
HANDBOOK ON THE PHYSICS AND CHEMISTRY
OF RARE EARTHS

Advisory Editorial Board

GIN-YA ADACHI

Kobe, Japan
WILLIAM J. EVANS

Irvine, USA
YURI GRIN

Dresden, Germany
SUZAN M. KAUZLARICH

Davis, USA
MICHAEL F. REID

Canterbury, New Zealand
CHUNHUA YAN

Beijing, P.R. China

Editors Emeritus

KARL A. GSCHNEIDNER, JR

Ames, USA
LEROY EYRINGw

Tempe, USA

wDeceased (2005)



North-Holland is an imprint of Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

Copyright © 2015 Elsevier B.V. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or any
information storage and retrieval system, without permission in writing from the
publisher. Details on how to seek permission, further information about the Publisher’s
permissions policies and our arrangements with organizations such as the Copyright
Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under
copyright by the Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods, professional
practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge
in evaluating and using any information, methods, compounds, or experiments
described herein. In using such information or methods they should be mindful of their
own safety and the safety of others, including parties for whom they have a
professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or
editors, assume any liability for any injury and/or damage to persons or property as a
matter of products liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-444-63260-9
ISSN: 0168-1273

For information on all North-Holland publications
visit our website at http://store.elsevier.com/

http://www.elsevier.com/permissions
http://store.elsevier.com/


Contributors

Numbers in Parentheses indicate the pages on which the author’s contributions begin.

Alban Ferrier (1), Institut de Recherche de Chimie Paris, CNRS-Chimie, ParisTech,

and Sorbonne Universités, UPMC Univ Paris 06, Paris, France

Koichiro Fujinaga (79), Department of Systems Innovation and Frontier Research

Center for Energy and Resources (FRCER), School of Engineering, The University

of Tokyo, Bunkyo-ku, Japan

Philippe Goldner (1), Institut de Recherche de Chimie Paris, CNRS-Chimie,

ParisTech, Paris, France
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Preface

These elements perplex us in our reaches [sic], baffle us in our speculations,
and haunt us in our very dreams. They stretch like an unknown sea before
us—mocking, mystifying, and murmuring strange revelations and possibilities.

Sir William Crookes (February 16, 1887)

Volume 46 of the Handbook on the Physics and Chemistry of Rare Earths
features two chapters covering two very different subjects pertaining to crys-

tals for quantum information and to potential new deep-sea resources.

Chapter 267 gives insight into a new and exciting field of quantum sci-

ence: quantum communications, storage, and computing. Digital information

is playing a crucial role in present-day world but its fundamental concepts

were developed at the beginning of the twentieth century. In the mid-1980s,

a new paradigm emerged in which classical bits of information that can only

take discrete values of 0 and 1 are replaced by quantum bits (qubits) able to

adopt any superposition state. Quantum processing information is, however,

requiring very sophisticated materials with highly demanding properties

because superposition states are destroyed by fluctuating environments.

Therefore, a classical carrier for quantum information is light because photons

only weakly interact with atoms and electromagnetic fields. Rare-earth-doped

crystals have very narrow optical transitions and are consequently well suited

as quantum information materials; appropriate ions include Pr3+, Nd3+, Eu3+,

Er3+, or Tm3+. After an introduction on quantum information and light-atom

interactions, the review focuses on rare-earth spectroscopy and associated

experimental techniques, absorption, hole burning and spectral tailoring for

observing hyperfine structures, Raman heterodyne scattering, as well as tech-

niques used for determining coherence lifetimes. Two applications are then

discussed in more details: quantum memories based on light and quantum

computers. In these last sections, concepts and protocols are presented as well

as a few representative experimental examples.

Chapter 268 deals with potential new rare-earth resources. Rare-earth

elements are distributed broadly in the Earth’s crust but in relatively small

concentrations and always as mixtures. Natural abundances of the ele-

ments in Earth’s crust vary considerably, from 60 to 70 ppm for cerium to
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less than 0.5 ppm for lutetium. Several hundreds of rare-earth-containing

minerals are known, but only a few are exploited commercially. The minerals

containing light lanthanides (La through Eu) have an equivalent rare-earth

oxide (REO) content in the range 5–10 wt.%, while ion-adsorption clays

exploited for heavy lanthanides (Gd–Lu) and Y contain less than 1 wt.% of

REO. At the turn of the century, China emerged as the major producer of rare

earths worldwide with a share reaching over 95% in 2010. Exportation quotas

were introduced in 2006 and considerably reduced in 2010 following geopo-

litical tensions in Asia. As a consequence, several countries started to look

for alternative, possibly domestic, supplies. In this context, the authors of

the chapter report that deep-sea muds in the eastern South Pacific and central

North Pacific contain 0.1–0.2 wt.% rare earths and can be recovered by estab-

lished drilling techniques followed by simple acid leaching. The chapter first

presents rare-earth distribution in Pacific, Indian, and Atlantic Oceans

together with their lithological and geochemical characteristics. It then con-

tinues with a description of the minerals contained in the muds followed by

a detailed discussion of the advantages of this new rare-earth resource. The

review ends by presenting practical mining and leaching systems.

CHAPTER 267: RARE EARTH-DOPED CRYSTALS
FOR QUANTUM INFORMATION PROCESSING

By Philippe Goldner, Alban Ferrier, and Olivier Guillot-Noël

Chimie ParisTech and Université Pierre et Marie Curie, Paris, France
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Quantum information processing uses superposition states of photons or

atoms to process, store, and transmits data in ways impossible to reach with

classical systems. For example, a quantum computer could find the prime fac-

tors of large numbers much faster than a classical computer. It could also be

used to efficiently simulate a collection of interacting quantum systems.

Moreover, quantum communications based on the fundamental laws of quan-

tum mechanics offer unrivaled security for data transmission. Quantum mem-

ories have also been developed to transfer quantum states between different

systems, like photons and atoms. It is even envisaged that the combination

of quantum computing, transmission, and storage could create a quantum

internet. Rare-earth-doped crystals have recently emerged as promising

solid-state systems for quantum information processing, mainly because they

exhibit very narrow optical transitions at low temperature. This allows one to

use these materials as quantum light-matter interfaces or to control their quan-

tum states optically. Moreover, many rare earths possess a nonzero nuclear

spin, opening perspectives for the use of long-lived quantum states in proces-

sing or storage.

After a brief introduction to quantum information processing and coherent

light-matter interactions, specific spectroscopic properties of rare-earth-doped

crystals are reviewed. This includes hyperfine structures, coherent properties

of optical and hyperfine transitions, as well as techniques to extend coherence

lifetimes. Two main applications are then dealt with: quantum memories

based on light and quantum computing. An example of quantum memory

relies on an entangled pair of photons in Y2SiO5:Nd(0.0003 at.%), while

high-fidelity, long storage can be achieved with La2(WO4)3:Pr(0.2 at.%). In

the case of quantum computing, single- (Y2SiO5:Pr(0.05 at.%)) and two-qubit

gates (Y2SiO5:Eu(0.02 at.%)) are presented.

CHAPTER 268: REY-RICH MUD: A DEEP-SEA MINERAL
RESOURCE FOR RARE EARTHS AND YTTRIUM

By Kentaro Nakamura, Koichiro Fujinaga, Kazutaka Yasukawa, Yutaro

Takaya, Junichiro Ohta, Shiki Machida, Satoru Haraguchi, and Yasuhiro Kato

The University of Tokyo, Japan Agency for Marine-Earth Science and

Technology, and Waseda University
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Rare-earth elements and yttrium (denoted REY in this chapter) are impor-

tant materials for high-technology applications and green energy technologies

(e.g., flat screen televisions, cell phones, electric/hybrid vehicles, and wind

power generators). World demand for REY is increasing rapidly, and a stable

supply of REY is required for future development of technology and the

global economy. Diversification of sources and increased access to REY

resources are, therefore, crucial to maintain supply capable of meeting the

ever-rising demand. Here, newly discovered extensive deposits of deep-sea

mud containing high REY concentrations (called REY-rich mud) are pre-

sented. The deep-sea REY-rich muds are characterized by (1) tremendous

resource potential by virtue of their wide distribution, (2) high REY concen-

trations with significant heavy lanthanide enrichment, (3) a stratiform distri-

bution that allows relatively simple and cost-effective exploration, (4) very

low concentrations of radioactive elements such as Th and U, and (5) ease

of extraction of REY by acid leaching. In addition, a system to mine REY-

rich muds can be developed based on a technique developed and tested to

mine sulfide-rich muds in the Red Sea and manganese nodules in the Pacific

Ocean. These features demonstrate that the REY-rich mud could constitute a

highly promising REY resource for the future.

The chapter starts with an introduction on rare-earth elements, their depos-

its onshore, as well as brief introduction of the new discovery of the REY-rich

mud. It then focuses on distribution, lithological and geochemical characteris-

tics, host phases, and genesis of REY-rich muds. The review ends with con-

siderations on resource potential, advantages of developing, and conceivable

development systems.

Jean-Claude G. B€unzli
Vitalij K. Pecharsky
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73. F. Szabadváry, The history of the discovery and separation of the rare earths 33

74. B.R. Judd, Atomic theory and optical spectroscopy 81

75. C.K. Jørgensen, Influence of rare earths on chemical understanding and
classification 197

76. J.J. Rhyne, Highlights from the exotic phenomena of lanthanide magnetism 293

77. B. Bleaney, Magnetic resonance spectroscopy and hyperfine interactions 323

78. K.A. Gschneidner Jr and A.H. Daane, Physical metallurgy 409

79. S.R. Taylor and S.M. McLennan, The significance of the rare earths in geochemistry
and cosmochemistry 485

Errata 579

Subject index 581

VOLUME 12

1989; ISBN 0-444-87105-5

80. J.S. Abell, Preparation and crystal growth of rare earth elements and intermetallic
compounds 1

81. Z. Fisk and J.P. Remeika, Growth of single crystals from molten metal fluxes 53

82. E. Burzo and H.R. Kirchmayr, Physical properties of R2Fe14B-based alloys 71

83. A. Szytuła and J. Leciejewicz, Magnetic properties of ternary intermetallic compounds
of the RT2X2 type 133

84. H. Maletta and W. Zinn, Spin glasses 213

85. J. van Zytveld, Liquid metals and alloys 357

86. M.S. Chandrasekharaiah and K.A. Gingerich, Thermodynamic properties of gaseous
species 409

87. W.M. Yen, Laser spectroscopy 433

Subject index 479

VOLUME 13

1990; ISBN 0-444-88547-1

88. E.I. Gladyshevsky, O.I. Bodak and V.K. Pecharsky, Phase equilibria and crystal
chemistry in ternary rare earth systems with metallic elements 1

89. A.A. Eliseev and G.M. Kuzmichyeva, Phase equilibrium and crystal chemistry in
ternary rare earth systems with chalcogenide elements 191

90. N. Kimizuka, E. Takayama-Muromachi and K. Siratori, The systems R2O3–M2O3–

M0O 283

91. R.S. Houk, Elemental analysis by atomic emission and mass spectrometry with
inductively coupled plasmas 385

92. P.H. Brown, A.H. Rathjen, R.D. Graham and D.E. Tribe, Rare earth elements in
biological systems 423

Errata 453

Subject index 455

xviii Contents of Volumes 1–45



VOLUME 14

1991; ISBN 0-444-88743-1

93. R. Osborn, S.W. Lovesey, A.D. Taylor and E. Balcar, Intermultiplet transitions using
neutron spectroscopy 1

94. E. Dormann, NMR in intermetallic compounds 63

95. E. Zirngiebl and G. G€untherodt, Light scattering in intermetallic compounds 163

96. P. Thalmeier and B. L€uthi, The electron–phonon interaction in intermetallic
compounds 225

97. N. Grewe and F. Steglich, Heavy fermions 343

Subject index 475

VOLUME 15

1991; ISBN 0-444-88966-3

98. J.G. Sereni, Low-temperature behaviour of cerium compounds 1

99. G.-Y. Adachi, N. Imanaka and Zhang Fuzhong, Rare earth carbides 61

100. A. Simon, Hj. Mattausch, G.J. Miller, W. Bauhofer and R.K. Kremer, Metal-rich
halides 191

101. R.M. Almeida, Fluoride glasses 287

102. K.L. Nash and J.C. Sullivan, Kinetics of complexation and redox reactions of the
lanthanides in aqueous solutions 347

103. E.N. Rizkalla and G.R. Choppin, Hydration and hydrolysis of lanthanides 393

104. L.M. Vallarino, Macrocycle complexes of the lanthanide(III), yttrium(III), and
dioxouranium (VI) ions from metal-templated syntheses 443

Errata 513

Subject index 515

CUMULATIVE INDEX, Vols. 1–15

1993; ISBN 0-444-89965-0

VOLUME 16

1993; ISBN 0-444-89782-8

105. M. Loewenhaupt and K.H. Fischer, Valence-fluctuation and heavy-fermion 4f
systems 1

106. I.A. Smirnov and V.S. Oskotski, Thermal conductivity of rare earth compounds 107

107. M.A. Subramanian and A.W. Sleight, Rare earth pyrochlores 225

108. R. Miyawaki and I. Nakai, Crystal structures of rare earth minerals 249

109. D.R. Chopra, Appearance potential spectroscopy of lanthanides and their
intermetallics 519

Author index 547

Subject index 579

VOLUME 17: Lanthanides/Actinides: Physics – I

1993; ISBN 0-444-81502-3

110. M.R. Norman and D.D. Koelling, Electronic structure, Fermi surfaces, and
superconductivity in f electron metals 1

111. S.H. Liu, Phenomenological approach to heavy-fermion systems 87

112. B. Johansson and M.S.S. Brooks, Theory of cohesion in rare earths and
actinides 149

113. U. Benedict and W.B. Holzapfel, High-pressure studies – Structural aspects 245

Contents of Volumes 1–45 xix



114. O. Vogt and K. Mattenberger, Magnetic measurements on rare earth and actinide
monopnictides and monochalcogenides 301

115. J.M. Fournier and E. Gratz, Transport properties of rare earth and actinide
intermetallics 409

116. W. Potzel, G.M. Kalvius and J. Gal, M€ossbauer studies on electronic structure of
intermetallic compounds 539

117. G.H. Lander, Neutron elastic scattering from actinides and anomalous
lanthanides 635

Author index 711

Subject index 753

VOLUME 18: Lanthanides/Actinides: Chemistry

1994; ISBN 0-444-81724-7

118. G.T. Seaborg, Origin of the actinide concept 1

119. K. Balasubramanian, Relativistic effects and electronic structure of lanthanide and
actinide molecules 29

120. J.V. Beitz, Similarities and differences in trivalent lanthanide- and actinide-ion
solution absorption spectra and luminescence studies 159

121. K.L. Nash, Separation chemistry for lanthanides and trivalent actinides 197

122. L.R. Morss, Comparative thermochemical and oxidation – reduction properties of
lanthanides and actinides 239

123. J.W. Ward and J.M. Haschke, Comparison of 4f and 5f element hydride
properties 293

124. H.A. Eick, Lanthanide and actinide halides 365

125. R.G. Haire and L. Eyring, Comparisons of the binary oxides 413

126. S.A. Kinkead, K.D. Abney and T.A. O’Donnell, f-Element speciation in strongly
acidic media: lanthanide and mid-actinide metals, oxides, fluorides and oxide
fluorides in superacids 507

127. E.N. Rizkalla and G.R. Choppin, Lanthanides and actinides hydration and
hydrolysis 529

128. G.R. Choppin and E.N. Rizkalla, Solution chemistry of actinides and
lanthanides 559

129. J.R. Duffield, D.M. Taylor and D.R. Williams, The biochemistry of the f-
elements 591

Author index 623

Subject index 659

VOLUME 19: Lanthanides/Actinides: Physics – II

1994; ISBN 0-444-82015-9

130. E. Holland-Moritz and G.H. Lander, Neutron inelastic scattering from actinides and
anomalous lanthanides 1

131. G. Aeppli and C. Broholm, Magnetic correlations in heavy-fermion systems: neutron
scattering from single crystals 123

132. P. Wachter, Intermediate valence and heavy fermions 177

133. J.D. Thompson and J.M. Lawrence, High pressure studies – Physical properties of
anomalous Ce, Yb and U compounds 383

134. C. Colinet and A. Pasturel, Thermodynamic properties of metallic systems 479

Author index 649

Subject index 693

xx Contents of Volumes 1–45



VOLUME 20

1995; ISBN 0-444-82014-0
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1 INTRODUCTION

Information in digital form is at the heart of nowadays societies, playing a

major role in world-scale organizations down to many individual daily activ-

ities. Although technology made extraordinary progresses in terms of commu-

nication speed and capacity, data storage, or processing power, most of the
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fundamental concepts of information science were established in the begin-

ning of the twentieth century. In 1984, a quantum algorithm was discovered

by Bennett and Brassard for encrypted data exchange (Bennett and

Brassard, 1984) and in 1985, Deutsch pioneered quantum computing theory

(Deutsch, 1985). This was the start of quantum information processing

(QIP), which is currently a major research topic in physics, computer science,

mathematics, and material science. Quantum information is a new paradigm,

where the classical bits, which can take only discrete values, are replaced by

quantum bits, called qubits, which can assume any superposition state. This

fundamentally new resource allows data processing, storage, and communica-

tion in ways impossible to achieve with classical systems (Kimble, 2008;

Nielsen and Chuang, 2000; Stolze and Suter, 2008).

QIP is however very demanding on physical systems and its development

has triggered important advances in quantum system control and design. In

turn, QIP theory has emerged as a unified way to describe the behavior of

these systems, independently of the details of their nature, structure, or inter-

actions. QIP uses superposition states, which exist for a significant duration

only in isolated systems. Interactions with a fluctuating environment, with

many degrees of freedom, destroy them. Examples of quantum systems suit-

able for QIP are photons (Gisin and Thew, 2007; Kok et al., 2007) and nuclear

spins (Chuang et al., 1998; Morton et al., 2008), which can have very low

interactions with surrounding electromagnetic fields and atoms. QIP is also

investigated in many other systems (Ladd et al., 2010; Lvovsky et al., 2009)

such as trapped ions (Blatt and Roos, 2012), superconductors (Clarke and

Wilhelm, 2008), electronic and nuclear spins in insulators and semiconductors

(Hanson et al., 2007; Wrachtrup and Jelezko, 2006), and ultracold atoms

(Bloch et al., 2012; Chanelière et al., 2005). As light is an excellent carrier

of quantum information, as it is of classical one, there is also a need to inter-

face it to material systems to store and process information (Northup and

Blatt, 2014). Moreover, progress in lasers has also set them as efficient

devices for controlling efficiently and accurately quantum systems. In these

respects, rare earth (R)-doped crystals have very favorable spectroscopic

properties among solid-state systems. The main one is to exhibit extremely

narrow optical transitions, equivalent to long-lived superposition states, at

cryogenic temperatures (Macfarlane, 2002). Depending on the R ions consid-

ered, these transitions span the entire visible and infrared range, including the

telecom window at 1.5 mm. Moreover, many R ions have isotopes with non-

zero nuclear spins, which can be therefore optically controlled or interfaced

with photonic qubits. Finally, R-doped crystals are generally very robust,

photostable materials, which can be readily cooled down to liquid helium

temperatures in closed cycle cryostats. Their synthesis and spectroscopy have

been widely developed for applications in photoluminescence, lasers, scintil-

lation, etc. In addition, these materials are studied for classical information
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or signal processing, which shares some requirements and schemes with QIP

applications (Le Gouët et al., 2006; Li et al., 2008; Thorpe et al., 2011).

In this chapter, we review the applications of R-doped crystals to two spe-

cific QIP applications: optical quantum memories and quantum computing.

After a brief introduction to QIP, we describe coherent light-atom interac-

tions, which allow creating and controlling atomic quantum states. The spec-

troscopic properties of R-doped crystals are discussed afterward, with a focus

on the specific features used in QIP. Finally, the concepts and studies related

to quantum memories and computing are presented. In the two last sections,

we chose to emphasize a few representative experiments, underlining impor-

tant points, rather than to give extensive lists of results. As this field is rela-

tively new to the rare-earth community, we felt that this approach could be

more useful for the reader.

2 QUANTUM INFORMATION PROCESSING

2.1 Qubits and Gates

The reader is referred to Nielsen and Chuang (2000) or Stolze and Suter

(2008) for a detailed presentation of QIP. In the following, we only review

the basic concepts of the field. The qubit, or quantum bit, is the elementary

unit of information in QIP. It is the equivalent of the bit in classical comput-

ing and communication. The bit can take two values, 0 or 1, and is implemen-

ted as different states of a capacitor, a transistor or of a light beam. The qubit

is a quantum two-level system (TLS), as depicted in Fig. 1, with eigenstates

labeled as 0j i and 1j i and representing the binary 0 and 1 values. However,

in contrast to the classical bit, the qubit can also be in an arbitrary superposi-

tion state, which can be expressed as:

cj i ¼ cosðy=2Þ 0j i+ eifsinðy=2Þ 1j i (1)

z

x y

FIGURE 1 A qubit in a superposition state cj i. Left: ladder-style drawing. The superposition is

denoted by an ellipsoid. Right: position of the vector corresponding to cj i on the Bloch sphere.
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up to a global eid phase factor, since cj i and eid cj i are equivalent wave-

functions. This property opens the way to data processing and transmission

that are impossible to achieve with a classical system, as discussed in Sections

2.2 and 2.3. Superposition states can be visually represented as vectors, which

have their origin on a center of a sphere of radius 1 (the Bloch sphere) and

their extremity lying on its surface (we normalize all quantum states to 1).

When the qubit state is written as in Eq. (1), the angles y and f correspond

to the spherical coordinates of the vector on the sphere (Fig. 1). Thus, the

states 0j i and 1j i point, respectively, to the north and south poles. The

ð 0j i+ 1j iÞ= ffiffiffi
2

p
state is located on the equatorial plane along the x-axis and

ð 0j i+ i 1j iÞ= ffiffiffi
2

p
along y. It is important to note that although the qubit can

assume an infinity of different states, the only states which can be identified

with certainty are 0j i and 1j i, if these states form the measurement basis.

A major challenge in QIP is therefore to be able to use superposition states

for improved performances, while determining final states with certainty or

at least high probability. This is required to get meaningful calculation results

or reliable data transmission. Another difficulty is the high sensitivity of

superposition states to perturbations, which implies the use of isolated sys-

tems, while at the same time, these states should be controlled and read out,

which requires some interactions with the environment. Atoms in vapors,

photons, or nuclear spins are examples of systems in which superposition

states can be long lived and accurately controlled, and are therefore good can-

didates for qubits (Ladd et al., 2010; Lvovsky et al., 2009). The lifetime of

superposition states is related to the so-called coherence lifetime, which is

described in more details in Section 3.2.

Atomic qubit states are controlled and read by interactions with electro-

magnetic fields. These interactions are theoretically represented by operators

acting in the Hilbert space of the qubit. In classical information processing,

all possible operations on bits are obtained by logical gates, like NOT, which

changes 1 in 0 and vice versa. The same situation occurs in QIP, where gates

are a set of operators. As an example, the equivalent of the classical NOT gate

is the Pauli operator X, which representation in the ð 0j i, 1j iÞ basis is given in

Fig. 2. This operator has the same effect as the classical NOT gate on 0j i and
1j i, i.e., X 0j i ¼ 1j i and X 1j i ¼ 0j i. However, X can also be applied to superpo-

sition states: Xð 0j i+ i 1j iÞ= ffiffiffi
2

p ¼ð 1j i+ i 0j iÞ= ffiffiffi
2

p
. The corresponding trajectory

on the Bloch sphere is shown in Fig. 2.

Although single qubits can represent a resource large enough to perform

tasks unattainable with classical systems, as in quantum communication

(Section 2.3), it is often necessary to consider multi-qubit systems. First, they

are necessary to create larger superposition states. For example, with two

qubits labeled a and b, the state fj i ¼ 0a0bj i+ 0a1bj i+ 1a0bj i+ 1a1bj ið Þ=2
can be obtained. It contains all possible two-digit binary values, allowing par-

allel processing (Section 2.2). Another important feature of multi-qubit states is

called “entanglement.” This highly nonclassical property is among the most
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amazing predicted by quantum mechanics and is often considered as the hall-

mark of “true” quantum systems. Entanglement refers to global states which

cannot be separated into individual qubit states. The two-qubit state fj i defined
above is equal to fj i ¼ ð 0aj i+ 1aj iÞð 0bj i + 1bj iÞ=2 and is therefore not

entangled, whereas f0j i ¼ ð 0a0bj i+ 1a1bj iÞ= ffiffiffi
2

p
is an entangled state because

it cannot be written as a product of the form caj i cbj i. The main property of

entangled states are the correlations which appear between measurements per-

formed on the qubits, even when they are separated by large distances. For

example, 0j i and 1j i can represent two orthogonal linear polarizations of a pho-
ton. Once the entangled state f0j i is created, the photons can travel in different

directions and be detected after some delay. If a horizontal (vertical) polariza-

tion is measured on one photon, a subsequent measurement on the other one

will result in a horizontal (vertical) polarization too. This is due to the entangled

character of f0j i, which forces the photon states to be completely linked.

Because they enable correlations at a distance, entangled states are especially

useful in quantum communications (Section 2.3).

2.2 Quantum Computing

Quantum computing aims at outperforming classical computers for some spe-

cific calculations. It relies on the additional resource given by the qubit super-

position states, which can be used to design more efficient algorithms

(Nielsen and Chuang, 2000). The quantum computer applies a series of gates

to an ensemble of qubits, much like the classical computer operates on bits.

However, for each different input, a classical computer must run again,

whereas the quantum computer can directly process states which contain dif-

ferent inputs. As an example, instead of separately treating binary numbers

00, 01, 10, 11, a two-qubit quantum computer can take as an input

fj i ¼ ð 00j i+ 01j i + 10j i+ 11j iÞ=2 and apply gates to this state to perform a

calculation. In this way, a quantum computer implements a highly parallel

z

x y

FIGURE 2 Left: representation of the Pauli X operator in the 0j i, 1j ið Þ basis. X corresponds to

the classical NOT gate. Right: Bloch sphere showing qubit states cj i ¼ ð 0j i + i 1j iÞ= ffiffiffi
2

p
and the

trajectory leading to c0j i ¼X cj i ¼ ði 0j i+ 1j iÞ= ffiffiffi
2

p
.
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computing flow. However, as already mentioned, the final state of each qubit

on which the result of the calculation is read has to be determined with a very

high probability and therefore be very close to 0j i or 1j i. Typical problems of

interest are those for which classical algorithms’ running time depends expo-

nentially on the size of the numbers to process. A suitable algorithm running

on a quantum computer may be able to perform such calculation in a time

depending only polynomially on the number size. Finding quantum algo-

rithms turns out to be very difficult and only a handful of them have been dis-

covered for useful tasks, like factoring into prime numbers (Shor, 1994),

quantum error correction (Shor, 1996), and search into unclassified databases

(Grover, 1997). Another area in which quantum computers can be used is sim-

ulation. On a classical computer, simulating even a few 10s interacting quan-

tum systems requires a huge amount of processing power and memory. This is

due to the dimension of the total Hilbert space available for the quantum

states. On the other hand, an ensemble of qubits does not have this limitation

and, if properly controlled to mimic systems and their interactions, can pro-

duce accurate simulations. Systems and algorithms for performing quantum

simulations are currently actively investigated (Cirac and Zoller, 2012), partly

because their requirements are lower than those for quantum computers,

which have to be able to run arbitrary operations.

