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Preface

The tremendous growth of scientific knowledge over the past 50 years has resulted
in an intense pressure on the engineering curricula of many universities to substitute
“modern” subjects in place of subjects perceived as weaker or outdated. The result
is that, for some, the kinematics and dynamics of machines has remained a critical
component of the curriculum and a requirement for all mechanical engineering students,
while at others, a course on these subjects is only made available as an elective topic for
specialized study by a small number of engineering students. Some schools, depending
largely on the faculty, require a greater emphasis on mechanical design at the expense
of depth of knowledge in analytical techniques. Rapid advances in technology, however,
have produced a need for a textbook that satisfies the requirement of new and changing
course structures.

Much of the new knowledge in the theory of machines and mechanisms currently
exists in a large variety of technical journals and manuscripts, each couched in its
own singular language and nomenclature and each requiring additional background for
clear comprehension. It is possible that the individual published contributions could be
used to strengthen engineering courses if the necessary foundation was provided and
a common notation and nomenclature was established. These new developments could
then be integrated into existing courses to provide a logical, modern, and comprehensive
whole. The purpose of this book is to provide the background that will allow such an
integration.

This book is intended to cover that field of engineering theory, analysis, design,
and practice that is generally described as mechanisms or as kinematics and dynamics
of machines. Although this text is written primarily for students of mechanical
engineering, the content can also be of considerable value to practicing engineers
throughout their professional careers.

To develop a broad and basic comprehension, the text presents numerous methods
of analysis and synthesis that are common to the literature of the field. The authors have
included graphic methods of analysis and synthesis extensively throughout the book,
because they are firmly of the opinion that graphic methods provide visual feedback
that enhances the student’s understanding of the basic nature of, and interplay between,
the underlying equations. Therefore, graphic methods are presented as one possible
solution technique, but are always accompanied by vector equations defined by the
fundamental laws of mechanics, rather than as graphic “tricks” to be learned by rote and
applied blindly. In addition, although graphic techniques, performed by hand, may lack
accuracy, they can be performed quickly, and even inaccurate sketches can often provide
reasonable estimates of a solution and can be used to check the results of analytic or
numeric solution techniques.

xvii
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The authors also use conventional methods of vector analysis throughout the
book, both in deriving and presenting the governing equations and in their solution.
Raven’s methods using complex algebra for the solution of two-dimensional vector
equations are included because of their compactness, because of the ease of taking
derivatives, because they are employed so frequently in the literature, and because
they are so easy to program for computer evaluation. In the chapter dealing with
three-dimensional kinematics and robotics, the authors present a brief introduction to
Denavit and Hartenberg’s methods using transformation matrices.

Another feature of this text is its focus on the method of kinematic coefficients,
which are derivatives of motion variables with respect to the input position variable(s)
rather than with respect to time. The authors believe that this analytic technique provides
several important advantages, namely: (1) Kinematic coefficients clarify for the student
those parts of a motion problem that are kinematic (geometric) in their nature, and
clearly separate these from the parts that are dynamic or speed dependent. (2) Kinematic
coefficients help to integrate the analysis of different types of mechanical systems, such
as gears, cams, and linkages, which might not otherwise seem similar.

One dilemma that all writers on the subject of this book have faced is how to
distinguish between the motions of different points of the same moving body and the
motions of coincident points of different moving bodies. In other texts, it has been
customary to describe both of these as “relative motion”; however, because they are
two distinctly different situations and are described by different equations, this causes
the student confusion in distinguishing between them. We believe that we have greatly
relieved this problem by the introduction of the terms motion difference and apparent
motion and by using different terminology and different notation for the two cases.
Thus, for example, this book uses the two terms velocity difference and apparent
velocity, instead of the term “relative velocity,” which will not be found when speaking
rigorously. This approach is introduced beginning with position and displacement, used
extensively in the chapter on velocity, and brought to fulfillment in the chapter on
accelerations, where the Coriolis component always arises in, and only arises in, the
apparent acceleration equation.

Access to personal computers, programmable calculators, and laptop computers
is commonplace and is of considerable importance to the material of this book. Yet
engineering educators have told us very forcibly that they do not want computer
programs included in the text. They prefer to write their own programs, and they expect
their students to do so as well. Having programmed almost all the material in the book
many times, we also understand that the book should not include such programs and
thus become obsolete with changes in computers or programming languages.

The authors have endeavored to use US Customary units and SI units in about
equal proportions throughout the book. However, there are certain exceptions. For
example, in Chapter 14 (Dynamics of Reciprocating Engines), only SI units are
presented, because engines are designed for an international marketplace, even by US
companies. Therefore, they are always rated in kilowatts rather than horsepower, they
have displacements in liters rather than cubic inches, and their cylinder pressures are
measured in kilopascals rather than pounds per square inch.

Part 1 of this book deals mostly with theory, nomenclature, notation, and methods
of analysis. Serving as an introduction, Chapter 1 tells what a mechanism is, what
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a mechanism can do, how mechanisms can be classified, and what some of their
limitations are. Chapters 2, 3, and 4 are concerned totally with analysis, specifically with
kinematic analysis, because they cover position, velocity, and acceleration analyses,
respectively, of single-degree-of-freedom planar mechanisms. Chapter 5 expands this
background to include multi-degree-of-freedom planar mechanisms.

Part 2 of the book goes on to demonstrate engineering applications involving the
selection, the specification, the design, and the sizing of mechanisms to accomplish
specific motion objectives. This part includes chapters on cam systems, gears, gear
trains, synthesis of linkages, spatial mechanisms, and an introduction to robotics.
Chapter 6 is a study of the geometry, kinematics, proper design of high-speed cam
systems, and now includes material on the dynamics of elastic cam systems. Chapter 7
studies the geometry and kinematics of spur gears, particularly of involute tooth profiles,
their manufacture, and proper tooth meshing, and then studies gear trains, with an
emphasis on epicyclic and differential gear trains. Chapter 8 expands this background to
include helical gears, bevel gears, worms, and worm gears. Chapter 9 is an introduction
to the kinematic synthesis of planar linkages. Chapter 10 is a brief introduction to
the kinematic analysis of spatial mechanisms and robotics, including the forward and
inverse kinematics problems.

Part 3 of the book adds the dynamics of machines. In a sense, this part is concerned
with the consequences of the mechanism design specifications. In other words, having
designed a machine by selecting, specifying, and sizing the various components,
what happens during the operation of the machine? What forces are produced? Are
there any unexpected operating results? Will the proposed design be satisfactory in
all respects? Chapter 11 presents the static force analysis of machines. This chapter
also includes sections focusing on the buckling of two-force members subjected to
axial loads. Chapter 12 studies the planar and spatial aspects of the dynamic force
analysis of machines. Chapter 13 then presents the vibration analysis of mechanical
systems. Chapter 14 is a more detailed study of one particular type of mechanical
system, namely the dynamics of both single- and multi-cylinder reciprocating engines.
Chapter 15 next addresses the static and dynamic balancing of rotating and reciprocating
systems. Finally, Chapter 16 is on the study of the dynamics of flywheels, governors,
and gyroscopes.

As with all texts, the subject matter of this book also has limitations. Probably
the clearest boundary on the coverage in this text is that it is limited to the study of
rigid-body mechanical systems. It does study planar multibody systems with movable
connections or constraints between them. However, all motion effects are assumed to
come within the connections; the shapes of the individual bodies are assumed constant,
except for the dynamics of elastic cam systems. This assumption is necessary to allow
the separate study of kinematic effects from those of dynamics. Because each individual
body is assumed rigid, it can have no strain; therefore, except for buckling of axially
loaded members, the study of stress is also outside the scope of this text. It is hoped,
however, that courses using this text can provide background for the later study of stress,
strength, fatigue life, modes of failure, lubrication, and other aspects important to the
proper design of mechanical systems.

Despite the limitations on the scope of this book, it is still clear that it is not reason-
able to expect that all of the material presented here can be covered in a single-semester
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course. As stated above, a variety of methods and applications have been included to
allow the instructor to choose those topics that best fit the course objectives and to still
provide a reference for follow-on courses and help build the student’s library. Yet, many
instructors have asked for suggestions regarding a choice of topics that might fit a 3-hour
per week, 15-week course. Two such outlines follow, as used by two of the authors to
teach such courses at their institutions. It is hoped that these might be used as helpful
guidelines to assist others in making their own parallel choices.

Tentative Schedule |

Kinematics and Dynamics of Machine Systems

Week Topics Sections
1 Introduction to Mechanisms 1.1-1.10
Kutzbach and Grashof Criteria 1.6,1.9
Advance-to-Return Time Ratio 1.7
Overlay Method of Synthesis 9.8
2 Vector Loop-Closure Equation 2.6,2.7
Velocity Difference Equation 3.1-33
Velocity Polygons; Velocity Images 34
3 Apparent Velocity Equation 3.5,3.6,3.8
Direct and Rolling Contact Velocity 3.7
4 Instantaneous Centers of Velocity 3.12
Aronhold—Kennedy Theorem of Three Centers 3.13,3.14
Use of Instant Centers to Find Velocities 3.15, 3.16

5  Exam #1
Acceleration Difference Equation 4.1-4.3
Acceleration Polygons; Acceleration Images 4.4
6  Apparent Acceleration Equation 45,4.6

Coriolis Component of Acceleration

7  Direct and Rolling Contact Acceleration 4.7,4.8

Review of Velocity and Acceleration Analyses

8 Raven’s Method of Kinematic Analysis 2.10, 3.10, 4.10
Kinematic Coefficients 3.11,4.11
Computer Methods in Kinematics 10.9
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11

12

13

14

15

Exam #2

Static Forces

Two-, Three-, and Four-Force Members
Force Polygons

Coulomb Friction Forces in Machines

D’ Alembert’s Principle
Dynamic Forces in Machine Members

Introduction to Cam Design
Choice of Cam Profiles; Matching Displacement Curves

First-Order Kinematic Coefficients; Face Width; Pressure
Angle
Second-Order Kinematic Coefficients; Pointing and Under-
cutting

Exam #3
Introduction to Gearing
Involute Tooth Geometry; Contact Ratio; Undercutting

Epicyclic and Differential Gear Trains
Review

Final Exam

Tentative Schedule Il

Machine Design |

Week
1

Topics

The World of Mechanisms

Measures of Performance (Indices of Merit)
Quick Return Mechanisms

Position Analysis. Vector Loops

Newton—Raphson Technique

Velocity Analysis
First-Order Kinematic Coefficients

Instant Centers of Zero Velocity

PREFACE

11.1-11.6
11.7,11.8

11.9, 11.10

12.1-12.4
12.4,12.5

6.1-6.4
6.5-6.8

6.9

6.10

7.1-7.6
7.7-19,7.11

7.15-7.17

Sections

1.1-1.6
1.10, 3.19
1.7

2.1-2.7
2.8,2.11

3.1-39
3.11
3.12-3.17

XXi
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PREFACE

10

11

12

13

Rolling Contact, Rack and Pinion, Two Gears
Acceleration Analysis
Second-Order Kinematic Coefficients

Geometry of a Point Path
Kinematic Coefficients for Point Path
Radius and Center of Curvature

Cam Design
Lift Curve
Exam 1

Kinematic Coefficients of the Follower
Roller Follower
Flat-Face Follower

Graphic Approach
Two-, Three-, and Four-Force Members
Friction-Force Models

Dynamic Force Analysis
Force and Moment Equations
Static Force Analysis

Power Equation
Kinetic, Potential, and Dissipative Energy
Equivalent Inertia and Equivalent Mass

Equation of Motion
Critical Speeds of a Shaft
Exam #2

Exact Equation
Dunkerley and Rayleigh—Ritz Approximations
Shaking Forces and Moments

Rotating Unbalance
Discrete Mass System
Distributed Mass System

3.10
4.1-4.4
4.5-4.11

4.15
4.15
4.16

6.1-6.4
6.1-6.4

6.5
6.10
6.9

11.5,11.6
11.7, 11.8
11.9,11.10

12.1-12.3
12.4-12.6
11.1-11.4

12.9
12.9
12.9

12.9
13.17

13.17
13.17
14.5

15.3
15.5
15.5
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Reciprocating Unbalance 15.9
Single-Cylinder Engine 15.9
Multi-Cylinder Engine 15.10
Primary Shaking Forces 15.11
Secondary Shaking Forces 15.11
Comparison of Forces 15.9
Final Exam

Supplement packages for this fifth edition have been designed to support both
the student and the instructor in the kinematics and dynamics course. The Companion
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The World of Mechanisms

1.1 INTRODUCTION

The theory of machines and mechanisms is an applied science that is used to understand the
relationships between the geometry and motions of the parts of a machine, or mechanism,
and the forces that produce these motions. The subject, and therefore this book, divides
itself naturally into three parts. Part 1, which includes Chaps. 1 through 5, is concerned
with mechanisms and the kinematics of mechanisms, which is the analysis of their motions.
Part 1 lays the groundwork for Part 2, comprising Chaps. 6 through 10, in which we study
methods of designing mechanisms. Finally, in Part 3, which includes Chaps. 11 through
16, we take up the study of kinetics, the time-varying forces in machines and the resulting
dynamic phenomena that must be considered in their design.

The design of a modern machine is often very complex. In the design of a new engine,
for example, the automotive engineer must deal with many interrelated questions. What
is the relationship between the motion of the piston and the motion of the crankshaft?
What are the sliding velocities and the loads at the lubricated surfaces, and what lubricants
are available for this purpose? How much heat is generated, and how is the engine
cooled? What are the synchronization and control requirements, and how are they satisfied?
What is the cost to the consumer, both for initial purchase and for continued operation
and maintenance? What materials and manufacturing methods are used? What are the
fuel economy, noise, and exhaust emissions; do they meet legal requirements? Although
all these and many other important questions must be answered before the design is
completed, obviously not all can be addressed in a book of this size. Just as people with
diverse skills must be brought together to produce an adequate design, so too must many
branches of science be brought together. This book assembles material that falls into the
science of mechanics as it relates to the design of mechanisms and machines.
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1.2 ANALYSIS AND SYNTHESIS

There are two completely different aspects of the study of mechanical systems: design and
analysis. The concept embodied in the word “design” is more properly termed synthesis,
the process of contriving a scheme or a method of accomplishing a given purpose. Design
is the process of prescribing the sizes, shapes, material compositions, and arrangements of
parts so that the resulting machine will perform the prescribed task.

Although there are many phases in the design process that can be approached in a
well-ordered, scientific manner, the overall process is by its very nature as much an art as
a science. It calls for imagination, intuition, creativity, judgment, and experience. The role
of science in the design process is merely to provide tools to be used by designers as they
practice their art.

In the process of evaluating the various interacting alternatives, designers find a need
for a large collection of mathematical and scientific tools. These tools, when applied
properly, provide more accurate and more reliable information for judging a design
than one achieves through intuition or estimation. Thus, the tools are of tremendous
help in deciding among alternatives. However, scientific tools cannot make decisions for
designers; designers have every right to exert their imagination and creative abilities, even
to the extent of overruling the mathematical recommendations.

Probably the largest collection of scientific methods at the designer’s disposal fall
into the category called analysis. These are techniques that allow the designer to critically
examine an already existing, or proposed, design to judge its suitability for the task. Thus,
analysis in itself is not a creative science but one of evaluation and rating things already
conceived.

We should bear in mind that, although most of our effort may be spent on analysis,
the real goal is synthesis: the design of a machine or system. Analysis is simply a tool;
however, it is a vital tool and will inevitably be used as one step in the design process.

1.3 SCIENCE OF MECHANICS

The branch of scientific analysis that deals with motions, time, and forces is called
mechanics and is made up of two parts: statics and dynamics. Statics deals with the analysis
of stationary systems—that is, those in which time is not a factor—and dynamics deals with
systems that change with time.

As shown in Fig. 1.1, dynamics is also made up of two major disciplines, first
recognized as separate entities by Euler* in 1765 [2]:"

The investigation of the motion of a rigid body may be conveniently separated
into two parts, the one, geometrical, and the other mechanical. In the first part,
the transference of the body from a given position to any other position must be
investigated without respect to the causes of the motion, and must be represented
by analytical formulae, which will define the position of each point of the body. This

* Leonhard Euler (1707-1783).
T Numbers in square brackets refer to references at the end of each chapter.
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Figure 1.1

Statics | | Dynamics |

| Kinematicsl | Kinetics |

investigation will therefore be referable solely to geometry, or rather to stereotomy
[the art of stonecutting, now referred to as descriptive geometry].

It is clear that by the separation of this part of the question from the other, which
belongs properly to Mechanics, the determination of the motion from dynamical
principles will be made much easier than if the two parts were undertaken conjointly.

These two aspects of dynamics were later recognized as the distinct sciences of
kinematics (cinématique was a term coined by Ampere* and derived from the Greek word
kinema, meaning motion) and kinetics and deal with motion and the forces producing the
motion, respectively.

The initial problem in the design of a mechanical system, therefore, is understanding
the kinematics. Kinematics is the study of motion, quite apart from the forces that produce
the motion. In particular, kinematics is the study of position, displacement, rotation,
speed, velocity, acceleration, and jerk. The study, say, of planetary or orbital motion is
also a problem in kinematics, but in this book we shall concentrate our attention on
kinematic problems that arise in the design and operation of mechanical systems. Thus,
the kinematics of machines and mechanisms is the focus of the next several chapters of
this book. In addition, statics and kinetics are also vital parts of a complete design analysis,
and they are also covered in later chapters.

It should be carefully noted in the previous quotation that Euler based his separation of
dynamics into kinematics and kinetics on the assumption that they deal with rigid bodies. It
is this very important assumption that allows the two to be treated separately. For flexible
bodies, the shapes of the bodies themselves, and therefore their motions, depend on the
forces exerted on them. In this situation, the study of force and motion must take place
simultaneously, thus significantly increasing the complexity of the analysis.

Fortunately, although all real machine parts are flexible to some degree, machines are
usually designed from relatively rigid materials, keeping part deflections to a minimum.
Therefore, it is common practice to assume that deflections are negligible and parts
are rigid while analyzing a machine’s kinematic performance and then, during dynamic
analysis when loads are sought, to design the parts so that the assumption is justified. A
more detailed discussion of a rigid body compared to a deformable, or flexible, body is
presented in the introduction to static force analysis in Sec. 11.1.

* André-Marie Ampere (1775-1836).
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1.4 TERMINOLOGY, DEFINITIONS, AND ASSUMPTIONS

Reuleaux* defines a machine’ as a “combination of resistant bodies so arranged that by
their means the mechanical forces of nature can be compelled to do work accompanied by
certain determinate motions.” He also defines a mechanism as an “assemblage of resistant
bodies, connected by movable joints, to form a closed kinematic chain with one link fixed
and having the purpose of transforming motion.”

Some light can be shed on these definitions by contrasting them with the term
structure. A structure is also a combination of resistant (rigid) bodies connected by joints,
but the purpose of a structure (such as a truss) is not to do work or to transform motion, but
to be rigid. A truss can perhaps be moved from place to place and is movable in this sense of
the word; however, it has no infernal mobility. A structure has no relative motions between
its various links, whereas both machines and mechanisms do. Indeed, the whole purpose of
a machine or mechanism is to utilize these relative internal motions in transmitting power
or transforming motion.

A machine is an arrangement of parts for doing work, a device for applying power or
changing the direction of motion. It differs from a mechanism in its purpose. In a machine,
terms such as force, torque, work, and power describe the predominant concepts. In a
mechanism, though it may transmit power or force, the predominant idea in the mind of
the designer is one of achieving a desired motion. There is a direct analogy between the
terms structure, mechanism, and machine and the branches of mechanics illustrated in
Fig. 1.1. The term “structure” is to statics as the term “mechanism” is to kinematics and as
the term “machine” is to kinetics.

We use the word link to designate a machine part or a component of a mechanism.
As discussed in the previous section, a link is assumed to be completely rigid. Machine
components that do not fit this assumption of rigidity, such as springs, usually have no
effect on the kinematics of a device but do play a role in supplying forces. Such parts or
components are not called links; they are usually ignored during kinematic analysis, and
their force effects are introduced during force analysis (see the analysis of buckling in Secs.
11.14-11.18). Sometimes, as with a belt or chain, a machine part may possess one-way
rigidity; such a body can be considered a link when in tension but not under compression.

The links of a mechanism must be connected in some manner in order to transmit
motion from the driver, or input, to the driven, or follower, or output. The connections, the
joints between the links, are called kinematic pairs (or simply pairs), because each joint
consists of a pair of mating surfaces, two elements, one mating surface or element being
a part of each of the joined links. Thus, we can also define a link as the rigid connection
between two or more joint elements.

Stated explicitly, the assumption of rigidity is that there can be no relative motion (no
change in distance) between two arbitrarily chosen points on the same link. In particular,

* Much of the material of this section is based on definitions originally set down by Franz Reuleaux
(1829-1905), a German kinematician whose work marked the beginning of a systematic treatment
of kinematics [7].

T There appears to be no agreement at all on the proper definition of a machine. In a footnote
Reuleaux gives 17 definitions, and his translator gives 7 more and discusses the whole problem
in detail [7].
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the relative positions of joint elements on any given link do not change no matter what loads
are applied. In other words, the purpose of a link is to hold a constant spatial relationship
between its joint elements.

As aresult of the assumption of rigidity, many of the intricate details of the actual part
shapes are unimportant when studying the kinematics of a machine or mechanism. For this
reason, it is common practice to draw highly simplified schematic diagrams that contain
important features of the shape of each link, such as the relative locations of joint elements,
but that completely subdue the real geometry of the manufactured part. The slider-crank
linkage of the internal combustion engine, for example, can be simplified for purposes of
analysis to the schematic diagram illustrated later in Fig. 1.36. Such simplified schematics
are a great help since they eliminate confusing factors that do not affect the analysis; such
diagrams are used extensively throughout this text. However, these schematics also have
the drawback of bearing little resemblance to physical hardware. As a result they may give
the impression that they represent only academic constructs rather than real machinery. We
should continually bear in mind that these simplified diagrams are intended to carry only
the minimum necessary information so as not to confuse the issue with unimportant detail
(for kinematic purposes) or complexity of the true machine parts.

When several links are connected together by joints, they are said to form a kinematic
chain. Links containing only two joint elements are called binary links, those having
three joint elements are called fernary links, those having four joint elements are called
quaternary links, and so on. If every link in a chain is connected to at least two other links,
the chain forms one or more closed loops and is called a closed kinematic chain; if not, the
chain is referred to as open. If a chain consists entirely of binary links, it is a simple-closed
chain. Compound-closed chains, however, include other than binary links and thus form
more than a single closed loop.

Recalling Reuleaux’s definition of a mechanism, we see that it is necessary to have a
closed kinematic chain with one link fixed. When we say that one link is fixed, we mean
that it is chosen as the frame of reference for all other links; that is, the motions of all
points on the links of the mechanism are measured with respect to the fixed link. This
link, in a practical machine, usually takes the form of a stationary platform or base (or
a housing rigidly attached to such a base) and is commonly referred to as the ground,
frame, or base link.* The question of whether this reference frame is truly stationary (in
the sense of being an inertial reference frame) is immaterial in the study of kinematics, but
becomes important in the investigation of kinetics, where forces are considered. In either
case, once a frame link is designated (and other conditions are met), the kinematic chain
becomes a mechanism and, as the driver is moved through various positions, all other links
have well-defined motions with respect to the chosen frame of reference. We use the term
kinematic chain to specify a particular arrangement of links and joints when it is not clear
which link is to be treated as the frame. When the frame link is specified, the kinematic
chain is called a mechanism.

For a mechanism to be useful, the motions between links cannot be completely
arbitrary; they too must be constrained to produce the proper relative motions—those
chosen by the designer for the particular task to be performed. These desired relative

* In this text, the ground, frame, or base of the mechanism is commonly numbered 1.
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motions are achieved by proper choice of the number of links and the kinds of joints used
to connect them. Thus we are led to the concept that, in addition to the distances between
successive joints, the nature of the joints themselves and the relative motions they permit
are essential in determining the kinematics of a mechanism. For this reason, it is important
to look more closely at the nature of joints in general terms, and in particular at several of
the more common types.

The controlling factors that determine the relative motions allowed by a given joint are
the shapes of the mating surfaces or elements. Each type of joint has its own characteristic
shapes for the elements, and each allows a given type of motion, which is determined by
the possible ways in which these elemental surfaces can move with respect to each other.
For example, the pin joint in Fig. 1.2a, has cylindric elements, and, assuming that the links
cannot slide axially, these surfaces permit only relative rotational motion. Thus a pin joint
allows the two connected links to experience relative rotation about the pin center. So, too,
other joints each have their own characteristic element shapes and relative motions. These
shapes restrict the totally arbitrary motion of two unconnected links to some prescribed
type of relative motion and form constraining conditions (constraints) on the mechanism’s
motion.

It should be pointed out that the element shapes may often be subtly disguised and
difficult to recognize. For example, a pin joint might include a needle bearing, so that
two mating surfaces, as such, are not distinguishable. Nevertheless, if the motions of the
individual rollers are not of interest, the motions allowed by the joints are equivalent, and
the joints are of the same generic type. Thus the criterion for distinguishing different joint
types is the relative motions they permit and not necessarily the shapes of the elements,
though these may provide vital clues. The diameter of the pin used (or other dimensional
data) is also of no more importance than the exact sizes and shapes of the connected
links. As stated previously, the kinematic function of a link is to hold a fixed geometric
relationship between the joint elements. Similarly, the only kinematic function of a joint,
or pair, is to determine the relative motion between the connected links. All other features
are determined for other reasons and are unimportant in the study of kinematics.

When a kinematic problem is formulated, it is necessary to recognize the type of
relative motion permitted in each of the joints and to assign to it some variable parameter(s)
for measuring or calculating the motion. There will be as many of these parameters as there
are degrees of freedom of the joint in question, and they are referred to as joint variables.
Thus, the joint variable of a pinned joint will be a single angle measured between reference
lines fixed in the adjacent links, while a spheric joint will have three joint variables (all
angles) to specify its three-dimensional rotation.

Reuleaux separated kinematic pairs into two categories: namely, higher pairs and
lower pairs, with the latter category consisting of the six prescribed types to be discussed
next. He distinguished between the categories by noting that lower pairs, such as the
pin joint, have surface contact between the joint elements, while higher pairs, such as
the connection between a cam and its follower, have line or point contact between the
elemental surfaces. This criterion, however, can be misleading (as noted in the case of a
needle bearing). We should rather look for distinguishing features in the relative motion(s)
that the joint allows between the connected links.

Lower pairs consist of the six prescribed types shown in Fig. 1.2.
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Figure 1.2 (a) Revolute; (b) prism; (c) screw; (d) cylinder; (e) sphere; (f) flat pairs.

The names and the symbols (Hartenberg and Denavit [4]) that are commonly
employed for the six lower pairs are presented in Table 1.1. The table also includes the
number of degrees of freedom and the joint variables that are associated with each lower
pair.

The revolute or turning pair, R (Fig. 1.2a), permits only relative rotation and is often
referred to as a pin joint. This joint has one degree of freedom.

The prism or prismatic pair, P (Fig. 1.2b), permits only relative sliding motion and
therefore is often called a sliding joint. This joint also has one degree of freedom.

The screw or helical pair, H (Fig. 1.2¢), permits both rotation and sliding motion.
However, it only has one degree of freedom, since the rotation and sliding motions are
related by the helix angle of the thread. Thus, the joint variable may be chosen as either
As or A6, but not both. Note that the helical pair reduces to a revolute if the helix angle is
made zero, and to a prism if the helix angle is made 90°.

Table 1.1 Lower Pairs

Pair Symbol  Pair Variable Degrees of Freedom  Relative Motion
Revolute R A6 1 Circular

Prism P As 1 Rectilinear
Screw H A6 or As 1 Helical
Cylinder C A6 and As 2 Cylindric
Sphere S AO, Ap, AY 3 Spheric

Flat F Ax, Ay, A6 3 Planar
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The cylinder or cylindric pair, C (Fig. 1.2d), permits both rotation and an independent
sliding motion. Thus, the cylindric pair has two degrees of freedom.

The sphere or globular pair, S (Fig. 1.2e), is a ball-and-socket joint. It has three
degrees of freedom, sometimes taken as rotations about each of the coordinate axes.

The flat or planar pair, sometimes called an ebene pair (German), F (Fig. 1.2f), is
seldom found in mechanisms in its undisguised form, except at a support point. It has three
degrees of freedom, that is, two translations and a rotation.

All other joint types are called higher pairs. Examples include mating gear teeth, a
wheel rolling and/or sliding on a rail, a ball rolling on a flat surface, and a cam contacting
its follower. Since an unlimited variety of higher pairs exist, a systematic accounting of
them is not a realistic objective. We shall treat each separately as it arises.

Among the higher pairs is a subcategory known as wrapping pairs. Examples are the
connections between a belt and a pulley, a chain and a sprocket, or a rope and a drum. In
each case, one of the links has only one-way rigidity.

The treatment of various joint types, whether lower or higher pairs, includes another
important limiting assumption. Throughout the book, we assume that the actual joint, as
manufactured, can be reasonably represented by a mathematical abstraction having perfect
geometry. That is, when a real machine joint is assumed to be a spheric joint, for example,
it is also assumed that there is no “play” or clearance between the joint elements and that
any deviation from spheric geometry of the elements is negligible. When a pin joint is
treated as a revolute, it is assumed that no axial motion takes place; if it is necessary to
study the small axial motions resulting from clearances between real elements, the joint
must be treated as cylindric, thus allowing the axial motion.

The term “mechanism,” as defined earlier, can refer to a wide variety of devices,
including both higher and lower pairs. A more limited term, however, refers to those
mechanisms having only lower pairs; such a mechanism is commonly called a linkage.
A linkage, then, is connected only by the lower pairs shown in Fig. 1.2.

1.5 PLANAR, SPHERIC, AND SPATIAL MECHANISMS

Mechanisms may be categorized in several different ways to emphasize their similarities
and differences. One such grouping divides mechanisms into planar, spheric, and spatial
categories. All three groups have many things in common; the criterion that distinguishes
the groups, however, is to be found in the characteristics of the motions of the
links.

A planar mechanism is one in which all particles describe planar curves in space, and
all these curves lie in parallel planes; that is, the loci of all points are planar curves parallel
to a single common plane. This characteristic makes it possible to represent the locus of any
chosen point of a planar mechanism in its true size and shape in a single drawing or figure.
The motion transformation of any such mechanism is called coplanar. The planar four-bar
linkage, the slider-crank linkage, the plate cam-and-follower mechanism, and meshing
gears are familiar examples of planar mechanisms.

Planar mechanisms utilizing only lower pairs are called planar linkages; they include
only revolute and prismatic joints. Although the planar pair might theoretically be included
in a planar linkage, this would impose no constraint on the motion. Planar motion also
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requires that all revolute axes be normal to the plane of motion, and that all prismatic joint
axes be parallel to the plane.

As already pointed out, it is possible to observe the motions of all particles of a planar
mechanism in true size and shape from a single direction. In other words, all motions can
be represented graphically in a single view. Thus, graphic techniques are well suited to their
analysis, and this background is beneficial to the student once mastered. Since spheric and
spatial mechanisms do not have this special geometry, visualization becomes more difficult
and more powerful techniques must be used for their study.

A spheric mechanism is one in which each moving link has a point that remains
stationary as the mechanism moves. Also, arbitrary points fixed in each moving link travel
on spheric surfaces; the spheric surfaces must all be concentric. Therefore, the motions of
all these points can be completely described by their radial projections (or shadows) on the
surface of a sphere with a properly chosen center. Note that the only lower pairs (Table 1.1)
that allow spheric motion are the revolute pair and the spheric pair. In a spheric linkage,
the axes of all revolute pairs must intersect at a single point. In addition, a spheric pair
center must be concentric with this point, and, then, it would not produce any constraint on
the motions of the other links. Therefore, a spheric linkage must consist of only revolute
pairs, and the axes of all such pairs must intersect at a single point. A familiar example
of a spheric mechanism is the Hooke universal joint (also referred to as the Cardan joint)
shown in Fig. 1.21b.

Spatial mechanisms include no restrictions on the relative motions of the links.
For example, a mechanism that contains a screw joint (Fig. 1.2¢) must be a spatial
mechanism, since the relative motion within a screw joint is helical. An example of a spatial
mechanism is the differential screw shown in Fig. 1.11. Because of the more complex
motion characteristics of spatial mechanisms, and since these motions can not be analyzed
graphically from a single viewing direction, more powerful techniques are required for
their analysis. Such techniques are introduced in Chap. 10 for a detailed study of spatial
mechanisms and robotics.

Since the majority of mechanisms in modern machinery are planar, one might
question the need to study these complex mathematical techniques. However, even though
the simpler graphic techniques for planar mechanisms may have been mastered, an
understanding of the more complex techniques is of value for the following reasons:

1. They provide new, alternative methods that can solve problems in a different way.
Thus, they provide a means for checking results. Certain problems by their nature
may also be more amenable to one method than another.

2. Methods that are analytic in nature are better suited to solution by a calculator or
a digital computer than by graphic techniques.

3. One reason why planar mechanisms are so common is that good methods for the
analysis of spatial mechanisms have not been available until relatively recently.
Without these methods, the design and application of spatial mechanisms has been
hindered, even though they may be inherently better suited to certain applications.

4. We will discover that spatial mechanisms are, in fact, much more common in
practice than their formal description indicates.
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1.6 MOBILITY

Consider the planar four-bar linkage (Fig. 1.3c), which has four links connected
by four revolute pairs whose axes are parallel. This “parallelism” is a mathematical
hypothesis; it is not a reality. The axes, as produced in a machine shop—in any machine
shop, no matter how precise the machining—are only approximately parallel. If the axes
are far out of parallel, there is binding in no uncertain terms, and the linkage moves only
because the “rigid” links flex and twist, producing loads in the bearings. If the axes are
nearly parallel, the linkage operates because of looseness of the running fits of the bearings
or flexibility of the links. A common way of compensating for small nonparallelism
is to connect the links with self-aligning bearings, actually spheric joints allowing
three-dimensional rotation. Such a “planar” linkage is thus a low-grade spatial linkage.

Thus, the overwhelmingly large category of planar mechanisms and the category of
spheric mechanisms are special cases, or subsets, of the all-inclusive category of spatial
mechanisms. They occur as a consequence of the special orientations of their joint axes.

One of the first concerns in either the design or the analysis of a mechanism is the
number of degrees of freedom, also called the mobility of the device. The mobility* of
a mechanism is the number of input parameters (usually joint variables) that must be
controlled independently to bring the device into a particular posture. Ignoring, for the
moment, certain exceptions to be mentioned later, it is possible to determine the mobility
of a mechanism directly from a count of the number of links and the number and types of
joints comprising the mechanism.

To develop this relationship, consider that—before they are connected together—each
link of a planar mechanism has three degrees of freedom when moving with planar motion
relative to the fixed link. Not counting the fixed link, therefore, an n-link planar mechanism
has 3(n — 1) degrees of freedom before any of the joints are connected. Connecting two of
the links by a joint that has one degree of freedom, such as a revolute, has the effect of
providing two constraints between the connected links. If the two links are connected by a
two-degree-of-freedom joint, it provides one constraint. When the constraints for all joints
are subtracted from the total degrees of freedom of the unconnected links, we find the
resulting mobility of the assembled mechanism.

If we denote the number of single-degree-of-freedom joints as j; and the number
of two-degree-of-freedom joints as jo, then the resulting mobility, m, of a planar n-link
mechanism is given by

m=3(n—1)—2j; —j. (1.1)

Written in this form, Eq. (1.1) is called the Kutzbach criterion for the mobility of a planar
mechanism [8]. Its application is illustrated for several simple examples in Fig. 1.3.

* The German literature distinguishes between movability and mobility. Movability includes the six
degrees of freedom of the device as a whole, as though the ground link were not fixed, and thus
applies to a kinematic chain. Mobility neglects these degrees of freedom and considers only the
internal relative motions, thus applying to a mechanism. The English literature seldom recognizes
this distinction, and the terms are used somewhat interchangeably.
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Figure 1.3 Applications of the Kutzbach criterion.

If the Kutzbach criterion yields m > 0, the mechanism has m degrees of freedom.
If m = 1, the mechanism can be driven by a single input motion to produce constrained
(uniquely defined) motion. Two examples are the slider-crank linkage and the four-bar
linkage, shown in Figs. 1.3b and 1.3c, respectively. If m = 2, then two separate input
motions are necessary to produce constrained motion for the mechanism; such a case is
the five-bar linkage shown in Fig. 1.3d.

If the Kutzbach criterion yields m = 0, as in Figs. 1.3a and 1.4a, motion is impossible
and the mechanism forms a structure.

If the criterion yields m < 0, then there are redundant constraints in the chain and it
forms a statically indeterminate structure. An example is illustrated in Fig. 1.4b. Note in
the examples of Fig. 1.4 that when three links are joined by a single pin, such a connection
is treated as two separate but concentric joints; two j; joints must be counted.

Figure 1.5 shows two examples of the Kutzbach criterion applied to mechanisms with
two-degree-of-freedom joints—that is, j> joints. Particular attention should be paid to the
contact (joint) between the wheel and the fixed link in Fig. 1.5b. Here it is assumed that
slipping is possible between the two links. If this contact prevents slipping, the joint would
be counted as a one-degree-of-freedom joint—that is, a j; joint—because only one relative
motion would then be possible between the links. Recall that, in this case, the mechanism
is generally referred to as a “linkage.”

It is important to realize that the Kutzbach criterion can give an incorrect result. For
example, note that Fig. 1.6a represents a structure and that the criterion properly predicts
m = 0. However, if link 5 is arranged as in Fig. 1.6b, the result is a double-parallelogram
linkage with a mobility of m = 1, even though Eq. (1.1) indicates that it is a structure.
The actual mobility of m = 1 results only if the parallelogram geometry is achieved. In
the development of the Kutzbach criterion, no consideration was given to the lengths of the

(a) ®)

n=>5,j=6, n==6,j =8,
j»=0,m=0 Jp=0,m=-1

Figure 1.4 Applications of the Kutzbach criterion to structures.
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Figure 1.5

links or other dimensional properties. Therefore, it should not be surprising that exceptions
to the criterion are found for particular cases with equal link lengths, parallel links, or other
special geometric features.

Although there are exceptions, the Kutzbach criterion remains useful, because it is so
easily applied during mechanism design. To avoid exceptions, it would be necessary to
include all the dimensional properties of the mechanism. The resulting criterion would be
very complex and would be useless at the early stages of design when dimensions may not
be known.

An earlier mobility criterion, named after Griibler [3], applies to a planar linkage
where the overall mobility is m = 1. Substituting j, = 0 and m = 1 into Eq. (1.1) and
rearranging, we find that Griibler’s criterion for planar linkages can be written as

3n—2j1 —4=0. (1.2)
Rearranging this equation, the number of links is

2, +4
n= “; . (1.3)

From this equation, we see that a planar linkage with a mobility of m = 1 cannot have an
odd number of links. Also, the simplest possible linkage with all binary links has n =j; =4.
This explains one reason why the slider-crank linkage (Fig. 1.3) and the four-bar linkage
(Fig. 1.3¢) appear so commonly in machines.

(a) (b)
3 A A 3
2 5 4 2 5 4
1 1
bl 77
n=5,j =6, n=>35,j,=6,
j»=0,m=0 Jr=0,m=1

Figure 1.6
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The Kutzbach criterion, Eq. (1.1), and the Griibler criterion, Eq. (1.2), were derived for
the case of planar mechanisms and linkages, respectively. If similar criteria are developed
for spatial mechanisms and linkages, which is the subject of Chap. 10, we must recall that
each unconnected link has six degrees of freedom and each single-degree-of-freedom joint
provides five constraints, each two-degree-of-freedom joint provides four constraints, and
so on. Similar arguments then lead to the Kutzbach criterion for spatial mechanisms,

m=6(n—1) —=5j1 —4j2 —3j3 — 2ja — j5,
and the Griibler criterion for spatial linkages,
6n—5j1 —7=0. (1.4)
Therefore, the simplest form of a spatial linkage* with a mobility of m=1isn=j; =7.

EXAMPLE 1.1
Determine the mobility of the planar mechanism shown in Fig. 1.7a.

Figure 1.7 Planar mechanism.

SOLUTION

The link numbers and the joint types for the mechanism are shown in Fig. 1.7b. The
number of links is n = 5, the number of lower pairs is j; = 5, and the number of higher
pairs is jo» = 1. Substituting these values into the Kutzbach criterion, Eq. (1.1), the mobility
of the mechanism is

m=35-1)-205)—-1(1)=1. Ans.

Note that the Kutzbach criterion gives the correct answer for the mobility of this
mechanism; that is, a single input motion is required to give a unique output motion.

* Note that all planar linkages are exceptions to the spatial mobility criterion. They have the special
geometric characteristics that all revolute axes are parallel and perpendicular to the plane of motion
and that all prismatic axes lie in the plane of motion.
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For example, rotation of link 2 could be used as the input and rotation of link 5 could be
used as the output.

EXAMPLE 1.2

For the mechanism shown in Fig. 1.8a, determine: (a) the number of lower pairs (j; joints)
and the number of higher pairs (j» joints); and (b) the mobility of the mechanism using the
Kutzbach criterion. Treating rolling contact to mean rolling with no slipping. Does this
criterion provide the correct answer for the mobility of this mechanism? Briefly explain
why or why not.

Rolling

Figure 1.8 Planar mechanism.

SOLUTION

(a) The links and the joint types of the mechanism are labeled in Fig. 1.8b. The
number of links is n = 7, the number of lower pairs is j; =9, and the number of
higher pairs is

J2=1 Ans.

(b) Substituting these values into the Kutzbach criterion, Eq. (1.1), the mobility of
the mechanism is

m=3("7-1)-209) —1(1)=—1. Ans.

However, this answer is not corrrect; that is, the Kutzbach criterion does not give
the correct mobility for this mechanism. The mobility of this mechanism is, in
fact, m = 1; that is, a single input motion gives a unique output motion.

Reasoning: Links 3 and 4 are superfluous to the constraints of the mechanism. If links
3 and 4 were removed, the motion of the remaining links would be unaffected. With links
3 and 4 removed, the mobility of the mechanism using the Kutzbach criterion is m = 1.
Note that if links 3 and 4 were attached with no special conditions—that is, not pinned at
their centers, for example—then the mechanism would indeed be locked and the answer
m = —1 would be correct.
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EXAMPLE 1.3

For the mechanism shown in Fig. 1.9a, determine: (a) the number of lower pairs and
the number of higher pairs; and (b) the mobility of the mechanism predicted by the
Kutzbach criterion. Does this criterion provide the correct answer for this mechanism?
Briefly explain why or why not.

Figure 1.9 Planar mechanism.

SOLUTION

(a) The links and the joints of the mechanism are labeled as shown in Fig. 1.95. The
number of links is n = 5, the number of lower pairs is j; = 5, and the number of
higher pairs is

ja=1. Ans.

(b) Substituting these values into the Kutzbach criterion, Eq. (1.1), the mobility of
the mechanism is

m=35-1)—25)—1(1) = 1. Ans.

For this mechanism, the mobility is indeed 1, which indicates that the Kutzbach
criterion gives the correct answer for this mechanism.

For a mechanism, or a linkage, with a mobility of m = 1, the input or driving link will, in
general, be numbered as 2 in this text.

1.7 CHARACTERISTICS OF MECHANISMS

An ideal system for the classification of mechanisms would be a system that allows
a designer to enter the system with a set of specifications and leave with one or
more mechanisms that satisfy those specifications. Although history* demonstrates that

* For an excellent short history of the kinematics of mechanisms, see [4, Chap. 1].
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Figure 1.10 (a) Bistable mechanism; (b) true toggle mechanism.

many attempts have been made, few have been particularly successful in devising a
satisfactory classification system. In view of the fact that the purpose of a mechanism
is the transformation of motion, we will follow Torfason’s lead [9] and classify
mechanisms according to the type of motion transformation. In total, Torfason displays 262
mechanisms, each of which can have a variety of dimensions. His categories are as follows:

Snap-Action Mechanisms  Snap-action, toggle, or flip-flop mechanisms are used for
switches, clamps, or fasteners. Torfason also includes spring clips and circuit breakers.
Fig. 1.10 shows examples of bistable and true toggle mechanisms.

Linear Actuators Linear actuators include stationary screws with traveling nuts,
stationary nuts with traveling screws, and single-acting and double-acting hydraulic and
pneumatic cylinders.

Fine Adjustments Fine adjustments may be obtained with screws, including differen-
tial screws, worm gearing, wedges, levers, levers in series, and various motion-adjusting
mechanisms. For the differential screw shown in Fig. 1.11, you should be able to determine
that the translation of the carriage resulting from one turn of the handle is 0.0069 in to the
left (see Prob. 1.17).

3 Figure 1.11 Differential
1 16NF

SCrew.
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Clamping Mechanisms  Typical clamping mechanisms are the C-clamp, the wood
worker’s screw clamp, cam-actuated and lever-actuated clamps, vises, presses (such as the
toggle press shown in Fig. 1.10b), collets, and stamp mills.

Locational Devices Torfason [9] shows 15 locational mechanisms. These are usually
self-centering and locate either axially or angularly using springs and detents.

Ratchets and Escapements There are many different forms of ratchets and escape-
ments, some quite clever. They are used in locks, jacks, clockwork, and other applications
requiring some form of intermittent motion. Figure 1.12 shows four typical applications.

The ratchet in Fig. 1.12a allows only one direction of rotation of wheel 2. Pawl 3 is
held against the wheel by gravity or by a spring. A similar arrangement is used for lifting
jacks, which then employ a toothed rack for rectilinear motion.

Figure 1.12b is an escapement used for rotary adjustments.

Graham’s escapement shown in Fig. 1.12c¢ is used to regulate the movement of
clockwork. Anchor 3 drives a pendulum whose oscillating motion is caused by the two
clicks engaging wheel 2. One is a push click, the other is a pull click. The lifting and
engaging of each click caused by oscillation of the pendulum results in a wheel motion

Figure 1.12 Ratchets and escapements.
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Figure 1.13 Indexing
mechanisms.

(a)

()

that, at the same time, presses each respective click and adds a gentle force to the motion
of the pendulum.

The escapement shown in Fig. 1.12d has a control wheel, 2, that may rotate
continuously to allow wheel 3 to be driven (by another source) in either direction.

Indexing Mechanisms  The indexer shown in Fig. 1.13a uses standard gear teeth; for
light loads, pins can be used in the input wheel 2 with corresponding slots in wheel 3, but
neither form should be used if the shaft inertias are large.

Figure 1.13b shows a Geneva-wheel, sometimes called a “Maltese-cross,” indexer.
Three or more slots may be used in the driven link, 2, which can be attached to, or geared
to, the output to be indexed. High speeds and large inertias may cause problems with this
indexer.

Toothless ratchet 5 in Fig. 1.13¢ is driven by the oscillating crank, 2, of variable throw.
Note the similarity of this indexing mechanism to the ratchet of Fig. 1.12a.

Torfason [9] lists nine different indexing mechanisms, and many variations are
possible.

Swinging or Rocking Mechanisms  The category of swinging or rocking mechanisms
is often termed oscillators; in each case, the output rocks or swings through an angle that
is generally less than 360°. However, the output shaft can be geared to a successor shaft to
produce a larger angle of oscillation.

Figure 1.14a is a mechanism consisting of a rotating crank 2 and a coupler 3 containing
a rack, which meshes with output gear 4 to produce the oscillating motion.
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(b) !

/J_ (d)

Figure 1.14 Oscillating mechanisms.

In Fig. 1.14b, crank 2 drives link 3, which slides on output link 4, producing a rocking
motion. This mechanism is described as a quick-return mechanism, because crank 2 rotates
through a larger angle on the forward stroke of link 4 than on the return stroke.

Figure 1.14c¢ is a four-bar linkage called the crank-rocker linkage (Sec. 1.9). Crank 2
drives rocker 4 through the coupler 3. Of course, link 1 is the frame. The characteristics of
the rocking motion depend on the dimensions of the links and the placement of the frame
pivots.

Figure 1.14d shows a cam-and-follower mechanism, in which the rotating link 2,
called the cam, drives link 3, called the follower, in a rocking motion. An endless variety
of cam-and-follower mechanisms are possible, many of which are discussed in Chap. 6.
In each case, the cam can be designed to produce an output motion with the desired
characteristics.

Reciprocating Mechanisms Repeating straight-line motion is commonly obtained
using either a pneumatic or hydraulic cylinder, a stationary screw with a traveling nut,
a rectilinear drive using a reversible motor or reversing gears, or a cam-and-follower
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p Figure 1.15 Reciprocating linkages.

mechanism. A variety of typical linkages for obtaining reciprocating motion are shown
in Figs. 1.15 and 1.16 [5].

The offset slider-crank linkage shown in Fig. 1.15a has kinematic characteristics that
differ from the in-line (or on-center) slider-crank, shown in Fig. 1.3b. If the length of
connecting rod 3 is long compared to the length of crank 2, then the resulting motion is
nearly harmonic. Exact harmonic motion can be obtained from link 4 of the Scotch-yoke
linkage shown in Fig. 1.15b.

The six-bar linkage shown in Fig. 1.15¢ is often called the shaper linkage, after the
name of the machine tool in which it is used. Note that it is obtained from Fig. 1.14b by
adding coupler 5 and slider 6. The stroke of the slider has a quick-return characteristic.

Figure 1.15d shows another version of the shaper linkage, which is termed the
Whitworth quick-return linkage. The linkage is presented in an upside-down posture to
illustrate its similarity to Fig. 1.15c¢.

Another example of a six-bar linkage is the Wanzer needle-bar linkage [5] shown in
Fig. 1.16.

Figure 1.17a shows a six-bar linkage derived from the crank-rocker linkage of
Fig. 1.14c by expanding coupler 3 and adding coupler 5 and slider 6. Coupler point C
should be located to produce the desired motion characteristic for slider 6.

A crank-driven toggle linkage is shown in Fig. 1.17b. With this linkage, a high
mechanical advantage is obtained at one end of the stroke of slider 6. (For a detailed
discussion of the mechanical advantage of a mechanism, see Secs. 1.10 and 3.20).
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Figure 1.16 Wanzer needle-bar linkage.
(Richard Mott Wanzer, 1812—-1900).

p Figure 1.17 Additional six-bar reciprocating linkages.

In many applications, mechanisms are used to perform repetitive operations, such as
pushing parts along an assembly line, clamping parts together while they are welded, or
folding cardboard boxes in an automated packaging machine. In such applications it is
often desirable to use a constant-speed motor; this leads us to a discussion of Grashof’s
law in Sec. 1.9. In addition, however, we should give some consideration to the power and
timing requirements.

In such repetitive operations, there is usually a part of the cycle when the mechanism
is under load, called the advance or working stroke, and a part of the cycle, called the return
stroke, when the mechanism is not working but simply returning to repeat the operation.
For example, consider the offset slider-crank linkage shown in Fig. 1.15a. Work may be
required to overcome the load, F, while the piston moves to the right from position C; to
position C; but not during its return to position Cy, since the load may have been removed.
In such situations, in order to keep the power requirement of the motor to a minimum and
to avoid wasting valuable time, it is desirable to design a mechanism so that the piston
moves much faster through the return stroke than it does during the advance (or working)
stroke—that is, to use a higher portion of the cycle time for doing work than for returning.
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A measure of the suitability of a mechanism from this viewpoint, called the
advance-to-return ratio is defined as

cycle fraction for advance stroke
= . : (@)
cycle fraction for return stroke
A mechanism for which the value of Q is high is more desirable for such repetitive
operations than one in which the value of Q is lower. Certainly, any such operation would
call for a mechanism for which Q is greater than unity. Because of this, mechanisms with
Q greater than unity are called quick-return mechanisms.

As shown in Fig. 1.15a, the first step is to determine the two crank postures, ABj
and AB;, that mark the beginning and the end of the working stroke. Next, noting the
direction of rotation of the crank, we determine the crank angle « traveled through during
the advance stroke and the remaining crank angle g of the return stroke. Then,

cycle fraction for advance stroke = Zi’ (b)
T
and
cycle fraction for return stroke = Zﬁ ()
T

Finally, substituting Eqgs. (b) and (c¢) into Eq. (a), the advance-to-return ratio can be
written as

0=" (1.5)
5 .
Note that the advance-to-return ratio depends only on geometry (that is, on changes in
the crank position); this ratio does not depend on the amount of work being done or on the
speed of the driving motor. It is a kinematic property of the mechanism itself. Therefore,
this ratio can be used for either design or analysis totally by graphic constructions. The
following two examples illustrate applications in design.

EXAMPLE 1.4

The rocker of a crank-rocker four-bar linkage is required to have a length of 4 in and swing
through a total angle of 45°. Also, the advance-to-return ratio of the linkage is required to
be 2.0. Determine a suitable set of link lengths for the remaining three links.

SOLUTION
Equation (1.5) requires
0=2=20 (1)
B
where
a=180°+¢ 2
and

B =180° — . 3)
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Substituting Egs. (2) and (3) into Eq. (1) allows us to solve for

$=60°, a=240°, and B=120°.

Now, referring to Fig. 1.18, we apply the following graphic procedure:

(@)

(b)
()

(d)

(e)

Draw the rocker (r4 = 4.0 in) to a suitable scale in its two extreme postures; that
is, show the swing angle of the rocker of 45°. Label the ground pivot O4, and
label pin B in the two positions By and B.

Through point By, draw an arbitrary line (labeled the X-line). Through B;, draw
a line parallel to the X-line.

Measure the angle ¢ = 60° counterclockwise from the X-line through point B .
The intersection of this line with the line parallel to the X-line is the required
position of the input crank pivot O;.

The length 0204 of the ground link can be measured from the drawing—that is

r1 = 1.50 in. Ans.

The lengths of crank r, and the coupler r3 can be determined from the
measurements

OBy =r3+rn=350in and OBy =r3—r, =2.50in.
That is,

r =0.5(02B1 — 02B2) =0.50in and r3=0.5(02B>+ 0,B;) =3.00 in.
Ans.

The solution for the synthesized four-bar linkage is shown in Fig. 1.18.

Figure 1.18 Synthesized
four-bar linkage.
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In the two limiting positions, By and Bj, the output is momentarily stopped, and, for
this reason, these two postures of the linkage are referred to as dead-center postures (see
Prob. 1.35). Also, note that this problem is an example of two-posture synthesis. For a
detailed discussion on the general problems of two-, three-, and four-posture synthesis, see
Chap. 9.

EXAMPLE 1.5

Determine a suitable set of link lengths for a slider-crank linkage such that the stroke is
2.50 in and the advance-to-return ratio is 1.4.

SOLUTION
Equation (1.5) requires

o

0=— =140, (D
where

a=180°+¢ @
and

B =180° — . 3)

Substituting Eqgs. (2) and (3) into Eq. (1) allows us to solve for
¢=30°, «=210°, and B =150°.
Now, referring to Fig. 1.19, we apply the following graphic procedure:

(a) Draw the stroke (shown horizontal) of 2.50 in of the slider-crank linkage to a
suitable scale. Label pin B in its two extreme positions By and B5 .

(b) Through point B,, draw an arbitrary line (labeled the X-line). Through point By,
draw a line parallel to the X-line.

(c) Measure the angle ¢ = 30° clockwise from the X-line. The intersection of this
line with the line parallel to the X-line is the ground pivot O».

(d) The length of the ground link—that is, the offset or eccentricity (the perpendicular
distance from the ground pivot O; to the line of travel of the slider)—can be
measured from the drawing. That is,

ry =2.17 in. Ans.
(e) The lengths of crank r; and coupler 73 can be determined from the measurements
OBy =r3+rn=433in and OBy =r3—r,=2.50Iin.
That is,

rn =0.5(02B1 — 02B2) =0.92in and r3=0.5(02B>+ OB;) =3.42in.
Ans.
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Figure 1.19 Synthesized slider-crank linkage.

The solution of the synthesized slider-crank linkage is shown in Fig. 1.19.

Note that there is a proper and an improper direction of rotation for the input of such
a device. If the direction of crank rotation were reversed in the example of Fig. 1.19, the
roles of & and 8 would also be reversed, and the advance-to-return ratio would be less than
1.0. Thus, the motor must rotate clockwise for this mechanism to have the quick-return
property.

Other mechanisms with quick-return characteristics are the shaper linkage, shown in
Fig. 1.15¢, and the Whitworth linkage, shown in Fig. 1.15d. The synthesis of a quick-return
mechanism, as well as mechanisms with other properties, is discused in detail in Chap. 9.

Reversing Mechanisms When a mechanism capable of delivering output rotation in
either direction is desired, some form of reversing mechanism is required. Many such
devices make use of a two-way clutch that connects the output shaft to either of two
driveshafts turning in opposite directions. This method is used in both gear and belt drives
and does not require that the drive be stopped to change direction. Gear-shift devices, as in
automotive transmissions, are also in common use.

Couplings and Connectors Couplings and connectors are used to transmit motion
between coaxial, parallel, intersecting, or skewed shafts. Gears of one kind or another can
be used for any of these situations. These are discussed in Chaps. 7 and 8.

Flat belts can be used to transmit motion between parallel shafts. They can also be used
between intersecting or skewed shafts if guide pulleys are used, as shown in Fig. 1.20a.
When parallel shafts are involved, the belts can be open or crossed, depending on the
direction of rotation desired.

Figure 1.20b shows a drag-link (also referred to as a double-crank) four-bar linkage
used to transmit rotary motion between parallel shafts. Here crank 2 is the driver and crank
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Figure 1.20 Two-shaft coupling mechanisms.

4 is the output. This is a very interesting linkage; you should try to construct one using
cardboard strips and thumbtacks for joints to observe its motion. Can you devise a working
model that allows complete rotation of both links 2 and 4 (see Prob. 1.14)?

The Reuleaux coupling, shown in Fig. 1.21a, for intersecting shafts is recommended
only for light loads. The Hooke joint, shown in Fig. 1.21b, is also used for intersecting
shafts. However, this joint can withstand heavy loads and is commonly used with a
driveshaft in rear-wheel-drive vehicles. It is customary to use two of these joints in series
for connecting parallel shafts.

Sliding Connectors  Sliding connectors are used when one slider (the input) is to drive
another slider (the output). The usual problem is that the two sliders operate in the same
plane but in different directions. The possible solutions are:

()

Figure 1.21 Coupling mechanisms for intersecting shafts.
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1. Arigid link pivoted at each end to a slider.

2. A belt or chain connecting the two sliders with the use of a guide pulley or
sprocket.

3. Rack gear teeth cut on each slider and the connection completed using one or
more gears.

4. A flexible cable connector.

Stop, Pause, and Hesitation Mechanisms 1In an automotive engine a valve must
open, remain open for a short period of time, and then close. A conveyor line may need
to halt for an interval of time while an operation is being performed and then continue
its motion. Many similar requirements occur in the design of machines. Torfason [9]
classifies these as stop-and-dwell, stop-and-return, stop-and-advance, and so on. Such
requirements can often be met using cam-and-follower mechanisms (Chap. 6), indexing
mechanisms, including those of Fig. 1.13, ratchets, linkages at the limits of their motion,
and gear-and-clutch mechanisms.

The six-bar linkage of Fig. 1.22 is a clever method to obtain a rocking motion (of
link 6) containing a dwell. This linkage, an extension of the four-bar linkage, consisting of
frame 1, crank 2, coupler 3, and rocker 4, can be designed such that point C on the coupler
generates the curve shown by dashed lines. A portion of this curve will then fit closely to a
circular arc whose radius is equal to the length of link 5—that is, distance DC. Thus, when
point C traverses this portion of the coupler curve, link 6, the output rocker, is stationary.

Curve Generators  The connecting rod, or coupler, of a planar four-bar linkage may be
imagined as an infinite plane extending in all directions but pin-connected to the input and
output cranks. Then, during motion of the linkage, any point attached to the plane of the
coupler generates a path with respect to the fixed link; this path is called a coupler curve.
Two of these paths, namely those generated by the pin connectors of the coupler, are true
circles with centers at the two fixed pivots. However, other points can be found that trace
much more complex curves.

Figure 1.22 Six-bar
stop-and-dwell linkage.
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ANALYSIS OF THE FOUR BAR LINKAGE
J.A.Hrones and G.L. Nelson

. . . . . . . . .

p Figure 1.23 A set of coupler curves [6].

One of the best sources of coupler curves for the four-bar linkage is the Hrones and
Nelson atlas [6]. This book consists of a set of 11 in x 17 in drawings containing over
7,000 coupler curves of crank-rocker linkages. Figure 1.23 is a reproduction of a typical
page of this atlas (by permission of the publishers). In each case, the crank has unit length,
and the lengths of the remaining links vary from page to page to produce the different
combinations. On each page a number of different coupler points are chosen, and their
coupler curves are shown. This atlas of coupler curves has proven to be invaluable to the
designer who needs a linkage to generate a curve with specified characteristics.

The algebraic equation of a four-bar linkage coupler curve is, in general, a sixth-order
polynomial [1]; thus, it is possible to find coupler curves with a wide variety of shapes and
many interesting features. Some coupler curves have sections that are nearly straight line
segments; others have almost exact circular arc segments; still others have one or more
cusps or cross over themselves like a figure eight. Therefore, it is often not necessary to
use a mechanism with a large number of links to obtain a complex motion of a coupler
point.

Yet the complexity of the coupler-curve equation is also a hinderance; it means that
hand-calculation methods can become very cumbersome. Thus, over the years, many
mechanisms have been designed by strictly intuitive procedures and proven with cardboard
models, without the use of kinematic principles or procedures. Until quite recently,
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those techniques that did offer a rational approach have been graphic, avoiding tedious
computations. Finally, with the availability of digital computers, and particularaly with
computer graphics, useful design methods are now emerging that can deal directly with
the complex calculations required without burdening the designer with the computational
drudgery (Sec. 10.9 has details on some of these).

One of the more curious and interesting facts about the coupler-curve equation is that
the same curve can always be generated by three different four-bar linkages. These are
called cognate linkages, and the theory is developed in Sec. 9.10.

Straight-Line Generators 1In the late 17th century, before the development of the
milling machine, it was extremely difficult to machine straight, flat surfaces. For this
reason, good prismatic joints with close clearances were not available. During that era,
much thought was given to the problem of attaining a straight line as a part of the coupler
curve of a linkage having only revolute connections. Probably the best-known result of this
search is the straight-line mechanism developed by Watt for guiding the piston of early
steam engines. Figure 1.24a shows a four-bar linkage, known as Watt’s linkage, which
generates an approximate straight line as a part of its coupler curve. Although the coupler
point (tracing point P) does not generate an exact straight line, a good approximation is
achieved over a considerable distance of travel.

Another four-bar linkage in which the tracing point P generates an approximate
straight-line coupler-curve segment is Roberts’ linkage (Fig. 1.24b). The dashed lines
BP and CP in the figure indicate that the linkage is defined by forming three congruent
isosceles triangles; thus, BC = AP = PD =AD/2.

®)

(d)

Figure 1.24 (a) Watt’s linkage; (b) Roberts’ linkage; (c¢) Chebychev linkage; (d) Peaucillier inversor.
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Figure 1.25 AB = AP = 0;A. Figure 1.26 Pantograph linkage.

The tracing point P (the midpoint of coupler link BC) of the Chebychev linkage shown
in Fig. 1.24¢ also generates an approximate straight line. The linkage forms a 3:4:5 triangle
when link 4 is in the vertical posture, as shown by the dashed lines; thus, DB’ = 3 units,
AD = 4 units, and AB’ = 5 units. Note that AB = DC,DC’ = 5 units, and tracing point P’
is the midpoint of dashed line B'C’. Also, note that DP'C forms another 3:4:5 triangle, and
hence the line containing P and P’ is parallel to the ground link AD.

A linkage that generates an exact straight line is the Peaucillier inversor shown in
Fig. 1.24d. The conditions describing its geometry are that BC = BP = EC = EP and
AB = AE such that, by symmetry, points A, C, and P always lie on a straight line passing
through A. Under these conditions AC - AP = k, a constant, and the curves generated by C
and P are said to be inverses of each other. If we place the other fixed pivot D such that
AD = CD, then point C must trace a circular arc while point P follows an exact straight
line. Another interesting property is that if AD is not equal to CD, then point P traces a
true circular arc of very large radius. This was the first straight-line generator, and it was
important in the development of the steam engine.

Figure 1.25 shows another linkage that generates exact straight-line motion: the
Scott-Russell linkage. However, note that it employs a slider.

The pantograph shown in Fig. 1.26 is used to trace figures at a larger or smaller size. If,
for example, point P traces a map, then a pen at Q will draw a similar map at a smaller scale.
The dimensions 0»A, AC, CB, and BO3 must conform to an equal-sided parallelogram.

Torfason [9] also includes robots, speed-changing devices, computing mechanisms,
function generators, loading mechanisms, and transportation devices in his classification.
Many of these utilize arrangements of mechanisms already presented. Others appear in
some of the chapters to follow.

1.8 KINEMATIC INVERSION

In Sec. 1.4 we noted that every mechanism has a fixed link called the frame. When different
links are chosen as the frame, the relative motions between the various links are not altered,
but their absolute motions (those measured with respect to the frame) may be changed
significantly. The process of choosing different links for the frame is known as kinematic
inversion. In an n-link mechanism, choosing each link in turn as the frame yields n distinct
kinematic inversions—that is, n different mechanisms.
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Figure 1.27 Four inversions of the slider-crank linkage.

For illustration, consider the slider-crank linkage. Figure 1.27a shows the first
inversion, which is found in most internal combustion engines, where the frame is the
cylinder block, link 1. Link 4, the piston, is driven by the expanding gases, and this
movement provides the input. Link 3, the connecting rod, connects link 2, the crank, which
rotates as the driven output. By reversing the roles of the input and output, this linkage can
be used as a compressor.

Figure 1.27b shows another kinematic inversion, where link 2 is stationary. Link 1,
formerly the frame, now rotates about revolute A. This inversion of the slider-crank linkage
was the basis of the rotary engine found in many early aircraft.

Yet another inversion is shown in Fig. 1.27¢; it has link 3, formerly the connecting rod,
as the fixed link. This linkage was used to drive the wheels of early steam locomotives, with
link 2 being attached to a wheel.

The final inversion, shown in Fig. 1.27d, has the piston, link 4, stationary. Although
it is not found in engines, by rotating the figure 90° clockwise, this linkage is recognized
as part of a garden water pump. Note in this inversion that the prismatic joint connecting
links 1 and 4 is also inverted—that is, the “inside” and “outside” elements of the joint are
reversed.

1.9 GRASHOF'S LAW

A very important consideration when designing a mechanism to be driven by a motor,
obviously, is to ensure that the input crank can make a complete revolution. Mechanisms
in which no link can make a complete revolution would not be useful in such applications.
For the four-bar linkage, there is a very simple test of whether this is the case.

Grashof’s law states that, for a planar four-bar linkage, the sum of the shortest and
longest link lengths cannot be greater than the sum of the remaining two link lengths if
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there is to be continuous relative rotation between two links. This is shown in Fig. 1.28,
where the longest link has length /, the shortest link has length s, and the other two links
have lengths p and g. In this notation, Grashof’s law states that one of the links, in particular
the shortest link, will rotate continuously relative to the other three links if and only if

s+I1<p+q. (1.6)

If this inequality is not satisfied, no link will make a complete revolution relative to another.

Attention is called to the fact that nothing in Grashof’s law specifies the order in
which the links are connected or which link of the four-bar linkage is fixed. We are free,
therefore, to fix any of the four links. When we do so, we create variations of the four-bar
linkage, four of which are shown in Fig. 1.28. All of these fit Grashof’s law, and, in each,
link s makes a complete revolution relative to the other links. The different variations are
distinguished by the location of link s relative to the fixed link.

If the shortest link, s, is adjacent to the fixed link, as shown in Fig. 1.28a and
Fig. 1.28b, we obtain what is called a crank-rocker linkage. Link s is, of course, the crank,
since it is able to rotate continuously, and link p, which can only oscillate between limits,
is the rocker.

The drag-link (or double-crank linkage) is obtained by fixing the shortest link, s,
as the frame. In this variation, shown in Fig. 1.28¢, both links adjacent to s can rotate
continuously, and both are properly described as cranks; the shorter of the two is generally
used as the input. Although this is a very common linkage, you will find it an interesting
challenge to devise a practical working model that can operate through the full cycle.

By fixing the link opposite to link s, we obtain the final variation, the double-rocker
linkage of Fig. 1.28d. Note that although link s is able to make a complete revolution,
neither link adjacent to the frame can do so; both must oscillate between limits and,
therefore, are rockers.

In each of the variations shown, the shortest link, s, is adjacent to the longest link, /.
However, exactly the same types of linkages will occur if the longest link, /, is opposite the
shortest link, s; you should demonstrate this for your own satisfaction.

Reuleaux approaches the problem somewhat differently but, of course, obtains the
same results. In his approach, and using Fig. 1.29, the links are labeled

s the crank, p the lever,
[ the coupler, ¢ the frame,

where [ need not be the longest link. Then the following conditions apply:

s+14+p=>gq, (1.7a)
s+1l—p<gq, (1.7b)
s+q+p=>1, (1.7¢)
s+qg—p<lL (1.7d)

If these four conditions are not satisfied, then the results are as illustrated in Fig. 1.29.
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Figure 1.29 (a) Eq. (1.7a); s+ [+ p < g, and the links cannot be connected; (b) Eq. (1.7b); s+ —p > ¢, and s is incapable
of rotation; (c¢) Eq. (1.7¢); s+ ¢+ p </, and the links cannot be connected; (d) Eq. (1.7d); s4+¢q — p > [, and s is incapable
of rotation.
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EXAMPLE 1.6

Is the linkage shown in Fig. 1.30 a crank-rocker, a double-rocker, or a drag-link four-bar
linkage?

Figure 1.30 p=41in,[=61n,
g= in,and s =3 in.

SOLUTION
Substituting the link lengths into Eq. (1.6) gives

3in+6in<4in+5in
or
9in <9in.

Therefore, the linkage satisfies Grashof’s law; that is, the linkage is a Grashof four-bar
linkage. Since the shortest link is the frame, the two links adjacent to the shortest link can
both rotate continuously (Fig. 1.28¢), and both are properly described as cranks. Therefore,
Fig. 1.30 shows a drag-link linkage. Ans.

1.10 MECHANICAL ADVANTAGE

In general, the mechanical advantage of a mechanism is defined as the ratio of the force
or torque exerted by the driven link to the necessary force or torque required at the driver.
With the widespread use of the four-bar linkage, a few remarks are in order here that will
help us judge the quality of such a linkage for its intended application.

Consider the crank-rocker four-bar linkage shown in Fig. 1.31, where link 2 is the
driver and link 4 is the follower.

In Sec. 3.19, we will show that the mechanical advantage of the four-bar linkage can
be written as

_ RCD sin Y

MA = ——.
Rpasin B

(1.8)
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Figure 1.31 Crank-rocker four-bar linkage.

Note that this is directly proportional to the sine of the angle y between the coupler and
the follower, and is inversely proportional to the sine of angle 8 between the coupler
and the driver. Of course, both these angles, and therefore the mechanical advantage, are
continuously changing as the linkage moves.

When the sine of angle 8 becomes zero, the mechanical advantage becomes infinite;
thus, at such a posture, only a small input torque is necessary to produce a very large output
torque load. This is the case when the driver AB is directly in line with the coupler BC as
shown in Fig. 1.31; it occurs when the crank is in posture AB; and again when the crank
is in posture AB4. Note that these also define the extreme postures of travel of the rocker
DCj and DC4. When the four-bar linkage is in either of these postures, the mechanical
advantage is infinite—that is, § = 0° or 8 = 180°—and the linkage is said to be in a toggle
(or limit) posture.

The angle y between the coupler and the follower is called the transmission angle. As
this angle becomes smaller, the mechanical advantage decreases and even a small amount
of friction might cause the mechanism to lock or jam. A common rule of thumb is that a
four-bar linkage should not be used to overcome a load in a region where the transmission
angle is less than, say, 45° or 50°. The extreme values of the transmission angle occur when
crank AB lies along the line of the frame, AD. The transmission angle is minimal when the
crank is in posture AB, and is maximal when the crank is in posture AB3 (see Fig. 1.31).
Because of the ease with which it can be visually inspected, the transmission angle has
become a commonly accepted measure of the quality of a design of the four-bar linkage.
A double-rocker four-bar linkage has a dead-center posture when links 3 and 4 lie along a
straight line. In a dead-center posture, the transmission angle is y = 0° or y = 180°, and
the linkage is locked. The designer must either avoid such a posture or provide an external
force, such as a spring, to unlock the linkage.
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EXAMPLE 1.7

Determine the mechanical advantage of the four-bar linkage in the posture shown in
Fig. 1.32.

Figure 1.32

Rpa =180 mm, Ry =
60 mm, Rcp =210 mm,
and Rcp = 120 mm.

SOLUTION

Angles y and g for Eq. (1.8) are as shown in Fig. 1.33 and can be obtained from
trigonometry.

Figure 1.33 Angles y and .

Using the law of cosines,

Rpg = v/ (60 mm)2 + (180 mm)2 — 2(60 mm) (180 mm)cos60° = 158.745 mm. (1)

Also, the angles

cos—! [(158.745 mm)2 — (210 mm)? — (120 mm)?
‘}/ =

} = 48.65°, 2)
—2(210 mm) (120 mm)
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and

(120 mm)? — (210 mm)? — (158.745 mm)?
—2(210 mm)(158.745 mm)

¢ = cos™! |: :| =34.57°. 3)

Finally, the sum of the angles

(180 mm)?2 — (60 mm)? — (158.745 mm)?
—2(60 mm)(158.745 mm)

B+¢=cos! [ } =100.90°. 4)

Subtracting Eq. (3) from Eq. (4) gives
B =100.90° —34.57° = 66.33°. 5)

Then, substituting Egs. (2) and (5) into Eq. (1.8), the mechanical advantage of the four-bar
linkage in the given posture is

_ (120 mm) sin48.65°

MA = -
(60 mm) sin66.33°

=1.64. Ans.

Note that mechanical advantage, toggle posture, transmission angle, and dead-center
posture depend on the choice of the driver and driven links. For example, in Fig. 1.31,
if link 4 is used as the driver and link 2 as the driven link, then the roles of y and g are
reversed. In this case, the linkage has no toggle posture, and its mechanical advantage
becomes zero when link 2 is in posture AB; or AB4, because the transmission angle is
zero. These and other methods of rating the suitability of the four-bar linkage or other
mechanisms are discussed more thoroughly in Sec. 3.19.
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PROBLEMS

1.1

1.2

Sketch at least six different examples of the use of
a planar four-bar linkage in practice. These can be
found in the workshop, in domestic appliances, on
vehicles, on agricultural machines, and so on.

The link lengths of a planar four-bar linkage are 1
in, 3 in, 5 in, and 5 in. Assemble the links in all pos-
sible combinations and sketch the four inversions
of each. Do these linkages satisfy Grashof’s law?
Describe each inversion by name (for example, a
crank-rocker linkage or a drag-link linkage).

A crank-rocker linkage has a 100-mm frame, a
25-mm crank, a 90-mm coupler, and a 75-mm
rocker. Draw the linkage and find the maximum and
minimum values of the transmission angle. Locate
both toggle postures and record the corresponding
crank angles and transmission angles.

(a)

(@]

Cylinders roll
without slipping

Figure P1.5

1.4 Plot the complete path of coupler point C.

/\I%N

Figure P1.4

1.5  Find the mobility of each mechanism.

()

(d)




1.6 Use the Kutzbach criterion to determine the

1.7

t1.9

mobility of the mechanism.

1
Q

1

Figure P1.6

Sketch a planar linkage with only revolute joints
and a mobility of m = 1 that contains a quaternary
link. How many distinct variations of this linkage
can you find?

Use the Kutzbach criterion to detemine the mobil-
ity of the mechanism. Clearly number each link,
and label the lower pairs (j; joints) and higher
pairs (j» joints).

©)

Figure P1.8

Determine the number of links, the number of
lower pairs, and the number of higher pairs. Use

Problems 41

the Kutzbach criterion to determine the mobility
of the mechanism. Is the answer correct? Briefly
explain.

Figure P1.9

1.10  Use the Kutzbach criterion to detemine the mobil-

ity of the mechanism. Clearly number each link,
and label the lower pairs and higher pairs.

Figure P1.10

Determine the number of links, the number of
lower pairs, and the number of higher pairs. Treat
rolling contact to mean rolling with no slipping.
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Using the Kutzbach criterion, determine the
mobility. Is the answer correct? Briefly explain.

Figure P1.11

1.12  Does the Kutzbach criterion provide the correct
result for this mechanism? Briefly explain why or

why not.

C_©o&

Figure P1.12

1.13

1.14
t1.15

t1.16

t1.18

t1.19

1.20

The mobility of the mechanism is m = 1. Use
the Kutzbach criterion to determine the number
of lower pairs and the number of higher pairs. Is
the wheel rolling without slipping, or rolling and
slipping, at point A on the wall?

Figure P1.13

Devise a practical working model of the drag-link
linkage.

Find the advance-to-return ratio of the linkage of
Prob. 1.3.

Plot the complete coupler curve of the Roberts’
linkage shown in Fig. 1.24b. Use AB = CD =
AD=2.5inand BC = 1.25 in.

If the handle of the differential screw in Fig. 1.11
is turned 15 revolutions clockwise, how far and in
what direction does the carriage move?

Show how the linkage of Fig. 1.15b can be used
to generate a sine wave.

Devise a crank-rocker four-bar linkage, as in
Fig. 1.14¢, having a rocker angle of 60°. The
rocker length is to be 0.50 m.

A crank-rocker four-bar linkage is required to
have an advance-to-return ratio Q = 1.2. The
rocker is to have a length of 2.5 in and oscillate
through a total angle of 60°. Determine a suitable
set of link lengths for the remaining three links of
the four-bar linkage.
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1.21  Determine the mobility of the mechanism. Number 1.23  Determine the mobility of the mechanism. Number
each link and label the lower pairs and the higher each link and label the lower pairs and the higher
pairs. Identify a suitable input, or inputs, for the pairs. Identify a suitable input, or inputs, for the
mechanism. mechanism.

154

\

Rolling contact

Figure P1.21 s
Figure P1.23

1.22  Determine the mobility of the mechanism. Number
each link and label the lower pairs and the higher

pairs. Identify a suitable input, or inputs, for the 1.24  Determine the mobility of the mechanism. Number

mechanism. each link and label the lower pairs and the higher
pairs. Identify a suitable input, or inputs, for the
mechanism.

Rolling

without slip

Figure P1.22
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Figure P1.24

1.25  Determine the mobility of the mechanism. Number
each link and label the lower pairs and the higher
pairs. Identify a suitable input, or inputs, for the
mechanism.

Rolling
contact

Figure P1.25

Rolling contact

Determine the mobility of the mechanism. Number
each link and label the lower pairs and the higher
pairs. Identify a suitable input, or inputs, for the
mechanism.

Figure P1.26



1.27

Determine the mechanical advantage of the
four-bar linkage in the posture shown.

Figure P1.27 0,04 = 120 mm, OA = 60 mm,
AB =100 mm, and O4B = 130 mm.

1.28

Determine the mobility of the mechanism. Number
each link and label the lower pairs and the higher
pairs. Identify a suitable input, or inputs, for the
mechanism.

©

Figure P1.28

1.29

Problems 45

Determine the mobility of the mechanism. Number
each link and label the lower pairs and the higher
pairs. Identify a suitable input, or inputs, for the
mechanism.

Figure P1.29

1.30

1.31

The rocker of a crank-rocker four-bar linkage is
required to have a length of 6 in and swing through
a total angle of 30°. Also, the advance-to-return
ratio of the linkage is required to be 1.75. Deter-
mine a suitable set of link lengths for the remaining
three links.

Determine a suitable set of link lengths for a
slider-crank linkage such that the stroke will be
500 mm and the advance-to-return ratio will be 1.8.

Rolling
contact
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Determine the transmission angle and the mechani- 1.34 A crank-rocker four-bar linkage is shown in one
cal advantage of the four-bar linkage in the posture of its two toggle postures. Find 6, and 64 corre-
shown. What type of four-bar linkage is this? sponding to each toggle posture. What is the total

rocking angle of link 4? What are the transmission
angles at the extremes?

Figure P1.34 R4, = 8in, R4 =20in, Rpp, = 16in, and
Ro,0, = 16in.

Figure P1.32 R40, =20mm, Rpy =70mm,
Rpo, =90mm, and R, 0, = 60mm.

Determine the mobility of the mechanism. Number
each link and label the lower pairs and the higher
pairs. Identify a suitable input, or inputs, for the
mechanism.

Rolling contact

Slipping

Figure P1.33
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1.35 Find 6, and 64 corresponding to a dead-center determine in which direction the crank should
posture. Is there a toggle posture? rotate to provide quick return.

1.36 Determine the advance-to-return ratio for the
slider-crank linkage with the offset e. Also,

Figure P1.35 RAOZ =110 mm, RBA =100 mm, RBO4 =240 mm, and R0402 =280 mm.

Figure P1.36 Offset slider-crank linkage in the two dead-center postures.



Position, Posture, and Displacement

In analyzing motion, the first and most basic problem encountered is that of defining and
dealing with the concepts of position, posture, and displacement. Since motion can be
thought of as a time series of displacements between successive positions of a point or
postures of a body, it is important to understand exactly the meaning of the terms position
and posture. Rules or conventions will be established here to make the definitions precise.

2.1 LOCUS OF A MOVING POINT

In speaking of the position of a point, or particle, we are really answering the question:
Where is the point, or what is its location? We are speaking of something that exists in
nature, and we are considering the question of how to express this (in words or symbols or
numbers) in such a way that the meaning is clear. We soon discover that position cannot
be defined on a truly absolute basis. We must define the position of a point in terms of
some agreed-upon frame of reference (that is, some reference frame or reference coordinate
system).

Once we have agreed upon the right-handed three-dimensional coordinate system xyz
as the frame of reference, as shown in Fig. 2.1, we can say that point P is located x units
along the x axis, y units along the y axis, and z units along the z axis from the origin O.
In this statement, we see that three vitally important parts of the definition depend on the
existence of the reference coordinate system:

1. The origin O of the coordinate system provides an agreed-upon location from
which to measure the location of point P.

48
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z Figure 2.1 Right-handed
_______ three-dimensional coordinate
/ /7| system illustrating how point P
I . -
Eq---=- _/?/ P! is located algebraically.
I VAR
: .
R 1z
| i/ .
[ Lo
I
10 4 —)
: N : /x !
(0 Sy
y

2. The coordinate axes provide agreed-upon directions along which the measure-
ments are to be made; they also provide known lines and planes for the definition
and measurement of angles.

3. The unit distance along any of the axes provides a scale for quantifying distances.

These observations are not restricted to the Cartesian coordinates (x, y, z) of point P.
All three properties of the coordinate system are also necessary in defining cylindric
coordinates (r, 6, z), spheric coordinates (R, 6, ¢), or any other coordinates of point
P. The same properties are also required if point P is restricted to remain in a single plane
and a two-dimensional coordinate system is used. No matter how it is defined, the concept
of the position of a point cannot be realized without the definition of a reference coordinate
system.

The direction cosines for locating point P are defined as

X y Z
= —, = —, d = —, 21
coso R cosfB R and cosy 2 2.1

where «, B, and y are the angles measured from the positive x-, y-, and z-coordinate axes,
respectively, to the directed line OP.

One means of expressing the motion of a point, or particle, is to define its components
along the reference axes as functions of some parameter, such as time:

x=x(t), y=y@), z=z(0). 2.2)

If these relations are known, then the position of the point can be found for any time ¢. This
is the general case for the motion of a point, or particle, and is illustrated in the following
example.

EXAMPLE 2.1

Describe the motion of a particle, P whose position changes with time according to the
equations x = acos2xt, y = asin2rt, and z = bt.
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SOLUTION

Substitutng values for ¢ from 0 to 2 s gives the coordinates listed in Table 2.1. As shown in
Fig. 2.2, the particle moves with helical motion with radius a around the z axis and with a
lead of b. Note that if b = 0, then z(#) = 0, the moving particle is confined to the xy plane,
and the motion is a circle with its center at the origin.

Table 2.1 Helical Motion of a Particle

t X y z

0 a 0 0
1/4 0 a bl4
172 —a 0 b/2
3/4 0 —a 3b/4
1 0 b
5/4 0 a 5bl4
3/2 —a 0 3b/2
/4 0 —a 7bl4
2 0 2b

Figure 2.2 Helical motion of a
particle, P.

So far, we have been using the words point and particle interchangeably. Henceforth,
when the word point is used, we have in mind something that has no dimensions—that
is, something with zero length, zero width, and zero thickness. When the word particle is
used, we have in mind something whose dimensions are unimportant—that is, a material
body whose dimensions are negligible or, in other words, a body whose dimensions have
no effect on the analysis to be performed.

The successive positions of a moving point define a line or curve. This curve has
no thickness, since the point has no dimensions. However, the curve does have length,
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since the point occupies different positions as time changes. This curve, representing the
successive positions of the point, is called the path or locus of the moving point in the
reference coordinate system.

If three coordinates are necessary to describe the path of a moving point, the point is
said to have spatial motion. If the path can be described by only two coordinates—that is, if
the coordinate axes can be chosen such that one coordinate is always zero or constant—the
path lies in a single plane, and the point is said to have planar motion. Sometimes it happens
that the path of a point can be described by a single coordinate—that is, two of the spatial
position coordinates are zero or constant. In this case, the path of the point is a straight
line, and the point is said to have rectilinear motion.

In each of these three cases, it is assumed that the coordinate system is chosen so as
to obtain the least number of coordinates necessary to describe the motion of the point.
Thus, a point whose locus is a spatial curve, sometimes called a skew curve, requires three
position coordinates, a point whose locus is a planar curve requires two coordinates, and
a point whose locus is a straight line (rectilinear motion) requires only one coordinate.

2.2 POSITION OF A POINT

The physical process involved in observing the position of a point, as shown in Fig. 2.3,
implies that the observer is actually keeping track of the relative location of two points, P
and O. The observer looks at both points, performs a mental comparison, and recognizes
that point P has a certain location with respect to point O. In this determination, two
properties are noted: the distance from O to P (based on the unit distance or grid size
of the reference coordinate system), and the relative angular orientation of line OP in the
coordinate system. Note that these properties, magnitude and direction, are precisely those
required for a vector. Therefore, we define the position of a point as the vector from the
origin of a specified reference coordinate system to the point. We choose the symbol Rpp

¥y Figure 2.3 Position of a point
defined by a vector.
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to denote the vector position of point P relative to point O, which points from O to P and
is read as the position of P with respect to O.*

The coordinate system is related in a very special way to what is seen by a specific
observer. This raises the important question: What properties must this coordinate system
have to ensure that position measurements made in this system are actually those of the
observer? The key to this question is that the coordinate system must be stationary with
respect to this particular observer. To phrase this another way, the observer is always
stationary in this coordinate system. This means that if the observer moves, the coordinate
system also moves—through a rotation, a distance, or both. If points or bodies are fixed
in this coordinate system, then they always appear stationary to the observer, regardless of
what movements the observer (and the coordinate system) may execute. Their positions
with respect to the observer do not change, and hence their position vectors remain
unchanged. The actual location of the observer within the frame of reference has no
meaning because the positions of observed points are always defined with respect to the
origin of the coordinate system.

Often it is convenient to express the position vector in terms of its components along
the coordinate axes:

Rpo = Rppi+ Ryl + Rk, (2.3)
where superscripts are used to denote the direction of each component. As in the remainder

of this text, i, j, and k are used to designate unit vectors in the directions of the x-axis,
y-axis, and z-axis, respectively.

Whereas vectors are denoted throughout this text by boldface symbols, the scalar
magnitude of a vector is signified by the same symbol in italics, without boldface.

For example, the magnitude of the position vector is

Rpo = |Rpo| = vRpo -Rpo = \/(ij)o)z + (Rpp)* + (Rpp)?. (2.4)

The unit vector in the direction of Rpp is denoted by the same boldface symbol with
a caret; that is

Rpo = ——. (2.5)
PO= s

A distinction can be made between the direction of a line and the orientation of a
directed line—that is, a line that is assigned a positive or a negative sense. In general, a
vector has a magnitude, a direction, and a sense. The sense defines the positive or negative
attribute of the vector and can be used to distinguish between the direction of a vector and
its orientation.

* Note that we do not use the slash notation of some other texts; that is, Rpo # Rp/o. The slash
notation is reserved for a different meaning and is described in Sec. 2.4.
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2.3 POSITION DIFFERENCE BETWEEN TWO POINTS

We now investigate the relationship between the position vectors of two different points.
For purposes of illustration, consider points P and Q in Fig. 2.4. An observer fixed in the
xyz coordinate system would observe the positions of P and Q by comparing each with
the position of the origin O; see Eq. (2.3). The positions of the two points are defined by
vectors Rpp and Rgp. These two vectors are related by a third vector, Rpg, the position
difference to point P from point Q; that is,

RPQ =Rpo — RQ0. (2.6)

The physical interpretation of this equation is different from that of the position vector
itself. The observer is no longer defining the position of P with respect to O but is now
defining the position of P with respect to Q. Put another way, the position of P is being
defined as if it were in the x'y’7’ coordinate system with origin at Q and axes directed
parallel to the xyz coordinate system. Either point of view can be used for the interpretation,
but we should understand both of them since both are used in future developments.

Finally, it is worth remarking that having the x'y’7’ axes parallel to the x,y,z axes
is only a matter of convenience and not a necessary condition; it is only necessary
that x'y’z’ coordinate system does not rotate with respect to the xyz coordinate system.
This parallelism causes no loss of generality and it simplifies the visualization when the
coordinate systems are in motion.

Having now generalized our concept of position to include the position difference
between any two points, we reflect again on the previous discussion of the position vector
itself. We note that it is merely the special case where we agree to use the origin of
coordinates as the second point. Thus, to be consistent in notation, we have denoted the
position vector of a single point P by the dual subscripted symbol Rpp. However, in the
interest of brevity, we will henceforth agree that when the second subscript is not given
explicitly, it is understood to be the origin of the observer’s coordinate system; that is,

Rp =Rpop. 2.7
¥ Figure 2.4 Definition of the
position-difference vector
y Rpp.
_om P
e - Rpg
/f
/ Rpo
/
// Q X'
/ Rpo
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2.4 APPARENT POSITION OF A POINT

In discussing the position vector, our point of view, up to now, has been entirely that of
a single observer in a single coordinate system. However, it is sometimes desirable to
make observations in a secondary coordinate system—that is, as seen by a second observer
in a different coordinate system, and then to convert this information into the primary
coordinate system. Such a situation is shown in Fig. 2.5.

If observer 1, using the primary coordinate system xjy;z;, and observer 2, using the
secondary coordinate system x;y2z2, were asked to give the location of a point at P, they
would report different results. Observer 1 would observe the vector Rpg, , whereas observer
2 would report the position vector Rpg,. These position vectors are related by

Rpo, =Ro,0, +Rpo,. 2.8)

The difference in the positions of the two origins is not the only discrepancy between
the two observations of the position of point P. Since the two coordinate systems are not
aligned, the two observers are using different reference lines for their measurements of
direction; observer 1 measures along the x1,y1,z; axes while observer 2 measures along
the x»,y2,z2 axes.

Another very important distinction between these two observations arises when we
consider that the two coordinate systems could be moving with respect to each other.
Whereas point P may appear stationary with respect to one observer, while it is in motion
with respect to the other observer; that is, position vector Rpp, may appear constant to
observer 1 while Rpp, appears to vary as seen by observer 2.

When any of these conditions exists, it is convenient to add an additional subscript
to our notation that will distinguish which observer is being considered. When we are
considering the position of P as seen by observer 1 using coordinate system x;y;zy, we
denote this by the symbol Rpg, /1, or, since Oy is the origin for this observer,* by Rp1.
The observations made by observer 2, in coordinate system x,y»22, are denoted as Rpo, /2

Figure 2.5 Definition of the

N z
: apparent-position vector Rpo,
of point P.

0, Rpo, P

X2
R
Vs PO,
ROZOI
0, X1

21

* Note that Rpo, /1 cannot be abbreviated as Rp,1, since O3 is not the origin used by observer 1.
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or Rp/>. With this extension of the notation, Eq. (2.8) can be written as
Rp/1 =Ro,/1 +Rpp. (2.9

We refer to Rp)2 as the apparent position of point P to an observer in coordinate
system 2, and we note that it is by no means equal to the apparent position vector Rp,{
seen by observer 1.

We have now made note of certain intrinsic differences between Rp,; and Rp/, and
found Eq. (2.9) to relate them. However, there is no reason why components of either
vector must be taken along the natural axes of the observer’s coordinate system. As with
all vectors, components can be found along any desired set of axes; in applying Eq. (2.9),
we must use a single consistent set of axes during the numeric evaluation. Although
the observer in coordinate system 2 may find it natural to measure the components of
Rp/> along the x2y,2> axes, these components must be transformed into the equivalent
components along the x1y;z; axes before the addition is actually performed; that is,

Rp/1 =Ro,/1 +Rpp2
_ A Y » V4 N A yi o2 o
—Rgz/ﬂl +Rp, 1 ki + Ry, ki +R;>1/2‘1 +Rp i1 +Rp ki
= (R,

2

/1 +R;1/2)i1 + Ry, + Ri!"]/z)jl +(Ro, 1 +Rlz"lﬂ)f(1
= Rpjin + Ry i + Ry Ko

The addition can be performed equally well if all vector components are transformed
into the x»y»2z» coordinate system or, for that matter, into any other consistent coordinate
system. However, they cannot be added algebraically when they have been evaluated along
inconsistent coordinate systems. The additional subscript in the apparent-position vector,
therefore, does not specify a set of directions to be used in the evaluation of components; it
merely states the coordinate system in which the vector is defined, the coordinate system
in which the observer is stationary.

2.5 ABSOLUTE POSITION OF A POINT

In Sec. 2.2 we learned that every position vector is defined relative to a second point,
the origin of the observer’s coordinate reference frame. It is one particular case of the
position-difference vector studied in Sec. 2.3, where the reference point is the origin of
the coordinate system. Then in Sec. 2.4, we noted that, for certain problems, it may be
convenient to consider the apparent positions of a single point as viewed by more than
one observer using different coordinate systems. When a particular problem leads us to
consider multiple coordinate systems, the application will lead us to choose one of the
coordinate systems as primary. This primary coordinate system is commonly referred to
as the absolute coordinate system. Most often this is the coordinate system in which the
final result is to be expressed, and this coordinate system is usually stationary. The absolute
position of a point is defined as the apparent position of the point as seen by an observer in
the absolute coordinate system.
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Which coordinate system is designated absolute is an arbitrary decision and
unimportant in the study of kinematics. Whether the absolute coordinate system is truly
stationary is also a moot point, since, as we have seen, all position (and motion) information
is measured relative to something else; nothing is truly absolute in the strict sense. When
analyzing the kinematics of an automobile suspension, for example, it may be convenient
to choose an “absolute” coordinate system attached to the frame of the car and to study the
motion of the suspension relative to this coordinate system. It is unimportant whether the
car is moving; motions of the suspension relative to the frame are then defined as absolute.

It is a common convention to number the absolute coordinate system 1 and to use
other numbers for other coordinate systems. Since we adopt this convention throughout this
text, absolute-position vectors are those apparent-position vectors viewed by an observer
in coordinate system 1 and carry symbols of the form Rp,;. In the interest of brevity
and to reduce complexity, we will agree that when the coordinate system number is not
given explicitly, it is assumed to be 1; thus, Rp,; can be abbreviated as Rp. Similarly, the
apparent-position equation, Eq. (2.9), can be written* as

Rp= RO2 + Rp/z. (2.10)

EXAMPLE 2.2

The path of a moving point is defined by the equation y = 2x> — 28. Find the position
difference from point P to point Q on the path where R, =4 and R, = —3.

SOLUTION
The y components of the two vectors can be written as
R,=2(4)%-28=4 and R)= 2(—3)> —28 = —10.
Therefore, the two vectors can be written as
Rp=4i+4j and Rp=—3i—10j.
The position difference from point P to point Q is

Ror =Rp —Rp=—7i— 14 =15.65/ — 116.6°. Ans.

2.6 POSTURE OF A RIGID BODY

Consider the term position when applied to something other than a point. In order to specify
the location of a rigid body, for example, it is necessary to specify more than just three
coordinates. It is necessary to specify coordinates that uniquely determine the location

* Reviewing Secs. 2.1 through 2.3 will verify that the position-difference vector Rpp was treated
entirely from the absolute coordinate system and is an abbreviation of the notation Rpg /1. We have
no need to treat the completely general case Rpg2, the apparent-position-difference vector.
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of every point of the body. If all of these coordinates are grouped into a single quantity
according to some agreed-upon set of conventions, then the result describes the location of
the body.

The location and orientation of a coordinate system fixed to the body with respect
to a stationary reference, or world coordinate system, describes the posture of that body.
Posture is described in terms of the location of the origin of the coordinate system fixed to
the body as well as a description of the orientation of this coordinate system, both specified
with respect to the world coordinate system.

In the robotics literature, for example, a matrix is often used to describe the location
and orientation of a coordinate system attached to the end-effector with respect to a base or
world coordinate system (Chap. 10). In some robotics literature, the word position is used
loosely to describe the location of only a single point (such as the origin) of a coordinate
system attached to the end-effector. In such literature, the end-effector is said to have a
certain position; the orientation may then be added and the term pose is sometimes used
for the combination of the two. It should be pointed out, however, that the term posture is
more appropriate* and is utilized throughout this text.

The term posture becomes even more suitable when dealing with a mechanism or
multibody mechanical system, because we are not concerned with the position of only a
single point or the position and orientation of only a single rigid body, but we wish to
describe the positions and orientations of the assembly of rigid bodies. We use the term
posture to describe the location and orientation of a rigid body or for the configuration of
a mechanism, including both the locations and orientations of every link, all at a particular
instant in time.

The problem of posture analysis is to determine the values of all position variables
(the positions of all points and joints) and the postures of all links, given the dimensions of
each link and the value(s) of the independent variable(s)—that is, the variables chosen to
represent the degree(s) of freedom of the mechanism.

2.7 LOOP-CLOSURE EQUATIONS

Our discussion of the position-difference and apparent-position vectors has been somewhat
abstract so far, the intent being to develop a rigorous foundation for the analysis of motion
in mechanical systems. Certainly, precision is not without merit, since it is rigor that
permits science to predict a correct result despite the personal prejudices and emotions
of the analyst. However, tedious developments are not interesting unless they lead to
applications in real-life problems. Although many fundamental principles are yet to be
discovered, it may be worthwhile at this point to show the relationship between the
relative-position vectors discussed earlier and some typical linkages encountered in real
machines.

* The Webster Comprehensive Dictionary: International Edition, states under its definition of
attitude, “Synonyms: pose, position, posture. A posture is assumed without any special reference to
expression of feeling.... A pose is a position studied for artistic effect or considered with reference
to such an effect.”
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As pointed out in Chap. 1, one of the most common and most useful of all mechanisms
is the planar four-bar linkage. A practical example of this linkage is the clamping device
shown in Figs 2.6 and and 2.7. A brief study of the assembly drawing indicates that, as
the handle of the clamp is lifted, the clamping bar swings away from the clamping surface,
thereby opening the clamp. As the handle is pressed down, the clamping bar swings down
and the clamp closes again. If we wish to design such a clamp, however, things are not
quite this simple. It may be desirable, for example, for the clamp to open at a given rate
for a specified rate of lift of the handle. Such relationships are not obvious; they depend
on the exact dimensions of the various parts and the relationships, or interactions, between
the parts. To discover these relationships, a rigorous description of the essential features of
the device is required. The position-difference and apparent-position vectors can be used
to provide a description of any posture of the clamp.

Figure 2.7 shows the detail drawings of the individual links of the disassembled clamp.
Although not shown here, the detail drawings would be completely dimensioned, thus
fixing the complete geometry of each link. The assumption that each link is rigid ensures
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Figure 2.6 Assembly drawing of a hand-operated clamp.
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Figure 2.7 (a) Frame link; (b) connecting link; (c) handle; (d) clamping bar.

that the position of any point is determined precisely relative to any other point on the
same link. However, the detail drawings do not provide the interrelationships between
the individual parts—that is, the constraints that ensure each link moves relative to its
neighboring links in a prescribed fashion. These constraints are, of course, provided by
the four pinned joints. Anticipating that they will be of importance in any description of
the linkage, we label the pin centers as A, B, C, and D, and we identify the appropriate
points on link 1 as A; and Dy, those on link 2 as A> and B>, and so on. We also choose a
coordinate system fixed to each link, as shown in Fig. 2.7.

Since it is necessary to relate the positions of the successive pin centers, we define the
position-difference vectors R4p on link 1, Rgq on link 2, Rep on link 3, and Rp¢ on link
4. We note that each vector appears constant to an observer fixed in the coordinate system
of that link; the magnitude and direction of each vector can be obtained from the constant
dimensions of that link.

A vector equation can also be written to describe the constraints provided by each of
the pinned joints. Note that no matter which position or which observer is chosen, the two
points describing each pin center (for example, A} and A;) remain coincident. Thus,

Ru,4, = Rp;p, =Reyc; =Rpyp, = 0. (2.11)

Let us now develop vector equations for the absolute position of each pin center. Since
link 1 is the frame, absolute positions are those defined relative to an observer in coordinate
system 1. Point A is, of course, at the position described by R4. Next, we connect link 2
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to link 1 (mathematically) by writing
Ry, =Rs, +RY 4 =Ry (@)
Transferring to the other end of link 2, we attach link 3. Therefore,
Rz =R4 +Rp. (b)
Connecting joints C and D in the same manner, we obtain

Rc=Rp+Rcp =Ry +Rps +Rep, ()
Rp =Rc+Rpc =Ry +Rps +Rep+Rpe. (d)

Then, transferring back across link 1 to point A, we have
R4 =Rp+Rap =Rs +Rps +Rep +Rpe +Rap. (e)
Finally, rearranging Eq. (e¢), we obtain
Rps +Rep+Rpe+Rap =0. (2.12)

This important equation is called the loop-closure equation, or the vector loop
equation, for the clamp. As shown in Fig. 2.8, it expresses the fact that this linkage forms
a closed loop. Therefore, the polygon formed by the position-difference vectors through
successive links and joints must remain closed as the linkage moves. The constant lengths
of these vectors ensure that the joint centers remain separated by constant distances, the
requirement for rigid links. The rotations between successive vectors indicate the motions
within the pinned joints. Recall that the rotation of a position-difference vector shows the
rotation of a particular link. Thus, the loop-closure equation holds within it all the important
constraints that illustrate the operation of the clamp. This equation forms a mathematical
description, or model, of the linkage, and many of the later developments are based on this
loop-closure model as a starting point.

Of course, the form of the loop-closure equation depends on the type of mechanism.
This is demonstrated by another example, the Geneva mechanism or Maltese cross, shown
in Fig. 2.9. One early application of this mechanism was to prevent overwinding a watch.

Figure 2.8 Loop-closure
equation.
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Figure 2.9 Geneva mechanism or Maltese cross.

Today the mechanism finds wide use as an indexing device, for example, in a milling
machine with an automatic tool changer.

First, we define vectors for the absolute posture of each link. Although the frame of the
mechanism, link 1, is not shown in Fig. 2.9, it is an important part of the mechanism, since
it holds the two shafts, with centers A and B, a constant distance apart. Thus we define the
vector Rpyq to show this dimension. The left crank, link 3, is attached to a shaft, usually
rotating at a constant speed, and carries a roller at C, running in the slot of the Geneva
wheel. The vector Ryc has a constant magnitude equal to the crank length, the distance
from the center of the roller C to the shaft center A. The rotation of this vector relative to
link 1 is used later to describe the angular speed of the crank. The x; axis is aligned along
one slot of the wheel; thus the roller is constrained to ride along this slot. The vector R¢/2
has the same rotation as the wheel, link 2; also, the change in length, AR¢/2, demonstrates
the relative sliding motion taking place between the roller C and the slot in link 2. Note that
Rc > is equivalent to Rep)2, since point B is the origin of coordinate system 2. Therefore,
the loop-closure equation for this mechanism can be written as

Rpa +Rc2 +Rac=0. (2.13)

This form of the loop-closure equation is a valid mathematical model only while roller
C remains in the slot along the x, axis. However, this condition does not hold throughout
the entire cycle of motion. Once the roller leaves the slot, the motion is controlled by the
two mating circular arcs on links 2 and 3. A new form of the loop-closure equation rules
that portion of the cycle.

A mechanism can, of course, be composed of a multiple-loop kinematic chain.
In such a case, more than one loop-closure equation is required to completely model
the mechanism. The procedures for obtaining the loop-closure equations, however, are
identical to those shown in the previous two examples.
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2.8 GRAPHIC POSTURE ANALYSIS

When the paths of the points in the moving links of a mechanism lie in a single plane or in
parallel planes, the mechanism is called a planar mechanism. Since a substantial portion of
the study in this book deals with planar mechanisms, the development of methods specific
to the analysis of planar mechanisms is justified. As we will see in the following section, the
nature of the loop-closure equation approached analytically often leads to the solution of
simultaneous nonlinear equations and can become quite cumbersome. Yet, particularly for
planar mechanisms, the solution is usually straightforward when approached graphically.

