) yields

(4.23)

which has a maximum value when . This result leads to the following con-
clusion: The peak value of the matched filter output is obtained by sampling its
output at times equal to the filter delay after the start of the input signal, and the
minimum value for  is equal to the signal duration . 

Example: 

Compute the maximum instantaneous SNR at the output of a linear filter
whose impulse response is matched to the signal .

Solution: 

The signal energy is

It follows that the maximum instantaneous SNR is 

where  is the input noise power spectrum density.

h t( )
xi∗ τ0 t0 t–+( ) t 0 τ0 T≥,>;

0 t 0<;⎝
⎜
⎛

=

H f( ) xi∗ τ0 t0 t–+( )e j2πft– td

∞–

∞

∫ xi∗ t τ+ 0 t0+( )ej2πft td

∞

∞–

∫

Xi∗ f( )e
j2πf τ0 t0+( )–

= =

=

xo τ0( ) Xi f( )Xi∗ f( )e
j2πf τ0 t0+( )–

e
j2πf t0 fd

∞–

∞

∫ Xi f( ) 2e
j2πfτ0–

fd

∞–

∞

∫= =

τ0

τ0 T

x t( ) t2– 2T⁄( )exp=

Ex x t( ) 2 td

∞–

∞

∫ e t2–( ) T⁄ td

∞–

∞

∫ πT Joules= = =

SNR πT
η0 2⁄
------------=

η0 2⁄
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4.1.1. The Replica

Again, consider a radar system that uses a finite duration energy signal ,
and assume that a matched filter receiver is utilized. From Eq. (4.1) the input
signal can be written as, 

(4.24)

The matched filter output  can be expressed by the convolution integral
between the filter’s impulse response and :

(4.25)

Substituting Eq. (4.21) into Eq. (4.25) yields

(4.26)

where  and  is a cross-correlation between  and
. Therefore, the matched filter output can be computed from the

cross-correlation between the radar received signal and a delayed replica of the
transmitted waveform. If the input signal is the same as the transmitted signal,
the output of the matched filter would be the autocorrelation function of the
received (or transmitted) signal. In practice, replicas of the transmitted wave-
forms are normally computed and stored in memory for use by the radar signal
processor when needed. 

4.2. Mean and Variance of the Matched Filter Output
Since the matched filter is an LTI filter, then when its input’s statistics is

Gaussian, its output statistics is also Gaussian, as discussed in Chapter 3. For
this purpose, consider the following two hypotheses. Hypothesis  is when
the input to the matched filter consists of noise only. That is,

(4.27)

where  is zero mean Gaussian bandlimited white noise with PSD .
Hypothesis  is when the input consists of signal plus noise. That is,

(4.28)

Denote the conditional means and variances for both hypotheses by
, the mean value of , when the signal is absent;  is

x t( )

s t( ) x t t0–( ) n t( )+=

so t( )
s t( )

s0 t( ) s u( )h t u–( ) ud

∞–

∞

∫=

so t( ) s u( )x∗ t τ0 t0–– u+( ) ud

∞–

∞

∫ Rsx t T0–( )= =

T0 τ0 t0+= Rsx t T0–( ) s t( )
x T0 t–( )

H0

H0 s t( )⇔ ni t( )=

ni t( ) η0 2⁄
H1

H1 s t( )⇔ xi t( ) ni t( )+=

E so H0⁄[ ] s0 τ0( ) E so H1⁄[ ]
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the mean value of  when the signal is present;  is the vari-
ance of  when the signal is absent; and  is the variance of

 when the signal is present. It follows that

(4.29)

(4.30)

where  is the signal energy. Finally,

(4.31)

4.3. General Formula for the Output of the Matched
Filter

Two cases are analyzed; the first is when a stationary target is present. The
second case is concerned with a moving target whose velocity is constant.
Assume the range to the target is 

(4.32)

where  is the target radial velocity (i.e. the target velocity component on the
radar line of sight.) The initial detection range  is given by

(4.33)

where  is the speed of light and  is the round trip delay it takes a certain
radar pulse to travel from the radar to the target at range  and back. 

The general expression for the radar bandpass signal is

(4.34)

which can be written using its pre-envelope (analytic signal) as

(4.35)

where  indicates “the real part of.” Again  is the complex envelope. 

4.3.1. Stationary Target Case

In this case, the received radar return is given by

s0 τ0( ) Var so H0⁄[ ]
s0 τ0( ) Var so H1⁄[ ]

s0 τ0( )

E so H0⁄[ ] 0=

E so H1⁄[ ] xi t( ) 2

∞–

∞

∫ dt Ex= =

Ex

Var so H0⁄[ ] Var so H1⁄[ ] Exη0 2⁄= =

R t( ) R0 v– t t0–( )=

v
R0

t0
2R0

c
---------=

c t0
R0

s t( ) sI t( ) 2πf0tcos sQ t( ) 2πf0tsin–=

s t( ) Re ψ t( ){ } Re s̃ t( )e
j2πf0t

{ }= =

Re{ } s̃ t( )

chapter4.fm  Page 163  Monday, May 19, 2008  7:00 PM



164      Radar Signal Analysis and Processing Using MATLAB

(4.36)

It follows that the received analytic and complex envelope signals are, respec-
tively, given by

(4.37)

(4.38)

Observation of Eq. (4.38) clearly indicates that the received complex enve-
lope is more than just a delayed version of the transmitted complex envelope. It
actually contains an additional phase shift  which represents the phase cor-
responding to the two-way optical length for the target range. That is,

 (4.39)

where  is the radar wavelength and is equal to . Since a very small
change in range can produce significant change in this phase term, this phase is
often treated as a random variable with uniform probability density function
over the interval . Furthermore, the radar signal processor will first
attempt to remove (correct for) this phase term through a process known as
phase unwrapping. 

Substituting Eq. (4.38) into Eq. (4.25) provides the output of the matched fil-
ter. It is given by 

 (4.40)

where the impulse response  is in Eq. (4.18). It follows that

(4.41)

Make the following change of variables:

(4.42)

Therefore, the output of the matched filter when a stationary target is present is
computed from Eq (4.41) as 

sr t( ) s t
2R0

c
---------–⎝ ⎠

⎛ ⎞ s t t0–( ) Re s̃ t t0–( )e
j2πf0 t t0–( )

{ }= = =

ψr t( ) s̃ t t0–( )e
j– 2πf0t0e

j2πf0t
=

s̃r t( ) s̃ t t0–( )e
j– 2πf0t0=

ϕ0

ϕ0 2πf0t0– 2πf02
R0

c
-----– 2π

λ
------2R0–= = =

λ c f0⁄

0 2π,{ }

so t( ) s̃r u( )h t u–( ) ud

∞–

∞

∫=

h t( )

so t( ) s̃ u t0–( )e
j– 2πf0t0s̃∗ t t0– u+( ) ud

∞–

∞

∫=

z u t0–= dz⇒ du=
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(4.43)

where  is the autocorrelation function for the signal . 

4.3.2. Moving Target Case

In this case, the received signal only not is delayed in time by  but also has
a Doppler frequency shift  corresponding to the target velocity, where

(4.44)

The pre-envelope of the received signal can be written as

(4.45)

Substituting Eq. (4.32) into Eq. (4.45) yields

(4.46)

Collecting terms yields

(4.47)

Define the scaling factor  as

(4.48)

then Eq. (4.47) can be written as

(4.49)

Since , the following approximation can be used 

(4.50)

It follows that Eq. (4.49) can now be rewritten as 

(4.51)

so t( ) e
j– 2πf0t0 s̃ z( ) s̃∗ t z–( ) zd

∞–

∞

∫ e
j– 2πf0t0Rs t( )= =

Rs t( ) s̃ t( )
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fd

fd 2vf0 c⁄ 2v λ⁄= =
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c

-------------–⎝ ⎠
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c
-------------–⎝ ⎠

⎛ ⎞ e
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c
--------------–⎝ ⎠

⎛ ⎞
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2R0

c
--------- 2vt

c
--------+–
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c
----------–⎝ ⎠

⎛ ⎞ e
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--------+–
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c
----------–⎝ ⎠

⎛ ⎞
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⎛ ⎞ t0 1 2v
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γ 1 2v
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⎛ ⎞
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Recognizing that  and , the received pre-enve-
lope signal is

(4.52)

or

(4.53)

Then by inspection the complex envelope of the received signal is

(4.54)

Finally, it is concluded that the complex envelope of the received signal
when the target is moving at a constant velocity  is a delayed (by ) version
of the complex envelope signal of the stationary target case except that: 

1. An additional phase shift term corresponding to the target’s Doppler fre-
quency is present, and

2. The phase shift term  is present. 

The output of the matched filter was derived in Eq. (4.25). Substituting Eq.
(4.54) into Eq. (4.25) yields

 (4.55)

Applying the change of variables given in Eq. (4.42) and collecting terms pro-
vide

 (4.56)

Observation of Eq. (4.56) shows that the output is a function of both  and
. Thus, it is more appropriate to rewrite the output of the matched filter as a

two-dimensional function of both variables. That is,

 (4.57)

It is customary but not necessary to set . Note that if the causal impulse
response is used (i.e., Eq. (4.21)), the same analysis will hold true. However, in

fd 2vf0( ) c⁄= t0 2R0( ) c⁄=

ψr t( ) s̃ t t0–( )e
j2πf0t

e
j– 2πf0t0e

j2πfdt
e

j– 2πfdt0 s̃ t t0–( )e
j2π f0 fd+( ) t t0–( )

= =

ψr t( ) s̃ t t0–( )e
j2πfdt

e
j– 2π f0 fd+( )t0{ }e

j2πf0t
=

s̃r t( ) s̃ t t0–( )e
j2πfdt

e
j– 2π f0 fd+( )t0=

v t0

2πfdt0–( )

so t( ) s̃ u t0–( )e
j2πfdu

e
j– 2π f0 fd+( )t0s̃∗ t t0– u+( ) ud

∞–

∞

∫=

so t( ) e
j– 2πf0t0 s̃ z( ) s̃∗ t z–( )e

j2πfdz
e

j2πfdt0e
j– 2πfdt0 zd

∞–

∞

∫=

t
fd

so t fd;( ) e
j– 2πf0t0 s̃ z( ) s̃∗ t z–( )e

j2πfdz
zd

∞–

∞

∫=

t0 0=
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this case, the phase term is equal to , instead of 
where . 

4.4. Waveform Resolution and Ambiguity
As indicated by Eq. (4.20), the radar sensitivity (in the case of white additive

noise) depends only on the total energy of the received signal and is indepen-
dent of the shape of the specific waveform. This leads to the following ques-
tion: If the radar sensitivity is independent of the waveform, what is the best
choice for the transmitted waveform? The answer depends on many factors;
however, the most important consideration lies in the waveform’s range and
Doppler resolution characteristics, which can be determined from the output of
the matched fitter.

As discussed in Chapter 1, range resolution implies separation between dis-
tinct targets in range. Alternatively, Doppler resolution implies separation
between distinct targets in frequency. Thus, ambiguity and accuracy of this
separation are closely associated terms. 

4.4.1. Range Resolution

Consider radar returns from two stationary targets (zero Doppler) separated
in range by distance . What is the smallest value of  so that the returned
signal is interpreted by the radar as two distinct targets? In order to answer this
question, assume that the radar transmitted bandpass pulse is denoted by , 

(4.58)

where  is the carrier frequency,  is the amplitude modulation, and 
is the phase modulation. The signal  can then be expressed as the real part
of the pre-envelope signal , where

(4.59)

and the complex envelope is

(4.60)

It follows that 

(4.61)

The returns from two close targets are, respectively, given by

(4.62)

(4.63)

j– 2πf0T0( )exp j– 2πf0t0( )exp
T0 τ0 t0+=

ΔR ΔR

x t( )

x t( ) r t( ) 2πf0t φ t( )+( )cos=

f0 r t( ) φ t( )
x t( )

ψ t( )

ψ t( ) r t( )e
j 2πf0t φ t( )–( )

x̃ t( )e
2πf0t

= =

x̃ t( ) r t( )e jφ t( )–=

x t( ) Re ψ t( ){ }=

x1 t( ) ψ t τ0–( )=

x2 t( ) ψ t τ0– τ–( )=
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where  is the difference in delay between the two target returns. One can
assume that the reference time is , and thus without any loss of generality,
one may set . It follows that the two targets are distinguishable by how
large or small the delay  can be. 

In order to measure the difference in range between the two targets, consider
the integral square error between  and . Denoting this error as

, it follows that

(4.64)

which can be written as

(4.65)

Using Eq. (4.59) into Eq. (4.65) yields

(4.66)

This squared error is minimum when the second portion of Eq. (4.66) is pos-
itive and maximum. Note that the first term in the right-hand side of Eq. (4.66)
represents the total signal energy, and is assumed to be constant. The second
term is a varying function of  with its fluctuation tied to the carrier frequency.
The integral inside the right most side of this equation is defined as the range
ambiguity function,

(4.67)

τ
τ0

τ0 0=
τ
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∞
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∞
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∫
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∞
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∞
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⎪ ⎪
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⎪ ⎪
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∞

∫ 2Re e
jω0τ–
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∞

∫
⎩ ⎭
⎪ ⎪
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⎪ ⎪
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This range ambiguity function is equivalent to the integral given in Eq. (4.43)
with . Comparison between Eq. (4.67) and Eq. (4.43) indicates that the
output of the matched filter and the range ambiguity function have the same
envelope (in this case the Doppler shift  is set to zero). This indicates that the
matched filter, in addition to providing the maximum instantaneous SNR at its
output, also preserves the signal range resolution properties. The value of

 that minimizes the squared error in Eq. (4.66) occurs when . 

Target resolvability in range is measured by the squared magnitude .
It follows that if  for some nonzero value of , then the two
targets are indistinguishable. Alternatively, if  for some non-
zero value of , then the two targets may be distinguishable (resolvable). As a
consequence, the most desirable shape for  is a very sharp peak (thumb
tack shape) centered at  and falling very quickly away from the peak.
The minimum range resolution corresponding to a time duration  or effec-
tive bandwidth  is 

(4.68)

The effective time duration and the effective bandwidth for any waveform
were defined in Chapter 2 and are repeated here as Eq. (4.69) and Eq. (4.70),
respectively

 (4.69)

(4.70)

4.4.2. Doppler Resolution

The Doppler shift corresponding to the target radial velocity is

(4.71)

where  is the target radial velocity,  is the wavelength,  is the frequency,
and  is the speed of light. 

The FT of the pre-envelope is
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fd
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cτe
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⎜ ⎟
⎛ ⎞
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c
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(4.72)

Due to the Doppler shift associated with the target, the received signal spec-
trum will be shifted by . In other words, the received spectrum can be repre-
sented by . In order to distinguish between the two targets located at
the same range but having different velocities, one may use the integral square
error. More precisely,

(4.73)

Using similar analysis as that which led to Eq. (4.66), one should maximize

(4.74)

Taking the FT of the pre-envelope (analytic signal) defined in Eq. (4.59) yields 

(4.75)

Thus, 

(4.76)

The complex frequency correlation function is then defined as

(4.77)

The velocity resolution (Doppler resolution) is by definition 

(4.78)

where  is the minimum resolvable Doppler difference between the Doppler
frequencies corresponding to two moving targets, i.e., , where
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 and  are the two individual Doppler frequencies for targets 1 and 2,
respectively. The Doppler resolution  is equal to the inverse of the total
effective duration of the waveform. Thus, 

 (4.79)

4.4.3. Combined Range and Doppler Resolution

In this general case, one needs to use a two-dimensional function in the pair
of variables ( ). For this purpose, assume that the pre-envelope of the trans-
mitted waveform is 

(4.80)

Then the delayed and Doppler-shifted signal is (see Eq. (4.53))

(4.81)

Computing the integral square error between Eq. (4.80) and Eq. (4.81) yields

(4.82a)

(4.82b)

which can be written as

(4.83)

Again, in order to maximize this squared error for , one must minimize
the last term of Eq. (4.83). Define the combined range and Doppler correlation
function as

(4.84)
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In order to achieve the most range and Doppler resolution, the modulus square
of this function must be minimized at  and . Note that the output of
the matched filter, except for a phase term, is identical to that given in Eq.
(4.84). This means that the output of the filter exhibits maximum instantaneous
SNR as well as the most achievable range and Doppler resolutions. The modu-
lus square of Eq. (4.84) is often referred to as the ambiguity function: 

(4.85)

The ambiguity function is often used by radar designers and analysts to deter-
mine the goodness of a given radar waveform, where this goodness is mea-
sured by its range and Doppler resolutions. Remember that since the matched
filter is used, maximum SNR is guaranteed. 

4.5. Range and Doppler Uncertainty
The formula derived in Eq. (4.84) represents the output of the matched filter

when the signal at its input comprises target returns only and has no noise com-
ponents, an assumption that cannot be true in practical situations. In general,
the input at the matched filter contains both target and noise returns. The noise
signal is assumed to be an additive random process that is uncorrelated with
the target and has bandlimited white spectrum. Referring to Eq. (4.84), a peak
at the output of the matched filter at  represents a target whose delay
(range) corresponds to  and Doppler frequency equal to . Therefore,
measuring targets’ exact range and Doppler frequency is determined from
measuring peak locations occurring in the two-dimensional space . This
last statement, however, is correct only if noise is not present at the input of the
matched filter. When noise is present and because noise is random, it will gen-
erate ambiguity (uncertainty) about the exact location of the ambiguity func-
tion peaks in the  space. 

4.5.1. Range Uncertainty

     Consider the case when the return signal complex envelope is (assuming
stationary target) 

(4.86)

where  is the target return signal complex envelope and  is the noise
signal complex envelope. The integral squared error between the total received
signal (target plus noise) and the shifted (delayed) transmitted waveform is 

τ 0≠ fd 0≠
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(4.87)

where  corresponds to maximum range under consideration. Expanding
this squared error yields

(4.88)

which can be written as

(4.89)

This expression is minimum at some value  that makes the integral term
inside Eq. (4.88) maximum and positive. More precisely, the following correla-
tion functions must be maximized

 (4.90)

 (4.91)

Therefore, Eq. (4.89) can be written as

(4.92)

Expanding the quantity  using Taylor series expansion about the
point , where , and  is the exact target range leads to

(4.93)

where  and , respectively, indicate the first and second derivatives with
respect to delay. Remember that since the real part of the correlation function is
an even function, all its odd number derivatives are equal to zero. Now,
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approximate Eq. (4.93) by using the first three terms (terms 1 and 3 are, of
course, equal to zero) to get

(4.94)

There is some value  close to the exact target range, , that will minimize
the expression in Eq. (4.92). In order to find this minimum value, differentiate
the quantity  with respect to  and set the result equal to
zero to find . More specifically,

 (4.95)

The derivative of the  can be found from Eq. (4.94) as

(4.96)

Substituting the result of Eq. (4.96) into Eq. (4.95) and collecting terms yield

(4.97)

The value  represent the amount of target range error measurement. It
is more meaningful, since noise is random, to compute this error in terms of the
standard deviation of its rms value. Hence, the standard deviation for range
measurement error is

(4.98)

By using the differentiation property of the Fourier transform and Parseval’s
theorem the denominator of Eq. (4.89) can be determined by

(4.99)

Next, from relations developed in Chapter 2, one can write the FT of  as

(4.100)
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where  is the noise power spectrum density value (white noise). From the
Fourier transform properties, the FT of the derivative of  is

(4.101)

The rms value for  is by definition

(4.102)

which can be rewritten using Parseval’s theorem as

(4.103)

substituting Eq. (4.101) into Eq. (4.103) yields

(4.104)

Finally, the standard deviation for range measurement error can be written as

(4.105)

Define the bandwidth rms value, , as

(4.106)

It follows that Eq. (4.105) can now be written as
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(4.107)

which leads to the conclusion that the uncertainty in range measurement is
inversely proportional to the rms bandwidth and the square root of the ratio of
signal energy to the noise power density (square root of the SNR). 

4.5.2. Doppler (Velocity) Uncertainty

For this purpose, assume that the target range is completely known. In the
next section the case where both target range and target Doppler are not known
will be analyzed. Denote the signal transmitted by the radar as  and the
received signal (target plus noise) as . The integral square difference
between the two returns can be written as

(4.108)

where  is the FT of ,  is the FT of , and  is the maxi-
mum anticipated target Doppler. Again expand Eq. (4.108) to get

(4.109)

Minimizing the error squared in Eq. (4.109) requires maximizing the value 

 

Conducting similar analysis as that performed in the previous section, the
duration rms, , value can be defined as

(4.110)

The standard deviation in the Doppler measurement can be derived as
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(4.111)

Comparison of Eq. (4.111) and Eq. (4.107) indicates that the error in estimat-
ing Doppler is inversely proportional to the signal duration, while the error in
estimating range is inversely proportional to the signal bandwidth. Therefore,
and as expected, larger bandwidths minimize the range measurement errors
and longer integration periods minimize the Doppler measurement errors.

4.5.3. Range-Doppler Coupling

In the previous two sections, range estimate error and Doppler estimate error
were derived by assuming that they are uncoupled estimates. In other words,
range error was derived assuming stationary target, while Doppler error was
derived assuming completely known target range. In this section a more gen-
eral formula for the combined range and Doppler errors is derived. 

The analytic signal for this case was derived in Section 4.3 and was given in
Eq. (4.52) which is repeated here as Eq. (4.112) for easy reference:

(4.112)

One can assume with any loss of generality that , thus, Eq. (4.112) can
be expressed as

(4.113)

where the complex envelope signal, , can be expressed as

(4.114)

Range Error Estimate

From the analysis performed in Section 4.5.1, the estimate for the range error
is determined by maximizing the function

(4.115)

It follows that for some fixed value  there is a value  close to  that
will maximize Eq. (4.115); that is,

   (4.116)

Again the Taylor series expansion of  about  is
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(4.117)

Thus,

(4.118)

Substituting Eq. (4.118) into Eq. (4.116) and solving for  yields

(4.119)

The value of  is not much different from ; thus,

(4.120)

To evaluate the term , start with the definition of ,

(4.121)

Compute the derivative of Eq. (4.121) with respect to  

(4.122)

Evaluating Eq. (4.122) at  and  gives

(4.123)

The complex exponential term in Eq. (4.123) can be approximated using small
angle approximation as

(4.124)
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Next substitute Eq. (4.124) into Eq. (4.123), collect terms, and compute its real
part to get

(4.125)

The first integral is evaluated (using FT properties and Parseval’s theorem) as

(4.126)

Remember that since the envelope function  is a real lowpass signal, its
Fourier transform is an even function; thus, Eq. (4.126) is equal to zero. Using
this result, Eq. (4.125) becomes

(4.127)

Substitute Eq. (4.127) into Eq. (4.120) to get 

(4.128)

Equation (4.128) provides a measure for the degree of coupling between range
and Doppler estimates. Clearly, if , then there is zero
coupling between the two estimates. Define the range-Doppler coupling con-
stant as

(4.129)

Doppler Error Estimate

Applying similar analysis as that performed in the preceding section to the
spectral cross correlation function yields an expression for the range-Doppler
coupling term. It is given by
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(4.130)

where  is the FT of .

It can be shown that Eq. (4.129) and Eq. (4.130) are equal (see Problem
4.15). Given this result, the subscripts  and  in Eq. (4.129) and Eq. (4.130)
are dropped and the range-Doppler term is simply referred to as . 

4.5.4. Range-Doppler Coupling in LFM Signals

Referring to Eq. (4.113) and Eq. (4.114), the phase for an LFM signal can be
expressed as

(4.131)

where ,  is the LFM bandwidth, and  is the pulsewidth.
Substituting Eq. (4.131) into Eq. (4.129) yields

(4.132)

where  is the effective duration. Thus,

(4.133)

Similarly,

(4.134)

where  and  are constants. Since estimates of range or Doppler when
noise is present cannot be 100% exact, it is better to replace these constants
with their equivalent mean-squared errors. That is, let
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(4.135)

where  is as in Eq. (4.133) and  is in Eq. (4.134). Thus, Eq. (4.133) can
be written as

(4.136)

which can be algebraically manipulated to get

(4.137)

Using similar analysis,

(4.138)

These results lead to the conclusion that one can estimate target range and
Doppler simultaneously only when the product of the rms bandwidth and rms
duration is very large (i.e., very large time bandwidth products). This is the rea-
son radars using LFM waveforms cannot estimate target Doppler accurately
unless very large time bandwidth products are utilized. Often, the LFM wave-
forms are referred to as “Doppler insensitive” waveforms. 

4.6. Target Parameter Estimation
Target parameters of interest to radar applications include, but are not lim-

ited to, target range (delay), amplitude, phase, Doppler, and angular location
(azimuth and elevation). Target information (parameters) is typically embed-
ded in the return signals amplitude and phase. Different classes waveforms are
used by the radar signal and data processors to extract different target parame-
ters more efficiently than others. Since radar echoes typically comprise signal
plus additive noise, most if not all the target information is governed by the sta-
tistics of the input noise, whose statistical parameters most likely are not
known but can be estimated. Thus, statistical estimates of the target parameters
(amplitude, phase, delay, Doppler, etc.) are utilized instead of the actual corre-
sponding measurements. The general form of the radar signal can be expressed
in the following form

(4.139)

where  is the signal amplitude,  is the envelope lowpass signal,  is
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and Doppler, respectively. The analysis in this section closely follows Melsa
and Cohen1.

4.6.1.  What Is an Estimator?

In the case of radar systems it always safe to assume, due to the central limit
theorem, that the input noise is always Gaussian with mainly unknown param-
eters. Furthermore, one can assume that this noise is bandlimited white noise.
Consequently, the primary question that needs to be answered is as follows:
Given that the probability density function of the observation is known (Gaus-
sian in this case) and given a finite number of independent measurements, can
one determine an estimate of a given parameter (such as range, Doppler, ampli-
tude, or phase)? 

Let  be the pdf of a random variable  with an unknown parameter
. Define the values  as  observed independent values of the

variable . Define the function or estimator  as an estimate of
the unknown parameter . The bias of estimation is defined as

 (4.140)

where  represents the “expected value of.” The estimator  is referred to
as an unbiased estimator if and only if 

 (4.141)

One of the most popular and common measures of the quality or effective-
ness of an estimator is the Mean Square Deviation (MSD) referred to symboli-
cally as . For an unbiased estimator

(4.142)

where  is the estimator variance. It can be shown that the Cramer-Rao
bound for this MSD is given by

(4.143)

The efficiency of this unbiased estimator is defined by

1. Melsa, J. L. Cohen, D. L., Decision and Estimation Theory, McGraw-Hill, New 
York, 1978.
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(4.144)

when  the unbiased estimator is called an efficient estimate.

Consider an essentially timelimited signal  with effective duration 
and assume a bandlimited white noise with PSD . In this case, Eq.
(4.144) is equivalent to 

(4.145)

where  is the estimate for the ith parameter of interest and  is the pulse
repetition interval for the pulsed sequence. In the next two sections, estimates
of the target amplitude and phase are derived. It must be noted that since these
estimates represent independent random variables, they are referred to as
uncoupled estimates; that is, the computation of one estimate does not depend
on apriori knowledge of the other estimates.

4.6.2. Amplitude Estimation

The signal amplitude  in Eq. (4.139) is the parameter of interest, in this
case. Taking the partial derivative of Eq. (4.139) with respect to  and squar-
ing the result yields

(4.146)

Thus,

(4.147)

where  is the signal energy (from Parseval’s theorem). Substituting Eq.
(4.147) into Eq. (4.145) and collecting terms yield the variance for the ampli-
tude estimate as

(4.148)

In this case Eq. (4.20) used in Eq. (4.148) and  is the signal to noise ratio
of the signal at the output of the matched filter. This clearly indicates that the
signal amplitude estimate is improved as the SNR is increased.
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4.6.3. Phase Estimation

In this case, it is desired to compute the best estimate for the signal phase
. Again taking the partial derivative of the signal in Eq. (4.139) with respect

to  and squaring the result yield

(4.149)

It follows that

(4.150)

Thus, the variance of the phase estimate is

(4.151)

Problems
4.1. Show that the SNR at the output of the matched filter can be written as

 

where ,  is the bandwidth,  is the pulsewidth. Assume that
the radar is using unmodulated rectangular pulse of width  and that there is a
target detected at range . The value  is the signal power at the input of the
matched filter. 

4.2. Compute the frequency response for the filter matched to the signal 

(a) ; 

(b)  where  is a positive constant.

4.3. Repeat the example in Section 4.1 using .
4.4. Prove the properties of the radar ambiguity function.
4.5. A radar system uses LFM waveforms. The received signal is of the
form , where  is a time delay that depends on range,

, and . Assume that
the radar bandwidth is , and the pulse width is . (a) Give

φ0
φ0

φ0∂
∂ x t( )⎝ ⎠

⎛ ⎞ 2
r– t t0–( ) 2π f0 fd+( ) t t0–( ) φ t t0–( ) φ0+ +[ ]sin( )2=

φ0∂
∂ x t( )⎝ ⎠

⎛ ⎞ 2
td

0

NTr

∫ x t( )( )2 td

0

NTr

∫ NEx= =

σφ0

2 1
2
η0
-----NEx

----------------≥ 1
N SNR
-------------------=

SNR 2
απ
------- Si α( )( )2=

α πBT( ) 2⁄= B T
T

R Si

x t( ) t2–
2T
-------⎝ ⎠
⎛ ⎞exp=

x t( ) u t( ) αt–( )exp= α

x t( ) u t( ) αt–( )exp=

sr t( ) As t τ–( ) n t( )+= τ
s t( ) Rect t τ′⁄( ) 2πf0t φ t( )–( )cos= φ t( ) πBt2– τ′⁄=

B 5MHz= τ′ 5μs=
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the quadrature components of the matched filter response that is matched to
. (b) Write an expression for the output of the matched filter. (c) Compute

the increase in SNR produced by the matched filter.

4.6. (a) Write an expression for the ambiguity function of an LFM wave-
form, where  and the compression ratio is . (b) Give an expres-
sion for the matched filter impulse response.
4.7. (a) Write an expression for the ambiguity function of a LFM signal
with bandwidth , pulse width , and wavelength

. (b) Plot the zero Doppler cut of the ambiguity function. (c) Assume
a target moving toward the radar with radial velocity . What is
the Doppler shift associated with this target? (d) Plot the ambiguity function
for the Doppler cut in part (c). (e) Assume that three pulses are transmitted
with PRF . Repeat part (b). 
4.8. (a) Give an expression for the ambiguity function for a pulse train con-
sisting of 4 pulses, where the pulse width is  and the pulse repetition
interval is . Assume a wavelength of . (b) Sketch the
ambiguity function contour.

4.9. Hyperbolic frequency modulation (HFM) is better than LFM for high
radial velocities. The HFM phase is

 

where  is an HFM coefficient and  is a constant. (a) Give an expression
for the instantaneous frequency of an HFM pulse of duration . (b) Show
that HFM can be approximated by LFM. Express the LFM coefficient  in
terms of  and in terms of  and .

4.10. Consider a sonar system with range resolution . (a) A
sinusoidal pulse at frequency  is transmitted. What is the pulse
width, and what is the bandwidth? (b) By using an up-chirp LFM, centered at

, one can increase the pulse width for the same range resolution. If you want
to increase the transmitted energy by a factor of 20, give an expression for the
transmitted pulse. (c) Give an expression for the causal filter matched to the
LFM pulse in part b.
4.11. A pulse train  is given by

  

where  is a single pulse of duration  and the weighting
sequence is . Find and sketch the correlations ,

, and .
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y t( )
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w n( ){ } 0.5 1 0.7, ,{ }= Rx
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4.12. Repeat the previous problem for .
4.13. Derive Eq. (4.29) and Eq. (4.30) when the input noise is not white.

4.14. Show that the zero Doppler cut for the ambiguity function of an arbi-

trary phase coded pulse with a pulse width  is given by .

4.15. Show that

 

where , is the FT of  and  is its derivative with respect to time.
The function  is the derivative of  with respect to frequency.

x t( ) t2– 2⁄( )exp 2πf0tcos=

τp Y f( ) c fτp( )sin 2=

tx∗ t( )x′ t( ) td

∞–

∞

∫ fX∗ f( )X′ f( ) fd

∞–

∞

∫–=

X f( ) x t( ) x′ t( )
X′ f( ) X f( )
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Chapter 5 The Ambiguity 
Function - Analog 
Waveforms 

5.1. Introduction
The radar ambiguity function represents the output of the matched filter, and

it describes the interference caused by the range and/or Doppler shift of a tar-
get when compared to a reference target of equal RCS. The ambiguity function
evaluated at  is equal to the matched filter output that is per-
fectly matched to the signal reflected from the target of interest. In other
words, returns from the nominal target are located at the origin of the ambigu-
ity function. Thus, the ambiguity function at nonzero  and  represents
returns from some range and Doppler different from those for the nominal tar-
get.

The formula for the output of the matched filter was derived in Chapter 4, it
is, assuming a moving target with Doppler frequency ,

(5.1)

The modulus square of Eq. (5.1) is referred to as the ambiguity function. That
is, 

(5.2)

The radar ambiguity function is normally used by radar designers as a means
of studying different waveforms. It can provide insight about how different
radar waveforms may be suitable for the various radar applications. It is also
used to determine the range and Doppler resolutions for a specific radar wave-
form. The three-dimensional (3-D) plot of the ambiguity function versus fre-
quency and time delay is called the radar ambiguity diagram. 

τ fd,( ) 0 0,( )=

τ fd

fd

χ τ fd,( ) x̃ t( )x̃∗ t τ–( )e
j2πfdt

td

∞–

∞

∫=

χ τ fd,( ) 2 x̃ t( )x̃∗ t τ–( )e
j2πfdt

td

∞–

∞

∫
2

=
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Denote  as the energy of the signal ,

(5.3)

The following list includes the properties for the radar ambiguity function:

1) The maximum value for the ambiguity function occurs at 
and is equal to ,

(5.4)

(5.5)

2) The ambiguity function is symmetric,

(5.6)

3) The total volume under the ambiguity function is constant,

(5.7)

4) If the function  is the Fourier transform of the signal , then by
using Parseval’s theorem we get

(5.8)

5) Suppose that  is the ambiguity function for the signal . Add-
ing a quadratic phase modulation term to  yields

(5.9)

where  is a constant. It follows that the ambiguity function for the signal
 is given by

(5.10)

5.2. Examples of the Ambiguity Function
The ideal radar ambiguity function is represented by a spike of infinitesi-

mally small width that peaks at the origin and is zero everywhere else, as illus-
trated in Fig. 5.1. An ideal ambiguity function provides perfect resolution
between neighboring targets regardless of how close they may be to each other.
Unfortunately, an ideal ambiguity function cannot physically exist because the

Ex x̃ t( )

Ex x̃ t( ) 2 td
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∞
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ambiguity function must have finite peak value equal to  and a finite
volume also equal to . Clearly, the ideal ambiguity function cannot
meet those two requirements.

5.2.1.  Single Pulse Ambiguity Function

The complex envelope of a single pulse is  defined by

(5.11)

From Eq. (5.1) we have

 (5.12)

Substituting Eq. (5.11) into Eq. (5.12) and performing the integration yield

(5.13)

Figures 5.2 a and b show 3-D and contour plots of single pulse ambiguity
functions. This figure can be reproduced using the following MATLAB code

close all; clear all;
eps = 0.000001;
taup = 3;
[x] = single_pulse_ambg (taup);
taux = linspace(-taup,taup, size(x,1));
fdy = linspace(-5/taup+eps,5/taup-eps, size(x,1));
mesh(taux,fdy,x);

2Ex( )2

2Ex( )2

τ

fdχ τ fd;( ) 2

0 0,( )

Figure 5.1. Ideal ambiguity function.
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xlabel ('Delay in seconds'); 
ylabel ('Doppler in Hz'); 
zlabel ('Ambiguity function')
figure(2)
contour(taux,fdy,x);
xlabel ('Delay in seconds'); 
ylabel ('Doppler in Hz'); grid

The ambiguity function cut along the time-delay axis  is obtained by set-
ting . More precisely,

(5.14)

Note that the time autocorrelation function of the signal  is equal to
. Similarly, the cut along the Doppler axis is

(5.15)

Figures 5.3 and 5.4, respectively, show the plots of the uncertainty function
cuts defined by Eq. (5.14) and Eq. (5.15). Since the zero Doppler cut along the
time-delay axis extends between  and , close targets will be unambiguous
if they are at least  seconds apart.

τ
fd 0=

χ τ 0;( ) 1 τ
τ0
-----–⎝ ⎠

⎛ ⎞ 2
= τ τ0≤

x̃ t( )
χ τ 0;( )

χ 0 fd;( ) 2 πτ0fdsin
πτ0fd

--------------------
2

=

τ0– τ0
τ0

 Figure 5.2a. Single pulse 3-D ambiguity plot. Pulse width is 3 seconds. 
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The zero time cut along the Doppler frequency axis has a  shape.
It extends from  to . The first null occurs at . Hence, it is
possible to detect two targets that are shifted by , without any ambiguity.
Thus, a single pulse range and Doppler resolutions are limited by the pulse
width . Fine range resolution requires that a very short pulse be used. Unfor-
tunately, using very short pulses requires very large operating bandwidths and
may limit the radar average transmitted power to impractical values.

 Figure 5.2b. Contour plot corresponding to Fig. 5.2a.

τ0τ0– τ

amplitude

Figure 5.3. Zero Doppler ambiguity function cut along the time-delay axis.

xsin x⁄( )2

∞– ∞ fd 1 τ0⁄±=
1 τ0⁄
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5.2.2.  LFM Ambiguity Function

Consider the LFM complex envelope signal defined by

(5.16)

In order to compute the ambiguity function for the LFM complex envelope, we
will first consider the case when . In this case the integration limits
are from  to . Substituting Eq. (5.16) into Eq. (5.1) yields

(5.17)

It follows that

(5.18)

Finishing the integration process in Eq. (5.18) yields

 
 Figure 5.4. Ambiguity function of a single frequency pulse (zero delay). 

The pulse width is 3 seconds.
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(5.19)

Similar analysis for the case when  can be carried out, where, in
this case, the integration limits are from  to . The same result
can be obtained by using the symmetry property of the ambiguity function
( ). It follows that an expression for  that is
valid for any  is given by

(5.20)

and the LFM ambiguity function is

(5.21)

Again the time autocorrelation function is equal to . The reader can
verify that the ambiguity function for a down-chirp LFM waveform is given by

(5.22)

Incidentally, either Eq. (5.21) or (5.22) can be obtained from Eq. (5.13) by
applying property 5 from Section 5.1. Figures 5.5 a and b show 3-D and con-
tour plots for the LFM uncertainty and ambiguity functions for  second
and  for a down-chirp pulse. This figure can be reproduced using the
following MATLAB code.

% Use this program to reproduce Fig. 5.5 of text
close all;
clear all;
eps = 0.0001;
taup = 1.;
b = 5.;
up_down = -1.;
x = lfm_ambg(taup, b, up_down);
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taux = linspace(-1.*taup,taup,size(x,1));
fdy = linspace(-1.5*b,1.5*b,size(x,1));
figure(1)
mesh(taux,fdy,sqrt(x))
xlabel ('Delay in seconds')
ylabel ('Doppler in Hz')
zlabel ('Ambiguity function')
axis tight
figure(2)
contour(taux,fdy,sqrt(x))
xlabel ('Delay in seconds')
ylabel ('Doppler in Hz')
grid

The up-chirp ambiguity function cut along the time delay axis  is

(5.23)

 

τ

χ τ 0;( ) 2 1 τ
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⎝ ⎠
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⎛ ⎞
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2
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 Figure 5.5a. Down-chirp LFM 3-D ambiguity plot. Pulse width is 1 second; 
and bandwidth is 5 Hz. 
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Note that the LFM ambiguity function cut along the Doppler frequency axis
is similar to that of the single pulse. This should not be surprising since the
pulse shape has not changed (only frequency modulation was added). How-
ever, the cut along the time-delay axis changes significantly. It is now much
narrower compared to the unmodulated pulse cut. In this case, the first null
occurs at

(5.24)

Figure 5.6 shows a plot for a cut in the uncertainty function corresponding to
Eq. (5.23). This figure can be reproduced using the following MATLAB code

close all; clear all;
taup = 1;
b =20.;
up_down = 1.;
taux = -1.5*taup:.01:1.5*taup;
mu = up_down * b / 2. / taup;
ii = 0.;
for tau = -1.5*taup:.01:1.5*taup
   ii = ii + 1;
   val1 = 1. - abs(tau) / taup;
   val2 = pi * taup * (1.0 - abs(tau) / taup);

 Figure 5.5b. Contour plot corresponding to Fig. 5.5a.
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   val3 = (0 + mu * tau);
   val = val2 * val3;
   x(ii) = abs( val1 * (sin(val+eps)/(val+eps)));
end
figure(1)
plot(taux,10*log10(x+0.001))
grid
xlabel ('Delay in seconds')
ylabel ('Ambiguity in dB')
axis tight

Equation (5.24) indicates that the effective pulse width (compressed pulse
width) of the matched filter output is completely determined by the radar band-
width. It follows that the LFM ambiguity function cut along the time-delay
axis is narrower than that of the unmodulated pulse by a factor

(5.25)

 is referred to as the compression ratio (also called time-bandwidth product
and compression gain). All three names can be used interchangeably to mean
the same thing. As indicated by Eq. (5.25) the compression ratio also increases
as the radar bandwidth is increased.

