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Foreword to the First Edition

As we enter the twenty-first century, the importance of
energy for industry, transportation, and electricity gen-
eration in our daily lives is profound. Combustion of fos-
sil fuels is by far the predominant source of energy today
and will likely remain that way for many years to come.

Combustion has played major roles in human civiliza-
tion, including both practical and mystical ones. Since
man discovered how to create fire, we have relied on
combustion to perform a variety of tasks. Fire was first
used for heating and cooking, and later to manufacture
tools and weapons. For all practical purposes, it was not
until the onset of the Industrial Revolution in the nine-
teenth century that man started to harness power from
combustion. We have made rapid progress in the appli-
cation of combustion systems since then, and many
industries have come into existence as a direct result of
this achievement.

Demands placed on combustion systems change con-
tinuously with time and are becoming more stringent.
The safety of combustion systems has always been
essential, but emphasis on effective heat transfer, tem-
perature uniformity, equipment scale-up, efficiency,
controls, and—more recently—environmental emis-
sions and combustion-generated noise has evolved over
time. Such demands create tremendous challenges for
combustion engineers. These challenges have been suc-
cessfully met in most applications by combining experi-
ence and sound engineering practices with creative and
innovative problem-solving.

Understanding combustion requires knowledge of
the fundamentals: turbulent mixing, heat transfer, and
chemical kinetics. The complex nature of practical com-
bustion systems, combined with the lack of reliable ana-
lytical models in the past, encouraged researchers to rely
heavily on empirical methods to predict performance
and to develop new products. Fortunately, the combus-
tion field has gained considerable scientific knowledge
in the last few decades, and such knowledge is now uti-
lized in industry by engineers to evaluate and design
combustion systems in a more rigorous manner. This
progress is the result of efforts in academia, government
laboratories, private labs, and companies like John Zink.

The advent of ever-faster and more powerful comput-
ers has had a profound impact on the manner in which
engineers model combustion systems. Computational
fluid dynamics (CFD) was born from these developments.
Combined with validation by experimental techniques,

CFD is an essential tool in combustion research, develop-
ment, analysis, and equipment design.

Today’s diagnostic tools and instrumentation—with
capabilities unimaginable just a few years ago—allow
engineers and scientists to gather detailed informa-
tion in hostile combustion environments at both micro-
scopic and macroscopic levels. Lasers, spectroscopy,
advanced infrared, and ultraviolet camera systems are
used to nonintrusively gather quantitative and qualita-
tive information, including combustion temperature,
velocity, species concentration, flow visualization, par-
ticle size, and loading. Advanced diagnostic systems
and instrumentation are being transferred beyond the
laboratory to implementation in practical field applica-
tions. The information obtained with these systems has
considerably advanced our knowledge of combustion
equipment and has been an indispensable source of
CFD model validation.

Oil refining, chemical processes, and power genera-
tion are energy-intensive industries with combustion
applications in burners, process heaters, boilers, and
cogeneration systems, as well as flares and thermal oxi-
dizers. Combustion for these industries presents unique
challenges related to the variety of fuel compositions
encountered. Combustion equipment must be flexible to
be able to operate in a safe, reliable, efficient, and envi-
ronmentally responsible manner under a wide array of
fuel compositions and conditions.

Combustion is an exciting and intellectually challeng-
ing field containing plenty of opportunities to enhance
fundamental and practical knowledge that will ulti-
mately lead to the development of new products with
improved performance.

This book represents the tireless efforts of many John
Zink engineers willing to share their unique knowl-
edge and experience with other combustion engineers,
researchers, operators of combustion equipment, and
college students. We have tried to include insightful
and helpful information on combustion fundamentals,
combustion noise, CFD design, experimental tech-
niques, equipment, controls, maintenance, and trouble-
shooting. We hope our readers will agree that we have
done so.

David H. Koch

Executive Vice President
Koch Industries
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Preface to the First Edition

Combustion is described as “the rapid oxidation of a
fuel resulting in the release of usable heat and produc-
tion of a visible flame.”* Combustion is used to gener-
ate 90% of the world’s power.? Regarding the science of
combustion, Lifidn and Williams wrote the following:

Although combustion has a long history and
great economic and technical importance, its sci-
entific investigation is of relatively recent origin.
Combustion science can be defined as the science
of exothermic chemical reactions in flows with
heat and mass transfer. As such, it involves ther-
modynamics, chemical kinetics, fluid mechanics,
and transport processes. Since the foundations
of the second and last of these subjects were not
laid until the middle of the nineteenth century,
combustion did not emerge as a science until the
beginning of the twentieth century.

