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TENITY ©O3vE

area

area of inner ring

area of outer ring

parameters

(i) diameter, (i1) mean diameter of coil
diameter of arbor

diameter of bush

(1) inside diameter of case, (11) twice
radius of curvature

inside diameter

mean diameter

maximum outside diameter of coil in free
state

outside diameter

inside diameter of unwound spring in case
outside diameter of wound spring on
arbor

modulus of elasticity

force

shear modulus

parameters depending on shape and
dimensions of the cross-section

axial moment of inertia

(1) correction factor, (ii) shape ratio
parameter (= mO0l4m + 0460y (ji;) part of
force equation for constant-load coiled
beam, (iv) unit of comparison for leaf
Springs

(1 —p tan x)/(tan x+p)

(1 +p tan x)/(tan x—p)

stress concentration factor for
rectangular-section material

a correction factor

stress factors

factors in design formulae for diaphragm
springs

(1) length of moment arm of force P,
(i1} solid length of spring

torque, modification constant

(i) applied force, (ii) load

axial load

(1) axially applied load, (ii) displacing
force

(i) spring rate, (11) stress factor

volume

load at a deflection of §/2 from free
modulus of a section

buckling factor

breadth, height of section

Fog

S ™ R

2 D ™

s
. ]

2v M3

NT g o» Do

-

breadth at tip

breadth at root

2rid

wire diameter

diameter of enlarged portion of bar
stress

design stress

bending stress

compressive stress

maximum stress at lower inner edge
tensile strength

maximum stress at upper surface
stress at distance x from fixed end of leaf
gravitational acceleration

height, radial depth of material
length

effective length

length of transition zone

shape ratio (breadth/thickness)
number

number of coils in unwound spring
number of coils in wound spring
initial tension in spring

radius

radius of stop

radius of spring

thickness

taper factor

(1) an angle, (1) a factor

a factor

deflection

deflection of inner ring
deflection of outer ring
deflection of disc

deflection of cantilever
deflection at a distance x

natural frequency

Saint Venant coefficients

an angle

shape factor

stress

Poisson’s ratio

torsional stress

natural frequency

+ Owing to the large number of topics covered in this Engineering
Design Guide, only a selection of the symbols used appear in this
notation. The meanings of all the symbols employed in the Guide
are given on their first appearance in the text.



Introduction

This Engineering Design Guide describes the design
and application of, and gives manufacturing advice
on, non-helical springs and springs stressed in
bending, and thus deals with those springs not
covered by Helical springs (The Spring Research and
Manufacturers’ Association 1974) in this series.
None the less since Helical springs gives information
on selection of matenals, functional classification,
special environments, and protective treatments, all
of which are equally applicable to the springs
described in the following pages, a knowledge of its
contents is essential to the reader of the present
Guide.

Since this Guide is produced in black and white, it
1s not possible to produce simple design-aid charts
containing more than three vanables and the atten-
tion of the reader 1s therefore drawn to Spring Design
Data Sheet Noll (see bibliography), which 1s
produced in colour.

Torsion bars

If a straight bar of uniform cross-section is subjected
toatorque, M, atits free end (see Fig. 1), thatend will
rotate through an angle of ¢ radians with respect to
the fixed end given by

0 = IM/1G,

where / is the length of bar between clamp and plane
of torque, G is the shear modulus of the material, and
I,G 18 the torsional rigidity of the bar. The parameter
I, depends upon the dimensions and shape of the
cross-section.

The stress induced by the torque is zero at the
centre of the area of the cross-section and increases as
the distance from the centre increases so that it i1s only
the stress, f, at the surface of the bar that i1s critical.
This is given by

J = M,

where again the parameter /, depends upon the
dimensions and shape of the cross-section.

Fig. 1 Schematic torsion-bar assembly: P = applied load; R =
horizontal distance between axis of bar and line of action of applied
load

Circular cross-section
In the case of a bar of circular cross-section of
diameter d, I, =nd"/32 and I,=nd’/16. Thus,

f) = 32IM /nd*G rad (1)
and
f = 16Mind. (2)

If these were the only considerations, the design of
torsion bars would be a very simple matter. Unfor-
tunately provision has to be made to clamp both ends
of the bar in such a manner that the additional
stresses imposed are not critical and the extra space
needed 1s no greater than necessary. This 1s usually
achieved by increasing the diameter of the bar for a
short distance at each end so that the maximum skin
stress occurs in the cylindrical section.

Figs 2 and 3 show typical tapers and additional
cylindrical sections. The actual clamping is done on
or through these sections by means of either splines
or some form of cotter pin or wedge.

It 1s obvious that the tapered portion of the bar 1s
less flexible than the cylindrical portion, length for
length, so that it 1s necessary to calculate an effective
length for substitution inegn (1). This effective length
will of course be shorter than the actual length of the
bar between clamps.

The diameter, d,, of the enlarged portion of the bar
needs to be at least 40 per cent greater than 4 and this
i1s usually achieved in one of two ways. Either a simple
radius, r, is blended into the main section and sweeps
up to meet the enlarged portion as in Fig. 2, or a
straight taper of approximate included angle 30° is
blended into the main section through a fillet radius
of approximately r=1.4d (see Fig. 3). The latter is
often termed the ‘American’ method, whereas the
former generally finds favour in Europe. Both
methods give very closely related results.

Referring to Fig. 2 it can be seen that the length of
the transition zone, /; 1s given by

VIR

Assuming a constant diameter of d, the effective
length, /., of the tapered portion is given by

l“II.‘.' - F!['!

where v is a factor obtained from Fig. 4. The
equivalent ‘American’ length may be obtained from
Fig. 5.

Consideration of the geometry in Fig. 3 (American
method) shows that the wind-up of the tapered
section i1s given by

ﬂl — {32Mfll.';ﬂff4(;) X i{.t‘+IE+I3‘}*
where x=d/d.. Reducing this to obtain the effective
length gives
le = Hi(x+x2+x3).

In both the ‘European’ and the ‘American’ methods

the equivalent active lengih, I, of the bar is given by,
length between tapers + 21..
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(a)
Fig. 2 Typical ‘European’ bar ends: (a) splined, (b) keyed
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Fig. 3 Typical ‘American’ bar ends
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Fig. 4 Factor, v, to determine equivalent or active length of typical
‘European’ bar ends
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Fig. 5 Factor, v, to determine equivalent or active length of typical
‘American’ bar ends

r=90mm
(b)

[t will be noticed that in both methods the design of
the tapered section is governed by the diameter of the
bar, the percentage effect of the taper varying
inversely as the length of the cylindrical portion. If
this effect is of the order of 1-2 per cent, it is probably
compensated for by the flexibility of the mountings,
but above this figure a further bar diameter modifi-
cation is necessary.

Worked example

It is required to design a torsion bar using the ‘European’
method to give a torque of 120 000 N mm with a deflection
of 0.3 rad, length between fixtures to be 400 mm, and
maximum skin stress not to exceed 400 N/mm?. To find
diameter from eqn (2):

400 = 16 x 120000/nd"?,
giving,
d? = 1528,
and
d = 11.5 mm.

To find length from eqn (1), given that the shear modulus i1s
79000 N/mm?:

03 — 321 x 120000
= T opox 11.5% x 79000

whence,
[ = 354 mm.

This shows that the bar is too short and therefore too
small in diameter. The first adjustment is to increase / to
400 mm and resolve for d, whence,

d =119 mm.
Il d./d is taken as 1.5, eqn (3) gives
I, = (11.9/2) (0.5)/1(360/11.9) (0.5)— 1} = 11.2 mm.
From Fig. 4, where v is taper factor,

v = 0.62.
Thus,

l. =062 x 11.2 = 6.9 mm,
and the equivalent active length,
[ =400 — 2(11.2—6.9) = 391.4 mm.

The strengthening effect is therefore 2.2 per cent and may
be ignored.
Maximum skin stress = 16 x 120000/(n x 11.99)

= 363 N/mm?,



Stability
Very long torsion bars that are subject to an axial
compressive stress are liable to buckle and any error
in co-axiality of the end fixings will increase this
tendency. If the axially applied load is + Q. where the
plus sign indicates a compressive load, the torque is
M, the axial moment of inertia of the section is J, and
the modulus of elasticity is E, then, to prevent buck-
ling, 1t 1s essential that (M/2EJ)* + (Q/EJ) < n*/l°.
It will be seen that changing the sign of Q from +
to — produces a more stable bar, so that one way of
increasing stability is to subject the bar to a tensile
load. If the bar is not constrained so that the end
mountings are always co-axial, the control 2z%/F
becomes a*n?/l?, where a is a buckling factor derived
from whichever of the four Euler cases of buckling is
relevant.

Splines

Where 1t may be necessary to make adjustment for
set-down in service, it is usual to spline both ends of
the bar so that one end may be advanced by a single
tooth when necessary. This means, of course, that the
setting, in degrees, should never be more than 360/2n
out, where n is the number of teeth on each end.

Where it is necessary to be able to adjust to the next
closer order of tolerances, the vernier adjustment
method should be used. This is achieved by having
one more tooth at one end of the bar than at the
other. When both ends are advanced by a single tooth
the differential adjustment is given, in degrees, by
360/n — 360/(n+ 1), where n 1s the number of teeth on
the lesser end. Thus when n=50 the differential
adjustment is 0.14°,

Where fine adjustment is not necessary and it has
been established that no further set-down will occur
after the first full-load deflection, the ‘blocked-spline’
method may be used. This consists of leaving one
tooth uncut at each end of the bar itself and a
corresponding keyway on the female portions of the
fittings. This ensures that the bar can only be
assembled in one position and that the pre-load is
reasonably constant.

Permissible stresses

For static applications a bar of low-alloy spring steel
may be stressed to approximately 700 N/mm?2,
although 1f 1t is fully pre-stressed this value may be
raised to 930 N/mm?. Care must be taken to ensure
that in the latter case the bar is pre-stressed in the
direction of loading, and as a precautionary measure
an arrow indicating the hand of pre-stressing should
be stamped on each end of the bar.

The fatigue properties of torsion bars that are
always stressed in the same direction and oscillate
about a mean stress which is higher than half the
stress range may be enhanced by surface treatment,
the best of which appears to be a fine surface grind
followed by all over shot peening. For bars exceeding
26 mm diameter there is an exponential falling off of
fatigue resistance as the diameter increases. Typical
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Fig. 6 Fatigue diagram for bar stressed in one direction about amean of
350 N/mm?

fatigue diagrams for silico-manganese bars 25—
62.5 mm in diameter in the fine-ground, and ground
and shot-peened states are shown in Fig. 6. Bars
smaller than 25 mm have almost identical properties
to those of 25 mm. Under these conditions a life of
50000 full bump operations should be anticipated.

Rectangular cross-section
In the case of a bar of rectangular cross-section
(b x 1), equations (1) and (2) become respectively:

0 = IM|nt3bG rad (4)
and
= Mjn,t*h, &)

where b 1s the long side, 7 is the short side, and #, and
1y are the Saint Venant coefficients. Values of these
coefhicients, which are also used in the calculation of
helical springs of rectangular section stressed in
torsion, may be read off from Fig. 7.

Stress
coelficient, n;

Stiffness
coelficient, n,

Saint Venant factors
b
ol

— 3
Shape ratio, m

Fig. 7 Saint Venant design factors for rectangular sections; for
values of m - §, M = M = (m — u-ﬂ}:;ﬂl, where m = ﬁ'_."lf



Comparison with round section

If an attempt is made to satisfy the requirements
specified for the round-section bar while using the
simplest form of rectangular section (1.e. square)
then, from eqgn (5),

400 = 120000/0.2085°,
whence

b* = 120000/0.208 x 400,
and

b= 11.25 mm;
and from egn (4)
[ = 0.3 x 0.14 x 11.25* x 79000/120000
=445 mm.

Thus at the same stress it is impossible to replace a
round-section bar by a square-section bar of the same
length. In order to accommodate the bar in a length
of 400 mm its section must be reduced to 10.9 mm
with a consequent increase in stress to 415 N/mm?,
1.e. an increase of 16.5 per cent.

Let us now see what happens when there 1s a slight
departure from the square section to a rectangular
section of shape ratio, m = b/t = 1.4. Simple
arithmetical exploration leads to a bar of dimensions
14.76 mm x 9.84 mm capable of sustaining a torque
of 120000 N mm at a stress of 356 N/mm? (the same
as the round-section bar). Using #5,=0.196, then
/=557 mm, which is even longer than the bar of
square section. The appropriate dimensions for
accommodation within a length of 400 mm are
b=13.2, t=8.8, from which f = 500 N/mm?,
representing an increase of 40 per cent over the round
section.

Initially it would therefore appear that any
rectangular-section torsion bar may be replaced by
one of circular section in which the material is used
more efficiently, so that the question may be raised as
to whether 1t 1s ever necessary to use any section other
than circular. The answer lies principally in the fact
that a rectangular-section bar may be located in a
matching rectangular hole without the costly
machining to produce the ends necessary on a bar of
circular section. If the quantity is sufficiently high,
bar may be purchased in the precision-rolled con-
dition, cut to length, hardened, and jig-tempered to
ensure adequate straightness. As with round-section
bars, the fatigue life of those of rectangular section is
increased by pre-stressing, and once again care must
be taken to identify the mode in which the bar has
been pre-stressed.

Laminated torsion bars

If the specified torque, angular deflection, and
available length are such that the maximum per-
mitted stress is always exceeded, then resort must be
had to the device used under similar circumstances
when designing leaf-springs in bend, i.e. the spring

must be built up of leaves of sufficiently small

torsional rigidity to permit of the desired deflection

while using the appropriate number of leaves. A

spring of this kind 1s known as a laminated torsion bar

and has been successfully used in a number of
applications for some considerable time.

The author 1s unaware of any successful theoretical
analysis of the load-deflection characteristic of such
a spring and, from consideration of the following
factors it appears that such a general solution does
not exist.
|. With a spring having an odd number of leaves only

the central leaf behaves in the same manner as a

circular-section bar when loaded in the same mode,

while the non-central leaves attempt to take up a

position where the centre-line of each is a helix

whose form is dictated by its distance from the
centre line of the pack.

2. As the bar twists those portions retained within the
anchorage tend to fan out, much in the manner of a
‘hand’ of playing cards held normally. Any
restriction of this tendency imposes additional
stresses at the point of anchorage, with a resulting
proportional increase in torque.

3. In taking up the position of a helix, the active
portion of the spring shortens and a compensating
length is withdrawn from the anchorage, so that
each pair of springs, numbering from the inside
outwards, moves by an increasing amount.

4. As the shape ratio, m, increases above single figures
the load—deflection characteristic of even a single
bar departs very rapidly from the straight. A
typical curve obtained in practice for a bar 250 mm
long and 13.5 mm x 0.45 mm in section is shown
as curve (a) in Fig. 8, and it will be observed that at
100° angular deflection the measured torque is
more than double the calculated value.

None the less, an intensive study of the problem
during the immediate post-war period led to the
following practical solution. Provided that

(1) the shape ratio b/t 1s kept between 5 and 10,

(2) the number of leaves equals the shape ratio (i.e.

n = m, so that the pack has a square cross-
section),

40000 ;

3'U'LHJ'|.I = i

20000

Torque (N mm )
\

10000

e

|
80~ 100"

i — ]
207 40° b~
Angle of twist

Fig. 8 Characteristic of single rectangular bar in torsion: (a)
measured torque, (b) torque calculated from m = nb'tGo/L



(3) the theoretical stress in the central bar (calcu-
lated as a single rod in torsion without helical
distortion) is kept below 500 N/mm?, and

(4) the length of the bar 1s such that the maximum
angular deflection i1s approximately 90°,

then torque,

M = 11 320nb2120/Im0-014m + 046) N mm,
This may be rewritten as follows:
M = 11320nb*?0/IK, (6)

where K = m0014m + 046) Since 4—-m <11 and m is
always a whole number the following simple table
facilitates design calculations:

m 5 6 7 8 9 10
K 235 265 296 329 362 398.
Stress 1s given by
f=30M/n(n — 0.63)r* N/mm?. (7)

Further work by the author i1s described in the
Appendix (p. 42).