ξ
τ0

1 B⁄( )
--------------- τ0B= =

ξ

 Figure 5.6. Zero Doppler ambiguity of an LFM pulse ( , ).τ0 1= b 20=
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 Example: 

Compute the range resolution before and after pulse compression corre-
sponding to an LFM waveform with the following specifications: Bandwidth

 and pulse width .

Solution: 

The range resolution before pulse compression is

Using Eq. (5.23) yields

5.2.3. Coherent Pulse Train Ambiguity Function

Figure 5.7 shows a plot of a coherent pulse train. The pulse width is denoted
as  and the PRI is . The number of pulses in the train is ; hence, the
train’s length is  seconds. A normalized individual pulse  is
defined by

(5.26)

When coherency is maintained between the consecutive pulses, then an expres-
sion for the normalized train is 

(5.27)
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Figure 5.7. Coherent pulse train (N=5).
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The output of the matched filter is

 (5.28)

Substituting Eq. (5.27) into Eq. (5.28) and interchanging the summations and
integration yield

(5.29)

Making the change of variable  yields

(5.30)

The integral inside Eq. (5.30) represents the output of the matched filter for a
single pulse, and is denoted by . It follows that

(5.31)

When the relation  is used, then the following relation is true:

(5.32)

   Substituting Eq. (5.32) into Eq. (5.31) gives

(5.33)

Setting , and using the relation
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(5.34)

yield

(5.35)

Using Eq. (5.35) in Eq. (5.31) yields two complementary sums for positive
and negative . Both sums can be combined as

 (5.36)

The second part of the right-hand side of Eq. (5.36) is the impact of the train on
the ambiguity function; while the first part is primarily responsible for its
shape details (according to the pulse type being used). 

Finally, the ambiguity function associated with the coherent pulse train is
computed as the modulus square of Eq. (5.36). For , the ambiguity
function reduces to 

(5.37)

Within the region , Eq. (5.37) can be written as

(5.38)

Thus, the ambiguity function for a coherent pulse train is the superposition of
the individual pulse’s ambiguity functions. The ambiguity function cuts along
the time delay and Doppler axes are, respectively, given by

(5.39)

(5.40)
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Figures 5.8a and 5.8b show the 3-D ambiguity plot and the corresponding
contour plot for , , and . This plot can be reproduced
using the following MATLAB code.   

clear all; close all;
taup = 0.4; pri = 1; n = 5;
x = train_ambg(taup, n, pri);
figure(1)
time = linspace(-(n-1)*pri-taup, n*pri-taup, size(x,2));
doppler = linspace(-1/taup, 1/taup, size(x,1));
surf(time, doppler, x); %mesh(time, doppler, x);
xlabel('Delay in seconds');  ylabel('Doppler in Hz');
zlabel('Ambiguity function'); axis tight;
figure(2)
contour(time, doppler, (x)); % surf(time, doppler, x); 
xlabel('Delay in seconds');  ylabel('Doppler in Hz'); grid; axis tight;

 Figures 5.8c and 5.8d, respectively shows sketches of the zero Doppler and
zero delay cuts in the ambiguity function. The ambiguity function peaks along
the frequency axis are located at multiple integers of the frequency .
Alternatively, the peaks are at multiple integers of  along the delay axis.
Width of the ambiguity function peaks along the delay axis is . The peak
width along the Doppler axis is . 

N 5= τ0 0.4= T 1=

f 1 T⁄=
T

2τ0
1 N 1–( )T⁄

 Figure 5.8a. Three-dimensional ambiguity plot for a five-pulse equal amplitude 
coherent train. Pulse width is 0.4 seconds; and PRI is 1 second, N=5.
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 Figure 5.8b. Contour plot corresponding to Fig. 5.8a. 

 Figure 5.8c. Zero Doppler cut corresponding to Fig. 5.8a.

2τ0
T

delay
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5.2.4. Pulse Train Ambiguity Function with LFM 

In this case, the signal is as given in the previous section except for the LFM
modulation within each pulse. This is illustrated in Fig. 5.9. Again let the pulse
width be denoted by  and the PRI by . The number of pulses in the train is

; hence, the train’s length is  seconds. A normalized individual
pulse  is defined by

(5.41)

where  is the LFM bandwidth. 

 Figure 5.8d. Zero delay cut corresponding to Fig. 5.8a. 

0 1 T⁄ frequency

1 τ0⁄– 1 τ0⁄

τ0 T
N N 1–( )T

x̃1 t( )

x̃1 t( ) 1
τ0

---------Rect t
τ0
----⎝ ⎠
⎛ ⎞ e

jπ B
τ0
----- t2

=

B

N 1–( )T
Tτ0

Figure 5.9. LFM pulse train (N=5).
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The signal is now given by 

(5.42)

Utilizing property 5 of Section 5.1 and Eq. (5.37) yields the following ambigu-
ity function

(5.43)

where  is the ambiguity function of the single pulse. Note that the shape of
the ambiguity function is unchanged from the case of unmodulated train along
the delay axis. This should be expected since only a phase modulation has been
added which will impact the shape only along the frequency axis.

Figures 5.10 a and b show the ambiguity plot and its associated contour plot
for the same example listed in the previous section except, in this case, LFM
modulation is added and  pulses. This figure can be reproduced using
the following MATLAB code.

% figure 5.10
clear all; close all;
taup = 0.4;
pri = 1;
n = 3;
bw = 10;
x = train_ambg_lfm(taup, n, pri, bw);
figure(1)
time = linspace(-(n-1)*pri-taup, n*pri-taup, size(x,2));
doppler = linspace(-bw,bw, size(x,1));
%mesh(time, doppler, x);
surf(time, doppler, x); shading interp;
xlabel('Delay in seconds');
ylabel('Doppler in Hz');
zlabel('Ambiguity function');
axis tight;
title('LFM pulse train, B\tau = 40, N = 3 pulses')
figure(2)
contour(time, doppler, (x));
%surf(time, doppler, x); shading interp; view(0,90);
xlabel('Delay in seconds');
ylabel('Doppler in Hz');
grid; axis tight;
title('LFM pulse train, B\tau = 40, N = 3 pulses')
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---------------------------------------------
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∑= τ NT≤;
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N 3=
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 Figure 5.10a. Three-dimensional ambiguity plot for an LFM pulse train. 

 Figure 5.10b. Contour plot corresponding to Fig. 5.10a. 
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Understanding the difference between the ambiguity diagrams for a coherent
pulse train and an LFM pulse train can be done with the help of Fig. 5.11a and
Fig. 5.11b. In both figures a train of three pulses is used; in both cases the pulse
width is sec and the period is sec. In the case, of LFM pulse
train each pulse has LFM modulation with . Locations of the ambi-
guity peaks along the delay and Doppler axes are the same in both cases. This
is true because peaks along the delay axis are  seconds apart and peaks along
the Doppler axis are  apart; in both cases  is unchanged. Additionally,
the width of the ambiguity peaks along the Doppler axis are also the same in
both cases, because this value depends only on the pulse train length which is
the same in both cases (i.e., ). 

Width of the ambiguity peaks along the delay axis are significantly different,
however. In the case of coherent pulse train, this width is approximately equal
to twice the pulse width. Alternatively, this value is much smaller in the case of
the LFM pulse train. The ratio between the two values is as given in Eq. (5.25).
This clearly leads to the expected conclusion that the addition of LFM modula-
tion significantly enhances the range resolution. Finally, the presence of the
LFM modulation introduces a slope change in the ambiguity diagram; again a
result that is also expected.

τ0 0.4= T 1=
Bτ0 20=

T
1 T⁄ T

N 1–( )T

 Figure 5.11a. Contour plot for the ambiguity function of a coherent pulse train. 
N 3 τ0; 0.4 T; 1= = =
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5.3. Stepped Frequency Waveforms
Stepped Frequency Waveforms (SFW) is a class of radar waveforms that are

used in extremely wide bandwidth applications where very large time band-
width product (or compression ratio as defined in Eq. (5.25)) is required. One
may think of SFW as a special case of an extremely wide bandwidth LFM
waveform. For this purpose, consider an LFM signal whose bandwidth is 
and whose pulsewidth is  and refer to it as the primary LFM. Divide this
long pulse into  subpulses each of width  to generate a sequence of pulses
whose PRI is denoted by . It follows that . One reason SFW is
favored over an extremely wideband LFM is that it may be very difficult to
maintain the LFM slope when the time bandwidth product is large. By using
SFW, the same equivalent bandwidth can be achieved; however, phase errors
are minimized since the LFM is chirped over a much shorter duration.

Define the beginning frequency for each subpulse as that value measured
from the primary LFM at the leading edge of each subpulse, as illustrated in
Fig. 5.12. That is

(5.44)

 Figure 5.11b. Contour plot for the ambiguity function of a coherent pulse train. 

 
N 3 Bτ0 20= ; T; 1= =

Bi
Ti

N τ0
T Ti n 1–( )T=

fi f0 iΔf+= i 0 N 1–,=;
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where  is the frequency step from one subpulse to another. The set of  sub-
pulses is often referred to as a burst. Each subpulse can have its own LFM
modulation. To this end, assume that the subpulse LFM modulation corre-
sponds to an LFM slope of . 

The complex envelope of a single subpluse with LFM modulation is 

(5.45)

Of course if the subpulses do not have any LFM modulation, then the same
equation holds true by setting . The overall complex envelope of the
whole burst is 

(5.46)

The ambiguity function of the matched filter corresponding to Eq. (5.46) can
be obtained from that of the coherent pulse train developed in Section 5.2.3
along with property 5 of the ambiguity function. The details are fairly straight-
forward and are left to the reader as an exercise. The result is (see Problem 5.2) 
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 Figure 5.12. Example of stepped frequency waveform burst; .N 5=
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(5.47)

where  is the ambiguity function of the single pulse. Unlike the case in Eq.
(5.43), the second part of the right-hand side of Eq. (5.47) is now modified
according to property 5 of Section 5.1. This is true since each subpulse has its
own beginning frequency derived from the primary LFM slope. 

5.4. Nonlinear FM 
As clearly shown by Fig. 5.6 the output of the matched filter corresponding

to an LFM pulse has sidelobe levels similar to those of the  signal,
that is, 13.4 dB below the main beam peak. In many radar applications, these
sidelobe levels are considered too high and may present serious problems for
detection particularly in the presence of nearby interfering targets or other
noise sources. Therefore, in most radar applications, sidelobe reduction of the
output of the matched filter is always required. This sidelobe reduction can be
accomplished using windowing techniques as described in Chapter 2. How-
ever, windowing techniques reduce the sidelobe levels at the expense of reduc-
ing of the SNR and widening the main beam (i.e., loss of resolution) which are
considered to be undesirable features in many radar applications. 

These effects can be mitigated by using non-linear FM (NLFM) instead of
LFM waveforms. In this case, the LFM waveform spectrum is shaped accord-
ing to a specific predetermined frequency function. Effectively, in NLFM, the
rate of change of the LFM waveform phase is varied so that less time is spent
on the edges of the bandwidth, as illustrated in Fig. 5.13. The concept of
NLFM can be better analyzed and understood in the context of the stationary
phase.

5.4.1. The Concept of Stationary Phase 

Consider the following bandpass signal

(5.48)

where  is the frequency modulation. The corresponding analytic signal
(pre-envelope) is
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(5.49)

where  is the complex envelope and is given by

(5.50)

The lowpass signal  represents the envelope of the transmitted signal; it is
given by

(5.51)

It follows that the FT of the signal can then be written as 

(5.52)

(5.53)

where  is the modulus of the FT and  is the corresponding phase
frequency response. It is clear that the integrand is an oscillating function of
time varying at a rate

(5.54)

time
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T
pulse width

ba
nd

w
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 Figure 5.13. A cartoon showing frequency versus time for an LFM 
waveform (solid line) and a NLFM (dashed line). 
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Most contribution to the FT spectrum occurs when this rate of change is mini-
mal. More specifically, it occurs when

(5.55)

The expression in Eq. (5.55) is parametric since it relates two independent
variables. Thus, for each value  there is only one specific  that satis-
fies Eq. (5.55). Thus, the time when this phase term is stationary will be differ-
ent for different values of . Expanding the phase term in Eq. (5.55) about an
incremental value  using Taylor series expansion yields

(5.56)

An acceptable approximation of Eq. (5.56) is obtained by using the first three
terms, provided that the difference  is very small. Now, using the right-
hand side of Eq. (5.55) into Eq. (5.56) and terminating the expansion to the
first three terms yield

(5.57)

By substituting Eq. (5.57) into Eq. (5.52) and using the fact that  is rela-
tively constant (slow varying) when compared to the rate at which the carrier
signal is varying, gives

(5.58)

where  and  represent infinitesimal changes about . Equation (5.58)
can be written as

(5.59)
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Using these changes of variables leads to 

(5.62)

where

(5.63)

The integral in Eq. (5.62) is that of the form of a Fresnel integral, which has an
upper limit approximated by

(5.64)

Substituting Eq. (5.64) into Eq. (5.62) yields

(5.65)

Thus, for all possible values of  

(5.66)

The subscript  was used to indicate the dependency of  on time. 

Using a similar approach that led to Eq. (5.66), an expression for  can
be obtained. From Eq. (5.53), the signal 

(5.67)

The phase term  is (using Eq. (5.65))

(5.68)

Differentiating with respect to  yields
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Using the stationary phase relation in Eq. (5.55) (i.e., ) yields

 (5.70)

and

(5.71)

Define the signal group time delay function as 

(5.72)

then the signal instantaneous frequency is the inverse of the . Figure
5.14 shows a drawing illustrating this inverse relationship between the NLFM
frequency modulation and the corresponding group time delay function.

Comparison of Eq. (5.67) and Eq. (5.52) indicates that both equation have
similar form. Thus, if one substitutes  for ,  for , 
for , and  for  in Eq. (5.52), a similar expression to that in Eq. (5.65) can
be derived. That is,

(5.73)

the subscript  was used to indicate the dependency of  on frequency. How-
ever, from Eq. (5.60) 

(5.74)

It follows that Eq. (5.73) can be rewritten as
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 Figure 5.14. Matched filter time delay and frequency modulation for a 
NLFM waveform.
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(5.75)

substituting Eq. (5.71) into Eq. (5.75) yields a general relationship for any  

(5.76)

Clearly, the functions , , , and  are related to each other as
Fourier transform pairs, as given by

(5.77)

(5.78)

They are also related using the Parseval’s theorem by

(5.79)

or

(5.80)

The formula for the output of the matched filter was derived earlier and is
repeated here as Eq. (5.81) 

(5.81)

Substituting the right-hand side of Eq. (5.50) into Eq. (5.89) yields

(5.82)

It follows that the zero Doppler and zero delay cuts of the ambiguity function
can be written as
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(5.83)

(5.84)

These two equations, imply that the shape of the ambiguity function cuts are
controlled by selecting different functions  and  (related as defined in Eq.
(5.76)). In other words, the ambiguity function main beam and its delay axis
sidelobes can be controlled (shaped) by the specific choices of these two func-
tions; and hence, the term spectrum shaping is used. Using this concept of
spectrum shaping, one can control the frequency modulation of an LFM (see
Fig. 5.13) to produce an ambiguity function with the desired sidelobe levels. 

5.4.2. Frequency Modulated Waveform Spectrum Shaping

One class of FM waveforms which takes advantage of the stationary phase
principles to control (shape) the spectrum is

(5.85)

where the value  is an integer greater than zero. It can be easily shown using
direct integration and by utilizing Eq. (5.85) that

(5.86)

(5.87)

(5.88)

(5.89)

Figure 5.15 shows a plot for Eq. (5.86) through Eq. (5.89). These plots
assume  and the x-axis is normalized, with respect to . This figure can
be reproduced using the following MATLAB code:
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% Figure 5.15
clear all; close all;
delw = linspace(-.5,.5,75);
T1 = .5 .* sin(pi.*delw);
T2 = delw + (1/2/pi) .* sin(2*pi.*delw);
T3 = .25 .* (sin(pi.*delw)) .* ((cos(pi.*delw)).^2 + 2);
T4 = delw + (1/2/pi) .* sin(2*pi.*delw) + (2/3/pi) .* (cos(pi.*delw)).^3 .* sin(delw);
figure (1)
plot(delw,T1,'k*',delw,T2,'k:',delw,T3,'k.',delw,T4,'k');
grid
ylabel('Group delay function'); xlabel('\omega/B')
legend('n=1','n=2','n=3','n=4')

The Doppler mismatch (i.e, a peak of the ambiguity function at a delay value
other than zero) is proportional to the amount of Doppler frequency . Hence,
an error in measuring target range is always expected when LFM waveforms
are used. To achieve sidelobe levels for the output of the matched filter that do
not exceed a predetermined level use this class of NLFM waveforms 

(5.90)

For example, using the combination ,  yields sidelobe levels
less than .

 Figure 5.15. Group time delay of Eq. (5.85). 
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5.5.  Ambiguity Diagram Contours
Plots of the ambiguity function are called ambiguity diagrams. For a given

waveform, the corresponding ambiguity diagram is normally used to determine
the waveform properties such as the target resolution capability, measurements
(time and frequency) accuracy, and its response to clutter. The ambiguity dia-
gram contours are cuts in the 3-D ambiguity plot at some value, , such that

. The resulting plots are ellipses (see Problem 5.11). The width
of a given ellipse along the delay axis is proportional to the signal effective
duration, , defined in Chapter 2. Alternatively, the width of an ellipse along
the Doppler axis is proportional to the signal effective bandwidth, . 

Figure 5.16 shows a sketch of typical ambiguity contour plots associated
with a single unmodulated pulse. As illustrated in Fig. 5.16, narrow pulses pro-
vide better range accuracy than long pulses. Alternatively, the Doppler accu-
racy is better for a wider pulse than it is for a short one. This trade-off between
range and Doppler measurements comes from the uncertainty associated with
the time-bandwidth product of a single sinusoidal pulse, where the product of
uncertainty in time (range) and uncertainty in frequency (Doppler) cannot be
much smaller than unity (see Problem 5.12). Figure 5.17 shows the ambiguity
contour plot associated with an LFM waveform. The slope is an indication of
the LFM modulation. The values , , , and  were derived in
Chapter 4 and were, respectively given in Eq. (4.107), Eq. (4.111), Eq. (4.136),
and Eq. (4.137). 

Q
Q χ 0 0,( ) 2<

τe
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στ σfd
στRDC σfdRDC
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 Figure 5.16. Ambiguity contour plot associated with a sinusoid modulated gated 
CW pulse. 

Doppler
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5.6. Interpretation of Range-Doppler Coupling in
LFM Signals

An expression of the range-Doppler for LFM signals was derived in Chapter
4. Range-Doppler coupling affects the radar’s ability to compute target range
and Doppler estimates. An interpretation of this term in the context of the
ambiguity function can be explained further with the help of Eq. (5.20). Obser-
vation of this equation indicates that ambiguity function for the LFM pulse has
a peak value not at  but rather at 

(5.91)

This Doppler mismatch (i.e, a peak of the ambiguity function at a delay value
other than zero) is proportional to the amount of Doppler frequency . Hence,
an error in measuring target range is always expected when LFM waveforms
are used. 

Most radar systems using LFM waveforms will correct for the effect of
range-Doppler coupling by repeating the measurement with an LFM waveform
of the opposite slope and averaging the two measurements. This way, the range
measurement error is negated and the true target range is extracted from the
averaged value. However, some radar systems, particularly those used for long
range surveillance applications, may actually take advantage of range-Doppler
coupling effect; and here is how it works: Typically radars during the search
mode utilize very wide range bins which may contain many targets with differ-

Delay

Doppler

σfd

στ

 Figure 5.17. Ambiguity contour plot for an up-chirp LFM waveform. 
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ent distinct Doppler frequencies. It follows that the output of the matched filter
has several targets that have equal delay but different Doppler mismatches. 

All targets with Doppler mismatches greater than  are significantly
attenuated by the ambiguity function (because of the sharp decaying slope of
the ambiguity function along the Doppler axis) and thus will most likely go
undetected along the Doppler axis. The combined target complex within that
range bin is then detected by the LFM as if all targets had Doppler mismatch
corresponding to the target whose Doppler mismatch is less or equal to .
Thus, all targets within that wide range bin are detected as one narrowband tar-
get. Because of this range-Doppler coupling LFM waveforms are often
referred to as Doppler intolerant (insensitive) waveforms. 

5.7.  MATLAB Programs and Functions
This section presents listings for all the MATLAB programs used to produce

all of the MATLAB-generated figures in this chapter. They are listed in the
same order in which they appear in the text.

5.7.1. Single Pulse Ambiguity Function

The MATLAB function “single_pulse_ambg.m” implements Eq. (5.11). The
syntax is as follows:

single_pulse_ambg [taup]

taup is the pulse width. 

MATLAB Function “single_pulse_ambg.m” Listing

function [x] = single_pulse_ambg (taup)
eps = 0.000001;
i = 0;
del = 2*taup/150;
for tau = -taup:del:taup
   i = i + 1;
   j = 0;
   fd = linspace(-5/taup,5/taup,151);
   val1 = 1. - abs(tau) / taup;
   val2 = pi * taup .* (1.0 - abs(tau) / taup) .* fd;
   x(:,i) = abs( val1 .* sin(val2+eps)./(val2+eps));
end

5.7.2. LFM Ambiguity Function

The function “lfm_ambg.m” implements Eq. (5.20). The syntax is as fol-
lows:

1 τ0⁄

1 τ0⁄
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lfm_ambg [taup, b, up_down]

where

MATLAB Function “lfm_ambg.m” Listing
function [x] = single_pulse_ambg (taup)
% Single umodulated pulse
eps = 0.000001;
i = 0;
del = 2*taup/150;
for tau = -taup:del:taup
   i = i + 1;
   j = 0;
   fd = linspace(-5/taup,5/taup,151);
   val1 = 1. - abs(tau) / taup;
   val2 = pi * taup .* (1.0 - abs(tau) / taup) .* fd;
   x(:,i) = abs( val1 .* sin(val2+eps)./(val2+eps));
end

5.7.3. Pulse Train Ambiguity Function

The function “train_ambg.m” implements Eq. (5.35). The syntax is as fol-
lows:

train_ambg [taup, n, pri]

where

MATLAB Function “train_ambg.m” Listing

function x = train_ambg(taup, n, pri)
% This code was developed by Stephen Robinson, a senior radar engineer at
% deciBel Research in Hunstville AL
if (taup >= pri/2)
    'ERROR. Pulse width must be less than the PRI/2.'

Symbol Description Units Status

taup pulse width seconds input

b bandwidth Hz input

up_down up_down = 1 for up-chirp

up_down = -1 for down-chirp

none input

Symbol Description Units Status

taup pulse width seconds input

n number of pulses in train none input

pri pulse repetition interval seconds input
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    return
end
eps = 1.0e-6;
bw = 1/taup;
q = -(n-1):1:n-1;
offset = 0:0.0533:pri;
[Q, S] = meshgrid(q, offset);
Q = reshape(Q, 1, length(q)*length(offset));
S = reshape(S, 1, length(q)*length(offset));
tau = (-taup * ones(1,length(S))) + S;
fd = -bw:0.033:bw;
[T, F] = meshgrid(tau, fd);
Q = repmat(Q, length(fd), 1);
S = repmat(S, length(fd), 1);
N = n * ones(size(T));
val1 = 1.0-(abs(T))/taup;
val2 = pi*taup*F.*val1;
val3 = abs(val1.*sin(val2+eps)./(val2+eps));
val4 = abs(sin(pi*F.*(N-abs(Q))*pri+eps)./sin(pi*F*pri+eps));
x = val3.*val4./N;
[rows, cols] = size(x);
x = reshape(x, 1, rows*cols);
T = reshape(T, 1, rows*cols);
indx = find(abs(T) > taup);
x(indx) = 0.0;
x = reshape(x, rows, cols);
return

5.7.4. Pulse Train Ambiguity Function with LFM

The function “train_ambg_lfm.m” implements Eq. (5.43). The syntax is as
follows:

x = train_ambg_lfm(taup, n, pri, bw)

where

Symbol Description Units Status

taup pulse width seconds input

n number of pulses in train none input

pri pulse repetition interval seconds input

bw the LFM bandwidth Hz input

x array of bimodality function none output
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Note this function will generate identical results to the function
“train_ambg.m” when the value of bw is set to zero. In this case, Eq. (4.43)
and (4.35) are identical.

MATLAB Function “train_ambg_lfm.m” Listing

function x = train_ambg_lfm(taup, n, pri, bw)
% This code was developed by Stephen Robinson, a senior radar engineer at
% deciBel Research in Hunstville AL
if (taup >= pri/2)
    'ERROR. Pulse width must be less than the PRI/2.'
    return
end
eps = 1.0e-6;
q = -(n-1):1:n-1;
offset = 0:0.0533:pri;
[Q, S] = meshgrid(q, offset);
Q = reshape(Q, 1, length(q)*length(offset));
S = reshape(S, 1, length(q)*length(offset));
tau = (-taup * ones(1,length(S))) + S;
fd = -bw:0.033:bw;
[T, F] = meshgrid(tau, fd);
Q = repmat(Q, length(fd), 1);
S = repmat(S, length(fd), 1);
N = n * ones(size(T));
val1 = 1.0-(abs(T))/taup;
val2 = pi*taup*(F+T*(bw/taup)).*val1;
val3 = abs(val1.*sin(val2+eps)./(val2+eps));
val4 = abs(sin(pi*F.*(N-abs(Q))*pri+eps)./sin(pi*F*pri+eps));
x = val3.*val4./N;
[rows, cols] = size(x);
x = reshape(x, 1, rows*cols);
T = reshape(T, 1, rows*cols);
indx = find(abs(T) > taup);
x(indx) = 0.0;
x = reshape(x, rows, cols);
return

Problems
5.1. Derive Eq. (5.47).
5.2. Show that Eq. (5.79) and Eq. (5.80) are equivalent.
5.3. Derive an expression for the ambiguity function of a Gaussian pulse
defined by
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where   is the pulsewidth and  is a constant.

5.4. Write a MATLAB code to plot the 3-D and the contour plots for the
results in Problem 5.3.
5.5. Derive an expression for the ambiguity function of a V-LFM wave-
form, illustrated in figure below. In this case, the overall complex envelope is

  

where 

and

5.6. Using the stationary phase concept, find the instantaneous frequency
for the waveform whose envelope and complex spectrum are, respectively,
given by 

and

 

5.7. Using the stationary phase concept find the instantaneous frequency
for the waveform whose envelope and complex spectrum are respectively
given by
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and

5.8. Write detailed MATLAB code to compute the ambiguity function for
an NLFM waveform. Your code must be able to produce 3-D and contour plots
of the resulting ambiguity function. Hint: Use Eq. (5.90).
5.9. Revisit the analyses performed in Chapter 2 for the effective band-
width and effective duration of the LFM waveform. Write a short discussion to
outline how do the range and Doppler resolution are different from the theoret-
ical limits used in this chapter.
5.10. Write a detailed MATLAB code to compute the ambiguity function
for an SFW waveform. Your code must be able to produce 3-D and contour
plots of the resulting ambiguity function. Hint: use Eq. (5.43).
5.11. Prove that cuts in the ambiguity function are always defined by an
ellipse. Hint: Approximate the ambiguity function using a Taylor series expan-
sion about the values ; use only the first three terms in the Tay-
lor series expansion.
5.12. The radar uncertainty principle establishes a lower bound for the
time bandwidth product. More specifically, if the radar effective duration is 
and its effective bandwidth is ; show that , where  is
the range-Doppler coupling coefficient defined in Chapter 4. Hint: Assume a
signal , write down the definition of , and use Shwarz inequality on
the integral

 .
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Chapter 6 The Ambiguity 
Function - Discrete 
Coded Waveforms

The concepts of resolution and ambiguity were introduced in Chapter 4. The
relationship between the waveform resolution (range and Doppler) and its cor-
responding ambiguity function was discussed and analyzed. It was determined
that the goodness of a given waveform is based on its range and Doppler reso-
lutions, which can be analyzed in the context of the ambiguity function. For
this purpose, a few common analog radar waveforms were analyzed in Chapter
5. In this chapter, another type of radar waveform based on discrete codes is
introduced. This topic has been and continues to be a major research thrust
area for many radar scientist, designers, and engineers. Discrete coded wave-
forms are more effective in improving range characteristics than Doppler
(velocity) characteristics. Furthermore, in some radar applications, discrete
coded waveforms are heavily favored because of their inherent anti-jamming
capabilities. In this chapter, a quick overview of discrete coded waveforms is
presented. Three classes of discrete codes are analyzed. They are unmodulated
pulse-train codes (uniform and staggered), phase-modulated (binary or
polyphase) codes, and frequency modulated codes.    

6.1. Discrete Code Signal Representation
The general form for a discrete coded signal can be written as

(6.1)

where  is the carrier frequency in radians,  are constants,  is the
code length (number of bits in the code), and the signal  is given by

(6.2)

the constant  is either  or , and
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 (6.3)

Using this notation the discrete code can be described through the sequence

  (6.4)

which, in general, is a complex sequence depending on the values of  and
. The sequence  is called the code and for convenience it will be

denoted by .

In general, the output of the matched filter is

(6.5)

Substituting Eq. (6.1) into Eq. (6.5) yields

(6.6)

Depending on the choice of combination for , , and , different class of
codes can be generated. More precisely, pulse-train codes are generated when

(6.7)

Binary phase codes and polyphase codes are generated when

(6.8)

Finally, frequency codes are generated when

(6.9)

6.2. Pulse-Train Codes
The idea behind this class of code is to divide a relatively long pulse of

length  into  subpulses, each being a rectangular pulse with pulsewidth
 and amplitude of 1 or 0. It follows that the code  is the sequence of 1’s

and 0’s. More precisely, the signal representing this class of code can written as

(6.10)
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One way to generate a train-pulse class code can be by setting

(6.11)

where  is a positive integer that divides evenly into . That is,

(6.12)

where  is the number of 1’s in the code. For example, when  and
, then , and the resulting code is 

(6.13)

This is illustrated in Fig. 6.1. In previous chapters this code would have been
represented by the following continuous time domain signal

(6.14)

where the period is . Using this analogy yields 

 (6.15)

and Eq. (6.10) can now be written as

(6.16)
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 Figure 6.1. Generating a pulse-train code of length  bits.N 21=
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In Chapter 5 (Section 5.2.3) an expression for the ambiguity function for a
coherent train of pulses was derived. Comparison of Eq. (6.16) and Eq. (5.37)
show that the two equations are equivalent when the condition in Eq. (6.15) is
true except for the ratio . It follows that the ambiguity function for the
signal defined in Eq. (6.16) is

  (6.17)

The zero Doppler and zero delay cuts of the ambiguity function are derived
from Eq. (6.17). They are given by

(6.18)

(6.19)

Figure 6.2a shows the three-dimensional ambiguity plot for the code shown in
Fig. 6.1, while Fig. 6.2b shows the corresponding contour plot. This figure can
be reproduced using the following MATLAB code.

close all; clear all;
U = [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1];
ambiguity = ambiguity_code(U);

A cartoon showing contour cuts of the ambiguity function for a pulse-train
code is shown in Fig. 6.2c. Clearly, the width of the ambiguity function main
lobe (i.e., resolution) is directly tied to the code length. As one would expect,
longer codes will produce narrower main lobe and thus have better resolution
than shorter ones. Further observation of Fig. 6.2 shows that this ambiguity
function has strong grating lobe structure along with high sidelobe levels. The
presence of such strong lobing structure limits the effectiveness of the code and
will cause detection ambiguities. These lobes are a direct result from the uni-
form equal spacing between the 1’s within a code (i.e., periodicity of the code).
These lobes can be significantly reduced by getting rid of the periodic structure
of the code, i.e., placing the pulses at nonuniform spacing. This is called code
staggering (PRF staggering).
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 Figure 6.2a. Ambiguity function for the pulse-train code shown in Fig. 6.1. 

 Figure 6.2b. Contour plot corresponding to Fig. 6.2a.
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 For example, consider a pulse-train code of length . A staggered
train-pulse code can then be obtained by using the following sequence 

(6.20)

Thus, the resulting code is

(6.21)

Figure 6.3 shows the ambiguity plot corresponding to this code. As indicated
by Fig. 6.3 the ambiguity function corresponding to a staggered pulse-train
code approaches a thumb-tack shape. The choice of the optimum staggered
code has been researched extensively by numerous people. Resnick1 defined
the optimum staggered pulse-train code as that whose ambiguity function has
absolutely uniform sidelobe levels that are equal to unity. Other researchers,
have introduced different definitions for optimum staggering, none of which is
necessarily better than the others, except when considered for the particular
application being analyzed by the respective researcher. 

1. Resnick, J. B., High Resolution Waveforms Suitable for a Multiple Target Environ-
ment, MS Thesis, MIT, Cambridge, MA, June 1962.

frequency

time

M
Tp
-----

Tp

M
-----

τ0

f
˜

f
˜

1 Tp⁄=

 Figure 6.2c. Cartoon of the ambiguity contour plot for a pulse-train code.

1
τ0
----

Tp

N 21=
an

an{ } 1= n 1 4 6 12 15 21, , , , ,=

U{ } 100101000001001000001{ }=

chapter6.fm  Page 230  Monday, May 19, 2008  7:04 PM



Pulse-Train Codes 231

 Figure 6.3a. Ambiguity function for the pulse-train code in Eq. (6.21). 

 Figure 6.3b. Contour plot corresponding to Fig. 6.3a.
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6.3. Phase Coding 
The signal corresponding to this class of code is obtained from Eq. (6.1) by

letting . It follows that 

(6.22)

Two subclasses of phase codes are analyzed. They are binary phase codes and
polyphase codes. 

6.3.1. Binary Phase Codes

In this case, the phase  is set equal to either  or , and hence, the
term binary is used. For this purpose, define the coefficient  as

(6.23)

The ambiguity function for this class of code is derived by substituting Eq.
(6.22) into Eq. (6.5). The resulting ambiguity function is given by

(6.24)

where

(6.25)

(6.26)

The corresponding zero Doppler cut is then given by

(6.27)
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 (6.28)

Barker Codes

In this case, a long pulse of width  is divided into  smaller pulses; each
is of width . Then, the phase of each subpulse is chosen as either 
or  radians relative to some code. It is customary to characterize a subpulse
that has  phase (amplitude of +1 Volt) as either “1” or “+.” Alternatively, a
subpulse with phase equal to  (amplitude of -1 Volt) is characterized by
either “0” or “-.” Barker code is optimum in accordance with the definition set
by Resnick. Figure 6.4 illustrates this concept for a Barker code of length
seven. A Barker code of length  is denoted as . There are only seven
known Barker codes that share this unique property; they are listed in Table
6.1. Note that  and  have complementary forms that have the same char-
acteristics. 

In general, the autocorrelation function (which is an approximation for the
matched filter output) for a  Barker code will be  wide. The main lobe
is  wide; the peak value is equal to . There are  side-lobes on
either side of the main lobe; this is illustrated in Fig. 6.5 for a . Notice that
the main lobe is equal to 13, while all side-lobes are unity.

The most side-lobe reduction offered by a Barker code is , which
may not be sufficient for the desired radar application. However, Barker codes
can be combined to generate much longer codes. In this case, a  code can
be used within a  code (  within ) to generate a code of length . The
compression ratio for the combined  code is equal to . As an example,
a combined  is given by 

(6.29)

χ k 0;( ) τ0 DnDn k+

n 1=

N k–

∑=

Tp N
τ0 Tp N⁄= 0

π
0

π

N BN

B2 B4

 +        +       +       -        -        +       +   

Figure 6.4. Binary phase code of length 7. 
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and is illustrated in Fig. 6.6. Unfortunately, the side-lobes of a combined
Barker code autocorrelation function are no longer equal to unity. Some side-
lobes of a combined Barker code autocorrelation function can be reduced to
zero if the matched filter is followed by a linear transversal filter with impulse
response given by

(6.30)

where  is the filter’s order, the coefficients  ( ) are to be deter-
mined,  is the delta function, and  is the Barker code subpulse
width. A filter of order  produces  zero side-lobes on either side of the
main lobe. The main lobe amplitude and width do not change, as illustrated in
Fig. 6.7.

In order to illustrate this approach, consider the case where the input to the
matched filter is , and assume . The autocorrelation for a  is 

(6.31)

The output of the transversal filter is the discrete convolution between its
impulse response and the sequence . At this point we need to compute the
coefficients  that guarantee the desired filter output (i.e., unchanged main
lobe and four zero side-lobe levels).

TABLE 6.1. Barker codes

Code 
Symbol

Code 
Length Code Elements

Side Lode 
Reduction (dB)

2 +- 
++

6.0

3 ++- 9.5

4 ++-+ 
+++-

12.0

5 +++-+ 14.0

7 +++--+- 16.9

11 +++---+--+- 20.8

13 +++++--++-+-+ 22.3

h t( ) βkδ t 2kτ0–( )

k N–=

N

∑=

N βk βk β k–=
δ ⋅( ) τ0

N N

B2

B3

B4

B5

B7

B11

B13

B11 N 4= B11

φ11 1– 0 1– 0 1– 0 1– 0 1– 0 11
0 1– 0 1– 0 1– 0 1– 0 1–
, , , , , , , , , , ,
, , , , , , , , ,

{
}

=

φ11
βk
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 + + + + + - - + + - + - +

13τ0 Tp=

τ0

1

13

τ0τ0– 13τ013τ0–

 Figure 6.5. Barker code of length 13, and its corresponding auto-
correlation function.

+   +   +  -   +   +  +   +   -   +  -   -    -   +  -   +  +   +   -   +

B4

+                      +                       -                      +

B54

Figure 6.6. A combined  Barker code.B54
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Performing the discrete convolution as defined in Eq. (6.30) and collecting
equal terms ( ) yield the following set of five linearly independent
equations:

(6.32)

Solving Eq. (6.32) yields

(6.33)

Note that setting the first equation equal to  and all other equations to 
and then solving for  guarantees that the main peak remains unchanged, and
that the next four side-lobes are zeros. So far we have assumed that coded
pulses have rectangular shapes. Using other pulses of other shapes, such as
Gaussian, may produce better side-lobe reduction and a larger compression
ratio. 

Figure 6.8 shows the output of this function when  is used as an input.
Figure 6.9 is similar to Fig. 6.8, except in this case  is used as an input. Fig-
ure 6.10 shows the ambiguity function, the zero Doppler cut, and the contour
plot for the combined Barker code defined in Fig. 6.6.

matched 
 filter

transversal 
    filter; order N

BN

 Figure 6.7. A linear transversal filter of order N can be used to produce N zero 
side-lobes in the autocorrelation function (N = 4).
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 Figure 6.8a. Ambiguity function for  Barker code.B13

 Figure 6.8b. Zero Doppler cut for the  ambiguity function.B13
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 Figure 6.8c. Contour plot corresponding to Fig. 6.8a.

 Figure 6.9a. Ambiguity function for  Barker code.B7
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 Figure 6.9b. Zero Doppler cut for the  ambiguity function.B7

 Figure 6.9c. Contour plot corresponding to Fig. 6.9a.
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 Figure 6.10a. Ambiguity function for  Barker code.B54

 Figure 6.10b. Zero Doppler cut for the  ambiguity function.B54
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Pseudo-Random Number (PRN) Codes

Pseudo-Random Number (PRN) codes are also known as Maximal Length
Sequences (MLS) codes. These codes are called pseudo-random because the
statistics associated with their occurrence are similar to those associated with
the coin-toss sequences. Maximum length sequences are periodic. The MLS
codes have the following distinctive properties:

1. The number of ones per period is one more than the number of minus ones.
2. Half the runs (consecutive states of the same kind) are of length one and 

one fourth are of length two.
3. Every maximal length sequence has the “shift and add” property. This 

means that, if a maximal length sequence is added (modulo 2) to a shifted 
version of itself, then the resulting sequence is a shifted version of the orig-
inal sequence.

4. Every n-tuple of the code appears once and only once in one period of the 
sequence. 

5. The correlation function is periodic and is given by 

 Figure 6.10c. Contour plot corresponding to Fig. 6.10a.
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(6.34)

Figure 6.11 shows a typical sketch for an MLS autocorrelation function.
Clearly these codes have the advantage that the compression ratio becomes
very large as the period is increased. Additionally, adjacent peaks (grating
lobes) become farther apart.

Linear Shift Register Generators

There are numerous ways to generate MLS codes. The most common is to
use linear shift registers. When the binary sequence generated using a shift reg-
ister implementation is periodic and has maximal length, it is referred to as an
MLS binary sequence with period , where 

(6.35)

 is the number of stages in the shift register generator. A linear shift register
generator basically consists of a shift register with modulo-two adders added to
it. The adders can be connected to various stages of the register, as illustrated
in Fig. 6.12 for  (i.e., ). Note that the shift register initial state
cannot be 0. 

φ n( )
L n 0 L 2L …,±,±,=

1– elsewhere ⎭
⎬
⎫

⎩
⎨
⎧

=

L-L 0-1

L

 Figure 6.11. Typical autocorrelation of an MLS code of length L.

L

L 2n 1–=

n

n 4= L 15=

Σ

 Figure 6.12. Circuit for generating an MLS sequence of length .L 15=

1 2 3 4

shift register

output
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 The feedback connections associated with a shift register generator deter-
mine whether the output sequence will be maximal. For a given size shift regis-
ter, only a few feedback connections lead to maximal sequence outputs. In
order to illustrate this concept, consider the two 5-stage shift register genera-
tors shown in Fig. 6.13. The shift register generator shown in Fig. 6.13 a gener-
ates a maximal length sequence, as clearly depicted by its state diagram.
However, the shift register generator shown in Fig. 6.13 b produces three non-
maximal length sequences (depending on the initial state).

