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Foreword to the First Edition

As we enter the twenty-first century, the importance of
energy for industry, transportation, and electricity gen-
eration in our daily lives is profound. Combustion of
fossil fuels is by far the predominant source of energy
today and will likely remain that way for many years
to come.

Combustion has played major roles in human civiliza-
tion, including both practical and mystical ones. Since
man discovered how to create fire, we have relied on
combustion to perform a variety of tasks. Fire was first
used for heating and cooking, and later to manufacture
tools and weapons. For all practical purposes, it was not
until the onset of the Industrial Revolution in the nine-
teenth century that man started to harness power from
combustion. We have made rapid progress in the appli-
cation of combustion systems since then, and many
industries have come into existence as a direct result of
this achievement.

Demands placed on combustion systems change con-
tinuously with time and are becoming more stringent.
The safety of combustion systems has always been
essential, but emphasis on effective heat transfer, tem-
perature uniformity, equipment scale-up, efficiency,
controls, and—more recently—environmental emis-
sions and combustion-generated noise has evolved over
time. Such demands create tremendous challenges for
combustion engineers. These challenges have been suc-
cessfully met in most applications by combining experi-
ence and sound engineering practices with creative and
innovative problem-solving.

Understanding combustion requires knowledge of
the fundamentals: turbulent mixing, heat transfer, and
chemical kinetics. The complex nature of practical com-
bustion systems, combined with the lack of reliable ana-
lytical models in the past, encouraged researchers to rely
heavily on empirical methods to predict performance
and to develop new products. Fortunately, the combus-
tion field has gained considerable scientific knowledge
in the last few decades, and such knowledge is now uti-
lized in industry by engineers to evaluate and design
combustion systems in a more rigorous manner. This
progress is the result of efforts in academia, government
laboratories, private labs, and companies like John Zink.

The advent of ever-faster and more powerful comput-
ers has had a profound impact on the manner in which
engineers model combustion systems. Computational
fluid dynamics (CFD) wasborn from these developments.

Combined with validation by experimental techniques,
CFD is an essential tool in combustion research, devel-
opment, analysis, and equipment design.

Today’s diagnostic tools and instrumentation—with
capabilities unimaginable just a few years ago—allow
engineers and scientists to gather detailed informa-
tion in hostile combustion environments at both micro-
scopic and macroscopic levels. Lasers, spectroscopy,
advanced infrared, and ultraviolet camera systems are
used to nonintrusively gather quantitative and qualita-
tive information, including combustion temperature,
velocity, species concentration, flow visualization, par-
ticle size, and loading. Advanced diagnostic systems
and instrumentation are being transferred beyond the
laboratory to implementation in practical field applica-
tions. The information obtained with these systems has
considerably advanced our knowledge of combustion
equipment and has been an indispensable source of
CFD model validation.

Oil refining, chemical processes, and power genera-
tion are energy-intensive industries with combustion
applications in burners, process heaters, boilers, and
cogeneration systems, as well as flares and thermal oxi-
dizers. Combustion for these industries presents unique
challenges related to the variety of fuel compositions
encountered. Combustion equipment must be flexible to
be able to operate in a safe, reliable, efficient, and envi-
ronmentally responsible manner under a wide array of
fuel compositions and conditions.

Combustion is an exciting and intellectually challeng-
ing field containing plenty of opportunities to enhance
fundamental and practical knowledge that will ulti-
mately lead to the development of new products with
improved performance.

This book represents the tireless efforts of many John
Zink engineers willing to share their unique knowl-
edge and experience with other combustion engineers,
researchers, operators of combustion equipment, and
college students. We have tried to include insightful and
helpful information on combustion fundamentals, com-
bustion noise, CFD design, experimental techniques,
equipment, controls, maintenance, and troubleshooting.
We hope our readers will agree that we have done so.

David H. Koch

Executive Vice President
Koch Industries
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Preface to the First Edition

Combustion is described as “the rapid oxidation of a
fuel resulting in the release of usable heat and produc-
tion of a visible flame.”* Combustion is used to gener-
ate 90% of the world’s power.? Regarding the science of
combustion, Lifdn and Williams wrote the following:

Although combustion has a long history and
great economic and technical importance, its sci-
entific investigation is of relatively recent origin.
Combustion science can be defined as the science
of exothermic chemical reactions in flows with
heat and mass transfer. As such, it involves ther-
modynamics, chemical kinetics, fluid mechanics,
and transport processes. Since the foundations
of the second and last of these subjects were not
laid until the middle of the nineteenth century,
combustion did not emerge as a science until the
beginning of the twentieth century.3

Chomiak wrote the following: “In spite of their fun-
damental importance and practical applications, com-
bustion processes are far from being fully understood.”
In Strahle’s opinion, “combustion is a difficult subject,
being truly interdisciplinary and requiring the merging
of knowledge in several fields.” It involves the study
of chemistry, kinetics, thermodynamics, electromag-
netic radiation, aerodynamics, and fluid mechanics,
including multiphase flow and turbulence, heat and
mass transfer, and quantum mechanics to name a few.
Regarding combustion research,

The pioneering experiments in combustion
research, some 600,000 years ago, were concerned
with flame propagation rather than ignition. The
initial ignition source was provided by Mother
Nature in the form of the electrical discharge
plasma of a thunderstorm or as volcanic lava,
depending on location. ... Thus, in the begin-
ning, Nature provided an arc-augmented dif-
fusion flame and the first of man’s combustion
experiments established that the heat of combus-
tion was very much greater than the activation
energy—i.e., that quite a small flame on a stick
would spontaneously propagate itself into a very
large fire, given a sufficient supply of fuel.®

In one of the classic books on combustion, Lewis and
von Elbe wrote the following;:

Substantial progress has been made in establish-
ing a common understanding of combustion

phenomena. However, this process of consolida-
tion of the scientific approach to the subject is not
yet complete. Much remains to be done to advance
the phenomenological understanding of flame
processes so that theoretical correlations and pre-
dictions can be made on the basis of secure and
realistic models.”