Worked example
[t is required to design a laminated torsion bar of minimum
cross-section and length 750 mm to give a torque of 140 000
N mm + 5 per cent with an angular movement of 1.4 rad
and a maximum stress of 500 N/mm?. Unless previous
experience dictates otherwise, choose m near the middle of
the range. Thus if m=7, then K=2.96. From eqn (7),

3 x 14'!]{_'._"_3_E_I
T = 6,37 x 50

P o=

— = 18.84,

whence,

t = 2.65and b = 18.55.
From eqn (6) torque at 1.4 rad,

11320 % 7 x 18.552 % 2.65% x 1.4
M= — 120750 N mm.
296 x 750 mm

This bar is too weak, and one with fewer leaves is
required. Since the torque is within about 15 per cent of the

requirement, then the next number down (i.e. 6) is tested as
follows:

3 x 140000

6 = 5.37 x 500

whence,
t = 296and b = 17.76.

For the sake of possible material availability try r=3,
b= 18, giving a torque at 1.4 rad,

11320 x 6 x 182 x 32 x 1.4
2.65 x 750

This result 1s within tolerance and the stress is then
calculated :

= 139500 N mm.

4

;- 3 x 140000 — 483 Njmm?,
6 x 5.37 x 27
which is an acceptable result,

The design 1s therefore as follows: 6 leaves each of 3 mm
x 18 mm, x 750 mm free length.

It 1s customary to leave a minimum length equal to the
bar width for fixing at each end of the bar, so that there
should be a minimum overall length of 750 + (2 x 18) =
786 mm.

Torsion nests
If it is necessary to design a torsion device that is
virtually free from friction in a space that prohibits
the use of a single torsion bar, a neat but very
expensive method is available in the torsion nest. This
consists of a number of identical cylindrical torsion
bars arranged symmetrically on the circumference of
a circle, their ends located in holes in end plates so
that the spring has the appearance of a cage. When
one plate is rotated with respect to the other the
individual bars are deformed in pure torsion and pure
bend, each of which may be treated separately before
it 1s compounded into a single set of design parti-
culars.

Suppose there are n such bars, each of diameter d
and length /, arranged uniformly around a circle of
diameter D. Then

32iM
f = rad,
(mnd*G) {1+ 3(ED?/GP)}

where E 1s the modulus of elasticity and G the shear
modulus. The maximum torsional stress, f, and
maximum bending stress, f, are expressed by f, =
dG#/2l and f, = 3dDEG{2P.
If these are combined to give

fo= VOGS + fod),

then f. may be considered as a tensile stress and
related to the tensile properties of the material.

Materials and applications

All the recognized spring materials may be used for
the manufacture of torsion bars, the choice depend-
ing upon size, type of end fitting and environment.

Vehicle suspension

With the development of independent front-wheel
suspension for road vehicles the high volume ef-
ficiency of the torsion bar has made this system
popular throughout the industry. The rotational
movement of the spring must, of course, be translated
into a vertical movement and this is usually achieved
by means of a swinging arm which forms part of a
parallel-link system (Fig. 9).

Torsion bar |

Fig. 9 Schematic torsion-bar suspension unit



In the free position the swinging arm makes an
angle of 0, with the vertical. In the static position an
upward force P moves the arm through an angle of 0,
while the distance that the point of application of the
load is below the horizontal through the centre of the
bar moves from A, to . Thus the basic equations
governing the layout are:

ho/r = cos O,
hir = cos(#, + 0),
sin (0, + 0) = /{(r? — k)/r?),

and
My = Prsin (0, + 0),

where r is the length of the lever arm.

It will be appreciated that the vertical rate of such a
system is not constant and if My/0 is denoted as Sy
then the rate of the static position, S, can be
calculated:

S
5= {
r2

and since the natural frequency of an oscillating
system is given by (rate/mass)?/2n per second, the
frequency may be calculated.

If the system is applied to the front suspension of a
road vehicle the natural frequency should be kept
between 100/min and 130/min, whereas for rear
suspensions the accepted limits are 70 and 100.

If it 1s desired to obtain torsion-bar suspension
springs for a road vehicle, the following data should
be supplied to the designer:

(1) position on vehicle (front or rear);

(2) static load on wheel in normally laden con-

dition;

(3) length of swinging arm;

(4) vertical travel from ‘free’ to static position;

(5) maximum additional vertical travel under

‘bump’ conditions;

(6) distance between plane of torque and *anchor’;

(7) available space in the other planes, and

(8) natural frequency limits if different from

standard.

The designer will then design the simplest form of
bar to meet the specification and will only proceed to
irregular shapes or lamination 1f necessary.

sin? (0, + 0)

1—mmmm+ﬁmmﬂm+m}}

Door closers

The generic term door closers covers a whole family of
springs producing relative movement between two
component parts of a mechanism that are hinged
together. The simplest form, from which the name is
derived, consists of an elongated Z formed from
hard-drawn wire and having a short length at each
end turned out at right angles. One turned-out end is
fixed to the edge of the door adjacent to the frame,
and the other end 1s twisted until sufficient torque 1s
produced to close the door. The second end 1s then
attached to the door frame. The versatility of this
spring is accounted for by the fact that the ratio of

length to diameter is several hundreds, allowing a
number of complete rotations of one end before the
stress becomes prohibitive. Between this simple wire
form and the multileaf torsion bar lie the multitude of
springs that must be designed to meet specific
requirements. These should be specified quoting

(1) available length;

(2) torque necessary to complete the closing move-
ment (the torque while the hinge is open will
always exceed this);

(3) the angular movement from open to closed;

(4) the approximate frequency of operation, and

(5) the expected life in cycles.

The torque necessary to close the hinge may be
measured by attaching a spring balance at a fixed
distance from the hinge pin and pulling at right angles
to the radius until the hinge is fully closed. The travel
should be as short as possible to avoid ‘momentum’
effects which may not be present in practice.

The constant-load coiled beam

Because of the complicated nature of the movement
under load of the spring shown in Fig. 10, 1t is very
difficult to find a name for 1t that is truly descriptive.
The main body of the spring is a closely wound helix
(with or without initial tension), while the operating
arms perform the double function of increasing the
lever ratio and at the same time increasing the
deflection by rotation about their own instantaneous
centres. Perhaps the popular American name ‘Flexa-
tor’ i1s as good a single-word description as any.

Fig. 10 shows the spring in the free and the loaded
positions, where P is the applied force in newtons, n is
the number of coils in the helical spring, d 1s the
diameter of the wire (mm), D is the mean diameter of
the coils (mm), / is the length of the arm (mm)
measured to the centre of the beanng eye, x is the
initial angle between the arm (measured through the

it

Fl

nd

(a) (b}

Fig. 10 Typical constant-load coiled beam: (a) free, (b) loaded



centre of the bearing eye) and the axis of the spring, ¢/
is the angle of deflection of the arm under load,t L is
the length of the moment arm of force P (mm)
measured between the line of action of P and the
point of contact of the remotest pair of adjacent coils,
and p; 1s the initial tension in the spring measured in
newtons.

In practice it is usual to pivot both eyes on free-
moving pins or bearings and constrain one to move
towards the other on a line parallel to the original axis
of the spring, the shortening of the distance between
the eye centres being taken as the spring deflection
(0 mm).

Load-deflection characteristics

The applied torque i1s made up of two parts: (1)
0Gd*/8nD, where G 1s the shear modulus, resulting
from the flexing of the spring without initial tension,
and (2) p;D/2, resulting from the initial tension.

The effective leverage is given by / sin (x + ) +
(ndj26){cos (0/2) — cos #}, and 1If the sum of (1) and
(2) is divided by this leverage then the force parallel to
the original spring axis, is obtained. For ease of
computation K, which equals {cos ({//2) — cos 8}/20
for values of ¢/ up to 1.4 rad, 1s given 1n Fig. 11, and
the equation for force becomes

P = {(0Gd*/8nD) + (piD/2)}

< {Isin (2 + 0) + Knd}. (8)
.20
0.15¢
=< (0. 10F
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D00 o 0 0wy
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Fig. 11 Values of K = |cos(f)/2) — cos (}/20

Deflection

The amount by which one pivot centre approaches
the other is given by

5 = ndi1 — (sin 0/0))
+ 2l{cos a — cos (2 + 0)). 9)

In this equation the first term represents the move-
ment caused by flexing of the helical part of the
spring, while the second represents that caused by
rotation of the arms about their instantaneous
centres.

Because of the complexity of an expression
containing four variable terms, it is simpler to

T As both trigonometrical functions and angles appear in the
spring formulae, it is advisable to measure a and ¢ in the same units
and in this case radian measure is used.
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Fig. 12 Curves for a typical beam: (a) force, (b) torque, (c) effective
leverage

appreciate the significance of each by considering a
standard spring and investigating the effect of
varying each term in turn.

If the standard chosen is n=20, d=0.2 mm,
D=15mm, p;j=30 N, «a=0.15 rad, /=20 mm, and
G =79000 N/mm?, then, P = (5276 + 225)/{20 sin
(0.15+6) + 40K}, and if the numerator, the
denominator, and P are plotted on the same graph
(see Fig. 12), then it can be seen that in this instance
the spring rate, which is initially negative, 1s appro-
ximately zero over a considerable range before finally
increasing.

For most applications the designer is interested
only in the constant-load zone, and here investigation
is confined to the effect of the changes of variables in
this zone.

Initial tension

Fig. 13 shows the effect of increasing initial tension in
the spring from zero to 30 N and then to 50 N.
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Z 30t | = —
- | 30+ 2.5% 0
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=
= 20+
20 % 2.5%,
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0 10) 20 30 40 ()

Deflection imm )

Fig. 13 Effect of varying initial tension in the body on the spring
characteristic from zeroto 30 N to 50 N



In the spring without imitial tension the character-
istic is similar to that of a helical compression spring,
except that the first third shows a decreasing rate
passing into a very narrow band (approximately 12
per cent) where the load rises by only 5 per cent.

The inclusion of 30 N initial tension raises the force
by approximately 10 N and gives a characteristic that
is concave upwards with a zone of approximately one
half where the variation is less than + 2.5 per cent.

Raising the initial tension to 50 N raises the force
by a further 10 N and increases the zone to approx-
imately two thirds of the total while shifting it bodily
towards the end of the movement. There is, however,
a limit to the amount of initial tension that can
usefully be wound into a spring, which in this
instance 1s closely approached by 50 N.

Lever arm length

The effect of increasing the length of the lever arm is
threefold: (1) the range of the spring is increased
almost in direct proportion, (2) the level of the zone
of constant force is considerably lowered, and (3) the
characteristic becomes markedly less concave. As will
be seen later the bending stress in the arms becomes
greater as their length increases until a point 1s
reached where the spring is more likely to fail in bend
than in torsion in the body of the spring. Load-
deflection curves for the standard spring with lever

arm lengths of 10 mm, 20 mm, and 40 mm are shown
in Fig. 14.

Spring diameter

Examination of eqns (8) and (9), the two formulae
from which the load—deflection characteristic of the
coiled beam is derived, shows (1) that the relative
deflection of the two arms is independent of the
diameter of the helical portion of the spring, and (2)

6l
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_ 20 mm
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() 10 30 50 70 9
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Fig. 14 Effect of varying arm length on the spring characteristic

that the denominator of the force equation is
diameter independent, whereas the numerator con-
tains two terms, of which the first, 0Gd*/8nD, is
inversely proportional to the diameter while the
second, p;D/2, 1s directly proportional to it. This
means that wherever the characteristic curves of two
‘standard’ springs differing only in spring diameter
are plotted, then at some point those curves cross. To
illustrate this the characteristic curves of ‘standard
springs’ with mean diameters 14 mm, 15 mm, 16 mm,
and 17 mm are shown on an exaggerated vertical
scale in Fig. 15. It will be noted that all four curves
cross at approximately 8 mm deflection and 32 N
force, and that thereafter the curves are of very
similar shape but with increasing slopes as diameter
decreases, until at 50 mm deflection the forces are
31.4 N, 32.3 N, 338N, and 35.8 N, in descending
order of diameter. It will thus be seen that whereas
the length of the lever arms must be closely controlled
during manufacture to ensure uniformity of perfor-
mance in the product, little attention need be paid to
controlling the diameter of the body of the spring.

Number of coils
Of the terms governing the load—deflection character-
istic, three are influenced by a change in the number
of coils in the body of the spring and in each of these
an increase in the number results in a decrease in the
strength, That part of the torque resulting from the
flexing of the body and not from initial tension,
(0Gd*/8nD, decreases in direct proportion to the
increase in number of coils. The term (nd/20)
icos (0/2) — cos ), being part of the effective
leverage, is directly proportional to the number of
coils, a reduction of force resulting from any increase
in this number. The linear deflection also contains a
term directly proportional to n, 1.e. nd{1 — (sin 0/0))},
and any increase will again result in a weaker spring.
Fig. 16 shows the load-deflection curves for the
‘standard’ spring having 10, 15, 20, and 25 coils in the
body. It will be noted that although force decreases
with increasing number of coils, the decrease is not
proportional, and as the number of coils becomes
larger the effect of each additional coil becomes
progressively less.
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ig. 15 Effect of varying mean diameter
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Fig. 16 Effect of varying the number of coils in the body
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Angular deflection and starting angle

When the angular deflection of the arms, ¢, reaches a
value such that the radii from their instantaneous
centres, through the eye centres, are parallel, the
spring has generally reached the limit of its useful
movement. [t can be seen that after this position has
been reached, that portion of the effective moment
arm contributed by the spring arms decreases rapidly
so that the value of that force increases in a similar
manner. In the parallel position, of course, a + ¢ =
n/2, and although it 1s possible to increase ¢ by
making « negative this makes it necessary to preload
the spring so that the application of load causes the
spring arm eyes to approach each other in the
required manner. One result of this method of
assembly is that considerable moment is exerted
while the effective lever arm is very short, and the
implications of stress must be carefully considered.
Fig. 17 shows the effect of changing the arm angle o
from zero through 0.15 and 0.30 to 0.45 rad. It will be
observed that although the effective deflection of the
spring and the force exerted both decrease with
increasing starting angle, the general shape of the
main portion of the curve is not affected. If, however,
the starting angle is below about 0.15 rad, then the
first portion of the movement has a steep negative
rate.
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Fig. 17 Effect of starting angle on force and deflection
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Fig. 18 Effect of wire diameter (d)

Wire diameter

Fig. 18 shows the effect of increasing the wire
diameter while maintaining all the other spring
characteristics. It will be seen that the force increases
approximately with the third power of the wire
diameter, whereas the available movement increases
slightly owing to the increase in the body length of the
spring. In addition, of course, the slight reduction in
the ratio D/d of the spring would permit a higher level
of useful initial tension so that the ultimate force
would be still further increased.

Stress

The maximum shear stress occurs in that portion of
the body which is furthest from the line of action of
the force. If the arms are of equal length this 18 the
middle coil and the stress decreases steadily from
the centre to the ends. Using the notation on pp. 7-8
the maximum shear stress is given by

Tmax = IOP(L + D)/nd’, (10)

and for static or near-static conditions the same limits
may be set as for extension springs made from the
same material.

The maximum bending stress occurs at the points
at which the arms leave the body of the spring and
may initially be calculated as

foma = 32 Plind®. (1)

It is, however, necessary to allow for the combination
of bending and torsional stresses at these points by
applying a correctoin factor, K., similar to that
applied to the eyes of helical extension springs.
Opinions vary considerably as to the actual numeri-
cal value that the factor should assume, but in the
author’s experience,

K. = (c + 8)/(c + 5), (12)

where ¢ = 2r/d (r being the smallest mean radius of
curvature at the ‘blend’), gives adequate protection.
Thus for the standard spring specified on p. 8, if care
is taken that at no point in the ‘blend’ does the radius
fall below half that of the body of the spring, then



d=2mm, D=15mm, r=37mm (minimum),
whence the maximum correction factor {(7/2) + 8} =+
(7/2)+ 5 = 1.35.

Care must be taken to see that both modes of stress
lie within the capacity of the material.