Chomiak wrote the following: “In spite of their fun-
damental importance and practical applications, com-
bustion processes are far from being fully understood.”
In Strahle’s opinion, “combustion is a difficult subject,
being truly interdisciplinary and requiring the merging
of knowledge in several fields.”® It involves the study
of chemistry, kinetics, thermodynamics, electromag-
netic radiation, aerodynamics, and fluid mechanics,
including multiphase flow and turbulence, heat and
mass transfer, and quantum mechanics to name a few.
Regarding combustion research,

The pioneering experiments in combustion
research, some 600,000 years ago, were concerned
with flame propagation rather than ignition. The
initial ignition source was provided by Mother
Nature in the form of the electrical discharge
plasma of a thunderstorm or as volcanic lava,
depending on location. ... Thus, in the begin-
ning, Nature provided an arc-augmented dif-
fusion flame and the first of man’s combustion
experiments established that the heat of combus-
tion was very much greater than the activation
energy—i.e., that quite a small flame on a stick
would spontaneously propagate itself into a very
large fire, given a sufficient supply of fuel.®

In one of the classic books on combustion, Lewis and
von Elbe wrote the following:

Substantial progress has been made in estab-
lishing a common understanding of combustion

phenomena. However, this process of consolida-
tion of the scientific approach to the subject is not
yet complete. Much remains to be done to advance
the phenomenological understanding of flame
processes so that theoretical correlations and pre-
dictions can be made on the basis of secure and
realistic models.”

Despite the length of time it has been around, despite
its importance to man, and despite vast amounts of
research, combustion is still far from being completely
understood. One of the purposes of this book is to
improve that understanding, particularly in industrial
combustion applications in the process and power gen-
eration industries.

This book is generally organized in two parts. Part I
deals with the basic theory of some of the disciplines
(combustion, heat transfer, fluid flow, etc.) important
for the understanding of any combustion process and
consists of Chapters 1 through 13. While these topics
have been satisfactorily covered in many combustion
textbooks, this book treats them from the context of
the process and power generation industries. Part
II deals with specific equipment design issues and
applications in the process and power generation
industries.
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Preface to the Second Edition

The first edition of The John Zink Combustion Handbook
was published in 2001. It replaced the previous indus-
try standard book (Furnace Operations, 3rd edition, Gulf
Publishing, Houston, 1981) written by Dr. Robert Reed,
who was the former technical director of the John Zink
Company. The first edition of the Zink Handbook con-
sisted of 800 oversized pages, was in full color, and was
written by 30 authors as compared to Furnace Operations,
which consisted of 230 pages in black and white and was
written by a single author. The first edition of the Zink
Handbook was a major expansion compared to Furnace
Operations. The second edition of the Zink Handbook is
another major expansion compared to the first edition.
The second edition consists of three volumes, col-
lectively about twice as large as the single-volume
first edition. Volume I concerns the fundamentals of
industrial combustion such as chemistry, fluid flow,
and heat transfer. While the basic theory is presented
for each topic, the unique treatment compared to stan-
dard textbooks is how these topics apply to industrial
combustion. Volume II concerns design and operations
and includes topics related to equipment used in indus-
trial combustion such as installation, maintenance, and
troubleshooting. It also includes an extensive appendix
with data relevant to industrial combustion equipment
and processes. Volume III concerns applications and
covers topics such as process burners, boiler burners,

process flares, thermal oxidizers, and vapor control. It
shows how the information in volumes I and II is used
to design and operate equipment in particular industry
applications.

There were several reasons for writing a second edi-
tion. The first is the natural improvement in technol-
ogy with time. For example, the NOx emissions from
process burners are lower than ever and continue to
decrease with advancements in technology. A second
reason for the new edition is to make improvements
to the first edition as recommended by readers. One
example is to have more property data useful for the
design and operation of combustion equipment. A third
reason for the new edition is to expand the coverage
to include technologies not covered in the first edition
such as metallurgy, refractories, blowers, and vapor
control equipment.