First, let us briefly review the graphic process of vector addition. Any two known
vectors A and B can be added graphically as shown in Fig. 2.10a. After a scale is chosen,
the vectors are drawn tip to tail in either order and their vector sum C is identified:

C=A+B=B+A. (2.14)

Note that the magnitudes and orientations of both vectors A and B are used in
performing the addition, and that both the magnitude and orientation of the sum C are
found as a result.

The operation of graphic vector subtraction is shown in Fig. 2.10b, where the vectors
are drawn tip to tip in solving the equation

A=C-B. (2.15)

These graphic vector operations should be studied carefully and understood, since they
are used extensively throughout the book.

(@) /A
\
b) C
/ A=C-B
B
\

Figure 2.10 (a) Vector addition; (b) vector subtraction.
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A spatial (three-dimensional) vector equation, such as

C=D+E+B, (a)

can be divided into components along any convenient axes, leading to the three scalar
equations

C"=D"+E*'+B", CO=D"+F +B, and C‘'=D*+E*4B. (b)

Since they are components of the same vector equation, these three scalar equations must
be consistent. If the three equations are also linearly independent, they can be solved
simultaneously for three unknowns, which may be three magnitudes, three directions, or
any combination of three magnitudes and directions. For some combinations, however,
the problem is highly nonlinear and quite difficult to solve. Therefore, we shall delay
consideration of the three-dimensional case until it is needed in Chap. 10.

A planar (two-dimensional) vector equation can be solved for two unknowns—namely,
two magnitudes, two directions, or one magnitude and one direction. In general, it is
desirable to indicate the known (/) and unknown (?) quantities above each vector in an
equation like this:

LVARRNIVARRN.VARN N,
C=D+E +8B, ()

where the first symbol (,/ or ?) above each vector indicates the state of its magnitude and
the second symbol indicates the state of its direction. Another, equivalent form is

1Y vy vy oy
CC=DD+EE+BB. (d)

Either of Egs. (¢) or (d) clearly identifies the unknowns and indicates whether a solution is
possible. In Eq. (¢), vectors D and E are completely defined and can be replaced by their
sum

A=D+E, (e)
giving
C=A+B. (2.16)

Note that any planar vector equation, if it is solvable, can be reduced to a three-term
equation with two unknowns. Depending on the forms of the two unknowns, four distinct
cases occur. These cases and the corresponding unknowns are presented in Table 2.2.

We will show the solutions of these four cases graphically.

In case 1, the two unknowns are the magnitude and the direction of the same vector
(say, C and O¢). This case can be solved by graphic addition or subtraction of the remaining
two vectors, which are completely defined. This case was illustrated in Fig. 2.10.
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Table 2.2 Unknowns in Planar Vector Equations

Case Unknowns

1 C,0c Fig. 2.10 Eq. (2.14)
2 A,0p Fig. 2.11 Eq. (2.17)
3 A,B Fig. 2.12 Eq. (2.18)
4 04,6p Fig. 2.13 Eq. (2.19)

In case 2, the two unknowns are a magnitude and a direction from different vectors
(say, A and 6p). The vector equation is

VoW ?
C=A+B. (2.17)

The solution, illustrated in Fig. 2.11, is obtained as follows:

1.

Choose a convenient scale factor and draw vector C.

Construct a line through the origin of C parallel to A.

Adjust a compass to the scaled magnitude B and construct a circular arc with the
center at the terminus of C.

The two intersections of the line and the arc define the two sets of solutions A, B
and A’, B'.

In case 3, the two unknowns are two magnitudes (say, A and B). The vector

equation

Figure 2.

is

NVEENIRN,
C=A+B. (2.18)

() Y

11 Case 2: (a) given C, 04, and B; (b) solutions for A,0pg, and A, 01’9.
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(a) ®)

Figure 2.12 Case 3: (a) given C, 64, and 6p. (b) solution for A and B.

The solution, illustrated in Fig. 2.12, is obtained as follows:

Choose a convenient scale factor and draw vector C.

Construct a line through the origin of C parallel to A. .

Construct another line through the terminus of C parallel to B.

The intersection of these two lines defines both magnitudes, A and B, each of
which may be either positive or negative.

bl NS

Note that case 3 has a unique solution unless the lines are collinear or parallel. If the
lines are collinear, the magnitudes A and B are both indeterminate. If the lines are parallel
but distinct, magnitudes A and B are both infinite. . .

Finally, in case 4, the two unknowns are the directions of two vectors, A and B. The
vector equation is

NNERV. I
C =A+B. (2.19)

The solution, illustrated in Fig. 2.13, is obtained as follows:

Choose a convenient scale factor and draw vector C.

Construct a circular arc of radius A centered at the origin of C.

Construct a circular arc of radius B centered at the terminus of C. o
The two intersections of these arcs define the two sets of solutions A, B
and A/, B'.

Ll e

Note that a real solution is possible only if A+ B > C.
The graphic procedures of this section are now applied to obtain solutions of the
loop-closure equations for the slider-crank linkage and the four-bar linkage.
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(a)

Figure 2.13 Case 4: (a) given C, A, and B; (b) solution for 04, 0p and QA, Hé.

Slider-Crank Linkage  Consider the slider-crank linkage shown in Fig. 2.14a. Given the
position of link 4, the problem is to determine the postures of links 2 and 3.

Replace the link centerlines with vectors Ry for the crank, Rp for the slider, and Rpy
for the connecting rod, as shown in Fig. 2.14b. With a known location of the slider (that
is, the distance Rp) and the angles 6> and 63 unknown, the loop-closure equation for the
linkage is

N .
Rs+Rps —Rp =0,

which can be written as

J P
Rz =Ry +Rpy, (a)

where the “I” symbol, for the direction of vector Rp, denotes that the location of the slider
is the given input.

We recognize Eq. (a) as case 4 in Table 2.2.

The graphic solution procedure explained in Fig. 2.13 is now carried out in Fig. 2.14c.
We note that there are two possible solutions (6, and 63, and Gé and Gé), which correspond
to two different postures of the linkage (that is, two configurations of the links), both of
which are consistent with the given position of the slider. We know in advance which of
the two solutions is desired; both sets of results are equally valid roots to the loop-closure
equation, and the choice is based on the application.
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Figure 2.14 (a) Slider-crank linkage; (b) vectors replace the link centerlines; (c) graphic posture analysis.

Four-Bar Linkage Consider the four-bar linkage shown in Fig. 2.15. Given the posture
of link 2, the problem is to define the postures of links 3 and 4 and the position of coupler
point P.

Replace the link centerlines with vectors R4 for the crank, Rp4 for the connecting
rod, Rpc for the output link, and R for the frame, as shown in Fig. 2.16a. With a known
posture of link 2, that is, the angle 6, and the angles 63 and 64 unknown, the loop-closure
equation for the linkage is

JO
R4 +Rps —Rpc—Re =0, (a)

Figure 2.15 Four-bar linkage
and coupler point P.
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(a)

which can be rearranged as

JS I
Rj +Rps = Rc+Rpe, (b)

where the “I” symbol, for the direction of vector Ry4, denotes that the orientation of the
crank is the given input.
Also, the position of coupler point P is given by the position-difference equation

2 JI?
Rp=Rs+Rps. (c)

Note that this equation contains three unknowns, but this can be reduced to two after Eq. (b)
is solved by noting the constant angular relationship between Rp4 and RBA—namely,

0s =03+, (d)
where the constant coupler angle « = ZBAP. Therefore, Eq. (c¢) reduces to

7 JIJC
Rp =Rs+Rpy, (e)

where the “C” symbol, for the direction of Rp4, denotes that this direction is known from
the constraint equation—that is, Eq. (d)—and, therefore, is not a third unknown.

We begin the graphic solution by combining the two unknown terms in Eq. (b), thus
locating the positions of points A and C as shown in Figs. 2.16a and 2.16b:

VYOO ? V?
S=Rc—Rs=Rps—Rpc. ()

We recognize this equation as case 4 in Table 2.2. The solution procedure (that is, two
unknown orientations) is then used to locate point B. Note that two solutions are possible,
which indicates that the four-bar linkage can be assembled in two different postures. The
two postures will be referred to here as (a) the open posture shown in Fig. 2.16a and (b)
the crossed posture shown in Fig. 2.16b.

y . ()
Rpy
Rp
05 Ry B
«
At B\
R, \\‘~\
02 \\‘\ ]
0 Te~l_S 4
?\ =3\ \
[0 RC C X X

Figure 2.16 Vector diagrams illustrating the graphic solutions for (a) open posture; (b) crossed
posture.
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_ To determine the position of coupler point P, first we obtain the two orientations of
Rp4 from Eq. (d). Then we solve Eq. (¢) by the procedure for case 1. Two solutions are
obtained for the position of point P, as shown in Figs. 2.16a and 2.16b. Both are valid
solutions to Eqgs. (b) through (d), although, in this instance, the crossed posture shown
could not be reached from the open posture without first disassembling the linkage.

From the two examples presented here it is clear that graphic posture analysis usually
requires precisely the same constructions that would be chosen naturally in drafting scale
drawings of a mechanism at the posture under consideration. For this reason, the procedure
may seem trivial and not truly worthy of the title “analysis.” Yet this is highly misleading.
As we shall see in later sections of Chap. 2, the posture analysis of a mechanism is a
nonlinear algebraic problem when approached by analytic or numeric methods. It is, in
fact, the most difficult problem in kinematic analysis, and this is one primary reason why
graphic solution techniques have retained their attraction.

2.9 ALGEBRAIC POSTURE ANALYSIS

To illustrate the classic algebraic approach for the posture analysis of planar mechanisms,
this section presents the same two examples of the previous section—namely, the
slider-crank linkage and the four-bar linkage.

Slider-Crank Linkage For generality, the offset version of this linkage, shown in
Fig. 2.17, is chosen for the analysis. By making the offset or eccentricity e = Rp,p =0,
the resulting equations can be used for the in-line (on-center or symmetric) version. The
notation in Fig. 2.17 shows that the input crank angle 8, is measured around the origin of
vector r, = RAoz, and the connecting rod angle 63 is measured around the origin of vector
r3 = R4p. Both measurements are taken as positive (counterclockwise) angles.

There are two problems that occur in the posture analysis of the slider-crank
linkage—namely:

Problem 1: Given the input crank angle 6>, find the connecting rod angle 63 and the
position xp.

Figure 2.17 Notation for the offset slider-crank linkage.
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Problem 2: Given the position xp, find the input crank angle 6, and connecting rod
angle 63. This is the problem that we addressed in the previous section.

Solution to Problem 1: First, we define the position of point A by the equations

xg =rycosfp and y4=e+rpsind;. (2.20)
Next, we note that
e+ rpsinf) = r3sinbs, (a)
so that
sinf3 = %(e+r2 sindy). 2.21)

From the geometry of Fig. 2.17, we see that
X = rpcosbth — r3cosos. (b)

Substituting Eq. (2.21) into the trigonometric identity cos63 = 4=y/1 — sin® 63 gives

1
cosf3 = _Z\/’% — (e+rysin6r)2. (c)

Here the negative sign corresponds to an obtuse angle for 63 when measured around point
B, as shown in Fig. 2.17. (A positive sign would imply an acute angle for 65.)
Finally, substituting Eq. (¢) into Eq. (b) gives

Xg =ryc086s + \/rg — (e+rysindy)2. (2.22)

Thus, with the angle 0, given, the unknowns 63 and xp can be obtained by solving
Egs. (2.21), (¢), and (2.22).

Solution to Problem 2: Given xp, we must solve Eq. (2.22) for the angle 6. This
requires the use of a calculator or a computer together with a root-finding technique. Here
we select the well-known Newton-Raphson method.* This method can be explained by
reference to Fig. 2.18, which is a graph of some function f(x) versus x.

Let x;, be a first approximation (a rough estimate) of the root that we wish to find and
for which f(x) = 0. A tangent line to the curve at x = x,, intersects the x axis at x4, which
is a better approximation to the root. The slope of the tangent line is equal to the derivative
of the function at x = x,, and is

fxn)

Xn — Xn+1

S ' (xn) = (d)

* See, for example, [1].
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) A
Slope f*(x,,)

Tangent
line X, 41

Figure 2.18 Newton-Raphson method.

Solving this for x,41 gives

fan)

Xn+1 = Xn (2.23)

S Cen) .
Using a calculator, for example, to start a solution, we enter an estimate of x,, solve
Eq. (2.23) for x,+1, use this as the next estimate, and repeat this process as many times
as needed to obtain the result with satisfactory accuracy. The accuracy is evaluated by
comparing (x,4+1 —x,) with a small number ¢ after each repetition and continuing until
(1 —xp) <&

We note that the root-finding programs built into many calculators utilize an
approximation to obtain f’(x,). These will sometimes be of little value in solving
Eq. (2.22), so we proceed as follows. In Eq. (2.22), we replace the angle 6, with the symbol
x, and let r, r3, e, and xp be given constants. Then

f(x) =rzcosx+\/r§—(e+rgsinx)2—x3, (e)

and

(e 4+ rpsinx)ry cosx

\/rg — (e +rysinx)?

f'(x) = —rysinx —

)

These two equations can now be programmed with Eq. (2.23) to solve for the unknown
value of the angle 6, when xp is given. We note that the angle 6, will have two possible
values. These may be found separately by using appropriate initial estimates.

A closed-form algebraic solution is possible if the eccentricity e is zero—that is, if
the linkage is centered. For this case, we take Eqs. (a) and (), square them, and add them
together. Noting a trigonometric identity, the result is

xlzg — 2xprpcosB + r% = r%. (g)
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Solving for 6, gives

2,2 2
1 Xptr—n3

6r = cos (2.24)

2xpra

The solution of Problem 1 for the centered version is, of course, obtained directly from
Eq. (2.22) by setting e = 0.

Four-Bar Linkage To obtain the analytic solution, the distance Rap, is designated as
S in Fig. 2.19 (as it was in Figs. 2.16a and 2.16b). The cosine law for each of the two
triangles AO>O4 and ABO4 can then be written in terms of the angles and link lengths;
that is,

S= \/r% + r% —2r1rcosba, (2.25)
p=cos™! % (2.26)
¥ =cos™! % (2.27)
A=cos ! ntson (2.28)

27‘45

Note that Egs. (2.26) through (2.28) can yield double values, since they involve inverse
cosines. Here we will take 8, v, and A as positive numeric values. Then a careful study of
the figure shows that, when 6, is in the range 0 < 6, < 77, the unknown angles are

03 =—p L, (2.29)
04 =7 — BFA (2.30)

Figure 2.19 Four-bar linkage.
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However, when 6; is in the range w < 6y <2, then

0y =B+, 2.31)
04 =1+ BFA (2.32)

In these results, the upper signs correspond to the open posture, whereas the lower signs
correspond to the crossed posture.

In Sec. 1.10, the concept of transmission angle was discussed in connection with the
subject of mechanical advantage. Now, with Fig. 2.19 and using the cosine law, this angle
can be written as

L AeA=s

2.33
2r3ry ( )

y = Zcos

2.10 COMPLEX-ALGEBRAIC SOLUTIONS OF PLANAR VECTOR EQUATIONS

In planar problems, it is often desirable to express a vector by specifying its magnitude and
orientation in polar notation:

R =RZ6. (a)
In Fig. 2.20a, the two-dimensional vector
R=Ri+Rj (2.34)
has two rectangular components of magnitudes,
R*=Rcos® and R’ =Rsind, (2.35)
with

RY
R=V({R)2+(R)? and eztan”ﬁ (2.36)

Note that we have made the arbitrary choice here of accepting the positive square root for
magnitude R when calculating from the components of R. Therefore, we must be careful

(b) Y AImaginary

O¢——— R cos 6 ——>] X

Figure 2.20 Correlation of planar vectors and complex values.
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to interpret the signs of R* and R” individually when deciding upon the quadrant of the
angle 6. Note that 6 is defined as the angle from the positive x axis to the positive end of
vector R, measured about the origin of the vector, and this angle is positive when measured
counterclockwise.

EXAMPLE 2.3

Express vectors A = 10£30° and B = 8£ — 15° in rectangular notation* and find their
sum.

v o Figure 2.21 Addition of
A - \1\0@ vectors.
C=A+B
= 16.6/10.1°
o y 15° f P X
B =8/[-15°
SOLUTION
The vectors are shown in Fig. 2.21 and can be written as
A = 10¢0s30°i + 10sin30°j = 8.66i + 5.00j Ans.
B = 8cos(—15°)i + 8sin(—15°)j = 7.73i — 2.07j Ans.

C=A+B = (8.66+7.73)i+ (5.00 — 2.07)j = 16.39i + 2.93j.

The magnitude of the resultant is determined from Eq. (2.36),
C=+16.392+2.932 =16.65,
and the angle is
293
6 =tan”' ——— =10.1°,

The final result in polar notation is

C=16.6210.1°. Ans.

2.11 COMPLEX POLAR ALGEBRA

Another method of treating two-dimensional vector problems analytically makes use of
complex algebra. Although complex numbers are not vectors, they can be used to represent

*Many calculators are equipped to perform polar-rectangular and rectangular-polar conversions
directly.
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vectors in a plane by choosing an origin and real and imaginary axes. In two-dimensional
kinematic problems, these axes can conveniently be chosen coincident with the x;y; axes
of the absolute coordinate system.

As shown in Fig 2.20b, the location of any point in the plane can be specified either
by its absolute-position vector or by its corresponding real and imaginary coordinates,

R=R'+/R, (2.37)
where the operator j is defined as the unit imaginary number,
j=+-1 (2.38)

Complex numbers are commonly used in planar analysis because of the ease with
which they can be changed into polar form. Employing complex rectangular notation for
vector R, we can write

R = R/6 = Rcost + jRsinb. (2.39)
But using the well-known Euler equation from trigonometry,
e? = cosh + jsind, (2.40)
we can also write R in complex polar form as
R=Ré", (2.41)

where the magnitude and direction of the vector appear explicitly. As we will see
in Chaps. 3 and 4, expressing a vector in this form is also especially useful when
differentiation is required.

Some familiarity with useful manipulation techniques for vectors written in complex
polar forms can be gained by again solving the four cases of the loop-closure equation of
Table 2.2. Writing Eq. (2.16) in complex polar form, we have

Cel% = Ael% + Bel%s. (2.42)

In case 1, the two unknowns are C and 6c. We begin the solution by substituting
Euler’s equation, Eq. (2.40), into Eq. (2.42), which gives

C(cosOc +jsinfc) = A(cosby + jsinds) + B(cosOp + jsinbp). (a)
Then, equating the real terms and the imaginary terms separately, we obtain two real
equations corresponding to the horizontal and vertical components of the two-dimensional

vector equation:

Ccostc = Acosby + BcosOp, (b)
Csinf¢c = Asinfy + Bsinfp. (c)
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(@) Imaginary () (Oc—0,4)
9. |3%S Imaginary
(( S axis
Real B
C 6.4 axis A

=

(05104
A
] 205 Real
axis

Figure 2.22 (a) Original axes; (b) rotated axes.

The unknown angle 8¢ can be eliminated by squaring and adding these two equations. The
result is

C = /A2 + B2 +2ABcos(0g — 04). (2.43)

The positive square root is chosen arbitrarily; the negative square root would yield a
negative solution for C with 6¢ differing by 180°. Dividing Eq. (¢) by Eq. (b), and
rearranging, the angle 6¢ can be written as

_1 Asinf + Bsinfg

fc =tan= ———,
Acosfy + BcosOp

(2.44)

where the signs of the numerator and the denominator must be considered separately in
determining the proper quadrant of 6¢.* Only a single solution is found for case 1, as
previously illustrated in Fig. 2.10.

In case 2, the two unknowns are A and 0. One convenient way of solving this case,
in complex polar form, is to first divide Eq. (2.42) by /4. The resulting equation can be
written as

CelOc—04) — 4 +Bej(03_9A)' (d)

Comparing this equation with Fig. 2.22, we see that division by the complex polar form
of a unit vector e/ has the effect of rotating the real and imaginary axes by the angle 64
clockwise such that the real axis lies along vector A.

* When writing computer programs it will be noted that most programming languages, including both
ANSV/ISO standard FORTRAN and C, provide a library function named ATAN2(y, x) that accepts the
numerator and denominator separately and provides the solution (in radians) in the proper quadrant.
If such a function is not available, then a solution (in radians) in either the first or fourth quadrant is
usually provided, and 7 radians (180°) should be added to the angle if the denominator is negative.
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We can now use Euler’s equation, Eq. (2.40), to separate the real and imaginary
components; that is,

Ccos(6c —04) = A+ Bcos(Op — 64), (e)
Csin(6¢c — 64) = Bsin(0g — 6,4). o

The solutions are then obtained directly from Egs. (f) and (e), respectively, as

_1 Csin(Bc — 6,)
—
A = Ccos(6c — 64) — Bcos(0g — 64). (2.46)

Op =64 + sin (2.45)

The solutions given by Eqgs. (2.45) and (2.46) are intentionally presented in this order since
Eq. (2.46) cannot be evaluated numerically until after 05 is found. We also note that the
arcsine term in Eq. (2.45) is double-valued. Therefore, case 2 has two distinct solutions,
A,0p and A’,0; these are shown in Fig. 2.11b.

In case 3, the two unknowns are the magnitudes A and B. As in case 2, we obtain
Egs. (e) and (f). Therefore, from Eq. (f), the solution for B is

p— S =01 (2.47)
Sll‘l(@B — QA)

The solution for the unknown magnitude, A, is obtained by dividing Eq. (2.42) by ¢/, The
resulting equation is then separated into real and imaginary parts and yields

sin(@c — 93)
A=C—r—r—. 248
sin(64 — 0p) (249)

Note that this case yields a unique solution, as illustrated in Fig. 2.12. .
In case 4 the two unknowns are 64 and f. We begin by dividing Eq. (2.42) by ¢C to
align the real axis along vector C:

C = Ae/02700) 4 Bel¥s=00), )
Using Euler’s equation to separate components and then rearranging terms, we obtain
Acos(04 —Oc) = C—Bcos(0p —0c¢), (h)
Asin(64 — 0c) = —Bsin(6p — 0¢). ()
Squaring both equations and adding the results gives
A% = C? + B?> — 2BCcos(05 — 0¢). ()

We recognize this as the law of cosines for the vector triangle. Rearranging this equation,
the angle 6p can be written as

1C2+B2—A2

2.49
2BC (249)

Op = 0c £ cos™
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Moving C to the left-hand side of Eq. (/) before the squaring and adding operations results
in another form of the law of cosines, from which

 CP+A%2—B?

2AC '
The plus or minus signs in these two equations are a reminder that the arccosines are
each double-valued and, therefore, 65 and 64 each have two solutions. These two pairs of

angles can be paired naturally together as 64,65 and 6}, 6 under the restriction of Eq. (i).
Therefore, case 4 has two distinct solutions, as shown in Fig. 2.13.

04 =6c *cos™ (2.50)

2.12 POSTURE ANALYSIS TECHNIQUES

There are many different approaches to the posture analysis of mechanisms. Here, we
identify the following five approaches:

(a) Graphic approach.

(b) Analytic approach.

(c) Complex-algebraic approach.
(d) Vector-algebraic approach.
(e) Numeric approach.

These approaches are illustrated in the following two examples.

EXAMPLE 2.4

Consider a sliding-block linkage in the posture illustrated in Fig. 2.23. Perform the posture
analysis; that is, find 64 and distance R, .

Figure 2.23 Ro,0, =9.01in,
Rap, =4.51n, and 6, = 135°.
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SOLUTION

Using the vector diagram shown in Fig. 2.23 we recognize this as a case 1 problem, and
the vector loop equation can be written as

7 vV VI
RA04 = R02 O4 + RAOZ B (1)

where the “/” symbol, for the direction of vector R40,, denotes that the orientation of link
2 is the given input.

(a) Graphic approach  When Fig. 2.23 is drawn to a suitable scale (for example, 6 in/in),
then, by direct measurement of this figure, we find that

64 = 105.3° Ans.
Rp0, =2.08 in (6 in/in) = 12.48 in. Ans.

(b) Analytic approach  For case 1, we employ Egs. (2.43) and (2.44); therefore,

Rio, = \/ R, 0, K20, +2R0,0,Ra0, c05(6; — 90°)

= \/(9 in)2 4 (4.5 in)2 +2(9 in) (4.5 in) cos(135° — 90°)
=12.59 in, Ans.

1 R0204 sin90° + RA02 sinf,

64 = tan
R0,0,€0890° + Rp0,c0s0>

0i in90° 4.51 in135° 12.1821
1 (9in)sin90° + (4.5 in)sin135° an1< m) — —75.36°.

=t = _—
M9 in)c0s90° + (4.5 in)cos135° Z3.1821n

However, note that the calculator used here did not recognize for the arctangent function
that the negative sign in the denominator indicates an angle in the second or third quadrant.
Therefore, the proper value is

04 = —75.36° £ 180° = 104.64°. Ans.
(c) Complex-algebraic approach  The terms for Eq. (1) are

Ruo, = Ra0, 2464 = Rap,c0804 + jRa0, 51Ny,
Ro,40, =9 inZ£90° = (9 in)c0s90° + /(9 in)sin90° = 0 +9 in,
Ruo, =4.51n£135° = (4.5 in)cos135° 4 j(4.5 in)sin135°
=—3.182in+,3.182 in.
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Substituting these into Eq. (1) yields

Ry, = (0+9 in) 4 (—3.182 in+,3.182 in) = —3.182 in +;12.182 in.

Thus,
Rao, =/ (—3.1821in)2 + (12.182 in)2 = 12.59 in Ans.
and
R) 12.182 i
04 = tan~ ' 2% _ a1 2202 104 6a0. Ans.
w ~3.182in
4

Again, note the comment in (b) regarding arctangent results from the calculator.

(d) Vector-algebraic approach  Here we employ a scientific hand calculator that will add
and subtract complex numbers in rectangular notation and will convert from rectangular
to polar notation or vice versa. Thus,

Ro,0, =9 in/90° = 0+ j9 in,
Ruo, =4.5in/135° = —3.182 in+,3.182 in,
Ru0, = Ro,0, + Ruo, = (0+j9 in) + (—3.182 in +3.182)
= —3.182 in+/12.182 in = 12.59 in£104.64°. Ans.

(e) Numeric approach Some scientific hand calculators permit equations containing
complex numbers to be solved in either rectangular or polar form or both, with the results
displayed in either mode. Using such a calculator, we enter

Ruo, =91in£90° 4+4.5in/135° = 12.59 in£104.64°. Ans.

Note that all algebraic methods give results that are in exact agreement and are more
accurate than graphic results obtained manually.

EXAMPLE 2.5

A crank-rocker four-bar linkage with the given input angle, is shown in both the open and
crossed postures in Fig. 2.24. Perform a posture analysis of the linkage; that is, find 63 and
64 for both postures.

SOLUTION

Note that the line connecting the ground pins, Oy and Oy (that is, the ground link), is not
horizontal. In the previous examples, the ground link was chosen to be coincident with the
x axis; that is, €1 = 0. In this example, however, the angle #; = 15° and must be accounted
for when using Eqgs. (2.25) through (2.30).
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®) v

Figure 2.24 Rpp, =200 mmZ/30°, Rgs = 350 mm, Rpp, = 300 mm, and Rg, 0, =400 mm/15°.

For the input angle 6> = 30°, we observe that
Rao, =0.200m£30° and Rgp,0, =0.400 m£15°.
Therefore,
S =Ro,0, — Rao, = 0.400 m£15° — 0.200 m£30° = 0.213 m£0.95°.
Note that the vectors in triangle ABOy4 are related by the equation

NAERR. .
S =Rpas—Rpo,. (D

There are two unknown orientations in this equation, and so we identify this as case 4
(Table 2.2).

(a) Graphic approach ~ When Fig. 2.24 is drawn at a chosen scale, then, by direct
measurement of the figure in the open posture, we find

03 =60° and 64 =97°, Ans.
and in the crossed posture, we find

05=-57° and 65 =-95° Ans.
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(b) Analytic approach Comparing the notation in Fig. 2.24 with Fig. 2.19, we set
r1 = Rp,0, = 0400 m, r, = Rp0, = 0200 m, r3 = Rgy = 0.350 m, and r4 = Rpp, =
0.300 m. Also, note that the ground link of Fig. 2.19 must be rotated by 8; = 15° ccw, and
6, =30° — 15° = 15°; therefore, Egs. (2.25) through (2.30) give

S =+/(0.400 m)2 + (0.200 m)2 — 2(0.400 m)(0.200 m) cos(30° — 15°)

=0.213 m,
0.400 m)% + (0.213 m)? — (0.200 m)?
g = cos—t QA0 M"+ 0213 m)” = Q200 m)” _ 50
2(0.400 m)(0.213 m)
0.350 m)Z + (0.213 m)% — (0.300 m)?
Y =cos”! ( m”+ m)” — m) =58.51°,
2(0.350 m)(0.213 m)
0.300 m)2 + (0.213 m)? — (0.350 m)?
= cog—1 (0300 m”+ 0213 m)” = O350 m)= _ o) o0
2(0.300 m)(0.213 m)
Then, in the open posture, remembering that 6; = 15°,
03 = 15° — 14.05° +58.51° =59.46°, Ans.
64 = 15° 4+ 180° — 14.05° — 84.19° =96.76°, Ans.
and, in the crossed posture,
Gg = 15°—14.05° —58.51° = —57.56°, Ans.
9!1 = 15°+180° — 14.05° 4+ 84.19° = —94.86°. Ans.

(c) Complex-algebraic approach ~ Substituting S for C, Rps for A, —Rpo, for B, 05 for Oc,
and 64 for 05, into Eq. (2.49) gives

| 82+ Rpo, — Ry — (61— B) +cos~! S +Rpo, — Ry
2(—Rgo,)S 2(—Rpo,)S
1 (0213 m)? + (—0.300 m)? — (0.350 m)?
2(—0.300 m)(0.213 m)
=0.95°£95.81° = 96.76° or — 94.86°. Ans.

04 = 0g £ cos™

=0.95° £ cos

In addition, substituting 63 for 6,4 into Eq. (2.50) gives
2 2
Sz + RBA - RBO4
2RpAS

1 (0.213 m)? 4 (0.350 m)? — (—0.300 m)?
2(0.350 m)(0.213 m)
=0.95° 4+ 58.51° = 59.46° or —57.56°, Ans.

O3 =65+t cos™!

=0.95° £ cos
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where the first result corresponds to the open posture and the second result is for the
crossed posture. We note that the answers in Parts (b) and (c) are in good agreement with
those of Part (a), but are of higher accuracy than measurements taken from the scaled
drawing.

(d) Vector-algebraic approach  The vector loop equation for the four-bar-linkage can be
written as

S
Rps =Ro,0, +Rpo, —Rao, - ()

Separating this equation into horizontal and vertical components,

Rpacost3 = Ro,0,cos01 + Rpp, cos04 — Ry, cos s, 3a)

Rpasin®sz = Rp,0, sinb + Rpo, sinbs — Rap, sinbs. (3b)
By squaring and adding these two equations, we can eliminate the variable 63:

R%A = R20402 +R12904 —i—waz +2R0,0,RB0,[c0s6] cos b4 4 sin6 sinby]

—2R0,0,RA0,[c0s0] cosOp + sin6 sinbr] — 2Rpo, Rap,[c0s 04 cos 6 + sinfy sin6;].

Then we can write this equation as

Acosfs+ Bsinfy = C, 4
where
A =2R0p,0,RB0, c0s61 —2Rpo,Ra0, cos b, (5a)
B =2Rp,0,Rpo, sinb; —2Rpo,Ra0, sinbs, (5b)
C=Rp, —R},0, — Rpo, — Rio, +2R0,0,Ra0, c0s(62 — 01). (5¢)

Equation (4) is one form of Freudenstein’s equation (Sec. 9.11 shows another variation
that is more suitable for kinematic synthesis).
Substituting the known data into Egs. (5) gives

A =2(0.400 m)(0.300 m) cos 15° — 2(0.300 m)(0.200 m) cos 30° = 0.127 90 m?,
B =2(0.400 m)(0.300 m) sin 15° —2(0.300 m)(0.200 m) sin30° = 0.002 12 m?,
C = (0.350 m)% — (0.400 m)> — (0.300 m)? — (0.200 m)?
+2(0.400 m)(0.200 m) cos(30° — 15°)
= —0.012 95 m>.

Therefore, Eq. (4) can be written as

(0.127 90 m?) cos B4 + (0.002 12 m?) sinfs = —0.012 95 m>. (6)
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To determine the output angle 6y, this transcendental equation can be written as a quadratic
equation. The procedure is to use the half-angle relationships; that is, to define

Z =tan(64/2), (Ta)
which gives

1—272
1+272

. 7
sinfp = ——— and cosby =

7b
1+272 (76)

Substituting Eqs. (7b) into Eq. (6), multiplying through by (1 + Z?), and rearranging, gives
the quadratic equation

(0.114 95 m?)Z? + (—0.004 24 m*)Z + (—0.140 85 m?) = 0.

The solutions to this equation can be written as

_ —(—0.004 24 m) & /(—0.004 24 m)> — 4(0.114 95 m)(—0.140 85 m)
B 2(0.114 95 m)

=0.018414+1.106 80 =1.125 21 or — 1.088 39. ()

z

Substituting Eq. (8) into Eq. (7a), gives the two output angles corresponding to the open
and crossed postures, namely

04 =96.76° and 6 = —94.86°. Ans.
Substituting these results into Eqs. (3a) and (3b) gives the corresponding coupler angles

03 =59.46° and 0= —57.56°. Ans.

(e) Numeric approach  Rearrange the vector loop equation, Eq. (2), into the form
f=Ru0, + Rps —Rp,0, —Rpo, =0, &)
and separate the horizontal and vertical components:

f* =R40, cos0r + Rpa cos3 — Ro,0, cos) — Rpp, coss =0, (10a)
= Rp0, sinbh + Rpa sin63z — R, 0, sind; — Rpp, sinfy = 0. (10b)
We recognize these as two equations in two unknowns, 63 and 64, and we solve them by
the Newton-Raphson method introduced in Sec. 2.9 to an accuracy of 0.01°. To do this,
we expand Egs. (10) to first-order in Taylor series in the two unknowns as follows:
Rp0, €080, + Rpa cos3 — Rpa sinf3 A6z — Rp, 0, c0s61 — Rpo, cos4 + Rpo, sin04 A0y = 0,

Ra0, sinbh + Rpa sin03 + Rp cos03 A3 — Rp, 0, sinf — Rpo, sinfs — Rpp, cosO4Ab4 = 0.
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Then, writing these equations in matrix form,

Rpa sinfs —Rpo, sinfy | | AG3
—RpacosO3  Rpo, cosby Aby

__ | Rao, costr + Rpa cosO3 — Rp, 0, cosO; — Rpo, cos b4
- Rp0, sinbs + Rps sinbs — Rp, 0, sinf; — Rpp, sinby |’

Substituting the given data, these matrices become

(0.350 m)sinf3  —(0.300 m) sinfy | | ABs
|:—(O.350 m)cosfz  (0.300 m)cos6y i| |:A64:| an
[ (+0.213 16 m) + (0.350 m) cos 83 — (0.300 m) cos 64
- |: (—0.003 53 m) + (0.350 m) sin6f3 — (0.300 m) sin 64 i| '

Note that Af3 and A6, are called the corrections and are dimensionless values, meaning
values in radians. For the iteration procedure, we must be careful when combining the
coorections with 63 and 64 if the two angles have units of degrees; therefore,

180°
(03)new = (63)o1d + —— AB3, (12a)
 rad
o o 180°
(94 Ynew = (94 Jold + Aby. (12b)
 rad

To use the iteration procedure, we begin with initial estimates of the unknowns 63
and 64. From a scale drawing of the linkage, such that, for the open posture, our starting
estimates are

63 =60° and 64 =100°. (13a)
Inserting these estimates into Eq. (11) gives

030311m —029544m||A03| |0.01393 m
—0.17500m —0.05209m || A6s4| ]0.004 14 m|"

Using Cramer’s rule, the corrections are
Af3 =—0.007 371 5rad and A64=—0.005 471 rad.
Substituting these corrections into Egs. (12) gives
03 =59.58° and 64 =96.87°. (13b)
Inserting these improved estimates into Eq. (11) gives

_ [-0.577 13(10)* m

- [ 0.44191(10) 3 m ]

0.30182m —0.297 85 m || Abs
—0.17722m —0.03589m || Ab4

Solving again by Cramer’s rule, the updated corrections are

AG3 =—0.002 101 6rad and A64= —0.001 94 rad.
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Substituting these corrections into Egs. (12), gives
03 =59.46° and 64 =96.76°. (13¢)
Inserting these improved estimates into Eq. (11) gives us

0.30145m —0.29791m]|[A63] [0.21351(10)> m
—0.177 85m  —0.03531m || Afs |~ [0.173 94(10) > m "

Solving again by Cramer’s rule, the updated corrections are
AB3 = —0.000 069 59 rad and A4 = —0.000 014 2 rad.
Substituting the corrections into Egs. (12), gives
03 =59.46° and 64 =96.76°. Ans.

Since the corrections are now both smaller than the desired accuracy of 0.00017 rad =
0.01°, we accept these values as final results for the open posture.

For the crossed posture, we begin with initial estimates from our drawing of 63 = —60°
and 04 = —100°. Then, using these as starting estimates with Eq. (11), we repeat the same
process and iterate until we converge to a result of

03 =—57.56° and 64=—94.86°. Ans.

A computer code could be written using a commercially available language such as
MATLAB or JAVA.

2.13 COUPLER-CURVE GENERATION

In Chap. 1, Fig. 1.23, we learned of the vast variety of useful coupler curves that can be
generated by a planar four-bar linkage. These curves are quite easy to obtain graphically,
but computer-generated curves can be obtained more quickly and are easier to vary to
obtain desired curve characteristics. Here we present the basic equations but omit the
programming details required for display of a curve on an electronic monitor.
Considering the four-bar linkage of Fig. 2.16, we first write the vector equation

S JRRVAVARSVAV
S=Rc—Ry.

This is case 1, where S and 6s are the two unknowns. The solutions are given by Egs. (2.43)
and (2.44). Substituting gives

S= \/ch + R% —2RcR cos(04 — Oc), (2.51)

_1 Rcsinfc — Ry sinfy

fHs = tan (2.52)

RccosOc —Rycosfy
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Then we note that

NV REN.
S =Rpa—Rc.

This is case 4, where 63 and 64 are the two unknowns. The solutions are given by Egs. (2.49)
and (2.50). Substituting gives

2, p2 2
1 8"+ Rpe — Rps

04 = 05 £ cos Racs (2.53)
S2+R%, —R?
03 = 05 F cos ™! W (2.54)

The solution for the open posture of the linkage shown in Fig. 2.16a corresponds to the
lower set of signs; the crossed posture of the linkage shown in Fig. 2.16b corresponds to
the upper set.

Coupler point P generates a coupler curve when crank 2 is rotated. From Fig. 2.16, we
see that

Rp= Rpeje(’ = RAej@2 +RpAej(03+a). (2.55)

We recognize this as case 1, where R, and 6 are the two unknowns. The solutions are
given by Egs. (2.43) and (2.44); that is,

Rp = /RS + R, + 2RaRpacos(6s +a — 0) (2.56)

and

_1 Rasind, + Rpasin(63 + a)

6 = tan .
RycosHr + Rpacos(63 + )

(2.57)

Note that each of these equations give two solutions because of the double values for 63
corresponding to the two postures of the linkage. The following example uses Eqs. (2.56)
and (2.57) to plot the coupler curve of a four-bar linkage.

EXAMPLE 2.6

Consider the crank-rocker four-bar linkage shown in Fig. 2.25 with Rp4 = 100 mm, Rcp =
250 mm, Rcp = 300 mm, and Rps = 200 mm. The paths of coupler pins B and C are
shown by the circle and the circular arc, respectively. The location of coupler point P is
given by Rpp = 150 mm and o = ZCBP = —45°. Calculate the coordinates of coupler
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point P and plot the path of this point (the coupler curve) for a complete rotation of the
crank.

SOLUTION

For each value of crank angle 6>, the angles 8, ¥, and y are calculated from Eqgs. (2.26),
(2.27), and (2.33), respectively. This notation corresponds to that of Figs. 2.15 and 2.16.
Next, Egs. (2.29) and (2.31) are applied to give the posture of link 3, 63, as displayed in
Table 2.3. Note that the same result can be obtained from Eq. (2.50).

Finally, the polar coordinates of coupler point P are calculated from Eqs. (2.56) and
(2.57). From these, we can obtain the Cartesian coordinates of point P. The solutions for
crank angles from 0° to 90° for the open posture are displayed in Table 2.3. The coupler
curve is shown in Fig. 2.25. The interested reader can repeat the solution to this problem
for the crossed posture.

Table 2.3 Posture of Link 3 and Coordinates of Coupler Point P

0,,deg 03,deg Rp,mm 06, deg RE,mm R“;, mm
0.0 110.5 212.0 40.1 162.2 136.5
10.0 99.4 232.2 36.9 185.8 139.3
20.0 87.8 245.3 33.7 204.0 136.1
30.0 77.5 249.9 31.5 213.1 130.6
40.0 69.2 247.7 30.5 213.4 125.8
50.0 62.9 240.7 30.7 207.0 122.7
60.0 58.3 230.4 31.7 196.0 121.1
70.0 55.1 218.0 335 181.9 120.3
80.0 53.0 204.4 35.7 165.9 119.4
90.0 51.8 189.9 38.3 148.9 117.8

Figure 2.25 The coupler curve
traced by point P.

X1
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y Figure 2.26 Displacement of a
~~_p moving point.
Rp/Rov o<
Ny 1
AR, f\~ ’
T Path of
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2.14 DISPLACEMENT OF A MOVING POINT

In the study of motion, we must be concerned with the relationship between successive
positions of a point and postures of a link. In Fig. 2.26, a point, originally at position P, is
moving along the path shown and, sometime later, arrives at position P’. The displacement
of the point during the time interval is defined as the net change in position; that is,

ARp=R'p—Rp. (2.58)

Note that this displacement is a vector quantity having the magnitude and direction of the
vector from point P to point P’

It is important to note that the displacement ARp is the net change in position and
does not depend on the particular path taken from P to P’. The magnitude of this vector is
not necessarily equal to the length of the path (the distance traveled), and its direction is
not necessarily along the tangent to the path, although both are true when the displacement
is infinitesimally small. Knowledge of the path actually traveled from P to P’ is not even
necessary to find the displacement vector, providing the initial and final positions of the
point are known.

2.15 DISPLACEMENT DIFFERENCE BETWEEN TWO POINTS

In this section we consider the difference in the displacements of two moving points. In
particular, we are concerned with the case where the two moving points are both fixed in
the same rigid body. The situation is shown in Fig. 2.27, where a rigid body moves from
an initial posture defined by x2y,z> to a later posture defined by x}y)z}.

From Eq. (2.6), the position difference between the two points P and Q at the initial
instant is

Rpo =Rp—Ry. (a)

After the displacement of this body, the two points are located at P’ and Q'. At that time,
the position difference is
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1

01 X1

Figure 2.27 Displacement difference between two points fixed in the same rigid body.

R'po=Rp—R'g. ()

During the time interval of the movement, the two points have undergone individual
displacements of ARp and ARy, respectively.

As the name implies, the displacement difference between the two points is defined as
the net difference between their respective displacements and can be written as

ARpp = ARp — ARy. (2.59)

Note that this equation corresponds to the vector triangle PP*P’ in Fig. 2.27. As stated
in the previous section, the displacement depends only on the net change in position and
not on the particular path taken. Therefore, no matter how the body (containing points P
and Q) was actually displaced, we are free to visualize the path as we choose. Equation
(2.59) leads us to visualize the displacement as taking place in two stages. First, the body
translates (slides without rotation) from x2y2z> to x3y5z5; during this movement, all points,
including P and Q, have the same displacement ARg. Second, the body rotates about point
Q' to its final posture x,y)2).
A different interpretation can be obtained by manipulating Eq. (2.59) as follows:

ARpp = (R'p—Rp) — (R'g —Ryp)
=[R'p—Rg)— (Rp—Ry), (c)
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and then, from Egs. (a) and (b),

ARpo =R'pg — Rpp. (2.60)

This equation corresponds to the vector triangle Q'P*P’ in Fig. 2.27 and demonstrates that
the displacement difference, defined as the difference between two displacements, is equal
to the net change between the position-difference vectors.

For either interpretation, we are illustrating that any displacement of a rigid body is
equivalent to the sum of a net translation of one point and a net rotation of the body about
that point. We also see that only the rotation contributes to the displacement difference
between two points fixed in the same rigid body; that is, there is no difference between the
displacements of any two points fixed in the same rigid body as the result of a translation.
(The following section gives the definition of the term translation.)

In view of the previous discussion, we can visualize the displacement difference ARpo
as the displacement that would be seen for point P by a moving observer who travels along,
always staying coincident with point Q but not rotating with the moving body—that is,
always using the absolute coordinate axes x1yjz; for the measurement of direction. It is
important to understand the difference between the interpretation of an observer moving
with point Q but not rotating and the case of the observer on the moving body. To an
observer on the moving body, both points P and Q would appear stationary; neither would
be seen to have a displacement because they do not move relative to the observer, and the
displacement difference seen by such an observer would be zero.

2.16 TRANSLATION AND ROTATION

Using the concept of displacement difference between two points fixed in the same rigid
body, we are now able to define translation and rotation.

Translation is defined as a motion of a body for which the displacement dif-
ference between any two points P and Q in the body is zero; that is, from the
displacement-difference equation, Eq. (2.60),

ARPQ = ARP — ARQ =0.
That is,
ARp = ARy, (2.61)

which states that the displacements of any two points in the body are equal.

Rotation is a motion of a body for which different points of the body exhibit different
displacements.

Figure 2.28a shows a situation where the body has moved along a curved path from
posture x2y> to posture x,,y,. Despite the fact that the point paths are curved,* ARp is still

* Translation in which the point paths are straight lines is called rectilinear translation; translation in
which the point paths are identical curves is referred to as curvilinear translation.
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(a)

4

X1 X1

Figure 2.28 (a) Translation: ARp = AR, A6 = 0; (D) rotation: ARp # AR, A6 # 0.

equal to AR, and the body has undergone a translation. Note that in translation, the point
paths described by any two points on the body are identical, and there is no change of
angular orientation between the moving coordinate system and the coordinate system of
the observer; that is, A6 =6, —6, =0.

Now consider the midpoint of a body that is constrained to move along a straight-line
path, as shown in Fig. 2.28b. As it does so, the body rotates so that Ay = 6] — 6 # 0
and the displacements ARp and ARy are not equal. Although there is no obvious point
on the body about which it has rotated, the coordinate system x,y, has changed angular
orientation relative to x1yi, and the body is said to have undergone a rotation.

In conclusion, we note that translation and rotation of a body cannot be defined from
the motion of a single point. These are characteristics of a body or a coordinate system. It is
improper to speak of “rotation of a point” since there is no meaning for angular orientation
of a point. It is also improper to associate the terms “translation” and “rotation” with the
path of a single point of a moving body. Although it does not matter which points of the
body are chosen, the motions of two or more points must be compared before meaningful
definitions exist for these terms.

2.17 APPARENT DISPLACEMENT

We have stated in previous sections that the displacement of a point does not depend on
the particular path on which it travels. However, since displacement is computed from the
position vectors of the endpoints of the path, knowledge of the coordinate system of the
observer is essential.

In Fig. 2.29 we identify three bodies: body 1 is a fixed or stationary body containing
the absolute reference system xjy;zy; body 2 is a moving body containing the reference
system x2y2z2; and body 3, which moves with respect to body 2. We also identify two
observers. We designate that HE is an observer fixed to body 1, the stationary system, and
we designate that SHE is another observer on body 2, fixed to the moving system x2y22.
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0, K
Locus of point P5

(41 traced on body 2

Figure 2.29 Apparent displacement of a point.

Thus, we might say that HE is on the ground observing whereas SHE is going for a ride on
body 2.

Now consider a point P3, fixed in body 3 and moving along a known path on body 2.
HE and SHE are both observing the motion of P3, and we want to compare what they see.
We must define another point, P, which is fixed in (or rigidly attached to) body 2 and is
instantaneously coincident with P3.

Now let body 2 and the axes x2y2z> be displaced to a new posture x}y,z5. While this
motion is taking place, let P3 move to another position on body 2, which we identify as
P’,. But P, moves with body 2 and is now in the new position identified as P,. SHE, on
body 2, reports the motion of P3 as vector ARp, /2, which is read as the displacement of
P3 as it appears to an observer on body 2. This is called the apparent-displacement vector.
Note that SHE sees no motion of P;, since it appears to HER to be stationary on body 2.
Therefore, ARp, /> = 0.

However, HE, on the stationary body, reports the displacement of P3 as vector AR,,.
Note that HE also reports the displacement of P, as vector ARp,. From the vector
triangle in Fig. 2.29, we see that the observations of the two observers are related by the
apparent-displacement equation

ARp, = ARp, + ARp; 2. (2.62)

We can take this equation as the definition of the apparent-displacement vector,
although it is important also to understand the physical concepts involved. Note that the
apparent-displacement vector relates the absolute displacements of two coincident points
that are points of different moving bodies. Note also that there is no restriction on the actual
location of the observer moving with coordinate system 2, only that SHE be fixed in that
coordinate system so that SHE senses no displacement for point P».

One primary use of the apparent displacement is to determine an absolute displace-
ment. It is not uncommon in machines to find a point, such as P3, which is constrained
to move along a known slot or path or guideway defined by the shape of another moving
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link 2. In such cases, it may be much more convenient to measure or calculate ARp, and
ARp; 2 and to use Eq. (2.62) than to measure the absolute displacement ARp, directly.

2.18 ABSOLUTE DISPLACEMENT

In reflecting on the definition and concept of the apparent-displacement vector, we
conclude that the absolute displacement of a moving point, say ARp, 1, is the special case
of an apparent displacement where the observer is fixed in the absolute coordinate system.
As explained for the position vector, the notation is often abbreviated to read ARp, or just
ARp and an absolute observer is implied whenever this is not noted explicitly.

Perhaps a better physical understanding of apparent displacement can be achieved
by relating it to absolute displacement. Imagine a car, P3, traveling along a roadway and
under observation by an absolute observer some distance to one side. Consider how this
observer visually senses the motion of the car. Although HE may not be conscious of all
of the following steps, the idea here is that the observer first imagines a fixed point P
coincident with P3, which HE defines in his mind as stationary; HE may relate to a fixed
point of the roadway or a nearby tree or road sign, for example. HE then compares his later
observation of the car P3 with that of P to sense displacement. Note that HE does not
compare with his own location but with the initially coincident point P;. In this instance,
the apparent-displacement equation becomes an identity:

0
ARp, = AKPI +ARpy /1.

2.19 APPARENT ANGULAR DISPLACEMENT

In general, rotations cannot be treated as vectors (this is explained in some detail in
Sec. 3.2). However, for planar motion, the concept of apparent displacement also extends
to include rotation. For example, suppose we consider the rotations of the two gears 2 and
3 connected by an arm, body 4, as shown in Fig. 2.30. In Fig. 2.30a, we see the rotations
as they would appear in HER coordinate system attached to the arm. In Fig. 2.30b, we see
the same situation, but as it might appear to HIM in the absolute frame of reference.

Although it may not be easy to write equations relating the absolute rotations of the
gears shown in Fig. 2.30, it is quite easy to relate their apparent rotations if we take HER
point of view as an observer riding on the moving coordinate system attached to the arm.
From HER vantage point it is obvious that, if there is no slipping between bodies 2 and 3,
then the arc lengths of the two gear sectors that pass the arm at the point of contact must
be equal. That is, if p, is the radius of gear 2 and p3 is the radius of gear 3, then

A0 4 = —p3A034, (a)

where Af,/4 and Ab34 are the angular displacements of gears 2 and 3 as they appear to
HER in coordinate system 4, and the negative sign accounts for the difference in the senses
of the two apparent rotations.

When these angular displacements are replaced by those seen by HIM from the
absolute coordinate system, Eq. (a) becomes
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Figure 2.30 (a) Apparent rotations observed from the arm; (b) absolute rotations.

P2(A0) — Aby) = —p3(A03 — Aly). )

Using these ideas, the loop-closure equations for mechanisms having rolling contact
without slipping can be solved. The following two examples will make the procedure clear.

EXAMPLE 2.7

For the cam-and-follower mechanism in the posture shown in Fig. 2.31, define a set of
vectors that is suitable for a complete kinematic analysis. Label and show the sense and
orientation of each vector on the mechanism. Write the vector loop equation(s) and identify
suitable input(s) for the mechanism. Identify the known quantities, the unknown variables,
and any constraints. If you identify constraints, then write the constraint equation(s).
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Figure 2.31
Cam-and-follower mechanism.

SOLUTION

Since the circular cam, link 2, and the roller follower, link 3, are in rolling contact, let us
consider them linked together by a (fictitious) arm, link 23. This leads us to consider the
set of vectors shown in Fig. 2.32.

Figure 2.32 Vectors chosen
for analysis of the mechanism.

The vector loop equation for the mechanism can be written as

JOP W W
Ry +Ry3—R4—Rip—Ry; =0. Ans. (1)

This is a valid loop-closure equation and, given the angle 6, as input, it can be solved
for the postures of link 4 and of the fictitious link 23. However, this does not yet allow a
solution for the rotation of the roller, link 3.
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Since there is rolling contact between cam 2 and roller 3 at point C, let us consider
the apparent angular displacements of links 2 and 3 as they would appear to an observer
riding on the fictitious arm, link 23. Such an observer would observe

340323 = —pa A3, 2)

which gives the following relationship between the absolute angular displacements:

P3 (A3 — Abr3) = —p2(AO, — Abr3). 3)

Rearranging this equation gives

P3A03 = (p2+ p3) Ab23 — p2 AD,. Ans. (4)

Since the angular displacement of link 2 is known (the input) and A6»3 is determined
from Eq. (1), the angular displacement, A3, can be determined from Eq. (4). It is worth
noting that we can obtain a solution for the posture of link 3 even though no vector is
attached to or rotates with link 3.

EXAMPLE 2.8

For the rack-and-pinion mechanism shown in Fig. 2.33, define a set of vectors that is
suitable for a complete kinematic analysis. Label and show the sense and orientation of
each vector on the mechanism. Write the vector loop equation(s) for the mechanism and
identify suitable input(s) for the mechanism. Identify the known quantities, the unknown
variables, and any constraints. If you identify constraints, then write the constraint
equation(s).

y A Figure 2.33 Rack-and-pinion
| mechanism.

e —
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SOLUTION
Let us consider the set of vectors shown in Fig. 2.34.

Figure 2.34 Vectors chosen
for analysis of the mechanism.

-~ |

il

The length of vector R, represents the input, and the length of vector R4 indicates the
output. The loop-closure equation is

Iy JC W YV
Ry+Ro—R3s+R; —Ry =0. Ans.

The constraint that gives the orientation of vector Ry is
09 = 034 +90°. Ans.

The angular displacement of pinion 3 can be determined by considering the apparent
rotation of the pinion to an observer riding on the rack, link 4. As such an observer watches
the changing position of the point of contact B, SHE must see the same increment of
surface on both links 3 and 4. The constraint relationship can be written as
0
AR3y = p3A63/4 = p3(AG3 — AJ,) = p3 AB3.

Therefore, the angular displacement of the pinion is

A3 = AR34/p3. Ans.

2.20 REFERENCES
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PROBLEMS*®

t2.1

t2.2

t2.3

t2.4

ta.5

t2.6

t2.7

Describe and sketch the locus of a point A, which
moves according to the equations Rﬁ =atcos(2nt),

Rﬁ = atsin(2x1), and R = 0.

Find the position difference from point P to point
Q on the curve y = x% +x— 16, where R)IC, =2 and
R)é =4.

The path of a moving point is defined by the
equation y = 2x2 — 28. Find the position difference
from point P to point Q if R =4 and R)é =-3.

The path of a moving point P is defined by the
equation y = 60 — x3/ 3. What is the displacement
of the point if its motion begins at R}, = 0 and ends
at Ry, =3?

If point A moves on the locus of Problem 2.1, find
its displacement from t =2 to t = 2.5.

The position of a point is given by the equation R =
100e/2™!. What is the path of the point? Determine
the displacement of the point from ¢ = 0.10 to
t=0.40.

The equation R = (12 +4)e77/10 defines the
position of a point. In which direction is the
position vector rotating? Where is the point located
when r = 0? What is the next value  can have if the
orientation of the position vector is to be the same
as it is when ¢ = 0? What is the displacement from
the first position of the point to the second?

The location of a point is defined by the equation
R = (4t+2)ejm2/30. Motion of the point is ini-
tiated when ¢ = 0. What is the displacement until

t = 3? Find the change in angular orientation of the
position vector during the same time interval.

Link 2 rotates according to the equation 6 = mt/4.
Block 3 slides outward on link 2 according to
the equation r = 2 4+ 2. What is the absolute
displacement ARp,from 7 =1 to t = 2?7 What is
the apparent displacement ARp, » ?

* When assigning problems, the instructor may wish to
specify the method of solution to be used, since a variety

of approaches are presented in the text.

t2.10

t2.11

t2.12

Problems 99

02759% x|

Figure P2.9

A wheel with center at O rolls without slipping on
the ground at point P. If point O is displaced 10 in
to the right, determine the displacement of point P
during this interval.

Figure P2.10 Rolling wheel.

A point Q moves from A to B along link 3 while
link 2 rotates from 6, = 30° to 65 = 120°. Find the
absolute displacement of Q.

Figure P2.11 Ry0, = Rpo, =3 in and
Rpa =Ro,0, = 6 in.

The double-slider linkage is driven by moving
sliding block 2. Write the loop-closure equation.
Solve analytically for the position of sliding block
4. Check the result graphically for the position
where ¢ = —45°.
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Figure P2.12 R4g = 200 mm and vy = 15°.

The offset slider-crank linkage is driven by crank
2. Write the loop-closure equation. Solve for the
position of slider 4 as a function of 6;.

Figure P2.13 RAO =1lin, RBA =2.5in, and RCB =7in.

Define a set of vectors that is suitable for a
complete kinematic analysis of the mechanism.
Label and show the sense and orientation of
each vector. Write the vector loop equation(s)
for the mechanism. Identify suitable input(s),
known quantities, unknown variables, and any
constraints. If you identify constraints, then write
the constraint equation(s).

Figure P2.14

Define a set of vectors that is suitable for a com-
plete kinematic analysis of the rack-and-pinion
mechanism. Label and show the sense and ori-
entation of each vector. Assuming rolling with
no slip between rack 4 and pinion 5, write the
vector loop equation(s) for the mechanism. Iden-
tify suitable input(s), known quantities, unknown

2.16

variables, and any constraints. If you identify
constraints, then write the constraint equation(s).

B

Figure P2.15 Rack-and-pinion mechanism.

Define a set of vectors that is suitable for a
complete kinematic analysis of the mechanism.
Label and show the sense and orientation of
each vector. Assuming rolling with no slipping
between gears 2 and 5, write the vector loop
equation(s) for the mechanism. Identify suitable
input(s), known quantities, unknown variables,
and any constraints. If you identify constraints,
then write the constraint equation(s).

Figure P2.16 Geared five-bar mechanism.
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2.19

Figure P2.17

Gear 3, which is pinned to link 4 at point B, is
rolling without slipping on semicircular ground
link 1. The radius of gear 3 is p3, and the radius
of the ground link is p;. Define a set of vectors
that is suitable for a complete kinematic analysis
of the mechanism. Label and show the sense and
orientation of each vector. Write the vector loop
equation(s) for the mechanism. Identify suitable
input(s), known quantities, unknown variables,
and any constraints. If you identify constraints,
then write the constraint equation(s).

For the mechanism in Fig. P1.6, define a set
of vectors that is suitable for a complete kine-
matic analysis of the mechanism. Label and
show the sense and orientation of each vector.
Write the vector loop equation(s) for the mecha-
nism. Identify suitable input(s), known quantities,
unknown variables, and any constraints. If you
identify constraints, then write the constraint
equation(s).

For the mechanism in Fig. P1.8, define a set of
vectors that is suitable for a complete kinematic
analysis of the mechanism. Label and show the
sense and orientation of each vector. Write the
vector loop equation(s) for the mechanism. Iden-
tify suitable input(s), known quantities, unknown
variables, and any constraints. If you identify
constraints, then write the constraint equation(s).

2.20

2.21

12,22

12,23

Problems 101

For the mechanism in Fig. P1.9, define a set of
vectors that is suitable for a complete kinematic
analysis of the mechanism. Label and show the
sense and orientation of each vector. Write the
vector loop equation(s) for the mechanism. Iden-
tify suitable input(s), known quantities, unknown
variables, and any constraints. If you identify
constraints, then write the constraint equation(s).

For the mechanism in Fig. P1.10, define a set of
vectors that is suitable for a complete kinematic
analysis of the mechanism. Label and show the
sense and orientation of each vector. Write the
vector loop equation(s) for the mechanism. Iden-
tify suitable input(s), known quantities, unknown
variables, and any constraints. If you identify
constraints, then write the constraint equation(s).

Write a calculator program to find the sum of
any number of two-dimensional vectors expressed
in mixed rectangular or polar forms. The result
should be obtainable in either form with the
magnitude and angle of the polar form having
only positive values.

Write a computer program to plot the coupler
curve of any crank-rocker or double-crank form of
the four-bar linkage. The program should accept
four link lengths and either rectangular or polar
coordinates of the coupler point with respect to
the coupler.
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Plot the path of point P for: (a) inverted
slider-crank linkage; (b) second inversion of
the slider-crank linkage; (c) Scott-Russell

straight-line linkage; and (d) drag-link linkage.
(b)

Figure P2.24 (a) Rcy =2 in, Rpy = 3.5 in, and Rpc =4 in;
(b) Rcag =40 mm, Rgq =20 mm, and Rpg = 65 mm; (¢)

Rpa =Rcp =Rpp =25 mm; (d) Rpy = 11in, Rpy =2 in,

Rcp=Rcp =3in, and Rpp =4 in.

12,25

2.26

2.27

Using the offset slider-crank linkage in Fig. P2.13,
find the crank angles corresponding to the extreme
values of the transmission angle.

Section 1.10 states that the transmission angle
reaches an extreme value for the four-bar linkage
when the crank lies on the line between the fixed
pivots. Referring to Fig. 2.19, this means that y
reaches a maximum or minimum when crank 2 is
collinear with line O»0y4. Show analytically that
this statement is true.

Define a set of vectors that is suitable for a
complete kinematic analysis of the mechanism.
Label and show the sense and orientation of
each vector. Write the vector loop equation(s) for

Q
T

1
Figure P2.27

2.28

2.29

the mechanism. Identify suitable input(s), known
quantities, unknown variables, and any con-
straints. If you identify constraints, then write the
constraint equation(s).

Define a set of vectors that is suitable for a
complete kinematic analysis of the mechanism.
Label and show the sense and orientation of
each vector. Write the vector loop equation(s)
for the mechanism. Identify suitable input(s),
known quantities, unknown variables, and any
constraints. If you identify constraints, then write
the constraint equation(s).

Rolling
without slip

Figure P2.28

Define a set of vectors that is suitable for a
complete kinematic analysis of the mechanism.
Label and show the sense and orientation of
each vector. Write the vector loop equation(s)
for the mechanism. Identify suitable input(s),
known quantities, unknown variables, and any
constraints. If you identify constraint(s), then
write the constraint equation(s).
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2.31  For the input angle 6, = 300°, measured coun-
terclockwise from the x axis, determine the two
postures of link 4.

Rolling contact

Figure P2.29

2.30  Define a set of vectors that is suitable for a com-
plete kinematic analysis of the mechanism. Label
and show the sense and orientation of each vector.
Write the vector loop equation(s) for the mecha-
nism. Identify suitable input(s), known quantities,

Figure P2.31 rp =60 mm, r3 = 140 mm, r4 = 140 mm,

and r; = 160 mm.

unknown variables, and any constraints. If you 2.32  For the input angle 6, = 60°, measured coun-
identify constraint(s), then write the constraint terclockwise from the x axis, determine the two
equation(s). postures of link 4.

by

i
i
i
i
i
|
u
1

Figure P2.32 r = 80 mm, r3 =50 mm, r4 = 100 mm, and
Figure P2.30 r1 =70 mm.
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Consider a four-bar linkage for which ground link
1 is 14 in, input link 2 is 7 in, coupler link 3
is 10 in, and output link 4 is 8 in. The fixed x
and y axes are specified as horizontal and vertical,
respectively. The origin of this reference frame is
coincident with the ground pivot of link 2, and the
ground link is aligned with the x axis. For input
angle 6y = 60° (counterclockwise from the x axis):
(a) Using a suitable scale, draw the linkage in the
open and crossed postures and measure the values
of variables 03 and 64 for each posture. (b) Use
trigonometry (that is, the laws of sines and cosines)
to determine 63 and 6, for the open posture. (c)
Use Freudenstein’s equation to determine 03 and
0,4 for both postures. (d) Use the Newton-Raphson
iteration procedure to determine 63 and 0,4 for the
open posture. Using the measurements in (a) as
initial estimates for 63 and 6y, iterate until the two
variables converge to within 0.01°.

2.34

A crank-rocker four-bar linkage is shown in two
different postures for which 6, = 150° and 9£ =
240°. Determine 63 and 6y for the open posture and
6} and 6 for the crossed posture.

X

Figure P2.34 rg,0, = 600 mm, rpp, = 140 mm, rp4 =
690 mm, and rgp = 400 mm.



Velocity

3.1 DEFINITION OF VELOCITY

In Fig. 3.1, a moving point is first observed at location P, defined by the absolute position
vector Rp. After a small time increment At its location is observed to have changed to P’,
defined by R'p. Recall from Eq. (2.58) that the displacement of the point during this time
increment is defined as

ARp=Rp —Rp.

The average velocity of the point during the time increment At is defined by the ratio
ARp/At. The instantaneous velocity (hereafter simply called velocity) is defined by the
limit of this ratio as the time increment goes to zero and is given by

AR dR
Vp= lim —~ =2 (3.1)
At—0 At dt
¥ Figure 3.1 Displacement of a
- moving point.
P
R AN
\
\
AR\
I
R, \/
P/ P
01 X1
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Since ARp is a vector, there are two convergences in taking this limit, the magnitude and
the direction. Therefore, the velocity of a point is a vector quantity equal to the time rate
of change of its position. Like the position and displacement vectors, the velocity vector is
defined for a specific point. The term “velocity” should not be applied to a line, coordinate
system, volume, or other collection of points, since the velocity of each point may be
different.

We recall from Chap. 2 that, for their definitions, the position vectors Rp and R’p
depend on the posture of the coordinate system of the observer. The displacement vector
ARp and the velocity vector Vp, on the other hand, are independent of the location of the
coordinate system or the location of the observer within the coordinate system. However,
the velocity vector Vp does depend on the motion, if any, of the observer or the coordinate
system during the time interval; it is for this reason that the observer is assumed to remain
stationary within the coordinate system. If the coordinate system involved is the absolute
coordinate system, the velocity is referred to as an absolute velocity and is denoted by Vp,;
or simply Vp. This is consistent with the notation used for absolute position and absolute
displacement.

3.2 ROTATION OF A RIGID BODY

When a rigid body translates, the motion of any particular point is equal to the motion of
every other point of the body. When a rigid body rotates, however, two arbitrarily chosen
points, P and Q, do not undergo the same motion, and a coordinate system attached to the
body does not remain parallel to its initial orientation; that is, the body undergoes some
angular displacement A6. This was discussed in Sec. 2.16.

Angular displacements were not treated in detail in Chap. 2, since, in general, they
cannot be treated as vectors. The reason is that they do not obey the laws of vector addition.
If a rigid body undergoes multiple finite angular displacements in succession, in three
dimensions, the result depends on the order in which the displacements take place. To show
this, consider the rectangular body ABCO in Fig. 3.2a. If the body is first rotated by —90°
(that is, clockwise) about the y axis and then rotated by 4+90° (that is, counterclockwise)
about the x axis, the final posture of the body is in the yz plane. In Fig. 3.2b, the body
occupies the same starting posture and is again rotated about the same axes, through the
same angles, and in the same directions; however, in this case, the first rotation is about
the x axis and the second is about the y axis. The order of the rotations is reversed and the
final posture of the body is now in the zx plane rather than in the yz plane, as it was before.
Since this characteristic does not correspond to the commutative law of vector addition,
three-dimensional angular displacements cannot be treated as vectors.

Angular displacements that occur about the same axis or parallel axes, on the other
hand, do follow the commutative law. Also, infinitesimally small angular displacements are
commutative. To avoid confusion, we will treat all finite angular displacements as scalar
quantities. However, we will have occasion to treat infinitesimal angular displacements as
vectors.

Recall from Sec. 2.15 the definition of the displacement difference between two
points, P and Q, both attached to the same rigid body, as shown again in Fig. 3.3. The
displacement-difference vector is entirely attributable to the rotation of the body; there is
no displacement difference between points in a rigid body undergoing a translation. We
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Figure 3.2 Three-dimensional angular displacements.

reach this conclusion by picturing the displacement as occurring in two steps. First, the
body is assumed to translate through the displacement ARy to the posture x3y5z5.

the body is assumed to rotate about point Q* to the posture x

!\ S

2Y2%-

Kk %K

Next,

Another way to interpret the displacement difference ARpp is to imagine a moving
coordinate system whose origin travels along with point Q but whose axes remain parallel

4

X1

0,

Figure 3.3 Displacement difference between points P and Q.
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to the absolute axes x1y;z;. Note that this coordinate system does not rotate. An observer
in this moving coordinate system observes no motion for point Q, since it remains fixed in
that observer’s coordinate system. For the displacement of point P, such a moving observer
will only observe the displacement-difference vector ARpg. It seems to such an observer
that point Q remains fixed and that the body rotates about this seemingly fixed point, as
shown in Fig. 3.4.

No matter whether the observer is in the fixed coordinate system x;yjz; or in the
moving coordinate system x2y»z», the body appears to rotate through some total angle
A0 in its displacement from xzy2z> to x,y,z5. If we take the point of view of the fixed
observer, the location of the axis of rotation is not obvious. As seen by the translating
observer, the axis passes through the apparently stationary point Q; all points in the body
appear to travel in circular paths about this axis, and any line in the body whose direction is
normal to this axis appears to undergo an identical angular displacement A#. The rotating
position-difference vector Rpp generates a cone.

The angular velocity of a rotating body is now defined as a vector quantity w having
a direction parallel to the instantaneous axis of rotation. The magnitude of the angular
velocity is defined as the time rate of change of the angular orientation of any line in
the body whose direction is normal to the axis of rotation. If we designate the angular
displacement of any of these lines as Af and the time interval as At¢, then the magnitude
of the angular velocity vector is

. A8 do
o= lim — = —. 3.2)
At—0 At dt

Since we have agreed to treat counterclockwise rotations as positive, the sense of the
angular velocity vector along the axis of rotation is in accordance with the right-hand rule.

Figure 3.4 Displacement
difference ARpg as seen by a
translating observer.
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3.3 VELOCITY DIFFERENCE BETWEEN POINTS OF A RIGID BODY

Figure 3.5a shows another view of the same rigid-body displacement that was presented
in Fig. 3.3. This is the view seen by an observer in the absolute coordinate system looking
directly along the axis of rotation of the moving body, from the tip of the angular velocity
vector. Therefore, the angular displacement Af is observed in true size, and the projections
of all lines in the body rotate through this same angle during the displacement. The
displacement vectors and the position-difference vectors, however, are not necessarily
observed in true size; their projections may appear foreshortened under this viewing angle.
Figure 3.5b shows the same rigid-body displacement from the same viewing angle, but
this time from the point of view of the translating observer. Thus, this figure corresponds
to the base of the cone of Fig. 3.4. We note that the two vectors labeled rpg and r pQ are
the foreshortened projections of Rpp and R’pg, and we observe that their magnitudes are

rpo = r}JQ = Rpgsing, (a)

where ¢ is the constant angle from the angular velocity vector ® to the rotating
position-difference vector Rpg as it traverses the cone. Figure 3.5b, can also be interpreted
as a scale drawing corresponding to Eq. (2.60); that is,

ARpg =R'pg —Rpy. (b)

We can calculate the magnitude of the displacement-difference vector ARpg by draw-
ing the perpendicular bisector of this vector as shown in Fig. 3.5b. From this construction

Figure 3.5 (a) True view of angular displacements; (b) vector subtraction to form displacement
difference ARpg.
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we have
. A6
ARPQ = 2VPQ s 7 (C)
Subtituting Eq. (a) into Eq. (¢), we have
. . Af
ARpp =2(Rpgsing) sin - (d)

If we limit ourselves to infinitesimal displacements, the sine of the angular displacement
can be approximated by the angle itself; that is,

A6
ARpp =2(Rpg sin¢)7 = AORpgsing. (e)

Dividing by the time increment At, noting that the magnitude Rpp and the angle ¢ are
constant during the interval, and taking the limit gives

im (2222 Z tim (29 Rpgsing = wRpgsing f)
im (—— )= lim | — sing = sing.
At—0 At At—0 \ At PQ @Rro

Recalling the definition of ¢ as the constant angle from vector w to vector Rpg, we
can restore the vector attributes of Eq. (f) by recognizing this result as the magnitude of a
vector cross-product. Therefore,

. ARpg dRpo
1 — | =—= Rpo.
Ago( At > dt @ xRro ®

This form is so important and so useful that it is given its own name and notation; it is
called the velocity-difference vector and is denoted V pg; that is,

VPQ = 2 =X RPQ. (3.3)

Let us now recall the displacement-difference equation, see Eq. (2.59)—namely,
ARp = ARg + ARpg. (h)

Dividing this equation by At, and taking the limit as the time increment goes to zero, gives

AR AR AR
lim (=2 ) = lim (—2 )+ lim [ =—22). (i)
At—0 At At—0 At At—0 At
Eq. (3.1), (g), and (3.3) then Eq. (i) can be written as
Vp=Vp+Vpp. (3.4

This important equation is called the velocity-difference equation and, together with
Eq. (3.3), forms one of the basic equations of all velocity analysis techniques.
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Equation (3.4) can be written for any two points with no restriction. However,
reviewing the previous derivation, we recognize that Eq. (3.3) cannot be applied to an
arbitrary pair of points. This equation is only valid if the two points are fixed in the same
rigid body.* This restriction can, perhaps, be better remembered if all subscripts are written
explicitly; that is,

Vp,0, = @2XRpy0,. ()

Note that the link-number subscripts are the same throughout this equation, and so, in the
interest of brevity, are often suppressed. If a mistaken attempt is made to apply Eq. (3.3)
when points P and Q are not in the same rigid body, the error should be discovered, since
it will not be clear which angular velocity vector should be used.

3.4 VELOCITY POLYGONS; VELOCITY IMAGES

One important approach to velocity analysis is graphic. As observed in graphic posture
analysis, Sec. 2.8, it is primarily of use in two-dimensional mechanism problems when the
solution of only a single posture is required. The major advantages are that a solution can
be achieved quickly and that visualization of, and insight into, the problem are enhanced
by the graphic approach [7].

Consider the planar motion of the unconstrained link ABC shown in Fig. 3.6a. Given
the velocities of points A and B, the problem is to determine: (a) the angular velocity of the
link, and (b) the velocity of point C. Let us agree that a scale diagram of the link has been
drawn for the given posture and that any required position-difference vectors can be scaled
from the diagram.

For the solution of Part (a), we first consider the velocity-difference equation,
Eq. (3.4), relating points A and B; that is,

NAARRVE
Vg =V4+Vga, (a)

where the two unknowns are the magnitude and the direction of the velocity-difference
vector, Vpa. Fig. 3.6b shows the graphic solution to this equation. After an appropriate
scale is chosen to represent velocity vectors, vectors V4 and Vp are both drawn to scale,
starting from a common origin and in the two known directions. The vector spanning the
termini of V4 and Vp is the velocity-difference vector Vp4 and is correct, within graphic
accuracy, in both magnitude and direction.

The velocity-difference vector can be written from Eq. (3.3) as

VBA =®X RBA- (b)

Since the link is in planar motion, the angular velocity vector, w, lies perpendicular to
the plane of motion—that is, perpendicular to vectors Vg4 and Rp4. Considering only the

* More precisely, the restriction is the requirement that the distance Rpgp remains constant. However,
in applications, the above wording fits most real situations.
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(b) (o) \/ (d)
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Figure 3.6 Graphic velocity analysis of link ABC.

magnitudes in Eq. (b) gives
Vga = wRpa sin90° = wRpx.
Rearranging this equation, the angular velocity of the link is

w= 2, (©

Rpa
Therefore, the magnitude of the angular velocity can be obtained by scaling Vp4 from
Fig. 3.6b and Rp4 from Fig. 3.6a, being careful to properly apply the scale factors for
units; it is common practice to evaluate w in units of radians per second.

The magnitude, w, is not a complete solution for the angular velocity vector; the
direction must also be determined. As observed earlier, the w vector is perpendicular to the
plane of the link itself, since the motion is planar. However, this does not indicate whether
w is directed into or out of the plane of the motion. Taking the point of view of a translating
observer, moving with point A but not rotating, we can visualize the link as rotating about
point A; this is shown in Fig. 3.6¢. The velocity difference Vp4 is the only velocity seen
by such an observer. Therefore, interpreting Vg4 to indicate the direction of rotation of
point B about point A, we discover the direction of w, counterclockwise in this example.
Although it is not strict vector notation, it is common practice in two-dimensional problems
to indicate the final solution in the form w = xxx rad/s ccw, where “xxx” is a numeric value
indicating the magnitude, and “ccw” or “cw” indicates the direction.

The practice of constructing vector diagrams using thick dark lines, such as in
Fig. 3.6b, makes them easy to read, but when the diagram is the graphic solution of an
equation, it is not very accurate. For this reason, it is preferable to construct the graphic
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solution with thin sharp lines, made with a hard drawing pencil, as shown in Fig. 3.6d.
The solution begins by choosing a scale and a point labeled Oy to represent zero velocity.
Absolute velocities such as V4 and Vp are constructed with their origins at Oy, and their
termini are labeled as points A and B. The line from A to B then represents the velocity
difference V4. As we continue, we observe that these labels at the vertices are sufficient
to determine the precise notation of all velocity differences represented by lines in the
diagram. Note, for example, that Vg4 is represented by the vector from point A to point B.
With this labeling convention, no arrowheads or additional notation are necessary and do
not clutter the diagram. Such a diagram is called a velocity polygon and adds considerable
convenience to the graphic solution technique.

A danger of this convention, however, is that the reader may begin to think of the
technique as a series of graphic “tricks” and lose sight of the fact that each line that is drawn
can be, and should be, fully justified by a corresponding vector equation. The graphics are
merely a convenient solution technique and not a substitute for a sound theoretical basis.

Returning to Fig. 3.6¢, it may have appeared coincidental that the velocity-difference
Vpa was perpendicular to Rp4. Recalling Eq. (b), however, we see that it is a necessary
outcome, resulting from the cross-product with the @ vector. We will take advantage of
this relationship in the next step.

For the solution of Part (b), we can relate the absolute velocity of point C to the
absolute velocities of both points A and B, by two velocity-difference equations; that is,

WOW W W
Ve=V4+Vca=Vp+Vcp. (d)

Since points A, B, and C are all fixed in the same link, each of the velocity-difference
vectors, Vcy and Vg, is of the form @ x R, using Rc4 and Rep, respectively. As a result,
V4 is perpendicular to Rey, and Vp is perpendicular to Rep. The directions of these two
vectors are, therefore, indicated as known in Eq. (d).

Since w has already been determined, it is easy to calculate the magnitudes of V4 and
Vg using equations similar to Eq. (¢); however, this is avoided here. Instead, we form the
graphic solution to Eq. (d). Equation (d) states that a vector that is perpendicular to Rcy
must be added to V4 and that the result is equal to the sum of Vp and a vector perpendicular
to Rep. The solution is shown in Fig. 3.6¢. In practice, the solution is commonly continued
on the same diagram as Fig. 3.6d and results in Fig. 3.6g. A line perpendicular to Rcq
(representing Vca) is drawn starting at point A (representing addition to Vy4); similarly, a
line is drawn perpendicular to Rcp starting at point B. The point of intersection of these
two lines is labeled C and it represents the solution to Eq. (d). The line from Oy to point C
now represents the absolute velocity V. This velocity can be transferred back to the link
and interpreted as V¢ in both magnitude and direction, as shown in Fig. 3.6f.

In seeing the shading and the labeled angles « and $ in Figs. 3.6g and 3.6a, we are led
to investigate whether the two triangles labeled ABC in each of these figures are similar in
shape, as they appear to be. In reviewing the construction steps, we see that indeed they are
similar, since the velocity-difference vectors Vg4, Vca, and Vp are each perpendicular to
the respective position-difference vectors Rpa,Rca, and Rep. This property is always true,
regardless of the shape of the moving link; a similarly shaped figure appears in the velocity
polygon. The sides of the polygon are always scaled up or down by a factor equal to the
angular velocity of the link, and they are always rotated by 90° in the directions of their
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angular velocities. These properties result from the fact that each velocity-difference vector
between two points on the link results from a cross-product of the same w vector with
the corresponding position-difference vector. This similarly shaped figure in the velocity
polygon is commonly referred to as the velocity image of the link, and every link has a
corresponding velocity image in the velocity polygon.

The graphic procedures in this section were first published in 1883 by Mehmke as the
following theorem [10]:

The end points of the velocity vectors of the points of a plane rigid body, when plotted
from a common origin, produce a figure that is geometrically similar to the original
figure (image diagram).

It is this theorem that allows clarity in the velocity polygon despite the minimal labeling
that is required. This becomes evident in the upcoming two examples and continues
throughout the text.

The concept of the velocity image allows the graphic solution to be obtained more
efficiently. For example, there is no need to explicitly write Eq. (d). Once the solution
has progressed to the state of Fig. 3.6d, the velocity-image points A and B are known.
Therefore, one can use these two points as the base of a triangle similar to the shape of
the link and construct the image point C directly. Care must be taken not to allow the
triangle to be flipped over between the position diagram and the velocity image, but the
solution can proceed quickly, accurately, and naturally, resulting in Fig. 3.6g. Again, we
note that all steps in the solution are based on strictly derived vector equations and are not
graphic tricks. It is wise to continue to write the corresponding vector equations until one
is thoroughly familiar with the procedure and its vector basis.

The following are important properties of velocity images:

1. The velocity image of each link in the velocity polygon is a scale reproduction of
the shape of the real link.

2. The velocity image of each link is rotated 90° from the real link in the direction
of the angular velocity of that link.

3. The letters identifying the vertices of each link in the velocity polygon are the
same as, and progress around the velocity image in the same order and in the
same angular sense as, around the real link.

4. The ratio of the size of the velocity image of a link to the size of the link itself is
equal to the magnitude of the angular velocity of the link. In general, this is not
the same for different links in a mechanism.

5. The velocities of all points on a translating link are equal, and the angular velocity
of the link is zero. Therefore, the velocity image of a link that is translating shrinks
to a single point in the velocity polygon.

6. Point Oy in the velocity polygon is the image of all points with zero absolute
velocity; it is the velocity image of the stationary link.

7. The absolute velocity of any point on any link is represented in the velocity
polygon by the line from Oy to the image of the point. The velocity-difference
vector between any two points, say P and Q, is represented by the line to image
point P from image point Q.
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To illustrate the graphic velocity analysis of mechanisms and the role of velocity
images, we consider two typical linkage problems.

EXAMPLE 3.1

The four-bar linkage in the posture shown in Fig. 3.7a is driven by crank 2 at a constant
angular velocity w> = 900 rev/min ccw. For this posture, determine the angular velocities
of coupler link 3 and output link 4 and the velocities of point E in link 3 and point F in
link 4.

(a)

B

Figure 3.7 (a) Rpa = 41in, Rcp = 18in, Rcp = 11in, Rpy = 10in, Rgg = 10in, Rgg =
41in, Ryp =7 in, and Rpy = 3 in; (b) velocity polygon.

GRAPHIC SOLUTION

First, we draw the linkage to a suitable scale. Then, we calculate the angular velocity of
link 2 in radians per second; that is,

rev rad 1 min
Wy = (900—.) 27 2 — 94.25 rad/s ccw. (1)
min rev 60 s

Next we calculate the velocity of point B from Egs. (3.3) and (3.4), noting that point A is
fixed:

0
Vg =X, +Vps = wrxRga,

4
Vp = (94.25 rad/s) (Eft) = 31.42 ft/s. 2)

It is important to note that the form “w xR” was used for the velocity difference and not for
the absolute velocity Vp directly. Next, we choose a suitable velocity scale and an arbitrary
location for an origin, denoted as Oy, shown in Fig. 3.7b. Since V4 = 0, the image point
A is coincident with Oy. We construct the line AB perpendicular to Rp4 and toward the
lower left because of the counterclockwise sense of w»; this line represents Vp4.

Now we write two equations for the velocity of point C. Since the velocities of points
C3 and C4 must be equal (links 3 and 4 are pinned together at C), we have

WoON e W
Ve=Ve+Veg=¥p+Ven. 3)
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We construct two lines in the velocity polygon; line BC is drawn from image point B
perpendicular to Rep, and line DC is drawn from image point D (coincident with Oy
since Vp = 0) perpendicular to Rcp. We label the point of intersection of these two lines
as image point C. When the lengths of these two lines are measured, we find that Vg =
38.4 ft/s and V¢ = Vep = 45.5 ft/s. The angular velocities of links 3 and 4 can now be
obtained:

Ven 38.4 ft/s

w3 =—— =————=25.6rad/s ccw, Ans. (4)
Rep  (18/12) ft
Vep 45.5 ft/s

wp=—= = 49.64 rad/s ccw, Ans. (5)

" Rep (11/12) ft

where the directions of w3 and w4 are obtained using the technique illustrated in Fig. 3.6c¢.

There are several graphic methods for finding the velocity of point £. One method is
to measure Rgp from the scale drawing of the linkage. Then, since points B and E are both
attached to link 3, we calculate™

10.8
VEp = w3REp = (25.6 rad/s) (? ft) =23.04 ft/s. (6)

We next construct the line BE in the velocity polygon, drawn to the chosen scale and
perpendicular to Rgg. Then we solve’ the velocity-difference equation

RERNIRN,
VeE=Vp+Vgp. (7

From the velocity polygon, the velocity of point E is measured as
Vi =27.6 ft/s £165.3°. Ans.

Alternatively, the velocity of point E can be obtained from the velocity-difference
equation

[V VARV
Ve=Vc+Vgc (8)

by a procedure identical to that used for Eq. (7). This yields the triangle OyEC in the
velocity polygon.

Suppose we wish to find Vg without the intermediate step of calculating 3. In this
case we write Egs. (7) and (8) simultaneously; that is,

VW W W
Ve=Vp+Ve=Vc+Vec. 9

* There is no restriction in our derivation that requires that Rgp lie along the material portion of link
3 in order to use Eq. (6), only that points £ and B remain a constant distance apart.

T Note that numeric values should not be substituted into Eq. (7) directly. This is a vector equation
and requires vector addition, not scalar; performing these vector operations is precisely the purpose
of constructing the velocity polygon.
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Drawing lines EB (perpendicular to Rgp) and EC (perpendicular to Rgc) in the velocity
polygon, we find their point of intersection and so solve Eq. (9).

Perhaps the easiest method of solving for Vg, however, is to take advantage of the
concept of the velocity image of link 3. Recognizing that the velocity-image points B and
C have already been found, we construct triangle BEC in the velocity polygon, similar
in shape to triangle BEC in Fig. 3.7a. This locates point E in the velocity polygon and,
therefore, gives a solution for the velocity of point E.

The velocity of point F' can also be found by any of the previous methods using points
C, D, and F of link 4. The result is

Vr=31.8 ft/s £130.9°. Ans.

For the purpose of comparison, an analytic solution is also presented here.

ANALYTIC SOLUTION

The first step is to perform a posture analysis of the linkage. Since this step was presented
in Chap. 2, only the results are shown here. For the given link dimensions and the specified
input variable 6, = 120°, the postures of links 3 and 4 are 3 = 20.92° and 64 = 64.05°,
respectively.

In vector form, the position-difference vectors corresponding to the links are:

Rps =4 in/120° = —2i+ 3.464j in,

Reg = 18 in£20.92° = 16.813 + 6.427] in,
Rep = 11in264.05° = 4.8131+9.891j in,

Rpa = 10inZ0° = 10i in,

Rz = 10.77 inZ — 0.88° = 10.769i — 0.165 in,
Rpp = 7.616 in/40.85° = 5.761i +4.981j in.

We proceed as we did in the graphic solution—namely, the given input angular
velocity is

rev rad 1 min
wy = (900—_) g —94.25 rad/s ccw. (10)
min rev 60 s

Then the velocity of point B is written as

0
Vg =¥, +Vps=wxRpa
= —326.482i — 188.500j in/s = 377 in/s£ — 150°. (11)
The velocity of point C can be written as

NN e W
Ve=Vp+Veg=¥p+Vep

=Vp+ w3xRepg = w4 xRep. (12)
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Substituting the position-difference vectors Rcp and Rep and Eq. (11) into Eq. (12) and
writing the result in matrix form gives

32648205 1, [ —6427in ] _[ —9891in "
—188.500 in/s 16813in |2~ | 4813in |“* (13)

Solving Eq. (13), the angular velocities of links 3 and 4, respectively, are
w3 =25.382 rad/s (ccw) and wq4 =49.501 rad/s (ccw). Ans. (14)

The velocities of points E and F' can be obtained from the velocity-difference equation
using the velocities of points B and D; that is,

VeE=Vp+Veg=Vp+w3 xRggand VF=Vp+ Vep =Vp + w4 x Rpp. (15)
Substituting the known data into Eq. (15) gives

Vi = —322.294i + 84.839j in/s and VF= —246.564i +285.175] in/s

—27.8 ft/s/165.25° —31.4 ft/s £130.85° Ans.

Note that these answers are in good agreement with the answers obtained by the
graphic method.

EXAMPLE 3.2
The offset slider-crank linkage in the posture shown in Fig. 3.8a is driven by slider 4 at
a constant velocity V¢ = —10i m/s. Determine the velocity of point D and the angular

velocities of links 2 and 3.

@ ®)

Y1
— Image of
D link 2
Image of
A link 3—
c A
< &Image of Oy
\\/Vc///’ ] link 4

D

Figure 3.8 (a) e = 20 mm, Rgq = 50 mm, Rcp = 140 mm, Rgp = 80 mm, and Rpg = 50 mm;
(b) velocity polygon.
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SOLUTION

Choosing a suitable velocity scale and origin Oy, we draw the velocity vector V¢. This
locates the velocity image point C as shown in Fig. 3.8b. Solving the simultaneous
velocity-difference equations for the velocity of point B, namely,

WONW e W
Vg=Vc+Vpe =¥, +Vpa

provides the location of the velocity image point B in the velocity polygon.
Having found the velocity image points B and C, we construct the image of link 3 as
shown to locate point D. We then measure

Vp=12.0m/s Ans.

with the direction shown in the velocity polygon.
The angular velocities of links 2 and 3, respectively, are

_ Vea 10.0m/s

w)y=—= =200 rad/s ccw, Ans.
Rpa 0.050 m
V 7.5 m/

w3 = ZBC _ i = 53.6 rad/s cw. Ans.
Rpc  0.140 m

Note that the velocity image of each link is shown in Fig. 3.8b.

3.5 APPARENT VELOCITY OF A POINT IN A MOVING COORDINATE SYSTEM

In analyzing the velocities of various machine components, we frequently encounter
situations in which it is convenient to describe how a point fixed in a moving link moves
with respect to another point of a different moving link. However, it is not at all convenient
to describe the absolute motion. This situation occurs when a rotating link contains a slot
along which a point of another link is constrained to slide. With the motion of the link
containing the slot and the relative sliding motion taking place within the slot as known
quantities, we may wish to find the absolute motion of the sliding link. It is for this type of
problem that the apparent-displacement vector is defined in Sec. 2.16 (see Fig. 2.29). We
now wish to extend this concept to velocity analysis.

Consider Fig. 3.9 in which a rigid link with arbitrary motion has a coordinate system
x2y272 attached to it. After a time increment A, the coordinate system lies at x,y}z;. All
points of link 2—for example, point P,—move with the coordinate system. During the
same time interval, the initially coincident point P of link 3, denoted P3, is constrained to
move along a known path with respect to link 2. This constraint is depicted in the figure as
a slot carrying a pin from link 3; the center of the pin is point P3. Although it is pictured
in this way, the constraint may occur in a variety of different forms. The only assumption
here is that we know the path that point P3 traces in coordinate system x»y>zp—that is, the
locus of the tip of the apparent-position vector, Rp, /5.

Recall the apparent-displacement equation, Eq. (2.62); that is,

AR}:‘3 = ARP2 + ARP3/2.
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Figure 3.9 Apparent displacement.

Dividing this equation by the small time increment Af and taking the limit gives

AR AR AR
lim P ) = lim P2 ) & qim (=222 (a)
At—0 At At—0 At At—0 At

Defining the apparent-velocity vector as

. ARp; 2 dRp, 2
A\ =1 3 = 3= 3.5
Ps/2 Atlg()( At ) dr ©3-3)
then, in the limit, Eq. (a) becomes
Vp; =Vp, +Vp; )2, (3.6)

which is called the apparent-velocity equation.

We note from Eq. (3.5) that the apparent velocity resembles the absolute velocity
except that it comes from the apparent displacement rather than the absolute displacement.
Thus, Vp, > is the velocity of point P3 as it would appear to an observer attached to
moving link 2 and making observations in coordinate system x>y»z2. This concept accounts
for its name: the apparent-velocity vector. We also note that the absolute velocity, Vp,1, is
a special case of the apparent velocity where the observer happens to be fixed to the x1y;z;
coordinate system.

Insight into the use of the apparent-velocity equation, Eq. (3.6), is obtained from the
following examples.
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EXAMPLE 3.3

An inversion of the slider-crank linkage is shown in Fig. 3.10a. For the given posture, with
6> = 30°, the angular velocity of link 2 is a constant 36 rad/s cw. Link 3 is pinned to the
crank at A and slides on link 4 at point B. Find the angular velocity of link 4.

@ " ®)

Path of /‘E “\
on link 4 ‘

Figure 3.10 (a) Rag =3 in, Rga = Rcp = 2 in, and Rpg = 14 in; (b) velocity polygon.

SOLUTION
From Eq. (3.4), the velocity of point A is

0
Va=Ng +Var = w2 x Ryg,

V4 = (36 rad/s) <ift> =9 ft/s. @))

Choosing a suitable velocity scale and origin Oy, we draw velocity vector V4 to locate
image point A in the velocity polygon (Fig. 3.100).

Next, we distinguish two different points, B3 and By, at the location of sliding. Point
B3 is fixed in link 3, and point By is fixed in link 4, but at the instant shown, the two points
are coincident. Note that, as seen by an observer on link 4, point B3 slides along link
4, thus defining a straight path along line CF. Thus, we can write the apparent-velocity
equation, Eq. (3.6) as

VB3 = VB4 + VB3/4. 2)

When image point B3 is related to image point A, and image point By is related to image
point D by velocity differences, expansion of Eq. (2) gives

NV N 2V 7V
Va+ Vg4 Y p+Ve,p+Vpy4, 3)

where Vp.4 is perpendicular to Rpa, Vp,p (dashed line in Fig. 3.10b) is perpendicular to
Rpp, and V3, 4 is directed along the tangent to the path of sliding at B.




122

VELOCITY

Although Eq. (3) appears to have three unknowns, if we note that Vg4 and Vg, /4
have identical orientations, the equation can be rearranged as

?
oy
Va+(Vpa —Vpy4) = Vg,b, 4)

and the vector difference indicated in parentheses can be treated as a single vector with
known orientation. The equation is thereby reduced to two unknowns and can be solved
graphically to locate point B4 in the velocity polygon.

The magnitude Rpp can be computed or measured from a scale drawing of the
linkage, and the velocity-difference Vp,p can be determined from the velocity polygon
(the dashed line from Oy to Bs). Therefore, the angular velocity of link 4 is

. VB4D _ 7.3 ft/s

w4 = = =17.55 rad/s ccw. Ans. (5)
Rep  (11.6/12) ft

Another approach to this problem, which avoids the need to combine terms as in
Eq. (4), is to extend the velocity polygon to include the images of links 2, 3, and 4. In so
doing, it is necessary to note that, since links 3 and 4 are always perpendicular to each
other (83 = 64 — 90°), they must rotate at the same rate. Therefore, the angular velocities
of the two links are the same: w3 = w4. This allows the calculation of Vg4 = w3 xRp4 and
the plotting of the velocity image point, B3. We also note that the velocity images of links
3 and 4 are of comparable size, since w3z = w4. However, they have quite different scales
than the velocity image of link 2, line OyA, since link 2 has a larger angular velocity.

Now, consider an observer riding on link 4 and ask what SHE would see for the path
of point A in HER coordinate system. The answer to this is that this path is a straight line
parallel to line CF, as indicated in Fig. 3.10a. Let us now define one point of this path as
A4. Note that this point does not move together with pins A, and A3; it is a point in link
4 and it rotates along with the path around the fixed point D. Since we can identify the
path traced by A, and A3 on the extension of link 4, we can write the apparent-velocity
equation®

Va, =Va, +Va, 4. (6)

Since A4 is a point in link 4, we can write

0
Va, =¥p +Van. (N

* It is wrong to use the equation V4 + = Va, + V4,2, since the path traced by point A4 in a coordinate
system attached to link 2 is not known. Although this equation shows a poor understanding, it still
yields a correct solution. If the corresponding path (of point A4 as observed from link 2) were found,
it would be tangent to the path used for point Ay as observed from link 4. Since the rangents to the
two paths are the same, although the paths are not, the two solutions both yield the same numeric
result. However, this is not true in the acceleration analysis in Chap. 4. Therefore, the concept should
be studied and this “backward” use should be avoided.



3.5 APPARENT VELOCITY OF A POINT IN A MOVING COORDINATE SYSTEM 123

Substituting Eq. (7) into Eq. (6) gives

Woow W
Va, =Va,p+Va, a4, (8)

where V4,p is perpendicular to Rap, and Va,,4 is tangent to the path that A, traces on
extended link 4. Solving Eq. (8) locates velocity image point A4 in the velocity polygon
and gives Va,p =7.17 ft/s and Vg, 4 = 5.48 ft/s. Also, measuring the diagram gives Rap =
11.4 in. Substituting these values into the equation, we obtain

_ VA4D . 7.17 ft/s

w4 = = =17.55 rad/s ccw. ©)]
Rap  (11.4/12) ft

Note that this result is in complete agreement with the result of Eq. (5).
The velocity of other points in link 4—for example, points C and F—can be obtained
using the velocity polygon and are left as an exercise for the reader.

Further insight into the nature and use of the apparent-velocity equation is provided by the
following example.

EXAMPLE 3.4

An airplane is traveling at a speed of 300 km/h on a circular path of radius 5 km with a
center at C, as shown in Fig. 3.11. A rocket 30 km away from the airplane is traveling on a
straight course at a speed of 2 000 km/h. Determine the velocity of the rocket as observed
by the pilot of the airplane.

|
Vi, = 2000 km/h
3

Vp. = 300 km/h
2

P2
Cy Rs

<5 km 4] 30 km }

Figure 3.11 Airplane traveling on a circular path.

SOLUTION

Since the airplane is on a circular course, point C,, attached to the coordinate system of
the airplane but coincident with Cy, has no motion. Therefore, the angular velocity of the
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airplane is

_ Vee (Vp, —Vc,) (300 km/h — 0)

= =60 rad/h ccw.
Rpc Rpc 5 km

w2

The question posed explicitly requires the calculation of the apparent velocity Vg, /2,
but the apparent-velocity equation applies only between coincident points. Therefore, we
define another point, R;, attached to the rotating coordinate system of the airplane but
located coincident with the rocket R3 at the instant depicted. As part of the airplane, the
velocity of this point can be written from Eq. (3.6) as

Vg, =Vp, + @2 x Rgp.
Adding algebraically, since the vectors are parallel, gives
Vg, =300 km/h 4 (60 rad/h) (30 km) = 2 100 km/h.

The apparent velocity of the rocket as observed by the pilot of the airplane can be
written as

VRry/2=VRry — Vg,.
Now, algebraically subtracting gives
VRgy/2 =2 000 km/h — 2 100 km/h = —100 km/h. Ans.

Thus, as seen by the pilot of the airplane, the rocket appears to be backing up at a
speed of 100 km/h. This result becomes better understood as we consider the motion of
point R;. This imagined point is attached to the airplane and, therefore, seems stationary
to the pilot. Yet, in the absolute coordinate system, this point is traveling faster than the
rocket; the rocket is not keeping up with this point and, therefore, appears to the pilot to
be backing up.

We can gain further insight into the nature of the apparent-velocity vector by studying
Fig. 3.12. This figure shows the view of moving point P3 as it would appear to the moving
observer. To HER, the path traced on link 2 appears stationary, and the moving point moves
along this path from Pj3 to P. Working in this coordinate system, suppose we locate point
(5 as the center of curvature of the path of point P3. For small distances from P>, the path
follows the circular arc P3P} with center C; and radius of curvature p. We now define the
unit vector @ tangent to the path with positive sense in the direction of positive movement.
The plane defined by this unit tangent vector &’ and the center of curvature C is called the
osculating plane. If we choose a preferred side of this plane as the positive side and denote it
by the positive unit vector i (commonly referred to as the binormal vector), we can complete
aright-handed Cartesian coordinate system by defining the unit vector normal to the path

b

N

o' =0" x b’ (3.7)

Therefore, a rule to remember is that the unit normal vector @ is always 90°
counterclockwise from the unit tangent vector @’. This implies that the radius of curvature



3.5 APPARENT VELOCITY OF A POINT IN A MOVING COORDINATE SYSTEM 125

Vs Figure 3.12 Apparent
displacement of point P3 as
seen by an observer on link 2.

1~
13"
I
I P3l
Path traced by
Py on link 2
ﬁ}’l
-7
Py Py 3
0, X2
22

p has a positive value when @” points from point P3 toward the center of curvature of
the path C,, and a negative value when @" points from point P3 away from the center of
curvature.

This coordinate system, a'arab (commonly referred to as path coordinates), moves
with its origin tracking the motion of point P3. However, it rotates with the radius of
curvature (through angle A¢) as the motion progresses, but not the same rotation as either
link 2 or link 3. Note that, if positive movement were chosen in the opposite direction along
this curve, the sense of both the unit tangent vector &’ and the unit normal vector 4" would
be reversed. This would mean that the radius of curvature p would have a negative value;
however, the direction of the unit normal vector &" would still be obtained from Eq. (3.7)
rather than from the sense of the radius of curvature. Since the actual movement would
then be in the negative direction, angle A¢ would still be counterclockwise (as seen from
the positive ” side of the plane) and would still have a positive value.

We now define the scalar distance, As, as the arc length along the curve from P3 fo P’3
and note that ARp,/; is a chord of the same arc. However, for a very short time interval,
At, the magnitude of the chord and the arc distance approach equality. Therefore,

AR dR
lim < P3/2> B TN (3.8)

At—0 As ds

Here both ARp; /> and As are considered functions of time. Therefore, from Eq. (3.5), the
apparent-velocity vector can be written as

AR A dR d. d.
Vp3/2 = lim (ﬁi) — L/z_s — _Sﬁl

A—O\ As  Atr ds dr dr

or as
Vp, 2 = 5, (3.9)

where § is the instantaneous speed of P3; along the path. There are two important
conclusions from this result: (a) the magnitude of the apparent velocity is equal to the
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speed with which the point P3 progresses along the path and (b) the apparent-velocity
vector is always tangent to the path traced by the point in the coordinate system of the
observer.

The first of these two conclusions is seldom useful in the solution of problems,
although it is an important concept. The second conclusion is extremely useful, since the
apparent path traced by a moving point can often be visualized from the nature of the
constraints, and, thus, the direction of the apparent-velocity vector becomes known. Note
that only the tangent to the path @’ is used in this chapter; the radius of curvature p of the
path is not needed yet but will become important when we analyze acceleration in Chap. 4.

3.6 APPARENT ANGULAR VELOCITY

Completeness suggests that we should define the term apparent angular velocity. When
two rigid bodies rotate with different angular velocities, the vector difference between
the two angular velocities is defined as the apparent angular velocity. For example, the
apparent angular velocity of rotating links 2 and 3 can be written as

W32 = W3 — ). (3.10)
Therefore, the angular velocity of link 3 is
W3 =02+ w3/2. 3.11)

Note that w37 is the angular velocity of link 3 as it would appear to an observer attached
to, and rotating with, link 2.