Design guidelines

When designing a spring to given performance and
space requirements the following guidelines should
be borne in mind:

(1) the available moment is approximately twice
the arm length plus one-third of the body
length, i.e. 2/ + (nd{3);

(2) the space needed to one side of the line of action
of the force 1s approximately the length of the
arm plus one third of the body length, i.e.
[+ (nd/3);

(3) the angular movement available is appro-
ximately n/2 minus the starting angle, i.e.
(n/2) — a;

(4) a ‘flat’ characteristic with low force is achieved
by using long arms and high initial tension, and

(5) a ‘flat” characteristic with higher force 1is
achieved by using shorter arms with high initial
tension although some of the *flatness’ will be
lost. Alternatively the wire size may be in-
creased.

Worked example
It is desired to maintain a force of 6.4-6.9 N over a distance
of approximately 50 mm. The spring-eye bearing centres
should be approximately 30 mm apart at full compression
and the available space to one side of the line of action of
the force is restricted to a maximum of 50 mm.

This specification calls for a characteristic with as great a
horizontal section as possible. The best that can be
achieved with an orthodox spring is about two thirds of the
total, so that the total travel must be approximately
50 x (3/2) = 75 mm. Thus:

(1) 2/ + (nd/3) = 75, and

(2) | + (nd;3) = 45 (this may if necessary be varied up to
50 mm). From (1) and (2) /=30 mm and nd = 45,
and at this stage take «=0.15 rad as a suitable
starting point.

(3) An approximate wire size, d, may be derived from
eqn (10)-

 16PiL + (ndj3)]
Tman, = ndj"_' ’

and if the approximate uncorrected torsional stress is taken
as 440 N/mm?, then

16 x 6.65 x 45
440 = n

d* =

= 3.46,

whence d = 1.51 mm (1.5 mm) and n = 30.

In order to ensure that the stress-correction factor at the
‘blend’ between body and arm, K, 1s not too high, start
with a spring ratio, D/d, of just over 8 and be prepared to
vary this if necessary.

Work done by The Spring Research and Manufacturers’
Association indicates that a reasonable initial tension level
for a spring of these dimensions would be 15 N.

The design 1s therefore 30 coils of 1.5 mm wire, arm
length of 30 mm, starting angle of 0.15 rad, initial tension
15 N, and mean diameter of approximately 13 mm. Check
calculations give the results listed in Table 1. Thus the

Table 1. Reference data for worked example

Effective

Moment
7 of force lever Force )

(rad) (N mm) (mm) (N) (mm)
0.2 120.8 11.96 10.1 33
0.4 144.4 19.00 1.6 9.4
0.6 174.4 25.27 6.9 18.1
0.8 199.5 30.69 6.5 29.1
1.0 2238 34.97 6.4 41.9
1.2 250.3 37.93 6.6 56.2
1.4 276.9 39.55 7.0 T1.1
281.4 39.64 7.1 72.2

(mi2)—a

maximum torsional stress in the body of the spring is given
by

16 x 7.1 x (39.64 + 13)

ax 1.5

and the maximum combined stress in an arm using the
correction factor, K, as specified 1s given by r.h.s. eqn (11)
x r.h.s. eqn (12) as follows:

32 . 3 :
_32x 7.1 % F}K 4.35 +__-$ _ 843 N/mm?.
435+ 5

Both of these values are within the static capabilities of any
good-quality patented spring steel wire.

The load—deflection characteristic of the spring is shown
in Fig. 19,

= 560 N/mm?,
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Fig. 19 Solution to worked example

Materials and applications

It has been shown that in order to produce the desired
zero-rated characteristic as well as a high level of
force, it is necessary to use a high level of initial
tension in the body of the spring. It is therefore
obvious that the material used must be ‘spring hard’
before coiling and must not require any high-
temperature heat treatment after cooling. Patented
cold-drawn steel spring wire (to BS 1408), rust-, acid-,
and heat-resistant steel spring wire (to BS 2056), oil-
hardened and tempered steel wire for springs (to
BS 2803), Ni-Span C and D,¥ and the multitude of
‘spring-temper’ copper alloys are all suitable mat-
erials, each of which offers its own particular
advantages to the designer.

By far the greatest use of springs of this type lies in
the electrical field, where 1t 1s necessary to com-
pensate for the loss in length of carbon brushes
resulting from wear without the loss in force that 1s
associated with the orthodox compression spring. As

T Henry Wiggin & Co. Ltd.
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the force remains constant within +35 per cent over
the selected travel, the problem of arcing and
resulting commutator damage is greatly reduced. It s
of course possible to specify closer imits than + 5 per
cent but there is always some penalty to pay such as
reduction in range, lower level of force, and greater
space requirement, and the designer must examine
the alternatives given in Figs 13-18 and decide for
himself what should be sacrificed in favour of
uniformity of force. Levels of +3.5 per cent are
obtainable but should not be specified unless ab-
solutely necessary as they can involve secondary
operations to ensure that an acceptable percentage of
the product is within tolerance.

Leaf springs

Cantilevers

The simplest form of leaf spring, known as the
cantilever, is of course the single leaf of constant
rectangular cross-section clamped firmly at one end
and loaded at the other. Unfortunately, although
simple and inexpensive to produce, it utilizes the
material in a very inefficient manner as will become
apparent from the following examination of the
formulae governing a spring of this type.

Fig. 20 shows a single leaf of length / and
rectangular cross-section bz, carrying load P at its
free end.

The deflection at a distance x from the fixed end is

given by
_ PP X ( _I)
O, = X - 3 ——,
6EZ I {

where E'is Young’s modulus for the material, and Z is
the modulus of section (in this example *6/12) so

that:
] 2P P x2 ( :4:)
ﬂ_f — > — 3 ——.
Ebt? {2 !

Fig. 20 Cantilever spring: (a) single leaf of rectangular cross-
section, (b) stress distribution across section
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If zero and [ are substituted in turn for x, the
deflection at the fixed end 15 zero (as would be
expected) and at the free end

5, = 4PP/EDbP. (13)

The stress ata distance x from the fixed end is given

by
| tPf ( x) 6P] ( x)
frx = l——)=——{l —-
27 ! bi? /

Substituting zero and / for x:
fo = O6PIbt? (14)

and

where f, 1s stress at fixed end and /; is stress at free end.

It can thus be seen that the stress tapers off
uniformly from a maximum to zero and that there
appears to be only a single cross-section where the
material 1s efficiently used. This would be bad
enough, but examination of any cross-section shows
(see Fig. 20) that the fibres on the convex side are
stressed In tension and those on the concave side in
compression, and that the stress varies from a
maximum positive (tensile) stress at the convex
surface, through zero at 0, to a maximum negative
(compressive) stress at the concave surface, so that
there 1s a plane parallel to both faces and passing
through the centre of gravity of each cross-section
which is completely unstressed. Fortunately there are
many applications where manufacturing cost is the
overriding criterion and this, coupled with the ease
with which such a spring may be mounted, leads to its
great popularity. Fig. 21 shows the application of a
simple single-leaf spring in a device for measuring the
profile of the ground end of a helical spring relative to
its major axis. A self-centering four-jaw chuck is
provided with a series of twelve (or any other
preferred number) equally spaced hemispherical
indents round 1ts circumference and i1s mounted
rotationally on a suitable face plate. A single-leaf
spring having a round-headed bolt to match the
indents fixed to its free end 1s clamped 1n the position
shown by the dotted line before the chuck is
mounted, and then ‘sprung’ aside while the bearing
pin 1s dropped into its bearing. The spring 1s then
released and the chuck rotated until the bolt head
mates with one of the indents. The spring to be tested
is mounted in the chuck and a clock gauge mounted
above and in contact with the ground face. By
rotating the chuck until each indent has successively
mated with the spring a series of twelve equally
spaced readings may be obtained.

In order to compare other types of leaf spring with
this simple form, consider a spring in which
h=25mm, t=6 mm, and /=300 mm of a material
with a modulus of 207000 N/mm?, stressed to
1200 N/mm?. The unit of comparison 1s taken as K,
where K = force x deflection/volume. Since [ =
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Fig. 21 Spring- and profile-measuring device using single cantilever
spring: (a) plan, (b) front elevation

1200N/mm?, then from eqn (14):

P_]200x25><;62
6 x 300

= 600 N

From eqgn (13);
4 x 300% x 600

- — = 38 mm.
207000 x 25 x 6°

[’ =

Also, volume,
I '= 300 x 6 x 25 = 45000 mm?.
Thus,
K = 600 x 58/45000 = 0.77.

Because the stress varies in a linear manner along
the length of the leaf and is also inversely pro-

portional to its width, it would appear in theory thata
state of constant stress can be achieved by tapering
the width from full to zero while maintaining a
constant thickness; thus in plan the leaf is an 1sosceles
triangle. Under these conditions the deflection is
given by

5, = 6PP/Ebs,

where b 1s the width at the clamped end. The leaf
under load assumes the form of a circular arc and the
stress remains constant along its length as f'= 6Pl/1?h,
while V' = bit/2.

Applying the load and stress conditions laid down
for the rectangular leaf, P =600 N, 6; = 87 mm, and
V' = 22 500 mm?, whence

K = 600 x 87/22500 = 2.32.

which is three times the standard value.

As previously stated, this can only be achieved in
theory since no force can be applied at right angles to
the plane of the leaf through a point having neither
width nor breadth in that plane. However, so great is
the possible saving in weight achieved by this method
that where this is the main consideration a little of the
advantage may be forfeited by providing excess metal
at the pointed end as shown in Fig. 22(a).

The third type of single leaf, the truncated triangle
or trapezoidal spring, is shown in Fig. 22(b). Here 5,
1s the width of the leaf at the fixed end and b, the width
at the point of application of load. Note that this is
not at the physical extremity of the leaf but at the
limit of the stressed portion, the excess being

- !

()

+|"JU

|-'- — o  —

Lo + o A
| (b)

Fig. 22 Constant stress cantilevers
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necessary to provide anchorage for the load. This
extra length for anchorage is also a necessary part of
the rectangular leaf.

The deflection under load, when compared directly
with the standard leaf, has to be modified by a
constant, M, which 1s a function of the ratio of b, and
b;, as shown in Fig. 23. A simplified solution to this
curve is given by

M = 3b,/(2b, + b)),

from which it will be observed that when b, = b, then
M =1, and when b; =0 then M = 1.5. This means
that when the curve passes through the correct point
at both extremes the simplification results in an
optimistic error of just under 5 per cent in the middle
range. In Fig. 23 the approximation is shown for
comparison purposes as a broken line beside the true
curve.

For this type of spring the factor K lies between the
standard value of 0.77 and a maximum of about 2.0
as the taper increases.

A second method of achieving uniformity of stress
along the length of the leaf, and thus greater
efficiency, consists of tapering the thickness to
comply with the form of a parabola, where

¥
f

Iy = Ig~/ {1 — (x/1)},
o = 8PP/bE, and V = 2btl{3. Thus
K =600 x 116/30000 = 2.32,

which 1s the same value as for the triangular spring.

To summanze: if ease of production and assembly
are the overriding considerations, then a rectangular
leaf of uniform thickness should be used. If however
the saving of material (because of either expense or
weight) 1s of major importance, then a trapezoidal
leaf of uniform section or a rectangular leaf of
parabolic form would be more suitable.

One other form in which the rectangular leaf of
uniform thickness finds use is as a measurer of precise
time intervals. The natural frequency of such a leaf is
given by

v = 1.015¢(Eg/p)*/I2,

1.5

1.4

1.3

Ul

.1

|.0) 1 | | | 1 L 1 1 L

(.0 0.2 0.4 0.6 0.8 1.0
/b,

Fig. 23 Modification constant, M, for trapezoidal leaf: (a) true
curve, (b) M ~ 3b,/(2b, + &)
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where g 1s the acceleration due to gravity and p is the
density of the material, both measured 1n the same
system of units. Thus if £ and p are both known v
may be calculated, whereas measurement of v leads
to easy calculation of E for new or unknown
materials.

Provided that the deflection i1s small relative to the
length of bar, then the deflection and stress formulae
hold good whether or not the initial condition of the
bar 1s straight.

Cantilever spring assemblies of increasing rate

An even more efficient use of the material may be
made by providing the cantilever with a curved stop
which allows each portion to reach, but not to exceed,
the design stress. This is illustrated in Fig. 24(a),

(B)

{C)

Fig. 24 Cantilever assemblies for increasing rate: (a) ry = =,
lire=2p/Et; (b)) re= o, 1/ry=2n/Et; (¢) 1jre + 1)

rs = 2fn/Et



where the stop is in the form of a circular arc of radius
r.. The same effect may be achieved by using a flat
stop and a cantilever spring that is initially formed to
a circular arc of radius r; (see Fig. 24(b)). A further
modification that may be dictated by the exigencies of
space uses an 1nitially curved spring (rs) and a curved
stop (r.) as shown in Fig. 24(c). In all three instances
the radii used are governed by the formula:
L1 2

4 = H
Fe Fe Et

where fp is the design stress, E is the modulus of
elasticity, and 7 1s the material thickness. Under these
conditions the spring deflects as a free cantilever until
the design stress is reached, at which point contact is
made with the stop, and as deflection continues the
active length progressively decreases, the rate in-
creases, and the stress remains constant once it has
reached the design limit. Fig. 25 shows a typical
force—deflection curve where the ratio deflection/safe
deflection of the unsupported spring is plotted against
Jforce/maximum force of the unsupported spring.

This principle, modified so that the stop is formed
by a spring that 1s a mirror image of the one above it,
is used in the repeating rifle magazine spring (see
Fig. 26). Each pair of springs consists of a pair of
double cantilevers connected by a circular portion of
sufficient radius to facilitate forming without risk of
cracking, in which a gap is left so that when the
platform 1s depressed the gap closes at the design
stress and allows the two springs to come into contact
and roll on each other. When the magazine is full, the
spring is closed into a compact rectangular block
giving a very high energy—weight ratio.

2.0
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e

Forcel force of unsupported spring

0.3
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Deflection ! deflection of unsupported spring

Fig. 25 Force-deflection diagram for increasing-rate cantilever
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Fig. 26 Automatic rifle magazine spring

Double cantilever springs
It a single, straight, rectangular-section spring is
placed on two supports in the same plane and loaded
in the centre, the two halves behave as single
cantilevers (Fig. 27(a)). If the distance between the
supports is / and the load is P, each half may be
considered to be a cantilever of length //2 carrying a
load P/2.

From eqn (13) the deflection at the centre is given
by

5 =4 x (P2) x (I[2)/Ebe® = LPPIEbS,

which i1s one-sixteenth that of a cantilever of the same

P/ P/

T_ [ 142 _{
o - -

Pl

|

(h)

Fig. 27 Double cantilever springs: (a) beam spring, (b) carriage
spring
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length. From egn (14) the stress at the centre 1s given
by

Jo = 6(3P)(3)/bt* = 3PI{2b1°,

which is one-quarter that of the single cantilever.

This type of spring is not commonly used in this
form since some system of lateral guidance would be
necessary to maintain the spring in position. How-
ever, with the leaf pre-formed into a shght curve and
the load applied at both ends it forms the basis of the
‘cart’ or ‘carriage’ spring (see Fig. 27(b)).

Since the loading of such a spring reduces either its
height or its camber, the ends move away from each
other so that rigid fixing is impossible and both ends
must be provided with some form of bearing to allow
it to rotate, while one end must be suspended on a
swinging link to accommodate the change in overall
length. As long as the free camber 1s not too great the
formulae derived from egns (1) and (2) may be used,
although it will be obvious that as the lever arm
increases the stress will increase in proportion and
some small factor of safety should be used.

If a single leaf spring is clamped at both ends and
those ends constrained to move in guides in a
direction at right angles to the major axis of the
spring as shown in Fig. 28, the assembly may be
considered as two cantilevers each of length //2 and
the deflection and stress may be calculated exactly as
before.

This type of spring is commonly used on vibrating
screens actuated by an eccentric for the purpose of
transferring loose material, such as root crops and
stones, from one point to another and at the same
time ‘sizing’ 1t by means of graduated apertures in the
screen. This, of course, subjects the springs to a
compressive load that is additional to the bending
moment imposed by the horizontal displacement of
the moving end (see Fig. 29). Under these circum-
stances, if P 1s the load supported by a single spring
and Q is the displacing force, then the total stress, £, is
given by

f.l

i A p

—— =

Fig. 28 Vibrating screen spring
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Fig. 29 Suspended vibrating screen

and the deflection by
20

E[;’ i-_{{lan wi)/wi] ’
where w = /(12P/13bE).

o =

If, however, the screen is suspended from the lower
end of the springs the force P becomes tensile and the
stress 1s given by

| 60 tan w/
whi?
the sign of the result indicating whether the resultant
stress 18 compressive (minus) or tensile (plus).