Despite the length of time it has been around, despite
its importance to man, and despite vast amounts of
research, combustion is still far from being completely
understood. One of the purposes of this book is to
improve that understanding, particularly in industrial
combustion applications in the process and power gen-
eration industries.

This book is generally organized in two parts. Part I
deals with the basic theory of some of the disciplines
(combustion, heat transfer, fluid flow, etc.) important
for the understanding of any combustion process and
consists of Chapters 1 through 13. While these topics
have been satisfactorily covered in many combustion
textbooks, this book treats them from the context of the
process and power generation industries. Part II deals
with specific equipment design issues and applications
in the process and power generation industries.

References

1. Industrial Heating Equipment Association, Combustion
Technology Manual, 5th edn. Combustion Division of the
Industrial Heating Equipment Association, Arlington,
VA, 1994, p. 1.

2. N. Chigier, Energy, Combustion,
McGraw-Hill, New York, 1981, p. ix.

3. A. Lindn and F.A. Williams, Fundamental Aspects of
Combustion. Oxford University Press, Oxford, U.K., 1993,
p- 3.

4. Chomiak, Combustion: A Study in Theory, Fact and
Application, p. 1.

5. W.C. Strahle, An Introduction to Combustion. Gordon &
Breach, Langhorne, PA, 1993, p. ix.

6. FJ. Weinberg, The first half-million years of combus-
tion research and today’s burning problems, in Fifteenth
Symposium (International) on Combustion, The Combustion
Institute, Pittsburgh, PA, 1974, p. 1.

7. B. Lewis and G. von Elbe, Combustion, Flames and
Explosions of Gases, 3rd edn. Academic Press, New York,
1987, p. xv.
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Preface to the Second Edition

The first edition of the John Zink Combustion Handbook
was published in 2001. It replaced the previous indus-
try standard book (Furnace Operations, 3rd edition, Gulf
Publishing, Houston, 1981) written by Dr. Robert Reed,
who was the former technical director of the John Zink
Company. The first edition of the Zink Handbook con-
sisted of 800 oversized pages, was in full color, and
was written by 30 authors as compared to Furnace
Operations, which consisted of 230 pages in black and
white and was written by a single author. The first edi-
tion of the Zink Handbook was a major expansion com-
pared to Furnace Operations. The second edition of the
Zink Handbook is another major expansion compared to
the first edition.

The second edition consists of three volumes, collec-
tively about twice as large as the single-volume first edi-
tion. Volume I concerns the fundamentals of industrial
combustion such as chemistry, fluid flow, and heat trans-
fer. While the basic theory is presented for each topic,
the unique treatment compared to standard textbooks is
how these topics apply to industrial combustion. Volume
II concerns design and operations and includes top-
ics related to equipment used in industrial combustion
such as installation, maintenance, and troubleshooting.
It also includes an extensive appendix with data rele-
vant to industrial combustion equipment and processes.

Volume III concerns applications and covers topics such
as process burners, boiler burners, process flares, ther-
mal oxidizers, and vapor control. It shows how the infor-
mation in volumes I and II is used to design and operate
equipment in particular industry applications.

There were several reasons for writing a second edi-
tion. The first is the natural improvement in technology
with time. For example, NOx emissions from process
burners are lower than ever and continue to decrease
with advancements in technology. A second reason for
the new edition is to make improvements to the first edi-
tion as recommended by readers. One example is to have
more property data useful for the design and operation
of combustion equipment. Another reason for the new
edition is to expand the coverage to include technolo-
gies not covered in the first edition such as metallurgy,
refractories, blowers, and vapor control equipment.

While these three volumes represent a significant
expansion of the first edition, some topics could have
been covered in greater detail and some topics have
received little if any attention. There is still much to learn
on the subject of industrial combustion, which is far more
complicated than the average person would ever imag-
ine. This is what makes it such an exciting and dynamic
area of technology that has a significant impact on soci-
ety because it affects nearly every aspect of our lives.
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Fred Koch and John Zink—Pioneers
in the Petroleum Industry

The early decades of the twentieth century saw the birth
and growth of the petroleum industry in Oklahoma.
Drilling derricks sprouted like wildflowers throughout the
state, making it among the top oil producers in the nation
and Tulsa the “Oil Capital of the World” by the 1920s.

Refining operations accompanied oil production.
Many of the early refineries were so small that today they
would be called pilot plants. They were often merely top-
ping processes, skimming off natural gasoline and other
light fuel products and sending the remainder to larger
refineries with more complex processing facilities.

Along with oil, enough natural gas was found to make
its gathering and sale a viable business as well. Refineries
frequently purchased this natural gas to fuel their boil-
ers and process heaters. At the same time, these refin-
eries vented propane, butane, and other light gaseous
hydrocarbons into the atmosphere because their burners
could not burn them safely and efficiently. Early burner
designs made even natural gas difficult to burn as tradi-
tional practice and safety concerns led to the use of large
amounts of excess air and flames that nearly filled the fire
box. Such poor burning qualities hurt plant profitability.