3.7 DIRECT CONTACT AND ROLLING CONTACT

Two links of a mechanism that are in direct contact have relative motion that may or may
not involve sliding® at the point of contact. For example, consider the cam-and-follower
mechanism shown in Fig. 3.13a; the cam, link 2, drives the follower, link 3, by direct
contact. We see that if slip were not possible between link 2 and link 3 at the point of
contact P, then triangle PAB would form a truss; that is, the mechanism would have a
mobility of m = 0. Therefore, for the cam to drive the follower, sliding as well as rotation
must take place at point P. We distinguish between two coincident points, both located
at P at the instant shown: point P;, attached to link 2, and point P3, attached to link 3.
Therefore, we can rearrange the apparent-velocity equation, Eq. (3.6), as

Vp,2=Vp, —Vp,. (3.12)

The graphic velocity solution to this equation is as follows. First, we note that the
normal component of the apparent velocity must be zero; otherwise, the two links would
either separate or interfere, both contrary to our basic assumption that contact continues.
Therefore, the apparent velocity must act along the common tangent and is the velocity of
the relative sliding motion along the direct-contact interface.

* The words sliding and slipping are used interchangeably in this text.
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Common  (b)
tangent

P, A, B

Figure 3.13 (a) Cam-and-follower mechanism; (b) velocity polygon.

For a given angular velocity of the driver (the cam) w;, the velocity of point P, can be
obtained from

Vp, = w2 x Rp,p,

thus locating image point P, in the velocity polygon; see Fig. 3.13b. The component of
Vp, along the common normal must be equal to the component of Vp, along the common
normal, and this locates image point P3. Therefore, the apparent velocity, Eq. (3.12), can
be measured from the velocity polygon.

It is also possible for there to be direct contact between two links of a mechanism
without sliding between the links. For example, the cam and roller follower mechanism of
Fig. 3.14a could have sufficient friction between the cam surface, link 2, and the roller, link
3, to restrain the roller to roll on the cam without slip. Henceforth, we will restrict our use
of the term rolling contact to situations where no slip takes place. By “no slip” we imply
that the apparent “slipping” velocity of Eq. (3.12) is zero:

Vp,2=0. (3.13)

This equation is commonly referred to as the rolling contact condition for velocity.
Substituting Eq. (3.13) into Eq. (3.12), the rolling contact condition can also be written as

Vp, =Vp,. (3.14)

This says that the absolute velocities of two points in rolling contact are equal.

The graphic velocity analysis of this mechanism, assuming rolling contact at point P,
is as follows. Given w», the velocity difference Vp,p can be calculated and drawn to scale,
thus locating point P; in the velocity polygon; see Fig. 3.14b. Using Eq. (3.13), the rolling
contact condition, we also label this point P3. Next, writing simultaneous equations for
the velocity of pin C, using V¢, p, and V¢ a,, we locate the velocity-image points C3 and
C4. Finally, the angular velocities of links 3 and 4 are obtained from w3 = Vcp/Rcp and
w4 = Vca/Rca, respectively.

Another approach is to define a fictitious point C,, which is located instantaneously
coincident with points C3 and C4, but which is attached to and moving with link 2, as
shown by the shaded triangle BPC,. When velocity-image concept is used for link 2,
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Figure 3.14 (a) Cam and roller follower mechanism; (b) velocity polygon.

velocity-image point C» can be located (see Fig. 3.14b). Noting that point C4 (and C3)
traces a known path on link 2, we can write and solve the apparent-velocity equation
involving V¢, /2. Then, the velocity V¢, (and angular velocity wy, if desired) is obtained
without dealing with the point of direct contact. This second approach would be necessary
if we had not assumed rolling contact (no slip) at P.

3.8 SYSTEMATIC STRATEGY FOR VELOCITY ANALYSIS

A careful review of the preceding sections and example problems should indicate that
we have developed sufficient tools for dealing with situations that normally arise in the
velocity analysis of planar mechanisms. It should also be noted that the word “relative”
velocity has been carefully avoided. Instead, we note that whenever the desire for using
“relative” velocity arises, there are always two points whose velocities are to be “related.”
These two points are fixed either in the same rigid body or in two different rigid bodies.
When the two points are in the same body, the velocity difference equation, Eq. (3.4), is
appropriate. However, when it is desirable to switch to a point in a different body, then
coincident points should be chosen and the apparent-velocity equation, Eq. (3.6), should
be used. We can organize all possible situations into four cases as shown in Table 3.1.

Table 3.1 “Relative” Velocity Equations

Points are Coincident Separated
In same body Trivial case: Velocity difference:
Vp=Vp. Vp=Vp+Vpg

VPQ =(.0j X RPQ

In different bodies Apparent velocity: Too general; use two steps.
Ve, =Vp, +Vpyj,
where path P;/; is known.

Rolling contact velocity:
Vpl. = ij and Vpl./,' =0.
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The notation has intentionally been made different to remind us that these are two
totally different situations, and the formulae are not interchangeable between the two. We
should not try to use an w xR formula when using the apparent velocity; if we do try, then
we will not find a single @ or a useful R. Similarly, when using the velocity difference,
there is no question of which ® to use since only one link pertains. Further advantages will
become clear when we study accelerations in Chap. 4.

A detailed study of the graphic solutions of Example 3.1 through Example 3.4 clearly
indicates how the suggested strategy in Table 3.1, and the labeling of the velocity polygons,
is applied to the velocity analysis of planar mechanisms.

3.9 ALGEBRAIC VELOCITY ANALYSIS

For some types of mechanisms, a numeric solution by calculator or computer is often the
most convenient. Also, when solutions for multiple postures are required, graphic methods
become cumbersome. In this section we present an algebraic method for velocity analysis.

For purposes of illustration, consider the central (or in-line) slider-crank linkage shown
in Fig. 3.15. This linkage is the mechanism found in most internal combustion engines, and,
for this reason, we use the standard engine notation r and / to designate the length of the
crank and the length of the connecting rod, respectively.

From the geometry of the linkage we can write

rsinf = [sing, (a)

x=rcosf +Ilcose. (b)

The angle ¢ can be eliminated as follows. From trigonometry,

lcos¢=l\/l—sin2¢>=\/12—lzsin2¢. (c)

Substituting Eq. (a) into Eq. (c) gives

Icosp =+/ 12— r2sin?6. (d)

y Figure 3.15 Central
T slider-crank linkage.
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Then, substituting Eq. (d) into Eq. (b), the position of the slider (or piston) can be

written as
x=rcosf +4/ 12— r2sin’6
’ 2
x=rcosf+1 1—<7sin9) . (3.15a)

Differentiating this equation with respect to time gives the exact equation for the velocity
of the slider:

or as

. . r sin26
X=—rw | sinf + . (3.15b)

21,/1— (r/D)*sin?6

We note that for most internal combustion engines, the ratio r// is in the range 1/10 <
r/l < 1/4. This means that the maximum value of the second term under the radical is
about 1/16 or less. Therefore, it is common practice to use approximations for the position
and the velocity of the slider. These approximations are obtained by using the binomial
expansion to write the radical in Eq. (3.15a) as

| (r i 9)2 LAY ()
— | = S1n ] — —=SIn .
lS 2125 e

Note that sufficient accuracy is obtained for engine design by retaining only the first two
terms of the binomial expansion. Substituting the identity

) 1
sin“ 0 = 5(1 —co0s20)

into Eq. (e) and the result into Eq. (3.15a) gives
72
X =rcosf +l|:1 “I2 (1 —cos29)i| .

Rearranging this equation, the approximate position of the slider can be written as

r? r
x:l—m+r<cose+4—100529>. (3.16a)

Differentiating Eq. (3.16a) with respect to time and rearranging, the approximate
velocity of the slider can be written as

‘= —rw [sin@ 4 ;—l sin20] . (3.16b)
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3.10 COMPLEX-ALGEBRAIC VELOCITY ANALYSIS

We recall from Sec. 2.9 that complex algebra provides an alternative algebraic formulation
for problems in two-dimensional kinematics. As we noted there, the complex-algebraic
formulation provides the advantage of increased accuracy over graphic methods, and, once
a program is written, it is amenable to solution by digital computer at a large number of
postures. On the other hand, the solution of the loop-closure equation for the unknown
position variables is a nonlinear problem and can lead to tedious algebraic manipulations.
Fortunately, the extension of the complex-algebraic approach to velocity analysis leads to
a set of linear equations, and the solution is quite straightforward.

Recalling the complex polar form of a two-dimensional vector from Eq. (2.41); that is,

R=Re",
we find the general form of its time derivative,

. dR ., .
R=—" = Re’ +jORe" (3.17)

where R and 6 denote respectively the time rates of change of the magnitude and angle of
vector R.

We will see in the following two examples that the first term on the right-hand side
of Eq. (3.17) commonly represents an apparent velocity, and the second term usually
represents a velocity difference. The method shown in these examples was developed by
Raven [12]. Although the original work provides methods applicable to both planar and
spatial mechanisms, only the planar aspects are shown here.

EXAMPLE 3.5

For the inverted slider-crank linkage in the posture shown in Fig. 3.16a, link 2, the driver,
has a known angular position ¢, and a known angular velocity w;. Derive expressions for
the angular velocity of link 4 and the absolute velocity of point P in terms of the angular
velocity of the driver.

SOLUTION

To simplify the notation, we will use the symbols* shown in Fig. 3.16b for the
position-difference vectors; thus, R4p is denoted ri, Rc,4 is denoted rp, and Rc,p is
denoted r4. In terms of these symbols, the loop-closure equation can be written as

o=V, (1)

* The symbols R and r are used interchangeably throughout this chapter.
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Figure 3.16 Inverted slider-crank linkage.

where vector rq has unknown magnitude and direction, vector r; has constant magnitude
and direction,” and vector rp has constant magnitude (its direction, 6, varies). The
variable angle 6, is the given input angle or, more precisely, the unknown variables will
be solved as functions of 6.

Recognizing this as case 1 (Sec. 2.8), we obtain the posture solution from Eqs. (2.43)
and (2.44) as

r4 = \/r% + r% —2r1rycos6; (2)
and
sind
0 = tan~! (”1—2) . 3)
rycosbh —ry

The velocity solution is initiated by differentiating the loop-closure equation, Eq. (1),
with respect to time. Applying the general formula, Eq. (3.17), to each term of Eq. (1) in
turn, and keeping in mind that r{, 0, and r, are constants, we obtain

. J6a -/ 04 __ ) 0>
r4e™ + jOsrae™ = jOrrael”. 4)
Since 92 and 94 are the same as w» and wy, respectively, and since we recognize that
022 = Ve,, ia = Ve, 4. bars = Ve,

we see that Eq. (4) is, in fact, the complex polar form of the apparent-velocity equation:

Ve, +Ve, 4=V,

(This is pointed out for comparison only and is not a necessary step in the solution
process.)

* Note particularly that the angle of ry is 8; = 180°, not §; = 0°.
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The velocity solution is performed using Euler’s formula, Eq. (2.40), to separate Eq. (4)
into its real and imaginary components. This gives

74 COSO4 — w414 SiNOy = —wy iy Sinby, (@)
74 8IN04 + w4r4 cosBy = wrrr cOSO). (6)

Using Cramer’s rule, the expressions for the absolute velocity of point P and the angular
velocity of link 4, in terms of the angular velocity of the driver, are

4 = warysin(04 — 62), (N

r
w4 = w2 cos(04 — 02). (8)

ra
Although the variables r4 and 64 given by Eqgs. (2) and (3) could be substituted into
Egs. (2) and (3) to reduce the results to functions of 6, and w, alone, the previous forms
are considered sufficient. The reason is that, in writing a computer program, numeric
values are normally found first for r4 and 64 while performing the position analysis, and
then these numeric results are used to obtain numeric values for 74 and w4 at each input

angle 6,.
To find the velocity of point P, we first, write the position of point P as

Rp = Rpge™. 9)

Then, differentiating this equation with respect to time, and remembering that Rpp is a
constant length, gives

Vp = josRpge™. (10)
Next, substituting Eq. (8) into this equation gives

Vp = jwnRpg 2 cos (0 — 02) . (11)
r4

Therefore, the horizontal and vertical components of the velocity of point P in terms of
the angular velocity of the driver are

Vp = —a)szB2 coS (B4 — 6>) sinby (12)
r4

and

VY = wyRpp -2 cos (64 — 02) cos . (13)
r4

EXAMPLE 3.6

For the four-bar linkage in the arbitrary posture shown in Fig. 3.17a, derive expressions for
the relationships between the angular velocity of the input link 2 and the angular velocities
of the coupler link 3 and the output link 4.
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0, o, x

Figure 3.17 (a) Four-bar linkage; (b) the links are replaced by vectors.

SOLUTION

First, replace each link of Fig. 3.17a by a vector as shown in Fig. 3.17b. Then, the
loop-closure equation can be written as

? ?
A (R S Y (1)

Next, write each vector in Eq. (1) in complex polar form; that is,
V2€/92 + r3e"93 — r4eie4 —r % =0. 2)
Taking the time derivative of this equation and noting that link 1 is the fixed link gives
Jjrabae® + jr3f3el® — jrifse® = 0. 3)

Now, transform Eq. (3) into rectangular form and separate the real and the imaginary
terms. Then, noting that 6, = wy, 63 = w3, and 64 = w4, gives

rpw) cosbhr + r3wz cosfsz — raw4cosfy =0,

rowy SinBh 4 r3w3 sinfs — rqwq sinfy = 0, @

where the input angular velocity w; is known and the angular velocities w3 and w4 are the
two unknown variables.

Finally, using Cramer’s rule, the expressions for the angular velocities of the coupler
link 3 and the output link 4 in terms of the input angular velocity, respectively, are

_n sin (6 — 04) n sin (6, — 03)

wy and w). Ans. (5)

w3 = A 4 = -
r3sin (64 — 63) r48in (04 — 63)

Note that the term sin(64 — 63) appears in the denominators of both results. In general,
the velocity analysis of a planar mechanism will have similar denominators in the solutions
for each of the velocity unknowns; these denominators are the determinant of the matrix
of coefficients of the unknowns, as is recognized by recalling Cramer’s rule. The angle
(64 — 63) is, in fact, the transmission angle y, see Fig. 2.15 (Sec. 2.8). Recall that when
the transmission angle becomes small, the ratio of the output speed, w4, to the input speed,
wy, becomes very large and difficulties will result (Sec. 1.10).
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From Examples 3.5 and 3.6, we note that the simultaneous equations to be solved
are linear in the unknown variables. This is not a coincidence but is true for all velocity
problems. It results from the fact that the general form of the velocity equation, Eq. (3.17),
is linear in the velocity variables. When real and imaginary components are taken, the
coefficients may become complicated, but the equations remain linear with respect to the
velocity unknowns. Therefore, their solution is straightforward.

Recall that in Secs. 3.4 through 3.8, the graphic velocity methods, it was possible to
choose an arbitrary scale factor for a velocity polygon. Therefore, if the input speed of a
mechanism is doubled, the scale factor of the velocity polygon can also be doubled, and the
same polygon is valid. This is another indication of the linearity of the velocity equations.

3.11 METHOD OF KINEMATIC COEFFICIENTS

A method that provides substantial geometric insight into the kinematic analysis and
synthesis of a linkage is to differentiate the loop-closure equation with respect to the
input variable(s), rather than differentiating with respect to time. This analytic approach
is referred to as the method of kinematic coefficients [8]. The numeric values of the
first-order kinematic coefficients can also be checked with the graphic approach of finding
the locations of the instantaneous centers of velocity (Sec. 3.12).

This method is illustrated here by again solving the four-bar linkage problem that was
presented in Example 3.1 and the offset slider-crank linkage problem that was presented in
Example 3.2.

EXAMPLE 3.7

The four-bar linkage in the posture shown in Fig. 3.7a is driven by crank 2 at a constant
angular velocity wy = 900 rev/ min ccw. Determine the angular velocities of the coupler
link and the output link, and the velocities of points E and F.

SOLUTION

The loop-closure equation is given by Eq. (1) in Example 3.6 (Fig. 3.17b) and is
reproduced here:

1?7
Lt - ¥ =0, ()

The two scalar component equations are

12 c086r + r3c0803 — rqgcosby —rycosf; =0,
rpsin6 + r3sinfsy — r4sinfy — rysinf; = 0. 2)
Since the input is the angular displacement of link 2, the method of kinematic coefficients

necessitates differentiating Eqs. (2) with respect to the input variable 6,. Rearranging the
result gives

—r3sin 93% ~+ r4sin 9494 =rpsinby
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and
r3c0860305 — r4cos646, = —rycosby, 3)
where
95:;% and 9[‘:% 4)

are referred to as the first-order kinematic coefficients of links 3 and 4, respectively.
Algebraic forms for the kinematic coefficients can be obtained using Cramer’s rule.
Writing Eqgs. (3) in matrix form gives

—r3sinfl3  r4sinfy Qé . 2 8in6; )
73C0863  —r4cosby 0y | | —r2costy |
The determinant of the (2x2) coefficient matrix can be written as
A= —r3r4 sin(94 — 93) (6)

and provides geometric insight into special postures of the linkage (Example 3.6). For
example, when this determinant tends toward zero, the kinematic coefficients tend toward
infinity. Note that the determinant is zero (that is, the transmission angle 64 — 63 is zero)
either when (a) 63 = 64 or when (b) 63 = 64 £ 180°—that is, when links 3 and 4 are fully
extended or aligned on top of each other.

From Egs. (5), the first-order kinematic coefficients of links 3 and 4 are

o — 2 sin(0y — 64) ;N sin(6h, — 63)

and @)

37 r3sin(6s — 63) 47 pasin(@s —63)

Recall from Example 3.1 that the position values are 63 = 20.92° and 64 = 64.05°.
Therefore, the first-order kinematic coefficients of links 3 and 4 are

Qé = +0.271 8 rad/rad and 94 = +0.526 5 rad/rad, (8)
where the positive signs indicate that links 3 and 4 are rotating in the same direction as the
input link, 2.

The angular velocities of links 3 and 4, obtained from the chain rule, are

w3 = Qéa)z and w4 = 94&)2. )

Substituting Eqs. (7) into Eqgs. (9) gives the same symbolic results as Eqgs. (5) in Example
3.6. Also, substituting Egs. (8) and the input angular velocity into Egs. (9), the angular
velocities of links 3 and 4 are

w3 =25.62rad/s ccw and w4 =49.62 rad/s ccw. Ans.(10)

These answers are in good agreement with the results obtained in Example 3.1 from the
graphic method [Eqs. (4) and (5)] and the analytic method [Egs. (14)].
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The position of coupler point E with respect to ground pivot A (Fig. 3.7a) can be
written as

1
=+t (1n)

The x and y components of this vector equation are

XE =rycosbth +rgpcos (03 — @),
YE = r28in6p + rgpsin (63 — @), (12)
where ¢ = tan~! (Rgg/Rgg) = tan~! (4 in/10 in) = 21.80°.

Differentiating Eqs. (12) with respect to the input variable 65, the first-order kinematic
coefficients for point E are

’ de . . /
Xp = —— = —rysinfp — rggsin (03 — ¢) 03,
do,
’ YE ’
)’Ezﬁ = rpc086) +regcos (03 — @) 05. (13)
2

Substituting the known values into these equations, the first-order kinematic coefficients
for point E are

xﬁg = —3.419 1 in/rad and ng =+0.926 9 in/rad. (14)
The velocity of point E can be written from the chain rule as
Vi = (i + yphwn. (15)

Substituting Egs. (14) and the input angular velocity into this equation, the velocity of
point E is

Vi = —26.851 4 7.28j fus. Ans.

Therefore, the speed of point E is Vg = 27.8 ft/s, which agrees closely with the result
obtained from the graphic method in Example 3.1 (Vg = 27.6 ft/s).
The velocity of point F can be obtained in a similar manner, and the result is

Vi = —20.60i+ 23.82j fis. Ans.

Therefore, the speed of point F is Vg = 31.5 ft/s, which agrees closely with the result
obtained from the graphic method in Example 3.1 (Vp = 31.8 ft/s).

EXAMPLE 3.8

The offset slider-crank linkage in the posture shown in Fig. 3.8a is driven by slider 4 at a
constant speed of V¢ = 10 m/s to the left. Determine the angular velocities of links 2 and
3 and the velocity of point D.
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SOLUTION
The loop-closure equation for the offset slider-crank linkage, in complex polar form, is

Jri+rd” +r3e% —ry =0. (1
The two scalar equations are

rcosfy +r3cosfy —ry =0,

r1 +rpsinfy + r3sinfz = 0. 2)

Since the input is the linear displacement of link 4, then differentiating Eqgs. (2) with
respect to r4 gives

—r Sin@z@é -3 sin939§ =1,

12086205 + r3cos 6365 =0, (3)
where
do; dos
0, =22 and ¢,=22 4
2 dr4 an 3 dl”4 ( )

are the first-order kinematic coefficients of links 2 and 3. Symbolic equations for the
first-order kinematic coefficients are obtained here using Cramer’s rule. The first step is to
write Eqs. (3) in matrix form; that is,

- sin 92 —r3 sin 93 95 _ 1 (5)
rcosfy  rzcosés 65 | 10|
The determinant of the (2x2) coefficient matrix in Eq. (5) is written as

A =rr3sin(63 —60;). (6)

Note that the determinant is zero when (a) 0, = 63 or when (b) 6, = 63 £ 180°—that is,
when links 2 and 3 are fully extended or aligned on top of each other.
From Eq. (5), the first-order kinematic coefficients of links 2 and 3 can be written as

cosf —cosf
95 3 and 9% = —2
N r3 sm(93 — 92)

(7

= ysin(6; —6y)

For the given link dimensions and the given input position r4 = 164 mm, the angular
positions of links 2 and 3 are 6, = 45° and 63 = 337°, respectively. Substituting these
values into Egs. (7), the first-order kinematic coefficients of links 2 and 3 are

0, =—19.856 rad/m and 6} = +5.447 rad/m, (8)

where the negative sign shows that link 2 rotates clockwise while the positive sign shows
that link 3 rotates counterclockwise for positive input motion of link 4 (to the right).
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The angular velocities of links 2 and 3 can be written from the chain rule as
wy = 95)"4 and w3 = Qé 4, ©)]

where the velocity of the slider is 74 = Vo = —10 m/s. Substituting Egs. (8) and the velocity
of the slider into Eqgs. (9), the angular velocities of the two links are

wy = 198.56 rad/s ccw and w3 = —54.47 rad/s (cw) Ans.

These answers agree closely with the results obtained from the velocity polygon method
in Example 3.2 (w> = 200 rad/s ccw and w3 = 53.6 rad/s cw) and are more accurate.
The position of point D with respect to ground pivot A (Fig. 3.8a) can be written as

§Z>=1{21+r¢p{a. (10)

The x and y components of this vector equation are
Xxp =rpycosbr +rppcos (63 — ), (11la)
yp = ra8inf, 4+ rppsin (63 — B), (11b)
where B = (Rpg/REp) = tan~! (50 mm/80 mm) = 32.01°.
Differentiating Eqs. (11) with respect to input variable r4, the first-order kinematic
coefficients for point D are
Xp = —r28in6,0; — rpgsin (03 — B) 65, (12a)
Yp = r2c086205 + rpgcos (03 — B) 05. (12b)

Substituting the known values into these equations, the first-order kinematic
coefficients are

xp=1.123m/m and yp,=—0.407 m/m. (13)
The velocity of point D can be written as
Vb = (pi+3pd)is. (14)

Substituting Eqgs. (13) and the input velocity 74 = —10 m/s into this equation, the velocity
of point D is

Vp = —11.23i +4.07j m/s = 11.94 m/s£160.08°. Ans. (15)

Therefore, the instantaneous speed of point D agrees closely with the result obtained
from the velocity polygon method in Example 3.2 (Vp = 12 m/s).
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The method of kinematic coefficients also provides geometric insight into the motion
of mechanisms that have links that are in rolling contact. The following two examples will
help to illustrate this important concept.

EXAMPLE 3.9

For the mechanism in the posture shown in Fig. 3.18, the wheel is rolling without slipping
on the ground. Determine the first-order kinematic coefficients of links 3 and 4. If input
link 2 is rotating with a constant angular velocity of 10 rad/s ccw, then determine: (a) the
angular velocities of links 3 and 4 and (b) the velocity of the center of the wheel, point G.

Figure 3.18 Rpp, =1 =
150 mm, RBA =r3=

200 mm, Rgp = r4 = 50 mm,
and p = 100 mm.

&

027L7|7

1

SOLUTION
The loop-closure equation for the mechanism is

JI Y7 1 JCl ey
r+r;+ri+1r7 —r9 =0, (D

where the first constraint, C1, is 87 = 69 +270° and the second constraint, C2, designates
the rolling contact constraint defined later by Eq. (5).
The horizontal and vertical components of Eq. (1) give the scalar equations

12 c0s 6 + 1r3c08603 + r4cos04 + r7cosb7 — rg cosfg = 0, 2a)

r28inBy + r38inf3 + r4sinfy + r7sinf; — rg sinfg = 0. 2b)

Since the input is the angular displacement of link 2, we differentiate Eqs. (2) with respect
to 6> and, by setting 69 = 0°, we obtain

—rp8in6y — r3sin6305 — r4sin646; —ro =0 (3a)
and

r2c086) + 13086365 + r4cos 646, =0, (3b)
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where the first-order kinematic coefficients of links 3 and 4 and the change in position of
contact point C, respectively, are

do do
9§=—3 =2 and ro

drg
dg,” "t doy’

€0, “)

Also, note that the rotation of the wheel, 64, and the change in the distance, r9, are not
independent, since the wheel is rolling on the ground without slipping. This rolling contact
(no-slip) condition is constraint C2 and can be written as shown in Sec. 2.18:

—Arg = p (As — Ab7),

where p is the radius of the wheel and, from constraint C1, we note that Af; = 0.
Therefore, the rolling contact condition is

—Arg = pAby. (@)

The negative sign on the left-hand side of this constraint equation is the result of the
decreasing magnitude of rg for a positive change in the input variable—that is, A6,.

In the limit, for infinitesimal displacements, constraint Eq. (5) can be written in terms
of first-order kinematic coefficients as

—ry = pb. (6)

Substituting Eq. (6) into Egs. (3), and writing the resulting equations in matrix form,
gives

|: —r3sinfz  p — rasinby ]|: 6} }_[ +7r8in6, :| o

730863 74 COS 04 6 —12c086,
The determinant of the (2x2) coefficient matrix in Eq. (7) can be written as
A =r3[rgsin(04 —03) — pcosOs]. (8)

From Eq. (7), using Cramer’s rule, the symbolic equations for the first-order kinematic
coefficients of links 3 and 4 are
r [pcosfy —rasin (g — 6>)]

0y = R : (9a)

94 _ mnr3 Sinf3 — 92) ' (9b)

For the posture shown in Fig. 3.18, we have 6, = 90°, 63 = 0°, and 64 = —90°.
Therefore, the determinant in Eq. (8) can be written as

A=—r3(rs+p). (10

Substituting the known data and Eq. (10) into Egs. (9), and simplifying, gives

65=0 and 6,= =1 rad/rad. Ans. (11)

r4+p
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Therefore, the angular velocity of link 3 is
w3 =050 =0, Ans.
and the angular velocity of the wheel, link 4, is
w4 = Oywp = 10 rad/s ccw. Ans.

Note that these results are in agreement with our intuition; in this posture, link 3 is not
rotating, and link 4 is rotating at the same angular velocity as the input.
The velocity of the center of the wheel, point G, can be written as

Vg = r’9w2499. (12)

Substituting Eq. (11) into Eq. (6) gives ry = —p = —100 mm, and substituting this into
Eq. (12) gives

Vg = r/9a)246’9 = (—100 mm/rad) (10 rad/s) Z0° = —1.0 m/sZ£0°. Ans.

This result can be verified by direct calculation by noting that

0 A N ~ A
Vo =Ng, +osx (pj) — (10 rad/s) kx (100 mm)j = —1.03 mys. Ans.

EXAMPLE 3.10

For the mechanism in the posture shown in Fig. 3.19, gear 3 is rolling without slip on input
gear 2. Determine: (a) the first-order kinematic coefficients of links 3, 4, and 5; and () the
angular velocities of links 3, 4, and 5 if the input gear is rotating with a constant angular
velocity of 10 rad/s ccw.

05 G
>

Figure 3.19 pp =20 mm, p3 = 10 mm, Ry = r3 =5 mm, R4, = r4 =30 mm, and Rgpy =r5 =
60 mm.
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SOLUTION
The loop-closure equation for the mechanism is
7 JC 2
ﬁ+¥3 —«1'/5—\1/'}/=0, (1)

where the C refers to the rolling contact constraint that is defined later by Eq. (5a).
The two scalar component equations are

r4c0864 + r3cosfz —rscosfs — rycosd =0, 2a)

r48in64 + r3sinf3 — rssinfs — ry sinf; = 0. (2b)

Since the input is the angular displacement of gear 2, differentiating Eqs. (2) with respect
to 6, gives

—r4sinf40) — r3sin6305 + rssinfs05 =0, (Ba)
1408040, + r3cos 6365 — rs cosf565 = 0, (3b)
where
do do do
0,="2, g,="2, and Ol="2 )
do, do, do,

are the first-order kinematic coefficients of links 3, 4, and 5.

Note that the variables 6>, 63, and 64 are not independent, since gear 3 is constrained
to roll on gear 2. The rolling contact condition can be written to ensure that the arc
lengths passed during a small movement are equal on the two surfaces. This rolling contact
(no-slip) condition can be written as shown in Sec. 2.18:

P2 (A0 — Aby) = —p3 (AO3 — Aby), (5a)

where A6,, A6z, and A6, are the angular displacements of links 2, 3, and 4 from the
posture shown in Fig. 3.19. The negative sign for the right-hand term arises from the
reversal in the direction of the angular displacement differences.

Equation (5a) can be divided by a change in the input angular displacement, A6,, and
the limit taken for small increments. This yields the equivalent constraint equation written
in terms of first-order kinematic coefficients; that is,

2 (65— 63) = —p5 (65— 6}). 6b)

Since the input is the angular displacement of gear 2, then, by definition, 6, = 1, and by
substituting py = 2p3, Eq. (5b) can be written as

03 =36, —2. (6)
Substituting Eq. (6) into Egs. (3) and writing the resulting equations in matrix form gives

—r48inf4 — 3r3sinf3  rssinfs 6y | | —2r3sin6s
r4cos@y +3r3cosf;  —rs5cos0s 65 | | 2r3cosf; |

(N
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The determinant of the (2x2) coefficient matrix in Egs. (7) can be written as
A =r5[rgsin (04 —0s) + 3r3sin (63 — 05)]. (8)

From Egs. (7), using Cramer’s rule, the symbolic equations for the first-order kinematic
coefficients of links 4 and 5 are

o — 2r3rs5sin (63 — 6s)

4 A ) (9a)
0L = w. (9b)

For the posture shown in Fig. 3.19, we have 63 = 90°, 64 = 90°, and 65 = 0°;
therefore, Eq. (8) can be written as

A =r5(rg+3r3). (10)
Also, Egs. (9) reduce to
2V3 2
= PR rad/rad and 65 =0. (11)

It is interesting to note that link 5 is not rotating in this posture; that is, the angular velocity
w5 =0 at this instant. Substituting Eq. (11) into Eq. (6), the first-order kinematic coefficient
of gear 3 is

, 4
03 = —3 rad/rad. (12)

The angular velocity of link j can now be written as
wj = Qj’ . (13)

Therefore, substituting Eqs. (11) and (12) into Eq. (13), and setting wy = 10 rad/s ccw, the
angular velocities of gear 3 and links 4 and 5 are

w3 =—13.33rad/s, ws=+4+222radls, and ws=0, Ans. (14)

where the negative sign indicates clockwise and the positive sign indicates counterclock-
wise rotation.

Note that kinematic coefficients are functions of posture only; that is, they are not
directly functions of time. Also, note that the units of the first-order kinematic coefficients
depend on the specified input variable and the unknown variable under consideration.
The units may be nondimensional (rad/rad or length/length), length (length/rad), or
the reciprocal of length (rad/length). Table 3.2 summarizes the first-order kinematic
coefficients that are related to link j of a mechanism (that is, vector r;), having (a) unknown
angle ¢; and/or (b) unknown magnitude 7;.
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Table 3.2 Summary of First-order Kinematic Coefficients

Variable of Interest Variable of Interest
Angle 6; Magnitude r;
(Use symbol 01’. for kinematic (Use symbol rlf for kinematic
coefficient regardless of input) coefficient regardless of input)
Input wj= 0j'1ﬁ = rj/df
¥ = angle 6; Hj’ = Z—fg(dimensionless, rad/rad) r]’ = %(length, length/rad)
Input wj= 9](1/} = r]’t//
Y = distance r; 01.’ = d—?/j (1/1ength, rad/length) rJ’ = Z—Z(dimensiomless, length/length)

3.12 INSTANTANEOUS CENTERS OF VELOCITY

One of the more interesting concepts in planar kinematics is that of an instantaneous center
of velocity for a pair of rigid bodies that move with respect to one another. For spatial
motion, an axis exists that is common to both bodies and about which each body is rotating
and translating with respect to the other.* The study here is restricted to planar motion;
therefore, each axis is perpendicular to the plane of the motion and reduces to a point in
the plane. We shall refer to these points as instantaneous centers of velocity, henceforth
referred to as instant centers. (Some texts prefer the name velocity poles; see the footnote
in Sec. 3.20.)

The instantaneous center of velocity is defined as the instantaneous location of a pair
of coincident points of two different rigid bodies in planar motion for which the absolute
velocities of the two points are equal. The instantaneous center of velocity may also be
defined as the location of a pair of coincident points of two different rigid bodies in planar
motion for which the apparent velocity of one of the points is zero, as seen by an observer
on the other body.

This chapter only considers instant centers for mechanisms with mobility m = 1.
However, instant centers can also be used for velocity analysis of mechanisms with
mobility greater than unity (Chap. 5).

For planar motion, an instant center between two bodies can be regarded as a pair of
coincident points, one attached to each body, about which one body may have a rotational
velocity, but no translational velocity, with respect to the other. This property is true only
instantaneously, and a new pair of coincident points becomes the instant center at the next
instant. It is not correct, therefore, to speak of an instant center as the center of rotation,
since it is generally not located at the center of curvature of the apparent locus that a
point of one body generates with respect to the coordinate system of the other. Even with
this restriction, however, we will find that instant centers contribute substantially to our
understanding of the kinematics of planar motion.

* For three-dimensional motion, this axis is referred to as the instantaneous screw axis. The classic
work covering the theory of screws is [1].
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Figure 3.20 Rigid body 2 in
planar motion.

Let us consider rigid body 2, shown in Fig. 3.20, having an arbitrary planar motion
with respect to the x;y; plane (body 1); the motion might be translation, rotation, or a
combination of both. Suppose that a chosen point A of the body has a known velocity V4
and that the body has a known angular velocity w,. With these two quantities known,
the velocity of any other point of the body, such as point C, can be found from the
velocity-difference equation, Eq. (3.4):

Ve=V4+Vca=Va+ o2 x Rea. (@)

Suppose we now choose a point / of this same body 2 whose position difference from
point A is

)y X Vy

2
)

Ry = (3.18)

As shown by the vector cross-product, point 7 is located on the perpendicular to Vg4, and
vector Ryy is rotated from the direction of V4 in the direction of w», as illustrated in
Fig. 3.20. The length of R4 can be calculated from Eq. (3.18), and point / can be located.
The velocity of point / can be written from Eq. (a) as

(a)zXVA
Vi=Va+Vu=Va+ o xRy =Va+orx ——5—. (b)
[6))
2

Recalling the vector triple product identity ax (bxc¢) = b(c-a) — c(a - b) and substituting
this identity into Eq. (b) gives

2

O w:
V. ) —Val( 2 )
® O] — ® - ®
Vy=Vy AV T IAR Y VA Va =0, ©)
[))
2

Since the absolute velocity of point / is zero, the same as the velocity of the coincident
point of the fixed link, then point / is the instant center between body 2 and body 1.

The velocity of any other point of the moving body can now be determined using
the instant center, point /. Note that the choice of the instant center simplifies the
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@) y, ) yy

0, X1 0, Xy

Figure 3.21 Locating an instant center from two known velocities.

velocity-difference equation. For example, the velocity of point C in Eq. (a) can now be
written as

0
Ve=X; + Vo=, xRer. (3.19)

The direction of the velocity of this point is as shown in Fig. 3.20.

An instant center can be located more easily when the absolute velocities of two points
are known. In Fig. 3.21a, suppose that points A and C have known velocities V4 and V¢,
respectively. The perpendiculars to V4 and V¢ intersect at the instant center, point I. Figure
3.21b shows how to locate instant center / when points A, C, and [ happen to fall on the
same straight line.

The instant center between two bodies, in general, is not a stationary point. Its location
changes with respect to both bodies as the motion progresses and describes a path or locus
on each. These paths of the instant centers, called centrodes, are discussed in Sec. 3.20.

Since we have adopted the convention of numbering the links of a mechanism, it is
convenient to designate an instant center by using the numbers of the two links associated
with it. Thus, /33, for example, identifies the instant center between links 3 and 2. This
same instant center can also be identified as />3, since the order of the numbers has no
significance. A mechanism has as many instant centers as there are ways of pairing the
link numbers. Thus, the number of instant centers in an n-link mechanism is

_n(n—l)

N
2

(3.20)

3.13 ARONHOLD-KENNEDY THEOREM OF THREE CENTERS

Consider the four-bar linkage shown in Fig. 3.22a. According to Eq. (3.20), the number
of instant centers for this linkage is six. We can identify four of the instant centers by
inspection (henceforth called primary instant centers). The four pins are primary instant
centers 112, I»3, I34, and I14, since each satisfies the definition. For example, instant center
I3, is a point of link 2 about which link 3 appears to rotate; it is a point of link 3 that has
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(a) Ly 3 Figure 3.22 Locations of the
primary instant centers.

I

112 1 114

no apparent velocity as seen from link 2. This instant center is a pair of coincident points
of links 2 and 3 that have the same absolute velocities.

A good method of keeping track of which instant centers have been identified
is to arrange the link numbers around the perimeter of a circle (called the Kennedy
circle), as shown in Fig. 3.22b. Then, as each instant center is identified, a solid line
is drawn connecting the corresponding pair of link numbers. Figure 3.22b shows that
L2, >3, 134, and I14 (primary instant centers) have been identified, as indicated by the solid
lines. The figure also includes two dashed lines indicating that /13 and />4 have not yet been
identified (henceforth called secondary instant centers). The locations of the secondary
instant centers cannot be determined simply by applying the definition visually. After
locating the primary instant centers by inspection, the secondary instant centers are located
by applying the Aronhold-Kennedy theorem of three centers (often just called Kennedy’s
theorem).* This theorem states: Three instant centers shared by three rigid bodies in motion
with respect to one another (whether or not they are connected) all lie on the same straight
line.

The theorem can be proven by contradiction, as shown in Fig. 3.23. Link 1 is a
stationary frame, and instant center /1> is located where link 2 is pin-connected to link 1.
Similarly, /13 is located at the pin connecting links 1 and 3. The shapes of links 2 and 3 are
arbitrary (they can be regarded as infinite planes). The Aronhold-Kennedy theorem states
that the three instant centers /1o, 113, and />3 must all lie on the same straight line (the
line connecting the two pins), commonly referred to as the line of centers. Let us suppose
that this were not true; in fact, let us suppose that />3 were located at the point labeled
P in Fig. 3.23. Then the velocity of P as a point of link 2 would have the orientation
Vp,, perpendicular to Rpy,,. However, the velocity of P as a point of link 3 would have
the orientation Vp,, perpendicular to Rpy ;. The orientations of these two velocities are
inconsistent with the definition that an instant center must have equal absolute velocities
as a part of either link. The point P chosen, therefore, cannot be the instant center />3. This
same contradiction in the orientations of Vp, and Vp, occurs for any location chosen for
point P unless the point is chosen on the straight line through the instant centers /1> and /;3.

* The Aronhold-Kennedy theorem is named after its two independent discoverers, S. H. Aronhold,
1872, and A. B. W. Kennedy, 1886. It is usually known as the Aronhold theorem in German-speaking
countries, and is usually called Kennedy’s theorem in English-speaking countries.
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Figure 3.23
Aronhold-Kennedy theorem.

3.14 LOCATING INSTANTANEOUS CENTERS OF VELOCITY

In the previous two sections, we have considered several methods of locating instant
centers. They can often be located by inspecting the figure of a mechanism and visually
seeking out coincident point pairs that fit the definition, such as pin-joint centers. Also,
after these primary instant centers are identified, the secondary instant centers can be
determined using the theorem of three centers. Section 3.13 demonstrated that an instant
center between a moving body and the fixed link can be identified if the directions of the
absolute velocities of two points of the body are known or if the absolute velocity of one
point and the angular velocity of the body are known. The purpose of this section is to
expand the list of techniques to include instant centers of mechanisms involving direct
contact and instant centers at infinity.

For example, consider the cam-and-follower system of Fig. 3.24. The instant centers
I12 and Ij3 are primary instant centers, since, by inspection, they are located at the
two pin centers. However, the location of the secondary instant center />3 (indicated by
the dashed line in the Kennedy circle) is not immediately obvious. According to the
Aronhold-Kennedy theorem, it must lie on the straight line connecting /1, and /13, but
where on this line? After some reflection, we see that the orientation of the apparent
velocity, Vy4,/3, must be along the common tangent to the two moving links at their point
of contact. As seen by an observer on link 3, this velocity must result from the apparent
relative rotation of body 2 about the instant center /3. Therefore, I3 must lie on the line
that is perpendicular to Va,,3. This line now locates I>3, as shown in Fig. 3.24. The concept

Figure 3.24 Instant centers of
a disk cam with a flat-faced
follower.
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(b)

Figure 3.25 Instant center at a point of rolling contact.

illustrated in this example should be remembered, since it is often useful in locating the
instant centers of mechanisms involving direct contact.

A special case of direct contact, as we have previously noted, is rolling contact with
no slip. Considering the mechanism of Fig. 3.25, we can immediately locate the primary
instant centers /17, I3, and I34. As demonstrated by the previous example, if the contact
between links 1 and 4 involves any slippage, we can only say that instant center /14 is
located on the vertical line through the point of contact. However, if we also know that
there is no slip—that is, if there is rolling contact—then the instant center is located at
the point of contact. This is also a general principle, as can be seen by comparing the
definition of rolling contact, Eq. (3.14) and the definition of an instant center; they are
equivalent. Therefore, /14 is regarded as a primary instant center, as shown in Fig. 3.25b.

Another special case of direct contact is evident between links 3 and 4 of the inverted
slider-crank linkage in Fig. 3.26. In this case, there is an apparent (slip) velocity, V4, /4,
between points A of links 3 and 4, but there is no apparent rotation between the links.
Here, as in Fig. 3.24, the instant center /34 lies along a common perpendicular to the
known line of slipping, but now it is located infinitely far away in the direction defined
by this perpendicular line (since there is no apparent rotation). This infinite distance can
be demonstrated by considering the kinematic inversion of the mechanism in which link 4

LIy at oo

o4
1 1

Figure 3.26 Inverted slider-crank linkage and locations of instant centers.
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113—>oo

134—> oo

fyy— o

Figure 3.27 Scotch-yoke linkage and locations of instant centers.

becomes stationary. In this case, Eq. (3.18) for the inverted mechanism can be written as

@374 X Vay/4 R Va4
@34

Since there is no relative rotation between links 3 and 4, the denominator in this equation
is zero, and the distance from I»3 to [34 is infinite. The direction of I34, stated earlier, is
confirmed by the cross-product in Eq. (3.21).

Note that /34 can be regarded as either a primary instant center or a secondary
instant center. The remaining secondary instant centers, /13 and /4, can be obtained from
the Aronhold-Kennedy theorem. To locate /13, a line must be drawn through 714 parallel to
the line through instant centers I3 and I34. The point of intersection of this line with the
line through 715 and I»3 is I13. The point of intersection of the line through />3 and /34 with
the line through /14 and 11> is I>4.

An interesting example that has instant centers at infinity is the Scotch-yoke linkage,
shown in Fig. 3.27, which is a variation of the slider-crank linkage. The four primary instant
centers are /17, 13,134, and I14. The secondary instant center /o4 can be found directly from
the Aronhold-Kennedy theorem. Also, from the same theorem, the secondary instant center
113 must lie on line /1>1>3. However, since link 3 is in curvilinear translation (that is, link 3
does not change angle with respect to the fixed link), instant center /13 is located at infinity.

One more example is presented here to reinforce these concepts.
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EXAMPLE 3.11

Locate all instant centers of the five-bar mechanism shown in Fig. 3.28. There is rolling
contact between links 1 and 2, and slipping between links 2 and 4 and between links 2
and 5.

To I35

To I35

To I35

Figure 3.28 Five-bar mechanism and locations of instant centers.

SOLUTION

According to Eq. (3.20), the number of instant centers for this mechanism is 10. As
indicated by the Kennedy circle, there are four primary instant centers and six secondary
instant centers. The three pin joints are the primary instant centers /13, I34, and /15, and the
point of rolling contact between links 1 and 2 is the primary instant center /1>. The instant
center Ip4 is regarded as a secondary instant center, since it can be located by drawing
perpendicular lines to the directions of the apparent velocities at two of the corners of
link 4. However, this instant center could also be regarded as a primary instant center, since
it can be obtained from observation as the center of the apparent rotation between links 2
and 4. One line for the secondary instant center /5 is the perpendicular to the direction
of slipping between links 2 and 5, and the other line is the line through the instant centers
I1»2115. The locations of the remaining four secondary instant centers, I»3, 135,145, and /14,
can be found by repeated applications of the theorem of three centers. This is left as an
exercise for the reader.

It should be noted before closing this section that in the previous examples the
locations of instant centers were all found without requiring knowledge of the actual
operating speed of the mechanism. This is another indication of the linearity of the
equations relating velocities, as indicated in Sec. 3.9. For a single-degree-of-freedom
mechanism, the locations of all instant centers are uniquely determined by geometry alone
and do not depend on the operating speed [5].
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3.15 VELOCITY ANALYSIS USING INSTANT CENTERS

In this section, we demonstrate how the properties of instant centers can provide a simple
graphic approach to the velocity analysis of planar mechanisms. For illustration, consider
the four-bar linkage in the posture indicated in Fig. 3.29a. For a known angular velocity
of the input link, 2, the focus is to determine the velocities of pin B, coupler point D, and
point E of link 4.

The procedure is to denote the four pins as the four primary instant centers and
then locate the two secondary instant centers from Kennedy’s theorem (Sec. 3.13). Now
consider the instant center I»4. This instant center, by definition, is a pair of coincident
points common to both links 2 and 4 and has the same absolute velocities in both links.
Therefore, the velocity of this instant center can be written from Eq. (3.19) as

V124 =w2 X R124112 =4 X R124114

and is shown on Fig. 3.295.

Now we can obtain the velocity of any other point of link 4. For example, consider
points B" and E’, which are on the line of centers Io4112/14 and are chosen to have the same
radii from /14 as pin B and point E. Therefore, their velocities have magnitudes equal to
those of Vp and Vg, respectively, and these can be laid out in their proper directions, as
shown in Fig. 3.29b.

To obtain the velocity of the coupler point D, consider the line of centers I3112113,
which is shown in Fig. 3.30. Using the given input angular velocity, w;, and the primary
instant center /17, we find the absolute velocity of the instant center /3. Here, this step
is straightforward, since Vy,, = V4. Locating point D’ on this line of centers (in the same
manner as B’ and E’, above), we find V as shown and use its magnitude to plot the desired

()

Figure 3.29 Graphic velocity analysis using instant centers.
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Vs Figure 3.30 Velocities of pin
_________ B B and point D.

N
~
~
< N
~

Line of -
centers

velocity Vp. Note that, according to its definition, the instant center /13, as a point of link
3, has zero velocity at this instant. Also, note that pin B can be considered a point of link
3; its velocity can be determined in a similar manner by determining Vpr, as shown in
Fig. 3.30.

The line-of-centers method of velocity analysis using instant centers is summarized as
follows:

1. Identify the three link numbers associated with the given velocity, the velocity to
be determined, and the reference link. The reference link, in general, is link 1,
since typically absolute velocity information is given and requested.

2. Locate the three instant centers defined by the links of step 1 and draw the line of
centers.

3. Find the velocity of the common instant center by treating it as a point of the link
whose velocity is given.

4. With the velocity of the common instant center known, consider it as a point of
the link whose velocity is to be determined. The velocity of any other point in that
link can now be determined.

The following example will help to illustrate the line-of-centers method and also
demonstrate how to treat instant centers at infinity.

EXAMPLE 3.12

For the device shown in Fig. 3.31, some of the links are visible, whereas other links are
enclosed in a housing. However, the location of instant center /»5 is known, as shown in
the figure. If the velocity of point C of link 6 is V¢ = 10 m/s to the right, determine the
angular velocity of link 2.
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Enclosed housing
I

C, Is4
Iy
3 6 Ve
1 I,gat
16
250 mm Li Line of centers
s ‘ Ijsat e

I 5at

Igat

Figure 3.31 Links enclosed in a housing.

SOLUTION

Since V5,1 = V¢, and we are required to find w1, then we need to use the instant centers
I1s5, 112, and I»5. Note that @7/ is the same as w7, but the additional subscript has been
written to emphasize the presence of the third link (the frame). The primary instant center
L1 is at infinity, as shown. The instant center /15 lies on line /12/>5 and on line /1¢/56, and
since these two lines are parallel, then /;5 is also at infinity.

Considering I»5 a point of link 5, we wish to find the velocity of this point from the
given V¢. We have difficulty in locating point C’ on the line of centers at the same radius
from /;5 as point C, since /;s is at infinity. How can we proceed?

Recalling the discussion of Sec. 3.14 and Eq. (3.21), since /15 is at infinity, the relative
motion between links 5 and 1 is translation, and ws;1 = 0. Therefore, every point of link 5
has the same absolute velocity, including V;,; = V. Thus, we lay out V,; on Fig. 3.31.

Next, we turn our attention to link 2. We treat I»5 as a point of link 2 rotating about
112, and solve for the angular velocity of link 2:

V 10 m/
wy = hs S

= = =40 rad/s ccw. Ans.
R]25112 0.25m

Noticing the apparent paradox between the directions of V¢ and w», we may speculate on
the validity of our solution. This is resolved, however, by opening the enclosed housing
and discovering that the linkage is as shown in Fig. 3.32.
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Figure 3.32 Explanation of
the velocity paradox.

3.16 ANGULAR-VELOCITY-RATIO THEOREM

The instant center I>4 of the four-bar linkage shown in Fig. 3.33 is a pair of coincident
points of links 2 and 4. The absolute velocity Vy,, is the same whether /o4 is considered as
a point of link 2 or a point of link 4. Considering it each way, we can write

0 0
Vi, =Xlllz +@2/1 X Rppy1, =)/114 +@4/1 X Rppyr- (a)

Again, note that wz,1 and w4, are the same as w; and w4, respectively, but the additional
subscript is used to emphasize the presence of the third link (the frame).
Considering only the magnitudes of Eq. (a), the equation can be rewritten as
@4/1 _ L (b)
@21 Rpyn,
This illustrates the angular-velocity-ratio theorem, which states that the angular-velocity
ratio of any two bodies in planar motion with respect to a third body is inversely
proportional to the segments into which the common instant center cuts the line of centers.
Written in general notation for the motion of two bodies j and k with respect to a third
body i, the equation is
wri - R
/L (3.22)
@jfi Riyay
Choosing an arbitrary positive direction along the line of centers, you should prove for
yourself that the angular-velocity ratio is positive when the common instant center falls
outside the other two instant centers and negative when it falls between them.

Figure 3.33
Angular-velocity-ratio
theorem.
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3.17 RELATIONSHIPS BETWEEN FIRST-ORDER KINEMATIC COEFFICIENTS AND
INSTANT CENTERS
First-order kinematic coefficients (Sec. 3.11) can be expressed in terms of the locations of

instant centers. For a planar linkage, the angular velocity of link j can be written from the
chain rule as

w; = 6w, (3.23)

where w; is the input angular velocity. Therefore, the first-order kinematic coefficient of
link j can be written as

Consistent with the angular-velocity-ratio theorem, Eq. (3.22), the first-order kinematic
coefficient of link j can be written as

il
0] = 2=, (3.24)
Riyy
where /;; and /;; are the absolute instant centers of links i and j, respectively, and /;; is the
common instant center to links i and j.

EXAMPLE 3.13

For the four-bar linkage in Example 3.1, the lengths of the input link and the frame can be
written as Ry,,,, =4 in and Ry,,7,, = 10 in, respectively. Determine the angular velocities
of the coupler link and the output link using instant centers and first-order kinematic
coefficients.

SOLUTION
The first-order kinematic coefficients of links 3 and 4 can be written from Eq. (3.24) as

Rp1 Rpu1
oy = Nl g gy = Sl
Ry Rpyny

From Fig. 3.29—that is, the Aronhold-Kennedy theorem—we find Ry,,;, = 15in and
Ri1, = 11.2 in. Therefore, the first-order kinematic coefficients of the two links are

41in 11.2in

05 =0.267 rad/rad and 6, = ——— = 0.528 rad/rad.
21.21in

37 151
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Substituting these values and the input angular velocity wp = 94.25 rad/s ccw into
Egs. (3.23), the angular velocity of the coupler link and the output link, respectively, are

w3 =25.16rad/sccw and w4 =49.77 rad/s ccw.

These answers agree well with the results obtained from the velocity polygon method of
Example 3.1 (w3 = 25.6 rad/s ccw and w4 = 49.64 rad/s ccw).

Note that Egs. (3.23) and (3.24), as now written, are not valid for a linkage where link i
is a slider. For example, consider a slider-crank linkage with the slider (denoted as link i)
regarded as the input. The first-order kinematic coefficient of link j can be written from the
chain rule as

o = (3.25)
I

where 7; is the velocity of the slider. When Ry, becomes infinite, Eq. (3.24) for the
first-order kinematic coefficient of link j becomes

+1

b
Ry,

9/ = (3.26)

where the plus or minus sign depends on the positive direction chosen along the line of
centers. Consistent with the statement after Eq. (3.22), the angular-velocity ratio is positive
when the relative instant center falls outside the two absolute centers and negative when it
falls between them. The following example is used to illustrate Egs. (3.25) and (3.26).

EXAMPLE 3.14

For the offset slider-crank linkage in the posture shown in Fig. 3.34, the input velocity of
slider 4 is 10 m/s to the right. Determine the angular velocities of the crank and coupler
link using instant centers and first-order kinematic coefficients.

SOLUTION
The first-order kinematic coefficients of links 2 and 3 can be written from Eq. (3.26) as

, +1 , +1
0, = and 603 =
R1241 12

Rpyn;

We choose the velocity of slider 4 as positive to the right, therefore we have o' =1i,and
then, by Eq. (3.7), we have 0" = &’ x 0’ =k x i = j (upward) as the positive direction along
the line of centers.* From a scale drawing of the linkage, we measure Ry,,7,, = +51 mm

* Note that this sign convention is the same as saying that positive input motion of slider 4 is the same
as a positive (counterclockwise) rotation of link 4 about instant center /14 now located at infinity in
the positive 4" direction.
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and Ry, = —185 mm and find that the kinematic coefficients are
+1 +1
0= ———=—19.6rad/m and 6;=———— =-+541rad/m,
0.051 m —0.185 m

of I3 and 4.

velocity, 74 = 10 m/s, the angular velocities of links 2 and 3, respectively, are

wr» =196 rad/scw and w3 =54.1 rad/s ccw.

(wy = 198.56 rad/s ccw and w3 = 54.47 rad/s cw).
The velocity of a point, say P, fixed in a link of a mechanism can be written as

~t
VP = VpllP

Figure 3.34 ¢ =20 mm, Rgq = 50 mm, Rcp = 140 mm, Rgg = 80 mm, and Rpg = 50 mm.

159

where Qé is negative since Ip4 lies between /1, and I14 (which is at infinity upward, in the
positive " direction along the line of centers). Similarly, 65 is positive since /34 is outside

Rearranging Eq. (3.25), and substituting the kinematic coefficients and the input

Allowing for the reversal of the input velocity, these answers agree closely with
the results obtained from the graphic method in Example 3.2 (w2 = 200 rad/s ccw and
w3 = 53.6 rad/s cw). Also, since measurements are used for finding the locations of the
instant centers, these results are probably still not as accurate as those of Example 3.8

(3.27)
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or as
Ve = (pi+Ypd) ¥, (3.28)

where v/ is the generalized input velocity to the mechanism. The magnitude of the velocity,
commonly referred to as the speed, can be written from the chain rule as

Ve =1pi), (3.29)

where the first-order kinematic coefficient is defined as

=57+ (3.30)

Here, the sign convention is as follows: We use the positive sign if the instantaneous change
in the input position is positive, and we use the negative sign if the instantaneous change
in the input position is negative.

Rearranging Eq. (3.27), the unit tangent vector to the point trajectory can be
written as

L

W= (3.31)

Then, substituting Eqs. (3.28) and (3.29) into this relation gives

N Xp\ s ¥\
il = (r—f’) i+ (V—P>J (3.32)
P P

Consistent with Eq. (3.7), the unit normal vector to the point trajectory can now be
written as @, = &”x @/, Substituting Eq. (3.32) into this relation, the unit normal vector

can be written as
_y/ . o\ -
ﬁ;},:( ,P>i+<—f’)j. (3.33)
p p

3.18 FREUDENSTEIN’S THEOREM

In the analysis or design of a linkage, it is sometimes important to know the postures of
the linkage at which the extreme values of the output velocity occur, or, more precisely,
the input position values at which the ratio of the output and input velocities reaches its
extremes.

The earliest work in determining extreme values is apparently that of Krause [9], who
stated that the velocity ratio w; /w4 of the drag-link four-bar linkage (Fig. 3.35) reaches an
extreme value when the connecting rod and follower, links 3 and 4, become perpendicular
to each other. Rosenauer, however, demonstrated that this is not strictly true [13]. Following
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Figure 3.35 Drag-link four-bar Figure 3.36 Collineation axis.
linkage.

Krause, Freudenstein developed a simple graphic method for determining the postures of
the four-bar linkage at which the extreme values of the output velocity do occur [6].
Freudenstein’s theorem makes use of the line connecting instant centers 113 and I»4
(Fig. 3.36), called the collineation axis. The theorem states: At an extreme of the output to
input angular-velocity ratio of a four-bar linkage, the collineation axis is perpendicular to
the coupler link.*
Using the angular-velocity-ratio theorem, Eq. (3.22), we write

w4 Riy1,

@2 Riyn, +Ripny

Since Ry,,1,, is the fixed length of the frame, the extremes of the velocity ratio occur when
Ri,,1,,1s either a maximum or a minimum. Such positions may occur on either or both sides
of the instant center /1. Thus the problem reduces to finding the geometry of the linkage
for which Ry,,,, is an extremum.

During motion of the linkage, I»4 travels along the line /12714, as shown by the theorem
of three centers, but, at an extreme value of the velocity ratio, /4 must instantaneously be
at rest (its direction of travel on this line must be reversing). This occurs when the velocity
of I4, considered a point of link 3, is directed along the coupler link. This is true only when
the coupler link is perpendicular to the collineation axis, since /13 is the instant center of
link 3.

An inversion of the theorem (treating link 2 as fixed) states that an extreme value
of the velocity ratio w3/wy of a four-bar linkage occurs when the collineation axis is
perpendicular to the follower (link 4).

* A. S. Hall, Jr., contributed a rigorous proof of this theorem in an appendix to Freudenstein’s
paper [6].
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3.19 INDICES OF MERIT; MECHANICAL ADVANTAGE

In this section we will study various ratios, angles, and other parameters of mechanisms
that tell whether a mechanism is acceptable for a particular application (Sec. 1.10). Many
such parameters have been defined by various authors over the years, and there is no
common agreement on a single “index of merit” for all mechanisms. Yet the many used
have a number of features in common, including the fact that most can be related to velocity
ratios of the mechanism, and, therefore, can be determined solely from its geometry. In
addition, most depend on some knowledge of the application of the mechanism, especially
the input and output variables. It is often desirable in the analysis or synthesis of a
mechanism to plot an index of merit for a revolution of the input crank and to note in
particular the minimum and maximum values when evaluating a design or its suitability
for a given application.

In Sec. 3.16, we learned that the ratio of the angular velocity of the output link to
the input velocity of a mechanism is inversely proportional to the segments into which
the common instant center cuts the line of centers. Thus, in the four-bar linkage shown in
Fig. 3.37, if links 2 and 4 are the input and output cranks, respectively, then

w4 _ Ria
@ Rpp

is an equation for the output-to-input-velocity ratio. We also learned in Sec. 3.18 that the
extremes of this ratio occur when the collineation axis is perpendicular to the coupler,
link 3.

If we now assume that the linkage of Fig. 3.37 has no friction or inertia forces during
its operation or that these are negligible compared with the input torque, 7>, applied to
link 2, and the output torque, 74, the resisting load torque on link 4, then we can derive a
relation between 7> and T;. Since friction and inertia forces are negligible, the input power
applied to link 2 is equal to the power applied to link 4 by the load; hence,

Trwy = Taws (a)

Figure 3.37 Four-bar linkage. Figure 3.38 Four-bar linkage in
toggle.
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or

Li_o _Rp (3.34)
T, w4 Rp
As stated in Sec. 1.10, the mechanical advantage of a mechanism is the instantaneous
ratio of the output force (torque) to the input force (torque). Here we see that the
mechanical advantage is the reciprocal of the velocity ratio. Either can be used as an index
of merit in judging the ability of a mechanism to transmit force or power.
The mechanism is redrawn in Fig. 3.38 at a posture where links 2 and 3 are aligned.
At such a posture, Rj4 and w4 are passing through zero; hence, an extreme value (infinity)
of the mechanical advantage is obtained. A mechanism in such a posture is said to be in
toggle. Such toggle postures are often used to produce a high mechanical advantage; an
example is the clamping mechanism of Fig. 2.8.
Proceeding further, we construct B’A and C’'D perpendicular to line IBC in Fig. 3.37.
Also, we assign labels 8 and y to the acute angles made by the coupler or its extension and
the input and output links, respectively. Then, by similar triangles,

Rﬂ _ RC’D _ RCD Sil‘l)/

=P =D T (b)
Riy Rpa  Rpasinf
Then, using Eq. (3.34), another expression for mechanical advantage is
T. Rcepsi
R L L (3.35)

T w4 Rpasing’

This equation demonstrates that the mechanical advantage is infinite whenever the angle g
is 0° or 180°—that is, whenever the mechanism is in a toggle posture.

In Secs. 1.10 and 2.9, we defined the angle y between the coupler link and the follower
link as the transmission angle. This angle is also often used as an index of merit for a
four-bar linkage. Equation (3.35) indicates that the mechanical advantage diminishes when
the transmission angle is much less than a right angle. If the transmission angle becomes
too small, the mechanical advantage becomes small, and even a small amount of friction
may cause a mechanism to lock or jam. To avoid this, a common rule of thumb is that a
four-bar linkage should not be used in a region where the transmission angle is less than,
say, 45° or 50°. The better four-bar linkage, based on the quality of its force transmission,
has a transmission angle that deviates from 90° by the smaller amount.

In other mechanisms—for example, meshing gear teeth or a cam-and-follower
system—pressure angle is used as an index of merit. The pressure angle is defined as the
acute angle between the direction of the output force and the direction of the velocity of
the point where the output force is applied. Pressure angles are discussed more thoroughly
in Chaps. 6, 7, and 8. In the four-bar linkage, the pressure angle is the complement of the
transmission angle.

Another index of merit that has been proposed [4] is the determinant of the matrix
of coefficients of the simultaneous equations relating the dependent velocities of a
mechanism. In Example 3.6, for example, we saw that the dependent velocities of a
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four-bar linkage are related by

(V3 sin03)a)3 — (}’4 sin04)a)4 = —(rz Sin@z)wz,

(r3cosB3)w3 — (r4cosO4)wgs = —(rr cosbh)wn.
The matrix of coefficients is called the Jacobian of the system and its determinant is

r3sinfy  —rysind .
= 3 3 4 4 =r3r4 sm(94 —93).
r3cosf3  —rqcos0y

As is clear from Cramer’s rule, the solutions for the dependent velocities, in this
case w3 and wy4, must include this determinant in the denominator. This is borne out in
the solution of the four-bar linkage, Eqs. (5) in Example 3.6. Although the form of this
determinant changes for different mechanisms, such a determinant can always be defined
and always appears in the denominators of all dependent velocity solutions.

If this determinant becomes small, the mechanical advantage also becomes small
and the usefulness of the mechanism is reduced in such regions. This same determinant
also appears in the denominator of the dependent accelerations (Sec. 4.12) and all other
quantities that require derivatives of the loop-closure equation. If this determinant is
small, the mechanism will function poorly in all respects—force transmission, motion
transformation, sensitivity to manufacturing errors, and so on.

3.20 CENTRODES

We noted in Sec. 3.12 that the location of an instant center is defined only instantaneously
and changes as the mechanism moves. When the changing locations of an instant center
are found for all possible postures of a single-degree-of-freedom mechanism, a curve or

I3 Figure 3.39 Fixed centrode.
The fixed centrode
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I \«—Centrode normal

22l U “—Centrode tangent

The moving centrode .
/leed centrode

~—Moving centrode

Figure 3.40 Moving centrode. Figure 3.41 Rolling contact between

centrodes.

locus, called a centrode,* is defined. For example, consider the four-bar linkage shown in
Fig. 3.39. The instant center /13 (located at the intersection of the extensions of links 2
and 4) traces out a curve, called the fixed centrode on link 1, as the linkage moves through
all possible postures. The literature [11] indicates that the fixed centrode of a four-bar
linkage is a planar algebraic curve of degree eight.

Figure 3.40 shows the inversion of the same four-bar linkage in which link 3 is fixed
and link 1 is movable. When this inversion moves through all possible input positions, /13
traces a different curve on link 3. For the original linkage, with link 1 fixed, this is the
curve traced by /13 on the coordinate system of the moving link 3; it is called the moving
centrode.

Figure 3.41 shows the moving centrode, attached to link 3, and the fixed centrode,
attached to link 1. It is imagined here that links 1 and 3 have been machined to the actual
shapes of the respective centrodes and that links 2 and 4 have been removed entirely. If
the moving centrode is now permitted to roll on the fixed centrode without slip, link 3 has
exactly the same motion as it had in the original linkage. This remarkable property, which
stems from the fact that a point of rolling contact is an instant center, turns out to be quite
useful in the synthesis of linkages.

* Opinion seems divided on whether these loci should be termed centrodes or polodes. Generally,
those preferring the name instant center call them centrodes, and those preferring the name velocity
pole call them polodes. The French name roulettes has also been applied. The three-dimensional
equivalents are ruled surfaces and are referred to as axodes. Note that there is a subtle distinction
between the words instant center and velocity pole, and this is explained in Sec. 4.12.
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Figure 3.42 Elliptic gears.

We can restate this property as follows: The plane motion of one rigid body with
respect to another is completely equivalent to the rolling motion of one centrode on
the other. Beyer [2] provides a detailed discussion of centrodes and their fundamental
significance in the synthesis of planar mechanisms. The instantaneous point of rolling
contact of the centrodes is the instant center, as shown in Fig. 3.41. Also shown are the
common tangent to the two centrodes and the common normal, called the centrode tangent
and the centrode normal. These coordinates are sometimes used as the axes of a coordinate
system, commonly referred to as the canonical coordinate system. This system is used
for developing equations of a coupler curve and other geometric properties of the motion,
called the instantaneous invariants [3].

The centrodes of Fig. 3.41 were generated by the instant center /13 on links 1 and 3.
Another pair of centrodes, both moving, is generated on links 2 and 4 when instant center
I»4 is considered. These two centrodes roll upon each other and describe the identical
motion between links 2 and 4 that would result from the operation of the original four-bar
linkage. Figure 3.42 shows these centrodes as two ellipses for the case of a crossed
double-crank linkage with equal cranks. This construction can be used as the basis for
the development of a pair of elliptic gears.
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PROBLEMS*

3.1

t3.2

The position vector of a point is given by the T3.5  The distance between points A and B, located along
equation R = 100&/™?, where R is in inches. Find the radius of a wheel, is Rp4 = 300 mm. The speeds
the velocity of the point at = 0.40 s. of points A and B are V4 = 80 m/s and Vp =

140 m/s, respectively. Find the diameter of the
wheel, the velocities V4p and V gy, and the angular
velocity of the wheel.

The path of a point is defined by the equation
R= (12 +4> e 771/10 \where R is in meters. Find
the velocity of the point at =20 s.

Automobile A is traveling south at 55 mi/h and
automobile B is traveling north 60° east at 40 mi/h.
Find the velocity difference between B and A and
the apparent velocity of B to the driver of A.

Wheel 2 rotates at 600 rev/min cw and drives wheel
3 without slipping. Find the velocity difference
between points B and A.

Figure P3.5

73.6  An airplane takes off from point B and flies east at

350 mi/h. Simultaneously, another airplane at point

A, 200 miles southeast, takes off and flies northeast

at 390 mi/h. (a) How close will the airplanes come

to each other if they fly at the same altitude? (b) If

; = 600 rev/min both airplanes leave at 6:00 p.m., at what time will
Figure P3.4 this occur?
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B Path of plane B 73.10  The four-bar linkage in the posture shown is driven
- by crank 2 at wp = 60 rad/s cw. Find the angular
200 mﬂes\\ ‘ velocities of links 3 and 4, and the velocity of pin B
N ‘ and point C on link 3.
~— Path of plane 4
45°

-

A
Figure P3.6 Ryp = 200 mi.

3.7 Include a wind of 30 mi/h from the west with the
data of Prob. 3.6. (a) If airplane A flies at the same
heading, what is its new path? (b) What change
does the wind make in the results of Prob. 3.6?

3.8 For the double-slider linkage in the posture shown,
the velocity of point B is 40 m/s. Find the velocity
of point A and the angular velocity of link 3.

Figure P3.10 R4, = 150 mm, R4 =300 mm,
Rp,0, =75 mm, Rgp, =300 mm, Rpy = 150 mm, and
Rcp =100 mm.

3,11 The four-bar linkage in the posture shown is driven
by crank 2 at wp = 48 rad/s ccw. Find the angular
velocity of link 3 and the velocity of point C on
link 4.

Figure P3.8 Ryp =400 mm.

73,9 The four-bar linkage in the posture shown is driven
by crank 2 at wp = 45 rad/s ccw. Find the angular
velocities of links 3 and 4.

Figure P3.11 R4p, =8 in, Rpy =32 in,
Figure P3.9 Ryp, =4 in,Rps = 10in, Ro40, =16in, Rpo, =16 in, and Rco, = 12 in.
R0402 = 10 in, and RBO4 = 12in.

73,12 For the parallelogram four-bar linkage, demon-
strate that w3 is always zero and that wg = w).
How would you describe the motion of link 4 with
respect to link 2?

* When assigning problems, the instructor may wish to
specify the method of solution to be used, because a variety
of approaches are presented in the text.
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t3.14

Figure P3.12

The antiparallel, or crossed, four-bar linkage in
the posture shown is driven by link 2 at wy =1
rad/s ccw. Find the velocities of points C and D.

Figure P3.13 R40, = Rpo, =300 mm, Rgs =Rop,0, =
150 mm, and Rcq = Rpp =75 mm.

For the four-bar linkage in the posture shown, link
2 has an angular velocity of 60 rad/s ccw. Find
the angular velocities of links 3 and 4, and the
velocity of point C.

p Figure P3.14 R40, = Rpa =6 in,
Ro,0, =Rpo, = 10in, and Rcy = 8 in.

t3.15

t3.16

t3.17
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Crank 2 of the inverted slider-crank linkage, in
the posture shown, is driven at w, = 60 rad/s ccw.
Find the angular velocities of links 3 and 4, and
the velocity of point B.

Figure P3.15 R40, =75 mm, Rg4 =400 mm, and
Ro,0, =125 mm.

For the four-bar linkage in the posture shown,
crank 2 has an angular velocity of 30 rad/s cw.
Find the velocity of coupler point C and the
angular velocities of links 3 and 4.

Figure P3.16 Ry0, =3 in,Rgga = Rcp =5 in,
Rp,0, =101in, and Ry, =6 in.

For the modified slider-crank linkage in the pos-
ture shown, crank 2 has an angular velocity of 10
rad/s ccw. Find the angular velocity of link 6 and
the velocities of points B, C, and D.

Figure P3.17 Ry0, =2.5 in, Rpg = 10 in,
Rcp=8in,Rca =Rpc =41in,Rpg0, =8 in, and

Rpog =6 in.
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t3.19
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For the four-bar linkage shown, the angular veloc-
ity of crank 2 is a constant 16 rad/s cw. Plot a polar
velocity diagram for the velocity of point B for all
crank positions. Check the positions of maximum
and minimum velocities by using Freudenstein’s
theorem.

Figure P3.18 RA02 =350 mm, Rgq =425 mm,
Ro,0, =100 mm, and Rpp, =400 mm.

For the four-bar linkage in the posture shown, link
2 is driven at wp = 36 rad/s cw. Find the angular
velocity of link 3 and the velocity of point B.

Figure P3.19 Ry0, =5 in, Rgg = Rpo, = 8 in, and
R0402 =7in.

For the four-bar linkage in the posture shown,
the angular velocity of the input link 2 is 8 rad/s
ccw. Find the velocity of point C and the angular
velocity of link 3.

B

Figure P3.20 RA02 =150 mm, Ry =R304 =
250 mm, Ro, 0, =75 mm, Rcq = 300 mm, and
Rcp =100 mm.

t3.21

13.22

13.23

For the four-bar linkage in the posture shown, link
2 has an angular velocity of 56 rad/s ccw. Find the
velocity of point C.

50, 20,

Figure P3.21 Ryp, = 150 mm, Rpq = Rpo, =
250 mm, Rp, 0, = 100 mm, and Rcy =300 mm.

For the double-slider linkage in the posture
shown, the angular velocity of the input crank 2
is 42 rad/s cw. Find the velocities of points B, C,
and D.

Figure P3.22 Ry0, =2 in, Rgg = 10in, Rcp =
4 in, RCB =7 in, and RDC =8in.

For the linkage used in a two-cylinder 60°
V-engine consisting, in part, of an articulated
connecting rod crank 2 rotates at 2 000 rev/min
cw. Find the velocities of points B, C, and D.



3.24

3.25

Figure P3.23 RA02 =2in, RBA = RCB =6in, RCA =2in,

and Rpc =5 in.

For the inverted slider-crank linkage in the posture
shown, the angular velocity of the crank is wy =
24 rad/s cw. Make a complete velocity analysis of
the linkage. What is the absolute velocity of point
B? What is its apparent velocity to an observer
moving with link 4?

Figure P3.24 Ry0, =8 inand Rp,0, =20 in.

For the linkage in the posture shown, the velocity
of point A is 1i ft/s. Find the velocity of coupler
point B.

Figure P3.25

Problems 171

73.26 A variation of the Scotch-yoke linkage in the
posture shown is driven by crank 2 at wy, = 36
rad/s ccw. Find the velocity of the crosshead,
link 4.

Figure P3.26 R4, =250 mm.

Perform a complete velocity analysis of the
modified four-bar linkage for w, = 72 rad/s ccw.

Figure P3.27 Rq0, =Rpc = 1.51in, Ry = 10.51n,
Ro,0, =61n,Rpp, =5 in, Ros0, =7 in, and
Rpog =8 in.

For the mechanism in the posture shown, the
velocity of point C is V¢ = 10 in/s to the left.
There is rolling contact between links 1 and 2,
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but slip is possible between links 2 and 3. Deter-
mine the angular velocity of link 3.

Figure P3.28 p; =61in, pp =0.75in, Ryp = —2.51 —
1.75] in, and Rgp = 1 in.

3.29

3.30

For the circular cam in the posture shown, the
angular velocity of the cam is wp = 15 rad/s ccw.
There is rolling contact between the cam and the
roller, link 3. Find the angular velocity of the
oscillating follower, link 4.

Figure P3.29

The mechanism in the posture shown is driven by
link 2 at 10 rad/s ccw. There is rolling contact
at point F. Determine the velocities of points
E and G, and the angular velocities of links 3,
4,5, and 6.

3.31

13.32

Figure P3.30

The two-piston pump, in the posture shown, is
driven by a circular eccentric, link 2, at wy =25
rad/s ccw. Find the velocities of the two pistons,
links 6 and 7.

|
= —|

p Figure P3.31

The epicyclic gear train is driven by the arm, link 2,
at wy = 10 rad/s cw. Determine the angular velocity
of the output shaft, which is attached to gear 3.

p Figure P3.32
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3.34

3.35

3.36

3.37

3.38

3.39

3.40

The diagram shows a planar schematic approx-
imation of an automotive front suspension. The
roll center is the term used by the industry to
describe the point about which the auto body
seems to rotate (roll) with respect to the ground.
The assumption is made that there is pivoting
but no slip between the tires and the road. After
making a sketch, use the concepts of instant
centers to find a technique to locate the roll center.

p Figure P3.33

Locate all instant centers for the linkage of
Prob. 3.22.

Locate all instant centers for the mechanism of
Prob. 3.25.

Locate all instant centers for the mechanism of
Prob. 3.26.

Locate all instant centers for the mechanism of
Prob. 3.27.

Locate all instant centers for the mechanism of
Prob. 3.28.

Locate all instant centers for the mechanism of
Prob. 3.29.

The posture of the input link 2 is Rap, =
—lAZOf mm, and the velocity of point A is V4 =
15i m/s. Determine the first-order kinematic coef-

ficients for the mechanism. Find the angular
velocities of links 3 and 4.

Figure P3.40 RBO4 = RBA =120 mm.

3.41

3.42

3.43

Problems 173

For the rack-and-pinion mechanism in the posture
shown, link 2 is the input, and pinion 3 is rolling
without slipping on rack 4 at point D. Determine
the first-order kinematic coefficients of links 3
and 4. If the constant input velocity is Vg =
3 in/s, determine the angular velocities of rack 4
and pinion 3.

Figure P3.41 Rgo, = 101in, and RpG = p3 =5 in.

For the rack-and-pinion mechanism of Example
2.8 (Figs. 2.33 and 2.34), the dimensions are
Ry = 800 mm, Rg = 550 mm, 034 = 60°, and
3 =500 mm. In the posture where Ry =750 mm,
input link 2 has a velocity of V4 = O.lSOj m/s.
Determine the first-order kinematic coefficients
to obtain the velocity of rack 4 and the angular
velocity of pinion 3.

For the mechanism in the posture shown, Rqp, =
10 in, and the input velocity is V4 = —5iin/s.
Determine the first-order kinematic coefficients
to obtain the angular velocity of link 3 and the
slipping velocity between links 3 and 4.

Figure P3.43 Rpy =5 in, and ZAPO4 = 90°.
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3.45

3.46
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For the mechanism in the posture shown in
Fig. P3.30, input crank 2 has an angular velocity
wy = 10rad/s ccw, and there is rolling contact
between links 5 and 6 at point F. Determine
the first-order kinematic coefficients of links 3,
4, 5, and 6. Find the angular velocities of links
3, 4, 5, and 6, and the velocities of points E
and G.

For the mechanism in the posture shown, where
Rpp, = 40 mm, pinion 4, is rolling without slip-
ping on rack 3 at point B. Determine the first-order
kinematic coefficients of rack 3 and pinion 4. If
Vp = 150i mm/s, determine the angular velocities
of rack 3 and pinion 4, and the velocity of point
E. Also, determine the velocity along rack 3 of
the point of contact between links 3 and 4 (that is,
point B).

Figure P3.45 pg =20 mm, and Rgp = Rpy -

For the mechanism in the posture shown, where
0> =150°% Rpy = Ry0,, and Rpp = Rpa, determine
the first-order kinematic coefficients of links 3, 4,
and 5. If the angular velocity of the input link 2

3.47

is wp = 5 rad/s cw, determine: (a) the angular
velocities of links 3 and 4, () the velocity of link
5, and (c) the velocity of point P fixed in link 4.

Figure P3.46 R40, = 10in and Rpp, = 20 in.

For the inverted slider-crank linkage in the posture
shown, where 64 = 60°, the input link, 2, is moving
parallel to the x axis. Determine the first-order
kinematic coefficients of links 3 and 4. Also,
determine the conditions for the determinant of
the coefficient matrix to become zero. If Vg =
15 in/s constant to the right, determine the angular
velocities of links 3 and 4.

Figure P3.47 Ry0, = Rpg =4 in.
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3.49

3.50

3.51

3.52

For the rack-and-pinion mechanism in the posture
shown in Fig. P2.15, the input link, 2, is vertical,
and ZBAO, is 150°. The dimensions are ps5 =
2.5in,Ros0, = —8i + 4jin, Rap, = 2in, and
Rps = 61in. (a) Show the locations of all instant
centers. (b) Using instant centers, determine the
first-order kinematic coefficients of link 3, rack 4,
and pinion 5. (¢) If wy = 10 rad/s cw, determine the
angular velocity of link 3, the velocity of rack 4,
and the angular velocity of pinion 5.

For the mechanism in the posture shown in
Fig. P2.16, pp = 1in, p5 = 21in, Rpq = 7.071 in,
and Rpc = 6in. Determine the first-order kine-
matic coefficients of links 3, 4, and 5. If link 2 is
driven at wp = 5 rad/s ccw, determine the angular
velocities of links 3, 4, and 5.

For the mechanism in the posture shown in
Fig. P2.17, link 4 is parallel to the x axis and
link 5 is coincident with the y axis. The radius of
wheel 3 is p3 = 0.75in, Rp,0; = 7.0in, Rgs =
5.5 in, and R405 = 2.6 in. Determine the first-order
kinematic coefficients of links 3, 4, and 5. If the
input link, 2, has an angular velocity of wp =
15 rad/s cw, determine the angular velocities of
links 3, 4, and 5.

For the mechanism in the posture shown, wheel 3
is rolling without slipping on the ground link at
point C while sliding in the slot in link 2. Write the
vector loop equation and determine the first-order
kinematic coefficients of the mechanism. If the
angular velocity of the input is w, = 30 rad/s ccw,
determine: the angular velocity of the wheel; and
the apparent velocity of the center of the wheel,
point A, with respect to the slot in link 2.

For the linkage in the posture shown, link 2
is the input, link 3 is horizontal, and link 4
is vertical. Write the vector loop equation and
determine the kinematic coefficients of the mech-
anism. If the angular velocity of link 2 is wy =
30 rad/s ccw, determine the angular velocity of
links 3 and 4.

Problems

Figure P3.51 p; =60 mm, p3 = 15 mm, RC02 —
—60i+ 60j mm, and Ry, =75 mm.

Figure P3.52 Rp,0, = 12in, R4p, =61in, and Rg4 =9 in.

175
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3.54
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For the mechanism in the posture shown, determine
the first-order kinematic coefficients of the mecha-
nism. If the velocity of link 2 is V4, = 0.30 m/s
in the direction shown, determine: (a) the angular
velocity of link 3, (b) the apparent velocity of pin
Aj with respect to the slot in link 3, and (c) the
velocity of point B.

Figure P3.53 R4, 0, =750 mm, and Rpp, =1 250 mm.

For the mechanism in the posture shown, the
internal track of input gear 2 is in rolling contact
with gear 3 at point C, and the external track is
in rolling contact with rack 5 at point F. Gear 3
is also in rolling contact with the fixed gear (link
1) at point E. Determine the first-order kinematic
coefficients of gear 3 and the rack. Also, determine
the angular velocities of gear 3 and link 4, and the
velocity of the rack if gear 2 has an angular velocity
wy =77 rad/s ccw.

3.55

a

1
5N
N

Figure P3.54 p; =Rpo, =4 1in, pp =Rco, = 181in, p3 =
Rcp =7in, and Rpy = Rpr =20 in.

For the mechanism in the posture shown, the input
arm, link 2, is pinned to the ground at Oy and is
pinned to the center of gear 3 at A. The center of
gear 4 is also pinned to the ground at O, and gear
5 is pinned to the ground at Os. Gears 3, 4, and 5
are all in rolling contact at point B. Determine the
first-order kinematic coefficients of gears 3, 4, and
5. If the angular velocity is wy = 15 rad/s cw, use
the kinematic coefficients to determine the angular
velocities of gears 3, 4, and 5.

Figure P3.55 p; = 100 mm, p3 = 100 mm, py =
300 mm, and p5 = 500 mm.
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3.57

For the mechanism in the posture shown, the radius
of the wheel (link 5) is rolling on the circular
ground link. Determine the first-order kinematic
coefficients of the mechanism. If the input link has
a constant velocity of V4, = 5i m/s, determine the
angular velocities of links 3, 4, and 5.

Figure P3.56 Rgp, = 120 mm, Rcp, = 180 mm,
Rpa = 120 mm, and p5 = 20 mm.

For the mechanism in the posture shown, the pinion
(link 3) rolls without slip on rack 4 at point B.
Determine the first-order kinematic coefficients

3.58

Problems 177

of the mechanism. If the velocity of input link 2
is V4, = 4.8 in/s constant upward, determine the
angular velocity of the pinion and the velocity of
the rack.

/

Figure P3.57 p3 = 2 in.

For the mechanism in the posture shown, determine
the first-order kinematic coefficients of links
3, 4, 5, and 6. If the constant input velocity
Vi, = 0.090j m/s, determine the angular velocities
of links 3 and 5, and the velocity of point P.

Figure P3.58 Rco, = Rpog = Rpc = Rpp = Rap = 40 mm, Rpp = 20 mm, and R4 = (104 mm)i—i—ij.
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For the mechanism in the posture shown, line AB
is vertical and line CD is horizontal. Determine
the first-order kinematic coefficients of the mech-
anism. If the angular velocity of the input link 2 is
wy = 10 rad/s cw, determine the angular velocities
of links 3 and 4, and the velocity of point D
fixed in link 4 with respect to point C fixed in
link 3.

Figure P3.59 Ryo, =4 in, Rpa =8 in, Rpp, =4 in, and

R0204 =2 in.

3.60

For the mechanism in the posture shown, gear
3 rolls without slipping on link 4 at point C.
Determine the first-order kinematic coefficients of
the mechanism. If the velocity of input link 2
is a constant, Vg = —0. Sj m/s, determine the
angular velocity of gear 3 and the velocity of
link 4.

VA

|

i
|
|
|
|
5
|
|

=

7777

1

Figure P3.60 p3 =25 mm.



3.61

For the mechanism in the posture shown, link 3
is vertical and link 4 is horizontal. Determine the
first-order kinematic coefficients of the mechanism
and coupler point C. If input link 2 has a constant
angular velocity wy = 15 rad/s ccw, then determine
the velocity of point C.

Problems

Figure P3.61 Rp,0, = 12in,Ry0, = 61in, and
Rca =13 in.

179



Acceleration

4.1 DEFINITION OF ACCELERATION

Consider a moving point, first observed at location P, where it has a velocity, Vp, as shown
in Fig. 4.1a. After a short time interval, Az, the point is observed to have moved along a
path to a new location, P, where it has velocity V/,, which may be different from Vp in
both magnitude and direction. The change in the velocity of the point, between the two
positions, can be evaluated as shown in the velocity polygon, Fig. 4.1b; namely,

AVp = V}) —Vp.

The average acceleration of point P during the given time interval is defined
as AVp/At. The instantaneous acceleration (henceforth, referred to simply as the
acceleration) of point P is defined as the time rate of change of its velocity—that is, the
limit of the average acceleration for an infinitesimally small time interval:

AV dVp d’R
_P) _ Ve _dRp @1
At

Ap=li
v ( dt dr?

At—0

Since velocity is a vector quantity, the change in velocity, AVp, and the acceleration,

Ap, are also vector quantities—that is, they have both magnitude and direction. Also, like

velocity, the acceleration vector is properly defined only for a point; the term should not

be applied to a line, a coordinate system, a volume, or any other collection of points, since
the accelerations of different points may be different.

As in the case of velocity (Chap. 3), the acceleration of a moving point may appear

differently to different observers. Acceleration does not depend on the actual location of

the observer but does depend on the motion of the observer or, more precisely, on the

180
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(a) y (®)
~ —Path of point P
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Figure 4.1 Change in velocity of a moving point; (b) velocity.

motion of the observer’s coordinate system. If acceleration is sensed by an observer using
the absolute coordinate system, it is referred to as absolute acceleration and is denoted
by the symbol Ap,; or simply Ap, which is consistent with the notation used for position,
displacement, and velocity.

Recall that the velocity of point P, moving along path AB (Fig. 4.2a) can be written
from Eq. (3.9) as

Vp =i, (@)

where § is the instantaneous speed of P along the path, and @’ is the unit vector tangent to
the path and with positive sense in the direction of positive displacement As (Sec. 3.5) of
point P. We identify the osculating plane, defined by &, and the instantaneous center of
curvature of the path of P (denoted as C). Designating the preferred positive side of the
osculating plane by the binormal unit vector, G”, we complete the right-hand vector triad
#P4'0" by defining the unit normal vector, & = @’ x @, consistent with Eq. (3.7). Thus,
0’ and 0" are tangent and normal, respectively, to the path at the instantaneous position of
point P.

The acceleration of point P is obtained by differentiating Eq. (@) with respect to time;
that is

LALn
Ap = §u +50, (b)
where § is the instantaneous time rate of change in the speed of P along the path. The first
term on the right-hand side of this equation can be written in the form

Lt ds (dﬁt do ds)

de ds dr

S0 =—

o ()

where ¢ represents the inclination angle of the unit tangent vector, @', with respect to an
arbitrary axis selected in the osculating plane (Fig. 4.2a uses an axis parallel to the x axis).
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(@) (b) Figure 4.2 Motion of point P
Se Ly generates path AB.
¢ B
\ N !
\\\ . I’ 4
S0 /
¢ Ad’
. S e NG
A ;
RN o AT/ e
~oL__-" A
o X

As point P moves along the path AB, @’ is a function of ¢, which, in turn, is a function of
the distance, s, along the path.

In Fig. 4.2b, the unit tangent vector @’ changes, the vectors 0’ and i’ + A’ have been
transferred to a common origin, and we observe that

. AW du’
Iim { — ) =—. (d)
Ap—0 \ A d¢

From trigonometry, the left-hand side of this equation can be written as

) 2sin(A¢/2)a" .
lim [ ———— | =u". (e)
Ap—0 A¢
Therefore, equating Eq. (d) with Eq. (e), we have the relation
da’
b u”. f

The term d¢ /ds in Eq. (c) is the rate of change of the inclination angle with respect to
the change in distance, s, along the path and can be written as
de 1
o =k=— (8
ds 0
where « is called the curvature of the path and, as indicated in Eq. (g), it is the reciprocal
of the radius of curvature of the path.
Substituting Eqs. (f) and (g) into Eq. (¢), and rearranging, gives

S0 =", (h)

Finally, substituting Eq. () into Eq. (b), the acceleration of point P can now be written as

5‘2
Ap=—u"+50". (4.2)
P
The important observation from Eq. (4.2) is that, in general, the acceleration vector of
a point has two perpendicular components: a normal component of magnitude 52/ (called
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normal since it is oriented along the t"axis),” and a tangential component of magnitude ¥
along the @’ axis. Hence, the acceleration of point P can be written as

Ap=AlL+Ab, 4.3)

where the superscript n is for the normal direction and the superscript ¢ is for the tangential
direction. Note that the normal component of acceleration is commonly referred to as
centripetal acceleration.

4.2 ANGULAR ACCELERATION

The previous section demonstrated that the acceleration of a point is a vector quantity
having a magnitude and a direction. But a point has no dimensions (Sec. 2.1), so we cannot
speak of the angular acceleration of a point. Rather, rectilinear acceleration, or simply
“acceleration,” deals with the motion of a point, whereas angular acceleration deals with
the motion of a rigid body.

Suppose a rigid body has an angular velocity ® at one instant in time, and an instant
later it has an angular velocity w’. The difference,

Aw=0 —, (@)

is also a vector quantity. The angular velocities @ and @’ may have different magnitudes
as well as different directions. Thus, we define angular acceleration as the time rate of
change of the angular velocity of a rigid body and designate it by the symbol o, that is,

Ao\ d
a= lim (-‘”) =2 (4.4)
At—0 dt

As is the case with Aw, there is no reason to believe that o has the same direction as either
 or ®’; it may have an entirely new direction.

We further note that the angular acceleration vector, o, applies to the absolute rotation
of the entire rigid body and hence may be subscripted by the number of the coordinate
system of the rigid body (for example, o or az/1).

4.3 ACCELERATION DIFFERENCE BETWEEN POINTS OF A RIGID BODY

In Sec. 3.3, we determined the velocity difference between two points of a rigid body
moving with both translation and rotation. Also, we showed that the velocity of a point in
a rigid body can be obtained as the sum of the velocity of any reference point of the body
and a term, called the velocity difference, caused by the angular velocity of the body. Thus,
the velocity of any point, P, in a rigid body can be obtained from the velocity-difference
equation, Eq. (3.4); that is,

Vp= VQ + VPQ, (a)

* The reader should verify that the normal component of acceleration is always directed toward the
center of curvature of the path, no matter which orientations are positive for ! or 0.
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where Vg is the velocity of the reference point, Q, and Vpg is the velocity difference and
is given by

VPQ =0 X RPQ. (b)

Here, w is the angular velocity of the body and Rpg is the position-difference vector that
defines the position of point P with respect to point Q. Substituting Eq. (b) into Eq. (a)
gives

Vp=Vp+ o xRpgp. ()

We employ a similar nomenclature in Fig. 4.3 and specify that a reference point, Q,
of the rigid body has an acceleration Ap and that the body has an angular acceleration
o in addition to the angular velocity w. Note that, in general, o need not have the same
orientation as .

The acceleration of point P is obtained by differentiating Eq. (c) with respect to time;
that is

Vp=Vgo+ 0xRpg+ 6 x Rpg. ()

Since we know that Vp =Ap, VQ = AQ,RPQ = o x Rpg, and ® = o, then the acceleration
of point P can be written from Eq. (d) as

Ap=Ap+ o x (o xRpg)+axRpg, 4.5)

where the first term, Ap, is the acceleration of the reference point, Q, and the remaining
two terms are caused by the rotation of the body. To visualize the directions of these two
terms, let us first study them for a two-dimensional application.

In Fig. 4.4, let P and Q be two points of a rigid body that has a combination of
translation and rotation with respect to the ground reference plane, x1y;. We also define
a moving system, xpy», with origin at Q, but restrict this system to only translation; thus,
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Xx» must remain parallel to x;. As given quantities, we specify the velocity and acceleration
of reference point Q; we also specify the angular velocity, w, and the angular acceleration,
o, of the rigid body. These angular rates can be treated as scalars, since the corresponding
vectors always have axes perpendicular to the plane of the motion. They may have different
senses, however, and the scalar quantities may be either positive or negative.

The location of point P can be specified by the position-difference equation,

Rp =Rp +Rpp. (e)
Equation (a) can also be written in two-dimensional form as
R, =Rg+RppZ0 )
or in complex polar form as
Rp =Rp +Rppe”. (@)
Differentiating Eq. (g) with respect to time gives the velocity of point P; that is,
Vp=Vy +ja)Rerj9. (h)

Note that this is the complex polar form of Eq. (¢) for planar motion, where the second term
on the right-hand side corresponds to the velocity-difference vector, Vpp. The magnitude
of this term is wRpg and the direction is je/ 0, which is perpendicular to Rpp, rotated in the
sense of w, as shown in Fig. 4.5.

Differentiating Eq. (&) with respect to time gives the acceleration of point P; that is,

Ap=Ag—w*Rpge” + jaRpge” . (i)

The second and third terms on the right-hand side of this equation correspond exactly
with the second and third terms of Eq. (4.5). The second term is called the normal
or centripetal component of acceleration. For planar motion, the magnitude of this

jo Figure 4.5
e
f Vpo = wRpg, A;g =
& n szPQ, andA}Q =aRpyp.
Al ~| re
PO VPQ P
Rpp
3
e
w
Pu-in
je” \9\
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component is

V2
LL)ZRPQ = _ro s
RPQ

and the direction —e/” is opposite to the position-difference vector, Rpp. This is the normal
component of the acceleration difference and we designate its magnitude
V2
PO
AL = w’Rpp = —=. (4.6)
P PQ
0 Rpo
The third term of Eq. (i) is associated with the angular acceleration of the body. The
magnitude is a«Rpp and the direction is je/6, which is along the same line as the velocity
difference, Vpp. Note that P traces out a circular arc in its motion about translating
reference point Q. Since the third term is perpendicular to the position-difference vector
Rpp and hence tangent to the circular arc, it is convenient to call it the fangential
component of the acceleration difference and designate its magnitude

A;;Q = OZRPQ. (4.7)

The normal and tangential components of the acceleration difference—that is,
Egs. (4.6) and (4.7)—are shown in Fig. 4.5 for two-dimensional motion.

Let us now examine the final two terms of Eq. (4.5) again, but this time for
three-dimensional applications. The direction of the normal component of acceleration;
that is,

AgQ = x (o xRpp), (4.8)

is shown in Fig. 4.6. This component is in the plane containing @ and Rpp and is

perpendicular to w. The magnitude is

Vio
X (0w xR = w?Rpg sin =,
| ( PQ)| rosing Rpgsing

where Rpg sin¢ is the radius of the circle in Fig. 4.6.
According to the definition of the vector cross-product, the tangential component of
acceleration,

A;)Q =aX RPQ, (4.9)

is perpendicular to the plane containing oc and Rpg with a sense indicated by the right-hand
rule. Because of the angular acceleration, oz, we visualize point P accelerating around a
circle, as shown in Fig. 4.7; the plane of this circle is normal to the plane containing
o and Rpp. Using the definition of the vector cross-product, the magnitude of this
tangential component of acceleration can be written as

}ot xRpQ| =aRpgsing,

where Rpgp sin6 is the radius of the circle in Fig. 4.7.
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Figure 4.7 A;,Q =a x Rpp.

Again, we emphasize that, in general, « and ®w may have different directions in
three-dimensional applications.

Let us now summarize the results of this section. The acceleration of a point fixed in a
rigid body can be obtained from the sum of three terms. The first term is the acceleration of
a reference point (Q in Fig. 4.3), which, of course, depends on the motion of the particular
point selected. The remaining two terms are due to the rotation of the body. One of these
is the normal component and depends on the angular velocity of the body; the other is the
tangential component and depends on the time rate of change of the angular velocity.

Equation (4.5) can also be written as

which is called the acceleration-difference equation. It may be convenient to designate the
components of the acceleration-difference term as

Then, the acceleration-difference equation can be written as
Ap=Ag+Ap,+Ap,. (4.11)

Acceleration problems can be solved using the acceleration-difference equation in a
manner similar to our use of the velocity-difference equation, Eq. (3.4).

The following example illustrates both the graphic and analytic methods of accelera-
tion analysis.

EXAMPLE 4.1

For the four-bar linkage in the posture shown in Fig. 4.8a, the constant input angular
velocity is wp = 200 rad/s ccw. Determine the accelerations of points A and B, and the
angular accelerations of links 3 and 4.
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Figure 4.8 (a) Rp,0, = 81in, Rg0, = 6in, Rpy = 18 in, and Rpp, = 12 in; (b) velocity polygon;
(c) acceleration polygon.

GRAPHIC SOLUTION

The velocity polygon must be drawn first, since the velocities of points A and B, and the
angular velocities of links 3 and 4 are required for the acceleration analysis.
The magnitude of the velocity of point A is

Vi = waRa0, = (200 rad/s)(6/12 ft) = 100 ft/s.

Using this value, the velocity polygon can now be drawn as shown in Fig. 4.8b. Then, from
the polygon, we measure the magnitudes of the velocity difference of points B and A, and
the velocity of point B, respectively, as

Vpa = 128 ft/s and Vp = 129 ft/s.
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Therefore, the angular velocities of links 3 and 4, respectively, are

VBA 128 ft/s
a) = =
T Rea (18/12) ft
VBO4 129 ft/s
CL)4 = =
Rpo, (12/12) ft

= 85.3 rad/s ccw,

= 129 rad/s ccw,

where the directions are obtained from an examination of the velocity polygon.
Now, the acceleration of point B can be obtained as follows. First, the
acceleration-difference equation, Eq. (4.10), is written as

Ap=Apr+Aps

or as

0 0
Ko, +Apo, =Ko, +As0, + Apa.

Next, this equation is written in terms of components as

WO e
Ao, +ABo, = Ao, TK4o, + ARy + Al (1)

where

Ago2 =aR0, =0,
Ax=Aly, = w3Ra0, = (200 rad/s)* (6/12) ft =20 000 fi/s*, Ans.
- v_gA _ (28 ft/s)?
BA™ Rpa — (18/12) ft

2
no_ VBO4 _ (129 ft/s)z =16 641 ft/s?
BO4 Rpo, (12/12) ft .

=10 923 fu/s?,

The two unknowns—that is, the magnitudes of the two tangential components of
the acceleration-difference vectors—can now be obtained from the acceleration polygon.
Choosing a convenient scale and an acceleration origin, O4, we construct Afwz (the
terminus is denoted as point A), A%A, and then A%A, which is temporarily of indefinite
length, since the magnitude of this vector is not yet known (see Fig. 4.8¢).

Beginning again at the acceleration origin, O4, and using the left-hand side of Eq. (1),
we now construct Ay, and then A%04 (which is temporarily of indefinite length, since
the magnitude of this vector is also not yet known). The intersection of the two vectors,
A%, and A%04, completes the acceleration polygon, as shown in Fig. 4.8¢. The point of
intersection is labeled the acceleration-image point, B. The circled numbers indicate the
order of the construction steps; the methods of finding the directions of the vectors are
also indicated, using the symbol || to indicate parallelism and the symbol _L to indicate
perpendicularity.



190

ACCELERATION

From the acceleration polygon, the two unknown magnitudes are measured as
Algp, = 11900 fi/s*and A, = 2 000 f/s”.

The line from point O4 to point B in the polygon is the magnitude of the acceleration of
point B and is measured as

Ap =20 500 ft/s. Ans.
The angular accelerations of links 3 and 4 are then computed as follows:

AL, 2000 ft/s? 5
o3 =—"=————=12333rad/s" cw, Ans.
Rpa  (18/12) ft
_ Apo, 11900 ft/s?

= = =11 900 rad/s cw, Ans.
Rpo,  (12/12) ft

o4

where the directions are obtained from an examination of the tangential components of the
acceleration polygon.

ANALYTIC SOLUTION

The first two steps are to perform a posture analysis and a velocity analysis of the linkage.

Since these steps were presented in Chaps. 2 and 3, only the results are presented here.
The results of the posture analysis are shown in Fig. 4.9. In vector form, the

position-difference vectors corresponding to the links are

6 N A
Ruo, = (E) ft £135° = —0.353 55i+0.353 55] ft,

18 2 2
Rps = (E) ft £22.4° =1.386 82i+0.571 61j ft,

12 2 2
Rpo, = (E) ft £68.4° =0.368 12i+ 0.929 78] ft.

Figure 4.9
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For the given input angular velocity w, = 200k rad/s, the results of the velocity
analysis are

w3 = 84.253k rad/s and w4 = 129.39Kk rad/s.

Next, the known acceleration components are

Ao, = 0 x (w3 X Rao,) = 14 142 — 14 142j ft/s> = Ay, Ans. (2)
Al = @3 x (@3 x Rpa) = —9 844i — 4 058 ft/s?, 3)
A7304 = w4 X (w4 xRpp,) =—6 163i—15 567j ft/s2. 4)

Although the angular accelerations o3 and o4 have unknown magnitudes, we can
incorporate them into the solution in the following manner:

~ A~ A~

i i k
Apy =a3xRpy = 0 g) a3| = —0.571 61azi+ 1.386 82as3j ft,
138682 ft 0.57161ft 0
©)
i j k A A
Ao, =4 xRpo, = 0 0 4| = —0.929 78a4i +0.368 12a4j ft.
0.368 12ft 0.92978ft 0
(6)

Writing the acceleration-difference equation for point B and noting that AilOz =0 gives
A%o, +ABo, =Alo, + AR + Al (7

Then, substituting Eqgs. (2) through (6) into Eq. (7) and separating the iandj components,
we obtain the following pair of simultaneous equations:

(0.571 61 ft) a3 — (0.929 78 ft) oy = 10 461 ft/s2, ®)
—(1.386 82 ft) a3 + (0.368 12 ft) oy = —2633 fi/s>. ©)

Solving these equations, the angular accelerations of links 3 and 4, respectively, are
a3 = —1300k rad/s®> and o4 = —12 050k rad/s?, Ans. (10)

where the two negative signs indicate that both angular accelerations are clockwise.
The acceleration of point B can now be written from Eq. (4.11) as

Ap=Aly, +Aly. (11)
The procedure is to substitute Eq. (10) into Eq. (6), which gives
Abo, = 112041 —4436] fu/s”. (12)
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Then, substituting Eqgs. (4) and (12) into Eq. (11), the acceleration of point B is
Ap =5 041i — 20 003 ft/s? = 20 628 ft/s>£ — 75.86°. Ans.

Note that the four answers from the analytic method are in good agreement with, but more
accurate than, the results of the graphic method.