Ensembles of qubits suitable for a quantum computer are very difficult to

obtain. First, the lifetime of the qubit’s superposition states must be long com-

pared to the time needed to apply a gate. Therefore, the qubit has to be well

isolated from environment perturbations, while still allowing control by exter-

nal fields. However, the superposition state lifetimes do not need to be as long

as the total computing time, as algorithms for quantum error corrections exist.

Second, in addition to gates applied to single qubits, calculations involve

gates that change some qubit states depending on the state of other qubits.

They are similar to classical logical operations like AND. These gates can

only be obtained by controlled interactions between qubits. All calculations

can be performed if (1) any one-qubit gate can be applied to each qubit and

(2) a specific two-qubit gate can be applied to each pair of qubits. The most

common two-qubit gate is the control-not gate, CNOT. Applied to a pair of

qubits, called control and target, the gate changes the target state from 0j i
to 1j i and vice versa only if the control qubit is in state 1j i. Otherwise, the tar-
get qubit is left unchanged. Again CNOT can be applied to qubits in superpo-

sition states and its representation in the ( 00j i, 01j i, 10j i, 11j i) base is:

CNOT¼
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BB@

1
CCA: (2)

Finally, a useful quantum computer must be able to treat large numbers or

databases and therefore must contain many qubits. Obtaining gates for all
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pairs of qubits is especially challenging in this case, as well as being able to

separately control each qubit. DiVincenzo has summarized the required prop-

erties of a physical system in order to build a quantum computer in five cri-

teria (DiVincenzo, 2000). For convenience, they are given in Section 6

together with the specific schemes developed for rare earth-doped crystals.

Current systems investigated for quantum computing are still limited to

about 10 qubits (Monz et al., 2011). While able to run some quantum algo-

rithms, their usefulness as computers is quite limited. A commercial quantum

simulation device consisting in hundreds of superconducting qubits and able

to find the ground state of interacting spins has also been recently developed

( Johnson et al., 2011). The quantum nature of the calculation performed by

this system is however still under study (Boixo et al., 2014).

2.3 Quantum Communication

Quantum communications use photons to transmit qubits between remote

places. This is because photons are very well isolated from perturbations,

which translates into long-lived superposition states for photonic qubits.

Moreover, they can propagate with low attenuation (down to 0.2 dB/km at

1.55 mm) in optical fibers. They are therefore ideal “flying” qubits. Quantum

communications could be used to connect quantum computers to build a

quantum network (Kimble, 2008). This could increase the total computing

power, especially if only processors with a few qubits are available at each

network node. The most advanced application of quantum communication,

and in fact of QIP in general, is however in security.

Quantum cryptography originates in the BB84 exchange protocol (Bennett

and Brassard, 1984) for which quantum mechanics laws ensure a completely

secure encrypted data transmission. BB84 is based on the exchange and read

out of single photonic qubits in superposition states. The security is given by

the fact that eavesdropping would require measuring these qubits, which will

give only partial information on the qubit states and will moreover change

them. The protocol is designed so that communicating parties can easily

detect these changes and therefore abort compromised transmissions. BB84

therefore guarantees the secrecy of the communication based on a fundamen-

tal property of quantum systems. In this way, encryption keys can be

exchanged without fearing interception by third parties and then used for

sending secret messages over existing telecom fiber networks. Indeed, quan-

tum cryptography is more accurately called quantum key distribution. It is a

very attractive alternative to current encryption schemes, which use public

keys. Those are very large numbers, which are very difficult to factor into

prime numbers. Without this result, the encrypted messages are impossible

to decipher. However, factoring large numbers has not been proven to be a

fundamentally slow operation. A fast algorithm could be found, suddenly

compromising past and present communications. Interestingly, this is
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precisely what a quantum computer could do, if it could be built with enough

qubits. In principle, this cannot happen with quantum key distribution,

although developments in protocols and implementations are still needed to

ensure very high security in real situations (Gisin and Thew, 2007; Gisin

et al., 2002; Scarani et al., 2009). Another secure way to transmit data is based

on quantum-state entanglement and teleportation (Bennett et al., 1993;

Bouwmeester et al., 1997; Ekert, 1991). As shown in Fig. 3, an entangled pair

of photons (qubits q1 and q2) is shared by the communicating parties (usually

named Alice and Bob). The information that Alice wants to send to Bob is

carried by a third photon (qubit q3) located at Alice’s place. The quantum

state of q3 is arbitrary. When Alice performs a joint measurement M on q1

and q3 photons, the state of Bob’s photon is modified. This is due to the

entanglement between q1 and q2. The result of Alice’s measurement r (which
is a simple number) is then communicated by a classical channel to Bob. With

this information, Bob applies a gate Ur to q2, which changes its state to the

original state of q3. Quantum-state teleportation has thus been achieved

between Alice and Bob. This is highly secure because the qubit containing

the information to be exchanged is never transmitted between Alice and

Bob, whereas a potential eavesdropper cannot reconstruct q3 state by using r.
Quantum cryptography based on commercial devices has been tested in a

number of telecom fiber networks (Peev et al., 2009; Sasaki et al., 2011;

Stucki et al., 2011). It has been demonstrated to work on distances over

250 km in low loss fibers (Stucki et al., 2009). Teleportation has also been

achieved using telecom fibers (Marcikic et al., 2003), as well as in free space

over 140 km (Ma et al., 2012).

One important limitation of quantum cryptography is the distance over

which it can be used. Arbitrary quantum states cannot be copied, a property

known as the no-cloning theorem. It is essential to the security of quantum

cryptography but also prevents signal amplification to bridge long distances.

To overcome this problem, quantum repeaters have been proposed (Briegel

et al., 1998; Duan et al., 2001). They use quantum-state teleportation and

measurements to propagate entanglement between photons at nodes separated

Qubit q1

r

Qubit q3
Alice

M

S Qubit q2

Ur

Qubit q2
Bob

FIGURE 3 Quantum-state teleportation. Qubits q1 and q2, produced by the source S, are

entangled and travel toward Alice and Bob. Alice wants to teleport the state of qubit q3 to Bob.

She performs a joint measurement M on q1 and q3 and send the result r to Bob. According to r,

Bob performs the gate Ur on q2, which is then in the same quantum state as was q3.
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by increasing distances. Quantum repeaters use quantum memories, devices

able to store and release a photonic qubit on demand, in order to achieve suc-

cessful measurements and teleportations in different locations. Quantum

memories have also applications in quantum computing based on linear

optics, as well as in other QIP schemes, metrology, single-photon detection,

and fundamental tests of quantum mechanics (Bussières et al., 2013;

Lvovsky et al., 2009). Quantum memories are particularly promising applica-

tions for rare earth-doped crystals and are the subject of Section 5.

3 COHERENT LIGHT-ATOM INTERACTIONS

Coherent interactions occur between electromagnetic fields and atoms, when

a well-defined phase relationship exists between the fields and the atomic

wavefunctions. This topic was first studied in nuclear magnetic resonance

(NMR) (Bloch, 1946; Rabi, 1937) and later extended to microwave and opti-

cal domains. Coherent interactions are used to control atomic qubits and to

interface them with photonic qubits. This topic is therefore central to QIP

and its main concepts are summarized below. Detailed treatments of light-

matter interactions can be found in Allen and Eberly (1987) and Grynberg

et al. (2010).

3.1 Quantum-State Control

Quantum-state control can be best understood in the semi-classical model.

The atom is a two-level system, which we consider as a qubit, and is in reso-

nant interaction with an oscillating electromagnetic field, like a laser beam. At

time t ¼ 0, the qubit is in state 0j i and light is shone on the sample. At time t,
in the approximation of resonant excitation, the qubit is in the state:

cðtÞj i¼ cos
O
2
t

� �
0j i� i sin

O
2
t

� �
eiðo0t+fÞ 1j i, (3)

which is completely defined by the exciting field. O, called the Rabi fre-

quency, is proportional to the product of the absolute value of the transition

matrix element, m, by the field amplitude E0, O¼ mE0=ℏ, where h is Planck’s

constant. The Rabi frequency measures the strength of the field-atom

coupling. The transition frequency is o0 and the field is written as

EðtÞ¼E0 cosðo0t +fÞ. Note that all frequencies in Eq. (3) are expressed in

rad s�1. The qubit state expressed by Eq. (3) is time dependent. For easier

viewing of the qubit states, the Bloch sphere is then drawn with respect to

a rotating frame at o0 frequency, corresponding formally to set o0 ¼ 0

in Eq. (3).

On the Bloch sphere, applying a light pulse to the qubit corresponds to a

rotation around an axis in the equatorial plane. The axis angle relative to

the x axis is given by the phase f and the rotation angle by the product Ot,
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called the pulse area. For example, the state ð 0j i+ 1j iÞ= ffiffiffi
2

p
can be obtained

from 0j i by a rotation of p/2 around the y axis (Fig. 4). For a given field

amplitude, this corresponds to a pulse of duration t ¼ p/(2O) with a phase

f ¼ p/2. This is called an Y,p/2 pulse. In the same way, an X,p/2 pulse is a

p/2 rotation around x (f ¼ 0) and applied to 0j i gives ð 0j i� i 1j iÞ= ffiffiffi
2

p
. In

practice, f is at first arbitrary and has only a meaning when relative phases

between successive pulses or states are considered. The first pulse applied

to the qubit therefore defines the reference phase. Another important pulse

is the X,p pulse, which implements the X gate (Fig. 2). A p pulse has a dura-

tion of p/O and therefore a spectral bandwidth � O/p. The Rabi frequency

(expressed in Hz) is therefore the approximate maximum transition width that

the pulse can effectively address with an area of p and more generally gives

the bandwidth over which coherent interactions can be performed.

When the exciting field is left continuous, the qubit final state describes a

circle on the Bloch sphere, periodically reaching 0j i and 1j i. The probability

P1 of the qubit to be in 1j i oscillates as a function of time t:

P1 ¼ sin2 O
2
t

� �
: (4)

This phenomenon is called a Rabi oscillation. Such a measurement is used, for

example, to determine O and in turn allows applying pulses of known area.

Coherent light-matter interactions can be extended to the case of photonics

qubits. For example, a single photon can create a superposition state in an

atom or in an ensemble of atoms, and vice versa. This allows transferring

quantum states between photonic and atomic qubits. An accurate description

of these processes requires the quantization of the electromagnetic field,

although several effects can be understood in the following way. The absorp-

tion of a single photon can be seen as the mapping of a photonic quantum state

into an atomic superposition state on the Bloch sphere. This state can then be

manipulated using the coherent light-atom interactions we just described.

x xy y

z z

FIGURE 4 Left: a Y,p/2 pulse corresponds to a rotation of p/2 around the y axis in the Bloch

sphere. It changes 0j i into ð 0j i+ 1j iÞ= ffiffiffi
2

p
. Right: similarly, a X,p/2 pulse is a p/2 rotation around x.

Applied to 0j i, it results in ð 0j i� i 1j iÞ= ffiffiffi
2

p
.
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So far we discussed systems with only two levels. It is however often use-

ful to use additional transitions. A common configuration is the so-called

L-system, where two low-energy levels ( 0j i, 1j i) are connected to an excited

one ( 10j i), typically through two optical transitions (Fig. 5). This allows trans-

ferring quantum states between different transitions. As an example, let us

assume that the superposition state cj i ¼ ð 0j i+ 10j iÞ= ffiffiffi
2

p
is created by apply-

ing a p/2 pulse to the 0j i$ 10j i transition. A p pulse is then applied to the

10j i– 1j i transition resulting in c0j i ¼ ð 0j i+ 1j iÞ= ffiffiffi
2

p
. The initial superposition

state has been transferred to a new transition. Usually, 0j i$ 10j i is an optical

transition able to map a photonic qubit or to be coherently controlled by a

laser, but with relatively short-lived superposition states. To overcome this

limitation, the quantum state is transferred to the 0j i$ 1j i transition, which

defines the main qubit. This qubit is typically a nuclear spin two-level system,

which can maintain superposition states for long times. Such a state transfer

therefore takes place across systems with energies differing by seven to eight

orders of magnitude and takes advantage of both optical and nuclear spin tran-

sitions. An important point for finding a L system is that both optical Rabi

frequencies O1 and O2 should be large for efficient transfers.

3.2 Coherence and Relaxations

In this section, we consider an atom with only two electronic levels. To get a

qualitative understanding of its behavior, it is enough to reduce it to an elec-

tric dipole. Superposition states of the atom are equivalent to oscillations of

the dipole at the frequency of the transition. These oscillations cause the atom

to emit light. If an ensemble of these atoms have identical transition frequen-

cies and oscillate in phase, light emitted by each atom will constructively

interfere and give rise to a macroscopic coherent light field called the polari-

zation. However, each dipole can be perturbed by fluctuations in its environ-

ment. They can change the atom transition energy and therefore the dipole

oscillating frequency. This results in a dephasing between the dipole emis-

sions and a decay of the polarization. Moreover, because the dipoles are

W1 W2

FIGURE 5 A L system between two nuclear spin ground-state levels 0j i, 1j i and an optical

excited level 10j i. O1 and O2 denote the Rabi frequencies of the two optical transitions.
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emitting light, or other nonradiative loss channels are present, atoms relax to

the ground state, with a characteristic time T1, which is the excited-state life-

time. The coherence lifetime T2 describes the polarization decay and takes

into account both dephasing and population relaxation. As all atoms are

assumed to have the same average frequency, the linewidth of the macro-

scopic emission is called homogeneous and denoted by Gh. It is related by

Fourier transform to the decay rates by:

Gh ¼ 1

pT2
¼ 1

2pT1
+

1

pT2,d
, (5)

where T2,d corresponds to pure dephasing processes.

A fundamental point is that coherent light-atom interactions can accurately

create and control superposition states only in the absence of random pertur-

bations. They can therefore only occur during a time t for which the coher-

ence decay is negligible, i.e., t � T2, using a laser with a linewidth much

lower than Gh. In the same way, useful information can be retrieved from a

qubit superposition state only for times much shorter than T2. The coherence

lifetime is therefore a key parameter for designing QIP systems.

Until now, the atoms in the ensemble were assumed to have the same aver-

age transition frequency. We now consider the case where transitions are

spread over a frequency range. This corresponds to an inhomogeneous broad-

ening Ginh, which we assume to be much larger than the homogeneous one,

Ginh � Gh (Fig. 6). If this ensemble of atoms is initially oscillating coherently,

the frequency differences corresponding to Ginh will induce a dephasing

between each atom emission and therefore a decay of the macroscopic polari-

zation with a rate equals to 1/(pGinh). This effect is called the free-induction

decay. Since Ginh � Gh, the decay rate of the macroscopic polarization is

much larger than the coherence lifetime of each atom transition. Thus,

although each dipole is still oscillating in a perfectly well-defined way, no

coherent emission can be observed from the ensemble. Fortunately, such an

G

G

inh

h

Energy

A
bs

or
pt

io
n

FIGURE 6 Inhomogeneous (solid line) and homogeneous (dotted line) linewidths.
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emission can be retrieved by the echo phenomenon, introduced by Hahn for

spins (Hahn, 1950), and later extended in the optical domain (Abella

et al., 1966).

The two-pulse echo sequence starts with a p/2 pulse which excites the

atoms in the ground state ( 1j i in this example) to a superposition state in

the Bloch sphere equatorial plane (Fig. 7). The pulse is resonant with atoms

within a bandwidth Do around a central frequency o0. As discussed above,

the macroscopic polarization of the atom ensemble decays by FID after the

pulse with a rate � 1/Do. In the Bloch sphere, the vectors corresponding to

the atoms with a frequency different from o0 start to rotate with respect to

the axis frame (which is rotating itself at a frequency o0). This is shown in

Fig. 7 as a spreading fan. After a delay t, a p pulse is applied to the atoms,

which in the Bloch sphere corresponds to a p rotation, causing the vectors

to rephase, i.e., to gather instead of spreading apart (Fig. 7). At a delay t after
the p pulse, all vectors are again aligned, which corresponds to in-phase oscil-

lations and therefore to a macroscopic polarization. The resulting emission is

called an echo. This process can also be described by the evolution of the rel-

ative phase f of the superposition states. For a given atom with a transition

frequency o0 + o, f(t) ¼ ot for t � t. The p pulse reverses the phase evolu-

tion and f(t) ¼ ot � o(t � t) for t � t � 2t. The macroscopic polarization

intensity emitted by the sample is proportional to:

R Do=2
�Do=2 e

ifðt,oÞdo
��� ���2 ¼ R Do=2

�Do=2 e
i½ot�oðt�tÞ�do

��� ���2: (6)

The integral vanishes unless the argument of the exponential is independent of

o, which happens at t ¼ 2t and corresponds to the echo emission. As the time

t is increased, the echo intensity decays, because more and more atoms are

perturbed during the total evolution time 2t. These atoms cannot emit in

phase with unperturbed atoms and do not contribute to the echo emission.
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FIGURE 7 The two-pulse echo sequence. Bloch vectors’ evolution is shown above the p/2, p
and echo pulses, which are separated by a delay t.
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The echo intensity Iecho decays as a function of the delay t between the p/2
and p pulses as:

IechoðtÞ¼ exp �4t
T2

� �
(7)

and is a convenient way to measure T2.

4 RARE EARTH-DOPED CRYSTALS

Many spectroscopic properties are important for using an R-doped crystal in

QIP. In this section, we will mainly discuss the most specific ones, which

are usually not relevant for applications in photoluminescence, lasers, scintil-

lators, etc. We start with an overview of the topic with the example of Pr3+:

La2(WO4)3, before going into more details. Spectroscopic data for crystals

used in QIP experiments are given at the end of the section.

The first step is to identify an optical transition suitable for coherent inter-

actions. Its wavelength should correspond to a narrow linewidth laser emis-

sion, and its coherence lifetime and oscillator strength should be large

enough to apply a p pulse in a time much shorter than T2. In this example,

the selected transition takes place between the lower energy levels of the

ground multiplet (3H4) and an excited one (1D2) and is located at

16,590.9 cm�1 (602.74 nm in vacuum). Dye lasers with linewidths < 1 kHz

are available at this wavelength. At a Pr3+ doping level of 1.4 at.%, the maxi-

mum transition oscillator strength for light propagating along the crystal b
axis is f � 2 � 10�8. The peak absorption coefficient, a ¼ 14.7 cm�1, is also

relevant for narrow laser excitation. It depends, for a given f, on the inhomo-

geneous broadening of the line, which is Ginh ¼ 18.8 GHz (0.023 nm) in this

crystal (Section 4.2). These absorption experiments require high resolution

and can be performed by scanning a narrow laser. Knowing the oscillator

strength, the Rabi frequency can be calculated for a given laser intensity

and can reach about 2p � 1 MHz, corresponding to a p pulse of about

0.5 ms. Optical coherence lifetime, determined by photon echo, is T2 ¼
11 ms at 3 K, and is about 20 times larger than achievable p pulses. The

corresponding homogeneous linewidth is Gh ¼ 29 kHz, nearly six orders of

magnitude lower than Ginh. The excited-state population lifetime is 11.5 ms,
giving a contribution to Gh of 14 kHz (Section 4.3). These parameters allow

designing coherent control schemes of this transition and using it as a qubit.

However, ground-state nuclear spin transitions can exhibit longer T2 and are

often preferred to optical ones.

Pr3+ has a single isotope with I ¼ 5/2 for which hyperfine structures have

first to be determined (Section 4.1). This can be achieved by spectral tailoring,

resulting in the energy scheme shown in Figs. 8 and 15. Note that the hyper-

fine splittings are on the order of 10 MHz, three orders of magnitude lower

than the optical inhomogeneous linewidth and therefore cannot be seen in
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optical absorption. To be able to optically control the ground-state transitions,

oscillator strengths between hyperfine levels of the ground and excited states

should be measured using, for example, spectral tailoring. Other properties to

be determined are the hyperfine inhomogeneous linewidths (Section 4.2) as

well as population and coherence lifetimes (Section 4.3). This can be achieved

by optically detected NMR. In Pr3+:La2(WO4)3, ground-state Ginh
hf � 100 kHz,

Thf
1 ¼ 16 s, and Thf

2 ¼ 250 ms. External magnetic fields can also be very useful,

for example to modify hyperfine wavefunctions and transitions strengths

(Section 4.1.3) or to increase coherence lifetimes (Section 4.3.4). This

requires to precisely determine spin Hamiltonians by measuring hyperfine

structures under varying magnetic fields (Section 4.1.4). Thf
2 can then be

increased by several orders of magnitude by decoupling the transitions

from host magnetic fluctuations, leading to coherence lifetimes up to

Thf
2 ¼ 158 ms in Pr3+:La2(WO4)3. Another technique to extend Thf

2 consists

in applying a series of p pulses to a hyperfine transition, which also results

in a decoupling from environment fluctuations and leads to Thf
2 ¼ 4:2 ms

(Section 4.3.4).

4.1 Electronic and Spin Level Structure

In this section, the energy level structure of R ions is discussed in the context

of QIP. This is a quite large topic involving several aspects, e.g.:

l optical transition wavelengths and intensities determine how qubits can be

controlled by light as well as the efficiency of quantum state transfer

between photonic and atomic qubits.

l nuclear spin (hyperfine) levels can be used to define ground-state qubits

with long coherence lifetime.

l optical control of nuclear spin qubits requires L systems between hyper-

fine levels of ground and excited states (Fig. 5). The intensity of the L

-

- -

--

-

B

FIGURE 8 Interactions and partial energy-level scheme for Pr3+ (I ¼ 5/2). The degeneracy of

the hyperfine levels 	mI is lifted by an external magnetic field (B6¼0).
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system optical transitions depends on the nuclear spin wavefunctions,

which can be modified by applying a specific external magnetic field.

l external magnetic fields can split and shift levels to obtain optical or spin

transitions insensitive to small magnetic field fluctuations. This can have

huge effects on transition coherence lifetimes.

4.1.1 Theory

The transitions used in R-based QIP mainly take place within the 4fN config-

urations of trivalent R ions. Their electronic structure is [Xe]4fN in which the

4f orbitals have a smaller radial extension than the filled 5s2 and 5p6 shells.

They are therefore shielded from surrounding electric fields, and level ener-

gies are mainly determined by the free ion interactions. Electronic repulsion

and spin-orbit coupling are of the same order of magnitude and result in mul-

tiplets labeled in the Russell-Saunders scheme: 2S+1LJ. S, L quantum numbers

represent however only the dominant wavefunction component and should

generally not be considered as good quantum numbers. Inserted in a host,

the multiplets split under the crystal field (CF) created by the surrounding

ions. In the following, the CF levels are labeled 2S+1LJ(n), n ¼ 0 corresponding

to the lowest energy level of the multiplet. In a few cases, like Eu3+ 7FJ levels,

the CF significantly mixes levels of different J. Depending on the site symme-

try, the J degeneracy can be lifted to various degrees. However, energy levels

of R ions with an odd number of electrons, the so-called Kramers ions, retain

at least a twofold degeneracy in zero external magnetic field. The CF is also

involved in f–f transitions intensities by mixing the 4fN configuration with

others of opposite parity. These properties, which are essential to the fields

of R luminescence, have been extensively reviewed in the past (G€orller-
Walrand and Binnemans, 1996; Henderson and Imbush, 1989; Hufner,

1978; Jacquier and Liu, 2005; Peacock, 1975) and will not be further devel-

oped here. We instead focus on more specific points: nuclear spin structures

and the effects of external magnetic fields.

A scheme of the energy levels for Pr3+ is shown in Fig. 8. As can be seen

from the energy scales, the hyperfine structure is about five orders of magni-

tude smaller than the CF splittings. It can be therefore treated by a perturba-

tion approach, which leads to the so-called spin Hamiltonian modeling (Liu,

2005; Macfarlane and Shelby, 1987a). The general 4fN level structure is mod-

eled by the following Hamiltonian:

ℋ ¼ ℋFI +ℋCF½ �+ ℋHF +ℋQ +ℋZ +ℋz½ �, (8)

where ℋFI is the free ion Hamiltonian, which includes spin-orbit coupling,

electronic repulsion as well as the central field Hamiltonian, and ℋCF is the

CF Hamiltonian. The second bracket gathers the spin and magnetic terms:

hyperfine ðℋHFÞ and quadrupolar ðℋQÞ interactions, and electronic ðℋZÞ
and nuclear ðℋzÞ Zeeman effects. ℋQ vanishes for nuclear spin I � 1/2
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and the two last terms appear only when an external magnetic field B is

applied. The spin Hamiltonian expresses the operators in the second bracket

for a singlet or a doublet in a given S, L, J multiplet, which is assumed to

be pure, i.e., L, S mixing by the spin-orbit coupling and J mixing by the CF

are neglected. Perturbation calculations are also restricted to the S, L, J
multiplet of interest. In the following, we discuss the application of the spin

Hamiltonian to two types of levels:

1. a singlet CF level of a non-Kramers ion (i.e., an even number of f elec-

trons). For these ions, all CF levels in triclinic (C1), monoclinic (Cs, C2),

and orthorhombic (C2v and D2) site symmetries are singlets.

2. a CF doublet of a Kramers ion. For these ions, CF levels are doublets in all

site symmetries except cubic ones.

In case 1, first-order electronic Zeeman and hyperfine effects vanish, and the

second-order spin Hamiltonian reads (Macfarlane and Shelby, 1987a):

ℋS ¼�g2Jm
2
BB
L
B�2AJgJmBB
L
I� gnBI�A2

JI
L
I

+P I2z0 �
1

3
I2 +

1

3
� I2x0 � I2y0
� �� 	

(9)

where gJ is the Landé g factor, mB the Bohr magneton, AJ the hyperfine cou-

pling constant, and gn the nuclear gyromagnetic factor. L is a tensor given by:

Li, j ¼
X
n0 6¼n

n Jij jn0h i n0 Jj
�� ��n
 �

En0 �En
, (10)

where i, j label the reference x,y,z axes, n, n0 denote, respectively, the CF level

of interest and the other ones in the J multiplet, and Em is the energy of level m.
P and � are the quadrupolar and asymmetry coupling constants. The x0,y0,z0

axes are the principal axes of the quadrupolar interaction. The two last terms

in Eq. (9) can always be combined by diagonalization in new axes (x00,y00,z00)
and are expressed as:

ℋ 0
Q ¼D I2

z00 �
1

3
I2

� �
+E I2

x00 � I2
y00

� �
, (11)

where the D and E parameters combine contributions from second-order

hyperfine and quadrupolar interactions, and the asymmetry parameter is

3E/D. In zero magnetic field, the 2I + 1 hyperfine levels are doubly degener-

ate and labeled by the nuclear spin projections 	mI along the z00 axis, assum-

ing a small asymmetry factor. However, in triclinic and monoclinic site

symmetries, the (x00,y00,z00) axes generally depend on the CF level and the mI

numbers may not be good enough to determine selection rules between hyper-

fine levels belonging to different CF levels.