Among firms engaged in natural gas gathering and
sales in the northeastern part of the state was Oklahoma
Natural Gas Company (ONG). It was there that John Steele
Zink (Figure P1b), after completing his studies at the
University of Oklahoma in 1917, went to work as a chemist.
Zink’s chemistry and engineering education enabled him
to advance to the position of manager of industrial sales.
But while the wasteful use of natural gas due to inefficient
burners increased those sales, it troubled Zink and awak-
ened his talents first as an innovator and inventor and then
as an entrepreneur.

Seeing the problems with existing burners, Zink
responded by creating one that needed less excess air
and produced a compact, well-defined flame shape. A
superior burner for that era, it was technically a pre-
mix burner with partial primary air and partial draft-
induced secondary air. The use of two airflows led to its
trade name, BI-MIX®. The BI-MIX® burner is shown in a
drawing from one of Zink’s earliest patents (Figure P.2).

ONG showed no interest in selling its improved
burners to its customers, so in 1929 Zink resigned and
founded Mid-Continent Gas Appliance Co., which he
later renamed the John Zink Company.

(e
(b)

FIGURE P.1

Fred Koch (a) and John Zink (b).
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FIGURE P.2
Drawing of BI-MIX® From Zink’s patent.

Zink’s BI-MIX®burner was the first of many advances in
technology made by his company, which to date has seen
over 250 U.S. patents awarded to nearly 80 of its employ-
ees. He carried out early manufacturing of the burner in
the garage of his Tulsa-area home and sold it from the
back of his automobile as he traveled the Oklahoma oil
fields, generating the money he needed to buy the com-
ponents required to fabricate the new burners.

The novel burners attracted customers by reducing
their fuel costs, producing a more compact flame for
more efficient heater operation, burning a wide range of
gases, and generally being safer to use. Word of mouth
among operators helped spread their use throughout
not only Oklahoma but, by the late 1930s, to foreign
refineries as well.

Growth of the company required Zink to relocate his
family and business to larger facilities on the outskirts
of Tulsa. In 1935, he moved into a set of farm buildings
on Peoria Avenue, a few miles to the south of the city
downtown, a location Zink thought would allow for
plenty of future expansion.

As time passed, Zink's company became engaged
in making numerous other products, sparked by its
founder’s beliefs in customer service and solving cus-
tomer problems. After World War II, Zink was the larg-
est sole proprietorship west of the Mississippi River.
Zink’s reputation for innovation attracted customers who
wanted new burners and, eventually, whole new families

of products. For example, customers began asking for reli-
able pilots and pilot igniters, when atmospheric venting of
waste gases and emergency discharges was replaced by
combustion in flares in the late 1940s. This in turn was fol-
lowed by requests for flare burners and finally complete
flare systems, marking the start of the flare equipment
industry. Similar customer requests for help in deal-
ing with gas and liquid waste streams and hydrocarbon
vapor led the Zink Company to become a leading supplier
of gas and liquid waste incinerators and also of hydrocar-
bon vapor recovery and other vapor control products.

Zink’s great interest in product development and
innovation led to the construction of the company’s first
furnace for testing burners. This furnace was specially
designed to simulate the heat absorption that takes place
in a process heater. Zink had the furnace built in the mid-
dle of the employee parking lot, a seemingly odd place-
ment. He had good reason for this because he wanted his
engineers to pass the test furnace every day as they came
and went from work as a reminder of the importance of
product development to the company’s success.

Zink went beyond encouraging innovation and moti-
vating his own employees. During the late 1940s, Zink
and his technical team leader, Robert Reed (who together
with Zink developed the first smokeless flare), sensed a
need for an industry-wide meeting to discuss technolo-
gies and experiences associated with process heating. In
1950, they hosted the first of four annual process heating
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seminars in Tulsa. Interest in the seminars was high, with
the attendance level reaching 300. Attendees of the first
process heating seminar asked Zink and Reed to conduct
training sessions for their operators and engineers. These
training sessions, which combined lectures and practi-
cal hands-on burner operation in Zink’s small research
and development center, were the start of the John Zink
Burner School®. The year 2010 marked the 60th anniver-
sary of the original seminar and the 50th year in which
the Burner School has been offered. Over the years, other
schools were added to provide customer training in the
technology and operation of hydrocarbon vapor recovery
systems, vapor combustors, and flares.

Included among the 150 industry leaders attending the
first seminar was Harry Litwin, former president and
part owner of Koch Engineering Co., now part of Koch
Industries of Wichita, Kansas. Litwin was a panelist at the
closing session. Koch Engineering was established in 1943
to provide engineering services to the oil refining industry.
In the early 1950s, it developed an improved design for dis-
tillation trays and because of their commercial success the
company chose to exit the engineering business. Litwin
left Koch at that time and set up his own firm, the Litwin
Engineering Co., which grew into a sizeable business.

During the same period that John Zink founded his
business, another talented young engineer and industry
innovator, Fred C. Koch, was establishing his reputation
as an expert in oil processing. The predecessor to Koch
Engineering Co. was the Winkler-Koch Engineering
Co., jointly owned by Fred Koch with Lewis Winkler,
which designed processing units for oil refineries. Fred
Koch had developed a unique and very successful ther-
mal cracking process that was sold to many independent
refineries throughout the United States, Europe, and the
former Soviet Union. One of the first of these processing
units was installed in a refinery in Duncan, Oklahoma,
in 1928, one year before Zink started his own company.