4.4 ACCELERATION POLYGONS; ACCELERATION IMAGES

The acceleration image of a link in an acceleration polygon can be obtained in much the
same manner as the velocity image of a link in a velocity polygon (Sec. 3.4).
According to Rosenauer and Willis [7], the theorem of Mehmke can be written as:

The end points of the acceleration vectors of the points of a plane rigid body, when
plotted from a common origin, produce a figure which is geometrically similar to the
original figure (image diagram).

It is this theorem that results in the acceleration image presented in this section. Also, it
is a result of this theorem that allows clarity in the acceleration polygon despite the very
minimal labeling that is required. This becomes evident in the following examples and
continues throughout the text.

EXAMPLE 4.2

For the four-bar linkage of Example 3.1, in the posture shown in Fig. 4.10, the angular
velocity of crank 2 is a constant 900 rev/min = 94.25 rad/s ccw. Determine the angular
accelerations of links 3 and 4, and the accelerations of points E and F.

SOLUTION

First, we consider the accelerations of points B and C. Since the angular acceleration of
link 2 is zero, point B has only a normal component of acceleration; namely,

Ap = A}, = w3Rps = (94.25 rad/s)* (4/12 ft) =2 961 ft/s”.

Now, we choose a convenient scale and an acceleration origin, O4. Note that points A and
D have zero acceleration, and therefore their images are coincident with the acceleration

Figure 4.10

Rpa =4 in,Rcp =18 in,
RCD =11 in, RDA =10 in,
Rgp=10in, Rgg =4 in,
Ryp =7 in,and Ry = 3 in.
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origin, O4. Then, we draw the acceleration vector, Ap (opposite in direction to the vector
Rp4), to locate the acceleration image point B, as shown in Fig. 4.11. Next, we write
Eq. (4.11) to relate the acceleration of point C to those of points B and D in the acceleration
polygon; that is,

WO W W
Ac=Ap+Alg+ALy=Al,+AL,. (1)

Using the posture and velocity results obtained from Example 3.1 (see Fig. 3.7b), we
calculate the magnitudes of the two normal components of Egs. (1); that is,

Vip (384 fUs)?

AL — - — 983 ft/s2,
CB= Rep . (18/12) ft )
V2 45.5 ft/s)?
no_Vep _ SSWOT o osgpus.

P~ Rep . (18/12) ft

These two normal components are constructed with directions opposite to the vectors
Rcep and Rep, respectively. As required by Egs. (1), they are added to the acceleration
polygon originating from acceleration image points B and D, respectively, as indicated
by two dashed lines in Fig. 4.11. Perpendicular dashed lines are then drawn through the
termini of these two normal components, representing the addition of the two tangential
components, Ar, and Al,. The point of intersection of the two tangential components is
labeled the acceleration image point, C.

The angular accelerations of links 3 and 4 are now obtained from measurements of
the two tangential components:

Al 170 ft/s?
o3 = —CB _ AL — 113 rad/s? CcCcW, Ans.
Rcp  (18/12)ft

Figure 4.11 Acceleration
polygon.
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Al 1 670 ft/s?
oy = =0 =~ 2T 80 radss? cw. Ans.
Rep  (11/12)ft

There are several methods to determine the acceleration of point E of link 3. One
method is to write two acceleration-difference equations, starting from points B and C,
which are also in link 3; that is,

Ap=Ap+ AL+ ALy =Ac+ AL+ Al ()

The solution of these two equations can be obtained from the same methods used for
Eq. (1), if desired. A second method to determine the acceleration of point E is to use the
now known angular acceleration, o3, to calculate one or both of the tangential components
in Eq. (2).

A third method and probably the easiest (and the one used in Fig. 4.11) is to form an
acceleration image triangle, BCE, for link 3. This image triangle is formed by using the
line of the acceleration-difference vector, Acp, as a base line, then set a scale for triangle
BCE of link 3.* Any of the three methods provides the location of acceleration image point
E. The magnitude of the acceleration of point E is measured as

Ap = 2 580 fu/s>. Ans.

Similarly, the magnitude of the acceleration of point F is found by using acceleration
image triangle DCF and is measured as

Ap = 1 960 ft/s>. Ans.

EXAMPLE 4.3

Find the acceleration images corresponding to the links of the slider-crank linkage in the
posture shown in Fig. 4.12a. The crank (link 2) is rotating counterclockwise with constant
angular velocity wp = 1 rad/s.

SOLUTION

In Fig. 4.12a, links 2 and 3 are represented by triangles O»DA and ABC, respectively.
Note that the velocity and acceleration polygons are found in exactly the same manner
as in the solution of the previous example, and the results are shown in Figs. 4.12b
and 4.12c, respectively. Note also that each acceleration image is formed from the toral
acceleration-diﬁ‘erence vectors, not from the component vectors.

Since the angular acceleration of the crank is zero (wp = 0), the corresponding
acceleration image is rotated 180° from the orientation of the crank. Note that link 3 has

* We must be careful that the shape of the acceleration image is not “flipped over” with respect to
the original shape. A convenient test is to notice that, for link 3 of this example, because the labels
BCE appear in clockwise order for the original link shape, they still appear in clockwise order in the
velocity and the acceleration images.
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Figure 4.12 (a) Slider-crank linkage; (b) velocity polygon; (c¢) acceleration polygon.
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counterclockwise angular acceleration and that its acceleration image is oriented much
less than 180° from the orientation of the link. Thus, the orientation of each acceleration
image depends on both the angular velocity and the angular acceleration of the link under

consideration.

Summary The following are important properties of acceleration images:

1. The acceleration image of a link in the acceleration polygon is a scale
reproduction of the shape of the link itself.
2. The letters identifying the vertices in the acceleration polygon are the same as
those of the corresponding link, and they progress around the acceleration image
in the same order and in the same angular sense as around the link itself.
3. The acceleration origin, Oy4, in the acceleration polygon is the image of all points

with zero absolute acceleration. It is the acceleration image of the fixed link.
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4. The absolute acceleration of any point on any link is represented by the line
from Oy to the image of the point in the acceleration polygon. The acceleration
difference between two points in the same link, say B and C, is represented by the
line to acceleration image point B from acceleration image point C.

5. For a nonrotating (translating) link, the accelerations of all points on the link are
equal, and the angular velocity and angular acceleration of the link are both zero.
Therefore, the acceleration image of a link that is translating shrinks to a single
point in the acceleration polygon.

6. The orientation of the acceleration image of link j is given by

8= 180° — tan' =L, (4.12)
@

where §; is the angle in degrees, measured in the (positive) counterclockwise
direction from the orientation of link j to its acceleration image.

4.5 APPARENT ACCELERATION OF A POINT IN A MOVING COORDINATE SYSTEM

In Sec. 3.5, we found it helpful to develop the apparent-velocity equation for situations
where it is convenient to describe the path along which a point moves relative to another
moving link, but where it is not convenient to describe the absolute motion of the same
point. Let us now investigate the acceleration of such a point.

Figure 4.13 illustrates the point, P, of link 3 (denoted as P3) that moves along a
known path (sometimes referred to as the “slot”) relative to the moving reference frame
x2y222. Recall from Chaps. 2 and 3 that point P; is point P fixed in moving link 2 and is
instantaneously coincident with point P3. The problem now is to find an equation relating
the accelerations of points P3 and P> in terms of parameters that can either be calculated
or measured in a typical mechanism.

In Fig. 4.14, we recall how the same situation would be perceived by a moving
observer attached to link 2. To HER, the path of P3 (the “slot”) would appear stationary,
and point P3 would appear to move along the tangent to the path with the apparent velocity

Figure 4.13 Apparent displacement.
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¥ Figure 4.14 Apparent
displacement of point P3 as
seen by an observer on link 2.

Path traced by
P3 on link 2

Vp, /2. In Sec. 3.5 (Fig. 3.12), we define the moving coordinate system '0"a’, where o’
is the unit tangent vector to the path of point P in the direction of positive movement,
and @’ is normal to the plane containing @’ and the center of curvature C, and is directed
positive to the preferred side of the plane. A third unit vector, 0", is obtained from Eq. (3.7),
" = x W, thus completing a right-handed Cartesian coordinate system. Also, we derive
the apparent velocity equation, Eq. (3.9), as

ds
A% = —i, a
P32 = (@)
where the scalar, s, is the arc distance along the path measuring the travel of P3.
Now, the radius of curvature, p, sweeps through some small angle, A¢, as P3 travels
the small arc distance As, as seen by the moving observer (P3P, Fig. 4.14) during a short
time interval, Az. The changes of the angle and the arc distance are related by

_As
o

A )
Note here that the center of curvature C can lie along either the positive or the negative
extension of @”. Therefore, the radius of curvature p, measured from P to C, can have
either a positive value or a negative value according to the sense of G”. Also, this implies
that the angle A¢ is positive when counterclockwise, as seen from the positive ”.
Dividing Eq. (b) by At and taking the limit for infinitesimally small Az, we find with

the aid of Eq. (a),

@_lé__vh/z (¢)
i pdt  p

This is the angular rate at which the radius of curvature p (and also the unit vectors
0’ and ") appears to rotate as seen by an observer in coordinate system 2 as point P3
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moves along its path. We can give this rotation rate its proper vector properties as an
apparent angular velocity by noting that the axis of this rotation is parallel to 4. Thus,
we define the apparent angular velocity vector as

. d v
é= fﬁb =Dl (d)
t p

Next, we seek the time derivative of unit tangent vector @’ so that we can differentiate
Eq. (a) to obtain the apparent acceleration. Since O is a unit vector, its length does not
change; however, it does have a derivative because of its change in direction: its rotation.
In the absolute coordinate system, @’ is subject to the apparent angular velocity, ¢, and
also to the angular velocity, w,, with which the moving coordinate system 2 is rotating.
Therefore, the time derivative of @i’ can be written as
di’

I:(wz—i—(i))xﬁt:wzxﬁt—l-(i)xﬁ'. (e)

Substituting Eq. (d) into this equation gives

du'’ Vps)2 b xi Vps )2

— =wy xi' + x 0 = wy x 0’ + —L24", )
dt p P
Similarly, the time derivative of " can be written as
a’ . .
7 =(wy+¢) x0"=wy x0"+ ¢ x 0"
Vi V
— 0y X 0"+ D260 i = o x b — 2 )
Je
Now, taking the time derivative of Eq. (a) and using Eq. (f), we find that
dVp,p dsadb’ d’s., ds, ., dsVpyp., ds.,
=——+4+ =0 =—wxi'+———0"+—=51u".
dt dt dr  drf? d '’ + dt p dr?
Finally, using Eqgs. (@) and (c), this equation reduces to
2
dVes ) Vb2 o, ds
— = v "+ h
0 w2 X Vpyn+ u~|—dt2u (h)

Note that the three components on the right-hand side of Eq. (%) are not all defined
as apparent-acceleration components. To be consistent, the apparent acceleration includes
only those components that are seen by an observer attached to the moving coordinate
system. Equation (%) is derived in the absolute coordinate system and includes the rotation
effect of ; that is not sensed by the moving observer. The apparent acceleration can easily
be determined, however, by setting w; to be zero in Eq. (%). The two remaining components
define the apparent acceleration and can be written as

Apyp=Ap p+Ap, ), (4.13)
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where

2
VP3 /2

A = o (4.14)

is called the normal component of the apparent acceleration, indicating that it is always
normal to the path and is always directed from point P toward the center of curvature (that
is, in the 0" direction when p is positive or in the —a" direction when p is negative), and

d?s
Ajp3/2 = Wut (4.15)

is called the tangential component, indicating that it is always tangent to the path (along
the & direction, but it may be either positive or negative).
Next, from Fig. 4.14, we write the position of point P3 as
/)

Rp3 = RC2 —pu.

With the help of Eq. (g), the time derivative of this equation can be written as*
sy VP2 “n :
Vp, =V, —m X (,Oll )-{-,OTU =V, —wy X (,Oll )+VP3/2. (i)

Then, differentiating this equation, again with respect to time, the acceleration of point P3
can be written as

d(pi") . dVp,

Ap, =Ac, — u") —
P C, o) X (pll ) o X dr d

and, with the help of Egs. (g) and (h), this becomes

P d S
3 2 A A
>/ un+—ul.

dr?
)

The first three terms on the right-hand side of Eq. (j) are the components of the
acceleration, Ap, [Eq. (4.5)], and the final two terms are the normal and tangential
components of the apparent acceleration, Ap, > [Egs. (4.13)—(4.15)]. For the fourth term,
we define the following new symbol:

Ap, =Ac, + oo x (—pﬁn) + Wy X [0)2 X (—pﬁn)] +2wy x Vpy 2+

A;’3P2 = 2(02 X Vp3/2. (4.16)

This vector is called the Coriolis component of acceleration. Unlike the components of the
apparent acceleration, it is not sensed by an observer attached to the moving coordinate

* The first two terms on the right-hand side of Eq. (i) are equal to Vp, ; thus, Eq. (i) is equivalent to
the apparent-velocity equation. Note, however, that although p@"* = Rc, p, is true instantaneously,
the derivatives of the two terms are not equal—that is, the vectors do not rotate at the same rate.
Thus, several terms could be missed if the apparent-velocity equation were differentiated instead.
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system, 2. Still, it is a necessary term in Eq. (j), and it is a part of the difference between
Ap, and Ap, sensed by an absolute observer.

Finally, Eq. (j) can now be written in the following form, called the apparent-acceleration
equation:

Apy =Ap,+A% p, AL, n+AD, o, (4.17)

where the definitions of the individual components are given by Egs. (4.16), (4.14), and
(4.15), respectively.

It is extremely important to recognize the following features of the apparent-acceleration
equation:

1. It serves the objectives of this section, since it relates the accelerations of two
coincident points on different links in a meaningful way.

2. There is only one unknown among the three new components defined. The normal
component and the Coriolis component can be calculated from Egs. (4.14) and
(4.16) from the velocity information; they do not contribute any new unknowns.
The tangential component given by Eq. (4.15), however, almost always has an
unknown magnitude in application, since d*s/dt? is usually not known.

3. It is important in each application to note the dependence of Eq. (4.17) on the
ability to recognize the point path that P3 traces on coordinate system 2. This
path is the basis for the axes of the normal and tangential components and is also
necessary for determining the radius of curvature p for Eq. (4.14).

A word of warning: The path described by P3 on link 2 is not necessarily the same
as the path described by P, on link 3. In Fig. 4.14, the path of P3 on link 2 is clear; it
is the curved slot. However, the path of P, on link 3 is not at all clear. As a result, there
is a natural “right” and “wrong” way to write the apparent-acceleration equation for that
situation. The equation

is a perfectly valid equation, but it is useless, since that path, and hence the radius of
curvature of that path, are not known for the normal component. Note, also, that AICD3 P,
makes use of w;, while A;z Py would make use of w3. We must be extremely careful to
write the appropriate equation for each application, recognizing which path is known.
The following three examples demonstrate the importance of the apparent-acceleration
equation, Eq. (4.17), in the graphic approach to the acceleration analysis of mechanisms.

EXAMPLE 4.4

For the sliding-block linkage in the posture shown in Fig. 4.154, the block (link 3) is
sliding outward on link 2 at a uniform rate of 30 m/s, while link 2 is rotating at a constant
angular velocity of 50 rad/s ccw. Determine the acceleration of point A of the block.
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() Y

04

n
A, Alb0,

Figure 4.15 (a) Rap, = 500 mm; (b) acceleration polygon.

SOLUTION

The acceleration of A,—that is, the point immediately under the block (point Az) but
attached to link 2—can be written from Eq. (4.11) as

0 0
AAZ Z/A/02 +A.2202 +/X1£202’
where
AL 0, = @3Ra,0, = (50 rad/s)*(0.500 m) = 1 250 m/s”.

Therefore, we can draw this normal component of acceleration to scale, locating the
acceleration image point A; in Fig. 4.15b. Next, we recognize that point A3 is constrained
to travel along link 2. This provides a path for which we can write the apparent-acceleration
equation:

Ay =As, +Af 4, + AL+ AL

The final three components for this equation can be computed; that is,

Aua, = 202Vay 2 = 2(50 rad/s)(30 m/s) = 3 000 m/s?, €))
Vie _ (30 mss)?
W= 2 OO @
and
o f unif 1 h
Ay = i 0 (because of uniform rate along path). 3)

The component given by Eq. (1) can now be drawn on the acceleration polygon. Noting
that the sense of this component comes from the sense of the vector cross-product of
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Eq. (4.16), this locates the acceleration image point As. Therefore, the acceleration of
point A3z of the block is measured from the polygon as

Ay = 3250 m/s?. Ans.

EXAMPLE 4.5

Perform an acceleration analysis of the inverted slider-crank linkage in the posture
shown in Fig. 4.16a. The input link 2 is rotating at a constant angular velocity w, =
18 rad/s cw.

(b)
Oy, By

Vas/a

VB;A

Figure 4.16 (a) R4p, = 8 inand Rpp, = 10 in; (D) velocity polygon; and (c) acceleration polygon.

SOLUTION

First, a complete velocity analysis is performed, as shown by the velocity polygon in
Fig. 4.16b, and the results are

Va =12.0 ft/s, Va4 = 10.0 ft/s, and VByja =6.7 ft/s,

w3 = w4 = 7.67 rad/s cw.
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To solve for accelerations, we first calculate the acceleration of pin A:

0 0
A =Ko, + Ao, + Ko,
where

Ao, = w3Rp0, = (18 rad/s)* (8 /12) ft = 216.0 ft/s”. Ans.

Then, we draw this acceleration to scale, locating the acceleration image point A in
Fig. 4.16¢. Next, we write the acceleration-difference equation

27 U «1/1«/ ?t«/
AB3=AA+AB3A+AB3A, (1)

where
Vi (10.0 fus)?

AL = -
BA™ Rpa T (15.6/12)ft

and is directed from B toward A. This component is added to the acceleration polygon in
Fig. 4.16c¢.

The final component, Aj_% 4» has an unknown magnitude but is perpendicular to Rpa.
Since Eq. (1) has three unknowns, it cannot be solved by itself. Therefore, a second
equation is required to solve for Ap,. Consider the view of an observer located on link 4;
SHE would see point B3 moving on a straight-line path along the centerline of block 4.
Using this path, we write the apparent-acceleration equation, Eq. (4.17), as

=76.9 ft/s>,

2 0 vV vV ‘;J
Ap, = A, + A5, +Ap, )+ AL, 4 (@)

Note that point B4 has zero acceleration, since it is pinned to the ground link. The two
known component magnitudes of Eq. (2) are

A p, =204Vp, 4 =2(7.67 radfs) (6.7 fi/s) = 103 fi/s>

and

2
o Vay/a _ (65 ft/s)? _o
33/4 00 °

The Coriolis component is added to the acceleration polygon, originating at point By,
which is coincident with Oy4. Finally, A%3 4> With unknown magnitude and sense, is
graphically added along a line defined by the path tangent. It crosses the unknown-length
line of Ag} 4» Eq. (1), locating the acceleration image point B3. From the acceleration
polygon, the results are measured as

Al s =103 fts>, Ay , =17 ft/s*, and  Ap, = 145 f/s>. Ans.
The angular accelerations of links 3 and 4 are

A 17 fus?

= =13.1 rad/s? ccw. Ans.
Rpa (15.6/12)ft

o3 =g =
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We note that, in this example, the path of B3 on link 4 and the path of B4 on link 3 can
both be visualized, and either can be used in deciding the approach. However, even though
By is pinned to ground (link 1), the path of point B3 on link 1 is not known. Therefore, the
term A B,/1 cannot be calculated directly.

EXAMPLE 4.6

For the inverted slider-crank linkage of Example 3.3 in the posture shown in Fig. 4.17a, the
constant angular velocity of link 2 is wp = 36 rad/s cw. Determine the angular acceleration
of link 4.

@ " T ®)

- —

Path of Ay
on link 4

.
|

Figure 4.17 (a) Inverted slider-crank linkage; (b) velocity polygon; and (¢) acceleration polygon.

SOLUTION

The velocity analysis of this linkage in the given posture is performed in Example 3.3. The
results are

A, =9 1t/s, Va,p=T171t/s, Va,y4s=5481t/s, and w3 = w4 =7.55rad/sccw.

The velocity polygon is shown in Fig. 3.10b and is repeated here as Fig. 4.17b
The acceleration of point A on link 2 can be written as

0 0
Ay =Ap+AL o+ K} g, ()
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where
noo_ 2 _ 2( 3 _ 2
Ay g = w3RaE = (36 rad/s) T ft | =324 ft/s”. 2)

We plot this to scale, locating the acceleration image point, Ap, as shown in Fig. 4.17c.
Note that point A travels along the straight-line path indicated, as seen by an observer
on link 4. Knowing this path, we write

WooW W0
Apy = An, + AL, A 0+ AL G)

where
A22A4 =2w4Vp, 4 =2(7.55 rad/s) (5.48 ft/s) = 82.7 ft/s2, “4)

and AXZ 4= 0, since p = oo. The acceleration, A,,, in Eq. (3), was marked as having only
one unknown, since

VNN
Aa, =Ap+AlLp+A% b, )

where

. Vip  (117tus) 2

Al = = = 53.6 ft/s>. 6
AD =T R b (ILS/ID)ft s ©)

This component is now added from Oy, followed by a line of unknown length for the Af44 D
component. Since image point A4 is not yet known, components Af‘z 4, and Ai‘z /4 cannot
be added as indicated by Eq. (3). However, these two components can be transferred to the
other side of the equation and graphically subtracted from image point A;, thus completing
the acceleration polygon. The angular acceleration of link 4 can then be found:

_ Aup 2799 ft/s

oy = = =292 rad/s? ccw. Ans.
Rap  (11.5/12) ft

This need to subtract vectors is common in acceleration problems involving the
Coriolis component and should be studied carefully. Note that the equation involving A4, />
cannot be used, since p and, therefore, A/’14 , would become an additional (third) unknown.

Since the angular acceleration of link 3 must be equal to the angular acceleration of
link 4, then the acceleration of point B3 can also be obtained.

4.6 APPARENT ANGULAR ACCELERATION

Completeness suggests that we should define the term apparent angular acceleration.
When two rigid bodies rotate with different angular accelerations, the vector difference
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between them is defined as the apparent angular acceleration,
o3/2 = 03 — 0.
The apparent-angular-acceleration equation can also be written as
o3 = o) + o3). (4.18)

We recognize that o3, is the angular acceleration of body 3 as it would appear to an
observer attached to, and rotating with, body 2.

4.7 DIRECT CONTACT AND ROLLING CONTACT

We recall from Sec. 3.7 that the relative motion between two bodies in direct contact at a
point can occur in two different ways: there may be an apparent slipping velocity between
the bodies or there may be no such slip. The purpose of this section is to extend these
concepts to include acceleration. The following two examples illustrate these two cases;
the first example is for direct contact with slipping, and the second example is for rolling
contact.

EXAMPLE 4.7

Consider the circular cam, link 2, in direct contact with the oscillating flat-faced follower,
link 3, in the posture shown in Fig. 4.18a. The angular velocity and angular acceleration
of link 2 are ws = 10 rad/s cw and ap = 25 rad/s> cw, respectively. Determine the angular
acceleration of link 3.

SOLUTION

The velocity polygon must be drawn first, since the velocities of points B and C, and the
angular velocity of link 3 are required for the acceleration analysis.
The magnitude of the velocity of point B is

Vi = w2Rpa = (10 rad/s) (3/12ft) = 2.5 fu/s.

Using this value, the velocity polygon is now drawn as shown in Fig. 4.18b. Then, from
the polygon, we measure the magnitude of the velocity difference of points C3 and D as

VC3D =2.13 ft/s.

Therefore, the angular velocity of link 3 is

V. 2.13 ft/
w3 = GD _ i =9.98 rad/s cw,
Rep  (2.56/12) fi

where the direction is obtained from an examination of the velocity polygon.
Now, to write an acceleration equation relating points of link 2 and link 3, we look
for a pair of coincident points where the curvature of the path is known. Considering
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(a) N (@]
Path of C,
on link 3 ) 3 Path of B, _ (
\ on link 3 it | S : 3

s SNod
/ Y
! I

| 0 C
\ A i
/1
7
-7
U |

t —

(b) B @ By
/ G

Figure 4.18 (a) Rpga = 3in,Rcp = 1.51n, R)(C,‘D = —14in, RyCD = 2.14in, and Rpy = 5in; (b) velocity polygon;
(c) equivalent mechanism; (d) acceleration polygon.

the path traced by point B on (extended) link 3, we note that it remains a constant distance
from the surface of link 3. This path is a straight line, as shown by the “slot” in the
equivalent mechanism of Fig. 4.18¢. Note that link 3 of this equivalent mechanism has
motion equivalent to the original mechanism.

Since this “slot” can be used for a path, it becomes clear how to proceed; the
appropriate equation is

VAV ¢/ a4 VY ;’«/
A32 =AB3 +A3233+A32/3 +A32/37 (1)

where B3 is a point coincident with B; but attached to link 3.




208

ACCELERATION

Since the path (the slot) of Eq. (1) is a straight line, we can extend the velocity polygon
(Fig. 4.18b) to find the velocities

Vp,3 =4.17 ft/s and Vp, =2.99 ft/s.

Next, the term on the left-hand side of Eq. (1) can be written as

0
ABZ :/XA +A;132A + AthA’
where

A} 4 = ®3Rpa = (10 rad/s)* (3/12 ft) =25 fu/s,

Al 4 = aRpya = (25 rad/s®) (3/12 ft) = 6.25 fu/s>.

These are plotted on the acceleration polygon as shown in Fig. 4.18d.
Then, we calculate the known magnitudes of terms on the right-hand side of Eq. (1):

2
Vs (417 fus)? o

Ay =—) s @)
and
Af?zB3 =2w3Vp,/3 =2(10rad/s) (4.17 ft/s) = 83.4 ft/s?. 3)
The acceleration of B3 is determined from the acceleration-difference equation,
2 UV 2/
Ap, =Ap+A%p+A%.p, “4)

where

V3 2.99 ft/s)?
P ( " _ 29,8 fys?, (5)
Rp;p  (3.6/12ft)

Substituting Egs. (2) through (5) into Eq. (1) and rearranging terms, we arrive at an
equation with only two unknowns:

WO N W W
Ap, —Ap p, —Ap, 3 =Apt+App. (6)

This equation is solved graphically as shown in Fig. 4.18d, and the results are
A,y =6721ts" and A, =787 fus’.

Once image point B3 has been determined, image point C3 is determined by constructing the
acceleration image of triangle DB3C3, all on link 3. Figure 4.18d has been extended to
illustrate the acceleration images of links 2 and 3 to aid in visualization and to illustrate
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once again that there is no obvious relation between the final locations of image points
C, and Cs3.
Finally, the angular acceleration of link 3 is determined:

_ App 787 fus?

= = =262 rad/s* cw. Ans.
RB3D (3.6/12ft)

a3

Recall in Sec. 3.7 that we defined the term rolling contact to imply that no slip is
in progress and developed the rolling contact condition, Eq. (3.13), to indicate that the
apparent velocity at such a point is zero. Here we will investigate the apparent acceleration
at a point of rolling contact.

Consider the case of a circular wheel, 3, in rolling contact with a fixed straight
link, 2, as shown in Fig. 4.19. Although this is admittedly a very simplified case, the
arguments made and the conclusions reached are completely general and apply to any
rolling contact situation, no matter what the shapes of the two bodies or whether either
is the ground link. To keep this clear in our mind, the ground link has been numbered
here as 2.

Once the acceleration, Ac, of the center point of the wheel is known, the origin, Og4,
can be chosen, and the acceleration polygon can be started by plotting Ac. In relating
the accelerations of points P3 and P, at the point of rolling contact, however, we are
dealing with two coincident points of different bodies. Therefore, it is appropriate to
write the apparent-acceleration equation, Eq. (4.17) [and not the acceleration-difference
equation, Eq. (4.10)]. To do this, we must identify a path that one of these points traces
on the other body. The path that point P3 traces on link 2 is sketched in the figure.*
Although the precise shape of this path depends on the shapes of the two contacting
links, provided that there is no slip, there is always a cusp at the point of rolling contact,
and the tangent to this cusp-shaped path is always normal to the surfaces that are in
contact.

Since this path is known, we are free to write the apparent-acceleration equation:

Ap; =Ap, + Ap.p, + Ap, )+ AtP3 2

e ————

-~ - \
P Path of P, Py Ap.c
on link 2 . B
P3/2 P3C
Ac
0,4 P, C

Figure 4.19 Apparent acceleration at a point of rolling contact.

* This particular curve is called a cycloid.
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In evaluating the components, we keep in mind the rolling contact velocity condition,
Eq. (3.13); that is, Vp; /2 = 0. Therefore,

2
VP3/2 .

A;;}P2 = 20)2 X Vp3/2 =0and Al;,3/2 = 0.

Therefore, only one component of the apparent-acceleration equation—namely, Ai% jp—can
be nonzero. Because of possible confusion in calling this term a tangential component
(tangent to the cusp-shaped path) while its direction is normal to the rolling surfaces, we
adopt a new superscript and refer to it as the rolling contact acceleration, A}3 /2

For rolling contact with no slip, the apparent-acceleration equation (henceforth
referred to as the rolling contact condition for acceleration) becomes

where the component Af% P is always normal to the surfaces at the point of rolling contact.

EXAMPLE 4.8

Consider the circular roller, 4, rolling without slip on the oscillating flat-faced follower, 3,
in the posture shown in Fig. 4.20. The angular velocity and angular acceleration of input
link 2 are wy = 10 rad/s cw and oy = 25 rad/s> cw, respectively. Determine the angular
accelerations of the roller and the follower.

SOLUTION

Since this problem is an extension of Example 4.7, in which a roller (link 4) has been
included, then the velocity polygon can be easily completed as in Fig. 4.20b. The rolling
contact condition for velocity implies that V¢, = V¢,, which allows drawing the velocity
image of link 4 as indicated.

Next, we might be tempted to write the apparent-acceleration equation for point Cy:

Vv N Vv 2/ v 1 2/
AC4 = A%zAz +A£?2A2 +Aré4B4 +AtC4B4 = Aré}D3 +AIC3D3 +A24/3 . (1)
Unfortunately, this equation cannot be solved, since it contains three unknowns—namely,
the two angular accelerations, o3z and a4, and the rolling contact acceleration, A’C4 /3 A
different solution strategy must be sought.

We proceed as in Example 4.7, Fig. 4.18d, all the way to the solution for a3 and
to finding Ac,. From this, we will have constructed a good portion of the acceleration
polygon of Fig. 4.20c.

Now we can relate the acceleration of point C4 to that of point By; that is,

7 NN ;’«/
Ac, =Ap, +A¢,p, +AC,B, (@)
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(a) (b)

Bs
' / C;, Cy

k DB, B,

G

Figure 4.20 (a) Rolling contact mechanism; (b) velocity polygon; and (c) acceleration polygon.

where

o Ve, (287 fUs)?

= = = 65.9 ft/s>. 3
“Bs™ Reg — (1.5/12 ft) o )

We can also write the rolling contact acceleration condition [Eq. (4.19)] as

nooW W
AC4 = AC3 +AC4/3 . (4)
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Remembering that A’C4 /3 is perpendicular to the surfaces at C, we graphically construct
the simultaneous solution to Eqs. (2) and (4) as shown in Fig. 4.20c. Finally, the angular
acceleration of roller 4 is obtained as follows:

Al 65.9 ft/s2
oy = —SaBa S 507 rad/s? cow. Ans.
Rcg  (1.5/12ft)

The angular acceleration of the follower is identical to that found in Example 4.7; namely,

o3 =262 rad/s® cw. Ans.

In general, it is almost always necessary to determine the motions of the two links
adjacent on either side of a point of rolling contact (links 3 and 4 in Example 4.8) and
then to perform the rolling contact computation working from both sides. It is almost never
possible to work straight through a point of direct contact, as tried in Eq. (1), above. This
almost always requires the visualization of an equivalent mechanism and the solution of a
Coriolis equation. However, with a little practice, it is usually quite straightforward.

4.8 SYSTEMATIC STRATEGY FOR ACCELERATION ANALYSIS

Review of the preceding sections and example problems will demonstrate that we have
now developed sufficient tools for dealing with those situations that arise repeatedly in the
acceleration analysis of planar rigid-body mechanical systems. It will also be noted that the
word “relative” acceleration has been carefully avoided. Instead, as with velocity analysis,
whenever the desire for using “relative” acceleration arises, there are always two points
whose accelerations are to be “related”; also, these two points are fixed either to the same
rigid body or to two different rigid bodies. Therefore, as with velocity analysis (Table 3.1),
we organize all situations into the four cases shown in Table 4.1.

In Table 4.1 we see that, when the two points are separated by a distance, only the
acceleration-difference equation is appropriate for use, and two points on the same link
should be used. When it is desirable to switch to another link, then coincident points should
be chosen and the apparent-acceleration equation should be used. The path of one of these
points in a coordinate system on the other link is then required.

Even the notation has been made different to continually remind us that these are
two totally different situations and the formulae are not interchangeable between the two.
We should not try to use an o x R formula when the apparent acceleration is required;
however, if we do try, then we will not find an appropriate o or R. Similarly, when using the
acceleration difference, there is no question of which « to use, since only one link pertains.
The two questions that always arise with respect to apparent acceleration are: (¢) when
should we include the Coriolis term, and when should we only use normal and tangential
components? and (b) which @ should we use in the Coriolis term? The answer to the
first question is straightforward. Whenever we use the apparent-acceleration equation, the
Coriolis term should always be included; if it should not be there, such as when the “path”
is not rotating, it should be included anyway, and the calculation will give it a magnitude
of zero. The answer to the second question is also straightforward: Whenever we use the




4.9 ALGEBRAIC ACCELERATION ANALYSIS 213

Table 4.1 “Relative” Acceleration Equations

Points are Coincident Separated
In same body Trivial Case: Acceleration difference:
— _ t
Ap=Ag Ap=Ag+Ap,+A%L,
AgQ =wx (0 xRpp)
A;Q =axRpp
In different bodies Apparent Acceleration: Too general; use two steps.

— t
Ap;=Ap;+ App +Ap, i+ Ap;
where path Py; is known, and

c — . .
APin =2w; x Vpyj
2

Al — VP,‘/J’ an
Pi/j P
t _d°sat
APi/j = ar"

Rolling Contact Acceleration:
— r

Ap =Ap;+Ap;

where path A;,, Jj is normal to

surfaces at point of contact.

apparent-acceleration equation, we must always visualize a path that a point P; makes on
another link j; then w; for the link that contains the path is used. As indicated in Sec. 4.7
and Table 4.1, rolling contact acceleration is a special case of apparent acceleration.

Careful review of Examples 4.2 through 4.8 demonstrates how the strategy suggested
in Table 4.1 and the labeling strategy are applied in a variety of problems of acceleration
analysis.

4.9 ALGEBRAIC ACCELERATION ANALYSIS

In this section we will continue the analytic approach that we began in Sec. 3.9. Again, we
focus on the central (in-line) slider-crank linkage of Fig. 3.15, reproduced here as Fig. 4.21.

The equation for the exact acceleration of the slider might be obtained by differenti-
ating Eq. (3.15b) with respect to time. However, this is a very difficult differentiation, and
the resulting expression is very unwieldy. Alternatively, differentiating Eq. (@) in Sec. 3.9

Figure 4.21 Central
slider-crank linkage.
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twice with respect to time, and after considerable manipulation, the exact acceleration of
the slider can be written as

. 2 o+ rcos26 n 3 sin?20 in & rsin26 4.20)
¥=—rw" [ cos —ra | sin ) )
Icos¢p  4Bcosd¢ 2[cos ¢

This is still a rather complex expression, and it becomes even more complex when ¢ is
eliminated by using Eq. (d) of Sec. 3.9; that is,

cosp=,/1— (gsine)z. 421)

In some mechanism applications, approximate expressions are used for velocity and
acceleration analyses. In Sec. 3.9, the binomial expansion was used to approximate the
velocity of the slider [Eq. (3.16b)]. Here we will obtain an approximate expression for
the acceleration of the slider. For small values of (r/[), the last term in the first bracket
of Eq. (4.20) can be neglected. Also, in this case, cos¢ is near unity; therefore, the
acceleration of the slider can be written as

F= —re? (cose + ;00529> —ra (sine + 211 sin20> . (4.224)

Note that this result could have been obtained directly by differentiating Eq. (3.165) with
respect to time. Also, in the special case that the input angular velocity is constant (o« = 0),
then the acceleration of the slider is

Y= —rw’ (cos@ + §cos 20) . (4.22b)

4.10 COMPLEX-ALGEBRAIC ACCELERATION ANALYSIS

Let us now see how Raven’s method (Sec. 3.10) is extended to the analysis of accelerations.
The general approach is outlined here for the offset slider-crank linkage shown in Fig. 4.22.
In complex polar form, the loop-closure equation is

rael®” 4 r3el® — e T2 _ el = . (@)

Figure 4.22 Offset
slider-crank linkage.
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If we separate this equation into its real and imaginary components, we obtain the two
posture equations:

rpcos86y +r3cosfy —ry =0, (b)

rp8in6) + r3sinfdsz +r; =0. (c)

With r,r,, and r3 given, and for a known input posture, 6,, these two equations can be

solved for the two variables 03 and r4. In this example, Eq. (c¢) can be solved for the variable
63; that is,

B
03 = sin~! (w) . (4.23)

r3
Then Eq. (b) can be solved for the variable r4; that is,
r4 = rpco86h + r3cosbs. (4.24)

Differentiating Eq. (a) with respect to time gives the velocity equation, which is
equivalent to the equation of the velocity polygon in exponential form. After replacing
6 with w, the result is

jr2a)2€i92 +jr3a)3eie3 — i’4€jo =0. (d)

Raven’s method, as we have seen, consists of making the trigonometric transformation
and separating the result into real and imaginary terms, as was done in obtaining Egs. (b)
and (¢) from Eq. (a). When this procedure is carried out for the velocity equation in this
example, Eq. (d), we find

15 cosbh
r3cosb3
and
iy = —rysinbhwy — r3sinfzws. (4.26)

We use the same approach to obtain the acceleration equations by first differentiating
Eq. (d). Then, separating the result into its real and imaginary components gives two
equations that can be solved for the two acceleration unknowns; namely,

. 2 : 2
2 sinbrws — 1 cosbrap + r3sinfzw
a3 = 2 3, (4.27)
r3cosb3

74 = —rpcos 92(1)% — rpsinbrap — r3cos 93a)§ — r3sinfzas. (4.28)

If the input angular velocity is constant—that is, if &g = O—then the acceleration results
are

: 2 : 2
r sinbyws + r3sinfzw
o3 = 2 3 (4.29)
r3cosds




216

4.11

ACCELERATION

74 = —ryCoS Gza)% —r3cos 93a)§ — r3sinfzas3. (4.30)

The same procedure, when carried out for the four-bar linkage, gives results that can
be used for computer solutions of both the crank-rocker and the drag-link. Unfortunately,
they cannot be used for other four-bar linkages unless an arrangement is included in the
program to cause the solution to stop when an extreme posture is reached.

If the loop-closure equation for the four-bar linkage (Fig. 3.18) is written as

ri+r+r3—ry=0, (e)

where the subscripts are the link numbers and where link 2 is the driver having a constant
input angular velocity, then the acceleration relations that are obtained by Raven’s method

are
6> —64) 3 63— 04) 3 — rsw;
y = 12008 (B2 = ) 03 + 308 (65 — ) 03 — racw), (*:31)
r38in (04 — 03)
€05 (62 — 03) w3 — ra.cos (63 — 0a) ] + r3w3
o= r2€08 (6 — 03) w5 — r4cos (63 — O4) wy 393 (4.32)

r4 sin (94 - 93)

METHOD OF KINEMATIC COEFFICIENTS

Again we employ the four-bar linkage as an example of this method of solution. The
angular accelerations of links 3 and 4 can be obtained by differentiating Eqgs. (3) of
Example 3.7 with respect to the input angle 65; that is,

—r3c0803057 — r3sin6360% + r4cos 040,74 r4sin6460) = rycos b, (4.33)
—r3sin 939_7’,2 + r3cos 6365 + rasin 949!12 — r4c08040; = rpsin6y, (4.34)

where, by definition,

d?0

3 d*64
03

9// — ,
: 62

and 0] =

and they are referred to as the second-order kinematic coefficients of links 3 and 4. Writing
Egs. (4.33) and (4.34) in matrix form gives

—r3sinfs  r4sinby 67 | _ B
[ r3¢0863  —r4cosby i| |:94’( T |By |’ (4.35)
where

Bi = rpcos86, + r3cos 939§2 — r4c080467,

By = rysinf + r3sin6365" — r4sin646,7, (4.36)
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and they are known from position and velocity analyses. Also, note that the (2 x2)
coefficient matrix on the left-hand side of Eq. (4.35) is the same as the (2 x 2) coefficient
matrix in the velocity analysis* [Eq. (5) in Example 3.7]. This is not a coincidence.
The coefficient matrix is the same for all kinematic derivatives—that is, first-order,
second-order, third-order kinematic coefficients, and so on. Therefore, this matrix provides
a built-in check of all higher-order differentiation. The determinant of the coefficient matrix
is as given by Eq. (6) in Example 3.7; that is,

A = —r3r4sin(fy — 63). (4.37)

The second-order kinematic coefficients for links 3 and 4 can be obtained from
Eq. (4.35) by using Cramer’s rule, and the results are

B 64 + B> sin 6, B 03 + By sinf
gy = D1COSP T BasInGy g gy D1COSYs F Basins (4.38)
r3sin(f4 — 63) r48in(64 — 03)

Note that the second-order kinematic coefficients for the four-bar linkage are nondimen-
sional (rad/rad?). The angular accelerations of links 3 and 4, obtained from the chain
rule, are

a3 =0jws +0ar and oy =0]w3 + 60,0 (4.39)

Table 4.2 summarizes the second-order kinematic coefficients that are related to link
J of a planar mechanism (that is, vector r;) having (a) variable angle ; and/or (b) variable
magnitude 7;.

To illustrate the method of kinematic coefficients for determining the angular
accelerations of links and the accelerations of moving points, consider the following three
examples.

Table 4.2 Summary of Second-Order Kinematic Coefficients

Variable of Interest Variable of Interest
Angle 6; Magnitude r;
(Use symbol 0]/./ for kinematic (Use symbol r]f’for kinematic
coefficient regardless of input) coefficient regardless of input)
Input oej:0.”1/'/2+9.’12} 'f-:r/.’l/'fz—}—r’.&
= angle 6; 9 h(dlmensmnless rad/rad) r’ = —’(len th, length/rad)
g av dT// g g

d*o; .. .
Gj” = d—wé(dlmensmnless, rad/rad?) rj y 1//2 (length length/radz)

Input a' = 9//1//2 —{—9’1// }" _ r//]//Z +7 w
¥ = magnitude 7; 9 T/j (1/1ength, rad/length) rJ = ﬁ(dimensionless, length/length)
d*r
9/” v W (l/length2 rad/length2> r}” e (lllength length/lengthz)

* This coefficient matrix is called the Jacobian of the system.
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EXAMPLE 4.9

For the four-bar linkage of Example 4.2, determine the angular accelerations of links 3 and
4, and the absolute accelerations of points E and F.

SOLUTION
Recall that the first-order kinematic coefficients from Eq. (8) in Example 3.7 are

0;=0.271 8 rad/rad and 6, =0.526 5 rad/rad. (1)

Substituting Egs. (1) and the known data into Eqgs. (4.36) and substituting the results
into Eq. (4.38), the second-order kinematic coefficients of links 3 and 4 are

0y =0.013 1 rad/rad® and 6] = —0.203 0 rad/rad’. )

Substituting the constant angular velocity, wp = 94.25 rad/s ccw, and Egs. (1) and (2)
into Egs. (4.39), the angular accelerations of links 3 and 4 are

a3 =116 rad/s® ccw and a4 =1 801 rad/s?® cw. Ans.

These answers are in good agreement with the results obtained from the graphic method
of Example 4.2—that is, 3 = 113 rad/s? ccw and oy =1822 rad/s? cw.

To obtain the acceleration of point E, we differentiate Eqs. (13) in Example 3.7
with respect to the input angle 6,. Therefore, the second-order kinematic coefficients for
point E are

X} = —ryc086) — rpgcos(63 — ¢85 — regsin(6s — ¢)65,
V= —r28inf — regsin(@3 — ¢)05 + rgpcos(93 — )5 . 3)
Substituting Egs. (1) and (2) and the known data into Egs. (3) gives
xjp=1.206 7 in/rad> and yj=—3.310 8 in/rad”. )

Differentiating the velocity of point E, from Eq. (15) in Example 3.7, with respect to time,
the acceleration of point £ can be written as

Ap = (] +Xpan)i+ (Vi3 + V)] )

Recall that the first-order kinematic coefficients for point E, from Eq. (14) in
Example 3.7, are

xp=-3419 lin/rad and y;=0.9269 in/rad. (6)

Substituting Eqgs. (4) and (6), and the angular velocity and acceleration of the input
link into Eq. (5) gives

Ap = 892.32i — 2 448.24j fi/s>. Ans.
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Therefore, the magnitude of the acceleration of point E is Az = 2 606 ft/s>. This result is
in good agreement with the answer in Example 4.2—that is, Ap = 2 580 ft/s>.

The acceleration of point F can be obtained in a similar manner. The first-order and
second-order kinematic coefficients for point F are

Xy = —2.626 2 in/rad, y = 3.068 6 in/rad,
X = —0.586 0 in/rad?, y}. = —2.551 7 in/rad’. @)
Similar to Eq. (5), the acceleration of point F' can be written as
Ar = (o] +xpon)i+ (fo] +ype)j. ®)

Substituting Eqgs. (7) and the angular velocity and acceleration of the input into Eq. (8),
the acceleration of point F is

Ap = —433i— 1 886 ft/s>. Ans.

Therefore, the magnitude of the acceleration of point F is Ap =1 935 ft/s2. This result is
in good agreement with the answer of Example 4.2—that is, Ar = 1 960 ft/s”.

EXAMPLE 4.10

For the offset slider-crank linkage of Example 3.2 in the posture shown in Fig. 3.84, link 4
is driven at a constant speed of 10 m/s to the left. Determine the angular accelerations of
links 2 and 3, and the acceleration of coupler point D.

SOLUTION

The angular accelerations of links 2 and 3 are obtained by differentiating Eqs. (3) in
Example 3.8; with respect to the input displacement, r4; that is,

—r2c08626057 — r28in6265 — r3cos 6305 — r3sin6364 =0,

—ry5in62052 + 2 cos 62605 — r35in 0305 + 3 cos 6364 =0, (1)

where the second-order kinematic coefficients of links 2 and 3 are defined as

d*e d*o
6y === and 6§ = —
dry dry

We recall the first-order kinematic coefficients from Eq. (8) in Example 3.8; they are
05 =—19.856 rad/m and 6} = 5.447 rad/m. )

Substituting Egs. (2) and the known data into Egs. (1), the second-order kinematic
coefficients of links 2 and 3 are

0y = —246.25 rad/m* and 64 = 162.73 rad/m?, 3)
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The angular accelerations of links 2 and 3 can be written from Table 4.2 as
ar=0)i7+ 047 and a3 =657 +6}ia. 4)

Substituting Eqgs. (2) and (3), and the constant input speed 74 = —10 m/s into Eq. (4), the
angular accelerations of links 2 and 3 are

ar = —24 625 rad/s® (cw) and a3 = 16 273 rad/s” cew. Ans.

To obtain the acceleration of point D, we differentiate Eqs. (12) in Example 3.8
with respect to the input displacement, r4. The second-order kinematic coefficients for
point D are

X}y = —r2c0s02657 — r28in6265 — rppcos(6s — B)OY — rpgsin(d; — B)65,
Yh=-nr sin620§2 +rpcos6h0) — rpgsin(03 — ,3)9;2 + rppcos(03 — B)65. (5)
Substituting Egs. (2) and (3) and the known data into Egs. (5), we find
X, =652m/m?> and yj=—12.31 m/m>. (6)

Differentiating the velocity of point D, Eq. (14) in Example 3.8, with respect to time, the
acceleration of point D can be written as

Ap = (Whi +xpini+ 0hig +Ypia). (7

Next, we recall the first-order kinematic coefficients for point D from Eq. (13) in
Example 3.8 as

xXp=1.123m/m and yp=—0.407 m/m. (®)
Substituting Eqgs. (6) and (8) and the constant input speed into Eq. (7), we get
Ap = 652i— 1 231j m/s’. Ans.

Therefore, the magnitude of the acceleration of point D is Ap = 1 393 m/s2.

EXAMPLE 4.11

Consider the marine steering gear, called Rapson’s slide, in the posture shown in Fig. 4.23.
Link 4, O4B, is the tiller, and link 2, AC, is the actuating rod. If the velocity of link 2
is a constant 15 ft/s to the left, determine the angular acceleration of the tiller and the
acceleration of point B.

SOLUTION

The vectors that are chosen for the kinematic analysis of the mechanism are shown in
Fig. 4.23. Note that point D is a point of the ground link, 1, such that it lies vertically below
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Figure 4.23 RO4D =R1 =
8 ftand Rgp, = 11 ft.

point Oy; thus, the input is the magnitude of vector Ry from point A of link 2 to point D.
Also, note that the change in the input is negative; that is, the magnitude of the input is
decreasing.

With the vectors shown in Fig. 4.23, the vector loop equation for the linkage is

I/ Vv m
Ry+R; +R3=0, (1)

where 61 = 90°,6, = 180°, 63 = 300°, and, from trigonometry, R, = R;tan30° =
4.618 8 ft. The x and y components of Eq. (1) are

Ry cos6y + Ry cosf; + R3cosfz =0, 2a)

R)sinf 4+ Ry sinf; + R3sinf3 = 0. (2b)
Differentiating Eqs. (2) with respect to the input position R, gives

cos0 — R3sin6305 + R cos3 =0, (Ba)

sinf; + R3 cos 0305 + Ry sinfs = 0. (3b)
In matrix form, Egs. (3) can be written as
|:—R3sin 03 cos 03 i| [Oé i| _ |:—cqs 0> ] @
R3cos 03  sin 63 R —sin 6y
The determinant of the coefficient matrix in Eq. (4) is

- '_R3sm O3 cosO3 | _ g Gin?0; — Rycos?; = —Rs, 5)

R3cos A3  sin 63

where R3 = (8 ft) /cos30° =9.237 6 ft. Therefore, A = —9.237 6 ft.
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Differentiating Eqs. (3) with respect to the input position, R, gives

— R3cos 939§2 — R3sin0305 — 2R’ sin630; + R} cos 63 =0, (6a)
— R3sin 0303’2 + R3cos 0365 + 2R} cos 0365 + R; sinf3 = 0. (6b)
In matrix form, Egs. (6) can be written as
—R3sinf3 cos63 |[60) | | 2Rsin 63605+ R3cos 93%2 )
Ricos 3 sinf3 | [R5 | | —2R)cos 636} + R3sin 930§2

Note that the coefficient matrix in Eq. (7) is the same as the coefficient matrix in Eq. (4).

The coefficient matrix does not

kinematic coefficients are

change with differentiation of the unknown variables.

Substituting the known data into Eq. (4) and using Cramer’s rule, the first-order

—cos6 cosBs
0 = _SmezA b 1 Si“(e_ZR; %) _ 10093 75 radlft (8a)
and
‘—R3 sinf; —cos6y
R/3 _ R3cos03 . —sin6, _ R;3 cos(Z—Hg) — 10.500 fu/ft. 8b)

Substituting the known data into Egs. (7) and using Cramer’s rule, the second-order
kinematic coefficients are

‘ 2R, sin636; + R3 cos 939§2 cos6s

gy = 2RO Rt} iy | _ M 000 T G0
and
‘—R3 sinf3 2R sin630} + R3 cos 0304 ,
R = R3cosf3  —2R, 0029303’) + R3sin6304 _ - (R;@é) 10,0812 fUHE. (9b)
—I3

The angular velocity of link 3 is

w3 = 0;1'?2 = (40.093 75 rad/ft)(—15 ft/s) = —1.41 rad/s. (10)
The negative sign indicates that the direction of the angular velocity of link 3 is clockwise.
Note that Ry = —15 ft/s, since link 2 is moving to the left (the input magnitude, R», is
decreasing). Also, note that link 4 is constrained to rotate with the same angular velocity
as link 3. Therefore, the angular velocity of link 4 is

w4 = w3 = —1.41 rad/s (cw).

(1)
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The angular acceleration of link 3 is
o3 = 9§k2 + Qé/R%
= (4+0.093 75 rad/ft) (0) + (—0.010 1 rad/ft*)(—15 ft/s)? = —2.27 rad/s>. (12)

The negative sign indicates that link 3 is accelerating in the clockwise direction. Since link
4 is constrained to rotate with link 3, the angular acceleration of link 4 is

a4 = a3 = —2.27 rad/s* (cw). Ans. (13)
The sliding velocity of link 3 with respect to link 4 is
Vas/a = RyRy = (+0.5 ft/ft) (—15 ft/s) = —7.5 fu/s. (14)

The negative sign indicates that the direction of the apparent velocity is along link 4,
pointing toward the pin, O4; that is, the direction is V4,4 = 7.5 ft/s £120°.
The sliding acceleration of link 3 with respect to link 4 can be written as
Any/4 = RyRo + RIRS
= (+0.5 f/ft) (0) + (+0.081 2 ft/ft2> (=15 ft/s)* = +18.27 f/s>.  (15)

The positive sign indicates that the direction of the apparent acceleration is along link 4,
pointing away from pin Oy; that is, the direction is A4,/4 = 18.27 ft/s? £ — 60°.
To determine the acceleration of point B, we draw vector Rp, as shown in Fig. 4.24.

Figure 4.24 Vector for point B.
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The x and y components of the position of point B are
xg = Rpcosfz =5.50 ft, (16a)
yB = Rpsinf3 = —9.53 ft. (16b)

Differentiating Eqgs. (16) with respect to the input variable, R, the first-order kinematic
coefficients of point B are

X}y = —Rpsin636} = +0.893 09 fu/ft, (17a)
Yy = Rpcos 6305 = +0.515 63 fuft. (17b)

Then, differentiating Eqs. (17) with respect to the input, R,, gives the second-order
kinematic coefficients of point B:

Xy = —Rpcosf305 — Rpsin6305 = —0.145 fuft?, (18a)
Vi = —Rpsin630% + Rpcos 6564 = +0.028 fu/ft. (18b)

The velocity of point B can be written as
Vg = (xé;i + y%j) Rz
- (0.893 09 +0.515 63j) (—15 ft/s) = —13.40i — 7.73] ft/s
= 15.47 ft/s£210°. (19)
As a check, the velocity of point B can also be written as
Vi = w4Rpo, = (1.41 rad/s) (11 ft) = 15.51 ft/s,

where the difference is a result of truncation in the value of w4 in Eq. (10) and (11),
(wq = 1.406 25 rad/s).
The acceleration of point B can be written as

Ap = (x%f + y;gj) }éz + (xgi + ygj) R%
— (o.893i +0.516) ft/ft) (0) + (—0.1451 + 0.028] f/f®)(—15 ft/s)?
= —32.6i + 6.3] ft/s? = 33.2 ft/s2£169.1°. Ans. (20)

Note that the inverse tangent function on some calculators initially indicates that the angle
is —10.9°. However, this angle must be transposed into the second quadrant; that is, ZAp =
—10.9° +180° = 169.1°.
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4.12 EULER-SAVARY EQUATION*

In Sec. 4.5, we developed the apparent-acceleration equation, Eq. (4.17). Then, in the
examples that followed, we reported that it is very important to carefully choose a point
whose apparent path with respect to another body is known so that the radius of curvature
of the path, required for the normal component in Eq. (4.14), can be found. This need to
know the radius of curvature of the path often dictates the method of approach to such a
problem and sometimes even requires the visualization of an equivalent mechanism’ (as
was done in Example 4.7, Fig. 4.18¢). It would be convenient if an arbitrary point could be
chosen, and the radius of curvature of its path could be calculated. In planar mechanisms,
this can be accomplished by the methods that are presented here.

When two rigid bodies move relative to each other with planar motion, an arbitrarily
chosen point A of one describes a path, or locus, relative to a coordinate system fixed to
the other. At a given instant, there is a point A’, attached to the other body, that is the center
of curvature of the locus of A. If we take the kinematic inversion of this motion, A" also
describes a locus relative to the body containing A, and it so happens that A is the center
of curvature of this locus. Each point, therefore, acts as the center of curvature of the path
traced by the other, and the two points are called conjugates of each other. The distance
between these two conjugate points is the magnitude of the radius of curvature of either
locus.

Figure 4.25 illustrates two circles, with centers at C and C’, commonly referred to
as osculating circles [2]. Let us think of the circle with center C’ as the fixed centrode
and think of the circle with center C as the moving centrode of two bodies experiencing
some particular relative planar motion. In actuality, the fixed centrode need not be fixed
but is attached to the body that contains the path whose curvature is sought. Also, it is not
necessary that the two centrodes be circles; we are interested only in instantaneous values,
and, for convenience, we can think of the centrodes as circles matching the curvatures
(osculating circles) of the two actual centrodes in the region near their point of contact,
I (called the velocity pole). The velocity pole is an additional point, coincident with the
instantaneous center of velocity.

Recall from Sec. 3.12 that the instantaneous centers of velocity are a pair of coincident
points, labeled 7, and I;;, each attached to one of the bodies, j and k. The velocity pole,
I, however, is a third point, not attached to either body, that remains coincident with the
changing instantaneous centers of velocity as the motion progresses. Thus, the velocity
pole can have a velocity along the two tangent centrodes that is different from the equal
velocities of the two instantaneous centers of velocity.

When the bodies containing the two centrodes move relative to each other, the
centrodes appear to roll against each other without slip (Sec. 3.20). Because of these
properties, we can think of the two circular centrodes as actually representing the shapes
of the two moving bodies, if this helps in visualizing the motion.

* Among the most important and most useful references on this subject are [2].
"The concept of equivalent mechanisms is an important topic. For a detailed study, consult [2].
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Inflection pole
Inflection circle

Figure 4.25 Hartmann construction.

If the moving centrode has an angular velocity w, with respect to the fixed centrode,
the velocity* of point C is

VC = a)RCI. (a)
Similarly, arbitrary point A, whose conjugate point A" we wish to find, has a velocity of
Va = wRa;. ()

As the motion progresses, the point of contact of the two centrodes, and therefore the
location of the velocity pole, /, moves along both centrodes with some velocity (or rate)
v. As shown in Fig. 4.25, the pole velocity, v, can be found by connecting a straight line
from the terminus of V¢ to point C'. Alternatively, the magnitude of the pole velocity can
be obtained from

Ric
v —

—Vc. ()

" Rco

* All velocities used in this section are actually apparent velocities, with respect to the coordinate
system of the fixed centrode; they are written as absolute velocities to simplify the notation.
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A graphic construction for A’, the center of curvature of the locus of arbitrary point
A, is shown in Fig. 4.25 and is called the Hartmann construction. First, we find the
component, u, of the pole velocity, v, as that component parallel to V4 or perpendicular to
R4;. Then, the intersection of the line A/ and a line connecting the termini of the velocities
V4 and u gives the location of the conjugate point, A’. The radius of curvature, p, of the
locus of point A is p = Rpy’.

An analytic expression for locating point A’ would also be desirable and can be derived
from the Hartmann construction. The magnitude of the u component of the pole velocity
is given by

u=vsiny, (d)

where v is the positive counterclockwise angle measured from the centrode tangent to the
line of Ry4;. Then, noting the similar triangles in Fig. 4.25, we can write the magnitude of
the u component of the pole velocity as

R
=—Vy4.
“=go A (e)
Now, equating of Egs. (d) and (e), and substituting Eqgs. (a), (b), and (c¢) into the
resulting equation gives

Ric'R RiaR
y= e Clwsinwz mRar f)
Rec Rpar
Dividing this equation by wsiny and inverting, we obtain
Ran . Ree ®
sinyy = ——— = —. (®)
RarRy RciRicr v

Next, upon noting that Rqa» = Ra; — Ry and Rccr = Rcr — Ry, we can reduce this equation

to the form
( 1 1 ) in ( 1 1 ) 4.40)
—— —|sinYy = — —— ). .
Rar  Ryy Rcr Rei

This important equation is one form of the Euler-Savary equation. If we assume that the
radii of curvature of the two centrodes, Rcy and R, are known, then this equation can
be used to determine the position of one of the two conjugate points (A or A’) from the
position of the other, relative to the velocity pole, /.

Note that in using the Euler-Savary equation, we may arbitrarily choose a positive
sense for the centrode tangent (+7); the positive centrode normal (+N) is then 90°
counterclockwise from it. This establishes a positive direction for the line CC” in Fig. 4.25,
which may be used in assigning appropriate signs to Rcy and R¢;. Similarly, an arbitrary
positive direction can be chosen for the line AA’. The angle v is then taken as positive
counterclockwise from the positive centrode tangent to the positive sense of the line AA’.
The sense of the line AA” also gives the appropriate signs for R4y and Ra/; for Eq. (4.40).

There is a major disadvantage to this form of the Euler-Savary equation in that the
radii of curvature of both centrodes, R¢c; and R¢v;, must be known. Usually these are not
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known, any more than the curvature of the locus itself is known. However, this difficulty
can be overcome by seeking another form of the equation.

Let us consider the particular point labeled J in Fig. 4.25. This point is located on the
centrode normal at a location defined by

11 "
Ry Ra  Rer

If this particular point is chosen for A in Eq. (4.40), we find that its conjugate point, J',
must be located at infinity. The radius of curvature of the path of point J is infinite, and the
locus of J therefore has an inflection point at J. The point J is called the inflection pole.

Let us now consider whether there are any other points, J4, of the moving body that
also have infinite radii of curvature at the instant considered. If so, then for each of these
points, Rq4r = 0o. Substituting this condition into Eq. (4.40), and with the aid of Eq. (),
we obtain

RJA1=R/1SiI11ﬂ. (441)

This is the equation of a circle in polar coordinates whose diameter is Rj;, as shown in
Fig. 4.25. This circle is called the inflection circle. Every point on this circle is an inflection
point; it has its conjugate point at infinity, and each such point therefore has an infinite
radius of curvature at the instant indicated. These points are instantaneously moving along
straight lines.

Now, with the help of Eq. (4.41), the Euler-Savary equation can be written in the form

1 1 1

- (4.42)
Rar Rar Ry,

Also, after some further manipulation, the radius of curvature of the path of point A can be
written as

R2
p =Ry = AL, (4.43)
Ray,

Either of these two forms of the Euler-Savary equation, Eqs. (4.42) and (4.43), is more
useful in practice than Eq. (4.40), since they do not require knowledge of the curvatures of
the two centrodes. They do require finding the inflection circle, but the following example
illustrates a graphic procedure for drawing the inflection circle.

EXAMPLE 4.12

Draw the inflection circle for coupler link 3 of the slider-crank linkage in the posture shown
in Fig. 4.26. Then, use the inflection circle and the Euler-Savary equation to determine the
radius of curvature of the path of coupler point C.
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Figure 4.26
R0, =2 inand Ry =2.5 in.

SOLUTION

We begin by locating the velocity pole, I (which is coincident with the instantaneous
center of velocity), at the intersection of line O»A and a line through B perpendicular to its
direction of travel (Fig. 4.27). By definition, points B and / must both lie on the inflection
circle; hence, we need only one additional point to construct the circle.

Figure 4.27 Inflection circle.
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The center of curvature of the path of point A is, of course, at O», which we now call
A’. Taking the positive sense of line Al as being downward and to the left, we measure
Ra; =2.64 inand Ry4» = —2.00 in. Then, substituting these vales into Eq. (4.43), we obtain

R? 2.64 in)?
Rayy = i GOVMT 5 e,
Ran —2.00 in

With this, we lay off 3.48 in from A to locate J4, which is a third point on the inflection
circle. The inflection circle for the motion 3/1 can now be constructed through the three
points B, I, and J4, and the diameter of the circle is measured as

Rj[ =6.28 in. Ans.

The centrode normal () and the centrode tangent (7') can also be drawn, if desired,
as shown in Fig. 4.27.

Drawing the ray Rcy and continuing to take the positive sense as downward and to
the left, we measure Rc; = 3.10 in and R¢y. = —1.75 in. Substituting these values into
Eq. (4.43), the radius of curvature of the path of point C is

R? (3.10 in)?
=Rpe = —CL — =—5.49in, Ans.
P = Rese ~ —1.75m n i

where the negative sign indicates that C is above C’ on line ICJcC'.

4.13 BOBILLIER CONSTRUCTIONS

The Hartmann construction provides one graphic method of finding the conjugate point
and the radius of curvature of the path of a moving point, but it requires knowledge of the
curvature of the fixed and moving centrodes. It would be desirable to have graphic methods
for obtaining the inflection circle and the conjugate of a given point without requiring the
curvature of the centrodes. Such graphic solutions are presented in this section and are
called the Bobillier constructions.

To understand these constructions, consider the inflection circle, the centrode normal
(N), and the centrode tangent (7'), as shown in Fig. 4.28. Let us select any two points, A and
B, of the moving body that do not lie on a straight line through velocity pole /. Using the
Euler-Savary equation, we can find the two corresponding conjugate points, A’ and B’. The
intersection of lines AB and A’B’ is labeled Q. Then, the straight line drawn through 7 and Q
is called the collineation axis. This axis applies only to the two lines AA” and BB', and so is
said to belong to these two rays; also, point Q will be located differently on the collineation
axis if another pair of points, A and B, is chosen on the same rays. Nevertheless, there is
a unique relationship between the collineation axis and the two rays used to define it.
This relationship is expressed in Bobillier’s theorem, which states that the angle from the
collineation axis to the first ray is equal to the angle from the second ray to the centrode
tangent.

In applying the Euler-Savary equation to a planar mechanism, we can usually find two
pairs of conjugate points by inspection, and from these we wish to graphically determine
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the inflection circle. For example, a four-bar linkage with a crank, O,A, and a follower,
O4B, has A and O, as one pair of conjugate points and B and O4 as another, when we
are interested in the motion of the coupler with respect to the frame (3 with respect to 1).
Given these two pairs of conjugate points, how do we use the Bobillier theorem to find the
inflection circle?

In Fig. 4.29a, let A and A’ and B and B’ represent the known pairs of conjugate points.
Rays constructed through each pair intersect at the velocity pole, 1, giving one point on the
inflection circle. Point Q is located next by the intersection of a ray through A and B with
aray through A" and B’. Then, the collineation axis can be drawn as line 1Q.

The next step is shown in Fig. 4.29b. Drawing a straight line through I parallel to A’B’,
we identify point W as the intersection of this line with line AB. Now, through W, we draw
a second line parallel to the collineation axis. This line intersects AA” at J4 and BB’ at Jg,
two additional points on the inflection circle for which we are searching.

We could now construct a circle through the three points J4,Jp, and I, but there is
an easy way to do this. Remembering that a triangle inscribed in a semicircle is a right
triangle having the diameter as its hypotenuse, we erect a perpendicular to Al at J4 and
another perpendicular to BI at Jp. The intersection of these two perpendiculars gives the
inflection pole, point J, as shown in Fig. 4.29¢. Since 1J is the diameter, then the inflection
circle, the centrode normal N, and the centrode tangent T can all be easily constructed.

To demonstrate that this construction satisfies the Bobillier theorem, note that the arc
from 7 to Jy is inscribed by the angle that J4/ makes with the centrode tangent. But this
same arc is also inscribed by angle I/pJ4. Therefore, these two angles are equal. But line
JpJys was originally constructed parallel to the collineation axis. Therefore, line I/p also
makes the same angle, 8, with the collineation axis.

Our final problem is to learn how to use the Bobillier theorem to find the conjugate
of another arbitrary point, say C, when the inflection circle is given. In Fig. 4.30, we draw
a line through point C and the velocity pole, I, and locate the point of intersection of this
line with the inflection circle (J¢). This ray serves as one of the two necessary rays to
locate the collineation axis. For the other ray, we can use the centrode normal, since J
and its conjugate point J’, at infinity, are both known. For these two rays, the collineation
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Figure 4.29 Bobillier construction for locating the inflection circle.
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axis is a line through the velocity pole, I, parallel to line J¢J, as we learned in Fig. 4.29¢.
The balance of the construction is similar to that of Fig. 4.28. Point Q is located by the
intersection of a line through J and C with the collineation axis. Then a line through Q and
J' at infinity intersects ray IC at C’, the conjugate point for C.

EXAMPLE 4.13

For the four-bar linkage A’ABB’ in the posture shown in Fig. 4.31, use the Bobillier theorem
to find the center of curvature of the coupler curve of point C.

Figure 4.31 Four-bar linkage.

SOLUTION

Locate the velocity pole I at the intersection of AA’ and BB'; also locate Q; at the
intersection of AB and A’B’. Line 1Q; is the first collineation axis. Through I draw a
line parallel to A’B’ to locate W on AB. Through W, draw a line parallel to /Q; to
locate J4 on AA” and Jg on BB'. Then, through J4, draw a perpendicular to AA’, and
through Jp, draw a perpendicular to BB'. These perpendiculars intersect at inflection
pole J and define the inflection circle, the centrode normal N, and the centrode
tangent 7.

To obtain the conjugate point of C, we draw ray /C and locate J¢ on the inflection
circle. The second collineation axis, /Q, belonging to the pair of rays /C and 1J, is a
line through 7 parallel to a line (not shown) from J to Jc. Point Q5 is obtained as the
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intersection of this collineation axis and line JC. Now, through Q> we draw a line parallel
to the centrode normal; its intersection with ray IC yields C’, the center of curvature of the
path of C.

4.14 INSTANTANEOUS CENTER OF ACCELERATION

This section defines the instantaneous center of acceleration for a planar mechanism.
It is important to note that, in general, the instantaneous center of acceleration is not
coincident with the instantaneous center of velocity. In other words, the instantaneous
center of velocity has acceleration. The instantaneous center of acceleration is defined
as the instantaneous location of a pair of coincident points of two different rigid bodies
where the absolute accelerations of the two bodies are identical. If we consider a fixed and
a moving body, the instantaneous center of acceleration is the point of the moving body
that has zero absolute acceleration at the instant considered.

For the moving plane shown in Fig. 4.32a, assume that @ and « are known and that
point A in the plane has a known acceleration, A4. Let I" denote the instantaneous center
of acceleration, a point of zero absolute acceleration whose location is unknown. The
acceleration-difference equation can then be written as

A]‘ :AA—a)ZRpAochrA:& (a)
Solving for A4 gives
Ax=’RraRra —aRpa(kx Rra). ()

Now, recognizing that R r4 is perpendicular to kxR r4, the two terms on the right-hand
side of Eq. (b) are rectangular components of Ay4, as shown in Fig. 4.32b. From Fig. 4.32b,
we can solve for the direction and magnitude of R 4; that is,

o
y =tan”' —, (4.44)
w
Ap Ajgcosy
Rra= = R (4.45)
N )
(a) (b) Figure 4.32 Instantaneous
¥ center of acceleration.
r
R ~
T4 xRFA
kxR, @ Rra
Ay
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Figure 4.33 Four-circle
method of locating the
instantaneous center of
acceleration.

Equation (4.45) states that the distance Ry 4 from point A to the instantaneous center
of acceleration I can be determined from the magnitude of the acceleration, A4, of any
point of the moving plane. Our convention is that the angle y is defined from line IT” to the
positive centrode normal.

There are many graphic methods for locating the instantaneous center of acceleration
[2, pp. 148-58], [7, pp. 145-67]. Here, without proof, we present one method. In Fig. 4.33,
we are given points A and B and their absolute accelerations A4 and Ag. We extend
A4 and Ap until they intersect at Q; then we construct a circle through points A, B, and
Q. Next, we draw another circle through the termini of A4 and Ap and point Q. The second
intersection of the two circles locates point I, the instantaneous center of acceleration.

4.15 BRESSE CIRCLE (OR DE LA HIRE CIRCLE)

Another graphic method of locating the instantaneous center of acceleration is by drawing
a circle called the Bresse circle. In Sec. 4.12, we defined the inflection circle as the locus of
points that have their conjugate points at infinity, and each therefore has an infinite radius
of curvature at the instant under consideration. Therefore, the inflection circle can also be
defined as the locus of points with zero normal acceleration. The locus of points with zero
tangential acceleration also defines a circle, shown in Fig. 4.34, referred to as the Bresse
circle or the de La Hire circle.

The inflection circle and the Bresse circle intersect at two points, as shown in Fig. 4.34;
one point is the velocity pole, I, and the other point is the instantaneous center of
acceleration, I". Since the velocity pole, I, has acceleration, in general, then it must be
discounted as a possible solution. The direction of the acceleration of the velocity pole, 1,
is along the positive centrode normal, , and the magnitude can be written as

A =wv, (4.46)
where v is the magnitude of the pole velocity [Eq. (b) in Sec. 4.12] and can be written as

V= C()Rj[. (4-47)
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Inflection Circle

|
|
|
|
Bresse Circle |

Figure 4.34 Bresse circle and the instantaneous center of acceleration.

Substituting Eq. (4.47) into Eq. (4.46), the acceleration of I can also be written as
A= a)sz[.

The angle from the positive centrode normal to line /17 (that is, the line connecting the
instantaneous center of acceleration and the velocity pole) is angle y. This angle was
defined in Eq. (4.44) as

tan~! =
=tan~ —.

14 2
The diameter of the Bresse circle can be written as

w2

b=Ry—. (4.48)
o

If the angular acceleration of the moving plane is positive (that is, counterclockwise), then
the Bresse circle lies on the negative side of the centrode tangent, 7, as shown in Fig. 4.34.
Alternatively, if the angular acceleration of the moving plane is negative, then the Bresse
circle lies on the positive side of the centrode tangent, 7.

In the special case that the angular velocity of the moving plane is a constant (that
is, « = 0) then the diameter of the Bresse circle is infinite (the Bresse circle tends to the
centrode normal, N), and the instantaneous center of acceleration is coincident with the
inflection pole, J.
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EXAMPLE 4.14

Consider the four-bar linkage of Example 4.1, shown in Fig. 4.8a and redrawn here as
Fig. 4.35. For the specified posture (that is, with the crank angle 135° ccw from the ground
link, 0204), the angular velocity and angular acceleration of the coupler link, AB, are
w3 = 5 rad/s ccw and a3 = 20 rad/s> cw, respectively. For the instantaneous motion of the
coupler link, show: (a) the velocity pole, I, centrode tangent, 7, and centrode normal, N; (b)
the inflection circle and Bresse circle; and (c) the instantaneous center of acceleration of
the coupler link, AB. Then, determine: (d) the radius of curvature of the trajectory of cou-
pler point C where Rcp = 6 in, (e) the magnitude and direction of the velocity of coupler
point C, (f) the magnitude and direction of the angular velocity of the crank, (g) the magni-
tude and direction of the pole velocity, (k) the magnitude and direction of the acceleration
of the velocity pole 7, and (i) the magnitude and direction of the acceleration of C.

Figure 4.35
Ro,0, =8in,Ry0, =6 in,
Rpa = 18 in,and Rpp, = 12 in.

SOLUTION

(a) The velocity pole, , is coincident with instant center /13, as shown in Fig. 4.36.
The instant center Ip4 (labeled point Q) and the collineation axis, IQ, are also
shown in Fig. 4.36. From Bobillier’s theorem, the angle from the collineation
axis to the first ray (say, link 2) is obtained from a scaled drawing as

o =29.08° cw. Ans. (1)

This is equal to the angle from the second ray (say, link 4) to the centrode tangent,
T. Therefore, we draw the centrode tangent, 7, and the centrode normal, N, which
is 90° counterclockwise from 7, as shown in Fig. 4.36.

(b) Now, by measuring ray R4y = 14.141in, we can use Eq. (4.43) to locate the
inflection point Jy4,

R, (14.14in)?

_ — 3331 in.
Rav . 6.00in m

Raj, =

Similarly, measuring ray Rp; = 18.20 in, we locate the inflection point Jp,

Ry, (18.20in)?

= — =27.60 in.
RBB’ 12.00 in

RBJB =
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()
(d)

Bresse Circle for 3/1 Inflection Circle for 3/1

Figure 4.36 Inflection circle, Bresse circle, and instantaneous center of acceleration.

Erecting perpendiculars from these two rays, we locate the inflection pole, J, and
draw the inflection circle, as shown in Fig. 4.36. The diameter of the inflection
circle is

Rj; =19.26 in. Ans. (2)

The diameter of the Bresse circle, from Eq. (4.48), is

b Ry (19.26 in) - dis _ 4081 Ans. (3)
= _— = . m)—————=— . 1mn, ns.

" a3 —20 rad/s?
where the negative sign indicates that the Bresse circle lies on the positive side of
the centrode tangent.
The instantaneous center of acceleration, I, of the coupler link is as shown in
Fig. 4.36.
The radius of curvature of the path of coupler point C (where Rcg = 6 in) is

RZ, _ (1467 in)?
RCJC 28.62 in

pc=Rcc = =7.52in. Ans. (4)

The center of curvature of the path traced by point C—that is, C'—is shown in
Fig. 4.36.
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(e)

)

(2

(h)

O]

The velocity of coupler point C is
Ve = w3Rer = (5 rad/s) (14.65 in) = 73.25 in/s. Ans. (5)

The orientation of the velocity vector is as shown in Fig. 4.36.
The angular velocity of the crank can be written as

_ R123Il3 _ 14.14 in

wHr = =
>~ Rint, . 6.00in

(5 rad/s) = 11.78 rad/s ccw. Ans. (6)

The pole velocity, from Eq. (4.47), is
v =w3Ry = (5 rad/s) (19.26 in) = 96.3 in/s. Ans. (7)

The direction of the pole velocity is as shown in Fig. 4.36.
The acceleration of the velocity pole, /, from Eq. (4.46), is

A; = w3v = (5rad/s) (96.3 in/s) = 481.5 in/s. Ans. (8)

The acceleration, Ay, is directed from 7 toward J, as shown in Fig. 4.36.
The acceleration of coupler point C is found by rearranging Eq. (4.45); that is,

Ac =Rrcy/of +a3 = (29.64 in) \/ (5 rad/s)* + (20 rad/sz)z = 948.94 in/s’

Ans. (9)
The direction of the acceleration of point C, from Eq. (4.44), is
—20 rad/s?
y =tan' 5 —an! = — 38,66, Ans. (10)
w3 (5 rad/s)

which is a clockwise angle from A to line CI', as shown in Fig. 4.36.

4.16 RADIUS OF CURVATURE OF A POINT TRAJECTORY USING
KINEMATIC COEFFICIENTS

The radius of curvature of a point trajectory (say point P), at the instant considered, can be
written from Egs. (4.2) and (4.3) or from Eq. (4.14) as

v

p=-L. (4.49)
Ap

From Eq. (3.34a), the speed of point P can be written as

Vp — r};l/f (a)
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Also, the normal component of the acceleration of point P can be written as
Ap=Ap 0", (4.50)

where the unit normal vector to the point trajectory at the posture considered

[Eq. (3.39)] is
i = <_ff’)i+ (x—f’)J )
rP rP

Taking the time derivative of Eq. (3.33b), the acceleration of point P can be written as

Ap = (W% +xp )i+ OG0 + ypih)]. (4.51)

Substituting Egs. (b) and (4.51) into Eq. (4.50), the normal component of the acceleration
of point P can be written as

v — v\ .
Al = (M> W2, (4.52)
"p
Then, substituting Eqgs. (@) and (4.52) into Eq. (4.49), the radius of curvature of the point
trajectory at the posture considered can be written as

r/3
p=—t 4.53)

XpYp = YpXp
Sign convention: If the unit normal vector to the point trajectory @ points toward the center
of curvature of the path, then the radius of curvature has a positive value. If the unit normal
vector to the point trajectory points away from the center of curvature of the path, then the
radius of curvature has a negative value.
The coordinates of the center of curvature of the point trajectory, at the posture under
investigation, can be written as

/

y Xy
Xc=Xxp—p <—,P> and yc=yp+p (—,P) : (4.54)
p p

EXAMPLE 4.15

Determine the radius of curvature and the center of curvature of the path of point B for
Rapson’s slide of Example 4.11.

SOLUTION

Here we continue from Example 4.11 in all respects, including equation numbers.
Therefore, the unit tangent vector to the path of point B is the unit vector pointing in
the direction of the velocity vector of point B. The unit tangent vector can be written as
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) ’ s
ﬁt_xBl+yB-]

21
A 1)

where, using the data of Egs. (17),

rp = xg +yE = —\/ (0.893 09 ft/ft)> 4 (0.515 63 fu/ft)> = —1.031 25 ft/ft.  (22)

Note that the negative sign was chosen, since the input distance R, is becoming shorter,
and, therefore, the input is negative. Substituting Egs. (17) and (22) into Eq. (21) gives

LAY, (089309 fUfoi+ (0.515 63 U] . :
_ - = —0.866 021 — 0.500 00§. (23
R 1031 25 fufe ' 2

As a check, using Eq. (19), the unit tangent vector can also be written as

Vi —13.40i — 7.73 f/s 0.866 198 — 0.499 683
ua=—= = = .
Vs 15.47 fi/s :

~t

The unit normal vector is 90° counterclockwise from the unit tangent vector; that is, using
Egs. (17) and (22),

o a X YR YR X - -
i = kxit =kx 2B TOBTRB) 6500 00— 0.866 02 (24)
Tp Tp
The direction of the unit tangent vector and the unit normal vector are shown in Fig. 4.37.
Using Eqgs. (17), (18), and (22), the radius of curvature of the path of point B can be

found from Eq. (4.53) as

r/3
_ B
YRR
(—1.031 25 fu/ft)3

" (0.893 09 fuft) (0.028 fuft*) — (0.515 63 fuft) (—0.145 fuft)
=—11.0ft Ans. (25)

The negative sign indicates that the unit normal vector points away from the center of
curvature of the path of point B (Fig. 4.37).

The coordinates of the center of curvature of the path of point B can be found from
Egs. (4.54). Using known values give

/

XC=xp — pg [YB} —5.50 ft— (—11.0 ft)|:

-
;]

(0.515 63 fu/ft)
(—1.031 25 fuft)

0.893 09 ft/ft
—1.031 25 f/ft

i| =0.00 ft, (26a)

/
yc =Yg+ pp [@} = —9.53 ft+ (—11.0 fr) [
r

] =0.00 ft. (26D)
B

Note that Egs. (25), (26a), and (26b) make intuitive sense, since point B is located on link
4, and link 4 is pinned at the origin, O4, and, therefore, must rotate about the origin.
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Figure 4.37 Unit tangent and
unit normal vectors, and center
of curvature of the path of
point B.

Figure 4.37 illustrates the directions of the unit tangent vector, &/, and the unit normal
vector, 0". Note that the unit normal vector points away from the center of curvature of
the path of point B. The center of curvature of the path of point B is coincident with the
ground pin O4. From observation, these answers are corroborated.

4.17 CUBIC OF STATIONARY CURVATURE

Now let us consider a point fixed in the coupler link of a planar four-bar linkage that
generates a path relative to the frame whose radius of curvature, at the instant considered,
is p. Since the coupler curve is, in general, a tricircular sextic [1, pp. 313—4], this radius of
curvature changes continuously as the point moves. In certain situations, however, the path
has stationary curvature, which means that

dp

a5 = @

where s is the arc distance traveled along the path. The locus of all points in the coupler,
or moving plane, which have stationary curvature at the instant considered, is called the
cubic of stationary curvature or sometimes the circling-point curve. We should note that
stationary curvature does not necessarily mean constant curvature, but rather that the
continually varying radius of curvature is passing through a maximum or minimum.

Here, we present a quick and easy graphic method for obtaining the cubic of stationary
curvature for a coupler link, as described by Hain [2, pp. 498—502]. Consider the four-bar
linkage A’ABB’ shown in Fig. 4.38, where A’ and B’ are the frame pivots. Note that the loci
of points A and B have stationary curvature (in fact, constant curvature about centers at
A’ and B’, respectively); hence, A and B must lie on the cubic.

The first step of the construction is to obtain the centrode normal and the centrode
tangent. Since the inflection circle is not needed, we locate the collineation axis, /Q,
as indicated and draw the centrode tangent, 7, at the angle v from line /B, equal to
the angle from the collineation axis to line IA’. This construction follows directly from
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Figure 4.38 Cubic of stationary curvature.

Bobillier’s theorem. We also construct the centrode normal, N. At this time it may be
convenient to reorient the drawing on the working surface so that the centrode normal lies
along the horizontal axis.

Next, we construct a line through A perpendicular to /A and another line through B
perpendicular to /B. These lines intersect the centrode normal and centrode tangent at
Apn, At and By, Br, respectively, as shown in Fig. 4.38. Now, we draw two rectangles,
IANAGAT and IByBgBT; points Ag and Bg define an auxiliary line G that we will use to
obtain other points on the cubic of stationary curvature.

Next, we choose any point, S, on line G. A ray parallel to N locates St, and another
ray parallel to 7 locates Sy. Connecting St with Sy and drawing a perpendicular to this
line through 7 locates point S, another point on the cubic of stationary curvature. We repeat
this process as often as desired by choosing different points on line G, and we draw the
cubic as a smooth curve through all the points S obtained.

Note that the cubic of stationary curvature has two tangents at the velocity pole I;
one is the centrode-tangent tangent and the other is the centrode-normal tangent. The
radius of curvature of the cubic at these tangents is obtained as follows: Extend line G
to intersect T at Gy and N at Gy, as indicated. Then, half the distance /G7 is the radius of
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curvature of the cubic tangent to the centrode normal, and half the distance /Gy is the
radius of curvature of the cubic tangent to the centrode tangent.

A point with interesting properties is the point of intersection of the cubic of stationary
curvature with the inflection circle (other than velocity pole 7); this point is called Ball’s
point. The point fixed in the coupler that is coincident with Ball’s point describes a path
that is practically rectilinear for a considerable distance [5, p. 357]; that is, it describes an
excellent straight line near the design position, since it is located at an inflection point of
its path and has stationary curvature.

The equation of the cubic of stationary curvature can be written in polar coordinates as

1 1 1
-= - — , (4.55)
r  Msinyy Ncosy

where r is the distance from the velocity pole, I, to the point on the cubic, measured at
an angle ¥ from the centrode tangent.* The constant parameters M and N are determined
using any two points known to lie on the cubic, such as points A and B of Fig. 4.38.
Equations for M and N can be written as

I 1/1 1 1 1 (dR
(2 and —=— ) (4.56)
M 3 RJ[ RIOM N 3RJ[ ds

It so happens [8, p. 111] that M and N are, respectively, the diameters /Gt and IGy of the
circles centered on the centrode tangent and centrode normal whose radii represent the two
curvatures of the cubic at velocity pole /.

The equation of the cubic of stationary curvature can also be expressed in Cartesian
coordinates as

2 +y%) (% . ]Xv) = 2. (4.57)

Degenerate forms. From Eq. (4.55), or Eq. (4.57), we observe that the cubic of stationary
curvature degenerates to a circle and a straight line when either (a) N tends to infinity (that
is, 1/N approaches zero) or (b) M tends to infinity (that is, 1/M approaches zero). Consider
the following example.

EXAMPLE 4.16

For the four-bar linkage in the posture shown in Fig. 4.39, link 2 is perpendicular to the
frame and the coupler link is parallel to the frame. For the absolute motion of the coupler
link, determine the diameter of the inflection circle, the cubic of stationary curvature, and
the location of Ball’s point. Also, determine the radius of curvature and center of curvature
of: (a) the moving centrode, (b) the fixed centrode, and (c¢) the path of coupler point C,
which is midway between pins A and B.

* For a derivation of this equation see [3, p. 98] or [4, p. 206].
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4 Figure 4.39
R0402 =lin, RA02 =11in,
RBA =2 in, and RBO4 =
2 5.657 in.
0,
-
SOLUTION

The velocity pole, I, is coincident with the instant center /13, as shown in Fig. 4.40. The
instant center />4 (with label Q) lies at infinity (say to the right), and the collineation axis
1Q is parallel to the coupler link. From Bobillier’s theorem, the angle from the collineation
axis to the first ray (link 2) is & = 90° ccw. This is equal to the angle from the second ray
(link 4) to the centrode tangent, 7. Therefore, the centrode tangent, 7, and the centrode
normal, N (which is 90° ccw from the centrode tangent, T), are as shown in Fig. 4.40.
Note that link 4 lies along the centrode normal, N.

The location of the inflection point J4 for point A on the coupler link is obtained from
the Euler-Savary equation, Eq. (4.43); that is,

R3, @ in)? B

Raj, = =

4 in. 1
RAA’ lin ( )

The inflection point, Jg, for point B on the coupler link is obtained in a similar manner;
that is,

2
g, (2v2in)
Rpj, = = =5.661n. 2)
® " Rpp V2in

The locations of the inflection points, J4 and Jp, are shown in Fig. 4.40. Note that
Jp lies on the centrode normal, N; therefore, this inflection point is coincident with the
inflection pole, J. Knowing the centrode normal, N, and the two inflection points, the
inflection circle for the motion of link 3 with respect to 1 can now be drawn. The diameter

of the inflection circle for the motion 3/1 is

1
Ry =Ry = 2+/2in=2.83 in. Ans. (3)

The inflection circle, the inflection pole J, and the center of the inflection circle (denoted
as point O) are shown in Fig. 4.40. Note that the centrode normal, N, is directed from the
velocity pole, I, toward the inflection pole, J, and the centrode tangent, 7, is 90° clockwise
from the centrode normal, N.

The cubic of stationary curvature equation for the coupler link, including pins A and
B, can be written from Eq. (4.55) as

1 1 1
Ra  Msinys Ncosya

(4a)
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and also as

1 1 1

—=— - , (4b)
Rpr  Msinyp Ncosyp

where the parameters M and N are as given by Eqgs. (4.56). The angle 14 is the
counterclockwise angle from the centrode tangent, 7, to the ray containing point A, and the
angle vp is the counterclockwise angle from the centrode tangent, 7, to the ray containing
point B. From the scale drawing, these angles are measured as

Ya=—45° and g =—90°. (5a)

Note that these measurements can easily be verified from trigonometry. The distances
to pin A from the velocity pole, /, and to pin B from the velocity pole, I, are measured
consistently as

Ry =2in and Rg =2+2in. (5b)

Substituting Eqs. (5a) into Eq. (4b), gives

11 ©)
Rpr M
Therefore, using Eq. (5b), we find the parameter
M = —Rg; =Ry = —2/2 in. Ans. (7)

Note that substituting ¥4 = —45° into Eq. (4a) indicates that 1/N = 0, and the parameter
N tends to infinity.

This is a degenerate form of the cubic of stationary curvature. The cubic of stationary
curvature degenerates to a straight line (that is, the centrode normal) and a circle of
diameter M (the center must lie on the centrode normal). The circle must pass through
pins A and B on link 3. Therefore, the center of the circle is coincident with the ground
pin Og4.

Substituting the condition N = oo into Eq. (4.56) gives

1 [dRy o 8a)
3RJ] ds o “

Since the diameter of the inflection circle is infinite, [Eq. (3)], the rate of change of the
inflection circle diameter must be zero; that is,
dR
1 _o.
ds

(8D)

In other words, the diameter of the inflection circle is at a maximum or a minimum as the
four-bar linkage passes through this posture.

Recall that Ball’s point is located at the intersection of the inflection circle
and the cubic of stationary curvature. Figure 4.40 illustrates two apparent points of
intersection—that is, the velocity pole, /, and the inflection pole, J. Since the velocity pole,
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Inflection Circle for 3/1 /

J Jy
Jec

Figure 4.40 Cubic of stationary curvature and the two centrodes.

with the inflection pole, J.

Collineation Axis

Cubic of Stationary Curvature

Fixed Centrode

Moving Centrode
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I, is not a point fixed in the coupler, it is not a solution. Therefore, Ball’s point is coincident

(a) Rearranging Eq. (4.56), the radius of curvature of the moving centrode can be

written as
1 3
— == ©
Rioy, Rn M
Then, substituting Eq. (7) into this equation, gives
1 1 3 2
- - = (10a)
Rioy, Ry Ry Ry
Therefore, the radius of curvature of the moving centrode is
Ry NG
Rioy, = -5 = 2 in Ans. (10b)
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(b)

(©)

The negative signs in these last two equations indicate that the direction from Oy,
to I is opposite to the direction from 7 to J. The moving centrode is coincident
with (or coalesces with) the inflection circle (Fig. 4.40).

The Euler-Savary equation can be written as

1 1 1

— = . (11)
Ry Riop  Rioy

Substituting Eq. (10b) into this equation, and rearranging, the radius of curvature
of the fixed centrode can be written as

Rio, = —Rjy =22 in. Ans. (12)

The negative sign indicates that the direction from Of to [ is opposite to the
direction from / to J. The radius of the osculating circle for the fixed centrode is
the same as the diameter of the inflection circle; that is, O is coincident with the
inflection pole J (Fig. 4.40).

The position of coupler point C is shown in Fig. 4.40. Using complex polar
notation, this can be written as

Re; = xcri+ycrj = jRoyi + Rao, @ + Reae™, (13)
which has real and imaginary components of

xc1 =Rap, €080, +Rcacostz  and  ycr = Ro,1 +Rao, sinth + Rca sinbs.
(14)

Substituting the known data Rp,; = 1in, R4yp, = 1in, and Rcs = 11in into
Eq. (14) gives

xcr = (1in)cos6r + (1 in)cosfz and ycr = (1 in) 4 (1 in) sin6 + (1 in) sinB3.
(15)

For this posture, 6, = 90° and 63 = 0; therefore, xc; = 1 inand yc7 =2 in.
Taking the derivative of Egs. (14) with respect to the input angle 6, gives

Xy = —Rao, sinbp —0iRcasinb3  and  yp; = Rap, cosbh + 05Rca cosb3.
(16)

Next, we use the angular velocity ratio theorem, Eq. (3.30), to find the first-order
kinematic coefficient:
_ R[23 11> 1in

= — =0.5 rad/rad. (17)

0} =
3TR 21in
Dsl3 1

Then, using the dimensions given previously and evaluating at the same posture,
we get

xXpy=—lin/rad and yg; =0.5in/rad, (18)
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and, from Eq. (3.34b),

Py = \/ () + () = \/ (—1in/rad)* + (0.5 in/rad)® = 1.12 in/rad. ~ (19)

Measuring from the centrode tangent and centrode normal axes, the polar
coordinates of coupler point C are

Rer=+/2in)2+(1in)2=+/5in and Ye=-71.57°. (20)
The inflection point for point C, from Eq. (4.42), is
Rjor =Rysinyrc = —2.68 in. 21
Then, from Eq. (4.43), the radius of curvature of the path of coupler point C is
2
R _ (i)

= =1.02 in. Ans. (22)
Rer —Ryeg (ﬁ in) —(—2.681in)

pc=Rcc =

Finally, measuring from point /, Egs. (4.54) give the center of curvature of the
coupler curve as

/

Xc'p =Xcl — pc <yc) = (1in) — (1.02 in) (

e
T'c

0.5 in/rad .
—— ) =0.54in, Ans. (23)
1.12 in/rad

J

Xe . .
Yc'r=ycr — pc )= (21in) — (1.02 in)
c

1 in/rad

Q) 109 in. Ans. (24
1.12in/rad) 09in. Ans. (24)

These results are in good agreement with the measurements from Fig. 4.40.
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PROBLEMS*

ta.1

ta.2

4.3

4.4

Ta.5

The position vector of a point is defined by the

equation
A\, .
R=[4r— 3 i+10j,

where R is in inches and ¢ is in seconds. Find the
acceleration of the point at r =2 s.

A point moves according to the equation

3 3

P\~ a
R=(~2-——)i+=]
< 6>1+3J

where R is in meters and 7 is in seconds. Find the
acceleration at t = 3s.

The path of a point is described by the equation
R= (2 +4)e—im1/10,

where R is in millimeters and 7 is in seconds. Find
the unit tangent vector to the path, the normal and
tangential components of the absolute acceleration,
and the radius of curvature of the path, at t = 20 s.

The motion of a point is described by the equations

P sin2rt

x = 4dicost® and y= e
where x and y are in feet, and ¢ is in seconds. Find
the acceleration of the point at 7 = 1.40 s.

Link 2, in the posture shown, has an angular veloc-
ity wp = 120 rad/s ccw and an angular acceleration
ay = 4800 rad/s? ccw. Determine the absolute
acceleration of point A.

y

a
w3

ogy 12 3

Figure P4.5 Ryp, = 500 mm.

*When assigning problems, the instructor may wish to
specify the method of solution to be used, because a variety

of approaches are presented in the text.

4.6

4.7

ta.8

ta.9

t3.10

The accelerations of points A and B of link 2, which
is rotating clockwise, are as given. Determine the
angular velocity, the angular acceleration, and the
acceleration of midpoint C of link 2.

B
30° 2 60° ;\
A t B

Figure P4.6 A4 = 600 ft/s? and Ag = 150 ft/s2.

For the given kinematic data for link 2, find the
velocity and acceleration of points B and C.

C

V, =20 ft/s
a, = 160 rad/s?
2

f15° Vo, = 24 rad/s
A, =400 ft/s’

Figure P4.7 Rp4 = 16in, Rcy = 10in, and Rcp = 8 in.

The angular velocity and angular acceleration
of link 2 of the Scott-Russell linkage in the
posture shown are wr = 20 rad/scw and ap =
1493 rad/s2 cw, respectively. Determine the
velocity and acceleration of point B and the angular
acceleration of link 3.

p Figure P4.8 RAOZ = RCA = RBA =100 mm.

p In the posture shown in Fig. P4.8, slider
4 is moving to the left with a constant velocity
V¢ = 2 m/s. Find the angular velocity and angular
acceleration of link 2.

If the velocity of point B in the posture shown in
Prob. 3.8 is constant, determine the acceleration of
point A and the angular acceleration of link 3.



t4.11

t3.12

t3.13

t3.14

t3.15

ta.16

t4.20

t4.21

4.22

4.23

If the angular velocity of crank 2 in the

posture shown in Prob. 3.9 is constant, determine
the angular accelerations of links 3 and 4.

p If the angular velocity of crank 2 in the
posture shown in Prob. 3.10 is constant, determine
the acceleration of point C and the angular
accelerations of links 3 and 4.

If the angular velocity of crank 2 in the
posture shown in Prob. 3.11 is constant, determine
the acceleration of point C and the angular
accelerations of links 3 and 4.

If the angular velocity of crank 2 in the posture
shown in Prob. 3.13 is constant, determine the
accelerations of points C and D and the angular
acceleration of link 4.

If the angular velocity of crank 2 in the posture
shown in Prob. 3.14 is constant, determine the
acceleration of point C and the angular acceler-
ation of link 4.

If the angular velocity of crank 2 in the posture
shown in Prob. 3.16 is constant, determine the
acceleration of point C and the angular acceler-
ation of link 4.

p If the angular velocity of crank 2 in the
posture shown in Prob. 3.17 is constant, deter-
mine the acceleration of point B and the angular
accelerations of links 3 and 6.

For the four-bar linkage of Prob. 3.18 in the
posture shown, determine the angular acceleration
of crank 2 to ensure that the angular acceleration
of link 4 is zero.

For the four-bar linkage of Prob. 3.19 in the
posture shown, determine the angular acceleration
of crank 2 to ensure that the angular acceleration
of link 4 is 100 rad/s? cw.

If the angular velocity of crank 2 in the posture
shown in Prob. 3.20 is constant, determine the
acceleration of point C and the angular acceler-
ation of link 3.

If the angular velocity of crank 2 in the posture
shown in Prob. 3.21 is constant, determine the
acceleration of point C and the angular acceler-
ation of link 3.

If the angular velocity of crank 2 in the posture
shown in Prob. 3.22 is constant, determine the
accelerations of points B and D.

If the angular velocity of crank 2 in the posture
shown in Prob. 3.23 is constant, determine the
accelerations of points B and D.
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74.24 to 4.30 The nomenclature for the four-bar linkage

4.31

is shown in Fig. P4.24; the dimensions and
data are given in Table P4.24 to P4.30. Angu-
lar velocity w, is constant for each problem
(a negative sign indicates that the direction is
clockwise). The dimensions of even-numbered
problems are inches and odd-numbered problems
are millimeters. For each problem, determine
03,04, w3, 04,03, and ay.

Figure P4.24

Table P4.24 to P4.30

Prob. n ry r3 rg 63,deg wy, rad/s

P424 4 6 9 10 240 1
P425 100 150 250 250 —45 56
P426 14 4 14 10 0 10
P4.27 250 100 500 400 70 —6
P4.28 8 2 10 6 40 12
P429 400 125 300 300 210 —18
P430 16 5 12 12 315 —18

For the inverted slider-crank linkage in the posture
shown, crank 2 has a constant angular velocity
of 60 rev/min ccw. Find the velocity and accel-
eration of point B, and the angular velocity and
acceleration of link 4.

Figure P4.31 Rp,0, = 12in, Ry, =7 in,
andRBO4 =28in.
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4.32

4.33

434

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

ACCELERATION

For the modified Scotch-yoke linkage in
the posture shown in Prob. 3.26, determine the
acceleration of link 4.

For the linkage in the posture shown in Prob. 3.27,
determine the acceleration of point E.

For the inverted slider-crank linkage in the posture
shown in Prob. 3.24, determine the acceleration of
point B and the angular acceleration of link 4.

For the linkage in the posture shown in Prob.
3.25, determine the acceleration of point B and the
angular acceleration of link 3.

For the linkage in the posture shown in Prob. 3.31,
the input angular velocity is constant. Determine
the accelerations of points A and B.

For the mechanism in the posture shown in Prob.
3.32, crank 2 has an angular acceleration of 2 rad/s?
ccw. Determine the acceleration of point C4 and the
angular acceleration of link 3.

For the mechanism in the posture shown in Prob.
3.29, the input angular velocity is constant. Deter-
mine the angular accelerations of links 3 and 4.

For the mechanism in the posture shown in Prob.
3.30, the input angular velocity is constant. Deter-
mine the acceleration of point G and the angular
accelerations of links 5 and 6.

Continue Prob. 3.40 and find the second-order
kinematic coefficients of links 3 and 4. Assuming
an input acceleration of Ay, =5 m/sz, find the
angular accelerations of links 3 and 4.

Continue Prob. 3.49 and find the second-order
kinematic coefficients of links 3, 4, and 5. Assum-
ing constant angular velocity for link 2, find the
angular accelerations of links 3, 4, and 5.

Continue Prob. 3.50 and find the second-order
kinematic coefficients of links 3, 4, and 5. Assum-
ing constant angular velocity for link 2, find the
angular accelerations of links 3, 4, and 5.

Draw the inflection circle for the absolute motion
of the coupler link of the double-slider linkage.
Select several points on the centrode normal and
find their conjugate points. Plot portions of the
paths of these points to demonstrate for yourself
that the conjugates are indeed the centers of
curvature.

Draw the inflection circle for the absolute motion
of the coupler of the four-bar linkage. Find the
center of curvature of the coupler curve of point
C and generate a portion of the path of C to verify
your findings.

4.45

4.46

Figure P4.43 Rps = 125 mm.

Figure P4.44 Rca =2.5in, Ryo, =0.91in, Rpp, =3.5in,
and Rpp, = 1.17 in.

For the motion of the coupler relative to the frame,
find the inflection circle, the centrode normal, the
centrode tangent, and the centers of curvature of
points C and D of the linkage of Prob. 3.13.
Choose points on the coupler coincident with the
instantaneous center of velocity and inflection pole,
and plot nearby portions of their paths.

For the four-bar linkage in the posture shown, link
2 is 30° counterclockwise from the ground link,
and the angular velocity and angular acceleration
of the coupler link are w3 = 5 rad/s ccw and a3 =
20 rad/ s2 cw, respectively. For the instantaneous
motion of the coupler link, show: (a) the velocity
pole, 1, the pole tangent, 7, and the pole normal, N;
(b) the inflection circle and the Bresse circle; and
(c¢) the instantaneous center of acceleration. Then
determine: (d) the radius of curvature of the path
of coupler point C; (e) the velocity of C; (f) the
angular velocity of link 2; (g) the velocity of pole
I; (h) the acceleration of C; and (i) the acceleration
of the velocity pole.



Figurc P4.46 R0402 =25 in, RA02 =1 in, RBA =3.15 i[l,
Rpo, =1.5in., and Rcp =1in.

4.47

4.48

4.49

Consider the double-slider linkage in the pos-
ture given in Prob. 3.8. Point B moves with a
constant velocity Vg = 40 m/s to the left, as
shown in the figure. The angular velocity and
angular acceleration of coupler link AB are w3 =
36.6 rad/s ccw and o3 = 1340 rad/s 2 cw, respec-
tively. For the absolute motion of coupler link AB in
the specified posture, draw the inflection circle and
the Bresse circle. Then determine: (a) the radius
of curvature of the path of point C, which is a
point of link 3 midway between points A and B;
and (b) the velocity of the velocity pole, /. Using
the instantaneous center of acceleration determine:
(c) the acceleration of the pole, /; and (d) the
accelerations of points A and C.

For the linkage of Prob. 3.17, link 2 is rotating
with an angular velocity w, = 15 rad/s ccw and
an angular acceleration ap, = 320.93 rad/s2 cwW.
For the instantaneous motion of connecting rod 3,
find: (a) the inflection circle and the Bresse circle;
(b) the location of the instantaneous center of
acceleration; (c) the center of curvature of the path
traced by coupler point C; (d) the accelerations
of points A, B, and C; and (e) the acceleration of
inflection pole J.