The precise form of Eq. (9) depends on the site symmetry, which deter-

mines nonzero elements in tensors and the orientation of the principal axes.
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For experimental determination of ℋS parameters, it is convenient to rewrite

Eq. (9) in terms of three symmetric tensors:

ℋS ¼B
Z
B +B
M
I+ I
Q
I (12)

where Z¼�g2Jm
2
BL. The gyromagnetic tensor M ¼ �2AJgJmBL � gn has the

same principal axes as Z. Q is defined as:

Q¼RQ

E�1

3
D 0 0

0 �E�1

3
D 0

0 0
2

3
D

0
BBBBB@

1
CCCCCA
RT
Q, (13)

where RQ is the rotation matrix relating ℋQ principal axes to the reference

ones. In C1 symmetry, the L tensor has six independent and nonzero elements.

To determine Z (which does not contribute to hyperfine splittings), M, the

three angles of the RQ matrix and E, D, 12 parameters are needed. In Cs

and C2 symmetries, the CF z axis is common to all tensors (eight parameters

in total to be determined) and in higher symmetries, the tensors are diagonal

with respect to the CF axes (six parameters in total). In axial symmetries,

the M and Z tensors have only two nonzero elements, corresponding to the

magnetic field parallel or perpendicular to the z axis. Moreover, the asymmet-

ric part of ℋQ is zero (E ¼ 0).

Calculation of the spin Hamiltonian parameters is also possible from CF

wavefunctions (Erickson, 1985; Goldner and Guillot-Noël, 2004; Guillot-

Noël et al., 2005, 2010). This is straightforward for the Zeeman and hyperfine

parts, using the L tensor definition of Eq. (10). The quadrupolar interactions

are given by more complex formula, as they involve contributions to the elec-

tric field gradient at the nucleus from the lattice ions and the 4f electrons

(Erickson, 1986; Guillot-Noël et al., 2010; Hansen et al., 1997). Moreover,

these contributions must be weighted by different screening coefficients,

which take into account, for example, closed shells distortion by the lattice

field (Sternheimer, 1966, 1967). It is also possible to compute directly ℋ
Eq. (8), without having to rely on the approximations leading to ℋS. This

approach, however, requires diagonalization of large matrices once the

nuclear spin wavefunctions are added to the electronic ones. The relevant

matrix elements are given in Guillot-Noël et al. (2005, 2010).

Kramers ions doublets, with splittings much smaller than the CF ones, can

be described by an effective 1/2 spin operator S. The spin Hamiltonian reads

(Macfarlane and Shelby, 1987a):

HS ¼ mBB
g
S + I
A
S +P I2z0 �
1

3
I2 +

1

3
� I2x0 � I2y0
� �� 	

�gnBI�g2Jm
2
BB
L
B�2AJgJmBB
L
I

�A2
JI
L
I,

(14)
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where g is the effective electronic Zeeman tensor, A the effective hyperfine

tensor, P, �, and x0,y0,z0 correspond to the quadrupolar interaction as in

Eq. (9) and gn is the nuclear gyromagnetic ratio. The first three terms are

obtained by first-order perturbation, whereas the last three correspond to

second-order terms, with the same definitions as in Eq. (9). It is also possible

to rewrite Eq. (14) with five tensors:

Heff ¼ mBB
g
S+ I
A
S + I
Q
I+B
M
I+B
Z
B, (15)

where Q, M, and Z are given above. Up to 24 independent and nonzero para-

meters have to be determined for C1 site symmetry and 14 in axial ones. This

can be very challenging and may be possible only by neglecting I 
 Q 
 I
or � 2AJgJmB B 
 L 
 I (Guillot-Noël et al., 2006). The term B 
 Z 
 B is also

not contributing to hyperfine level splittings, but just to a global shift, and

may not be relevant or experimentally accessible. One important point to

emphasize is the high sensitivity of Kramers ions to magnetic field. As

mB � 14 GHz/T and g principal values can reach 10–15 (e.g., for Er3+ ground

state (Macfarlane et al., 1991; Sun et al., 2008)), the Zeeman splitting can

reach the cm�1 range with magnetic fields of a few T and become comparable

with the CF splittings. In this case, the spin Hamiltonian approach cannot be

applied anymore. Moreover, the effective site symmetry has to take into

account the magnetic field direction and will be generally lower than the

one at zero or low fields. On the other hand, at zero magnetic field, hyperfine

and quadrupolar interactions can split the hyperfine structure of a Kramers

doublet up to 2(2I + 1) levels. As in the case of non-Kramers ions, calcula-

tions of the spin Hamiltonian parameters or hyperfine structures can be per-

formed from CF wavefunctions (Popova et al., 2000).

Hyperfine structures of doublets in non-Kramers ions have also been stud-

ied and modeled in several hosts (Chukalina et al., 1999; McLeod and Reid,

1997; Pytalev et al., 2012). Further discussion of hyperfine structure of

R ions can also be found in Macfarlane and Shelby (1987a).

4.1.2 Experimental Techniques

Absorption

Absorption gives access to spin structures only when they are larger than the

optical inhomogeneous linewidth Ginh, which is often of the order of a few

GHz. Since mB ¼ 14 GHz/T, electronic Zeeman transitions can be observed

by this technique, although relatively strong magnetic fields may have to be

used (Sun et al., 2008). Figure 9 shows an absorption spectrum in Nd3+:

YVO4 where the four transitions between the Zeeman split levels are clearly

seen under a magnetic field of 310 mT (Afzelius et al., 2010a). The spectrum

spans 0.17 nm and is obtained by monitoring the transmission of a 1 MHz

linewidth laser. In a few cases, optical inhomogeneous linewidths are smaller

than the hyperfine splittings (Agladze et al., 1991; Chukalina et al., 1999;
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Macfarlane et al., 1981, 1998; McLeod and Reid, 1997). In this case, hyper-

fine structures can also be resolved in absorption experiments. This is espe-

cially true with Kramers ions or doublets of non-Kramers ions, where the

strong hyperfine interaction results in large splittings, and in halide hosts for

which inhomogeneous linewidths can be small (Section 4.2). An example is

given in Fig. 10, where the hyperfine structures of ground and excited states

of 167Er:7LiYF4 extend over several GHz, whereas the optical inhomogeneous

linewidth is about 100 MHz (Macfarlane et al., 1992).

Electron paramagnetic resonance (EPR) of R Kramers ions is also very

useful in determining ground-state hyperfine structures. Indeed, inhomoge-

neous linewidths in the microwave domain are much lower than in the optical

one, and linewidths of only a few MHz can be observed at low

R concentrations. This allows easy observation of the hyperfine transitions

between the ground-state Zeeman levels. By varying the orientation of

the crystal in the static magnetic field, one can determine the g, A, Q, M ten-

sors of Eq. (15). An EPR spectrum on Er3+:Y2SiO5 is shown in Fig. 11, where

the hyperfine lines of 167Er3+ (I ¼ 7/2) are clearly seen. Although the site

symmetry is C1, the high quality of the spectra enabled a precise determina-

tion of the ground-state hyperfine and quadrupolar interactions (Guillot-

Noël et al., 2006).

Spectral Holeburning and Tailoring

In many cases, however, hyperfine structures cannot be directly observed.

This is the case for singlet levels of non-Kramers ions, for which the hyper-

fine structures are on the order of 10–100 MHz, too small to be observed by

optical absorption. Several techniques can be used to overcome this problem.

The simplest one is spectral hole burning, the principle of which is shown in

Fig. 12 (Erickson, 1977; Macfarlane and Shelby, 1987a). The optical
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FIGURE 9 Absorption spectrum of Nd3+:YVO4 (
4I9/2(0) [Z1]!4F3/2(0) [Y1] transition) under a

magnetic field of 310 mT oriented at 45∘ from the c-axis (T¼2.8 K). Under the magnetic field,

the Kramers doublets split differently, resulting in four distinct transitions (Afzelius et al., 2010a).
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transition has to be inhomogeneously broadened, i.e., consisting of an enve-

lope of narrow homogeneously broadened lines (Fig. 6). For simplicity, we

first assume that the ground state has only two hyperfine levels and the

excited state only one. Initially, the ground-state levels are equally populated.

When the transition is scanned with a narrow linewidth and low power laser, a

smooth absorption profile is recorded (Fig. 12A). The laser is then tuned to
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FIGURE 10 Absorption spectrum of Er3+:7LiYF4 (4I15/2(0) !4F9/2(0) transition centered at

653.49 nm) at zero magnetic field and T¼1.6 K. Er3+ concentration is � 1 ppm. The central line

corresponds to 166,168,170Er3+ isotopes (I ¼ 0) and the side lines to transitions between hyperfine

levels of 167Er3+ (I ¼ 7/2). Reproduced with permission from Macfarlane et al. (1992), © 1992 the

American Physical Society (http://dx.doi.org/10.1103/PhysRevLett.69.542).
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to I ¼ 0 isotopes and lines denoted by a star to transitions between hyperfine levels of 167Er3+

(I ¼ 7/2) with DmI ¼ 0. Corresponding energy levels and transition are shown on the left. The

remaining lines satisfy DmI ¼ 	1 and reflect the large quadrupolar interaction (Guillot-Noël

et al., 2006).

Rare Earth-Doped Crystals for Quantum Information Processing Chapter 267 21

http://dx.doi.org/10.1103/PhysRevLett.69.542
http://dx.doi.org/10.1103/PhysRevLett.69.542


the transition 1–3 for a particular class of ions to achieve optical pumping for

a narrow part of inhomogeneous line (Fig. 12B). We consider the case where

the 1–3 transition of these ions is at the center of the inhomogeneous line. In

addition, ions excited into the upper level are assumed to relax equally to

levels 1 and 2. Ions in level 2 cannot absorb light anymore, and if levels 1

and 2 have long enough lifetimes compared to level 3, all populations will

be eventually “trapped” in level 2, which is the shelving level. If the transition

is scanned again, a narrow hole, limited to twice the homogeneous linewidth,

appears at the center of the inhomogeneous line, since level 1 is empty and no

ions can absorb at the 1–3 frequency (Fig. 12C). Level 2 is also more popu-

lated than initially and accordingly, an increase in absorption appears at lower

frequency, corresponding to the 2–3 transition. This feature is called an anti-

hole. The 1–2 energy can be simply determined from the energy separation

between the hole and the anti-hole. However, we did not take yet into account

that the 1–2 splitting is much smaller than the inhomogeneous linewidth. This

means than the variation of the 1–3 and 2–3 transition energies are much

larger than that of the 1–2 transition. For this reason, the laser is also exciting

a second class of ions, for which the 20–30 transition is at the same energy than

the 1–3 for the first class of ions (Fig. 12D). After optical pumping, the popu-

lations for the two classes of ions are shown in Fig. 12E as well as the

corresponding spectrum. A central hole is observed as well as two anti-holes.

Populations initially in the 1 and 20 levels are now shelved in the 2 and 10

levels.
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FIGURE 12 Principle of spectral hole burning. Upper and lower rows correspond to one or two

classes of ions (see text for details).
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This pattern generalizes to cases where the ground and excited states have

more complex hyperfine structures (Macfarlane and Shelby, 1987a). For

example, Pr3+ has a single naturally abundant isotope, 141Pr3+, with I ¼ 5/2.

Following the same reasoning as in Fig. 12D, nine classes of ions will be res-

onant at a given laser frequency. After population redistribution in the ground-

state hyperfine levels, the spectrum will show three holes on each side of the

central one. These holes correspond to transitions from empty ground-state

levels to the excited states. There are 27 possible transitions (9 classes � 3

hyperfine levels) from which 9 correspond to the central hole and 6 corre-

spond to the side holes with 3 classes contributing to each side hole. The

anti-hole pattern is much more complex and consists in 42 lines, resulting

from transitions from two ground-state levels with increased population to

the three excited states for each class of ions (Fig. 13). Hole burning patterns

become very complicated when the number of levels increases, because of a

high nuclear spin or an applied magnetic field. When the hole burning pattern

resolution is high enough and the hole and anti-hole absorption are not dis-

torted by laser frequency and power instabilities, relative intensities of transi-

tions between ground and excited hyperfine states can be determined (Klieber

et al., 2003; Nilsson et al., 2004).

An extension of hole burning is spectral tailoring, which also relies on

optical pumping and is used in many QIP protocols (Sections 5 and 6) to iso-

late classes of ions and/or create absorption patterns (Lauritzen et al., 2012;

Nilsson et al., 2004; Pryde et al., 2000; Rippe et al., 2005). An example of this

technique is shown in Fig. 14 for Pr3+:La2(WO4)3 (Guillot-Noël et al., 2009).
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FIGURE 13 Holeburning spectrum in Pr3+:La2(WO4)3 at 4 K (3H4(0)!1D2(0) transition) (mid-
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2007).
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First, a large region without absorption is created in the inhomogeneous line

by optical pumping and population redistribution among ground-state hyper-

fine levels. This spectral pit is limited to the difference DG between the total

ground- and excited-state hyperfine splittings. If this limit is exceeded, one

repumps ions that have transitions within the pit. DG sets the upper limit for

spectral tailoring and may therefore limit the spectral bandwidth over which

QIP can be performed. For Pr3+:La2(WO4)3, the pit width is limited to

27.2 MHz, close to the experimental one shown in Fig. 14A. The goal of

the tailoring is to isolate transitions for ions in class I, which by definition

have their mI ¼ 	1/2g ! mI ¼ 	1/2e transition at the reference zero fre-

quency, where g and e label ground and excited states (Figs. 14A and 15).

After pit burning, all class I ions are in the 	5/2g level; otherwise they would

absorb into the spectral pit. To achieve line isolation, a spectrally narrow

pulse is shone on the 	5/2g !	5/2e transition to bring some class I ions back

into the 	1/2g and 	3/2g levels (back-burning step). Ions from other classes

will also be excited by this pulse, but because of the large pit burned at the

beginning, there are only three of such classes. Only a limited number of

unwanted lines are therefore appearing in the pit (Fig. 14B). The final step,

called class cleaning, consists in scanning again the laser across these

unwanted lines to pump corresponding ions to levels where they cannot

absorb within the pit. As a result, only transitions from the 	1/2g level of

class I ions are observed (Fig. 14C). Similar procedures can be applied to iso-

late lines from the 	3/2g and 	5/2g levels (Fig. 14D). Once lines are isolated,

level ordering can be determined, which is difficult with hole burning. For

example, Fig. 14D shows that the energy difference between levels 	1/2e

and 	3/2e is smaller than the one between levels 	3/2e and 	5/2e. This leads

to the energy scheme shown in Fig. 15. Another important information

deduced from these spectral tailoring experiments is the relative oscillator

strengths of transition between ground- and excited-state hyperfine levels

(Fig. 15). In particular, this is needed to define L systems with large Rabi fre-

quencies. As Pr3+ ions are located in sites of low symmetry (C1) in

La2(WO4)3, the quadrupolar Q tensors can have different principle axes

between ground and excited states. The DmI ¼ 0 selection rule on optical tran-

sitions is therefore relaxed (Section 4.1.3), which explains that the transitions

1/2e 3/2e 5/2e

FIGURE 15 Hyperfine levels for the 3H4(0) and 1D2(0) CF levels in Pr3+:La2(WO4)3 and

corresponding relative oscillator strengths (Guillot-Noël et al., 2009).
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	3=2g$	3=2e and 	5=2g$	3=2e have similar strengths. They could be

therefore used as a L system. Low R site symmetries are generally favorable

to L systems, which can also be obtained by applying an external magnetic

field (Section 4.1.3). Spectral tailoring is a key point of most of the quantum

memories and processors protocols (Sections 5 and 6), and its efficiency (e.g.,

the level of background absorption) is linked to relative oscillator strengths

and lifetimes of the excited and shelving levels (Afzelius et al., 2010a;

Lauritzen et al., 2008).

Raman Heterodyne Scattering

Spectral hole burning and tailoring determine hyperfine structures from optical

spectra. It is also possible to directly record the transitions between hyperfine

levels, but unlike EPR spectroscopy, NMR spectrometers are not sensitive

enough to detect R dopant in crystals. However, this can be achieved by optical

detection of magnetic resonance. Several techniques fall into this category

(Macfarlane and Shelby, 1987a), but in the following we only describe Raman

heterodyne scattering (RHS) (Mlynek et al., 1983; Wong et al., 1983), which

can also be used to measure hyperfine coherence lifetimes.

The principle of RHS is based on a L system (Fig. 5) in which the ground-

state transition is directly excited. First, a coherence, i.e., superposition states,

is induced in the hyperfine transition of interest ( 0j i$ 1j i) by a radiofre-

quency (rf ) field, produced by a coil surrounding the crystal. At the same

time, an optical probe is applied to the 0j i$ 10j i transition, creating a second

coherence. Because coherences are present on transitions sharing a common

level, an optical coherence is induced on the 1j i$ 10j i transition. The probe

and induced optical fields have the same propagation properties and can there-

fore interfere. The transmitted light will therefore beat with a frequency

equals to that of the 0j i$ 1j i transition. A detector with sufficient bandwidth

can detect this beating, which has also a fixed phase relationship with that of

the rf excitation. This allows sensitive demodulation techniques to be applied.

Radiofrequency sources with narrow linewidths are easily found, leading to

high-resolution spectra which are especially useful to separate lines when an

external field is applied (see Section 4.1.4). Excited-state hyperfine structures

can also be obtained for the excited state. In this case, optical excitation is

used to create the necessary excited-state population (Longdell and Sellars,

2004; Lovrić et al., 2011).

In the next sections, we examine two examples where energy-level struc-

tures have been determined and modeled for applications to QIP.

4.1.3 Efficient L System in Tm3+:Y3Al5O12

Yttrium aluminum garnet, Y3Al5O12, is a cubic crystal with six groups of

equivalent Y3+ sites of D2 symmetry (i.e., three perpendicular C2 axes) related

by the symmetry operations of the crystal point group. Tm3+ has a 4f12
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electronic configuration and a single naturally abundant isotope, 169Tm, with

I ¼ 1/2. In D2 symmetry, all CF levels are nondegenerate and the corresponding

spin Hamiltonian has the general form given by Eq. (14). Here, all tensors are

diagonal with respect to the CF axes x,y,z, which are directed along the three

perpendicular C2 axes. Moreover, as I ¼ 1/2, there is no quadrupolar interaction

and the spin Hamiltonian reduces to:

ℋS ¼B
M
I
¼gxBxIx + gyByIy + gzBzIz,

(16)

if the B 
 Z 
 B term is neglected since it only shifts the whole hyperfine struc-

ture. The gyromagnetic factors gi are the principal values of M and include the

isotropic nuclear Zeeman interaction as well as a second-order hyperfine one:

gi ¼ �2AJgJmBL � gn and can therefore depend on the CF level. The transi-

tion investigated occurs between the lowest CF levels of the ground 3H6 and

excited 3H4 multiplets. Starting from the electronic wavefunctions determined

from fitting the energy of CF levels, it was possible to calculate the

corresponding L tensors and hence the spin Hamiltonian g parameters

(Guillot-Noël et al., 2005). They are reported in Table 1.

A strong anisotropy is observed for both CF levels, with a gy factor much

larger than the two others. Moreover, gy is also about seven times larger in the

excited state than in the ground state, whereas the other parameters are closer.

This suggests that it should be possible to obtain different spin wavefunctions

in the ground and excited states by applying a suitable magnetic field. In turn,

this would allow building an efficient L system, because transition strengths

between ground and excited hyperfine levels are given by matrix elements

of the form cecn Dj jc0
ec

0
n

�� ��2, where D is the electric dipole operator. The

wavefunctions can be separated into electronic ce and nuclear cn parts

because the spin interactions are much smaller than the electronic ones. As

the electric dipole operator does not act on nuclear spins, the transition

strengths between hyperfine levels for a given set of CF levels depend only

TABLE 1 Calculated and Experimental Gyromagnetic Factors for the 3H6(0)

and 3H4(0) Levels in Tm3+:Y3Al5O12 (de Seze et al., 2006; Guillot-Noël et al.,

2005).

Crystal Field Level gx (MHz/T) gy (MHz/T) gz (MHz/T)

3H6(0) cal. 19 560 11

exp. < 52 403 < 40

3H4(0) cal. 22 75 6

exp. 20 82 14
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on the overlap of the nuclear wavefunctions cnjc0
n

�� ��2, which can be deduced

from Eq. (16) and Table 1 for an arbitrary magnetic field. Figure 16 shows the

dependence of the ratio R between 1j i$ 10j i and 0j i$ 10j i transition

strengths. When B is along the x (y) axis, the nuclear wavefunctions corre-

spond to the 	mI projections on the x (y) axis and the 1j i$ 10j i transition

is forbidden. On the other hand, for B close to the x axis, the difference in

gy values has the largest effect. Accordingly, R takes its maximum value for

a magnetic field forming an angle f ¼ 6∘ with the x axis.

Experimentally, these predictions were confirmed to a reasonable extent

by hole burning and photon-echo experiments as shown in Table 1 (de Seze

et al., 2006; Louchet et al., 2007). It should be noted that these experiments

are complicated by the six sites, with different x,y,z orientations, which Tm3+

ions occupy. In general, these sites become nonequivalent under a magnetic

field, resulting in complex hole burning patterns. Additional site selection by

polarized light can however be used to address a limited number of sites.

Measured gy values are 403 and 82 MHz/T for the ground and excited states,

respectively, and the strong anisotropies of the calculated gyromagnetic factors

were confirmed. The maximum ratio R is however only 0.13, compared to the

predicted one of 0.25. Although, this value is far from the ideal R ¼ 1 case, it

still allows excitation of the two transitions of the L system, which has been

used in determining parameters important for QIP applications, like hyperfine

coherence lifetimes (Louchet et al., 2008) and efficiency of population transfer

between hyperfine levels (Alexander et al., 2008).

4.1.4 Spin Hamiltonian in Pr3+:La2(WO4)3
A specific external magnetic field can also decouple a hyperfine transition

from small magnetic field fluctuations and increase coherence lifetimes by

R
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FIGURE 16 Investigated L system and calculated ratio R between 1j i$ 10j i and 0j i$ 10j i tran-
sition strengths for a magnetic field in the x,y plane (see text) with an angle f with respect to the x

axis in Tm3+:Y3Al5O12 (Guillot-Noël et al., 2005).
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several orders of magnitude (Section 4.3.4). Direct experimental determina-

tion of this field can however be very difficult as its amplitude and direction

have to be extremely accurate. A more systematic approach consists in first

determining the spin Hamiltonian tensors and then calculate suitable magnetic

fields. This has been carried out in several Pr3+- and Eu3+-doped crystals

(Ahlefeldt et al., 2013d; Longdell et al., 2002, 2006; Lovrić et al., 2012). In

the following, we briefly review experiments performed in Pr3+:La2(WO4)3
(Lovrić et al., 2011). This crystal has a monoclinic structure with 8 equivalent

sites for Pr3+ with a C1 symmetry. These sites are divided into two groups

related by a C2 symmetry along the crystallographic b axis. These groups

become nonequivalent when a magnetic field is neither perpendicular or par-

allel to the b axis. Pr3+ ions have a single naturally abundant isotope, 141Pr,

with I ¼ 5/2. Under a magnetic field, hyperfine structures split into six com-

ponents, which are extremely difficult to determine by hole burning spectros-

copy. Taking into account the magnetically nonequivalent sites, a hole

burning spectrum could show up to 60 side holes and 1800 anti-holes! RHS

was therefore used to determine ground (3H4(0))- and excited (1D2(0))-state

hyperfine structures. Pr3+ g factors (principal values of tensor M, Eq. (12))

are typically in the range of 10–100 MHz/T, so that at low magnetic fields

(<20 mT), 	mI levels splitting are much smaller than the zero-field quadru-

polar splitting (Fig. 17). The 	1=2$	3=2 and 	3=2$	5=2 transitions

can therefore be recorded separately on a few MHz range around the zero

field values. Figure 17 shows RHS spectra for the ground 3H4(0) and excited
1D2(0) states under magnetic fields of about 8 mT. As the fields for the

ground and excited states are not applied in a direction for which sites are

equivalent, up to eight lines can be resolved in each spectra, corresponding

to two sets of the four possible 	mI $	m0
I transitions.

Ground- and excited-state spin Hamiltonians, including tensors M and Q,
have each 11 unknown coefficients, as Pr3+ ions site symmetry is C1

(Section 4.1.1). Note that E and D values of the quadrupolar interaction are

approximately known from the zero-field hole burning spectrum (Fig. 13).
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FIGURE 17 Raman heterodyne spectra for the hyperfine transitions of the ground 3H4(0) (upper

row) and excited 1D2(0) (lower row) levels (T ¼ 5 K) under two differently oriented magnetic

fields of �8 mT in Pr3+:La2(WO4)3 (Lovrić et al., 2011).
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The orientations of Q principal axes are however unknown. The tensors are

determined in the reference axes of the magnetic field but two additional coef-

ficients have also to be introduced to take into account the orientation of the

crystal C2 axis, which relates the nonequivalent sites. The 13 coefficients are

fit to a series of spectra obtained with the magnetic field vector describing a

spiral on a sphere (Longdell et al., 2002), with a constant magnitude of about

8 mT. This allows an efficient sampling of the M and Q tensors, which helps

avoiding local minima in the fit. To further enhance the reliability of the para-

meters, a simulated annealing algorithm was used, as well as several conven-

tions to avoid ambiguities in the parameters, linked to permutations of the

tensors’ principal axes. Very good agreements between experimental and cal-

culated transition energies were found, leading to precise parameters. This

was a fundamental requirement for accurate prediction of the magnetic fields

used to extend coherence lifetimes (see Section 4.3). The principal axes of

the Q and M tensors are found to be close to each other in both ground

and excited states. However, as expected in a low symmetry site, they signifi-

cantly differ between these levels. At zero field, the Q tensors’ different

orientations allow transitions with DmI 6¼ 0 to be observed (see Fig. 14C

and D). Indeed, the oscillator strengths between hyperfine levels determined

by spectral tailoring (Fig. 15) are in very good agreement with the nuclear

wavefunctions overlap deduced from the fitted Q tensors. The ground-state

M tensor is also found to be highly anisotropic, in opposition to the excited-

state one. A CF calculation was performed assuming a higher site symmetry,

C2v, to reduce the number of CF parameters to be fitted to experimental

levels. Although in C2v all tensors have collinear principal axes, the calculated

principal values for the M and Q tensors are quite close to the experimentally

determined ones (Guillot-Noël et al., 2010; Lovrić et al., 2011). This gives

some insight on the contributions to the Q and M tensors. In particular, in

the excited state, the second-order hyperfine effect is small, in agreement with

the experimental isotropy of the M tensor. The calculated principal values

could also be used as a starting point for fitting the RHS spectra.