Laminated springs
[t has been demonstrated that one of the most
efficient of the cantilevers is the triangular, uniform-
section spring. Two of these may be joined together
base-to-base in the shape of a diamond, forming an
efficient beam spring which may in theory be loaded
as in Fig. 27. With the carriage spring (Fig. 27(b)),
which 1s the ideal spring for vehicle suspension since
its low volume represents a minimum increase in the
unsprung weight, it 1s usually impossible to in-
corporate the width into the available space. This
difficulty however may be overcome by a simple but
ingenious procedure.

Suppose that calculations lead to the diamond-
shaped spring shown in Fig, 30, where / is the overall

/

9 .

===

4L ! - . F
2 1 | i |

i
T

Fig. 30 Theoretical design of trapezoidal spring of uniform stress



length and 5 the overall width, then proceed as

follows.

1. Divide the spring down the centre line CC'.

2. Divide each half into a suitable number of strips of
equal width such that twice the strip width will
comply with the space lmitations of the design,
and starting from the two outside portions number
the strips 1,1; 2,2, etc.

3. Place 1 and 1 side by side to form a diamond;; place
2 and 2 side by side centrally above 1 and 1, and
continue until all the strips are used up.

This results in a laminated spring having the same

physical characteristics as the original leaf. In

practice, each section is a single leaf cut from a strip
equal in width to two of the strips in the theoretical
design.

This design has the same disadvantages as the
triangular cantilever, since in practice it is impossible
to apply a load at either of the pointed ends and,
furthermore, the points at the ends of the inter-
mediate leaves would damage the plate above them
and give rise to excessive local stresses. Two possible
ways of avoiding these disadvantages are (1) to leave
the width of the strip constant throughout its length
and taper the thickness according to a parabolic
form, and (2) to forfeit some of the uniformity of
stress by cropping the ends of each leaf to give a
trapezoidal section. In practice method (1) is very
expensive and most laminated leaf springs are now
designed using a trapezoidal form in which the
shorter side is equal to the finished width of the spring
as shown in Fig. 31. Each remaining strip 1s one half
of the width of the main leaf and the whole assembly
1s built up as before. Once again, in normal pro-
duction, the leaves are cropped from strip of uniform
width.

Some allowance must be made for the fact that the
pack must be held together in the centre and this leads
to a zone which is practically dead and contributes
very little to the deflection under load. This portion
must be added to the trapezoidal shape in the original
design and 1s denoted by the hatched areas in Fig. 31.

N

NN

Fig. 31 Practical modification of theoretical trapezoidal spring

Where the spring 1s subject to sudden shock
loading, the line of contact between the second
longest leaf and the main leaf is an area of high local
stress, and it is usual practice to start with a
trapezoidal design in which the shorter side is twice or
even three times the finished spring width. This main
plate is then divided into two or three strips and the
assembled spring has two or three top leaves of equal
length.

Worked example
It is required to design a laminated leaf spring of the
trapezoidal type in which the distance between load-
bearing points is 530 mm with a central location of 30 mm.
The maximum load is 7000 N and the available space to
accommodate the width is 50 mm. The full deflection under
load is 33 mm at which point the stress should not exceed
900 N/mm?2.
Calculation. By subtracting the location from the total
length and dividing the spring into two cantilevers, it 1s
found that / = 250 mm.

The maximum strip thickness of a rectangular leaf which
will deflect 33 mm at a stress of 900 N/mm? is given by:

_ 2B 2% 250 x 900
 3ES 3 x 207000 x 33

This i1s the maxinngn but, to ease calculations, use 5.0 mm
and adjust later.

The width of 5 mm strip to carry 3500 N at 900 N/mm?is
given by:

= 5.5 mm.

, _ OPL _ 6 x 3500 x 250
OB 52 % 900

Since a trapezoidal spring is proposed, this figure may be
rounded down to 200 mm in view of the more advan-
tageous stress distribution.

The width of the narrow end must accommodate two
strips, each of which must be less than 50 mm. Starting with
a width of 80 mm, then the shape ratio, m, is40:200,i.e. 0.2,
whence, M = 1.2 and the limits of the spring can be drawn
(see Fig. 32). It can be seen that the strip width 1s 40 mm
and a total of 5 leaves can be cut from the blank.

Check. The design is now 2 top leaves (full length) and 3
supplementary leaves 40 mm x 5 mm. Thus:

5 — 1.2 x 3500 x 250° x 4

= 233 mm.

207000 x 200 x 53 4% mm,
>
— T ~
el /] B
|2
%
— 4 —
- —
— L4 -
[d])
}
C EF?] D ) ‘j 40
i i
{30 f=—

@ b’xj @J, .

— 5.
V) T

1L 1

(b)

Fig. 32 Solution to worked example on trapezoidal spring (all
dimensions in mm)
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indicating that the leaf is too thin. The thickness of the leaf
may be adjusted to a final value ¢, as follows:

(1,/ty = 42/33 = 1.273
thus
t, = 1.273' x 5§ = 5.4 mm.
Stress at full load,
P 6P 6 x 3500 x 250

bt 200 x 5.4°

The final spring assembly is shown in Fig. 32.

= 900 N/mm-.

Springs stressed in bending

Spiral and power springs

Springs coiled from flat strip in the form of a two-
dimensional spiral are generally known as spiral
springs. If during operation the coils remain entirely
free of each other, the term hair spring is often
applied. If however the spring is tightly wound so that
all coils are in contact round the arbor and delivers its
energy by unwinding until all coils are closely packed
inside a retaining box, it is commonly known as a
clock spring or motor spring.

Hair springs
Hair springs may be divided roughly into the
following classes:
(1) those having a large number of coils with a high
shape ratio; these can be subdivided into
(i) clamped springs, in which the outer end is
rigidly clamped, and
(11) pinned-outer-end springs, which are free to
assume a position of minimum restriction
under load;
(2) those having a few coils (<21) with a low shape
ratio, b/t( < 10).
[t i1s not usual to pin the outer end of a class (2) spring.

Many turns, clamped outer end. Fig. 33 shows a hair
spring having a large number of coils with clamped
outer end.

Fig. 33 Hair-spring with clamped outer end and many coils
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If b 1s strip width, 7 1s strip thickness, / 1s active
length of the strip in the spring, £ 1s Young's
modulus, M is operating moment, n is number of
turns (each of 360°) produced by torque M, and f'is
the bending stress (uniform throughout strip), then:

n = 6MIlinEth, (15)
and
f = 6Mjrh. (16)
Combining eqns (15) and (16):
fin = nEt/l,
whence
| = rnEm|l. (17)

[fatany point it is necessary to crank the material,
particularly close to either end, a correction factor
based on the shape ratio D/t (where D is twice the
mean radius of curvature, r, of the crank) should be
applied. Fig. 34 shows the stress-concentration in
graph form.

Many turns, pinned outer end. If the outer end of a
strip is fitted over a pin, the only restraining moment
at this point is frictional and the corresponding
expression for deflection becomes:

n = 15MI2rnEb. (18)

Thus for the same torque a pinned outer end spring
moves 25 per cent further than one with a clamped
end. The stress in such a’spring 1s given by

= 12M/t*h, (19)
which is twice that for a clamped spring.

| 6

Correction factor

10 | | | J

Shape ratio. /1
Fig. 34 Stress correction factor for sharp bends
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Fig. 35 Hair-spring with clamped outer end and few coils: O is centre
of spring
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Few turns, clamped outer end. In a hair spring having
few coils and with the outer end clamped and
restrained to move in an arc about the centre of the
spring (see Fig. 35), it is necessary to modify the
maximum stress by a factor x, which depends upon
the actual shape of the spring and the number of
degrees, #, traced out by the radius vector in moving
from one end of the strip to the other. The shape
factor 4 is defined as:

A=1- (rl.-'lrrl)u

where r, is the radius at the inner end and r, the
radius at the outer end.

Values of « are shown plotted against ¢ for various
values of 4 in Fig. 36.

In addition the stiffness (movement per unit of
applied torque) has to be modified by a factor ff which
is shown plotted against the same values of 4 in
Fig. 37.

Springs of this type are usually found as return or
balance springs in precision instruments and for this
purpose it is essential that their physical properties
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Fig. 36 Stress concentration factor, x, for spring with few coils;
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Fig. 37 Stiffness factor, 5, for spring with few coils; .+ = 1 — (r,/r;)

are suitable for the particular application. Where it is
essential that the modulus of elasticity does not
change appreciably over the range of naturally
occurring temperatures (—45°C to 65°C)
precipitation-hardening Ni-Span C is used, while
Inconel is commonly used if the instrument is liable to
be affected by magnetism. Other materials suitable
for the manufacture of hair springs are high-carbon
steel, phosphor-bronze, beryllium copper, nickel
silver, austenitic stainless, and many of the silver
alloys.

Permissible stress. Table 2 gives the approximate
maximum stress to which balance springs of this type
should be subjected, together with the stress range
permitted if the spring is subject to oscillation.

Table 2. Permissible maximum stress and stress range for
oscillating springs having few turns and clamped outer end

Maximum Stress
Material stress range

(N/mm?) (N/mm?)
Carbon steel 550 175
Phosphor bronze 420 175
Beryllium copper 420 140
18/8 stainless steel 520 175
Ni-Span C 350 140
Silver 100 35

Clock ar motor springs

The clock or motor spring has two main idealized
shapes for which various mathematical theories have
been expounded: (1) the Archimedian spiral in which
the space between the coils in their free state is
constant, and (2) a logarithmic form in which the
radius of curvature is directly proportional to the
distance from the centre of the spring. In practice
neither of these forms is easily obtained, although a
spring coiled from hard-rolled strip and wound
tightly on its arbor will spring open to form a
reasonably close approximation to the latter. A low-
temperature heat treatment of approximately 260°C
will stabilize the shape. In order to provide anchorage
within the case it is usual to provide a hole at the outer
end to engage with an undercut pin, and a right-angle
crank at the inner end to engage in a slot cut in the
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arbor (see Fig. 38). This necessitates annealing both
ends of the strip and great care must be exercised to
ensure close control of the length annealed and a
gradual transition from the soft to the hard zone.
Typical examples of this type of spring are the
gramophone motor spring and the telephone-dial
return spring, both of which are required to provide a
constant torque throughout their ranges of oper-
ation.

Unfortunately this type of spring delivers its
energy 1n an erratic manner governed not only by the
exact conformation of the spring in its free state
(which 1s difficult to control in practice) but also by
the inter-coil friction which is present when the spring
1s wound. Fig. 39 shows a typical torque—revolutions
curve for such a spring. It will be noted that the curve
1s relatively steep over the first 25 per cent of 1ts wind-
up, during which about 55 per cent of the maximum
torque 1s achieved. Thereafter the curve flattens to
give a relatively straight line with approximately one
third of the rate of the first portion. During wind-up
the pressure between adjacent coils produces fric-
tional forces that prevent uniform sliding motion,
and such motion as occurs takes place in sudden
jerks.

Since motor springs invariably operate only in the
unwinding mode, hysteresis must be added to the
other variables. Various devices have to be adopted
In practice in order to make the rate of energy
delivery acceptable. With the gramophone spring it is
consistent table speed that 1s necessary, and this 1s
achieved by fitting a governor and friction brake.
D
- -
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B -

Right-angle
crank
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-

-
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i inding
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Fig. 39 Typical torque revolution curve for cased spiral spring
lubricated with molybdenum disulphide

This of course means that the energy dissipated
through friction in the form of heat is wasted so that
the motor is rather inefficient, but it does provide a
means of speed adjustment. In the case of the
telephone-dial spring the object is achieved by using
only a small portion of the top end of the curve. The
spring is capable of accepting six or more complete
revolutions but the dial is restricted to a total
movement of considerably less than a single revolu-
tion. The design of the case enables the mechanism
to use the most advantageous portion of the curve.

Design

Referring to Fig. 38, where D. 1s the inside diameter
of the case, D, 1s the inside diameter of the unwound
spring in the case, D, 1s the outside diameter of the

= 4 = '
- — Hole

N

(b)

Fig. 38 End fixings for motor spring: (a) unwound in case; (b) fully wound
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wound spring on the arbor, D, is the diameter of
arbor, n,, 1s the number of coils in the wound spring
and n, 1s the number of coils in the unwound spring,
and assuming that in both the wound and the
unwound conditions there 1s no space between the
coils, then the number of turns that such a spring will
deliver from the various cross-sectional areas may be
estimated.

Thus, ignoring the length of material which
connects the wound spring to the case, cross-
sectional area of matenal = [/, and cross-sectional
area of wound spring = in(D3 — D3), whence

D, = {D} + (4lt/m)}? (20)
and
2nyt = Dy, — Dy, (21)
giving
2not = [(4ltim) + Dyt — D, (22)
and
ny = [{(4lt/n) + D3P — D] = 2t.  (23)

Considering the unwound spring in the same
manner :

ny = (D, — D)/2t (24)
and
It = in(D: — DY), (25)
whence
D, = |D? — (4lt/n)}}, (26)
and

ny = [De — {D? — (4ltjm) )/ 2. (27)

The number of coils delivered i1s therefore the
difference between n, and n,,.

Ny — My = [{D3 + (4ftm))?
+ (D2 — (4ltjm)}? — (D + D,))/21.

[t will be appreciated that this 1s an 1dealized
maximum which assumes that the strip is perfectly
flat and that there is perfect contact between adjacent
coils. This of course 1s never achieved.

As a result of analysis of many hundreds of
practical designs 1t has long been established that if a
spring 1s to deliver the maximum number of turns,
then the area of the wound-up spring should be
approximately one half of the available area between
the arbor and the case, which leads to the condition
that

(28)

| = (D} — D2)/2.55¢. (29)

Substituting this in egn (28) and simplifying, then
(30)

Ny — Hy = (D — D)2 = 4linl,

where
D3, D:

(2D2 + 2D — (D, + D,)
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Fig. 40 Design factor for number of turns delivered

For ease of design the expression for U is given
graphically in Fig. 40 for values of D, < 20 mm and
values of D, <50 mm. It should be stressed here that
Fig. 40 only gives the correct value for U if all
dimensions are measured in millimetres.

Stress
Assuming a uniform distribution of stress along the
length of the spring the formula connecting stress and
torque is given by

| = 6Meh,

which is the same as eqn (16) in the section on hair
springs.

Fig. 41 shows recommended maximum stresses for
various thicknesses of high-carbon steel strip.
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ig. 41 Recommended maximum stresses for various thicknesses of
high-carbon spring steel




Using the formulae thus far established the
relevant design relationships may now be sum-
marized as follows:

(1) f = 6M/1*h
(1) f = nEt(ng — ny)/l
(i) ny — ny, = flinkEt
(v) * = 1L.SMU/ED
(v) ! = (D¢ — Dj)i2.551.
Worked example
It is desired to design a motor spring to fit into a case

100 mm inside diameter, that will accept a strip width of
30 mm and has an arbor of 18 mm diameter. The maximum
torque required i1s 4800 N mm and the spring should deliver
approximately 15 turns.

From Fig. 40, U' = 380, whence

. 3
poo 13 X 9800 x 380 0
207000 = 30
and
r = 0.76 mm.
10000 — 324
From (v), [ = ———— = 4992 mm.
2.55 x 0.76
. 6 x 4800
From (1), C = = 1662 N/mm?,
/ 30 x 0.762 '

which is satisfactory according to Fig. 40.
From (1i1), number of turns delivered.
1662 x 4992

7 x 207000 x 0.76

Because of hysteresis and mechanical friction it is unlikely
that the spring will deliver its last turn or two and this figure
1s close enough.

16.8 turns.