Figure P3.32 illustrates an epicyclic gear train
driven by the arm, link 2, with an angular velocity
wy = 3.33 rad/s cw and an angular acceleration
apy = 15rad/s 2 ccw. Define point E as a point on
the circumference of planet gear 4 horizontal to the
right of point B such that angle ZDBE = 90°. For
the absolute motion of gear 4, draw the inflection
circle and the Bresse circle on a scaled drawing of
the epicyclic gear train. Then, determine: (a) the
location of the instantaneous center of acceleration
of the planet gear; (b) the radii of curvature of the
paths of points B and E; (c) the locations of the
centers of curvature of the paths of points B and
E; and (d) the accelerations of points B and E and
pole 1.

4.50

4.51

4.52

Problems 253

On 18 in x 24 in paper, draw the four-bar linkage
full size, placing A’ 6 in up from the lower edge
and 7 in left of the right edge. (Better utilization
of the paper is obtained by tilting the frame
through about 15° as indicated.) For the coupler
link, draw the inflection circle and the cubic of
stationary curvature. Choose a coupler point C
coincident with the cubic, and plot a portion of its
coupler curve in the vicinity of the cubic. Find the
conjugate point C’. Draw a circle through C with
center at C’, and compare this circle with the actual
path of C. Find Ball’s point. Locate a point D on
the coupler at Ball’s point, and plot a portion of its
path. Compare the result with a straight line.

Figure P4.50 Ry4r = lin, Rpy = 5in, Rg4r = 1.75in, and
Rpp =3.25in.

For the mechanism in the posture shown in
Fig. P3.51, the first- and second-order kine-
matic coefficients are 05 = —8.333 rad/rad,r, =

—100 mm/rad, 05 = —8.642 rad/rad?, and =

—237.033 mm/rad2 (where 0; is the input and o
is the vector from ground pin O to pin A). Wheel
3 is rolling without slipping on the ground link at
point C and sliding in the slot that is cut in link 2.
The radius of the ground link is p; = 60 mm, and
the radius of the wheel is p3 = 15 mm. Determine:
(a) the unit normal vector to the path of point D;
(b) the radius of curvature of the path of this point;
and (c) the x and y coordinates of the center of
curvature of this path. If the angular velocity of link
2 is a constant wy = 30 rad/s ccw, then determine
the acceleration of point D.

For the mechanism in the posture shown, the
first- and second-order kinematic coefficients
are Gé = 0.50 rad/ft, Rﬁt = —1.00 ft/ft, Qé’ =
0.25 rad/ft?, and R = —1.00 ft/ft>. Roller 4 is
pinned to link 3 at B and is rolling without slipping
on the vertical ground link at C. Determine: (a)
the first- and second-order kinematic coefficients
of point P; (b) the unit tangent vector and the unit
normal vector to the path traced by P; (¢) the radius
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of curvature of this path; and (d) the x and y
coordinates of the center of curvature of this path. If
the constant velocity of the inputis Vo = — 10i ft /s,
determine the acceleration of P.

Figure P4.52 Ry = Ryp = 2i ft, Ry = Rpp = 2j ft, Rpy =
4 ft, and pg = 0.375 ft.

Y — Rolling contact

A
I
1
I
1
I
I
I
I
I
I
I
I
)

4.53

4.54

4.55

Figure P4.53 p3 = 100 mm.

For the rack-and-pinion mechanism in the pos-
ture shown, the first- and second-order kine-
matic coefficients are R, = —400 mm/rad, R =
—346.41 mm/rad, R} = 1385.6 mm/rad?, and
RZ = 1400 mm/rad2 (where R is the vector
from ground pin O, to the point of contact, C, of
link 3). Determine: (a) the first- and second-order
kinematic coefficients of point B; (b) the unit
tangent vector and the unit normal vector to the
path traced by point B; (c) the radius of curvature
of this path; and (d) the x and y coordinates
of the center of curvature of this path. If the
constant angular velocity of the input link is wy =
—12k rad/s, determine the acceleration of point B.

For the gear train in Prob. 3.54, the angular velocity
and acceleration of input gear 2 are wy = 77 rad/s
cew and ap = 5 rad/s?Z cw, respectively. Deter-
mine: (a) the second-order kinematic coefficients
of gear 3 and rack 5; (b) the angular accelerations
of gear 3 and link 4; and (c) the acceleration of the
rack.

For the gear train in Prob. 3.55, the angular velocity
and acceleration of input arm 2 are wp = 50 rad/s
ew and ap = 15 rad/s? cw, respectively. Using
the method of kinematic coefficients, determine the
angular accelerations of gears 3, 4, and 5.



4.56

4.57

For the mechanism in the posture shown, link
4 is rolling without slipping on the ground at
point C, and the first- and second-order kine-
matic coefficients are Gé = —1.341 rad/rad, Rit =
—3.097 in/rad, 0} = —2.475 rad/rad?, and Ry =
—7.372 in/rad2 (where Ry is the vector from the
origin to pin B, which connects links 3 and 4).
Determine the radius of curvature of the path of
point D, and the x and y coordinates of the center of
curvature of this path. If the constant input angular
velocity of link 2 is wy, = —9k rad/s, determine the
acceleration of point D.

|
1C

Figure P4.56 Ro, = 1.00in, Rap, = 1.50in, Rps =
2.00in, Rg = 2.267 in, Rcp = 0.50 in, and Rpg = 1.50 in.
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For the linkage in the posture shown, the
first- and second-order kinematic coefficients are
05 = —3.0 rad/rad, R = 86.6 mm/rad, 65 =
—13.856 rad/rad?, and R = 150 mm/rad 2 (where
Ry is the vector from ground pivot O> to pin B).
Determine the radius of curvature of the path of
point C, and the x and y coordinates of the center of
curvature of this path. If the input angular velocity
of link 2 is a constant wp =22 rad/s ccw, determine
the acceleration of point C.

Figure P4.57 Ry0, = 43.3 mm, Rpg =25 mm, and Rcq =75 mm.
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4.58

4.59
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Figure P4.58 Ryp, =4in,Rpy = lin, Rcg =2in, and py = 1 in.

For the mechanism in the posture shown, the
first- and second-order kinematic coefficients are
0, = —3.464 rad/rad, 6; = 1 rad/rad, 6§ =
5.464 rad/rad?, and 0, =7.732 rad/rad?, respec-
tively. Line AC in link 3 is parallel to the x
axis. The circular wheel, link 4, is rolling on the
ground link at point E and rolling on link 3 at
point B. Determine: (a) the first- and second-order
kinematic coefficients of point C; (b) the unit
tangent vector and the unit normal vector to the
path traced by point C; (c) the radius of curvature
of this path; and (d) the x and y coordinates of the
center of curvature of this path. If the input angular
velocity of link 2 is a constant w, = 15k rad/s,
determine the acceleration of point C.

For the linkage in the posture shown, the first- and
second-order kinematic coefficients are 05 = 6y =

"N _ pll _ / — -
0.5 rad/rad, 03 = 94 =0, R34 =0, and R34 =
—50 mm/rad 2 (where R34 is the vector from point
B fixed in link 3 to point C fixed in link 4).

|
|
|
|
|
4
|
|
|
e
D C

4.60

Determine: (a) the radius of curvature of the path
of point B and (b) the center of curvature of the
path of this point. If the input angular velocity of
link 2 is a constant wp = 10 rad/s cw, determine
the acceleration of point B.

For the mechanism in the posture shown, the first-
and second-order kinematic coefficients are 9§ =
—4.333 rad/rad, 041 =0, RZ; = 26 in/rad, Qé’ =
0. 6; = 0.813 rad/rad®, and R} = 4.875 in/rad®
(where the rotation of link 2 is the input and Ry
is the vector from point O4 to point C on link
3). The angle between line AB in link 3 and line
0,A is a right angle. Determine: (a) the first- and
second-order kinematic coefficients of point B; (b)
the unit tangent vector and the unit normal vector
to the path traced by this point; (¢) the radius of
curvature of the path traced by this point; and (d)
the x and y coordinates of the center of curvature of
the path traced by this point. If the input angular
velocity of link 2 is a constant w, = 15k rad/s,
determine the acceleration of point B.

Figure P4.59 Ryp, = 100 mm, Rpq = 141.4 mm, Rcp = Rp, 0, = 100 mm, and Rcg, = 100 mm.
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Figure P4.60 Ryp, =26 inand Rpy =Rcq = p3 =61in.

For the linkage of Prob. 3.61 in the posture shown,
the first- and second-order kinematic coefficients
are 05 = 0, = 1 rad/rad, R}, = —12in/rad, 6] =
6 = +2.309 rad/rad?, and RY, = —20.785
in/rad2 (where R34 is the vector from O4 to
point B fixed in link 3). Determine the first-
and second-order kinematic coefficients of coupler
point C. Then, determine: (a) the unit tangent
vector and the unit normal vector to the path traced
by point C; (b) the radius of curvature of this path;
and (c¢) the x and y coordinates of the center of
curvature of this path. If the angular velocity of
input link 2 is a constant w, = 15k rad /s, determine
the acceleration of point C.

4.62

For the mechanism in the posture shown, the
first- and second-order kinematic coefficients are
05 = 2.165 rad/rad, 0; = —7.143 rad/rad, 0 =
—9.369 rad/rad?, and 6 = 26.784 rad/rad’.
Determine: (a) the first- and second-order
kinematic coefficients for point C; (b) the radius
of curvature of the path of this point; and (c¢) the
x and y coordinates of the center of curvature of
this path. If the input angular velocity of link 2
is a constant wy = 50 rad/s ccw, determine the
acceleration of point C.

Figure P4.62 R0, = 500 mm, Rg4 = 400 mm, Rc4 = 346.4 mm, and p 4 = 140 mm.



Multi-Degree-of-Freedom
Mechanisms

5.1 INTRODUCTION

In Chaps. 2, 3, and 4, we concentrated totally on problems that exhibit a single degree of
freedom and can be analyzed by specifying the motion of a single input variable. This was
justifiable, since, by far, the vast majority of practical mechanisms are designed to have
only one degree of freedom so that they can be driven by a single power source. However,
there are mechanisms that have multiple degrees of freedom and can only be analyzed if
more than one input motion is given. In this chapter, we will look at how our methods can
be used to find the positions, velocities, and accelerations of these mechanisms.

Consider, for example, the planar five-bar linkage shown in Fig. 5.1. The Kutzbach
criterion, Eq. (1.1), indicates that this linkage has a mobility of two and, therefore, requires
two input motions to provide a unique output motion. This linkage is operated by rotating
cranks 2 and 3 independently and can, therefore, produce a wide variety of motions for the
two coupler links 4 and 5.

A practical application of the five-bar linkage is to position the end-effecter of an
industrial robotic manipulator (for example, the General Electric Model P80 robotic
manipulator shown in Fig. 5.2).

Another common practical application of a five-bar linkage is the pantograph linkage
shown in Fig. 1.26. A variation of the pantograph is the linkage shown in Fig. 5.3, where
the path of point P is a magnified copy of the path of point C.

If the two input rotations of Fig. 5.1 are interconnected by gears that have rolling
contact with each other, as shown in Fig. 5.4, then the resulting mechanism has only a

258
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Figure 5.1 Vectors for the
five-bar linkage.

[3
X S

BN
2N

£ .

Figure 5.2 General Electric Model P80 robotic manipulator.

single degree of freedom and is commonly referred to as a geared five-bar mechanism.
Such a mechanism is often found in machinery, since it can provide more complex
motions than the well-known planar four-bar linkage that was investigated in previous
chapters.
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Figure 5.3 A pantograph.

Figure 5.4 Geared five-bar
mechanism.

EXAMPLE 5.1

For the five-bar linkage in the posture shown in Fig. 5.5, the postures of the two input link
are 6 = 120° and 03 = 45°. Determine the postures of the two coupler links, 64 and 6s.

SOLUTION

The vectors for the kinematic analysis of this linkage are shown in Fig. 5.5. The postures
of links 4 and 5 are found from a scale drawing:

04 =36.5° and 65=151.1°. Ans.
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Figure 5.5 ry = R0302 =
61in,rp = Rp0, = 2.51in,r3 =
Rco, =4in,r4 =Rpsy =6 1in,
and rs = RBC =61n.

Figure 5.6 Vectors for coupler
point P of link 4.

For a point fixed in coupler link 4 or coupler link 5, to follow a unique path, control
of two independent input motions is required. Still, there is an extremely wide variety of
curves that can be generated by a coupler point of the planar five-bar linkage. For purposes
of illustration, consider the arbitrary point P of coupler link 4, as shown in Fig. 5.6.

EXAMPLE 5.2

Consider the continuation of Example 5.1 to include coupler point P shown in Fig. 5.6.
The location of point P is given by r7 = Rpy = 8 in and 8 = 30°. For the given posture of
the linkage, the problem is to determine the absolute position coordinates of point P.
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SOLUTION

After Fig. 5.5 of Example 5.1 is completed to scale, vector r; can be drawn at the
orientation 67 = 04 + 8 = 66.5°. The absolute coordinates of point P can then be measured,
and the results are

xp=195in and yp=9.50Iin. Ans.

5.2 POSTURE ANALYSIS; ALGEBRAIC SOLUTION

The analytic approaches for the solution of the posture analysis of multi-degree-of-freedom
mechanisms are parallel to the methods presented in Chap. 2. When sufficient input data
are given to represent the positions of all degrees of freedom, the loop-closure equations
can be formulated. For planar mechanisms, these equations can be separated into real and
imaginary parts (horizontal and vertical components), and these allow solutions for two
unknowns per loop. We will demonstrate this by continuing with the planar five-bar linkage
of Example 5.1 and Example 5.2.

EXAMPLE 5.3
For the planar five-bar linkage of Fig. 5.5, the loop-closure equation is

1 ? ? 1
Gt %41 =0, (1)

where 6, and 63 are the input angles, marked as given above the appropriate terms in
Eq. (1). For the given posture of the linkage, the problem is to determine: (a) unknown
coupler angles 64 and 6s; and (b) the absolute position coordinates of coupler point P.

SOLUTION
In complex polar notation, Eq. (1) becomes

P 4 g™ —rsé® — 3™ —r; = 0. 2
Separating the real and imaginary parts of this equation gives

72 C0S0) +1r4¢c0804 — r5¢c08805 —r3cosfz —r; =0, 3)

r28inB) + r4sinfy — rssinfs — r3sinfz = 0. @

The solution to these equations can be determined either analytically or numerically.
For example, using the Newton-Raphson iterative procedure (Sec. 2.9), the postures of the
two coupler links are evaluated as

04 =36.447° and 6s5=151.084°. Ans.

These verify the graphic results determined in Example 5.1 and have higher accuracy.
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The vectors defining the location of coupler point P are shown in Fig. 5.6. The vector
equation for this point can be written as

27 1 C
K 5)

where the constraint equation for the direction of vector r7 is
07 =04+ B. (6)
From Eq. (5), the absolute position coordinates of point P are

xXp =racosbh +rycosby, (7)

yp = rysinfy + r7siné;. ®)

Substituting the given data into these equations, the position of point P (for the given
posture of the linkage) is

xp = (2.5in)cos 120° + (8 in) c0os 66.447° = 1.947 in, Ans.
yp = (2.5 in) sin 120° + (8 in) sin 66.447° = 9.499 in. Ans.

These verify the graphic results determined in Example 5.2 and have higher accuracy.

5.3 VELOCITY ANALYSIS; VELOCITY POLYGONS

Velocity analysis is performed quite easily by the velocity polygon methods of Secs. 3.3
through 3.8 once the velocities of each of the independent inputs are specified. No new
methods are required for the utilization of velocity polygons when a mechanism has more
than one degree of freedom. However, input velocities must be given for each degree of
freedom. An example is presented here to demonstrate how the graphic methods can be
extended.

EXAMPLE 5.4

For the five-bar linkage of Example 5.1, in the posture shown in Fig. 5.5, suppose that the
constant angular velocities of links 2 and 3 are w, = 10 rad/s ccw and w3 = 5 rad/s cw,
respectively. Determine: (a) the angular velocities of coupler links 4 and 5; and (b) the
velocity of coupler point P.

SOLUTION
First, the velocities of points A and C, respectively, are

Va = Vao, = @2Ra0, = (10 tad/s) (2.5 in) = 25.0 in/s,
VC = VC03 = a)3RCO3 = (5 rad/s) (4.0 in) =20.0 in/s.
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From these, we can write two vector equations for the velocity of point B:

WON W
VB=Va+Vpa=Vc+Vpe.

Solving this equation with the velocity polygon shown in Fig. 5.7 locates velocity image
point B.

®)

Figure 5.7 (a) Linkage posture; (b) velocity polygon.

Now we can measure the velocities V4 and Vpc and obtain the angular velocities of
coupler links 4 and 5; that is,
Vpa  35.34 in/s

w4 = ——=—————=>5.89rad/s cw, Ans.
RBA 6.0 in

_ Vec 3060 in/s

= = - = 5.10 rad/s ccw. Ans.
Rpc 6.0 in

ws

Once the velocities of points A and B are known, we can construct the velocity image
of coupler link 4 as explained in Sec. 3.4 and obtain the velocity of coupler point P; that is,

Vp=38in/s £ —55.5°. Ans.
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5.4 INSTANTANEOUS CENTERS OF VELOCITY

If we attempt to use the method of instantaneous centers of velocity for planar mechanisms
with multiple degrees of freedom, we encounter a complication. We find that the locations
of the secondary instant centers cannot be determined by the methods of Secs. 3.13 through
3.15 alone. The locations of the secondary instant centers cannot, in fact, be determined
using only the geometry of the mechanism; their locations depend on the ratios of the
independent input velocities [1]. One method for finding the secondary instant centers is
demonstrated in the following example.

EXAMPLE 5.5
For the five-bar linkage in the posture of Example 5.1, Fig. 5.5, suppose that links 2 and
3 are rotating with constant angular velocities w» = 10rad/s ccw and w3 = Srad/s

cw, respectively. Using the method of instant centers, determine the angular velocities of
coupler links 4 and 5, and the velocity of coupler point P.

SOLUTION

The five primary instant centers for the five-bar linkage, denoted 112, 4,145,135, and 113,
are the centers of the five pin joints, and are shown in Fig. 5.8.

Figure 5.8 Primary instant
centers.

From the Aronhold-Kennedy theorem (Sec. 3.14), we know that secondary instant center
I3, which relates the two known velocities, w, and w3, must lie on the line containing
instant centers /12 and /;3.

Furthermore, from the angular velocity ratio theorem, Eq. (3.28), we know that the
ratio of the angular velocity of link 2 to the angular velocity of link 3 can be written as

@ _ Rpysi15 _ 10.0 rad/s _ 10 )
w3 Rps,  —5.0rad/s o
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From Sec. 3.17 we know that, if instant center /3 is located between the two absolute
instant centers, /17 and 113, then the angular velocity ratio is negative. Similarly, if instant
center /3 is outside the two absolute instant centers, /1> and /3, then the angular velocity
ratio is positive. Note, however, that a sign convention is not necessary in Eq. (1), since a
directed line is used for measuring the locations of the instant centers.

In this example, Eq. (1) gives

Rpps1; = —2.0Rp31,,- )
But we also know from Fig. 5.8, using positive distances to the right, that
Rps15 = Riys1y, + Riypns = Riyyr, — 6.01n, 3)
and solving Eqgs. (2) and (3) simultaneously gives

—2.0Rp31, = Rip31, — 6.01n,
Rps1, =2.0in. 4)

Therefore, instant center /53 is located 2.0 in to the right of instant center /1>, as shown on
the scaled drawing of the linkage in Fig. 5.9.

The remaining secondary instant centers can be obtained directly from the
Aronhold-Kennedy theorem. The Kennedy circle, used to help locate the secondary instant
centers, is also shown in this figure. Secondary instant center /14, for example, must lie on
the line containing instant centers /12 and I>4. Similarly, secondary instant center /15 must
lie on the line containing instant centers /13 and /35. The locations of all secondary instant
centers that lie within the limits of the page are shown in Fig. 5.9. The location of instant
center /34 lies outside of the page, but it is indicated by two dashed lines. Note that it is
not necessary to find the locations of all secondary instant centers in order to determine
the unknown angular velocities w4 and ws.

Choosing the upward direction along each line of centers as positive, the distances
between instant centers /17 and I»4, and between instant centers /13 and I35 are known from
the lengths of links 2 and 3, respectively; these are

Rpy1, =2.50in  and Ry, =4.00 in. (5)
Distances between other instant centers are also measured from the scaled drawing as
Riyn, = —4.241in, Rpsp, =—13.411in, Ry =—26.291n, and Ry =—3.921n.
Substituting these distances into Eq. (3.28), angular velocity ratios can be written as

% _ R]24112 2.50 in

= = — = —0.590, (6)
@ Ry, —4.24 in
% _ R125112 _ —13.41 in —0510 (7)
() R[25115 _2629 in ’ ’
g . R[35113 _ 4.00 in —_1.020 (8)

w3 Rpsns  —3.92in
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Kennedy Circle

\ <123135
151
2 1225
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14
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o

Figure 5.9 Secondary instant centers.

Then, substituting the angular velocity of link 2 into Egs. (6) and (7), the angular velocities
of links 4 and 5 are

w4 = —0.590wp = —0.590 (10 rad/s) = —5.90 rad/s (cw), Ans.
ws =0.510wy = 0.510(10 rad/s) = 5.10 rad/s (ccw). Ans.

As a check, we can substitute the angular velocity of link 3 into Eq. (8) to verify that
the angular velocity of link 5 is

ws = —1.020w3 = —1.020(—5 rad/s) = 5.10 rad/s (ccw). Ans.
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Figure 5.10 Absolute instant
center for coupler link 4.

Using the method of instant centers, the magnitude of the velocity of point P can be
written as

Vp = (,()4RP114. (9)

From the scaled drawing (Fig. 5.10), the distance from the absolute instant center of
link 4 (114) to point P is measured as Rpj,, = 6.46 in. Substituting this value into Eq. (9),
the magnitude of the velocity of point P is

Vp = (]—5.90 rad/s|) (6.46 in) = 38.11 in/s. Ans.
The direction of the velocity of point P is measured from Fig. 5.10 as

¢ =—55.5°. Ans.

Note that these results are in good agreement with those given in Example 5.4.

A special case of the five-bar linkage is when instant center />3 is stationary on the
line of centers I12/13; then, links 2 and 3 can be replaced by two circular gears, as shown
in Fig. 5.4. This mechanism, referred to as a geared five-bar mechanism, has a mobility of
one (the input is the rotation of either link 2 or link 3). The two gears—that is, links 2 and
3—are in rolling contact at instant center /3. The ratio of the angular velocity of gear 3
to the angular velocity of gear 2 (also referred to as the gear ratio) is the reciprocal of the
ratio of Eq. (1).

5.5 FIRST-ORDER KINEMATIC COEFFICIENTS

If we require higher accuracy in solutions for velocities, we look for an analytic or
numeric technique. The method of kinematic coefficients, which was presented in Sec.
3.12, provides such a technique.
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When dealing with mechanisms having multiple degrees of freedom, however, the
method of kinematic coefficients raises a new complication in notation. It requires an
additional subscript to keep track of the multiple input motions. For example, the time rate
of change of a dependent variable, such as 6;, the angular velocity of link i, can be written as
w; = db;/dt. However, since there are multiple degrees of freedom, the dependent variable
0; is a function of two or more independent variables, say 6; and 0; that is, 6; = 0; (Gj,Qk).
In this case, the time rate of change of the dependent variable 6; can be written as

_d6; _ 36;do; | 96; db

==t : 5.1
T T 90 di 90, dt G-

Similarly, a point, P, on one of the moving links has a position that is a function of both
independent variables, rp =rp (Oj, Ok) . Therefore, the velocity of point P can be written as

dl‘p _ 3l‘p d@j T 8I‘P d@k

= . (5.2)
dt 00; dt ~ 00y dt

P =

Also, since rp (ej,ek) has coordinates such as rp = xPi + ypj + zpﬁ, then the velocity of
point P can be written as

dxps  Oyps  0zpn\db; ~ (Oxpy dypy Ozpp dbk
Vo= 2Li4 2Pj 4 SPR) S0y (2R 2Pgy SRR S
P (aej'+ 26,0 " 30, ) a \%e "0 Toe ) @

_ oxp db;  Oxp dby : dypdt  Oyp dby\ » dzp dO;  dzp dby i
S\ 86 dr 96 dr 30; dr 36 dt 30; dr 36 dt )
(5.3)

If we wish to continue to use the prime notation, where a first-order kinematic
coefficient carries the symbol 919 = 006;/00; or r})j = drp/006;, we see that a second subscript
is required to indicate with respect to which independent variable the derivative is taken.
With this additional subscript, Eq. (5.1) becomes

w; =db;/dt = ija)j + 0wk 54
Similarly, Eq. (5.2) becomes
Vp=drp/dt = r},jwj + Ik, (5.5)
and Eq. (5.3) becomes
Vi = (i3 <4y )+ (xhud 07 + k)
or
Vp= (x})jwj + x};ka)k) i+ (yﬁoja)j + y})ka)kﬁ + (z}/wj + z})ka)k) k. (5.6)

Although we find need for this additional subscript, first-order kinematic coefficients
do provide insight into the velocity analysis of multi-degree-of-freedom mechanisms,
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just as they did in Sec. 3.12 for single-degree-of-freedom mechanisms. This is illustrated
in the following example.

EXAMPLE 5.6

Consider the five-bar linkage in the posture of Example 5.1 (Fig. 5.5), and with links 2 and
3 rotating with the same constant angular velocities as in Example 5.5. Using the method
of kinematic coefficients, determine the angular velocities of coupler links 4 and 5, and
the velocity of coupler point P.

SOLUTION

We begin the analysis by writing the loop-closure equation as we did in Example 5.3,
and separating the real and imaginary parts as in Eqgs. (3) and (4) of that example. As we
demonstrated there, those equations can be solved for the position variables, 64 and 6s.

Next, we take the partial derivatives of Eqs. (3) and (4) of Example 5.3 with respect
to independent variable 65; that is,

—rpsinf, —ry sin94942 +r5 sin6‘59§2 =0, (1a)

r2€0860) + 14 €08 0460, — r5cos U505, = 0. (1b)

Rearranging these two equations and expressing them in matrix form gives

—r4 sin 94 rs sin QS 04 _ r sin 02 (2)
rqacosfy  —rscosbs | |04, | | —racosbh |
Now we can solve this matrix equation for the first-order kinematic coefficients
6, and 0;,. Using the data obtained so far, the results are 6;, = —0.237 and 67, = 0.456,
which are both dimensionless (rad/rad).

Similarly, taking the partial derivative of Egs. (3) and (4) of Example 5.3 with respect
to independent variable 63, and rearranging the resulting equations into matrix form, gives

|:—r4 sinfy  r5sinfs i| [94 ] _ |:—r3 sin93] 3)
r4cosfy  —rscosbs | |65 | | r3cosfs |

We can solve this matrix equation for the first-order kinematic coefficients 6;; and 6s;.
The results are 0, = 0.705 rad/rad and 653 = —0.109 rad/rad.

Table 5.1 presents the angular variables, 64 and 605, and the first-order kinematic
coefficients of the coupler links, for input angles in the range 40° < 6, < 150° and 85° >
03 > 30°.

As indicated in Sec. 4.12, it is not a coincidence that the (2x2) coefficient matrices
in Egs. (2) and (3) are identical. This is always true for all sets of derivative equations

determined by differentiating loop-closure equations. This coefficient matrix is called the
Jacobian of the system. In this example, the determinant of the Jacobian is

A = rqrssin (64 — 0s). 4)



5.5 FIRST-ORDER KINEMATIC COEFFICIENTS 271

Table 5.1 Input Angles, Coupler Angles, and First-Order Kinematic Coefficients

0 0 z 0s A s % %
deg deg deg deg — — — —
40 85 93.419 142.993 —0.533 0.743 —0.440 0.128
50 80 84.547 138.843 —-0.513 0.703 —0.291 0.065
60 75 76.200 136.526 —0.466 0.674 —0.134 0.016
70 70 68.479 135.944 —0.412 0.659 0.012 —0.019
80 65 61.343 136.872 —0.360 0.654 0.138 —0.044
90 60 54.690 139.054 —0.316 0.658 0.242 —0.062
100 55 48.401 142.263 —0.281 0.667 0.327 —0.077
110 50 42.360 146.315 —0.254 0.683 0.397 —0.091
120 45 36.447 151.084 —0.237 0.705 0.456 —0.109
130 40 30.526 156.510 —0.230 0.737 0.508 —0.136
140 35 24.383 162.646 —0.241 0.793 0.564 —0.185
150 30 17.496 169.884 —0.306 0.927 0.663 —0.311
At the current posture, this determinant has a value of A = —32.72 in? and does not cause

numeric difficulty. However, we note that this determinant becomes zero when 65 = 64 or
when 05 = 64 £ 180°. This occurs when the coupler links are either fully extended or folded
on top of each other—that is, when the five-bar linkage is in the posture of a quadrilateral
with the two coupler links aligned. The kinematic coefficients become indeterminate in
such a posture.

The angular velocities of links 4 and 5 can be determined from Eq. (5.4). At the
posture shown in Fig. 5.1, the values are

w4 = O + 64303 = —0.237 (10.0 rad/s) + 0.705 (—5.0 rad/s) = —5.90 rad/s (cw),
Ans.

ws = 05,7 + 04303 = 0.456 (10.0 rad/s) — 0.109 (—5.0 rad/s) = 5.10 rad/s (ccw). Ans.

These confirm the results found in both Example 5.4 and Example 5.5.
Differentiating constraint Eq. (6) of Example 5.3 with respect to the two independent
inputs, the first-order kinematic coefficients of the orientation of vector r; are

07, = 0}, and 073 = 0. 5)

Partially differentiating Eqs. (7) and (8) of Example 5.3 with respect to input variable
6> and using Eq. (5), the first-order kinematic coefficients of point P are

xj,,z = —rpsinfy — r7sin 979!‘2, (6)

Vpy = 20860 + r7c0s670,,. (7)
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Similarly, partially differentiating Eqs. (7) and (8) of Example 5.3 with respect to the input
variable 63 and using Eq. (5), the first-order kinematic coefficients of point P are
Vp3 = r7c08676,5. 9)

Substituting the specified data into Eqgs. (6) through (9), the first-order kinematic
coefficients of point P are

Xpy = —0.4294 in/rad,

Ypp, = —2.0066 in/rad,

Xpy = —5.1681 in/rad,
and Yp3 =2.2528 in/rad.

Finally, substituting these values and the given angular velocities into Eq. (5.6), the
velocity of point P is

Vp=[(—0.429 4 in)(10 rad/s) + (—5.168 14 in)(—5 rad/s)]i
+[(=2.006 6 in)(10 rad/s) + (2.252 84 in)(—5 rad/s)]j.
That is,

Vp = 21.546 in/s i —31.330 in/s i =38.024 in/s/ — 55.483°. Ans.

The velocity of point P is shown in Fig. 5.11. Note that these results are in good
agreement with, and have higher accuracy than, those obtained in Example 5.4 and
Example 5.5.

Table 5.2 indicates the first-order kinematic coefficients of point P and the magnitude
and direction of the velocity of point P for the range of input angles used in Table 5.1.

Figure 5.11 Velocity of
coupler point P.
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Table 5.2 First-order Kinematic Coefficients and Velocities of Coupler Point P
02 03 Xp Y Xp3 Yp3 Vp 4
deg deg in in in in in/s deg
40 85 1.9543 4.2650 —4.9588 —3.2721 73.811 53.081
50 80 1.8180 3.3120 —5.1124 —2.3350 62.609 45.681
60 75 1.4177 2.2909 —5.1816 —1.5054 50.330 37.209
70 70 0.9102 1.3410 —5.2151 —0.7774 39.200 26.183
80 65 0.4201 0.5017 —5.2332 —0.1227 30.885 10.503
90 60 0.0191 —0.2342 —5.2391 0.4870 26.816 —10.260
100 55 —0.2610 —0.8859 —5.2303 1.0735 27.506 —31.146
110 50 —0.4107 —1.4715 —5.2054 1.6553 31.766 —46.367
120 45 —0.4294 —2.0066 —5.1681 2.2528 38.024 —55.483
130 40 —0.3144 —2.5116 —5.1347 2.9020 45.583 —60.380
140 35 —0.0397 —3.0379 —5.1568 3.6942 55.053 —62.539
150 30 0.5534 —3.8178 —5.4662 5.0096 71.258 —62.535

5.6 METHOD OF SUPERPOSITION

Equations (5.4), (5.5), and (5.6) suggest that, for mechanisms with more than one degree
of freedom, another method of solution for velocities is to solve the problem multiple
times, with all except one of the inputs considered inactive (frozen or locked) during each
solution, and then to sum the results to find the total solution with all inputs active. This
method is called the method of superposition, and it is valid for velocity analysis, since the
velocity equations are linear—that is, since all dependent velocities are linear combinations
of the input velocities. The procedure may be best understood through an example.

EXAMPLE 5.7

Let us again solve the velocity analysis of Example 5.3, this time using the method of
superposition. There are two cases that must be considered: case (a), where link 3 is
temporarily considered frozen whereas link 2 has an angular velocity of wp = 10 rad/s
ccw, and case (b), where link 2 is temporarily considered frozen whereas link 3 has an
angular velocity of w3 = 5 rad/s cw.

SOLUTION

The angular velocity of link 4 can be written as a linear combination of case (a) and case
(b). Using the angular velocity ratio theorem, this gives

Ry R 5
15,1 VENE
W= (R w4 R34 3 ) s, )
) 3 3
Laliy Byl
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where the superscripts in the instant center labels denote the input variable that is moving
whereas all others are temporarily considered frozen. Similarly, the angular velocity of

link 5 can be written as
Rp Rs 53
121 VENS
5 ( 25712 ) 35713 3. (2)
I%SIIZS 1;51135

Comparing Eqgs. (1) and (2) with Egs. (5.4), the first-order kinematic coefficients of
links 4 and 5 can be written as

Rlzlz
= 6§2=—R2512, and 6.

43 .
2 72 3 73 2 72 3 73
124114 134114 125115 135115

3)

Note that a sign convention is not necessary if directed lines are used when measuring
the relative locations of instant centers. However, if a sign convention is preferred, then
each first-order kinematic coefficient is negative if the relative instant center Il{‘j is between
the absolute instant centers / ’l‘l. and / ’fj and positive if the relative instant center / l’; is outside

the absolute instant centers Ill‘i and I’l‘j.

Case (a): Link 3 is temporarily considered frozen. The linkage is temporarily regarded
as a four-bar linkage, as shown in Fig. 5.12, with input from the rotation of link 2 alone.

From the Aronhold-Kennedy theorem, the secondary instant center If4 is the point
of intersection of the line containing instant centers / 125 and 125, and the line containing
instant centers 1%2 and 154. Similarly, the secondary instant center 1%5 is the point of
intersection of the line containing instant centers 154 and 125, and the line containing
instant centers 1%2 and 1%5.

Using the convention that lines proceed positive to the right, the distances between
the instant centers, measured from the scaled drawing of Fig. 5.12, are

Rp p=-250in, Rpp =10.56in, Rp pp =—776in, and Rp p =-—17.03in.
24112 24114 25112 2515
4

Case (b): Link 2 is temporarily considered frozen. The linkage is temporarily regarded
as a four-bar linkage, as shown in Fig. 5.13, with input from the rotation of link 3 alone.

From the Aronhold-Kennedy theorem, the secondary instant center 1334 is the point of
intersection of the line containing instant centers / % and / f 4> and the line containing instant
centers 135 and 12'5. Similarly, the secondary instant center If5 is the point of intersection
of the line containing instant centers If’4 and 125, and the line containing instant centers
I f3 and I;S.

Continuing with the convention that lines proceed positive to the right, the distances
between the instant centers, measured from the scaled drawing of Fig. 5.13, are

Rp3 3 =18.06in, Rp ;3 =2562in, Rp3 3 =4.00in, and Rp3 3 =—36.67in.
34713 34714 35713 35715
&)
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Kennedy Circle
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15,175
i
3415
5
\/ 114<

2 4

115,

L3513

Figure 5.12 Case (a): Four-bar linkage with link 3 temporarily considered frozen.

Substituting Egs. (4) and (5) into Eqgs. (3), the first-order kinematic coefficients of
links 4 and 5 are

Rp ; Ry 3 ;
VENE —2.50 IEE 18.06
0, = 202 _ D= 0237, Gy =2 = 20705, (6a)
Rp 10.56 in Rj3 s 25.62in
Iy, Iy LV
" :Rzgszlzz _ 176 e :R@Sz; _ _400in 109 ©b)
27 Rpp  —1703in 7 3T Rspp —36.67in T
25715 35715

Note that the values of the first-order kinematic coefficients of links 4 and 5, given by
Egs. (6), are all nondimensional (rad/rad) and are all in good agreement with the values
found analytically in Example 5.6.
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Figure 5.13 Case (b): Four-bar linkage with link 2 temporarily considered frozen.

Substituting Egs. (6) into Eq. (5.4), the angular velocities of links 4 and 5, respectively,
are
w4 = —0.237(10 rad/s) 4+ 0.705(—5 rad/s) = —5.90 rad/s (cw), Ans.
ws = 0.455(10 rad/s) — 0.109(—5 rad/s) = 5.10 rad/s ccw. Ans.
Note that the answers for the angular velocities of coupler links 4 and 5 from the

graphic methods (Example 5.4 and Example 5.5) are in good agreement with the answers
obtained from the analytic methods (Example 5.6 and Example 5.7).

5.7 ACCELERATION ANALYSIS; ACCELERATION POLYGONS

If the accelerations of each of the independent inputs are known, then an acceler-
ation analysis can be performed by the acceleration polygon method of Secs. 4.3
through 4.8. An example is presented here to demonstrate how the graphic method
for single-degree-of-freedom mechanisms can be extended to multi-degree-of-freedom
mechanisms.
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EXAMPLE 5.8

For the five-bar linkage of Example 5.1 in the posture shown in Fig. 5.5, links 2 and 3
are rotating with constant angular velocities of wy = 10 rad/s ccw and w3 = 5 rad/s cw,
respectively. Determine the angular accelerations of coupler links 4 and 5.

SOLUTION

The velocities are determined, using the same input data, in the velocity polygon of
Example 5.4, which is repeated here as Fig. 5.14b. Since the angular velocities of links
2 and 3 are constant, we have o = o3 = 0, and there remain only the normal components
of acceleration for points A and C. Hence,

Ap=Aly, = w3Ra0, = (10 rad/s)* (2.5 in) = 250 in/s,
Ac = Ao, = 3Rco, = (5 rad/s)” (4 in) = 100 in/s>.

Next, two acceleration-difference equations are written to relate the acceleration of
point B to those of points A and C; that is,

WO W W W W
Ap= Ay + A}y + AR, =Ac+ A} +AL. (1)

Using results from the velocity polygon (Fig. 5.7b), the magnitudes of the two normal
components in Eq. (1) are

Via  (35.34in/s)?

AL, = =208.15 in/s>
BAT Rus 6in e
and
V2 30.60 in/s)?
AL = ZBC BOO0IS™ _ 56 06 /s,

Rpc 6in

With these, the terms of Eq. (1) can be constructed graphically as shown in Fig. 5.14.
The angular accelerations of links 4 and 5 can now be determined from the two
tangential components scaled from the acceleration polygon; namely,

Apa _12 in/s?

oy = - — 0.2 rad/s? cwW, Ans.
RBA 61in
Al 222.7 in/s?

o5 = —BC 2= 7 371 rad/s” cew. Ans.
RBC 6in

Once the accelerations of points A and B are known, we can construct the acceleration
image of coupler link 4 as explained in Sec. 4.4, and obtain the acceleration of coupler
point P; that is,

Ap =472 in/s>/ — 88.2°. Ans.
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(a)

(b) 0y, () 0,
C
4 c
A
P
B
B
P

Figure 5.14 (a) Linkage posture; (b) velocity polygon; (c) acceleration polygon.

5.8 SECOND-ORDER KINEMATIC COEFFICIENTS

For higher accuracy in the solution of acceleration problems, we look for an analytic or
numeric technique. The method of kinematic coefficients, which was presented in Sec.
4.12, provides such a technique.

As with first-order kinematic coefficients, we use subscripts to signify each indepen-
dent variable when we have multiple degrees of freedom. For example, when we have the
second-order kinematic coefficient of the dependent variable 6; with respect to the two
independent input variables 6; and 6, we will use the notation

. 920;

0l = ——. 5.7
T 96,00 ©-7)
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Using this notation, the derivative of Eq. (5.4) with respect to time (that is, the angular
acceleration of link 7) can be written as

o dzei _ dw; — 0" w2 120" w: 0/ w1010 58
% =n = g = i T bk T B + 0505 7+ Ol (5-8)

Differentiating Eq. (5.6) with respect to time, the acceleration of point P can be written
as

o2 /" Z 2 / / H
Ap= (xijwj + 2xpjp wjwk + Xp Wi + Xpi —i—kaozk) i (5.9)

.

2 2
+ (y%,-jwj + 2ypipwjor + Vo + Ypiey + y}kak) i

The angle for the direction of the acceleration of point P can be written as

y
¥ =tan"! (2-)2) . (5.10)

Substituting the components of Eq. (5.9) into this equation, the direction of Ap can be
written as

y”~-w-2+2y”- wwk—i-y” w2+y/ a'—i-y’ o
I//:tal’l_l< Pjj™j Pjk™J Pkk™'k PjJ Pk ) (5.11)

0o 2 /" i /" 2 /. /
Xpjj0j + 2Xpjp ik + Xpig Wjc + Xpjtj + Xpy Ol

For the special case where input velocities w; and ey are both constant—that is, where the
input accelerations are «j = 0 and oy = 0—Eq. (5.11) can be written as

" 2+2 /" wr + /" 2 (5'12)
Pjj T EXpjk @)k T X ppg D

4 <y%jjwj2 + 2y p ok + y};kk“’l%)
Y =tan .
Even with these additional subscripts, second-order kinematic coefficients can be used
for acceleration analysis of multi-degree-of-freedom mechanisms, almost exactly as they
were in Sec. 4.12 with a single degree of freedom. Let us demonstrate this by again solving
Example 5.8 using second-order kinematic coefficients.

EXAMPLE 5.9

For the five-bar linkage of Example 5.1 in the posture shown in Fig. 5.5, links 2 and 3 are
rotating with constant angular velocities of wp = 10 rad/s ccw and w3 = 5 rad/s cw,



280

MULTI-DEGREE-OF-FREEDOM MECHANISMS

respectively. Determine the angular accelerations of coupler links 4 and 5, and the
acceleration of coupler point P.

SOLUTION

Taking the partial derivative of Egs. (1) of Example 5.6 with respect to input angle 6, and
writing this in matrix form, gives

. . 2 2
—rgsinfy  rssinds [0, | r2cosfa+racos046); —rscostsos; 0
Vi - . . . :
r4cosfy  —rscosts | | 055, rasinés + r4 51n9494’122 —7rs 51n959§22

We can solve this matrix equation for the second-order kinematic coeffi-
cients 6),, and 6J,,. Using the data obtained so far, the results are 6;,, =
0.139 rad/rad” and 6, = 0.208 rad/rad?.

We also partially differentiate Eqs. (1) of Example 5.6 with respect to input angle 63;
writing this in matrix form, gives

. . P - Y
—r4sinfs  rssinfs 94}123 _ 14€08040,50,5 — 15 CO8 05055055 . @)
racosby  —rscosbs | | 6L, rasinB40,,015 — r5sinfs0%,0%

Then, solving this matrix equation gives the second-order kinematic coefficients
6,5 and 625 Note that taking the partial derivative of Egs. (3) of Example 5.6 with respect
to input angle 6> gives the same result. For the current geometry and posture of the linkage,
the results are 6,5 = 0.131 rad/rad” and 61,;= — 0.206 rad/rad’.

Next, we partially differentiate Egs. (3) of Example 5.6 with respect to input angle 63,
which gives

—rysinfy  rssinds |[6)5,] | —racos 03 + r4 cos 949423 — r5C08 059% 3)
1 - . . . *
r4c0864  —rs5costs | | 053y —r38in63 + r48in646,3 — rssinfs023

Then, we can solve this matrix equation for the second-order kinematic coefficients
6455 and 625, For the current geometry and posture of the linkage, the results are 6,5, =
—0.038 rad/rad” and 62, ;= — 0.173 rad/rad?.

Table 5.3 presents the second-order kinematic coefficients of the two coupler links for
the same range of input angles given in Table 5.1.

Substituting the numeric values of the first-order and second-order kinematic
coefficients into Eqs. (5.8), the angular accelerations of the coupler links (for the posture

shown in Fig. 5.5) are
a4 = —0.150 rad/s® (cw) and a5 = 37.075 rad/s’ (ccw). Ans.

Differentiating Eq. (5) of Example 5.6 with respect to the two independent inputs, the
second-order kinematic coefficients of vector r; are

i 1 1 Vi 1 VA
0720 =042, 0703 =0gp3, and 6733 =0,33. “)



5.8 SECOND-ORDER KINEMATIC COEFFICIENTS 281

Table 5.3 Second-Order Kinematic Coefficients of Coupler Links

02 03 02422 023 0733 055, 0553 0533
deg deg — — — — — —
40 85 —0.135 —0.263 —0.016 0.535 —-0.472 —0.156
50 80 0.095 —0.236 —0.075 0.686 —0.430 —0.214
60 75 0.215 —0.177 —0.107 0.701 —0.361 —0.244
70 70 0.254 —0.112 —0.114 0.635 —0.294 —0.251
80 65 0.249 —0.055 —0.106 0.537 —0.242 —0.245
90 60 0.225 —0.005 —0.088 0.436 —0.208 —0.233
100 55 0.196 0.038 —0.068 0.346 —0.190 —0.217
110 50 0.167 0.081 —0.049 0.269 —0.188 —0.198
120 45 0.139 0.131 —0.038 0.208 —0.206 —0.173
130 40 0.104 0.208 —0.050 0.168 —0.259 —0.128
140 35 0.034 0.371 —0.144 0.174 —0.404 —0.002
150 30 —0.281 0.987 —0.752 0.434 —1.006 0.635

Differentiating Eqs. (6) and (7) of Example 5.6 with respect to input angle 6,, and
using Eq. (5) of Example 5.6 and Eq. (4) of this example, the second-order kinematic
coefficients of point P are

Xpyy = —12 0860y — 17008 670,35 — r75i670)55, (5)
Yy = —r28inb — r75in670,3 4 r7c08 670/, (6)

Similarly, differentiating Egs. (6) and (7) of Example 5.6 with respect to input angle 63,
and using Eq. (5) of Example 5.6 and Eq. (4) of this example, the second-order kinematic
coefficients of point P are

Z !l . "

Xpy3 = —17C08070,,0,3 — r75in070,55, @)
U . / / "

yP23 = —r7 Sln97942943 + 7 COS 979423, (8)
"o 2 : "

Xp33z = —17€08070,3 — r75in070,35, )
"o . 2 "

Yp33 = —r78in670,5 + r7cos070,35. (10)

Substituting the results of Egs. (1) and (3) of Example 5.6 and Eqgs. (1) to (3) into Egs.
(5) to (10), the second-order kinematic coefficients of point P are

Xpyy = —2.5¢05 120° — 8 c0s 66.447° (—0.237) — 85in 66.447°(+0.139) = +0.054 in/rad?,
Vhyy = —2.55in 120° — 85in66.447°(—0.237)% + 8 c0s 66.447°(+0.139) = —2.133 in/rad’,
Xy = —8€0866.447°(—0.237) (+0.705) — 8in66.447°(0.131) = —0.429 in/rad?,
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Vpo3 = —85in66.447°(—0.237) (+0.705) 4 8 c0s 66.447°(0.131) = +1.642 in/rad?,
Xp33 = —8cos 66.447°(+0.705)% — 85in 66.447°(—0.038) = —1.311 in/rad?,
Vpay3 =—8 $in66.447°(4-0.705)% 4 8 c0s 66.447°(—0.038) = —3.762 in/rad’.

Then, substituting these results and the specified input angular velocities and angular
accelerations into Eq. (5.9), the acceleration of point P is

Ap=15.51i —471.57] in/s>.

Therefore, the magnitude and the direction of the acceleration of point P,
respectively, are

Ap= \/ (15.51 in/sz)z +(—471.57 in/s2)2 =471.82 in/s?

and

J— tan”! —471.57 in/s? S
= tan ————————>— | = —09. .
15.51 in/s?

The direction of the acceleration of point P is shown in Fig. 5.15.

Table 5.4 presents the second-order kinematic coefficients of point P and the
magnitude and direction of the acceleration of point P for the same range of input angles
given in Table 5.1.

Note that the answers here are in good agreement with, and have higher accuracy than,
the answers obtained from the acceleration polygon (Example 5.8).

Figure 5.15 Acceleration of
coupler point P,
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Table 5.4 Second-Order Kinematic Coefficients and Acceleration of Coupler Point P
02 03 Xp5 Yp22 Xpy3 Ypas Xp33 Y33 Ap 4
deg deg in. in. in. in. in. in. in./s2 deg
40 85 0.236 —2914 0.013  3.805 2537 -3.612 766.98 —83.583
50 80 —1425 —4.147 0.517  3.406 2.188 —3.342 850.35 —99.446
60 75 2417 —4.316 0.656 2811 1.837 —3.256 836.00 —108.217
70 70  —2.666 —3.992 0.569  2.281 1417  —3.302 766.03 —112.089
80 65 —2.402 —3.547 0.393  1.896 0.926 —3.404 679.65 —112.157
90 60 —1.870 —3.130 0.197  1.653 0.384 —3.511 599.38  —109.199
100 55 —1.232 -2.764 0.005 1.530 —0.184 —3.600 535.02 —103.873
110 50 —-0.578 —2436 —0.193 1519 —-0.758 —3.673 490.69 —96.725
120 45 0.054 —2.133 —0429 1.642 —1.311 —-3.762 471.82 —88.117
130 40 0.677 —1.875 —0.783 1999 —1.794 —3.981 497.37 —78.265
140 35 1423 —1.826 —1.520 2969 —1.991 —4.761 646.57 —67.780
150 30 3318 —3.321 —4.290 7.007 —0.210 —9.128  1470.05 —59.072

The following example shows how the method of kinematic coefficients can be applied
to the kinematic analysis of a two-degrees-of-freedom mechanism with rolling contact.

EXAMPLE 5.10

For the mechanism in the posture shown in Fig. 5.16, the planet gear, j, is in rolling contact
with the ring gear, h, and the sun gear, k. Link i (the arm) has constant angular velocity
w; = 10rad/s ccw, and gear h has angular velocity w, = S5Srad/scw and angular
acceleration «j = 15 rad/s® ccw. Determine: (a) the first- and second-order kinematic
coefficients of gears j and k; and (b) the angular velocity and acceleration of gears j and k.

SOLUTION

For the rolling contact between planet gear j and ring gear h, the constraint equation can
be written in the form

0j (A@j — A@,’) =405 (A0, — AG;). (1)

Similarly, for the rolling contact between planet gear j and sun gear k, the constraint
equation can be written as

pj (86 — AG;) = —pi (A — A6)). (@)

These two equations can be put into matrix form, with the independent variables on the

right, as follows
pj O AG | _en on—pj|| A0k 3)
P P | Abk 0 pji+pr|| A6
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Figure 5.16 pp =8in, pj =
2in, and pp =4 in.

(a) Taking partial derivatives of Egs. (3) with respect to the first independent variable,

we find equations for the following first-order kinematic coefficients:

pi O[O _[en pn—n][1]_[pn @
pi - Pk] O, 0 pj+pocf|0 0]
The determinant of the Jacobian matrix is
A = pjpx = 8 in’
= pjpx =8 in”,
and Cramer’s rule gives the solution to Eqs. (4) as
O = on/pj=40rad/rad and 6, =—pp/px =—2.0rad/rad.  Ans. (5)

Taking partial derivatives of Egs. (3) with respect to the other independent
variable, we find equations for the remaining first-order kinematic coefficients:

ool - el e e
pj Pk 6y 0 pi+po]|l 0j + pi

Cramer’s rule gives the solutions to Egs. (6) as

0= (pn—pj)/pj=3.0radrad and 6 = (—pn+2p;+ px)/px = 0.0.
Ans. (7)

The second-order kinematic coefficients can be found by taking partial
derivatives of Eqgs. (5) and (7) with respect to each of the independent variables.
Since the right-hand sides of these equations are constants, we find the
second-order kinematic coefficients to be

1 1 i i " 1
inh = Ok = Ojpi = Oni = jiz = Oy = 0. Ans.
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(b) The angular velocities of links j and k are

_p ’o

= (4.0 rad/rad) (—5.0 rad/s) + (3.0 rad/rad) (10.0 rad/s) = 10.0 rad/s (ccw),
Ans.

/! /

= (—2.0 rad/rad) (—5.0 rad/s) 4 (0.0 rad/rad) (10.0 rad/s) = 10.0 rad/s (ccw).
Ans.

The angular accelerations of links j and k are

" 2 /" . "2 / /.
aj = tha)h + 29jhia)ha)l + ejﬁa)l’ + thah + jSa,

=0+0+0+ (4.0 rad/rad) (15 rad/sz) + (3.0 rad/rad) (0) = 60.0 rad/s’ (ccw),
Ans.

/" 2 " "o 2 ! !

— 040+ 0+ (—2.0 rad/rad) (15 rad/sz) +0=—30.0 rad/s> (cw). Ans.

5.9 PATH CURVATURE OF A COUPLER POINT TRAJECTORY

After the first- and second-order kinematic coefficients of a multi-degree-of-freedom
linkage are known, a study of the curvature of the path traced by a coupler point, which
was discussed in Sec. 4.17, can be undertaken. The radius of curvature of the path traced
by coupler point P was given by Eq. (4.53). However, a modified version of this equation
is required for multi-degree-of-freedom linkages.

The position of point P can be written as

rp = xpi +ypj, (5.13)

and the velocity Vp of point P can be determined by differentiating this equation with
respect to time. Recall that the velocity of point P can be written as in Eq. (5.6).
The unit vector tangent to the path of point P is given by Eq. (3.37); that is,

i, = VP

=3 (5.14)

For the case where xp and yp are functions of two independent input variables, 6; and 6,
by substituting Eq. (5.6) into this equation, the unit tangent vector can be written as

(e ) i+ (e o) §
i, = ) (5.15)

2 2
| oot tn) + (s + i)
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Then, the unit normal vector is 90° ccw from the unit tangent vector; that is,

~
.

. (y/[,jwj +y}ka)k> i+ (xj,,ja)j +x},ka)k>_]
W=k xip= - = (5.16)
\/ (xﬁojwj +x;’kwk) + (yiv,-wj +y§okwk)

The normal acceleration of point P is

Al = Ap - 0) = ARIE + AL . (5.17)

Substituting Egs. (5.9) and (5.16) into Eq. (5.17), and performing the dot product
operation, the normal acceleration of point P can be written as

o2 / /! 2 / / / /
(ijjwj T 2Yp @ik + Ypy @i +Vpi yPkO‘k) (xijj + kawk)

v 2 i i 2 / / / /
- (xPj'wj + 2Xpj w0k + Xpy @y +Xp;0 + ka“k) (ijwj + yPkwk)
P =

(5.18)

2 2
G+ + (g pon)

For the special case where links j and k have constant angular velocities, then Eq. (5.18)
can be written as

v 2 /" . i 2 / . /
(ijjwj + 2y 0jwk +yPkkwk) (xij/ + ka“’k)

o2 ! . /" 2 / . /
= (¥ + 2Xpjp0n +Xprg i ) (Vpjoj + yPkwk)

Ap = = 5 (5.19)
oo xon) + (g v
Substituting Eqs. (5.6) and (5.19) into Eq. (4.53) and simplifying, the radius of
curvature of the path traced by coupler point P can be written as
/ / 2 / / 2 3/2
[(ijwj +kawk) + (ypjwj —i—yPkwk) :|
<y}éfjwj2 + 295 @ik + Y p @} ) (x}jwj + X}kwk)

o2 /" . /" 2 / X /
- (xpﬁwj + 2xpj ik +kaka)k) (ija)] +yPka)k>

pp = (5.20)

If we define the input angular velocity ratio n = wi/wj, then Eq. (5.20) can be written as

2 2
[(x},- )+ (o5 + ) }
(y};jj + 2y3;jk’7 + y%kknz) (x}’j + x;’k”)
— (b 25 + x5 (35 + )

32

The sign here has the same meaning that it has in earlier chapters. A negative value for the
radius of curvature value indicates that the unit normal vector is pointing away from the
center of curvature of the path traced by coupler point P.
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The coordinates of the center of curvature of the path traced by point P, as given by
Eq. (4.58), are written here as

xc=xp+ppus and yc=yp+ ppp, (5.22)

where xp and yp are found as indicated in Example 5.3, and w5 and u';,y are given by the
i and _i components of Eq. (5.16).

EXAMPLE 5.11
Continuing the five-bar linkage of Example 5.1 through Example 5.9 in the posture shown
in Fig. 5.5, links 2 and 3 are rotating with constant angular velocities of wp = 10 rad/s

ccw and w3 = 5 rad/s cw, respectively. Find the unit tangent vector and unit normal vector
to the path of point P, the radius of curvature, and the Cartesian coordinates of the center
of curvature of the path of point P.

SOLUTION

The velocity of coupler point P, obtained from the first-order kinematic coefficients with
the same input data as in Example 5.6, is

Vp =21.546i — 31.330j in/s =38.024 in/s £ — 55.483°. (1)

Substituting the velocity components of Eq. (1) into Eq. (5.14), the unit tangent
vector is

21546 in/si—31.330in/s j

o : = 0.567i — 0.824j. Ans.
38.02 in/s
Then, from Eq. (5.16), the unit normal vector is
" = 0.824i+ 0.567j. Ans.

The directions of the unit tangent vector and unit normal vector are shown in Fig. 5.17.

Substituting data from Example 5.6 and Example 5.9 for the first- and second-order
kinematic coefficients and the specified input angular velocities into Eq. (5.20), the radius
of curvature of the path of point P is

1 445.81 in3/s3

—254.44 in“/s

PP

The negative sign indicates that the center of curvature is located in the direction of the
negative unit normal vector @" from point P (Fig. 5.18).
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Figure 5.17 Unit tangent and
unit normal vectors.

Finally, substituting the answers from Example 5.3 and the previous results into Egs.
(5.22), the coordinates of the center of curvature of the path of point P are
xc = 1.947 in+ (—5.682 in) (0.824) = —2.735 in,
yc =9.499 in + (—5.682 in)(0.567) = 6.277 in.

The center of curvature of the path of point P is shown in Fig. 5.18. This figure also shows
the unit tangent vector O and the unit normal vector " to the path traced by point P.

Figure 5.18 Center of
curvature of the path traced by
point P.

Path of P
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Table 5.5 presents the radius of curvature of the path traced by point P and the
Cartesian coordinates of the center of curvature of this path for the range of input angles
given in Table 5.1.

Table 5.5 Radius of Curvature and Coordinates of the Center
of Curvature
0> 03 o Xc ye
deg deg in in in
40 85 —10.350 5.784 2.067
50 80 —8.062 4.052 3.559
60 75 —5.340 2.247 5.595
70 70 -3.014 1.005 7.557
80 65 —1.667 0.551 8.821
90 60 —1.214 0.524 9.271
100 55 —1.481 0.408 9.031
110 50 —2.671 —0.364 8.130
120 45 —5.682 —2.735 6.279
130 40 —13.603 —9.496 2.157
140 35 —51.321 —42.794 —15.556
150 30 57.190 53.984 33.525

5.10 FINITE DIFFERENCE METHOD

The finite difference method can be used with the examples of this chapter to check:
(a) the first-order kinematic coefficients of links 4 and 5, and (b) the second-order
kinematic coefficients of links 4 and 5.

In general, the first-order kinematic coefficient of link i with respect to link j can be
written as

,  06; N Ab;

= —

0 .
Y90, A
Keep in mind that the definition of a partial derivative implies that the symbol A6; in
the denominator corresponds to the change of an independent input 6; while all other
independent inputs are held frozen or locked during the change of A6;. However, data such
as those in Tables 5.1 and 5.2, for example, do not correspond to this restriction, since they
were derived with both A6, and Af3 changing simultaneously. Therefore, the first-order
kinematic coefficient of link i with respect to input j cannot be directly approximated by
the following formula
o £ Al (0)a— ()8
YTONG (0)a— (6B
where subscript A denotes the value after and B denotes the value before the value that
is to be checked by the finite difference method. In situations such as Tables 5.1 and 5.2,
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however, where the total change A#6; is the result of separate changes of more than one
independent variable, say Af; and Ab, the proper procedure is to write the finite
change in the angular displacement of link i as

AG; % 0:A6; + 6, Ab
or as
[(0)a — (0Bl ~ 9,;- [6)a — 6] + 0} [(O)a — (B)B]. (5.23)
The following example will illustrate the use of these equations to check the first-order

kinematic coefficients of Example 5.6.

EXAMPLE 5.12

Use finite differences to check the first-order kinematic coefficients of links 4 and 5 of the
five-bar linkage of Example 5.6.

SOLUTION
By Eq. (5.23), the finite change in the angular displacement of link 4 can be written as

Abs = [(02)a — (04)B1 ~ 045 [(62)4 — (62)B1 + 043 [(03)a — (63)5], )]

and the finite change in the angular displacement of link 5 can be written as

Abs = [(65)a — (05)8] ~ 05, [(62)4 — (62) ] + 053 [(63)a — (63)5]. (@)

For the input angles 6, = 120° and 63 = 45° (row nine of Table 5.1), the first-order
kinematic coefficients are

04, =—0237, 04, =0.705, 6., =0455 and 6 =—0.109.

Substituting these values into Egs. (1) and (2), the finite change in the angular
displacements of links 4 and 5, respectively, are

Aby =[30.526° — 42.360°] ~ —0.237[130° — 110°] 4+-0.705[40° — 50°],  (3)
Abs =[156.510° — 146.315°] ~ 0.455[130° — 110°] — 0.109[40° — 50°].  (4)

Note that the answers given by the two separate calculations in Egs. (3) and (4) are in
reasonable agreement with each other. If the increments of the two input displacements are
decreased, then even closer agreement between the two sets of calculations is obtained. The
general conclusion, therefore, is that the first-order kinematic coefficients of the five-bar
linkage as indicated by Table 5.1 are correct.

From Egs. (5.7), the second-order kinematic coefficients of link i with respect to the
input angles 6; and 6 can be written as

926, B 86’1.’].

W 8000, — 06,

"
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Remembering the directional nature of finite differences, the finite change in the first-order
kinematic coefficients of link i with respect to link j can be written as

A8 =64 = ©)s] ~ 04[O = ©)s] + 6} 1G04 — E0)s),

where subscript A denotes the value after and B denotes the value before the value that is
to be checked by the finite difference method.

The following example illustrates the value of these equations in checking the
second-order kinematic coefficients.

EXAMPLE 5.13

Use finite differences to check the second-order kinematic coefficients of links 4 and 5 of
the five-bar linkage of Example 5.9.

SOLUTION

The second-order kinematic coefficients can be checked by writing the finite change in
the first-order kinematic coefficients of links 4 and 5 with respect to the input rotations of
links 2 and 3 [Eq. (5.24)] as

Ab4y = [(04)a — (01)B] = 03, [(02)4 — (02)8] + 6,55 [(83)4 — (63)5],
AO4y = [(043)a — (043)8] ~ 043, [(02)4 — (02)8] + 0435 [(03)4 — (03)5],
A%, = [(05)a — (05)B] ~ 055, [(02)4 — (02)B] + 0453 [(83)4 — (63)3],

and

AB53 = [(053)a — (053)B] ~ 053, [(02)4 — (02)B] + 0535 [(03)4 — (63)3],

wherej 643, = O4>3 and 05, = 67,,. From row nine of Tables 5.1 and 5.3, the values in these
equations are

130° —110° 40° —50°
ABy, =[(—0.230) — (—0.254)] ~ 0.139 [—] +0.131 [—] ,

57.296°/rad 57.296°/rad
. 130° — 110° 40° — 50°
AB4; =10.737 —0.683] ~ 0.131 | ———— | + (—0.038) | =——— |,
57.296°/rad 57.296°/rad
130° — 110° 40° — 50°
ABL, =1[0.508 —0.397] ~ 0.208 | ——————— | +(=0.206) | ———— |,
b5, =10-508 ~0.3971~0 08|:57.296°/rad:|+( 0 06)[57.296°/rad1|
ABL, = [(—0.136) — (—0.091)] ~ (—0.206) 130° — 1107 +(—=0.173) 40° — 507
537 R ' T 57.296°/rad ' 57.296°/rad |

Note that the answers given by the two separate calculations in each of these equations
are in reasonable agreement with each other. The general conclusion, therefore, is that the
second-order kinematic coefficients of links 4 and 5 of the five-bar linkage as given by
Table 5.3 are correct.
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PROBLEMS*®

5.1

5.2

5.3

54

Slotted links 2 and 3 are driven independently at
constant speeds of wy = 30 rad/s cw and w3 =20
rad/s cw, respectively. Find the absolute velocity and
acceleration of the center of pin P carried in the two
slots.

p Figure P5.1 xg = 100 mm and yg = 25 mm.

For the five-bar linkage in the posture shown, the
angular velocity of link 2 is 15 rad/s cw and the
angular velocity of link 5 is 15 rad/s cw. Determine
the angular velocity of link 3 and the apparent
velocity Vp, /5.

For the five-bar linkage in the posture shown in
Fig. P5.2, the angular velocity of link 2 is wy =
25 rad/s cew and the apparent velocity Vp, /5 is 5
m/s upward along link 5. Determine the angular
velocities of links 3 and 5.

For Prob. 5.2, assuming that the two given input
velocities are constant, determine the angular accel-
eration of link 3 at the instant indicated.

*When assigning problems, the instructor may wish to
specify the method of solution to be used, since a variety
of approaches are presented in the text.

5.5

Figure P5.2 Rp, 05 =200 mm£23.1°, R4, = 300 mm,
and Rpq = 200 mm.

Link 2 rotates at a constant angular velocity of 10
rad/s ccw, while sliding block 3 slides toward point A
on link 2 at a constant rate of 5 in/s. Find the absolute
velocity and absolute acceleration of point P of block
3.

<
B s

Figure P5.5 R4p, =3.0in, Rg4 = 6.0 in, and Rpy =
4.0 in.



5.6

5.7

v4

€
1

For Prob. 5.5, determine the value of the sliding
velocity, Vp, 2, that minimizes the absolute veloc-
ity of point P of block 3. In addition, find the value
of Vp, /> that minimizes the absolute acceleration
of point P of block 3.

The left two-link planar robot is attempting to
transfer a small object labeled P to the similar right
robot. At the posture indicated, 6, =45° and 63 2=
—15°. (Note that 63 = 3 — 6, is given, since that
is the angle controlled by the motor in joint A.)
Determine 64 and 65,4 to allow the right robot to
take possession of object P.

Figure P5.7 Rp,0, =1 m,Ry0, =Rpp, = 0.3 m, and
RPA :RPB =04 m.

5.8

5.9

For the transfer of the object described in Prob.
5.7, it is necessary that the velocities of point P of
the two robots match. If the two input velocities
of the first robot are wy = 10 rad/s cw and w3 /> =
15 rad/s ccw, what angular velocities must be used
for wy and ws/4?

For the transfer of the object described in Prob.
5.7, it is necessary that the velocities of point P of
the two robots match. If the two input velocities
of the first robot are wy = 10 rad/s cw and w32 =
10 rad/s ccw, what angular velocities must be used
for wy and ws4?

For the transfer of the object described in Prob. 5.7,
it is necessary that the velocities of point P of the
two robots match. If the two input velocities of the
first robot are wp = 10 rad/s cw and w3, =0, what
angular velocities must be used for w4 and ws /47

To successfully transfer an object between two
robots, as described in Probs. 5.7 and 5.8, it is
helpful if the accelerations are also matched at
point P. Assuming that the two input accelerations
are ap = a3 = 0 at this instant for the robot on the
left, what angular accelerations must be given to the
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two input joints of the robot on the right to achieve
this?

The circular cam is driven by link 2 at a constant
angular velocity w, = 15 rad/s ccw. Link 3 is rotat-
ing at a constant angular velocity w3 = 5 rad/s cw,
causing slipping at point C. Determine: (a) the
first- and second-order kinematic coefficients of
the mechanism; (b) the angular velocity and accel-
eration of link 4; and (c) the velocity of slipping at
point C.

Figure P5.12 Rxo, =Ro,x =3 in,Rpp, =1.25in,Rcp =
p2=21in,Rcp = p3 =05 in,and Rpo, =3.5 in.

Tracing point C of the pantograph linkage is
required to follow a prescribed curve; that is, its
two independent input variables are xc and yc.
Then, point P, which carries a pen, traces a similar
curve; that is, the outputs of the linkage are the
xp and yp components of the motion of the pen.
Determine the first-order kinematic coefficients of
point P.

Figure P5.13 Ry0, = Rca = Rpp =300 mm and Ry =
Rpc = Rpp =200 mm.
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The mechanism has rolling contact at point A, but
there can be slipping at point B. Link 2 has a
constant angular velocity of w, = 20 rad/s ccw,
and link 3 has an angular velocity w3 = 5 rad/s cw
and an angular acceleration of o3 = 2 rad/s? ccw.
Determine: (a) the first- and second-order kine-
matic coefficients of link 5; and (b) the angular
velocity and angular acceleration of link 5.

Figure P5.14 Ro, 0, = 2.50i+3.75] in, Rco, =
2.75 in, RKO5 =11in, p3 =2 in,and pg =0.75 in.

The mechanism has rolling contact at point A. For
the current posture 6, = 60°. Link 2 has constant
angular velocity wp = 50 rad/s ccw, and link 3
has angular velocity ws = 25 rad/s cw and angular
acceleration a5 = 20 rad/s ccw. Determine: (a) the
first- and second-order kinematic coefficients for
links 3 and 4; and (b) the angular velocities and
angular accelerations of links 3 and 4.

The mechanism has rolling contact between rack 3
and gear 4 at point F, between gears 4 and 5 at point
C, and between gears 5 and 6 at point E. Link 2 has
constant angular velocity wy = 50 rad/s ccw, and

Figure P5.15 Ro, 0, = 300i — 190j mm, R40, =
300 mm, Rcp = 300 mm, p4 = 60 mm, and p5 = 130 mm.

link 6 has angular velocity wg = 25 rad/s cw and
angular acceleration ag = 20 rad/s? ccw. Deter-
mine: (a) the first- and second-order kinematic
coefficients for gear 5 and the rack; and (b) the
velocity and acceleration of the rack and the angu-
lar velocities and accelerations of links 4 and 5.

AN
)

Figurc P5.16 RFA = RBF = 500mm, P4 = RCO4 =450mm,
ps =Rcp =175mm, pg = Rpp, = 100mm, and Rpo, =
275mm.









Cam Design

6.1 INTRODUCTION

In previous chapters, we have learned how to analyze the kinematic characteristics of
a given mechanism. We were given the design of a mechanism, and we studied ways
to determine its mobility, its posture, its velocity, and its acceleration, and we even
discussed its suitability for given types of tasks. However, we have said little about how
the mechanism is designed—that is, how the sizes and shapes of the links are chosen by
the designer.

The next several chapters introduce this design point of view as it relates to
mechanisms. We will find ourselves looking more at individual types of machine
components and learning when and why such components are chosen and how they are
sized. In Chap. 6, which is devoted to the design of cams, for example, we assume that we
know the task to be accomplished. However, we do not know but we seek techniques to
help discover the size and shape of the cam to perform this task.

Of course, there is the creative step of deciding whether a cam should be used
in the first place, as opposed to a gear train, a linkage, or some other mechanical
device. This question often cannot be answered on the basis of scientific principles
alone; it requires experience and imagination, and involves such factors as economics,
marketability, reliability, maintenance, esthetics, ergonomics, ability to manufacture, and
suitability for the task. These aspects are not well studied by a general scientific approach;
they require human judgment of factors that are often not easily reduced to numbers or
formulae. There is usually not a single “right” answer, and generally these questions cannot
be answered by this or any other text or reference book.

On the other hand, this is not to say that there is no place for a general science-based
approach in design situations. Most mechanical design is based on repetitive analysis.

297
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Therefore, in Chap. 6 and in several of the upcoming chapters, we will use the principles of
analysis presented in Part 1 of the book. Also, we will use the governing analysis equations
to help in our choices of part sizes and shapes, and to help us assess the quality of our design
as we proceed. It is important to point out that the forthcoming chapters are still based on
the laws of mechanics. The primary shift for Part 2 is that the component dimensions are
often the unknowns of the problem, whereas the input and output speeds, for example,
may be given information. In Chap. 6, we will discover how to determine a cam contour,
or profile, that delivers a specified motion characteristic.

6.2 CLASSIFICATION OF CAMS AND FOLLOWERS

A cam is a machine element used to drive another element, called a follower, through
a specified motion by direct contact. Cam-and-follower mechanisms are simple and
inexpensive, have few moving parts, and occupy very little space. Furthermore, follower
motions having almost any desired characteristics are not difficult to design. For these
reasons, cam mechanisms are used extensively in modern machinery.

The versatility and flexibility in the design of cam systems are among their more
attractive features, yet this also leads to a wide variety of shapes and forms, and the need
for terminology to distinguish them.

Sometimes, cams are classified according to their basic shapes. Figure 6.1 shows four
different types of cams:

(a) A plate cam, also called a disk cam or a radial cam.
(b) A wedge cam.

(¢) A cylindric cam or barrel cam.

(d) An end cam or face cam.

The least common of these in practical applications is the wedge cam, because of its need
for a reciprocating motion rather than a continuous input motion. By far the most common
is the plate cam. For this reason, most of the remainder of Chap. 6 specifically addresses
plate cams, although the concepts presented pertain universally.

Cam systems can also be classified according to the basic shape of the follower.
Figure 6.2 shows plate cams actuating four different types of followers:

(a) A knife-edge follower.

(b) A flat-face follower.

(¢) A roller follower.

(d) A spheric-face or curved-shoe follower.

Note that the follower face is usually chosen to have a simple geometric shape, and the
motion is achieved by careful design of the shape of the cam to mate with it. This is
not always the case, and examples of inverse cams, where the follower is machined to a
complex shape, can be found.

Another method of classifying cams is according to the characteristic output motion
produced between the follower and the frame. Thus, some cams have reciprocating
(translating) followers, as in Figs. 6.1a, b, and d, and Figs. 6.2a and b, whereas others
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(a) BE (®)

Figure 6.2 Plate cams with (@) an offset reciprocating knife-edge follower; (b) a reciprocating
flat-face follower; (c) an oscillating roller follower; (d) an oscillating curved-shoe follower.
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Figure 6.3

(a) Constant-breadth cam with
a reciprocating flat-face
follower; (b) conjugate cams
with an oscillating roller
follower.

(a) \

have oscillating (rotating) followers, as in Figs. 6.1c, 6.2¢, and 6.2d. Further classification
of reciprocating followers distinguishes whether the centerline of the follower stem relative
to the center of the cam is offset, as in Fig. 6.2a, or radial, as in Fig. 6.2b.

In all cam systems, the designer must ensure that the follower maintains contact with
the cam at all times. This can be accomplished by depending on gravity, by the inclusion
of a suitable spring, or by a mechanical constraint. In Fig. 6.1c¢, the follower is constrained
by a groove. Figure 6.3a shows an example of a constant-breadth cam, where two contact
points between the cam and the follower provide the constraint. Mechanical constraint can
also be introduced by employing dual or conjugate cams in an arrangement such as that
shown in Fig. 6.3b. Here each cam has its own roller, but the rollers are mounted on a
common follower.

Throughout this chapter we use the symbol @ to represent the total motion of the cam
and the symbol Y to represent the total displacement of the follower. To investigate the
design of cams in general, we denote the known input variable by © () and the output
variable by Y. A review of Figs. 6.1, 6.2, and 6.3 will demonstrate the definitions of ®
and Y for various types of cams. These figures show that the input, @, is an angle for most
cams, but it can be a distance, as in Fig. 6.1b. Also, the output, Y, is a translation distance
for a reciprocating follower, but it is an angle for an oscillating follower.

6.3 DISPLACEMENT DIAGRAMS

Despite the wide variety of cam types used and their differences in form, they also have
certain features in common that allow a systematic approach to their design. Usually a cam
system is a single-degree-of-freedom device. It is driven by a known input motion, usually
a shaft that rotates at constant speed, and it is intended to produce a certain desired periodic
output motion for the follower.

During the rotation of a cam through one cycle, the follower executes a series of events
as demonstrated in graphic form in the displacement diagram of Fig. 6.4. In such a diagram,
the abscissa represents one cycle of the input, @ (usually, one revolution of the cam), and
is drawn to any convenient scale. The ordinate represents the follower travel, Y, and, for a
reciprocating follower, is usually drawn at full scale to help in the layout of the cam. On a
displacement diagram, it is possible to identify a portion of the graph called the rise, where
the displacement of the follower is away from the cam center. The total rise is called the
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Figure 6.4 Displacement diagram for a cam.

lift. The return is the portion in which the displacement of the follower is toward the cam
center. Portions of the cycle during which the follower is at rest are referred to as dwells.

For a particular motion segment (say, segment number k) of the total cam, the rotation
lies in the range starting with &, and extending by 6 within the segment to

Ok41 = O + Bk, (@)

where S is the total cam angle for segment k.
Similarly, the displacement of the follower is in the range starting from Y; + y(0) and
extending by y(9) within the segment to

Yir1 =Y +y(Br). (b)

Thus, within a segment, we can write

y=y(®). (6.1)

Many of the essential features of a displacement diagram, such as the total lift and
the placement and duration of dwells, are usually dictated by the requirements of the
application. There are, however, many possible choices of follower motions that might
be used for the rise and return segments, and some are preferable over others, depending
on the situation. One of the key steps in the design of a cam is the choice of suitable forms
for these motions. Once the motions have been chosen—that is, once the exact relationship
is set between the input ® and the output Y—the displacement diagram can be constructed
precisely and is a graphic representation of the functional relationship

Y=Y (O).

This equation has stored within it the exact nature of the shape of the final cam: the
necessary information for its layout and manufacture, and also the important characteristics
that determine the quality of its dynamic performance. Before looking further at these
topics, however, we will describe graphic methods of constructing the displacement
diagrams for the following rise motions and the similar return motions: uniform motion,
parabolic motion, simple harmonic motion, and cycloidal motion.

The displacement diagram for uniform motion is a straight line with constant slope.
Thus, for constant input speed, the velocity of the follower is also constant. This motion
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Figure 6.5 (a) Parabolic motion interfaces with uniform motion; (b) graphic construction.

is not useful for the full lift because of the sharp corners produced at the junctions with
neighboring segments of the displacement diagram. It is often used, however, between
other curve segments that eliminate the corners (called modified uniform motion).

Parabolic motion is one possible example of modified uniform motion, and the
displacement diagram for this motion is shown in Fig. 6.5a. The central portion of the
diagram, bounded by the cam angle f, and with lift L,, is uniform motion. The two
ends, with cam angles 81 and B3, and with corresponding lifts L; and L3, are shaped to
deliver parabolic motion to the follower. Soon we shall learn that these produce constant
acceleration for the follower. Figure 6.5a shows a graphic method for matching the slopes
of parabolic motions with that of uniform motion. With the cam angles g1, B2, B3, and the
total lift, L, known, individual lifts L1, Ly, and L3 are determined by locating the midpoints
of the 81 and B3 segments and constructing a straight line as indicated. Figure 6.5b shows
a graphic construction for a parabola to fit within a given rectangular boundary defined,
first by L; and B, and then by L3 and B3. The abscissa and ordinate are divided into a
convenient but equal number of divisions and numbered as indicated. The construction of
each point of the parabola then follows that indicated by dashed lines for point 3.

In the layout of an actual cam, if this might be done graphically, a great many divisions
are usually used to obtain good accuracy. At the same time, the drawing is made to a large
scale, perhaps ten times full size, and then reduced to actual size by a pantographic method.
However, for clarity in reading, the figures in this chapter are shown with fewer divisions
to define the curves and illustrate the graphic techniques.

The displacement diagram for simple harmonic motion is shown in Fig. 6.6. The
graphic construction makes use of a semicircle having a diameter equal to lift L of the
segment. The semicircle and abscissa are divided into an equal number of divisions, and
the construction then follows that indicated by dashed lines for division number 2.

Cycloidal motion obtains its name from the geometric curve called a cycloid. As shown
on the left-hand side of Fig. 6.7, a circle of radius L/2m, where L is the lift of the segment,
makes exactly one revolution by rolling along the ordinate from the origin, y = 0, to full
lift, y = L. Point P of the circle, originally located at the origin, traces a cycloid, as shown.
As the circle rolls without slip, the graph of the vertical displacement, y, of the point versus
the rotation angle, 6, gives the displacement diagram shown at the right of Fig. 6.7. We find
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Figure 6.6 Simple harmonic motion displacement diagram; graphic construction.
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Figure 6.7 Cycloidal motion displacement diagram; graphic construction.

it much more convenient for graphic purposes to draw the circle only once, using either the
origin, O, or point B as its center. After dividing the circle and the abscissa into an equal
number of divisions and numbering them as indicated, we project each point of the circle
horizontally until it intersects the ordinate; next, from the ordinate, we project parallel to
the diagonal OB to obtain the corresponding point on the displacement diagram.

6.4 GRAPHIC LAYOUT OF CAM PROFILES

Let us now study the problem of determining the exact shape of the cam profile required
to deliver a specified follower motion. We assume here that the required motion has
been completely defined—graphically, analytically, or numerically—as discussed in later
sections. Thus, a complete displacement diagram can be drawn to scale for the entire cam
rotation. The requirement now is to lay out the proper cam profile to achieve the follower
motion represented by this displacement diagram.
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Trace point

V

Cam profile

Cam rotation

Figure 6.8 Cam nomenclature. The cam surface is developed by holding the cam stationary and rotating the follower from
station O through stations 1, 2, 3, and so on.

We explain the procedure using the case of a plate cam with a radial roller follower, as
shown in Fig. 6.8. Let us first note some additional nomenclature, illustrated in Fig. 6.8.

The trace point is a theoretic point of the follower, useful primarily in graphic
constructions; it corresponds to the tip of a fictitious knife-edge follower. It is located
at the center of a roller follower or along the surface of a flat-face follower.

The pitch curve is the locus generated by the trace point as the follower moves with
respect to the cam. For a knife-edge follower, the pitch curve and cam profile are identical.
For a roller follower they are separated by the radius of the roller.

The prime circle is the smallest circle that can be drawn tangent to the pitch curve with
a center at the cam rotation axis. The radius of this circle is denoted Ry.

The base circle is the smallest circle tangent to the cam profile centered on the cam
rotation axis. For a roller follower, it is smaller than the prime circle by the radius of the
roller; for a knife-edge or flat-face follower, it is identical to the prime circle.

In constructing the cam profile, we employ the principle of kinematic inversion. We
imagine the sheet of paper on which we are working to be fixed to the cam, and we
note that, as the cam rotates, the follower appears to rotate (with respect to the paper)
opposite to the direction of cam rotation. As shown in Fig. 6.8, we divide the prime circle
into a number of divisions and assign station numbers to these divisions. Dividing the
displacement-diagram abscissa into corresponding divisions, we transfer Y —Y( distances
from the displacement diagram directly onto the cam layout, measured along radial lines
from the base circle to the trace point. The smooth curve through these points is the pitch
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Figure 6.9 Graphic layout of a plate-cam profile with an offset reciprocating roller follower.

curve. For the case of a roller follower, as in this example, we simply draw the roller in its
proper location at each station and then construct the cam profile as a smooth curve tangent
to all of these roller locations.

Figure 6.9 shows how the method of construction is modified for an offset roller
follower. We begin by constructing an offset circle, using a radius equal to the offset
distance. After identifying station numbers around the prime circle, the centerline of
the follower is constructed for each station, making it tangent to the offset circle. The
roller centers for each station are established by transferring Y—Y( distances from the
displacement diagram directly to these follower centerlines, always measuring positive
outward from the prime circle. An alternative procedure is to identify points 0', 1’, 2/, and
so on, on a single follower centerline and then to rotate them about the cam center to the
corresponding follower centerline locations. In either case, the roller circle locations are
drawn next and a smooth curve tangent to all roller locations is the required cam profile.

Figure 6.10 shows the construction for a plate cam with a reciprocating flat-face
follower. The pitch curve is constructed using a method similar to that used for the roller
follower in Fig. 6.8. Instead of roller locations, however, a line representing the flat face of
the follower is constructed at each station. The cam profile is a smooth curve drawn tangent
to all the follower location lines. It may be helpful to extend each straight line representing
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Figure 6.10 Graphic layout of
a plate-cam profile with a
reciprocating flat-face follower.

Cam rotation

a location of the follower face to form a series of triangles. If these triangles are lightly
shaded, as suggested in the illustration, it may be easier to draw the cam profile inside
all the shaded triangles and tangent to the inner sides of the triangles. Note that the cam
profile need not pass through points 0, 1, 2, 3, and so on, constructed from the displacement
diagram.

Figure 6.11 shows the layout of the profile of a plate cam with an oscillating roller
follower. In this case, to develop the cam profile, we must rotate the fixed pivot center of the
follower opposite to the direction of cam rotation. To perform this inversion, first, a circle is
drawn about the cam-shaft center through the fixed pivot of the follower. This circle is then
divided and given station numbers to correspond to divisions on the displacement diagram.
Next, arcs are drawn about each of these centers, all with equal radii corresponding to the
length of the follower.

In the case of an oscillating follower, the ordinate values Y—Y( of the displacement
diagram represent angular movements of the follower. If the ordinate scale of the
displacement diagram is properly chosen initially, however, and if the total lift of the
follower is a reasonably small angle, then ordinate distances from the displacement
diagram at each station can be transferred directly to the corresponding arc traveled by the
roller center using dividers and measuring positive outward along the arc from the prime
circle to locate the trace point for each station. Finally, a circle representing the roller
location is drawn with its center at the trace point for each station, and the cam profile is
constructed as a smooth curve tangent to each of these roller locations.

From the examples presented in this section, it should be clear that each different
type of cam-and-follower system requires its own graphic method of construction to
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Cam rotation

Figure 6.11 Graphic layout of a plate-cam profile with an oscillating roller follower.

determine the cam profile from the displacement diagram. The examples presented here
are not intended to be exhaustive of those possible, but they illustrate the general approach.
They also illustrate and reinforce the discussion of the previous section; it is now clear
that much of the detailed shape of the cam itself results directly from the displacement
diagram. Although different types of cams and followers have different shapes for the
same displacement diagram, once a few parameters are chosen, such as the prime-circle
radius, which determines the size of a cam, the remainder of its shape results directly from
the motion requirements specified in the displacement diagram.

6.5 KINEMATIC COEFFICIENTS OF FOLLOWER

We have seen that, regardless of the type of cam or the type of follower, the displacement
diagram is plotted with the cam input angle, @, as the abscissa and the follower output
displacement, Y—Yj, as the ordinate. This diagram is made up of a number of segments.
In each segment, the abscissa is designated as 6 and the ordinate as y. The displacement
diagram is, therefore, a graph representing some mathematical function relating the input,
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®, and output, Y, motions of the cam system. In general terms, one segment of this
relationship is given by Eq. (6.1):

y=y(@©).

Additional graphs can be plotted representing the derivatives of y with respect to
the input 6—that is, the kinematic coefficients of the follower. The first-order kinematic
coefficient of a segment is denoted

‘=2
Y O) =~ (62)

and represents the slope of the displacement diagram at the input position, 6, in the
segment. The combined graph of first-order kinematic coefficients of all segments,
although it may seem to be of little practical value, is a measure of the “steepness” of
the displacement diagram throughout the cycle. We will find later that this is closely
related to the mechanical advantage of the cam system and manifests itself in such
things as the pressure angle (Sec. 6.10). If we consider a wedge cam (Fig. 6.1b) with a
knife-edge follower (Fig. 6.2a), the displacement diagram itself is of the same shape as
the corresponding cam. In such a case, we can visualize that difficulties will occur if any
segment of the cam is too steep—that is, if the first-order kinematic coefficient y" of any
segment has too high a value.

The second-order kinematic coefficient (that is, the second derivative of y with respect
to input variable ) of each segment is also significant. The second-order kinematic
coefficient within a segment is denoted

d2
Y (0) = # 6.3)

Although it is not as easy to visualize the reason, the second-order kinematic coefficient
is very closely related to the curvature of the cam at locations along its profile. Recall that
curvature is the reciprocal of the radius of curvature, [Sec. 4.1, Eq. (e)]. Therefore, if y”
becomes large, the radius of curvature becomes small. In particular, if the second-order
kinematic coefficient becomes infinite, then the radius of curvature becomes zero; that is,
the cam profile at such a position becomes pointed. This would be a highly unsatisfactory
condition from the point of view of contact stress between the cam and the follower, and
would very quickly cause surface damage.
The third-order kinematic coefficient of a segment, denoted

&3y
"O) = —=, 6.4
¥ (0) === (6.4)
can also be plotted if desired. Although it is not easy to describe geometrically, this
demonstrates the rate of change of y” with respect to input variable 6. We will see that
the third-order kinematic coefficient can also be controlled when choosing the detailed
shape of the displacement diagram.



6.5 KINEMATIC COEFFICIENTS OF FOLLOWER 309

EXAMPLE 6.1

Derive equations to describe segments of a displacement diagram of a plate cam that rises
with parabolic motion from a dwell to another dwell such that the total lift is L and the total
cam angle is . Plot these segments of the displacement diagram and the first-, second-,
and third-order kinematic coefficients with respect to input variable 6. The abscissa of
each segment graph should be normalized so that the ratio 6/ ranges from 6 /8 = 0 at the
left boundary to 6/ =1 at the right boundary of the segment.

SOLUTION

As shown in Fig. 6.5a, two parabolic segments are required, meeting at a common tangent
taken here at midrange. For the first segment of the motion, we choose the general equation
of a parabola; that is,

y=A0%+BH +C. 1)

The first three derivatives of Eq. (1), with respect to input variable 6, are

y =240 + B, )
y' =24, (3)
y/// -0 4)

To properly match the position and slope with those of the preceding dwell, at § =0
we must have y(0) = y'(0) = 0. Thus, Egs. (1) and (2) require that B = C = 0. Looking
next at the inflection point, at 6 = §/2, we require y = L/2. Substituting these conditions
into Eq. (1) and rearranging gives

2L
A= p
Therefore, the displacement equation for the first segment of the parabolic motion
becomes
0\ 2
y=2L (E) . (6.5a)

Differentiating this equation with respect to input variable 6, the first-, second-, and
third-order kinematic coefficients, respectively, are

, 4L (6
-4(3)
4L
y'= p, (6.5¢)
y" =0. (6.5d)

The maximum value for the first-order kinematic coefficient (that is, the maximum slope
of y) occurs at the midpoint, where 6 = /2. Substituting this value into Eq. (6.5b), the
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maximum value for the first-order kinematic coefficient is
, 2L
Ymax = F (5)

For the second segment of the parabolic motion, we return to the general equations

(1) through (4) for a parabola. Substituting the conditions that y=L and y =0 at 0 = 8
into Egs. (1) and (2) gives

L=AB>+BB+C, (6)

0=2AB+B. @)

Since the slope must match that of the first parabola at 0 = /2, then from Egs. (2) and (5)
we have

2L _ 2A p +B ®)
B T2
Solving Egs. (6), (7), and (8) simultaneously gives
2L 4L
A=—-—, B=—, C=-L. ©)
B B

Substituting these constants into Eq. (1), the displacement equation for the second segment
of the parabolic motion can be written as

0 2
y:L|:1—2(1—E> } (6.6a)

0/8

- el

Figure 6.12 Displacement diagram and derivatives for full-rise parabolic motion, Egs. (6.5)
and (6.6).
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Also, substituting Egs. (9) into Egs. (2), (3), and (4), the first-, second-, and third-order
kinematic coefficients for the second segment of the parabolic motion, respectively, are

L 4L/ 6
2
AL
V' = — 57 (6.6¢)
V' =0. (6.6d)

The displacement diagram and the first-, second-, and third-order kinematic coefficients
for this example of full-rise parabolic motion are shown in Fig. 6.12.

The previous discussion relates to the kinematic coefficients of the follower motion.
These coefficients are derivatives with respect to the input variable, 0, and relate to the
geometry of the cam system. Let us now consider the derivatives of the follower motion
with respect to time. First, we assume that the time variation of the input motion, ® (¢),
and, therefore, 6(f), is known. The angular velocity, w = df/dt, the angular acceleration,
o = d*0/dr?, and the next derivative (often called angular jerk or second angular
acceleration), & = 430 / dr3, are all assumed to be known. Usually, a plate cam is driven by
a constant-speed input shaft. In this case, w is a known constant, 6 = wt, and « = & = 0.
During start-up of the cam system, however, this is not the case, and we will consider the
more general situation first.

From the general equation of the displacement diagram, for chosen segment number
k, we can write from Egs. (a) and (b) in Sec. 6.3

y=Y—Yi=y@®) and =6 —0r=0(). 6.7)

Therefore, we can differentiate to find the time derivatives of the follower motion. The
velocity of the follower, for example, is given by

. dy (dy\ (df
Y=a " \a )\ 4 )
which, using the first-order kinematic coefficient, can be written as

y=yw. (6.8)

Similarly, the acceleration and the jerk (the third time derivative) of the follower can be
written, respectively, as

. d?
= dey =)'’ +ya (6.9)
and
w3
y=22 V"o 43y wa +ya. (6.10)

dr
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When the camshaft speed is constant, then « = 0, and Egs. (6.8) through (6.10)
reduce to

)')=y’a), y=y”w2, -j]-zy///w:s‘. (6.11)

For this reason, it has become somewhat common to refer to the graphs of the kinematic
coefficients y', y”, y”, such as those shown in Fig. 6.12, as the “velocity,” “acceleration,”
and “jerk” curves for a given segment of the motion. These are only appropriate names for a
constant-speed cam, and then only when scaled by w, @?, and w3, respectively.* However, it
is helpful to use these names for the kinematic coefficients when considering the physical
implications of a certain choice of displacement diagram. For example, considering the
parabolic motion of Fig. 6.12, it is intuitively meaningful to say that the “velocity” of the
follower rises linearly to a maximum at the midpoint & = /2 and then decreases linearly
to zero. The “acceleration” of the follower is zero during the initial dwell and changes
abruptly (that is, a step change) to a constant positive value upon beginning the rise. There
are two more step changes in the “acceleration” of the follower—namely, at the midpoint
and at the end of the rise. At each of these three step changes in the “acceleration” of the
follower, the “jerk” of the follower becomes infinite.

6.6 HIGH-SPEED CAMS

Continuing with our discussion of parabolic motion, let us consider briefly the implications
of the “acceleration” curve segments of Fig. 6.12 on the dynamic performance of the cam
system. Any real follower, of course, has at least some mass and, when this is multiplied
by acceleration, exerts an inertia force (Chap. 12). Therefore, the “acceleration” curve of
Fig. 6.12 can also be thought of as indicating the inertia force of the follower, which,
in turn, is felt at the follower bearings and at the contact point on the cam surface. An
“acceleration” curve with abrupt changes (that is, where the “jerk” becomes infinite), such
as those demonstrated for parabolic motion, exert abruptly changing contact stresses at the
bearings and on the cam surface, and will lead to noise, surface wear, and early failure.
Thus, it is very important in choosing and joining segments of a displacement diagram to
ensure that the first- and second-order kinematic coefficients (that is, the “velocity” and
“acceleration” curves) are continuous—meaning, that they contain no step changes.
Sometimes in low-speed cam applications compromises are made with the “velocity”
and “acceleration” relationships. It is sometimes simpler to employ a reverse procedure and
design the cam shape first, obtaining the displacement diagram as a second step. Such cams
are sometimes composed of a combination of curves, such as straight lines and circular
arcs, which are readily produced by machine tools. Two examples are the circle-arc cam
and the tangent cam shown in Fig. 6.13. The design approach is by iteration. A trial cam
is designed and its kinematic characteristics are found. The process is then repeated until a
cam with acceptable characteristics is obtained. Points A, B, C, and D of the circle-arc cam

* Accepting the word “velocity™ literally, for example, leads to consternation when it is discovered
that, for a plate cam with a reciprocating follower, the units of “velocity” y’ are length per radian.
Multiplying these units by radians per second, the units of w, gives units of length per second for y,
however.
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(b) Figure 6.13 (a) Circle-arc
cam; (b) tangent cam.

and the tangent cam are points of tangency or blending points. It is worth noting, as with
the previous parabolic-motion example, that the acceleration changes abruptly at each of
the blending points because of the instantaneous change in the radius of curvature of the
cam profile.

Although cams with discontinuous acceleration characteristics have sometimes been
accepted to save cost in low-speed applications, such cams have invariably exhibited major
difficulties at some later time when the input speed of the machine was raised to increase
the productivity of the application. For any high-speed cam application, it is extremely
important that not only the displacement and “velocity” curves, but also the “acceleration”
curve be made continuous for the entire motion cycle. No discontinuities should be allowed
within or at the junctions of different segments of a cam.

As confirmed by Eq. (6.11), the importance of continuous derivatives becomes more
serious as the cam-shaft speed is increased. The higher the speed, the greater the need for
smooth curves. At very high speeds, it might also be desirable to require that jerk, which is
related to rate of change of force, and perhaps even higher derivatives, be made continuous
as well. In many applications, however, this is not necessary.

There is no simple answer as to how high a speed one must have before considering
the application to require high-speed design techniques. The answer depends not only
on the mass of the follower, but also on the stiffness of the return spring, the materials
used, the flexibility of the follower, and many other factors [9]. Further analysis
techniques on cam dynamics are presented in Secs. 6.11 to 6.16. Still, with the methods
presented here, it is not difficult to achieve continuous displacement diagrams with
continuous derivatives. Therefore, it is recommended that this be undertaken as standard
practice. Cycloidal-motion cams, for example, are no more difficult to manufacture than
parabolic-motion cams, and there is no good reason for use of the latter. The circle-arc cam
and the tangent cam may be easy to produce, but, with modern machining methods, cutting
more complex cam shapes is not expensive and is recommended.

6.7 STANDARD CAM MOTIONS

Example 6.1 in Sec. 6.5 gave a detailed derivation of the equations for parabolic motion
and its first three derivatives [Egs. (6.5) and (6.6)]. Then, in Sec. 6.6, reasons were provided
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for avoiding the use of parabolic motion in high-speed cam systems. The purpose of this
section is to present equations for a number of standard types of displacement curve
segments that can be used to address most high-speed cam-motion requirements. The
derivations parallel those of Example 6.1 and are not presented.

The displacement equation and the first-, second-, and third-order kinematic coeffi-
cients for a full-rise simple harmonic motion segment are

Ly 70 (6.12a)
= — — S — .
y=>3 co 5 ) a
, nwL 7
Yy = —sin—, (6.12b)
2B B
2L 0
,/_Z_ﬂz cosj; , (6.12¢)
AL L (6.12d)
ST '

The displacement diagram and the first-, second-, and third-order kinematic coefficients
for a full-rise simple harmonic motion segment are shown in Fig. 6.14. Unlike parabolic
motion, simple harmonic motion exhibits no discontinuity at the inflection point, but it
does contain nonzero “accelerations” at its two boundaries.

The displacement equation and the first-, second-, and third-order kinematic coeffi-
cients for a full-rise cycloidal motion segment are

(8- Ll (6.13a)
—r(Z___ , 13a
YR\ e B
/ L<1 2”9) (6.13b)
y==(1-cos— |, .
B B
7L . 270
"= T sin (6.13¢)
B B

Figure 6.14 Displacement diagram and derivatives for a full-rise simple harmonic motion segment,
Eqgs. (6.12).
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A7%L 270
2o 22 (6.13d)

B3 B

The displacement diagram and the first-, second-, and third-order kinematic coef-
ficients for a full-rise cycloidal motion segment are shown in Fig. 6.15. Note that all
derivatives at the boundaries of this segment have zero values. Note also that this is the
only standard motion with zeroes for all derivatives at the boundaries. However, the peak
“velocity,” “acceleration,” and “jerk” values are higher than those for a simple harmonic
motion segment.

The displacement equation and the first-, second-, and third-order kinematic coeffi-
cients for a full-rise eighth-order polynomial motion segment are

0\3 0\ 9\
y=L|:6.097 55 <E> —20.78040( ) +26.731 55(/3)

"o

0 7
—13.609 65 (E) +2.560 95 :| (6.14a)
=L 18.292 65<9)2 103. 90200(9)4+160389 30<9)5
y = — . —_ —_ — . j—
B B B B
0 6 7
—95.267 55 <E> +20.487 60 (6.14b)

L 9 9 0\*
Y = —%136.585 30 <—> — 415.608 00 (—) +801.946 50 (-)
B B B B

9 5
—571.605 30 <B) +143.413 20< (6.14¢)

|
v
I—I

0/8

Figure 6.15 Displacement diagram and derivatives for a full-rise cycloidal motion segment,
Eqgs. (6.13).
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., L 0\ 0\
' =5 36.585 30 — 1 246.824 00 3 +3207.786 00 3

0\* 0\
—2 858.026 50 (E) +860.479 20 (E) } (6.14d)

The displacement diagram and the first-, second-, and third-order kinematic coefficients
for the full-rise motion segment formed from an eighth-order polynomial are shown in
Fig. 6.16. Equations (6.14) have seemingly awkward coefficients, since they have been
specially derived to have many “nice” properties [6]. Among these, Fig. 6.16 shows not
only that several of the kinematic coefficients are zero at both ends of the segment, but
also that the “acceleration” characteristics are nonsymmetric. Also, the peak values of
“acceleration” are kept as small as possible (that is, the magnitudes of the positive and
negative peak “accelerations” are equal).

The displacement diagrams of simple harmonic, cycloidal, and eighth-order polyno-
mial motions segments look quite similar at first glance. Each rises through a lift of L in
a cam rotation angle of 8, and each begins and ends with zero slope. For these reasons,
they are all referred to as full-rise motion segments. However, their “acceleration” curves
are quite different. A simple harmonic motion segment has nonzero “acceleration” at the
boundaries, a cycloidal motion segment has zero “acceleration” at both boundaries, and
an eighth-order polynomial motion segment has one zero and one nonzero “acceleration”
at its two boundaries. This variety provides the selections necessary when matching these
curves with neighboring curves of different types.

Full-return motion segments of the same three types are shown in Figs. 6.17
through 6.19.

Figure 6.16 Displacement diagram and derivatives for a full-rise eighth-order polynomial motion
segment, Egs. (6.14).
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+

.

Figure 6.17 Displacement diagram and derivatives for a full-return simple harmonic motion
segment, Egs. (6.15).

+ Figure 6.18 Displacement
y diagram and derivatives for a
full-return cycloidal motion
segment, Egs. (6.16).

e
<

+

Figure 6.19 Displacement
diagram and derivatives for a
full-return eighth-order
polynomial motion segment,
Egs. (6.17).

0/B
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The displacement equation and the first-, second-, and third-order kinematic coeffi-
cients for a full-return simple harmonic motion segment are

L 0
y=§<1+cos%>, (6.154)
, nlL . 7o
y = ——sin s (6.15b)
286 p
2L 0
/" ——ZIBZ Ccos 7; s (6.156‘)
n3L | 7wh
"ne__ MY
Yy = _2,33 sin R (6.15d)

For a full-return cycloidal motion segment, the displacement equation and the first-,
second-, and third-order kinematic coefficients are

6 1 . 26
y:L(l—E—i-Zsin%), (6.16a)
, L 270

y=——|1—-cos— |, (6.16b)
B B
2L . 276

r— T sin 2, (6.16¢)
B B
An’L 276

= T s 2 (6.164)
B B

For a full-return eighth-order polynomial motion segment, the displacement equation
and the first-, second-, and third-order kinematic coefficients are

0\ 0\
y=L|1.00000—2.634 15 <—) +2.780 55 (-)
B B
0\° 0\ 0\
+3.170 60 (—) —6.87795 (—) +2.560 95 (—) , (6.17a)
B B B
L 9 0\* AN
y =—=1526830= —13.902 75 (-) ~19.023 60 (-)
B B B B

0 \° 0\
+48.145 65 (E) —20.487 60 (E) ] (6.17b)
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., L 0\ o\
Y'=——1526830-5561100(—) —95.11800( —
B B B

o\ 0\°
+288.873 90<E> —143.413 20 (E) ] 6.17¢)
L 0\ 0\
Y= —|166.833 00 (—) +380.472 00 (-)
B B B
o \* AN
— 1 444.369 50 (3) +860.479 20 (3) ) (6.17d)

Polynomial displacement equations of much higher order, and meeting many more
conditions than those presented here are also in common use. Automated procedures for
determining the coefficients have been developed by Stoddart [8], who also indicates how
the choice of coefficients can be made to compensate for elastic deformation of the follower
system under dynamic conditions. Such cams are referred to as polydyne cams.