4.2 Transition Strengths and Inhomogeneous Linewidths

Oscillator strengths of f–f transitions, which are of weakly allowed electric

dipole or magnetic dipole nature, are of the order of 10�8 to 10�6. As transi-

tions of interest occur between specific energy CF levels (Section 4.3), their

strength can significantly vary from host to host. For example, the oscillator

strength of the 3H4(0)–
1D2(0) transition is 2.3 � 10�8 in Pr3+:La2(WO4)3

(Guillot-Noël et al., 2007) and 3 � 10�7 in Pr3+:Y2SiO5 (site 1) (Equall

et al., 1995), although these crystals have the same structure with identical site

symmetry for Pr3+ ions. To reach a given Rabi frequency, strong transitions

require pulses of lower intensity (Section 3.1). Typical Rabi frequencies that

can be achieved are �1–10 MHz with laser intensities in the 100s of

W/cm2 range.
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A large absorption is also necessary for efficient quantum memories

(Section 5.2). This can be obtained with cavities or long samples, or by using

crystals with large absorption coefficients a. For a given transition strength, a
can be increased by increasing R concentration. However, this tends to also

increase the transition inhomogeneous linewidth Ginh. The frequency shifts

of the homogeneous lines resulting in Ginh are due to small changes in electric

fields at the R site, because of defects, impurities, etc. (Macfarlane, 1990;

Meltzer, 2005). Optical transition inhomogeneous linewidths therefore depend

on the crystal quality in terms of strains and defects, as well as on the dopant

itself. Differences in ionic radii between the dopant and the substituted cation

induce strains, typically resulting in a linear dependence of Ginh as a function

of the dopant concentration (Beaudoux et al., 2012; K€onz et al., 2003). Lower
inhomogeneous linewidths are favored by close ionic radii between dopant

and substituted cation. For example, in Pr3+:La2(WO4)3, the
3H4(0)!1D2(0)

inhomogeneous linewidth varies with a slope of 10.8 GHz/at.%, about

12 times smaller than that found in Pr3+:Y2SiO5 (Beaudoux et al., 2012). This

can be explained by the close ionic radii of Pr3+ and La3+ (1.14 and 1.18 Å,

respectively) and the smaller radius of Y3+(1.02 Å). The increase of Ginh

can prevent obtaining large peak absorptions by varying the dopant concentra-

tion. For example, in Eu3+:Y2SiO5, 10,000- and 1000-ppm-doped crystals

have similar peak absorption coefficients for the 7F0!5D0 transition

(Fig. 18) (K€onz et al., 2003). Low inhomogeneous broadening favors high

peak absorption, but in some quantum memory protocols also limits the mem-

ory bandwidth (Section 5.2). This can be overcome by using crystals with dis-

order (due to random vacancies or codoping), which can exhibit linewidths of

100s of GHz (B€ottger et al., 2008; Sun et al., 2012; Thiel et al., 2010). Optical

inhomogeneous linewidths in high-quality ordered crystals are in the

0.5–20 GHz, although in some halide compounds it can be as low as 10s of

MHz (Macfarlane, 2002; Sun, 2005; Thiel et al., 2011). This could be
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FIGURE 18 Inhomogeneous linewidths of the 7F0 !5D0 transition as a function of Eu3+ con-

centration in Y2SiO5 at T ¼ 2 K. Reproduced with permission from K€onz et al. (2003), © 2003
the American Physical Society (http://dx.doi.org/10.1103/PhysRevB.68.085109).
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explained by a lower defect density in these materials (Macfarlane, 2002).

Low inhomogeneous broadening (� 100 MHz) has also been observed in

the stoichiometric crystal EuCl3
6H2O (Ahlefeldt et al., 2009). Here, the

dopant-related broadening is avoided and this material exhibits at the same

time a low Ginh and a high absorption coefficient.

Hyperfine transition inhomogeneous linewidths have not been studied to

the same extent as optical ones. In several Pr3+ and Eu3+ crystals, hyperfine

Ginh are found in the 10–100 kHz range (Erickson, 1985; Lovrić et al.,

2011, 2012; Mitsunaga et al., 1984; Mlynek et al., 1983; Timoney et al.,

2012, 2013). These values are several orders of magnitude smaller than

optical inhomogeneous broadening, which is due to the fact that hyperfine

transition energies are determined by operators which do not directly involve

CF parameters. Inhomogeneous broadening is therefore due to variations in

CF wavefunctions. Hyperfine transitions with low Ginh are important for

coherence rephasing and control (Section 4.3.4), as they can be fully

addressed by rf pulses of larger duration and therefore lower intensity.

4.3 Coherence Lifetimes

Coherence lifetimes T2 are central to QIP, as they determine the lifetime of

the superposition states of qubits. For R ions, long coherence lifetimes are

required primarily for qubit transitions, i.e., hyperfine ones, but also for opti-

cal transitions, which are used for qubit state control and coherence transfer.

The longest coherence lifetimes are found for single crystals, but it has been

recently observed that R-doped ceramics (Ferrier et al., 2013) and nanocrys-

tals (Perrot et al., 2013) can exhibit comparable T2 values. On the other hand,

amorphous hosts are generally not favorable to long T2 (Macfarlane, 2002), as

disorder induces strong dephasing (see below).

In this section, we first discuss sources of dephasing in R-doped crystals,

then describe the experimental techniques used to determine T2 as well as

the typical dynamics observed, and finally show examples of hyperfine T2
extension by applying external fields or train of rf pulses.

4.3.1 Population Relaxation

Coherence lifetimes are determined by population and phase relaxation (see

Section 3.2). For an isolated ion, a first contribution to T2 for optical transi-

tions is the excited-state spontaneous emission. In R ions, radiative lifetimes

vary approximately between 50 ms and 10 ms. Nonradiative processes can

also affect populations of both ground and excited levels. At low temperatures

(< 10 K), the dominant mechanism for transitions between CF levels is usu-

ally direct one-phonon absorption or emission (Macfarlane, 2002). When only

phonon absorption can occur, its contribution to T2 is usually negligible at

temperatures lower than 4–5 K. This is why only 2S+1LJ(0) �2S0+1L0J0(0), i.e.,
transitions between CF levels of lower energy in multiplets, are currently used
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for QIP applications. Excited states should also be separated from levels

immediately below by energies much larger than the phonon cut-off fre-

quency of the host to avoid multiphonon processes (Miyakawa and

Dexter, 1970).

Population relaxation can also occur by interactions between different

centers, like energy transfers between R ions and impurities or between

R ions themselves (Henderson and Imbush, 1989). This second type of energy

transfer, so called cross-relaxation, can limit T2 at high R concentration.

For example, two Pr3+ ions can exchange energy according to the scheme

(1D2,
3H4)!(1G4,

3F4), which strongly reduces 1D2 population lifetime at high

Pr3+ concentrations. In this case, T2 can be also strongly reduced, as shown in

Fig. 19 (Beaudoux et al., 2012). As the cross-relaxation involves phonon

emission, its probability can be large even at low temperatures.

At liquid helium temperatures, hyperfine population lifetimes range from

70 ms (Xu et al., 2004) to 120 s for Pr3+ and can reach 23 days in Eu3+:

Y2SiO5 (K€onz et al., 2003). These contributions are generally negligible com-

pared to dephasing mechanisms both for optical and hyperfine transitions.

Hyperfine population lifetimes are however important in determining spectral

tailoring efficiency (Section 4.1.2).

4.3.2 Pure Dephasing Processes

Dephasing by two-phonon Raman elastic scattering can be important, when

population relaxations are negligible (Macfarlane, 2002). An example is

FIGURE 19 Homogeneous linewidth, Gh ¼ 1/(pT2), of the
3H4(0)$1D2(0) transition (squares)

at 3.5 K and contribution 1/(2pT1) from the excited-state population lifetime (circles) as a function

of Pr3+ concentration in La2(WO4)3 (Beaudoux et al., 2012).
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shown in Fig. 20, where the broadening of the 7F0$5D0 transition between

CF singlets is plotted as a function of temperature T in Eu3+:Y2SiO5 (K€onz
et al., 2003). A T7 dependence is observed, corresponding to a low-

temperature two-phonon Raman process. It becomes the largest dephasing

mechanism for temperatures above �6–7 K, as the temperature-independent

contribution to homogeneous linewidth is about 800 Hz.

At temperatures for which phonon dephasing can be neglected, decoher-

ence occurs through fluctuations of transition frequencies (Macfarlane,

2002). This results in phase fluctuations and therefore in coherence loss. Tran-

sition frequencies can be affected by magnetic fields produced by the host

spins. For singlets of non-Kramers ions, two terms depend on magnetic fields

in the spin Hamiltonian given by Eq. (9). Optical transitions are affected by

both B 
 Z 
 B and B 
 M 
 I through differences in tensors between excited

and ground states. On the other hand, hyperfine transitions are only sensitive

to the B 
 M 
 I term. Within the host, magnetic fields are due to electronic or

nuclear spins, which can randomly change states through phonon-induced

relaxations or population-conserving mechanisms, in which two spins make

simultaneous and opposite transitions (flip-flop). Hosts with low magnetic

moment densities therefore favor low dephasing. In Y2SiO5, where Y has a

low nuclear magnetic moment and other nonzero nuclear spins a low concen-

tration, optical T2 approaches T1 for Pr
3+ (T1 ¼ 164 ms, T2 ¼ 152 ms) and Eu3+

(T1 ¼ 1.9 ms, T2 ¼ 1.5 ms) as reported in Equall et al. (1995) and K€onz et al.
(2003). Low gyromagnetic factors (principal values of M) are also reducing

dephasing. As a result, ground-state hyperfine coherence lifetimes are larger

for Eu3+ than for Pr3+-doped hosts. In Y2SiO5, the largest gyromagnetic factor

are 113 and 11 MHz/T for Pr3+ and Eu3+, respectively (Longdell et al., 2002,

2006), in qualitative agreement with the respective hyperfine T2 values of 0.5
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FIGURE 20 Homogeneous linewidth broadening of the 7F0$5D0 transition as a function of

temperature T in Eu3+:Y2SiO5 for ions in site 1 and at different concentrations. The solid line cor-

responds to a T7 two-phonon Raman process. Reproduced with permission from K€onz et al.

(2003), © 2003 the American Physical Society (http://dx.doi.org/10.1103/PhysRevB.68.085109).
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and 15–19 ms (Alexander et al., 2007; Arcangeli et al., 2014; Fraval et al.,

2004). When considering host spins, doping R ions must also be taken into

account. The magnetic moments of non-Kramers ions are given by M 
 I
and are therefore of the order of magnitude of nuclear ones. At low doping

concentrations, R–R magnetic interactions are therefore generally negligible.

As an example, Fig. 21 shows that hyperfine echoes decay as a function of

pulse delay independently of Pr3+ concentration in La2(WO4)3 and dephasing

is attributed to flipping La3+ nuclear spins (Beaudoux et al., 2012).

In Kramers ions, the main term in the spin Hamiltonian Eq. (14) is mB
B 
 g 
 S. It scales approximately as mB, whereas field-dependent terms for

non-Kramers ion singlets are of the order of the nuclear magneton and are

therefore about 1000 times smaller. Optical and electronic spin transitions

of Kramers ions are therefore much more sensitive to magnetic field fluctua-

tions. Moreover, electron spins of doping R ions themselves, which have a

moment mBg 
 S, can be a major source of dephasing, even at concentrations

as low as 10s of ppm (B€ottger et al., 2006; Macfarlane, 2002). Large magnetic

fields can be used to reduce this effect (Section 4.3.4).

Flipping spins may lead to complex behaviors for the echo decays of

R ions (B€ottger et al., 2006; Ganem et al., 1991; Sun et al., 2012; Thiel

et al., 2010). When their flipping rate is slower than the echo decay timescale,

they produce progressive frequency shifts, an effect known as spectral diffu-

sion (Hu and Hartmann, 1974; Hu and Walker, 1978). It is typically revealed

by nonexponential echo decays, where at short times, only few spins flip and

the decay is slow and at longer times, the cumulative effect of spin flips

FIGURE 21 Hyperfine echo amplitude as a function of the delay between exciting and rephas-

ing pulses for different Pr3+ concentrations in La2(WO4)3 (Beaudoux et al., 2012). Squares:

0.02 at.%, circles: 1.4 at.%, and triangles: 3 at.%. The decays at long delays correspond to the

hyperfine coherence loss, which is independent of Pr3+ concentration (T2 ¼ 250 ms). The rapidly

decaying initial part is due to FID.
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shortens the decay. The echo decay intensity I can be described by an effec-

tive linewidth Geff which varies as a function of the pulse delay t:

IðtÞ¼ I0exp �4tpGeffðtÞ½ � (17)

or by more phenomenological expressions of the form (Mims, 1968):

IðtÞ¼ I0exp �4t=TMð Þx (18)

where TM is the phase memory time and x is often found close to 2. Spectral

diffusion therefore results in a progressive broadening of the homogeneous

linewidth Geff. If x ¼ 1, the phase memory time is equal to the coherence life-

time, TM ¼ T2. An example is given in Fig. 22, where the photon-echo decay

of Tm3+ in LaF3 is recorded with and without an external magnetic field

(Macfarlane, 1993). In this crystal, the flipping nuclear spins of fluorine ions

are the main source of dephasing. When an external field is applied, 19F flip-

flop rates are slowed down. This results in spectral diffusion and a decay

whose rate increases with increasing time. Additional effects can be observed

LaF3:Tm3+

I = I o exp (−4t /80)2
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FIGURE 22 Two-pulse photon-echo decay of the 3H6(0)$3H4(0) transition in Tm3+:LaF3
(T ¼ 1.5 K). Applying an external magnetic field (H0 ¼ 41.5 mT) slows down 19F nuclear spin

flip-flop, resulting in spectral diffusion and a non exponential decay. Reproduced with permission

from Macfarlane (1993), ©1993 Optical Society of America.
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for R ion with strong magnetic moments like Kramers ions. The magnetic

field they produce can be large enough to shift neighboring spins out of reso-

nance compared to more distant spins, reducing flip-flop processes. The R ion

is thus surrounded by spins with low flipping rates, the so-called frozen core

(DeVoe et al., 1981; Ganem et al., 1991; Macfarlane and Shelby, 1987a). The

echo decays are then affected by close spins with large effect on the

R transitions, but with a low flipping rate, and by more distant ones, which

flip faster but produce smaller fluctuations. Line shifts also occur on time-

scales longer than T2 (B€ottger et al., 2006). This may prevent exciting the

same ions over long times. For example, QIP applications often require that

a group of ions is selected by spectral tailoring of the optical absorption line.

An optical coherence created in these ions can be transferred to an hyperfine

one and can processed for a time as long as the hyperfine coherence lifetime,

Thf
2 , which can be several orders of magnitude larger than the optical one.

Transferring back the hyperfine coherence to the optical one is possible only

if the spectral diffusion of the optical transitions is small enough on a time-

scale of Thf
2 . Spectral broadening on long timescales can be probed by

three-pulse echoes or time-resolved spectral holeburning (see Section 4.3.3).

Disorder can also affect coherence lifetimes. In single crystals, this can

occur through doping, defects, or by random distribution of host cations. Dis-

order produces a contribution to dephasing varying approximately linearly

with temperature (Flinn et al., 1994; Macfarlane et al., 2000). By analogy with

amorphous systems (Macfarlane and Shelby, 1987b), it has been suggested

that it is due to atoms tunneling between two positions, with broad distribu-

tions of tunneling rate and energies, and referred to as two-level systems

(TLS). In some cases, crystal growth methods and parameters have large

effects on these TLS, as shown in Fig. 23 (Flinn et al., 1994). Only the crystal

obtained by flame fusion shows the T7 temperature dependence expected for a

two-phonon Raman process in a Eu3+-doped single crystal. In the other sam-

ples, oxygen vacancies have been suggested as the source of disorder.

Although disorder generally leads to an increased dephasing, it has also been

shown that, at low level, it could actually lengthen coherence lifetimes. In Eu3+,

Er3+:Y2SiO5, Er
3+ Zeeman transitions are broadened by the codoping and the

resonance condition for flip-flop processes disappears. This slows down spin

fluctuations and in turn increases Er3+ optical T2 (Thiel et al., 2012).

4.3.3 Experimental Techniques

Photon and Spin Echoes

Coherence lifetime measurements are usually based on echo techniques

(Section 3.2), which are less demanding on excitation source stability and

can probe coherence decays over short times compared to spectral hole burn-

ing. Optical transitions can be directly measured, as the echo signal is often

strong enough for available detectors. Signal-to-noise ratio can be increased
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by interfering the echo with a local oscillator for heterodyne detection. Opti-

cal echoes can even be recorded in strongly scattering samples (Beaudoux

et al., 2011; Perrot et al., 2013). Hyperfine transitions are too weak to be

detected directly and have to be optically detected, for example using the

RHS technique described in Section 4.1.2 (Mlynek et al., 1983). First, an opti-

cal pumping sequence empties one of the hyperfine levels, as the coherence

which can be created is proportional to their population difference. The tran-

sition is then excited and rephased by rf pulses. Finally, at the time when the

hyperfine echo forms, an optical probe is shone on the sample, and a new

optical field is created. These two fields beat at the frequency of the hyperfine

transition, with an amplitude proportional to that of the hyperfine echo. The

decay of the beat note amplitude as a function of the rf pulse delay allows

retrieving the coherence lifetime of the hyperfine transition. To generate rf

pulses with large enough areas and bandwidth, high powers are generally

required as well as a tuned circuit acting as a rf resonator. An alternative is

to use all-optical excitation, a technique known as Raman echo (Alexander

et al., 2007; Guillot-Noël et al., 2009; Hu et al., 1976; Louchet et al., 2008).

Here, the hyperfine transition excitation and rephasing are achieved by optical
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FIGURE 23 Dephasing rate (equivalent to homogeneous linewidth) of the 7F0$5D0 transition

as a function of temperature in Eu3+:Y2O3 for samples grown by different techniques: arc furnace,

flame fusion, and laser-heated pedestal growth for fibers. Reproduced with permission from Flinn

et al. (1994), © 1994 the American Physical Society (http://dx.doi.org/10.1103/PhysRevB.49.5821).
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two-color pulses, with a frequency difference corresponding to that of the

hyperfine transition. The hyperfine echo is detected by an optical probe, in

the same way as in RHS experiments.

Three-Pulse Echoes

Probing spectral diffusion on timescales longer than T2 is possible using three-

pulse photon echoes (Fig. 24). The sequence starts with two p/2 pulses, sepa-

rated by a delay t. The first pulse, assumed to have an X phase, rotates the

atoms’ Bloch vectors in the equatorial plane of the Bloch sphere. Atoms then

dephase depending on their detuning with respect to the excitation frequency.

After a delay t, the second X p/2 pulse creates populations depending on the

atom dephasing and therefore frequency. If the absolute dephasing is lower

(larger) than p/2 compared to the x axis of the Bloch sphere, an excited-

(ground) state population appears. This creates a spectral population grating,

with a period of � 1/t. After a delay Tw, a third X p/2 pulse is applied, resum-

ing the phase evolution interrupted by the second pulse, which results in an

echo at a time 2t + Tw. Its intensity is given by:

Ið2t+ TwÞ¼ I0 exp
�2Tw
T1

� �
exp �4tpGeffðt,TwÞ½ �, (19)

where the effective homogeneous linewidth Geff depends on both t and Tw.
Spectral diffusion processes will result in an increase of Geff, which reduces
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American Physical Society (http://dx.doi.org/10.1103/PhysRevB.73.075101).
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the echo intensity by washing out the spectral grating. This effect can be

probed by varying Tw on a T1 timescale instead of T2 or TM for a two-pulse

photon-echo experiment. An example of echo intensity decays as a function

of t and Tw is shown in Fig. 24 for Er3+:Y2SiO5 (B€ottger et al., 2006). As
Tw increases, the decays become faster, clearly showing spectral diffusion

effects, which are moreover revealed by their nonexponential dependence

on t. Solid lines are fitted to the decays with Eq. (19), using an expression

for Geff involving transition fluctuation rates and amplitude. In this material,

fluctuations are due to Er3+ ions flipping between ground-state electronic

Zeeman levels.

Spectral Hole Burning

Spectral hole burning can result in holes with widths twice the homogeneous

linewidth, assuming that the laser linewidth is much narrower. This method is

however often difficult to use because of the strong requirements on laser fre-

quency and power stability and effects like broadening of the hole when the

laser intensity is too high. Moreover, the holes are probed on long timescales

because of the duration of the pumping and scanning sequences. Clearly, echo

techniques provide more detailed and reliable information. SHB is however

very useful to probe homogeneous linewidths on timescales longer than T1
if population storage occurs on longer-lived levels. In this case, a variable

delay is introduced between the pumping and the scanning steps. In Eu3+:

Y2O3, where population is stored in hyperfine levels, Geff has been measured

for delays up to 10 s, four orders of magnitude larger than the optical excited-

state 5D0 lifetime of about 1 ms (Sellars et al., 1994).

4.3.4 Increasing Coherence Lifetimes

High Magnetic Field

Coherence lifetime extension can be achieved either by reducing the environ-

ment fluctuations or by reducing the sensitivity of the R ion to them. An

example of the first approach is given by the effect of a magnetic field on

the 4I15/2(0)$4I13/2(0) transition in Er3+:Y2SiO5 (B€ottger et al., 2006). The

maximal homogeneous broadening, GSD, at temperature T and under a mag-

netic field B is given by:

GSD ¼ p

9
ffiffiffi
3

p m0jges�ggsjnenv
h

sech2
genvmBB
2kT

� �
, (20)

where ges and ggs are the g factors of the 4I13/2(0) excited and 4I15/2(0) ground

states, k the Boltzmann constant, and m0 the vacuum permeability. Dephasing

is due to spins with an nenv concentration and a g factor genv. The sech func-

tion in GSD expression takes into account the spin populations at thermal equi-

librium. GSD is the broadening which is observed when all spins in Er3+
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environment have flipped and is determined by homogeneous linewidth mea-

surements on long timescales using three-pulse photon echoes. At high mag-

netic field, or equivalently low temperature, spins are mainly in the ground

state. Transitions to the upper state are less probable, as is the corresponding

induced frequency shift on the optical transition, which is simply proportional

to jges � ggsj. In the limit B!1, T ! 0, Eq. (20) shows that GSD ! 0.

Figure 25 shows this effect in Y2SiO5 doped at different Er3+ concentrations.

Y2SiO5 is a monoclinic crystal with two C1 sites for Y3+ or Er3+ ions. 89Y

is 100% abundant, with a I ¼ 1/2 nuclear spin and a low magnetic moment

m ¼ �0.14mB. As silicon and oxygen main isotopes have zero nuclear spins,

the main contribution to Er3+ dephasing is the flipping electronic spins of

Er3+ ions themselves, even at concentrations as low as 15 ppm. The optical

transition probed in the experiments of Fig. 25, 4I15/2(0)$4I13/2(0), corre-

sponds to Er3+ in site 1. Dephasing could be due to Er3+ ions in both sites

but the ground-state g factor of ions in site 2 is much larger than those in site

1, for the magnetic field direction chosen. Er3+ ions in site 1 themselves have

therefore the larger contribution to GSD, and set nenv and genv values. As

expected from Eq. (20), the homogeneous broadening decreases with decreas-

ing Er3+ concentration, but a much more dramatic effect is obtained by

increasing the magnetic field (Fig. 25). As a result, homogeneous linewidths

as low as 73 Hz have been obtained at doping level of 15 ppm and under a

7 T magnetic field, approaching the natural linewidth of 14 Hz (B€ottger
et al., 2009). The remaining dephasing is attributed to host nuclear spins.

Effects of large magnetic fields on optical coherence lifetime have been inves-

tigated in a number of crystals (Sun, 2005; Thiel et al., 2011).
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FIGURE 25 Maximum homogeneous broadening GSD of the 4I15/2(0)$4I13/2(0) transition in Er3+:

Y2SiO5 as a function of the external magnetic field and at different concentrations. T ¼ 1.6 K.

Reproduced with permission from B€ottger et al. (2006), © 2006 the American Physical Society

(http://dx.doi.org/10.1103/PhysRevB.73.075101).
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Zero First-Order Zeeman Shift

Increasing coherence lifetimes by applying a large magnetic field is very effi-

cient when dephasing is due to electronic spins, for which the Zeeman excited

state can be strongly depopulated. This is much more difficult to obtain for

nuclear spins, and in this case, coherence extension is better performed by

decoupling R ions from magnetic field fluctuations. We first discuss the use

of transitions showing a zero first-order Zeeman shift (ZEFOZ), also known

more generally as “clock” transitions, from their use in atomic clocks

(Fraval et al., 2004). A ZEFOZ transition is weakly sensitive to small mag-

netic field fluctuations because its frequency as a function of the magnetic

field B has a zero first-order derivative for all field orientations. To reach this

situation, levels involved in the transition should have a nonlinear dependence

on B and this is generally found when they are determined by competing

interactions. For example, hyperfine transitions in non-Kramers ions with

I > 1/2 involve quadrupolar and Zeeman interactions (M and Q tensors in

Eq. (12)), which can be of the same order of magnitude for high enough mag-

netic fields. The nuclear wavefunctions’ mixing introduced by the Zeeman

interaction leads to level anti-crossings. However, since the first-order deriv-

ative must vanish for all field directions (or equivalently for three perpendic-

ular ones), a simple anti-crossing situation is not sufficient. An accurate

knowledge of the spin Hamiltonian is needed, together with numerical

search for ZEFOZ transitions, which should then be chosen to minimize

second-order derivatives. This has been performed in several Eu3+, Pr3+, and

Er3+-doped compounds (Ahlefeldt et al., 2013d; Fraval et al., 2004; Heinze

et al., 2013; Longdell et al., 2006; McAuslan et al., 2012). In the following,

we present results obtained in Pr3+:La2(WO4)3 (Lovrić et al., 2011). Starting

from an accurately determined ground-state spin Hamiltonian (see

Section 4.1.4), ZEFOZ transitions can be calculated. An example is given in

Fig. 26. The principal values of the M tensor vary approximately between

50 and 150 MHz/T and for a field of 350 mT will lead to ground-state split-

tings of about 17–50 MHz. On the other hand, the zero-field hyperfine split-

tings, due to the quadrupolar interaction, are 14.9 and 24.4 MHz and are

therefore of the same order of magnitude. This explains the highly nonlinear

behavior observed in the transition energies as a function of the magnetic field

(Fig. 26). In the energy range displayed, only one ZEFOZ transition is found,

lying at 12.6 MHz for a very specific magnetic field orientation and magni-

tude, which clearly can only be found by calculations based on the spin

Hamiltonian. As this transition is weakly sensitive to magnetic field fluctua-

tions, one expects that the related dephasing will be reduced and therefore

the coherence lifetime extended. This was investigated using the RHS two-

pulse echo technique (see Section 4.3.3). Hyperfine echo decays as a function

of the delay between the excitation pulse and the echo are presented in Fig. 27

for three different magnetic fields. When B is set exactly at the ZEFOZ point,

the 12.6 MHz transition has a hyperfine Thf
2 of 158 ms, nearly three orders of
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magnitude larger than the zero field value of 0.25 ms. This highlights the

remarkable efficiency of this technique, which has been also demonstrated

in Pr3+:Y2SiO5, with an increase in Thf
2 by a factor of 1700 (Fraval et al.,

2004, 2005). The magnetic field must however be very precisely set, as devia-

tions of a few 100s of mT, or fraction of degrees, lead to a fast decrease of Thf
2 ,
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FIGURE 27 Hyperfine echo decays as a function of the delay between the excitation pulse and

the echo in Pr3+:La2(WO4)3 for the ZEFOZ transition shown in Fig. 26 (Lovrić et al., 2011).