Practical guidelines. When designing and manufac-
turing motor springs the following practical guide-
lines have emerged from past experience:

(1) the arbor diameter should be larger than 20
times the material thickness, or stresses may be
excessive;

(2) the length of strip should not exceed 15000
times 1ts own thickness or the torque-
revolution curve will be excessively distorted by
inter-coil friction and ‘bundling’ of the coils (a
condition where the coils do not peel off
uniformly but come away in bundles of two or
three at a time);

(3) the cross-section of the edges of the strip should
be as nearly semi-circular as possible in order to
obtain the best fatigue performance, and

(4) the mmnermost coil should be continued to
produce at least one complete dead coil of
slightly less diameter than the arbor.

Constani-force spring

In order to overcome the disadvantages associated
with the orthodox type of motor spring, an ingenious
method of utilizing the characteristics of very thin
strip was developed in the early 1950s in the USA.
These so-called zero-rated springs are marketed
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under the names Tensator and Negator in the UK
and USA, respectively. The design and manufacture
of such springs is of a very specialist nature, and the
accumulated experience of the originators is such
that it is hardly worthwhile carrying out the full
design process for a new design as it 1s almost certain
that a combination of stock springs may be assem-
bled to meet the specification.

Zero-rated springs appear in two standard forms:
the constant-force spring, or Tensator extension
spring, and the constant-torque spring-motor de-
scribed in the next section. The constant-force spring
consists of a tightly wound spiral of thin strip
designed so that it may be pulled out straight and
then return to its original coiled form. Such a spring,
which 1s shown in Fig. 42, may be used as a counter-
balance on machine tools, drop windows, etc.

If P is the load to be supported, b the width of
material, ¢ the thickness of material, D; the inside
diameter of coil in its free state, D, the maximum
outside diameter of coil in its free state, and E the
modulus of elasticity of material, then

P_Er"h | (l |
66 (D2 ‘D, DI’

Design guidelines. For springs with a small number of
colls (< 10):
(1) t € 26.4P/ES?*h, where § is a stress factor
related to expected life (see Fig. 43);
(2) D; = (Ebt*/6.6P)*:
(3) h = 26 4P/ES*t;
(4) when the spring 1s assembled into the mech-
anism, 1t 1s fitted over a bush which 1s of

Fig. 42 Constant-force spring
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Fig. 43 Stress factor, S, for expected life of good-quality carbon
spring steel

diameter Dy, shightly greater than D;, whence
Dy = 1.15 D;, and

(5) length of strip in spring = deflection required

plus 5Dy, 1./ = 0 + 5Dy,

Fig. 43 shows the recommended relationship
between expected hife and the stress factor, §, for
good-quality carbon spring steel.

For springs with more than 10 coils:

(1)1 « 26.4P/ES?h;

(2) D, = (Erb/6.6P)*;

(4) Dy, = 1.15D,,, and

(5) I = 0 + 5Dy,

Constant-torque motor springs

If a constant-force spring is placed upon a mandrel
which allows it to turn freely and is then wound on to
a larger mandrel, as in either Fig. 44 or Fig. 45, it will
be found that the winding torque 1s almost constant
over the middle 85 per cent of the wind-up. When
released the spring will recoil itself on to the smaller
mandrel, thereby imparting energy to the larger
mandrel. The arrangement shown in Fig. 44 should
be used where the major concern is length of life. That
shown 1n Fig. 45 gives a higher torque for the same
design of spring but at the expense of life.

Fig. 45 Motor spring designed for extra power

Whereas it is possible to design constant-torque
motors from the elementary principles given, the
author has found that the finished spring may be very
different from that expected. This is because, unless
extreme care 1s taken, the material bows across its
width during the forming operation, which in-
troduces an additional and almost unpredictable
variable, causing a degree of instability in the spring
that is responsible for a torque—revolution curve that
is far from linear.

The suppliers of constant-torque motor springs
under their trade names have built up large stocks of
standard springs rated in much the same way as
electric motors; thus by far the quickest method of
obtaining a suitable spring is to specify the require-
ment and allow the supplier to provide the approp-
riate spring.

Helical torsion springs
If a close-coiled helical spring is clamped at one end,
whilst the other is constrained to rotate about its
major axis by an applied torque, the following effects
will be observed.
l. If the spring is ‘wound up’:
(1) the diameter of the helix decreases,
(11) the number of coils increases, and
(111) the overall length of the spring increases.
2. If the spring is *wound down’:
(1) the diameter of the helix increases,

(11) the number of coils decreases, and

(111) the overall length of the spring decreases.
Care must be taken to ensure that any fittings used in
the assembly will provide adequate allowance for the
changes in size that occur.

In most cases it 1s advisable to design torsion
springs so that they wind up when the torque is
appled, and deliver the required energy before
returning to the free position. That is to say that the
stress should not be allowed to return to zero during
operation, much less change sign by passing through
1L,

The great majonity of torsion springs are manufac-
tured from hard drawn or pre-hardened matenal,
and the action of coiling induces stresses which
remain in the wire on release from the coiling
mechanism. These stresses are such that the resultant
stress 1s reduced if the spring is subsequently wound
up, but increased if it is wound down. If the nature of
the application is such that the unwinding mode is
essential, then the spring should be given a suitable
low-temperature, stress-relieving treatment before
use.

This, however, is not the only reason for using the
spring in the winding-up mode. Fig. 46 shows a
simplified diagram of a torsion spring supported on a
central rod and bearing an applied load, P, at the end
of a lever of length L. The maximum stress in the
material when the spring is wound up is caused by an
applied torque of PL, whereas, when the spring is
wound down, it is caused by an applied torque of
P\L+(D/2)}, where D is the spring diameter.
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Fig. 46 Comparison of applied torque in {a) winding-up mode and (b) unwinding mode

The fundamental formulae for designing helical
torsion springs are relatively simple, being derived
from elementary bar-bending theory. The major
concern of the designer i1s to ensure that there 1s
adequate clearance for the spring to operate and to
design the ends so that additional movements and
increases 1n stress are properly allowed for.

Round-wire springs
In the case of round-wire springs the stress in the
body of the spring i1s given by

S =102M/d°, (31)

where M 1s torque applied and d 1s wire diameter.

Sometimes, however, it is necessary to introduce
bends of a smaller radius than the body of the spring
in order to facilitate fixing the ends, when a
correction factor must be used to estimate the higher
local stresses at such points. The correction factor,
K, which is a function of the ratio d/d. 1s shown in
Fig. 47 d. 1s twice the radius of curvature of the bend
under consideration.

The angular deflection ¢ in turns caused by an
applied torque M is given by

0 = 10.2Mnd/Ed",

where n 1s the number of active coils in the spring. If

the body of the spring contains few coils, care should

be taken to obtain an accurate estimate of the effect of

legs, hooks, etc., as these all form part of the flexible
unit of the spring and may be responsible for a

significant part of the deflection. If the equation is
rewritten

0 = (nnD) x 102M nEd,

1t will be seen that the expression within the bracket is
the length of wire contained in the body of the spring
and it 1s common practice among designers to write
the formula as follows:

0 = 102MI/nEd°, (32)

where /1s the length of wire in the spring including the

effective lengths of wire between the body and the
points of application of the load. Reference will be
made to this when the various types of fixing in
common use are considered (p. 26).

Springs made from material of rectangular section

If the spring 1s made of material of section bk, where £
1s the radial depth of the material and b 1s the width of
the section measured parallel to the major axis of the
spring, then the stress,

=K, x 10.2M/bh2,

where K, 1s the stress-correction factor for
rectangular-section material as given in Fig. 47. The
angular deflection in turns is given by

0 = 6MnD/EbR,

which neglects the deflection of the end fixings, or

! = 6 MnlinEbh’,

|4t

(b0 | | I i | i | |

Bend ratio

Fig. 47 Stress correction factor, K, versus shape ratio: {(a) round
section (d. /d); rectangular section (d./h)



where /is the estimated total length of material in the
spring if the ends are considered to make a significant
contribution to the deflection.

Worked example

It is desired to design a helical torsion spring of round-
section steel having a maximum outside diameter, D, of
0 mm, a minimum inside diameter, D;, of 4 mm, and a
maximum solid length, L, of 14 mm. The maximum torque
is to be 1000 Nmm with a deflection of 29° and the
maximum uncorrected body stress shall not exceed 1200
N/mm?*. Each end of the spring consists of a straight
tangential portion which is considered to contribute 3 mm
to 1ts flexibility. The nominal mean diameter,

D =19 + 4) = 6.5 mm,
and (from egn (31)) the maximum stress,
f = 1200 = 10.2 x 1000/d* N/mm?
Therefore,
d* = 102,
and
d = 2.04 mm.

Selecting the next standard wire size above this (2.12 mm),
then (from egn (32)):

29 B 10.2 x 1000 x 1
360 nEd '
therefore,
4
;- 2971 x Eﬂ?_"::x 2,12_ 1037 mm.

360 x 10.2
Since the ends contribute 6 mm of material, the length of

wire in the spring is 97.7 mm or 4.8 coils. Since M =
1000 N mm,

=102 x 1000/2.12% = 1070.5 N/mm?.
When the spring is wound up the total number of coils,
n =48 + 29/360,
and the maximum solid length,
L=(488 4+ 1) x 212 = 1247 mm.
The outside diameter of the spring.
D, =65+ 212 = 8.62 mm.

When the spring is fully wound (4.88 coils) the mean
diameter will be 6.5 x 4.8/488 = 6.39, so that the
minimum inside diameter,

D =639 — 212 = 427 mm.

As the ends are tangential to the body there is no need to
apply a stress-correction factor.

Possible adjustments. The design of the mechanism may be
such that it is necessary to use a spring in which the number
of coils is an exact whole number so that 4.8 will be
unsatisfactory. Since the equation for deflection shows that
this is dictated solely by the length of wire in the spring the
only options open are (1) to vary the size of wire (and this
will almost invariably lead to a non-standard size) or (2) to
reduce the mean diameter so that

SeD = 97.7 mm,
whence,
D = 6.22mm.

When this spring 1s wound up to full torque the mean
diameter will reduce to

D =622 x 5508 = 6.12mm,

giving a minimum inside diameter of 4.00 mm which, while
theoretically acceptable, leaves no room for tolerances, so
that it would be inadvisable for the spring manufacturer to
attempt to meet such an order. He must now offer the
spring user the alternatives of:
(1) modifying the end fixings to vary the active length of
wire in the spring, or
(2) spending extra money in order to obtain a material
that 1s non-standard ; for example, if a material of
diameter 2.14 mm were available then

_ W 207 x 204
360 10.2
Therefore length in body of spring = 101.7 mm, and if
n=2>5.0, then
D = 101.7/57 = 6.48 mm.

Thus free outside diameter = 8.62 mm, free inside diameter
= 4.34 mm, mean diameter when wound up = 6.48 x
5/5.08 = 6.38 mm, minimum inside diameter = 4.24 mm,
and the spring 1s now satisfactory,

= 107.7 mm.

Springs of non-circular section material

The availability of round-section wire and the ease
with which it may be coiled and formed into torsion
springs ensure that it 1s used for the manufacture of
most springs of this type. If, however, it is required to
store the maximum energy in a limited space, it may
be advisable to use a square or rectangular section.
The uneven distribution of stress caused by the
curvature of the material locates the highest stress at
its inside edge, which has a much greater area than in
a wire or circular section that in theory represents
only a single point of contact.

A further advantage of the rectangular section is
that considerable adjustments may be made to the
overall length and diameter of the spring by minor
adjustments of the thickness or breadth of the
material, or both. However, not only is rectangular
material difficult to obtain and its general quality
inferior to that of round section, but also it distorts
during coiling and becomes trapezoidal with the
greatest growth on the inside, so that much of the
available space in the spring 1s unused. This may be
overcome by starting with a trapezoidal section and
coiling it ‘inside-out’ so that in theory it becomes
rectangular. It 1s possible to calculate the original
shape from the properties of the material but it must
be realized that this shape will apply only to the
spring for which it has been designed and will be
unsatisfactory for other work. Unless the order
warrants the purchase of the whole output of that
particular shape, the material will not be available.

Fig. 48 shows four different types of commonly
used symmetrical ends. It is, of course, not necessary
that the ends should be symmetrical and any shape
may be dictated by the user.

Also illustrated in Fig. 48 is a double torsion spring
in which the two ends are wound to opposite hands
joined by a ‘bridge’ which may be of any shape. Such
springs are normally used in pairs, as shown in
Fig. 49, where it is necessary to exert a load along a
constant line of action. Probably the most common
duplex torsion springs are those used on motor-cycle
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Fig. 48 Torsion spring ends: (a) external hooks, (b) internal hooks, (c) tangential arms, (d) offset arms, (¢} double torsion

Direction of
loading

Fig. 49 Schematic arrangement of duplex torsion spring assembly

engines. The loads to be applied are divided into four
and the end-section of each spring is designed as a
single torsion spring to carry one fourth part of the
load. The thrust is usually taken on straight legs
which must be free to slide as the body moves up and
down, while the load is applied through a saddle
designed to accommodate the ends.

Initially coned disc springs
An nitially coned disc spring—often referred to as a
‘Belleville washer’, although this term should strictly
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Fig. 50 Initially coned disc spring

only be applied to a disc having one particular set of
dimensional ratios as specified in the original
patent—consists of an annular disc of constant
thickness raised to the form of a truncated cone as
illustrated in Fig. 50. In this figure D, is outside
diameter measured to the centre of the outer edge, D,
1s inside diameter measured to the centre of the inner
edge, ¢ 1s material thickness, and % is coned height.

The load—deflection characteristic of a disc of this
type 1s a multinominal function of inside diameter,
outside diameter, material thickness and coned
height, and many differently shaped load-deflection
curves may be obtained by varying the ratio of A/t.
Three typical curves having 2/t = 3.0, 1.5, and 0.6 are
shown in Fig. 51, and although it must be stressed
that these are not drawn to the same scale they
illustrate the wide variety in form that can be
produced. f

When At = /2, the tangent to the curve remains
horizontal for a considerable distance, and although
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Fig. 51 Typical load-deflection curves

h/t = 1.5 produces a slight peak and subsequent fall
before rising again it is this value that produces the
longest zone of very low rate.

Further variations in load-deflection characteris-
tics may be produced by stacking the discs in series or
parallel ; six of the many possible arrangements using
six discs are illustrated in Fig. 52, while Fig. 53 shows
the load—-deflection characteristics of these arrange-
ments assuming that the discs are designed to be
individually linear.

As reference to Fig. 51 shows, when designing discs
to be stacked in series care must be taken to see that
the i/t ratio does not approach 1.5since thisleadstoa
danger of individual discs snapping inside out and
producing a stack of very different characteristics.

Those handling discs with ratios in excess of 1.5
should be warned that since these springs have been
flattened during test they may assume an inside-out
configuration, and although they are virtually identi-
cal to ‘normal’ discs they are now reservoirs of stored
energy requiring only a sharp blow to cause them to
snap back to their original form with an almost
explosive energy release, possibly causing the in-
cautious to receive severe finger damage.
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Fig. 533 Load-deflection characteristics for arrangements of the six
linear discs shown in Fig. 52

Deflection
In order to reduce the difficulty of analysing the load-
deflection characteristic of a disc spring by the
application of elastic theory it 1s now accepted
practice to assume that the radial cross-section of the
disc rotates about its point of support without
distortion and, provided that the diameter ratio
D./D; 1s not much greater than three, the error so
introduced does not exceed 5 per cent.