In addition to the full-rise and full-return motions presented earlier, it is also useful
to have a selection of standard half-rise and half-return motion segments available. These
are curves for which one segment boundary has a nonzero slope and can be used to blend
with uniform motion. The displacement diagrams and the first-, second-, and third-order
kinematic coefficients for half-rise simple harmonic motion segments, sometimes called
half-harmonic rise motion segments, are shown in Fig. 6.20. The equations corresponding
to Fig. 6.20a are

b4
y=L|{1—cos— |, (6.18a)
2B
, nwnL 7o
Yy = —sin—, (6.18b)
28 28
’L 0
=T s (6.18¢)
482 28
3
L 0
o T = sin 22 (6.18)
883 28

The displacement equation and the first-, second-, and third-order kinematic coefficients
corresponding to the half-rise simple harmonic motion segments of Fig. 6.20b are

. 1o

y:Lsmﬁ, (6.19a)
L 0

Y =""cos 2 (6.19b)
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(a) + () +
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Figure 6.20 Displacement diagram and derivatives for half-rise simple harmonic motion segments:
(a) Egs. (6.18); (b) Egs. (6.19).

2 0
V=" Zsin 2, (6.19¢)
482 " 28
m_ 7L O (6.19d)
YT T g '

The curves for half-return simple harmonic motion segments are shown in Fig. 6.21.
The equations corresponding to Fig. 6.21a are

y = Lcos ﬂ, (6.20a)
2p
, Ll . 70
y = _ﬁ sin ﬁ’ (6.20b)
/) n’L 76
V= —4—‘32 cos ﬁ’ (6.20¢)
V"' = ;[legsin % (6.20d)

The displacement equation and the first-, second-, and third-order kinematic coefficients
corresponding to the half-return simple harmonic motion segments of Fig. 6.21b are

1)
y=L{1—-sin_—], (6.21a)
2B
L 76
y = T cos n—, (6.21b)
2B 2B
L 7
=T Y 6.21¢)
482 28
3
L 76
=T os 2 (6.21d)
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Figure 6.21 Displacement diagram and derivatives for half-return simple harmonic motion
segments: (a) Eqs. (6.20); (b) Eqgs. (6.21).

In addition to the half-harmonics, half-cycloidal motion segments are also useful, since
their “accelerations” are zero at both segment boundaries. The displacement diagrams
and first-, second-, and third-order kinematic coefficients for half-rise cycloidal motion
segments are shown in Fig. 6.22. The equations corresponding to Fig. 6.22a are

0 1 0

=L (E ~Liin %) , (6.22a)
, L o

y = ,E 1—005? , (6.22b)
, nwL 76

y = FSIH?’ (6.22¢)

2
Y = ”ﬁ—f cos %9 (6.22d)

The displacement equation and the first-, second-, and third-order kinematic coefficients
corresponding to the half-rise cycloidal motion segments of Fig. 6.22b are

6 1 . 70
y=L<—+—sin—), (6.23a)
B m B
L w0
/
y=- 1+cos—>, (6.23b)
B ( B
L. 76
1= DT (6.23¢)
B B
27, 0
Y=L Zeos 2. (6.23d)
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@ , ® .

1 0/B 1 0/B

Figure 6.22 Displacement diagram and derivatives for half-rise cycloidal motion segments: (a)
Egs. (6.22); (b) Egs. (6.23).

The curves for half-return cycloidal motion segments are shown in Fig. 6.23. The
equations corresponding to Fig. 6.23a are

L<1 01 719) 6240
y= — — + —sin— |, 24a
B B
L 0
Y=g (1 —cos %) (6.24b)
” Ll . 7o
=——sin—, (6.24¢)
B2 B
"= 7L cos 70 (6.24d)
5 5 .

The displacement equation and the first-, second-, and third-order kinematic coefficients
corresponding to the half-return cycloidal motion segments of Fig. 6.23b are

o0 1 . 76
e L o™ (6.25b)
y=—= cos— |, )
B B
, nwL  7wf
' =g sin—- (6.25¢)
2
¥ = ”ﬁ—f cos %9. (6.25d)

We will see shortly how the “standard” segment graphs and equations presented in this
section can greatly reduce the analytic effort involved in designing the full displacement
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R

Figure 6.23 Displacement diagram and derivatives for half-return cycloidal motion segments: (a)
Egs. (6.24); (b) Egs. (6.25).

diagram for a high-speed cam. First, however, we will summarize several important
features of the segment graphs of Fig. 6.14 through Fig. 6.23:

D=

Each graph shows one segment of a full displacement diagram.

The total lift for that segment is labeled L for each, and the total cam travel is
labeled 8.

The abscissa of each segment graph is normalized so that the ratio 6/ ranges
from 6/ = 0 at one boundary to 6/ =1 at the other boundary of the segment.
The scales used in plotting the graphs are not depicted but are consistent for all
full-rise and full-return curves, and for all half-rise and half-return curves. Thus,
in judging the suitability of one curve compared with another, the magnitudes of
the “accelerations,” for example, can be compared. For this reason, when other
factors are equivalent, simple harmonic motion should be used where possible
and, in order to keep “accelerations” small, cycloidal motion should be avoided
except where necessary.

Finally, it should be noted that the standard cam motion segments presented in this
section do not form an exhaustive set. The set presented here is sufficient for most practical
applications. However, cams with good dynamic characteristics can also be formed from a
wide variety of other possible motion segment curves. A much more extensive set can be
found, for example, in the text by F. Y. Chen [2].

6.8 MATCHING DERIVATIVES OF DISPLACEMENT DIAGRAMS

In the previous section, a great many equations were presented that might be used to
represent different segments of the displacement diagram of a cam. In this section, we will
study how these can be joined together to form the motion specification for a complete
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cam. The procedure is one of solving for proper values of L and B for each segment so
that:

The motion requirements of the particular application are met.

The displacement diagram, as well as the diagrams of the first- and second-order
kinematic coefficients, are continuous across the boundaries of the merged
segments. The diagram of the third-order kinematic coefficient may be allowed
discontinuities if necessary, but must not become infinite; that is, the “accelera-
tion” curve may contain corners but not discontinuities (jumps).

3. The maximum magnitudes of the “velocity” and “acceleration” peaks are kept as
low as possible consistent with the first two conditions.

N =

The procedure may best be understood through an example.

EXAMPLE 6.2

A plate cam with a reciprocating follower is to be driven by a constant-speed motor at
150 rpm. The follower is to start from a dwell, accelerate to a uniform velocity of 25 in/s,
maintain this velocity for 1.25 in of rise, decelerate to the top of the lift, return, and then
dwell for 0.10 s. The total lift is to be 3.00 in. Determine the complete specifications of
the displacement diagram.

SOLUTION
The speed of the input shaft is

w = 150 rev/min = 15.707 96 rad/s. N

Using Eq. (6.8), the first-order kinematic coefficient (that is, the slope of the uniform
“velocity” segment) is

, Y 25 in/s

Y= S T 1570796 rads — 20199 infrad @)

Since this “velocity” is held constant for 1.25 in of rise, the total cam rotation in this
segment is

Ly 1.25in

— =—————— =0.785 40 rad = 45.000°. 3)
Yy 1.591 55 in/rad

pa=
Similarly, from Eq. (1), the total cam rotation during the final dwell is

B5 =0.10 s (15.707 96 rad/s) = 1.570 796 rad = 90.000°. “)

Note that several digits of accuracy higher than usual are utilized here and
are recommended as standard practice when matching cam motion derivatives. Any
inaccuracies in the L and § values result in discontinuities in the smoothness of derivatives
at the boundaries of the segments and discontinuities in force, as explained in Sec. 6.6.




6.8 MATCHING DERIVATIVES OF DISPLACEMENT DIAGRAMS 325

From these results and the given information, we can sketch the beginnings of the
displacement diagram, not necessarily working to scale, but to visualize the motion
requirements. This gives the general shapes shown by the heavy segments of the curves of
Fig. 6.24a. The lighter segments of the displacement curve are not yet accurately known,
but can be sketched by lightly outlining a smooth curve for visualization. Working from
this approximate curve, we can also sketch the general nature of the derivative curves.
From the changing slope of the displacement diagram we sketch the “velocity” curve
(Fig. 6.24b), and from the changing slope of this curve we sketch the “acceleration” curve
(Fig. 6.24c¢). At this stage, no attempt is made to produce accurate curves drawn to scale
but only to provide an idea of the desired curve shapes.

Next, using the sketches of Fig. 6.24, we compare these desired motion curves with the
various standard curve segments of Figs. 6.14 through 6.23 to choose an appropriate set of
equations for each segment of the cam. In segment AB, for example, we find that Fig. 6.22a
is the only standard-motion curve segment available with half-rise characteristics,

(a) Y-Y, Figure 6.24 (a) Displacement
D diagram, in; (b) “velocity”
Ly
f

3 C diagram, in/rad; (c)
N “acceleration” diagram,
Ly § . B in/rad?.

R

E F
LN
0 BB B3 ‘;344’\‘7.35*’{ C)

360°

v Y
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an appropriate slope curve, and the necessary zero “acceleration” at both boundaries of the
segment. Thus, we choose the half-rise cycloidal motion of Eq. (6.22) for this segment of
the cam. There are two sets of choices possible for segments CD and DE. One set might be
the choice of Fig. 6.22b matched with Fig. 6.18. However, to keep the peak “accelerations”
low and to keep the “jerk” curves as smooth as possible, we choose Fig. 6.20b matched
with Fig. 6.19. Thus, for segment CD, we will use the half-rise harmonic motion of
Eq. (6.19), and for segment DE, we choose the eighth-order polynomial return motion
of Eq. (6.17).

Choosing the curve types, however, is not sufficient to fully specify the segment
characteristics. We must also find values for the unknown parameters of the segment
equations; these are L, L3, B1, B3, and B4. We do this by equating the kinematic
coefficients at each nonzero segment boundary. For example, to match the “velocities”
at point B we must equate the first-order kinematic coefficient from Eq. (6.22b) at the AB
segment right boundary (that is, at 81 /81 = 1) with the first-order kinematic coefficient of
the BC segment; that is,

, 2L Ly 1.251in
Yp =

i _ L M 59155 injrad
B By 0.78540rad i

or
Ly = (0.795 77 in/rad) B;. (5)

Similarly, to match the “velocities” at point C, we equate the first-order kinematic
coefficient of segment BC with the first-order kinematic coefficient of Eq. (6.19b) at the
CD segment left boundary (that is, at 63/83 = 0). This gives

L, L
Ve==2 =123 _ 159155 infrad
B2 283
or
L3 = (1.013 21 in/rad) fs. ©)

To match the “accelerations” (that is, the curvatures) at point D, we equate the
second-order kinematic coefficient of Eq. (6.19¢) at the CD segment right boundary (that
is, at 63/p3 = 1) with the second-order kinematic coefficient of Eq. (6.17¢) at the DE
segment left boundary (that is, at 4/84 = 0). This gives

/7
Yp=—

2L L
T2 = 5268302,
483 B

where the total lift is Ly = 3 in. Substituting Eq. (6) and the total lift into this result and
rearranging gives

B3 =0.158 18p;. @)
Finally, for geometric compatibility, we have the constraints

Li+13=L4s— L, =1.7501n, ®)
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and, considering Egs. (3) and (4),
B1+ B3+ Ba=2m — pr — p5s = 3.926 99 rad. ©)

Solving the five equations—that is, Eqgs. (5) through (9)—simultaneously for the five
unknowns, L1, L3, B1, B3, and B4, provides the proper values for the remaining parameters.
In summary, the segment parameters are

Ly =1.1831in, pB;=1.48674rad=_85.184°,

Ly =1.2500in, B =0.785 40 rad =45.000°,

L3 =0.5669in, pB3=0.559 51 rad =32.058°,

Ly =3.0000in, B4=1.88074rad=107.758°,

Ls =0.000 0in, 5= 1.570 80 rad = 90.000°. Ans.
At this time, an accurate layout of the displacement diagram and, if desired, the kinematic

coefficients can be made to replace the sketches. The curves of Fig. 6.24 have been drawn
to scale using these values.

6.9 PLATE CAM WITH RECIPROCATING FLAT-FACE FOLLOWER

Once the displacement diagram of a cam system has been completely determined, as
described in Sec. 6.8, the layout of the actual cam shape can be attempted, as demonstrated
in Sec. 6.4. In laying out the cam, however, we find the need for a few more parameters,
depending on the type of cam and follower—for example, the prime-circle radius, any
offset distance, the roller radius, and so on. Also, as we will see, each different type
of cam-and-follower system can be subject to certain further difficulties unless these
remaining parameters are properly chosen.

In this section, we study the troubles that may be encountered in the design of a plate
cam with a reciprocating flat-face follower. The geometric parameters of such a system
that must yet be chosen are the prime-circle radius, Ry, the offset (eccentricity), €, of the
follower stem, and the width of the follower face.

Figure 6.25 shows the layout of a plate cam with a radial reciprocating flat-face
follower. In this illustration, the displacement chosen was a full-rise cycloidal motion
segment with L; = 100 mm during 8; = 90° of cam rotation, followed by a full-return
cycloidal motion segment during the remaining B> = 270° of cam rotation. The layout
procedure of Fig. 6.10 was followed to develop the cam shape, and the radius chosen for
the prime circle was Ry = 25 mm. Obviously, there is a problem, since the resulting cam
profile intersects itself. During machining, part of the cam shape is lost, and, when in
operation, the intended cycloidal motion is not fully achieved. Such a cam is said to be
undercut.

Why did undercutting occur in this example and how can it be avoided? It resulted
from attempting to achieve too great a lift in too little cam rotation with too small a cam.
One possible cure for this trouble is to decrease the desired lift, L, or to increase the cam
rotation angle, 8. However, this is not possible while still achieving the original design
specifications. Another cure is to continue with the same displacement characteristics but
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Figure 6.25 Undercut plate-cam Figure 6.26 Vectors for plate-cam profile
profile layout with reciprocating with reciprocating flat-face follower.
flat-face follower.

to increase the prime-circle radius, Ry, to avoid undercutting. This does produce a larger
cam, but with sufficient increase, it does overcome the undercutting difficulty.

The minimum value of Ry that avoids undercutting can be found by developing
an equation for the radius of curvature of the cam profile. We start by writing the
loop-closure equation using the vectors shown in Fig. 6.26. Using complex polar notation,
the loop-closure equation for a general plate cam with a reciprocating flat-face follower is

R =) 1 jpo=j(Ry+7Y) +s. (a)

Recall that the symbol ® represents the total rotation of a general plate cam.

We have carefully chosen the vectors so that point C is located at the instantaneous
center of curvature, and p is the radius of curvature corresponding to the current contact
point. The line along the u axis that separates the angles ® and ¢ is fixed on the cam and
is horizontal for the cam posture ® = 0. The value of Y is zero. The angle ® specifies the
rotation of the cam, and the u and v axes rotate with the cam.

Separating Eq. (a) into real and imaginary parts, respectively, gives

rcos(® + @) =s, (b)
rsin(@ +¢)+p=Ro+Y. (o)



6.9 PLATE CAM WITH RECIPROCATING FLAT-FACE FOLLOWER 329

Since point C is the center of curvature, the magnitudes of r, ¢, and p do not change
for a small increment in cam rotation;* that is,

drdy dp
dO  do  de
Therefore, differentiating Eq. (a) with respect to the cam rotation angle, @, gives

jre @10 =y’ + ¢, (d)

where Y =dY/d® = dy/df =y and s’ = ds/d® = ds/d6. Separating Eq. (d) into real
and imaginary parts, the first-order kinematic coefficients are

—rsin(® +¢) =/, (e)
rcos(® +¢)=y'. (]

Equating Eqgs. (b) and (f), we find the location of the trace point along the surface of
the follower as

s=Y. (6.26)

s'=y" ®

Substituting Eq. (g) into Eq. (e) and then substituting the result into Eq. (¢), the radius of
curvature of the cam profile can be written as

p=Ro+Y+y' 6.27)

We should carefully note the importance of Eq. (6.27); it states that the radius of
curvature of the cam profile can be obtained for each cam rotation angle, ®, directly
from the displacement equations, before laying out the cam profile. All that is needed
is the choice of the prime-circle radius, Rp, and values for the displacement, Y, and the
second-order kinematic coefficient, y”.

We can use Eq. (6.27) to select a value for Ry that will avoid undercutting. When
undercutting occurs, the radius of curvature of the cam profile switches sign from positive
to negative. On the verge of undercutting, the cam comes to a point, and the radius of
curvature becomes zero for some value of the cam rotation angle, ®. However, we can
choose Ry large enough that this is never the case. In fact, to avoid high contact stresses,
we may wish to ensure that p is everywhere larger than some specified value, pmin. To do
this, from Eq. (6.27), we require that

p=Ro+Y+Y" > pmin.

* The values of r, ¢, and p are not truly constant but are currently at stationary values; their higher
derivatives are nonzero.
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Since Ry and Y are always positive, the critical situation occurs at or near the posture
where the second-order kinematic coefficient, y”, has its largest negative value. Denoting
this minimum value of y” as y". and remembering that ¥’ corresponds to the same posture,
defined by cam angle ®, we have the condition

Ro > pmin —Y _y;;]in, (6.28)

which must be satisfied. This can easily be checked once the displacement equations have
been established, and an appropriate value of Ry can be chosen before the cam layout is
attempted.

Returning now to Fig. 6.26, we see that Eq. (6.26) can also be of value. This equation
states that the length of travel of the point of contact on either side of the cam rotation
center corresponds precisely to the plot of the first-order kinematic coefficient. Thus, the
minimum face width for a flat-face follower must extend at least y,,,,, to the right and —y/ .
to the left of the camshaft center to maintain contact; that is,

Face width > y/ . — . . (6.29)

EXAMPLE 6.3

Assuming that the displacement characteristics in Example 6.2 are to be achieved by
a plate cam with a reciprocating flat-face follower, determine the minimum face width
and the minimum prime-circle radius to ensure that the radius of curvature of the cam is
everywhere greater than p,,;,;, = 0.25 in.

SOLUTION

From Fig. 6.24b, the maximum “velocity” (that is, the maximum value of the first-order
kinematic coefficient) occurs in segment BC and is

L, 12500in .
=2 PP 502 invrad. 1
Ymax = g = 0,785 40 rad i W

The minimum “velocity” occurs in segment DE at approximately 6/84 = 0.5. From
Eq. (6.17b), the minimum value of the first-order kinematic coefficient is approximately

Viin &V (0/B4 =0.5) = —2.812 in/rad. )
Substituting Eqgs. (1) and (2) into Eq. (6.29), the minimum face width is
Face width > (1.592 in) — (—2.812 in) = 4.404 in. Ans.

Therefore, the follower would be positioned 1.592 in to the right and 2.812 in to the left of
the cam rotation axis, and some appropriate additional allowance may be added on each
side.
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The largest negative “acceleration” (the minimum value of the second-order kinematic
coefficient) occurs at D and can be obtained from Eq. (6.19¢) at 8/83 = 1; that is,

°L 2(0.566 9 i
Wi = 2 T ) 4468 18 infrad®.
467~ 4055951 rad)

Substituting this result and the known parameters into Eq. (6.28), the minimum
prime-circle radius is

Ry > 0.250 in — (—4.468 in) — 3.000 in = 1.718 in. Ans.

From this calculation, we would choose the actual prime-circle radius as, say, Rp =1.75 in.

We see that the eccentricity of the flat-face follower stem does not affect the geometry
of the cam. This eccentricity is usually chosen to avoid high bending stress in the follower.
Also, there may be a higher load in the follower during the working stroke, say the lift
stroke, than during the return motion. In such a case, the eccentricity may be chosen to
locate the follower stem more centrally over the contact point during the lift portion of the
motion cycle.

Looking again at Fig. 6.26, we can write another loop-closure equation; that is,

uel® +ve @D = j(Ry+Y) +,

where we recall that # and v denote the coordinates of the contact point in a coordinate
system attached to the cam. Dividing this equation by ¢/© gives

u+jv=j(Ro+Y)e ® 457
Using Eq. (6.26), the real and imaginary parts of this equation can be written as
u=(Ro+Y)sin® +y cos®, (6.30a)
v=(Rop+Y)cos® —y'sin®. (6.30b)

These two equations give the coordinates of the cam profile and provide an alternative
to the graphic layout procedure of Fig. 6.10. They can be used to generate a table
of numeric rectangular coordinate data from which the cam can be machined. Polar
coordinate equations for this same curve are

R=\/(Ry+Y)>+(y)* (6.31a)

and

/

v = % —©®—tan"! (6.31b)

Ro+7Y’



332

CAM DESIGN

6.10 PLATE CAM WITH RECIPROCATING ROLLER FOLLOWER

Figure 6.27 shows a plate cam with a reciprocating roller follower. We see that three
geometric parameters remain to be chosen after the displacement diagram is completed
and before the cam layout is finalized. These three parameters are the radius of the prime
circle, Ry, the eccentricity, €, and the radius of the roller, R,. There are also two potential
problems to be considered when choosing these parameters. One difficulty is undercutting
and the other is an excessive pressure angle.

Pressure angle is the angle between the axis of motion of the follower stem and the
line of action of the force exerted by the cam onto the roller follower—that is, the normal
to the pitch curve through the trace point. The pressure angle is labeled ¢ in Fig. 6.27. Only
the component of force along the line of motion of the follower is useful in overcoming
the output load; the perpendicular component and, therefore, the angle ¢, should be
kept low to reduce sliding friction between the follower and its guideway and to ease
bending of the follower stem. Too high a pressure angle increases the deleterious effect
of friction and may cause the translating follower to chatter or perhaps even to jam. Cam
pressure angles of up to about 30° or 35° are about the largest that can be used without
difficulties.

In Fig. 6.27, we see that the normal to the pitch curve intersects the horizontal axis at
point Io4—that is, at the instantaneous center of velocity between cam 2 and follower stem
4. Since the follower stem is translating, all points of the follower stem have velocities
equal to that of the instant center /4. This velocity must also be equal to the velocity of the
coincident point of link 2; that is,

Vi, =Y = 0Rp,0,

Figure 6.27 Vectors for plate
cam with reciprocating roller
follower.
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Dividing this equation by the angular velocity of the cam, w [Eq. (6.11)], the first-order
kinematic coefficient is

)
. — .
Y 140,

This first-order kinematic coefficient can also be expressed in terms of the eccentricity of
the follower stem and the pressure angle of the cam as

y =&+ (Yp+Y)tang, (a)

where, as shown in Fig. 6.27, the vertical distance from the cam axis to the prime circle is

Yo =/R§— 2. (b)

Substituting Eq. (b) into Eq. (a) and rearranging, the pressure angle of the cam can be
written as

/
1 y —¢

Y+ /R —¢&?

From this equation, we observe that, once the displacement equations and the first-order
kinematic coefficient have been determined, the two parameters, Ry and &, can be adjusted
to seek a suitable pressure angle. We also note that the pressure angle is continuously
changing as the cam rotates, and therefore we are particularly interested in studying its
extreme values.

Let us first consider the effect of eccentricity. From Eq. (6.32), we observe that
increasing ¢ either increases or decreases the magnitude of the numerator, depending on
the sign of the first-order kinematic coefficient y’. Thus, a small eccentricity, &, can be used
to reduce the pressure angle, ¢, during the rise motion when y’ is positive, but only at the
expense of an increased pressure angle during the return motion when y’ is negative. Still,
since the magnitudes of the forces are usually greater during rise, it is common practice to
offset the follower to take advantage of this reduction in pressure angle.

A much more significant effect can be made in reducing the pressure angle by
increasing the prime-circle radius, Rp. To study this effect, let us take the conservative
approach and assume a radial follower—that is, where there is no eccentricity. Substituting
¢ =0 into Eq. (6.32), the equation for the pressure angle reduces to

oY
¢ =tan <Y+RO). (6.33)

¢ = tan~ (6.32)

To find the extremum values of the pressure angle, it is possible to differentiate this
equation with respect to the cam rotation angle and equate it to zero, thus finding the values
of the rotation angle, ®, that yield the maximum and the minimum pressure angles. This
is a tedious process, however, and can be avoided by using the nomogram of Fig. 6.28.
This nomogram was produced by searching out on a digital computer the maximum value
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Figure 6.28 Nomogram
relating the maximum pressure
angle, ¢max, to the prime-circle
radius, Ry, lift, L, and segment
angle, B, for radial
R,/L-Cycloidal or 8th-order o reciproc.tating ro!ler-follower
polynomial motion 360 cams with full-rise or
full-return simple harmonic,
cycloidal, or eighth-order
85 polynomial motion.

-deg(ee‘$

%

max

of ¢ from Eq. (6.33) for each of the standard full-rise and full-return motion curves of
Sec. 6.7. With the nomogram, it is possible to use the known values of L and g for each
segment of the displacement diagram and to read directly the maximum pressure angle
occurring in that motion segment for a particular choice of Ry. Alternatively, a desired
maximum pressure angle can be chosen, and a corresponding minimum value of Ry can be
determined. The process is best illustrated by an example.

EXAMPLE 6.4

Assuming that the displacements determined in Example 6.2 are to be achieved by a plate
cam with a reciprocating radial roller follower, determine the minimum prime-circle radius
that ensures that the pressure angle is everywhere less than 30°.

SOLUTION

Each segment of the displacement diagram can be checked in succession using the
nomogram of Fig. 6.28.

For segment AB of Fig. 6.24, we have half-rise cycloidal motion with L; = 1.183 in
and B; = 85.184°. Since this is a half-rise curve, whereas the nomogram of Fig. 6.28 was
developed only for full-rise curves, it is necessary to double both L and 1, thus imagining
that the curve is full rise. This gives L] = 2.366 in and ] ~ 170°. Next, connecting a
straight line from B* = 170° to ¢max = 30°, we read from the upper scale on the central
axis of the nomogram a value of R /L’]“ ~ (.75, from which

Ro >0.75(2.366 in) = 1.775 in. (1)

The segment BC need not be checked, since the maximum pressure angle for this
segment occurs at boundary B and cannot be greater than that for segment AB.

Segment CD has half-rise harmonic motion with L3 = 0.567 in and B3 = 32.058°.
Again, since this is a half-rise curve, these values are doubled, and L§ = 1.134 in and
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B3 ~ 64° are used instead. Then, from the nomogram, we find Rjj/L} ~ 2.15, from which
Ry > 2.15(1.134 in) = 2.438 in.

However, here we must be careful. This value is the radius of a fictitious prime circle for
which the horizontal axis of our fictional doubled “full-rise” harmonic curve would have
y = 0. This is not the Ry we seek, since our imagined full-harmonic curve has a nonzero
Y* value at its base. Referring to Fig. 6.24, we find

Y3 =Yp—2L3=3.000— 1.134 = 1.866 in.
The appropriate value of Ry for this segment is
Ro>2.438 —1.866 =0.572 in. 2)

Next we check segment DE, which has eighth-order polynomial motion with
L4 = 3.000 in and B4 = 107.758°. Since this is a full-return motion curve with y = 0 at
its base, no adjustments are necessary for use of the nomogram. We find Ry/L4 ~ 1.3 and

Ro > 1.3(3.000 in) = 3.900 in. 3)

To ensure that the pressure angle does not exceed 30° throughout all segments of the
cam motion, we must chose the prime-circle radius to be at least as large as the maximum
of these discovered values, Egs. (1), (2), and (3). Remembering the inability to read the
nomogram with great precision, we might choose a yet larger value, such as

Ry =4.000 in. Ans.

Once a final value has been chosen, we can use Fig. 6.28 again to find the actual
maximum pressure angle in each segment of the motion:

Ry  4.000
AB: —=-—""—"=1.691 B*=170° =18°,
L¥ ~ 2.366 Ai Pmax
CD: Ry _ 5866 =5173 Br=64° (pax = 14°
Ty L34 T 3 e
Ry  4.000
DE: — =_—— =1.333 =108° =29°.
La 3.000 ﬂ4 ®Pmax

Although the prime circle has been sized to give a satisfactory pressure angle, the
follower may still not complete the desired motion. It is still possible that the curvature of
the pitch curve is too sharp and that the cam profile may be undercut. Figure 6.29a shows
a portion of a cam pitch curve and two cam profiles generated by two different-size rollers.
It is clear from Fig. 6.29a that a small roller moving on the given pitch curve generates a
satisfactory cam profile. The cam profile generated by the larger roller, however, intersects
itself and is said to be undercut. The result, after machining, is a pointed cam that does
not produce the desired motion. Still, if the prime circle and thus the cam size is increased
enough, even the larger roller generates a cam profile that operates satisfactorily.
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Figure 6.29 (a) Undercut; (b) pointed cam profile.

In Fig. 6.29b, we see that the cam profile becomes pointed when the roller radius, R, is
equal to the magnitude™® of the radius of curvature of the pitch curve. Therefore, to achieve
some chosen minimum size, p*, for the radius of curvature of the cam profile, the radius
of curvature of the pitch curve must be of greater magnitude than this value by the radius
of the roller; that is,

lol = p* +Ry. (c)

Recall Sec. 4.17, where the radius of curvature of a point trajectory was given by Eq. (4.56).

In concept, it is possible to search out the minimum value |p|min for a particular
choice of the displacement equation, Y, and a particular prime-circle radius, Ry. However,
since it would be burdensome to perform such a search for each new cam design, the
minimum-size radius of curvature (normalized with respect to Rp) has been sought out by
a digital computer program for each of the standard cam motions of Sec. 6.7. The results
are presented graphically in Fig. 6.30 through Fig. 6.34. Each of these figures shows a
graph of (|p|min + R;)/Ro versus B for one type of standard-motion curve with various
ratios of Ry/L. Since we have already chosen the displacement equations and have found
a suitable value of Ry, each segment of the cam can now be checked to find its minimum
radius of curvature.

Saving even more effort, it is not necessary to check those segments of the cam where
the second-order kinematic coefficient y” remains positive throughout the segment, such
as the half-rise motions of Egs. (6.18) and (6.22) or the half-return motions of Eqs. (6.21)
and (6.25). Assuming that the “acceleration” curve is continuous, the minimum radius of
curvature of the cam cannot occur in these segments. For each of these segments,

[0l min = Ro — R, (6.34)

* Remember that radius of curvature can have either a positive or a negative value (Sec. 4.17).
However, here we are only concerned with its size—that is, its absolute value.
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Figure 6.30 Minimum radius of curvature of radial reciprocating roller follower cams with full-rise
or full-return simple harmonic motion, Egs. (6.12) or (6.15). (From [3].)
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Figure 6.31 Minimum radius of curvature of radial reciprocating roller follower cams with full-rise
or full-return cycloidal motion, Egs. (6.13) or (6.16). (From [3].)
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Figure 6.32 Minimum radius of curvature of radial reciprocating roller follower cams with full-rise
or full-return eighth-order polynomial motion, Egs. (6.14) or (6.17). (From [3].)
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Figure 6.33 Minimum radius of curvature of radial reciprocating roller follower cams with

half-harmonic motion, Eqgs. (6.19) or (6.20). (From [3].)
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Figure 6.34 Minimum radius of curvature of radial reciprocating roller follower cams with
half-cycloidal motion, Egs. (6.23) or (6.24). (From [3].)
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EXAMPLE 6.5

Assuming that the displacement characteristics of Example 6.2 are to be achieved by a
plate cam with a reciprocating roller follower, determine the minimum radius of curvature
of the cam profile if a prime-circle radius of Ry =4.000 in (from Example 6.4) and a roller
radius of R, = 0.500 in are used.

SOLUTION
For the segment AB of Fig. 6.24, we find from Eq. (6.34) that
[0 min = Ro — R, =4.000 in — 0.500 in = 3.500 in. (1)

For the segment CD, we have half-harmonic rise motion with L3 = 0.566 9 in and
B3 =32.058°, from which we find

R; _4.000in+(L; +Ly) 6433 in

= — = 11.346,
13 L3 0.567 in

where RS was adjusted by Y3 = (L1 + L), since the curves of Fig. 6.33 were plotted for
the condition where Y = 0 at the base of each motion segment. Now, using Fig. 6.33b, we
find (|o|min + Rr)/RS ~ 0.66. Therefore,

|01 min & 0.66R; — R, = 0.66 (6.433 in) — 0.500 in = 3.746 in, 2)

where, again, the adjusted value of RS is used.

For the segment DE, we have eighth-order polynomial motion with L4 = 3.000 0 in
and B4 = 107.758°, from which Ry/Ls = 1.33. Using Fig. 6.32a, we find (|0|min +
R,)/Rp =~ 0.80, and

1ol & 0.80Ro — Ry = 0.80 (4.000 in) — 0.500 in = 2.700 in. 3)

Choosing the smallest value among Egs. (1), (2), and (3), the minimum size of the
radius of curvature of the entire cam profile is

[0l min = 2-700 in. Ans.

To machine the cam to the proper shape, we need the coordinates of the cam surface
in the rotating uv coordinate system attached to the cam. The rectangular coordinates of
the follower center (the pitch curve) of a plate cam with a reciprocating roller follower in
the rotating uv coordinate system are

u

(,/R%—82+Y>sin@+8cos@, (d)
(,/R%—£2+Y>cos(~)—ssin(~). (e)

14
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Differentiating these with respect to the rotation of the cam, the first-order kinematic
coefficients of the follower center are

u/=y’sin@+(m-FY)COS@—SSin@, )
v/:y’cos@—<W+Y>sin@—scos@, (&)

and, differentiating again, the second-order kinematic coefficients of the follower

center are
u' =y"sin® 42y cos ® — (,/R% —e2+ Y> sin® —gcos O, (h)

V'=y"cos® —2y'sin® — (,/R%—ez—l—Y)cos(H) +esin®. (i)

We note that positive (counterclockwise) rotation of the cam causes the center point of
the follower to increment in the clockwise direction around the pitch curve of the cam in
the rotating uv coordinate system. This defines the positive sense of the unit tangent vector
@’ for the pitch curve, and the unit normal vector is then given by & =k x @’ in the rotating
coordinate system. Since this unit normal points away from the center of curvature of the
pitch curve, the radius of curvature of the pitch curve has a negative value.

To normalize Eqs. (f) and (g), we define

w =+ u? 4172 (6.35)

or

2172
w' = +|:(y’—8)2+(,/R(2)—82+Y> } , )

and with this we find the unit tangent,

i = (”—,>§+ (V—,)j, ®
1% w

. —v'\ » '\ 4

u”:( ,)i+<—,)j, 0
w w

in the rotating uv coordinate system attached to the cam.
The coordinates of the point of contact between the cam and the roller follower in the
rotating coordinate system of the cam can now be written as

and the unit normal,

/ ’
Ucam = U+ R, (V—/> and vecam =v—R, (M_/) . (6.36)
w w
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The radius of curvature of the pitch curve can be written from Eq. (4.57) as

W/3

p=—t (6.37)

uv' —vu

Remembering that the radius of curvature of the pitch curve is expected to have a negative
value, as explained earlier, the radius of curvature of the cam profile is

Pcam = P + R;. (6.38)

Note that Eq. (6.38) still yields a negative value, although smaller than Eq. (6.37), since
the unit normal vector still points away from the center of curvature of the cam.

The unit vector in the direction of motion of the follower (the Y direction), when
expressed in the rotating uv coordinate system, is

6! = sin®i+ cos @j. (m)

The pressure angle can be written from Fig. 6.27 with the aid of Eqgs. (/) and (m) as

/ !
cosd):ﬁ"-ﬁY: —(V—/> sin@—i—(bl—/) cosO. (6.39)
w w

EXAMPLE 6.6

A plate cam with a reciprocating radial roller follower is to be designed such that the
displacement of the follower is

Y=15(1 —cos2®) mm.

The prime-circle radius is to be Ry = 40 mm, and the roller is to have a radius of
R, =12 mm. The cam is to rotate counterclockwise. For the cam rotation angle ® = 30°,
determine the following:

(a) The coordinates of the point of contact between the cam and the follower in the
rotating coordinate system.

(b) The radius of curvature of the cam profile.

(c) The pressure angle of the cam.

SOLUTION

At the cam rotation angle & = 30°, the lift of the follower from the specified displacement
equation is

Y=15(1 —co0s2®) mm = 7.500 mm. (D)
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By differentiating the displacement equation with respect to the cam rotation angle, we
find

y =30sin2® mm/rad = 25.981 mm/rad, (2a)

y" = 60cos2© mm/rad® = 30.000 mm/rad>. (2b)

From Egs. (d) and (e), with offset ¢ = 0, the coordinates of the roller center in the rotating
coordinate system attached to the cam are

u=(Ro+Y)sin® = (55— 15c0s20) sin® mm = 23.750 mm, 3a)
v=(Ro+Y)cos® = (55— 15c0s2@)cos® mm =41.136 mm. (3b)

Then, from Egs. (f) and (g), the first-order kinematic coefficients of the trace point
are

' =y'sin® + (Ry+Y) cos ®

= (25.981 mm/rad) sin ® + (47.500 mm) cos ® = 54.127 mm/rad, (4a)
vV =ycos® — (Ry+Y)sin®

= (25.981 mm/rad) cos ® — (47.500 mm) sin ® = —1.250 mm/rad, (4b)

and, from Egs. (h) and (i), the second-order kinematic coefficients of the trace point are
" =y"sin® 42y cos® — (Ry+ Y) sin®
- (30.000 mm/rad2> sin® + (51.962 mm/rad) cos © — (47.500 mm) sin &

= 36.250 mm/rad?, (Sa)
V' =y"cos® —2y'sin® — (Ry+ Y) cos @

- (30.000 mm/radz) c0s & — (51.962 mm/rad) sin © — (47.500 mm) cos &
= —41.136 mm/rad?, (5b)

From Eq. (6.35) we have

W/ =+ u/2 +V/2

- +\/ (54.127 mm/rad)? + (—1.250 mm/rad)? = +54.141 mm/rad, ()

(a) Substituting Egs. (3), (4), and (6), and the given dimensions into Egs. (6.36),
the coordinates of the point of contact between the cam and the roller follower,
in the rotating coordinate system, are
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—1.250 mm/rad
54.141 mm/rad
—54.127 mm/rad
54.141 mm/rad

Ucam = 23.750 mm + (12 mm) < ) =23.413 mm, Ans.

veam = 41.136 mm + (12 mm)< ) =29.139 mm. Ans.

(b) From Eq. (6.37), using Egs. (4) through (6), the radius of curvature of the pitch
curve is

(54.141 mm/rad)?

P= (54.127 mm/rad) (—41.136 mm/rad?) — (—1.250 mm/rad) (36.250 mm/rad?)

= —72.775 mm,

and we note that this value is negative, as explained earlier. With this, Eq. (6.38)
gives the radius of curvature of the cam profile as

pcam = p + R, = —72.775 mm+ 12.0 mm = —60.775 mm, Ans.

which we note is still negative. This confirms that the center of curvature is
still further inward and that there is no undercutting at this location on the cam
profile.

(c) From Eq. (6.39), we find the pressure angle for this posture,

—1.250 mm/rad\ . o 54.127 mm/rad
cosp=—| ——— ) sin -
54.141 mm/rad 54.141 mm/rad

) cos30°; ¢ =28.68°.
Ans.

In this and the previous section, we have considered troubles that result from poor
choice of the prime-circle radius for a plate cam with a reciprocating follower. Although
the equations are different for oscillating followers or other types of cams, a similar
approach can be used to guard against undercutting [S] and severe pressure angle [4].
Similar equations can also be developed for cam profile data [7]. An extensive survey of
the cam design literature has been compiled by Chen [1]. We present one more example
here to illustrate a general approach for the design of cams that requires vector analysis in
addition to the previous equations.

EXAMPLE 6.7

A plate cam with an oscillating roller follower, shown in Fig. 6.354, is to be designed such
that the cam rotates counterclockwise, and the displacement of the follower follows the
equation

Y =0.5(1 —cos2®) rad.

The prime-circle radius is Ry = 1.500 in, the roller radius is R, = 0.500 in, the distance
between the center of the camshaft and the follower pivot is Ro,0, = r1 = 3.000 in, and
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the length of the follower arm is Rcp, = r4 = 2.598 in. For the cam rotation angle of
0r = @ =45°, determine the following:

(a) The coordinates of the point of contact between the cam and the follower.
(b) The radius of curvature of the cam profile.
(¢) The pressure angle of the cam.

SOLUTION

Let us designate the rotation of the oscillating follower by the angle 64, as shown in
Fig. 6.35b. With the specified dimensions, the angle of the follower with zero displacement
must be 64 = 150° = 57 /6 rad. Combining this with the specified displacement gives the
complete equation for the rotation of the follower:

04 =51/6—y=57/6—0.5(1 —cos2®) rad. (D

Figure 6.35 Plate cam with
oscillating roller follower.

(@)

()
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Note that a negative sign is used, since the follower displacement, as shown by Fig. 6.35b,
is in the clockwise direction.
From Fig. 6.35b, the coordinates of the trace point, C, in the fixed coordinate system
are
X=r] +r4cosby, a)
Y = r48inéby. (2b)
These coordinates can be transformed to the moving coordinate system of the cam by the
relations
u=xcos® +ysin®, (Ba)
v=—xsin® +ycosO. (3b)
Therefore, substituting Egs. (2) into Eqgs. (3), the coordinates of the trace point, C, in the
moving coordinate system are
u = (r4sinfy)sin® + (r; +rqcos6y)cos @,

v =(rgsinf4)cos® — (r; + r4cos6y)sin®,
which can be written as

u=r1cos® +rscos(6s —O), (4a)
v=—r1s8in® + rqsin(fs — O). (4b)

Differentiating Eqs. (4) with respect to the rotation angle, @, of the cam, the first- and
second-order kinematic coefficients of the trace point, C, are

W' =—risin® —ry (05— 1) sin(64 — ©), (5a)
V' =—ricos® +r4 (0 — 1) cos(04 — O), (56)
W' =—ricos® —ry(6) — 1)2005(94 —©) — 14y sin(64 — O), (6a)
V' =+risin® —ry (0 — l)zsm(&t — 0) + ) cos(04 — ©), (6b)

where the first- and second-order kinematic coefficients of the follower arm, from
Eq. (1), are

6, = —sin2O and 0; = —2¢0s20. (7)

The coordinates of the point of contact between the cam and the follower, in the
rotating coordinate system, are determined in the same way as for Egs. (6.35) and (6.36).
At the cam rotation angle ® = 45°, from Eqs. (1) and (7), we have

04 =2.118 rad = 121.35°, 6, = —1.000 rad/rad, and 6, = 0.000. ®)
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Substituting Egs. (8) into Egs. (4), the coordinates of the trace point, C, are
1= (3.000 in) cos45° + (2.598 in) cos(121.35° — 45°) = 2.734 in, (9a)
v = —(3.000 in) sin45° + (2.598 in) sin(121.35° — 45°) = 0.403 in. (9b)

Substituting Eqs. (8) and the given geometry into Egs. (5), the first-order kinematic
coefficients of the trace point are

i/ = —(3.000 in) sin45° — (2.598 in) (—2.000) sin(121.35° — 45°) = 2.928 in/rad, (10a)

V = — (3.000 in) cos45° + (2.598 in) (—2.000) cos(121.35° — 45°) = —3.347 in/rad,
(10b)

and from Eq. (6.35), we have

w = +\/ (2.928 in/rad)? + (—3.347 infrad)? = 4.447 in/rad. (11)

(a) Then, substituting Egs. (9) through (11) into Egs. (6.36), the coordinates of
the contact point between the cam and the follower in the rotating coordinate
system are

—3.347 in/rad
4.447 in/rad

2.928 in/rad
4.447 in/rad

ucam = (2.734 in) 4+ (0.5 in) ( ) =2.358in, Ans.

veam = (0.403 in) — (0.5 in) ( ) —=0.074 in. Ans.

(b) In the rotating coordinate system of the cam, the direction of motion of the
roller center, C, is defined by angle ¢ (Fig. 6.35b), which can be written as

@ =04 —90° —0 =121.35° —90° — 45° = —13.65°. 12)

Therefore, from Eq. (6.39), the pressure angle of the cam can be written as

v u
cos¢p = <——/> cos¢ + <—/) sing.
w w

Substituting Egs. (10), (11), and (12) into this equation, the pressure angle (at
the cam rotation angle 6 = 45°) is

¢ = 54.83°. Ans.

(¢) Substituting Eqs. (8) and the given geometry into Egs. (6), the second-order
kinematic coefficients of the follower center are

u” = —(3.000 in) cos45° — (2.598 in) (—2.000)> cos(121.35° — 45°)

= —4.573 in/rad?, (13a)
V' = (3.000 in) sin45° — (2.598 in) (—2.000)? sin(121.35° — 45°)

= —7.977 in/rad. (13b)
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Then, substituting Egs. (10), (11), and (13) into Eq. (6.37), the radius of
curvature of the pitch curve at this location is

B (4.447 in/rad)?
P= (2.928 in/rad)(—7.977 in/radz) — (—3.347 in/rad)(—4.573 in/radz)
=-—2.2751n.

The negative sign indicates that the unit normal vector to the pitch curve,
through the follower center, points away from the center of curvature, as
explained earlier. Therefore, from Eq. (6.38), the radius of curvature of the cam
profile is

peam = p -+ Ry = —2.275 in +0.500 in = —1.775 in. Ans.

6.11 RIGID AND ELASTIC CAM SYSTEMS

Figure 6.36a is a cross-sectional view illustrating the overhead valve arrangement in an
automobile engine. In analyzing the dynamics of this or any other cam system, we expect
to determine the contact force at the cam surface, the spring force, and the cam-shaft
torque, all for a complete rotation of the cam. In one method of analysis, all parts of the
cam-follower train, consisting of the push rod, the rocker arm, and the valve stem, together
with the cam shaft, are assumed to be rigid. If this is an accurate assumption, and if the
speed of the cam-follower train is moderate, then such an analysis usually produces quite
satisfactory results. In any event, such a rigid-body analysis should always be attempted as
the first step.

Figure 6.36 An overhead
valve arrangement for an
automotive engine.
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Sometimes the speeds are so high or the members are so elastic (perhaps because
of extreme lengths or slenderness) that an elastic-body analysis must be used. This fact
is usually discovered when troubles are encountered with the system. Such troubles are
usually evidenced by noise, chatter, unusual wear, poor product performance, or perhaps
fatigue failure of some of the parts. In other cases, laboratory investigation of the operation
of a prototype system may reveal substantial differences between the theoretical and the
observed performance.

Figure 6.36b is a mathematical model of an elastic-body cam system. Here, m3
represents the mass of the cam and a portion of the cam shaft. The motion machined into the
cam profile is the coordinate Y (®), a function of the cam-shaft angle, ®. Masses m and
my, and stiffnesses kp and k3 are lumped characteristics of the follower train. The stiffness
of the follower retaining spring is k1, and the bending stiffness of the cam shaft is k4. The
dashpots, ¢; (i =1,2,3,4, and 5), are inserted to represent the effects of friction, which, in
the analysis, may indicate either viscous damping or sliding friction or any combination
of the two. The system of Fig. 6.36b is a rather sophisticated one requiring the solution of
three simultaneous differential equations. This is not presented here; instead, we focus our
attention on simpler systems.

6.12 DYNAMICS OF AN ECCENTRIC CAM

An eccentric is the name given to a circular plate cam with the cam shaft mounted
off-center. The distance, e, between the center of the disk and the center of the shaft is
the eccentricity. Figure 6.37a shows a simple reciprocating follower eccentric cam system.
It consists of an eccentric plate cam, a flat-face follower mass, and a retaining spring of
stiffness k. The coordinate Y designates the motion of the follower, as long as the cam
remains in contact with the follower. We arbitrarily select Y = 0 at the bottom of the stroke.
Then, the kinematic quantities of interest are

Y =e—cecoswt, Y = wesin wt, and ¥ = w?ecos wt, (6.40)
where wt is the cam angle ©.

To make a rigid-body analysis, we assume no friction and construct a free-body
diagram of the follower. In Fig. 6.37b, F»3 is the cam contact force and Fy is the spring
force. In general, F»3 and Fs do not have the same line of action, so a pair of frame forces,
F13.4 and F3 p, is exerted at bearings A and B.

Before writing the equation of motion, let us investigate the spring force in more detail.
Recall that the spring stiffness, k, also called the spring rate, is defined as the amount of
force necessary to deform the spring a unit length. Thus, the units of k are usually expressed
in Newtons per meter or pounds per inch. The purpose of the spring is to keep or retain
the follower in contact with the cam. Thus, the spring should exert some force even at the
bottom of the stroke, where it is extended the most. This force, called the preload, P, is the
force exerted by the spring when ¥ = 0. Thus, P = k8, where § is the deformation through
which the spring must be compressed to assemble it.

Summing forces on the follower mass in the Y direction gives

> FY=Fy—k(Y+8) =m¥. (@)
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Figure 6.37 (a) Eccentric plate cam with flat-face follower; (b) free-body diagram of the follower;
(c) free-body diagram of the cam.

Note that the contact force F»3 can have only a positive value. Rearranging this equation
gives

mY +kY =Fy3—k§ or mY+kY =Fy —P. (b)

Then, substituting the first and third equations of Egs. (6.40) into this equation, and
rearranging, the contact force can be written as

Py = (ma)2 —k) ecosot + (ke + P). (6.41)

This equation and Fig. 6.38a demonstrate that the contact force, F»3, consists of a constant
term ke + P with a cosine wave superimposed on it. The maximum occurs at ® = 0° and
the minimum occurs at ® = 180°. The cosine, or variable, component has an amplitude
that depends upon the square of the cam-shaft speed. Thus, as the speed increases, this
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() Y, V,¥
Fay T
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(ke + P)
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Figure 6.38 (a) Plot of displacement, velocity, acceleration, and contact force for an eccentric cam
system; (b) graph of torque components and total cam-shaft torque.

term increases at a greater rate. At some speed, the contact force could become zero at or
near ® = 180°. When this happens, there is usually some impact between the cam and the
follower, resulting in clicking, rattling, or very noisy operation. In effect, the sluggishness,
or inertia, of the follower prevents it from remaining in contact with the cam. The result
is often called jump or float. The noise occurs when contact is reestablished. Of course,
the purpose of the retaining spring is to prevent this. Since the contact force consists of a
cosine wave superimposed on a constant term, all we must do to prevent jump is to move,
or elevate, the cosine wave away from the zero position. To do this we can increase the
constant term, ke + P, by increasing the preload, P, or the spring rate, k, or both.

Having learned that jump begins at coswt = —1 with zero contact force (that is,
F>3 =0), we can solve Eq. (6.41) for the jump speed. The result is

ke +P
we |2t D (6.42)
me
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Using the same procedure, we find that jump will not occur for the range of preload
P>e (ma)2 — 2k) . (6.43)

Figure 6.37c¢ is a free-body diagram of the cam. The torque, 7, applied by the shaft
onto the cam, is

T = Fh3esinwt.
Then, substituting Eq. (6.41) into this equation gives
T= [(ma)2 — k) ecoswt + (ke + P)] esinwt,
which, using a trigonometric identity, can be written as
T = e (ke + P)sinwt + 1/2¢ (mw2 _ k) sin 201, (6.44)

A plot of this equation is presented in Fig. 6.38b. Note that the torque consists
of a double-frequency component, whose amplitude is a function of the cam velocity
squared, superimposed on a single-frequency component, whose amplitude is independent
of velocity. In this example, the area of the torque-displacement diagram in the positive T
direction is the same as in the negative T direction. This means that the energy required
to drive the follower in the forward direction is recovered when the follower returns. A
flywheel, or inertia, on the cam shaft can be used to store and release this fluctuating
energy requirement. Of course, if an external load is connected in some manner to the
follower system, the energy required to drive this load will raise the torque curve in the
positive direction and increase the area in the positive loop of the T curve.

EXAMPLE 6.8

A cam-and-follower mechanism similar to Fig. 6.37a has the cam machined so that it
moves the follower to the right through a distance of 40 mm with parabolic motion in 120°
of cam rotation, dwells for 30°, then returns with parabolic motion to the starting posture in
the remaining cam angle. The spring rate is 5 kN/m, and the mechanism is assembled with
a 35-N preload. The follower mass is 18 kg. Assume no friction. (a) Without computing
numeric values, sketch approximate graphs of the displacement, the acceleration, and the
cam contact force, all versus the cam angle for the full cycle of events from & = 0° to
® =360° of cam rotation. On this graph, indicate where jump or liftoff is most likely to
begin. (b) Using the given data, at what speed would jump begin?

SOLUTION

(a) The cam contact force can be written from Eq. (a) as

F=kY+P+mY, (1)
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Figure 6.39 Plots of displacement, acceleration, and contact force.

which is composed of the term mi'/, which varies with the acceleration, the term
kY, which varies with the displacement, and the constant term, P. Figure 6.39
shows the displacement diagram of the cam motion described, along with the
acceleration, Y , and the contact force, F. Note that jump will first occur at ® =
wt = 60°, since this is the first posture where F' approaches zero.

(b) Liftoff will occur at the midpoint of the rise where (for 1 = 120°) the cam angle
is ® = B1/2 = 60° when the acceleration becomes negative. The acceleration at
this posture [Eq. (6.6¢)] is

4L ? 4(0.040m) w?
e (0.040m) S = (—0.0365 m/rad2> 2.
Bi [120° (7 rad/180°)]

Y=

Substituting this value, P =35 N, and kY = (5 000 N/m)(0.020 m) = 100 N into
Eq. (1) with F =0 gives

0=100 N+ 35 N+ (18 kg) (—0.0365 m/radz) w?.

Then, rearranging this equation gives

= 14.3 rad/s = 137 rev/min. Ans.

B 100N+35N
| (18 kg) (0.0365 m/rad?)

6.13 EFFECT OF SLIDING FRICTION

Let F,, be the force of sliding (Coulomb) friction as defined by Eq. (11.10). Since the
friction force is opposite in sense to the velocity, let us define a sign function as follows:

| +1 forZ=0
sgnZ—{ 1 forZ<0" (6.45)
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(a) . .
Y,V ¥

(b)

Fys k(Y +06)

1

Figure 6.40 Effect of sliding friction on a cam system with harmonic motion: (a) graph of
displacement, velocity, and acceleration for one motion cycle; (b) graph of force components F,,
k8, k(Y 4 8), and the resultant contact force F»3.

With this notation, Eq. (a) of Sec. 6.12 can be written as
> FY=Fy—Fysgn¥ —k(Y+8) —m¥ =0
or
Fp3 = FysgnY +k(Y +8) +mY. (6.46)

This equation is plotted for simple harmonic motion with no dwells in Fig. 6.40. By
studying both parts of this diagram, we note that F,, is positive when Y is positive, and
we see how F»3 is obtained by graphically summing the four component curves.

6.14 DYNAMICS OF DISK CAM WITH RECIPROCATING ROLLER FOLLOWER

In Chap. 11, we will analyze a cam system incorporating a reciprocating roller follower. In
this section, we present an analytic approach to a similar difficulty in which sliding friction
is also included. The geometry of such a system is shown in Fig. 6.41a. In the analysis to
follow here, the effect of follower weight on bearings B and C is neglected.
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Figure 6.41 (a) Plate cam driving a reciprocating roller-follower system; (b) free-body diagram of
the follower system.

Figure 6.41b is a free-body diagram of the follower and roller. If Y(®) is any motion
machined into the cam, and ® = wt is the cam angle, at Y = 0 the follower is at the bottom
of its stroke and so Yy = Ra0, = R+ r. Therefore,

a=Yyo+Y=R+r+7Y. (6.47)

In Fig. 6.41b, the roller contact force forms an angle, ¢, the pressure angle, with the Y axis.
Since the direction of the force F»3 is the same as the normal to the contacting surfaces,
the intersection of this line with the X axis is the common instant center of the cam and
follower. This means that the velocity of this point is the same whether it is considered as
a point on the follower or a point on the cam. Therefore,

Y = aw tang,
and so
‘Y /
tangp = — = —, (6.48)
aw a

where Y’ is the first-order kinematic coefficient of the cam motion. Note that this agrees
identically with Eq. (6.33).

In the analysis to follow, the two bearing reactions are Np and N¢, the coefficient of
sliding friction is u, and § is the precompression of the retaining spring. Summing forces
in the X and Y directions gives

> F,=—F¥+Ng—Nc=0 (a)
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and
Z}vg4 = FY; — usgn¥ (Ng +N¢) — F1a — k(Y +8) —m¥ =0. (b)
A third equation is obtained by taking moments about A:

> "My =—Np(lg—a)+ N (Ic —a) =0. (©

With the help of Eq. (6.48), these three equations can be solved for the unknowns F»3, Np,
and Nc.
First, we solve Eq. (c¢) for N¢c. This gives

l_
Ne=Ng2—¢

(d)

ZC —da ’
Now we substitute Eq. (d) into Eq. (a) and solve for the bearing reaction Np. The result is

lc —da
Fy,. (e)

N =
5 1c=1s

Substituting F§3 = F§3 tan ¢ into this equation, and using Eq. (6.48), gives

_Filc—atang  (c—a)Y

Ng = = . (6.49)
lc—1p (lc—lpya *
Next, we substitute Egs. (d) and (6.49) into the friction term of Eq. (b):
. [le+1g—2
usgn¥ (Ng +Ne) = ¥'sgn¥ [L"} F);. %)
(Ic—Ip)a
Substituting this result back into Eq. (b) and solving for F. %'3 gives
Fia+k(Y +8)+m¥
y Tt (.+l );”2’ . (6.50)
_ v/ cTrip—za
1-Y sgnY[—(lcle)a ]
For a computer or calculator solution, a simple computation for the sgn function is
Z z (6.51)
segnZ = —. .
1Z|
Finally, the cam-shaft torque is
T=—atangFy = —Y'F);. (6.52)

The equations of this section require the kinematic expressions for the appropriate rise and
return motions, developed in Sec. 6.7.
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Figure 6.42 shows the effect of follower elasticity upon the actual measured displacement
and velocity of a follower system driven by a cycloidal cam. To understand what has
happened, we must compare these diagrams with the theoretic ones earlier in the chapter.
Although the effect of elasticity is more pronounced for velocity, it is usually the variation
of the displacement, especially at the top of rise, that causes the most trouble in practical
situations. These troubles are usually evidenced by poor or unreliable product quality when
elastic systems are used in manufacturing or assembly lines, and they result in noise,
unusual wear, and fatigue failure.

A complete analysis of elastic cam systems requires a good background in vibration
analysis. To avoid the necessity for this background while still developing a basic
understanding, we use an extremely simplified cam system with a linear motion cam. It
must be observed, however, that such a cam system would never be used for an actual
high-speed application.

In Fig. 6.43a, k; is the stiffness of the retaining spring, m is the lumped mass of the
follower, and k; represents the stiffness of the follower. Since the follower is usually a rod
or a lever, k> is many times greater than k.

Spring k; is assembled with a preload. The coordinate X of the follower motion is
chosen at the equilibrium position of the mass after spring k; is assembled. Thus, k1 and k>
exert equal and opposite preload forces on the mass of the follower. Assuming no friction,
the free-body diagram of the mass is as shown in Fig. 6.43b. To determine the directions
of the forces, the coordinate X, representing the actual motion of the follower, has been
assumed to be larger than the coordinate Y, representing the theoretic follower motion

FEEEEEH A Xmax

FHHHH

Velocity (100 rev/min)

sy=>5Vlem, sy =2 V/ecm

Figure 6.42 Photograph of the oscilloscope traces of the measured displacement and velocity of
a dwell-rise-dwell-return cam-and-follower system machined for cycloidal motion. The zero axis
of the displacement diagram has been translated downward to obtain a larger diagram in the space
available.
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®  |rx
m | X>Y
k(X -Y)
(©)
Y-Y,
L
L~
0 360° O = wt

Figure 6.43 (a) Undamped model of a cam-and-follower system; (b) free-body diagram of the
follower mass; (c¢) displacement diagram.

machined into the cam. However, the same result is obtained if Y is assumed to be larger
than X.
Using Fig. 6.43b, we find the equation of motion to be

ZF:-klx—kz(x—Y)—m)'&zo (a)
or
.k 4k k
gpathay Ry (6.53)
m m

This is the differential equation for the motion of the follower. It can be solved as shown
in Chap. 13 when function Y is specified. This equation can be solved piecewise for each
cam segment; that is, the ending conditions for one segment of motion must be used as the
beginning or starting conditions for the next segment.

Let us analyze the first segment of motion using uniform motion, as shown in
Fig. 6.43c. First we use the notation

ki +k
wn =+ % (6.54)

We should not confuse w,, with the angular velocity of the cam, w. The quantity w,, is called
the undamped natural frequency. The units of w, and w are both radians per second.
Equation (6.53) can now be written as

kY

X+o’X = (6.55)
m

The solution to this equation is

kY

X =Acoswyt + Bsinw,t + = (b)
wl’l
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where, for the linear rise segment of duration S, the cam motion is

L Lot
Y=—60=——. (6.56)
B Bi
Of course Eq. (6.56) is valid only during the rise segment. We can verify Eq. (b) as the
solution by substituting it and its second derivative into Eq. (6.55).
The first derivative of Eq. (b) is

. , koY
X = —Aw, sinw,t + Bw,, cos w,t + 5 (c)
m

n

For ¢ = 0 at the beginning of the rise with X = X =0, we find from Eqgs. (b) and (c) that

kyY
A=0 and B=-— 2 5
mo;
Thus, Eq. (b) becomes
ky Y .
X= 3 Y — —sinw,t ). (6.57)
mw;, wy,

This equation is plotted in Fig. 6.44. Note that the motion consists of a negative sine
term superimposed upon a ramp representing the uniform rise. Because of the additional
compression of spring k> during the rise, the ramp term kY /ma)%, called the follower
command in Fig. 6.44, becomes less than the intended cam rise motion Y.

After the end of the rise, Eqgs. (6.55) through (6.57) are no longer valid, and a new
segment of motion, a dwell, begins. The follower response for this era is shown in Fig. 6.44,
but we will not solve for it here.

Y, X

Rise ‘ Dwell
= C on ¥ P dnleiintin elyintiiey gl
2 am motion Y.~
(3] <
g -~ Z A
a, a Follower response X
a o

AR koY

/4~ Follower command
7 mw;,
e
IR N I TR N TN N N N R NN N
0 6
Cam angle

Figure 6.44 Displacement diagram of a uniform-motion cam mechanism showing the follower
response.
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Equation (6.57) shows that the vibration amplitude Y /w, can be reduced by making
w, large, and Eq. (6.54) demonstrates that this can be done by increasing k», which means
that a very rigid follower should be used.

6.16 UNBALANCE, SPRING SURGE, AND WINDUP

Unbalance. As shown in Fig. 6.45a, a disk cam produces unbalance, since its mass is
not symmetric about the axis of rotation. This means that two sets of vibratory forces exist,
one caused by the eccentric cam mass and the other caused by the reaction of the follower
against the cam. By keeping these effects in mind during design, the engineer can do much
to guard against difficulties during operation.

Figures 6.45b and 6.45¢ show that face and cylindric cams have good balance
characteristics. For this reason, these are good choices when high-speed operation is
involved.

Spring Surge  Texts on spring design demonstrate that helical springs may themselves
vibrate because of the mass of the spring coils. When serious vibrations exist, a clear
wave motion can be seen traveling up and down the spring. This vibration within the
retaining spring, called spring surge, has been photographed with high-speed cameras, and
the results have been exhibited in slow motion. For example, poorly designed automotive
valve springs operating near their critical frequency permit the valve to open for short
intervals during the period the valve is supposed to be closed. Such conditions result in
very poor operation of the engine and rapid fatigue failure of the springs themselves.

Windup  Figure 6.38b is a plot of cam-shaft torque, illustrating that the shaft exerts
torque on the cam during a portion of the cycle and that the cam exerts torque on the shaft
during another portion of the cycle. This varying torque requirement may cause the shaft
to twist, or wind up, as the torque increases during follower rise. Also, during this period,
the angular cam velocity is slowed and so is the follower velocity. Near the end of rise, the
energy stored in the shaft by the windup is released, causing both the follower velocity and
acceleration to rise above normal values. The resulting kick may produce follower jump or
impact. This effect is most pronounced when heavy loads are being moved by the follower,
when the follower moves at high speed, and when the shaft is flexible.

In most cases, a flywheel must be employed in a cam system to provide for varying
torque requirements. Cam-shaft windup can be prevented to a large extent by mounting the
flywheel as close as possible to the cam. Mounting it a long distance from the cam may
actually make matters worse.

<k

Figure 6.45 (a) A disk cam is inherently unbalanced; (b) a face cam is usually well balanced; (c) a cylindric cam has good

balance.
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PROBLEMS

6.1

6.2

6.3

6.4

The reciprocating radial roller follower of a plate pivoted at 125 mm to the right of the cam rotation
cam is to rise 2 in with simple harmonic motion axis. The cam rotation is clockwise. Determine the
in 180° of cam rotation and return with simple maximum pressure angle.

harmonic motion in the remaining 180°. If the roller 6.5 For full-rise simple harmonic motion, write the
radius is 0.375 in and the prime-circle radius is 2 in, equations for the velocity and the jerk at the mid-
construct the displacement d1agram, the plt?h curve, point of the motion. Also, determine the acceleration
and the cam profile for clockwise cam rotation. at the beginning and the end of the motion.

A plate cam w1tl.1 a reciprocating flat-facc? follc?wer 6.6  For full-rise cycloidal motion, determine the values
has the same motion as in Prob. 6.1. The prime-circle of 6 for which the acceleration is maximum and min-
radius is 2 in, and the cam rotates counterclockwise. imum. What are the formulae for the accelerations at
Construct the .dlsplacement diagram and the cam these positions? Find the equations for the velocity
profile, offsetting the follower stem by 0.75 in in and the jerk at the midpoint of the motion.

the direction that reduces the bending of the follower

durine ri 6.7 A plate cam with a reciprocating follower is to
uring rise.

rotate clockwise at 400 rev/min. The follower is

Construct the displacement diagram and the cam to dwell for 60° of cam rotation, after which it is
profile for a plate cam with an oscillating radial to rise to a lift of 2.5 in. During 1 in of the return
flat-face follower that rises through 30° with motion, it must have a constant velocity of —40 in/s.
cycloidal motion in 150° of counterclockwise cam Recommend standard cam motions from Sec. 6.7 to
rotation, then dwells for 30°, returns with cycloidal be used for high-speed operation, and determine the

motion in 120°, and dwells for 60°. Determine corresponding lifts and cam rotation angles for each
the necessary length for the follower face, allowing segment of the cam.

5 mm clearance at the free end. The prime-circle
radius is 30 mm and the follower pivot is 120 mm
to the right.

6.8 Repeat Prob. 6.7 except with a dwell for 20° of cam
rotation.

6.9 If the cam of Prob. 6.7 is driven at constant
speed, determine the time of the dwell and the
maximum and minimum velocity and acceleration of
the follower for the cam cycle.

A plate cam with an oscillating roller follower is
to produce the same motion as in Prob. 6.3. The
prime-circle radius is 60 mm, the roller radius is 10
mm, the length of the follower is 100 mm, and it is
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A plate cam with an oscillating follower is to rise
through 20° in 60° of cam rotation, dwell for
45°, then rise through an additional 20°, return,
and dwell for 60° of cam rotation. Assuming
high-speed operation, recommend standard cam
motions from Sec. 6.7 to be used, and determine
the lifts and cam rotation angles for each segment
of the cam.

Determine the maximum velocity and acceleration
of the follower for Prob. 6.10, assuming that the
cam is driven at a constant speed of 600 rev/min.

The boundary conditions for a polynomial cam
motion are as follows: for § =0, y =0, and y/ =0,
whereas for § = B, y = L, and y’ = 0. Determine
the appropriate displacement equation and the first
three derivatives of this equation with respect to
cam rotation. Sketch the corresponding diagrams.

Determine the minimum face width using 0.1-in
allowances at each end and determine the minimum
radius of curvature for the cam of Prob. 6.2.

Determine the maximum pressure angle and the
minimum radius of curvature for the cam of
Prob. 6.1.

A radial reciprocating flat-face follower is to have
the motion described in Prob. 6.7. Determine the
minimum prime-circle radius if the radius of curva-
ture of the cam is not to be less than 0.5 in. Using
this prime-circle radius, what is the minimum
length of the follower face using allowances of 0.15
in on each side?

Graphically construct the cam profile of Prob. 6.15
for clockwise cam rotation.

A radial reciprocating roller follower is to have the
motion described in Prob. 6.7. Using a prime-circle
radius of 20 in, determine the maximum pressure
angle and the maximum roller radius that can be
used without undercutting.

Graphically construct the cam profile of Prob. 6.17
using a roller radius of 0.75 in. Cam rotation is to
be clockwise.

A plate cam rotates at 300 rev/min and drives a
reciprocating radial roller follower through a full
rise of 75 mm in 180° of cam rotation. Find
the minimum radius of the prime circle if simple
harmonic motion is used and the pressure angle is
not to exceed 25°. Find the maximum acceleration
of the follower.

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

Repeat Prob. 6.19 except that the motion is
cycloidal.

Repeat Prob. 6.19 except that the motion is
eighth-order polynomial.

Using a roller diameter of 20 mm, determine
whether the cam of Prob. 6.19 is undercut.

Equations (6.30) and (6.31) describe the profile of
a plate cam with a reciprocating flat-face follower.
If such a cam is to be cut on a milling machine
with cutter radius R., determine similar equations
for the center of the cutter.

Write computer programs for each of the displace-
ment equations of Sec. 6.7.

Write a computer program to plot the cam profile
for Prob. 6.2.

A plate cam with an offset reciprocating roller
follower has a dwell of 60° and then rises in 90° to
another dwell of 120°, after which it returns in 90°
of cam rotation. The radius of the base circle is 40
mm, the radius of the roller follower is 15 mm, and
the follower offset is 20 mm. For the rise motion
60° < ® < 150°, the equation of the displacement
(the lift) is

[%
y:40|:7 +sin9],
b4

where y is in millimeters and 6 is the cam rotation
angle in radians. (a) Find equations for the first-
and second-order kinematic coefficients of the lift,
y, for this rise motion. (b) Sketch the displacement
diagram and the first- and second-order kinematic
coefficients for the follower motion described.
Comment on the suitability of this rise motion in
the context of the other displacements specified. At
the cam rotation angle ® = 120°, determine the
following: (c¢) the location of the point of contact
between the cam and follower, expressed in the
moving Cartesian coordinate system attached to the
cam; (d) the radius of curvature of the pitch curve
and the radius of curvature of the cam surface; and
(e) the pressure angle of the cam. Is this pressure
angle acceptable?

A plate cam with an offset reciprocating roller
follower is to be designed using the input, the rise
and fall, and the output motion shown in Table
P6.27. The radius of the base circle is 30 mm, the
radius of the roller follower is 12.5 mm, and the
follower offset (eccentricity) is 15 mm.
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Table P6.27 Displacement information for plate
cam with reciprocating roller follower.

Cam Angle Rise or Fall

(©, deg) (L, mm) Follower Motion
0°-20° 0 Dwell
20°-110° +25 Full-rise simple harmonic
motion
110°-120° 0 Dwell
120°-200° +5 Full-rise cycloidal motion
200°-270° 0 Dwell
270°-360° —30  Full-return cycloidal
motion

Comment on the suitability of the motions spec-
ified. At the cam rotation angle ® = 50°, deter-
mine the following: (@) the first-, second-, and
third-order kinematic coefficients of the lift curve;
(b) the coordinates of the point of contact between
the roller follower and the cam surface, expressed
in the Cartesian coordinate system rotating with the
cam; (c¢) the radius of curvature of the pitch curve;
(d) the unit tangent and the unit normal vectors to
the pitch curve; and (e) the pressure angle of the
cam.

A plate cam with a radial reciprocating roller
follower is to be designed using the input, the rise
and fall, and the output motion shown in Table
P6.28. The base circle diameter is 3 in and the
diameter of the roller is 1 in. Displacements are
specified as follows:

Table P6.28 Displacement information for plate
cam with reciprocating roller follower.

Input ® Lift L
(deg) (in) Outputy
0°—90° 3.0 Cycloidal rise

90°—105° 0 Dwell
105°—195° -3.0 Cycloidal fall
195°-210° 0 Dwell
210°-270° 2.0 Simple harmonic rise
270°—285° 0 Dwell
285°—-345° -2.0 Simple harmonic fall
345°—-360° 0 Dwell

Plot the lift curve (displacement diagram) and the
profile of the cam. (¢) Comment on the lift curves
at appropriate positions of the cam (for example,
when the cam rotation angle is ® = 0°, ® = 45°,

6.29
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® =180°, ® =210°, ® =225°, and ® = 300°).
(b) Identity on your cam profile the location(s) and
the value(s) of the largest pressure angle. Would
this pressure angle cause difficulties for a practical
cam-and-follower system? (c) Identify on your cam
profile the location(s) of any discontinuities in
position, velocity, acceleration, and/or jerk. Are
these discontinuities acceptable (why or why not)?
(d) Identify on your cam profile any regions of
positive radius of curvature of the cam profile. Are
these regions acceptable (why or why not)? (e)
For the values given in Table P6.28, what design
changes would you suggest to improve this cam
design?

Continue using the same displacement information
and the same design parameters as in Prob. 6.28.
Use a spreadsheet to determine and plot the fol-
lowing for a complete rotation of the cam: (a) the
first-order kinematic coefficients of the follower
center; (b) the second-order kinematic coefficients
of the follower center; (c) the third-order kinematic
coefficients of the follower center; (d) the lift curve
(displacement diagram); (e) the radius of curvature
of the cam surface; and (f) the pressure angle of
the cam-and-follower system. Is the pressure angle
suitable for a practical cam-and-follower system?

The cam rotation angle, the rise and fall, and the
output motion of a disk cam with a reciprocating
roller follower are given in Table P6.30. The
diameter of the base circle of the cam is 90 mm,
the diameter of the roller follower is 30 mm, and
the follower eccentricity is 20 mm.

Table P6.30 Displacement information for plate
cam with reciprocating roller follower.

Cam angle Lift L
O (degrees) (mm) Outputy
0°—45° 0 Dwell
45°—-120° 35 Full-rise simple

harmonic motion

120°—130° 0 Dwell

130°—180° 15 Full-rise cycloidal
motion

180°—210° 0 Dwell

210°—-290° 20 Full-return simple
harmonic motion

290°—-310° 0 Dwell

310°—-360° 30 Full-return cycloidal
motion
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Sketch the displacement diagram and its first two
derivatives. At the cam rotation angle ® = 230°,
determine: (a) the first and second-order kine-
matic coefficients of the displacement diagram;
(b) the coordinates of the point of contact between
the cam and the roller follower, expressed in the
moving Cartesian coordinate system attached to
the cam; (c¢) the radius of the curvature of the
cam profile; and (d) the pressure angle of the
cam. Is this pressure angle acceptable for this
cam-and-follower system?

The cam angle, the rise and fall, and the output
motion of a disk cam with a reciprocating roller
follower are as given in Table P6.31. The diameter
of the base circle of the cam is 9.60 in, the diameter
of the roller follower is 2.40 in, and the eccentricity
(offset) of the roller follower is 2.80 in.

Table P6.31 Displacement information for plate
cam with reciprocating roller follower.

Cam angle Lift L
O (degrees) (in) Outputy
0°-5° 0 Dwell
5°—115° 2.00 Full-rise cycloidal
motion
115°—120° 0 Dwell

120°—180° 3.40 Full-rise simple
harmonic motion

Dwell

Full-return
eighth-order
polynomial motion

Dwell

Full-return simple

harmonic motion

180°—-210° 0
210°-310° 4.80

310°-325° 0
325°-360° 0.60

Sketch the displacement diagram and its first two
derivatives. At the cam rotation angle ® = 235°,
determine: (a) the first- and second-order kinematic
coefficients of the displacement diagram; (b) the
coordinates of the point of contact between the cam
and the roller follower, expressed in the rotating
Cartesian coordinate system attached to the cam;
(c) the radius of the curvature of the cam profile;
and (d) the pressure angle of the cam.

The cam angle, the rise and fall, and the output
motion of a disk cam with a reciprocating roller
follower are as given in Table P6.32. The diameter
of the base circle of the cam is 180 mm, the
diameter of the roller follower is 80 mm, and the
eccentricity of the roller follower is 40 mm.

6.33

Table P6.32 Displacement information for disk
cam and reciprocating roller follower.

Cam angle Lift L
O (degrees) (mm) Output y
0°—40° 0 Dwell
40°—100° 60 Half-rise simple

harmonic motion

100°—180° 207 Half-rise cycloidal
motion

180°—260° 0 Dwell

260°—360° 60+207  Full-return cycloidal
motion

Part I: Sketch the displacement diagram and its
first two derivatives. At the cam rotation angle
® = 85°, determine: (a) the first-, second-, and
third-order kinematic coefficients of the displace-
ment diagram; (b) the radius of curvature of the
cam surface; (c) the unit tangent and normal
vectors to the cam at the point of contact with the
follower; (d) the coordinates of the point of contact
between the cam and the follower. Express your
answers in the moving Cartesian coordinate system
attached to the cam; and (e) the pressure angle of
the cam. Part /I: Repeat the problem for the cam
angle ® = 120°.

The cam angle, the rise and fall, and the output
motion of a disk cam with a reciprocating roller
follower are as given in Table P6.33. The diameter
of the base circle of the cam is 2.80 in, the diameter
of the roller follower is 1.20 in, and the follower
eccentricity is 0.40 in.

Table P6.33 Displacement information for disk
cam and reciprocating roller follower.

Cam Angle Lift L
O (degrees) (in) Outputy
0°—-30° 0 Dwell
30°-90° 1.20 Full-rise simple
harmonic motion
90°—120° 0 Dwell
120°—180° 0.80 Full-rise cycloidal
motion
180°—210° 0 Dwell
210°-270° 0.80 Full-return cycloidal
motion
270°—-300° 0 Dwell

300°—360° 1.20 Full-return simple

harmonic motion
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Sketch the displacement diagram and its first
two derivatives. At the cam angle ® = 150°,
determine: (a) the first-, second-, and third-order
kinematic coefficients of the displacement dia-
gram; (b) the radius of the curvature of the cam
surface; (c) the unit tangent and normal vectors to
the cam at the point of contact with the follower;
(d) the coordinates of the point of contact between
the cam and the follower. Express your answers in
the moving Cartesian coordinate system attached
to the cam; and (e) the pressure angle of the cam.

The cam angle, the rise and fall, and the output
motion of a disk cam with a reciprocating roller
follower are given in Table P6.34. The diameter of
the base circle of the cam is 75 mm, the diameter
of the roller follower is 25 mm, and the follower
eccentricity is 20 mm.

Table P6.34 Displacement information for disk
cam and the reciprocating roller follower.

Cam Angle Lift L
O (degrees) (mm) Output motiony
0°—60° 0 Dwell
60°—180° 90 Full-rise cycloidal

motion

180°—240° 0 Dwell

240°—-360° 90 Full-return cycloidal
motion

Sketch the displacement diagram and its first two
derivatives. At the cam angle ® = 300°, deter-
mine: (a) the first- and second-order kinematic
coefficients of the displacement diagram; (b) the
coordinates of the point of contact between the cam
and the roller follower. Express your answers in
the moving Cartesian coordinate system attached to
the cam; (¢) the radius of the curvature of the cam
surface; and (d) the pressure angle of the cam.

The cam rotation angle, the rise and fall, and the
output motion of a disk cam with a reciprocating
roller follower are as given in Table P6.35. The
diameter of the base circle of the cam is 2.80 in,
the diameter of the roller follower is 1.20 in, and
the follower eccentricity is 0.40 in.

Sketch the displacement diagram and its first
two derivatives. At the cam rotation angle & =
230°,

6.36

6.37
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Table P6.35 Displacement information for disk
cam and the reciprocating roller follower.

Cam Angle Lift L
O (degrees) (in) Output motion y
0°-30° 0 Dwell
30°—-90° 1.20 Full-rise simple
harmonic motion
90°—120° 0 Dwell
120°—180° 0.80 Full-rise cycloidal
motion
180°—210° 0 Dwell
210°-270° 0.80 Full-return cycloidal
motion
270°—-300° 0 Dwell

300°—-360° 1.20 Full-return simple

harmonic motion

determine: (a) the first-, second-, and third-order
kinematic coefficients of the displacement dia-
gram; (b) the radius of the curvature of the cam sur-
face; (¢) the unit tangent and normal vectors to the
cam at the point of contact with the follower; and
(d) the coordinates of the point of contact between
the cam and the follower. Express your answers in
the moving Cartesian coordinate system attached
to the cam; and (e) the pressure angle of the cam.

The mass, m, is constrained to move only in
the vertical direction. The circular cam has an
eccentricity of 2 in, a speed of 20 rad/s, and a
weight of 8 1b. Neglecting friction, find the angle
® = wt at the instant the cam—follower jumps.

.

(@) Y b o
a T (b) L

Figure P6.36

In Fig. P6.36a, the mass, m, is driven up and down
by the eccentric cam and it has a weight of 10 Ib.
The cam eccentricity is 1 in. Assume no friction.
(a) Derive the equation for the contact force. (b)
Find the cam velocity, w, corresponding to the
beginning of the cam—follower jump.
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In Fig. P6.36a, the slider has a mass of 2.5 kg. The
cam is a simple eccentric and causes the slider to
rise 25 mm with no friction. At what cam speed
in revolutions per minute will the slider first lose
contact with the cam? Sketch a graph of the contact
force at this speed for 360° of cam rotation.

The cam-and-follower system in Fig. P6.36b has
k=1KkN/m, m=0.90 kg, Y =15 — 15coswt mm,
and w = 60 rad/s. The retaining spring is assembled
with a preload of 2.5 N. (a) Compute the maximum
and minimum values of the contact force. (b) If the
follower is found to jump off the cam, compute the
angle ® = wt corresponding to the beginning of
jump.

Figure P6.36b shows the model of a
cam-and-follower system. The motion machined
into the cam is to move the mass to the right
through a distance of 2 in with parabolic motion
in 150° of cam rotation, dwell for 30°, return to the
starting position with simple harmonic motion, and
dwell for the remaining 30° of cam rotation. There
is no friction or damping. The spring rate is 40
Ib/in, and the spring preload is 6 1b, corresponding
to the Y = 0 position. The weight of the mass is 36
Ib. (a) Sketch a displacement diagram showing the
follower motion for the entire 360° of cam rotation.
Without computing numeric values, superimpose
graphs of the acceleration and cam contact force
onto the same axes. Show where jump is most
likely to begin. (b) At what speed in revolutions
per minute would jump begin?

A cam-and-follower mechanism is shown in
abstract form in Fig. P6.36b. The cam is cut so that
it causes the mass to move to the right a distance
of 25 mm with harmonic motion in 150° of cam
rotation, dwell for 30°, then return to the starting
position in the remaining 180° of cam rotation, also
with harmonic motion. The spring is assembled
with a 22-N preload and it has a rate of 4.4 kN/m.
The follower mass is 17.5 kg. Compute the cam
speed in revolutions per minute at which jump
would begin.

Lever OAB is driven by a cam cut to give the roller
arise of 1 in with parabolic motion and parabolic
return with no dwells. The lever and roller are to
be assumed weightless and there is no friction.
Calculate the jump speed if / =5 in and mass B
weighs 5 Ib.

6.43

6.44

6.45

6.46

Figure P6.42

A cam-and-follower system similar to the one of
Fig. 6.41 uses a plate cam driven at a speed of
600 rev/min and employs simple harmonic rise
and parabolic return motions. The events are: rise
in 150°, dwell for 30°, and return in 180°. The
retaining spring has rate k = 14 kN/m with a pre-
compression of 12.5 mm. The follower has a mass
of 1.6 kg. The external load is related to follower
motion Y by the equation F4 = 0.325 — 10.75Y,
where Y is in meters and Fi4 is in kilonewtons.
Dimensions corresponding to Fig. 6.41 are R = 20
mm, r = 5 mm, /p = 60 mm, and /c = 90 mm.
Using a rise of L = 20 mm and assuming no
friction, plot the displacement, cam-shaft torque,
and radial component of the cam force for one
complete revolution of the cam.

Repeat Prob. 6.43 with a speed of 900 rev/min and
F14=0.110+10.75Y kN, where Y is in meters and
the coefficient of sliding friction is ; = 0.025.

A plate cam drives a reciprocating roller follower
through distance L = 1.25 in with parabolic motion
in 120° of cam rotation, dwells for 30°, and returns
with cycloidal motion in 120°, followed by a dwell
for the remaining cam angle. The external load
on the follower is Fi4 = 361b during the rise,
and is zero during the dwells and the return. In
the notation of Fig. 6.41, R =3 in, r =1 in,
Ip=061n, [c = 8 in, and k = 150 1b/in. The spring
is assembled with a preload of 37.5 1b when the
follower is at the bottom of its stroke. The weight
of the follower is 1.8 Ib and the cam velocity is 140
rad/s. Assuming no friction, plot the displacement,
the torque exerted on the cam by the shaft, and the
radial component of the contact force exerted by
the roller against the cam surface for one complete
cycle of motion.

Repeat Prob. 6.45 if friction exists with u = 0.04
and the cycloidal return takes place in 180°.



Spur Gears

Gears are machine elements used to transmit rotary motion between two shafts, usually
with a constant speed ratio. In this chapter, we will discuss the case where the axes of the
two shafts are parallel, and the teeth are straight and parallel to the axes of rotation of the
shafts; such gears are called spur gears.

7.1 TERMINOLOGY AND DEFINITIONS

A pair of spur gears in mesh is shown in Fig. 7.1. The pinion is a name given to the smaller
of the two mating gears; the larger is often called the gear or the wheel. The pair of gears,
chosen to work together, is often called a gearset.

The terminology of gear teeth is shown in Fig. 7.2, where most of the following
definitions are shown.

The pitch circle is a theoretical circle on which all calculations are based. The pitch
circles of a pair of mating gears are tangent to each other, and it is these pitch circles that
were pictured in earlier chapters as rolling against each other without slip.

The diametral pitch P is the ratio of the number of teeth on the gear to its pitch
diameter; that is,

P N 7.1
- 2R’ D
where N is the number of teeth, and R is the pitch circle radius. Note that the diametral
pitch cannot be directly measured on the gear itself. Also, note that, as the value of the
diametral pitch becomes larger, the teeth become smaller; this is shown clearly in Fig. 7.3.
The diametral pitch is used to indicate the tooth size in US customary units and usually has
units of teeth per inch. A pair of mating gears has the same diametral pitch.
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Figure 7.1 Pair of spur gears in mesh. (Courtesy of Gleason Works, Rochester, NY).

Tooth
thickness

Clearance

Clearance circle .
Dedendum circle

Figure 7.2 Gear tooth terminology.
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Figure 7.3 Tooth sizes in teeth per inch for various diametral pitches. (Courtesy of Gleason Cutting
Tools Corp., Loves Park, IL.)

The module m is the ratio of the pitch diameter of the gear to its number of teeth;
that is,

m= . (7.2)

The module is the usual unit for indicating tooth size in International System (SI) units,
and it customarily has units of millimeters per tooth. Note that the module is the reciprocal
of the diametral pitch, and the relationship can be written as

25.4 (mm/i 254
=—( .1n) =—5 mm/tooth.
P (teeth/in) P

Also note that metric gears should not be interchanged with US gears, since their standards
for tooth sizes are not the same.
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The circular pitch, p, is the distance from one tooth to the adjacent tooth, measured
along the pitch circle. Therefore, it can be determined from

p= E (7.3)
N
Circular pitch is related to the previous definitions, depending on the units, by
bid
p=T=mm. (7.4)

The addendum, a, is the radial distance from the pitch circle to the top land of each
tooth.

The dedendum, d, is the radial distance from the pitch circle to the bottom land of each
tooth.

The whole depth is the sum of the addendum and dedendum.

The clearance, c, is the amount by which the dedendum of a gear exceeds the
addendum of the mating gear.

The backlash is the amount by which the width of a tooth space exceeds the thickness
of the engaging tooth measured along the pitch circles.

7.2 FUNDAMENTAL LAW OF TOOTHED GEARING

Gear teeth mating with each other to produce rotary motion are similar to a cam and
follower. When the tooth profiles (or cam and follower profiles) are shaped to produce
a constant angular velocity ratio between the two shafts, then the two mating surfaces are
said to be conjugate. It is possible to specify an arbitrary profile for one tooth and then
to find a profile for the mating tooth so that the two surfaces are conjugate. One possible
choice for such conjugate profiles is the involute profile, which, with few exceptions, is in
universal use for gear teeth.

A single pair of mating gear teeth must be shaped such that, as they pass through their
entire period of contact, the ratio of the angular velocity of the driven gear to that of the
driving gear—that is, the first-order kinematic coefficient—must remain constant. This is
the fundamental criterion that governs the choice of the tooth profiles. If this were not true
in gearing, very serious vibration and impact problems would result, even at low speeds.

In Sec. 3.17 we learned the angular-velocity-ratio theorem, which states that the
first-order kinematic coefficient of any mechanism is inversely proportional to the
segments into which the common instant center cuts the line of centers. In Fig. 7.4, two
profiles are in contact at point 7’ let profile 2 represent the driver and profile 3 represent
the driven element. The normal to the surfaces, CD, is called the line of action. The normal
to the profiles at the point of contact, 7, intersects the line of centers 0,03 at the instant
center of velocity. In gearing, this instant center is referred to as the pitch point and usually
carries the label P.

Designating the pitch circle radii of the two gear profiles as Ry and R3, from the
angular-velocity-ratio theorem, Eq. (3.28), we see that

@ B (7.5)
w3 Ro

This equation is frequently used to define the fundamental law of gearing, which states
that as gears go through their mesh, the pitch point must remain stationary on the line of
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Figure 7.4

centers so that the speed ratio remains constant. This means that the line of action for every
new instantaneous point of contact must always pass through the stationary pitch point, P.
Thus, the problem of finding a conjugate profile for a given shape is to find a mating shape
that satisfies the fundamental law of gearing.

It should not be assumed that any shape or profile is satisfactory just because a
conjugate profile can be found. Although, theoretically, conjugate curves might be found,
the practical problems of reproducing these curves from steel gear blanks or other materials
while using existing machinery still exist. In addition, the sensitivity of the law of gearing
to small dimensional changes of the shaft center distance caused either by misalignment
or by large forces must also be considered. Finally, the tooth profile selected must be
one that can be reproduced quickly and economically in very large quantities. A major
portion of this chapter is devoted to illustrating how the involute curve profile fulfills these
requirements.

7.3 INVOLUTE PROPERTIES

An involute curve is the path generated by a tracing point on a taut cord as the cord is
unwrapped from a cylinder called the base cylinder. This is shown in Fig. 7.5, where T is
the tracing point. Note that the cord, AT, is normal to the involute at 7, and distance AT
is the instantaneous value of the radius of curvature. As the involute is generated from its
origin, Ty, to T1, the radius of curvature varies continuously; it is zero at Tjy and increases
continuously to 7. Thus, the cord is the generating line, and it is always normal to the
involute.

If the two mating tooth profiles both have the shapes of involute curves, the condition
that the pitch point, P, remain stationary is satisfied. This is shown in Fig. 7.6, where two
gear blanks with fixed centers O, and O3 are shown having base cylinders with respective
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Figure 7.5 Involute curve.

Involute curve

Base
cylinder

Figure 7.6 Conjugate involute curves. Figure 7.7 Involute action.

radii of O»A and O3B. We now imagine that a cord is wound clockwise abound the base
cylinder of gear 2, pulled taut between points A and B, and wound counterclockwise around
the base cylinder of gear 3. If the two base cylinders are now rotated in opposite directions
to keep the cord tight, a tracing point, 7, traces out the involutes CD on gear 2 and EF on
gear 3. The two involutes thus generated simultaneously by the single tracing point, 7, are
conjugate profiles.

Next imagine that the involutes of Fig. 7.6 are scribed on plates and that the plates
are cut along the scribed curves and then bolted to the respective cylinders in the same
postures. The result is shown in Fig. 7.7. The cord can now be removed, and, if gear 2 is
moved clockwise, gear 3 is caused to move counterclockwise by the camlike action of the
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two curved plates. The path of contact is line AB, formerly occupied by the cord. Since
line AB is the generating line for each involute, it is normal to both profiles at all points
of contact. Also, it always occupies the same position since it is always tangent to both
base cylinders. Therefore point P is the pitch point. Point P does not move; therefore, the
involute curves are conjugate curves and satisfy the fundamental law of gearing.

7.4 INTERCHANGEABLE GEARS; AGMA STANDARDS

A tooth system is the name given to a standard* that specifies the relationships
among addendum, dedendum, clearance, tooth thickness, and fillet radius to attain
interchangeability of gears of different tooth numbers but of the same pressure angle
and the same diametral pitch or module. We should be aware of the advantages and
disadvantages of such a tooth system so that we can choose the best gears for a given
design and have a basis for comparison if we depart from a standard tooth profile.

For a pair of spur gears to properly mesh, they must share the same pressure angle and
the same tooth size, as specified by the diametral pitch or module. The numbers of teeth
and the pitch diameters of the two gears in mesh need not match but are chosen to give the
desired speed ratio, as demonstrated in Eq. (7.5).

The sizes of the teeth used are chosen by selecting the diametral pitch, P, or module, m.
Standard cutters are generally available for the sizes listed in Table 7.1. Once the diametral
pitch or module is chosen, the remaining dimensions of the tooth are set by the standards
in Table 7.2. Tables 7.1 and 7.2 contain the standards for the spur gears most in use today,
and they include values for both ST and US customary units.

Table 7.1 Standard Gear Tooth Sizes

Standard diametral pitches P,
US customary, teeth/in

Coarse 1, Lifa, 115, 134, 2,21, 3,4, 5, 6, 8, 10, 12, 14, 16, 18
Fine 20, 24, 32, 40, 48, 64, 72, 80, 96, 120, 150, 200

Standard modules m,
SI, mm/tooth

Preferred 1,1.25,15,2,25,3,4,5,6,8, 10, 12, 16, 20, 25, 32, 40, 50
Next choice 1.125,1.375,1.75,2.25,2.75,3.5,4.5,5.5,7,9, 11, 14, 18, 22, 28, 36, 45

* Standards are defined by the American Gear Manufacturers Association (AGMA) and the
American National Standards Institute (ANSI). The AGMA standards may be quoted or extracted
in their entirety, provided that an appropriate credit line is included—for example, “Extracted from
AGMA Information Sheet—Strength of Spur, Helical, Herringbone, and Bevel Gear Teeth (AGMA
225.01) with permission of the publisher, the American Gear Manufacturers Association, 1500 King
Street, Suite 201, Alexandria, VA 22314.” These standards have been used extensively in Chaps. 7
and 8.
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Table 7.2 Standard Tooth Systems for Spur Gears

System Pressure angle, ¢ (deg) Addendum, a Dedendum, d
Full depth 20° 1/Porlm 1.25/P or 1.25m
Full depth 221° 1/Por 1m 1.25/P or 1.25m
Full depth 25° 1/Por 1m 1.25/P or 1.25m
Stub teeth 20° 0.8/P or 0.8m 1/Por1lm

Let us illustrate the design choices by an example.

EXAMPLE 7.1

Two parallel shafts, separated by a distance (commonly referred to as the center distance)
of 3.5 in, are to be connected by a gear pair so that the output shaft rotates at 40% of the
speed of the input shaft. Design a gearset to fit this situation.

SOLUTION

The center distance can be written as R, 4+ R3 = 3.5 in, and substituting the given
information into Eq. (7.5), we have w3/w> = Ry /R3 = 0.40. Then, substituting the second
equation into the first equation and rearranging, we find that R, = 1.0 in and R3 = 2.5
in. Next, we must choose the size of the teeth by picking a value for the diametral
pitch or module. From Eq. (7.1), we find the number of teeth on the two gears to be
Ny = 2PRy = 2P and N3 = 2PR3 = 5P. The choice of P or m for tooth size is often
iterative. First, we might choose a value of P = 6 teeth/in; this gives the numbers of teeth
as Np = 12 teeth and N3 = 30 teeth; if we choose P = 10 teeth/in, then we get N, = 20 teeth
and N3 = 50 teeth. At this time, either choice appears acceptable, and we choose P = 10
teeth/in. However, this choice of P (or m) must later be checked for possible undercutting,
as we will study in Sec. 7.7; for contact ratio, which we will study in Sec. 7.8; and for
strength and wear of the teeth [4].

7.5 FUNDAMENTALS OF GEAR-TOOTH ACTION

To illustrate the fundamentals, we now proceed, step by step, through the actual graphic
layout of a pair of spur gears. The dimensions used are those of Example 7.1, assuming
standard 20° full-depth involute tooth form as specified in Table 7.2. The various steps, in
the correct order, are shown in Figs. 7.8 and 7.9 and are as follows.

STEP 1 Calculate the two pitch circle radii, R, and R3, as in Example 7.1; identify O, and
O3 as the two shaft centers (Fig. 7.8); and draw the two pitch circles tangent to each other.
STEP 2 Draw the common tangent to the pitch circles perpendicular to the line of centers
and through the pitch point P (Fig. 7.8). Draw the line of action at an angle equal to the
pressure angle ¢ = 20° from the common tangent. This line of action corresponds to the
generating line discussed in Sec. 7.3; it is always normal to the involute curves and always
passes through the pitch point. It is called the line of action, since the point of contact
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R,

Pressure
line

Pressure ¢
angle ¥

Base circle

|02

| Pinion 2
120 teeth

Figure 7.8 Start of layout of a pair of spur gears.

between the gear teeth always lies on this line, the pressure line, since, assuming no friction,
the resultant tooth force acts along this line.

STEP 3 Through the centers of the two gears, draw the two perpendiculars, O2A and O3B,
to the line of action (Fig. 7.8). Draw the two base circles with radii of r» = O2A and
r3 = O3B; these correspond to the base cylinders of Sec. 7.3.

STEP 4 From Table 7.2, with P = 10 teeth/in, the addendum for both of the gears is found
to be

1 1

=—=———=0.10in.
P 10 teeth/in

Adding this to each of the pitch circle radii, draw the two addendum circles that define
the top lands of the teeth on each gear. Carefully identify and label point C where the
addendum circle of gear 3 intersects the line of action (Fig. 7.9). Similarly, identify and
label point D where the addendum circle of gear 2 intersects the line of action.
Visualizing the rotation of the two gears in the directions given, we see that contact is
not possible before point C, since the teeth of gear 3 are not of sufficient height; thus, C
is the first point of contact between the teeth. Similarly, the teeth of gear 2 are too short to
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Figure 7.9 Continued layout of the pair of spur gears.

allow further contact after reaching point D; thus, contact between a pair of mating teeth
begins at C, continues to D, and then ceases. When contact of a pair of teeth ceases at D,
one or more pairs of trailing teeth must still be in contact in the span CD and take on the
sharing of the transmitted load.

Steps 1 through 4 are critical for verifying the choice of any gear pair. We will continue
with the diagram shown in Fig. 7.9 when we check for interference, undercutting, and
contact ratio in later sections. However, to complete our visualization of gear tooth action,
let us first proceed to the construction of the complete involute tooth shapes as shown in
Fig. 7.8.

STEP 5 From Table 7.2, the dedendum for each gear is found to be

125 125

=——— =0.1251in.
P 10 teeth/in

Subtracting this from each of the pitch circle radii, draw the two dedendum circles that
define the bottom lands of the teeth on each gear (Fig. 7.9). Note that the dedendum circles
often lie quite close to the base circles; however, they have distinctly different meanings. In
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this example, the dedendum circle of gear 3 is larger than its base circle, and the dedendum
circle of pinion 2 is smaller than its base circle. However, this is not always the case.
STEP 6 Generate an involute curve on each base circle as shown for gear 3 in Fig. 7.8.
This is done by first dividing a portion of the base circle into a series of equal small parts,
Agp, A1, Ap, and so on. Next, the radial lines O3Aq, O3A1, O3A3, and so on, are constructed,
and tangents to the base circle are drawn perpendicular to each of these. The involute begins
at Ap. The second point is obtained by striking an arc, with center A; and radius ApA;, up
to the tangent line through A;. The next point is found by striking a similar arc with center
at A,, and so on. This construction is continued until the involute curve is generated far
enough to meet the addendum circle of gear 3. If the dedendum circle lies inside of the
base circle, as is true for pinion 2 of this example, then, except for the fillet, the involute
curve is extended inward to the dedendum circle by a radial line; this portion of the curve
is not involute.

STEP 7 Using cardboard or preferably a sheet of clear plastic, cut a template for the involute
curve and mark on it the center point of the corresponding gear. Note that two templates
are needed, since the involute curves are different for gears 2 and 3.

STEP 8 Calculate the circular pitch using Eq. (7.4):

T T

pP=-

= —— = 0.314 16 in/tooth.
P 10 teeth/in

This distance from one tooth to the next is now marked along the pitch circle, and
the template is used to draw the involute portion of each tooth (Fig. 7.9). The width
of a tooth and that of a tooth space are each equal to half of the circular pitch or
(0.314 16in/tooth) /2 = 0.157 08 in/tooth. These distances are marked along the pitch
circle, and the same template is turned over and used to draw the opposite sides of the
teeth. The portion of the tooth space between the clearance and the dedendum may be
used for a fillet radius. The top and bottom lands are now drawn as circular arcs along
the addendum and dedendum circles to complete the tooth profiles. The same process is
performed on the other gear using the other template.

Remember that steps 5 through 8 are not necessary for the proper design of a gearset.
They are only included here to help us to visualize the relation between real tooth shapes
and the theoretical properties of the involute curve.

Involute Rack  We may imagine a rack as a spur gear having an infinitely large pitch
diameter. Therefore, in theory, a rack is infinitely long and has an infinite number of teeth,
and its base circle is located an infinite distance from the pitch point. For involute teeth,
the curves on the sides of the teeth of a rack become straight lines making an angle with
the line of centers equal to the pressure angle. The addendum and dedendum distances are
the same as those given in Table 7.2. Figure 7.10 shows an involute rack in mesh with the
pinion of the previous example.

Base Pitch  Corresponding sides of involute teeth are parallel curves. The base pitch is
the constant and fundamental distance between these curves—that is, the distance from
one tooth to the next—measured along the common normal to the tooth profiles, which is
the line of action (Fig. 7.10). The base pitch, p,, and the circular pitch, p, are related as
follows:
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Base pitch |

Figure 7.10 Involute pinion and rack.

Pb=pcose. (7.6)

The base pitch is a much more fundamental measurement, as we will see later.

Internal Gear Figure 7.11 depicts the pinion of the preceding example in mesh with an
internal, or annular, gear. With internal contact, both centers are on the same side of the
pitch point. Thus, the locations of the addendum and dedendum circles of an internal gear
are reversed with respect to the pitch circle; the addendum circle of the internal gear lies
inside the pitch circle, whereas the dedendum circle lies outside the pitch circle. The base
circle lies inside the pitch circle as with an external gear, but is now near the addendum
circle. Otherwise, Fig. 7.11 is constructed in the same manner as was Fig. 7.9.

Pressure line

Dedendun
circle 3

Addendum
circle 3

Figure 7.11 Involute pinion and internal gear.
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7.6 MANUFACTURE OF GEAR TEETH

There are many ways of manufacturing the teeth of gears; for example, they can be made
by sand casting, shell molding, investment casting, permanent-mold casting, die casting,
or centrifugal casting. They can be formed by the powder-metallurgy process, or a single
bar of aluminum can be formed by extrusion and then sliced into gears. Gears that carry
large loads in comparison with their size are usually made of steel and are cut with either
form cutters or generating cutters. In form cutting, the cutter is of the exact shape of the
tooth space. With generating cutters, a tool having a shape different from the tooth space
is moved through several cuts relative to the gear blank to obtain the proper shape for the
teeth.

Probably the oldest method of cutting gear teeth is milling. A form milling cutter
corresponding to the shape of the tooth space, such as that shown in Fig. 7.12a, is used to
machine one tooth space at a time, as shown in Fig. 7.12b, after which the gear is indexed
through one circular pitch to the next posture. Theoretically, with this method, a different
cutter is required for each gear to be cut, since, for example, the shape of the tooth space
in a 25-tooth gear is different from the shape of the tooth space in, say, a 24-tooth gear.
Actually, the change in tooth space shape is not very large, and eight form cutters can be
used to cut any gear in the range from 12 teeth to a rack with reasonable accuracy. Of
course, a separate set of form cutters is required for each pitch.

Shaping is a highly favored method of generating gear teeth. The cutting tool may be
either a rack cutter or a pinion cutter. The operation is explained by reference to Fig. 7.13.
For shaping, the reciprocating cutter is first fed into the gear blank until the pitch circles
are tangent. Then, after each cutting stroke, the gear blank and the cutter roll slightly on
their pitch circles. When the blank and cutter have rolled by a distance equal to the circular
pitch, one tooth has been generated and the cutting continues with the next tooth until all
teeth have been cut. Shaping of an internal gear with a pinion cutter is shown in Fig. 7.14.

Figure 7.12 Manufacture of gear teeth by a form cutter: (a)) a single-tooth involute hob;
(b) machining of a single tooth space. (Courtesy of Gleason Works, Rochester, NY.)
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Gear blank rotates

N Rack cutter reciprocates in
a direction perpendicular
to this page

’ Figure 7.13 Shaping of involute teeth with a rack cutter.