Crosses: magnetic field at the ZEFOZ point; circles (diamonds): detuning of 0.2 (0.5) mT for

the z component. Echo decay modulations are attributed to coupling with 139La nuclear spins

(T ¼ 2 K).

FIGURE 26 Calculated ground-state hyperfine transition frequencies as a function of an external

magnetic field in Pr3+:La2(WO4)3. The transition denoted by a thick line is a ZEFOZ one for Bx ¼
80 mT, By ¼ �343 mT, and Bz ¼ �49 mT, corresponding to a frequency of 12.6 MHz (Lovrić

et al., 2011).
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as seen in Fig. 27: a 0.15% decrease in the field magnitude leads to a 40%

decrease in Thf
2 . Combining the calculated second-order derivatives for the

ZEFOZ transition with the effect of small magnetic field detunings on Thf
2 ,

the host magnetic field fluctuations are determined to be about 1 mT and are

likely due to flipping 139La3+ spins. It should be noted that the ZEFOZ transi-

tion coherence lifetime is still far to be limited by the hyperfine T1 contribu-
tion, as Thf

1 ¼ 16 s (Guillot-Noël et al., 2007).

The ZEFOZ technique could also be used for hyperfine transitions of

Kramers ions or for optical transitions (Ahlefeldt et al., 2013d; McAuslan

et al., 2012). In these cases, T1 is generally shorter, which would then set

the limit on T2 extension. Inhomogeneous broadening linked to magnetic

field variations from one R ion site to another can also be reduced for ZEFOZ

transitions (Pascual-Winter et al., 2012b).

Dynamical Decoupling

Although the ZEFOZ technique can extend coherence lifetimes by orders of

magnitude, it relies on particular energy-level schemes and application of spe-

cific magnetic fields. It is therefore not applicable to all systems. Moreover,

the transition structure at the ZEFOZ point can be very complex and dense

(see Fig. 26), which makes spectral tailoring very difficult and is generally

not favorable to absorption over large bandwidths. This may be a serious lim-

itation in QIP applications. It may therefore be useful to use another technique

to extend T2, dynamical decoupling (DD). Originating from NMR spectros-

copy (Carr and Purcell, 1954; Meiboom and Gill, 1958), DD consists typically

in sending a train of p pulses after an initial p/2 one. This can extend the

coherence lifetime if the environment fluctuations are slow enough so that

they appear as an additional and static inhomogeneous broadening during

the delay between the p pulses. This static broadening is then constantly refo-

cused by the p pulses, resulting in an increased T2 (Viola and Lloyd, 1998).

Several DD sequences have been proposed to maximize T2 for nonideal sys-
tems (inhomogeneous broadened transitions, pulse area errors, etc.) by using

pulses with varying phases (Souza et al., 2012; Yang et al., 2010). In general,

the relative phase of the pulses has to be defined very precisely, which

explains that this technique is well suited to rf excitation and coherence exten-

sion of hyperfine or electronic Zeeman transitions.

An example of DD in a R-doped crystal is given in Fig. 28 (Fraval et al.,

2005). In these experiments, a ground-state hyperfine transition of Pr3+:

Y2SiO5 is investigated under an external magnetic field tuned to a ZEFOZ

point. This dramatically extends the coherence lifetimes from 0.5 to 860 ms.

A DD sequence is then applied to the transition to further increase Thf
2 . It con-

sists in a X p/2 pulse, followed by a train of N pairs of X and � X p pulses,

separated by a delay tc (Fig. 28). The alternating phases of the p pulses avoid

accumulating rotation angle errors which would drive Bloch vectors out of the

equatorial plane. The total cycling time is defined as 2Ntc and, for large N,
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corresponds approximately to the time between the initial excitation and the

echo. The echo signal is detected by the RHS technique (see Section 4.3.3).

For a given tc, the final echo decay is recorded as a function of the total

cycling time, obtained by increasing the number of pulses. As seen in

Fig. 28, Thf
2 increases with decreasing tc. This is expected for low pulse error

accumulation and corresponds to pulse delays becoming shorter than the char-

acteristic times of the environment fluctuations. In this case, these fluctuations

are due to magnetic field variations due to flipping 89Y spins. In this example,

the longest Thf
2 observed was 27.9 s, a 30-fold increase compared to the initial

ZEFOZ value. Also shown in Fig. 28 is the hyperfine population lifetime

decay, Thf
1 ¼ 145 s, which sets an upper limit for Thf

2 of 290 s.

DD has also been used in Tm3+:Y3Al5O12 (Pascual-Winter et al., 2012b),

Pr3+:La2(WO4)3 (Lovrić et al., 2013), and Eu3+:Y2SiO5 (Arcangeli et al.,

2014). On the other hand, it has been shown that pulses could be optimized

to provide higher echo intensities after DD in Pr3+:Y2SiO5 (Mieth et al.,

2012). These pulses are in particular chirped in frequency to efficiently

address the hyperfine inhomogeneous linewidth, a technique known as rapid

adiabatic passage, which was also investigated in Tm3+:Y3Al5O12 (Lauro

et al., 2011; Pascual-Winter et al., 2012a).
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Although decoupling sequences can be very effective, it should be noted

that QIP applications have specific requirements, compared to standard

NMR spectroscopy. One important point is that DD sequences should pre-

serve coherences for arbitrary input states. States created by pulses with

	X, 	Y phases should therefore behave in the same way. Complex sequences

have been designed to combine insensitivity to initial state, pulse errors, and

long T2 (Genov et al., 2014; Peng et al., 2011; Souza et al., 2011).

4.4 Currently Used Crystals

Properties of R-doped crystals such as optical coherence lifetime, inhomoge-

neous linewidth as well as oscillator strengths can be found for several dop-

ant–host combinations in reviews and book chapters by Macfarlane and

Shelby (1987a), Macfarlane (2002), Sun (2005), and Thiel et al. (2011). In

this section, we give in Table 2 the optical and hyperfine parameters, when

available, for a number of crystals which have been used in QIP experiments,

including those used in the experiments discussed in Sections 5 and 6.

5 QUANTUM MEMORIES FOR LIGHT

5.1 Requirements

The most basic requirement for quantum memories for light (QML) is the abil-

ity to store and release a photonic qubit on demand. The second one is high

fidelity, which means that the QML should operate as an identity operator.

Input and output qubit states should therefore be as close as possible, a property

measured by the fidelity parameter in QIP (Nielsen and Chuang, 2000). In rare

earth-based QML, photonic qubits are usually implemented using single-

photon polarization states (Clausen et al., 2012; Rieländer et al., 2014) or pres-

ence in time windows (time-bin qubits) (Usmani et al., 2010). In both cases, the

quantum information signal is very weak and an important concern is that it can

be easily buried into noise, i.e., photons without any relationship with the input

state and present at the memory output. A fundamental source for these noise

photons is spontaneous emission, which should be therefore strongly sup-

pressed. High fidelity also requires high efficiency for the memory, i.e. a large

probability to retrieve a photonic qubit after storage. Ideally, all input photons

should be absorbed into the memory, whereas output photons should not. The

next requirements are more dependent on the exact applications considered

for a QML. For quantum repeaters for example, a long storage time is neces-

sary, as well as a large bandwidth (Lvovsky et al., 2009; Tittel et al., 2010).

The latter translates into storage of short light pulses and therefore of many

qubit states during a given time interval. Storage of many qubits in a QML is

called multimode storage and, for example, is important to obtain useful quan-

tum repeaters (Afzelius et al., 2009).
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TABLE 2 Optical and Ground-State Hyperfine Properties of Some R-Doped Crystals Used in QIP Experiments

Optical Hyperfine

Crystal l f Ginh T1 T2 I Ginh T1 T2 DG gmax

(nm) (× 108) (GHz) (ms) (ms) (kHz) (s) (ms) (MHz) (MHz/T)

Pr3+:Y2SiO5
a 605.977 30 4.4 164 111 5/2 50 145 0.5 27.3 116

152 (7 mT) 4.2 � 104

(Z+DD)

Pr3+:
La2(WO4)3

b
602.74 2 10.4 64 16 5/2 105 17 0.25

158 (Z), 4.2
(DD)

27.2 147

Eu3+:Y2SiO5
c 580.04 1.3 1.7 1970 1300 5/2 21 2 � 106 19 96 11

2600
(10 mT)

474 (DD)

Er3+:Y2SiO5
d 1536.48 26 0.18 11,000 3

4400 (7 T)

Tm3+:
Y3Al5O12

e
793.38 8 17 800 81

110
(10 mT)

1/2 500
(0.5 T)
105 (1 T)

4.5
(0.45 T)

0.3 (0.15 T)
230 (1 T, DD)

400

Tm3+:
LiNbO3

f
794.22 200 300 160 11

23 (35 mT)

Nd3+:Y2SiO5
g 883 30 6 300 90 (0.3 T)

Nd3+:YVO4
h 879.94 800 2 100 27 (1.5 T)

The reader is referred to references for details on experimental conditions (magnetic field orientation, temperature, etc.). l, wavelength (vac.); f, oscillator strength; Ginh, inhomogeneous linewidth;
T1, T2, population and coherence lifetimes; DG, maximum spectral hole width; I, nuclear spin; gmax, maximal principal value of the Z gyromagnetic tensor; Z, ZEFOZ; DD, dynamical decoupling.
aSite 1, 0.02% (Equall et al., 1995; Fraval et al., 2005; Heinze et al., 2013; Longdell et al., 2002; Lovrić et al., 2012; Nilsson et al., 2004).
b0.2% (Beaudoux et al., 2012; Guillot-Noël et al., 2007, ,2009; Lovrić et al., 2011, ,2013).
cSite 1, 0.1%, hyperfine data for 151Eu (Arcangeli et al., 2014; K€onz et al., 2003; Longdell et al., 2006).
dSite 1, 0.0015% (B€ottger et al., 2009; Thiel et al., 2011).
e0.1% (Louchet et al., 2007, ,2008; Pascual-Winter et al., 2012b; Thiel et al., 2011).
f0.1% (Sun et al., 2012).
gSite 1, 0.003% (Usmani et al., 2010).
h0.001% (de Riedmatten et al., 2008; Sun et al., 2002).



5.2 Protocols

A series of protocols designed to meet the above requirements in R crystals

has been proposed over the past few years, with specific advantages and draw-

backs. In the following, we briefly describe the main ones and in the next sec-

tion discuss in more details a few experimental examples. Other schemes have

been proposed but have not been developed to the same extent so far (Beavan

et al., 2012; Goldschmidt et al., 2013; Lauro et al., 2009; Ledingham et al.,

2012; Moiseev, 2013).

Electromagnetically Induced Transparency

The first protocol which was investigated for light storage in R-doped crystals

is based on electromagnetically induced transparency (EIT) (Fleischhauer

et al., 2005; Kuznetsova et al., 2002; Lukin, 2003). In a L system, a strong

control light field is applied along one optical transition, creating a transpar-

ency window for a probe beam tuned to the other optical transition

(Fig. 29). A coherence is also created between the two ground states as the

probe beam propagates inside the sample. Moreover, the narrow transparency

window results in a strong refractive index variation, which in turn slows

down the probe pulse. If this effect is large enough, the probe pulse may be
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B

C

D

E

5/2e

3/2e

1/2e

1/2g

5/2g

3/2g

Coupling field

14.85 MHz

(c)
3H

4

FIGURE 29 A transparency window obtained in Pr3+:La2(WO4)3 by EIT (Goldner et al., 2009).

After spectral tailoring of the 3H4(0)!1D2(0) inhomogeneous linewidth, a control (coupling)

beam resonant with the 	3=2g$	5=2e transition is shone on the crystal (left). When a probe

beam of frequency o scans the 1 MHz 	1=2g$	5=2e transition centered at ope (right), a trans-

parency window appears in the center of the line. Its depth and width depend on the control field

Rabi frequency (O/2p ¼ 30 (A), 150 (B), 230 (C), 280 (D), and 340 (E) kHz). T ¼ 2 K.
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entirely contained in the sample at a given time. If the control field is then

slowly turned off, the optical coherence created by the probe pulse is trans-

ferred to a coherence between the ground state levels. When the control field

is turned on again, the process is reversed and the probe pulse leaves the sam-

ple. If photonic qubits are used as the probe pulse, this stopped light process

effectively constitutes a QML with a storage time corresponding to the coher-

ence lifetime of the ground-state transition, typically involving hyperfine

levels (Turukhin et al., 2001).

The efficiency and bandwidth of the EIT-based QML depend on the depth

and width of the transparency window, which should be as high as possible.

This requires a large Rabi frequency for the control field as well as a highly

absorbing sample. EIT is therefore well adapted to systems with very strong

optical transitions, like atomic vapors (Liu et al., 2001). In these cases, the

optical coherence lifetime is short, dominated by T1, but this plays no role

in the EIT process. In opposition, the low f–f oscillator strengths make effi-

cient and large bandwidths EIT memories very challenging to obtain in

R-doped crystals (Ham et al., 1997; Heinze et al., 2013; Longdell et al.,

2005). On the other hand, EIT directly stores quantum states in hyperfine

levels, the coherence lifetimes of which are long and moreover can be effi-

ciently extended (Section 4.3). Indeed, using a combination of ZEFOZ and

DD techniques (Section 4.3.4), an EIT-based memory with very long storage

time, up to 40 s, has been demonstrated in Pr3+:Y2SiO5 (Heinze et al., 2013),

following other experiments in the same host (Longdell et al., 2005; Turukhin

et al., 2001).

Photon Echo

A second type of protocols is based on the two-pulse photon echo

(Section 4.3). Here, an ensemble of R ions with an inhomogeneously broad-

ened absorption line absorbs the incoming photonic qubit, i.e., a single pho-

ton. This is equivalent to the first step of the photon-echo scheme, except

that the exciting pulse has now a very small area instead of p/2. If a p pulse

is then applied after a time t, an echo is emitted at 2t and corresponds to the

output of the memory. As a photonic qubit, the echo quantum state is identical

to that of the input state, expect for a p-phase shift (Fig. 7). The storage time

ts is limited by the transition coherence lifetime T2, although for high effi-

ciency, it should be significantly shorter. For example, to get an echo with

90% of the intensity extrapolated at zero storage time, ts cannot exceed

0.05T2. It can be however extended by transferring the optical coherence to

a hyperfine one (see below). Despite these favorable properties, the two-pulse

photon echo cannot work as a high-fidelity QML because of output noise

(Ruggiero et al., 2009). After absorption of a single photon, the R ions are still

mainly in the ground state. After the rephasing p pulse, they are driven to the

excited state and will start to relax through spontaneous emission and amplify

the reemitted echo by stimulated emission. Both processes produce additional
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photons, i.e., noise, at the output of the memory which degrades its fidelity.

QML protocols have therefore to achieve rephasing without creating a large

population in the excited state (Sangouard et al., 2010) and some examples

are discussed below.

Controlled Line Broadening: CRIB and GEM

In the photon-echo scheme, the p pulse reverses the atomic phase evolution

(see Section 3.2): before the p pulse, f(t) ¼ ot and after it f(t) ¼ f0 � ot.
The same effect can be obtained without a p pulse by changing the sign of

o. This is achieved by the CRIB (controlled reversible inhomogeneous broad-

ening) (Nilsson and Kr€oll, 2005) and GEM (gradient echo memory)

(Alexander et al., 2006) protocols.

Here, an inhomogeneous transition of center frequency o0 and width Do
is broadened by an electric field gradient by the linear Stark effect. An ion

at frequency o0 + o is shifted to o0 + o + cS(o � o0), where cS is the Stark
coefficient. Then, the input signal is absorbed and after a delay t, the ion has a

relative phase of f(t) ¼ [o + cS(o � o0)]t. The electric field is now reversed

and at a later time t, the phase is f(t) ¼ [o + cS(o � o0)]t + [o � cS(o �
o0)](t � t). At t ¼ 2t, f(t) ¼ 2to and an echo is emitted. Its intensity is

proportional to the integral given in Eq. (6) and decays as T2* � 1/Do. The
memory storage time ts is therefore determined by the width of the transition

before broadening by the electric field and ts � 1/Do is required for high

efficiency. The initial peak, which is limited by the homogeneous linewidth,

should therefore be as narrow as possible, with Gh as a lower limit.

The protocol starts with a narrow peak created by optical pumping within

the inhomogeneous linewidth. It is then broadened to match the bandwidth of

the incoming pulse. As Stark coefficients in R-doped crystals are typically in

the range of 10s of kHz/(V/cm), MHz bandwidths can be reached by about

100 V across a few mm (Macfarlane, 2007). The width of the absorption peak

which can be created may however be limited by the levels used for popula-

tion storage, as in spectral tailoring experiments (Section 4.1.2). CRIB and

GEM differ by the direction of the electric field gradient applied to the sam-

ple: in CRIB, the gradient is transverse with respect to the light propagation,

whereas in GEM it is longitudinal, potentially achieving higher bandwidths

for crystals with very low inhomogeneous linewidths. In the case of CRIB,

for an absorption coefficient a after broadening and a sample thickness L,
the memory efficiency, i.e., the ratio between output and input pulse intensi-

ties, is given at zero storage time by:

�CRIB ¼ðaLÞ2ð1� expð�aLÞÞ (21)

and by

�GEM ¼ð1� expð�aLÞÞ2 (22)
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in the case of GEM (Tittel et al., 2010). It can be seen that at high optical

density, the GEM protocol reaches unit efficiency, but is limited to 54% for

aL ¼ 2 in CRIB, unless transfer pulses are added to the protocol (see below).

It should also be noted that high opacity (aL product) coupled to large band-

widths is difficult to obtain in the CRIB/GEM protocols. The initial narrow

line, needed to increase storage time, is likely to be weakly absorbing and

furthermore has to be broadened to match the requested bandwidth. As an

example, to reach 90% efficiency, the broadened line should have an opacity

aL ¼ 3 Eq. (22), which translates into an opacity of aL ¼ 300 for an initial

10 kHz linewidth (T*
2 ¼ 30ms) broadened to 1 MHz.

CRIB/GEM has been studied in Pr3+:Y2SiO5 (Hedges et al., 2010; Hétet

et al., 2008), Eu3+:Y2SiO5 (Alexander et al., 2006), and Er3+:Y2SiO5

(Lauritzen et al., 2010).

Double Rephasing: ROSE and HYPER

Another approach consists in extending the two-pulse photon-echo scheme by

adding a second p pulse after the first one (Fig. 30). The echo observed after

this second pulse is produced in a ensemble of ions in the ground state so that

the noise created by spontaneous emissions disappears. For this scheme to

work as a QML, it is however necessary to avoid the echo emission at the

time 2t, i.e., after the first p pulse. In the ROSE (revival of silenced echo)

protocol (Damon et al., 2011), the two p pulses are propagating in opposite

direction with respect to the input signal, which cancels the first echo but

not the second one, due to spatial phase matching conditions (Fig. 30). An

electric field gradient is used in the HYPER (hybrid photon-echo rephasing)

protocol to broaden the transition between the input and the first p pulse

(McAuslan et al., 2011b). This broadening is not rephased and reduces the

first, unwanted, echo to an arbitrary low intensity. Another electric field gra-

dient applied between the two p pulses cancels the phase shifts produced by

the first electric field. An echo therefore appears after the second p pulse

(Fig. 31). In ROSE and HYPER, the storage time is directly determined by

the optical coherence lifetime T2. At zero storage time, efficiency is given

by Eq. (21) when the echo is emitted in the forward direction (i.e., in the same

direction as the input pulse). Unit efficiencies can be obtained for backward

echo emission but require more complex beam configurations in ROSE.

A major advantage of these protocols is that no spectral tailoring is needed,

which allows directly using the inhomogeneous linewidth and therefore the

total available optical density and bandwidth. High efficiency is therefore eas-

ier to obtain (Dajczgewand et al., 2014). On the other hand, low noise at the

memory output can be achieved only if the p pulses can invert population effi-

ciently, which appears to be quite difficult in strongly absorbing samples.

ROSE/HYPER has been investigated in Tm3+:Y3Al5O12 and Er3+:Y2SiO5

(Dajczgewand et al., 2014; Damon et al., 2011) as well as in Pr3+:Y2SiO5

(McAuslan et al., 2011b).
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FIGURE 30 Storage by the ROSE (revival of silenced echo) protocol. Two p pulses avoid pro-

ducing an echo within an inverted ensemble of ions. To cancel the intermediate echo, the input

and output pulses propagate in a direction opposite to that of the p pulses as shown by the ki wave

vectors under the protocol scheme. Experimental data recorded in Tm3+:Y3Al5O12 (T ¼ 2.8 K):

transmitted input and output pulses (A) and p pulses (B). Reproduced with permission from

Damon et al. (2011), © 2011 IOP Publishing & Deutsche Physikalische Gesellschaft. CC

BY-NC-SA.

FIGURE 31 The HYPER (hybrid photon-echo rephasing) protocol. The echo after the first p
pulse (dotted line) is canceled by the first electric field pulse. The second electric field pulse

cancels the phase shift produced by the first one and an echo (labeled HPE) is observed after

the second p pulse. Reproduced with permission from McAuslan et al. (2011b), © 2011 the

American Physical Society (http://dx.doi.org/10.1103/PhysRevA.84.022309).
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Atomic Frequency Comb

An echo can also be produced by a proper spectral tailoring of the inhomoge-

neous broadening, as shown by the AFC (atomic frequency comb) protocol

(Afzelius et al., 2009; de Riedmatten et al., 2008). Here, a number of absorb-

ing peaks of width g and frequency separation Do are created by spectral tai-

loring (Fig. 32). The total bandwidth spanned by the comb should be larger

than the input pulse one. At a delay t after absorption, ions in peak N have

an additional dephasing f ¼ NDot compared to ions in peak N ¼ 0. At time

t ¼ 2p/Do, dephasing in all peaks are multiples of 2p, the integral in Eq. (6)

is nonzero, and an echo is emitted. This scheme has similarities with the

three-pulse echo (Section 4.3.3), where the third pulse is diffracted by the

spectral grating created by the first two pulses. In opposition to the previous

protocols, the AFC only introduces a delay and the storage time given by

the frequency comb separation is fixed, ts ¼ 2p/Do. It can be converted to

the required on-demand protocol by transferring the optical coherence to a

spin one (see below). As CRIB/GEM, AFC is a low-noise protocol, as no p
pulse is used for rephasing. Another advantage of this protocol is its band-

width, which corresponds to the comb that can be created by optical pumping

and is independent of the memory efficiency. However, the bandwidth which

can be effectively obtained may be limited by the levels used for population

storage, as in CRIB/GEM. This can be overcome if the comb period coincides
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FIGURE 32 Spectral tailoring for the AFC (atomic frequency comb) protocol in Pr3+:Y2SiO5.

The input signal is absorbed along the 	1=2g$	3=2e transition between ground and excited

hyperfine levels. Optical pumping stores population in the 	 5/2g ground-state hyperfine level

(T ¼ 2 K). Reproduced with permission from Afzelius et al. (2010b), © 2010 the American Physi-

cal Society (http://dx.doi.org/10.1103/PhysRevLett.104.040503).
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with level splittings (Bonarota et al., 2011). The efficiency of the AFC mem-

ory depends on the width of the comb teeth, since this broadening is not

rephased in the protocol. The echo intensity is proportional to expð�c=F2Þ
where F ¼ Do/g is the comb finesse and c a constant depending on the teeth

spectral shape. A large finesse is therefore favorable to low dephasing and

large efficiency. On the other hand, for a given comb spectral structure, zero

storage time efficiency in the forward direction is given by Eq. (21), where aL
is divided by the comb finesse F. A compromise has therefore to be found

between reducing the dephasing effects due to the teeth width (large F), and
high comb absorption (low F). A high absorbing, high finesse comb therefore

requires a sample with a large opacity prior to spectral tailoring. As an exam-

ple, with F ¼ 10, 90% efficiency is obtained with aL ¼ 40, using a backward

scheme with transfer pulses (see below). As an alternative to high absorbing

samples, it is possible to place the crystal into a cavity, which transmission

is adjusted to the sample opacity so that the incoming light is completely

absorbed (Afzelius and Simon, 2010; Sabooni et al., 2013).

AFC storage has been obtained in Nd3+:YVO4 (de Riedmatten et al., 2008;

Zhou et al., 2012), Nd3+:Y2SiO5 (Bussières et al., 2014; Clausen et al., 2011,

2012; Usmani et al., 2010, 2012), Tm3+:Y3Al5O12 (Bonarota et al., 2010,

2011; Chanelière et al., 2010), Pr3+:Y2SiO5 (Afzelius et al., 2010b;

G€undoğan et al., 2012; Rieländer et al., 2014; Sabooni et al., 2013), Eu3+:

Y2SiO5 (Timoney et al., 2012, 2013), and Tm3+:LiNbO3 waveguides ( Jin

et al., 2013; Saglamyurek et al., 2011).

Coherence Transfer to Hyperfine Transitions

In contrast to EIT, the photon echo-based schemes have storage times limited

by the optical T2 in the best cases. To reach longer times, additional pulses

can be inserted in the previous protocols to transfer quantum states between

optical and hyperfine transitions (Afzelius et al., 2009; Damon et al., 2011;

Nilsson and Kr€oll, 2005). As described in Section 3.1, this can be achieved

by using a L system. It is then possible to take advantage of the long nuclear

spin coherence lifetimes (Section 4.3). Furthermore, hyperfine T2 extension

methods (Section 4.3.4) can also provide dramatic improvement of storage

times. As mentioned above, transfer pulses also enable backward emission

of the echo in CRIB/GEM and AFC, a configuration for which unit efficiency

can be reached. Photon echo-based memories with transfer to hyperfine

coherences have been reported in Pr3+:Y2SiO5 (Afzelius et al., 2010b),

Eu3+:Y2SiO5 (Timoney et al., 2012, 2013), and Pr3+:La2(WO4)3 (Lovrić

et al., 2013).

5.3 Entanglement Storage in Nd:Y2SiO5

The first example we describe is a QML based on a 30-ppm at.% Nd3+:

Y2SiO5 crystal, using an AFC protocol (Clausen et al., 2011). The photonic
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qubit to store is part of an entangled pair of photons (signal and idler) gener-

ated by spontaneous downconversion in a nonlinear crystal. The state of the

pair is of the form 0aj i 0bj i + 1aj i 1bj i, where a,b label the photons. One photon

of the pair (the signal) is stored in the crystal where a comb has been created

by spectral tailoring. The transition used is the 4I9/2(0)$4F3/2(0) of Nd
3+ iso-

topes with zero nuclear spins. Its inhomogeneous linewidth is 6 GHz with a

peak absorption coefficient of a �3 cm�1. A magnetic field of 300 mT is

applied to the sample perpendicular to the crystal b axis, resulting in an elec-

tronic Zeeman splitting of the excited and ground states of, respectively, 2.1

and 10 GHz. Two lines can therefore be separated in absorption, both with

a �1.5 cm�1. The ground-state upper Zeeman level has a population lifetime

of 100 ms at 3 K, which is large enough, compared to the excited-state life-

time of 300 ms, to allows population storage. A comb with a bandwidth of

120 MHz and with a finesse of F ¼ 2 is then created by spectral tailoring

and used in a double-pass configuration to increase absorption (Fig. 33).