Making this assumption Almen and Laszlo (1936)
arrived at the following relationship:

4B
(I — p?) D;

x [Cy(h — O)ih — (8/2)1t + C; 1),

where P is axial load, ¢ i1s axial deflection, p 1s
Poissons ratio,
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where « = D,/D;.
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Fig. 52 Possible arrangements of multi-disc springs: (a) P = 6P,
d=h;(b) PP =5P,6=2h;(c) PP =4P, 5 =2h; (d) P = 3P,
o =2hi(e) P =2P, 6 =3h; () P = P, o = 6k; for meanings of

symbols see Fig. 53
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A relatively simple calculation shows that within
practical limits C, = (% so that a simplified ex-
pression for load in terms of deflection is
4E0C,
(I — p?)D3

< [(h — 8)th — (324 + F). (33)

To simplify design computation, values of C, as a
function of diameter ratio « are shown as a curve in
Fig. 54, and using this curve and rewriting eqn (33),

P = 4ErC,C,/ D3, (34)

where

0 h 8\ (h O
R G [ R
(1 — ) t ot ro2

Factor C, may be plotted as a function of &/ and A/t.
Values of C, for h/t ratios between 0.4 and 3.0 may be
obtained from Figs 55-58. It must, however, be noted
that when ¢ = A the washer has been pressed flat and
unless special arrangements in fitting have been
made, no further deflection is possible. In Figs 57 and
58 the points corresponding to é = h or d/t = h/t have
been marked on each curve and the points joined by a
dotted line, and unless the assembly allows the
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Fig. 54 Values of design factor, C,; expression for C, in terms of «
given in the text
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Fig. 55 Values of design factor, C, (see eqn 34)
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washers to be pushed ‘through’ or beyond flat only
that portion of the diagram to the left of this line 1s
available for design purposes. The special case
hit =1.51s shown on an enlarged scale in Fig. 59.

20

l.l"n.
T

o 1Ok
i
(.0 1 L1 i i i i 1 I | i
(.0 (.2 (.4 (.6 (.8 1.0 1.2

air

Fig. 56 Graph showing enlarged section from Fig. 55 for &/t =
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Fig. 59 Deflection characteristic of constant-load spring (h'r = 1.5)

Stress

It 1s just as tedious and complicated to analyse stress
from first principles as it is deflection. However, by
making the same assumptions the maximum stress at
the upper surface of the spring may be expressed as

_4E§CT o
Ju = = pz)Dbl x [Cyth — (6/2)} + Cyt], (36)
and that at the lower inner edge as
—4FE6C
1 5 IJ; x [Cyth — (6/2)) — C,fl, (37)
— H 0
6 o — 1
where C, = X |
n logea log.
o — |
and C, = __{a: : :
n log.a

Negative values for f,, and f; signify that the stress 1s
compressive, whereas positive ones indicate that it 1s
tensile.

In order to simplify the calculation of stress, eqn
(36) may be re-written:

fu = K\EP[D§ | (38)
where

—46 C, h o |
'K'l = — X C"I. - —I_ C4 . {39}
i (1 — p?) r 2t
and since eqn (37) only differs from egn (36) by the
sign preceding C,, then

fi = K,Er? /D,
where

— 46 C, h 0
— e — {:13 —_— — — Cq. .
t (1 — p?) 121

Figs 60, 61 and 62 show values of K, for x = 1.5, 2
to 2.5, and 3. Since the families of curves for a =2
and «=2.5 are almost i1dentical, the differences,
drawn to this scale, are indistinguishable. It would of
course, be possible to produce a similar set of curves
for the factor K for the calculation of the stress in the
lower inner edge, but since this is always less by (49/¢)
(C,/1 —p?) 2C, than the stress in the upper edge,

K, =
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Fig. 60 Stress factor K, for D,/D;y = 1.5
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which most of the calculations will have been carried

out to obtain, such additional curves are of little
benefit.
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Simple design

The main area for the use of simple coned-disc design
occurs where there is a severe space restriction in the
direction of application of the load while the
deflection is of the same order as the ‘solid’ height
space available. Under such conditions the dead or
inactive coils of a compression spring would occupy
much of its vertical height and preclude its use.

Worked example
A disc spring is required to carry a load of 10000 N with a
deflection of 7mm and a possible 10 per cent overrun
before it becomes solid. The solid height is not to exceed
8.25 mm, the outside diameter is restricted to 180 mm, and
the maximum stress to 1450 N/mm?.

(1) To calculate the height ratio.
Total movement required = 7 + 0.7 = 7.7 mm.
Solid height =~ 8.25 mm.,
Height ratio ~ 7.7/8.25 = (.93,

(2) To calculate the diameter ratio. This usually lies
between | and 3 and it is customary to select a value at
random and adjust it later if necessary. In the present
example a value is taken that is near the middle of the range
and is as simple as possible (say x = 2).

(3) Stress. In Fig. 61 take A/t = 1.0 and o/t = 1.0, which
represents the condition of a washer pressed flat and gives
the value of K, for maximum compressive stress in the top
inner edge. In this case K, = —13. (The negative sign
indicates a compressive stress and will be disregarded in the
simple calculations as it is necessary to take a square root.)
Now

[, = K Et{D]

= U;_,ﬂf.,:’K.E}*-

It 18 of course necessary to ensure that E, P, and f are all
expressed in the same system of units. In this case take £ =
208000 N/mm? and F = 1450 N/mm?, whence

1 = {1450 x 175%/(13 x 208000)}* = 4.05 mm,

which i1s the maximum thickness that will permit the
deflection without exceeding the size that will be readily
available (4 mm).

The design 1s now as follows: material thickness
4 mm, nside diameter = 87.5 mm, outside diameter
175 mm, and coned height = 4 mm.

(4) Check. In Fig. S6 take h/t = 1,6/t =1, giving C, = 1.1,
Then,

4 x 208000 x 4% x 1.1 x 1.45

solid load = — = 11093 N,
175 = 175
and
—1
solid stress = 3 x ZUEU'D_({_ x—-hﬁ = — 1413 N/mm?.

175 x 175

(5) Number in pack. Solid height = 8.25 mm (max.) and
the solid height of a single washer = 4 mm; thus the
number in pack = 2, giving a final design of 2 washers in
series as previously specified.

Specialist designs

I. Constant load or zero-rate. It is very often necessary
to spring load an engineering device in such a manner
that differential expansion of the spring housing,
although producing considerable variation in fitted
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length, does not produce a corresponding variation
in the spring load. In most devices of this kind the
load-carrying member passes through the centre of
the spring and restrictions are thus imposed on the
designer, whereas the height in the axis of the spring
must be kept to a minimum. In these circumstances
the zero-rate (h/t = \/2) disc spring would seem to be
the most suitable, in spite of the flat portion of the
hit = 1.5 curve (see Fig. 57) being longer (even if not
strictly horizontal).

Where such a spring is required, the amount of
design work can be considerably reduced by making
use of the observation that when ¢ = h the spring 1s
approximately halfway along the horizontal portion
of its curve. If a maximum stress is selected and
strictly adhered to, then the simple curve shown in
Fig. 63 linking stress, diameter ratio, and the ratio
D,/t, will enable ¢ to be easily found. Considerations
of space will lead the designer to choose suitable
inside and outside diameters from which to start, but
it must be stressed that if the design fails to meet the
specification a new start must be made. It 1s not
sufficient to change one of the vanables since this will
result in considerable modification of the spring
characteristic, whose preservation is the designer’s
primary aim.

Worked example
A disc spring having the characteristic for hf/r=1.5 1s
required to maintain a constant load of 1050 N + 5 per
cent. Space restrictions dictate an inside diameter of 50 mm
and a maximum outside diameter of 130 mm. Stress at
constant load is to be approximately 1250 N/mm?,

Because of space limitations select D; = 50 mm,
D, =125 mm and % = 2.5. Then from Fig. 57,

C, = 1.70, C, = 1.32, and D/t = 69.5,

whence 1 = 1.8 mm.
Re-writing eqn (34) as

F = 4EC1EJ{II_-':D:1}JII'

110
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Fig. 63 Design ratio D/t for constant load at a given stress (x =
Dy /D)



then

4 x 2028000 % 1.7 x 1.32 x 1.82

P= o5 = 1252 N.

This value is too high and it is not sufficient merely to
decrease the matenal thickness since all the other variables
must change to maintain the “1.5" characteristic.

Selecting a smaller diameter (say 115 mm), then
D, =5mm,D,=115mm, and « = 2.3.

Since the curves for a=2.0 and x=2.5 are almost
identical, then the same constants are retained and
f=1.65 mm. Hence

p 4 x ZDB[}D_{} x 1.7 % 1.32 X 1.65°
- 69.5°

The final design is therefore: material thickness
.65 mm, D, = 50 mm, D, = 115 mm and coned height
2.48 mm.

Such a design would, of course, necessitate the use of
ground stock, controlled heat-treatment, careful setting to
the correct camber, etc., and would be extremely expensive
unless the quantity requirement were large.

= 1052 N.

Il

2 Snap-action disc springs. On occasion it 1s necessary
to utilize a spring where the characteristic is given by
hit = 2.5. The main purpose of this is to supply a
sufficient supporting force until a specified distance
has been covered by the mechanism, and then to
produce a ‘snap’ action in which most of the load 1s
almost instantaneously removed. Some of the many
applications include ‘fail-safe’ overload switches,
security devices, and ‘overcentre’ clamps where it is
usual for the engineer to specify the shape of the
curve required, the maximum load, and the space
limitations.

Worked example
A spring characteristic approximating to the A/t = 3.0
curve is required in which the maximum load to be
supported 1s 3800 N, after which the load is to fall away
rapidly until the spring meets a stop restricting the total
movement to 7 mm, representing a point on the curve of
0 = 3.5¢. Maximum stress is to be kept below 1450 N/mm?.

Since 6 = 3.5t = 7T mm, then 1 = 2 mm.

Since h/t = 3, then h = 6 mm.

Starting with the customary shape ratio x = 2, take from
Fig. 61 h/t = 3 and &/t = 34 to give K, = 64.1, ignoring the
negative sign since only the magnitude of the stress is
significant in this context. From, eqn (38)

D; = K, Erf,.
and assuming a maximum stress of 1400 N/mm?
D, = 192 mm.

From eqn (34) the load corresponding to the peak value
of thecurve for b/t = 3in Fig. 5815 7394 N. Thus theload in
the fully-deflected position, where d/r = 3.5, is given by

?3‘}4 x Cl]_ﬁ-':('lnm:
— 7394 x 1.39/7.2
= 732 N.

Applications and materials

Since the peculiar characteristics of coned-disc
springs depend solely on the various shape ratios, i1t s
possible to use any material that exhibits constant
physical properties, and there 1s virtually no re-
striction on size. These springs range from tiny

stainless-steel ‘snap’ washers made from 0.010 mm
thick material and used to monitor the effect of drugs
on the ‘heaviness’ of a rat’s footfall in a medical
research laboratory, through 250 mm diameter
‘constant-load’ discs that enable the roof of the
Melbourne Olympic Swimming Pool to swing gently
in the wind controlled only by steel cables and thus
afford an unobstructed view from all parts of the
arena, to the gigantic 400 mm plus ‘Hooke’s-law’ disc
used as the weighing member 1n the well-known
Craneweigher range of lifting and weighing balances,
which enable the cargo of a ship to be lifted, weighed
to Department of Weights and Measures standards,
and loaded on to lorries for further transport, all in
one movement. At the moment the heaviest of such
mechanisms 1s capable of handling loads of 100
tonnes.

Owing to the simplification necessary to reduce the
design of disc springs to a handleable level, the
finished product can sometimes vary considerably
from the original specification, and errors of up to 15
per cent occasionally occur. Once the design has been
established however, repeatability is first class and
variations should be held within the +35 per cent
band, provided that the material thickness is main-
tained. Since one of the terms in the formula for load
contains the third power of the material thickness, it
will be apparent that general commercial tolerances
on rolled or forged matenals will give unacceptable
load variations, and it is thus necessary to specify
materials to closer limits, such as precision rolled,
ground, etc.

Most manufacturers of this type of spring maintain
stock lists which should be consulted before design
work is attempted, since a small number of standard
discs can often meet the requirements of a particular
application without the need for costly development.

Fatigue

Unfortunately there 1s very little published data on
the fatigue properties of coned discs, and the different
ranges of stress to which various parts of the material
are subjected make analysis highly speculative. The
small amount of work done with strain gauges
suggests that considerable modification to the stress
pattern takes place on the first compression. The high
stress localized at the upper inner edge appears to be
dissipated into and supported by the surrounding
materials (hence the common use of 1450 N/mm-*as a
static stress for steel discs although the physical
properties of the material would suggest 1000 N/mm?
as a more likely maximum). Undoubtedly modified
Goodman diagrams could be produced for the
various zones of the disc, but until they are the
designer should rely on the experience of accepted
manufacturers.

Diaphragm springs
A diaphragm spring is an initially coned disc in which
radial slots are produced in order to provide greater
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flexibility. Fig. 64 shows a typical disc in which ¢ 18
material thickness, D, i1s outside diameter, D, is
diameter at root of slots, D; is inside diameter, b, is
width of ‘tongue’ at root, by 1s width of *tongue’ at tip,
n1s number of ‘tongues’, i 1s coned height under tips,
and h, is coned height under roots.

Diaphragm springs are used where there 1s ample
space to accommodate a large outside diameter and
engineering requirements dictate that a single spring
1s preferable to a pair or a stack. A typical example,
and probably the most important one, occurs in the
modern automobile clutch spring, where the facility
for producing a load-deflection diagram with a
considerable “flat’ portion enables the manufacturer
to provide the driver with a light non-progressive
pedal load.

Providing that the condition that the non-slotted
portion of the spring acts as a normal disc 1s accepted
(1.e. 1ts cross-section rotates without distortion), itis a
fairly simple matter to calculate the total deflection as
the sum of three components: (1) that due to the disc
itself, (2) that produced at the end of the fingers by the
movement of the disc, and (3) the deflection of the
fingers themselves acting as cantilevers.

Although 1t 18 possible to produce a general
solution to the load-deflection equation, this entails
solving a cubic equation, and it is much simpler to
calculate the deflection in three parts as suggested in
the last paragraph.

Fig. 65 illustrates the mode of deflection of the
spring in which ¢ is the total deflection, 4, is the
deflection of the disc, and &, is the deflection caused
by the cantilevers. It 1s obvious that 0 1s not the sum of
0, and 9.,.

Remembering that the load is applied at the end of
the tongues and not at their roots, then

0 = ":";1 + lr?"'11[“ — (Di/Dg)} = {1 — (Dyf n}}']- (40)

The deflection J, of n cantilevers arranged in
parallel in this manner is given by

0, = MP(D, — D;* (1 — 1*)/2Et*nb,, (41)

Fig. 64 Typical diaphragm spring
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where £ 1s the modulus of elasticity, p 1s Poisson’s
ratio, and M and P are defined in the next paragraph.

M is a constant depending on the ratio b/b,
according to the relationship shown in Fig. 23. The
theoretical equation connecting P and 4, is as
follows:

EB,

{ (hr {jl) (hr f5|)}
P=Kyx — I + - —
(1 — p?)D3 ( f t t 21
D, D,
X {(I ——)/(I——}, (42)
Dﬂ- IJU
here K o (D“)Z lo {(D“) / Do l l (43)
W = — || — e 31 — — = :
= 3\p.) = 1\b.) Db )}

Since this is a cubic in 9,, there 1s no simple means
of finding a solution, although, if 1t 1s essential to do
so, the method suggested on p. 28 may be employed.

Stress

Calculation of the design stresses in a simple coned-
disc spring of approximately the design favoured by
clutch designers shows that the maximum stress
occurs at the upper edge and is approximately twice
that at the lower edge. However, prolonged fatigue
testing of this type of spring has shown that failure 1s
almost invariably initiated at the lower edge. The
main reason for this is the difference in the ability of
carbon and low-alloy steels to withstand tensile and
compressive stresses. Provided that certain design
limitations are imposed (see p. 33) the designer can be
sure that the maximum tensile stress will occur at the
lower outer edge and that the stresses in other parts,
although numerically higher, will be less harmful and
may be ignored. It is permissible therefore to treat the
spring as a coned disc without tongues and calculate
the maximum tensile stress in the normal manner.

Y ¥
B
_ s

Fig. 65 Mode of deflection of diaphragm spring



In order that this method may be used it 1s essential
that the ratio 4./t = 0.8 and that the ratio D,/D, < 2.
Fortunately, owing to the shape of the load-
deflection characteristic required by the clutch
designer, these requirements are usually met.

Design formulae
In addition to eqns (41-43) the designer will also
require the following equations for stress.

r El D kol + K (h’ l)} (44)
— W o —_
T -wb: Dbp, { 't 2
where
D, D,

K,o=2[22 = (22 ). 45

! (Dr) (ﬂ, ) )
and

(46)

1
KSZZ{]_

-+ — 3.
log. (D,/D;) (Do/D;) — 1}

For ease of computation K, K, and K are plotted as
functions of D,/D; in Figs 66 and 67.