1 2 3 4 5

Σ

start

00001
16 48 9181 26 613 251920

27 1222 172429 7 3115 28303

23 2111 51014 2

10000
01000

1 2 3 4 5

Σ

(a)

start

00001
16 48 1721 12 196 20924

3 157 30 2629 102131

L 31=

start

00001
16 48 1721 12 196 20924

3 157 30 2629 102131

27 2213

14 11 185 282523

L 21=

L 3=

L 7=

 Figure 6.13. (a) A 5-stage shift register generator. (b) Non-maximal length 
5-stage shift register generator.

(b)

start

start
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Given an n-stage shift register generator, one would be interested in knowing
how many feedback connections will yield maximal length sequences. Zierler1

showed that the number of maximal length sequences possible for a given n-
stage linear shift register generator is given by

(6.36)

 is the Euler’s totient (Euler’s phi) function and is defined by

(6.37)

where  are the prime factors of . Note that when  has multiples, only one
of them is used. Also note that when  is a prime number, the Euler’s phi func-
tion is 

(6.38)

For example, a 3-stage shift register generator will produce

(6.39)

and a 6-stage shift register,

(6.40)

Maximal Length Sequence Characteristic Polynomial

Consider an n-stage maximal length linear shift register whose feedback
connections correspond to . This maximal length shift register can
be described using its characteristic polynomial defined by

(6.41)

where the additions are modulo 2. Therefore, if the characteristic polynomial
for an n-stage shift register is known, one can easily determine the register
feedback connections and consequently deduce the corresponding maximal
length sequence. For example, consider a 6-stage shift register whose charac-
teristic polynomial is

 (6.42)

1. Zierler, N., Several Binary-Sequence Generators, MIT Technical Report No. 95, 
Sept. 1955.

NL
ϕ 2n 1–( )

n
-----------------------=

ϕ

ϕ k( ) k
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pi
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∏=
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ϕ k( ) k 1–=
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ϕ 23 1–( )

3
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3
------------ 2= = = =
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It follows that the shift register which generates a maximal length sequence is
shown in Fig. 6.14.

One of the most important issues associated with generating a maximal
length sequence using a linear shift register is determining the characteristic
polynomial. This has been and continues to be a subject of research for many
radar engineers and designers. It has been shown that polynomials which are
both irreducible (not factorable) and primitive will produce maximal length
shift register generators.

 

A polynomial of degree n is irreducible if it is not divisible by any polyno-
mial of degree less than n. It follows that all irreducible polynomials must have
an odd number of terms. Consequently, only linear shift register generators
with an even number of feedback connections can produce maximal length
sequences. An irreducible polynomial is primitive if and only if it divides

 for no value of  less than .

The MATLAB function “prn_ambig.m” calculates and plots the ambiguity
function associated with a given PRN code. Figure 6.15 shows the output of
this function for 

u31 = [1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 -1]

Figure 6.16 is similar to Fig. 6.15, except in this case the input maximal length
sequence is 

u15=[1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1]

6.3.2. Polyphase Codes

The signal corresponding to polyphase codes is as that given in Eq. (6.22)
and the corresponding ambiguity function was given in Eq. (6.24). The only
exception being that the phase  is no longer restricted to . Hence, the
coefficient  are no longer equal to  but can be complex depending on the
value of . Polyphase Barker codes have been investigated by many scien-
tists and much is well documented in the literature. In this chapter the discus-
sion will be limited to Frank codes.

1 2 3 4 5 6

Σ

output

 Figure 6.14. Linear shift register whose characteristic polynomial is 

.x6 x5 1+ +

xn 1– n 2n 1–

θn 0 π,( )
Dn 1±

θn
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 Figure 6.15a. Ambiguity function corresponding to a 31-bit PRN code.

 Figure 6.15b. Zero Doppler cut corresponding to Fig. 6.15a. 
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 Figure 6.15c. Contour plot corresponding to Fig. 6.15a. 

 Figure 6.16a. Ambiguity function corresponding to a 15-bit PRN code.
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 Figure 6.16b. Zero Doppler cut corresponding to Fig. 6.16a. 

 Figure 6.16c. Contour plot corresponding to Fig. 6.16a. 
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Frank codes

In this case, a single pulse of width  is divided into  equal groups; each
group is subsequently divided into other  subpulses each of width . There-
fore, the total number of subpulses within each pulse is , and the compres-
sion ratio is . As previously, the phase within each subpulse is held
constant with respect to some CW reference signal. 

A Frank code of  subpulses is referred to as an N-phase Frank code. The
first step in computing a Frank code is to divide  by  and define the
result as the fundamental phase increment . More precisely,

(6.43)

Note that the size of the fundamental phase increment decreases as the number
of groups is increased, and because of phase stability, this may degrade the per-
formance of very long Frank codes. For N-phase Frank code the phase of each
subpulse is computed from

(6.44)

where each row represents a group, and a column represents the subpulses for
that group. For example, a 4-phase Frank code has , and the fundamen-
tal phase increment is . It follows that

(6.45)

Therefore, a Frank code of  elements is given by

(6.46)

A plot of the ambiguity function for  is shown in Fig. 6.17. Note the
thumb-tack shape of the ambiguity function. This plot can be reproduced using
the following MATLAB code. The phase increments within each row represent
a step-wise approximation of an up-chirp LFM waveform. The phase incre-
ments for subsequent rows increase linearly versus time. Thus, the correspond-

Tp N
N τ0

N2
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⎜ ⎟
⎛ ⎞
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ing LFM chirp slopes also increase linearly for subsequent rows. This is
illustrated in Fig. 6.18, for . 

 
F16

 Figure 6.17a. Ambiguity plot for Frank code . F16

 Figure 6.17b. Contour plot corresponding to Fig. 6.17a. 
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 Figure 6.17c. Zero Doppler cut corresponding to Fig. 6.17a. 

0 0 0 00
Δϕ

2Δϕ
3Δϕ

9Δϕ

0

6Δϕ

4Δϕ

2Δϕ

0

3Δϕ

6Δϕ

time

16τ0

phase increment

 Figure 6.18. Step-wise approximation of an up-chirp waveform, using 
a Frank code of 16 elements. 
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6.4. Frequency Codes
Frequency codes are derived from Eq. (6.1) under the condition stated in Eq.

(6.9) (i.e., ). The Stepped Frequency Waveform
(SFW) discussed in the previous chapter is considered to be a code under this
class of discrete coded waveforms. The ambiguity function was derived in
Chapter 5 for SFW. In this chapter the focus is on another type of frequency
codes that is called the Costas frequency code. 

6.4.1. Costas Codes

Construction of Costas codes can be understood in the context of SFW. In
SFW, a relatively long pulse of length  is divided into  subpulses, each of
width  ( ). Each group of  subpulses is called a burst. Within
each burst the frequency is increased by  from one subpulse to the next. The
overall burst bandwidth is . More precisely,

(6.47)

 and the frequency for the  subpulse is

(6.48)

where  is a constant frequency and . It follows that the time-band-
width product of this waveform is

(6.49)

Costas1 signals (or codes) are similar to SFW, except that the frequencies for
the subpulses are selected in a random fashion, according to some predeter-
mined rule or logic. For this purpose, consider the  matrix shown in Fig.
6.19 b. In this case, the rows are indexed from  and the col-
umns are indexed from . The rows are used to denote
the subpulses and the columns are used to denote the frequency. A dot indi-
cates the frequency value assigned to the associated subpulse. In this fashion,
Fig. 6.19 a shows the frequency assignment associated with an SFW. Alterna-
tively, the frequency assignments in Fig. 6.19b are chosen randomly. For a
matrix of size , there are a total of  possible ways of assigning the
dots (i.e.,  possible codes). 

The sequences of dot assignments for which the corresponding ambiguity
function approaches an ideal or a thumb-tack response are called Costas codes.

1. Costas, J. P., A Study of a Class of Detection Waveforms Having Nearly Ideal 
Range-Doppler Ambiguity Properties, Proc. IEEE 72, 1984, pp. 996-1009.
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A near thumb-tack response was obtained by Costas using the following logic:
There is only one frequency per time slot (row) and per frequency slot (col-
umn). Therefore, for an  matrix the number of possible Costas codes is
drastically less than .   For example, there are  possible Costas
codes for , and  possible codes for . It can be shown
that the code density, defined as the ratio , gets significantly smaller as

 becomes larger

 There are numerous analytical ways to generate Costas codes. In this section
we will describe two of these methods. First, let  be an odd prime number,
and choose the number of subpulses as

 (6.50)

Define  as the primitive root of . A primitive root of  (an odd prime num-
ber) is defined as  such that the powers  modulo  generate
every integer from  to . 

In the first method, for an  matrix, label the rows and columns, respec-
tively, as

(6.51)

Place a dot in the location  corresponding to  if and only if

 (6.52)

N N×
N! Nc 4=

N 3= Nc 40= N 5=
Nc N!⁄

N

 Figure 6.19. Frequency assignment for a burst of N subpulses. (a) SFW (stepped 
LFM); (b) Costas code of length Nc = 10. 

(b)(a)

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10

98765432109876543210

q

N q 1–=

γ q q
γ γ γ2 γ3 … γq 1–, , , , q

1 q 1–

N N×

i 0 1 2 … q 2–( ), , , ,=
j 1 2 3 … q 1–( ), , , ,=

i j,( ) fi

i γ( )j modulo q( )=

chapter6.fm  Page 253  Monday, May 19, 2008  7:04 PM



254      Radar Signal Analysis and Processing Using MATLAB

In the next method, Costas code is first obtained from the logic described
above; then by deleting the first row and first column from the matrix a new
code is generated. This method produces a Costas code of length .

Define the normalized complex envelope of the Costas signal as

(6.53)

(6.54)

Costas showed that the output of the matched filter is 

(6.55)

(6.56)

(6.57)

(6.58)

Three-dimensional plots of the ambiguity function of Costas signals show
the near thumb-tack response of the ambiguity function. All side-lobes, except
for a few around the origin, have amplitude . Few sidelobes close to the
origin have amplitude , which is typical of Costas codes. The compres-
sion ratio of a Costas code is approximately . 

6.5. Ambiguity Plots for Discrete Coded Waveforms
Plots of the ambiguity function for a given code and the corresponding cuts

along zero delay and zero Doppler provide strong indication about the code’s
characteristics in range and Doppler. Earlier, it was stated that the goodness of
a given code is measured by its range and Doppler resolution characteristics.
Therefore, plotting the ambiguity function of a given code is a key part of the
design and analysis of radar waveforms. Unfortunately, some of the formulas
for the ambiguity function are rather complicated and fairly difficult to code by
the nonexpert programmer. In this section, a numerical technique for plotting
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the ambiguity function of any code is presented. This technique takes advan-
tage of the computation power of MATLAB by exploiting one of the properties
of the ambiguity function. Three-dimensional plots are built successively from
cuts of the ambiguity function as different Doppler mismatches. 

For this purpose, consider the ambiguity function property given in Eq. (5.8)
and repeated here as Eq. (6.59)

(6.59)

where  is the Fourier transform of the signal . Using Eq. (6.59), one
can compute the ambiguity function by first computing the FT of the signal
under consideration, delaying it by some value , and then taking the inverse
FT. When the signal under consideration is a discrete coded waveform then the
Fast Fourier transform is utilized. From this one can compute plots of the
ambiguity function using the following technique:

1. Determine the code  under consideration. Note that  may have com-
plex values in accordance with the class of code being considered.

2. Extend the length of the code to the next power of 2 by zero padding (see
Chapter 2 for details on interpolation).

3. For better display utilize an FFT whose size is 8 times or higher than the
power integer of 2 computed in step 2.

4. Compute the FFT of the extended sequence.
5. Generate vectors of frequency mismatches and delay cuts.
6. Calculate using vector notation the value of .
7. Compute and store the vector resulting from the point by point multiplica-

tion .
8. Compute the inverse FFT of the product in step 7 for each delay value and

store in a two-dimensional (2-D) array.
9. Plot the amplitude square of the resulting 2-D array to generate the ambigu-

ity plot for the specific code under consideration.   

An implementation of this algorithm using MATLAB was completed; this
program is called “ambiguity_code.m.” The listing of this program is as fol-
lows:

function [ambig] = ambiguity_code(uinput)
% Compute and plot the ambiguity function for any give code u
% Compute the ambiguity function by utilizing the FFT 
% through combining multiple range cuts
N = size(uinput,2);
tau = N;
code = uinput;

χ τ fd;( ) 2 X∗ f( )X f fd–( )e j2πfτ– fd∫
2

=

X f( ) x t( )

fd

U U

X f fd–( )

X∗ f( )X f fd–( )
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samp_num = size(code,2) * 10;
n = ceil(log(samp_num) / log(2));
nfft = 2^n;
u(1:nfft) = 0;
j = 0;
for index = 1:10:samp_num
    index;
    j = j+1;
    u(index:index+10-1) = code(j);
end
% set-up the array v
v = u;
delay = linspace(0,5*tau,nfft);
freq_del = 12 / tau /100;
j = 0;
vfft = fft(v,nfft);
for freq = -6/tau:freq_del:6/tau;
    j = j+1;
    exf = exp(sqrt(-1) * 2. * pi * freq .* delay);
    u_times_exf = u .* exf;
    ufft = fft(u_times_exf,nfft);
    prod = ufft .* conj(vfft);
    ambig(j,:) = fftshift(abs(ifft(prod))');
end
freq = linspace(-6,6, size(ambig,1));
delay = linspace(-N,N,nfft);
figure(1)
mesh(delay,freq,(ambig ./ max(max(ambig))))
% colormap([.5 .5 .5])
% colormap(gray)
axis tight
ylabel('frequency')
xlabel('delay')
zlabel('ambiguity function a PRN code')
figure(2)
plot(delay,ambig(51,:)/(max(max(ambig))),'k')
xlabel('delay')
ylabel('normalized amibiguity cut for f=0')
grid
axis tight
figure(3)
contour(delay,freq,(ambig ./ max(max(ambig))))
axis tight
% colormap([.5 .5 .5])
% colormap(gray)
ylabel('frequency')
xlabel('delay')
grid
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Problems
6.1. Define  and . (a) Compute the
discrete correlations: , , , and . (b) A certain radar transmits
the signal . Assume that the autocorre-
lation  is equal to . Compute and
sketch  and .
6.2. Consider the 7-bit Barker code, designated by the sequence . (a)
Compute and plot the autocorrelation of this code. (b) A radar uses binary
phase coded pulses of the form , where

, , and
. Assume . (a) Give an expression for the

autocorrelation of the signal , and for the output of the matched filter when
the input is ; (b) compute the time bandwidth product, the increase
in the peak SNR, and the compression ratio.
6.3. (a) Perform the discrete convolution between the sequence 
defined in Eq. (6.31), and the transversal filter impulse response; and (b)
sketch the corresponding transversal filter output.
6.4. Repeat the previous problem for  and . Use Barker
code of length 13.
6.5. Develop a Barker code of length 35. Consider both  and . 
6.6. The smallest positive primitive root of  is ; for 
generate the corresponding Costas matrix.
6.7. Compute the discrete autocorrelation for an  Frank code.
6.8. Generate a Frank code of length 8, i.e., .
6.9. Using the MATLAB program developed in this chapter, plot the
matched filter output for a 3-, 4-, and 5-bits Barker code.

xI n( ) 1 1 1,–,={ } xQ n( ) 1 1 1–, ,={ }
RxI

RxQ
RxIxQ

RxQxI

s t( ) xI t( ) 2πf0tcos xQ t( ) 2πf0tsin–=
s t( ) y t( ) yI t( ) 2πf0tcos yQ t( ) 2πf0tsin–=
yI t( ) yQ t( )

x n( )

s t( ) r t( ) 2πf0t( )cos=
r t( ) x 0( )= , for 0 t Δt< < r t( ) x n( )= for nΔt t n 1+( )Δt< <,
r t( ) 0 for t 7Δt>,= Δt 0.5μs=

s t( )
s t 10Δt–( )

φ11

N 13= k 6=

B75 B57

q 11= γ 2= N 10=

F16

F8
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Chapter 7 Target Detection and 
Pulse Integration 

7.1. Target Detection in the Presence of Noise
A simplified block diagram of a radar receiver that employs an envelope

detector followed by a threshold decision is shown in Fig. 7.1. The input signal
to the receiver is composed of the radar echo signal  and additive zero
mean white Gaussian noise random process , with variance . The input
noise is assumed to be spatially incoherent and uncorrelated with the signal. 

The output of the bandpass intermediate frequency (IF) filter is the signal
, which can be written as a bandpass random process. That is,

(7.1a)

(7.1b)

where  is the radar operating frequency,  is the envelope of
, the phase is , and the subscripts , and , respec-

tively, refer to the in-phase and quadrature components. 

A target is detected when  exceeds the threshold value , where the
decision hypotheses are

s t( )
n t( ) σ2

v t( )

v t( ) vI t( ) ω0tcos vQ t( ) ω0tsin+ r t( ) ω0t Φ t( )–( )cos= =

vI t( ) r t( ) Φ t( )cos=

vQ t( ) r t( ) Φ t( )sin=

r t( ) vI t( )[ ]2 vQ t( )[ ]2+=

Φ t( )
vQ t( )
vI t( )
------------⎝ ⎠
⎛ ⎞tan

1–
=

ω0 2πf0= r t( )
v t( ) Φ t( ) vQ vI⁄( )atan= I Q

r t( ) vT

s t( ) n t( )+ vT Detection⇒>
n t( ) vT False alarm⇒>
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The case when the noise subtracts from the signal (while a target is present)
to make  smaller than the threshold is called a miss. Radar designers seek
to maximize the probability of detection for a given probability of false alarm. 

The IF filter output is a complex random variable that is composed of either
noise alone or noise plus target return signal (sine wave of amplitude ). The
quadrature components corresponding to the case of noise alone are

 (7.2)

and for the second case,

(7.3)

where the noise quadrature components  and  are uncorrelated zero
mean lowpass Gaussian noise with equal variances, . The joint Probability
Density Function (pdf) of the two random variables  is

 (7.4)

The pdfs of the random variables  and , respectively, represent the
modulus and phase of . The joint pdf for the two random variables

 are derived using a similar approach to that developed in Chapter 3.
More precisely,

(7.5)

where  is a matrix of derivatives defined by

From Antenna
and Low Noise Bandpass

Filter (IF)
Envelope
Detector

Lowpass
Filter

Threshold vT

Threshold
Detector to Display

Devicesv t( )

r t( )
Amp.

 Figure 7.1. Simplified block diagram of an envelope detector and threshold 
receiver.
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(7.6)

The determinant of the matrix of derivatives is called the Jacobian, and in this
case it is equal to

(7.7)

Substituting Eq. (7.4) and Eq. (7.7) into Eq. (7.5) and collecting terms yield

(7.8)

The pdf for  alone is obtained by integrating Eq. (7.8) over 

(7.9)

where the integral inside Eq. (7.9) is known as the modified Bessel function of
zero order,

(7.10)

Thus,

(7.11)

which is the Rician probability density function. The case when 
(noise alone) was analyzed in Chapter 3 and the resulting pdf is a Rayleigh
probability density function

(7.12)

When  is very large, Eq. (7.11) becomes a Gaussian probability den-
sity function of mean  and variance :
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(7.13)

Figure 7.2 shows plots for the Rayleigh and Gaussian densities. 

The density function for the random variable  is obtained from

(7.14)

While the detailed derivation is left as an exercise, the result of Eq. (7.14) is 

(7.15)

where

(7.16)
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 Figure 7.2. Gaussian and Rayleigh probability densities.
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The function  can be found tabulated in most mathematical formula
reference books. Note that for the case of noise alone ( ), Eq. (7.15) col-
lapses to a uniform pdf over the interval . One excellent approxima-
tion for the function  is

(7.17)

and for negative values of 

(7.18)

7.2. Probability of False Alarm
The probability of false alarm  is defined as the probability that a sample
 of the signal  will exceed the threshold voltage  when noise alone is

present in the radar:

(7.19)

(7.20)

Figure 7.3 shows a plot of the normalized threshold versus the probability of
false alarm. It is evident from this figure that  is very sensitive to small
changes in the threshold value. The false alarm time  is related to the prob-
ability of false alarm by

(7.21)

where  represents the radar integration time, or the average time that the
output of the envelope detector will pass the threshold voltage. Since the radar
operating bandwidth  is the inverse of , by substituting Eq. (7.19) into
Eq. (7.20), we can write  as 

(7.22)

Minimizing  means increasing the threshold value, and as a result the radar
maximum detection range is decreased. The choice of an acceptable value for

 becomes a compromise depending on the radar mode of operation. 
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The false alarm number is defined as

(7.23)

Other slightly different definitions for the false alarm number exist in the liter-
ature, causing a source of confusion for many non-expert readers. Other than
the definition in Eq. (7.23), the most commonly used definition for the false
alarm number is the one introduced by Marcum (1960). Marcum defines the
false alarm number as the reciprocal of . In this text, the definition given in
Eq. (7.23) is always assumed. Hence, a clear distinction is made between Mar-
cum’s definition of the false alarm number and the definition in Eq. (7.23). 

7.3.  Probability of Detection
The probability of detection  is the probability that a sample  of 

will exceed the threshold voltage in the case of noise plus signal,

(7.24)

vT

2σ2
-------------

 Figure 7.3. Normalized detection threshold versus probability of false alarm.
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If we assume that the radar signal is a sine waveform with amplitude , then its
power is . Now, by using  (single-pulse SNR) and

, then Eq. (7.24) can be rewritten as

(7.25)

(7.26)

 is called Marcum’s Q-function. When  is small and  is relatively
large so that the threshold is also large, Eq. (7.25) can be approximated by

(7.27)

where  is given by Eq. (7.16). Many approximations for computing Eq.
(7.25) can be found throughout the literature. One very accurate approximation
presented by North (1963) is given by

(7.28)

where the complementary error function is 

(7.29)

 The integral given in Eq. (7.25) is complicated and can be computed using
numerical integration techniques. Parl1 developed an excellent algorithm to
numerically compute this integral. It is summarized as follows:

(7.30)

1. Parl, S., A New Method of Calculating the Generalized Q Function, IEEE Trans. 
Information Theory, Vol. IT-26, January 1980, pp. 121-124.
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 (7.31)

(7.32)

(7.33)

(7.34)

 (7.35)

, , and . The recursive Eq. (7.30) through Eq.
(7.33) are computed continuously until  for values of . The
accuracy of the algorithm is enhanced as the value of  is increased. The
MATLAB function “marcumsq.m” implements Parl’s algorithm to calculate
the probability of detection defined in Eq. (7.24). The syntax is as follows:

Pd = marcumsq(alpha, beta)

where alpha and beta are from Eq. (7.26). Figure 7.4 shows plots of the proba-
bility of detection, , versus the single pulse SNR, with the  as a parame-
ter using this function. The following MATLAB program can be used to
reproduce Fig. 7.4. It uses the function “marcumsq.m.”

% This program is used to produce Fig. 7.4
close all; clear all;
for nfa = 2:2:12
   b = sqrt(-2.0 * log(10^(-nfa)));
   index = 0;
   hold on
   for snr = 0:.1:18
      index = index +1;
      a = sqrt(2.0 * 10^(.1*snr));
      pro(index) = marcumsq(a,b);
   end
   x = 0:.1:18;
   set(gca,'ytick',[.1 .2 .3 .4 .5 .6  .7 .75 .8 .85 .9 .95 .9999])
   set(gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18])
    loglog(x, pro,'k');
end
hold off
xlabel ('Single pulse SNR in dB'); ylabel ('Probability of detection')
grid
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7.4. Pulse Integration
When a target is located within the radar beam during a single scan, it may

reflect several pulses. By adding the returns from all pulses returned by a given
target during a single scan, the radar sensitivity (SNR) can be increased. The
number of returned pulses depends on the antenna scan rate and the radar PRF.
More precisely, the number of pulses returned from a given target is given by

(7.36)

where  is the azimuth antenna beamwidth,  is the scan time, and  is the
radar PRF. The number of reflected pulses may also be expressed as 

 (7.37)

where  is the antenna scan rate in degrees per second. Note that when
using Eq. (7.36),  is expressed in radians, while when using Eq. (7.37), it is
expressed in degrees. As an example, consider a radar with an azimuth antenna

 Figure 7.4. Probability of detection versus single pulse SNR, for several 
values of .Pfa
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beamwidth , antenna scan rate  (antenna scan
time, ), and a PRF . Using either Eq. (7.36) or Eq.
(7.37) yields  pulses. 

The process of adding radar returns from many pulses is called radar pulse
integration. Pulse integration can be performed on the quadrature components
prior to the envelope detector. This is called coherent integration or predetec-
tion integration. Coherent integration preserves the phase relationship between
the received pulses. Thus a buildup in the signal amplitude is achieved. Alter-
natively, pulse integration performed after the envelope detector (where the
phase relation is destroyed) is called noncoherent or postdetection integration. 

Radar designers should exercise caution when utilizing pulse integration for
the following reasons. First, during a scan a given target will not always be
located at the center of the radar beam (i.e., have maximum gain). In fact, dur-
ing a scan a given target will first enter the antenna beam at the 3-dB point,
reach maximum gain, and finally leave the beam at the 3-dB point again. Thus,
the returns do not have the same amplitude even though the target RCS may be
constant and all other factors that may introduce signal loss remain the same. 

Other factors that may introduce further variation to the amplitude of the
returned pulses include target RCS and propagation path fluctuations. Addi-
tionally, when the radar employs a very fast scan rate, an additional loss term is
introduced due to the motion of the beam between transmission and reception.
This is referred to as scan loss. A distinction should be made between scan loss
due to a rotating antenna (which is described here) and the term scan loss that
is normally associated with phased array antennas (which takes on a different
meaning in that context).

Finally, since coherent integration utilizes the phase information from all
integrated pulses, it is critical that any phase variation between all integrated
pulses be known with a great level of confidence. Consequently, target dynam-
ics (such as target range, range rate, tumble rate, RCS fluctuation) must be esti-
mated or computed accurately so that coherent integration can be meaningful.
In fact, if a radar coherently integrates pulses from targets without proper
knowledge of the target dynamics, it suffers a loss in SNR rather than the
expected SNR buildup. Knowledge of target dynamics is not as critical when
employing noncoherent integration; nonetheless, target range rate must be esti-
mated so that only the returns from a given target within a specific range bin
are integrated. In other words, one must avoid range walk (i.e., having a target
cross between adjacent range bins during a single scan).

A comprehensive analysis of pulse integration should take into account
issues such as the probability of detection , probability of false alarm ,
the target statistical fluctuation model, and the noise or interference of statisti-
cal models. This is the subject of the rest of this chapter.

θa 3°= θ· scan 45° sec⁄=
Tsc 8sec= fr 300Hz=

nP 20=

PD Pfa
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7.4.1. Coherent Integration
In coherent integration, when a perfect integrator is used (100% efficiency),

to integrate  pulses, the SNR is improved by the same factor. Otherwise,
integration loss occurs, which is always the case for noncoherent integration.
Coherent integration loss occurs when the integration process is not optimum.
This could be due to target fluctuation, instability in the radar local oscillator,
or propagation path changes. 

Denote the single pulse SNR required to produce a given probability of
detection as . The SNR resulting from coherently integrating 
pulses is then given by 

(7.38)

Coherent integration cannot be applied over a large number of pulses, partic-
ularly if the target RCS is varying rapidly. If the target radial velocity is known
and no acceleration is assumed, the maximum coherent integration time is lim-
ited to 

(7.39)

where  is the radar wavelength and  is the target radial acceleration.
Coherent integration time can be extended if the target radial acceleration can
be compensated for by the radar. 

In order to demonstrate the improvement in the SNR using coherent integra-
tion, consider the case where the radar return signal contains both signal plus
additive noise. The  pulse is

 (7.40)

where  is the radar signal return of interest and  is white uncorre-
lated additive noise signal with variance . Coherent integration of  pulses
yields

(7.41)

The total noise power in  is equal to the variance. More precisely,

 (7.42)

where  is the expected value operator. It follows that
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(7.43)

where  is the single pulse noise power and  is equal to zero for 
and unity for . Observation of Eqs. (7.41) and (7.42) shows that the
desired signal power after coherent integration is unchanged, while the noise
power is reduced by the factor . Thus, the SNR after coherent integration
is improved by . 

7.4.2. Noncoherent Integration

When the phase of the integrated pulses is not known so that coherent inte-
gration is no longer possible, another form of pulse integration is done. In this
case, pulse integration is performed by adding (integrating) the individual
pulses’ envelopes or the square of their envelopes. Thus, the term noncoherent
integration is adopted. A block diagram of radar receiver utilizing noncoherent
integration is illustrated in Fig. 7.5. 

The performance difference (measured in SNR) between the linear envelope
detector and the quadratic (square law) detector is practically negligible. Rob-
ertson (1967) showed that this difference is typically less than ; he
showed that the performance difference is higher than  only for cases
where  and . Both of these conditions are of no practical
significance in radar applications. It is much easier to analyze and implement
the square law detector in real hardware than is the case for the envelope detec-
tor. Therefore, most authors make no distinction between the type of detector
used when referring to noncoherent integration, and the square law detector is
almost always assumed. The analysis presented in this book will always
assume, unless indicated otherwise, noncoherent integration using the square
law detector. 
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 Figure 7.5. Simplified block diagram of a radar detector when 
noncoherent integration is used. 
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7.4.3. Improvement Factor and Integration Loss

Noncoherent integration is less efficient than coherent integration. Actually,
the noncoherent integration gain is always smaller than the number of nonco-
herently integrated pulses. This loss in integration is referred to as postdetec-
tion or square-law detector loss.

Define  as the SNR required to achieve a specific  given a par-
ticular  when  pulses are integrated noncoherently. Also denote the sin-
gle pulse SNR as . It follows that 

(7.44)

where  is called the integration improvement factor. An empirically
derived expression for the improvement factor that is accurate within  is
reported in Peebles (1998) as

 (7.45)

The top part of Fig. 7.6 shows plots of the integration improvement factor as
a function of the number of integrated pulses with  and  as parameters
using Eq. (7.45). The integration loss in dB is defined as 

(7.46)

The lower part of Fig. 7.6 shows plots of the corresponding integration loss
versus  with  and  as parameters. This figure can be reproduced
using the following MATLAB code which uses MATLAB function
“improv_fac.m.”

% This program is used to produce Fig. 7.6
% It uses the function "improv_fac.m". 
clear all;
close all;
Pfa = [1e-2, 1e-6, 1e-8, 1e-10];
Pd = [.5 .8 .95 .99];
np = linspace(1,1000,10000);
I(1,:) = improv_fac (np, Pfa(1), Pd(1));
I(2,:) = improv_fac (np, Pfa(2), Pd(2));
I(3,:) = improv_fac (np, Pfa(3), Pd(3));
I(4,:) = improv_fac (np, Pfa(4), Pd(4));
index = [1 2 3 4];
L(1,:) = 10.*log10(np) - I(1,:);
L(2,:) = 10.*log10(np) - I(2,:);
L(3,:) = 10.*log10(np) - I(3,:);

SNR( )NCI PD
Pfa nP

SNR( )1

SNR( )NCI SNR( )1 I nP( )×=

I nP( )
0.8dB

I nP( )[ ]dB 6.79 1 0.253PD+( ) 1
1 Pfa⁄( )log

46.6
---------------------------+⎝ ⎠

⎛ ⎞ nP( )

1 0.140 nP( )log 0.018310 nPlog( )2+–( )

log=

PD Pfa

LNCI[ ]dB 10 nPlog I nP( )[ ]dB–=

nP PD Pfa
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L(4,:) = 10.*log10(np) - I(4,:);
subplot(2,1,2);  
semilogx (np, L(1,:), 'k:', np, L(2,:), 'k-.', ...
np, L(3,:), 'k-.', np, L(4,:), 'k')
xlabel ('Number of pulses');
ylabel ('Integration loss in dB')
axis tight; grid
subplot(2,1,1); 
semilogx (np, I(1,:), 'k:', np, I(2,:), 'k-.', np, ...
 I(3,:), 'k--', np, I(4,:), 'k')
xlabel ('Number of pulses');
ylabel ('Improvement factor in dB')
legend ('pd=.5, Pfa=1e-2','pd=.8, Pfa=1e-6','pd=.95, ...
Pfa=1e-8','pd=.99, Pfa=1e-10');
grid; 
axis tight

 Figure 7.6. Typical plots for the improvement factor and integration loss versus 
number of noncoherently integrated pulses.
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7.5. Target Fluctuation 
Target detection utilizing the square law detector was first analyzed by Mar-

cum1, where he assumed a constant RCS (nonfluctuating target). This work
was extended by Swerling2 to four distinct cases of target RCS fluctuation.
These cases have come to be known as Swerling models. They are Swerling I,
Swerling II, Swerling III, and Swerling IV. The constant RCS case analyzed by
Marcum is widely known as Swerling 0 or equivalently Swerling V. Target
fluctuation introduces an additional loss factor in the SNR as compared to the
case where fluctuation is not present given the same  and . 

Swerling I targets have constant amplitude over one antenna scan or obser-
vation interval; however, a Swerling I target amplitude varies independently
from scan to scan according to a chi-square probability density function with
two degrees of freedom. The amplitude of Swerling II targets fluctuates inde-
pendently from pulse to pulse according to a chi-square probability density
function with two degrees of freedom. Target fluctuation associated with a
Swerling III model is from scan to scan according to a chi-square probability
density function with four degrees of freedom. Finally, the fluctuation of Swer-
ling IV targets is from pulse to pulse according to a chi-square probability den-
sity function with four degrees of freedom. 

Swerling showed that the statistics associated with Swerling I and II models
apply to targets consisting of many small scatterers of comparable RCS values,
while the statistics associated with Swerling III and IV models apply to targets
consisting of one large RCS scatterer and many small equal RCS scatterers.
Noncoherent integration can be applied to all four Swerling models; however,
coherent integration cannot be used when the target fluctuation is either Swer-
ling II or Swerling IV. This is because the target amplitude decorrelates from
pulse to pulse (fast fluctuation) for Swerling II and IV models, and thus phase
coherency cannot be maintained. 

The chi-square pdf with  degrees of freedom can be written as

(7.47)

where  is the standard deviation for the RCS value. Using this equation, the
pdf associated with Swerling I and II targets can be obtained by letting ,
which yields a Rayleigh pdf. More precisely, 

1. Marcum, J. I., A Statistical Theory of Target Detection by Pulsed Radar, IRE Trans-
actions on Information Theory, Vol IT-6, pp. 59-267, April 1960.

2. Swerling, P., Probability of Detection for Fluctuating Targets, IRE Transactions on 
Information Theory, Vol IT-6, pp. 269-308, April 1960.
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(7.48)

Letting  yields the pdf for Swerling III and IV type targets, 

(7.49)

7.6. Probability of False Alarm Formulation for a
Square Law Detector

Computation of the general formula for the probability of false alarm 
and subsequently the rest of square law detection theory requires knowledge
and good understating of the incomplete Gamma function. Hence, those read-
ers who are not familiar with this function are advised to read Appendix 7.A
before proceeding with the rest of this chapter. 

 DiFranco and Rubin1 derived a general form relating the threshold and 
for any number of pulses when noncoherent integration is used. The square law
detector under consideration is shown in Fig. 7.7. There are  pulses inte-
grated noncoherently and the noise power (variance) is .

The complex envelope in terms of the quadrature components is given by

(7.50)

thus, the square of the complex envelope is

(7.51)

1. DiFranco, J. V. and Rubin, W. L., Radar Detection, Artech House, Norwood, MA 
1980.
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The samples  are computed from the samples of  evaluated at
. It follows that

(7.52)

The random variable  is the sum of  squares of random variables, each of
which is a Gaussian random variable with variance . Thus, using the analy-
sis developed in Chapter 3, the pdf for the random variable  is given by

(7.53)

Consequently, the probability of false alarm given a threshold value  is

(7.54)

and using analysis provided in Appendix 7.A yields

(7.55)

Using the algebraic expression for the incomplete Gamma function, Eq. (7.55)
can be written as

(7.56)

The threshold value  can then be approximated by the recursive formula
used in the Newton-Raphson method. More precisely,

(7.57)

The iteration is terminated when . The
functions  and  are 

(7.58)
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(7.59)

The initial value for the recursion is

(7.60)

Figure 7.8 shows plots of the threshold value versus the number of integrated
pulses for several values of ; remember that . This figure
can be reproduced using the following MATLAB code which utilizes the
MATLAB function “threshold.m”

% Use this program to reproduce Fig. 7.8 of text
clear all; close all;
for n= 1: 1:10000
   [pfa1 y1(n)] = threshold(1e4,n);    
  [pfa2 y3(n)] = threshold(1e8,n);    
  [pfa3 y4(n)] = threshold(1e12,n);
end
n =1:1:10000;
loglog(n,y1,'k',n,y3,'k--',n,y4,'k-.');
xlabel ('Number of pulses');  
ylabel ('Threshold'); 
legend('nfa=1e4','nfa=1e8','nfa=1e12'); grid

G′ vT m,( ) –
e

vT–
vT

nP 1–

nP 1–( )!
-------------------------=

vT 0, nP nP– 2.3 Pfalog– Pfalog– nP 1–+( )+=

nfa Pfa 2( )ln nfa⁄≈

 Figure 7.8. Threshold  versus  for several values of .vT np nfa
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7.6.1. Square Law Detection   

The pdf for the linear envelope  was derived earlier and it is given in Eq.
(7.11). Define a new dimensionless variable  as

(7.61)

and also define 

(7.62)

 is the noise variance. It follows that the pdf for the new variable is

(7.63)

 The output of a square law detector for the  pulse is proportional to the
square of its input. Thus, it is convenient to define a new change variable,

 (7.64)

The pdf for the variable at the output of the square law detector is given by

(7.65)

Noncoherent integration of  pulses is implemented as 

(7.66)

Again, . Since the random variables  are independent, the pdf for the
variable  is

(7.67)

The operator  symbolically indicates convolution. The characteristic func-
tions for the individual pdfs can then be used to compute the joint pdf for Eq.
(7.69). The result is 

(7.68)

 is the modified Bessel function of order . Substituting Eq.
(7.62) into (7.68) yields
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(7.69)

When target fluctuation is not present (i.e., Swerling 0), the probability of
detection is obtained by integrating  from the threshold value to infinity.
The probability of false alarm is obtained by letting  be zero and integrating
the pdf from the threshold value to infinity. More specifically,

(7.70)

Which can be rewritten as

(7.71)

Alternatively, when target fluctuation is present, then the pdf is calculated
using the conditional probability density function of Eq. (7.70) with respect to
the SNR value of the target fluctuation type. In general, given a fluctuating tar-
get with , where the superscript indicates fluctuation, the expression for
the probability of detection is 

(7.72)

Remember that target fluctuation introduces an additional loss term in the
SNR. It follows that for the same  given the same  and the same ,

. One way to calculate this additional SNR is to first compute the
required SNR given no fluctuation then add to it the amount of target fluctua-
tion loss to get the required value for . How to calculate this fluctuation
loss will be addressed later on in this chapter. Meanwhile, hereon after, the
superscript  will be dropped and it will always be assumed.

7.7. Probability of Detection Calculation
Marcum defined the probability of false alarm for the case when  as 

(7.73)
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The single pulse probability of detection for nonfluctuating targets is given in
Eq. (7.25). When , the probability of detection is computed using the
Gram-Charlier series. In this case, the probability of detection is 

(7.74)

where the constants , , and  are the Gram-Charlier series coefficients,
and the variable  is 

(7.75)

In general, values for , , , and  vary depending on the target fluctu-
ation type.

7.7.1. Swerling 0 Target Detection

For Swerling 0 (Swerling V) target fluctuations, the probability of detection
is calculated using Eq. (7.74). In this case, the Gram-Charlier series coeffi-
cients are

(7.76)

(7.77)

(7.78)

(7.79)

Figure 7.9 shows a plot for the probability of detection versus SNR for cases
. Note that it requires less SNR, with ten pulses integrated nonco-

herently, to achieve the same probability of detection as in the case of a single
pulse. Hence, for any given  the SNR improvement can be read from the
plot. Equivalently, using the function “improv_fac.m” leads to about the same
result. For example, when , the function “improv_fac.m” gives an
SNR improvement factor of . Figure 7.9 shows that the ten
pulse SNR is about . Therefore, the single pulse SNR is about ,
which can be read from the figure. 
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7.7.2.  Detection of Swerling I Targets

The exact formula for the probability of detection for Swerling I type targets
was derived by Swerling. It is

(7.80)

(7.81)

Figure 7.10 shows a plot of the probability of detection as a function of SNR
for  and  for both Swerling I and V (Swerling 0) type fluc-
tuations. Note that it requires more SNR, with fluctuation, to achieve the same

 as in the case with no fluctuation. This figure can be reproduced using the
following MATLAB code.