Figure 7.14 Shaping of an internal gear with a pinion cutter. (Courtesy of Gleason Works,
Rochester, NY.)

Hobbing is another method of generating gear teeth, which is quite similar to shaping
them with a rack cutter. However, hobbing is done with a special tool called a hob, a
cylindric cutter with one or more helical threads quite like a screw-thread tap; the threads
have straight sides like a rack. A number of different gear hobs are displayed in Fig. 7.15.
A view of the hobbing of a gear is shown in Fig. 7.16. The hob and the gear blank are both
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Figure 7.15 A variety of involute gear hobs. (Courtesy of Gleason Works, Rochester, NY.)

Figure 7.16 The hobbing of a
gear. (Courtesy of Gleason
Works, Rochester, NY.)

rotated continuously at the proper angular velocity ratio, and the hob is fed slowly across
the face of the blank to cut the full thickness of the teeth.

Following the cutting process, grinding, lapping, shaving, and burnishing are often
used as final finishing processes when tooth profiles of very high accuracy and surface
finish are desired.
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7.7 INTERFERENCE AND UNDERCUTTING

Figure 7.17 shows the pitch circles of the same gears used for discussion in Sec. 7.5. Let
us assume that the pinion is the driver and that it is rotating clockwise.

We saw in Sec. 7.5 that for involute teeth, contact always takes place along the line of
action, AB. Contact begins at point C, where the addendum circle of the driven gear crosses
the line of action. Thus, initial contact is on the tip of the driven gear tooth and on the flank
of the pinion tooth.

As the pinion tooth drives the gear tooth, contact approaches the pitch point, P. Near
the pitch point, contact slides up the flank of the pinion tooth and down the face of the gear
tooth. At the pitch point, contact is at the pitch circles; note that P is the instant center of
velocity, and therefore the motion must be rolling with no slip at that point. Note also that
this is the only location where the motion is true rolling.

As the teeth recede from the pitch point, the point of contact continues to travel in the
same direction as before along the line of action. Contact continues to slide up the face of
the pinion tooth and down the flank of the gear tooth. The last point of contact occurs at
the tip of the pinion and the flank of the gear tooth, at the intersection, D, of the line of
action and the addendum circle of the pinion.

The approach phase of the motion is the interval between the initial contact at point
C and the pitch point, P. The angles of approach are the angles through which the two
gears rotate as the point of contact progresses from C to P. However, reflecting on the
unwrapping cord analogy of Fig. 7.6, we see that the distance CP is equal to a length

Angle of approach a, ‘ D
P—><
—

C 1
| > Angle of recess 3,

Dedendum circle

Pitch circle
/ VZ
/

OO\ .

N \\ s
\\ \\\ B /<\
o~ T - Addendum
\/\ .
Pressure 1 - o N circle
angle 7 N \ N
itial ‘ Pitch \\\ \<\—Addendum circle
Pressure \\%Pitch circle
line

) \\ Dedendum circle
Driver 2 R
0 )

Figure 7.17 Approach and recess phases of gear tooth action.
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of cord unwrapped from the base circle of the pinion during the approach phase of the
motion. Similarly, an equal amount of cord has wrapped onto the driven gear during that
same phase. Thus, the angles of approach for the pinion and the gear, in radians, are

o) = C—P and o3 = C—P (7.7)
L) 3
The recess phase of the motion is the interval during which contact progresses from
the pitch point, P, to final contact at point D. The angles of recess are the angles through
which the two gears rotate as the point of contact progresses from P to D. Again, from the
unwrapping cord analogy, we find these angles, in radians, to be

PD PD
Pfp=— and Bz=—. (7.8)

rn r3
If the teeth come into contact such that they are not conjugate, this is called interfer-
ence. Consider Fig. 7.18; shown here are two 16-tooth 141/° pressure angle gears™ with

Driven gear 3

This portion of profil /
3 is not an involute //
/
/
P /
_ \Addendum
circle 3
Pressure SO Addendum
line % — = —— \»\/ circle 2

‘ B N
N\
Interference is on flank \ \ N

of driver during approach \

This portion of
profile 2 is not
an involute

Base circle 2

)
T

Figure 7.18 Interference in gear tooth action.

|
|
‘ Driving gear 2
|

* Such gears were part of an older standard and are now obsolete. They are chosen here only to
illustrate an example of interference.
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full-depth involute teeth. The driver, gear 2, turns clockwise. As with previous figures, the
points labeled A and B indicate the points of tangency of the line of action with the two base
circles, whereas the points labeled C and D indicate the initial and final points of contact.
Note that points C and D are now outside points A and B. This indicates interference.

The interference is explained as follows. Contact begins when the tip of the driven
gear 3 tooth contacts the flank of the driving tooth. In this case, the flank of the driving
tooth first tries to make contact with the driven tooth at point C, and this occurs before the
involute portion of the driving tooth comes within range. In other words, contact occurs
before the two teeth become tangent. The actual effect is that the non-tangent tip of the
driven gear tooth interferes with and digs into the flank of the driving tooth.

In this example, a similar effect also occurs as the teeth leave contact. Contact should
end at or before point B. Since, for this example, contact does not end until point D, the
effect is for the non-tangent tip of the driving tooth to interfere with and dig into the flank
of the driven tooth.

When gear teeth are produced by a generating process, interference is automatically
eliminated, since the cutting tool removes the interfering portion of the tooth flank. This
effect is called undercutting. If undercutting is at all pronounced, the undercut tooth is
considerably weakened. Thus, the effect of eliminating interference by a generation process
is merely to substitute another problem for the original.

The importance of the problem of teeth that have been weakened by undercutting
cannot be emphasized too strongly. Of course, interference can be eliminated by using
more teeth on the gears. However, if the gears are to transmit a given amount of power,
more teeth can be used only by increasing the pitch diameter. This makes the gears larger,
which is seldom desirable. It also increases the pitch-line velocity, which makes the gears
noisier and somewhat reduces the power transmitted, although not in direct proportion. In
general, however, the use of more teeth to eliminate interference or undercutting is seldom
an acceptable solution.

Another method of reducing interference and the resulting undercutting is to employ
a larger pressure angle. The larger pressure angle creates smaller base circles, so that a
greater portion of the tooth profile has an involute shape. In effect, this means that fewer
teeth can be used; as a result, gears with a larger pressure angle are often smaller.

Of course, the use of standard gears is far less expensive than manufacturing specially
made nonstandard gears. However, as indicated in Table 7.2, gears with larger pressure
angles can be made without deviating from the standards.

One more way to eliminate interference is to use gears with shorter teeth. If the
addendum distance is reduced, then points C and D move inward. One way to do this
is to purchase standard gears and then grind the top lands of the teeth to a new addendum
distance. This, of course, makes the gears nonstandard and causes concern about repair
or replacement, but it can be effective in eliminating interference. Again, careful study of
Table 7.2 indicates that this is also possible by use of standard 20° stub tooth gears.

7.8 CONTACT RATIO

The zone of action of meshing gear teeth is shown in Fig. 7.19, where tooth contact begins
and ends at the intersections of the two addendum circles with the line of action. As always,
initial contact occurs at C, and final contact occurs at D. Tooth profiles drawn through
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Arc of approach Arc of recess e Figure 7.19
S

Interference Motion
point of driver

these points intersect the base circle at points ¢ and d. Thinking back to our analogy of the
unwrapping cord of Fig. 7.6, the linear distance CD, measured along the line of action, is
equal to the arc length cd, measured along the base circle.

Consider a situation in which the arc length cd, or distance CD, is exactly equal to the
base pitch, pp, of Eq. (7.6). This means that one tooth and its tooth space spans the entire
arc cd. In other words, when a tooth is just beginning contact at C, the tooth ahead of it is
just ending its contact at D. Therefore, during the tooth action from C to D, there is exactly
one pair of teeth in contact at all times.

Next, consider a situation for which the arc length cd, or distance CD, is greater than
the base pitch, but not much greater, say cd = 1.1p;. This means that when one pair of teeth
is just entering contact at C, the previous pair, already in contact, has not yet reached D.
Thus, for a short time, there are two pairs of teeth in contact, one in the vicinity of C, and
the other nearing D. As meshing proceeds, the previous pair reaches D and ceases contact,
leaving only a single pair of teeth in contact again, until the situation repeats itself with the
next pair of teeth.

Because of the nature of this tooth action, with one, two, or even more pairs of teeth
in contact simultaneously, it is convenient to define the term contact ratio as

CD
e (7.9)
Pb

This is a value for which the next lower integer indicates the average number of pairs of
teeth in contact. Thus, a contact ratio of m = 1.35, for example, implies that there is always
at least one tooth in contact, and there are two teeth in contact 35% of the time.

The minimum acceptable value of the contact ratio for smooth operation of meshing
gears is 1.2 < m, < 1.4, and the recommended range of the contact ratio for most spur
gearsets is m. > 1.4.

The distance CD is quite convenient to measure if we are working graphically by
making a drawing like Fig. 7.20 or Fig. 7.9. However, distances CP and PD can also be
found analytically. From triangles O3BC and O3BP, we can write

CP = \/(R3 +a)> — (R3cos$)? — R3sing. (7.10)
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Similarly, from triangles O»AD and O,AP, we have

PD = \/(Rz +a)? — (Rycos¢)? — Rysing.

The contact ratio is then obtained by substituting the sum of Egs. (7.10) and (7.11)

into Eq. (7.9).

We should note, however, that Eqgs, (7.10) and (7.11) are only valid for the conditions

where

CP <Rysing and PD <R3sing,

since proper contact cannot begin before point A or end after point B. If either of these
inequalities is not satisfied, then the gear teeth have interference and undercutting results.

7.9 VARYING CENTER DISTANCE

Figure 7.21a shows a pair of meshing gears having 20° full-depth involute teeth. Since
both sides of the teeth are in contact, the center distance Rp,p, cannot be reduced
without jamming or deforming the teeth. However, Fig. 7.215 shows the same pair of
gears, but mounted with a slightly increased distance Rp,0, between the shaft centers, as
might happen through the accumulation of tolerances of surrounding parts. Clearance, or

backlash, now exists between the teeth, as shown.
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Figure 7.21 Effect of increased center distance on the action of involute gearing; mounting the gears at (a) normal center
distance; (b) increased center distance.

When the center distance is increased, the base circles of the two gears do not change;
they are fundamental to the shapes of the gears, once manufactured. However, review of
Fig. 7.6 indicates that the same involute tooth shapes still touch as conjugate curves, and
the fundamental law of gearing is still satisfied. However, the larger center distance results
in an increase of the pressure angle and larger pitch circles passing through a new adjusted
pitch point.

In Fig. 7.21b we see that triangles O»A’P’ and O3B'P’ are still similar to each other,
although they are both modified by the change in pressure angle. Also, distances O,A’ and
O3B’ are the base circle radii and have not changed. Therefore, the ratio of the new pitch
radii, O, P" and O3 P, and the new velocity ratio remain the same as in the original design.

Another effect of increasing the center distance, observable in Fig. 7.21, is the
shortening of the path of contact. The original path of contact CD in Fig. 7.21a is shortened
to C'D' in Fig. 7.21b. The contact ratio, Eq. (7.9), is also reduced when the path of contact
C'D' is shortened. Since a contact ratio of less than unity would imply periods during which
no teeth would be in contact at all, the center distance must never be increased larger than
that corresponding to a contact ratio of unity (C'D’ = pp).

7.10 INVOLUTOMETRY

Study of the geometry of the involute curve is called involutometry. In Fig. 7.22, a base
circle with center at O is used to generate involute BC. AT is the generating line, p is
the instantaneous radius of curvature of the involute, and r is the radius to point 7 on the
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curve. If we designate the radius of the base circle Rp, line AT has the same length as the
arc distance AB and so

p=rp(x+g), (a)

where « is the angle between the radius OT and the radius to the origin of the involute OB,
and ¢ is the angle between the radius of the base circle OA and the radius OT. Since OAT
is a right triangle,

0 =rptang. (7.13)
Solving Egs. (a) and (7.13) simultaneously to eliminate p and rp, gives
a=tany — @,
which can be written
invy =tang — ¢ (7.14)

and defines the involute function. The angle ¢ in this equation is the variable involute angle,
given in radians. Once ¢ is known, inv ¢ can readily be determined from Eq. (7.14). The
inverse problem, when inv ¢ is given and ¢ is to be found, is more difficult. One approach
is to expand Eq. (7.14) in an infinite series and to employ the first several terms to obtain a
numeric approximation. Another approach is to use a root-finding technique [2, Chap. 4].
Here, we refer to Table 6 of Appendix A, in which the value of the involute function is
tabulated, and the angle ¢ can be determined directly, in degrees.
Referring again to Fig. 7.22, we see that

b
r=

- : (7.15)
cos¢

Figure 7.22
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Figure 7.23

Base circle

To illustrate the use of the relations obtained earlier, let us determine the tooth
dimensions of Fig. 7.23. Here, only the portion of the tooth extending above the base
circle has been drawn, and the thickness of the tooth, #,, at the pitch circle (point A), equal
to half of the circular pitch, is given. The problem is to determine the tooth thickness at
some other point, say point 7. The various quantities shown in Fig. 7.23 are identified as
follows:

rp = radius of the base circle;
rp = radius of the pitch circle;
r = radius at which the tooth thickness is to be determined;
t, = tooth thickness at the pitch circle;
t = tooth thickness to be determined;
¢ = pressure angle corresponding to the pitch circle radius 7,;
¢ = involute angle corresponding to point T
Bp = angular half-tooth thickness at the pitch circle; and
B = angular half-tooth thickness at point 7.

The half-tooth thicknesses at points A and 7 are

I t
> = Bprp and 3 = Br, (b)

so that

1 t
Bp=-> and B=—.

2r, 2 ©
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From these, we can write

. . 1, t
1nv<p—1nv¢=,3p—,3=§—5. (d)
)2

The tooth thickness at point 7" is obtained by solving Eq. (d) for :

1,
t=2r(i +inv¢—inv<p>. (7.16)

2rp
EXAMPLE 7.2

A gear has 22 teeth cut full depth with pressure angle ¢ = 20° and diametral pitch
P = 2 teeth/in. Find the thickness of the teeth at the base circle and at the addendum
circle.

SOLUTION

By the equations of Sec. 7.1 and Table 7.2, we find the radius of the pitch circle is
Ry, = R = N/2P = 5.500 in, the circular pitch is p = 1.571 in/tooth, the addendum is
a = 0.500 in, and the dedendum is d = 0.625 in.

From right triangle OFA in Fig. 7.23, the radius of the base circle can be
written as

rp = rpcos¢ = (5.500 in) cos 20° = 5.168 in.
The thickness of the tooth at the pitch circle is

1.571 in/tooth
g =P 2200 ) 05 5 in.
L) 2

Converting the tooth pressure angle into radians gives ¢ =20° = 0.349 066 rad. Then, the
involute function from Eq. (7.14) is

inv¢ = tan0.349 066 — 0.349 066 = 0.014 904 rad.

The involute angle at the base circle from Eq. (7.15), is ¢, = 0. Therefore, the involute
function is

inve, =0.
Substituting these results into Eq. (7.16), the tooth thickness at the base circle is

0.785 5 in

IO 0014904—0] =0.892 in.
2(5.5000n) } m

1,
1, =2n [i +inve — inV(pb:| =2(5.168 in) [
P

Ans.

The radius of the addendum circle is 7, = r, + a = 5.500 + 0.500 = 6.000 in.
Therefore, the involute pressure angle corresponding to this radius, from Eq. (7.15), is

_ 1 (T _ _1(5.1681in B o
@ = cos (r>_cos (6.000111 —30.53° = 0.532 806 rad.
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Thus, the involute function is
inve = tan0.532 806 — 0.532 806 = 0.056 887 rad.

Substituting these results into Eq. (7.16), the tooth thickness at the addendum circle is

0.785 5 in
2(5.500 in)

=0.353 in. Ans.

t
ta=2rs [21 +inveg —inv (p] — 2(6.000 in) [ +0.014 904 — 0.056 887}
p

Note that the tooth thickness at the base circle is more than double the tooth thickness at
the addendum circle.

7.11 NONSTANDARD GEAR TEETH

In this section, we will examine the effects obtained by deviating from the specified
standards and modifying such things as pressure angle, tooth depth, addendum, or center
distance. Some of these modifications do not eliminate interchangeability; all of them
are discussed with the intent of obtaining improved performance. Still, making such
modifications probably means increased cost, since modified gears are available and must
be specially machined for the particular application. Of course, it is also necessary at the
time of any future repair or design modification.

The designer is often under great pressure to produce a design using gears that are
small and yet able to transmit a large amount of power. Consider, for example, a gearset
that must have a 4:1 velocity ratio. If the smallest pinion that will carry the load has a
pitch diameter of 2 in, the mating gear has a pitch diameter of 8 in, making the overall
space required for the two gears more than 10 in. On the other hand, if the pitch diameter
of the pinion can be reduced by only !/+ in, the pitch diameter of the gear is reduced by a
full 1 in, and the overall size of the gearset is reduced by 1!/+ in. This reduction assumes
considerable importance when it is realized that the associated machine elements, such as
shafts, bearings, and enclosure, are also reduced in size.

If a tooth of a certain pitch is required to carry the load, the only method of decreasing
the pinion diameter is to use fewer teeth. However, we have already seen that problems
involving interference, undercutting, and contact ratio are encountered when the tooth
numbers are made too small. Thus, three principal reasons for employing nonstandard
gears are: (a) to eliminate undercutting, (b) to prevent interference, and (c¢) to maintain
a reasonable contact ratio. Note also that if a pair of gears is manufactured of the same
material, the pinion is the weaker and is subject to greater wear, since each of its teeth are
in contact a greater portion of the time. Therefore, any undercutting weakens the tooth that
is already weaker. Thus, another objective of nonstandard gears is to gain a better balance
of strength between the pinion and the gear.

As an involute curve is generated from its base circle, its radius of curvature becomes
larger and larger. Near the base circle, the radius of curvature is quite small, being
theoretically zero at the base circle. Contact near this region of sharp curvature should
be avoided if possible because of the difficulty in obtaining good cutting accuracy in areas
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of small curvature, and since contact stresses are likely to be very high. Nonstandard gears
present the opportunity of designing to avoid these sensitive areas.

Clearance Modification A larger fillet radius at the root of the tooth increases the
fatigue strength of the tooth and provides extra depth for shaving the tooth profile. Since
interchangeability is not lost, the dedendum is sometimes increased to 1.300/P or 1.400/P
to obtain space for a larger fillet radius.

Center-Distance Modification  When gears of low tooth numbers are paired with each
other or with larger gears, reduction in interference and improvement in the contact ratio
can be obtained by increasing the center distance to greater than standard. Although such
a system changes the tooth proportions and the pressure angle of the gears, the resulting
tooth shapes can be generated with rack cutters (or hobs) of standard pressure angles or
with standard pinion shapers. Before introducing this system, however, it will be of value
to develop certain additional relations about the geometry of gears.

The first new relation is for finding the thickness of a tooth that is cut by a rack cutter
(or hob) when the pitch line of the rack cutter is displaced or offset a distance, e, from the
pitch circle of the gear being cut. What we are doing here is moving the rack cutter away
from the center of the gear being cut. Stated another way, suppose the rack cutter does not
cut as deeply into the gear blank, and the teeth are not cut to full depth. This produces teeth
that are thicker than the standard, and this thickness will now be determined. Figure 7.24a
shows the problem, and Fig. 7.24b shows the solution. The increase of tooth thickness at
the pitch circle is 2etan ¢, so that

t=2€tan¢+§, (7.17)

where ¢ is the pressure angle of the rack cutter and ¢ is the thickness of the modified gear
tooth measured on its modified pitch circle.

Now suppose that two gears of different tooth numbers have both been cut with the
cutter offset from their pitch circles as in the previous paragraph. Since the teeth of both
have been cut with offset cutters, they will mate at a modified pressure angle and with
modified pitch circles and consequently modified center distances. The word modified is
used here in the sense of being nonstandard. Our problem is to determine the radii of these
modified pitch circles and the value of the modified pressure angle.

@ | ! (b)  Pitch circle of

\ ) Pitch circle gear (developed)

of rack ! ) of gear L

Pitch line
of rack

Displacement

\

Pitch line of
rack cutter

V4
2

Figure 7.24
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In the following notation, the word standard refers to values that would have been
obtained had the usual, or standard, systems been employed to obtain the dimensions:

¢ = standard pressure angle of generating rack cutter;

¢’ = modified pressure angle at which gears will mate;

R, = standard pitch radius of pinion;

R’, = modified pitch radius of pinion when meshing with given gear;
R3 = standard pitch radius of gear;

R’, = modified pitch radius of gear when meshing with given pinion;
t; = thickness of pinion tooth at standard pitch radius R»;

t, = thickness of pinion tooth at modified pitch radius R};

t3 = thickness of gear tooth at standard pitch radius R3; and

t; = thickness of gear tooth at modified pitch radius RY;.

From Eq. (7.16), the thickness of a gear tooth at the standard pitch radius and at the
modified pitch radius can be written, respectively, as

£, = 2R, ( 2 +inve — inve/ (@)
2R,
and
£ =2, (2 +inve —inve' ). )
- 2R3

Note that the sum of these two thicknesses must be the new circular pitch. Therefore, using

Eq. (7.3), we can write

27R),
Ny,

thtty=p = (c)

Since the pitch diameters of a pair of mating gears are proportional to their tooth numbers,
then

R3 = JERQ and R/3 = &R/z (d)

N> Ny

Substituting Eqs. (a), (), and (d) into Eq. (c¢) and rearranging gives

Ny (ty+1,) —27R,
2R) (N> + N3)

invg’ = +1inv ¢. (7.18)
This equation gives the modified pressure angle ¢’, at which a pair of gears will operate
when the tooth thicknesses on their standard pitch circles are modified to #, and 7.
Although the base circle of a gear is fundamental to its shape and fixed once the gear
is generated, gears have no pitch circles until a pair of them are brought into contact.
Bringing a pair of gears into contact creates a pair of pitch circles that are tangent to each
other at the modified pitch point. Throughout this discussion, the idea of a pair of so-called
standard pitch circles has been used to define a certain point on the involute curves. These
standard pitch circles, as we have seen, are the ones that would come into existence when
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the gears are paired if the gears are not modified from the standard dimensions. On the
other hand, the base circles are fixed circles that are not changed by tooth modifications.
The base circle remains the same whether the tooth dimensions are changed or not, so we
can determine the base circle radius using either the standard pitch circle or the new pitch
circle. Thus, from Eq. (7.15), we can write

Rycos¢p =R, cos¢’.

Therefore, the modified pitch radius of the pinion can be written as

Ry cos
R, = Rycosg. (7.19)
cos ¢’
Similarly, the modified pitch radius of the gear can be written as
R3cos
R = K389 (7.20)
cos ¢’

Equations (7.19) and (7.20) give the values of the actual pitch radii when the two gears
with modified teeth are brought into mesh without backlash. The new center distance is, of
course, the sum of these radii.

All the necessary relations have now been developed to create nonstandard gears with
changes in the center distance. The use of these relations is now illustrated by an example.

Figure 7.25 is a drawing of a 20° pressure angle, 1-tooth/in diametral pitch, 12-tooth
pinion generated with a rack cutter to full depth with a standard clearance of 0.250/P. In
the 20° full-depth system, interference is severe when the number of teeth is less than 14.
The resulting undercutting is evident in the drawing.

Figure 7.25 Standard 20° pressure angle, 1-tooth/in diametral pitch, 12-tooth full-depth
involute gear showing undercut.
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Pressure line

Standard pitch

\</ circle of pinion

Figure 7.26 Offset of a rack cutter to cause its addendum line to pass through the interference point.

In an attempt to eliminate undercutting, improve the tooth action, and increase the
contact ratio, suppose that this pinion were not cut to full depth; suppose instead that the
rack cutter were only allowed to cut to a depth for which its addendum passes through
the interference point A of the pinion being cut, that is—the point of tangency of the 20°
line of action and the base circle—as shown in Fig. 7.26. From Eq. (7.15) we know that

r = R cos ¢. (e)
Then, from Fig. 7.26, the depth of the cut would be offset from the standard by
e=a+rycos¢ —Ro. )
Substituting Eq. (e) into Eq. (f), the offset can be written as
e=a+Rycos’p — Ry = a— Rysin® ¢. (7.21)

If the offset is any less than this, then the rack will cut below the interference point, A, and
will result in undercutting.

EXAMPLE 7.3

A 12-tooth pinion with pressure angle ¢ = 20° and diametral pitch P = 1 tooth/in is to be
mated with a standard 40-tooth gear. If the pinion were cut to full depth, then Eq. (7.9)
demonstrates that the contact ratio would be 1.41, but there would be undercutting, as
indicated in Fig. 7.25. Instead, let the 12-tooth pinion be cut from a larger blank using
center-distance modifications. Determine the cutter offset, the modified pressure angle, the
modified pitch radii of the pinion and the gear, the modified center distance, the modified
pitch radii of the pinion and gear, the modified center distance, the modified outside radii
of the pinion and gear, and the contact ratio. Has the contact ratio increased significantly?
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SOLUTION

Designating the pinion as subscript 2 and the gear as 3, then with P = 1 tooth/in and
¢ = 20°, the following values are determined:

p = 3.142 in/tooth, R, = 6 in, R3 =20 in, N> = 12 teeth,
N3 =40 teeth, and 3 =1.5711n.

For a standard rack cutter, from Table 7.2, the addendum isa =1/P = 1.0 in.
From Eq. (7.21), the rack cutter will be offset by

e=1.0—6.0sin>20° = 0.298 in. Ans.

Then, the thickness of the pinion tooth at the 6-in pitch circle, using Eq. (7.17), is

3.142 in .
=1.788 in.

£, = 2etand +§ —2(0.298 in) tan 20° +

The pressure angle at which this (and only this) gearset will operate is determined from
Eq. (7.18); that is,

Ny (ty+1,) —27R,
2Ry (N2 +N3)

_ 12(1.788 in+1.571 in) — 27 (6.0 in)

o 2(6.0 in) (12 4 40)

inv d)/ = +inve

+inv20° = 0.019 08 rad.

From Appendix A, Table 6, we find that the new pressure angle is
¢’ =21.65°. Ans.

Using Eqgs. (7.19) and (7.20), the modified pitch radii are found to be
R — Rocos¢p (6.0 in) cos 20°

= = 6.066 in, Ans.
2 cos ¢’ cos21.65° - s
R 20.0 1 20°
Ry = Kacose  (20.0meos207_ o 5y i, Ans.
cos¢’ cos21.65°
So, the modified center distance is
R}, 4+ R}, = 6.066 +20.220 = 26.286 in. Ans.

Note that the center distance has not increased as much as the offset of the rack cutter.
Standard clearance of 0.25/P results from the standard dedendums equal to 1.25/P,
as indicated in Table 7.2. So, the root radii of the two gears are

Root radius of pinion = 6.298 — 1.250 = 5.048 in,
Root radius of gear = 20.000 — 1.250 = 18.750 in,
Sum of root radii = 23.798 in.
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The difference between this sum and the center distance is the working depth plus twice
the clearance. Since the clearance is 0.25 in for each gear, the working depth is

Working depth = 26.286 — 23.798 — 2 (0.250) = 1.988 in.

The outside radius of each gear is the sum of the root radius, the clearance, and the working
depth; that is,
Outside radius of pinion = 5.048 4+ 0.250 4 1.988 = 7.286 in; Ans.
Outside radius of gear = 18.750 + 0.250 4- 1.988 = 20.988 in. Ans.
The result is shown in Fig. 7.27, and the pinion is seen to have a stronger-looking form
than the one of Fig. 7.25. Undercutting has been completely eliminated.

The contact ratio can be obtained from Eqgs. (7.9) through (7.11). The following
quantities are needed:

Outside radius of pinion = R’z +a="7.286in,

Outside radius of gear = R; +a = 20.988 in,

ry = Ry cos¢ = (6.000 in) cos 20° = 5.638 in,

r3 = R3cos¢ = (20.000 in) cos20° = 18.794 in,

pp =pcosp = (3.141 6 in/tooth) cos 20° = 2.952 in/tooth.

|
Gear 3 ! \

40 teeth ‘

Pinion 2
12 teeth

Figure 7.27
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Therefore, for Egs. (7.10) and (7.11), we have

CP=\/(Ry+a)’ —r2 —R}sing

= \/ (20.988 in)” — (18.794 in)* — (20.220 in)sin21.65° = 1.883 in,

PD =,/ (R,+a)’ -2 —Rsin¢

= \/ (7.286 in)> — (5.638 in)? — (6.066 in) sin21.65°
=2377in.
Finally, from Eq. (7.9), the contact ratio is

_CP+PD 1.883in+2377in
~ ppb 2952 in/tooth

L. = 1.443 teeth avg. Ans.
Therefore, the contact ratio has increased only slightly (approximately 2% increase).
The modification, however, is justified because of the elimination of undercutting, which
results in a substantial improvement in the strength of the teeth.

Long-and-Short-Addendum System It often happens in the design of machinery
that the center distance between a pair of gears is fixed by some other design consideration
or feature of the machine. In such a case, modifications to obtain improved performance
cannot be made by varying the center distance.

In the previous section, we saw that improved action and tooth shape can be obtained
by backing the rack cutter away from the gear blank during forming of the teeth. The effect
of this withdrawal is to create the active tooth profile farther away from the base circle.
Examination of Fig. 7.27 indicates that more dedendum could be used on the gear (not
the pinion) before the interference point is reached. If the rack cutter is advanced into the
gear blank by a distance equal to the withdrawal from the pinion blank, more of the gear
dedendum is used, and at the same time, the center distance is not changed. This is called
the long-and-short-addendum system.

In the long-and-short-addendum system, there are no changes in the pitch circles and
consequently none in the pressure angle. The effect is to move the contact region away
from the pinion center toward the gear center, thus shortening the approach action and
lengthening the recess action.

The characteristics of the long-and-short-addendum system can be explained by
reference to Fig. 7.28. Figure 7.28a shows a conventional (standard) set of gears having
a dedendum equal to the addendum plus the clearance. Interference exists, and the tip of
the gear tooth will have to be relieved as shown or the pinion will be undercut. This is
indicated, since the addendum circle crosses the line of action at C, outside of the tangency
or interference point A; hence, distance AC is a measure of the degree of interference.

To eliminate the undercutting or interference, the pinion addendum may be enlarged,
as in Fig. 7.28b, until the addendum circle of the pinion passes through the interference
point (point B) of the gear. In this manner, we shall be using all of the gear-tooth profile.
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7
/ // /" PINION

| / / Base circle

Addendum
Dedendum

Figure 7.28 Comparison of standard gears and gears cut by the long-and-short-addendum system: (a) gear and pinion with
standard addendum and dedendum; (b) gear and pinion with long-and-short addendum.

The same whole depth may be retained; hence, the dedendum of the pinion may be reduced
by the same amount that the addendum is increased. This means that we must also lengthen
the gear dedendum and shorten the dedendum of the mating pinion. With these changes,
the path of contact is line CD of Fig. 7.28b. It is longer than path AD of Fig. 7.28a, and
so the contact ratio is higher. Note, too, that the base circles, the pitch circles, the pressure
angle, and the center distance have not changed. Both gears can be cut with standard cutters
by advancing the cutter into the gear blank for this modification by a distance equal to the
amount of withdrawal from the pinion blank. Finally, note that the blanks from which the
pinion and gear are cut must now be of different diameters than the standard blanks.

The tooth dimensions for the long-and-short-addendum system can be determined
using the equations developed in the previous sections.

A less obvious advantage of the long-and-short-addendum system is that more recess
action than approach action is obtained. The approach action of gear teeth is analogous to
pushing a piece of chalk across a blackboard; the chalk screeches. But, when the chalk is
pulled across a blackboard, analogous to the recess action, it glides smoothly. Thus, recess
action is always preferable because of the smoothness and the lower frictional forces.

7.12 PARALLEL-AXIS GEAR TRAINS

Mechanisms arranged in combinations so that the driven member of one mechanism is the
driver for another mechanism are called mechanism trains. With certain exceptions, to be
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explored here, the analysis of such trains can proceed in serial fashion by using the methods
developed in the previous chapters.

In Chap. 3, we learned that the first-order kinematic coefficient is the term used to
describe the ratio of the angular velocity of the driven member to that of the driving
member. Thus, for example, in a four-bar linkage with link 2 as the driving or input member
and link 4 as the driven or output member, we have

, dfy  dOy/dt w4
0= = =—, (a)
do, do» / dt W)

where it is noted that, as in Sec. 5.5 and after, we adopt the second subscript to explicitly
indicate the number of the driving or input member. This second subscript is important in
this and following sections, since many mechanism trains have more than one degree of
freedom.

In this section, where we deal with serially connected gear trains, we prefer to write
Eq. (a) as

o= 2oL _ doLjdr _ o1 (7.22)
dOr dOr/dt [0)a

where wy, is the angular velocity of the last gear and wp is the angular velocity of the first
gear in the train, since, usually, the last gear is the output and is the driven gear, and the
first is the input and driving gear.

The term 6; . in Eq. (7.22) is the first-order kinematic coefficient, called the speed
ratio by some or the train value by others. Equation (7.22) is often written in the more
convenient form:

oL, = 0] por. (7.23)
Next, we consider pinion 2 driving gear 3. The speed of the driven gear is

Ry N>
=+—w)=F+—w, b
w3 R w) N5 w) (b)

where, for each gear, R is the radius of the pitch circle, N is the number of teeth, and w
is either the angular velocity or the angular displacement completed during a chosen time
interval.

For parallel-shaft gearing, the directions can be tracked by following the vector
sense—that is, by specifying that angular velocity is positive when counterclockwise
as seen from a chosen side. For parallel-shaft gearing, we shall use the following sign
convention: If the last gear of a parallel-shaft gear train rotates with the same sense as the
first gear, then 6 . is positive; if the last gear rotates in the opposite sense to the first gear,
then 6 - is negative. This sign convention approach is not as easy, however, when the gear
shafts are not parallel, as in bevel, crossed-helical, or worm gearing (Chap. 8). In such
cases, it is often simpler to track the directions by visually inspecting a sketch of the train.
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Figure 7.29

(Driver) Ny

Ny Ns ‘ (Driven)

The gear train shown in Fig. 7.29 is made up of five gears in series. Applying Eq. (b)
three times, we find the speed of gear 6 to be

Wp=——"——"W)=————W). (o)

Here, we note that gear 5 is an idler; that is, its tooth numbers cancel in Eq. (¢), and hence
the only purpose served by gear 5 is to change the direction of rotation of gear 6. We further
note that gears 5, 4, and 2 are drivers, whereas gears 6, 5, and 3 are driven members. Thus,
Eq. (7.22) can also be written

product of driving tooth numbers

O p = . 7.24
LE product of driven tooth numbers (7:24)
Note also that, since they are proportional, pitch radii can be used in Eq. (7.24) just as well

as tooth numbers.

[Reverse idler
Clutch-stemf'
gear
| Speed Drive
Countershaft 1 2-3-6-9
cluster gear 2 2-3-5-8
3 3 2-3-4-7
g == 4 Straight through
wr 6T Reverse | 2-3-6-10-11-9

Figure 7.30 A truck transmission with gears having diametral pitch of 7 teeth/in and pressure angle
of 22.5°.
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Figure 7.
crossed-helical, and spur gears.

367,

Last gear (driven)
4
SH T 167
lll
187 \IIlIJI[II\ BT F R ITN 227
2

3
m | - First gear (driver)

24T

31 A gear train composed of bevel, Figure 7.32 A reverted gear train.

In speaking of gear trains, it is convenient to describe a train having only one gear on
each axis as a simple gear train. A compound gear train, then, is one that has two or more
gears on one or more axes, such as the train shown in Fig. 7.29. Another example of a
compound gear train is shown in Fig. 7.30. Figure 7.30 shows a transmission for a small-
or medium-size truck that has four speeds forward and one in reverse.

The compound gear train shown in Fig. 7.31 is composed of bevel, helical (Chap. 8),
and spur gears. The helical gears are crossed, so their direction of rotation depends upon
their hand.

A reverted gear train is one in which the first and last gears have collinear axes of
rotation, such as the one shown in Fig. 7.32. This produces a compact arrangement and is
used in such applications as speed reducers, clocks (to connect the hour hand to the minute
hand), and machine tools. As an exercise, it is suggested that you seek out a suitable set of
diametral pitches for each pair of gears shown in Fig. 7.32 so that the first and last gears
have the same axis of rotation with all gears properly engaged.

7.13 DETERMINING TOOTH NUMBERS

When notable power is transmitted through a speed reduction unit, the speed ratio of the
last pair of meshing gears is usually chosen larger than that of the first gear pair, since
the torque is greater at the low-speed end. In a given amount of space, more teeth can
be used on gears of lesser pitch; hence, a greater speed reduction can be obtained at the
high-speed end.

Without examining the problem of tooth strength, suppose we wish to use two pairs of
gears in a train to obtain an overall kinematic coefficient of 6, , = % Let us also impose
the restriction that the tooth numbers must not be less than 15 and that the reduction in the
first pair of gears should be about twice that of the second pair. This means that the overall
kinematic coefficient is
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L= IE & = i (a)
27 NsN; 127

where N> /N3 is the coefficient of the first gear pair, and N4/N5s is that of the second pair.
Since the kinematic coefficient of the first pair should be half that of the second, Eq. (a)

can be written as
Ny Ny 1
)5 )= ()
N5 2N5 12

Ny 1
— =,/ = =0.408 248 (c)
Ns 6

or

to six decimal places. The following tooth numbers are seen to be close:

15 16 18 20 22 24

37 39 44 49 54 59°
Of these, N4/N5 = 20/49 is the closest approximation, but note that

o — (Na) (N2 _ (20 (20)_ 400 _ 1
27 Ns J\N; ) \49)\98) T 4802 12.005°

which is very close to 1/12. On the other hand, the choice of Ns/N5 = 18/44 gives exactly

ol — Ny N> _ 18 22 _396_1
27ANs J\Ny ) T \aa)\108) T 4752 12

In this case, the reduction in the first gear pair is not exactly twice the reduction in the
second gear pair. However, this consideration is usually of only minor importance.

The problem of specifying tooth numbers and the number of pairs of gears to give
a kinematic coefficient with a specified degree of accuracy has interested many people,
but has no exact solution. Consider, for instance, the problem of specifying a set of
gears to have a kinematic coefficient of 6, = /10 accurate to eight decimal places,
while we know that 7 is an irrational number and cannot be expressed as a ratio of
integers.

7.14 EPICYCLIC GEAR TRAINS

Figure 7.33 shows an elementary epicyclic gear train together with its schematic diagram,
as suggested by Lévai.* The train consists of a central gear, 2, and an epicyclic gear, 4,
which produces epicyclic motion for its points by rolling around the periphery of the central
gear. An arm 3 contains the bearing for the epicyclic gear to maintain the gears in mesh.

* Literature devoted to epicyclic gear trains is rather scarce; however, see [3]. For a comprehensive
study in the English language, see [1]; this book lists 104 references.
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Planet gears

@ m ®
\1

/3

Figure 7.33 (a) Elementary epicyclic Figure 7.34 A planetary gearset.
gear train; (b) its schematic diagram.

Planet carrier
(arm)

/\\

Epicyclic trains are also called planetary or sun-and-planet gear trains. In this
nomenclature, gear 2 of Fig. 7.33 is called the sun gear, gear 4 is called the planet gear,
and crank 3 is called the planet carrier. Figure 7.34 shows the train of Fig. 7.33 with two
redundant planet gears added. This produces better force balance; also, adding more planet
gears allows lower forces by more load sharing. However, these additional planet gears do
not change the kinematic characteristics at all. For this reason, we generally indicate only a
single planet in the illustrations and problems in Chap. 7, although an actual machine will
probably be designed with planets in trios.

The simple epicyclic gear train together with its schematic designation in Fig. 7.35
shows how the motion of the planet gear can be transmitted to another central gear. The
second central gear in this case is gear 5, an internal gear. In Fig. 7.35a, internal gear 5
is stationary, but this is not a requirement, as shown in Fig. 7.35b. Figure 7.36 shows a
similar arrangement, with the difference that both central gears are external gears. Note, in
Fig. 7.36, that the double planet gears are mounted on a single planet shaft and that each
planet gear is in mesh with a separate sun gear rotating at a different speed.

()

w3 =

T

200 rev/min (o

%]
w2

p Figure 7.35 (a) A simple epicyclic gear train; (b) its schematic diagram.
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- 5 — 6
3 \ 1 s|
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i 2 =
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20T 3 2
34T —
Figure 7.36 A simple epicyclic gear train with Figure 7.37 An epicyclic gear train with two planet
double planet gears. gears.

In any case, no matter how many planets are used, only one planet carrier or arm may
be used. This principle is shown in Fig. 7.34, in which redundant planets are used, and in
Fig. 7.37, where two planets are used to alter the kinematic performance.

According to Lévai, only twelve variations of epicyclic gear trains are possible; they
are all shown in schematic form in Fig. 7.38 as Lévai arranged them. In all variations, the
arm (the planet carrier) is shown as link number 3. The trains in Figs. 7.38a and 7.38¢ are
simple trains in which the planet gears mesh with both sun gears. The trains shown in Figs.
7.38b and 7.38d have planet gear pairs that are partly in mesh with each other and partly
in mesh with the sun gears.

7.15 ANALYSIS OF EPICYCLIC GEAR TRAINS BY FORMULA

Figure 7.39 shows a planetary gear train composed of a sun gear 2, an arm or planet carrier,
3, and planet gears 4 and 5. Using the apparent angular velocity equation, Eq. (3.10), we
can write that the angular velocity of gear 2 as it would appear from a coordinate system
fixed to arm 3 is

w3 =wy — w3. (a)

Also, the angular velocity of gear 5 as it would appear from the coordinate system fixed to
arm 3 is

w5/3 = W5 — W3. (b)
Dividing Eq. (b) by Eq. (a) gives

w53 W5 — 3
w3 W2 — w3

(©)

Equation (c) expresses the ratio of the apparent angular velocity of gear 5 to that of gear
2, with both taken as they would appear from arm 3. This ratio, which is proportional to
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the tooth numbers, appears the same whether the arm is rotating or not; it is the first-order
kinematic coefficient of the gear train. Therefore, the first-order kinematic coefficient can
be expressed as

w5 — w3
052/3 = P (d)
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An equation similar to Eq. (d) is all that we need to find the angular velocities in a planetary
gear train. It is convenient to express it in the form as it would appear from the arm:

W[, — WA

OLr/a = oo’ (7.25)

where
wr = angular velocity of the first gear in the train,

wy, = angular velocity of the last gear in the train, and
w4 = angular velocity of the arm.

Note that Eq. (d) and Eq. (7.25) can be expressed entirely in terms of kinematic
coefficients; that is,

0. — 6.
9§2 s = 5 73 (e)
A6, -0
and
0, -0,
LA = —912 — 02, (7.26)
where

9} = kinematic coefficient of the first gear in the train,
Oi = kinematic coefficient of the last gear in the train, and
9/’4 = kinematic coefficient of the arm.

The following examples help to illustrate the use of kinematic coefficients presented in
Egs. (7.25) and (7.26).

EXAMPLE 7.4

Figure 7.36 shows a reverted planetary gear train. Gear 2 is fastened to its shaft and is
driven at 250 rev/min in a clockwise direction. Gears 4 and 5 are planet gears that are
joined but are free to turn on the shaft carried by the arm. Gear 6 is stationary. Find the
speed and direction of rotation of the arm.

SOLUTION

We must first decide which gears to designate the first and last members of the train.
Since the speeds of gears 2 and 6 are both given, then either gear may be chosen as the
first. The choice makes no difference to the results, but once the decision is made, it may
not be changed. Here we choose gear 2 as first; therefore, gear 6 is last. Thus, choosing
counterclockwise as positive gives

wF =wy = —250rev/imin and w; = weg = 0 rev/min,
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and, according to Eq. (7.24), the first-order kinematic coefficient is

16 20 16
9/ = 9/ =| —— _—— = -,
LE =762 < 34)( 30) 51
where the positive sign results, since there are two external contacts.

Substituting the values into Eq. (7.25) gives the first-order kinematic coefficient:

o _ 16 _ 0—ws3
LE/A™ 51 7 _250 rev/min — w3

Rearranging this equation gives the angular velocity of arm A:
wp = w3 = 114.3 rev/min ccw. Ans.

EXAMPLE 7.5

Consider the simple planetary gear train shown in Fig. 7.40 in which the ring gear & is
fixed (that is, the angular velocity of the ring gear is w;, = 0) and the input is the planet
carrier (the arm). The dimensions of ring gear &, planet gear j, sun gear k, and arm A are
Ry =200 mm, R; = 50 mm, R; = 100 mm, and R4 = 150 mm, respectively. If the input
angular velocity is wq = w; = 10 rad/s ccw, determine the angular velocities of the planet
gear, j, and the sun gear, k.

SOLUTION

Using Eq. (7.25), the first-order kinematic coefficient of planet gear j, in rolling contact
with ring gear &, can be written as

, Ry wj—wa

=4 = . la
Jh/A R; wp — WA (a)

Figure 7.40 A simple
planetary gear train with the
ring gear fixed.
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Similarly, the first-order kinematic coefficient of planet gear j, in rolling contact with sun
gear k, can be written as

R, wj—wa
L == ) 1b
Jk/A R;  wp—wa (16)

Note that if the ring gear is removed, and the arm is fixed (that is, wq = 0), then the
planetary gear train reduces to an ordinary gear train, that is, Eq. (1) reduces to
Ry wj
0, =+— =L, )
Jh/A R
Since there is internal contact between the planet gear and the fixed ring gear, then the
positive sign is used in Eq. (1a). Then, rearranging the equation and substituting w, = 0
gives

Rja)j = —(Rh —Rj)a)A = —RACL)A. (3)
Therefore, the angular velocity of the planet gear is

R 1 1
_Raoq (A0 mm) ({0radls) o e, Ans.
R; 50 mm

wj =

The negative sign indicates that the direction of the angular velocity of the planet gear is
opposite to the direction of the arm and, therefore, clockwise.

Similarly, since there is external contact between the planet gear and the sun gear, the
negative sign is used in Eq. (15), and the equation can be written as

Riwy = —Rjwj + (R + Rj)wa. (4a)

The angular velocity of the sun gear can be expressed in terms of the input angular velocity
of the arm by substituting Eq. (3) into Eq. (4a) and simplifying; that is,

Riwi = (Ri + Rp)wa =2Raw4. (4b)
Therefore, the angular velocity of the sun gear is

_ 2R wp _ 2 (150 mm) (10 rad/s)

=30 rad/s. Ans.
Ry 100 mm radss s

Wk

The positive result indicates that the direction of the angular velocity of the sun gear is the
same as the arm and is, therefore, counterclockwise.

EXAMPLE 7.6

Consider the compound planetary gear train that is commonly used in an electric drill
or screwdriver, shown in the schematic diagram in Fig. 7.41. The gear and the arm
dimensions are R; = 150 mm, Ry4 = R4sa = 100 mm, and R3 = R4 = Rs = Rg = 50 mm.
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1 Figure 7.41 Schematic
diagram of a compound
_J: J: planetary gear train.
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The angular velocity of the input shaft (and arm 2) is wp4 = 10 rad/s ccw (looking from
the left), and ring gear 1 is fixed—that is, the angular velocity of the ring gear is w1 = 0.
Determine the angular velocities of gears 3, 4, 5, and 6.

SOLUTION

This gear train is composed of two simple planetary gear trains in series; that is, the first
planetary gear train is composed of ring gear 1, input arm 2, planet gear 3, and sun gear 4,
and the second planetary gear train is composed of ring gear 1, arm 4, planet gear 5,
and output sun gear 6. Note that the angular velocities of gear 4 and arm 4 are equal in
magnitude and direction, since they are rigidly attached. Also, note that gear 4 acts as both
the output of the first planetary gear train and the input to the second planetary gear train.
Using Eq. (7.25), the first-order kinematic coefficient of gear 4 with respect to ring gear 1

can be written as
R3 Ry Ry w4—woa
0 =(-= )= )=—" = — 2. 1
41724 ( R4)<R3> Ry w1 —wa (1a)

The correct sign is negative, since gears 4 and 3 are in external contact, and gears 3 and 1
are in internal contact. Substituting the given data into Eq. (1a) gives

150 mm w4 — 10 rad/s

= : (1b)
50 mm 0— 10 rad/s
Therefore, the angular velocity of gear 4 is
w4 =40 rad/s, Ans.

where the positive result implies that gear 4 is rotating in the same direction as the input
gear 2—that is, counterclockwise.
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Using Eq. (7.25), the first-order kinematic coefficient of gear 3 with respect to gear 4
can be written as
R w3 —w
03424 = =2 (2a)
R3 w4 —awna
where the negative sign denotes external contact between gears 3 and 4. Therefore, the
first-order kinematic coefficient is

50 mm w3 — 10 rad/s
05 =— = . 2b
34724 50 mm 40 rad/s — 10 rad/s (2b)
Therefore, the angular velocity of gear 3 is
w3 = —20 rad/s, Ans.

where the negative sign indicates that gear 3 is rotating in the direction opposite to the
input gear 2—that is, clockwise.

Using Eq. (7.25), the first-order kinematic coefficient of gear 6 with respect to the
ring gear | can be written as

R5\ (R Ri  we—w4p
= () (B) = oo
Re Rs Rs w1 —w4p
The correct sign is negative, since gears 6 and 5 are in external contact, and gears 5 and 1

are in internal contact. Substituting the given data into Eq. (3a) gives

150 mm W — 40 rad/s

— = . (3b)
50 mm 0—40rad/s
Therefore, the angular velocity of gear 6 is
wg = 160 rad/s, Ans.

where the positive result implies that gear 4 is rotating in the same direction as the input
gear 2—that is, counterclockwise.

Using Eq. (7.25), the first-order kinematic coefficient of gear 5 with respect to gear 6
can be written as

Re w5 —wasp

056/40 = — -

= , (4a)
Rs  wg—wan

where the negative sign denotes external contact between gears 5 and 6. Substituting the
known data, the first-order kinematic coefficient is

0! _ 50mm w5 —40rad/s
36/4A™ 50 mm 160 rad/s — 40 rad/s

(4D)

Therefore, the angular velocity of gear 5 is

ws = —80 rad/s, Ans.



414

SPUR GEARS

where the negative sign implies that gear 5 is rotating in the direction opposite to the input
gear 2—that is, clockwise.

ALTERNATE SOLUTION
The rolling contact constraint between planet gear 3 and ring gear 1 can be written in terms
of kinematic coefficients as

Ry  50mm 1 01, — 6},

== =_= , 1
Ri 150mm 3 6}, 6}, W

where the positive sign is chosen, since planet gear 3 has internal contact with ring gear 1.

Since ring gear 1 is fixed, the kinematic coefficient of the ring gear is 6;, = 0 and,
by definition, the kinematic coefficient of input arm 2 is 6}, = 1. Substituting these into
Eq. (1), the kinematic coefficient of planet gear 3 with respect to input gear 2 is

0}, = —2 rad/rad, ()

where the negative sign indicates that gear 3 is rotating in the direction opposite to input
gear 2—that is, clockwise. Therefore, the angular velocity of gear 3 is

w3 = 03,7 = —20 rad/s. Ans.

The rolling contact constraint between sun gear 4 and planet gear 3 can be written
from Eq. (1) as
R4 05, — 0,
e 0
R3 04— 02

where the negative sign is chosen, since planet gear 3 has external contact with sun gear 4.
Substituting Eq. (2) and 6}, = 1, the known geometry, into Eq. (3), the kinematic
coefficient of sun gear 4 with respect to gear 2 is

04, = 4 rad/rad, 4)

where the positive result implies that gear 4 is rotating in the same direction as input
gear 2—that is, counterclockwise. Therefore, the angular velocity of gear 4 is

w4 = O,y = 40 rad/s ccw. Ans.

The rolling contact constraint between the planet gear 5 and ring gear 1 can be written
from Eq. (1) as

Rs  50mm 1 01, — 0y 5)
Ry 150mm 3 6,—6},

where the positive sign is used, since planet gear 5 has internal contact with ring gear 1.
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Substituting Eq. (4) and 6], = 0, the kinematic coefficient of planet gear 5 with respect
to gear 2 is

05, = —8 rad/rad, 6)

where the negative sign indicates that gear 5 is rotating in the direction opposite to the
input gear 2—that is, clockwise. Therefore, the angular velocity of gear 5 is

ws = 0,7 = —80 rad/s (cw). Ans.

The rolling contact constraint between the sun gear 6 and planet gear 5 can be written from
Eq. (5) as
Re 0L, —0,
o =—1=2_%, ©)
Rs b6 — O
where the negative sign is used because of the external contact between planet gear 5 and
sun gear 6.
Substituting Egs. (4) and (6) and the known geometry into Eq. (7), the kinematic
coefficient of sun gear 6 with respect to gear 2 is

04, = 16 rad/rad, (8)

where the positive result implies that gear 6 is rotating in the same direction as input gear
2. Therefore, the angular velocity of gear 6 is

we = Oy = 160 rad/s ccw. Ans.

EXAMPLE 7.7

Consider the planetary gear train shown in the schematic diagram in Fig. 7.42. The radius
of the fixed sun gear is Ry = 100 mm, the radius of input gear 2 is R, = 100 mm, the radius
of ring gear 4 is R4 = 200 mm, and the radii of gears 3 and 5 are R3 = Rs = 50 mm. The
angular velocity of input shaft 2 is wp = 10 rad/s ccw (looking from the left). Determine
the angular velocities of gears 3, and 4, and 5.

SOLUTION
The rolling contact constraint between input gear 2 and gear 5 can be written as

Ry 100 mm 2_9§2
Rs  50mm _952'

ey

Since the kinematic coefficient of input shaft 2 is 9&2 = 1 rad/rad, the kinematic coefficient
of gear 5 is

05, = —2 rad/rad, )
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Figure 7.42 Schematic
diagram of a planetary gear
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—
train.
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where the negative sign implies that gear 5 is rotating in the opposite direction to input
gear 2—that is, clockwise. Therefore, the angular velocity of gear 5 is
Ans.

ws = 5,7 = —20 rad/s (cw).

The rolling contact constraint between planet gear 3 and fixed sun gear 1 can be written as
_Rs _ 01 = Osao 3)
Ry 03 =050,

>

which, for the given conditions, becomes
50 mm . 0+ 2 rad/rad

100 mm 6}, +2 rad/rad”

Therefore, the kinematic coefficient of gear 3 with respect to fixed sun gear 1 is
)

03, = —6 rad/rad

Ans.

and the angular velocity of gear 3 is
w3 = 0,y = —60 radrs,

where the negative sign indicates that the direction of w3 is clockwise.
The rolling contact constraint between ring gear 4 and planet gear 3 can be written as

(&)

bl

Rs _ B4 — 54
Ry 63 =05y,
which, using Egs. (2) and (4) and the given dimensions, can be written as

50mm 64, + 2 rad/rad
200 mm  —6 rad/rad + 2 rad/rad”
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Therefore, the kinematic coefficient of gear 4 with respect to fixed sun gear 1 is
04, = —3 rad/rad (6)
and the angular velocity of gear 4 is
w4 = Ojyw2 = —30 rad/s, Ans.

where the negative sign indicates that the direction of w4 is clockwise.

The kinematic coefficients in Egs. (2), (4), and (6) define the geometry of the gear train
and provide the capability for obtaining the angular velocities (magnitudes and directions)
in terms of the input angular velocity, w,.

7.16 TABULAR ANALYSIS OF EPICYCLIC GEAR TRAINS

Another method of determining the rotational speeds of epicyclic gear trains uses the
principle of superposition. The total analysis is carried out by finding the apparent rotations
of the components with respect to the arm or planet carrier and then summing with the
rotation of the components as if all the gears are fixed to the arm. The process is easily
carried out in a tabular procedure.

Figure 7.35 shows a planetary gear train composed of sun gear 2, planet carrier (arm)
3, planet gear 4, and internal gear 5 that is in mesh with the planet gear. Since this gear
train has two degrees of freedom, we might reasonably specify the angular velocities of
both the sun gear and the arm, and wish to determine the angular velocity of the internal
gear.

The analysis can be carried out in the following three steps:

1. Consider all gears (including the fixed gear, if any) to be locked to the arm, and
allow the arm to rotate with angular velocity w4. Tabulate the angular velocities
of all components under this condition as also equal to wy.

2. Free all constraints of step 1, fix the arm, and allow some other gear B (such as the
sun gear, for example) to rotate with angular velocity wp/4. Tabulate the apparent
angular velocities of all other gears with respect to the arm as multiples of wp/4.

3. Add the angular velocities of each gear from steps 1 and 2, and apply the given
input velocities in order to find numeric values for w4 and wp/4.

A few examples will clarify how this can be done in a convenient tabular procedure.

EXAMPLE 7.8

Let us assume the tooth numbers shown in Fig. 7.35, and let the angular velocities of the
sun gear and the arm be w; = 100 rev/min and w3 = 200 rev/min, respectively, both in the
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counterclockwise direction, chosen positive. What is the angular velocity of internal ring
gear 57

SOLUTION

The solution process described by the three steps enumerated above is demonstrated in
Table 7.3.

Table 7.3 Tabular Analysis for Examples 7.8 and 7.9

Step Number Gear 2 Arm3 Gear 4 Gear 5

1. Gears fixed to arm w3 w3 w3 w3

2. Arm fixed @23 0 (—40/20)wy/3 (20/80) (—40/20)w; /3

3. Total w3+ w3 w3 03+ (—40/20)wp/3 w3+ (20/80) (—40/20)w3 /3

Next, comparing the given input velocities with the bottom row of columns 2 and 3,
we see that, with w; = w3 + w;/3 = 100 rev/min and w3 = 200 rev/min, then w;;3 = —100
rev/min. Therefore, from the bottom row of column 5, the angular velocity of internal ring
gear 5 can be written as

ws = w3 + (20/80)(—40/20)wy3;
that is,
w5 = (200rev/min) + (—40/80)(—100rev/min) = 250rev/min,

where the positive result implies that gear 5 is rotating in the same direction as the positive
inputs—that is, counterclockwise.

EXAMPLE 7.9

What is the angular velocity of internal gear 5 of Fig. 7.35 if gear 2 rotates at 100 rev/min
cw while arm 3 rotates at 200 rev/min ccw?

SOLUTION

The analysis is identical to that performed in Table 7.3 for Example 7.8. However, the
input velocities have now changed. Still taking counterclockwise as positive, the bottom
row of columns 2 and 3 indicate that, since

wy = w3 +wy/3 =—100rev/min and w3 =200rev/min,
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then w;/3 = —300 rev/min. Therefore, the bottom row of column 5 indicates

= w3+ (20/80)(—40/20)wy3 = (200 rev/min) 4 (—40,/80)(—300 rev/min)

=350 rev/min ccw. Ans.

EXAMPLE7.10

The planetary gear train shown in Fig. 7.43 is called Ferguson’s paradox.* Gear 2 is fixed
to the frame. Arm 3 and gears 4, 5, and 6 are free to turn upon their shafts. Gears 2, 4, and
5 have tooth numbers of 100, 101, and 99, respectively, all cut with the same circular pitch
(but with slightly different pitch circle radii) so that planet gear 6 meshes with all of them.
Find the angular rotations of gears 4 and 5 when arm 3 is given one counterclockwise turn.

Figure 7.43 Ferguson’s

paradox.
9T 101T 100T

SOLUTION

The solution process is indicated in Table 7.4.
Table 7.4 Tabular Analysis for Example 7.10
Step Number Gear 2 Arm3 Gear 4 Gear 5 Gear 6
1. Gears fixed to arm Ab3 A63 Ab3 Ab3 AO3
2. Arm fixed Ab3 0 (—=20/101)(~100/20) Aba/3 (—=20/99)(—100/20) Ab2/3 (—100/20) A3
3. Total A3+ A3 Ay Ay +(=20/101)(=100/20)A02/5 A5 + (—20/99)(—100/20)A62/3  ABs + (—100/20)Aby3

It should be noted that angular displacements are indicated in Table 7.4 instead of
angular velocities. This is caused by the nature of the question asked and recognizing
that, during a chosen time interval, A6 = wAt for each of the elements. According to
the problem statement, we choose the time interval Az such that for the arm A6; = 1

*James Ferguson (1710-1776), Scottish physicist and astronomer, first published this device under
the title The Description and Use of a New Machine Called the Mechanical Paradox, London, 1764.



420

SPUR GEARS

rev ccw. Then, for gear 2 to remain stationary, column 2 indicates that Af3 + Af,/3 =
(Irev) + A6y/3 = 0, and, therefore, A6,/3 = —1 rev. Finally, from the bottom row of
columns 4 and 5, we determine that

Aby = AB3+ (—20/101)(—100/20) A>3 = (1rev) + (100/101)(—1rev) = 1/101rev
and
A5 = AB3 4 (—20/99)(—100/20) A>3 = (1rev) + (100/99)(—1 rev) = —1/99rev.

Thus, when arm 3 is turned 1 rev ccw, gear 4 rotates 1/101 rev ccw, whereas gear 5
turns 1/99 rev cw. Ans.

EXAMPLE 7.11

The overdrive unit shown in Fig. 7.44 is sometimes used following a standard automotive
transmission to further reduce engine speed. The engine speed (after the transmission)
corresponds to the speed of planet carrier 3, and the drive shaft speed corresponds to that
of gear 5; sun gear 2 is held stationary. Determine the percentage additional reduction in
engine speed obtained when the overdrive is active.

4 Figure 7.44 Overdrive unit.

Internal gear connected
to drive shaft, 427

Stationary
sun gear, 187

Planet pinions, 127

Planet carrier connected to transmission

SOLUTION
The analysis for this problem is demonstrated in Table 7.5. For gear 2 to remain stationary,
column 2 indicates that w3+ w23 = 0; therefore wy/3 = —w3. Putting this into column 5

indicates that
ws = w3+ (12/42)(=18/12)w2/3 = w3 + (—18/42) (—w3) = 1.429w;3.
Therefore, the percentage reduction in engine speed is

(142903 — 1.003) /(1.42903) = 0.300 = 30%. Ans.
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Step Number Gear 2
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PROBLEMS

7.1

7.2

7.3

74

7.5

7.6

7.7

7.8

7.9

Find the diametral pitch of a pair of gears having 32
and 84 teeth, respectively, whose center distance is
3.625 in.

Find the number of teeth and the circular pitch of a
6-in pitch-diameter gear whose diametral pitch is 9
teeth/in.

Determine the module of a pair of gears having 18
and 40 teeth, respectively, whose center distance is
58 mm.

Find the number of teeth and the circular pitch of a
gear whose pitch diameter is 200 mm if the module
is 8 mm/tooth.

Find the diametral pitch and the pitch diameter of a
40-tooth gear whose circular pitch is 3.50 in/tooth.

The pitch diameters of a pair of mating gears are 3.50
in and 8.25 in, respectively. If the diametral pitch is
16 teeth/in, how many teeth are there on each gear?

Find the module and the pitch diameter of a gear
whose circular pitch is 40 mm/tooth if the gear has
36 teeth.

The pitch diameters of a pair of gears are 60 mm
and 100 mm, respectively. If their module is 2.5
mm/tooth, how many teeth are there on each gear?

What is the diameter of a 33-tooth gear if its circular
pitch is 0.875 in/tooth?

7.10

7.12

A shaft carries a 30-tooth, 3-teeth/in diametral pitch
gear that drives another gear at a speed of 480
rev/min. How fast does the 30-tooth gear rotate if
the shaft center distance is 9 in?

Two gears having an angular velocity ratio of 3:1 are
mounted on shafts whose centers are 136 mm apart.
If the module of the gears is 4 mm/tooth, how many
teeth are there on each gear?

A gear having a module of 4 mm/tooth and 21 teeth
drives another gear at a speed of 240 rev/min. How
fast is the 21-tooth gear rotating if the shaft center
distance is 156 mm?

A 4-tooth/in diametral pitch, 24-tooth pinion is to
drive a 36-tooth gear. The gears are cut on the 20°
full-depth involute system. Find and tabulate the
addendum, dedendum, clearance, circular pitch, base
pitch, tooth thickness, pitch circle radii, base circle
radii, lengths of paths of approach and recess, and
contact ratio.

A 5-tooth/in diametral pitch, 15-tooth pinion is to
mate with a 30-tooth internal gear. The gears are
20° full-depth involute. Make a drawing of the gears
showing several teeth on each gear. Can these gears
be assembled in a radial direction? If not, what
remedy should be used?
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A 21)>-teeth/in diametral pitch 17-tooth pinion and
a 50-tooth gear are paired. The gears are cut on the
20° full-depth involute system. Find the angles of
approach and recess of each gear, and the contact
ratio.

A gearset with a module of 5 mm/tooth has
involute teeth with 221/° pressure angle, and 19
and 31 teeth, respectively. They have 1.0 m for the
addendum and 1.25 m for the dedendum.* Tabulate
the addendum, dedendum, clearance, circular pitch,
base pitch, tooth thickness, base circle radii, and
contact ratio.

A gear with a module of 8 mm/tooth and 22 teeth is
in mesh with a rack; the pressure angle is 25°. The
addendum and dedendum are 1.0 m and 1.25 m,
respectively.* Find the lengths of the paths of
approach and recess, and determine the contact
ratio.

Repeat Problem 7.15 using the 25° full-depth
system.

Draw a 2-tooth/in diametral pitch, 26-tooth, 20°
full-depth involute gear in mesh with a rack. (a)
Find the lengths of the paths of approach and
recess, and the contact ratio. (b) Draw a second
rack in mesh with the same gear but offset 1/8 in
farther away from the gear center. Determine the
new contact ratio. Has the pressure angle changed?

7.20 to 7.24 Shaper gear cutters have the advantage that

they can be used for either external or internal
gears and also that only a small amount of runout
is necessary at the end of the stroke. The generating
action of a pinion shaper cutter can easily be
simulated by employing a sheet of clear plastic.
Figure P 7.20 shows 1 tooth of a 16-tooth pinion
cutter with 20° pressure angle as it can be cut

Cutout

7.25

from a plastic sheet. To construct the cutter, lay
out the tooth on a sheet of drawing paper. Be sure
to include the clearance at the top of the tooth.
Draw radial lines through the pitch circle spaced at
distances equal to one fourth of the tooth thickness,
as shown in the figure. Next, fasten the sheet of
plastic to the drawing and scribe the cutout, the
pitch circle, and the radial lines onto the sheet.
Then, remove the sheet and trim the tooth outline
with a razor blade. Next, use a small piece of fine
sandpaper to remove any burrs.

To generate a gear with the cutter, only the pitch
circle and the addendum circle need be drawn.
Divide the pitch circle into spaces equal to those
used on the template and construct radial lines
through them. The tooth outlines are then obtained
by rolling the template pitch circle upon that of
the gear and drawing the cutter tooth lightly for
each position. The resulting generated tooth upon
the gear will be evident. The following problems
all employ a standard 1-tooth/in diametral pitch
20° full-depth template constructed as described
earlier. In each, case, you should generate a few
teeth and estimate the amount of undercutting.

Table P7.20 to P7.24
Problem no. P7.20 P7.21 P7.22 P7.23 P7.24

No. of teeth 10 12 14 20 36

A 10-mm/tooth module gear has 17 teeth, a 20°
pressure angle, an addendum of 1.0 m, and a
dedendum of 1.25 m.* Find the thickness of the
teeth at the base circle and at the addendum circle.
What is the pressure angle corresponding to the
addendum circle?

Clearance

Clearance

Figure P7.20

* In SI, tooth sizes are given in modules, m, and @ = 1.0 m means 1 module, not 1 meter.
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7.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.35

A 15-tooth pinion has 1!/-tooth/in diametral pitch,
20° full-depth involute teeth. Calculate the thick-
ness of the teeth at the base circle. What are
the tooth thickness and the pressure angle at the
addendum circle?

A tooth is 0.785 in thick at a pitch circle radius of
8 in and has a pressure angle of 25°. What is the
thickness at the base circle?

A tooth is 1.571 in thick at the pitch radius of 16
in and has a pressure angle of 20°. At what radius
does the tooth become pointed?

A 25° full-depth involute, 12-tooth/in diametral
pitch pinion has 18 teeth. Calculate the tooth
thickness at the base circle. What are the tooth
thickness and pressure angle at the addendum
circle?

A nonstandard 10-tooth 8-tooth/in diametral pitch
involute pinion is to be cut with a 221/° pressure
angle. What maximum addendum can be used
before the teeth become pointed?

The accuracy of cutting gear teeth can be measured

by fitting hardened and ground pins in diamet-

rically opposite tooth spaces and measuring the

distance over the pins. For a 10-tooth/in diametral

pitch, 20° full-depth involute system 96-tooth gear:

(a) Calculate the pin diameter that will contact
the teeth at the pitch lines if there is to be no
backlash.

(b) What should be the distance measured over the
pins if the gears are cut accurately?

A set of interchangeable gears with 4-tooth/in
diametral pitch is cut on the 20° full-depth involute
system. The gears have tooth numbers of 24, 32,
48, and 96. For each gear, calculate the radius of
curvature of the tooth profile at the pitch circle and
at the addendum circle.

Calculate the contact ratio of a 17-tooth pinion that
drives a 73-tooth gear. The gears are 96-tooth/in
diametral pitch and cut on the 20° full-depth
involute system.

A 25° pressure angle 11-tooth pinion is to drive a
23-tooth gear. The gears have a diametral pitch of
8 teeth/in and have involute stub teeth. What is the
contact ratio?

A 22-tooth pinion mates with a 42-tooth gear.
The gears have full-depth involute teeth, have a
diametral pitch of 16 teeth/in, and are cut with a
171/2° pressure angle.* Find the contact ratio.

* Such gears came from an older standard and are now obsolete.

7.36

7.37

7.38

7.39

7.40

7.41

7.42

Problems 423

The center distance of two 24-tooth, 20° pressure
angle, full-depth involute spur gears with diametral
pitch of 2 teeth/in is increased by 0.125 in over the
standard distance. At what pressure angle do the
gears operate?

The center distance of two 18-tooth, 25° pressure
angle, full-depth involute spur gears with diametral
pitch of 3 teeth/in is increased by 0.062 5 in over
the standard distance. At what pressure angle do
the gears operate?

A pair of mating gears have 24 teeth/in diametral
pitch and are generated on the 20° full-depth
involute system. If the tooth numbers are 15 and
50, what maximum addendums may they have if
interference is not to occur?

A set of gears is cut with a 4!/-in/tooth circular
pitch and a 17!/° pressure angle. The pinion
has 20 full-depth teeth. If the gear has 240 teeth,
what maximum addendum may it have to avoid
interference?

Using the method described for Problems 7.20 to
7.24, cut a 1-tooth/in diametral pitch, 20° pressure
angle full-depth involute rack tooth from a sheet of
clear plastic. Use a nonstandard clearance of 0.35/P
in order to obtain a stronger fillet. This template can
be used to simulate the generating action of a hob.
Now, using the variable-center-distance system,
generate an 11-tooth pinion to mesh with a 25-tooth
gear without interference. Record the values found
for center distance, pitch radii, pressure angle, gear
blank diameters, cutter offset, and contact ratio.
Note that more than one satisfactory solution exists.

Using the template cut in Problem 7.40, generate an
11-tooth pinion to mesh with a 44-tooth gear with
the long-and-short-addendum system. Determine
and record suitable values for gear and pinion
addendum and dedendum, and for the cutter offset
and contact ratio. Compare the contact ratio with
that of standard gears.

A pair of involute spur gears with 9 and 36 teeth are
to be cut with a 20° full-depth cutter with diametral
pitch of 3 teeth/in.

(a) Determine the amount that the addendum of
the gear must be decreased to avoid interfer-
ence.

(b) If the addendum of the pinion is increased by
the same amount, determine the contact ratio.
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7.43 A standard 20° pressure angle full-depth involute to produce a reasonable distribution of speeds for
1-tooth/in diametral pitch 20-tooth pinion drives the output shaft. The smallest and largest gears
a 48-tooth gear. The speed of the pinion is 500 are gears 2 and 9, respectively. Using 20 and 45
rev/min. Using the position of the point of contact teeth for these gears, determine a set of suitable
along the line of action as the abscissa, plot a tooth numbers for the remaining gears. What are
curve indicating the sliding velocity at all points of the corresponding speeds of the output shaft? Note
contact. Note that the sliding velocity changes sign that the problem has many solutions.
when the point of contact passes through the pitch
point. 3,

7.44  Find the first-order kinematic coefficient of the 2 @ = 450 rev/min
gear train. What are the speed and direction of A - Input
rotation of gear 8?

\§ = 1200 rev/min
C - Output
= 137 to 580 rev/min
p Figure P7.44 Figure P7.47

7.45  For the given pitch diameters of a set of spur gears 7.48 If intemal gear 7 rotates at .60 rev/ min. cew,
forming a train, compute the first-order kinematic determine the speed and direction of rotation of
coefficient of the train. Determine the speeds and arm 3.
directions of rotation of gears 5 and 7.

30" D
7”
®, = 120 rev/min
16" D
p Figure P7.45

7.46  Use the truck transmission of Fig. 7.30 and an input Figure P7.48
speed of 3 000 rev/min to find the drive shaft speed
for each forward gear and for the reverse gear. 7.49  If the arm in Fig. P7.48 rotates at 300 rev/min ccw,

7.47  Consider the gears in a speed-change gearbox used find the speed and direction of rotation of internal
in machine tool applications. By sliding the cluster gear 7.
gears on shafts B and C, nine speed changes can be 7.50 If shaft C is stationary and gear 2 rotates at 800

obtained. The problem of the machine tool designer
is to select tooth numbers for the various gears

rev/min ccw, determine the speed and direction of
rotation of shaft B.
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7.52

7.53

7.54

7.55

Figure P7.50

In Fig. P7.50, shaft B is stationary and shaft C is
driven at 380 rev/min ccw. Determine the speed and
direction of rotation of shaft A.

In Fig. P7.50, determine the speed and direction of
rotation of shaft C if: (a) shafts A and B both rotate
at 360 rev/min ccw; and (b) shaft A rotates at 360
rev/min cw and shaft B rotates at 360 rev/min ccw.

Gear 2 is connected to the input shaft, and arm
3 is connected to the output shaft. Determine the
speed reduction. What is the sense of rotation of
the output shaft? What changes could be made in
the train to produce the opposite sense of rotation
for the output shaft?

Figure P7.53

The Lévai type-L train shown in Fig. 7.38 has N, =
16T, N4y = 19T, N5 = 17T, Ng = 24T, and N7 =
95T. Internal gear 7 is fixed. Find the speed and
direction of rotation of the arm if gear 2 is driven at
100 rev/min cw.

The Lévai type-A train of Fig. 7.38 has Np = 20T
and Ng = 32T.

(a) If the module is m = 6 mm/tooth, find the
number of teeth on gear 5 and the crank arm
radius.

7.56

7.57
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(b) If gear 2 is fixed and internal gear 5 rotates at
10 rev/min ccw, find the speed and direction of
rotation of the arm.

The figure shows a possible arrangement of gears
in a lathe headstock. Shaft A is driven by a motor at
a speed of 720 rev/min. The three pinions can slide
along shaft A to yield the meshes 2 with 5, 3 with
6, or 4 with 8. The gears on shaft C can also slide
to mesh either 7 with 9 or 8 with 10. Shaft C is the
mandrel shaft.

(a) Make a table demonstrating all possible gear
arrangements, beginning with the slowest
speed for shaft C and ending with the highest,
and enter in this table the speeds of shafts B
and C.

(b) If the gears all have a module of m =
5 mm/tooth, what must be the shaft center
distances?

10
9

Figure P7.56 Ny = 16T, N3 = 36T, Ny = 25T, N5 = 64T,
Ng = 66T, N7 = 17T, Ng = 55T, Ng = 79T, and N = 41T.

If shaft A is the output connected to the arm, and
shaft B is the input driving gear 2, determine the
speed ratio. Can you identify the Lévai type for this
train?

[

N

L16

Figure P7.57 N, = 16T, N3 = 18T, Ny = 16T, N5 = 18T,
and Ng = 50T.
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In Problem 7.57, shaft B rotates at 100 rev/min cw.
Find the speed of shaft A and of gears 3 and 4 about
their own axes.

In the clock mechanism, a pendulum on shaft A
drives an anchor (Fig. 1.12¢). The pendulum period
is such that 1 tooth of the 30T escapement wheel
on shaft B is released every 2 s, causing shaft B
to rotate once every minute. Note that the second
(to the right) 64T gear is pivoted loosely on shaft
D and is connected by a tubular shaft to the hour
hand. (@) Show that the train values are such that
the minute hand rotates once every hour and that
the hour hand rotates once every 12 hours. (b) How
many turns does the drum on shaft F make every
day?

0

8T
orl ] |
60T T
—] 64T
28T
4T g1
n E
— 8T
42T
9T
+ |

Figure P7.59 Clockwork mechanism.




Helical Gears, Bevel Gears, Worms,
and Worm Gears

When rotational motion is to be transmitted between parallel shafts, engineers often prefer
to use spur gears, since they are easy to design and very economical to manufacture.
However, sometimes the design requirements are such that helical gears are a better choice.
This is especially true when the loads are heavy, the speeds are high, or the noise level must
be kept low.

When motion is to be transmitted between shafts that are not parallel, spur gears cannot
be used; the designer must then choose between crossed-helical, bevel, hypoid, or worm
gears. Bevel gears have straight teeth, line contact, and high efficiency. Crossed-helical
and worm gears have a much lower efficiency because of their increased sliding action;
however, if good engineering is used, crossed-helical and worm gears may be designed
with quite acceptable values of efficiency. Bevel and hypoid gears are used for similar
applications, and, although hypoid gears have inherently stronger teeth, their efficiency
is often much less. Worm gears are used when a very small velocity ratio (first-order
kinematic coefficient) is required.

8.1 PARALLEL-AXIS HELICAL GEARS

The shape of the tooth of a helical gear is shown in Fig. 8.1. If a piece of paper is cut into
the shape of a parallelogram and wrapped around a cylinder, the angular edge of the paper
wraps into a helix. The cylinder plays the same role as the base cylinder of a spur gear
in Chap. 7. If the paper is unwound, each point on the angular edge generates an involute
curve, as indicated in Sec. 7.3 for spur gears. The surface obtained when every point on
the angular edge of the paper generates an involute is called an involute helicoid. If we
imagine the strip of paper as unwrapping from a base cylinder on one gear and wrapping

427
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Figure 8.1 An involute

Edge of paper
helicoid.

Involute \L

i, = base
helix angle

up onto the base cylinder of another, then a slanted line on this strip of paper generates two
involute helicoids meshing as two tangent tooth shapes.

The initial contact of spur gear teeth, as we saw in Chap. 7, is a line extending across
the face of the tooth. The initial contact of helical gear teeth starts as a point and changes
into a line as the teeth come into more engagement; in helical gears, however, the line is
diagonal across the face of the tooth. It is this gradual engagement of the teeth and the
smooth transfer of load from one tooth to another that give helical gears their ability to
quietly transmit heavy loads at high speeds.

8.2 HELICAL GEARTOOTH RELATIONS

As shown in Fig. 8.2, two parallel shaft helical gears must have equal pitches and equal
helix angles to mesh properly, but must be of opposite hand. Helical gears with the same
hand, a right-hand driver and a right-hand driven gear, for example, can be meshed with
their axes skewed and are referred to as crossed-axis gears (Sec. 8.7).

Figure 8.3 represents a portion of the top view of a helical rack. Lines AB and CD are
the centerlines of two adjacent helical teeth taken on the pitch plane. The angle i is the
helix angle and is measured at the pitch diameter unless otherwise specified. The distance
AC in the plane of rotation of the gear is the transverse circular pitch, p;. The distance AE
is the normal circular pitch, p,, and is related to the transverse circular pitch as follows:

DPn =P COSY. (8.1
Distance AD is called the axial pitch, py, and can be written as

_ P
tany

Px (8.2)
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Figure 8.2 Pair of helical gears in

mesh. Note the opposite hand of the Section A-A
two gears. (Courtesy of Gleason
Works, Rochester, NY.) Figure 8.3 Helical gear tooth relations.

The normal diametral pitch P,, can be written as

T T P,
P,=—

=—=—, (8.3)
Pn picosy cosyr

where P; is the transverse diametral pitch.

Because of the angularity of the teeth, we must define two different pressure angles,
the normal pressure angle ¢,, and the transverse pressure angle, ¢;, both shown in Fig. 8.3.
The two pressure angles are related by

tan ¢, = tan¢,cosy. (8.4)

In applying these equations, it is convenient to remember that all equations and relations
that are valid for a spur gear apply equally for the transverse plane of a helical gear.

A better picture of the tooth relations can be obtained by an examination of Fig. 8.4.
To obtain the geometric relations, a helical gear has been cut by the oblique plane AA at
an angle ¥ to a right section. For convenience, only the pitch cylinder of radius R is given.
Figure 8.4 shows that the intersection of the AA plane and the pitch cylinder is an ellipse
whose radius at the pitch point P is R,. This is called the equivalent pitch radius, and it is
the radius of curvature of the pitch surface in the normal cross section. For the condition
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y Figure 8.4

N
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Equivalent
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\

that ¢ = 0, this radius of curvature is R, = R. If we imagine angle ¢ to be gradually
increased from 0 to 90°, we see that R, begins at a value of R, = R and increases until,
when ¥ = 90°, the value of R, = o0.

It is demonstrated in a note at the end of this chapter (Sec. 8.17) that

R

Ry= —. 8.5
cosZ ®-5)

where R is the pitch radius of the helical gear and R, is the pitch radius of an equivalent
spur gear. This equivalence is taken on the normal section of the helical gear.

Let us define the number of teeth on the helical gear as N and that on the equivalent
spur gear as N,. Then,

N, =2R,P,. (d)
Using Eqgs. (8.3) and (8.5) we can write this as

R P, _ N
cos2y cosyr  cos3 Y

(8.6)

8.3 HELICAL GEARTOOTH PROPORTIONS

Except for fine pitch (normal diametral pitch of 20 teeth/in and finer), there is no generally
accepted standard for the proportions of helical gear teeth.

In determining the tooth proportions for helical gears, it is necessary to consider the
manner in which the teeth are formed. If the helical gear is hobbed, then tooth proportions
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are calculated in a plane normal to the tooth. As a general guide, tooth proportions are then
often based on a normal pressure angle of ¢, = 20°. Most of the proportions used for spur
gears, given in Table 7.2, can then be used. The tooth proportions are calculated by using
the normal diametral pitch, P,. These proportions are suitable for helix angles from 0° to
30°, and all helix angles can be cut with the same hob. Of course, the normal diametral
pitch of the hob and the gear are the same.

If the gear is cut by a shaper, an alternative set of tooth proportions is used, based on a
transverse pressure angle of ¢, = 20° and the transverse diametral pitch, P;. For these gears,
the helix angles are generally restricted to 15°, 23°, 30°, or 45°; helix angles greater than
45° are not recommended. The normal diametral pitch, P,, must be used to compute the
tooth dimensions; the proportions given in Table 7.2 are usually satisfactory. If the shaper
method is used, however, the same cutter cannot be used to cut both spur and helical gears.

8.4 CONTACT OF HELICAL GEAR TEETH

For spur gears, contact between meshing teeth occurs along a line that is parallel to their
axes of rotation. As shown in Fig. 8.5, contact between meshing helical gear teeth occurs
along a diagonal line. When contact of another tooth is just beginning at A, contact at the
other end of the tooth may have already progressed from B to C.

Several kinds of contact ratios are used in evaluating the performance of helical
gearsets. The transverse contact ratio is designated by m; and is the contact ratio in the
transverse plane. It is obtained exactly as was m, for spur gears.

The normal contact ratio, m,, is the contact ratio in the normal section. It is also
determined exactly as was the contact ratio m, for spur gears, but the dimensions of
equivalent spur gears must be used in the determination. The base helix angle and the
pitch helix angle for helical gears, are related by

tan, = tany cos ¢y. (8.7)

Then the transverse and normal contact ratios are related by

my
my = )
" cos2

(8.8)

The axial contact ratio, my, also called the face contact ratio, is the ratio of the face width
of the gear to the axial pitch, determined from Eq. (8.2). It is given by
_F  Ftany

my = , (8.9)
Px Dt

Line of contact Figure 8.5 Line of contact on
c a helical gear tooth.
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where F is the face width of the helical gear. Figure 8.5 shows that this contact ratio is
greater than unity when another tooth is beginning contact, solely because of the helix
angle of the teeth before the previous tooth contact has finished. Note that this face contact
ratio, also called overlap, has no parallel for spur gears, and note that, because of the helix
angle, this face contact ratio can be made greater than unity for helical gears by the choice
of face width despite the choice of tooth size. If the face width is made greater than the
axial pitch, continuous contact of at least one tooth is assured. This means that fewer teeth
may be used on helical pinions than on spur pinions. The overlapping action also results in
smoother operation of the gears. Note also that the face contact ratio depends solely on the
geometry of a single gear, whereas the transverse and normal contact ratios depend upon
the geometry of a pair of mating gears.

The total contact ratio is the sum of the face contact ratio m, and the transverse contact
ratio m,. In a sense, this sum gives the average total number of teeth in contact.

8.5 REPLACING SPUR GEARS WITH HELICAL GEARS

Because of their ability to carry heavy loads at high speed with little noise, it is sometimes
desirable to replace a pair of spur gears by parallel shaft helical gears, although the cost
may be slightly higher. An example illustrates the calculations.

EXAMPLE 8.1

A pair of 20° full-depth involute spur gears with 32 and 80 teeth, diametral pitch of 16
teeth/in, and face width of 0.75 in are to be replaced by helical gears. The same hob used
for the spur gears is to be used for the helical gears. The shaft center distance and the
angular velocity ratio must remain the same. The helix angle is to be as small as possible,
and the overlap is to be 1.5 or greater. Determine the helix angle, the numbers of teeth, and
the face width of the new helical gears.

SOLUTION
From the spur gear data and Eq. (7.1), the center distance is

N>+ N3 . 32 teeth + 80 teeth

Ro+R; = —
2453 2P 2 (16 teeth/in)

=3.5in. (1)

From Eq. (7.5), the first-order kinematic coefficient, the angular velocity ratio, is

w3

w2

_ Ry _ Ny _ 32 teeth _
" R3y Nz 80teeth

(@)

93//2‘ =

Since the same hob is to be used, the normal diametral pitch, P, for the helical gears must
also be 16 teeth/in. Since the shaft center distance must remain the same that is,

Ny + N3 N>+ N3

= - =35in
2P,cosyr  2(16 teeth/in) cos

Ro+R3 =
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or

_ N>+N3  (N2/N3)N3+N3  1.4N3 N3

cosy = = = = .
112 teeth 112 teeth 112 teeth 80 teeth

3

This implies that N3 must be less than 80 teeth, while Eq. (2) requires that the ratio N2 /N3
must remain 0.4, or N» = 0.4Nj3.

Since N3 =79 teeth does not give an integer solution for N>, the next smallest integer
solution (which gives the smallest nonzero helix angle, v) is N3 = 75 teeth and N, = 30
teeth, giving a helix angle of ¥y = 20.364°. The transverse circular pitch is

b T
"~ P,cosy (16 teeth/in) cos 20.364°

Pt =0.209 in/tooth,

for which Eq. (8.9) indicates a face width of F > 0.845 in. Unfortunately, the space
available does not allow this increase in face width. Therefore, this solution is not
acceptable.

The next integer solution for tooth numbers is N3 = 70 teeth and N, = 28 teeth, giving
a helix angle of ¢ = 28.955°. The transverse circular pitch is p; = 7w /(P,, cos ¥) = 0.224
in/tooth, and the face width is F > 0.607 in. This is an acceptable solution with face width
of less than the original spur gears. The same face width of F = 0.750 in can still be used
if desired.

8.6 HERRINGBONE GEARS

Double-helical or herringbone gears comprise teeth having both a right- and a left-hand
helix cut on the same gear blank, as shown in Fig. 8.6. One of the primary disadvantages
of the single-helical gear is the axial thrust loads that must be accounted for in the
design of the bearings. In addition, the desire to obtain a good overlap without an
excessively large face width may lead to the use of a comparatively larger helix angle,

Figure 8.6 A herringbone gearset. (Courtesy of Matzner Photography, Madison, W1.)
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thus producing even higher axial thrust loads. These thrust loads are eliminated by the
herringbone configuration, since the axial force of the right-hand half is balanced by
that of the left-hand half. Thus, with the absence of thrust reactions, helix angles are
usually larger for herringbone gears than for single-helical gears. However, one of the
members of a herringbone gearset should always be mounted with some axial play or float
to accommodate slight tooth errors and mounting tolerances.

For the efficient transmission of large amounts of power at high speeds, herringbone
gears are almost universally employed.

8.7 CROSSED-AXIS HELICAL GEARS

Crossed-axis helical or spiral gears are sometimes used when the shaft centerlines
are neither parallel nor intersecting. These are essentially non-enveloping worm gears
(Sec. 8.14), since the gear blanks have a cylindrical form with the two cylinder axes skew
to each other.

The tooth action of crossed-axis helical gears is quite different from that of
parallel-axis helical gears. The teeth of crossed-axis helical gears have only point contact.
In addition, there is much greater sliding action along the tooth surfaces than for
parallel-axis helical gears. For these reasons, they are chosen only to carry small loads.
Because of the point contact, however, they need not be mounted accurately; either the
center distance or the shaft angle may also vary slightly without affecting the amount of
contact.

There is no difference between crossed-axis helical gears and other helical gears
until they are mounted in mesh. They are manufactured in the same way. Two meshing
crossed-axis helical gears usually have the same hand; that is, a right-hand driver goes with
a right-hand driven gear. The relation between thrust, hand, and rotation for crossed-axis
helical gears is shown in Fig. 8.7.

Thrust

Left-hand

Figure 8.7 Thrust, rotation, and hand relations for crossed-axis helical gearing. (Courtesy of Boston
Gear Works, Inc., North Quincy, MA.)
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For crossed-axis helical gears to mesh properly, they must share the same normal
pitch. When tooth sizes are specified, the normal pitch should always be used. The
reason for this is that when different helix angles are used for the driver and the driven
gear, the transverse pitches are not the same. The relation between the shaft and helix
angles is

T =yr 3. (8.10)

The positive sign is used when both helix angles are of the same hand, and the negative
sign is used when they are of opposite hand. Opposite-hand crossed-axis helical gears are
used when the shaft angle ¥ is small. The first-order kinematic coefficient, the angular
velocity ratio between the shafts, is

w3 & _ R>cos vy

- N3 o R3cosysy

eg/z‘ - 8.11)

w2

Crossed-axis helical gears have the least sliding at the point of contact when the two helix
angles are equal. If the two helix angles are not equal, the larger helix angle should be used
with the driver if both gears have the same hand.

There is no widely accepted standard for crossed-axis helical gear tooth proportions.
Many different combinations of proportions give good tooth action. Since the teeth are in
point contact, an effort should be made to obtain a contact ratio of 2 or more. For this
reason, crossed-axis helical gears are usually cut with a low pressure angle and a deep
tooth. The tooth proportions given in Table 8.1 are representative of good design. The
driver tooth numbers indicated are the minimum required to avoid undercut. The driven
gear should have 20 teeth or more if a contact ratio of 2 is to be obtained.

Table 8.1 Tooth Proportions for Crossed-Axis Helical

Gears
Driver Driven Both
Helix Minimum Normal
angle tooth number Helix angle pressure angle
1) Ny V3 ®n
45° 20 45° 141/°
60° 9 30° 171/°
75° 4 15° 1915°
86° 1 4° 20°

Normal diametral pitch P, = 1 teeth/in; working depth = 2.400 in;
whole depth = 2.650 in; addendum a = 1.200 in.
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To illustrate the calculations for a pair of crossed-axis helical gears, consider the
following example.

EXAMPLE 8.2

Two shafts at an angle of 60° are to have a velocity ratio of 1/1.5. The center distance
between the shafts is 8.63 in. Design a pair of crossed-axis helical gears for this
application.

SOLUTION

Choosing yr, = 35° for the pinion, Eq. (8.10) then gives 3 = 25° for the gear. Substituting
these angles into Eq. (8.11), the first-order kinematic coefficient can be written as

R»cos35°

w3 1
T R3cos25° 1.5

w2

eé/z‘ =
Therefore, the pitch radius of the pinion is
R> =0.7376R53.

This, along with the given shaft center distance, Ry + R3 = 8.63 in, gives the pitch radius
of the pinion, Ry = 3.663 in, and the pitch radius of the gear, R3 = 4.967 in. Choosing a
normal diametral pitch of P, = 6 teeth/in, the numbers of teeth on the pinion and the gear,
respectively, are

Ny =2P,R; cosyrp = 2(6 teeth/in) (3.663 in) cos 35° = 36 teeth Ans.
and

N3 =2P,R3 cosyr3 = 2 (6 teeth/in) (4.967 in) cos25° = 54 teeth. Ans.

8.8 STRAIGHT-TOOTH BEVEL GEARS

When rotational motion is transmitted between shafts whose axes intersect, some form of
bevel gears is usually used. Bevel gears have pitch surfaces that are cones, with their cone
axes matching the two shaft rotation axes, as shown in Fig. 8.8. The gears are mounted so
that the apexes of the two pitch cones are coincident with the point of intersection of the
shaft axes. These pitch cones roll together without slipping.

Although bevel gears are often made for an angle of 90° between the shafts, they can
be designed for almost any angle. When the shaft intersection angle is other than 90°, the
gears are called angular bevel gears. For the special case where the shaft intersection angle
is 90° and both gears are of equal size, such bevel gears are called miter gears. A pair of
miter gears is shown in Fig. 8.9.

For straight-tooth bevel gears, the true shape of a tooth is obtained by taking a spheric
section through the tooth, where the center of the sphere is at the common apex, as shown
in Fig. 8.8. As the radius of the sphere increases, the same number of teeth is projected
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Figure 8.8 The pitch surfaces of bevel gears are cones that Figure 8.9 A pair of miter gears in
have only rolling contact. (Courtesy of Gleason Works, mesh. (Courtesy of Gleason Works,
Rochester, NY.) Rochester, NY.)

onto a larger surface; therefore, the size of the teeth increases as larger spheric sections
are taken. We have seen that the action and contact conditions for spur gear teeth may be
viewed in a plane taken at right angles to the axes of the spur gears. For bevel gear teeth,
the action and contact conditions should properly be viewed on a spheric surface (instead
of a plane). We can even think of spur gears as a special case of bevel gears in which

Pitch cone
of pinion

Pitch cone
of gear

Figure 8.10 A pair of straight-tooth bevel gears.
(Courtesy of Gleason Works, Rochester, NY.) Figure 8.11 Pitch cones of bevel gears.
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the spheric radius is infinite, thus producing a plane surface on which the tooth action is
viewed. Figure 8.10 is typical of many straight-tooth bevel gearsets.

It is standard practice to specify the pitch diameter of a bevel gear at the large end of
the teeth. In Fig. 8.11, the pitch cones of a pair of bevel gears are drawn, and the pitch radii
are given as Ry and R3, respectively, for the pinion and the gear. The cone angles y» and
y3 are defined as the pitch angles, and their sum is equal to the shaft intersection angle, ;
that is

Y=+

The first-order kinematic coefficient, the angular velocity ratio between the shafts, is
obtained in the same manner as for spur gears and is

w3

w?

R N
"Ry N3

gg/z( — (8.12)

In the kinematic design of bevel gears, the tooth numbers of the two gears and the shaft
angle are usually given, and the corresponding pitch angles are to be determined. Although
they can be determined graphically, the analytic approach gives more precise values. From
Fig. 8.11, distance OP may be written as

R R3
OP = —— = — (a)
siny,  siny3
so that
. Ry . Ry . (= ) )
siny, = —siny3 = —sin(X —
Y2 R3 V3 Rs V2
or
. Ry . .
sinyy = A (sin X cosyr —cos Xsinys). (c)
3

Dividing both sides of this equation by cos y» and rearranging gives
Ry .
tany, = 2 (sin¥X —cos X tany»).
3

Then, rearranging this equation gives

sin X sin X
tany, = = . (8.13)
(R3/R2) +cosX  (N3/Np)+cosX
Similarly,
t sin % (8.14)
any3 = ————. :
V3= (N2/N3) +cos 3
For a shaft angle of ¥ = 90°, the previous expressions reduce to
N
tany, = —= (8.15)

N3
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and

N3
tanyz = ]vz (8.16)

The projection of bevel gear teeth onto the surface of a sphere would indeed be a difficult
and time-consuming task. Fortunately, an approximation that reduces the problem to that
of ordinary spur gears is common. This approximation is called Tredgold’s approximation,
and, as long as the gear has eight or more teeth, it is accurate enough for practical purposes.
It is in almost universal use, and the terminology of bevel gear teeth has evolved around it.

In Tredgold’s method, a back cone is formed of elements that are perpendicular to
the elements of the pitch cone at the large end of the teeth, as shown in Fig. 8.12. The
length of a back-cone element is called the back-cone radius. Now an equivalent spur gear
is constructed whose pitch radius, R,, is equal to the back-cone radius. Thus, from a pair
of bevel gears, using Tredgold’s approximation, we can obtain a pair of equivalent spur
gears that are then used to define the tooth profiles. They can also be used to determine
the tooth action and the contact conditions, just as for ordinary spur gears, and the results
correspond closely to those for the bevel gears.

From the geometry of Fig. 8.12, the equivalent pitch radii are

Ry R3

R = , Ry = . (8.17)
CoS ) cos 3

The number of teeth on each of the equivalent spur gears is

27R,
N, = e (8.18)
p

where p is the circular pitch of the bevel gear measured at the large end of the teeth. Usually,
the equivalent spur gears do not have integral numbers of teeth.

Back cone

/,— Equivalent
spur pinion

Figure 8.12 Tredgold’s approximation.



440

HELICAL GEARS, BEVEL GEARS, WORMS, AND WORM GEARS

8.9 TOOTH PROPORTIONS FOR BEVEL GEARS

Practically all straight-tooth bevel gears manufactured today use a 20° pressure angle.
It is not necessary to use an interchangeable tooth form, since bevel gears cannot be
interchanged. For this reason, the long-and-short-addendum system, described in Sec. 7.11,
is used. The proportions are tabulated in Table 8.2.

Bevel gears are usually mounted on the outboard side of the bearings, since the shaft
axes intersect, which means that the effect of shaft deflection is to pull the small end of
the teeth away from mesh, causing the larger end to take more of the load. Thus, the load
across the tooth is variable; for this reason, it is desirable to design a fairly short tooth.
As indicated in Table 8.2, the face width is usually limited to about one third of the cone
distance. We note also that a short face width simplifies the tooling problems in cutting
bevel gear teeth.

Figure 8.13 defines additional terminology characteristic of bevel gears. Note that a
constant clearance is maintained by making the elements of the face cone parallel to the
elements of the root cone of the mating gear. This explains why the face cone apex is not
coincident with the pitch cone apex in Fig. 8.13. This permits a larger fillet than would
otherwise be possible.

8.10 BEVEL GEAR EPICYCLIC TRAINS

The bevel gear train shown in Fig. 8.14 is called Humpage’s reduction gear. Bevel gear
epicyclic trains are used quite frequently, and they are similar to spur gear epicyclic trains
except that their axes of rotation are not all on parallel shafts. The train of Fig. 8.14

Table 8.2 Tooth Proportions for 20° Straight-tooth Bevel Gears

Item Formula
Working depth h =2.0/P
Clearance ¢=0.188/P+0.002 in.
0.540 0.460
Addendum of gear aG=——+——
P P(mgp)?
Gear ratio mg =Ng/Np
mg when X = 90°
Equivalent 90° ratio mog =
m Y2 when B #£90°
cosyG
) 1 10 . .
Face width F= 3 or F= B whichever is smaller
Pinion 16 15 14 13

Minimum number of teeth
Gear 16 17 20 30
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is, in fact, a double epicyclic train, and the spur gear counterpart of each can be found
in Fig. 7.38. The analysis of such trains can be done by formulae, the same as for spur gear
trains, as shown by the following example.

EXAMPLE 8.3

In the bevel gear train in Fig. 8.14, the input is gear 2, and the output is gear 6, which is
connected to the output shaft. Arm 3 turns freely on the output shaft and carries planets 4
and 5. Gear 7 is fixed to the frame. What is the output shaft speed if gear 2 rotates at 2 000
rev/min?

SOLUTION

The problem is solved in two steps. In the first step we consider the train to be made up of
gears 2, 4, and 7, and calculate the rotational speed of the arm. Thus,

wr =w> =2000rev/min and w; = w7 =0 rev/min,

and, according to Eq. (7.22),

p , 561\ (20 5
O =072 = — 76)\356) " 19

The negative sign is chosen because, if gear 7 were not fixed, it would appear to rotate in
the direction opposite to that of gear 2, when viewed from a coordinate system fixed to
arm 3.

Substituting into Eq. (7.25) and solving for the angular velocity of arm 3 gives

, 5 0—ws3
9LF/A = _E

~ 2000 rev/min — w3’
wp = w3 =416.67 rev/min.

Next, we consider the train as composed of gears 2, 4, 5, and 6. Then wr = wy =
2 000 rev/min, as before, and w;, = we, which is to be found. The first-order kinematic

coefficient of the train is
24 20 12
0 p=0HL=—=||—=)=——.
LE =762 <35)( 56) 49

Again, the negative sign is chosen because gear 6 would appear to rotate in the direction
opposite to that of gear 2, when viewed from a coordinate system fixed to arm 3.
Substituting into Eq. (7.25) again and solving for wg, with w3 known above, now gives

0! B 12 . wy, —416.67 rev/min
LE/A™ 49 ™ 2 000 rev/min — 416.67 rev/min "

Rearranging this equation, the speed of gear 6 (and the output shaft) is

o = we = 28.91 rev/min. Ans.
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Because the result is positive, we conclude that the output shaft rotates in the same
direction as input shaft 2, with a speed reduction of 2 000:28.91 or 69.18:1.

8.11 CROWN AND FACE GEARS

If the pitch angle of one of a pair of bevel gears is made equal to 90°, the pitch cone
becomes a flat surface and the resulting gear is called a crown gear. Figure 8.15 shows a
crown gear in mesh with a bevel pinion. Notice that a crown gear is the counterpart of a
rack in spur gearing. The back cone of a crown gear is a cylinder, and the resulting involute
teeth have straight sides, as indicated in Fig. 8.12.

A pseudo-bevel gearset can be obtained using a cylindric spur gear for a pinion in
mesh with a gear having a planar pitch surface (similar to a crown gear) called a face gear.
When the axes of the pinion and gear intersect, the face gear is called on center; when the
axes do not intersect, the face gear is called off center.

To understand how a spur pinion, with a cylindric rather than conic pitch surface,
can properly mesh with a face gear, we must consider how the face gear is formed; it is
generated by a reciprocating cutter that is a replica of the spur pinion. Since the cutter and
the gear blank are rotated as if in mesh, the resulting face gear is conjugate to the cutter
and, therefore, to the spur pinion. The face width of the teeth on the face gear must be held
quite short, however; otherwise the top land will become pointed.

Face gears are not capable of carrying heavy loads, but since the axial mounting
posture of the pinion is not critical, they are sometimes more suitable for angular drives
than bevel gears.

8.12 SPIRAL BEVEL GEARS

Straight-tooth bevel gears are easy to design, simple to manufacture, and give very good
results in service if they are mounted accurately and positively. As in the case of spur
gears, however, they become noisy at high pitch-line velocities. In such cases, it is often

Figure 8.16 Spiral bevel gears.
(Courtesy of Gleason Works,
Figure 8.15 A crown gear and bevel pinion. Rochester, NY.)
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good design practice to use spiral bevel gears, which are the bevel counterparts of helical
gears. A mating pair of spiral bevel gears is shown in Fig. 8.16. The pitch surfaces and the
nature of contact are the same as for straight-tooth bevel gears except for the differences
brought about by the spiral-shaped teeth.

Spiral bevel gear teeth are conjugate to a basic crown rack, which can be generated as
shown in Fig. 8.17 using a circular cutter. The spiral angle i is measured at the mean radius
of the gear. As with helical gears, spiral bevel gears give much smoother tooth action than
straight-tooth bevel gears and hence are useful where high speeds are required. To obtain
true spiral tooth action, the face contact ratio should be at least 1.25.

Pressure angles used with spiral bevel gears are generally 14 1/2° to 20°, whereas the
spiral angle is about 30° or 35°. As far as tooth action is concerned, the spiral may be
either right- or left-handed; it makes no difference. However, looseness in the bearings
might result in jamming or separating of the teeth, depending on the direction of rotation
and the hand of the spiral. Since jamming of the teeth would do the most damage, the hand
of the spiral should be such that the teeth tend to separate.