The teeth width (g ¼ 2p � 20 MHz) largely exceeds the transition homoge-

neous linewidth (3.5 kHz). With these parameters, the storage time is ts ¼
2p/Do ¼ 2p/(Fg) ¼25 ns and the efficiency reaches 21%. It should be noted

that one challenging aspect of the experiment is that the bandwidth of the sig-

nal photon, emitted from a parametric downconversion source, has to be

reduced by a factor of 104 to match the memory bandwidth.

The photon reemitted from the memory is then detected as well as the one

which was not stored (idler). The states 0j i and 1j i correspond to different

times of creation of the photons. Because of entanglement, if one photon is

detected at a given time, so is the other one. Entanglement between the stored

and retrieved signal and idler photons is therefore revealed by coincidence

measurements. When the probability of coincidence detection Psi is larger
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storage and retrieval of one of the photon. At long storage times, the reduced memory efficiency

(inset) reduces g(2). T ¼ 3 K. Reproduced with permission from Clausen et al. (2011), © 2011

Macmillan Publishers Ltd: Nature.
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than twice the product of the probabilities of signal (Ps) or idler (Pi) detection,

nonclassical correlations occur, as measured by g(2) ¼ Psi/(PsPi). This is

observed for storage times up to 200 ns (Fig. 33), demonstrating that the

memory preserves entanglement. Further analysis also shows that entangle-

ment also exists between the idler photon and the atoms during storage. Simi-

lar experiments were performed at the same time in Tm3+:LiNbO3

waveguides (Saglamyurek et al., 2011).

5.4 High Efficiency Memory in Pr:Y2SiO5

The second memory we discuss uses the GEM protocol in a 500-ppm, 20-mm

long, Pr3+:Y2SiO5 crystal (Hedges et al., 2010). This length is chosen to

obtain high absorption, and after spectral tailoring, a narrow peak with a width

of 140 kHz and an opacity of 32 is created in the 3H4(0)!1D2(0) transition of

ions in site 1. In Pr3+:Y2SiO5, the ground-state hyperfine levels have a popu-

lation lifetime of about 100 s, very long compared to the excited-state lifetime

of 164 ms, which is favorable to efficient optical pumping (Equall et al., 1995;

Nilsson et al., 2004). Moreover, as in Pr3+:La2(WO4)3 (Section 4.1.4), the low

site symmetry (C1) of Pr
3+ site results in significant branching ratios between

ground- and excited-state hyperfine levels even at zero external magnetic field

(Nilsson et al., 2004). The spectral tailoring is performed using a highly stabi-

lized laser (1 kHz bandwidth) exciting the sample from the side, so that its

intensity, and therefore the spectral tailoring process, does not vary along

the sample. This is necessary given the high absorption of the sample. The

electric field gradient is produced by electrodes in a quadrupole configuration

and voltages up to 	20 V, allowing broadening of the absorption to 1.6 MHz.

This corresponds to the memory bandwidth, whereas the storage time is deter-

mined by the initial peak width, corresponding to T2* ¼ 3 ms. For a storage

time of about 1.4 ms, the echo produced by inverting the electric field intensity

is 69% of that of the input pulse, which is one of the largest efficiencies

reported for any quantum memory (Fig. 34). Finally, measurements with

strongly attenuated input pulses show that the memory output noise is negli-

gible, validating the quantum nature of the memory.

5.5 Long Storage with High Fidelity in Pr:La2(WO4)3

Storage time extension by transferring the optical coherence to a spin one, and

then use the coherence control techniques discussed in Section 4.3.4, has been

studied in a 0.2 at.%-doped Pr3+:La2(WO4)3 crystal (Lovrić et al., 2013). The

level scheme used is shown in Fig. 35 and takes advantage of the favorable

branching ratios between the 	1/2g !	5/2e and 	3/2g !	5/2e transitions,

due to the low site symmetry of Pr3+, to obtain a L system (Fig. 15 and

Section 4.1.4). First, spectral tailoring is used to isolate the 	1/2g !	5/2e

and 	3/2g ! 	5/2e transitions and produce a large population in the

56 Handbook on the Physics and Chemistry of Rare Earths



1.0 Input
Measured
Simulation

Time, t (ms)

N
or

m
al

iz
ed

 in
te

ns
ity

0.8

0.6

0.4

0.2

0.0
0 1 2 3 4 5 6

FIGURE 34 Input pulse (centered at �1 ms) and echo intensities obtained with the GEM proto-

col in Pr3+:Y2SiO5 on the 1D2(0)$3H4(0) transition after storage times of 1.4 and 2.8 ms. T ¼ 3 K.

Reproduced with permission from Hedges et al. (2010), © 2010 Macmillan Publishers Ltd.:
Nature.

Time (ms)

Li
gh

t i
nt

en
si

ty
 (

a.
u.

)

2

A

B

C

3 4 5 6 7

A

B

C
t t t

' '

FIGURE 35 Left: energy levels and transitions used in a two-pulse photon-echo memory with
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	1/2g level, whereas 	3/2g is empty. The resulting memory bandwidth is

1.5 MHz. The input field (pulse 1 in Fig. 35, sequence A) is then absorbed

along the (i)–(e) transition and the resulting optical coherence transferred to

the ground states by applying a p pulse to (t)–(e) (pulse 2). Coherence control

by DD is achieved by applying rf p pulses to the (t) $ (i) hyperfine transition

(sequence B). The hyperfine coherence is transferred back to the optical

transition by pulse 3 and the optical dephasing reversed by pulse 4. The

echo which is finally emitted (pulse e) is the memory output. The protocol

used is the two-photon echo, which is too noisy to be used directly as a

QML protocol (Section 5.2). Results should be however applicable to photon

echo-based QML protocols.

Without transfer to the hyperfine transition, the memory storage time is

determined by the optical coherence lifetime T2 ¼ 11.5 ms. The sequence

described above allows increasing the effective T2 of the memory to 8.4 ms.

This is obtained by a simple series of rf p pulses, which is not efficient as pre-

serving arbitrary quantum states (see Section 4.3.4). Since the optical and rf

pulses have no phase relationship, the hyperfine quantum state which has to

be controlled is indeed arbitrary. To achieve a better control, a more complex

rf sequence is used and indeed the memory efficiency increases at short stor-

age times. Fidelity of the memory could be checked by measuring the optical

phase of the output pulse with respect to the input one. However, the laser

stability is not good enough over storage times of several ms. Instead, two

input pulses are stored in the memory (sequence c in Fig. 35, additional input

and output pulses 10 and e0). The relative phase of the optical pulses is then

varied, producing an interference between the output pulses, which overlap

due to the broadening induced by the memory bandwidth (Fig. 35). The

interference visibility of � 1 shows that the DD sequence does not alter the

memory fidelity.

5.6 Other Results

Recent achievements in QML in R-doped crystals include light-matter

teleportation (Bussières et al., 2014), entanglement storage (Clausen et al.,

2011; Saglamyurek et al., 2011), entanglement of two crystals (Usmani

et al., 2012), memory efficiencies above 50% (Hedges et al., 2010;

Sabooni et al., 2013), GHz bandwidth storage (Bonarota et al., 2011;

Saglamyurek et al., 2011), as well as storage times over 1 min (Heinze

et al., 2013). All these parameters are individually close or higher than the

requirements for applications like quantum repeaters. However, it has not

been yet possible to achieve them simultaneously in the same crystal/dopant

configuration. Progress in this direction is likely to result from improved

material and protocols but also from better quantum states control and

transfer, narrower single-photon sources (Fekete et al., 2013), and high-

efficiency detectors (Marsili et al., 2013).

58 Handbook on the Physics and Chemistry of Rare Earths



Nd3+- and Er3+-doped crystals have also been recently proposed and stud-

ied as quantum memories for microwave photons (Afzelius et al., 2013;

Probst et al., 2013; Staudt et al., 2012). In this case, protocols such as ROSE

could be applied to an electronic Zeeman transition set at the microwave pho-

ton energy (a few GHz) by a magnetic field. In this way, a R-doped crystal

could provide a memory for superconducting quantum processors, with the

added advantage of a possible quantum interface with light.

6 QUANTUM COMPUTING

6.1 Schemes

As mentioned in Section 2.2, Di Vincenzo has summarized the requirements

for a quantum computer into five essential criteria (DiVincenzo, 2000):

1. the qubits are well characterized and can be addressed individually. The

system properties do not change with the number of qubits, i.e., the system

is scalable.

2. qubits can be initialized to a well-defined state.

3. the qubit coherence lifetime is long enough compared to gate operation so

that error correction codes can be used.

4. the qubit state can be measured at the end of the computation.

5. a universal set of quantum gates exist between any pair of qubits.

In well-chosen R-doped crystals, a qubit defined as a transition between

ground-state hyperfine level can fulfill these criteria, if a L system including

an excited state is available (Ohlsson et al., 2002). The relevant level scheme

is shown in Fig. 5. First of all, static and dynamical properties of hyperfine

transitions can be accurately determined by various techniques, as described

in Sections 4.1 and 4.3. Combined rf and optical excitations are a highly use-

ful tool in this respect. The qubit is therefore well characterized (1). Individ-

ual addressing of qubits can be achieved by optical excitation. The number of

qubits which can be selected is proportional to the ratio between inhomoge-

neous and homogeneous linewidths but a stronger limitation comes from the

interactions between qubits that are necessary to implement two-qubit gates.

The scalability criterion is discussed below.

Qubit initialization (2) is obtained by optical pumping which can efficiently

transfer populations between hyperfine levels (Section 4.1.2). If further spectral

tailoring is needed to isolate the optical transitions corresponding to a qubit

within the inhomogeneous linewidth, an additional storage level is required,

like a third ground-state hyperfine level. Hyperfine coherence lifetimes (3)

can reach 10s of ms and up to 10s of seconds, if coherence control techniques

are used (Section 4.3.4). As the typical optical p pulse duration is about 1 ms,
which gives the order of magnitude of a gate duration, a large number of opera-

tions can be performed, before superposition states are lost. Qubit state readout

(4) can also be obtained by optical excitation. Quantum algorithms designs

Rare Earth-Doped Crystals for Quantum Information Processing Chapter 267 59



require unambiguous determination of states 0j i and 1j i (Nielsen and Chuang,

2000). For this purpose, a laser is applied to the 0j i$ 10j i transition (Fig. 5). If

the qubit to be read is in state 0j i, it is excited by the laser to 10j i and fluores-

cence can be detected, whereas if it is in state 1j i, the laser is not absorbed and

no fluorescence is emitted.

Single-qubit gates (5) can be implemented using the optical transitions of

the L system. As an example, we describe a pulse sequence corresponding to

a NOT gate (Fig. 36). The initial state is assumed to be ð 0j i+ i 1j iÞ= ffiffiffi
2

p
. A first

p pulse is applied to the 0j i$ 10j i transition, producing the ð 10j i+ i 1j iÞ= ffiffiffi
2

p
state. A second p pulse on the 10j i$ 1j i transition results in the state

ð 1j i+ i 10j iÞ= ffiffiffi
2

p
, which is finally changed to ð 1j i+ i 0j iÞ= ffiffiffi

2
p

by a third p pulse

applied to 0j i$ 10j i. The complete sequence exchanges the 0j i and 1j i coef-
ficients in the initial qubit state and performs a NOT gate. By varying the

pulse phases, it is possible to perform an arbitrary single-qubit logic gate.

A two-qubit gate, which is a key requirement in a quantum computer, is

also possible, if permanent electric dipole moments differ between ground

and excited states (Macfarlane, 2007). As an example, a CNOT gate imple-

mentation is shown in Fig. 37. A laser resonant with the 0j i$ 10j i transition
is first applied to the control qubit. When the control qubit is in state 1j i, it is
not affected by this excitation. A NOT gate is then applied to the target qubit.

On the other hand, when the control qubit is in state 0j i, it is excited to 10j i by
the laser. The permanent electric dipole moment in 10j i is different from the

one in 0j i or 1j i and shifts the optical transitions of the target qubit out of res-

onance with respect to the pulses of the NOT gate. The control qubit stays

therefore in its initial state. This scheme performs a NOT gate on the target

qubit only when the control qubit is in the 0j i state, and corresponds to a

CNOT gate (Ohlsson et al., 2002).

| 0

|1

|1

|0 + i |1
2

|1 + i |1
2

|1 + i |1
2

|1 + i |0
2

FIGURE 36 Pulse sequence corresponding to a NOT gate. Initial ð 0j i + i 1j iÞ= ffiffiffi
2

p
, final

ð 1j i+ i 0j iÞ= ffiffiffi
2

p
, and intermediate states are shown above the level schemes. Ellipsoids denote

superposition states and arrows the transitions excited by the pulses.
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The Di Vincenzo criteria for qubit control can, at least in principle, be ful-

filled using these schemes which address hyperfine qubits by optical transi-

tions. The remaining requirement is scalability and is the most difficult to

satisfy. In general, two approaches can lead to a system with a large number

of qubits. The first one defines the qubit as an ensemble of identical physical

systems. Here, it would be the R ions in a given sample volume having their

optical transitions at the same frequency. A first problem is that all optical

pulses used to control the qubit states must act on all ions representing the

qubit in the same way. Effect of inhomogeneous laser intensity, and therefore

Rabi frequencies, due to absorption along the sample and transverse beam

profile, must be kept very low. Moreover, the hyperfine inhomogeneous

broadening of the ion ensemble is also a concern since it creates ion-

dependent phase shifts on the hyperfine coherences. These effects can be

greatly reduced by using schemes based on composite pulse sequences, which

are robust against these different inhomogeneities (Genov et al., 2014; Roos

and Mølmer, 2004). The next difficulty comes from the electric interaction

which enables the two-qubit gate. First of all, interacting ions have to be close

enough to produce frequency shifts larger than the optical homogeneous line-

width. This is however not a too stringent requirement (Ahlefeldt et al.,

2013a; Longdell and Sellars, 2004; Ohlsson et al., 2002). A more serious

one is encountered in doped crystals, where no correlation exists between

the optical frequencies and the spatial distribution of ions. In this case, the

number of ions representing a qubit decreases exponentially with the number

of qubits (Wesenberg et al., 2007). Indeed, the fraction p(N) of clusters of N
ions separated by the same distance and having the same optical frequencies

varies approximately as [p(2)]N�1. The readout operation, which is based on

fluorescence, becomes very difficult with increasing N and an alternative

scheme with an auxiliary ion has to be used (see below). To create a posi-

tion–frequency correlation for a large number of qubits, it has been proposed

to use a “stoichiometric” crystal, i.e., fully doped with the qubit ions

Δn

FIGURE 37 A CNOT gate between two qubits (see text).
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(Ahlefeldt et al., 2013a). When such a material is doped with an impurity, the

qubit ions close to it will have their optical frequencies shifted in the form of

satellite lines. Each of these satellite lines corresponds to ions in a well-

defined position relative to the impurity. Relative positions between ions in

different satellite lines are therefore also well defined, which achieves the

desired correlation. The number of qubits corresponds approximately to the

resolved satellite lines.

An opposite approach to scalability consists in considering only one ion, a

single instance, per qubit (Wesenberg et al., 2007). In this case, the problem

of inhomogeneity disappears as the excitation parameters can be adjusted

for each ion. However, the read out of a qubit state depends now on detecting

the fluorescence of a single ion. This is possible with strong transitions for

which the excited state decays primarily to the ground state (closed transi-

tions). The transition can then be excited enough times to reliably detect a

photon. f–f transitions are weak and emission rates are small, making them

difficult to detect in single ions. Detecting a single-qubit ion is also not easy:

if a laser excites an ion in the 0j i state, it may then decay to another hyperfine

ground state, which prevents a reliable measurement of its initial state. An

additional “bus” ion has therefore to be used. It should have a strong closed

transition, like a 4f–5d one, to enable single ion detection. The qubit readout

is then performed by combining fluorescence with an interaction-induced

frequency shift. First, as in the ensemble approach, a laser is tuned to the

0j i$ 10j i transition and excites the qubit ion only if it is in the 0j i state.

A second laser excites the bus ion and its fluorescence is detected. When

the qubit ion is excited, the difference in permanent electric dipole moments,

between excited and ground states, shifts the bus ion frequency out of reso-

nance and no fluorescence is detected during the excited-state lifetime of

the qubit ion. This allows identification of the 0j i state of the qubit. Con-

versely, if the qubit ion is in state 1j i, it is not excited by the first laser, but

the bus ion is, and fluorescence is detected.

6.2 Single-Qubit Gate in Pr:Y2SiO5

We first describe arbitrary logic gates performed on a single qubit in Pr3+:

Y2SiO5 (Rippe et al., 2008). In this work, an ensemble approach is followed.

The qubit is defined as a ground-state hyperfine transition of 141Pr3+ (100%

natural abundance, I ¼ 5/2). To reduce inhomogeneities in optical frequencies

of ions representing the qubit, spectral tailoringof the 3H4(0)!1D2(0) inhomo-

geneous linewidth (5 GHz) is used to create narrow (170 kHz) optical transi-

tions between ground and excited hyperfine levels. These transitions are still

inhomogeneously broadened as Gh � 3 kHz (Equall et al., 1995). Figure 38

shows the absorption to the three excited-state hyperfine levels, from level

0j i, when 1j i is empty, and vice versa. Absorption from the emptied level is

negligible as well as background absorption, showing the efficiency of optical

pumping in this system, as already mentioned in Section 5.4.
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Arbitrary gates can be applied to the qubit using two-color composite

pulses with appropriate relative phases and resonant with the 0j i$ 10j i and

1j i$ 10j i transitions (labeled 2 and 5 in Fig. 38). These pulses reduce the

effect of the hyperfine transition inhomogeneous broadening of � 10 kHz

(Roos and Mølmer, 2004). After initializing the qubit in the 0j i state, several
gates are applied to produce different states on the equatorial plane of the

Bloch sphere. The components of the final qubit states on the Bloch sphere

are then determined, a process known as quantum-state tomography

(Nielsen and Chuang, 2000). This is done by absorption experiments, i.e.,

population measurements, following further rotations of the final qubit state.

The results show that the final qubit states are in excellent agreement with

the theoretical ones, showing that single ion arbitrary gates can be performed

with high accuracy in a R-doped crystal.

6.3 Two-Qubit Gate in Eu:Y2SiO5

The second example demonstrates a two-qubit gate in Eu3+:Y2SiO5 (Longdell

and Sellars, 2004). The qubits are not defined by ground-state hyperfine tran-

sitions, but by optical transitions between ground- and excited-state hyperfine

levels. In this case too, a ensemble approach is taken and two narrow lines

(100 kHz) are created by spectral tailoring in the 7F0–
5D0 inhomogeneous

linewidth (2 GHz). This allows selecting ions which can be driven in the same

way to represent the control and target qubits. Further selection is then carried
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out to retain only the target ions which shift by the same frequency when con-

trol ions are excited. The gate is a control-phase gate, for which the phase of

the target qubit is modified depending on the state of the control qubit. To

demonstrate it, the target qubit is initially set to a point in the equatorial plane

of the Bloch sphere by a p/2 pulse. After a delay t, a p pulse is shone on

the sample to rephase the inhomogeneous dephasing corresponding to the

100-kHz transition width. The emitted echo determines the final state of the

qubit. A p pulse is also applied to the control qubit just after the one applied

to the target qubit (Fig. 39). When the control qubit is in the excited state, the

target one experiences a frequency shift and therefore a phase shift which

affects the phase of the final echo. Depending on the initial state of the control

qubit, this phase shift occurs either before or after the p pulse applied to the

target qubit. This gives a different phase shift to the echo, i.e., the final state

of the target qubit (Fig. 39), which is the effect expected from a control-

phase gate.

6.4 Other Results

Experiments related to quantum computing focus on Pr3+- and Eu3+-doped

crystals since their I ¼ 5/2 nuclear spins allow defining a qubit with hyperfine

levels as well as storing population in an auxiliary hyperfine level. Spectral

tailoring sequences for qubit isolation, as well as selection of interacting ions,

have been studied in details in Pr3+- and Eu3+-doped Y2SiO5 (Longdell and

Sellars, 2004; Nilsson et al., 2004; Rippe et al., 2005). For the ensemble

approach, the stoichiometric crystal EuCl3 
6H2O, codoped with various

R ions, has been investigated with respect to inhomogeneous and homoge-

neous linewidths and electric interactions between ions in satellite lines
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(Ahlefeldt et al., 2013a,b,c). Ce3+, Pr3+ and Ce3+, Eu3+ interactions have also

been characterized in Y2SiO5 for a single-instance approach where Ce3+ is the

bus ion (Serrano et al., 2014; Yan et al., 2013). Although these results suggest

that quantum computing could be experimentally demonstrated for a few

qubits using both approaches, several important points, like high-fidelity

two-qubit gates or more than two interacting qubits, have not been shown

yet. However, recent results have reported detection of single R ions in

Er3+:Y2SiO5 (Yin et al., 2013), Pr3+:Y3Al5O12 (Kolesov et al., 2012), and

Pr3+:Y2SiO5 (Utikal et al., 2014). Moreover, in Y3Al5O12, a single Ce3+ elec-

tronic spin coherence has been optically detected and manipulated (Kolesov

et al., 2013; Siyushev et al., 2014). This suggests that the qubit readout oper-

ation in the single-instance approach is possible. Stronger coupling between

light and a single R ion could also be achieved in high Q cavities

(McAuslan et al., 2009, 2011a).

7 CONCLUSION AND OUTLOOK

R-doped crystals fulfill many of the requirements for an efficient QIP system.

Protocols exist that take advantage of their specific spectroscopic properties,

which can be moreover enhanced and tailored by a number of techniques.

In particular, R-doped crystals can provide interfaces between photonic quan-

tum bits, in the optical and microwave ranges, and solid-state qubits. As these

qubits can be further processed by optical control, a complete quantum net-

work node could be obtained. However, a QIP system outperforming a classi-

cal system in current information processing tasks is extremely demanding.

Still, R-based quantum memories seem much closer to reach the required

operating parameters than quantum computers, which are clearly much more

complex devices. Strong theoretical and experimental improvements are

needed, including development of new materials. Here, bulk single crystals

are the preferred choice because of their outstanding spectroscopic properties,

although some parameters have still to be improved. Attractive alternatives,

like nanostructured materials, may provide additional and important features.

In particular, this could allow coupling R ions to other atomic quantum sys-

tems, nanoscale quantum mechanical oscillators, or nanocavities. In such

hybrid quantum systems, one could expect to combine efficient processing

and storage functionalities, and interface quantum states of different physical

nature. This approach may not only benefit QIP but also open the way to fun-

damental studies in quantum physics.
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ACRONYMS AND ABBREVIATIONS

AFC atomic frequency comb

AJ hyperfine coupling constant

CF crystal field

CNOT control not gate

CRIB controlled reversible inhomogeneous broadening

DD dynamical decoupling

EIT electromagnetically induced transparency

EPR electron paramagnetic resonance

f oscillator strength

FID free-induction decay

GEM gradient echo memory

gJ Landé’s factor

HYPER hybrid photon-echo rephasing

I nuclear spin quantum number

J total angular momentum quantum number

L orbital angular momentum quantum number

NMR nuclear magnetic resonance

P quadrupolar coupling constant

QIP quantum information processing

QML quantum memories for light

rf radiofrequency

RHS Raman heterodyne scattering

ROSE revival of silenced echo

S electron spin quantum number

sech hyperbolic secant function

SHB spectral hole burning

T1 population lifetime

T2 coherence lifetime

T2hf hyperfine coherence lifetime

TM phase memory time

TLS two-level system

ZEFOZ zero first-order Zeeman shift

a absorption coefficient

h asymmetry coupling constant

gn nuclear gyromagnetic factor

Geff effective homogeneous linewidth

Gh homogeneous linewidth

Ginh inhomogeneous linewidth

mB Bohr magneton

V Rabi frequency (rad s�1)
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1 INTRODUCTION

Rare-earth elements and yttrium (together known as REY) are widely recog-

nized as strategic materials for high-technology applications (e.g., laptop

computers, flat screen televisions, cell phones, MRI scanners, and medicine)

and green energy technologies (e.g., electric and hybrid vehicles, wind power

generators, and compact fluorescent lighting) (Table 1). World demand for

REY is increasing rapidly (Fig. 1) (Humphries, 2010; Roskill Information

Services Ltd., 2007; USGS, 2013) and a stable supply of REY is key to future

development of technology and the global economy.

At present, �90% of the world’s production of REY is from China,

although China has only half of known global reserves; the United States,

India, Australia, and other countries together have another half (Fig. 2)

(USGS, 2013). China’s dominance pertains especially to heavy rare-earth ele-

ments (HREE; conventionally Gd to Lu, but Eu is included here), which are

important materials for high-technology products including electronic, clean

energy, and military technological devices (Service, 2010). In contrast to light

REE (LREE), which can be obtained from carbonatite/alkaline igneous com-

plexes in many countries, known HREE reserves are almost all in ion-

adsorption-type ore deposits in southern China (e.g., Longnan and Xinxiu

ore deposits), which are characterized by larger proportions of HREE

(Fig. 3). Therefore, diversification of sources and increased access to REY

resources, especially HREE, are important to maintain supply capable of

meeting the ever-rising demand for the rare earths.

Kato et al. (2011) reported the potential of deep-sea REY-rich mud in the

Pacific Ocean as a new source of REY. Their study was based on investiga-

tions of drill core samples from 51 sites of the Deep Sea Drilling Project

(DSDP) and Ocean Drilling Program (ODP), and piston core samples

obtained from 27 sites by the Ocean Research Institute of the University of

Tokyo; together, these samples cover much of the Pacific Ocean (Fig. 4).

Chemical analyses of 2037 bulk-sediment samples revealed the mud to have

high REY resource potential, especially for HREE; the muds commonly have

considerably higher concentrations of REE (including HREE) than the ion-

adsorption-type ore deposits in southern China (Kato et al., 2011; Fig. 5). In

this chapter, we describe the distribution of REY-rich muds and discuss the

lithology, geochemistry, and genesis of the deposits. We also describe possi-

ble development systems and processes for the REY-rich mud deposits.