 Figure 7.9. Probability of detection versus SNR, , and 
noncoherent integration; Swerling 0.
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% Generate Figure 7.10
close all;
clear all;
pfa = 1e-9;
nfa = log(2) / pfa;
b = sqrt(-2.0 * log(pfa));
index = 0;
for snr = 0:.01:22
   index = index +1;
   a = sqrt(2.0 * 10^(.1*snr));
  swer0(index) = marcumsq(a,b);
   swer1(index) =  pd_swerling1 (nfa, 1, snr);
end
x = 0:.01:22;
%figure(10)
plot(x, swer0,'k',x,swer1,'k:');
axis([2 22 0 1])
xlabel ('SNR in dB')
ylabel ('Probability of detection')
legend('Swerling 0','Swerling I')
grid

 

 Figure 7.10. Probability of detection versus SNR, single pulse. .Pfa 10 9–=
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Figure 7.11 is similar to Fig. 7.10 except in this case  and
. This figure can be reproduced using the following MATLAB code

% Generate Figure 7.11
clear all
close all
pfa = 1e-6;
nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling1 (nfa, 5, snr);
   prob0(index) =  pd_swerling5 (nfa, 2, 5, snr);
  end
x = -10:.5:30;
plot(x, prob1,'k',x,prob0,'k:');
axis([-10 30 0 1])
xlabel ('SNR in dB')
ylabel ('Probability of detection')
legend('Swerling I','Swerling 0')
title('Pfa =1e-6;  n=5')
grid

Pfa 10 6–=
nP 5=

 Figure 7.11. Probability of detection versus SNR. Swerling I and Swerling 0.
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7.7.3. Detection of Swerling II Targets

In the case of Swerling II targets, the probability of detection is given by

(7.82)

For the case when  the probability of detection is computed using the
Gram-Charlier series. In this case,

(7.83)

(7.84)

(7.85)

Figure 7.12a shows a plot of the probability of detection for Swerling 0,
Swerling I, and Swerling II with , where . This figure can
be reproduced using the following MATLAB code. Figure 7.12b is similar to
Fig. 7.12a except in this case . 

% Generate Figure 7.12
clc
clear all;
close all;
pfa = 1e-7;
nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling1 (nfa, 5, snr); % Fig. 7.12a
   prob0(index) =  pd_swerling5 (nfa, 2, 5, snr); % Fig. 7.12a
   prob2(index) =  pd_swerling2 (nfa, 5, snr); % Fig. 7.12a
   % prob1(index) =  pd_swerling1 (nfa, 2, snr); % Fig. 7.12b
   % prob0(index) =  pd_swerling5 (nfa, 2, 2, snr);  % Fig. 7.12b
   % prob2(index) =  pd_swerling2 (nfa, 2, snr);  % Fig. 7.12b
end
x = -10:.5:30;
plot(x, prob0,'k',x,prob1,'k:',x,prob2,'k--');
axis([-10 30 0 1])
xlabel ('SNR in dB')
ylabel ('Probability of detection')
legend('Swerling 0','Swerling I','Swerling II')
title('Pfa =1e-7;  n=5')
grid
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 Figure 7.12a. Probability of detection versus SNR. Swerling II, Swerling I 
and Swerling 0.

 Figure 7.12b. Probability of detection versus SNR. Swerling II, Swerling I, 
and Swerling 0.
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7.7.4.  Detection of Swerling III Targets

The exact formulas, developed by Marcum, for the probability of detection
for Swerling III type targets when 

 (7.86)

For  the expression is

(7.87)

Figure 7.13a shows a plot of the probability of detection as a function of
SNR for , where . Figure 7.13b shows a plot
of the probability of detection for Swerling 0, Swerling I, Swerling II, and
Swerling III with  and . Figure 7.13a can be reproduced
using the following MATLAB code.

% Generate Figure 7.13a
close all;
clear all;
pfa = 1e-9;
nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling3 (nfa, 1, snr);
   prob10(index) =  pd_swerling3 (nfa, 10, snr);
   prob50(index) =  pd_swerling3(nfa, 50, snr);
   prob100(index) =  pd_swerling3 (nfa, 100, snr);
end
x = -10:.5:30;
plot(x, prob1,'k',x,prob10,'k:',x,prob50,'k--', x, prob100,'k-.');
axis([-10 30 0 1])
xlabel ('SNR in dB')
ylabel ('Probability of detection')
legend('np = 1','np = 10','np = 50','np = 100')
grid

nP 1 2,=

PD
vT–

1 nPSNR 2⁄+
---------------------------------⎝ ⎠
⎛ ⎞ 1 2

nPSNR
-----------------+⎝ ⎠

⎛ ⎞ nP 2–
K0×exp=

K0 1
vT

1 nPSNR 2⁄+
--------------------------------- 2

nPSNR
----------------- nP 2–( )–+=

nP 2>

PD
vT

nP 1–
e

VT–

1 nPSNR 2⁄+( ) nP 2–( )!
------------------------------------------------------------ 1 ΓI– vT nP 1–,( ) K0

× ΓI
vT

1 2 npSNR⁄+
--------------------------------- np 1–,⎝ ⎠
⎛ ⎞

+ +=

nP 1 10 50 100, , ,= Pfa 10 9–=

nP 5= Pfa 10 7–=

chapter7.fm  Page 285  Monday, May 19, 2008  6:35 PM



286      Radar Signal Analysis and Processing Using MATLAB

 Figure 7.13a. Probability of detection versus SNR. Swerling III. .Pfa 10 9–=

 Figure 7.13b. Probability of detection versus SNR. Swerling III, Swerling II, 
Swerling I, and Swerling 0.
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7.7.5. Detection of Swerling IV Targets

The expression for the probability of detection for Swerling IV targets for
 is 

(7.88)

 (7.89)

By using the recursive formula

(7.90)

then only  needs to be calculated using Eq. (7.89) and the rest of  are cal-
culated from the following recursion:

(7.91)

(7.92)

(7.93)

(7.94)

For the case when , the Gram-Charlier series can be used to calcu-
late the probability of detection. In this case,

(7.95)

(7.96)

(7.97)

(7.98)
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Figure 7.14 shows plots of the probability of detection as a function of SNR for
, where . This figure can be reproduced using

the following MATLAB code.

clear all; close all;
pfa = 1e-6;
nfa = log(2) / pfa;
index = 0;
for snr = -7:.15:10
   index = index +1;
   prob1(index) =  pd_swerling4 (nfa, 5, snr);
   prob10(index) =  pd_swerling4 (nfa, 10, snr);
   prob25(index) =  pd_swerling4(nfa, 25, snr);
   prob75(index) =  pd_swerling4 (nfa, 75, snr);
end
x = -7:.15:10;
plot(x, prob1,'k',x,prob10,'k.',x,prob25,'k:',x, prob75,'k-.','linewidth',1);
xlabel ('SNR - dB')
ylabel ('Probability of detection')
legend('np = 5','np = 10','np = 25','np = 75')
grid; axis tight

nP 1 10 25 75, , ,= Pfa 10 6–=

 Figure 7.14. Probability of detection versus SNR. Swerling IV. .Pfa 10 6–=
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7.8. Computation of the Fluctuation Loss 
The fluctuation loss, , can be viewed as the amount of additional SNR

required to compensate for the SNR loss due to target fluctuation, given a spe-
cific  value. Kanter1 developed an exact analysis for calculating the fluctu-
ation loss. In this text the author will take advantage of the computational
power of MATLAB and the MATLAB functions developed for this text to
numerically calculate the amount of fluctuation loss. For this purpose consider
the MATALB function “fluct.m”, where its syntax is as follows:

[SNR] = fluct(pd, pfa, np, sw_case)

where

For example, using the syntax 

[SNR0] = fluct(0.8, 1e6, 5, 0)

will calculate the SNR0 corresponding to a Swerling 0. If one would use this
 in the function “pd_swerling5.m” with following syntax

[pd] = pd_swerling5 (1e6, 1, 5, SNR0)

the resulting  will be equal to . Similarly, if the following syntax is used

[SNR1] = fluct(.8, 1-e-6, 5, 1)

then the value SNR1 will be that of Swerling 1. Of course, if one would use this
SNR1 value in the function “pd_swerling1.m” with following syntax

[pd] = pd_swerling1(1e6, 5, .8, SNR1)

the same  of  will be calculated. Therefore, the fluctuation loss for this
case, is equal to SNR0 - SNR1.

1. Kanter, I., Exact Detection Probability for Partially Correlated Rayleigh Targets, 
IEEE Trans, AES-22, pp. 184-196, March 1986.

Symbol Description Units Status

pd desired probability of detection none input

nfa desired number of false alarms none input

np number of pulses none input

sw_case 0, 1, 2, 3, or 4 depending on the 
desired Swerling case

none input

SNR Resulting SNR dB output

Lf

PD

SNR

PD 0.8

PD 0.8
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7.9.  Cumulative Probability of Detection
Denote the range at which the single pulse SNR is unity (0 dB) as , and

refer to it as the reference range. Then, for a specific radar, the single pulse
SNR at  is defined by the radar equation and is given by

(7.99)

The single pulse SNR at any range  is 

(7.100)

Dividing Eq. (7.100) by Eq. (7.99) yields

(7.101)

Therefore, if the range  is known, then the SNR at any other range  is 

(7.102)

Also, define the range  as the range at which . Normally,
the radar unambiguous range  is set equal to .

The cumulative probability of detection refers to detecting the target at least
once by the time it is at range . More precisely, consider a target closing on a
scanning radar, where the target is illuminated only during a scan (frame). As
the target gets closer to the radar, its probability of detection increases since the
SNR is increased. Suppose that the probability of detection during the 
frame is ; then, the cumulative probability of detecting the target at least
once during the  frame (see Fig. 7.15) is given by

(7.103)

 is usually selected to be very small. Clearly, the probability of not detect-
ing the target during the  frame is . The probability of detection for
the  frame, , is computed as discussed in the previous section.
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Example:

 A radar detects a closing target at , with probability of detection
 equal to . Assume . Compute and sketch the single look

probability of detection as a function of normalized range (with respect to
), over the interval . If the range between two succes-

sive frames is , what is the cumulative probability of detection at
?

Solution:

From the function “marcumsq.m” the SNR corresponding to  and
 is approximately 12dB. By using a similar analysis to that which

led to Eq. (7.102), we can express the SNR at any range  as

By using the function “marcumsq.m” we can construct the following table:
 

R Km (SNR) dB

2 39.09 0.999

4 27.9 0.999

6 20.9 0.999

8 15.9 0.999

9 13.8 0.9

10 12.0 0.5

11 10.3 0.25

Figure 7.15. Detecting a target in many frames.

…

frame 1nth frame

(n+1)th frame

PD1
PDn 1+

PDn

R 10Km=
PD 0.5 Pfa 10 7–=

R 10Km= 2 20–( )Km
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R 8Km=

PD 0.5=
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SNR( )R SNR( )10 40 10
R
------log+ 52 40 Rlog–= =
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where  is very small. A sketch of  versus normalized range is shown in
Fig. 7.16.

The cumulative probability of detection is given in Eq. (7.104), where the prob-
ability of detection of the first frame is selected to be very small. Thus, we can
arbitrarily choose frame 1 to be at . Note that selecting a different
starting point for frame 1 would have a negligible effect on the cumulative
probability (we only need  to be very small). Below is a range listing for
frames 1 through 9, where frame 9 corresponds to . 

The cumulative probability of detection at 8 Km is then

12 8.8 0.07

14 6.1 0.01

16 3.8

20 0.01

frame 1 2 3 4 5 6 7 8 9

range in Km 16 15 14 13 12 11 10 9 8

 

R Km (SNR) dB PD

ε

ε

ε PD

R 16Km=

PD1
R 8Km=

PC9
1 1 0.999–( ) 1 0.9–( ) 1 0.5–( ) 1 0.25–( ) 1 0.07–( )

1 0.01–( ) 1 ε–( )2 0.9998≈

–=

R 10⁄

PD

1

.5

 Figure 7.16. Cumulative probability of detection versus normalized range.
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7.10.  Constant False Alarm Rate (CFAR)
The detection threshold is computed so that the radar receiver maintains a

constant predetermined probability of false alarm. Equation (7.20) gives the
relationship between the threshold value  and the probability of false alarm

, and for convenience is repeated here as Eq. (7.104):

(7.104)

If the noise power  is constant, then a fixed threshold can satisfy Eq.
(7.104). However, due to many reasons this condition is rarely true. Thus, in
order to maintain a constant probability of false alarm, the threshold value
must be continuously updated based on the estimates of the noise variance. The
process of continuously changing the threshold value to maintain a constant
probability of false alarm is known as Constant False Alarm Rate (CFAR). 

Three different types of CFAR processors are primarily used. They are adap-
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques.
Adaptive CFAR assumes that the interference distribution is known and
approximates the unknown parameters associated with these distributions.
Nonparametric CFAR processors tend to accommodate unknown interference
distributions. Nonlinear receiver techniques attempt to normalize the root-
mean-square amplitude of the interference. In this book only analog Cell-Aver-
aging CFAR (CA-CFAR) technique is examined. The analysis presented in this
section closely follows Urkowitz1.

7.10.1. Cell-Averaging CFAR (Single Pulse)

The CA-CFAR processor is shown in Fig. 7.17. Cell averaging is performed
on a series of range and/or Doppler bins (cells). The echo return for each pulse
is detected by a square-law detector. In analog implementation these cells are
obtained from a tapped delay line. The Cell Under Test (CUT) is the central
cell. The immediate neighbors of the CUT are excluded from the averaging
process due to a possible spillover from the CUT. The output of  reference
cells (  on each side of the CUT) is averaged. The threshold value is
obtained by multiplying the averaged estimate from all reference cells by a
constant  (used for scaling). A detection is declared in the CUT if

(7.105)

1. Urkowitz, H., Decision and Detection Theory, unpublished lecture notes. Lockheed 
Martin Co., Moorestown, NJ.
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CA-CFAR assumes that the target of interest is in the CUT and all reference
cells contain zero-mean independent Gaussian noise of variance . There-
fore, the output of the reference cells, , represents a random variable with
gamma probability density function (special case of the chi-square) with 
degrees of freedom. In this case, the gamma pdf is 

(7.106)

 The probability of false alarm corresponding to a fixed threshold was
derived earlier. When CA-CFAR is implemented, then the probability of false
alarm can be derived from the conditional false alarm probability, which is
averaged over all possible values of the threshold in order to achieve an uncon-
ditional false alarm probability. The conditional probability of false alarm
when  can be written as 

(7.107)

It follows that the unconditional probability of false alarm is

(7.108)

Σ
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Σ
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 Figure 7.17. Conventional CA-CFAR.
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where  is the pdf of the threshold, which except for the constant  is the
same as that defined in Eq. (7.106). Therefore,

(7.109)

Performing the integration in Eq. (7.108) yields   

(7.110)

Observation of Eq. (7.110) shows that the probability of false alarm is now
independent of the noise power, which is the objective of CFAR processing.

7.10.2. Cell-Averaging CFAR with Noncoherent Integration

In practice, CFAR averaging is often implemented after noncoherent integra-
tion, as illustrated in Fig. 7.18. Now, the output of each reference cell is the
sum of  squared envelopes. It follows that the total number of summed ref-
erence samples is . The output  is also the sum of  squared enve-
lopes. When noise alone is present in the CUT,  is a random variable whose
pdf is a gamma distribution with  degrees of freedom. Additionally, the
summed output of the reference cells is the sum of  squared envelopes.
Thus,  is also a random variable which has a gamma pdf with  degrees
of freedom.
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 Figure 7.18. Conventional CA-CFAR with noncoherent integration. 
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The probability of false alarm is then equal to the probability that the ratio
 exceeds the threshold. More precisely,

(7.111)

Equation (7.111) implies that one must first find the joint pdf for the ratio
. However, this can be avoided if  is first computed for a fixed thresh-

old value , then averaged over all possible values of the threshold. There-
fore, let the conditional probability of false alarm when  be

. It follows that the unconditional false alarm probability is

(7.112)

where  is the pdf of the threshold. In view of this, the probability density
function describing the random variable  is given by

(7.113)

It can be shown that in this case the probability of false alarm is independent
of the noise power and is given by

(7.114)

which is identical to Eq. (7.110) when  and . 

7.11. MATLAB Programs and Routines
This section presents listings for all the MATLAB programs used to produce

all of the MATLAB-generated figures in this chapter. Additionally, other spe-
cific MATLAB functions are also presented. They are listed in the same order
they appear in the chapter.

7.11.1. MATLAB Function “que_func.m”

The function “que_func.m” computes  using Eqs. (7.17) and (7.18).
The syntax is as follows:

fofx = que_func (x)

MATLAB Function “que_func.m” Listing
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function fofx = que_func(x)
% This function computes the value of the Q-function
% It uses the approximation in Eqs. (7.17) and (7.18)
if (x >= 0) 
    denom = 0.661 * x + 0.339 * sqrt(x^2 + 5.51);
   expo = exp(-x^2 /2.0);
   fofx = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
else
   denom = 0.661 * x + 0.339 * sqrt(x^2 + 5.51);
   expo = exp(-x^2 /2.0);
   value = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
   fofx = 1.0 - value;
end

7.11.2. MATLAB Function “marcumsq.m”

This function utilizes Parl’s method to compute . The syntax is as fol-
lows:

Pd = marcumsq(a,b)

MATLAB Function “marcumsq.m” Listing

function Pd = marcumsq (a,b); % This function uses Parl's method to compute PD
max_test_value = 5000.; 
if (a < b)
   alphan0 = 1.0;
   dn = a / b;
else
   alphan0 = 0.;
   dn = b / a;
end
alphan_1 = 0.;
betan0 = 0.5;
betan_1 = 0.;
D1 = dn;
n = 0;
ratio = 2.0 / (a * b);
r1 = 0.0;
betan = 0.0;
alphan = 0.0;
while betan < 1000.,
   n = n + 1;
   alphan = dn + ratio * n * alphan0 + alphan;
   betan = 1.0 + ratio * n * betan0 + betan;
   alphan_1 = alphan0;
   alphan0 = alphan;
   betan_1 = betan0;

PD
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   betan0 = betan;
   dn = dn * D1;
end
PD = (alphan0 / (2.0 * betan0)) * exp( -(a-b)^2 / 2.0);
if ( a >= b)
   PD = 1.0 - PD;
end
return

7.11.3. MATLAB Function “improv_fac.m”

The function “improv_fac.m” calculates the improvement factor using Eq.
(7.45). The syntax is as follows:

[impr_of_np] = improv_fac (np, pfa, pd)

where

MATLAB Function “improv_fac.m” Listing

function impr_of_np = improv_fac (np, pfa, pd)
% This function computes the noncoherent integration improvement
% factor using the empirical formula defined in Eq. (7.54)
fact1 = 1.0 + log10( 1.0 / pfa) / 46.6;
fact2 = 6.79 * (1.0 + 0.235 * pd);
fact3 = 1.0 - 0.14 * log10(np) + 0.0183 * (log10(np))^2;
impr_of_np = fact1 * fact2 * fact3 * log10(np);
return

7.11.4.  MATLAB Function “threshold.m” 

The function “threshold.m” calculates the threshold value given the algo-
rithm described in Section 7.6. The syntax is as follows:

[pfa, vt] = threshold (nfa, np)

where

Symbol Description Units Status

np number of integrated pulses none input

pfa probability of false alarms none input

pd probability of detection none input

impr_of_np improvement factor output dB
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MATLAB Function “threshold.m” Listing

function [pfa, vt] = threshold (nfa, np)
% This function calculates the threshold value from nfa and np.
% The Newton-Raphson  recursive formula is used
% This function uses "gammainc.m".
delmax = .00001;
eps = 0.000000001;
delta =10000.;
pfa = np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;

7.11.5. MATLAB Function “pd_swerling5.m”

The function “pd_swerling5.m” calculates the probability of detection for
Swerling 0 targets. The syntax is as follows:

[pd] = pd_swerling5 (input1, indicator, np, snr)

where

Symbol Description Units Status

nfa number of false alarm none input

np number of pulses none input

pfa probability of alarm none output

vt threshold value none output

Symbol Description Units Status

input1 Pfa or nfa none input

indicator 1 when input1 = Pfa

2 when input1 = nfa

none input
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MATLAB Function “pd_swerling5.m” Listing

function pd = pd_swerling5 (input1, indicator, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 5 or 0 targets for np>1.
if(np == 1)
   'Stop, np must be greater than 1'
   return
end
format long
snrbar = 10.0.^(snrbar./10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
if (indicator ~=1)
   nfa = input1;
   pfa =  np * log(2) / nfa;
else
   pfa = input1;
   nfa = np * log(2) / pfa;
end
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
% Calculate the Gram-Chrlier coefficients
temp1 = 2.0 .* snrbar + 1.0;
omegabar = sqrt(np .* temp1);
c3 = -(snrbar + 1.0 / 3.0) ./ (sqrt(np) .* temp1.^1.5);
c4 = (snrbar + 0.25) ./ (np .* temp1.^2.);
c6 = c3 .* c3 ./2.0;

np number of integrated pulses none input

snr dB input

pd probability of detection none output

Symbol Description Units Status

SNR
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V = (vt - np .* (1.0 + snrbar)) ./ omegabar;
Vsqr = V .*V;
val1 = exp(-Vsqr ./ 2.0) ./ sqrt( 2.0 * pi);
val2 = c3 .* (V.^2 -1.0) + c4 .* V .* (3.0 - V.^2) -...
   c6 .* V .* (V.^4 - 10. .* V.^2 + 15.0);
q = 0.5 .* erfc (V./sqrt(2.0));
pd =  q - val1 .* val2;
return

7.11.6. MATLAB Function “pd_swerling1.m”

The function “pd_swerling1.m” calculates the probability of detection for
Swerling I type targets. The syntax is as follows:

[pd] = pd_swerling1 (nfa, np, snr) 

where

MATLAB Function “pd_swerling1.m” Listing

function [pd] = pd_swerling1 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 1 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (delta < (vt0/10000));
   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   deno = -exp(-vt0) * vt0^(np-1) /factorial(np-1);
   vt = vt0 - (num / (deno+eps));
   delta = abs(vt - vt0);
   vt0 = vt;

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

SNR
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end
if (np == 1)
   temp = -vt / (1.0 + snrbar);
   pd = exp(temp);
   return
end
   temp1 = 1.0 + np * snrbar;
   temp2 = 1.0 / (np *snrbar);
   temp = 1.0 + temp2;
   val1 = temp^(np-1.);
   igf1 = gammainc(vt,np-1);
   igf2 = gammainc(vt/temp,np-1);
   pd = 1.0 - igf1 + val1 * igf2 * exp(-vt/temp1);
   return

7.11.7. MATLAB Function “pd_swerling2.m”

The function “pd_swerling2.m” calculates  for Swerling II type targets.
The syntax is as follows:

[pd] = pd_swerling2 (nfa, np, snr)

where

MATLAB Function “pd_swerling2.m” Listing

function [pd] = pd_swerling2 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 2 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (delta < (vt0/10000));

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

PD

SNR
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   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   deno = -exp(-vt0) * vt0^(np-1) /factorial(np-1);
   vt = vt0 - (num / (deno+eps));
   delta = abs(vt - vt0);
   vt0 = vt;
end
if (np <= 50)
   temp = vt / (1.0 + snrbar);
   pd = 1.0 - gammainc(temp,np);
   return
else
   temp1 = snrbar + 1.0;
   omegabar = sqrt(np) * temp1;
   c3 = -1.0 / sqrt(9.0 * np);
   c4 = 0.25 / np;
   c6 = c3 * c3 /2.0;
   V = (vt - np * temp1) / omegabar;
   Vsqr = V *V;
   val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
   val2 = c3 * (V^2 -1.0) + c4 * V * (3.0 - V^2) - ... 
      c6 * V * (V^4 - 10. * V^2 + 15.0);
   q = 0.5 * erfc (V/sqrt(2.0));
   pd =  q - val1 * val2;
end
return

7.11.8. MATLAB Function “pd_swerling3.m”

The function “pd_swerling3.m” calculates  for Swerling III type targets.
The syntax is as follows:

[pd] = pd_swerling3 (nfa, np, snr) 

where

MATLAB Function “pd_swerling3.m” Listing

function [pd] = pd_swerling3 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 3 targets.

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

PD

SNR
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format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (delta < (vt0/10000));
   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   deno = -exp(-vt0) * vt0^(np-1) /factorial(np-1);
   vt = vt0 - (num / (deno+eps));
   delta = abs(vt - vt0);
   vt0 = vt;
end
temp1 = vt / (1.0 + 0.5 * np *snrbar);
temp2 = 1.0 + 2.0 / (np * snrbar);
temp3 = 2.0 * (np - 2.0) / (np * snrbar);
ko = exp(-temp1) * temp2^(np-2.) * (1.0 + temp1 - temp3);
if (np <= 2)
   pd = ko;
   return
else
   ko = exp(-temp1) * temp2^(np-2.) * (1.0 + temp1 - temp3);
   temp4 = vt^(np-1.) * exp(-vt) / (temp1 * (factorial(np-2.)));
   temp5 =  vt / (1.0 + 2.0 / (np *snrbar));
   pd = temp4 + 1.0 - gammainc(vt,np-1.) + ko * gammainc(temp5,np-1.);
end
return

7.11.9. MATLAB Function “pd_swerling4.m”

The function “pd_swerling4.m” calculates  for Swerling IV type targets.
The syntax is as follows:

[pd] = pd_swerling4 (nfa, np, snr)

where

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

PD
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MATLAB Function “pd_swerling4.m” Listing

function [pd] = pd_swerling4 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 4 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (delta < (vt0/10000));
   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   deno = -exp(-vt0) * vt0^(np-1) /factorial(np-1);
   vt = vt0 - (num / (deno+eps));
   delta = abs(vt - vt0);
   vt0 = vt;
end
h8 = snrbar /2.0;
beta = 1.0 + h8;
beta2 = 2.0 * beta^2 - 1.0;
beta3 = 2.0 * beta^3;
if (np >= 50)
   temp1 = 2.0 * beta -1;
   omegabar = sqrt(np * temp1);
   c3 = (beta3 - 1.) / 3.0 / beta2 / omegabar;
   c4 = (beta3 * beta3 - 1.0) / 4. / np /beta2 /beta2;
   c6 = c3 * c3 /2.0;
   V = (vt - np * (1.0 + snrbar)) / omegabar;
   Vsqr = V *V;
   val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
   val2 = c3 * (V^2 -1.0) + c4 * V * (3.0 - V^2) - c6 * V * (V^4 - 10. * V^2 + 15.0);
   q = 0.5 * erfc (V/sqrt(2.0));
   pd =  q - val1 * val2;
   return
else

snr dB input

pd probability of detection none output

Symbol Description Units Status

SNR
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   gamma0 = gammainc(vt/beta,np);
   a1 = (vt / beta)^np / (factorial(np) * exp(vt/beta));
   sum = gamma0;
   for i = 1:1:np
      temp1 = gamma0;
      if (i == 1)
         ai = a1;
      else
         ai = (vt / beta) * a1 / (np + i -1);
      end
      gammai = gamma0 - ai;
      gamma0 = gammai;
      a1 = ai;
      for ii = 1:1:i
         temp1 = temp1 * (np + 1 - ii);
      end
      term = (snrbar /2.0)^i * gammai * temp1 / (factorial(i));
      sum = sum + term;
   end
   pd = 1.0 - (sum / beta^np);
end
pd = max(pd,0.);
return

7.11.10.  MATLAB Function “fluct_loss.m” 

This functions has been described in Section 7.8.

MATLAB Function “fluct_loss.m”

function [SNR] = fluct(pd, nfa, np, sw_case)
% This function calculates the SNR fluctuation loss for Swerling models
% A negative Lf value indicates SNR gain instead of loss 
format long
% *************** Swerling 5 case ****************
% check to make sure that np>1
pfa =  np * log(2) / nfa;
if (sw_case == 0)
if (np ==1)
    nfa = 1/pfa;
    b = sqrt(-2.0 * log(pfa));
    Pd_Sw5 = 0.001;
    snr_inc = 0.1 - 0.005;
    while(Pd_Sw5 <= pd)
        snr_inc = snr_inc + 0.005;
        a = sqrt(2.0 * 10^(.1*snr_inc));
        Pd_Sw5 = marcumsq(a,b);
    end
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    PD_SW5 = Pd_Sw5;
    SNR = snr_inc;
else
    % np > 1 use MATLAB function pd_swerling5.m
    snr_inc = 0.1 - 0.001;
    Pd_Sw5 = 0.001;
    while(Pd_Sw5 <= pd)
        snr_inc = snr_inc + 0.001;
        Pd_Sw5 = pd_swerling5(pfa, 1, np, snr_inc);
    end
    PD_SW5 = Pd_Sw5;
    SNR = snr_inc;
end
end
 % *************** End Swerling 5 case ************
% *************** Swerling 1 case ****************
% compute the false alarm number
if (sw_case==1)
    Pd_Sw1 = 0.001;
    snr_inc = 0.1 - 0.001;
    while(Pd_Sw1 <= pd)
        snr_inc = snr_inc + 0.001;
        Pd_Sw1 = pd_swerling1(nfa, np, snr_inc);
    end
    PD_SW1 = Pd_Sw1;
    SNR = snr_inc;
end
 % *************** End Swerling 1 case ************
% *************** Swerling 2 case ****************
if (sw_case == 2)
    Pd_Sw2 = 0.001;
    snr_inc = 0.1 - 0.001;
    while(Pd_Sw2 <= pd)
        snr_inc = snr_inc + 0.001;
        Pd_Sw2 = pd_swerling2(nfa, np, snr_inc);
    end
    PD_SW2 = Pd_Sw2;
    SNR = snr_inc;
end
 % *************** End Swerling 2 case ************
% *************** Swerling 3 case ****************
if (sw_case == 3)
    Pd_Sw3 = 0.001;
    snr_inc = 0.1 - 0.001;
    while(Pd_Sw3 <= pd)
        snr_inc = snr_inc + 0.001;
        Pd_Sw3 = pd_swerling3(nfa, np, snr_inc);
    end
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    PD_SW3 = Pd_Sw3;
    SNR = snr_inc;
end
 % *************** End Swerling 3 case ************
% *************** Swerling 4 case ****************
if (sw_case == 4)
    Pd_Sw4 = 0.001;
    snr_inc = 0.1 - 0.001;
    while(Pd_Sw4 <= pd)
        snr_inc = snr_inc + 0.001;
        Pd_Sw4 = pd_swerling4(nfa, np, snr_inc);
    end
    PD_SW4 = Pd_Sw4;
    SNR = snr_inc;
end

Appendix 7.A The Incomplete Gamma Function
The Gamma Function

Define the Gamma function (not the incomplete Gamma function) of the
variable  (generally complex) as

(7.115)

and when  is a positive integer, then

(7.116)

One very useful and frequently used property is 

(7.117)

The Incomplete Gamma Function

The incomplete gamma function.  used in this text is given by

(7.118)

Another definition, which is often used in the literature, for the incomplete
Gamma function is

z
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(7.119)

It follows that 

(7.120)

which is the same as Eq. (7.115). Furthermore, for a positive integer , the
incomplete Gamma function can be represented by

(7.121)

In order to relate  and  compute the following relation

(7.122)

Applying the change of variables  and  yields

(7.123)

and if  is a positive integer then

(7.124)

Using Eq. (7.116) and (7.121) in Eq. (7.124) yields 

(7.125)

Finally, the incomplete Gamma function can be written as
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(7.126)

The two limiting values for Eq. (7.126) are 

(7.127)

Figure 7A.1 shows the incomplete gamma function for . This
figure can be reproduced using the following MATLAB code which utilizes
the built-in MATLAB function “gammainc.m”. 

% This program can be used to reproduce Fig. 7A.1
close all; clear all
x=linspace(0,20,200);
y1 = gammainc(x,1);
y2 = gammainc(x,3);
y3 = gammainc(x,5);
y4 = gammainc(x,8);
plot(x,y1,'k',x,y2,'k:',x,y3,'k--',x,y4,'k-.')
legend('q = 1','q = 3','q = 5','q = 8')
xlabel('x'); ylabel('Incomplete Gamma function (x,q)')
grid

ΓI u q,( ) 1 e u– q 1+ u q 1+( )
k

k!
--------------------------

k 0=

q

∑–=

ΓI 0 q,( ) 0= ΓI ∞ q,( ) 1=

q 1 3 5 8, , ,=

 Figure 7A.1. The incomplete Gamma function for four values of q.

chapter7.fm  Page 310  Monday, May 19, 2008  6:35 PM



Problems 311

Problems
7.1. In the case of noise alone, the quadrature components of a radar return
are independent Gaussian random variables with zero mean and variance .
Assume that the radar processing consists of envelope detection followed by
threshold decision. (a) Write an expression for the pdf of the envelope; (b)
determine the threshold  as a function of  that ensures a probability of
false alarm .
7.2. (a) Derive Eq. (7.13); (b) derive Eq. (7.15).
7.3. A pulsed radar has the following specifications: time of false alarm

, probability of detection , operating bandwidth
. (a) What is the probability of false alarm ? (b) What is the

single pulse SNR? (c) Assuming noncoherent integration of 100 pulses, what is
the SNR reduction so that  and  remain unchanged?
7.4. An L-band radar has the following specifications: operating frequency

, operating bandwidth , noise figure ,
system losses , time of false alarm , detection
range , probability of detection , antenna gain

, and target RCS . (a) Determine the PRF , the pulse
width , the peak power , the probability of false alarm , and the mini-
mum detectable signal level . (b) How can you reduce the transmitter
power to achieve the same performance when 10 pulses are integrated nonco-
herently? (c) If the radar operates at a shorter range in the single pulse mode,
find the new probability of detection when the range decreases to .
7.5. (a) Show how you can use the radar equation to determine the PRF ,
the pulse width , the peak power , the probability of false alarm , and
the minimum detectable signal level . Assume the following specifica-
tions: operating frequency , operating bandwidth ,
noise figure , system losses , time of false alarm

, detection range , probability of detection
 (three pulses). (b) If post detection integration is assumed, deter-

mine the SNR.
7.6. Show that when computing the probability of detection at the output of
an envelope detector, it is possible to use Gaussian probability approximation
when the SNR is very large.
7.7. A radar system uses a threshold detection criterion. The probability of
false alarm . (a) What must be the average SNR at the input of a
linear detector so that the probability of miss is ? Assume large
SNR approximation. (b) Write an expression for the pdf at the output of the
envelope detector.

σ2

VT σ
Pfa 10 8–≤

Tfa 10 min= PD 0.95=
B 1MHz= Pfa

PD Pfa

f0 1.5GHz= B 2MHz= F 8dB=
L 4dB= Tfa 12 minutes=

R 12Km= PD 0.5=
G 5000= σ 1m2= fr

τ Pt Pfa
Smin

9Km
fr

τ Pt Pfa
Smin

f0 1.5MHz= B 1MHz=
F 10dB= L 5dB=

Tfa 20 min= R 12Km=
PD 0.5=

Pfa 10 10–=
Pm 0.15=
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7.8. An X-band radar has the following specifications: received peak
power , probability of detection , time of false alarm

, pulse width , operating bandwidth ,
operating frequency , and detection range . Assume
single pulse processing. (a) Compute the probability of false alarm . (b)
Determine the SNR at the output of the IF amplifier. (c) At what SNR would
the probability of detection drop to  (  does not change)? (d) What is the
increase in range that corresponds to this drop in the probability of detection?
7.9. A certain radar utilizes 10 pulses for noncoherent integration. The sin-
gle pulse SNR is  and the probability of miss is . (a) Com-
pute the probability of false alarm . (b) Find the threshold voltage .
7.10. Consider a scanning low PRF radar. The antenna half-power beam
width is , and the antenna scan rate is  per second. The pulse width is

, and the PRF is . (a) Compute the radar operating band-
width. (b) Calculate the number of returned pulses from each target illumina-
tion. (c) Compute the SNR improvement due to post-detection integration
(assume 100% efficiency). (d) Find the number of false alarms per minute for a
probability of false alarm .
7.11. Using the equation 

 

calculate  when  and . Perform the integration
numerically.

7.12. Write a MATLAB program to compute the CA-CFAR threshold
value. Use similar approach to that used in the case of a fixed threshold.
7.13. A certain radar has the following specifications: single pulse SNR
corresponding to a reference range  is . The probability of
detection at this range is . Assume a Swerling I type target. Use the
radar equation to compute the required pulse widths at ranges

, so that the probability of detection is main-
tained. 
7.14. Repeat Problem 7.14 for Swerling IV type target.
7.15. Utilizing the MATLAB functions presented in this chapter, plot the
actual value for the improvement factor versus the number of integrated pulses.
Pick three different values for the probability of false alarm.
7.16. Develop a MATLAB program to calculate the cumulative probability
of detection.
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7.17. A certain radar has the following parameters: Peak power
, total losses , operating frequency ,

PRF , pulse width , antenna beamwidth  and
, noise figure , scan time . The radar can experi-

ence one false alarm per scan. (a) What is the probability of false alarm?
Assume that the radar searches a minimum range of 10 Km to its maximum
unambiguous range. (b) Plot the detection range versus RCS in dBsm. The
detection range is defined as the range at which the single scan probability of
detection is equal to 0.94. Generate curves for Swerling I, II, III, and IV type
targets. (c) Repeat part (b) above when noncoherent integration is used.
7.18. A certain circularly scanning radar with a fan beam has a rotation
rate of 3 seconds per revolution. The azimuth beamwidth is 3 degrees and the
radar uses a PRI of 600 microseconds. The radar pulse width is 2 microseconds
and the radar searches a range window that extends from 15 Km to 100 Km. It
is desired that the false alarm rate not be higher than two false alarms per revo-
lution. What is the required probability of false alarm? What is the minimum
SNR so that minimum probability of false alarm can be maintained?
7.19. Derive Eq(7.63).

Pt 500KW= L 12dB= fo 5.6GHZ=
fr 2KHz= τ 0.5μs= θaz 2°=

θel 7°= F 6dB= Tsc 2s=
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Chapter 8 Pulse Compression 

Range resolution for a given radar can be significantly improved by using
very short pulses. Unfortunately, utilizing short pulses decreases the average
transmitted power, hence reducing the SNR. Since the average transmitted
power is directly linked to the receiver SNR, it is often desirable to increase
the pulse width (i.e., the average transmitted power) while simultaneously
maintaining adequate range resolution. This can be made possible by using
pulse compression techniques and the matched filter receiver. Pulse compres-
sion allows us to achieve the average transmitted power of a relatively long
pulse, while obtaining the range resolution corresponding to a short pulse. In
this chapter, two pulse compression techniques are discussed. The first tech-
nique is known as correlation processing which is predominantly used for nar-
row band and some medium band radar operations. The second technique is
called stretch processing and is normally used for extremely wide band radar
operations.

8.1. Time-Bandwidth Product
Consider a radar system that employs a matched filter receiver. Let the

matched filter receiver bandwidth be denoted as . Then the noise power
available within the matched filter bandwidth is given by

(8.1)

where the factor of two is used to account for both negative and positive fre-
quency bands, as illustrated in Fig. 8.1. The average input signal power over a
pulse duration  is

(8.2)
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 is the signal energy. Consequently, the matched filter input SNR is given by

(8.3)

The output peak instantaneous SNR to the input SNR ratio is

(8.4)

The quantity  is referred to as the time-bandwidth product for a given
waveform or its corresponding matched filter. The factor  by which the
output SNR is increased over that at the input is called the matched filter gain,
or simply the compression gain. 

In general, the time-bandwidth product of an unmodulated pulse approaches
unity. The time-bandwidth product of a pulse can be made much greater than
unity by using frequency or phase modulation. If the radar receiver transfer
function is perfectly matched to that of the input waveform, then the compres-
sion gain is equal to . Clearly, the compression gain becomes smaller than

 as the spectrum of the matched filter deviates from that of the input sig-
nal. 

8.2. Radar Equation with Pulse Compression
The radar equation for a pulsed radar can be written as

(8.5)

where  is peak power,  is pulse width,  is antenna gain,  is target
RCS,  is range,  is Boltzmann’s constant,  is 290 degrees Kelvin,  is
noise figure, and  is total radar losses.

B B
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Figure 8.1. Input noise power.
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Pulse compression radars transmit relatively long pulses (with modulation)
and process the radar echo into very short pulses (compressed). One can view
the transmitted pulse as being composed of a series of very short subpulses
(duty is 100%), where the width of each subpulse is equal to the desired com-
pressed pulse width. Denote the compressed pulse width as . Thus, for an
individual subpulse, Eq. (8.5) can be written as

(8.6)

The SNR for the uncompressed pulse is then derived from Eq. (8.6) as

(8.7)

where  is the number of subpulses. Equation (8.7) is denoted as the radar
equation with pulse compression.

Observation of Eq. (8.5) and Eq.(8.7) indicates the following (note that both
equations have the same form): For a given set of radar parameters, and as long
as the transmitted pulse remains unchanged, the SNR is also unchanged
regardless of the signal bandwidth. More precisely, when pulse compression is
used, the detection range is maintained while the range resolution is drastically
improved by keeping the pulse width unchanged and by increasing the band-
width. Remember that range resolution is proportional to the inverse of the sig-
nal bandwidth:

(8.8)

8.3. Basic Principal of Pulse Compression 
For this purpose, consider a long pulse with LFM modulation and assume a

matched filter receiver. The output of the matched filter (along the delay axis,
i.e., range) is an order of magnitude narrower than that at its input. More pre-
cisely, the matched filter output is compressed by a factor , where 
is the pulse width and  is the bandwidth. Thus, by using long pulses and
wideband LFM modulation, large compression ratios can be achieved. 