While these three volumes represent a significant
expansion of the first edition, some topics could have
been covered in greater detail and some topics have
received little if any attention. There is still much to
learn on the subject of industrial combustion, which
is far more complicated than the average person
would ever imagine. This is what makes it such an
exciting and dynamic area of technology that has a
significant impact on society because it affects nearly
every aspect of our lives.
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Prologue to the First Edition

Fred Koch and John Zink—Pioneers
in the Petroleum Industry

The early decades of the twentieth century saw the birth
and growth of the petroleum industry in Oklahoma.
Drilling derricks sprouted like wildflowers throughout the
state, making it among the top oil producers in the nation
and Tulsa the “Oil Capital of the World” by the 1920s.

Refining operations accompanied oil production.
Many of the early refineries were so small that today they
would be called pilot plants. They were often merely top-
ping processes, skimming off natural gasoline and other
light fuel products and sending the remainder to larger
refineries with more complex processing facilities.

Along with oil, enough natural gas was found to make
its gathering and sale a viable business as well. Refineries
frequently purchased this natural gas to fuel their boil-
ers and process heaters. At the same time, these refin-
eries vented propane, butane, and other light gaseous
hydrocarbons into the atmosphere because their burners
could not burn them safely and efficiently. Early burner
designs made even natural gas difficult to burn as tradi-
tional practice and safety concerns led to the use of large
amounts of excess air and flames that nearly filled the fire
box. Such poor burning qualities hurt plant profitability.

Among firms engaged in natural gas gathering and
sales in the northeastern part of the state was Oklahoma
Natural Gas Company (ONG). It was there that John
Steele Zink (Figure P1b), after completing his studies at
the University of Oklahoma in 1917, went to work as a
chemist. Zink’s chemistry and engineering education
enabled him to advance to the position of manager of
industrial sales. But while the wasteful use of natural
gas due to inefficient burners increased those sales, it
troubled Zink and awakened his talents first as an inno-
vator and inventor and then as an entrepreneur.

Seeing the problems with existing burners, Zink
responded by creating one that needed less excess air
and produced a compact, well-defined flame shape. A
superior burner for that era, it was technically a pre-
mix burner with partial primary air and partial draft-
induced secondary air. The use of two airflows led to its
trade name, BI-MIX®. The BI-MIX® burner is shown in a
drawing from one of Zink’s earliest patents (Figure P.2).

ONG showed no interest in selling its improved
burners to its customers, so in 1929 Zink resigned and
founded Mid-Continent Gas Appliance Co., which he
later renamed the John Zink Company.

1. 48
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FIGURE P.1
Fred Koch (a) and John Steele Zink (b).
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FIGURE P.2
Drawing of BI-MIX® from Zink’s patent.

Zink’s B-MIX®burner was the first of many advances in
technology made by his company, which to date has seen
over 250 U.S. patents awarded to nearly 80 of its employ-
ees. He carried out early manufacturing of the burner in
the garage of his Tulsa-area home and sold it from the
back of his automobile as he traveled the Oklahoma oil
fields, generating the money he needed to buy the com-
ponents required to fabricate the new burners.

The novel burners attracted customers by reducing
their fuel costs, producing a more compact flame for
more efficient heater operation, burning a wide range of
gases, and generally being safer to use. Word of mouth
among operators helped spread their use throughout
not only Oklahoma but, by the late 1930s, to foreign
refineries as well.

Growth of the company required Zink to relocate his
family and business to larger facilities on the outskirts
of Tulsa. In 1935, he moved into a set of farm buildings
on Peoria Avenue, a few miles to the south of the city
downtown, a location Zink thought would allow for
plenty of future expansion.

As time passed, Zink’s company became engaged in
making numerous other products, sparked by its found-
er’s beliefs in customer service and solving customer
problems. After World War 1II, Zink was the largest sole
proprietorship west of the Mississippi River. Zink’s rep-
utation for innovation attracted customers who wanted
new burners and, eventually, whole new families of

products. For example, customers began asking for reli-
able pilots and pilot igniters, when atmospheric venting
of waste gases and emergency discharges was replaced
by combustion in flares in the late 1940s. This in turn
was followed by requests for flare burners and finally
complete flare systems, marking the start of the flare
equipment industry. Similar customer requests for help
in dealing with gas and liquid waste streams and hydro-
carbon vapor led the Zink Company to become a leading
supplier of gas and liquid waste incinerators and also
of hydrocarbon vapor recovery and other vapor control
products.