2 DISTRIBUTION OF REY-RICH MUDS

REY-rich mud is defined as deep-sea sediment containing more than 400 ppm

of total REY (hereafter, SREY), which is comparable to SREY in ion-

adsorption-type ore deposits in southern China (Bao and Zhao, 2008; Wu

et al., 1990, 1996). Several types of seafloor sediment have been reported to
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TABLE 1 Industrial Applications of Rare-Earth Elements

Element Application

Light rare
earths (LREE)

Lanthanum [La] l Optical glass
l Ceramic condensers
l Catalysts
l Phosphors
l Rechargeable nickel–metal hydride batteries

Cerium [Ce] l Polishing powders
l Catalysts
l UV cut glass
l Glass decolorizers
l Rechargeable nickel–metal hydride batteries

Praseodymium
[Pr]

l Nd magnets
l Ceramic tile coloring
l Rechargeable nickel–metal hydride batteries

Neodymium
[Nd]

l Nd magnets
l Ceramic condensers
l Rechargeable nickel–metal hydride batteries

Samarium [Sm] l Sm–Co magnets

Europium [Eu] l Phosphor (red)

Heavy rare
earths (HREE)

Gadolinium
[Gd]

l Optical glass
l Neutron shielding material for atomic
reactors

Terbium [Tb] l Phosphor (green)
l Magnetic optical disk targets
l Nd magnets
l Giant magnetostrictive material

Dysprosium
[Dy]

l Nd magnets
l Giant magnetostrictive material

Holmium [Ho] l Lasers
l Magnetic superconductive material

Erbium [Er] l Erbium-doped fiber amplifiers
l Crystal glass colorant

Thulium [Tm] l Lasers
l Thulium-doped fiber amplifiers

Ytterbium [Yb] l Lasers
l Visible upconversion

Lutetium [Lu] l Scintillators

Yttrium [Y] l Phosphor (red)
l Optical glass
l Yttria-stabilized zirconia
l Anodic/cathodic material for rechargeable
batteries

l High-temperature superconductors
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contain high concentrations of REY (Courtois and Clauer, 1980; Dubinin and

Sval’nov, 2000; Murray and Leinen, 1993; Ruhlin and Owen, 1986). How-

ever, seafloor sediments have not been regarded as a REY resource because

of insufficient data on the spatial distribution of the REY-enriched sediments.

Kato et al. (2011) discovered that REY-rich deep-sea muds are distributed

over large areas of the Pacific Ocean (Fig. 4) on the basis of the elemental

compositions of more than 2000 samples collected at �1-m depth intervals

from sediment cores from 78 sites in the Pacific Ocean. Their results clearly

indicate the potential of REY-rich deep-sea mud as a source of REY. More

recently, Yasukawa et al. (2014) recognized REY-rich muds in the Indian

Ocean (Fig. 6 and Table 2).

2.1 Pacific Ocean

REY-rich muds in the Pacific Ocean are found mainly in pelagic region at

water depths of greater than 4000 m in areas more than 2000 km from land.

On the basis of chemical analyses of mud samples from 78 sites in the Pacific

Ocean, Kato et al. (2011) demonstrated that REY-rich muds are distributed

mainly in two regions: the eastern South Pacific and central North Pacific

(Fig. 6 and Table 2).

In the eastern South Pacific region, REY-rich mud layers are less than

�10 m thick. They have SREY contents of 1000–2230 ppm with total HREE

concentrations (SHREE) of 200–430 ppm (Figs. 7 and 8), which are compa-

rable to or greater than those of ion-adsorption-type deposits in southern

China (SREY contents of 500–2000 ppm with 50–200 ppm SHREE;
Bao and Zhao, 2008; Wu et al., 1990, 1996). There are relatively thin

(under 3 m) REY-rich mud layers with very high average SREY contents that
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TABLE 2 Compilation of Global Data on SREY Contents of Seafloor Sediments (<2 mbsf )

Site/Station No. Latitude Longitude Area

Water

Depth (m)

Average

SREY (ppm)

Data

Sourcea

Pacific Ocean

DSDP Site 33 39�28.480N 127�29.810W Northeast Pacific 4284 143 1

DSDP Site 36 40�59.080N 130�06.580W Northeast Pacific 3273 177 1

DSDP Site 37 40�58.740N 140�43.110W Northeast Pacific 4682 219 1

DSDP Site 38 38�42.120N 140�21.270W Northeast Pacific 5134 222 1

DSDP Site 39 32�48.280N 139�34.290W Northeast Pacific 4929 380 1

DSDP Site 46 27�530N 171�26.300E North Central Pacific 5768.9 350 1

DSDP Site 65 04�21.210N 176�59.160E Central Pacific 6130 490 1

DSDP Site 68 16�43.320N 164�10.360W Central Pacific 5467 963 1

DSDP Site 71 04�28.280N 140�18.910W Central Equatorial Pacific 4419 80 1

DSDP Site 74 06�14.200S 136�05.800W Southeast Pacific 4431 594 1

DSDP Site 75 12�310S 134�160W Southeast Pacific 4181 1536 1

DSDP Site
76/76A

14�05.900S 145�39.640W Southeast Pacific 4597.9 1122 1

DSDP Site 83 04�02.800N 95�44.250W Eastern Equatorial Pacific 3645.7 119 1

DSDP Site 160 11�42.270N 130�52.810W Central Tropical Pacific 4940 449 1

Continued



TABLE 2 Compilation of Global Data on SREY Contents of Seafloor Sediments (<2 mbsf )—Cont’d

Site/Station No. Latitude Longitude Area

Water

Depth (m)

Average

SREY (ppm)

Data

Sourcea

DSDP Site 162 14�52.190N 140�02.610W Central Tropical Pacific 4854 444 1

DSDP Site 163 11�14.660N 150�17.520W Central Tropical Pacific 5230 675 1

DSDP Site 164 13�12.140N 161�30.980W Central Pacific 5499 – 1

DSDP Site 166 03�45.700N 175�04.800W Central Pacific 4962 609 1

DSDP Site 168 10�42.200N 173�35.900E Central Pacific 5420 – 1

DSDP Site 170 11�480N 177�370E Central Pacific 5792 925 1

DSDP Site 172 31�32.230N 133�22.360W Northeast Pacific 4767 262 1

DSDP Site 199 13�30.800N 156�10.300E Western Pacific 6090 – 1

DSDP Site 288 05�58.350S 161�49.530E Southwest Pacific 3000 59 1

DSDP Site 311 28�07.460N 179�44.250E North Central Pacific 5775 439 1

DSDP Site 313 20�10.520N 170�57.150W Central Pacific 3484 327 1

DSDP Site 316 00�05.440N 157�07.710W Central Pacific 4451 71 1

DSDP Site 317B 11�00.090S 162�15.780W Central Pacific 2598 44 1

DSDP Site 319 13�01.040S 101�31.460W Southeast Pacific 4296 1168 1

DSDP Site 463 21�21.010N 174�40.070E North Central Pacific 2525 142 1

DSDP Site 571 03�59.840N 114�08.530W Eastern Equatorial Pacific 3962 73 1



DSDP Site
573/573A

00�29.910N 133�18.570W Central Equatorial Pacific 4301 49 1

DSDP Site 596 23�51.200S 165�39.270W Southwest Pacific 5701 193 1

DSDP Site 597A 18�48.430S 129�46.220W Southeast Pacific 4162.6 1487 1

DSDP Site 598 19�00.280S 124�40.610W Southeast Pacific 3699 291 1

DSDP Site 599 19�27.090S 119�52.880W Southeast Pacific 3654 168 1

DSDP Site 600C 18�55.700S 116�50.450W Southeast Pacific 3398 87 1

DSDP Site 601 18�55.220S 116�52.11 W Southeast Pacific 3433 50 1

DSDP Site 602B 18�54.410S 116�54.680W Southeast Pacific 3535 128 1

ODP Site 807A 03�36.420N 156�37.490E Western Equatorial Pacific 2803.8 68 1

ODP Site 834A 18�34.060S 177�51.74 W Southwest Pacific 2692.3 93 1

ODP Site 851B 02�46.220N 110�34.310W Eastern Equatorial Pacific 3760.3 48 1

ODP Site 853B 07�12.660N 109�45.080W Eastern Equatorial Pacific 3715.5 180 1

ODP Site 854C 11�13.430N 109�35.650W Eastern Equatorial Pacific 3568.2 309 1

ODP Site 869A 11�00.090N 164�44.970E Western Pacific 4826.7 686 1

ODP Site 1215A 26�01.770N 147�55.990W Central Tropical Pacific 5395.6 286 1

ODP Site 1216A 21�27.160N 139�28.790W Central Tropical Pacific 5152.5 442 1

ODP Site 1217A 16�52.010N 138�060W Central Tropical Pacific 5342.1 365 1

ODP Site 1218A 08�53.370N 135�220W Central Tropical Pacific 4826.3 257 1

ODP Site 1220A 10�10.600N 142�45.490W Central Tropical Pacific 5217.9 523 1

Continued



TABLE 2 Compilation of Global Data on SREY Contents of Seafloor Sediments (<2 mbsf )—Cont’d

Site/Station No. Latitude Longitude Area

Water

Depth (m)

Average

SREY (ppm)

Data

Sourcea

ODP Site 1221A 12�020N 143�41.650W Central Tropical Pacific 5175.3 322 1

ODP Site 1222A 13�48.980N 143�53.350W Central Tropical Pacific 4988.7 485 1

KH68-4-15-3 12�000N 169�58.50W Central Pacific 5050 498 1

KH68-4-18-3 01�59.50N 170�00.50W Central Pacific 5470 307 1

KH68-4-20-2 02�28.40S 169�59.70W Central Pacific 5130 343 1

KH68-4-25-2 19�59.10S 170�01.60W Southwest Pacific 5300 153 1

KH68-4-29-2 25�54.40S 170�19.50W Southwest Pacific 5600 204 1

KH68-4-31-3 32�09.20S 169�56.30W Southwest Pacific 5650 169 1

KH68-4-39-2 50�07.20S 169�58.90W Southwest Pacific 5190 210 1

KH70-2-5-3 38�25.50N 170�05.70W North Central Pacific 5245 213 1

KH70-2-7-3 33�01.90N 169�53.50W North Central Pacific 5420 227 1

KH70-2-9-3 17�050N 146�12.30W Central Tropical Pacific 4950 651 1

KH71-5-7-2 02�00.80N 145�590W Central Equatorial Pacific 4550 74 1

KH71-5-10-2 04�58.50S 146�03.50W Southeast Pacific 4960 1035 1

KH71-5-12-3 11�01.40S 146�01.50W Southeast Pacific 4830 1274 1

KH71-5-15-2 20�230S 148�020W Southeast Pacific 4615 1047 1



KH71-5-42-2 27�34.80S 88�030W Southeast Pacific 3690 86 1

KH71-5-44 21�S 93�W Southeast Pacific – 1124 1

KH71-5-53-2 08�15.30N 112�42.10W Eastern Equatorial Pacific 3380 329 1

KH72-2-56 21�340N 132�420E Philippine Sea 5360 245 1

KH72-2-58 22�530N 129�130E Philippine Sea 5300 216 1

KH73-4-5 12�23.20N 151�480E Western Pacific 5920 325 1

KH73-4-9 07�49.90S 172�48.60E Central Pacific 5390 328 1

KH76-2-3 24�27.20N 132�35.40E Philippine Sea 4750 221 1

KH80-3-22 31�16.20N 153�42.90E Western Pacific 5750 130 1

KH80-3-30 09�50.60N 153�13.50E Western Pacific 5480 355 1

KH84-1-17A 20�05.10N 143�350E Philippine Sea 4140 117 1

KH84-1-21 27�55.10N 142�22.30E Philippine Sea 3500 125 1

KH84-1-30 27�13.30N 149�06.70E Western Pacific 5800 201 1

Indian Ocean

DSDP Site 213 10�12.710S 93�53.770E Wharton Basin 5609 199 2

DSDP Site 223 18�44.980N 60�07.780E Arabian Sea 3633 78 2

DSDP Site 236 1�40.620S 57�38.850E Western Equatorial Indian 4487 110 2

DSDP Site 238 11�09.210S 70�31.560E Central Tropical Indian 2832 16 2

DSDP Site 259 29�37.050S 112�41.780E Perth Abyssal Plain 4696 65 2

DSDP Site 267 59�15.740S 104�29.300E Southern Ocean 4522 202 2

Continued



TABLE 2 Compilation of Global Data on SREY Contents of Seafloor Sediments (<2 mbsf )—Cont’d

Site/Station No. Latitude Longitude Area

Water

Depth (m)

Average

SREY (ppm)

Data

Sourcea

ODP Site 758A 5�23.0490N 90�21.6730E Northeastern Tropical Indian 2924 131 2

48 15�200S 104�200E Wharton Basin – 389b 3

51 15�100S 101�400E Wharton Basin – 361b 3

55 15�S 98�E Wharton Basin – 573b 3

56 15�S 97�200E Wharton Basin – 1190b 3

62 14�500S 94�E Wharton Basin – 649b 3

70 14�500S 91�100E Wharton Basin – 346b 3

N-52 10�200S 79�E Central Indian Ocean Basin – 261b 4

N-80 11�S 82�300E Central Indian Ocean Basin – 258b 4

Y-81 12�200S 87�200E Central Indian Ocean Basin – 312b 4

Y-90 12�200S 82�E Central Indian Ocean Basin – 215b 4

Y-97 12�200S 78�200E Central Indian Ocean Basin – 270b 4

F-155 6�500S 78�300E Central Indian Ocean Basin – 308b 4

SS-210 15�200S 83�E Central Indian Ocean Basin – 786b 4

SK-226 13�S 75�E Central Indian Ocean Basin – 170b 4

SS-657 14�S 75�500E Central Indian Ocean Basin – 275b 4



Atlantic Ocean

Station 3793 22�200N 67�09.50W Nares Abyssal plain 5720 219b 5

Station 3792 22�24.90N 64�070W Nares Abyssal plain 5830 238b 5

Station 3791 22�280N 61�180W Nares Abyssal plain 5900 245b 5

Station 3822 22�260N 56�55.60W North American Basin 5250 276b 5

Station 3821 19�44.60N 56�27.50W North American Basin 5050 248b 5

Station 3823 22�18.50N 53�550W North American Basin 5055 289b 5

Station 3824 22�210N 51�010W North American Basin 4960 230b 5

Station 3790 22�28.30N 49�00.30W Mid-Atlantic Ridge 4560 141b 5

Station 3827 22�170N 44�40.60W Mid-Atlantic Ridge 3680 104b 5

Station 3828 22�17.60N 43�420W Mid-Atlantic Ridge 4230 84b 5

Station 3830 22�200N 39�47.30W Mid-Atlantic Ridge 4810 121b 5

Station 3832 22�18.90N 37�12.50W Canary Basin 6080 303b 5

Station 3834 22�18.60N 32�03.60W Canary Basin 5080 180b 5

Station 3836 22�200N 26�510W Canary Basin 5320 172b 5

Station 3879 22�16.50N 24�05.20W African Continental Slope 5040 102b 5

Station 3838 22�13.20N 22�480W African Continental Slope 4760 94b 5

Station 3878 22�16.90N 20�28.40W African Continental Slope 4188 86b 5

Station 3865 22�180N 19�010W African Continental Slope 3360 97b 5

Continued



TABLE 2 Compilation of Global Data on SREY Contents of Seafloor Sediments (<2 mbsf )—Cont’d

Site/Station No. Latitude Longitude Area

Water

Depth (m)

Average

SREY (ppm)

Data

Sourcea

Station 3840 22�17.60N 17�58.80W African Continental Slope 1921 112b 5

Station 1535 25�35.70S 24�02.40W Brazil Basin 4500 292b 6

Station 1536 22�17.60S 24�01.10W Brazil Basin 5500 295b 6

Station 1537 19�05.50S 24�02.90W Brazil Basin 5000 218b 6

Station 1538 15�52.90S 24�04.60W Brazil Basin 5200 464b 6

Station 1539 12�41.10S 24�02.10W Brazil Basin 5100 456b 6

Station 1540 9�22.40S 24�02.10W Brazil Basin 5500 328b 6

Station 1541 6�10.80S 24�01.10W Brazil Basin 5800 465b 6

Station 1542 2�59.10S 24�01.20W Brazil Basin 5500 261b 6

Station 2182 23�30.520S 4�17.190W Angola Basin 4990 115 7

a1, Kato et al. (2011); 2, Yasukawa et al. (2014); 3, Pattan et al. (1995); 4, Pattan and Parthiban (2011); 5, Dubinin and Rozanov (2001); 6, Dubinin and Rimskaya-
Korsakova (2011); 7, Dubinin et al. (2013).
bIndividual REY contents that were not included were estimated from the data provided by using correlations among REE contents derived from the entire data set of
Pacific Ocean sediment compositions. For data sources 3 and 4, missing data for Pr, Tb, and Tm were calculated using Nd, Gd, and Er data, respectively, based on linear
correlations of the entire Pacific Ocean data set (R2 for each pair >0.99). For data sources 5 and 6, missing data for Y were calculated using Lu data based on a second-
order approximation curve (R2¼0.984) for the entire Pacific Ocean data set.



exceed 1500 ppm at some sites (e.g., Sites 75 and 597). On the other hand, at

other sites (e.g., Sites 76 and 319) REY-rich muds are relatively thick

(�10 m) with average SREY contents of �1000 ppm (Figs. 7 and 8). Interest-

ingly, a thick REY-rich mud layer (�40 m) with average SREY content of
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FIGURE 7 Depth profiles of SREY content in cores from the Pacific Ocean. Profiles extend to a

maximum of 50 mbsf. Modified from Kato et al. (2011).
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1100 ppm was found 13.5 m below the seafloor at Site 596, even though the

surface sediments there have low SREY contents of less than 250 ppm

(Figs. 7 and 8).

In the central North Pacific region, REY-rich mud layers are much thicker

(mostly greater than 30 m, locally over 70 m) than in the eastern South

Pacific. SREY contents are moderately high (400–1000 ppm) with SHREE
contents of 70–180 ppm. Especially east of the Hawaiian Islands, layers of

REY-rich mud are noticeably thick (mostly over 30 m and locally in excess

of 70 m) (Figs. 7 and 8). The average SREY contents of the thick REY-rich
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FIGURE 8 Detailed depth profiles of SREY content for selected cores from those shown in

Fig. 7. Intervals shaded pale gray indicate no core recovery. Modified from Kato et al. (2011).
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muds are 625 ppm which are lower than those of the eastern South Pacific

muds. Some cores from west of the Hawaiian Islands have higher SREY con-

tents (up to 1130 ppm) than those east of the islands, whereas the REY-

enriched layers are thinner (mostly under 20 m).

Apart from these two main regions, REY-rich muds are also found in the

northeastern Pacific (west of the Juan de Fuca Ridge) (Figs. 7 and 8). Here,

REY-rich muds at several sites (e.g., Sites 37, 38, and 39) are 10–20 m below

the seafloor, as is the case for Site 596 in the eastern South Pacific. SREY
contents of muds in the northeastern Pacific are generally comparable to those

of muds in the central North Pacific, with thicknesses of 5–30 m. Even though

the surface muds there have low SREY contents (Figs. 7 and 8), this type of

shallow subseafloor REY-rich mud might also be a suitable REY resource.

2.2 Indian Ocean

Yasukawa et al. (2014) reported a 50-m REY-rich mud layer at DSDP Site

213 in the Wharton Basin, eastern Indian Ocean (Fig. 6). The muds there

are 70–120 m below the seafloor and have moderate average SREY contents

of 630 ppm (maximum content of 1100 ppm). SREY contents and thickness

of the Indian Ocean REY-rich mud are generally comparable to those in the

central North Pacific, although they are considerably deeper below

the seafloor.

The existence of REY-rich muds in other regions of the Indian Ocean is

also suggested by previously published data (Fig. 6 and Table 2). Bulk-

sediment analyses of the uppermost sediments of the Wharton Basin, reported

by Pattan et al. (1995), identified a red clay sample with remarkably high total

REE content (749 ppm), despite a lack of data on Pr, Tb, and Tm contents.

Taking into account their yttrium content datum (386 ppm) and inferred con-

centrations of Pr, Tb, and Tm, the SREY content of the red clay is up to

1190 ppm (Fig. 6 and Table 2). Pattan and Parthiban (2011) also reported

chemical compositions of sediment samples from the Central Indian Ocean

Basin. On the basis of calculated Pr, Tb, and Tm concentrations (lacking in

their data set), the SREY content of one red clay sample (SS-210; Fig. 6

and Table 2) is estimated to be 786 ppm.

Compared to the Pacific Ocean, however, information about the distribu-

tion of such high SREY muds in the Indian Ocean is sparse. More detailed

investigations are needed for evaluation of the resource potential of the

REY-rich muds in the Indian Ocean.

2.3 Atlantic Ocean

Previous studies have reported REE contents of deep-sea mud in the Atlantic

Ocean. However, almost all REE contents reported to date are less than

400 ppm (our criterion for definition of REY-rich mud). For example,
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Dubinin and Rozanov (2001) examined REE contents of deep-sea sediments

on an east–west traverse across the Mid-Atlantic Ridge at about Lat. 22�N
(Fig. 6 and Table 2), but reported no mud with SREY >400 ppm. Dubinin

et al. (2013) reported a maximum SREY content of 379 ppm (average

115 ppm) for deep-sea mud from Station 2182 in the Angola Basin (Fig. 6

and Table 2). Dubinin and Rimskaya-Korsakova (2011) reported deep-sea

sediments with relatively high SREY contents from the Brazil Basin (Fig. 6

and Table 2). Their data indicate that some of the surface muds on the floor

of the basin have SREY contents of up to 600 ppm.

3 LITHOLOGICAL AND GEOCHEMICAL CHARACTERISTICS
OF REY-RICH MUDS

REY-rich muds are dark-brown pelagic clays (Fig. 9) characterized by low

contents of terrigenous detrital materials, biogenous silica, and carbonates.

Major constituents are phillipsite (a zeolite mineral found in pelagic areas

with low sedimentation rates), clay minerals (e.g., illite), Fe-oxyhydroxides

(e.g., goethite), and calcium phosphates (e.g., apatite) (Fig. 10), although the

proportions of these minerals vary considerably.

The muds are greatly enriched in REY (an order of magnitude higher than

the average composition of upper continental crust), although Ce contents are

considerably lower than other REY elements (Fig. 11). These REY patterns

suggest that REY in the mud are adsorbed from seawater, which has a similar

BA

C D

FIGURE 9 Photographs of REY-rich muds in DSDP/ODP cores. (A) Site 76, (B) Site 596,

(C) Site 1216, and (D) close-up of Site 1216 core.
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REE pattern (Fig. 11). In Fig. 12 showing correlations of SREY contents with

concentrations of other elements in REY-rich mud, a clear positive correlation

between SREY and P2O5 contents is recognizable. In addition, strong positive

correlations between P2O5 and CaO contents and SREY and CaO contents are

also evident in REY-rich muds (Fig. 12). The relationships among SREY,
CaO, and P2O5 suggest the possible involvement of Ca-phosphate minerals

in the formation of REY-rich mud. SREY contents of REY-rich muds also

correlate positively with MnO and Fe2O3 contents (Fig. 12), suggesting that

Fe- and Mn-bearing phases also contribute to the formation of

REY-rich muds.

4 HOST MINERAL OF REY IN REY-RICH MUD

Very recently, Kashiwabara et al. (2014) used X-ray absorption fine structure

(XAFS) and micro-focused X-ray fluorescence (m-XRF) to analyze La in

REY-rich mud sampled from DSDP Site 597 in the eastern Pacific Ocean.

They showed that La in REY-rich mud is accumulated in apatite (a

Ca-phosphate mineral). This means that apatite is an important host mineral

for La, probably for other rare-earth elements and yttrium in REY-rich mud.

Kon et al. (2014) also reported the REY composition of apatite separates from

Pacific Ocean REY-rich mud, based on analysis using laser-ablation
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inductively coupled plasma mass spectrometer. Their results also demon-

strated that a significant part of REY in REY-rich mud is hosted by apatite

(Kon et al., 2014).

For bulk chemical compositions of the Indian Ocean REY-rich mud,

Yasukawa et al. (2014) found a strong positive correlation between CaO

and P2O5 and pointed out that CaO/P2O5 ratios of REY-rich muds are close

to the stoichiometric composition of hydroxyapatite (Fig. 13). Based on this

result, Yasukawa et al. (2014) interpreted that apatite is a major host mineral of

REY in the Indian Ocean REY-rich mud. Moreover, they reported the presence

of irregularly curved apatite crystals in the REY-rich mud (Fig. 14A and B).

These crystals showed no peaks on X-ray diffraction analyses, indicating

an amorphous or low crystallinity habit (Fig. 15). These observations led them

to consider that the apatite minerals presented in REY-rich mud are of

biogenic origin.

It should be, however, noted that, as shown in Fig. 12, SREY contents of

REY-rich mud correlate with not only CaO and P2O5 but also other elements

that are not present in apatite (e.g., Fe2O3 and MnO). This clearly indicates that

REY-rich mud cannot be formed by a simple mixing of REY-enriched apatite

with other components (i.e., terrigenous, biogenic, and hydrothermal compo-

nents), even though the present host mineral of REY is apatite. This has been

previously pointed out by Kato et al. (2011). They applied independent compo-

nent analysis (ICA) to the whole data set of bulk-sediment composition and

demonstrated that there is no appreciable trend that consistently extends toward

an apatite composition in multielement space, including SiO2, Al2O3, TiO2,

Fe2O3, CaO, P2O5, and SREY. These facts lead us to consider a possibility that

the REY hosted by apatite in the present REY-rich mud were originally brought

by other components and then redistributed onto apatite after deposition.

5 GENESIS OF REY-RICH MUDS

Kato et al. (2011) noted the correspondence of the distributions of REY-rich

muds and helium-3 anomalies (d3He) in mid-depth (�2500 m water depth)

seawater (Fig. 6). Because d3He is used as an index of propagation of hydro-

thermal plumes along mid-ocean ridges (MORs) (Lupton, 1995, 1998; Rüth

et al., 2000; Srinivasan et al., 2004; Wu et al., 2011), this correspondence

FIGURE 12—Cont’d colored according to their dominant components by applying the criteria of

Kato et al. (2011). Pink (light gray in the print version) and light blue (dark gray in the print ver-

sion) arrows in (A) represent “Fe-rich” and a “low-Fe” trends, respectively. Data sources for end-

members as follows. Hydrothermal Fe-rich sediment from Jarvis (1985), Barrett et al. (1987), and

Barrett and Jarvis (1988); PAAS from Taylor and McLenann (1985); NASC (North American

shale composite) from Gromet et al. (1984) and Goldstein and Jacobsen (1988); MORB (mid-

ocean ridge basalt) from Floyd and Castillo (1992); and OIB (ocean island basalt) from Christie

et al. (1995).
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strongly suggests that hydrothermal activity at MORs plays some role in the

formation of REY-rich muds. It is well known that the East Pacific Rise

(EPR) is a fast-spreading MOR (Müller et al., 2008) accompanied by intense

hydrothermal activity due to high rates of magma production (Baker et al.,

1995; Lupton, 1995, 1998; Shinha and Evans, 2004). Thus, it is reasonable

to suggest that hydrothermal plumes containing considerable amounts of

Fe/Mn-oxyhydroxides have formed at hydrothermal vents on the EPR and

spread westward precipitating Fe-oxyhydroxides with REY adsorbed from

seawater onto the seafloor (Kato et al., 2011). Positive correlations between

SREY and both MnO and Fe2O3 contents in REY-rich muds (Fig. 12) support

this interpretation.