Figure 8.2 shows an ideal LFM pulse compression process. Part (a) shows
the envelope of a pulse, part (b) shows the frequency modulation (in this case it
is an upchirp LFM) with bandwidth . Part (c) shows the matched
filter time-delay characteristic while part (d) shows the compressed pulse
envelope. Finally part (e) shows the matched filter input/output waveforms.

τc
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Figure 8.3 illustrates the advantage of pulse compression using a more real-
istic LFM waveform. In this example, two targets with RCS,  and

, are detected. The two targets are not separated enough in time to
be resolved. Figure 8.3a shows the composite echo signal from those targets.
Clearly, the target returns overlap, and thus, they are not resolved. However,
after pulse compression the two pulses are completely separated and are
resolved as two distinct targets. In fact, when using LFM, returns from neigh-
boring targets are resolved as long as they are separated in time by , the
compressed pulse width. 

σ1 1m2=
σ2 0.5m2=

τc

(a)

(b)

(c)

(d)

(e)

Matched Filter

τ0

f2

f1

Δt

Δt t1–

f1 f2

τc

τ0
τc

 Figure 8.2. Ideal LFM pulse compression.

f1
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 Figure 8.3a. Composite echo signal for two unresolved targets.

 Figure 8.3b. Composite echo signal corresponding to Fig. 8.3a after 
pulse compression. 
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8.4. Correlation Processor
Radar operations (search, track, etc.) are usually carried out over a specified

range window, referred to as the receive window and defined by the difference
between the radar maximum and minimum range. Returns from all targets
within the receive window are collected and passed through matched filter cir-
cuitry to perform pulse compression. One implementation of such analog pro-
cessors is the Surface Acoustic Wave (SAW) devices. Because of the recent
advances in digital computer development, the correlation processor is often
performed digitally using the FFT. This digital implementation is called Fast
Convolution Processing (FCP) and can be implemented at base band. The fast
convolution process is illustrated in Fig. 8.4.

Since the matched filter is a linear time invariant system, its output can be
described mathematically by the convolution between its input and its impulse
response, 

(8.9)

where  is the input signal,  is the matched filter impulse response
(replica), and the ( ) operator symbolically represents convolution. From the
Fourier transform properties, 

(8.10)

and when both signals are sampled properly, the compressed signal  can
be computed from

(8.11)

where  is the inverse FFT. When using pulse compression, it is desir-
able to use modulation schemes that can accomplish a maximum pulse com-
pression ratio and can significantly reduce the sidelobe levels of the
compressed waveform. For the LFM case the first sidelobe is approximately

FFT multiplier

FFT of

Inv. FFT
input
signal

matched filter
     output

Figure 8.4. Computing the matched filter output using an FFT.

stored
replica 

y t( ) s t( ) h t( )⊗( )=

s t( ) h t( )
⊗

FFT s t( ) h t( )⊗( ){ } S f( ) H f( )⋅=

y t( )

y FFT 1– S H⋅{ }=

FFT 1–
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 below the main peak, and for most radar applications this may not be
sufficient. In practice, high sidelobe levels are not preferable because noise
and/or jammers located at the sidelobes may interfere with target returns in the
main lobe. 

Weighting functions (windows) can be used on the compressed pulse spec-
trum in order to reduce the sidelobe levels. The cost associated with such an
approach is a loss in the main lobe resolution, and a reduction in the peak value
(i.e., loss in the SNR). Weighting the time domain transmitted or received sig-
nal instead of the compressed pulse spectrum will theoretically achieve the
same goal. However, this approach is rarely used, since amplitude modulating
the transmitted waveform introduces extra burdens on the transmitter.

Consider a radar system that utilizes a correlation processor receiver (i.e.,
matched filter). The receive window in meters is defined by 

(8.12)

where  and , respectively, define the maximum and minimum range
over which the radar performs detection. Typically  is limited to the extent
of the target complex. The normalized complex transmitted signal has the form 

(8.13)

 is the pulse width, , and  is the bandwidth. 

The radar echo signal is similar to the transmitted one with the exception of a
time delay and an amplitude change that correspond to the target RCS. Con-
sider a target at range . The echo received by the radar from this target is 

(8.14)

where  is proportional to target RCS, antenna gain, and range attenuation.
The time delay  is given by 

 (8.15)

The first step of the processing consists of removing the frequency . This
is accomplished by mixing  with a reference signal whose phase is .
The phase of the resultant signal, after lowpass filtering, is then given by 

(8.16)

and the instantaneous frequency is

13.4dB

Rrec Rmax Rmin–=
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Rrec
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(8.17)

The quadrature components are

(8.18)

Sampling the quadrature components is performed next. The number of sam-
ples, , must be chosen so that foldover (ambiguity) in the spectrum is
avoided. For this purpose, the sampling frequency,  (based on the Nyquist
sampling rate), must be

(8.19)

and the sampling interval is 

(8.20)

Using Eq. (8.17) it can be shown that (the proof is left as an exercise) the fre-
quency resolution of the FFT is

(8.21)

The minimum required number of samples is

(8.22)

Equating Eqs. (8.20) and (8.22) yields

(8.23)

Consequently, a total of  real samples, or  complex samples, is suf-
ficient to completely describe an LFM waveform of duration  and band-
width . For example, an LFM signal of duration  and bandwidth

 requires 200 real samples to determine the input signal (100
samples for the I-channel and 100 samples for the Q-channel). 

For better implementation of the FFT  is extended to the next power of
two, by zero padding. Thus, the total number of samples, for some positive
integer , is 

(8.24)

The final steps of the FCP processing include (1) taking the FFT of the sam-
pled sequence, (2) multiplying the frequency domain sequence of the signal
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with the FFT of the matched filter impulse response, and (3) performing the
inverse FFT of the composite frequency domain sequence in order to generate
the time domain compressed pulse. Of course, weighting, antenna gain, and
range attenuation compensation must also be performed. 

Assume that  targets at ranges , , and so forth are within the receive
window. From superposition, the phase of the down-converted signal is 

(8.25)

The times  represent the two-way time delays,
where  coincides with the start of the receive window. As an example, con-
sider the case where

Note that the compressed pulsed range resolution is . Figure 8.5
and Fig. 8.6 shows the real part and the amplitude spectrum of the replica used
for this example. Figure 8.7 shows the uncompressed echo, while Fig. 8.8
shows the compressed MF output. Note that the scatterer amplitude attenuation
is a function of the inverse of the scatterer’s range within the receive window.
Figure 8.9 is similar to Fig. 8.8, except in this case the first and second scatter-
ers are less than 1.5 meter apart (they are at 70 and 71 meters).

# targets Rrec pulse 
width

Band-
width

targets range Target 
RCS

Window 
type

3 200m 0.005ms 100e6 Hz [10 75 120] m [1 2 1]m2 Ham-
ming

I R1 R2

φ t( ) 2π f– 0ti
μ
2
--- t ti–( )2+⎝ ⎠

⎛ ⎞

i 1=

I

∑=

ti 2Ri c⁄( ) i; 1 2 … I, , ,= ={ }
t1

ΔR 1.5m=

 Figure 8.5. Real part of replica. 
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 Figure 8.6. Replica spectrum. 

 Figure 8.7. Uncompressed echo signal. Scatterers are not resolved. 
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 Figure 8.8. Compressed echo signal corresponding to Fig. 8.7. 
Scatterers are completely resolved. 

 Figure 8.8. Compressed echo signal corresponding to Fig. 5.7. 
Scatterers are completely resolved. 

 Figure 8.9. Compressed echo signal of three scatterers, two of 
which are not resolved. 
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8.5. Stretch Processor
Stretch processing, also known as active correlation, is normally used to

process extremely high-bandwidth LFM waveforms. This processing tech-
nique consists of the following steps: First, the radar returns are mixed with a
replica (reference signal) of the transmitted waveform. This is followed by
Low Pass Filtering (LPF) and coherent detection. Next, Analog-to-Digital (A/
D) conversion is performed; and finally, a bank of Narrow-Band Filters
(NBFs) is used in order to extract the tones that are proportional to target
range, since stretch processing effectively converts time delay into frequency.
All returns from the same range bin produce the same constant frequency. 

8.5.1. Single LFM Pulse

Figure 8.10 shows a block diagram for a stretch processing receiver. The ref-
erence signal is an LFM waveform that has the same LFM slope as the trans-
mitted LFM signal. It exists over the duration of the radar “receive-window,”
which is computed from the difference between the radar maximum and mini-
mum range. Denote the start frequency of the reference chirp as . Consider
the case when the radar receives returns from a few close (in time or range) tar-
gets, as illustrated in Fig. 8.10. Mixing with the reference signal and perform-
ing lowpass filtering are effectively equivalent to subtracting the return
frequency chirp from the reference signal. Thus, the LPF output consists of
constant tones corresponding to the targets’ positions. The normalized trans-
mitted signal can be expressed by

(8.26)

where  is the LFM coefficient and  is the chirp start frequency.
Assume a point scatterer at range . The signal received by the radar is

(8.27)

where  is proportional to target RCS, antenna gain, and range attenuation.
The time delay  is 

(8.28)

The reference signal is 

(8.29)

The receive window in seconds is 
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(8.30)

It is customary to let . The output of the mixer is the product of the
received and reference signals. After lowpass filtering the signal is 

(8.31)

Substituting Eq. (8.28) into Eq. (8.31) and collecting terms yield

(8.32)

and since , Eq. (8.32) is approximated by

(8.33)

The instantaneous frequency is

(8.34)

which clearly indicates that target range is proportional to the instantaneous
frequency. Therefore, proper sampling of the LPF output and taking the FFT of
the sampled sequence lead to the following conclusion: a peak at some fre-
quency  indicates presence of a target at range 

(8.35)

Assume  close targets at ranges , , and so forth ( ).
From superposition, the total signal is

(8.36)

where  are proportional to the targets’ cross sections,
antenna gain, and range. The times  represent
the two-way time delays, where  coincides with the start of the receive win-
dow. Using Eq. (8.32) the overall signal at the output of the LPF can then be
described by 

(8.37)
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Hence, target returns appear as constant frequency tones that can be resolved
using the FFT. Consequently, determining the proper sampling rate and FFT
size is very critical. The rest of this section presents a methodology for com-
puting the proper FFT parameters required for stretch processing.

Assume a radar system using a stretch processor receiver. The pulse width is
 and the chirp bandwidth is . Since stretch processing is normally used in

extreme bandwidth cases (i.e., very large ), the receive window over which
radar returns will be processed is typically limited to from a few meters to pos-
sibly less than 100 meters. The compressed pulse range resolution is computed
from Eq. (8.8). Declare the FFT size to be  and its frequency resolution to be

. The frequency resolution can be computed using the following procedure:
Consider two adjacent point scatterers at ranges  and . The minimum fre-
quency separation, , between those scatterers so that they are resolved can
be computed from Eq. (8.34). More precisely,

 (8.38)

Substituting Eq. (8.8) into Eq. (8.38) yields

(8.39)

The maximum frequency resolvable by the FFT is limited to the region
. Thus, the maximum resolvable frequency is 

 (8.40)

Using Eqs. (8.30) and (8.39) into Eq. (8.40) and collecting terms yield

(8.41)

For better implementation of the FFT, choose an FFT of size 

(8.42)

where  is a nonzero positive integer. The sampling interval is then given by

(8.43)
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Note that the compressed pulse range resolution, without using a window, is
. Figure 8.11 and Fig. 8.12, respectively, show the uncompressed

and compressed echo signals corresponding to this example. Figures 8.13 a
and b are similar to Fig. 8.11 and Fig. 8.12 except in this case two of the scat-
terers are less than 15 cm apart (i.e., unresolved targets at

).

# targets 3

pulsewidth 10 ms

center frequency 5.6 GHz

bandwidth 1 GHz

receive window 30 m

relative target’s range  [2 5 10] m

target’s RCS [1, 1, 2] m2

window 2 (Kaiser)

ΔR 0.15m=

Rrelative 3 3.1,[ ]m=

 Figure 8.11. Uncompressed echo signal. Three targets are unresolved. 
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 Figure 8.12. Compressed echo signal. Three targets are resolved. 

 Figure 8.13a. Uncompressed echo signal. Three targets. 

chapter8.fm  Page 331  Monday, May 19, 2008  6:37 PM



332      Radar Signal Analysis and Processing Using MATLAB

8.5.2. Stepped Frequency Waveforms

Stepped Frequency Waveforms (SFW) are used in extremely wide band
radar applications where very large time bandwidth product is required. Gener-
ation of SFW was discussed in Chapter 5. For this purpose, consider an LFM
signal whose bandwidth is  and whose pulsewidth is  and refer to it as the
primary LFM. Divide this long pulse into  subpulses each of width  to
generate a sequence of pulses whose PRI is denoted by . It follows that

. Define the beginning frequency for each subpulse as that value
measured from the primary LFM at the leading edge of each subpulse, as illus-
trated in Fig. 8.14. That is

(8.44)

where  is the frequency step from one subpulse to another. The set of  sub-
pulses is often referred to as a burst. Each subpulse can have its own LFM
modulation. To this end, assume that each subpluse is of width  and band-
width , then the LFM slope of each pulse is 

(8.45)

 Figure 8.13b. Compressed echo signal. Three targets, two are not 
resolved. 
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The SFW operation and processing involve the following steps: 

1. A series of  narrow-band LFM pulses is transmitted. The chirp beginning
frequency from pulse to pulse is stepped by a fixed frequency step , as
defined in Eq. (8.44). Each group of  pulses is referred to as a burst.

2. The LFM slope (quadratic phase term) is first removed from the received
signal, as described in Fig. 8.10. The reference slope must be equal to the
combined primary LFM and single subpulse slopes. Thus, the received sig-
nal is reduced to a series of subpulses.

3. These subpulses are then sampled at a rate that coincides with the center of
each pulse, sampling rate equivalent to ( ). 

4. The quadrature components for each burst are collected and stored.
5. Spectral weighting (to reduce the range sidelobe levels) is applied to the

quadrature components. Corrections for target velocity, phase, and ampli-
tude variations are applied.

6. The IDFT of the weighted quadrature components of each burst is calcu-
lated to synthesize a range profile for that burst. The process is repeated for

 bursts to obtain consecutive high resolution range profiles.

Within a burst, the transmitted waveform for the  step can be described as

 (3.46)
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where  are constants. The received signal from a target located at range 
is then given by

(8.47)

where  are constant and the round trip delay  is given by

(8.48)

where  is the speed of light and  is the target radial velocity. 

In order to remove the quadratic phase term, mixing is first performed with
the reference signal given by

(8.49)

Next lowpass filtering is performed to extract the quadrature components.
More precisely, the quadrature components are given by

(8.50)

where  are constants, and 

(8.51)

where now . For each pulse, the quadrature components are then sam-
pled at 

(8.52)

 is the time delay associated with the range that corresponds to the start of
the range profile.

The quadrature components can then be expressed in complex form as

(8.53)

Equation (8.53) represents samples of the target reflectivity, due to a single
burst, in the frequency domain. This information can then be transformed into
a series of range delay reflectivity (i.e., range profile) values by using the
IDFT. It follows that 
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(8.54)

Substituting Eq. (8.51) and Eq. (8.53) into (8.54) and collecting terms yield

(8.55)

By normalizing with respect to  and by assuming that  and that the
target is stationary (i.e., ), then Eq. (8.55) can be written as

(8.56)

Using  inside Eq. (8.56) yields

(8.57)

which can be simplified to

(8.58)

where

(8.59)

Finally, the synthesized range profile is 

(8.60)

Range Resolution and Range Ambiguity in SFW

As usual, range resolution is determined from the overall system bandwidth.
Assuming an SFW with  steps and step size , then the corresponding
range resolution is equal to 
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(8.61)

Range ambiguity associated with an SFW can be determined by examining
the phase term that corresponds to a point scatterer located at range . More
precisely,

(8.62)

It follows that

(8.63)

or equivalently,

(8.64)

It is clear from Eq. (8.64) that range ambiguity exists for .
Therefore,

(8.65)

and the unambiguous range window is

(8.66)

A range profile synthesized using a particular SFW represents the relative
range reflectivity for all scatterers within the unambiguous range window, with
respect to the absolute range that corresponds to the burst time delay. Addition-
ally, if a specific target extent is larger than , then all scatterers falling out-
side the unambiguous range window will fold over and appear in the
synthesized profile. This fold-over problem is identical to the spectral fold-
over that occurs when using a Fast Fourier Transform (FFT) to resolve certain
signal frequency contents. For example, consider an FFT with frequency reso-
lution  and size . In this case, this FFT can resolve
frequency tones between  and . When this FFT is used to
resolve the frequency content of a sine-wave tone equal to , fold-over
occurs and a spectral line at the fourth FFT bin (i.e., ) appears. There-
fore, in order to avoid fold-over in the synthesized range profile, the frequency
step  must be 

(8.67)
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where  is the target extent in meters. 

Additionally, the pulsewidth must also be large enough to contain the whole
target extent. Thus, 

(8.68)

and in practice, 

 (8.69)

This is necessary in order to reduce the amount of contamination of the synthe-
sized range profile caused by the clutter surrounding the target under consider-
ation. 

For example, assume that the range profile starts at  and that

In this case, 

, and 

Thus, scatterers that are more than 0.235 meters apart will appear as distinct
peaks in the synthesized range profile. Assume two cases; in the first case,
[scat_range] = [908, 910, 912] meters, and in the second case, [scat_range] =
[908, 910, 910.2] meters. In both cases, let [scat_rcs] = [100, 10, 1] meters
squared. Figure 8.15 shows the synthesized range profiles generated using the
function “SWF.m” and the first case when the Hamming window is not used.
Figure 8.16 is similar to Fig. 8.15, except in this case the Hamming window is
used. Figure 8.17 shows the synthesized range profile that corresponds to the
second case (Hamming window is used). Note that all three scatterers were
resolved in Fig. 8.15 and Fig. 8.16; however, the last two scatterers are not
resolved in Fig. 8.17, because they are separated by less than . 

Next, consider another case where [scat_range] = [908, 912, 916] meters.
Figure 8.18 shows the corresponding range profile. In this case, foldover
occurs, and the last scatterer appears at the lower portion of the synthesized
range profile. Also, consider the case where [scat_range] = [908, 910, 923]
meters. Figure 8.19 shows the corresponding range profile. In this case, ambi-
guity is associated with the first and third scatterers since they are separated by

. Both appear at the same range bin.
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 Figure 8.15. Synthetic range profile for three resolved scatterers. No window.

 Figure 8.16. Synthetic range profile for three scatterers. Hamming window.
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 Figure 8.17. Synthetic range profile for three scatterers. Two are unresolved.

 Figure 8.18. Synthetic range profile for three scatterers. Third scatterer folds 
over.
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8.5.2.1. Effect of Target Velocity 

The range profile defined in Eq. (8.60) is obtained by assuming that the tar-
get under examination is stationary. The effect of target velocity on the synthe-
sized range profile can be determined by starting with Eq. (8.55) and assuming
that . Performing similar analysis as that of the stationary target case
yields a range profile given by 

(8.70)

The additional phase term present in Eq. (8.70) distorts the synthesized range
profile. In order to illustrate this distortion, consider the SFW described in the
previous section, and assume the three scatterers of the first case. Also, assume
that . Figure 8.20 shows the synthesized range profile for this
case. Comparisons of Figs. 8.16 and 8.20 clearly show the distortion effects
caused by the uncompensated target velocity. Figure 8.21 is similar to Fig. 8.20
except in this case, . Note in either case, the targets have moved
from their expected positions (to the left or right) by 
(1.28 m).

 Figure 8.19. Synthetic range profile for three scatterers. The first and third 
scatterers appear in the same FFT bin.
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This distortion can be eliminated by multiplying the complex received data
at each pulse by the phase term

(3.71)

 and  are, respectively, estimates of the target velocity and range. This pro-
cess of modifying the phase of the quadrature components is often referred to
as “phase rotation.” In practice, when good estimates of  and  are not avail-
able, then the effects of target velocity are reduced by using frequency hopping
between the consecutive pulses within the SFW. In this case, the frequency of
each individual pulse is chosen according to a predetermined code. Waveforms
of this type are often called Frequency Coded Waveforms (FCW). Costas
waveforms or signals are a good example of this type of waveform. 

Figure 8.22 shows a synthesized range profile for a moving target whose RCS
is  and . The initial target range is at . All
other parameters are as before. This figure can be reproduced using the follow-
ing MATLAB code.
clear all;
close all;
nscat = 1;
scat_range = 912;
scat_rcs = 10;
n =64;
deltaf = 10e6;
prf = 10e3;
v = 10;
rnote = 900,
winid = 1;
count = 0;
for time = 0:.05:3
    count = count +1;
    hl = SFW (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote, winid);
    array(count,:) = transpose(hl);
    hl(1:end) = 0;
    scat_range =  scat_range - 2 * n * v / prf;
end
figure (1)
 numb = 2*256;% this number matches that used in hrr_profile. 
 delx_meter = 15 / numb;
 xmeter = 0:delx_meter:15-delx_meter;
 imagesc(xmeter, 0:0.05:4,array)
 colormap(gray)
ylabel ('Time in seconds')
xlabel('Relative distance in meters')
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 Figure 8.20. Illustration of range profile distortion due to target velocity.

 Figure 8.21. Illustration of range profile distortion due to target velocity.
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8.6.  MATLAB Program Listings
This section presents listings for all the MATLAB programs used to produce

all of the MATLAB-generated figures in this chapter. 

8.6.1.  MATLAB Function “matched_filter.m”

The function “matched_filter.m” performs fast convolution processing. The
user can access this function either by a MATLAB function call or by execut-
ing the MATLAB program “matched_filter_gui.m,” which utilizes a MAT-
LAB-based GUI. The work space associated with this program is shown in
Fig. 8.23. The outputs for this function include plots of the compressed and
uncompressed signals as well as the replica used in the pulse compression pro-
cess. This function utilizes the function “power_integer_2.m.”

The function “matched_filter.m” syntax is as follows:

[y] = matched_filter(nscat, rrec, taup, b, scat_range, scat_rcs, win)

where

 Figure 8.22. Synthesized range profile for a moving target (4 seconds long).
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Symbol Description Units Status

nscat number of point scatterers within the 
received window

none input

rrec  receive window size m input

taup uncompressed pulse width seconds input

b chirp bandwidth Hz input

scat_range vector of scatterers’ relative range 
(within the receive window)

m input

scat_rcs vector of scatterers’ RCS m2 input

win 0 = no window

 1 = Hamming 

2 = Kaiser with parameter pi

3 = Chebychev side-lobes at -60dB

none input

y normalized compressed output volts output

 Figure 8.23. GUI workspace associated with the function “matched_filter_gui.m.”
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 MATLAB Function “matched_filter.m” Listing

function [y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
% time bandwidth product
time_B_product = b * taup;
if(time_B_product < 5 )
    fprintf('************ Time Bandwidth product is TOO SMALL ***************')
    fprintf('\n Change b and or taup')
  return
end
% speed of light
c = 3.e8; 
% number of samples
n = fix(5 * taup * b);
% initialize input, output, and replica vectors
x(nscat,1:n) = 0.;
y(1:n) = 0.;
replica(1:n) = 0.;
% determine proper window
if( winid == 0.)
   win(1:n) = 1.;
end
if(winid == 1.);
    win = hamming(n)';
end
if( winid == 2.)
    win = kaiser(n,pi)';
end
if(winid == 3.)
    win = chebwin(n,60)';
end
% check to ensure that scatterers are within recieve window
index = find(scat_range > rrec);
if (index ~= 0)
    'Error. Receive window is too large; or scatterers fall outside window'
  return
end
% calculate sampling interval
t = linspace(-taup/2,taup/2,n);
replica = exp(i * pi * (b/taup) .* t.^2);
figure(1)
subplot(2,1,1)
plot(t,real(replica))
ylabel('Real (part) of replica')
xlabel('Time in seconds')
grid
subplot(2,1,2)
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sampling_interval = taup / n;
freqlimit = 0.5/ sampling_interval;
freq = linspace(-freqlimit,freqlimit,n);
plot(freq,fftshift(abs(fft(replica))));
ylabel('Spectrum of replica')
xlabel('Frequency in Hz')
grid
 for j = 1:1:nscat
    range = scat_range(j) ;
    x(j,:) = scat_rcs(j) .* exp(i * pi * (b/taup) .* (t +(2*range/c)).^2) ;
    y = x(j,:)  + y;
end
figure(2) 
 y = y .* win;
plot(t,real(y),'k')
xlabel ('Relative delay in seconds')
ylabel ('Uncompressed echo')
grid
out =xcorr(replica, y);
out = out ./ n;
s = taup * c /2;
Npoints = ceil(rrec * n /s);
dist =linspace(0, rrec, Npoints);
delr = c/2/b;
figure(3)
plot(dist,abs(out(n:n+Npoints-1)),'k')
xlabel ('Target relative position in meters')
ylabel ('Compressed echo')
grid
return

MATLAB Function “power_integer_2.m” Listing

function n = power_integer_2 (x)
m = 0.;
for j = 1:30
   m = m + 1.;
   delta = x - 2.^m;
   if(delta < 0.)
      n = m;
      return
   else
   end
end
return
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8.6.2. MATLAB Function “stretch.m”

The function “stretch.m” presents a digital implementation of stretch pro-
cessing. The syntax is as follows:

[y] = stretch (nscat, taup, f0, b, scat_range, rrec, scat_rcs, win)

where

The user can access this function either by a MATLAB function call or by exe-
cuting the MATLAB program “stretch_gui.m,” which utilizes MATLAB-
based GUI and is shown in Fig. 8.24. The outputs of this function are the com-
plex array  and plots of the uncompressed and compressed echo signal versus
time. 

MATLAB Function “stretch.m” Listing

function [y] = stretch(nscat, taup, f0, b, scat_range, rrec, scat_rcs, winid)
eps = 1.0e-16;
htau = taup / 2.;
c = 3.e8;
trec = 2. * rrec / c;
n = fix(2. * trec * b);
m = power_integer_2(n);
nfft = 2.^m;
x(nscat,1:n) = 0.;
y(1:n) = 0.;
if( winid == 0.)
   win(1:n) = 1.;

Symbol Description Units Status

nscat number of point scatterers within the 
receive window

none input

taup uncompressed pulse width seconds input

f0 chirp start frequency Hz input

b chirp bandwidth Hz input

scat_range vector of scatterers’ range m input

rrec range receive window m input

scat_rcs vector of scatterers’ RCS m2 input

win 0 = no window

 1 = Hamming 

2 = Kaiser with parameter pi

3 = Chebychev side-lobes at -60dB

none input

y compressed output volts output

y
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 win =win';
else
   if(winid == 1.)
      win = hamming(n);
   else
      if( winid == 2.)
         win = kaiser(n,pi);
      else
         if(winid == 3.)
            win = chebwin(n,60);
         end
      end
   end
end
deltar = c / 2. / b;
max_rrec = deltar * nfft / 2.;
maxr = max(scat_range);
if(rrec > max_rrec | maxr >= rrec )
   'Error. Receive window is too large; or scatterers fall outside window'
   return
end

 Figure 8.24. GUI workspace associated with the function “stretch_gui.m.”
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t = linspace(0,taup,n);
for j = 1:1:nscat
    range = scat_range(j);% + rmin;
   psi1 = 4. * pi * range * f0 / c - ...
      4. * pi * b * range * range / c / c/ taup;
   psi2 = (2*4. * pi * b * range / c / taup) .* t;
   x(j,:) = scat_rcs(j) .* exp(i * psi1 + i .* psi2);
   y = y + x(j,:);
end
figure(1)
plot(t,real(y),'k')
xlabel ('Relative delay in seconds')
ylabel ('Uncompressed echo')
grid
ywin = y .* win';
yfft = fft(y,n) ./ n;
out= fftshift(abs(yfft));
figure(2)
delinc = rrec/ n;
%dist = linspace(-delinc-rrec/2,rrec/2,n);
dist = linspace((-rrec/2), rrec/2,n);
plot(dist,out,'k')
xlabel ('Relative range in meters')
ylabel ('Compressed echo')
axis auto
grid

8.6.3. MATLAB Function “SFW.m”

The function “SFW.m” computes and plots the range profile for a specific
SFW. This function utilizes an Inverse Fast Fourier Transform (IFFT) of a size
equal to twice the number of steps. Hamming window of the same size is also
assumed. The syntax is as follows:

[hl] = SFW (nscat, scat_range, scat_rcs, n, deltaf, prf, v, r0, winid)

where

Symbol Description Units Status

nscat number of scatterers that make up the 
target

none input

scat_range vector containing range to individual 
scatterers

meters input

scat_rcs vector containing RCS of individual 
scatterers

meter 
square

input

n number of steps none input
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MATLAB Function “SFW.m” Listing

function [hl] = SFW (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote,winid)
% Range or Time domain Profile
% Range_Profile returns the Range or Time domain plot of a simulated 
% HRR SFWF returning from a predetermined number of targets with a predetermined
% RCS for each target.
c=3.0e8;  % speed of light (m/s)
num_pulses  = n;
SNR_dB = 40;
nfft = 256;
% carrier_freq = 9.5e9; %Hz (10GHz)
freq_step    = deltaf; %Hz (10MHz)
V = v;  % radial velocity (m/s)  -- (+)=towards radar (-)=away
PRI = 1. / prf; % (s)
if (nfft > 2*num_pulses)
    num_pulses = nfft/2;
else
end
Inphase = zeros((2*num_pulses),1);
Quadrature = zeros((2*num_pulses),1);
Inphase_tgt    = zeros(num_pulses,1);
Quadrature_tgt = zeros(num_pulses,1);
IQ_freq_domain = zeros((2*num_pulses),1);
Weighted_I_freq_domain = zeros((num_pulses),1);
Weighted_Q_freq_domain = zeros((num_pulses),1);
Weighted_IQ_time_domain = zeros((2*num_pulses),1);
Weighted_IQ_freq_domain = zeros((2*num_pulses),1);
abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
dB_abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
taur = 2. * rnote / c;
for jscat = 1:nscat
   ii = 0;
   for i = 1:num_pulses
      ii = ii+1;

deltaf frequency step Hz input

prf PRF of SFW Hz input

v target velocity meter/sec-
ond

input

r0 profile starting range meters input

winid number>0 for Hamming window

 number < 0 for no window

none input

hl range profile dB output

Symbol Description Units Status
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      rec_freq = ((i-1)*freq_step);
      Inphase_tgt(ii) = Inphase_tgt(ii) + sqrt(scat_rcs(jscat)) * cos(-2*pi*rec_freq*...
         (2.*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));
      Quadrature_tgt(ii) = Quadrature_tgt(ii) + sqrt(scat_rcs(jscat))*sin(-
2*pi*rec_freq*...
         (2*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));
   end
end
if(winid >= 0)
    window(1:num_pulses) = hamming(num_pulses);
else
    window(1:num_pulses) = 1;
end
Inphase = Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted_I_freq_domain(1:num_pulses) = Inphase(1:num_pulses).* window';
Weighted_Q_freq_domain(1:num_pulses) = Quadrature(1:num_pulses).* window';
Weighted_IQ_freq_domain(1:num_pulses)= Weighted_I_freq_domain + ...
   Weighted_Q_freq_domain*j;
Weighted_IQ_freq_domain(num_pulses:2*num_pulses)=0.+0.i;
Weighted_IQ_time_domain = (ifft(Weighted_IQ_freq_domain));
abs_Weighted_IQ_time_domain = (abs(Weighted_IQ_time_domain));
dB_abs_Weighted_IQ_time_domain =
20.0*log10(abs_Weighted_IQ_time_domain)+SNR_dB;
% calculate the unambiguous range window size
Ru = c /2/deltaf;
hl = dB_abs_Weighted_IQ_time_domain;
 numb = 2*num_pulses;
delx_meter = Ru / numb;
xmeter = 0:delx_meter:Ru-delx_meter;
plot(xmeter, dB_abs_Weighted_IQ_time_domain,'k')
xlabel ('Relative distance in meters')
ylabel ('Range profile in dB')
grid
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Chapter 9 Radar Clutter 

 Clutter is a term used to describe any object that may generate unwanted
radar returns that may interfere with normal radar operations. Parasitic returns
that enter the radar through the antenna’s mainlobe are called main-lobe clut-
ter; otherwise they are called sidelobe clutter. Clutter can be classified into two
main categories: surface clutter and airborne or volume clutter. Surface clutter
includes trees, vegetation, ground terrain, man-made structures, and sea sur-
face (sea clutter). Volume clutter normally has a large extent (size) and
includes chaff, rain, birds, and insects. Surface clutter changes from one area
to another, while volume clutter may be more predictable. 

Clutter echoes are random and have thermal noise-like characteristics
because the individual clutter components (scatterers) have random phases and
amplitudes. In many cases, the clutter signal level is much higher than the
receiver noise level. Thus, the radar’s ability to detect targets embedded in
high clutter background depends on the Signal-to-Clutter Ratio (SCR) rather
than the SNR. 

9.1. Clutter Cross Section Density
Since clutter returns are target-like echoes, the only way a radar can distin-

guish target returns from clutter echoes is based on the target RCS  and the
anticipated clutter RCS . Clutter RCS can be defined as the equivalent radar
cross section attributed to reflections from a clutter area, . The average clut-
ter RCS is given by 

(9.1)

where  is the clutter scattering coefficient, a dimensionless quantity that is
often expressed in dB. The equivalent of Eq. (9.1) for volume clutter is

(9.2)

σt
σc

Ac

σc σ0Ac=

σ0

σc η0Vw=
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where  is the clutter volume and  is the volume clutter scattering coeffi-
cient. Note that  units are , and because of this, it is typically expressed
in dB/meter units.

9.2. Surface Clutter
Surface clutter includes both land and sea clutter, and is often called area

clutter. Area clutter manifests itself in airborne radars in the look-down mode.
It is also a major concern for ground-based radars when searching for targets at
low grazing angles. The grazing angle  is the angle from the surface of the
earth to the main axis of the illuminating beam, as illustrated in Fig. 9.1.

Factors that affect the radar performance due to the presence of clutter
include clutter reflectivity which is function of radar wavelength, polarization,
and of course shape and size of the clutter itself. The amount of clutter RCS in
the radar beam depends heavily on the grazing angle, surface roughness, and
spatial characteristics of clutter and its time fluctuation characteristics. Typi-
cally, the clutter scattering coefficient  is larger for smaller wavelengths.
Figure 9.2 shows a sketch describing the dependency of  on the grazing
angle. Three regions are identified; they are the low grazing angle region, the
flat or plateau region, and the high grazing angle region.

Vw η0

η0 m 1–

ψg

ψgearth’s surface

Figure 9.1. Definition of a grazing angle.
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σ0 dB

grazing angle

0dB
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 Figure 9.2. Clutter regions.
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chapter9.fm  Page 354  Monday, May 19, 2008  6:38 PM



Surface Clutter 355

The low grazing angle region extends from zero to about the critical angle.
The critical angle is defined by Rayleigh as the angle below which a surface is
considered to be smooth and above which a surface is considered to be rough;
Denote the root mean square (rms) of a surface height irregularity as ;
then according to the Rayleigh criteria, the surface is considered to be smooth
if

(9.3)

Consider a wave incident on a rough surface, as shown in Fig. 9.3. Due to
surface height irregularity (surface roughness), the rough path is longer than
the smooth path by a distance . This path difference translates into
a phase differential :

(9.4)

The critical angle  is then computed when  (first null); thus, 

(9.5)

or equivalently,

(9.6)

In the case of sea clutter, for example, the rms surface height irregularity is

(9.7)

hrms

4πhrms

λ
----------------- ψgsin π

2
---<
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-------------asin=
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smooth
path

rough
path
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 Figure 9.3. Rough surface definition.
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where  is the sea state, which is tabulated in several cited references. The
sea state is characterized by the wave height, period, length, particle velocity,
and wind velocity. For example,  refers to a moderate sea state, in
which the wave height is approximately , the wave
period 6.5 to 4.5 seconds, wave length , wave velocity

, and wind velocity . 

Clutter at low grazing angles is often referred to as diffuse clutter, where
there are a large number of clutter returns in the radar beam (noncoherent
reflections). In the flat region the dependency of  on the grazing angle is
minimal. Clutter in the high grazing angle region is more specular (coherent
reflections) and the diffuse clutter components disappear. In this region the
smooth surfaces have larger  than rough surfaces, the opposite of the low
grazing angle region.

9.2.1.  Radar Equation for Surface Clutter 

Consider an airborne radar in the look-down mode shown in Fig. 9.4. The
intersection of the antenna beam with the ground defines an elliptically shaped
footprint. The size of the footprint is a function of the grazing angle and the
antenna 3dB beamwidth , as illustrated in Fig. 9.5. The footprint is
divided into many ground range bins each of size , where  is
the pulse width. From Fig. 9.5, the clutter area  is 

(9.8)

The power received by the radar from a scatterer within  is given by the
radar equation as

(9.9)
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Figure 9.4. Airborne radar in the look-down mode.
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where, as usual,  is the peak transmitted power,  is the antenna gain,  is
the wavelength, and  is the target RCS. Similarly, the received power from
clutter is

(9.10)

where the subscript  is used for area clutter. Substituting Eq. (9.1) for 
into Eq. (9.10), we can then obtain the SCR for area clutter by dividing Eq.
(9.9) by Eq. (9.10). More precisely,

(9.11)

Example: 

Consider an airborne radar shown in Fig. 9.4. Let the antenna 3dB beam-
width be , the pulse width , range , and
grazing angle . The target RCS is . Assume that the clut-
ter reflection coefficient is . Compute the SCR.

Solution: 

The SCR is given by Eq. (9.11) as

cτ
2
-----

AcRθ3dB

Rθ3dB ψgcsc
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2
----- ψgsec

ψg

Figure 9.5. Footprint definition.
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It follows that

Thus, for reliable detection the radar must somehow increase its SCR by at
least , where  is on the order of  or better.

9.3. Volume Clutter
Volume clutter has large extents and includes rain (weather), chaff, birds,

and insects. The volume clutter coefficient is normally expressed in square
meters (RCS per resolution volume). Birds, insects, and other flying particles
are often referred to as angle clutter or biological clutter. 

Weather or rain clutter can be suppressed by treating the rain droplets as per-
fect small spheres. We can use the Rayleigh approximation of a perfect sphere
to estimate the rain droplets’ RCS. The Rayleigh approximation, without
regard to the propagation medium index of refraction is

(9.12)

where , and  is radius of a rain droplet.

Electromagnetic waves when reflected from a perfect sphere become
strongly co-polarized (have the same polarization as the incident waves). Con-
sequently, if the radar transmits, for example, a right-hand-circular (RHC)
polarized wave, then the received waves are left-hand-circular (LHC) polar-
ized because they are propagating in the opposite direction. Therefore, the
back-scattered energy from rain droplets retains the same wave rotation (polar-
ization) as the incident wave, but has a reversed direction of propagation. It
follows that radars can suppress rain clutter by co-polarizing the radar transmit
and receive antennas. 

Denote  as RCS per unit resolution volume . It is computed as the sum
of all individual scatterers RCS within the volume

(9.13)
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where  is the total number of scatterers within the resolution volume. Thus,
the total RCS of a single resolution volume is 

(9.14)

A resolution volume is shown in Fig. 9.6 and is approximated by

(9.15)

where  and  are, respectively, the antenna azimuth and elevation beam-
widths in radians,  is the pulse width in seconds,  is the speed of light, and

 is range.

Consider a propagation medium with an index of refraction . The  rain
droplet RCS approximation in this medium is

 (9.16)

where 

(9.17)

and  is the  droplet diameter. For example, temperatures between 
and  yield

(9.18)
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  Figure 9.6. Definition of a resolution volume.
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and for ice Eq. (9.18) can be approximated by

(9.19)

Substituting Eq. (9.19) into Eq. (9.14) yields

(9.20)

where the weather clutter coefficient  is defined as 

(9.21)

In general, a rain droplet diameter is given in millimeters and the radar reso-
lution volume is expressed in cubic meters; thus the units of  are often
expressed in .

9.3.1. Radar Equation for Volume Clutter

The radar equation gives the total power received by the radar from a  tar-
get at range  as

 (9.22)

where all parameters in Eq. (9.22) have been defined earlier. The weather clut-
ter power received by the radar is

(9.23)

It follows that

(9.24)

The SCR for weather clutter is then computed by dividing Eq. (9.22) by Eq.
(9.24). More precisely, 

(9.25)
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where the subscript  is used to denote volume clutter.

Example: 

A certain radar has target RCS , pulse width ,
antenna beamwidth . Assume the detection range to
be , and compute the SCR if .

Solution: 

From Eq. (9.25) we have

Substituting the proper values we get

.

9.4. Clutter RCS 

9.4.1. Single Pulse - Low PRF Case

Again the received power from clutter is also calculated using Eq. (9.9).
However, in this case the clutter RCS  is computed differently. It is

(9.26)

where  is the main-beam clutter RCS and  is the sidelobe clutter
RCS, as illustrated in Fig. 9.7. 

In order to calculate the total clutter RCS given in Eq. (9.11), one must first
compute the corresponding clutter areas for both the main beam and the side-
lobes. For this purpose, consider the geometry shown in Fig. 9.8. The angles

 represent the antenna 3-dB azimuth and elevation beamwidths,
respectively. The radar height (from the ground to the phase center of the
antenna) is denoted by , while the target height is denoted by . The radar
slant range is , and its ground projection is . The range resolution is 
and its ground projection is . The main beam clutter area is denoted by

 and the sidelobe clutter area is denoted by . 