Zink’s great interest in product development and
innovation led to the construction of the company’s first
furnace for testing burners. This furnace was specially
designed to simulate the heat absorption that takes place
in a process heater. Zink had the furnace built in the mid-
dle of the employee parking lot, a seemingly odd place-
ment. He had good reason for this because he wanted
his engineers to pass the test furnace every day as they
came and went from work as a reminder of the impor-
tance of product development to the company’s success.

Zink went beyond encouraging innovation and
motivating his own employees. During the late 1940s,
Zink and his technical team leader, Robert Reed (who
together with Zink developed the first smokeless flare),
sensed a need for an industry-wide meeting to discuss
technologies and experiences associated with process
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heating. In 1950, they hosted the first of four annual
process heating seminars in Tulsa. Interest in the semi-
nars was high, with the attendance level reaching 300.
Attendees of the first process heating seminar asked
Zink and Reed to conduct training sessions for their
operators and engineers. These training sessions, which
combined lectures and practical hands-on burner oper-
ation in Zink’s small research and development center,
were the start of the John Zink Burner School®. The year
2010 marked the 60th anniversary of the original semi-
nar and the 50th year in which the Burner School has
been offered. Over the years, other schools were added
to provide customer training in the technology and
operation of hydrocarbon vapor recovery systems,
vapor combustors, and flares.

Included among the 150 industry leaders attending
the first seminar was Harry Litwin, former president
and part owner of Koch Engineering Co., now part
of Koch Industries of Wichita, Kansas. Litwin was a
panelist at the closing session. Koch Engineering was
established in 1943 to provide engineering services to
the oil refining industry. In the early 1950s, it developed
an improved design for distillation trays and because
of their commercial success the company chose to exit
the engineering business. Litwin left Koch at that time
and set up his own firm, the Litwin Engineering Co.,
which grew into a sizeable business.

During the same period that John Zink founded his
business, another talented young engineer and industry
innovator, Fred C. Koch, was establishing his reputation
as an expert in oil processing. The predecessor to Koch
Engineering Co. was the Winkler-Koch Engineering
Co., jointly owned by Fred Koch with Lewis Winkler,
which designed processing units for oil refineries. Fred
Koch had developed a unique and very successful ther-
mal cracking process that was sold to many indepen-
dent refineries throughout the United States, Europe,
and the former Soviet Union. One of the first of these
processing units was installed in a refinery in Duncan,
Oklahoma, in 1928, one year before Zink started his
own company.

While the two men were not personally acquainted,
Koch’s and Zink’s companies knew each other well in
those early years. Winkler—-Koch Engineering was an
early customer for Zink burners. The burners were also
used in the Wood River refinery in Hartford, Illinois.
Winkler-Koch constructed this refinery in 1940 with
Fred Koch as a significant part owner and the head of
refining operations. Winkler-Koch Engineering, and
later Koch Engineering, continued to buy Zink burners
for many years.

Fred Koch and two of his sons, Charles and David,
were even more successful in growing their family
business than were Zink and his family. When the
Zink family sold the John Zink Company to Sunbeam
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Corporation* in 1972, the company’s annual revenues
were $15 million. By that time Koch Industries, Inc., the
parent of Koch Engineering, had revenues of almost $1
billion. Since then, Koch has continued to grow; its rev-
enues in the year 2011 were over $100 billion.

When the John Zink Company was offered for sale
in 1989, its long association with Koch made Koch
Industries a very interested bidder. Acting through its
Chemical Technology Group, Koch Industries quickly
formed an acquisition team, headed by David Koch,
which succeeded in purchasing the John Zink Company.

Koch’s management philosophy and focus on innova-
tion and customer service sparked a new era of revital-
ization and expansion for the John Zink Company. Koch
recognized that the Peoria Avenue research, manufac-
turing, and office facilities were outdated. The growth
of Tulsa after World War II had made Zink’s facilities
an industrial island in the middle of a residential area.
The seven test furnaces on Peoria Avenue at the time of
the acquisition, in particular, were cramped, with such
inadequate infrastructure and obsolete instrumentation
that they could not handle the sophisticated research
and development required for modern burners.

A fast-track design and construction effort by Koch
resulted in a new office and manufacturing complex
in the northeastern sector of Tulsa that was completed
at the end of 1991. In addition, a spacious R&D facility
adjacent to the new office and manufacturing building
replaced the Peoria test facility.