While the two men were not personally acquainted,
Koch’s and Zink’s companies knew each other well in
those early years. Winkler—Koch Engineering was an early
customer for Zink burners. The burners were also used
in the Wood River refinery in Hartford, Illinois. Winkler—
Koch constructed this refinery in 1940 with Fred Koch as a
significant part owner and the head of refining operations.
Winkler-Koch Engineering, and later Koch Engineering,
continued to buy Zink burners for many years.

Fred Koch and two of his sons, Charles and David,
were even more successful in growing their family
business than were Zink and his family. When the
Zink family sold the John Zink Company to Sunbeam
Corporation* in 1972, the company’s annual revenues

" Sunbeam Corporation was primarily known as an appliance maker.
Less well known was Sunbeam'’s group of industrial specialty com-
panies such as John Zink Company.
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were $15 million. By that time, Koch Industries, Inc., the
parent of Koch Engineering, had revenues of almost $1
billion. Since then, Koch has continued to grow; its rev-
enues in the year 2011 were over $100 billion.

When the John Zink Company was offered for sale
in 1989, its long association with Koch made Koch
Industries a very interested bidder. Acting through its
Chemical Technology Group, Koch Industries quickly
formed an acquisition team, headed by David Koch,
which succeeded in purchasing the John Zink Company.

Koch’s management philosophy and focus on innova-
tion and customer service sparked a new era of revital-
ization and expansion for the John Zink Company. Koch
recognized that the Peoria Avenue research, manufac-
turing, and office facilities were outdated. The growth
of Tulsa after World War II had made Zink’s facilities
an industrial island in the middle of a residential area.
The seven test furnaces on Peoria Avenue at the time of
the acquisition, in particular, were cramped, with such
inadequate infrastructure and obsolete instrumentation
they could not handle the sophisticated research and
development required for modern burners.

A fast-track design and construction effort by Koch
resulted in a new office and manufacturing complex
in the northeastern sector of Tulsa that was completed
at the end of 1991. In addition, a spacious R&D facility
adjacent to the new office and manufacturing building
replaced the Peoria test facility.

The initial multimillion dollar investment in R&D
facilities included an office building housing the R&D
staff and support personnel, a burner prototype fabrica-
tion shop, and an indoor laboratory building. Additional
features included steam boilers, fuel storage and han-
dling, data gathering centers, and measurement instru-
mentation and data logging for performance param-
eters from fuel flow to flue gas analysis.

Koch has repeatedly expanded the R&D facility.
When the new facility began testing activities in 1992,
nine furnaces and a multipurpose flare testing area
were in service. Today, there are 14 outdoor test furnaces
and 2 indoor research furnaces. Control systems are fre-
quently updated to keep them state of the art.

Zink is now able to monitor burner tests from an ele-
vated customer center that has a broad view of the entire
test facility. The customer center includes complete auto-
mation of burner testing with live data on control panels
and flame shape viewing on color video monitors.

A new flare testing facility (Figure P.3) was con-
structed in the early 2000s to dramatically expand and
improve Zink’s capabilities. This project represents
the company’s largest single R&D investment since
the original construction of the R&D facility in 1991.
The new facilities accommodate the firing of a wide
variety of fuel blends (propane, propylene, butane,
ethylene, natural gas, hydrogen, and diluents such as
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FIGURE P.3
Flare testing facility.

nitrogen and carbon dioxide) to reproduce or closely
simulate a customer’s fuel composition. Multiple
cameras provide video images along with the elec-
tronic monitoring and recording of a wide range of
flare test data, including noise emissions. The facility
can test all varieties of flare systems with very large
sustained gas flow rates at or near those levels that
customers will encounter in the field. Indeed, flow
capacity matches or exceeds the smokeless rate of gas
flow for virtually all customers’ industrial plants, giv-
ing the new flare facility a capability unmatched in
the world.

These world-class test facilities are staffed with engi-
neers and technicians who combine theoretical training
with practical experience. They use the latest design and

analytical tools, such as computational fluid dynamics,
physical modeling, and a phase Doppler particle ana-
lyzer. The team can act quickly to deliver innovative
products that work successfully, based on designs that
can be exactly verified before the equipment is installed
in the field.

Koch’s investment in facilities and highly trained
technical staff carries on the tradition John Zink began
more than 80 years ago: providing our customers today,
as he did in his time, with solutions to their combustion
needs through better products, applications, informa-
tion, and service.

Robert E. Schwartz
Tulsa, Oklahoma
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1.1 Process Industries

Process industries encompass the production of a wide
range of products like fuels (e.g., oil and natural gas),
glass, metals (e.g., steel and aluminum), minerals (e.g,
refractories, bricks, and ceramics), and power, to name
a few. The treatment and disposal of waste materials is
another example of a process industry. In this book, only
a few of these are considered and are briefly discussed
in this chapter. Typical process heating operations are
shown in Table 1.1. They include fluid heating (common
in petroleum refining and chemical manufacturing)
and thermal oxidation.! The main focus of this book is

on the hydrocarbon, petrochemical, power generation,
and thermal oxidation industries.