From Fig. 9.8, the following relations can be derived
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(9.27)

(9.28)

(9.29)

where  is the radar range resolution. The slant range ground projection is

(9.30)

It follows that the main beam and the sidelobe clutter areas are

(9.31)

(9.32)

Assume a radar antenna beam  of the form

(9.33)

(9.34)

Then the main-beam clutter RCS is 

 Figure 9.7. Geometry for ground based radar clutter
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(9.35)

and the sidelobe clutter RCS is

(9.36)

where the quantity  is the rms for the antenna sidelobe level.
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 Figure 9.8. Clutter geometry for ground based radar. Side view and top view.

R

antenna boresight 

chapter9.fm  Page 363  Monday, May 19, 2008  6:38 PM



364      Radar Signal Analysis and Processing Using MATLAB

Finally, in order to account for the variation of the clutter RCS versus range,
one can calculate the total clutter RCS as a function of range. It is given by

(9.37)

where  is the radar range to the horizon calculated as

(9.38)

where  is the Earth’s radius equal to . The denominator in Eq.
(9.37) is put in that format in order to account for refraction and for round
(spherical) Earth effects. 

The radar SNR due to a target at range  is 

(9.39)

where, as usual,  is the peak transmitted power,  is the antenna gain,  is
the wavelength,  is the target RCS,  is Boltzmann’s constant,  is the
effective noise temperature,  is the radar operating bandwidth,  is the
receiver noise figure, and  is the total radar losses. Similarly, the Clutter-to-
Noise Ratio (CNR) at the radar is

(9.40)

where the  is calculated using Eq. (9.37).

When the clutter statistic is Gaussian, the clutter signal return and the noise
return can be combined, and a new value for determining the radar measure-
ment accuracy is derived from the Signal-to-Clutter+Noise Ratio, denoted by
SIR. It is given by

(9.41)

Note that the  is computed from Eq. (9.40).

9.4.2. High PRF Case 

High PRFs are typically used by pulsed Doppler radars. Pulsed Doppler
radars use very short unmodulated train of pulses, and hence, range resolution
is limited by the pulsewidth, which forces the radar to use extremely short
duration pulses. High PRF radars make up for the loss of average transmitted
power due to using short pulses by coherently processing a train of these pulses
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within one coherent processing interval (integration time or dwell interval).
Although high PRF radars although are ambiguous in range, they provide
excellent capability to measuring Doppler frequency. Range ambiguity can be
dealt with by using multiple PRF (PRF staggering) which will be addressed
later section. One major drawback of using high PRFs (or pulsed Doppler
radars) is the fact that pulsed Doppler radars have to contend with much more
clutter than do low PRF radars. 

Consider the illustrations shown in Fig. 9.9. The low PRF case is shown in
Fig. 9.9a. In this case, the target is at maximum detection range which corre-
sponds to an unambiguous range 

(9.42)

where  is the pulse repetition interval and  is the radar PRF. The amount of
clutter entering the radar through its main-beam corresponds only to the clutter
patch located at the target’s range. Alternatively, in Fig. 9.9b the high PRF case
is depicted. In this case, the radar is range ambiguous and the amount of main-
beam clutter entering the radar corresponds to many more clutter patches as
shown in Fig. 9.9b. Consequently, the amount of clutter competing with target
detection in an order of magnitude larger than the case of low PRF. This is typ-
ically referred to as clutter folding.

Denote the clutter power entering the radar due to a single pulse for the tar-
get at range  as , then because of the high PRF operation, the total clut-
ter power entering the radar is

(9.43)

where  is the number of pulses in one coherent processing interval (dwell),
 is the PRI, and  is the pulsewidth. Note that since the radar receiver is

shut off during transmission of a given pulse, Eq. (9.43) is computed only at
delays (range) that correspond to 

(9.44)

where in this case, the transmitter is assumed to be shut off not only during the
transmission of each pulse but also for one pulsewidth before and after each
transmission. Thus, one would expect the folded clutter RCS to not be continu-
ous versus the range, but rather to exist over intervals of length  seconds with
gaps that correspond to three times the pulsewidth. This is illustrated in the fol-
lowing few examples for both low and high PRF cases.
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As an example consider the case with the following parameters

clutter back scatterer coefficient -20 dB

antenna 3dB elevation beamwidth 1.5 degrees

antenna 3dB azimuth beamwidth 2 degrees

antenna sidelobe level -25 dB

radar height 3 meters

 Figure 9.9. Mainbeam clutter entering radar. (a) Low PRF case; (b) 
high PRF case.
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Figure 9.10 is concerned with a low PRF case (i.e, single pulse, no clutter
folding). Figure 9.10a shows the clutter RCS versus range when a sin(x)/x
antenna pattern is used, and Fig. 9.10b shows the resulting SNR, CNR, and
SCR. Figure 9.11 is similar to Fig. 9.10 except in this case the antenna has a
Gaussian shape. These plots can be reproduced using the following MATLAB
code which uses the function “clutter_rcs.m.”   

%Use this code to generate Fig. 9.10 and 9.11
clear all;
close all;
k = 1.38e-23; % Boltzman’s constant
pt = 45e3;
theta_AZ = 1.5;
theta_EL = 2;
F = 6;
L = 10;
tau = 1e-6;
B = 1/tau;
sigmmat = -10;
sigmma0 = -20;
SL = -25;
hr = 3;
ht = 150;
f0 = 5e9;
lambda = 3e8/f0;
range = linspace(2,50, 120);
[sigmmaC] = clutter_rcs(sigmma0, theta_EL, theta_AZ, SL, range, hr, ht, B,1);
sigmmaC = 10.^(sigmmaC./10);
range_m = 1000 .* range;
F = 10.^(F/10); % noise figure is 6 dB
T0 = 290; % noise temperature 290K
g = 26000 /theta_AZ /theta_EL; % antenna gain
Lt = 10.^(L/10); % total radar losses 13 dB
sigmmat = 10^(sigmmat/10)

target height 150 meters

radar peak power 45 KW

radar operating frequency 50 KHz

pulsewidth 1 micro sec

effective noise temperature 290 Kelvins

noise figure 6 dB

radar losses  10 dB

target RCS -10 dBsm

radar center frequency 5 GHz

chapter9.fm  Page 367  Monday, May 19, 2008  6:38 PM



368      Radar Signal Analysis and Processing Using MATLAB

CNR = pt*g*g*lambda^2 .* sigmmaC ./ ((4*pi)^3 .* (range_m).^4 .* k*T0*F*Lt*B); %
CNR
SNR = pt*g*g*lambda^2 .* sigmmat ./ ((4*pi)^3 .* (range_m).^4 .* k*T0*F*L*B); %
SNR
SCR = SNR ./ CNR; % Signal to clutter ratio
SIR = SNR ./ (1+CNR); % Signal to interference ratio
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(2)
subplot(3,1,1)  
plot(range,10*log10(SNR));
ylabel('SNR in dB'); 
grid on;
axis tight
subplot(3,1,2) 
plot(range,10*log10(CNR));
ylabel('CNR in dB');
grid on;
axis tight
subplot(3,1,3)
plot(range,10*log10(SCR));
ylabel('SCR in dB') ;
grid on;
axis tight
xlabel('Range in Km')

 Figure 9.10a. Clutter RCS versus range with sin(x)/x antenna pattern. Single 
pulse case.
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 Figure 9.10b. SNR, CNR, and SCR corresponding to Fig. 9.10a. 

 Figure 9.11a. Clutter RCS versus range with Gaussian antenna pattern. 
Single pulse case.
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Figure 9.12 shows the SNR, CNR, and SCR for the high PRF case (i.e, pulse
Doppler radar, clutter folding). In this figure the antenna pattern has a sin(x)/x
shape. Figure 9.13 is similar to Fig. 9.12 except in this case the antenna pattern
is Gaussian. These plots can be reproduced using the following MATLAB
code.

% Use this code to generate Fig. 9.12 or 9. 13 of text
clear all
close all
k = 1.38e-23; % Boltzmann's constant
T0 = 290; % degrees Kelvin
ant_id = 1; % use 1 for sin(x)/x antenna pattern and use 2 for Gaussian pattern
theta_ref = 0.75; % reference angle of radar antenna in degrees
re = 6371000 * 4 /3; % 4/3rd earth radius in Km
c = 3e8; % speed of light
theta_EL = 1.5; % Antenna elevation beamwidth in degrees
theta_AZ = 2.; % Antenna azimuth beamwidth in degrees
SL_dB = -25; % Antenna RMS sidelobe level
hr = 3; % Radar antenna height in meters
ht = 150; % Target height in meters
Sigmmat = -10; % Target RCS in dB
Sigmma0 = -20; % Clutter backscatter coefficient
P = 45e3; % Radar peak power in Watts
tau = 1e-6; % Pulse width (unmodulated)

 Figure 9.11b. SNR, CNR, and SCR corresponding to Fig. 9.11a. 
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fr = 50e3; % PRF in Hz
f0 = 5e9; % Radar center frequency
F = 6; % Noise figure in dB
L = 10; % Radar losses in dB
lambda = c /f0; 
SL = 10^(SL_dB/10);
sigmma0 = 10^(Sigmma0/10);
F = 10^(F/10);
L = L^(L/10);
sigmmat = 10^(Sigmmat/10);
T = 1/fr; % PRI
B = 1/tau; % Bandwidth
delr = c * tau /2; % Range resolution;
Rh = sqrt(2*re*hr); % Range to Horizon
R1 = [2*delr:delr:c/2*(T-tau)]; 
Rclut = sqrt(R1.^2 + hr^2); % Range to clutter patches
G = 26000 /theta_EL /theta_AZ; % Antenna gain
for j = 0:40
    Rtgt = [c/2*(j*T+2*tau):delr:c/2*((j+1)*T-tau)];
    thetaR = asin(hr./Rclut); % Ele angle from radar to clutter patch target is present
    thetae = theta_ref *pi/180;
    d = Rclut .* cos(thetaR); % Ground range to center of clutter at range Rclut
    del_d = delr .* cos(thetaR);
    % claculte clutter RCS
    theta_sum = thetaR+thetae;
    if(ant_id ==1) % use sinc^2 antenna pattern
        ant_arg = ( theta_sum ) ./ (pi*theta_EL/180);
        gain = (sinc(ant_arg)).^2;
    else
        gain = exp(-2.776 .*(theta_sum./(pi*theta_EL/180)).^2);
    end
    % clutter RCS
    sigmmac = (pi*SL^2+(theta_AZ*pi/180).*gain.*sigmma0.*d.*del_d) ./ (1+(Rclut/
Rh).^4);
    CNR = P*G*G*lambda^2 .* sigmmac ./ ((4*pi)^3 .* Rclut.^4 .* k*T0*F*L*B); %
CNR
    SNR = P*G*G*lambda^2 .* sigmmat ./ ((4*pi)^3 .* Rtgt.^4 .* k*T0*F*L*B); % SNR
    SCR = SNR ./ CNR; % Signal to clutter ratio
    SIR = SNR ./ (1+CNR); % Signal to interfernce ratio
    figure(2)
    subplot(4,1,1), 
    hold on
    plot(Rtgt/1000,10*log10(SNR));
    ylabel('SNR - dB');  
   grid on
   subplot(4,1,2), 
   hold on
    plot(Rtgt/1000,10*log10(CNR));
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    ylabel('CNR - dB'); 
    grid on
    subplot(4,1,3), 
    hold on
    plot(Rtgt/1000,10*log10(SCR));
    ylabel('SCR - dB') ; 
    grid on
    subplot(4,1,4), 
    hold on
    plot(Rtgt/1000,10*log10(SIR));
    xlabel('Range - Km')
    ylabel('SIR - dB');
   grid on
end
subplot(4,1,1)
axis([0 50 -10 100])
subplot(4,1,2)
axis([0 50 60 90]);
subplot(4,1,3)
axis([0 50 -100 0])
subplot(4,1,4)
axis([0 50 -100 0])

       

 Figure 9.12. SIR, SCR, CNR, and SNR for a pulse Doppler radar with 
sin(x)/x antenna pattern. 
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9.5. Clutter Spectrum

9.5.1. Clutter Statistical Models

Since clutter within a resolution cell or volume is composed of a large num-
ber of scatterers with random phases and amplitudes, it is statistically
described by a probability distribution function. The type of distribution
depends on the nature of clutter itself (sea, land, volume), the radar operating
frequency, and the grazing angle. 

If sea or land clutter is composed of many small scatterers when the proba-
bility of receiving an echo from one scatterer is statistically independent of the
echo received from another scatterer, then the clutter may be modeled using a
Rayleigh distribution,

(9.45)

where  is the mean-squared value of . 

The log-normal distribution best describes land clutter at low grazing angles.
It also fits sea clutter in the plateau region. It is given by

 Figure 9.13. SIR, SCR, CNR, and SNR for a pulse Doppler radar with 
Gaussian antenna pattern. 

f x( ) 2x
x0
------ x2–

x0
--------⎝ ⎠
⎛ ⎞ x 0≥;exp=

x0 x
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(9.46)

where  is the median of the random variable , and  is the standard devi-
ation of the random variable .

The Weibull distribution is used to model clutter at low grazing angles (less
than five degrees) for frequencies between  and . The Weibull proba-
bility density function is determined by the Weibull slope parameter  (often
tabulated) and a median scatter coefficient , and is given by

(9.47)

where  is known as the shape parameter. Note that when  the
Weibull distribution becomes a Rayleigh distribution.

9.5.2. Clutter Components

It was established earlier that the complex envelope of the signal received by
the radar comprise the target returns and additive bandlimited white noise. In
the presence of clutter, the complex envelope is now composed of target, noise,
and clutter returns. That is,

(9.48)

where , , and  are, respectively, the target, noise, and clutter
complex envelope echoes. Noise is typically modeled (as discussed in earlier
chapters) as a bandlimited white Gaussian random process. Furthermore, noise
samples are consider statistically independent of each other and of clutter mea-
surements. 

Clutter arises from reflections of unwanted objects within the radar beam.
Since many objects comprose the clutter returns, clutter may also be molded as
a Gaussian random process. In other words, clutter samples from one radar
measurement to another constitute a joint set of Gaussian random variables.
However, because of the clutter fluctuation and due to antenna mechanical
scanning, wind speed, and radar platform motion (if applicable), these random
variables are not statistically independent. 

More precisely, because of the antenna mechanical scanning, clutter returns
in the radar mainbeam do not have the same amplitude from pulse to pulse.
This will effectively add amplitude modulation to the clutter returns. This addi-
tional modulation is governed by the shape of the antenna pattern, the rate of
mechanical scanning, and the radar PRF. Denote the antenna two-way azimuth

 beamwidth as  and the antenna scan rate as . It follows that the

f x( ) 1
σ 2π x
--------------------- –

xln xmln–( )2

2σ2
---------------------------------

⎝ ⎠
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exp x 0>;=
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f x( ) bxb 1–

σ0
-------------- xb

σ0
-----–⎝ ⎠

⎛ ⎞ x 0≥;exp=

b 1 a⁄= b 2=

x̃ t( ) s̃ t( ) ñ t( ) w̃ t( )+ +=
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contribution of antenna scanning to the standard deviation of the clutter fluctu-
ation is 

(9.49)

 Another contributor to the clutter spectral spreading is caused by motion of
the clutter itself, due to wind. Trees, vegetation, and sea waves are the main
contributors to this effect. This relative motion, although relatively small,
introduces additional Doppler shift in the clutter returns. Earlier, it was estab-
lished that Doppler frequency due to a relative velocity  is given by 

(9.50)

where  is the radar operating wavelength. It follows that if the apparent rms
velocity due to wind is , then the standard deviation is

(9.51)

Finally, if the radar platform is in motion, then the relative motion between
the platform and the stationary clutter will cause a Doppler shift given by

(9.52)

where  is the radial velocity component of the platform in the direc-
tion of clutter. Since the radar beam has a finite width, not all clutter compo-
nents have the same radial velocity at all times. More specifically, if the angles

 and  represent the edges of the radar beam, then Eq. (9.52) ca be written
as

 (9.53)

and the standard deviation due to platform motion is given by

(9.54)

Finally, the overall clutter spreading is denoted by , where

(9.55)

The overall value of the clutter spreading defined in Eq. (9.55) is relatively
small. 
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9.5.3. Clutter Power Spectrum Density

Clutter primarily comprises stationary ground unwanted reflections with
limited relative motion with respect to the radar. Therefore, its power spectrum
density will be concentrated around . However, because  (see Eq.
(9.55)) is not always zero, clutter actually exhibits some Doppler frequency
spread. The clutter power spectrum can be written as the sum of fixed (station-
ary) and random (due to frequency spreading) components, as

(9.56)

where  is the PRI (i.e., ,  is the PRF),  is the clutter power or clutter
mean square value, and  is the clutter spectral spreading parameter as
defined in Eq. (9.55). As clearly indicated by Eq. (9.56), the clutter PSD is
periodic with period equal to . Furthermore, the clutter PSD extends about
each multiple integer of the PRF in accordance with Eq. (9.55). It must be
noted that this spread is relatively small and thus the relation  is always
true. This is illustrated in Fig. 9.14. The mean square value can be calculated
from

(9.57)

Let  denote the central portion of Eq. (9.56); then  is be expressed by

(9.58)

f 0= σf
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2
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 Figure 9.14. Typical clutter PSD.
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where  is a Gaussian shape function given by

(9.59)

and . 

9.6. Moving Target Indicator (MTI)
The clutter spectrum is concentrated around DC ( ) and multiple inte-

gers of the radar PRF , as was illustrated in Fig. 9.14. In CW radars, clutter is
avoided or suppressed by ignoring the receiver output around DC, since most
of the clutter power is concentrated about the zero frequency band. Pulsed
radar systems may utilize special filters that can distinguish between slow-
moving or stationary targets and fast-moving ones. This class of filter is known
as the Moving Target Indicator (MTI). In simple words, the purpose of an MTI
filter is to suppress target-like returns produced by clutter and allow returns
from moving targets to pass through with little or no degradation. In order to
effectively suppress clutter returns, an MTI filter needs to have a deep stop-
band at DC and at integer multiples of the PRF. Figure 9.15b shows a typical
sketch of an MTI filter response, while Fig. 9.15c shows its output when the
PSD shown in Fig. 9.15a is the input. 

MTI filters can be implemented using delay line cancelers. As we will show
later in this chapter, the frequency response of this class of MTI filter is peri-
odic, with nulls at integer multiples of the PRF. Thus, targets with Doppler fre-
quencies equal to  are severely attenuated. Since Doppler is proportional to
target velocity ( ), target speeds that produce Doppler frequencies
equal to integer multiples of  are known as blind speeds. More precisely,

(9.60)

Radar systems can minimize the occurrence of blind speeds either by
employing multiple PRF schemes (PRF staggering) or by using high PRFs in
which the radar may become range ambiguous. The main difference between
PRF staggering and PRF agility is that the pulse repetition interval (within an
integration interval) can be changed between consecutive pulses for the case of
PRF staggering.

9.6.1. Single Delay Line Canceler

A single delay line canceler can be implemented as shown in Fig. 9.16. The
canceler’s impulse response is denoted as . The output  is equal to the
convolution between the impulse response  and the input . The single
delay canceler is often called a two-pulse canceler since it requires two distinct
input pulses before an output can be read.
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The delay  is equal to the radar PRI ( ). The output signal  is 

(9.61)

The impulse response of the canceler is given by 

noise level

frequencytarget
return

frf 0=fr–

clutter returns

MTI filter
response

frequencyfrf 0=fr–

input to 
MTI filter

MTI filter
output

frequencyfrf 0=fr–

                
                   

(a)    

(c)    

(b)    

Figure 9.15. (a) Typical radar return PSD when clutter and target are present. 
(b) MTI filter frequency response. (c) Output from an MTI filter.
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delay, T
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Figure 9.16. Single delay line canceler.
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(9.62)

where  is the delta function. It follows that the Fourier transform (FT) of
 is 

(9.63)

where . In the z-domain, the single delay line canceler response is 

(9.64)

The power gain for the single delay line canceler is given by

(9.65)

It follows that

(9.66)

and using the trigonometric identity  yields

(9.67)

The amplitude frequency response for a single delay line canceller is shown
in Fig. 9.17. Clearly, the frequency response of a single canceler is periodic
with a period equal to . The peaks occur at , and the
nulls are at , where . In most radar applications the response of a
single canceler is not acceptable since it does not have a wide notch in the stop-
band. A double delay line canceler has better response in both the stop- and
pass-bands, and thus it is more frequently used than a single canceler. In this
book, we will use the names single delay line canceler and single canceler
interchangeably.

9.6.2. Double Delay Line Canceler

Two basic configurations of a double delay line canceler are shown in Fig.
9.18. Double cancelers are often called three-pulse cancelers since they require
three distinct input pulses before an output can be read. The double line can-
celer impulse response is given by

(9.68)

Again, the names double delay line canceler and double canceler will be used
interchangeably. The power gain for the double delay line canceler is

(9.69)

where  is the single line canceler power gain given in Eq. (9.55). It
follows that
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 Figure 9.17. Single canceler frequency response.
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Figure 9.18. Two configurations for a double delay line canceler.
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 (9.70)

And in the z-domain, we have 

(9.71)

Figure 9.19 shows typical output from this function. Note that the double
canceler has a better response than the single canceler (deeper notch and flatter
pass-band response).

9.6.3. Delay Lines with Feedback (Recursive Filters)

Delay line cancelers with feedback loops are known as recursive filters. The
advantage of a recursive filter is that through a feedback loop, we will be able
to shape the frequency response of the filter. As an example, consider the sin-
gle canceler shown in Fig. 9.20. From the figure we can write

(9.72)

H ω( ) 2 16 ωT
2
---⎝ ⎠

⎛ ⎞sin⎝ ⎠
⎛ ⎞

4
=

H z( ) 1 z 1––( )
2

1 2z 1–– z 2–+= =

 Figure 9.19. Normalized frequency responses for single and double cancelers.
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(9.73)

(9.74)

Applying the z-transform to the above three equations yields

(9.75)

(9.76)

(9.77)

Solving for the transfer function  yields

(9.78)

The modulus square of  is then equal to 

(9.79)

Using the transformation  yields 

(9.80)

Thus, Eq. (9.79) can now be rewritten as 

(9.81)

Note that when , Eq. (9.81) collapses to Eq. (9.67) (single line can-
celer). Figure 9.21 shows a plot of Eq. (9.81) for . Clearly,
by changing the gain factor  one can control the filter response. This plot can
be reproduced using the following MATLAB code.

Σ Σ delay, Tx(t) y(t)

+ - + +
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Figure 9.20. MTI recursive filter.
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clear all;
fofr = 0:0.001:1;
arg = 2.*pi.*fofr;
nume = 2.*(1.-cos(arg));
den11 = (1. + 0.25 * 0.25);
den12 = (2. * 0.25) .* cos(arg);
den1 = den11 - den12;
den21 = 1.0 + 0.7 * 0.7;
den22 = (2. * 0.7) .* cos(arg);
den2 = den21 - den22;
den31 = (1.0 + 0.9 * 0.9);
den32 = ((2. * 0.9) .* cos(arg));
den3 = den31 - den32;
resp1 = nume ./ den1;
resp2 = nume ./ den2;
resp3 = nume ./ den3;
plot(fofr,resp1,'k',fofr,resp2,'k-.',fofr,resp3,'k--');
xlabel('Normalized frequency')
ylabel('Amplitude response')
legend('K=0.25','K=0.7','K=0.9')
grid
axis tight

 Figure 9.21. Frequency response corresponding to Eq. (9.81). 
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In order to avoid oscillation due to the positive feedback, the value of 
should be less than unity. The value  is normally equal to the number
of pulses received from the target. For example,  corresponds to ten
pulses, while  corresponds to about fifty pulses.

9.7. PRF Staggering
Target velocities that correspond to multiple integers of the PRF are referred

to as blind speeds. This terminology is used since an MTI filter response is
equal to zero at these values. Blind speeds can pose serious limitations on the
performance of MTI radars and their ability to perform adequate target detec-
tion. Using PRF agility by changing the pulse repetition interval between con-
secutive pulses can extend the first blind speed to more tolerable values. In
order to show how PRF staggering can alleviate the problem of blind speeds,
let us first assume that two radars with distinct PRFs are utilized for detection.
Since blind speeds are proportional to the PRF, the blind speeds of the two
radars would be different. However, using two radars to alleviate the problem
of blind speeds is a very costly option. A more practical solution is to use a sin-
gle radar with two or more different PRFs. 

For example, consider a radar system with two interpulse periods  and
, such that

(9.82)

where  and  are integers. The first true blind speed occurs when

 (9.83)

This is illustrated in Fig. 9.22 for  and . The ratio 

(9.84)

is known as the stagger ratio. Using staggering ratios closer to unity pushes the
first true blind speed farther out. However, the dip in the vicinity of 
becomes deeper. In general, if there are  PRFs related by

(9.85)

and if the first blind speed to occur for any of the individual PRFs is ,
then the first true blind speed for the staggered waveform is
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(9.86)vblind
n1 n2 … nN+ + +

N
----------------------------------------- vblind1=

f fr⁄

f fr⁄

f fr⁄

 Figure 9.22. Frequency responses of a single canceler. Top plot 
corresponds to T1, middle plot corresponds to T2, bottom plot 

corresponds to stagger ratio T1/T2 = 4/3. 
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To better determine the frequency response of an MTI filter with staggered
PRFs consider a three-pulse canceler with two PRFs, or equivalently two PRIs,

 and . In this case, the impulse response will be given by

(9.87)

which can be written as

(9.88)

Note that PRF staggering requires a minimum of two PRFs. 

Make the change of variables  in Eq. (9.88), and it follows

(9.89)

The Z-transform of the impulse response in Eq. (9.89) is then given by

(9.90)

and the amplitude frequency response for the staggered double delay line can-
celler is then given by

(9.91)

Performing the algebraic manipulation in Eq. (9.91) and using the t trigono-
metric identity  yields

 (9.92)

It is customary to normalize the amplitude frequency response, thus 

 (9.93)

To determine the characteristics of higher stagger ratio MTI filters, adopt the
notion of having several MTI filters, one for each combination of two stag-
gered PRFs. Then the overall filter response is computed as the average of all
individual filters. For example, consider the case where a PRF stagger is
required with PRIs , , , and . First, compute the filter response
using  and denote by . Then compute  using  and , the filter

 is computed using    and the filter  is computed using    and .
Finally compute the overall response as

(9.94)
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Figure 9.23 shows the MTI filter response for a 4 stagger ratio defined. The
overall response is computed as the average of 4 individual filters each corre-
sponding to one combination of the stagger ratio. In the top portion of the fig-
ure the individual filters used were 2-pulse MTIs, while the bottom portion
used 4-pulse individual MTI filters. This plot can be reproduced using the fol-
lowing MATLAB code.

%Reproduce Fig 9.23 of text
k = .00035/25; a = 25*k; b = 30*k; c = 27*k; d = 31*k;
v2 = linspace(0,1345,10000); 
f2 = (2.*v2)/.0375;
% H1(f)
T1 = exp(-j*2*pi.*f2*a); X1 = 1/2.*(1 - T1).*conj(1 - T1); H1 = 10*log10(abs(X1));
% H2(f)
T2 = exp(-j*2*pi.*f2*b); X2 = 1/2.*(1 - T2).*conj(1 - T2); H2 = 10*log10(abs(X2));
% H3(f)
T3 = exp(-j*2*pi.*f2*c); X3 = 1/2.*(1 - T3).*conj(1 - T3); H3 = 10*log10(abs(X3));
% H4(f)
T4 = exp(-j*2*pi.*f2*d); X4 = 1/2.*(1 - T4).*conj(1 - T4); H4 = 10*log10(abs(X4));

 Figure 9.23. MTI responses with PRF staggering. 
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% Plot of the four components of H(f)
figure(1)
subplot(2,1,1)
% H(f) Average
ave2 = abs((X1 + X2 + X3 + X4)./4);
Have2 = 10*log10(abs((X1 + X2 + X3 + X4)./4));
plot(v2,Have2); 
axis([0 1345 -25 5]);
 title('Two pulse MTI stagger ratio 25:30:27:31');
xlabel('Radial Velocity (m/s)');
 ylabel('MTI Gain (dB)'); grid on
% %Mean value of H(f)
v4 = v2; f4 = (2.*v4)/.0375;
% H1(f)
T1 = exp(-j*2*pi.*f4*a);
 T2 = exp(-j*2*pi.*f4*(a + b)); 
T3 = exp(-j*2*pi.*f4*(a + b + c));
X1 = 1/20.*(1 - 3.*T1 + 3.*T2 - T3).*conj(1 - 3.*T1 + 3.*T2 - T3);
H1 = 10*log10(abs(X1));
% H2(f)
T3 = exp(-j*2*pi.*f4*b); 
T4 = exp(-j*2*pi.*f4*(b + c));
T5 = exp(-j*2*pi.*f4*(b + c + d));
X2 = 1/20.*(1 - 3.*T3 + 3.*T4 - T5).*conj(1 - 3.*T3 + 3.*T4 - T5);
H2 = 10*log10(abs(X2));
% H3(f)
T6 = exp(-j*2*pi.*f4*c); 
T7 = exp(-j*2*pi.*f4*(c + d));
T8 = exp(-j*2*pi.*f4*(c + d + a));
X3 = 1/20.*(1 - 3.*T6 + 3.*T7 - T8).*conj(1 - 3.*T6 + 3.*T7 - T8);
H3 = 10*log10(abs(X3));
% H4(f)
T9 = exp(-j*2*pi.*f4*d); T10 = exp(-j*2*pi.*f4*(d + a));
T11 = exp(-j*2*pi.*f4*(d + a + b));
X4 = 1/20.*(1 - 3.*T9 + 3.*T10 - T11).*conj(1 - 3.*T9 + 3.*T10 - T11);
H4 = 10*log10(abs(X4));
% H(f) Average
ave4 = abs((X1 + X2 + X3 + X4)./4);
Have4 = 10*log10(abs((X1 + X2 + X3 + X4)./4));
% Plot of H(f) Average
subplot(2,1,2)
plot(v4,Have4);
axis([0 1345 -25 5]);
title('Four pulse MTI stagger ratio 25:30:27:31');
xlabel('Radial Velocity (m/s)');
ylabel('MTI Gain (dB)');
grid on
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9.8. MTI Improvement Factor
In this section two quantities that are normally used to define the perfor-

mance of MTI systems are introduced. They are Clutter Attenuation (CA) and
the Improvement Factor. The MTI CA is defined as the ratio between the MTI
filter input clutter power  to the output clutter power ,

 (9.95)

The MTI improvement factor is defined as the ratio of the SCR at the output to
the SCR at the input, 

(9.96)

which can be rewritten as

(9.97)

The ratio  is the average power gain of the MTI filter, and it is equal to
. In this section, a closed form expression for the improvement factor

using a Gaussian-shaped power spectrum (see Eq. (9.59)) is developed. A
Gaussian-shaped clutter power spectrum is given by

(9.98)

where  is the clutter power (constant), and  is the clutter rms frequency
(which describes the clutter spectrum spread in the frequency domain, see Eq.
(9.55)). 

The clutter power at the input of an MTI filter is

 (9.99)

Factoring out the constant  yields

(9.100)

It follows that 

(9.101)

Ci Co

CA Ci Co⁄=

I
So

Co
------⎝ ⎠
⎛ ⎞ Si

Ci
-----⎝ ⎠
⎛ ⎞⁄=

I
So

Si
-----CA=

So Si⁄
H ω( ) 2

S f( )
Pc

2π σf

------------------- f2– 2σf
2⁄( )exp=

Pc σf

Ci
Pc

2π σf

------------------- – f2

2σf
2

---------
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp fd

∞–

∞

∫=

Pc

Ci Pc
1

2πσf

---------------- – f2

2σf
2

---------
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp fd

∞–

∞

∫=

Ci Pc=

chapter9.fm  Page 389  Monday, May 19, 2008  6:38 PM



390      Radar Signal Analysis and Processing Using MATLAB

The clutter power at the output of an MTI is

(9.102)

9.8.1. Two-Pulse MTI Case 

In this section we will continue the analysis using a single delay line can-
celer. The frequency response for a single delay line canceler is

(9.103)

It follows that

(9.104)

Now, since clutter power will only be significant for small , the ratio  is
very small (i.e., ). Consequently, by using the small angle approxima-
tion, Eq. (9.104) is approximated by

(9.105)

which can be rewritten as

(9.106)

The integral part in Eq. (9.106) is the second moment of a zero-mean Gaussian
distribution with variance . Replacing the integral in Eq. (9.106) by 
yields

(9.107)

Substituting Eq. (9.107) and Eq. (9.101) into Eq. (9.95) produces

(9.108)
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It follows that the improvement factor for a single canceler is

(9.109)

The power gain ratio for a single canceler is (remember that  is periodic
with period )

(9.110)

Using the trigonometric identity  yields

(9.111)

It follows that

(9.112)

The expression given in Eq. (9.112) is an approximation valid only for
. When the condition  is not true, then the autocorrelation func-

tion needs to be used in order to develop an exact expression for the improve-
ment factor. 

Example: 

A certain radar has . If the clutter rms is , find the
improvement factor when a single delay line canceler is used.

Solution: 

The clutter attenuation CA is

and since  we get

.

9.8.2. The General Case

A general expression for the improvement factor for the n-pulse MTI (shown
for a 2-pulse MTI in Eq. (9.112)) is given by
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(9.113)

where the double factorial notation is defined by

(9.114)

(9.115)

Of course ;  is defined by

(9.116)

where  are the binomial coefficients for the MTI filter. It follows that  for
a 2-pulse, 3-pulse, and 4-pulse MTI are, respectively, 

(9.117)

Using this notation, then the improvement factor for a 3-pulse and 4-pulse
MTI are, respectively, given by

(9.118)

(9.119)

9.9. Subclutter Visibility (SCV)
Subclutter Visibility (SCV) describes the radar’s ability to detect nonstation-

ary targets embedded in a strong clutter background, for some probabilities of
detection and false alarm. It is often used as a measure of MTI performance.
For example, a radar with  SCV will be able to detect moving targets
whose returns are ten times smaller than those of clutter. A sketch illustrating
the concept of SCV is shown in Fig. 9.24.

If a radar system can resolve the areas of strong and weak clutter within its
field of view, then Interclutter Visibility (ICV) describes the radar’s ability to
detect nonstationary targets between strong clutter points. The subclutter visi-
bility is expressed as the ratio of the improvement factor to the minimum MTI
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output SCR required for proper detection for a given probability of detection.
More precisely,

(9.120)

When comparing the performance of different radar systems on the basis of
SCV, one should use caution since the amount of clutter power is dependent on
the radar resolution cell (or volume), which may be different from one radar to
another. Thus, only if the different radars have the same beamwidths and the
same pulse widths can SCV be used as a basis of performance comparison.

9.10. Delay Line Cancelers with Optimal Weights
The delay line cancelers discussed in this chapter belong to a family of trans-

versal Finite Impulse Response (FIR) filters widely known as the “tapped
delay line” filters. Figure 9.25 shows an N-stage tapped delay line implementa-
tion. When the weights are chosen such that they are the binomial coefficients
(coefficients of the expansion ) with alternating signs, then the result-
ant MTI filter is equivalent to N-stage cascaded single line cancelers. This is
illustrated in Fig. 9.26 for . In general, the binomial coefficients are
given by

(9.121)

Using the binomial coefficients with alternating signs produces an MTI filter
that closely approximates the optimal filter in the sense that it maximizes the
improvement factor, as well as the probability of detection. In fact, the differ-
ence between an optimal filter and one with binomial coefficients is so small
that the latter one is considered to be optimal by most radar designers. How-
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 Figure 9.24. Illustration of SCV. (a) MTI input. (b) MTI output.
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ever, being optimal in the sense of the improvement factor does not guarantee a
deep notch or a flat pass-band in the MTI filter response. Consequently, many
researchers have been investigating other weights that can produce a deeper
notch around DC, as well as a better pass-band response.

delay, T delay, T delay, T

w1 w2 w3 wN

summing network

output

input
…

 Figure 9.25. N-stage tapped delay line filter.

delay, T delay, T delay, T

1 3– 3
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output

input

(a)

1–

x(t) y(t)

-
+ Σ

delay, T
-

+ Σ
delay, T

-
+
Σ

delay, T

(b)
                     
                   Figure 9.26. Two equivalent three delay line cancelers. (a) Tapped delay 

line.    (b) Three cascaded single line cancelers.
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In general, the average power gain for an N-stage delay line canceler is

(9.122)

For example,  (double delay line canceler) gives

(9.123)

Equation (9.123) can be rewritten as

(9.124)

As indicated by Eq. (9.124), blind speeds for an N-stage delay canceler are
identical to those of a single canceler. It follows that blind speeds are indepen-
dent from the number of cancelers used. It is possible to show that Eq. (9.124)
can be written as

(9.125)

A general expression for the improvement factor of an N-stage tapped delay
line canceler is reported by Nathanson1 to be

(9.126)

where the weights  and  are those of a tapped delay line canceler, and
 is the correlation coefficient between the  and  samples.

For example,  produces

(9.127)

1. Nathanson, F. E., Radar Design Principles, 2nd edition, McGraw-Hill, Inc., NY, 
1991.
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9.11. MATLAB Program Listings
This section presents listings for all the MATLAB programs used to produce

all of the MATLAB-generated figures in this chapter. They are listed in the
same order they appear in the text.

9.11.1. MATLAB Function “clutter_rcs.m”

The function “clutter_rcs.m” implements Eq. (9.37). It generates plots of the
clutter RCS versus the radar slant range. Its outputs include the clutter RCS in
dBsm. The syntax is as follows:

function [sigmaC] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, ht, 
b,ant_id)

where

A GUI called “clutter_rcs_gui” was developed for this function. Executing
this GUI generates plots of the  versus range. Figure 9.26 shows the GUI
workspace associated with this function.

MATLAB Function “clutter_rcs.m” Listing

function [sigmaC] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, ht, b,ant_id)
% This unction calculates the clutter RCS and the CNR for a ground based radar.
thetaA = thetaA * pi /180; % antenna azimuth beamwidth in radians
thetaE = thetaE * pi /180.; % antenna elevation beamwidth in radians
re = 6371000; % earth radius in meter
rh = sqrt(8.0*hr*re/3.); % range to horizon in meters

Symbol Description Units Status

sigma0 clutter back scatterer coefficient dB input

thetaE antenna 3dB elevation beamwidth degrees input

thetaA antenna 3dB azimuth beamwidth degrees input

SL antenna sidelobe level dB input

range range; can be a vector or a single value Km input

hr radar height meters input

ht target height meters input

b bandwidth Hz input

ant_id 1 for (sin(x)/x)^2 pattern

2 for Gaussian pattern 

none input

sigmac clutter RCS; can be either vector or sin-
gle value depending on “range”

dB output

σc
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SLv = 10.0^(SL/10); % radar rms sidelobes in volts
sigma0v = 10.0^(sigma0/10); % clutter backscatter coefficient 
deltar = 3e8 / 2 / b; % range resolution for unmodulated pulse
range_m = 1000 .* range;  % range in meters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
thetar = asin(hr ./ range_m);
thetae = asin((ht-hr) ./ range_m);
% propagation attenuation due to round earth
propag_atten = 1. + ((range_m ./ rh).^4); 
Rg = range_m .* cos(thetar);
deltaRg = deltar .* cos(thetar);
theta_sum = thetae + thetar;
% use sinc^2 antenna pattern when ant_id=1

 Figure 9.27. GUI workspace for “clutter_rcs_gui.m.”
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% use Gaussian antenna pattern when ant_id=2
if(ant_id ==1) % use sinc^2 antenna pattern
    ant_arg = (theta_sum ) ./ (pi*thetaE);
    gain = (sinc(ant_arg)).^2;
else
    gain = exp(-2.776 .*(theta_sum./thetaE).^2);
end
% compute sigmac
sigmac = (sigma0v .* Rg .* deltaRg) .* ...
(pi * SLv * SLv + thetaA .* gain.^2) ./ propag_atten;
sigmaC = 10*log10(sigmac);
figure(1)
plot(range, sigmaC,'linewidth',1.5)
grid
xlabel('Slant Range in Km')
ylabel('Clutter RCS in dBsm')
%

9.11.2. MATLAB Function “single_canceler.m”

The function “single_canceler.m” computes and plots (as a function of )
the amplitude response for a single delay line canceler. The syntax is as fol-
lows:

[resp] = single_canceler (fofr)

where “fofr” is the number of periods desired.

MATLAB Function “single_canceler.m” Listing

function [resp] = single_canceler (fofr1)
% single delay canceller
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
resp = 4.0 .*((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
subplot(2,1,1)
plot(fofr,resp,'k')
xlabel ('Normalized frequency in f/fr')
ylabel( 'Amplitude response in Volts')
grid
subplot(2,1,2)
resp=10.*log10(resp+eps);
plot(fofr,resp,'k');
axis tight
grid
xlabel ('Normalized frequency in f/fr')

f fr⁄
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ylabel( 'Amplitude response in dB')

9.11.3. MATLAB Function “double_canceler.m”

The function “double_canceler.m” computes and plots (as a function of
) the amplitude response for a double delay line canceler. The syntax is as

follows:

[resp] = double_canceler (fofr)

where “fofr” is the number of periods desired.