[t appears that little fundamental research has been
done into the fatigue properties of materials stressed
in this manner and the fatigue diagram shown in
Fig. 68 1s limited to BS 1449 spring steel to CS 70 in
the size range 2-3 mm. There 1s evidence that shot
peening of the tensile face of the spring has a
beneficial effect but it also presents difficulties. The
effect of peening one face only disturbs the balance of
stresses and, since the free height changes during the
process, 1t 1S necessary to carry out one or more
preliminary tests on sample springs to establish the
correct pre-peened height that will give the required
height after peening.

25,00
2251

20.0

T —16

D, 1D,

Fig. 66 Design factors K, and K, related to spring shape ratios

Worked example
[t is required to design an automobile clutch spring with a
‘flat’ characteristic over a movement of 2.5mm at a
nominal load of 1200 N, the force not to vary by more than
200 N over the travel. An outside diameter of 150 mm can
be accommodated and the minimum operating life should
be 10° cycles. Bearing in mind the limiting values of shape
ratios (1.e. D /D, D /D, h/jt) that will produce a
satisfactory spring, the procedure is to establish the
material thickness in stages from the given outside
diameter, and this i1s accomplished by means of the
following numbered steps.

1. Assuming an inside diameter slightly more than half
the outside diameter (say 80 mm) and allowing ‘tongues’
which are slightly longer than the radial dimension of the
solid disc, the following diameters are obtained:

D, = 150 mm
D, = 80 mm
D, = 120 mm.

These are ‘round-figure’ starting points to be adjusted
either way if the final result is not close enough to the
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Fig. 67 Design factor X related to spring shape ratios
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Fig. 68 Fatigue diagram for diaphragm spring
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specification. Although the number of ‘tongues’ is not
vitally important, the greater this number the more
uniform the stress distribution in the transition zone from
the solid disc to the tongues, where a blending radius of
14-2¢is commonly used. For the present design, 12 tongues
will be selected, 8, 12, and 16 being frequently-used values.

By dividing the inside circumference to accommodate
twelve leaves, each slightly larger than the complementary
gap, a tip width of 9 mm is arrived at, which again is a
round-figure starting point that may be adjusted either way
according to the final result.

2. Since the spring is to produce a ‘flat’ zone of 2.5 mm,
this figure represents approximately 40 per cent of the total
travel, which is thus approximately 6.25 mm—the free
height under tips, A. From the geometry of the disc
h, = 2.7 mm.

3. The required load—deflection charactenistic dictates a
height/thickness ratio of approximately 1.5 so that

h.it = 1.5
and
t = 2.7/1.5 = 1.8 mm.

Once again 2 mm is used as a preferred size so that A,
becomes 3 mm.

4. From Figs 66 and 67

K, =117
K, =125
K, = 1.037.

5. Thus, from eqn (44) solid stress {with disc portion of
spring deflected flat) is given by,

£ =1{208000/(0.91 x 150°)}2 x 12.5
x 31 + 1.037(1.5 — 0.75)}
= 1357 N/mm?,

which is high but not excessive, successful designs having
been produced at just under 1500 N/mm?.

The load-deflection curve may now be examined at
several points to check that the figures obtained so far are
within the specification or to decide what modification is
necessary.

6. With a free height of 3 mm at the root of the tongues
the standing free height from the geometry of the spring is
7 mm, giving the following provisional design:

D, = 150 mm
D, = 120 mm
D;. = 80 mm
{ = 2mm
= 7Tmm
h, = 3mm
n =12

b = 9 mm.

Using this data the loads necessary to deflect the solid disc
through successive deflections (including ‘flat’) may now be
calculated from egn (42) to give the following results:

J, (mm) foad (N)
0.75 755
1.0 911
1.5 1117
2.0 1215
2.5 1225
3.0 1215.
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Fig. 69 Load-deflection curve from design example

7. The deflections produced in the tongues by these loads
may now be calculated from eqn (41):

load (N) d, (mm)
175 0.135
911 0.163
1117 0.200
1215 0.217
1225 0.219.
8. From eqn (40):
fj = 2.33{5‘] —|_ 51,

giving the following co-ordinates for the load-deflection
characternstic:

P (N) o (mm)
775 1.87
o11 2.49

1117 3.70
1215 4.89
1225 6.05
1215 7.22.

These figures are plotted in Fig. 69 and show that the load
tolerance can be met over a travel in excess of 3.5 mm so
that the postulated design is satisfactory.

9. Fatigue performance. As a total deflection in operation
of only 2.5 mm is needed, this may be chosen anywhere
within the 3.5 mm ‘flat’ zone, and for this example 3.75-
6.25 mm is selected.

From eqn (44) the mnitial and maximum stresses are 860
and 1254 N/mm?, respectively, and plotting this point on
Fig. 68 indicates that a life in excess of 100000 cycles may
be expected.

Ring springs

A ring spring consists essentially of a series of inner
and outer rings having conically machined mating
surfaces as shown in section in Fig. 70, where

D', 1s the outside diameter of the inner ring,

D’; 1s the inside diameter of the inner ring,

D’ 1s the mean diameter of the inner ring,

D", 1s the outside diameter of the outer ring,

D”; 1s the inside diameter of the outer ring,

D", is the mean diameter of the outer ring,

n 18 the number of elements, where a single
element consists of the mutually mating
halves of one outer and one inner ring, giving
six elements for the spring illustrated,



Fig. 70 Typical ring spring in section

h  is the solid height of a single element and is

equal to half the axial depth of one outer ring,

d, is the movement from free to solid of a single

element and is equal to half the gap between
the outer rings.

When an axial load is applied to the spring, the
inner rings are forced to contract and the outer rings
to expand owing to sliding which takes place between
the mating faces. Thus each element may be con-
sidered subject to a force acting normally to the
mating faces and a frictional force opposing the
sliding action, i.e. a normal force F and a frictional
force pF where p is the coefficient of friction between
the faces. Since the frictional force always opposes
motion, the load—deflection diagram of a ring spring
exhibits a very large hysteresis loop as shown in
Fig. 71.

Load

Deflection

Fig. 71 Full cycle load /deflection characteristic of ring spring
assembly

Design calculations

1. Stress. Consider firstly the forces acting on a single
element of an inner ring when an increasing load is
applied (Fig. 72).

If P, is the radial load per mm of the circumference
described by the mean diameter D', when rotating
about its centre, the compressive stress will be f, =
P D' n/2A4°, where A" 1s the cross-sectional area of the
Inner ring.

By resolving the forces F and pF,

P, = 2(Fcos oo — puFsin a)/nD'y,
and
fe = 2{(Fcosa — pFsin «)/nD'm} X (D'm/24")
= Flcos & — psin a)/nA". (47)

The axial load P, acting on the spring is obtained
by resolving the forces Fand pF along the spring axis,
whence

P, = Fsmno + pFcos «

= F(sin a + | cos a),
or
F = P,/(sin x + ucos ax). (48)
Substituting eqn (48) in eqn (47),

P, (cos o — psin &)

tA”  (sin % + pcos x)

P, (1 — ptan o)
_‘_‘_\;{ S—

?

A’ (tan o + p}.
or
P,
2 x K, (49)
A’
where
| — ptan o
Pl
tan o + p

The values of K, for « between 10° and 45° and p
between 0.1 and 0.3 are shown for convenience in
Table 3.

It may similarly be shown that the circumferential
tension stress in the outer ring is

fi = (Pajnd") x K. (50)

where 4" is the cross-sectional area of the outer ring.
However, when a compressive and a tensile stress
act at right angles to one another, it i1s necessary to

ul
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Fig. 72 Forces acting on a spring element during compression
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Table 3. Values of K. (upper rows) and Ky from  and p.

) * 10° 15° 20° 25° 30° 35° 40° 45°
0.10 3.555 2.645 2.077 1.684 1.391 1.162 0.984 0.818 (K.)
0.12 13.337 6.115 3.926 2.857 2.216 1.783 1.467 1.222 (Kg)
0.14 3.304 2.495 1.976 1.610 1.335 1117 0.938 0.786

18.138 6.979 4.277 3.049 2.338 1.868 1.541 1.278

0.16 3.084 2.360 1.883 1.542 1.281 1.074 0.901 0.741
28.228 8.110 4.692 3.293 2.472 1.960 1.598 1.326

0.22 2.890 2.237 1.793 1.478 1.231 1.032 0.867 0.724
63.080 9.665 5.187 3.508 2618 2.058 1.670 1.381

0.18 2.125 1.718 1.417 1.183 0.993 0.833 0.695
11.925 5.791 3.786 2.779 2.165 1.746 1.439

0.20 2.023 1.644 |.361 1.138 0.955 0.801 0.667
15.517 6.541 4.105 2.956 2.279 1.827 1.500

0.22 1.929 1.575 |.308 1.095 0.919 0.770 0.639
22.107 7.501 4.501 3.154 2.402 1.913 1.576

0.24 1.842 1.511 1.257 1.054 0.885 0.740 0.613
38.147 8.769 4913 3.375 2.537 2.005 1.632

0.26 1.451 1.219 1.015 0.852 0.711 0.587
10.525 5.435 3.625 2.685 2.104 1.703

0.28 1.395 1.165 0.978 0.820 0.684 0.563
13.118 6.06Y9 3.907 2 846 2.208 1.778

0.30 1.122 0.942 0.790 0.657 0.538
6.854 4.231 3.024 2.322 1.857

compound them into a single equivalent stress and
this is achieved by arithmetically adding their
individual values.

For the outer ring, there 1s a compressive stress due
to the normal force, F, which must be added to the
tensile stress f, calculated from eqn (50), whereas for
the inner ring both stresses are compressive and no
addition 1s necessary. The additional stress for the
outer ring may be calculated as follows.

The radial load per mm of circumference of the
outer ring, P’;, may be calculated in the same way as
for the inner ring by substituting D", for D'y, thus

P’ = 2F(cos & — psin z)/nD" .,
or
F= P aD"n/2(cos x — psin a), (51)

and the circumferential tension stress by,
fi = P'.D" /24" (52)
Thus
F=Q2A{/D"n) x aD"n/2(cos & — psin o)
= nA"f/(cos o — p sIn ). (53)

Now if the projected length, on the spring axis, of
the contact area between the inner and the outer
springs at the axial load, P,, and stress, fy, is b, then
the average compression stress in the contact area 1s
given by

fe = Fcos a/nDb where D = D", + D';.
Expressing this in terms of f,,

Je = Ju x A7[DbH(1 — ptan 2). (54)
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2. Deflection. In order to calculate the axial de-
flections of the spring it is first necessary to calculate
the radial deflections of both inner and outer rings,
o'y and 0”,. Since stress/strain equals the modulus of
elasticity, E, the deflection of the inner ring

5. = Df./E.

As each ring has two conical faces the axial
deflections caused by the contraction of the inner and
outer rings, respectively, are given by

Oy = 2fc x ' /E x D;/2 tan
= fen' D"/ E tan 2,
and
5. = 2 x n'/E x Dy/2 tan
= fin’'D",/E tan x,
where n” and n” represent the numbers of elements in
the inner and outer rings. Now if n" + n” = n, then n is

also the number of ‘elements’ in the spring. Total
axial deflection is given therefore by

da = Dn(fe + f1)/2F tan a. (55)

Substituting for /. and f; from eqns (49) and (50),

Dn (PHK.; N Pﬂﬁf,;)
2Etan a \ A’ nA”

DnP, I 1
- | — 4+ — |} x K.. (56)
A A

0y =

2nE tan



On consideration of the return stroke it may
similarly be shown that

_ DnP 11
Ju = : ( +-"):.~<KR* (57)

C dnEtano \A° A
where
l + ptan o
K, = |t Htana
tan x — p

In both cases it must be remembered that P, has
been derived from stress and therefore must have the
same basic units. Thus if stress is in N/mm? then P, is
in Newtons, and the formulae require modification
when kgf is used as the unit of load.

Hence if P. and Pg are the respective axial loads at
the same deflection on the compression and return
strokes then

PEKL' = PrKRg,
or P./Pr = Kr/K.. (58)

For convenience, values of Kr against o« and p are
plotted in Table 3 under the corresponding values of
K—c-

Practical design considerations

In order to ensure a reasonably efficient use of the

spring material the following guidelines should be

observed.

I. The maximum deflection of the whole spring
assembly should not be greater than 20 per cent of
its free height.

2. The axial height of individual rings should lie

between one sixth and one fifth of the outside
diameter.

. The angle of taper should lie between 10° and 25°,
although special requirements of energy absorp-
tion etc. may require the latter figure to be
exceeded.

4. Radially thin rings are preferred to radially thick

ones.

5. Although it is obviously possible from the for-
mulae to calculate the exact relationship between
the dimensions of the inner and outer rings, it is not
an uncommon practice where the first three
conditions are met to calculate the cross-sectional
area of the inner ring and to add 10 per cent to it to
obtain the cross-sectional area of the outer ring.

6. Where steel rings are machined all over after heat-
treatment to remove decarbunization and surface
imperfections, stresses up to 1400 N/mm? may be
employed.

fad

Worked example
It i1s desired to design a ring spring having a load/unload
charactenistic of 11/4 to carry a load of 500 000 N. The
material has a coefficient of friction, p, of 0.14 and may be
subjected to a maximum stress of 1300 N/mm?2. Movement
under load should be approximately 40 mm and space
restrictions impose a limit of 175 mm on outside diameter.

The first step is to establish the face angle « which will
give the required characteristic in conjunction with the

Table 4. Cross-sectional area of inner ring in mm? to carry
50000 N at 1250 N /mm?

N 10° 15 20° 25° 30° 35° 40° 45°

0.10 507 376 296 239 198 165 139 116
0.12 469 355 282 230 190 159 134 112
0.13 438 336 268 219 183 153 128 107
0.14 411 318 256 210 176 147 123 103
0.16 387 303 245 202 168 142 118 99
0.18 365 288 234 194 162 136 114 95
0.20 345 274 224 186 156 131 109 91
0.24 327 262 215 179 150 125 105 B8
0.26 311 251 206 173 145 121 101 84
0.28 297 241 199 166 139 116 97 B0
0.30 282 230 191 160 135 112 94 77

given coefficient of friction. Entering Table 3atp=10.14, a
value of x of 15° gives K,/ K, = 6.98/2.50 = 2.79, which
approximates to the required value of 11/4. In view of the
possible variation in p this value of x is acceptable.

The next step is to establish the cross-sectional area of the
inner ring from Table 4. A load of 500000 N at
1250 N/mm? requires an area of 335 mm?, and since this
stress 1s below but reasonably close to the specified
maximum it can be accepted as a first estimate.

Assuming the outside diameter to be approximately
170 mm, the second guideline gives an approximate axial
ring height of 30 mm, and simple geometry an ‘eaves’
height (see Fig. 73) of 9 mm to the nearest whole milli-
metre. With a given angle of 15 degrees the cross-sectional
area of the inner ring 1s then

(30 x 9) + {(15tan a) x 30/2} = 330.3 mm?,

which 1s acceptable.

Using the 10 per cent rule, the cross-sectional area of the
outer ring needs to be approximately 363 mm?, giving an
‘eaves height of 10.1 mm.

Guideline 1 states that the deflection of a single ring
should not exceed 20 per cent of the free height, so that the
space between rings should not exceed 20 per cent of
30 mm, i.e. 6 mm.

As a first trial, 5 mm used in conjunction with an outer-
ring outside diameter of 170 mm establishes an inside
diameter of 125 mm and a ‘mean’ of 147.5 mm, giving
(from egn (56))

1475

2nkE

1 I
_|._ -
330.3 363

Since the space available for movement is only 2.5 mm, the
mean diameter must be reduced in the ratio 2.5/2.8 1.e. to
132 mm, giving a final design of D; = 109.5 mm (110 mm)
and D, = 154.4 mm (155 mm).

To establish the number of elements required to produce
a movement of 40 mm, proceed as follows:

(1) movement per element = 2.5 mm,

(11) number of elements = 40/2.5 = 16, giving

(iii) free height = 16 (15 + 2.5) = 280 mm.

The dimensions of the spring as designed are shown in
Fig. 73.

5,

x 500000 ( ) x 2.36 = 2.8 mm.