In contrast to the remarkably high d3He values of Pacific Ocean seawater,

those of the Indian Ocean are moderate (Lupton, 1995; Srinivasan et al.,

2004) and those of the Atlantic Ocean are lower still (Fig. 6) (Lupton,

1995; Rüth et al., 2000). Assuming that the formation of REY-rich muds is

correlated with d3He values of mid-depth seawater (reflecting the distribution

of hydrothermal plumes emanating from MORs), a limited distribution of

REY-rich muds in the Indian and Atlantic Oceans seems likely.

100 µm

100 µm

100 µm

A   P C   Al

D   KB   Ca

High
intensity

Low
intensity100 µm

FIGURE 14 EPMA element maps of a polished thin section of Indian Ocean REY-rich mud

from DSDP Site 213 for (A) P, (B) Ca, (C) Al, and (D) K. High-intensity areas (mostly red (light

gray in the print version) in color) for P and Ca (A, B) and Al and K (C, D) represent irregularly

shaped biogenic apatite and euhedral phillipsite crystals, respectively. Modified from Yasukawa
et al. (2014).
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FIGURE 15 X-ray diffractograms for bulk-sediment samples from the Pacific and Indian

Oceans. (A) DSDP Site 213 (eastern Indian Ocean), (B) DSDP Site 213, (C) ODP Site 1215A
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Kato et al. (2011) also pointed out that, in addition to Fe- and

Mn-oxyhydroxides, phillipsite plays an important role in REY enrichment

of REY-rich muds based on bulk-rock chemical composition of the latter.

Indeed, elemental mapping (Fig. 14C and D) and X-ray diffraction patterns

(Fig. 15) show the presence of phillipsite in REY-rich muds. Detailed descrip-

tions of phillipsite in REY-rich muds from the Southern Basin of the Pacific

Ocean suggest that phillipsite commonly occurs in aggregates along with bone

detritus (biogenic apatite), Fe-oxyhydroxides, and Fe-Ca-hydroxophosphates

(Dubinin, 2000). Dubinin (2000) pointed out that the phillipsite itself is not

the main host of REY; rather, pseudorhombic phillipsite aggregated with

REY-containing concomitants (including biogenic apatite, Fe-oxyhydroxide,

and Fe-Ca-hydroxophosphates) is responsible for the high SREY values. This

observation may be consistent with the positive correlations between SREY
and Fe2O3 and MnO, as well as the amount of phillipsite in REY-rich muds

(Fig. 12).

Kato et al. (2011) also showed that concentrations of REY in deep-sea

mud are negatively correlated with sedimentation rate. In particular, REY-rich

muds with high concentrations of REY (SREY>1000 ppm) exhibit

extremely low sedimentation rates, less than 0.1 cm/kyr. Kato et al. (2011)

pointed out that dilution by biogenic CaCO3 and SiO2 has a critical influence

on the SREY values of deep-sea muds, based on negative correlations of

SREY with both CaO and SiO2 in Pacific Ocean deep-sea muds. Indeed, in

pelagic environments, the sedimentation rate of biogenic components is much

higher than that of other components (Hüneke and Henrich, 2011; Wheeler

and Stadnitskaia, 2011). Sedimentation rates of biogenic CaCO3 and SiO2

are, in turn, controlled by carbonate compensation depth (CCD) and silica

compensation depth (SCD), defined as the water depths at which carbonate

and silica dissolution rates become equal to their precipitation rates. CCD

and SCD are controlled by multiple factors such as hydrostatic pressure, water

temperature, degree of undersaturation of deep-water masses, and bioproduc-

tivity in surface ocean waters. Shallow seafloors at depths above the CCD and

SCD, and/or high bioproductivity in surface waters, therefore, result in the

accumulation of biogenic components on the seafloor, thus leading to dilution

of the REY-rich component of sediments. This explains the absence of REY-

rich mud near the EPR (relatively shallow depth) and in the equatorial Pacific

(high bioproductivity) (Fig. 16). CCD varies among ocean basins and is gen-

erally deeper in the Atlantic and Indian oceans than in the Pacific (van Andel,

1975; Wheeler and Stadnitskaia, 2011). Thus, the Pacific Ocean is more ame-

nable to the formation of extensive areas of REY-rich mud in areas where the

seafloor is deeper than the CCD. On the other hand, although the difference of

SCDs among ocean basins is not fully understood, deposition of biogenic

silica is generally greater in areas of high bioproductivity, such as the equato-

rial Pacific and Southern Oceans (Heezen et al., 1973; Hüneke and

Henrich, 2011).
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FIGURE 16 Sample sites in the Pacific Ocean showing major components of seafloor muds with (A) bathymetry and (B) sea-surface chlorophyll a concentra-

tions (courtesy of SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE). Bathymetry is based on 2-min-gridded global relief data (ETOPOv2;

National Geophysical Data Center, 2006; http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html).
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6 RESOURCE POTENTIAL AND ADVANTAGES
OF DEVELOPING REY-RICH MUD DEPOSITS

REY-rich muds have five advantages as a mineral resource: (1) tremendous

resource potential because of their extensive distribution, (2) high REY con-

centrations with HREE enrichment, (3) ease of exploration, (4) low radioac-

tive element concentrations, and (5) high and easy recovery of REY by acid

leaching. In this section, we describe these favorable properties of REY-rich

muds by comparing them with onshore REY deposits.

6.1 Tremendous Resource Potential

Kato et al. (2011) made estimates of the resource potential of REY-rich muds

at DSDP Site 76 in the eastern South Pacific and ODP Site 1222 in the central

North Pacific. At DSDP Site 76 (average SREY content of 1180 ppm and dry

bulk density of 0.66 g/cm3), a 10-m-thick bed of REY-rich mud in an area of

just 1 km2 contains roughly 9000 metric tons of REY-oxides (tREY-oxides),

which, assuming a complete recovery of the rare earths from the mud, is about

one-twelfth of global annual onshore production of REY in 2012 (1.1�108

metric tons of REY-oxides; USGS, 2013). At ODP Site 1222 (average SREY
content of 640 ppm and dry bulk density of 0.477 g/cm3), a 70-m-thick bed of

REY-rich mud in an area of 1 km2 contains approximately 25,000 tREY-

oxides, which is comparable to one-fourth of the 2012 global annual onshore

production (USGS, 2013). The estimates indicate that production of REY

from �12 km2 (about 3.5 km�3.5 km) at Site 76, or from �4 km2 (about

2.1 km�2.1 km) at Site 1222, would be comparable to current global annual

REY production from onshore deposits.

Considering pelagic, deep-sea depositional environments (Lyle et al.,

2010; Tracey et al., 1971), REY-rich mud is likely to be distributed over

much greater areas than used in the estimates by Kato et al. (2011). Assuming,

for example, that deposits at these two sites each cover an area of 10,000 km2

(100 km�100 km), the resource potential is far greater. If this were the case,

a 10-m-thick layer of REY-rich mud similar to that at Site 76 and a

70-m-thick layer of mud similar to that at Site 1222 might be expected to pro-

duce 0.9�108 and 2.5�108 tREY-oxides, respectively. Both of them

are equivalent to or greater than known global reserves onshore (1.1�108

tREY-oxides; USGS, 2013). Taking into consideration the large distribution

areas of REY-rich muds in the eastern South Pacific and central North

Pacific, these are indeed enormous resources that by two to three orders of

magnitude exceed the known global reserves onshore. However, further core

sampling and geochemical analysis at much higher spatial resolution are

needed before a more extensive and precise evaluation of the resource poten-

tial can be made.
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6.2 High REY Concentrations with HREE Enrichment

REY concentrations in Southeast Pacific REY-rich muds commonly exceed

1000 ppm (Kato et al., 2011), two to three times higher than those of ion-

adsorption-type REY deposits in southern China (Fig. 17). More importantly,

the Pacific Ocean muds are highly enriched in HREE (e.g., Eu, Dy, and Tb)

(Figs. 5 and 17). In contrast, most onshore REE deposits (including the

Bayan-Obo deposit in China and the Mountain Pass deposit in the USA,

which are the main global sources of LREE) are extremely enriched in LREE

(Fig. 18). These deposits are hosted primarily by carbonatite and alkaline

igneous rocks (Castor and Hedrick, 2006). During genesis of the magma that

produces these rocks, LREE are preferentially partitioned into magma, result-

ing in strong LREE-enrichment (Castor and Hedrick, 2006).

In contrast, there are only a few HREE deposits in the world. To date, only

ion-adsorption-type deposits in southern China have been recognized as com-

mercially viable HREE deposits (Bao and Zhao, 2008; Wu et al., 1990, 1996).

These are formed during weathering of igneous rocks by leaching REY and

partitioning them into clay minerals in soils. In this aqueous process, REY

are leached from the host rocks with a relatively equal proportion of HREE

to LREE and partitioned into clay minerals, resulting in enrichment by both

LREE and HREE. This is quite different from the preferential enrichment

by LREE occurs during magmatic processes (Castor and Hedrick, 2006).

Ion-adsorption-type deposits have been developed only in southern China,

and the resources they contain are small. Therefore, REY-rich deep-sea muds

with high concentrations of HREE have a remarkable potential as a new

source of HREE.
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FIGURE 17 Comparison of average REY concentrations of REY-rich muds (Kato et al., 2011)

and ion-adsorption-type ore deposits (Bao and Zhao, 2008).
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6.3 Ease of Exploration

REY-rich muds are typically found as layered pelagic sediments that are uni-

formly distributed over extensive areas in the Pacific Ocean. It is commonly

believed that pelagic deep-sea muds of relatively homogeneous lithology cover

large areas of the Pacific Ocean seafloor, perhaps more than 10,000 km2

(100 km�100 km) (Lyle et al., 2010; Tracey et al., 1971). If this is the case

for pelagic REY-rich muds, the distribution of REY-rich muds can be easily

estimated from the results of relatively sparse sediment coring at intervals as

wide as several tens of kilometers. Such an easy exploration for pelagic deep-

sea REY-richmuds has a distinct economic advantage over exploration for other

deep-sea mineral resources and many onshore mineral resources.

6.4 Low Radioactive Element Concentrations

Most onshore REY deposits have high concentrations of radioactive elements

such as U and Th (Fig. 19) (e.g., Murakami and Ishihara, 2006; Sørensen
et al., 2011; Yang et al., 2009) that are attributed to the behavior of U and

Th as incompatible elements during magma genesis, similar to the behavior

of LREE. Therefore, production of REY from onshore LREE deposits (e.g.,

carbonatite and alkaline basalt-type deposits) produces massive amounts of

radioactive waste, which is a serious and persistent environmental problem

in REY mining.

Concentrations of these radioactive elements in REY-rich muds are strik-

ingly lower. At concentrations of only �10 ppm of Th and U (combined) as

compared to 1000 ppm of REY, they are one to two orders of magnitude

lower than that in onshore REY deposits and equal to or lower than the crustal

abundances of these elements (Fig. 19). Therefore, mining of REY from deep-

sea muds would be expected to produce no hazardous radioactive waste.
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FIGURE 18 REY contents of LREE ore deposits. (A) Carbonatite-type ore deposit (Murakami

and Ishihara, 2006) and (B) REE–Nb–Fe-type ore deposit (Yang et al., 2009).
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6.5 High and Easy Recovery of REY by Acid Leaching

Kato et al. (2011) reported that more than 90% of REY can be quickly and

easily leached from deep-sea muds by using dilute hydrochloric acid without

heating. Because the leached REY can be refined by using well-established,

traditional onshore mining approaches, this clearly demonstrates the potential

for low cost and high recovery of REY from REY-rich muds. Details of the

acid leaching processes and proposed refining systems for REY-rich muds

are presented in Section 7.2.

7 DEVELOPMENT SYSTEMS

7.1 Mining System

Deep-sea mineral resources other than REY-rich muds are known to exist;

these include manganese nodules, cobalt-rich ferromanganese crust, and

hydrothermal sulfide deposits (Fig. 20). Here, we briefly review the mining

systems and concepts for the previously recognized deep-sea mineral
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resources, most of which are developed and tested for mining of manganese

nodules.

In the 1970s and 1980s, development and testing of systems for mining

manganese nodules were undertaken by four international consortia made

up of companies from the United States, Canada, United Kingdom, Federal

Republic of Germany, Belgium, the Netherlands, Italy, France, and Japan.

Three government-sponsored entities from the Union of Soviet Socialist

Republics, India, and China also developed and tested systems for mining

manganese nodules. The basic elements of these systems are a propelled or

towed nodule collector and a lifting system (Fig. 21) (ISA Technology

Brochure, http://www.isa.org.jm/en/documents/technical/ENG7.pdf). Nodules

are collected from the ocean floor and crushed to make a seawater slurry

which is then pumped to the surface through a riser pipe. Both pump-lift

and air-lift systems have been developed (Fig. 22).

The pump-lift system employs multistage centrifugal pumps at intervals

along the riser and is more energy efficient than the air-lift system described

below. However, wearing of impellers and difficulties in pump maintenance

are negative features of this system. The air-lift system uses injection of

compressed air at bottom and/or intermediate depths to produce three-phase

(gas–liquid–solid) upward flow. This simple system is powered only by com-

pressed air without the need for an underwater mechanical pump. However,

expansion of the injected air at shallow depths causes excessively high flow

velocity and turbulence, resulting in wearing of the riser pipe.

The first test of a mining system was conducted in 1970 by Deepsea Ven-

tures Inc., which used an air-lift system to recover manganese nodules col-

lected from a depth of 1000 m (ISA Technology Brochure, http://www.isa.

org.jm/en/documents/technical/ENG7.pdf). Between 1976 and 1978, Ocean
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FIGURE 20 Schematic illustration of different types of deep-sea mineral resources.
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Mineral Associates tested an air-lift system with a towed collector and recov-

ered 550 t of manganese nodules during 18 h of operation (ISA Technology

Brochure, http://www.isa.org.jm/en/documents/technical/ENG7.pdf). In 1978,

Ocean Mining Inc. performed pre-pilot mining tests for both pump-lift and

air-lift systems, during which it recovered 600 t of manganese nodules (ISA

Technology Brochure, http://www.isa.org.jm/en/documents/technical/ENG7.

pdf). All of the above tests were conducted over short periods of time and

using small-scale experimental or pilot systems, although commercial mining

will require the design and operation of mining systems that are at least

10 times larger.

SeafloorSeafloor
transportationtransportation

Seafloor
transportation

Pipe stringPipe stringPipe string

Lift pumpLift pumpLift pump

Relay transponderRelay transponderRelay transponder

Mining vessel

Manganese nodules

CollectorCollectorCollector

FIGURE 21 System used to mine manganese nodules. Modified from ISA Technology Brochure,

http://www.isa.org.jm/en/documents/technical/ENG7.pdf.
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Other than manganese nodules, deep-sea mining of sulfide-rich muds in

the Red Sea at �2000 m water depth has been tested by Preussag AG, a

German mining company (Amann, 1983, 1985). Pre-pilot test mining in

1979 used a hydraulic pump system to raise 15,000 m3 (2.6 million tons) of

mud (Fig. 23) (Amann, 1983, 1985). More recently, Nautilus Minerals Inc.

began development of a system to mine seafloor hydrothermal sulfide depos-

its at the Solwara site in Papua New Guinea (Blackburn and Hanrahan, 2010).

The planned system comprises seafloor production tools with a riser and lift-

ing system (Blackburn and Hanrahan, 2010) and is essentially the same as

previous systems developed to mine deep-sea manganese nodules and

sulfide-rich mud.

It is reasonable to assume that REY-rich muds can be recovered using

mining systems similar to those tested for mining of other deep-sea resources;

in particular, the system used to mine deep-sea sulfide-rich muds in the Red

Sea is a useful reference.

It can be envisioned that a system for mining REY-rich mud will comprise

seafloor mud collecting tools, a riser and air-lift system, and a support vessel

equipped with facilities for acid leaching and storage (Fig. 24). The air-lift

system will have compressed air injected at three or more points (depending

on water depth) to lift the slurry of REY-rich mud and seawater to the support

vessel. A major difference between deep-sea mining of the sulfide-rich muds

and REY-rich muds is water depth (sulfide-rich muds at �2000 m water depth

C
o

m
p

re
s
s
e
d

 a
ir

C
o

m
p

re
s
s
e
d

 a
ir

HydraulicHydraulic
pumppump C

o
m

p
re

s
s
e
d

 a
ir

Hydraulic
pump

Pump-lift systemPump-lift systemPump-lift system Air-lift systemAir-lift systemAir-lift system

BubblesBubbles
+

+

Bubbles
+

+
seaeawateaterseawater

seaeawateaterseawater seaeawateaterseawater

OreOreOre OreOreOre

oreoreore

++++

FIGURE 22 Hydraulic pump-lift and air-lift systems.

114 Handbook on the Physics and Chemistry of Rare Earths



versus REY-rich muds at >4000 m water depth). Some parts of REY-rich

muds in the Pacific Ocean are found at water depths of >5000 m. If the air-

lift system is used in very deep water (>5000 m), compressed air injected at

5000 m will have expanded 500-fold when it reaches the surface, potentially

damaging the riser pipe. Quite recently, a Japanese ocean equipment develop-

ment company, Mitsui Ocean Development & Engineering Co., Ltd.

(MODEC), has proposed a pressurized air-lift system that will overcome such

damage to the riser pipe by applying 30 bars of back pressure to the system

from the support vessel. This system can reduce expansion of the rising air

by a factor of 20, which in turn reduces the danger of damaging the riser pipe

significantly.

On the support vessel, the slurry is separated from seawater and trans-

ferred to storage tanks. REY is then leached from the mud by using dilute

Pressure water pumpPressure water pumpPressure water pump

Electronic boxesElectronic boxesElectronic boxes

Mining vessel

Mud pumpMud pumpMud pump

PumpmotorPumpmotorPumpmotor

Suction headSuction headSuction head

Sulfide-rich mud

FIGURE 23 System used to mine sulfide-rich muds in the Red Sea. Modified from Nawab

(1984).
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FIGURE 24 Conceptual floating production storage and offloading (FPSO) system for REY-rich mud mining.



hydrochloric acid, either onboard the vessel or onshore (see Section 7.2),

before smelting at an onshore plant. Residual mud is detoxified by adding

sodium hydroxide and then used for landfill or building material.

7.2 Leaching Systems

Kato et al. (2011) showed that acid leaching is an effective method for extrac-

tion of REY from REY-rich mud. In this section, we focus on optimization of

this method and discuss its adoption in a future REY production system.

7.2.1 In Situ Leaching of Chinese REY Ores

To date, the in situ leaching method described below has been used only for

ion-adsorption-type REY deposits in China (Schüler et al., 2011). Leaching

solution pumped into drill holes flows downward through the ore–soil mix-

ture, collecting REY along the way, until it reaches an underlying aquitard

where it flows to the downslope recovery point (Fig. 25). In the Chinese

ion-adsorption-type REY deposits, ammonium sulfate is used as the leaching

solution (e.g., Xiujuan et al., 2012). In situ leaching with ammonium sulfate

has been effective for these deposits and has considerable economic advan-

tages over off-site leaching. However, a disadvantage of this method is some

unrecoverable losses of leaching solution and residue to the environment,

leading to environmental pollution.

7.2.2 Experimental Acid Leaching of REY-Rich Muds

We plan to use chemical leaching, either heap leaching (Fig. 26) or leaching

in a purpose-built pool, to extract REY from deep-sea muds. As discussed

above, Kato et al. (2011) showed acid leaching to be an effective method

for extraction of REY from REY-rich muds. They reported recovery rates

from REY-rich muds that exceeded 95% (Ce excluded) for 3 h of leaching

Unweathered
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Leaching solution
(ammonium sulfate)

Weathered
clay zone

Reacted
solution
Reacted
solution
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RERERE RERERE
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FIGURE 25 Schematic diagram of in situ leaching method used for ion-adsorption-type ore

deposits in southern China.
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with 0.5 mol/L hydrochloric acid, and 80% for 1 h of leaching with 0.2 mol/L

sulfuric acid. A solution-to-mud ratio of 10:1 was used in both cases (Fig. 27).

In an attempt to further optimize the leaching process, we experimented by

using different reagents (hydrochloric acid, sulfuric acid, nitric acid, sodium

REY-rich mud
heap

Leaching solution

Reacted
solution
Reacted
solution

FIGURE 26 Schematic diagram of heap leaching of REY-rich mud.
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hydroxide, and ammonium sulfate) for various leaching times, temperatures,

and reagent concentrations. We used geochemical reference material JMS-2

prepared by the Geological Survey of Japan (Terashima et al., 2002), a

REY-rich (916 ppm REY; Takaya et al., 2014) deep-sea mud from the Penr-

hyn Basin in the South Pacific.

Our experiments showed that strong acids, such as hydrochloric, sulfuric,

and nitric acids, are suitable for extraction of REY. Each of these reagents

gave recovery rates exceeding 90% in our experiments (Fig. 28). We also

demonstrated that ammonium sulfate and sodium hydroxide do not extract

REY from REY-rich muds. The failure of ammonium sulfate to extract

REY in our experiments clearly indicates that the enrichment mechanism

and/or host minerals of REY in REY-rich muds differ from those of Chinese

ion-adsorption-type deposits. Our experiments also showed that dilute hydro-

chloric, sulfuric, and nitric acids were strong enough to effectively leach REY

from the mud. Using dilute acid in a production environment will inhibit elu-

tion of unwanted elements that would be regarded as impurities during

subsequent refining.

Having tested the concentration of acids used as leaching agents, we next

considered the time required to extract REY. We achieved similar recovery

rates for leaching times ranging from 5 to 60 min (Fig. 29) and concluded that

if there is sufficient leaching solution, and the mud and leaching solution mix-

ture is adequately stirred, REY will be extracted into the leaching solution

almost instantaneously.

Our tests of temperature dependence of the recovery rate of REY showed,

surprisingly, that recovery was higher at room temperature (25 �C) than at

higher temperatures (up to 75 �C) (Fig. 30). The decrease of the solubility

of apatite (the main host of REY in REY-rich mud) with increasing solution

temperature might explain the lower REY recovery rate at higher tempera-

tures. The temperature dependence of the recovery rate for REY indicates that

REY can be selectively extracted from mud by controlling the reaction tem-

perature during acid leaching.

7.2.3 Acid Leaching Process for Commercial Production
of REY from REY-Rich Mud

In a commercial production system, acid leaching of REY-rich mud can be

done either onboard the support vessel or at an onshore facility. In either case,

a highly efficient leaching process will be needed to deal with the massive

amounts of REY-rich mud mined (estimated to be 10,000 t per day).

We have shown (Section 7.2.2) the advantages of using dilute strong acids

(hydrochloric, sulfuric, or nitric acids) to extract REY from REY-rich mud.

We favor the use of hydrochloric acid as the leaching solution for a produc-

tion system. Although sulfuric acid is the cheapest of the three acids we con-

sidered, the process of detoxification and removal of sulfuric acid and sulfate
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by-products is difficult and costly. In contrast, after leaching with hydrochlo-

ric acid, chloride ions in the leachate and residual mud can be simply con-

verted to nontoxic sodium chloride by addition of sodium hydroxide

(NaOH) or sodium hydrogen carbonate (NaHCO3). Adoption of this method

will minimize both the cost of acid leaching and deleterious impacts on the

surrounding environment. We have confirmed that REY recovery rates

achieved by diluting the hydrochloric acid with seawater are much the same

as those achieved by diluting with deionized water, so costs can be further

reduced by using seawater (Fig. 31). For leaching in a leaching pool, the

leaching solution can be separated from residual mud by using a hydrocy-

clone, or by gravitational separation or filtration.

7.2.4 Separation and Precipitation of REY

After recovery of leachate, REY can be chemically separated (precipitated) as

carbonates or oxalates by adding sodium bicarbonate (NaHCO3) or oxalic

acid (H2C2O4) solution; recovered carbonates or oxalates can then be trans-

ported to an onshore facility for further refining by established processes

(Fig. 24).
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After separation of REY carbonates or oxalates from the leaching solution,

it is necessary to neutralize and detoxify the residual solution and mud. If

hydrochloric acid is used as the leaching solution, and the acid remaining in

the residual solution and mud is neutralized and detoxified by adding appro-

priate amounts of sodium hydroxide or sodium hydrogen carbonate, the neu-

tralized leaching solution and residual mud can be reused as the dilute

solution in subsequent leaching and landfill or in construction materials

(e.g., concrete), respectively.

8 SUMMARY AND CONCLUSIONS

Extensive deposits of deep-sea mud containing high REY concentrations have

been identified in the eastern South and central North Pacific. The distribution

of REY-rich muds in the Pacific suggests that they formed as a result of

adsorption of REY in seawater by Fe/Mn-oxyhydroxides in hydrothermal

plumes emanating from the EPR. Similar REY-rich deep-sea sediments were

also reported from the Indian and Atlantic Oceans by a few researchers. How-

ever, the extent and amounts of these REY-rich muds are likely to be much

smaller than the Pacific Ocean REY-rich mud, because hydrothermal activity

in the Indian and Atlantic Oceans suggested by helium-3 anomalies (d3He) in
mid-depth (�2500 m water depth) seawater is much lower than the

Pacific Ocean.

Bulk-rock composition of SREY, P2O5, and CaO, as well as XAFS/m-XRF
analyses of apatite minerals, indicates that apatite is a major host mineral of

REY in REY-rich muds. On the other hand, multielement compositions

(including Fe2O3, TiO2, and K2O) of the bulk samples suggest that REY-rich

muds cannot be formed by a simple mixing of apatite with other components

including terrigenous and biogenic components. Thus, even though apatite is

regarded as a main host of REY, other phases (e.g., Fe- and

Mn-oxyhydroxides) are likely to be involved in REY-enrichment in REY-rich

mud as a carrier of REY.

The deep-sea REY-rich mud is characterized by (1) tremendous resource

potential by virtue of their wide distribution, (2) high REY concentrations

with significant HREE enrichment, (3) a stratiform distribution that allows

relatively simple and cost-effective exploration, (4) very low concentrations

of radioactive elements such as Th and U, and (5) ease of extraction of

REY by acid leaching. These features demonstrate that the REY-rich mud

in the Pacific Ocean could constitute a highly promising REY resource for

the future, even though the great water depths (up to >5000 m) have a certain

impact on the technological and economic viability of deep-sea mining of

REY-rich mud.

A system to mine REY-rich muds can be developed based on a system

developed and tested to mine sulfide-rich muds in the Red Sea and manganese

nodules in the Pacific Ocean. In case of lifting REY-rich muds from very deep
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water (>5000 m), however, pressurized air-lift system will be needed. REY-

rich muds processed by acid leaching with dilute hydrochloric acid (1 mol/L

HCl) for only 5 min at temperatures of about 25 �C can provide better than

90% recovery of REY, which can then be chemically separated and precipi-

tated as REY carbonates or oxalates by using already established techniques.
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