MATLAB Function “double_canceler.m” Listing

function [resp] = double_canceler(fofr1)
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
resp = 4.0 .* ((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
resp2 = resp .* resp;
subplot(2,1,1);
plot(fofr,resp,'k--',fofr, resp2,'k');
ylabel ('Amplitude response - Volts')
resp2 = 20. .* log10(resp2+eps);
resp1 = 20. .* log10(resp+eps);
subplot(2,1,2)
plot(fofr,resp1,'k--',fofr,resp2,'k');
legend ('single canceler','double canceler')
xlabel ('Normalized frequency f/fr')
ylabel ('Amplitude response in dB')

Problems
9.1. Compute the signal-to-clutter ratio (SCR) for the radar described in
Section 9.2.1. In this case, assume antenna 3dB beam width ,
pulse width , range , grazing angle , target
RCS , and clutter reflection coefficient .
9.2. Repeat the example in Section 9.3 for target RCS , pulse
width , antenna beam width ; the detec-
tion range is , and .
9.3. The quadrature components of the clutter power spectrum are, respec-
tively, given by

f fr⁄

θ3dB 0.03rad=
τ 10μs= R 50Km= ψg 15°=

σt 0.1m2= σ0 0.02 m2 m2⁄( )=
σt 0.15m2=

τ 0.1μs= θa θe 0.03radians= =
R 100Km= σi∑ 1.6 10 9–× m2 m3⁄( )=
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and 

. 

Compute the D.C. and A.C. power of the clutter. Let . 

9.4. A certain radar has the following specifications: pulse width
, antenna beam width , and wavelength . The

radar antenna is  high. A certain target is simulated by two point targets
(scatterers). The first scatterer is  high and has RCS . The sec-
ond scatterer is  high and has RCS . If the target is detected at

, compute (a) SCR when both scatterers are observed by the radar, (b)
SCR when only the first scatterer is observed by the radar. Assume a reflection
coefficient of , and . 
9.5. A certain radar has range resolution of  and is observing a target
somewhere in a line of high towers each having RCS . If the
target has RCS , (a) how much signal-to-clutter ratio should the
radar have? (b) Repeat part (a) for range resolution of .
9.6. (a) Derive an expression for the impulse response of a single delay line
canceler. (b) Repeat for a double delay line canceler.
9.7. (a) What is the transfer function, ? (b) If the clutter power spec-
trum is , find an exact expression for the filter
power gain. (c) Repeat part (b) for small values of frequency, . (d) Compute
the clutter attenuation and the improvement factor in terms of  and . 
9.8. One implementation of a single delay line canceler with feedback is
shown below

9.9. Plot the frequency response for the filter described in the previous
problem for .
9.10. An implementation of a double delay line canceler with feedback is
shown below.
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(a) What is the transfer function, ? (b) Plot the frequency response for
, and .

9.11. Consider a single delay line canceler. Calculate the clutter attenua-
tion and the improvement factor. Assume that  and PRF

.
9.12. Develop an expression for the improvement factor of a double delay
line canceler.
9.13. Repeat Problem 9.10 for a double delay line canceler.
9.14. An experimental expression for the clutter power spectrum density is

, where  is a constant. Show that using this
expression leads to the same result obtained for the improvement factor as
developed in Section 9.8. 
9.15. A certain radar uses two PRFs with stagger ratio 63/64. If the first
PRF is , compute the blind speeds for both PRFs and for the
resultant composite PRF. Assume . 
9.16. A certain filter used for clutter rejection has an impulse response

. (a) Show an implementation
of this filter using delay lines and adders. (b) What is the transfer function?
(c) Plot the frequency response of this filter. (d) Calculate the output when the
input is the unit step sequence.
9.17. The quadrature components of the clutter power spectrum are given
in Problem 9.3. Let  and . Compute the improvement
of the signal-to-clutter ratio when a double delay line canceler is utilized.
9.18. Develop an expression for the clutter improvement factor for single
and double line cancelers using the clutter autocorrelation function.
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Chapter 10 Doppler Processing 

In this chapter Doppler processing is analyzed in the context of continuous
wave (CW) radars and pulsed Doppler radars. Continuous wave radars utilize
CW waveforms, which may be considered to be a pure sinewave of the form

. Spectra of the radar echo from stationary targets and clutter will be
concentrated at . The center frequency for the echoes from moving targets
will be shifted by , the Doppler frequency. Thus, by measuring this fre-
quency difference CW, radars can very accurately extract target radial velocity.
Because of the continuous nature of CW emission, range measurement is not
possible without some modifications to the radar operations and waveforms,
which will be discussed later. 

Alternatively, pulsed radars utilize a stream of pulses with a specific PRI (or
PRF) to generate what is known as range-Doppler maps. Each map is divided
into resolution cells. The dimensions of these resolution cells are range resolu-
tion along the time axis and Doppler resolution along the frequency axis. 

10.1.  CW Radar Functional Block Diagram
In order to avoid interruption of the continuous radar energy emission, two

antennas are used in CW radars, one for transmission and one for reception.
Figure 10.1 shows a simplified CW radar block diagram. The appropriate val-
ues of the signal frequency at different locations are noted on the diagram. The
individual Narrow Band Filters (NBF) must be as narrow as possible in band-
width in order to allow accurate Doppler measurements and minimize the
amount of noise power. In theory, the operating bandwidth of a CW radar is
infinitesimal (since it corresponds to an infinite duration continuous sine-
wave). However, systems with infinitesimal bandwidths cannot physically
exist, and thus, the bandwidth of CW radars is assumed to correspond to that
of a gated CW waveform.

2πf0tcos
f0

fd
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 The NBF bank (Doppler filter bank) can be implemented using a Fast Fou-
rier Transform (FFT). If the Doppler filter bank is implemented using an FFT
of size , and if the individual NBF bandwidth (FFT bin) is , then the
effective radar Doppler bandwidth is . The reason for the one-half
factor is to account for both negative and positive Doppler shifts. The fre-
quency resolution  is proportional to the inverse of the integration time. 

Since range is computed from the radar echoes by measuring a two-way time
delay, single frequency CW radars cannot measure target range. In order for
CW radars to be able to measure target range, the transmit and receive wave-
forms must have some sort of timing marks. By comparing the timing marks at
transmit and receive, CW radars can extract target range. 

Figure 10.1. CW radar block diagram. 
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The timing mark can be implemented by modulating the transmit waveform,
and one commonly used technique is Linear Frequency Modulation (LFM).
Before we discuss LFM signals, we will first introduce the CW radar equation
and briefly address the general Frequency Modulated (FM) waveforms using
sinusoidal modulating signals.

10.1.1.  CW Radar Equation

As indicated by Fig. 10.1, the CW radar receiver declares detection at the
output of a particular Doppler bin if that output value passes the detection
threshold within the detector box. Since the NBF bank is implemented by an
FFT, only finite length data sets can be processed at a time. The length of such
blocks is normally referred to as the dwell interval, integration time, or coher-
ent processing interval. The dwell interval determines the frequency resolution
or the bandwidth of the individual NBFs. More precisely,

(10.1)

 is the dwell interval. Therefore, once the maximum resolvable fre-
quency by the NBF bank is chosen the size of the NBF bank is computed as

(10.2)

 is the maximum resolvable frequency by the FFT. The factor  is needed to
account for both positive and negative Doppler shifts. It follows that 

(10.3)

The CW radar equation can now be derived. Consider the radar equation
developed in Chapter 1. That is 

(10.4)

where , , and  is the peak transmitted power. In CW
radars the average transmitted power over the dwell interval , and 
must be replaced by . Thus, the CW radar equation can be written as 

(10.5)

where  and  are the transmit and receive antenna gains, respectively. The
factor  is a loss term associated with the type of window (weighting) used
in computing the FFT. 
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10.1.2.  Linear Frequency Modulated CW Radar

CW radars may use LFM waveforms so that both range and Doppler infor-
mation can be measured. In practical CW radars, the LFM waveform cannot be
continually changed in one direction, and thus, periodicity in the modulation is
normally utilized. Figure 10.2 shows a sketch of a triangular LFM waveform.
The modulation does not need to be triangular; it may be sinusoidal, saw-tooth,
or some other form. The dashed line in Fig. 10.2 represents the return wave-
form from a stationary target at range . The beat frequency  is also
sketched in Fig. 10.2. It is defined as the difference (due to heterodyning)
between the transmitted and received signals. The time delay  is a measure
of target range; that is, 

(10.6)

In practice, the modulating frequency  is selected such that 

(10.7)

The rate of frequency change, , is

R fb

Δt

Δt 2R
c

-------=

fm

fm
1

2t0
-------=

f·

fb

beat 
frequency

t0 time

time

Δt
f0

f0 Δf+

frequency

solid: transmitted signal
dashed: received signal

fb

 Figure 10.2. Transmitted and received triangular LFM signals and beat 
frequency for stationary target.
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(10.8)

where  is the peak frequency deviation. The beat frequency  is given by 

(10.9)

Equation (10.9) can be rearranged as

(10.10)

Equating Eqs. (10.8) and (10.10) and solving for  yield 

(10.11)

Now consider the case when Doppler is present (i.e., nonstationary target).
The corresponding triangular LFM transmitted and received waveforms are
sketched in Fig. 10.3, along with the corresponding beat frequency. As previ-
ously noted the beat frequency is defined as

(10.12)
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 Figure 10.3. Transmitted and received LFM signals and beat frequency, for a 
moving target.
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When the target is not stationary the received signal will contain a Doppler
shift term in addition to the frequency shift due to the time delay . In this
case, the Doppler shift term subtracts from the beat frequency during the posi-
tive portion of the slope. Alternatively, the two terms add up during the nega-
tive portion of the slope. Denote the beat frequency during the positive (up)
and negative (down) portions of the slope, respectively, as  and . It fol-
lows that

(10.13)

where  is the range rate or the target radial velocity as seen by the radar. The
first term of the right-hand side of Eq. (10.13) is due to the range delay defined
by Eq. (10.6), while the second term is due to the target Doppler. Similarly, 

(10.14)

Range is computed by adding Eq. (10.12) and Eq. (10.14). More precisely,

(10.15)

The range rate is computed by subtracting Eq. (10.14) from Eq. (10.13),

(10.16)

As indicated by Eq. (10.15) and Eq. (10.16), CW radars utilizing triangular
LFM can extract both range and range rate information. In practice, the maxi-
mum time delay  is normally selected as

(10.17)

Thus, the maximum range is given by

(10.18)

and the maximum unambiguous range will correspond to a shift equal to .

10.1.3.  Multiple Frequency CW Radar

Continuous wave radars do not have to use LFM waveforms in order to
obtain good range measurements. Multiple frequency schemes allow CW
radars to compute very adequate range measurements without using frequency
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modulation. In order to illustrate this concept, first consider a CW radar with
the following waveform

(10.19)

The received signal from a target at range  is 

 (10.20)

where the phase  is equal to

(10.21)

Solving for  we obtain

(10.22)

Clearly, the maximum unambiguous range occurs when  is maximum, i.e.,
. Therefore, even for relatively large radar wavelengths,  is limited

to impractical small values. Next, consider a radar with two CW signals,
denoted by  and . More precisely,

(10.23)

 (10.24)

The received signals from a moving target are

(10.25)

and 

(10.26)

where  and . After heterodyning (mixing)
with the carrier frequency, the phase difference between the two received sig-
nals is

(10.27)

Again  is maximum when ; it follows that the maximum unambig-
uous range is now

(10.28)

and since , the range computed by Eq. (10.28) is much greater than that
computed by Eq. (10.22). 
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10.2. Pulsed Radars 
Pulsed radars transmit and receive a train of modulated pulses. Range is

extracted from the two-way time delay between a transmitted and received
pulse. Doppler measurements can be made in two ways. If accurate range mea-
surements are available between consecutive pulses, then Doppler frequency
can be extracted from the range rate . This approach works fine as
long as the range is not changing drastically over the interval . Otherwise,
pulsed radars utilize a Doppler filter bank. 

Pulsed radar waveforms can be completely defined by the following: (1) car-
rier frequency which may vary depending on the design requirements and
radar mission; (2) pulse width, which is closely related to the bandwidth and
defines the range resolution; (3) modulation; and finally (4) the pulse repetition
frequency. Different modulation techniques are usually utilized to enhance the
radar performance, or to add more capabilities to the radar that otherwise
would not have been possible. The PRF must be chosen to avoid Doppler and
range ambiguities as well as maximize the average transmitted power. 

Radar systems employ low, medium, and high PRF schemes. Low PRF
waveforms can provide accurate, long, unambiguous range measurements, but
exert severe Doppler ambiguities. Medium PRF waveforms must resolve both
range and Doppler ambiguities; however, they provide adequate average trans-
mitted power as compared to low PRFs. High PRF waveforms can provide
superior average transmitted power and excellent clutter rejection capabilities.
Alternatively, high PRF waveforms are extremely ambiguous in range. Radar
systems utilizing high PRFs are often called Pulsed Doppler Radars (PDR).
Range and Doppler ambiguities for different PRFs are summarized in Table
10.1.

Distinction of a certain PRF as low, medium, or high PRF is almost arbitrary
and depends on the radar mode of operations. For example, a  PRF is
considered low if the maximum detection range is less than . However,
the same PRF would be considered medium if the maximum detection range is
well beyond . 

Radars can utilize constant and varying (agile) PRFs. For example, Moving
Target Indicator (MTI) radars use PRF agility to avoid blind speeds, as dis-
cussed in Chapter 9. This kind of agility is known as PRF staggering. PRF agil-
ity is also used to avoid range and Doppler ambiguities, as will be explained in
the next three sections. Additionally, PRF agility is also used to prevent jam-
mers from locking onto the radar’s PRF. These two last forms of PRF agility
are sometimes referred to as PRF jitter.

Figure 10.4 shows a simplified pulsed radar block diagram. The range gates
can be implemented as filters that open and close at time intervals that corre-

R· ΔR Δt⁄=
Δt

3KHz
30Km

30Km
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spond to the detection range. The width of such an interval corresponds to the
desired range resolution. The radar receiver is often implemented as a series of
contiguous (in time) range gates, where the width of each gate is achieved
through pulse compression. The clutter rejection can be implemented using
MTI or other forms of clutter rejection techniques. The NBF bank is normally
implemented using an FFT, where bandwidth of the individual filters corre-
sponds to the FFT frequency resolution.

  

 

TABLE 10.1. PRF ambiguities.

PRF Range Ambiguous Doppler Ambiguous

Low PRF No Yes

Medium PRF Yes Yes

High PRF Yes No

RF source

mixer

mixer
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 Figure 10.4. Pulsed radar block diagram.
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10.2.1. Pulse Doppler Radars

In ground based radars, the amount of clutter in the radar receiver depends
heavily on the radar-to-target geometry. The amount clutter is considerably
higher when the radar beam has to face toward the ground. Furthermore, radars
employing high PRFs have to deal with an increased amount of clutter due to
folding in range. Clutter introduces additional difficulties for airborne radars
when detecting ground targets and other targets flying at low altitudes. This is
illustrated in Fig. 10.5. Returns from ground clutter emanate from ranges equal
to the radar altitude to those which exceed the slant range along the mainbeam,
with considerable clutter returns in the sidelobes and mainbeam. The presence
of such large amounts of clutter interferes with radar detection capabilities and
makes it extremely difficult to detect targets in the look-down mode. This diffi-
culty in detecting ground or low altitude targets has led to the development of
pulse Doppler radars where other targets, kinematics such as Doppler effects
are exploited to enhance detection. 

Pulse Doppler radars utilize high PRFs to increases the average transmitted
power and rely on target’s Doppler frequency for detection. The increase in the
average transmitted power leads to an improved SNR which helps the detec-
tion process. However, using high PRFs compromise the radar’s ability to
detect long range target because of range ambiguities associated with high PRF
applications.

ground

Figure 10.5. Pulse radar detection of ground targets with clutter interference.
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As was explained in Chapter 9, pulse Doppler radars (or high PRF radars)
have to deal with the additional increase in clutter power due to clutter folding.
This has led to the development of a special class of airborne MTI filters, often
referred to as AMTI. Techniques such as using specialized Doppler filters to
reject clutter are very effective and are often employed by pulse Doppler
radars. Pulse Doppler radars can measure target Doppler frequency (or its
range rate) fairly accurately and use the fact that ground clutter typically pos-
sesses limited Doppler shift when compared with moving targets to separate
the two returns. This is illustrated in Fig. 10.6. Clutter filtering (i.e., AMTI) is
used to remove both main-beam and altitude clutter returns, and fast moving
target detection is done effectively by exploiting its Doppler frequency. In
many modern pulse Doppler radars the limiting factor in detecting slow mov-
ing targets is not clutter but rather another source of noise referred to as phase
noise generated from the receiver local oscillator instabilities. 
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 Figure 10.6. Cartoon illustrating frequency characteristics of pulse Doppler 
radar echoes.
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10.2.2.  High PRF Radar Equation

Consider a high PRF radar that uses a periodic train of very short pulses. The
pulse width is  and the period is . This pulse train can be represented using
an exponential Fourier series. The central power spectrum line (DC compo-
nent) for this series contains most of the signal’s power. Its value is ,
and it is equal to the square of the transmit duty factor. Thus, the single pulse
radar equation for a high PRF radar (in terms of the DC spectral power line) is

(10.29)

where, in this case, one can no longer ignore the receive duty factor since its
value is comparable to the transmit duty factor. In fact, . Addi-
tionally, the operating radar bandwidth is now matched to the radar integration
time (time on target), . It follows that

(10.30)

and finally,

(10.31)

where  was substituted for . Note that the product  is a “kind of
energy” product, which indicates that high PRF radars can enhance detection
performance by using relatively low power and longer integration time.

Example:

Compute the single pulse  for a high PRF radar with the following
parameters: peak power , antenna gain , operating
frequency , losses , noise figure , dwell
interval , duty factor . The range of interest is .
Assume target RCS . 

Solution:

From Eq. (10.31) we have

The following table gives all parameters in dB:
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The same answer can be obtained by using the function “hprf_req.m” (see
Section 10.3.2) with the following syntax:

hprf_req (100e3, 2, 20, 5.6e9, 0.01, .3, 50e3, 5, 8)

10.2.3. Pulse Doppler Radar Signal Processing

The main idea behind pulse Doppler radar signal processing is to divide the
footprint (the intersection of the antenna 3dB beamwidth with the ground) into
resolution cells that constitute a range Doppler map, . The sides of this
map are range and Doppler, as illustrated in Fig. 10.7. Fine range resolution,

, is accomplished in real time by utilizing range gating and pulse compres-
sion. Frequency (Doppler) resolution is obtained from the coherent processing
interval. 

To further illustrate this concept, consider the case where  is the number
of azimuth (Doppler) cells, and  is the number of range bins. Hence, the

 is of size , where the columns refer to range bins and the rows
refer to azimuth cells. For each transmitted pulse within the dwell, the echoes

Pav λ2 Ti kT0 4π( )3 R4 σ

44.771 25.421– 3.01 23.977– 32.976 187.959 20–

SNR( )dB 44.771 40 25.421– 20– 3.01 32.976– 203.977
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Figure 10.7. Range Doppler map.
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from consecutive range bins are recorded sequentially in the first row of
. Once the first row is completely filled (i.e., returns from all range bins

have been received), all data (in all rows) are shifted downward one row before
the next pulse is transmitted. Thus, one row of  is generated for every
transmitted pulse. Consequently, for the current observation interval, returns
from the first transmitted pulse will be located in the bottom row of , and
returns from the last transmitted pulse will be in the top row of . 

Referring to Fig. 10.4, fine range resolution is achieved using the matched
filter. Clutter rejection (filtering) is performed on each range bin (i.e, rows in
the ). Then all samples from one dwell within each range bin are pro-
cessed using an FFT to resolve targets in Doppler. It follows that a peak in a
given resolution cell corresponds to a specific target detection at that range and
Doppler frequency. Selection of the proper size FFT and its associated parame-
ters were discussed in Chapter 2.

10.2.4. Resolving Range Ambiguities in Pulse Doppler Radars

Pulse Doppler radars exhibit serve range ambiguities because they use high
PRF pulse streams. In order to resolve these ambiguities, pulse Doppler radars
utilize multiple high PRFs (PRF staggering) within each processing interval
(dwell). For this purpose, consider a pulse Doppler radar that uses two PRFs,

 and , on transmit to resolve range ambiguity, as shown in Fig. 10.8.
Denote  and  as the unambiguous ranges for the two PRFs, respec-
tively. Normally, these unambiguous ranges are relatively small and are short
of the desired radar unambiguous range  (where ). Denote the
radar desired PRF that corresponds to  as .

The choice of  and  is such that they are relatively prime with respect
to one another. One choice is to select  and  for
some integer . Within one period of the desired PRI ( ) the two
PRFs  and  coincide only at one location, which is the true unambiguous
target position. The time delay  establishes the desired unambiguous range.
The time delays  and  correspond to the time between the transmit of a
pulse on each PRF and receipt of a target return due to the same pulse.

Let  be the number of PRF1 intervals between transmit of a pulse and
receipt of the true target return. The quantity  is similar to  except it is
for PRF2. It follows that over the interval  to , the only possible results are

 or . The radar needs only to measure  and
. First, consider the case when . In this case,

(10.32)
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(10.33)

where  and . It follows that the round-trip time to the
true target location is

(10.34)

and the true target range is 

(10.35)

Now, if , then

(10.36)

Solving for  we get

(10.37)
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 Figure 10.8. Resolving range ambiguity.
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and the round-trip time to the true target location is

(10.38)

and in this case, the true target range is

(10.39)

Finally, if , then the target is in the first ambiguity. It follows that

(10.40)

and

(10.41)

Since a pulse cannot be received while the following pulse is being transmit-
ted, these times correspond to blind ranges. This problem can be resolved by
using a third PRF. In this case, once an integer  is selected, then in order to
guarantee that the three PRFs are relatively prime with respect to one another,
we may choose , , and

.

10.2.5. Resolving Doppler Ambiguity

In the case where the pulse Doppler radar is utilizing medium PRFs, it will
be ambiguous in both range and Doppler. Resolving range ambiguities was dis-
cussed in the previous section. In this section Doppler ambiguity is addressed.
Remember that the line spectrum of a train of pulses has  envelope (see
Chapter 2), and the line spectra are separated by the PRF, , as illustrated in
Fig. 10.9. The Doppler filter bank is capable of resolving target Doppler as
long as the anticipated Doppler shift is less than one half the bandwidth of the
individual filters (i.e., one half the width of an FFT bin). Thus, pulsed radars
are designed such that

 (10.42)

where  is the maximum anticipated target Doppler frequency,  is
the maximum anticipated target radial velocity, and  is the radar wavelength.

If the Doppler frequency of the target is high enough to make an adjacent spec-
tral line move inside the Doppler band of interest, the radar can be Doppler
ambiguous. Therefore, in order to avoid Doppler ambiguities, radar systems
require high PRF rates when detecting high speed targets. When a long-range
radar is required to detect a high speed target, it may not be possible to be both
range and Doppler unambiguous. This problem can be resolved by using multi-
ple PRFs. Multiple PRF schemes can be incorporated sequentially within each
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dwell interval (scan or integration frame) or the radar can use a single PRF in
one scan and resolve ambiguity in the next. The latter technique, however, may
have problems due to changing target dynamics from one scan to the next.

The Doppler ambiguity problem is analogous to that of range ambiguity.
Therefore, the same methodology can be used to resolve Doppler ambiguity. In
this case, we measure the Doppler frequencies  and  instead of  and

.

If , then we have

(10.43)

And if ,

(10.44)

and the true Doppler is 

(10.45)
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 Figure 10.9. Spectra of transmitted and received waveforms, and 
Doppler bank. (a) Doppler is resolved.   (b) Spectral lines 
have moved into the next Doppler filter. This results in an 
ambiguous Doppler measurement. 
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Finally, if , then

(10.46)

Again, blind Dopplers can occur, which can be resolved using a third PRF.

Example:

 A certain radar uses two PRFs to resolve range ambiguities. The desired
unambiguous range is . Choose . Compute , ,

, and . 

Solution: 

First let us compute the desired PRF, 

It follows that

.

Example:

Consider a radar with three PRFs; , , and
. Assume . Calculate the frequency position of each

PRF for a target whose velocity is . Calculate  (Doppler frequency)
for another target appearing at , , and  for each PRF.

Solution: 

The Doppler frequency is

Then by using Eq. (10.42)  where , we can write
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Ru1 Ru2

frd

frd
c

2Ru
--------- 3 108×

200 103×
----------------------- 1.5KHz= = =

fr1 Nfrd 59( ) 1500( ) 88.5KHz= = =

fr2 N 1+( )frd 59 1+( ) 1500( ) 90KHz= = =

Ru1
c

2fr1
--------- 3 108×

2 88.5 103××
---------------------------------- 1.695Km= = =

Ru2
c

2fr2
--------- 3 108×

2 90 103××
----------------------------- 1.667Km= = =

fr1 15KHz= fr2 18KHz=
fr3 21KHz= f0 9GHz=

550m s⁄ fd
8KHz 2KHz 17KHz

fd 2
vf0

c
------- 2 550 9 109×××

3 108×
------------------------------------------ 33KHz= = =

nifri fdi+ fd= i 1 2 3, ,=

n1fr1 fd1+ 15n1 fd1+ 33= =
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We will show here how to compute , and leave the computations of  and
 to the reader. First, if we choose , that means , which

cannot be true since  cannot be greater than . Choosing  is also
invalid since  cannot be true either. Finally, if we choose

 we get , which is an acceptable value. It follows that the
minimum  that may satisfy the above three relations are ,

, and . Thus, the apparent Doppler frequencies are
, , and , as seen below.

n2fr2 fd2+ 18n2 fd2+ 33= =

n3fr3 fd3+ 21n3 fd3+ 33= =

n1 n2
n3 n1 0= fd1 33KHz=

fd1 fr1 n1 1=
fd1 18KHz=

n1 2= fd1 3KHz=
n1 n2 n3, , n1 2=

n2 1= n3 1=
fd1 3KHz= fd2 15KHz= fd3 12KHz=

KHz

5            10          15          20           25          30          35

fr1fd1

3

KHz

5            10          15          20           25          30          35

fr2fd2

18

KHz

5            10          15          20           25          30          35

fr3fd3

12
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Now for the second part of the problem. Again by using Eq. (10.61) we have

We can now solve for the smallest integers  that satisfy the above
three relations. See the table below.

Thus, , and , and the true target Doppler is
. It follows that 

10.3. MATLAB Programs and Routines

10.3.1. MATLAB Program “range_calc.m”

The program “range_calc.m” solves the radar range equation of the form

(10.47)

where  is peak transmitted power,  is pulse width,  is PRF,  and 
are respectively the transmitting and receiving antenna gain,  is wavelength,

 is target cross section,  is Boltzman’s constant,  is  kelvin,  is sys-
tem noise figure,  is total system losses, and  is the minimum SNR
required for detection. 

One can choose either CW or pulsed radars. In the case of CW radars, the
terms  is replaced within the code by the average CW power . Addi-
tionally, the term  refers to the dwell interval. Alternatively, in the case of
pulse radars  denotes the time on target. The plot inside Fig. 10.10 shows an
example of the SNR versus the detection range for a pulse radar using the
parameters shown in the figure. A MATLAB-based Graphical User Interface

n 0 1 2 3 4

 from 8 23 38 53 68

 from 2 20 38 56

 from 17 38 39

n1fr1 fd1+ fd 15n1 8+= =

n2fr2 fd2+ fd 18n2 2+= =

n3fr3 fd3+ fd 21n3 17+= =

n1 n2 n3, ,

fd
fr1

fd fr2

fd fr3

n1 2 n2= = n3 1=
fd 38KHz=

vr 38000 0.0333
2

----------------× 632.7 m
sec
-----------= =

R
PtτfrTiGtGrλ

2σ

4π( )3kT0FL SNR( )o

-------------------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

1
4
---

=

Pt τ fr Gt Gr
λ

σ k T0 290 F
L SNR( )o

Ptτfr PCW
Ti

Ti

chapter10.fm  Page 422  Monday, May 19, 2008  6:50 PM



MATLAB Programs and Routines 423

(GUI) (see Fig. 10.10) is utilized in inputting and editing all input parameters.
The outputs include the maximum detection range versus minimum SNR plots.
The following MATLAB function is used by this GUI to generate the desired
outputs.

function [output_par] = range_calc (pt, tau, fr, time_ti, gt, gr, freq, ...
   sigma, te, nf, loss, snro, pcw, range, radar_type, out_option)
c = 3.0e+8;
lambda = c / freq;
if (radar_type == 0)
   pav = pcw;
else
   % Compute the duty cycle
   dt = tau * 0.001 * fr;
   pav = pt * dt;

 Figure 10.10. GUI work space associated with the program “range_calc.m.”
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end
pav_db = 10.0 * log10(pav);
   lambda_sqdb = 10.0 * log10(lambda^2);
   sigmadb = 10.0 * log10(sigma);
   for_pi_cub = 10.0 * log10((4.0 * pi)^3);
  k_db = 10.0 * log10(1.38e-23);
  te_db = 10.0 * log10(te);
  ti_db = 10.0 * log10(time_ti);
  range_db = 10.0 * log10(range * 1000.0);
if (out_option == 0)
    %compute SNR
    snr_out = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
    for_pi_cub - k_db - te_db - nf - loss - 4.0 * range_db
   index = 0;
   for range_var = 10:10:1000
      index = index + 1;
      rangevar_db = 10.0 * log10(range_var * 1000.0);
      snr(index) = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
         for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db;
   end
   var = 10:10:1000;
   plot(var,snr,'k')
   xlabel ('Range in Km');
   ylabel ('SNR in dB');
   grid
else
  range4 = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
     for_pi_cub - k_db - te_db - nf - loss - snro;
  range = 10.0^(range4/40.) / 1000.0
  index = 0;
  for snr_var = -20:1:60
     index = index + 1;
     rangedb = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
        for_pi_cub - k_db - te_db - nf - loss - snr_var;
     range(index) = 10.0^(rangedb/40.) / 1000.0;
  end
  var = -20:1:60;
  plot(var,range,'k')
  xlabel ('Minimum SNR required for detection in dB');
  ylabel ('Maximum detection range in Km');
  grid
end
return
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10.3.2. MATLAB Function “hprf_req.m”

The function “hprf_req.m” implements the high PRF radar equation. Its syn-
tax is as follows:

[snr] = hprf_req (pt, Ti, g, freq, sigma, dt, range, nf, loss)

where

MATLAB Function “hprf_req.m” Listing

function [snr] = hprf_req (pt, Ti, g, freq, sigma, dt, range, nf, loss)
% This program implements Eq. (10.31)
c = 3.0e+8; % speed of light
lambda = c / freq; % wavelength
pav = 10*log10(pt*dt); % compute average power in dB
Ti_db = 10*log10(Ti); % time on target in dB
lambda_sqdb = 10*log10(lambda^2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB
four_pi_cub = 10*log10((4.0 * pi)^3); % (4pi)^3 in dB
k_db = 10*log10(1.38e-23); % Boltzman's constant in dB
to_db = 10*log10(290); % noise temp. in dB
range_pwr4_db = 10*log10(range.^4); % vector of target range^4 in dB
% Implement Equation (1.72)
num = pav + Ti_db + g + g + lambda_sqdb + sigmadb;
den = four_pi_cub + k_db + to_db + nf + loss + range_pwr4_db;
snr = num - den;
return

Symbol Description Units Status

pt peak power W input

Ti time on target seconds input

g antenna gain dB input

freq frequency Hz input

sigma target RCS m2 input

dt duty cycle none input

range target range (can be a sin-
gle value or a vector)

m input

nf noise figure dB input

loss radar losses dB input

snr SNR (can be a single value 
or a vector)

 dB output
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Problems
10.1. In a multiple frequency CW radar, the transmitted waveform consists
of two continuous sinewaves of frequencies  and

. Compute the maximum unambiguous detection range.
10.2. Consider a radar system using linear frequency modulation. Compute
the range that corresponds to . Assume a beat frequency

. 

10.3. A certain radar using linear frequency modulation has a modulation
frequency  and frequency sweep . Calculate the
average beat frequency differences that correspond to range increments of 
and  meters.

10.4. A CW radar uses linear frequency modulation to determine both
range and range rate. The radar wavelength is , and the frequency
sweep is . Let . (a) Calculate the mean Doppler
shift; (b) compute  and  corresponding to a target at range ,
which is approaching the radar with radial velocity of .

10.5. Consider a medium PRF radar on board an aircraft moving at a speed
of  with PRFs , , and ;
the radar operating frequency is . Calculate the frequency position of a
nose-on target with a speed of . Also calculate the closing rate of a
target appearing at , , and  away from the center line of PRF ,

, and , respectively.

10.6. A certain radar operates at two PRFs,  and , where
 and . Show that this multiple

PRF scheme will give the same range ambiguity as that of a single PRF with
PRI .

10.7. Consider an X-band radar with wavelength  and band-
width . The radar uses two PRFs,  and

. A target is detected at range bin  for  and at bin 
for . Determine the actual target range.

10.8. A certain radar uses two PRFs to resolve range ambiguities. The
desired unambiguous range is . Select a reasonable value for .
Compute the corresponding , , , and .

10.9. A certain radar uses three PRFs to resolve range ambiguities. The
desired unambiguous range is . Select . Compute the
corresponding , , , , , and . 

f1 105KHz=
f2 115KHz=

f· 20 10MHz,=
fb 1200Hz=

fm 300Hz= Δf 50MHz=
10

15

λ 3cm=
Δf 200KHz= t0 20ms=

fbu fbd R 350Km=
250m s⁄

350 m s⁄ fr1 10KHz= fr2 15KHz= fr3 20KHz=
9.5GHz

300 m s⁄
6 5 18KHz 10

15 20KHz

fr1 fr2
Tr1 1 fr1⁄( ) T 5⁄= = Tr2 1 fr2⁄( ) T 6⁄= =

T

λ 3cm=
B 10MHz= fr1 50KHz=

fr2 55.55KHz= 46 fr1 12
fr2

Ru 150Km= N
fr1 fr2 Ru1 Ru2

Ru 250Km= N 43=
fr1 fr2 fr3 Ru1 Ru2 Ru3
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10.10. In Chapter 1 we developed an expression for the Doppler shift
associated with a CW radar (i.e., , where the plus sign is used for
closing targets and the negative sign is used for receding targets). CW radars
can use the system shown below to determine whether the target is closing or
receding. Assuming that the emitted signal is  and the received signal
is , show that the direction of the target can be deter-
mined by checking the phase shift difference in the outputs  and .

fd 2v± λ⁄=

A ω0tcos
kA ω0 ωd±( )t ϕ+( )cos

y1 t( ) y2 t( )

mixer
   A

mixer
   B

CW
transmitter

phase
shift

90°

y1 t( )

y2 t( )

transmitting
 antenna

receiving
 antenna
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Chapter 11 Adaptive Array 
Processing 

11.1. Introduction
The emphasis in this chapter is on adaptive array processing. For this pur-

pose, a top level overview of phased array antennas is first introduced. Phased
array antennas are capable of forming multiple beams at the transmitting or
receiving modes. Beamforming can be carried out at the Radio frequency
(RF), Intermediate Frequency (IF), base band, or digital levels. RF beamform-
ing is the simplest and most common technique. In this case, multiple narrow
beams are formed through the use of phase shifters. IF and base band beam-
forming require complex coherent hardware. However, the system is operated
at lower frequencies where tolerance is not as critical. Digital beamforming is
more flexible than RF, IF, or base band techniques, but it requires a demanding
level of processing hardware.

Adaptive arrays mostly employ phased arrays to automatically sense and
eliminate unwanted signals entering the radar's Field of View (FOV) while
enhancing reception about the desired target returns. For this purpose, adaptive
arrays utilize a rather complicated combination of hardware and require
demanding levels of software implementation. Through feedback networks, a
proper set of complex weights is computed and applied to each channel of the
array. A successful implementation of adaptive arrays depends heavily on two
factors: first, a proper choice of the reference signal, which is used for compar-
ison against the received target/jammer returns. A good estimate of the refer-
ence signal makes the computation of the weights systematic and effective. On
the other hand, a bad estimate of the reference signal increases the array's
adapting time and limits the system to impractical (non-real time) situations.
Second, a fast (real time) computation of the optimum weights is essential.
There have been many algorithms developed for this purpose. Nevertheless,
they all share a common problem, that is, the computation of the inverse of a
complex matrix. This drawback has limited the implementation of adaptive
arrays to experimental systems or small arrays.
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11.2. General Arrays
An array is a composite antenna formed from two or more basic radiators.

Each radiator is denoted as an element. The elements forming an array could
be dipoles, dish reflectors, slots in a wave guide, or any other type of radiator.
Array antennas synthesize narrow directive beams that may be steered,
mechanically or electronically, in many directions. Electronic steering is
achieved by controlling the phase of the current feeding the array elements.
Arrays with electronic beam steering capability are called phased arrays.
Phased array antennas, when compared with other simple antennas such as
dish reflectors, are costly and complicated to design. However, the inherent
flexibility of phased array antennas to steer the beam electronically and also
the need for specialized multifunction radar systems have made phased array
antennas attractive for radar applications.

Figure 11.1 shows the geometrical fundamentals associated with this prob-
lem. Consider the radiation source located at  with respect to a
phase reference at . The electric field measured at far field point  is 

(11.1)

where  is the complex amplitude,  is the wave number, and
is the radiation pattern.

Now, consider the case where the radiation source is an array made of many
elements, as shown in Fig. 11.2. The coordinates of each radiator with respect
to the phase reference are , and the vector from the origin to the 
element is given by

(11.2)

x1 y1 z1, ,( )
0 0 0, ,( ) P

E θ φ,( ) I0
e

jkR1–

R1
-------------f θ φ,( )=

I0 k 2π λ⁄=
f θ φ,( )

xi yi zi, ,( ) ith

ri ax
ˆ= xi ay

ˆ yi az
ˆ zi+ +

0 0 0, ,( )
θ1

x1 y1 z1, ,( )
R1

r
r1

p

d1

d1 r1
r
r
-----• r1 θ1cos= =

 Figure 11.1. Geometry for an array antenna. Single element.
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The far field components that constitute the total electric field are

(11.3)

where

(11.4)

Using spherical coordinates, where , , and
, yields

(11.5)

Thus, a good approximation (using binomial expansion) for Eq. (11.4) is 

(11.6)

It follows that the phase contribution at the far field point from the  radiator
with respect to the phase reference is 

(11.7)

Remember, however, that the unit vector  along the vector  is 

0 0 0, ,( )

x1 y1 z1, ,( )

xi yi zi, ,( )
Ri r ri–=

r
ri

p

ax
ˆ

θ

r1

R1 r r1–=
ay
ˆ

az
ˆ

az
ˆ

az
ˆ

θ1

 Figure 11.2. Geometry for an array antenna.
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Ri r r– xi θ φcossin yi θ φsinsin zi θcos+ +( )=

ith

e
jkRi–

e jkr– e
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(11.8)

Hence, we can rewrite Eq. (11.7) as

(11.9)

Finally, by virtue of superposition, the total electric field is

(11.10)

which is known as the array factor for an array antenna where the complex cur-
rent for the  element is .

In general, an array can be fully characterized by its array factor. This is true
since knowing the array factor provides the designer with knowledge of the
array’s (1) 3-dB beamwidth, (2) null-to-null beamwidth, (3) distance from the
main peak to the first side-lobe, (4) height of the first side-lobe as compared to
the main beam, (5) location of the nulls, (6) rate of decrease of the side-lobes,
and (7) grating lobes’ locations.

11.3. Linear Arrays
Figure 11.3 shows a linear array antenna consisting of  identical elements.

The element spacing is  (normally measured in wavelength units). Let ele-
ment #1 serve as a phase reference for the array. From the geometry, it is clear
that an outgoing wave at the  element leads the phase at the  ele-
ment by , where . The combined phase at the far field
observation point  is independent of  and can be written as 

(11.11)

Thus, from Eq. (11.10), the electric field at a far field observation point with
direction-sine equal to  (assuming isotropic elements) is

(11.12)

Expanding the summation in Eq. (11.12) yields

(11.13)

r0
r
r
----- âx θ φcossin ây θ φsinsin âz θcos+ += =

e
jkRi–

e jkr– ejk ri r0•( ) e jkr– e
jΨi θ φ,( )

= =

E θ φ,( ) Iie
jΨi θ φ,( )

i 1=

N

∑=

ith Ii

N
d

nth n 1+( )th
kd θsin k 2π λ⁄=

P φ

Ψ θ φ,( ) k rn r0•( ) n 1–( )kd θsin= =

θsin

E θsin( ) ej n 1–( ) kd θsin( )

n 1=

N

∑=

E θsin( ) 1 ejkd θsin … ej N 1–( ) kd θsin( )+ + +=
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The right-hand side of Eq. (11.13) is a geometric series, which can be
expressed in the form

(11.14)

Replacing  by  yields

(11.15)

The far field array intensity pattern is then given by

(11.16)

Substituting Eq. (11.15) into Eq. (11.16) and collecting terms yield

(11.17)

which can be written as

y

z

x

to a far fie
ld point P

θ

d θsin

d

N 1–( )d

Figure 11.3. Linear array of equally spaced elements. 