Applications and materials

The distinguishing characteristics of ring springs,
namely absorption of shock loads with low recoil and
a very high capacity/weight ratio, would seem to
make them the obvious choice for such applications
as the operating parts of heavy earth-moving
equipment, but for some reason they have not
achieved the popularity with British designers that
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Fig. 73 Dimensions of ring spring in mm from a specific design

they deserve. In fact, at the time of writing, the author
is not aware of a single British spring manufacturer
who includes the design and production of ring
springs as part of his normal work, the nearest
approach being a single British company who import
and factor continentally-produced ring springs.

Any of the standard heavy spring steels, silicon—
manganese, carbon-chrome, or nickel-chrome-

molybdenum are suitable for the manufacture of ring
springs, while stainless, corrosion resistant, and non-
magnetic alloys may all be used with suitable design.

In view of the relative simplicity of the necessary
design work, it 1s difficult to understand the wide-
spread British reluctance to use ring springs, possibly
on account of the employment of friction as one of
the operating characteristics. The fact remains, how-
ever, that ring springs have a widespread use on the
continent, and where quantity requirements are high
enough to offset the high original tool costs con-
sideration should be given to their possible use.

Ring springs are supplied in ‘off-the-shelf” packs
for a wide variety of applications as shown in Fig. 74,
which is a typical assembly for arresting the overrun
of railway rolling stock. A suitable number of
standard rings is assembled into a pair of retaining
cups (A) and pretensioned to a minimum of 5 per cent
of the pack capacity by means of a central bolt (B).
The assembly which is normally referred to as a
‘cartridge’ is located inside the static sleeve (C) by
means of an annular recess (D). The outer or dynamic
sleeve 1s slid on to the static sleeve and pushed on far
enough for a retaining ring (E) to be inserted in its
groove. The buffer face i1s now located by means of
the integral bolts (F), and sufficient force is applied to
compress the cartridge while the retaining nuts are
tightened.

With probably a dozen sizes of rings, each of which
may be obtained with a variety of included angles, the
number of combinations is only limited by the
number of available housings. Where special require-
ments of load and stroke preclude the use of standard

fittings, sleeves and shims enable the designer to meet
his specification.
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Fig. 74 Static buffer with ring-spring cartridge
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Similar assemblies are in wide use in factories,
rolling mills, etc., where it 1s necessary to arrest heavy
moving equipment without a high proportion of
recoil.

Lubrication. Because most ring-spring assemblies
absorb approximately 60 per cent of the energy input
by means of friction, it is essential that the frictional
properties of the mating faces remain reasonably
constant. With this end in view the continental
manufacturers have developed their own range of
lubricants with which the assemblies are packed
during manufacture, and they claim that their
lubricants never need replacing as their life exceeds
the expected life of the springs.

Temperature. Ring-spring assemblies, properly lubri-
cated, will operate consistently in temperatures up to
the melting point of the lubricant provided that the
rise in temperature caused by the absorption of 60 per
cent of the energy input is allowed to dissipate before
the next impact takes place. It will thus be seen that
there is a limit to the number of full operations per
minute to which a buffer may be subjected, and that
this number may be increased as the proportion of
total stroke employed decreases.

Fig. 75 shows the typical form of a frequency/
percentage-of-stroke curve for an assembly having a
permissible 20 second cycle at full stroke, from which
it will be observed that the relationship 1s approx-
imately logarithmic.

Fatigue life. Commercial-quality ring springs in
which the elements are rolled have very different
frictional characteristics from those which are fine
machined and this is reflected mainly as a difference
in fatigue life. In general machined assemblies may be
expected to have two-and-a-half times the life
expectancy of those made from rolled rings.

Caution. Ring-spring assemblies may become jam-
med when they are subjected to excessive shock
loading, one or more pairs of rings failing to free
when the load is removed. A sharp blow with a
hammer is usually sufficient to free the rings, but this
should never be done unless the pre-stressing bolt is in
position. In common with the coned-disc spring the
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Fig. 75 Effect of operating frequency on permissible maximum force

energy release when struck may be almost explosive,
possibly resulting in severe injury or extensive
damage to the equipment.

Volute springs
Spring Research and Manufacturers’ Association
(1968) defines a volute spring as:

A spring produced from flat-section material, helically
coiled with its thickness in the radial dimension such that
each coil nests within its adjacent larger coil.

This 1s the generally accepted definition in the heavy
spring industry, although there is no reason why the
material should not be of square or even circular
section. This Guide, however, 1s concerned almost
entirely with volute springs as defined by SRAMA
with matenals of other sections being considered only
as modifications (see Fig. 76).

The developed ‘blade’ used in the conventional
form of a volute spring 1s shown in Fig. 77.

After coiling, the helix angle of the spring will
either be constant or variable and the spring
characteristic will depend upon the amount and
nature of the varation.

The two great advantages of a spring coiled in this
manner are (1) that when compressed solid its
‘envelope’ contains a very high proportion of
material so that its volume efficiency is high, and (2)
that vanations in the ratio of the angles and the radii
of curvature of the coils will produce a wide variety of
load—deflection characteristics. A further advantage
is that it is possible to induce high levels of beneficial
pre-stress in the material by scragging the springs
‘inside-out’ into a hollow cup so that the deflection so
obtained exceeds the difference between the free and
solid heights. Unfortunately, it is virtually impossible
to manufacture the spring so that the line of action of
the load is along the axis of the spring, with the result
that the stress distribution is uneven and some
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Fig. 76 Section through volute spring showing bottoming of coils
during compression (for meanings of symbols see Notation (p. 40))
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Fig. 77 Developed blade for conveational volute spring
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efficiency 1s lost. In addition, the springs need special
heavy-duty coiling equipment and a high degree of
skill to ensure successful manufacture, while the large
number of variables make the design mathematics
exceedingly complex.,

This latter difficulty 1s usually overcome by
‘pairing’ the variables and designing charts which,
although causing a slight loss of accuracy, reduce the
amount of design time considerably. This loss of
accuracy 1s probably of very little importance since it
is of the same order as the manufacturing tolerances
that must be allowed, while the limited number of
manufacturers willing to undertake such work will
draw upon their own specialized experience to make
whatever tooling modifications are necessary.

The desired load—deflection characteristic may be
chosen from Figs 78, 79, or 80 which are non-
dimensional diagrams with load plotted against
deflection. The special units used are given under
Notation.

The auxiliary factor ¥ which is to be used in the
relationships for load and deflection may be obtained
from Fig. 81.

Notation
b = height of section
{ = thickness of section
ro = radius of largest free (active) coil
ri = radius of smallest free (active) coil
0y = total deflection from free to solid
W = load at a deflection of §/2 from free
Omax = Maximum stress
/o = helix angle at largest free coil radius
(radians)
¢/ = helix angle at smallest free coil radius
(radians)
n = number of free coils
N = total number of coils
G = torsional modulus of rigidity
Pairings
A = Filto (59)
B =11 — (0;/05)} ~ (1 — (rifro)} (60)
Y = deflection factor as a function of
Aand B
Z = load factor = 0.1 — 0.0094.7 (61)
Relationships
W = YZ x Gbt*/r; (62)
Omax = G0/ Arg (63)
O = nryfY. (64)
Simple design check t
(1) Data:
ro = 95 mm n = 4
ri = 50mm G = 79000 N/mm?

T Although the true plot of Z is curved, the errors introduced by the
linear form given are insignificant compared with manufacturing
tolerances.

TWhere for example the design is specified by the customer.
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Fig. 78 Load plotted against deflection for B = 0 (for meanings of
symbols see Notation and Pairings)
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Fig. 81 Auxiliary factor ¥ (for meanings of symbols see Pairings)

b = 190 mm 0, = 0.076
t = 10mm ¢; = 0.060
N = 5.

(2) Pairings:
A = 0.526 B = 0.445
Y = 56 Z = 0.053.

(3) Total deflection:
d = 4 x 95 x 0.06 x 5.6
= 128 mm.

(4) Maximum stress:
Tmax = 79000 x 0.06 x 10/(0.526 x 95)
= 949 N/mm?2,

(5) Load at half deflection:

W = 79000 x 190 x 1000 x 0.06 x 5.6 x 0.053/952

= 29618 N.

(6) Load at full deflection (from Fig. 79)
= 29618 x 3.25 = 96260 N.

Modifications
If square-section material is used, eqn (62) must be
multiplied by 0.44 and eqn (63) by 0.67.

If round-section material is used and b and ¢ are
replaced by the wire diameter, the load formula must
be multiplied by 0.31 and the stress formula by 0.50.

Designing to specification
Because ‘pairings’ have taken place to establish the
design formulae, it is necessary for the designer to
make an intelligent guess at one or more of the
dimensions, work out a preliminary design, and then
modify it according to the dictates of movement or
stress.

Usually the values of solid height, total movement,
load at half movement, and maximum stress are
already laid down, while the outside diameter is
limited by space restrictions. Although the design
may now be approached in several different ways, the
following 1s one of the simplest procedures.

I. Although 1t is possible by mathematical manipu-
lation of the three major equations to arrive at a
reasonable estimate of 0, it will be found that this
18 usually of the order of 0.06 rad and it is generally
simpler to use this figure as a starting point and
adjust after the first trial calculation if necessary.

2. Estimate r,, remembering that there will be ‘dead’
material outside this which must be accom-
modated in the available space.

3. Estimate ri, remembering that the spring must be
coilled on a mandrel capable of withstanding the
coiling loads.

4. Calculate 4 = ri/r,.

5. From the two load requirements choose a load—
deflection curve from Figs 78, 79, or 80, and
establish B and hence 6,

. Read off factor Y from Fig. 81.

. Calculate Z = 0.1 — 0.094, and

8. Substitute (1) in egn (62) to obtain the maximum
value of ¢ that will move the distance at this stress,

-1 O
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(i1) in egn (63) to obtain n and (11i) in eqgn (64) to

find out how close the design is to the requirement.
From this point it is a matter of adjusting whichever
factor is the most convenient for the particular
design.

Worked example
It i1s desired to design a volute spring to fit inside a housing
200mm in diameter and having a free height of
200-205 mm, a movement of 40 mm under 9000 N, and a
total movement from free to solid of 80 mm under
27000 N, with a maximum stress of 1000 N/mm?. Then

(1) # = 0.06;

(2) the estimated value of r, is 80 mm (half of 200 less
space for dead material and clearance);

(3) the estimated value of r; is 30 mm ;

(4) A = 30/80 = 0.375;

(5) the ratio of loads is 27 000/9000 = 3, whence from
Fig. 79 an estimate of B is 0.5; therefore (from egn
(60))0.5 = {(1 — (0.6/0,)} = (1 —0.375), giving §,, =
0.087:

(6) from Fig. 81, ¥ = 5.5;

(7) fromeqn(61). Z = 0.1 — 0.09 x 0.375 = 0.066, and
therefore

(8) from eqn (63),

1000 = 790007 x 0.06
0.375 x 80
whence 1 = 6.33 mm (this is the maximum). The solid
height requirement gives » = 120 mm to 125 mm,

and so 80 = n x 80 x 0.06 x 5.5, whencen = 3.03,
To make a first check, using b = 125mm and r =

6.33 mm, W — 79000 x 124 x 6.33° x 0.06 x 5.5 x 0.066
N | 802 .

= 8523 N.

The preliminary design is therefore 44 total coils of 80 mm
x 6.5mm, coiled with an outside diameter of appro-
ximately 173 mm (2 x80 + 2 x 6.33) and an inside
diameter of approximately 47 mm (2 x 30 — 2 x 6.33);
free height = 125 + 80 = 205 mm, and maximum stress
= 79000 x 0.06 x 6.33/(0.375 x 80) = 1000 N/mm?,

This design is approximately 5 per cent weaker than the
specification and minor adjustments may be made by the
designer to suit stock materials or a stock mandrel. In
addition considerable variation in load -deflection charac-
teristics may be effected by tapering the portion of the blade
toward either or both ends, and by non-uniform *pitching’
of the coils in their helix.

Applications and materials
Because of the high volume efficiency of this type of
spring and the rapid increase in rate at large
deflections, which prevents *bottoming’ of the system
under shock loads, the volute has found considerable
favour with the designer of very heavy vehicles such
as tanks, carriers, transporters, and certain classes of
railway rolling stock. These springs are of course
manufactured from annealed material which is coiled
hot and subsequently hardened and tempered, and 1t
1s therefore necessary to provide sufficient space
between adjoining coils to permit the entry of the
quenching o1l during the hardening operation.
Typical matenals would include a plain carbon or
one of the low alloy silico-manganese steels.

At the other end of the scale volute springs may be
coiled cold from cold-rolled or pre-hardened and
tempered stock. Where this 1s so, it 1s not necessary to
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Fig. 82 Secateur spring with developed blank

allow for oil penetration between the coils and, if
desired, advantage may be taken of the absorption of
energy caused by inter-coil friction.

An interesting example of volute coiled from light
gauge material 1s the well-known ‘secateur’ spring,
which in fact is two volutes coiled base to base from a
single piece of strip. The ‘blank’ from which such a
spring is coiled is shown in Fig. 82, the spring being
formed by trapping both legs under heels on the same
mandrel and coiling to give the familiar double-cone
shape.

Appendix. Multileaf torsion bar

Research has been carried out by the author on the
possibility of producing a laminated torsion bar, having
dimensions well outside the limits specified by previous
work in that the angle of twist was to be in the region of
200°. Restrictions on available free length as compared
with required torque made it obvious that the number of
laminations would be greatly in excess of ten. At the same
time it was required that empirical formulae for torsional
rate and stress should be developed for springs of this type.
Fatigue tests were carried out on a testing machine
designed and manufactured by the Spring Research and
Manufacturers’ Association.

Springs of these dimensions have the disadvantages (1)
that the ends tend to splay out during operation and (2) that
a hole to accept a locating pin introduces considerable risk
of failure from stress concentration. Disadvantage (2) was
overcome by omitting the hole and anchoring the pack in a
rectangular hole between a pair of hardened pins located on
the line of the centre of rotation of the leaves (Fig. 83). The
requirement that the leaves should be free to splay and
return without undue friction was achieved by allowing
space within the mounting for a pair of radiused hardened
shims, which were machined to accommodate the tolerance
on the pack thickness, that is the cumulative tolerance on a
large number of leaves.

The formulae derived were torque,

1.45 x 108%(n + 0.008n%) x

1-44 A
v PO01Thjt + 0983) x b4t x 1

fl-44

where ¢/ is in degrees and dimensions are in inches, and the
maximum stress in the outer leaf,

1.2(36 + 21)
ni*h*

which in 0.7%, carbon steel was restricted to 10°.
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Fig. 83 Schematic assembly of multi-leaf torsion bar

Although these formulae look forbidding at first sight it
is a simple matter to use the St. Venant formulae (eqns (4)
and (5)) to produce a tentative design and then modify in
the light of Fig. 84 which gives the error (as much as 75 per

cent at 240° deflection) between the St. Venant and the
Brown curves.
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Fig. 84 Comparison of ‘Brown’ and ‘St Venant’ factors with spring
test results (26 leaves 0.75in x 0.028 in x 15.35im)

Correlation with practice

Fig. 85 shows the correlation between the derived formula
and actual tests carried out on well tried existing designs
where the number of leaves, and hence the approximate
shape ratio, varies between 18 and 61.

Creep at maximum stress

Fig. 86 shows the result of fatigue tests carried out at a
maximum stress of 10° Ib/in? with a stress range of 4 x 10¢
Ib/in?. It will be seen that although the set produced at the
end of 10° cycles was approximately three per cent, over 90
per cent of this had taken place before 10 cycles.

— === Theory
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|
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Fig. 85 Spring test results: (1)n = 20,/ = 12.5,¢ = 0.02,5 = 0.75, b/t = 37.5; 2) n = 24,1 = 11.17, 1 = 0.028, b = 1, b/t = 35.7;
(3)n = 56,1 = 12.5,1 = 0.02,b = 1.125,b/t = 56.25;(4)n = 35, | = 12.5, 1 = 0.032, b = 1.125, b/t = 35.16
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End of test
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Fig. 86 Percentage set in test spring at 10° Ib/in’ during life test
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