1.1.1 Hydrocarbon and Petrochemical

Figure 1.1 shows that the number of operating refiner-
ies in the United States has been declining since 1949.
The graph also shows that capacity and throughput
have been increasing over that same time period. A
peak occurred in the late 1970s and early 1980s during
the oil crisis. Since that time, smaller and older refin-
eries have been closing because they are no longer
profitable. In many cases, it is too expensive to mod-
ernize them to meet current emissions standards and

1



2 The John Zink Hamworthy Combustion Handbook
TABLE 1.1
Summary of Process Heating Operations
Process Application Equipment Industry
Agglomeration Metals production Various furnace types, kilns, Primary metals
sintering microwave
Calcining Lime calcining Various furnace types Cement, wallboard, pulp

Curing and forming

Drying

Forming
Fluid heating

Heating and melting
high-temperature

Heating and melting

low-temperature
Heat treating

Incineration/thermal
oxidation

Metals reheating

Separating
Smelting

Other heating processes

Coating, polymer production,
enameling

Water and organic compound
removal

Extrusion, molding

Food preparation, chemical
production, reforming,
distillation, cracking,
hydrotreating, visbreaking

Casting, steelmaking, glass
production

Softening, liquefying, warming

Hardening, annealing, tempering

Waste handling/disposal

Forging, rolling, extruding,
annealing, galvanizing, coating,
joining

Air separation, refining, chemical
cracking

Steelmaking and other metals
(e.g., silver)

Food production (including
baking, roasting, and frying),
sterilization, chemical production

Various furnace types, ovens, kilns,
lehrs, infrared, UV, electron beam,
induction

Fuel-based dryers, infrared,
resistance, microwave,
radio-frequency

Various ovens and furnaces

Various furnace types, reactors,
resistance heaters, microwave,
infrared, fuel-based fluid heaters,
immersion heaters

Fuel-based furnaces, kilns, reactors,
direct arc, induction, plasma,
resistance

Ovens, infrared, microwave,
resistance

Various fuel-based furnace types,
ovens, kilns, lehrs, laser, resistance,
induction, electron beam

Incinerators, thermal oxidizers,
resistance, plasma

Various furnace types, ovens, kilns,
heaters, reactors, induction, infrared

Distillation, membranes, filter presses

Various furnace types

Various furnace types, ovens, reactors,

resistance heaters, microwave,
steam, induction, infrared

and paper manufacturing,
primary metals

Ceramics, stone, glass,
primary metals, chemicals,
plastics, and rubber

Stone, clay, petroleum
refining, agricultural and
food, pulp and paper,
textile

Rubber, plastics, glass

Agricultural and food,
chemical manufacturing,
petroleum refining

Primary metals, glass

Plastics, rubber, food,
chemicals

Primary metals, fabricated
metal products, glass,
ceramics

Fabricated metals, food,
plastics and rubber,
chemicals

Primary metals, fabricated
metal products, glass,
ceramics

Chemicals
Primary metals

Agricultural and food,
glass, ceramics, plastics
and rubber, chemicals

Source: Lawrence Berkeley National Laboratory and Resource Dynamics Corporation, Improving Process Heating System Performance:
A Sourcebook for Industry, 2nd Edition, U.S. Department of Energy and Industrial Heating Equipment Association, Washington,

DC, 2007, Table 1.

to process sour crude oils. However, existing refiner-
ies continue to be upgraded and expanded. Figure 1.2
shows the mix of products produced by U.S. refineries.
Some trends are evident. Aviation gasoline, residual
fuel oil, and kerosene have decreased, while jet fuel,
motor gasoline, liquefied petroleum gases, and petro-
leum coke have increased. Figure 1.3 shows the aver-
age energy consumption in a U.S. refinery. The three
largest sources of energy are still gas (by-product gases
reused in the plant), petroleum coke, and natural gas.
Still gas and natural gas are particularly relevant here
as they are commonly combusted in the types of equip-
ment discussed in this book. Figure 1.4 shows that the

cost of fuel in U.S. refineries rose significantly between
2000 and 2005. This emphasizes the importance of
energy-efficient combustion processes (see Chapter 12).
Table 1.2 shows the largest sources of air emissions
from various processes in a refinery.? Nearly all of them
are related to combustion processes involving heaters
and boilers. These emissions are discussed in detail in
Chapters 14 and 15.

The hydrocarbon and petrochemical industries (see
Chapter 2) present unique challenges to the combus-
tion engineer, compared to other industrial combustion
processes. One of the more important challenges is the
wide variety of fuels, which are usually off-gases from
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Energy cost for U.S. refineries from 1988 to 2005. (Courtesy of
US. Census, Annual Survey of Manufacturers, Retrieved from
http://www.factfinder2.census.gov/faces/tableservices/jsf/pages/
productview.xhtmI?pid=ASM_2005_31GS104&prodType=table.)

the petroleum refining processes that are used in a typ-
ical plant (see Figure 1.5). This differs significantly from
most other industrial combustion systems that nor-
mally fire a single purchased fuel such as natural gas
or fuel oil. Another important challenge is that many

of the burners commonly used in the hydrocarbon and
petrochemical industries are natural draft, where the
buoyant combustion exhaust products create a draft
that induces the combustion air to enter the burners
(see Chapter 9). This is different from nearly all other
industrial combustion processes, which utilize a com-
bustion air blower to supply the air used for combus-
tion in the burner (see Volume 2, Chapter 3). Natural
draft burners are not as easy to control as forced draft
burners and are subject to environmental conditions
such as the wind that can disturb the conditions in a
process heater.