The initial multimillion dollar investment in R&D
facilities included an office building housing the R&D
staff and support personnel, a burner prototype fabrica-
tion shop, and an indoor laboratory building. Additional
features included steam boilers, fuel storage and han-
dling, data gathering centers, and measurement instru-
mentation and data logging for performance parameters
from fuel flow to flue gas analysis.

Koch has repeatedly expanded the R&D facility.
When the new facility began testing activities in 1992,
nine furnaces and a multipurpose flare testing area
were in service. Today, there are 14 outdoor test furnaces
and 2 indoor research furnaces. Control systems are fre-
quently updated to keep them state of the art.

Zink is now able to monitor burner tests from an ele-
vated customer center that has a broad view of the entire
test facility. The customer center includes complete auto-
mation of burner testing with live data on control panels
and flame shape viewing on color video monitors.

A new flare testing facility (Figure P.3) was con-
structed in the early 2000s to dramatically expand and
improve Zink’s capabilities. This project represents the

* Sunbeam Corporation was primarily known as an appliance maker.
Less well known was Sunbeam’s group of industrial specialty com-
panies such as John Zink Company.
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FIGURE P.3
Flare testing facility.

company’s largest single R&D investment since the
original construction of the R&D facility in 1991. The
new facilities accommodate the firing of a wide variety
of fuel blends (propane, propylene, butane, ethylene,
natural gas, hydrogen, and diluents such as nitrogen
and carbon dioxide) to reproduce or closely simulate a
customer’s fuel composition. Multiple cameras provide
video images along with the electronic monitoring and
recording of a wide range of flare test data, including
noise emissions. The facility can test all varieties of
flare systems with very large sustained gas flow rates
at or near those levels that customers will encounter in
the field. Indeed, flow capacity matches or exceeds the
smokeless rate of gas flow for virtually all customers’
industrial plants, giving the new flare facility a capabil-
ity unmatched in the world.

These world-class test facilities are staffed with engi-
neers and technicians who combine theoretical training
with practical experience. They use the latest design and
analytical tools, such as computational fluid dynamics,
physical modeling, and a phase Doppler particle analyzer.
The team can act quickly to deliver innovative products
that work successfully, based on designs that can be exactly
verified before the equipment is installed in the field.

Koch'’s investment in facilities and highly trained techni-
cal staff carries on the tradition John Zink began more than
80 years ago: providing our customers today, as he did in
his time, with solutions to their combustion needs through
better products, applications, information, and service.

Robert E. Schwartz
Tulsa, Oklahoma



1

Safety

Charles E. Baukal, Jr.

CONTENTS
1.1 IMETOAUCHON ...ttt nennes 2
111 DEINTHIONIS. ..o 4
1.1.2  Combustion TetrahedIOn. ........cooiiiiiiiiii s 4
1.2 SALEtY REVIEW ..ottt 6
1.3 HAZATAS ..ottt 7
1.3.1  EXCeSSIVE TeMPEIAtULE.....ccooviviiiiiiiiiiiiicic s 7
1.3.2 Thermal RAdIation. ..o 9
1.3.3 INOISE vttt et a e a e 10
1.3:4  HIGH PIESSUTE ... 16
1.3.5 THI@S .ot r e ne e 16
1.3.5.1 Heat Damage .........cccovuiiiiiiiiiiiicc e 16
1.3.5.2  SIOKE GENETAtION ......uuiiiiiiiiiiiiiiiiicc e 19
1.3.6 EXPLOSIONS ... 19
1.3.6.1 Explosions in Tanks and PiPing...........cccciiiiiiiiiiiiiiiccccceeeeeee e seiesenenenenes 20
1.3.6.2  EXPlOSIONS 1N SEACKS.....cccuiuiiiiiiiiiiiiiiiiiicicicccc e 21
1.3.6.3  EXPloSIONS in FUITIACES........coimiiiiiiiiiiiiiiiicciccce e 21
1.3.7  Flame INSTADIIIEY «..c.c.ouiuiiiiiiiiiii e 22
1.3.8  ENVITONIMENTAL ..o 24
1.4 Codes and STANAATAS .........cceuiuiiiuiiiiiiiiic e 25
1.4.1 NFPA Codes and Standards............ccoiiiiiiiiiiiiiicccceee e 26
1.4.1.1 NFPA 86: Standard for Ovens and Furnaces, 2011 Edition........cccoovveviiiviieciieieceeeeeeceee e 26
1.4.1.2 NFPA 70: National Electric Code (NEC), Updated Annually..........cccccccoeiiiiiiiiiiiiiiiennns 26