#1

#2

#N

1 a a2 a3 … a N 1–( )+ + + + + 1 aN–
1 a–

---------------=

a ejkd θsin

E θsin( ) 1 ejNkd θsin–
1 ejkd θsin–

---------------------------- 1 Nkd θsincos( ) j Nkd θsinsin( )––
1 kd θsincos( ) j kd θsinsin( )––

---------------------------------------------------------------------------------------= =
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------------------------------------------------------------------------------------------=
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(11.18)

and using the trigonometric identity  yields 

(11.19)

which is a periodic function of , with a period equal to . 

The maximum value of , which occurs at , is equal to . It
follows that the normalized intensity pattern is equal to

 (11.20)

The normalized two-way array pattern (radiation pattern) is given by

(11.21)

Figure 11.4 shows a plot of Eq. (11.21) versus  for . This plot
can be reproduced using the following MATLAB code.

% Use this code to produce figure 11.4a and 11.4b
clear all; close all;
eps = 0.00001;
k = 2*pi;
theta = -pi : pi / 10791 : pi;
var = sin(theta);
nelements = 8;
d = 1;         %  d = 1;
num = sin((nelements * k * d * 0.5) .* var);
if(abs(num) <= eps)
   num = eps;
end
den = sin((k* d * 0.5) .* var);
if(abs(den) <= eps)
   den = eps;
end
pattern = abs(num ./ den);
maxval = max(pattern);
pattern = pattern ./ maxval;
figure(1)
plot(var,pattern)
xlabel('sine angle - dimensionless')
ylabel('Array pattern')
grid

E θsin( ) 1 Nkd θsincos–
1 kd θsincos–

---------------------------------------=

1 θcos– 2 θ 2⁄sin( )2=
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kd θsin 2π

E θsin( ) θ 0= N

En θsin( ) 1
N
---- Nkd θsin( ) 2⁄( )sin

kd θsin( ) 2⁄( )sin
----------------------------------------------=

G θsin( ) En θsin( ) 2 1
N2
------ Nkd θsin( ) 2⁄( )sin

kd θsin( ) 2⁄( )sin
----------------------------------------------⎝ ⎠
⎛ ⎞

2
= =

θsin N 8=
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 Figure 11.4a. Normalized radiation pattern for a linear array; 

; .N 8= d λ=

 

 Figure 11.4b. Polar plot for the array pattern in Fig. 11.4a.
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figure(2)
plot(var,20*log10(pattern))
axis ([-1 1 -60 0])
xlabel('sine angle - dimensionless')
ylabel('Power pattern in dB')
grid;
figure(3)
theta = theta +pi/2;
polar(theta,pattern)
title ('Array pattern')

The radiation pattern  has cylindrical symmetry about its axis
 and is independent of the azimuth angle. Thus, it is completely

determined by its values within the interval . The main beam of an
array can be steered electronically by varying the phase of the current applied
to each array element. Steering the main beam into the direction-sine  is
accomplished by making the phase difference between any two adjacent ele-
ments equal to . In this case, the normalized radiation pattern can be
written as

(11.22)

If , then the main beam is perpendicular to the array axis, and the array
is said to be a broadside array. Alternatively, the array is called an endfire array
when the main beam points along the array axis. The radiation pattern maxima
are computed using L’Hopital’s rule when both the denominator and numerator
of Eq. (11.22) are zeros. More precisely, 

(11.23)

Solving for  yields

(11.24)

where the subscript  is used as a maxima indicator. The first maximum
occurs at  and is denoted as the main beam (lobe). Other maxima
occurring at  are called grating lobes. Grating lobes are undesirable and
must be suppressed. The grating lobes occur at non-real angles when the abso-
lute value of the arc-sine argument in Eq. (11.24) is greater than unity; it fol-
lows that . Under this condition, the main lobe is assumed to be at

 (broadside array). Alternatively, when electronic beam steering is con-
sidered, the grating lobes occur at 

G θsin( )
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⎛ ⎞
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(11.25)

Thus, in order to prevent the grating lobes from occurring between , the
element spacing should be .

The radiation pattern attains secondary maxima (side-lobes) when the
numerator of Eq. (11.24) is maximum, or equivalently

(11.26)

Solving for  yields

(11.27)

where the subscript  is used as an indication of side-lobe maxima. The nulls
of the radiation pattern occur when only the numerator of Eq. (11.24) is zero.
More precisely,

(11.28)

Again solving for  yields

(11.29)

where the subscript  is used as a null indicator. Define the angle that corre-
sponds to the half power point as . It follows that the half power (3-dB)
beamwidth is . This occurs when

(11.30)

In order to reduce the side-lobe levels, the array must be designed to radiate
more power toward the center and much less at the edges. This can be achieved
through tapering (windowing) the current distribution over the face of the
array. There are many possible tapering sequences that can be used for this pur-
pose. However, as known from spectral analysis, windowing reduces side-lobe
levels at the expense of widening the main beam. Thus, for a given radar appli-
cation, the choice of the tapering sequence must be based on the trade-off
between side-lobe reduction and main-beam widening. 
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Figures 11.5 through Fig. 11.13 show plots of the array gain pattern versus
steering angle for a few. These plots can be reproduced using the following
MATLAB code

% produce figures 11.5 through 11.13
clear all; close all; clc
win = hamming(19);
[theta,patternr,patterng] = linear_array(19, 0.5, 0, -1, -1, -3);
figure(5)
plot(theta, patterng,'linewidth',1.5)
xlabel('Steering angle in degrees'); ylabel('Antenna gain pattern in dB')
title('N = 19; d = 0.5\lambda; \theta = 0 degrees; Perfect phase shifters') 
grid on; axis tight
[theta, patternr, patterng] = linear_array(19, 0.5, 0, 1, win, -3);
figure(6)
plot(theta, patterng,'linewidth',1.5)
xlabel('Steering angle - degrees')
ylabel('Antenna gain pattern - dB')
title('N = 19; d = 0.5\lambda; \theta = 0 degrees; Perfect phase shifters; Hamming win-
dow') 
grid on; axis tight
[theta, patternr, patterng] = linear_array(19, 0.5, -15, -1, -1, 3);
figure(7)
plot(theta, patterng,'linewidth',1.5)
xlabel('Steering angle in degrees'); ylabel('Antenna gain pattern in dB')
title('N = 19; d = 0.5\lambda; \theta = -15 degrees; 3-bits phase shifters') 
grid on; axis tight
[theta, patternr, patterng] = linear_array(19, 0.5, 5, 1, win, 3);
figure(8)
plot(theta, patterng,'linewidth',1.5)
xlabel('Steering angle - degrees')
ylabel('Antenna gain pattern - dB')
title('N = 19; d = 0.5\lambda; \theta = 5 degrees; 3-bits phase shifters; Hamming win-
dow') 
grid on; axis tight
[theta, patternr, patterng] = linear_array(19, 0.5, 25, 1, win, 3);
figure(9)
plot(theta, patterng,'linewidth',1.5)
xlabel('Steering angle in degrees')
ylabel('Antenna gain pattern - dB')
title('N = 19; d = 0.5\lambda; \theta = 25 degrees; 3-bits phase shifters; Hamming win-
dow') 
grid on; axis tight
[theta, patternr, patterng] = linear_array(19, 1.5, 48, -1, -1, -3);
figure(10)
plot(theta, patterng,'linewidth',1.5)
xlabel('Steering angle in degrees'); ylabel('Antenna gain pattern in dB')
title('N = 19; d = 1.5\lambda; \theta = 48 degrees; Perfect phase shifters') 
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grid on; axis tight
[theta, patternr, patterng] = linear_array(19, 1.5, 48, 1, win, -3);
figure(11)
plot(theta, patterng,'linewidth',1.5)
xlabel('Steering angle in degrees'); ylabel('Antenna gain pattern in dB')
title('N = 19; d = 1.5\lambda; \theta = 48 degrees; Perfect phase shifters; Hamming
window') 
grid on; axis tight
[theta, patternr, patterng] = linear_array(19, 1.5, -53, -1, -1, 3);
figure(12)
plot(theta, patterng,'linewidth',1.5)
xlabel('Steering angle in degrees'); ylabel('Antenna gain pattern in dB')
title('N = 19; d = 1.5\lambda; \theta = -53 degrees; 3-bits phase shifters') 
grid on; axis tight
[theta, patternr, patterng] = linear_array(19, 1.5, -33, 1, win, 3);
figure(13)
plot(theta, patterng,'linewidth',1.5)
xlabel('Steering angle in degrees')
ylabel('Antenna gain pattern - dB')
title('N = 19; d = 1.5\lambda; \theta = -33 degrees; 3-bits phase shifters; ...
Hamming window') 
grid on; 
axis tight

 Figure 11.5. Array gain pattern.
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 Figure 11.6. Array gain pattern. 

 Figure 11.7. Array gain pattern. 
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 Figure 11.8. Array gain pattern. 

 Figure 11.9. Array gain pattern. 
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 Figure 11.10. Array gain pattern.

 Figure 11.11. Array gain pattern. 
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 Figure 11.12. Array gain pattern. 

 Figure 11.13. Array gain pattern. 
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11.4. Nonadaptive Beamforming 
In adaptive beamforming the beam of interest is formed (generated) by con-

tinuously changing a set of weights through feedback circuits to minimize an
output error signal. Nonadaptive or conventional beamformers do the same
thing in the sense that the beam of interest is generated using a set of unique
weights. Except in this case, these weights are determined a priori so that inter-
ference from a specific angle of arrival is minimized or eliminated. Different
sets of weights will produce nulls in different directions in the array’s field of
view. 

Consider a linear array of  equally spaced elements, and a plane wave
) incident on the aperture with direction-sine , as shown in

Fig. 11.14. The weights  are, in general, complex con-
stants. The output of the beamformer is

(11.31)

(11.32)

where  is the element spacing and  is the speed of light. Fourier transforma-
tion of Eq. (11.31) yields

 (11.33)

The phase term  is defined as

(11.34)

 and . Eq. (11.33) can be written in vector form as

(11.35)

(11.36)

(11.37)

where the superscripts  and , respectively, indicate complex conjugate
and complex conjugate transpose. 
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Let  be the amplitude of the wavefront defined by ; it follows that
the vector  is given by

(11.38)

where  is a steering vector can be written as,

(11.39)

Using this notation, Eq. (11.35) can be expressed in the form

(11.40)

The array pattern of the beam steered at  is computed as the expected value
of . In other words, the power spectrum density for the beamformer output is
given by

(11.41)

where  and  is the correlation matrix given by

(11.42)

Consider  incident plane waves with directions of arrival defined by

(11.43)

The  sample at the output of the  sensor is

 Figure 11.14. A linear array of size , element spacing , and an incident 
plane wave defined by .
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(11.44)

where  is the amplitude of the  plane wave and  is white, zero-
mean noise with variance , and it is assumed to be uncorrelated with the
signals. Equation (11.44) can be written in vector notation as

(11.45)

A set of  steering vectors is needed to simultaneously form  beams.
Define the steering matrix  as

(11.46)

Then the autocorrelation matrix of the field measured by the array is

(11.47)

where , and  is the identity matrix.

For example, consider the case depicted in Fig. 11.15, where an interfering
signal located at angle  off the antenna boresight. The desired signal
is at . The desired output should contain only the signal . From
Eq. (11.33) and Eq. (11.34) the desired output is 

(11.48)

Since the angle , it follows that

(11.49)

(11.50)

Thus, in order to produce the desired signal, , at the output of the beam-
former, it is required that

(11.51)
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Next, the output due to the interfering signal is

(11.52)

Since the angle , it follows that

(11.53)

and in order to eliminate the interference signal from the output of the beam-
former, it is required that

(11.54)

Solving Eq. (11.51) and Eq. (11.54) yields

(11.55)

Using the weights given in Eq. (11.55) will allow the desired signal to get
through the beamformer unaffected; however, the interference signal will be
completely eliminated from the output.   
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11.5. Adaptive Array Processing

11.5.1. Adaptive Signal Processing Using Least Mean Squares (LMS)

Adaptive signal processing evolved as a natural evolution from adaptive
control techniques of time varying systems. Advances in digital processing
computation techniques and associated hardware have facilitated maturing
adaptive processing techniques and algorithms. Consider the basic adaptive
digital system shown in Fig. 11.16. The system input is the sequence  and
its output is the sequence . What differentiates adaptive from nonadaptive
systems is that in adaptive systems the transfer function  is now time
varying. The arrow through the transfer function box is used to indicate adap-
tive processing (or time varying transfer function). The sequence  is
referred to as the desired response sequence. The error sequence is the differ-
ence between the desired response and the actual response. Remember that the
desired sequence is not completely known; otherwise, if it were completely
known, one would not need any adaptive processing to compute it. The defini-
tion of this desired response is dependent on the system specific requirements.

Many different techniques and algorithms have been developed to minimize
the error sequence. Using one technique over another depends heavily on the
operating environment under consideration. For example, if the input sequence
is a stationary random process, then minimizing the error signal is nothing
more than solving the least mean squares problem. However, in most adaptive
processing systems the input signal is a nonstationary process. In this section
the least mean squares technique is examined. 

The least mean squares (LMS) algorithm is the most commonly utilized
algorithm in adaptive processing, primary because of its simplicity. The time
varying transfer function of order  can be written as a Finite Impulse
Response (FIR) filter defined by

(11.56)

 

x k[ ]
y k[ ]
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L
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 Figure 11.16. Basic adaptive system.
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The input output relationship is given by the discrete convolution

(11.57)

The goal of the adaptive LMS process is to adjust the filter coefficients
toward an optimum minimum mean square error (MMSE). The most common
approach to achieving this MMSE utilizes the method of steepest descent. For
this purpose, define the filter coefficients in vector notation as

(11.58)

then
(11.59)

where  is a parameter that controls how fast the error converges to the
desired MMSE value, and the gradient vector  is defined by

(11.60)

As clearly indicated by Eq. (11.59) the adaptive filter coefficients update rate is
proportional to the negative gradient; thus, if the gradient is known at each step
of the adaptive process, then better computation of the coefficient is obtained.
In other words, the MMSE decreases from step  to step . Of course,
once the solution is found the gradient becomes zero and the coefficient will
not change any more.

When the gradient is not known, estimates of the gradient are used based
only on the instantaneous squared error. These estimates are defined by

(11.61)

Since the desired sequence  is independent from the output , Eq.
(11.61) can be written as

(11.62)

where the vector  is the input signal sequence. Substituting Eq. (11.62) into
Eq. (11.59) yields

(11.63)
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The choice of the convergence parameter  plays a significant role in deter-
mining the system performance. This is clear because as indicated by Eq.
(11.63), a successful implementation of the LMS algorithm depends on the
input signal, the choice of the desired signal, and the convergence parameter.
Much research and effort has been devoted toward selecting the optimal value
for . Nonetheless, no universal value has been found. However, a range for
this parameter has been determined to be . 

Often, a normalized value for the convergence parameter  can be used
instead of its absolute value. That is,

(11.64)

where  is the order of the adaptive FIR filter and  is the variance (power)
of the input signal. When the input signal is not stationary and its variance is
varying with time, a time varying estimate of  is used. That is

(11.65)

where  is a factor selected such that . Finally, Eq. (11.63) can be
written as

(11.66)

As an example and in reference to Fig. 11.15, let the input and desired sig-
nals be defined as 

(11.67)

(11.68)

where  is additive white noise with zero mean and variance . Fig-
ure 11.17 shows the output of the LMS algorithm defined in Eq. (11.66) when

 and . Figure 11.18 is similar to Fig. 11.17 except in this case,
 and . Note that in Fig. 11.18 the rate of convergences is

reduced since  is smaller than that used in Fig. 11.17; however, the filter’s
output is less noise because  is greater than zero which allows for more accu-
rate updates of the noise variance as defined in Eq. (11.65). These plots can be
reproduced using the following MATLAB code which utilizes the function
“LMS.m” (see Section 11.6.2).
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% Figures 11.17 and 11.18
close all; clear all
N = 501;
mu = 0.1; % convergence parameter
L = 20; % FIR filter order
B = zeros(1,L+1); % FIR coefficients
sigma = 2; %Initial estimate for noise power
alpha = .00; % forgetting factor
 k = 1:N;
noise = rand(1, length(k)) - .5; % Random noise
D = sqrt(2)*sin(2*pi*k/20); 
X = D + sqrt(7)*noise;
Y = LMS(X, D, B, mu, sigma, alpha);
subplot(3,1,1)
plot(D,'linewidth',1); xlim([0 501]); grid on; 
ylabel('Desired response'); title('\mu = 0.1; \alpha = 0.')
subplot(3,1,2)
plot(X,'linewidth',1); xlim([0 501]); grid on; 
ylabel('Corrupted signal')
subplot(3,1,3)
plot(Y,'linewidth',1); xlim([0 501]); grid on; 
xlabel('time in sec'); 
ylabel('LMS output')

 Figure 11.17. Input signal, desired response, and output response of an 
LMS filter. 
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11.5.2. The LMS Adaptive Array Processing 

Consider the LMS adaptive array shown in Fig. 11.19. The difference
between the reference signal and the array output constitutes an error signal.
The error signal is then used to adaptively calculate the complex weights, using
a predetermined convergence algorithm. The reference signal is assumed to be
an accurate approximation of the desired signal (or desired array response).
This reference signal can be computed using a training sequence or spreading
code which is supposed to be known at the radar receiver. The format of this
reference signal will vary from one application to another. But in all cases, the
reference signal is assumed to be correlated with the desired signal. An
increased amount of this correlation significantly enhances the accuracy and
speed of the convergence algorithm being used. In this section, the LMS algo-
rithm is assumed.

In general, the complex envelope of a bandpass signal and its corresponding
analytical (pre-envelope) signal can be written using the quadrature compo-
nents pair ( ). Recall that the quadrature components are related
using the Hilbert transform as follows:

(11.69)

 Figure 11.18. Input signal, desired response, and output response of an 
LMS filter. 
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where  is the Hilbert transform of . A bandpass signal  can be
expressed as follows (see Chapter 2):

(11.70)

(11.71)

(11.72)

where  is the pre-envelope and  is the complex envelope. Equation
(11.72) can be written using Eq. (11.69) as

(11.73)

 Using this notation, the adaptive array output signal, its reference signal,
and the error signal can also be written using the same notation as

(11.74)

(11.75)

(11.76)

 Figure 11.19. A linear adaptive array.
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Referencing Fig. 11.19, denote the output of the  array input signal as 
and assume complex weights given by

(11.77)

It follows that 

(11.78)

Taking the Hilbert transform of Eq. (11.78) yields 

(11.79)

By using Eq. (11.67) into Eq. (11.79), one gets

(11.80)

The  channel analytic signal is

(11.81)

Substituting Eq. (11.78) and Eq. (11.79) into Eq. (11.80) gives

(11.82)

Collecting terms yields, using complex notation,

(11.83)

Therefore, the output of the entire adaptive array is

(11.84)

which can be written using vector notation as

(11.85)

where the vectors  and  are given by
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(11.87)

The superscript  indicates the transpose operation.
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As discussed earlier, one common technique to achieving the MMSE of an
LMS algorithm is to use steepest descent. Thus, the complex weights in the
LMS adaptive array are related as defined in Eq. (11.59). That is,

(11.88)

where again  is the convergence parameter. The subscript  indicates time
samples. In this case, the gradient vector  is defined by

(11.89)

Rearranging Eq. (11.88) so that the rate of change between consecutive esti-
mates of the complex weights is on one side of the equation yields

(11.90)

where the middle portion of Eq. (11.89) was also substituted for the gradient
vector. In this format, the left hand side of Eq. (11.90) represents the rate of
change of the complex weights with respect to time (i.e., the derivative of the
weights with respect to time). It follows that

(11.91)

However, see from Fig. 11.18, that the error signal complex envelope is 

(11.92)

It can be shown (see Problem 11.6) that 
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Therefore, Eq. (11.91) can be written as
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substituting Eq. (11.92) into Eq. (11.94) gives
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Equivalently,

(11.96)

The covariance matrix is by definition

(11.97)

and the reference signal correlation vector  is

(11.98)

Using Eq. (11.98) and Eq. (11.97), one can rewrite the differential equation
(DE) given Eq. (11.96) as

(11.99)

The steady state solution for the DE defined in Eq. (11.99) (provided that the
covariance matrix is not singular) is

(11.100)

As the size of the covariance matrix increase (i.e., number of channels in the
adaptive array) so does the complexity associated with computing the adaptive
weights in real time. This is true because computing the inverse of large matri-
ces in real time can be extremely challenging and demands significant amount
of computing power. Consequently, the effectiveness of adaptive arrays has
been limited to small-sized arrays, where only a few interfering signals can be
eliminated (cancelled). Additionally, computing of a good estimate of the
covariance matrix in real time is also difficult in practical applications. In order
to mitigate that effect, a reasonable estimate for  (the i,j element of
the covariance matrix) is derived by averaging m independent samples of data
from the same distribution. This approach can be extended to the entire covari-
ance matrix by collecting M independent “snapshots” of data from  chan-
nels. Thus, the estimate of the covariance matrix can be given as,

(11.101)

The transient solution of Eq. (11.99) (see Problem 11.7) is 

d
dt
-----w μE x̃∗x̃t[ ]w+ μE x̃∗ r̃ t( )[ ]=
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x̃1∗x̃1 x̃1∗x̃2 …

x̃2∗x̃1 x̃2∗x̃2 …

… …

= =

s

s E x̃∗d̃ t( )[ ] E x̃1∗ r̃ x̃2∗ r̃ …
t

= =

d
dt
-----w μCw+ μs=

w C 1– S=

E xixj∗{ }

N

C̃ x̃†x̃( ) M⁄≈
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(11.102)

where the vectors  are constants that depend on the initial value of ,
and  are the eigenvalues of the matrix . It follows that the complete solu-
tion of Eq. (11.99) is 

(11.103)

A very common measure of effectiveness of an adaptive array is the ratio of the
total output interference power,  to the internal noise power, .

Example:

Consider the two-element array in Section 11.4. Assume the desired signal is at
directional-sine  and the interference signal is at . Calculate
the adaptive weights so that the interference signal is cancelled. 

Solution:

From Fig. 11.19 

where  is the desired response,  is the noise, signal, and  is the interfer-
ence signal. The noise signal is spatially incoherent, more specifically

Also 

The desired signal is 

where  is a uniform random variable. The interference signal is
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where  is a uniform random variable. Of course the random variables 
and  are assumed to be statistically independent. In vector format

Of course the noise vector is

and the reference signal is (this is an assumption so that the desired and refer-
ence signal are correlated)

Note that the input SNR is 

 

and the interference to noise ratio is

The input signal can be written using vector notation as

 

The covariance matrix is computed from Eq. (11.97) as

In order to compute the covariance matrix eigenvalue, one needs to compute
the determinant first 
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Thus, 

The reference correlation vector is

It follows that the weights are

11.5.3.  Sidelobe Cancelers (SLC)

Sidelobe cancelers typically consist of a main antenna (which can be a
phased array or a single element) and one or more auxiliary antennas. The
main antenna is referred to as the main channel; it is assumed to be highly
directional and is pointed toward the desired signal angular location. The inter-
fering signal is assumed to be located somewhere off the main antenna bore-
sight (in the sidelobes). Because of this configuration the main channel
receives returns from both the desired and the interfering signals. However,
returns from the interfering signal in the main channel are weak because of the
low main antenna sidelobe gain in the direction of the interfering signal. Also
the auxiliary antenna returns are primarily from the interfering signal. This is
illustrated in Fig. 11.20. 

 Referring to Fig. 11.20,  is the desired signal,  is the main channel
noise signal which is primarily from the interfering signal, while  is the
interfering signal in the auxiliary array. It is assumed that the signals  and

 are uncorrelated. It is also assumed that the interfering signal is highly
correlated with the noise signal in the main channel. The basic idea behind
SLC is to have the adaptive auxiliary channel produce an accurate estimate of
the noise signal first, then to subtract that estimate from the main channel sig-
nal so that the output signal is mainly the desired signal.
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The error signal is 

(11.104)

where  is the vector of auxiliary array signal,  is the adapted weights. The
vector  of size . The residual power is

(11.105)

(11.106)

It follows that

(11.107)

Differentiate the residual power with respect to  and setting the answer
equal to zero (to compute the optimal weights that minimize the power resid-
ual) yields

(11.108)

where  is the covariance matrix of the auxiliary channel. Finally, the opti-
mal weights are given by

 Figure 11.20. Sidelobe canceler array.
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(11.109)

Note that the vector  represents the components that are common to both
main and auxiliary channels. Note that Eq. (11.109) makes intuitive sense
where the objective is to isolate the components in the data which are common
to the main and auxiliary channels and we then wish to give them some heavy
attenuation (which comes from inverting ).

11.6. MATLAB Program Listings
This section presents listings for all the MATLAB programs used in this

chapter. They are listed in the same order they appear in the text.

11.6.1. MATLAB Function “linear_array.m”

The function “linear_array.m” computes and plots the linear array gain pat-
tern as a function of real sine-space. The syntax is as follows:

[theta, patternr, patterng] = linear_array(Nr, dolr, theta0, winid, win, nbits)

where

 MATLAB Function “linear_array.m” Listing

function [theta,patternr,patterng] = linear_array(Nr,dolr,theta0,winid,win,nbits);
% This function computes and returns the gain radiation pattern for a linear array
% It uses the FFT to computes the pattern
%%%% *INPUTS ********** %%%%%%%%%%%%%

Symbol Description Units Status

Nr number of elements in array none input

dolr element spacing in lambda units wavelengths input

theta0 steering angle degrees input

winid -1: No weighting is used

1: Use weighting defined in win

none input

win window for side-lobe control none input

nbits negative #: perfect quantization

positive #: use  quantization levels 

none input

theta real angle available for steering degrees output

patternr array pattern dB output

patterng gain pattern dB output

w Ca
1– x̃d̃=

x̃d̃

Ca

2nbits
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% Nr ==> number of elements; dolr ==> element spacing (d) in lambda units divided
by lambda
% theta0 ==> steering angle in degrees; winid ==> use winid negative for no window,
winid positive to enter your window of size(Nr)
% win is input window, NOTE that win must be an NrX1 row vector; nbits ==> number
of bits used in the pahse shifters
% negative nbits mean no quantization is used
%%%% *OUTPUTS ********** %%%%%%%%%%%%%%%
% theta ==> real-space angle; patternr ==> array radiation pattern in dBs
% patterng ==> array directive gain pattern in dBs
%%%%%%%% ******************** %%%%%%%%%%%
eps = 0.00001;
n = 0:Nr-1;
i = sqrt(-1);
%if dolr is > 0.5 then; choose dol = 0.25 and compute new N
if(dolr <=0.5)
   dol = dolr;
   N = Nr;
else
   ratio = ceil(dolr/.25);
   N = Nr * ratio;
   dol = 0.25;
end
% choose proper size fft, for minimum value choose 256
Nrx = 10 * N; 
nfft = 2^(ceil(log(Nrx)/log(2)));
if nfft < 256
    nfft = 256;
end
% convert steering angle into radians; and compute the sine of angle
theta0 = theta0 *pi /180.;
sintheta0 = sin(theta0);
% detrmine and comput quantized steering angle
if nbits < 0
   phase0 = exp(i*2.0*pi .* n * dolr * sintheta0);
else
    % compute and add the phase shift terms (WITH nbits quantization)
    % Use formula thetal = (2*pi*n*dol) * sin(theta0) divided into 2^nbits
    % and rounded to the nearest quantization level
    levels = 2^nbits;
    qlevels = 2.0 * pi / levels; % compute quantization levels
% compute the phase level and round it to the closest quantization level 
    angleq = round(dolr .* n * sintheta0 * levels) .* qlevels; % vector of possible angles
    phase0 = exp(i*angleq);
end
% generate array of elements with or without window
if winid < 0 
    wr(1:Nr) = 1;
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else
    wr = win';
end
% add the phase shift terms
 wr =  wr .* phase0;
 % determine if interpolation is needed (i.e N > Nr)
if N > Nr
    w(1:N) = 0;
    w(1:ratio:N) = wr(1:Nr);
else
    w = wr;
end
% compute the sine(theta) in real space that correspond to the FFT index 
arg = [-nfft/2:(nfft/2)-1] ./ (nfft*dol);
idx = find(abs(arg) <= 1);
sinetheta = arg(idx);
theta = asin(sinetheta);
% convert angle into degrees
theta = theta .* (180.0 / pi);
% Compute fft of w (radiation pattern)
patternv = (abs(fftshift(fft(w,nfft)))).^2;
% convert radiation pattern to dBs
patternr = 10*log10(patternv(idx) ./Nr +  eps);
% Compute directive gain pattern  
rbarr  = 0.5 *sum(patternv(idx)) ./ (nfft * dol);
patterng = 10*log10(patternv(idx) + eps) - 10*log10(rbarr + eps);
return

11.6.2. MATLAB Function “LMS.m”

The function “LMS.m” implements Eq. (11.66). Its syntax is as follows

Y = LMS(X, D, B, mu, sigma, alpha)

where X is the corrupted sequence, D is the desired response, B is a vector con-
taining the FIR filter coefficients (its initial value can be set to zero), mu is the
convergence parameter, sigma is the SNR, and alpha is the forgetting factor.

MATLAB Function “LMS.m” Listing

function X = LMS(X, D, B, mu, sigma, alpha)
%   This program was written by Stephen Robinson a senior radar 
%   engineer at deciBel Research, Inc. in Huntsville, AL
%   X = data vector ; size = 1 x N
%   D = desired signal vector; size = 1 x N
%   N = number of data samples and of adaptive iterations
%   B = adaptive coefficients of Lht order fFIRfilter; size = 1 x L
%   L = order of adaptive system
%   mu = convergence parameter
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%   sigma = input signal power estimate
%   alpha = exponential forgetting factor
N = size(X,2)
L = size(B,2)-1
px = B;
for k = 1:N    
    px(1) = X(k);
    X(k) = sum(B.*px);  
    E = D(k) - X(k);
    sigma = alpha*(px(1)^2) + (1 - alpha)*sigma;
    tmp = 2*mu/((L+1)*sigma);
    B = B + tmp*E*px;
    px(L+1:-1:2) = px(L:-1:1);
end
return

Problems
11.1. Consider an antenna whose diameter is . What is the far
field requirement for an X-band or an L-band radar that is using this antenna? 
11.2. Consider an antenna with electric field intensity in the xy-plane

. This electric field is generated by a current distribution  in the yz-
plane. The electric field intensity is computed using the integral

  

where  is the wavelength and  is the aperture. (a) Write an expression for
 when  (a constant). (b) Write an expression for the normal-

ized power radiation pattern and plot it in dB.

11.3. A linear phased array consists of 50 elements with  element
spacing. (a) Compute the 3dB beam width when the main-beam steering angle
is  and . (b) Compute the electronic phase difference for any two con-
secutive elements for steering angle . 
11.4. A linear phased array antenna consists of eight elements spaced with

 element spacing. (a) Give an expression for the antenna gain pattern
(assume no steering and uniform aperture weighting). (b) Sketch the gain pat-
tern versus sine of the off-boresight angle . What problems do you see is
using  rather than ? 
11.5. In Section 10.4.2 we showed how a DFT can be used to compute the
radiation pattern of a linear phased array. Consider a linear of 64 elements at
half wavelength spacing, where an FFT of size 512 is used to compute the pat-
tern. What are the FFT bins that correspond to steering angles ?
11.6. Derive Eq. (11.93).

d 3m=

E ς( ) D y( )

E ς( ) D y( ) 2πj y
λ
--- ςsin⎝ ⎠

⎛ ⎞exp yd

r– 2⁄
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λ r
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0° 45°
60°

d λ=
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d λ= d λ 2⁄=

β 30° 45°,=
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11.7. Compute the transient solution of the DE defined in Eq. (11.99).
11.8. Compute the interference power to the intput power ratio of the
example in Section 11.5.3.

11.9. To generate the sum and difference patterns for a linear array of size
 follow this algorithm: To form the difference pattern, multiply the first 

elements by -1 and the second  elements by +1. Plot the sum and differ-
ence patterns for a linear array of size 60.

11.10. Generate the delta/sum patterns for a 21-element linear array using

the form  where  is the difference voltage pattern and

 is the sum voltage pattern.

N N 2⁄
N 2⁄

Δ
Σ
--- j

VΔ

VΔ
2 VΣ

2+
---------------------------------= VΔ

VΣ
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 Index

 A
Active correlation, 326

also see Pulse compression
Adaptive arrays

adaptive weights, 454, 456, 461
convergence parameter, 449, 450
covariance matrix, 456, 460
beamforming see nonadaptive beam-
forming
LMS, 448, 452
reference correlation vector, 456
SLC, 459-461

Ambiguity function, 171, 172, 187, 188
Barker code, 233-241
contour diagrams, 216
ideal, 189
LFM, 192-197
NLFM, 208
PRN, 241-249
properties, 188
pulse train, 197-201
pulse train with LFM, 202-206
single pulse, 189-192
SFW, 206-208

Amplitude estimate, 183
Analytic signal see Signals
Arrays 

general array, 430-432
linear, 432-4443

Atmosphere, 41, 42
stratified, 44-47

Atmospheric attenuation, 65-66

 B
Bandpass signal see Signals
Bandwidth see Effective bandwidth
Barker code, 233-241
Bessel-Jacobi equation, 101
Binary phase codes

see Barker code
see Codes, PRN

Blind speeds, 377, 384
Boltzmann’s constant, 12

 C
Cancelers see Moving Target Indicator 

(MTI)
Chirp waveforms

down-chirp, 110
up-chirp, 110

Clutter
CNR, 364
components, 374-375
definition, 353
density, 353, 354
main beam, 361
RCS, 361-373
sidelode clutter, 361
spectrum, 373-374, 376
statistical models, 373, 374
subclutter visibility, 392-393
surface clutter, 354-356
surface height irregularity, 355
volume, 358-361

Codes
Barker, 233-241
binary phase codes, 232
Costas, 252-255
definition, 225, 226
Franks, 249
frequency, 252
phase codes, 232
Polyphase code, 249
PRN, 241-249 
pulse-train codes, 226-231

Coherent integration see Pulse integration
Coherence, 10
Complementary error function, 265
Complex envelope, 96
Compressed pulse width, 196
Compression gain, 196
Compression ratio, 196
Constant false alarm rate (CFAR)

cell averaging (single pulse), 293-295 
cell-averaging CFAR (noncoherent 
integration), 295-296

Convolution integral, 89
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Correlation integral, 89
Costas codes see Codes
Covariance matrix

adaptive see Adaptive arrays
definition, 144
bandpass Gaussian process, 153

Cumulative probability of detection, 
290-291

CW radar 
block diagram, 404
LFM, 406-408
multiple frequency CW radar, 408-409
radar equation, 405

 D
Decimation, 133, 134
Delay line cancelers see Moving Target 

Indicator (MTI)
Detection in the presence of noise, 259-

263
Detection of fluctuating targets see Prob-

ability of detection
Detection threshold, 263, 275, 276
Diffraction, 61-65
Discrete Fourier transform, 102
Discrete power spectrum, 126-128
Discrete signals 225
Distortion 

due to target velocity, 340-344
Divergence, 52
Doppler, 5-9

Doppler measurement accuracy, 176
Doppler resolution, 169-171
Doppler uncertainty, 176

Duration see Effective duration

 E
Effective bandwidth, 115-119, 169

rms, 175
Effective duration, 115-119, 169

rms, 176
Effective aperture, 11
Effective earth radius, 47
Effective radiated power, 31
Energy spectrum density, 90
Earth

atmosphere, 41, 42
four-third model, 47

ground reflection, 48
reflection coefficient 48-53

Euler’s phi function, 243

 F
False alarm see Probability of false alarm
FFT parameters 

selection, 127
Footprint, 356, 357
Forth-third earth, see Earth
Fourier series, 87-89
Fourier transform, 84, 85

discrete, 125, 126
Frequency coding see Codes
Frequency modulation index, 99

LFM see Signals
Fresnel integrals, 111, 112, 211
Fresnel spectrum, 112, 114

 G
Gamma function, 308

incomplete Gamma function, 308-310
Gram-Charlier series coefficients, 279, 

283, 287
Grazing angle, 354
Ground reflection coefficient, see Earth
Group time delay, 212

 H
Hamming see Windowing techniques
Hanning see Windowing techniques
Hilbert transform, 95, 453

 I
Incomplete Gamma see Gamma function 
Integration see Pulse integration
Interpolation, 134, 135

 J
Jammers, 31

 K
 L
Linear frequency modulation, 99-103 
LFM waveforms see Signals, LFM 
Linear Shift Register, 242, 244

 M
Marcum’s Q-function see Q-function
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Matched filter
causal, 161
impulse response, 160, 161
mean and variance 162, 163
response to moving target, 165-167
response to stationary target, 163-165
SNR, 157-161

Maximum length sequences, 243, 244
Moving target indicator (MTI), 377

delay line with feedback, 381-384
double delay line, 379-381
optimal weights, 393-395
single delay lines, 377-379

MTI improvement factor, 
definition, 389
general case, 391-392
two-pulse MTI case, 390

Multipath, 60, 61
also see Propagation factor

Multiple PRFs see PRF staggering

 N
Noise

effective noise temperature, 13, 39 
noise figure, 12, 35-40

Nonadaptive beamforming, 444-447
Noncoherent integration see Pulse inte-

gration
Number of false alarms, 264
Nyquist sampling rate, 121

 O
Orthogonal functions, 87
Orthonormal functions, 87

 P
Phi function see Euler’s phi function
Phase estimate, 183
Plank’s constant, 35
Polarization, 26-30
Polynomial

characteristic, 243
maximum length, 243-245

Power aperture product, 17 
Power spectrum density, 89
Primitive root, 254
PRF staggering, 384-388, 416
PRN codes see Codes

Pre-envelope see Signals
Probability density functions, 142
Probability of detection, 264-267

cumulative, 290-291 also see Cumula-
tive probability of detection

square law detector, 274-278
Swerling I model, 280-281
Swerling II model, 283-284
Swerling III model, 285-286
Swerling IV model, 287-288
Swerling 0 model, 279
target fluctuating, 273-274

Probability of false alarm, 263-264
false alarm time, 263

Propagation factor, 40
flat earth, 53-58
spherical earth, 58-60

Pseudo random codes, 241-249
Pulse compression

basic principal, 317-321
correlation processor, 320-325
radar equation, 316-317
single LFM pulse, 326-331
stretch processor, 326
SFW, 332-343
time bandwidth product, 213

Pulse integration, 267-268
coherent integration, 269, 270
improvement factor, 271, 272
noncoherent integration, 271

Pulse repetition frequency (PRF), 1
Pulse repetition interval, 1
Pulsed radar, 410

block diagram, 411
high PRF, 414
pulse Doppler radar, 412
pulse Doppler signal processing, 415
resolving Doppler ambiguity, 134-136
resolving range ambiguity, 418-420

 Q
Quadrature components, 96, 97
Q-function, 265

 R
Radar cross section (RCS), 11, 422-424
Radar equation, 10-15

CW radar 405
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high PRF, 414
pulse compression, 316-317
surveillance (search), 16-20
with jamming, 31-35
with volume clutter, 361, 361
with surface clutter, 356, 357

Radar losses, 13
integration loss, 271-272

Random processes, 95-99
Random variables

cdf, 141
central moments, 142
characteristic function, 144
chi-square, 149-151
definition, 141
joint cdf, 143
joint pdf, 143
multivariat Gaussian, 144-148
pdf definition, 141
Rayliegh, 148

Random processes, 151, 152
bandpass random process, 152-154

Range
ambiguity function, 168
ambiguity, 3
definition, 1
measurement accuracy, 174, 175
profile, 334
resolution, 4, 5, 167-169, 336
unambiguous, 3, 4, 336
uncertainty, 172-175

Range-Doppler coupling
definition, 177
Doppler error, 179
in LFM signals, 180, 217
range error, 177-179

Range reduction factor, 32
Refraction, 41-44

stratified model, 44-47
Replica, 162
Resolving Doppler ambiguity see Pulsed 

radar 
Resolving range ambiguity see Pulsed 

radar 

 S
Sampling theorem

bandpass sampling theorem, 123

lowpass sampling theorem, 120-122
Scattering matrix, 29
Schwarz inequality, 159, 223
Search volume, 16
Signals

analytic, 95
bandpass, 95
complex envelope, 95
continuous wave, 103, 104
discrete, 119, also see Discrete codes
finite duration pulse, 104, 105
frequency modulation, 99-103
LFM, 108-112
periodic pulse train, 105-107
pre-envelope, 95
SFW, 206-208, 332-344

Signal-to-clutter-ratio, 375, 360, 364 
Signal-to-jammer ratio, 32
Spectrum shaping, 214, 215
Stationary phase, 208- 214
Stepped frequency waveforms (SFW) 

see Signals
Stretch processing see Pulse compression
Swerling targets see Detection probabil-

ity of detection
System classifications, 85

linear and nonlinear, 85
stable, 86
time invariant, 86 

 T
Target fluctuation see Probability of 

detection
Time bandwidth product, 315-316 also 

see Pulse compression
Time of false alarm see False alarm time

 U
Unambiguous range see Range 
Unambiguous range window, 336
Uncertainty in Doppler, 242-245
Uncertainty in range, 239-242

 V
Velocity distortion 

in SWF, 340-342

 W
Waveforms see Signals
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Windowing techniques, 128-133
Hamming, 131
Hanning, 131
Kaiser, 131

 Z
Z-transform, 124, 125
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