The U.S. Department of Energy Office of Industrial
Technologies has prepared a Technology Roadmap for
industrial combustion.? For process heating systems,
some key performance targets for the year 2020 have
been identified for burners and for the overall system.
For the burners, the targets include reducing criteria
pollutant emissions by 90%, reducing CO, emissions
to levels agreed upon by the international commu-
nity, reducing specific fuel consumption by 20%-50%,
and maximizing the ability to use multiple fuels. For
the heating system, the targets include reducing the
total cost of combustion in manufacturing, enhancing
system integration, reducing product loss rate by 50%,
maximizing system robustness, and zero accidents.
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TABLE 1.2

Summary of Emissions from Refinery Processes

Main Process Subprocess Largest Sources of Air Emissions
Topping/separation Crude oil desalting Heater stack gas (CO, SOx, NOx, hydrocarbons,
processes and particulates)

Thermal and catalytic
cracking processes

Combination/rearrangement
processes

Treatment processes

Specialty products
manufacture

Crude distillation
(atmospheric and vacuum)

Visbreaking
Coking

Fluid catalytic cracking

Catalytic hydrocracking

Alkylation
Catalytic reforming

Isomerization

Ethers manufacture
Catalytic hydrotreating

Sweetening /Merox process

Sulfur removal/Claus
process

Lubricating oil manufacture
(deasphalting solvent
extraction, dewaxing)

Heater stack gas (CO, SOx, NOx, hydrocarbons,
and particulates) and steam injector emissions (hydrocarbons)
Fugitive emissions from process vents
Heater stack gas (CO, SOx, NOx, hydrocarbons,
and particulates); particulate emissions from decoking
can also be considerable
Catalyst regeneration and CO boilers (hydrocarbons, CO, SOx,
NOx, and particulates)
Heater stack gas (CO, SOx, NOx, hydrocarbons,
and particulates)
Process vents, fugitive emissions
Heater stack gas (CO, SOx, NOx, hydrocarbons,
and particulates), fugitive emissions, and catalyst regeneration
Boiler /heater stack gas (CO, SOx, NOx, hydrocarbons, and
particulates), HCI (possible in fuel gas) vents, and fugitive
emissions (hydrocarbons)
Boiler stack gas (CO, SOx, NOx, hydrocarbons,
and particulates)
Heater stack gas (CO, SOx, NOx, hydrocarbons,
and particulates)
Vents and fugitive emissions
Process tail gas (NOx, SOx, hydrogen sulfide), fugitive
emissions

Heater stack gas (CO, SOx, NOx, hydrocarbons, and
particulates), fugitive propane, and fugitive solvents

Source: Adapted from Pellegrino, J. et al., Energy and environmental profile of the U.S. petroleum refining industry, Report pre-
pared for the U.S. Department of Energy, Washington, DC, November 2007, Tables 2.3 through 2.7.

FIGURE 1.5
Typical petroleum refinery.

The following were identified as top priority R&D needs
in process heating: burner capable of adjusting operat-
ing parameters in real time, advanced burner stabili-
zation methods, robust design tools, and economical
methods to premix fuel and air. The following were

identified as top priority R&D needs in process heating:
new furnace designs, advanced sensors, cost-effective
heat recovery processes, and new methods to generate
heat without environmental impact. Both the burners
and the process heaters are considered in a number of
chapters within this book.

Worrell and Galitsky* wrote, “Combustion is the key
in many of the processes used in the refinery.” They
identified low NOx burners and high efficiency burners
as major technology development areas for the petro-
leum refining industry. They further noted that 60% of
all the fuel consumed in a refinery is used in heaters,
furnaces, and boilers.5

Flares (see Figure 1.6 and Volume 3, Chapter 11) are
used to combust unwanted hydrocarbon fuels, typi-
cally in the gaseous state. There are several conditions
that may require flaring. The most common is in con-
trol of the process where gases or liquids are vented.
Another is in an upset condition where materials in
the midst of processing need to be safely combusted to
avoid a dangerous build-up and unsafe conditions dur-
ing the restart of the process. Another common reason
is excess by-product fuels that cannot be economically



FIGURE 1.6
Offshore oil rig flare.

FIGURE 1.7
Flare pilot.

recovered during a transient condition such as a prod-
uct change. Whatever the reason, flares must reli-
ably combust fuels whenever they are called upon.
One of the challenges for flares is maintaining a pilot
flame (see Figure 1.7) to ignite the fuels (see Volume 3,
Chapter 12), especially in very high wind conditions.®
Another challenge is an extremely wide turndown
ratio, because of the wide variety of venting condi-
tions. Environmental challenges include minimizing
the radiation heat load and noise to the surrounding
environment and the NOx, CO, and particulate (smoke-
producing) emissions to the atmosphere. Flares are
covered in Volumes 2 and 3.
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1.1.2 Power Generation

Duct burners and boiler burners are used in the power
generation industries. Duct burners (see a typical flame
in Figure 1.8) are burners that are inserted into large
ducts (see Figure 1.9) to boost the temperature of the
gases flowing through the ducts. These burners are
frequently used in cogeneration projects, electrical util-
ity peaking stations, repowering programs, and indus-
trial mechanical driver systems employing gas turbines
with site requirements for steam. They are also used in
fluidized bed combustors and chemical process plants.
The efficiency of a duct burner to supply additional heat
approaches 95%, which is much higher than, for example,
a backup boiler system in generating more steam. Duct
burners are often easily retrofitted into existing duct-
work. Several important factors in duct burner applica-
tions include: low pollutant emissions, safe operation,

FIGURE 1.8
Duct burner flame.