1.5

1.6

1.7

1.4.1.3 NFPA 497: Classification of Flammable Liquids, Gases, or Vapors and of
Hazardous (Classified) Locations for Electrical Installations in Chemical

Process Areas, 2012 EAIION .....ocouiiiuiieieeeie ettt ettt e e e et e enaeeteeenseeteeenseereeeneean 26

1.4.1.4 NFPA 54: National Fuel Gas Code, 1999 EdItION ......ccviiviiiiieiiieeie ettt 26

1.4.1.5 NFPA 58: Liquefied Petroleum Gas Code, 2011 Edition .........ccccccoiiiiiiiiiiiiiiiccccccennes 26

1.4.1.6 NFPA 30: Flammable and Combustible Liquids Code, 1996 Edition ...........cccccccceiiiiiiiiinnnnes 26

1.4.1.7 NFPA 921: Guide for Fire and Explosion Investigations, 2011 Edition...........ccccccccoeeiiiiinnnes 26

142 Additional Standards and GUIdelines............cccooeviiiiiiiiiiiiiii e 27
1.4.3 Industrial INSUTaNCe CaTTIErS........cviviiiiiiiieiiieie e 27
1.4.4  Testing LabOTatOTIes .......cciuiuiiiiiiiiiiiiicic e 27
AcCIdent PIEVENTION .....cvuiuiiiiiiicieice e 27
1.5.1  IGNION COMNEIOL.....ouiiiiiiiiiiiiiiii e 27
1.5.2 GENETAL .. 28
ACCIAEnt MIEIGATION ......vviiiiiiiiciciciciec e 31
1.6.1 Design ENGINEETING ......c.ciiiiiiiiiiiiiiiiiiic s 32
1.6.1.1 Flammability CharacteriStiCs .........ccooiiiiiiiiiiiiiiiiceiccieeceece e 33

1.6.1.2  IgNition CONEIOL......c.oiiiiiiiiiiiicc e 36

1.6.1.3  Fire EXtINGUISRIMENT ......coiuiiiiiiiiiiiiiccc e 38
Safety Documentation and Operator Training ...........ccccceeiiiiiriiiiiiiiieeceeeeee e 38
1.7.1  Design INFOrMAtiON ......c.ciiuiuiiiiiiiiiiiiiicc e 38
1.7.2  Process Hazard Analysis REPOILS ... 39



1.7.3 Standard Operating Procedures.......................
1.7.4 Operator Training and Documentation...........
1.8 Recommendations .........ccceeeeeeevieeieeiveeeeeeieeeeree e
1.9 Sources for Further Information.........ccccceeeeveeveeneen.
REfOIONCES. ....ceveeeveeeeeeeeeeeee e

1.1 Introduction

Industrial combustion can be dangerous for many
reasons.? Fires and explosions are a major concern
in industrial combustion processes and account for
as much as 95% of the losses in accidents in the pro-
cess industries.? Figure 1.1 shows the bulging walls in
a test heater that resulted from an overpressure event
caused by a rapid deflagration. The consequences of
a fire or an explosion in a chemical or petrochemical
plant, for example, can be very severe and very pub-
lic because of the high volume of flammable liquids
and gases handled in those plants*> An example is
the explosion at the Houston Chemical Complex of the
Phillips Petroleum Co. in Pasadena, Texas in 1989 where
23 were killed and 300 were injured.® Another example
is the explosion at the Irving Oil Refinery in St. John,
New Brunswick, where one person was killed from an
explosion in a hydrocracker unit, apparently due to a
tube failure” Loss Prevention Bulletin listed all of the
major incidents worldwide that occurred from 1960 to
1989 in the hydrocarbon chemical process industries
including refineries, petrochemical plants, gas process-
ing plants, and terminals.® Some of these involved large
property losses and deaths. These types of events have
heightened the safety-consciousness of these indus-
tries to both prevent such incidents and to effectively
handle them if they should occur’ The moral, social,
economic, environmental, and legal ramifications of
an accident make combustion safety a critical element
in plant design and operation. Preventing an incident
is definitely preferred to protecting people and equip-
ment from the consequences of an incident if it occurs.!
Burning large quantities of fuel means appropriate pre-
cautions must be taken to prevent equipment damage
and personnel injury.

There are many factors that can contribute to an
accident!: human error,'>!® equipment malfunction,
upset conditions, fire or explosion near 