Stack

Steam drums

Duct burner

1A

Gas turbine Steam generator

FIGURE 1.9
Schematic of a duct burner used to enhance the power from a gas
turbine.
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FIGURE 1.10
Front of a boiler burner.

uniform heat distribution from the duct burners to the
gases flowing through the duct, getting uniform gas dis-
tribution through the duct burners, and having adequate
turndown to meet fluctuating demands. Duct burners
typically use gaseous fuels, but occasionally fire on oil.

Boiler burners (see Figure 1.10) are used to combust
fuels, commonly natural gas or fuel oil, in the produc-
tion of steam, which is often used to produce electrical
energy for power generation. These burners produce
radiation and convection used to heat water flowing
through the boiler. The water is vaporized into steam.
Sometimes the steam is used in the plant in the case of
smaller industrial boilers. Larger utility boilers produce
steam to drive turbines for electrical energy production.
While boiler burners have been around for many years,
there have been many design changes in recent years
due to the current emphasis on minimizing pollutant
emissions. Duct and boiler burners are discussed in
Volume 3 of this Handbook.

1.1.3 Pollution Control

Thermal oxidizers (see Figure 1.11) are used to treat
unwanted by-product materials that may be solids, lig-
uids, or gases. The composition of the by-products var-
ies widely and may range from minute quantities (e.g.,
parts per million [ppm]) of a contaminant up to 100%.
These by-products come from a variety of industrial
processes and often have some heating value, which
aids in their thermal treatment.

There are often many options to choose from to
eliminate the by-product materials. While the most

FIGURE 1.11
Thermal oxidizer drawing.

preferable is recycling so that the by-products are
reused in the process, this is not always an option in
some processes. Land-filling may be an option for some
of the solid waste materials. However, it is often pref-
erable to completely destroy the waste in an environ-
mentally safe way. Many other methods are possible,
but thermal treatment is often the most economical and
effective. The waste products must be treated in a way
that any emissions from the treatment process must be
below regulatory limits. Thermal oxidation is discussed
in Volumes 2 and 3 of this Handbook.

Other processes used to control waste streams from
the process industries are vapor control and biogas flar-
ing (see Volume 3 for these topics). Figure 1.12 shows
a photograph of a vapor combustion system used to

FIGURE 1.12
Vapor combustor system.
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FIGURE 1.13
Biogas flare system.

FIGURE 1.14
Vapor recovery system.

destroy waste streams such as volatile organics released
during the off-loading of oil tankers. Figure 1.13 shows
an example of a biogas flare system, where, for exam-
ple, combustible gases such as methane released from a
landfill are safely combusted rather than being released
into the atmosphere. Figure 1.14 shows a vapor recovery
where hydrocarbon gases are recovered instead of com-
busted. The recovered gases are normally recycled back
into the process. Figure 1.15 shows a flare gas recovery
system typically used in refineries and chemical plants
to capture waste gases that would normally be sent
to a flare for destruction. The recovered gases may be
reused elsewhere in the plant or sold. This dramatically
reduces the amount of gas flared.”

FIGURE 1.15
Flare gas recovery system.

1.2 Literature Review

Numerous books are available on the subjects of both
combustion and process industries. However, few
books have been written on the combination of the two.
This section briefly surveys some of the relevant litera-
ture on the subjects of combustion, the process indus-
tries, and the combination of combustion in those
industries. Most of these combustion books are written
at a highly technical level for use in upper level under-
graduate or graduate level courses. The books typically
have a broad coverage with less emphasis on practical
applications due to the nature of their target audience.

1.2.1 Combustion

Many good textbooks are available on the fundamentals
of combustion, which have little if anything on its use
in the hydrocarbon and petrochemical industries.®-1¢
Khavkin!” has written a book that combines theory
and practice on gas turbines and industrial combustion
chambers. Of relevance here, the Khavkin book has a
discussion of tube furnaces used in hydrogen produc-
tion. Turns® book, which is designed for both under-
graduate and graduate combustion courses, contains
more discussions of practical combustion equipment
than most similar books.

There have also been many books written on the
more practical aspects of combustion. Griswold’s"” book
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not only has a substantial treatment of the theory of
combustion, but is also very practically oriented and
includes chapters on gas burners, oil burners, stokers
and pulverized coal burners, heat transfer (although
brief), furnace refractories, tube heaters, process fur-
naces, and kilns. Stambuleanu’s®® book on industrial
combustion has information on actual furnaces and on
aerospace applications, particularly rockets. There are
much data in the book on flame lengths, flame shapes,
velocity profiles, species concentrations, and liquid and
solid fuel combustion, with a limited amount of infor-
mation on heat transfer. A book by Perthuis on industrial
combustion has significant discussions on flame chem-
istry, and some discussion of heat transfer from flames.?
Keating’s??> book on applied combustion is aimed at
engines and has no treatment of industrial combus-
tion processes. A recent book by Ragland and Bryden?
attempts to bridge the gap between the theoretical and
practical books on combustion. However, the book has
little discussion about the types of industrial applica-
tions considered here. Even handbooks on combustion
applications have little, if anything, on industrial com-
bustion systems.?-2 Furnace Operations by Robert Reed
is the only book that has any significant coverage of com-
bustion in the hydrocarbon and petrochemical indus-
tries. However, this book was last updated in 1981 and
is more of an introduction to the subject with few equa-
tions, graphs, figures, pictures, charts, and references.

1.2.2 Process Industries

Anderson® has written a general introductory book on
the petroleum industry, tracing its development from
the beginning up to some projections for the future
of oil. There is no specific discussion of combustion
in petroleum refining. Leffler®® has written an intro-
ductory book on the major processes in petroleum
refining, including cat cracking, hydrocracking, and
ethylene production among many others. The book is
written from an overall process perspective and has no
discussion of the heaters in a plant. Meyers®! has edited
a recently updated handbook on petroleum refining
processes. The book is divided into 14 parts, each on
a different type of overall process, including catalytic
cracking and reforming, gasification and hydrogen
production, hydrocracking, and visbreaking and cok-
ing, among others. Each part is further divided into the
individual subtypes and variations of the given over-
all process. Companies such as Exxon, Dow-Kellogg,
UOP, Stone & Webster, and Foster Wheeler have writ-
ten about the processes they developed, which they
license to other companies. Many aspects of the pro-
cesses are discussed including flow diagrams, chem-
istry, thermodynamics, economics, and environmental
considerations, but there is very little discussion of the

combustion systems. Gary et al.®? have written a good
overview of petroleum refining. The book discusses
many of the processes involved in petroleum refining
operations, including coking, catalytic cracking, and
catalytic reforming, among others. However, it does not
specifically discuss the combustion processes involved
in heating the refinery fluids.

There are a number of excellent recommended prac-
tices published by the American Petroleum Institute
related to combustion equipment in the hydrocarbon
and petrochemical industries (see Table 1.3). These rec-
ommended practices contain specific guidelines for the
design of equipment used in the petrochemical industry.
For example, Section 14.1.1 of API 560 states the following:

Burner design, selection, spacing, location, instal-
lation, and operation shall ensure against flame
impingement on tubes, tube supports and flame
exiting the radiant section of the heater through-
out the entire operating range of the burners.
The location and operation of burners shall
ensure complete combustion within the radiant
section of the heater.

That standard further gives specific minimum clear-
ance guidelines between burners (oil-fired and gas-
fired), process tubes, and heater walls for both natural
draft and forced draft operation. The standard also
recommends materials of construction for the various
components in a fired heater. Extensive and detailed
data sheets are provided for all aspects of heater design.
The guidelines in the API recommended practices have
been formulated and periodically reviewed by industry
experts in the particular subject area based on extensive
experience with the equipment.

TABLE 1.3

Some American Petroleum Institute—-Recommended
Practices Related to Combustion Equipment

# Title Edition Date

521 Pressure-relieving and 5th January 2007
depressuring systems

531M  Measurement of noise from 1st March 1980
fired process heaters

535 Burners for fired heaters in 2nd January 2006
general refinery services

536 Post-combustion NOx control 2nd December
for fired equipment in General 2006
Refinery Services

537 Flare details for general refinery 2nd December
and petrochemical service 2008

556 Instrumentation, control, and 2nd April 2011
protective systems for
gas-fired heaters

573 Inspection of fired boilers and 2nd February
heaters 2003
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1.2.3 Combustion in the Process Industries

The standard book on the subject of combustion in
the hydrocarbon and petrochemical industries that
has been used for decades is Furnace Operations by
Robert Reed, formerly the chief technical officer of John
Zink.?® This book gives a good introduction to many
of the subjects important in burner and heater opera-
tion. However, it is somewhat outdated, especially
with regard to pollution regulations and new trends
in burner designs. The first edition of The John Zink
Hamworthy Combustion Handbook® was designed to be
a greatly expanded version of that book, with many
more equations, figures, tables, references, and much
wider coverage. The present edition updates the infor-
mation from the first edition and adds new technolo-
gies and topics not covered in the first edition such as
biogas flaring, vapor control, flare gas recovery, metal-
lurgy, and refractories, among many others.

1.3 Fired Heaters

Fired or tubestill heaters are used in the petrochemical
and hydrocarbon industries to heat fluids in tubes for
further processing. In this type of process, fluids flow
through an array of tubes located inside a furnace or
heater. The tubes are heated by direct-fired burners that
often use fuels that are by-products from processes in
the plant and that vary widely in composition.

Using tubes to contain the load is somewhat unique
compared to the other types of industrial combustion
applications. It was found that heating the fluids in tubes
has many advantages over heating them in the shell of a
furnace.®* Advantages include better suitability for con-
tinuous operation, better controllability, higher heating
rates, more flexibility, less chance of fire, and more com-
pact equipment.

One of the problems encountered in refinery-fired
heaters is an imbalance in the heat flux in the indi-
vidual heater passes.®® This imbalance can cause high
coke formation rates and high tube metal tempera-
tures, which reduce a unit’s capacity and can cause
premature failures. Coke formation on the inside of
the heater tubes reduces the heat transfer through the
tubes that leads to the reduced capacity. One cause of
coking is flame impingement directly on a tube, which
causes localized heating and increases coke forma-
tion there. This flame impingement may be caused by
operating without all of the burners in service, insuffi-
cient primary or secondary air to the burner, operating
the heater at excessive firing rates, fouled burner tips,
eroded burner tip orifices, or insufficient draft. The
problem of flame impingement shows the importance
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of proper design3 to assure even heat flux distribution
inside the fired heater.

Recently, the major emphasis has been on increasing
the capacity of existing heaters rather than installing
new heaters. The limitations of over-firing a heater are

e High tube metal temperatures

¢ Flame impingement causing high coke forma-
tion rates

¢ Positive pressure at the arch of the heater

* Exceeding the capacity of induced-draft and
forced-draft fans

e Exceeding the capacity of the process fluid feed
pump

Garg¥ noted the importance of good heater specifica-
tions to ensure suitable performance for a given process.
Some of the basic process conditions needed for the
specifications include heater type (cabin, ve