Zerol Bevel Gears  The Zerol bevel gear is a patented gear that has curved teeth but a 0°
spiral angle. An example is shown in Fig. 8.18. It has no advantage in tooth action over the
straight-tooth bevel gear and is designed simply to take advantage of the cutting machinery
used for cutting spiral bevel gears.

ircular pitch

Figure 8.18 Zerol bevel gears. (Courtesy of

Figure 8.17 Cutting spiral bevel gear teeth on a basic crown rack. Gleason Works, Rochester, NY.)
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Figure 8.19 The pitch surfaces for hypoid gears Figure 8.20 Hypoid gears. (Courtesy of
are hyperboloids of revolution. Gleason Works, Rochester, NY.)

8.13 HYPOID GEARS

It is frequently desirable, as in the case of rear-wheel drive automotive differentials, to
have a gearset similar to bevel gears but where the shafts do not intersect. Such gears are
called hypoid gears, since, as shown in Fig. 8.19, their pitch surfaces are hyperboloids of
revolution. Figure 8.20 shows a pair of hypoid gears in mesh. The tooth action between
these gears is a combination of rolling and sliding along a straight line and has much in
common with that of worm gears (Sec. 8.14).

8.14 WORMS AND WORM GEARS

A worm is a machine element having a screw-like thread, and worm teeth are frequently
spoken of as threads. A worm meshes with a conjugate gear-like member called a worm
gear or a worm wheel. Figure 8.21 shows a worm and worm gear in an application. These
gears are used with nonintersecting shafts that are usually at a shaft angle of 90°, but there
is no reason why shaft angles other than 90° cannot be used if a design demands it.

Figure 8.21

A single-enveloping worm and
worm gearset. (Courtesy of
Gleason Works, Rochester,
NY)
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Figure 8.22 Nomenclature of a single-enveloping worm and worm gear set.

Worms in common use have from one to four teeth and are said to be single threaded,
double threaded, and so on. As we will see, there is no definite relation between the number
of teeth and the pitch diameter of a worm. The number of teeth on a worm gear is usually
much higher, and, therefore, the angular velocity of the worm gear is usually much lower
than that of the worm. In fact, often, one primary application for a worm and worm gear is
to obtain a very large angular velocity reduction—that is, a very low first-order kinematic
coefficient. In keeping with this low velocity ratio, the worm gear is usually the driven
member of the pair, and the worm is usually the driving member.

A worm gear, unlike a spur or helical gear, has a face that is made concave so that it
partially wraps around, or envelops, the worm, as shown in Fig. 8.22. Worms are sometimes
designed with a cylindric pitch surface, or they may have an hourglass shape, such that
the worm also wraps around or partially encloses the worm gear. If an enveloping worm
gear is mated with a cylindric worm, the set is said to be single enveloping. When the
worm is hourglass shaped, the worm and worm gearset is said to be double enveloping,
since each member partially wraps around the other; such a worm is sometimes called a
Hindley worm. The nomenclature of a single-enveloping worm and worm gearset is shown
in Fig. 8.22.

A worm and worm gear combination is similar to a pair of mating crossed helical
gears except that the worm gear partially envelops the worm. For this reason, they have
line contact instead of the point contact found in crossed helical gears and are thus able
to transmit more power. When a double-enveloping worm and worm gearset is used, even
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more power can be transmitted, at least in theory, since contact is distributed over an area
on both tooth surfaces.

In a single-enveloping worm and worm gearset, it makes no difference whether
the worm rotates on its own axis and drives the gear by a screwing action or whether
the worm is translating along its axis and drives the worm gear through rack action. The
resulting motion and contact are the same. For this reason, a single-enveloping worm need
not be accurately mounted along its axis. However, the worm gear should be accurately
mounted along its rotation axis; otherwise, its pitch surface is not properly aligned with
the worm axis. In a double-enveloping worm and worm gearset, both members are
throated, and therefore both must be accurately mounted in all directions to obtain correct
contact.

A mating worm and worm gear with a 90° shaft angle have the same hand of helix,
but the helix angles are usually very different. The helix angle on the worm is usually
quite large (at least for one or two teeth) and quite small on the worm gear. On the worm,
the lead angle is the complement of the helix angle, as shown in Fig. 8.22. Because of
this, it is customary to specify the lead angle for the worm and specify the helix angle
for the worm gear. This is convenient, since these two angles are equal for a 90° shaft
angle.

In specifying the pitch of a worm and worm gearset, it is usual to specify the axial
pitch of the worm and the circular pitch of the worm gear. These are equal if the shaft
angle is 90°. It is common to employ simple fractions, such as /4, 3%, 1/, 3/, 1, and 11/4
in/tooth, and so on, for the circular pitch of the worm gear; there is no reason, however,
why the AGMA standard diametral pitches used for spur gears (Table 7.1) should not also
be used for worm gears.

The pitch radius of a worm gear is determined in the same manner as that of a spur
gear; that is,

N
Ry= 2P (8.19)
2

where all values are defined in the same manner as for spur gears, but refer to the
parameters of the worm gear.

The pitch radius of the worm may have any value, but it should be the same as that of
the hob used to cut the worm gear teeth. The relation between the pitch radius of the worm
and the center distance, as recommended by AGMA, is

B (R2+R3)0‘875

R
2 4.4

: (8.20)

where the quantity (R + R3) is the center distance in inches. This equation gives
proportions that result in good power capacity. The AGMA standard also states that the
denominator of Eq. (8.20) may vary from 3.4 to 6.0 without appreciably affecting the
power capacity. Equation (8.20) is not required, however; other proportions will also serve
well, and, in fact, power capacity may not always be the primary consideration. However,
there are a lot of variables in worm gear design, and the equation is helpful in obtaining
trial dimensions.
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The lead of a worm has the same meaning as for a screw thread and is the axial
distance through which a point on the helix will move when the worm is turned through
one revolution. Thus, in equation form, the lead of the worm is given by

[ =pxN2, (8.21)

where p, is the axial pitch, and N, is the number of teeth (threads) on the worm. The lead
and the lead angle are related as follows:

l
A =tan"! ( ) , (8.22)
2Ry

where A is the lead angle, as shown in Fig. 8.22.

The teeth on a worm are usually cut in a milling machine or on a lathe. Worm gear
teeth are most often produced by hobbing. Except for clearance at the top of the hob teeth,
the worm should be an exact duplicate of the hob in order to obtain conjugate action. This
also means that, where possible, the worm should be designed using the dimensions of
existing hobs.

The pressure angles used on worms and worm gearsets vary widely and should depend
approximately on the value of the lead angle. Good tooth action is obtained if the pressure
angle is made large enough to eliminate undercutting of the worm gear tooth on the side at
which the contact ends. Recommended values are given in Table 8.3.

A satisfactory tooth depth that has about the right relation to the lead angle is obtained
by making the depth a proportion of the normal circular pitch. Using an addendum of
1/P = p,/m, as for full-depth spur gears, we obtain the following proportions for worms
and worm gears:

Addendum = 1.000/P = 0.318 3p,,
Whole depth = 2.000/P = 0.636 6p,,
Clearance = 0.157/P = 0.050 7p,,.
The face width of the worm gear should be obtained as shown in Fig. 8.23. This makes the

face of the worm gear equal to the length of a tangent to the worm pitch circle between its
points of intersection with the addendum circle.

Table 8.3 Recommended
Pressure Angles for Worm and
Worm Gear Sets

Lead angle A Pressure angle ¢
0°-16° 141/°

16°-25° 20°

25°-35° 25°

35°-45° 30°
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Figure 8.23 Face width of a
worm gear.

8.15 SUMMERS AND DIFFERENTIALS

Figure 8.24 shows a variety of mechanisms used as computing devices. Since each of these
is a two-degree-of-freedom mechanism, two input motion variables must be defined so that
the motions of the remaining elements of the system are determined. The equation below
each of these mechanisms indicates that the output parameter is a direct measure of the
sum of the two input parameters. For this reason, such a mechanism is referred to as an
adder or a summer.

The spur-gear differential of Fig. 8.25 helps in visualizing its action. If planet carrier
2 is held stationary and gear 3 is turned by some amount Afs, then gear 8 turns in the
opposite direction by an amount Afg = —A65. If the planet carrier is also allowed to turn,
then Afy = A, — A6s. It is for this reason that this two-degree-of-freedom mechanism is
called a differential. Of course, a better force balance is obtained by employing several sets
of planets equally spaced about the sun gears; three sets are usual. Also, you will note in
Fig. 8.25 that planets 4, 5, 6, and 7 are identical; by making planets 4 and 7 longer (thicker),
they meet with each other and eliminate the need for planets 5 and 6.

If a spur-gear differential were used on the driving axles of an automobile, then shafts
A and B of Fig. 8.25 would drive the right and left wheels, respectively, whereas arm 2
receives power from a main drive shaft connected to the transmission.

It is interesting that a differential was used in China, long before the invention of the
magnetic compass, to indicate geographic direction. In Fig. 8.26, each wheel of a carriage
drives a vertical shaft through pin wheels. The right-hand shaft drives the upper pin wheel
and the left-hand shaft drives the lower pin wheel of the differential shown in Fig. 8.27.
When the cart is driven in a straight line, the upper and lower pin wheels rotate at the same
speed but in opposite directions. Thus, the planet gear turns about its own center, but the
axle to which it is mounted remains stationary, and so the figure continues to point in a
constant direction. However, when the cart makes a turn, one of the pin wheels rotates
faster than the other, causing the planet axle to turn just enough to cause the figure to
continue to point in the same geographic direction as before.

Figure 8.28 is a drawing of the ordinary bevel-gear automotive differential. The drive
shaft pinion and the ring gear are normally hypoid gears (Sec. 8.13). The ring gear acts as
the planet carrier, and its speed can be calculated as for a simple gear train when the speed
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(a) Ix

(b)

X_+y 61:03702

Figure 8.24 Differential mechanisms used for: (a, ¢, d) adding; (b) subtracting; (a, c, d) averaging
two quantities.

Figure 8.25 A spur-gear
differential.
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Figure 8.26 The image on this chariot continues to point in a constant geographic direction.
(Smithsonian Institute, photo P63158-B.)

Drive shaft

3

Ring gear

5

To rear To rear
meg us wheel

Figure 8.27 The Figure 8.28 Schematic drawing of a bevel-gear
Chinese differential. automotive rear-axle differential.



452

HELICAL GEARS, BEVEL GEARS, WORMS, AND WORM GEARS

of the drive shaft is given. Gears 5 and 6 are connected, respectively, to each of the rear
wheels, and, when the car is traveling in a straight line, these two gears rotate in the same
direction with the same speed. Thus, for straight-line motion of the car, there is no relative
motion between the planet gears and gears 5 and 6. The planet gears, in effect, serve only
as keys to transmit motion from the planet carrier to both wheels.

When the vehicle is making a turn, the wheel on the inside of the curve makes fewer
revolutions than the wheel with the larger turning radius. Unless this difference in speed
is accommodated in some manner, one or both of the tires must slip to make the turn. The
differential permits the two wheels to rotate at different angular velocities while, at the
same time, delivering power to both. During a turn, the planet gears rotate about their own
axes, thus permitting gears 5 and 6 to revolve at different angular velocities.

The purpose of the differential is to allow different speeds for the two driving
wheels. In the usual differential of a rear-wheel-drive passenger car, the torque is divided
approximately equally whether the car is traveling in a straight line or on a curve.
Sometimes, however, the road conditions are such that the tractive effort developed by
the two wheels is unequal. In such a case, the total tractive effort is only twice that at
the wheel having the least traction, since the differential divides the torque equally. If one
wheel happens to be traveling on snow or ice, the total tractive effort possible at that wheel
is very small, since only a small torque is required to cause the wheel to slip. Thus, the car
remains stationary with one wheel spinning and the other having only trivial tractive effort.
If the car is in motion and encounters a slippery surface, then all traction as well as control
is lost!

Limited-Slip Differential It is possible to overcome this disadvantage of the simple
bevel-gear differential by adding a coupling unit that is sensitive to wheel speeds. The
objective of such a unit is to cause more of the torque to be directed to the slower-moving
wheel. Such a combination is then called a limited-slip differential.

Mitsubishi, for example, utilizes a viscous coupling unit, called a VCU, which is torque
sensitive to wheel speeds. A difference in wheel speeds causes more torque to be delivered
to the slower-moving wheel. A large difference, perhaps caused by the spinning of one
wheel on ice, causes a much larger share of the torque to be delivered to the non-spinning
wheel. The arrangement, as used on the rear axle of an automobile, is shown in Fig. 8.29.

Another approach is to employ Coulomb friction, or clutching action, in the coupling.
Such a unit, as with the VCU, is engaged whenever a significant difference in wheel speeds
occurs.

Figure 8.29 Viscous coupling
used on the rear axle of the
Mitsubishi Galant and Eclipse

O—/ i ] \_O GSX automobiles.
A%

iscous coupling

Rear differential
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Figure 8.30 The TORSEN
differential used on the drive
shaft of Audi automobiles.
(Courtesy of Audi of America,
Inc., Troy, MI.)

Of course, it is also possible to design a bevel-gear differential that is capable of
being locked by the driver whenever dangerous road conditions are encountered. This is
equivalent to a solid axle and forces both wheels to move at the same speed. It seems
obvious that such a differential should not be locked when the tires are on dry pavement,
because of excessive wear caused by tire slipping.

Worm-Gear Differential  If gears 3 and 8 in Fig. 8.25 were replaced with worm gears,
and planet gears 4 and 7 were replaced with mating worm wheels, then the result is a
worm-gear differential. Of course, planet carrier 2 would have to rotate about a new axis
perpendicular to axle AB, since worm and worm wheel axes act at right angles to each
other. Such an arrangement can provide the traction of a locked differential or solid axle
without the penalty of restricting small differential movement between the wheels.

The worm-gear differential was invented by Mr. Vernon Gleasman of Pittsford, NY,
in 1958 and was developed by Gleason Works as the TORSEN differential, a registered
trademark now owned by JTEKT Torsen North America, Inc. The word TORSEN is an
acronym for the words “torque sensing” since the differential can be designed to provide
any desired locking value by varying the lead angle of the worm. Figure 8.30 shows a
TORSEN differential as used on Audi automobiles.*

8.16 ALL-WHEEL DRIVE TRAIN

As shown in Fig. 8.31, an all-wheel drive train consists of a center differential, geared to the
transmission, driving the ring gears on both the front- and rear-axle differentials. Dividing
the thrusting force between all four wheels instead of only two is itself an advantage, since
it allows easier handling on curves and in crosswinds.

Dr. Herbert H. Dobbs, Colonel (Ret.), an automotive engineer, states:

One of the major improvements in automotive design is antilocking braking. This
provides stability and directional control when stopping by ensuring a balanced
transfer of momentum from the car to the road through all wheels. As too many have

*A very nice animation of a TORSEN worm-gear differential can be viewed at http://www.outube.ycom/
watch?v=29iPqlQ_8iM.


http://www.outube.ycom/watch?v=Z9iPqIQ_8iM
http://www.outube.ycom/watch?v=Z9iPqIQ_8iM
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C) C) Figure 8.31 All-wheel drive
] ] Rear } (AWD) system used on the
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found out, loss of traction at one of the wheels when braking produces unbalanced
forces on the car, which can throw it out of control.

It is equally important to provide such control during starting and acceleration.
As with braking, this is not a problem when a car is driven prudently and
driving conditions are good. When driving conditions are not good, the problems
quickly become manifold. The antilock braking system provides the answer for the
deceleration portion of the driving cycle, but the devices generally available to help
during the remainder of the cycle are much less satisfactory.*

An early solution to this problem, used by Audi, is to electrically lock the center or
the rear differential, or both, when driving conditions deteriorate. Locking only the center
differential causes one half of the power to be delivered to the rear wheels and one half to
the front wheels. If one of the rear wheels, say, rests on a slippery surface such as ice, the
other rear wheel has no traction. But the front wheels still provide traction. So the car has
two-wheel drive. If the rear differential is then also locked, the car has three-wheel drive,
since the rear-wheel drive is then 50-50 distributed.

Another solution is to use a limited-slip differential as the center differential on an
all-wheel drive (AWD) vehicle. This then has the effect of distributing most of the driving
torque to the front or rear axle, depending on which is moving slower. An even better
solution is to use limited-slip differentials on both the center and the rear differentials.

Unfortunately, both locking differentials and limited-slip differentials interfere with
antilock braking systems. However, they are quite effective during low-speed winter
operation.

The most effective solution seems to be the use of TORSEN differentials in an AWD
vehicle. Here is what Dr. Dobbs has to say about their use:

If they are cut to preclude any slip, the TORSEN distributes torque proportional to
available traction at the driven wheels under all conditions just like a solid axle does,
but it never locks up under any circumstances. Both of the driven wheels are always
free to follow the separate paths dictated for them by the vehicle’s motion, but are
constrained by the balancing gears to stay synchronized with each other. All this adds
up to a true “TORque SENsing and proportioning” differential, which of course is
where the name came from.

*Dr. Herbert H. Dobbs, Rochester Hills, MI, personal communication.
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The result, particularly with a high-performance front-wheel-drive vehicle, is
remarkable, to say the least. The Army has TORSENS in the High-Mobility
Multipurpose Wheeled Vehicle (HMMWYV) or “Hummer,” which has replaced the
Jeep. The only machines in production more mobile off-road than this one have tracks,
and it is very capable on highways as well. It is fun to drive. The troops love it.
Beyond that, Teledyne has an experimental “FAst Attack Vehicle” with TORSENS
front, center, and rear. I’ve driven that machine over 50 mi/h on loose sand washes at
Hank Hodges’ Nevada Automotive Center, and it handled like it was running on dry
pavement. The constant redistribution of torque to where traction was available kept
all wheels driving and none digging!

8.17 NOTE

The equation of an ellipse with its center at the origin of an xy coordinate system with a
and b as its semi-major and semi-minor axes, respectively, is

2 2
X y
Also, the formula for radius of curvature is
3/2
[1+ (dy/dx)*]”
pP="""p5 "5 (b)
d#y/dx

Using these two equations, it is not difficult to find the radius of curvature corresponding
tox =0, y =b. The result is

P =a2/b. ()

Then, referring to Fig. 8.3, we substitute p = R,, a = R/cosyr, and b = R into Eq. (¢) and

obtain Eq. (8.5).

PROBLEMS

8.1

8.2

A pair of parallel-axis helical gears has 141/°
normal pressure angle, diametral pitch of 6 teeth/in,
and 45° helix angle. The pinion has 15 teeth, and
the gear has 24 teeth. Calculate the transverse and
normal circular pitches, the normal diametral pitch,
the pitch radii, and the equivalent tooth numbers.

A pair of parallel-axis helical gears are cut with a 20°
normal pressure angle and a 30° helix angle. They
have diametral pitch of 16 teeth/in and have 16 and
40 teeth, respectively. Find the transverse pressure
angle, the normal circular pitch, the axial pitch, and
the pitch radii of the equivalent spur gears.

8.3

8.4

A parallel-axis helical gearset is made with a 20°
transverse pressure angle and a 35° helix angle. The
gears have diametral pitch of 10 teeth/in and have 15
and 25 teeth, respectively. If the face width is 0.75 in,
calculate the base helix angle and the axial contact
ratio.

A pair of helical gears is to be cut for parallel shafts
whose center distance is to be about 3.5 in to give
a velocity ratio of approximately 1.8. The gears
are to be cut with a standard 20° pressure angle
hob whose diametral pitch is 8 teeth/in. Using a
helix angle of 30°, determine the transverse values
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8.6

8.7

8.8
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of the diametral and circular pitches and the tooth
numbers, pitch radii, and center distance.

A 16-tooth helical pinion is to run at 1 800 rev/min
and drive a helical gear on a parallel shaft at 400
rev/min. The centers of the shafts are to be spaced
11 in apart. Using a helix angle of 23° and a
pressure angle of 20°, determine the values for the
tooth numbers, pitch radii, normal circular pitch
and diametral pitch, and the face width.

The catalog description of a pair of helical gears
is as follows: 141/° normal pressure angle, 45°
helix angle, diametral pitch of 8 teeth/in, 1.0-in
face width, and normal diametral pitch of 11.31
teeth/in. The pinion has 12 teeth and a 1.500-in
pitch diameter, and the gear has 32 teeth and a
4.000-in pitch diameter. Both gears have full-depth
teeth, and they may be purchased either right- or
left-handed. If a right-hand pinion and left-hand
gear are placed in mesh, find the transverse contact
ratio, the normal contact ratio, the axial contact
ratio, and the total contact ratio.

In a medium-size truck transmission, a 22-tooth
clutch-stem gear meshes continuously with a
41-tooth countershaft gear. The data indicate nor-
mal diametral pitch of 7.6 teeth/in, 18!/° normal
pressure angle, 231/° helix angle, and a 1.12-in
face width. The clutch-stem gear is cut with a
left-hand helix, and the countershaft gear is cut
with a right-hand helix. Determine the normal and
total contact ratios if the teeth are cut full-depth
with respect to the normal diametral pitch.

A helical pinion is right-handed, has 12 teeth, has
a 60° helix angle, and is to drive another gear at
a velocity ratio of 3.0. The shafts are at a 90°
angle, and the normal diametral pitch of the gears is

Pitch cylinder
of gear 3

Figure P8.10

Pitch cylinder
of gear 2

8.9

8.13

8.14

8 teeth/in. Find the helix angle and the number of
teeth on the mating gear. What is the shaft center
distance?

A right-hand helical pinion is to drive a gear at a
shaft angle of 90°. The pinion has 6 teeth and a 75°
helix angle and is to drive the gear at a velocity ratio
of 6.5. The normal diametral pitch of the gear is 12
teeth/in. Calculate the helix angle and the number
of teeth on the mating gear. Also determine the
pitch radius of each gear.

In Fig P8.10 gear 2 rotates clockwise and drives
gear 3 counterclockwise at a velocity ratio of
2:1. Use a normal diametral pitch of 5 teeth/in, a
shaft center distance of about 10 in, and the same
helix angle for both gears. Find the tooth num-
bers, the helix angles, and the exact shaft center
distance.

A pair of straight-tooth bevel gears is to be
manufactured for a shaft angle of 90°. If the driver
is to have 18 teeth, and the velocity ratio is to be
3:1, what are the pitch angles?

A pair of straight-tooth bevel gears has a velocity
ratio of 1.5 and a shaft angle of 75°. What are the
pitch angles?

A pair of straight-tooth bevel gears is to be mounted
at a shaft angle of 120°. The pinion and gear are
to have 15 and 33 teeth, respectively. What are the
pitch angles?

A pair of straight-tooth bevel gears with diametral
pitch of 2 teeth/in have 19 teeth and 28 teeth,
respectively. The shaft angle is 90°. Determine the
pitch diameters, pitch angles, addendum, deden-
dum, face width, and pitch diameters of the
equivalent spur gears.
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8.17

8.19

8.20

A pair of straight-tooth bevel gears with diametral
pitch of 8 teeth/in has 17 teeth and 28 teeth, respec-
tively, and a shaft angle of 105°. For each gear,
calculate the pitch radius, pitch angle, addendum,
dedendum, face width, and equivalent number of
teeth. Make a sketch of the two gears in mesh. Use
standard tooth proportions as for a 90° shaft angle.

A worm having 4 teeth and a lead of 1.0 in drives a
worm gear at a velocity ratio of 7.5. Determine the
pitch diameters of the worm and worm gear for a
center distance of 1.75 in.

Specify a suitable worm and worm-gear combina-
tion for a velocity ratio of 60 and a center distance
of 6.50 in. Use an axial pitch of 0.500 in/tooth.

A triple-threaded worm drives a worm gear having
40 teeth. The axial pitch is 1.25 in, and the pitch
diameter of the worm is 1.75 in. Calculate the lead
and lead angle of the worm. Find the helix angle
and pitch diameter of the worm gear.

A triple-threaded worm with a lead angle of 20°
and an axial pitch of 0.400 in/tooth drives a worm
gear with a velocity reduction of 15 to 1. Determine
the following for the worm gear: (a) the number
of teeth, (b) the pitch radius, (c) the helix angle,
(d) the pitch radius of the worm, and (e) the center
distance.

The gear train shown in Figure P8.20 consists of
bevel gears, spur gears, and a worm and worm gear.

- 6" D

F

Figure P8.20

8.21

8.22

8.23

Problems 457
The bevel pinion is mounted on a shaft that is
driven by a V-belt on pulleys. If pulley 2 rotates
at 1 200 rev/min in the direction indicated, find the
speed and direction of rotation of gear 9.

The marine reduction differential shown in Figure
P8.21 has bevel gear 2 driven by engine shaft
A. Bevel planets 3 mesh with fixed crown gear
4 and are pivoted on the spider (arm), which is
connected to propeller shaft B. Find the percent
speed reduction.

Figure P8.21 Ny = 36T, N3 = 21T, Ny = 52T.

The tooth numbers for the automotive differential
shown in Fig. 8.28 are N, = 17T, N3 = 54T, Ny =
11T, and N5 = Ng = 16T. The drive shaft turns at 1
200 rev/min. What is the speed of the right wheel
if it is jacked up and the left wheel is resting on the
road surface?

A vehicle using the differential shown in Fig. 8.28
turns to the right at a speed of 30 mi/h on a curve
of 80-ft radius. Use the same tooth numbers as in
Problem 8.22. The tire diameter is 15 in. Use 60
in as the distance between treads. Calculate the
speed of each rear wheel and the speed of the
ring gear.



Synthesis of Linkages

In previous chapters, we have concentrated on the analysis of mechanisms, where the
dimensions of the links are known. By kinematic synthesis we mean the design or creation
of a new mechanism to yield a desired set of motion characteristics. Because of the very
large number of techniques available, this chapter presents only a few of the more useful
approaches to illustrate applications of the planar theory.*

9.1 TYPE, NUMBER, AND DIMENSIONAL SYNTHESIS

There are three general stages in the design of a new mechanism: type synthesis, number
synthesis, and dimensional synthesis. Although these three steps may not be consciously
followed, they are always present in the creation of any new device.

Type synthesis refers to the choice of the kind of mechanism to be used; it might be
a linkage, a geared system, a cam system, or even belts and pulleys. This beginning stage
of the total design process usually involves the consideration of design factors, such as
manufacturing processes, materials, space, safety, and economics. The study of kinematics
is usually only slightly involved in type synthesis.

Number synthesis deals with finding a satisfactory number of links and number of
joints to obtain the desired mobility (Sec. 1.6). Number synthesis is the second stage in the
design process and follows type synthesis.

The third stage in design, determining the detailed dimensions of the individual links,
is called dimensional synthesis. This is the subject of the balance of this chapter.

* Some of the most useful works on planar kinematic synthesis in the English language are included
in the References at the end of this chapter. Extensive bibliographies may be found in [4] and [8].
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9.2 FUNCTION GENERATION, PATH GENERATION, AND BODY GUIDANCE

A frequent requirement in mechanism design is that of causing an output body to rotate,
oscillate, or reciprocate according to a specified function of time or function of the input
motion. This is the first type of synthesis and is called function generation. A simple
example is that of synthesizing a four-bar linkage to generate the function y = f(x). In
this case, x represents the motion (crank angle) of the input crank, and the linkage is
to be designed so that the motion (angle) of the output rocker approximates the desired
function y. A few other examples of function generation are as follows:

1. In a conveyor line the output body of a mechanism must move at the constant
velocity of the conveyer while some operation is performed—for example,
capping a bottle—and then it must return, pick up the next cap, and repeat.

2. The output body of a mechanism must pause or stop during its motion cycle to
provide time for another event. The second event might be a sealing, stapling, or
fastening operation of some kind.

3. The output body of a mechanism must rotate according to a specified nonuniform
velocity function, since it must be synchronized with another mechanism that
requires such a rotating motion.

Recall that in Chap. 2 we have defined the location of a point to be described by the
term position. However, the location and orientation of a rigid body and the arrangement
of a mechanism or system of rigid bodies are both described by the term posture. This
terminology continues consistently throughout this chapter.

A second type of synthesis problem is called path generation. This refers to a problem
in which the position of a coupler point must follow a path having a prescribed shape.
Common requirements are that a portion of the path be circular, elliptic, or a straight line.
Sometimes it is required that the path cross over itself, as in a figure eight.

The third general class of synthesis problems is called body guidance. Here we are
interested in moving a rigid body from one posture to another. The problem may call for a
simple translation or a combination of translation and rotation. In the construction industry,
for example, a heavy part such as a scoop or a bulldozer blade must be moved through a
series of prescribed postures.

The general problem of dimensional synthesis is to design a mechanism that will
guide a moving rigid body through N finitely separated postures in a single plane (where
N =2,3,4,...). In general, the N postures are specified; that is, the design problem dictates
the N postures to which the rigid body must move. The desire is to synthesize a planar,
single-degree-of-freedom mechanism that will achieve the locations and orientations of
the rigid body for each of the N postures. For example, the synthesis of a planar four-bar
linkage might be the first attempt. If the rigid body that is to be guided through the N
postures is the coupler link, then the synthesis problem is one of body guidance. If the rigid
body is the input or output crank, then the synthesis problem is one of function generation.

In this chapter, we present a general geometric approach that can be used to synthesize
a four-bar linkage for N =2,3,4, or 5 finitely separated postures of the coupler link. We will
see that the number of four-bar linkages that can be found to guide a rigid body through
two finitely separated postures is 0o®; for three finitely separated postures this number
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is co*; for four finitely separated postures there are co! solutions; and through five finitely
separated postures, there are only a small finite number of solutions. In general, it is not
possible to synthesize a four-bar linkage for N greater than five finitely separated postures
of arigid body unless the postures share special geometric relationships.

9.3 TWO FINITELY SEPARATED POSTURES OF A RIGID BODY (N = 2)

Let us start with the study of simple two-posture synthesis methods.

Two-Posture Synthesis of a Slider-Crank Linkage  The central slider-crank linkage
of Fig. 9.1a has a stroke, B1 B>, equal to twice the crank radius, ;. As shown, the extreme
positions of points By and B>, also called limit postures of the slider, are determined by
constructing circular arcs around O» of length r3 — rp and r3 + r;, respectively. The two
dimensions r, and r3 can be found from these two measured lengths.

In general, the central slider-crank linkage must have r3 larger than r,. However, the
special case of r3 = r results in the isosceles slider-crank linkage, in which the slider
reciprocates along an axis through O, and the stroke is four times the crank radius. All
points on the coupler of the isosceles slider-crank linkage generate elliptic paths. The paths
generated by points on the coupler of the central slider-crank linkage of Fig. 9.1a, which
is not isosceles, are not elliptic; however, they are always symmetric about the sliding
axis O»B.

The linkage of Fig. 9.1b is called the general or offset slider-crank linkage. Note that
the limit postures of the slider can be found in the same manner as explained above for the
central slider-crank linkage. Certain special effects can be obtained by changing the offset
distance, e. For example, stroke BB, is always greater than twice the crank radius. Also,
the crank angle required to execute the forward stroke is different from that for the return
stroke. This feature can be used to synthesize quick-return mechanisms where a slower
working stroke may be desired to reduce power requirements (Sec. 1.7).

Two-Posture Synthesis of a Crank-Rocker Linkage  The limit postures of the rocker

in a crank-rocker linkage are shown by points B and B; in Fig. 9.2. Note that the crank
and the coupler form a single straight line at each of the limit postures. Also, note that

(®)

Figure 9.1 (a) Central slider-crank linkage; (b) general or offset slider-crank linkage.
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Figure 9.2 Two limiting
postures of the crank-rocker
linkage.

the two dimensions r; and r3 can be determined from measurements made in these two
postures in the same way as for the slider-crank linkage.

In this case, the crank executes angle v while the rocker moves from Bj to B; through
angle ¢. Note on the return stroke that the rocker swings from B, back to By through the
same angle, —¢, but the crank moves through the angle 360° — .

There are many cases in which a crank-rocker linkage is superior to a cam-and-follower
system. Among the advantages over cam systems are the smaller forces involved, the
elimination of the retaining spring, and the smaller clearances obtainable by the use of
revolute joints.

If the direction of rotation of the input crank is chosen so that ¥ > 180° in Fig. 9.2,
then we can define o« = ¥ — 180°, and an equation for the advance-to-return ratio
(Sec. 1.7) can be written as

_180°+a

Q‘mm—w

9.1

A problem that frequently arises in the synthesis of crank-rocker linkages is to obtain
the dimensions or geometry that will cause the linkage to generate a specified output
displacement, ¢, when the advance-to-return ratio Q is specified.*

(a) (b)

Yy e
7% P

Figure 9.3 Synthesis of a four-bar linkage to generate a specified rocker displacement, ¢, with a
specified advance-to-return ratio, Q.

* The method described here appears in [9, p. 33] and in [16, p. 257]. Both [8, p. 317] and
[18, p. 241] describe another method that yields different results.
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To synthesize a crank-rocker linkage for specified values of ¢ and o, we locate an
arbitrary point, Oy, in Fig. 9.3a and choose any desired rocker length, r4; we note that this
choice does not change the solution but only sets the scale of the figure. Then, we draw the
two postures of link 4, that is, O4B1 and O4B>, separated by the given angle, ¢. Through
B1, we construct any line X. Then, through B>, we construct line Y at the given angle, «, to
line X. The intersection of these two lines defines the location of the crank pivot, O;. Since
the orientation of line X was chosen arbitrarily, there are an infinite number of solutions to
this problem.

Next, as shown in Fig. 9.3a, distance B> C is 2r», or twice the crank length. So, we can
bisect this distance to find 5. Then, the coupler length is found from r3 = O2B1 — 2. The
completed linkage is shown in Fig. 9.3b.

Pole of a Finite Displacement For two finitely separated postures of a rigid body
in planar motion, the moving body can be represented by a line AB of constant length,
as shown in Fig. 9.4. In the first posture, the body is denoted as A;Bj, and in the
second posture, the body is denoted as A>B>. The displacement of the body from posture
1 to posture 2 can be described by a rotation, 61, and a translation, dj>, as shown
in Fig. 9.4.

Note that a unique point can be located as the center of rotation of the rigid body
displacement. The center of rotation is the point of intersection of the perpendicular
bisector of the line connecting A; to A and the perpendicular bisector of the line
connecting Bj to B;. The center of rotation will henceforth be referred to as the pole for
the finite displacement and denoted as P15 as shown in Fig. 9.5.

The angle of rotation of body AB is denoted

ZA1P12Ar = ZB1P12By =012 =2¢12. 9.2)

Figure 9.4 Two finitely separated postures of a rigid body.
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Figure 9.5 A single pivot to guide the rigid body through a finite displacement.

Therefore, the angles

LAPAT = LZA*P1oAr = o,
ZB\P12B* = ZB*P12B> = 12, 9.3)

where A* and B* are the midpoints of lines AjA, and B;B», respectively. Note that the
pole Pj; for a finite displacement of the body from posture i to posture j is analogous to
the instantaneous center of velocity for an infinitesimal displacement of a rigid body (Sec.
3.12). The following two statements are important: (a) the pole for a finite displacement is
located at the point of the moving body having zero displacement; and (b) for the purpose of
calculating displacements, the finite displacement of the body can be considered a rotation
around the pole.

A better solution than a single pivot to guide the moving body between two postures
is to use a four-bar linkage, since a four-bar linkage is more stable and can support a larger
load than a single pivot. A possible four-bar linkage solution is shown in Fig. 9.6. The body
AB would be attached to the coupler link; the previous or new points A and B could be used
as the two coupler pivots; ground pivot O4 can be chosen as any point on the perpendicular
bisector A*Pj;, and ground pivot Op can be chosen as any point on the perpendicular
bisector B*Pq,.

The total number of possible four-bar linkages that can guide the body through two
finitely separated postures can be obtained from the fact that there are oo® locations for
pin A, 0o’ locations for pin B, co! choices for ground pivot O4, and co! choices for
ground pivot Op along the perpendicular bisector lines. Therefore, there are a total of
o0® possible four-bar linkages that can guide the body through the two specified finitely
separated postures.

It is important to note the relationships between the signs of the rotation angles and
the order of their subscripts. The rotation angle through which the body turns in moving
from posture 1 to posture 2 is denoted 2¢12 [Eq. (9.2)]. Similarly, the rotation angle
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Figure 9.6 A possible four-bar
linkage.

through which the body turns in moving from posture 2 back to posture 1 is denoted 2¢».
Therefore, we can write that

2¢12+2¢21 =0°, 360°
or
@12+ ¢21 =0°,180°. 9.4

Note that Eqgs. (9.4) are valid when the two angles are measured in the same direction. If
the angles are measured in opposite directions, then

¢21 = —9P12. 9.5)

An expression for the average velocity of an arbitrary point fixed in the body, say point
A, can be written as

ASA

(VA)avg = Tt’ 9.6)

where the arc distance is Asq =A1A;. The relationship between the distance, Asy, and the
angle, ¢1», can be obtained as follows. Consider the triangle A1 P12A™ of Fig. 9.5; then,

# AA*
S 12 = ’
PpA
which can be written as
A1A* = (P12A1)sings. 9.7
Note that
Al1A 1
AA* =222 — Ay, 9.8)

2 2
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Setting Eq. (9.8) equal to Eq. (9.7) and rearranging, the displacement can be written as
Asy =2A1A" = 2(P12A ) sings. 9.9)

Then, substituting Eq. (9.9) into Eq. (9.6) and rearranging, the average velocity of point A
can be written as

2sin¢12
At

(Va)avg = (P12AY). (9.10)

From this equation, the magnitude of the instantaneous velocity of point A in the body can
be written as

. 2sin¢gq2
V4= lim PoA;. 9.11)
At—0 At

Recall that the magnitude of the instantaneous velocity of point A (Chap. 3) can also be
written as

Vi = R, 9.12)

where w is the angular velocity of the body, and R = P»A is the distance of point A from
the pole (center of rotation). Comparing Eqs. (9.11) and (9.12), we note that the angular
velocity of the body can be written as

w= lim (25in¢12>. 9.13)

At—0

9.4 THREE FINITELY SEPARATED POSTURES OF A RIGID BODY (N = 3)

Three finitely separated postures of a body, denoted 1, 2, and 3, can be specified by: (a) the
poles P12, P23, and P3;; (b) the rotation angle from posture 1 to posture 2 denoted 2¢2,
the rotation angle from posture 2 to posture 3 denoted 2¢»3, and the rotation angle from
posture 3 to posture 1 denoted 2¢3;.

We can obtain the locations of the three poles in the same manner as before. We choose
an arbitrary line in the body, say line DE shown in Fig. 9.7. For the body in its first posture,
the line is denoted D1 Ey; in the second posture, the line is denoted D> Ej>; and in the third
posture, the line is denoted D3E3. The intersection of the perpendicular bisectors of the
lines D1D; and E1E» is the pole Pi>. The intersection of the perpendicular bisectors of
lines D, D3 and E>Ej3 is pole P3 Finally, the intersection of the perpendicular bisectors of
lines D3Dq and E3E; is pole P3;1. The three poles for the three finitely separated postures
of the body are shown in Fig. 9.7.

We connect poles P> and P»3 by a straight line; we connect poles P>3 and P3; by a
straight line; and we connect poles P31 and Pj» by a straight line. These three lines form
a triangle called the pole triangle. An understanding of the geometry of the pole triangle
(for example, the interior angles and the exterior angles) is essential for synthesizing a
mechanism that can guide the body through the three finitely separated postures.

For convenience, the finite displacements of the rigid body in Fig. 9.8a are shown
counterclockwise. For the pole triangle shown, the sides are labeled so that side 1 is the
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Figure 9.7 Three poles for
three postures of rigid body
DE.

side with the common subscript 1 for the two poles (P31P12), side 2 is the side with the
common subscript 2 for the two poles (P12P23), and side 3 is the side with the common
subscript 3 for the two poles (P23P31).

Interior Angles of a Pole Triangle  The order of the subscripts for the interior angles
of a pole triangle are defined as follows: (a) The interior angle about pole P> from side 1
to side 2 of the pole triangle is the angle ¢, (positive counterclockwise), (b) the interior
angle about pole P,3 from side 2 to side 3 of the pole triangle is angle ¢»3 (positive
counterclockwise), and (c) the interior angle about pole P3; from side 3 to side 1 of the
pole triangle is the angle ¢31 (positive counterclockwise).

Recall that these interior angles are half the rotation angles for the body; that is,

012 023 031
¢12=7, ¢23=7, and @3 =5 (9.14)

®) |
\\h\d)l.?
Py P ‘' Py
31

3 ¢12\~ $31

Figure 9.8 (a) Interior angles of a pole triangle; (b) exterior angles of a pole triangle.



9.4 THREE FINITELY SEPARATED POSTURES OF A RIGID BODY (N = 3) 467

Also note that, consistent with Eq. (9.14), the sum of the three interior angles of the pole
triangle must be

$12 + ¢23 + P31 = 180°. 9.15)

Exterior Angles of a Pole Triangle  Note the following relationships, again consistent
with Eq. (9.14):

P12+ ¢21 =180°, @3+ 32 =180°, and ¢31+¢p13 = 180°, (9.16)

which are valid when the angles are measured in the same direction, as shown in Fig. 9.8b.
Also, note the relationships

d12=—¢21, ¢33 =—¢3, and ¢33 =—¢13, (9.17)

which are valid when the angles are measured in opposite directions, consistent with
Eq. (9.9).

EXAMPLE 9.1

Given the pole triangle shown in Fig. 9.9, where the length of side 1 is P31 P> =2 in and
the interior angles are ¢1o = 612/2 = 53.13° ccw and ¢31 = 631 /2 = 36.87° ccw, and also
given that the location of point D fixed in the moving body in posture 1, that is, point Dy,
is midway between poles P31 and P1> and 1.5 in vertically below this line, then determine
the location of point D when the rigid body is in posture 2 and in posture 3; that is, find
points D, and Ds.

SOLUTION

Note that the interior angle ¢o3 = 63/2 = 90° ccw; therefore, the pole triangle is a 3:4:5
right-angled triangle, and the lengths of the other two sides are P2 P»3 = 1.2 in for side 2
and P»3P3; = 1.6 in. for side 3.

Figure 9.9 Pole triangle and
point Dj.
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Figure 9.10 Location of point
D in the three positions (D1,
Dy, and D3) .

A straightforward approach for finding the locations of points D> and Dj3 is to use
the so-called image point (also referred to as the image pole). The image point, denoted
here Dy, is defined as that point that will give D;(i = 1,2,3) when reflected across the side
(or the extended side) of the pole triangle with the common subscript i. In other words,
D is the reflection of D; about side 1 (P31 P12), D> is the reflection of D; across side 2
(P12P»3), and Dj is the reflection of D; across side 3 (P»3 P31). Points D1, D>, and D3 are
shown in Fig. 9.10.

The three points D1, Dy, and D3 must also lie on the circumference of a circle, that is,
we know that it is always possible to find a circle that passes through the three locations
defined by any arbitrary point fixed in the body as the body travels through three finitely
separated postures. This makes it possible to design a four-bar linkage to guide a rigid body
through three finitely separated postures, since pins A and B on the coupler link must be
located on circular arcs.

The center of the circle that passes through the three points D1, D;, and Dj3 is called
a center point and is denoted D¢. All points such as D¢ make up the center point system
(or center system), which will be explained in more detail later. The center point, D¢, is
the point of intersection of the perpendicular bisectors of lines D1 D3 and D,Ds3. Since the
perpendicular bisector of line D; D> must also pass through the center point, D¢, this can
be used to check the accuracy of the previous constructions. Also note that, consistent with
the definition of a pole, the perpendicular bisector of line D;D; must pass through pole P;;.

The geometric relationships can be written as follows:

£ZD1P12Dc = ZDcP12Dy = ¢12,
£DyP3Dc = LDcPy3D3 = ¢23,
ZD3P31Dc = ZDcP31D1 = ¢31. (9.18)
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EXAMPLE 9.2

Assume we are given the pole triangle and center point Ec, as shown in Fig. 9.11.
The length of the side P3Py is 2 in, the interior angles ¢1o = 612/2 = 25° ccw and
@31 = 631/2 = 40° ccw, the distance from Pp, to center point Ec is 1 in, and the angle
/P31 P12Ec =45°cw, as shown in Fig. 9.11. Find the locations of point E when the body
is in postures 1, 2, and 3 (that is, find E1, E>, and E3), and determine the radius of the
circle that passes through these three points.

Py Figure 9.11 Pole triangle and
the center point, Ec.
o 40°
P12 < 25 P3]

EZ 5

1” \\
\.
Ec

SOLUTION

The interior angle from posture 1 to posture 2 can be written as

¢12 = £P31P12Py3 = 25° cew, (la)
and the interior angle from posture 3 to posture 1 can be written as

¢31 = LP23P31P1p = 40° ccw. (1b)
Therefore, the interior angle from posture 2 to posture 3 is

¢23 = LP1pPy3P31 = 115° cew. (1c)
The geometric relationships are

ZE\PpEc = ZEcP1Ey = ¢12,
LEyPp3Ec = ZEcP3E; = ¢o3,
ZE3P31Ec = ZEcP31El = ¢31. 2
Two of these three equations can be used to locate Ej, that is, the first and the third
equations can be written as
ZEcPpE = —¢10 =25 cw,
LEcP31El = ¢31 = 40° cew. 3)
Therefore, the point of intersection of these two lines is £y, as shown in Fig. 9.12. The

location of point E in positions 2 and 3 can be obtained from a similar procedure; that
is, to locate E», use the first two of Egs. (2), and to locate E3 use the second and third
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equations. An alternative procedure is to find the image point E; and then reflect this point
across the common side 2 and the common side 3 of the pole triangle to find E> and E3,

respectively. E; Figure 9.12 Pole triangle and

points Ey, E», and E3.

The circle can be drawn with center Ec and passing through points Ej, E>, and E3.
The radius of this circle is measured as

EcEy\ =EcE; =EcE; =1.9in.

A special case, which is important in synthesis, is when the radius of the circle is
infinite, that is, when the circle degenerates to a straight line. This implies that point
E is moving on a straight line through the three finitely separated positions. In such a
case, point £ would be suitable for a prismatic joint. An example of this special case is
presented next.

EXAMPLE 9.3

We are given the pole triangle and point Dy, as shown in Fig. 9.13. The length of side
P31P1, is 2 in, and the interior angles are ¢12 = 30° ccw, ¢23 = 90° ccw, and ¢3; = 60°
ccw. The location of point D is midway between poles P31 and Py and 1 in below this
line, as shown in Fig. 9.13. Find the location of point D when the rigid body is in postures
2 and 3; that is, find the locations of D> and D3.
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P
90°
30° 60°
P P
12 1 1 1 31
I
ol
|
|
|
. Dl
Figure 9.13 Pole triangle and Figure 9.14 Locations of points Dy,
point Dj. D», and Ds.
SOLUTION

The pole triangle is a 1:2:4/3 right-angled triangle; therefore, the lengths of the remaining
two sides are PioPr3 = V3 in and P>3P31 = 11in. Reflecting point Dy across the side
P31 P17y gives the image point D;. Then, reflecting D; across the side P12P23 gives point
D», and, finally, reflecting D; across the side P>3P31 gives point D3. Points D1, D> and D3
are shown in Fig. 9.14.

Note that the three points D1, D>, and D3 lie on a straight line. Also note that this line
passes through pole P53, that is, the rotation angle

/DyPy3D3 = 2¢pp3 = 2/LP12Py3 P31 = 180° cew.

The following will clarify why the path of point D, in this example, is a straight line.

Circumscribing Circle  An important geometric property of a triangle is its circum-
scribing circle. A circle can always be drawn such that the three vertices of the triangle
lie on the circumference of this circle, referred to as the circumscribing circle. The center
of the circumscribing circle is the intersection of the perpendicular bisectors of the three
sides of the triangle. The center of the circumscribing circle is denoted point O, as shown
in Fig. 9.15.

The reflection of point O across side 1 (P31Pj2) is denoted Oj, that across side
2 (P1Py3) is denoted Oy, and that across side 3 (P>3P31) is denoted Os. Poles P3; and
P17 lie on the circumference of a circle with the same radius as the circumscribing circle
and with center O, poles P1; and P53 lie on the circumference of a circle with the same
radius as the circumscribing circle and with center O, and poles P23 and P3; lie on the
circumference of a circle with the same radius as the circumscribing circle and with center
O3. These three circles also intersect at a unique point that is referred to as the orthocenter
and is denoted as point H, as shown in Fig. 9.16.
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Figure 9.15 Circumscribing
circle of a pole triangle.

Py

The orthocenter of a triangle is defined as the point of intersection of the lines drawn
through the vertices of the triangle and perpendicular to the opposite sides. Therefore, if
the pole triangle is an acute-angled triangle, then the orthocenter lies inside the triangle. If
the pole triangle is a right-angled triangle, then the orthocenter is coincident with a pole

Figure 9.16 Orthocenter.
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H, Figure 9.17 Reflections of the
orthocenter.

H,

P12

and is located at the apex of the right angle. If the pole triangle has an obtuse angle, then
the orthocenter lies outside the triangle.

The reflection of the orthocenter, H, across side 1 (P31 P12) is denoted Hj, the
reflection of point H across side 2 (P12P33) is denoted H», and the reflection of point
H across side 3 (P>3P31) is denoted H3. Note that the reflections of the orthocenter lie on
the circumscribing circle of the pole triangle, as shown in Fig. 9.17.

EXAMPLE 9.4

For the pole triangle given in Example 9.3, find the center of the circumscribing circle,
point O, and draw the circumscribing circle. Then, locate points O, O, and O3, and draw
the circles with the same radii as the circumscribing circle and with centers at Oy, O3, and
O3. Finally, determine the locus of all points in the body having three positions on straight
lines.

SOLUTION

Since the pole triangle from Example 9.3 is a right-angled triangle, the center of the
circumscribing circle, point O, must lie at the midpoint of the hypotenuse. Note that the
hypotenuse is side 1 of the pole triangle, with common subscript 1; therefore, point O is
coincident with O. Reflecting point O across side 2 of the pole triangle with the common
2 subscript gives O, and reflecting point O across side 3 of the pole triangle with the
common 3 subscript gives O3, as shown in Fig. 9.18.

Since point O is coincident with O, then the circle with center at O; and the same
radius as the circumscribing circle is coincident with the circumscribing circle. Also note
that the given point D in Example 9.3 lies on this circle; therefore, points D, and D3
must lie on the circles with centers at O, and O3z. The conclusion is that the locus of
points having three positions on a straight line are the circles with the same radii as the
circumscribing circle and centers at O, O», and O3. These are the only points in the body
that can travel on straight lines through the three finitely separated postures.
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Locus of points
in Position 3
that have

their three
positions on
straight lines

Locus of points
in Position 2
that have
their three
positions on
straight lines

Locus of points
in Position 1
that have

their three
positions on
straight lines

Figure 9.18 Locus of points having three positions on a straight line.

This explains why point D in Example 9.3 travels on a straight line.

It is interesting to note that, for three infinitesimally separated postures of the body, the
three circles coalesce and become the inflection circle (Sec. 4.12). Recall that the inflection
circle is the locus of all inflection points in the body, that is, points that instantaneously
travel on straight lines.

In designing a four-bar linkage to guide the coupler link through three finitely
separated postures there are co* possible solutions, that is, co® choices for the crankpin
A in the coupler link and co? choices for the crankpin B in the coupler link. Based on the
choices of A and B, the locations of the ground pivots O4 and Op are uniquely determined.

9.5 FOUR FINITELY SEPARATED POSTURES OF A RIGID BODY (N =4)

For four finitely separated postures of a rigid body, there are six poles: (a) pole P, for the
finite displacement from posture 1 to posture 2, (b) pole Pi3 for the finite displacement
from posture 1 to posture 3, (c) pole P4 for the finite displacement from posture 1 to
posture 4, (d) pole P»3 for the finite displacement from posture 2 to posture 3, (e) pole
Po4 for the finite displacement from posture 2 to posture 4, and (f) pole P34 for the finite
displacement from posture 3 to posture 4.

The four finitely separated positions of an arbitrary point fixed in the moving body
do not, in general, lie on the circumference of a circle. However, there are some points of
the moving body whose four positions do lie on the circumference of a circle; these points
are important in kinematic synthesis of a mechanism to guide the body through four given
postures and are referred to as circle points. Circle points are suitable for the crankpins of a
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four-bar linkage with the ground pivots at the centers of the circles; these are called center
points. For four finitely separated postures of a plane, all circle points lie on a curve that
is referred to as the circle point curve, and all center points lie on a curve that is referred
to as the center point curve. These two curves are each of third degree [1] or cubic curves,
that is, the curves can be described by third-order polynomials.

To design a four-bar linkage to guide a rigid body through four finitely separated
postures, we only need to focus on four of the six poles. In other words, the circle point
curve and the center point curve can be obtained by considering only four of the six poles.
If the solution is not satisfactory, then we can choose a different combination of four poles
and repeat the synthesis procedure. The geometry involved is that of a pole quadrilateral
referred to as an opposite pole quadrilateral.

Two poles that do not contain a common numeric subscript are referred to as
opposite poles. There are three pairs of opposite poles, namely, (P12, P34), (P13, P24),
and (P14,P23). Two poles that do contain a common numeric subscript are referred to
as adjacent poles. There are twelve pairs of adjacent poles, namely, (P12, P13), (P12, P14),
(P12, P23), (P12, P24), (P13, P14), (P13, P23), (P13, P34), (P14, P24), (P14, P34), (P23, P24),
(P23, P34), and (P24, P34). There a total of three opposite pole quadrilaterals; they have
diagonals that connect opposite poles. Therefore, the sides of an opposite pole quadrilateral
are lines connecting adjacent poles. The three possible opposite pole quadrilaterals are: (a)
(P13, P12), (P12, P24), (P24, P34), and (P34, P13); (D) (P14, P12), (P12, P23), (P23, P34), and
(P34, P14); and (¢) (P14, P13), (P13, P23), (P23, P24), and (P4, P14). These are shown in
Fig. 9.19.

Theorem  If four positions of a point fixed in a rigid body lie on the circumference of a
circle, then the center of that circle (that is, the center point) views opposite sides of an
opposite pole quadrilateral under angles that are equal or differ by 180°.

The converse is also true, namely: If a point (say, Ec) views opposite sides of an
opposite pole quadrilateral under angles that are equal or differ by 180°, then that point
is the center of a circle that passes through the four positions of point E of the body.

The procedure to find circle points is shown in Fig. 9.20; it is as follows. Consider one
of the three opposite pole quadrilaterals, say the opposite pole quadrilateral (P3, P12),
(P12, P24), (P24, P34), and (P34, P13). Then, choose one pair of opposite sides of this
quadrilateral, say the opposite sides (P12, P24) and (P13, P34) Draw a circle with the side
(P12, P24) as a chord; that is, perpendicularly bisect the side (P12, P24), and choose the

Py3 Py

Py Py

Figure 9.19 Three possible opposite pole quadrilaterals.
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Figure 9.20 Circle with side
(P12, Pa4) as a chord.

center of the circle as a point on this bisector. Choose a convenient radius R, and draw the
circle as shown in Fig. 9.20. The center of this circle can be chosen on the left side of line
(P12, P24) or on the right side of the line. Left and right are defined as follows: If we stand
on the pole Pj;, for example, and look towards the pole Py4, that is, we are looking from
1 to 4, as we ignore the common 2 subscript. So, as shown in Fig. 9.20, the center of the
circle has been chosen on the right side of the line.

Now we draw a circle with the opposite side (P13, P34) as a chord. The radius, r, of
this circle must be chosen in the ratio

P3P
o P3Py g

= 9.19)
P12Poy

The center of this circle must be chosen on the same side of line (P13, P34) as the center of
the first circle was chosen relative to line (P12, P24). So, we stand on pole (P13) and look
towards the pole (P34), that is, looking from 1 to 4, as we ignore the common 3 subscript,
consistent with the previous procedure. The center must again be chosen on the right of the
line, as shown in Fig. 9.20.

In general, these two circles will intersect in two points, denoted here as Ec, and Ec,,
and both are possible center points. These points both satisfy the theorem, that is, they
both view the opposite sides of the opposite pole quadrilateral under angles that are equal
or differ by 180°. The relationships can be written as

LP1Ec Py = LP3Ec, P34,
‘ : (9.20)
ZP1Ec, Py = ZP13Ec, P34,

or

LP1Ec Py = ZP13Ec, P3s 180°,

(9.21)
ZP12Ec, P2y = ZP13Ec, P34 +180°.

The second of Egs. (9.20) and the first of Egs. (9.21) can be verified to be true for the
example shown in Fig. 9.20.
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By choosing different values for R (and r) and repeating the above procedure, a set of
center points can be obtained. A curve can then be drawn through these points and is called
the center point curve. Points on this curve are all suitable candidates for fixed pivots of the
four-bar linkage. Note that all six poles, by definition, must lie on the center point curve.

EXAMPLE 9.5

The locations of five of the six poles for four finitely separated postures of the coupler link
of a planar four-bar linkage are as shown in Fig. 9.21. Draw an opposite pole quadrilateral.
Draw the center point curve, which can be used in the synthesis of a four-bar linkage. For
the specified fixed pivots of the four-bar linkage, O4 and Op, shown in Fig. 9.21, locate
the corresponding circle points A and B in the first three postures of the linkage (that is,
A1B1, A2B>, and A3B3). Then, specify the lengths of the two links O4A and OB and
the length of the coupler link AB of the synthesized four-bar linkage Oy, A, B, and Og.
Is the synthesized four-bar linkage a Grashof four-bar linkage or a non-Grashof four-bar
linkage?

Figure 9.21 Four finitely separated postures of a coupler link.

SOLUTION

First, an opposite pole quadrilateral is drawn. The four sides of the opposite pole
quadrilateral are (P12,P14),(P14,P34), (P34,P23), and (P23,P12), as shown in Fig. 9.22.
Note that this is only one of three possible opposite pole quadrilaterals. However, it is the
only one that can be drawn from the five poles given. Pole P»4 is not known; therefore,
pole P31 cannot be used to draw an opposite pole quadrilateral.

The procedure to draw the center point curve is as follows:

1. Choose a side (Pj2,P14) and the opposite side (P34,P23) of the opposite pole
quadrilateral. From the property of similar triangles,

R PppP 3in
S22 2By thatis, R=r, M
r P3Py 3in

where R is the radius of the circle with center on the perpendicular bisector of
P12P14, and r is the radius of the circle with center on the perpendicular bisector
of P34P»3.
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Figure 9.22 An opposite pole quadrilateral.

Consider the side (P12, P14) of the opposite pole quadrilateral. Standing at pole
P12, we look at pole P14; we are looking from 2 to 4, ignoring the common
subscript 1. We draw a circle with radius R and with center, say, to our right
on the perpendicular bisector of (P12, P1a).

Now we consider the opposite side (P23, P34) of the opposite pole quadrilateral.
Standing at pole P»3, we look at pole P34, looking from 2 to 4, ignoring the
common subscript 3. We draw a circle with radius » = R and with the center
again to our right on the perpendicular bisector of (P33, P34).

Identify the two points of intersection of the two circles in steps 2 and 3 as two
center points.

Choose different values for R (and r) and follow the above procedure (steps 2, 3,
and 4) to obtain another set of center points.

Repeating steps 2 through 5 several times, we draw a curve through these center
points.

This results in the center point curve shown in Fig. 9.23.

Figure 9.23 Center point
curve.

Curve

Center Point
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Note that any two points on this curve are suitable as fixed pivots of the four-bar
linkage. Note, also, that the center point curve for this example is the straight
horizontal line passing through O4 and Op and the circle circumscribing the opposite pole
quadrilateral. This is an overly simplified and a degenerate case; that is, the cubic curve
here consists of a straight line and a circle. Still, we note that the center point curve passes
through the four poles of the opposite pole quadrilateral (and the given fifth pole). As
mentioned previously, the poles (by definition) must always lie on the center point curve;
this helps to confirm the graphic construction.

To locate circle points A and B corresponding to the given center points Oy
and Op, consider the pole triangle formed by poles Pia, P23, and P3jp; the interior
angles are

¢12 =101.3° cw, ¢33 =19.6°cw, and ¢33 =59.1° cw. 2)
Consider the center point, that is, the fixed pivot O4; then, we find the angles
ZOAP1A| = —¢1p =101.3° ccw  and ZO0aP31A1 = +¢31 =59.1° cw. 3)

We draw a line through pole P> such that it makes an angle of 101.3° ccw from line
O4P17. Then, we draw a line through pole P3; such that it makes an angle of 59.1° cw
from line O4P3;1. The intersection of these two lines gives point A;. Note that point A}
is coincident with pole P3;. Next, we reflect A across the side 1 (P12P31) to find image
point A;. Then, we reflect image point A; across side 2 (P12P33) and side 3 (P23P31) to
give points A, and A3, respectively. The locations of points A1, A, and A3 are as shown in
Fig. 9.24. Note that the image point Ay is coincident with point A;.

Figure 9.24 Four-bar linkage.
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Similarly, we consider the center point, that is, the fixed pivot Op, where the
angles are

Z0gP12B1 = —¢1p =101.3°ccw and ZOgP3 1B = +¢31 =59.1° cw. @

Then, we follow the same procedure as above to obtain points By, B, and B3. The
locations of points By, By, and B3. are as shown in Fig. 9.24.

The lengths of the links of the synthesized four-bar linkage O4ABOp are measured
and found to be

AB=125in=p, O,Op=15in=¢q, O4A=25in=1[, and OpB=1.2in=s.
From the Grashof criterion, Eq. (1.6), a planar four-bar linkage has a crank if and only if
s+1<p+gq,

where / = the length of the longest link, s = the length of the shortest link, and p and ¢q are
the lengths of the remaining two links. From the measurements

s+I1=12in+25in=3.7in and p+¢g=125in+15in=2.75in.

Therefore, the synthesized planar four-bar linkage is a non-Grashof four-bar linkage and
does not have a continuously rotating crank.

EXAMPLE 9.6

For a rigid body in plane motion, posture 2 coincides with posture 1, and posture 4
coincides with posture 3. The locations of the six poles for four finitely separated postures
of the moving body are as shown in Fig. 9.25. Draw the center point curve that can be
used in the synthesis of a four-bar linkage to guide the rigid body through the four finitely
separated postures.

Py Figure 9.25 Four finitely
separated postures of a rigid
body.

Py
Pays Pr3, Pra, Po3
SOLUTION

Following the procedure that was outlined in the previous example, the center point curve
is as shown in Fig. 9.26.
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Figure 9.26 Center point
curve.

9.6 FIVE FINITELY SEPARATED POSTURES OF A RIGID BODY (N =5)

It may be possible to guide a rigid body through five specified finitely separated postures
using a four-bar linkage. However, to do this, we must find two points belonging to the
rigid body and having their five positions on the circumferences of two circles. If such
circle points exist, they must lie at the intersection of two circle point curves. For example,
one could plot the circle point curve that is associated with postures 1, 2, 3, and 4 and
then plot the circle point curve that is associated with postures 1, 2, 3, and 5. The points of
intersection of these two circle point curves are called Burmester points [8], and they are
possible locations for the coupler pivots of the four-bar linkage. If the two center points
corresponding to the two chosen coupler pivots lie in locations where there are no practical
obstructions to establishing these center points as ground pivots for the linkage, then a
workable design may be possible.

We probably agree that it is not likely that these particular points will also happen to
fall on the circle point curve of yet another group of four postures of the body. Therefore,
it is generally not possible to synthesize a planar four-bar linkage that passes through more
than five arbitrarily prescribed postures.

It is worth noting that a four-bar linkage designed using the methods presented in this
section may not be workable even though the theory has been applied correctly. Since we
are dealing with finitely separated postures of the coupler link, and we are not exerting any
control over intermediate postures, it is possible that the designed four-bar linkage may not
pass through the desired motion because of intermediate limiting postures.

9.7 PRECISION POSTURES; STRUCTURAL ERROR; CHEBYSHEV SPACING

The synthesis examples in the preceding sections are of the body guidance type. However,
it was pointed out that linkages of the function generation type can also be synthesized
by kinematic inversion if we consider the motion of the input with respect to the output.
That is, if x is the orientation of the input, and y is the orientation of the output, then,
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for function generation, we are trying to find the dimensions of a linkage for which the
input/output relationship fits a given functional relationship:

y=f®. (a)

In general, however, a mechanism has only a limited number of design parameters, a few
link lengths, starting angles for the input and output, and a few more. Therefore, except for
very special cases, a linkage synthesis problem usually has no exact solution over its entire
range of travel.

In the preceding sections, we have chosen to work with two, three, four, or even
five postures of the linkage, called precision postures, and to seek a linkage that exactly
satisfies the desired requirements at these few chosen postures. Our implicit assumption
has been that if the design fits the specifications at these few postures, then it will probably
deviate only slightly from the desired motion between the precision postures, and that the
deviation will probably be acceptably small. Structural error is defined as the theoretical
difference between the function produced by the synthesized linkage and the function
originally prescribed. For many function generation problems, the structural error in a
four-bar linkage solution can be held to less than 4% [3]. We should note, however, that
structural error usually exists even with no graphic error resulting from a graphic solution
process and even with no mechanical error, which stems from imperfect manufacturing
tolerances.

Of course, the amount of structural error in the solution can be affected by the choice
of the precision postures. One objective of linkage design is to select a set of precision
postures for use in the synthesis procedure that minimizes this structural error.

Although it is not perfect, a very good trial for the distribution of these precision
postures is called Chebyshev spacing [4]. For N precision postures in the range
xo < x <xn+1, Chebyshev spacing is given by

2j—Drm

1 1
.Xj:E(XN+1 +.X())—§(XN+1—X())COST ]=1,2,,N (922)

As an example, suppose we wish to design a linkage to generate the function
y=a"" (b)

over the range 1 < x < 3 using three precision postures.
From Eq. (9.22), the three values of x; are

Q-

1 1
xXp = 5(3+1)— 5(3— l)cosW

b4
=2—cos— =1.134,
6
3
X =2 —cos ? =2.000,
S
x3 =2 —cos <= 2.866.
From Eq. (b), we find the corresponding values of y to be

yi=1.106, y,=1741, and y3=2.322.
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X X X3 X4 Xs

Ax

|
Yo+l 1 3
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Figure 9.27 Graphic construction for Eq. (9.22): (a) N =5;(b) N =3.

Chebyshev spacing of the precision postures is also easily determined using the
graphic approach shown in Fig. 9.27. As shown in Fig. 9.27a, a circle is first constructed
whose diameter is equal to the range Ax, given by

AX = XN41 — X0- (©

Next, we inscribe a regular polygon having 2N sides in this circle, with its first side placed
perpendicular to the x axis. Perpendiculars dropped from each jM vertex now intersect
diameter Ax at the precision posture value of x;. Figure 9.27b shows the construction for
this numeric example of Eq. (9.22).

It should be noted that Chebyshev spacing is a good approximation of precision
postures that usually reduce structural error in a design. Depending on the accuracy
requirements of the problem, it may be satisfactory. If additional accuracy is required,
then by plotting a curve of structural error versus x, we can usually determine visually the
adjustments to be made in the choice of precision postures for another trial.

Before closing this section, however, we should note two more problems that can
arise to confound the designer in choosing precision postures for synthesis. These are
called branch defect and order defect [19]. Branch defect refers to a possible completed
design that meets all of the prescribed requirements at each of the precision postures but
that cannot be moved continuously between these postures without being taken apart and
reassembled. Order defect refers to a completed linkage design that can reach all of the
precision postures, but not in the desired order.

9.8 OVERLAY METHOD

Synthesis of a function generator mechanism, say, using the overlay method, is one of the
easiest and quickest of all methods of synthesis in use. It is not always possible to obtain a
solution, and sometimes the accuracy may be rather poor. Theoretically, however, one can
employ as many precision postures as are desired in the process.

Let us design a function generator linkage to generate the function

y=x"% 1=<x<3. (a)
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Suppose we choose six precision postures of the linkage for this example and use
uniform spacing of the output. Table 9.1 indicates the rounded values of x and y and the
corresponding angles selected for the input, ¥, and output, ¢.

The first step in the synthesis is shown in Fig. 9.28a. We use a sheet of tracing paper
and construct the input, OA, in all six postures. This requires an arbitrary choice for the
length of O,A. Also, on this sheet, we choose another arbitrary length for coupler AB and
draw arcs numbered 1 to 6 using points A; to Ag, respectively, as centers.

Now, on another sheet of paper, we construct the output, whose length is unknown, in
all six postures, as shown in Fig. 9.28b. Through point O4 we draw a number of arbitrarily
spaced arcs intersecting lines O41, 042, and so on; these represent possible lengths of the
output rocker.

As the final step, we lay the tracing over the drawing and manipulate it in an effort to
find a fit. In this case, a fit is found, and the result is shown in Fig. 9.29.

Table 9.1

Position X Y, deg y ¢, deg
1 1 0 1 0

2 1.366 22.0 1.284 14.2

3 1.756 454 1.568 28.4

4 2.16 69.5 1.852 42.6

5 2.58 94.8 2.136 56.8

6 3.02 121.0 2.420 71.0

(b)

lllllll1

Figure 9.28



9.9 COUPLER-CURVE SYNTHESIS 485

Figure 9.29

9.9 COUPLER-CURVE SYNTHESIS*

In this section, we synthesize a four-bar linkage so that a tracing point on the coupler traces
a specified path when the linkage is moved. Then, in Secs. 9.10 through 9.14, we discover
that paths having certain characteristics are particularly useful, for example, in synthesizing
linkages having dwells of the output for certain periods of rotation of the input.

In synthesizing a linkage to generate a specified path, we can choose up to six precision
points along the path. If the synthesis is successful, the tracing point will pass through each
precision position. Because of the branch or order defects, the final result may or may not
approximate the desired path.

Two postures of a four-bar linkage are shown in Fig. 9.30. Link 2 is the input; it is
connected at A to coupler 3, containing tracing point C, and connected to output link 4 at
B. Two postures of the linkage are shown by subscripts 1 and 3. Points C; and C3 are two
positions of the tracing point on the path to be generated. In this example, C; and C3 have
been especially selected so that the perpendicular bisector c¢13 passes through O4. Note,
for this selection of points, that the angle ZC104C3 is equal to the angle ZA104A3, as
indicated in Fig. 9.30.

The advantage of making these two angles equal is that when the linkage is finally
synthesized, triangles C3A304 and C1A10O4 are congruent. Thus, if the tracing point is
made to pass through C on the path, it will also pass through C3.

To synthesize a linkage so that the coupler point will pass through four precision
positions, we locate any four points, C1, Ca, C3, and C4, on the desired path (Fig. 9.31).
Choosing C; and C3, say, we first locate O4 anywhere on the perpendicular bisector, c13.
Then, with O4 as a center and using any radius R, we construct a circular arc. Next,
with centers at C1 and C3, and any other radius, r, we strike arcs to intersect the arc of
radius R. These two intersections define points A; and A3 on the input link. We construct

*The methods presented here were devised and presented by Hain in [8, Chap. 17].
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Figure 9.30

Figure 9.31

the perpendicular bisector, a3, to AjA3 and note that it passes through O4. We locate O,
anywhere on aj3. This provides an opportunity to choose a convenient length for the input
link. Now, we use O; as a center and draw the crank circle through A; and A3. Points
A, and A4 on this circle are obtained by striking arcs of radius r again about C; and Cy.
This completes the first phase of the synthesis; we have located O, and Oy relative to the
desired path and hence defined distance O»O4. We have also defined the length of the input
link and located its positions relative to the four precision points on the path.

Our next task is to locate point B, the point of attachment of the coupler and output
link. Any one of the four locations of B can be used; in this example we use the B position.

Before beginning the final step, we note that the linkage is now defined. Four arbitrary
decisions were made: the location of Oy, the radii R and r, and the location of O,. Thus,
oo* solutions are possible.

Referring to Fig. 9.32, we locate point 2 by making triangles CoA204 and C1A;2
congruent. We locate point 4 by making C4A104 and C1A14 congruent. Points 4, 2, and
O4 lie on a circle whose center is By. So, we find B; at the intersection of the perpendicular
bisectors of 042 and O44. Note that the procedure used causes points 1 and 3 to coincide
with O4. With By located, the links can be drawn in place and the mechanism tested to see
how well it traces the desired path.

To synthesize a linkage to generate a path through five precision points, we can make
two point reductions. We begin by choosing five points, C; to Cs, on the path to be traced.
We choose two pairs of these for reduction purposes. In Fig. 9.33, we choose the pairs
C1Cs5 and C,C3. Other pairs that could have been chosen are

Ci1Cs, C2Cy; C1Cs5,C3Cy; C1Cy, CrCs; (4G5, C3C,.
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Figure 9.32

Figure 9.33

We construct the perpendicular bisectors cp3 and c15 of the lines connecting each pair.
These intersect at point O4. Note that O4 can, therefore, be located conveniently by a
judicious choice of the pairs to be used as well as by the choice of the positions of the
points C; on the path.

The next step is best performed using a sheet of tracing paper as an overlay. We secure
the tracing paper to the drawing and mark upon it center Oy, perpendicular bisector c»3,
and another line from O4 to C,. Such an overlay is shown in Fig. 9.34a with line O4C>
designated 04C}. This defines the angle ¢»3/2. Now, we rotate the overlay about point Oy
until the perpendicular bisector coincides with c¢15 and repeat for point Cy. This defines the
angle ¢15/2 and the corresponding line, 04C}.

Now, we pin the overlay at point O4, using a thumbtack, and rotate it until a good
position is found. It is helpful to set the compass for some convenient radius, r, and draw
circles about each point C;. The intersection of these circles with lines O4 C’l and Oy C’2 on
the overlay, and with each other, will reveal which areas will be profitable to investigate
(Fig. 9.34b).

The final steps in the solution are shown in Fig. 9.35. Having located a good position
for the overlay, we transfer the three lines to the drawing and remove the overlay. Now, we
draw a circle of radius r to intersect 04C/1 and locate point Aj. Another arc of the same
radius r from point C; intersects O4C’2 at point Ap. With A; and A; located, we draw the
perpendicular bisector ay»; it intersects the perpendicular bisector a3 at Oy, giving us the
length of the input rocker. A circle through A about O, contains all the design positions of
point A; we use the same radius r and locate Az, A4, and As on arcs about C3, C4, and Cs.

We have now located everything except point By, and this is determined as before.
Note that points 2 and 3 are coincident (called a double point) because of the choice of
point O4 on the perpendicular bisector ¢33. To locate this double point, we strike an arc
from C; of radius C,04. Then, we strike another arc from A; of radius A»O4. These
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Figure 9.34

Figure 9.35

intersect at the double point 2, 3. To locate point 4, we strike an arc from Cj of radius
C404, and another from A; of radius A404. Note that point O and the double point 1, 5
are coincident, since the synthesis is based on inversion on the O4B; position. Points O, 4,
and double point 2, 3 lie on a circle whose center is By, as shown in Fig. 9.35. The linkage
is completed by drawing the coupler link and the follower link in the first design posture.
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9.10 COGNATE LINKAGES; ROBERTS-CHEBYSHEV THEOREM

One of the remarkable properties of the planar four-bar linkage is that there is not just one
but three four-bar linkages that generate the same coupler curve. This was discovered by
Roberts* in 1875 and by Chebyshev in 1878 and hence is known as the Roberts-Chebyshev
theorem. Although mentioned in an English publication in 1954 [5], it did not appear
in the American literature until 1958 when it was presented, independently and almost
simultaneously, by Hartenberg and Denavit of Northwestern University [10] and by Hinkle
of Michigan State University [12].

In Fig. 9.36, let O1ABO; be the original four-bar linkage with coupler point P attached
to AB. The remaining two linkages defined by the Roberts-Chebyshev theorem were
termed cognate linkages by Hartenberg and Denavit. Each of the cognate linkages is
shown in Fig. 9.36; one is O1A1C103 and uses short dashes for showing the links, and
the other is O2B>C> 03 and uses long dashes. The construction is evident by observing that
there are four similar triangles, each containing the angles «, B, and y, and three different
parallelograms.

A good way to obtain the dimensions of the two cognate linkages is to imagine that the
frame connections O1, O3, and O3 can be unfastened. Then, imagine that O, O, and O3
are “pulled” away from each other until a straight line is formed by the crank, coupler,
and follower of each linkage. If we were to do this for Fig. 9.36, then we would obtain
Fig. 9.37. Note that the frame distances are now incorrect, but all the movable links are
of the correct lengths. Given any four-bar linkage and its coupler point, one can create a

Figure 9.36

* Samuel Roberts (1827-1913), a mathematician; this was not the same Roberts of the approximate
straight-line generator (Fig. 1.24b).
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01 A B 02

Figure 9.37 The Cayley diagram.

drawing similar to Fig. 9.37 and obtain the dimensions of the other two cognate linkages.
This approach was discovered by A. Cayley and is called the Cayley diagram.*

If the tracing point, P is on the straight line AB or its extensions, a figure like Fig. 9.37
is of little help, since all three linkages are compressed into a single straight line. An
example is shown in Fig. 9.38, where O1ABO; is the original linkage having a coupler
point, P on an extension of AB. To find the cognate linkages, locate O3 on an extension
of 010, in the same ratio as AB is to BP. Then, construct, in order, the parallelograms
01A1PA, O2B,PB, and O3CPC,.

Figure 9.38

* Arthur Cayley (1821-1895), 1876. On three-bar motion, Proc. Lond. Math. Soc. 7:136-66. In
Cayley’s time, a four-bar linkage was described as a three-bar mechanism, since the idea of a
kinematic chain had not yet been conceived.
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Hartenberg and Denavit demonstrated that the angular-velocity relations between the
links in Fig. 9.36 are

Wy =w)=w7, W))=W3=w05, ©F=wW4=g. (9.23)

They also observed that if crank 2 is driven at a constant angular velocity and if the velocity
relationships are to be preserved during generation of the coupler curve, the cognate
mechanisms must be driven at variable angular velocities.

9.11 FREUDENSTEIN’S EQUATION

In Fig. 9.39, we replace the links of a four-bar linkage by position vectors and write the
loop-closure equation

1 ? ?
%T/+i‘/2+«l'/3 +}/4=0 (a)

In complex polar notation, Eq. (a) is written as
r1e 12 4 3% 4 ryel® = 0. (b)

From Fig. 9.39, we see that 6; = 180° = x radians, from which &% = —1. Therefore, if
Eq. (b) is transformed into complex rectangular form, and if the real and the imaginary
components are separated, we obtain the two algebraic equations

—r1 +1r2c0860, +r3c08603 +r4cos04 =0, (@)

rp8ind, + r3sinf3 + ry sinfy = 0. (d)

The coupler angle 63 can be deleted, and the output angle 64 can be expressed in terms of
the input angle 6, by the following procedure. Moving all terms except those involving 63
to the right-hand side and squaring both sides gives

r% cos? 603 = (ri —rpcosbr — rqcos 64)2 (e)

r% sin%0; = (—rpsinfy —ry sin04)2. (2]

Figure 9.39
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Now, expanding the right-hand sides and adding the two equations gives

r% = r% + r% + rﬁ —2r1rpcos0y — 2r1r4cos6y 4 2rarg (cosB cosby + sinfp sinfy) . (g)

Making the substitution (cos6; cosbs + siné, sinfs) = cos(62 — 04), and then dividing by
the factor 2r,r4, and rearranging again gives

22 2 2
FS—F{—F5—T 1 1
S L2 4T cosfy + — cosfs = cos (0 —64). (h)
2rory 74 )

Freudenstein [3] writes this equation in the form

Kicosbr + KpcosOs4+ K3 = cos(6y —6y), (9.24)
where
r
Ky =—, (9.25)
r4
r
Ky, =—, (9.26)
rn

2 2 2 2
rE—=ri—ryi—r
Ky=-3 1L 2 "4 (9.27)
2ror4

We have already learned graphic methods for synthesizing a four-bar linkage so that
the motion of the output is coordinated with that of the input. Freudenstein’s equation,
Eq. (9.24), enables us to perform this same task by analytic means. Thus, suppose we wish
the output of a four-bar linkage to occupy the postures ¥, ¥, and ¥3 corresponding to
the postures ¢, ¢o, and ¢3 of the input. In Eq. (9.24), we simply replace 6> with ¢;, and
04 with v;, and write the equation three times, once for each posture. This gives

Kicosg +Kacosyy + Kz = cos (g1 — 1),

Kjcosgn + K cosyp + Kz = cos (92 — ¥2),

Kjcosgs + Krcosyz + K3 = cos (¢p3 — ¥3). )
Equations (i) are then solved simultaneously for the three unknowns, Kj, K>, and K3.
Then, a length, say rq, is selected for one of the links, and Egs. (9.25) through (9.27)

are solved for the dimensions of the other three links. The method is best illustrated by an
example.

EXAMPLE 9.7
Synthesize a function generator to follow the equation

1
y=— overtherange 1<x<2
x

using three precision postures.
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SOLUTION

Choosing Chebyshev spacing, we find, from Eq. (9.22), the values of x and the
corresponding values of y to be

x1=1.067, y;=0.937,
X =1.500, y,=0.667,
x3=1.933, y3=0517.

We must now choose starting angles for the input and output and also total displacement
angles for each. These are arbitrary decisions and may or may not result in a good linkage
design in the sense that the structural errors between the precision postures may be large or
the transmission angles may be poor. Sometimes, in such a synthesis, it is found that one of
the pivots must be disconnected to move from one precision posture to another. Generally,
some trial-and-error work may be necessary to discover the best choices of starting angles
and total displacement angles.

Here, for the input, we choose a starting angle of ¢min = 30° and a total displacement
angle of A¢ = dmax — dmin = 90°. For the output, we choose a starting angle of Vmin =
240° and again choose a displacement of A = Yimax — Ymin = 90° total travel. With these
choices made, the first and last rows of Table 9.2 can be completed.

Next, to obtain the values of ¢ and i corresponding to the precision postures, we
write

¢=ax+b, Y =cy+d, (1)

and use the data in the first and last rows of Table 9.2 to evaluate constants a, b, c,
and d. When this is done, we find Egs. (1) are

¢ =90°x—60°, ¥ = —180°y+420°. )

These equations can now be used to compute the data for the remaining rows in Table 9.2
and to determine the scales of the input and output links of the synthesized linkage.

Now, we take the values of ¢ and ¢ from the second line of Table 9.2 and substitute
them for 6, and 64 in Eq. (9.24). Then, if we repeat this for the third and fourth lines, we
have the three equations

K1c0s36.03° + K» c0s251.34° 4+ K3 = cos (36.03° - 251.34°) ,
K c0s75.00° + K5 c0s 300.00° + K3 = cos (75.00° — 300.00°),
K1c0s113.97° + K5 c0s326.94° + K3 = cos (l 13.97° — 326.94°) ) 3)

When the trigonometric operations are carried out, we have

0.808 7K1 —0.3200K, + K3 = —0.8160,
0.258 8K +0.5000K; + K3 = —0.7071,
—0.4062K +0.838 1K> 4+ K3 = —0.8389. “4)
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Table 9.2 Precision Postures

Position X ¥, deg y ¢, deg
— 1.000 30.00 1.000 240.00
1 1.067 36.03 0.937 251.34
2 1.500 75.00 0.667 300.00
3 1.933 113.97 0.517 326.94
— 2.000 120.00 0.500 330.00

Upon solving Egs. (4), we obtain
K1 =04032, K,=0.4032, K3=-1.0130.
Using r; = 1.000 units, we obtain, from Eq. (9.25),

_ri_ 1.000
T K; 04032

r4 = 2.480 units. Ans.

Similarly, from Eqgs. (9.26) and (9.27), we learn that
rp =2.480 units and r3 =0.917 units. Ans.

The result is the crossed four-bar linkage shown in Fig. 9.40.

Figure 9.40 The crossed
four-bar linkage.

Freudenstein offers the following suggestions, which are helpful in synthesizing such
function generators.
1. The total displacement angles of the input and output links should be less than
120°.
2. Avoid the generation of symmetric functions, such as y = x
range, such as —1 <x < 1.
3. Avoid the generation of functions having abrupt changes in slope.

2 over a symmetric



9.12 ANALYTIC SYNTHESIS USING COMPLEX ALGEBRA 495

9.12 ANALYTIC SYNTHESIS USING COMPLEX ALGEBRA

Another very powerful approach to the synthesis of planar linkages takes advantage of the
concept of precision postures and the operations available through the use of complex
algebra. Basically, as with Freudenstein’s equation in the previous section, the idea is
to write complex-algebraic equations describing the final linkage in each of its precision
postures.

Since links do not change lengths during the motion, the magnitudes of these complex
vectors do not change from one posture to the next, but their angles vary. By writing
equations at several precision postures, we obtain a set of simultaneous equations that
may be solved for the unknown magnitudes and angles.

The method is very flexible and much more general than is illustrated here.
More complete coverage is given in texts such as that by Erdman, Sandor, and Kota
[2, Chap. 8]. However, the fundamental ideas and some of the operations are illustrated
here by an example.

EXAMPLE 9.8

In this example, we wish to design a mechanical strip-chart recorder. The concept of the
final design is shown in Fig. 9.41. We assume that the signal to be recorded is available as
a shaft rotation having a range of 0 < ¢ < 90° clockwise. This rotation is to be converted
into a straight-line motion of the recorder pen over a range of 0 < s <4 in to the right, with
a linear relationship between changes of ¢and s.*

Figure 9.41 Three-posture synthesis of chart-recorder linkage using complex algebra.

* A similar problem is solved graphically in [11, pp. 244-8 and 274-8].
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SOLUTION

We choose three accuracy postures for our design approach. Using Chebyshev spacing
over the range to reduce structural error and taking counterclockwise angles as positive,
the three accuracy postures are given by Eq. (9.22):

¢1=—6°=—-0.104 72rad, 1 =0.26795in,
¢ =—45°=—-0.78540rad, s2=2.000 00 in, (1)
¢3 =—84°=—1.466 08 rad, s3 =3.73205 in.

First we tackle the design of the dyad consisting of the input crank, r;, and the coupler link,
r3. Taking these to be complex vectors for the mechanism in its first accuracy posture, and
designating the unknown location of the fixed pivot by the complex vector rj, we write a
loop-closure equation at each of the three precision postures:

Iy +r; +r3 =5,
r| +r2ej(¢2—¢1) +r3ej012 =5,
r| +r2ej(¢3—¢1) +r3ej0ts =53, )
where the angles, «;, represent the angular displacements of the coupler link from its

first posture. Next, by subtracting the first of these equations from each of the others and
rearranging, we obtain

[460 _ 1]ry + [ — 1]r3 = 5, — 51,

3

[e/<¢3’¢1)—1]r2+[ei”‘3—1]r3=S3—s1. ®

Here, we note that we have two complex equations in two complex unknowns,

ry and r3, except we note that the coupler displacement angles, «;, which appear in the

coefficients, are also unknowns. Thus, we have more unknowns than equations and are

free to specify additional conditions or additional data for the problem. Making estimates

based on crude sketches of our contemplated design, therefore, we make the following
arbitrary decisions:

oy = —20° = —0.349 07 rad, )
a3 = —50° = —0.872 66 rad.

Collecting the data from Egs. (1) and (4), substituting into Egs. (3), and evaluating,
we find

—(0.222 85 +0.629 32)r; — (0.060 31 +0.342 02)r3 = 1.732 05,
—(0.792 09 +;0.978 15)r, — (0.357 21 4 j0.766 04)r3 = 3.464 10,

which we can now solve for the two unknowns:

r) =2.153 26 4j2.448 60 = 3.261 in£48.67°, Ans.
r3 = —5.725 48 4+ j0.952 04 = 5.804 in£170.56°. Ans.
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Then, using the first of Egs. (2), we solve for the location of the fixed pivot:

r=s1—rn—r3

— 3.840 17 — j3.400 64 = 5.129 in/ — 41.53°. Ans.

Thus far, we have completed the design of the dyad, which includes the input crank.
Before proceeding, we should note that an identical procedure could have been used for
the design of a slider-crank linkage, for one dyad of a four-bar linkage used for any path
generation or motion generation problem, or for a variety of other applications. Our total
design is not yet completed, but we should note the general applicability of the procedures
covered to other linkage synthesis problems.

Continuing with our design of the recording instrument, however, we now must
find the postures and dimensions of the dyad, r4 and rs of Fig. 9.41. As shown, we
choose to connect the moving pivot of the output crank at the midpoint of the coupler
link to minimize its mass and to keep dynamic forces low. Thus, we can write another
loop-closure equation including the rocker at each of the three precision postures:

rs +rs +0.5r3 =sq,
rs +r1e? +0.5r36/*2 = 55,
rs +rse® 4+ 0.5r36/% = s3. 5)
Substituting the known data into these equations and rearranging, we obtain
rs5 +1r4+ (—3.130 69 +;0.476 02) = 0,
rs+ <ejﬂ2) ra+ (—4.527 254 1.426 52) = 0,

rs+ (efﬁ3) 14+ (—5.207 45 +j2.499 03) = 0. (©6)

These are three simultaneous complex equations in only two vector unknowns, rs4 and rs,
and thus we are not free to choose the rotation angles, 5, and B3, arbitrarily. For Egs. (6)
to have consistent nontrivial solutions, it is necessary that the determinant of the matrix of
coefficients be zero. Thus, , and 83 must be chosen such that

1 1 (=3.130 6940.476 02)
1 P2 (—4.52725+1.42652) | =0, (7)
1 P (=5.20745472.499 03)

which expands to
(—=2.076 76 +,2.023 01) €®> + (1.396 56 — j0.950 50) &/#* + (0.680 20 — j1.072 51) = 0.
Solving this for ¢/ gives
P2 = (0.573 82 +0.101 28) &/ + (0.426 19 — j0.101 28)_
and equating the real and imaginary parts, respectively, gives

cos B> =0.573 82cos B3 —0.101 28sin B3 +0.426 19,
sin 8, = 0.101 28cos B3 +0.573 82sin B3 — 0.101 28. 8)
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These equations can now be squared and added to eliminate the unknown f,. The result,
after rearrangement, is a single equation in f3:

0.468 59cos 3 —0.202 565in B3 — 0.468 57 = 0. ©))
This equation can be solved by substituting the tangent of the half-angle identities

B3 1 —x? . 2x
Ztan—, COS = N Sin == 5
* 2 =172 bi=12

(10)

0.468 59 (1 - x2> —0.202 56 (2x) — 0.468 57 (1 +x2> —0.

This reduces to the quadratic equation
—0.937 16x* — 0.405 12x+ 0.000 02 =0,
for which the roots are
x=-043266 or x=0.00027,
and, from Eq. (10),
Bz =—46.79° or Bz=0.03°.

Guided by our sketch of the desired design, we choose the first of these roots, 83 =
—46.79°. Then, returning to Eqgs. (8), we find the value 8, = —26.76°, and finally, from
Egs. (6), we find the final solution:

ry =1.299 71 43.410 92 = 3.650 in£69.14°, Ans.
r5 = 1.830 98 — j3.886 94 =4.297 in/ —64.78°. Ans.

Note that this second part of the solution, solving for the rocker ry, is also a very
general approach that could be used to design a crank to go through three given precision
postures in a variety of other problems. Although only a specific case is presented here,
the approach arises repeatedly in linkage design.

Of course, before we finish, we should evaluate the quality of our solution by analysis
of the linkage we have designed. This was performed here using the equations of Chap. 2
to find the locations of the coupler point for 20 equally spaced crank increments spanning
the given range of motion. As expected, there is structural error; the coupler curve of the
recording pen tip is not exactly straight, and the displacement increments are not perfectly
linear over the range of travel of the pen. However, the solution is quite good; the deviation
from a straight line is less than 0.020 in, or 0.5% of the travel, and the linearity between the
input crank rotation and coupler point travel is better than 1% of the travel. As expected,
the structural error follows a regular pattern and vanishes at the three precision postures.
The transmission angle remains larger than 70° throughout the range; thus, no problems
with force transmission are expected. Although the design might be improved slightly
using additional precision postures, the present solution seems excellent, and the additional
effort does not appear necessary.
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(a)

\ »\Coupler curve

Figure 9.42 Link 6 dwells as point C travels: (a) the circular-arc path C{C>C3; (b) on the straight
portion of the coupler curve.

9.13 SYNTHESIS OF DWELL LINKAGES

One of the most interesting uses of coupler curves having straight-line or circular-arc
segments is in the synthesis of linkages having a substantial dwell during a portion of their
operating cycle. Using segments of coupler curves, it is not difficult to synthesize linkages
having a dwell at either or both of the extremes of their motion or at an intermediate
posture.

In Fig. 9.42a, a coupler curve having an approximately elliptic shape is selected from
the Hrones and Nelson atlas [14] so that a substantial portion of the curve approximates
a circular arc. The four-bar linkage that generates this coupler curve is not shown in
the figure. Connecting link 5 is given a length equal to the radius of this arc. Thus,
in Fig. 9.42a, points D1, D>, and D3 are stationary as coupler point C moves through
positions Cy, Co, and C3. Also, the same purpose is accomplished with a slider, as shown
in Fig. 9.42b; link 6 dwells as point C travels along the straight portion of the coupler
curve. The length of output link 6 and the location of the frame pivot, O, depend upon
the desired angle of oscillation of this link. The frame pivot should also be positioned for
a desirable transmission angle.

Figure 9.43 Overlay for use
with the Hrones and Nelson
atlas.

N

A\

7
N
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@ Coupler curve

Figure 9.44 Link 6 dwells: (a) at each end of its swing; (b) in the central portion of its swing.

When segments of circular arcs are desired for a coupler curve, an organized method
of searching the Hrones and Nelson atlas can be employed. The overlay, shown in Fig. 9.43,
is made on a sheet of tracing paper and can be fitted over the paths in the atlas very quickly.
It reveals immediately the radius of curvature of the segment, the location of pivot point D,
and the displacement angle of the connecting link.

Figure 9.44 shows two ideas for dwell mechanisms employing a slider. A coupler
curve having a straight-line segment is used in each, and the pivot point, Og, is placed on
an extension of this line.

The arrangement shown in Fig. 9.44a has a dwell at both extremes of the motion of
link 6. A practical design of this mechanism may be difficult to achieve, however, since
link 6 has a high velocity when the slider is near the pivot, Og.

The slider mechanism of Fig. 9.44b uses a figure-eight coupler curve having a
straight-line segment to produce an intermediate dwell linkage. Pivot Og must be located
on an extension of the straight-line segment, as shown.

9.14 INTERMITTENT ROTARY MOTION

The Geneva wheel, or Maltese cross, is a cam-like mechanism that provides intermittent
rotary motion and is widely used in both low-speed and high-speed machinery. Although
originally developed as a stop to prevent overwinding of watches, it is now used extensively
in automatic machinery, for example, where a spindle, turret, or worktable must be indexed.
It is also used in motion-picture projectors to provide the intermittent advance of the film.

A drawing of a six-slot Geneva mechanism is shown in Fig. 9.45. Note that the
centerlines of the slot and crank are mutually perpendicular at engagement and at
disengagement. The crank, which usually rotates at a uniform angular velocity, carries a
roller to engage with the slots. During one revolution of the crank, the Geneva wheel rotates
a fractional part of a revolution, the amount of which is dependent upon the number of slots.
The circular segment attached to the crank effectively locks the wheel against rotation when
the roller is not in engagement and also locates the wheel for correct engagement of the
roller with the next slot.
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Figure 9.45 Geneva
Geneva wheel mechanism.

The design of a Geneva mechanism is initiated by specifying the crank radius, the
roller diameter, and the number of slots. At least three slots are necessary, but most
problems can be solved with wheels having from 4 to 12 slots. The design procedure is
shown in Fig. 9.46. The angle 8 is half the angle subtended by adjacent slots; that is,

’3_360°
T’

(@)

where n is the number of slots in the wheel. Then, defining r; as the crank radius, we have

r
‘T sing’ ®
where c is the center distance. Note, too, from Fig. 9.46, that the actual Geneva-wheel
radius is more than that which would be obtained by a zero-diameter roller. This is because
of the difference between the sine and the tangent of the angle subtended by the roller,
measured from the wheel center.

After the roller has entered the slot and is driving the wheel, the geometry is that
of Fig. 9.47. Here, 0, is the crank angle, and 63 is the wheel angle. They are related
trigonometrically by

sin6,
tanfz =

()

(¢c/ry) —cosby’

We can determine the angular velocity of the wheel for any value of 8, by differentiating
Eq. (¢) with respect to time. This produces

(c¢/r2)cosbr — 1
w).
1+ (c2/12) = 2(c/ra)costy

(9.28)

w3 =
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The maximum wheel velocity occurs when the crank angle is zero. Substituting 6, = 0,
therefore, gives

rn
-

(a)3)max = c 3. (9.29)

The angular acceleration of the wheel with constant input crank speed, obtained by
differentiating Eq. (9.28) with respect to time, is

(c/r)sind, (1—c*/r3)
W .

a3z = 5 (9.30)
[1+4 (c/r2)* —2(c/r2) cos b, ]
The angular acceleration reaches a maximum when the crank angle is
1+ (@) 1+ (c/r)?
=cos ' {+ || ——22L 227 9.31)
4(c/r) 4(c/r)
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This occurs when the roller has advanced about 30% into the slot.

Several methods have been employed to reduce the wheel angular acceleration that
reduces inertia forces and the consequent wear on the sides of the slot. Among these is
the idea of using a curved slot. This can reduce the acceleration but also increases the
deceleration and consequently the wear on the other side of the slot.

Another method uses the Hrones and Nelson atlas [14] for synthesis. The idea is to
place the roller on the coupler of a four-bar linkage. During the period in which it drives
the wheel, the path of the roller should be curved, and the roller should have a low value
of angular acceleration. Figure 9.48 shows one solution and includes the path taken by the
roller. This is the type of path that is sought while leafing through the atlas.

The inverse Geneva mechanism of Fig. 9.49 enables the wheel to rotate in the same
direction as the crank and requires less radial space. The locking device is not shown, but
this can be a circular segment attached to the crank, as before, which locks by wiping
against a built-up rim on the periphery of the wheel.

’ Figure 9.48 Geneva wheel activated by a four-bar linkage with link 2 as the crank.

Figure 9.49 Inverse
Geneva mechanism.
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PROBLEMS

9.1

9.2

9.3

A function varies from O to 10. Find the Chebyshev 9.4 The rocker of a crank-rocker linkage is to have
spacing for two, three, four, five, and six precision a length of 500 mm and swing through a total
positions. angle of 45° with an advance-to-return ratio of
Determine the link lengths of a slider-crank linkage 1.25. Determine a suitable set of dimensions for
to have a stroke of 600 mm and an advance-to-return r1, 12, and r3.

ratio of 1.20. 9.5 A crank-rocker linkage is to have a rocker of

Determine a set of link lengths for a slider-crank 6 ft length and a rocking angle of 75°. If the

linkage such that the stroke is 16 in and the advance-to-return ratio is to be 1.32, what is a
advance-to-return ratio is 1.25. suitable set of link lengths for the remaining three

links?



9.6

9.7

9.8

2.9

Design a crank and coupler to drive rocker 4 such
that slider 6 reciprocates through a distance of 16 in
with an advance-to-return ratio of 1.20. Usea=r4 =
16 in and r5 = 24 in with r4 vertical at midstroke.
Record the location of O; and dimensions 7, and r3.

Figure P9.6

Design a crank and rocker for a six-bar linkage such
that the slider in Fig. P9.6 reciprocates a distance
of 800 mm with an advance-to-return ratio of 1.12;
use a = r4 = 1 200 mm and 5 = 1 800 mm. Locate
Oy such that rocker 4 is vertical when the slider is
at midstroke. Find suitable coordinates for O, and
lengths for rp and r3.

Two postures of a folding seat used in the aisles of
buses to accommodate extra passengers are shown.
Design a four-bar linkage to support the seat so that
it will lock in the open posture and fold to a stable
closing posture along the side of the aisle.

Seat

>
f—12"—

16"

N ——

14

20"

Figure P9.8

Design a spring-operated four-bar linkage to support
a heavy lid, like the trunk lid of an automobile. The
lid is to swing through an angle of 80° from the
closed to the open posture. The springs are to be
mounted so that the lid will be held closed against
a stop, and they should also hold the lid in a stable
open posture without the use of a stop.

9.10

9.11

Problems 505
Synthesize a linkage to move AB from posture 1 to
posture 2 and return.

By (2,7)
o
5 B,

A5(5,4)

A1(2,2)

p Figure P9.10

Synthesize a linkage to move AB successively
through postures 1, 2, and 3.

y
L BB
A5(12,6
4,(2,6) (120
50°
UB 0.2 | p,

p Figure P9.11

9.12t0 9.21* The figure shows a function-generator linkage

in which the motion of rocker 2 corresponds to x
and the motion of rocker 4 to the function y = f (x).
Use four precision points with Chebyshev spacing,
and synthesize a linkage to generate the functions
in the table. Plot a curve of the desired function
and a curve of the actual function that the linkage
generates. Compute the maximum error between
them in percent.

Figure P9.12

* Solutions for these problems were among the earliest computer work in kinematic synthesis and results are reported in F.
Freudenstein, 1958. Four-bar function generators, Mach. Design 30(24): 119-23.
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SYNTHESIS OF LINKAGES

Table P9.12 to P9.31.

Problem number  Function,y= Range
P9.12, P9.22 logjox l<x<2
P9.13, P9.23 sinx 0<x<m/2
P9.14, P9.24 tanx 0<x< 71/4
P9.15, P9.25 & 0<x<l
P9.16, P9.26 1/x l<x<2
P9.17, P9.27 L5 0<x<l
P9.18, P9.28 x2 0<x<l
P9.19, P9.29 x5 0<x<l
P9.20, P9.30 X 0<x<l
P9.21, P9.31 x2 —1<x<1

9.22 t0 9.31 Repeat Problems 9.12 to 9.21 using the overlay

9.32

method.

The figure shows a coupler curve generated by a
four-bar linkage (not shown). Link 5 is to be attached
to the coupler point, and link 6 is to be a rotating
member with Og as the frame connection. In this
problem, we wish to find a coupler curve from the
Hrones and Nelson atlas or by precision postures,
such that, for an appreciable distance, point C moves
through an arc of a circle. Link 5 is then proportioned
so that D lies at the center of curvature of this arc.
The result is then called a hesitation motion, since
link 6 hesitates in its rotation for the period during
which point C transverses the approximate circular

9.33

9.34

arc. Make a drawing of the complete linkage, and
plot the first-order kinematic coefficient, ¢é, of link
6 for 360° of displacement of the input link.

L ——

- N
N
/ \ Coupler
/ \curve
1 \
I - \
\ |
\ Os |
\ I
\ 6 I
\ /
\ /
\ D /
\ /
\ 5 /
N\ /
N
N - C

Figure P9.32

Synthesize a four-bar linkage to obtain a coupler
curve having an approximate straight-line segment.
Then, using the suggestion included in Fig. 9.42b
or Fig. 9.44b, synthesize a dwell motion. Using
an input crank angular velocity of unity, plot the
first-order kinematic coefficient qbé of rocker 6
versus the input crank displacement.

Synthesize a dwell mechanism using the idea sug-
gested in Fig. 9.42a and the Hrones and Nelson atlas.
Rocker 6 is to have a total angular displacement of
60°. Using this displacement as the abscissa, plot the
first-order kinematic coefficient, ¢é, of the motion of
the rocker to show the dwell motion.



Spatial Mechanisms and Robotics

10.1 INTRODUCTION

The large majority of mechanisms in use today have planar motion, that is, the motions of
all points produce paths that lie in a single plane or in parallel planes. This means that all
motions can be seen in true size and shape from a single viewing direction and that graphic
methods of analysis require only a single view. If the coordinate system is chosen with
the x and y axes parallel to the plane(s) of motion, then all z values remain constant, and
the problem can be solved, either graphically or analytically, with only two-dimensional
methods. Although this is usually the case, it is not a necessity. Mechanisms having
three-dimensional point paths do exist and are called spatial mechanisms. Another special
category, called spherical mechanisms, have point paths that lie on concentric spherical
surfaces.

Recall that these definitions were raised in Chap. 1; however, almost all of the
examples presented in previous chapters have dealt only with planar mechanisms. This
is justified because of their very extensive use in practical applications. Although a few
nonplanar mechanisms, such as universal shaft couplings and bevel gears, have been
known for centuries, it is only relatively recently that kinematicians have made substantial
progress in developing design procedures for spatial mechanisms. It is probably not
a coincidence, given the greater difficulty of the mathematic manipulations, that the
emergence of such tools has awaited the development and availability of computers.

Although we have concentrated so far on mechanisms with planar motion, a brief
review demonstrates that most of the previous theory has been derived in sufficient
generality for both planar and spatial motion. The focus has been planar, since planar
motion can be more easily visualized and requires less tedious computations than
three-dimensional applications. However, most of the theory extends directly to spatial
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mechanisms. This chapter reviews some of the previous techniques, including examples
with spatial motion. The chapter also introduces new mathematical tools and solution
techniques that were not required for planar motion.

In Sec. 1.6, we learned that the mobility of a mechanism can be obtained from the
Kutzbach criterion. The three-dimensional form of this criterion was given in Eq. (1.3);
that is,

m=06(n—1)—5j1 —4j2 —3j3 —2ja — s, (10.1)

where n is the number of links, and each ji is the number of joints having k degrees of
freedom. There are many possible combinations of n and jj that produce a mobility of
m = 1. One possibility has n =7, j; =7, and jo» = j3 = js =j5 = 0. Harrisberger [10] called
such a combination a mechanism type; in particular, he called this the 7j; type. Other
combinations of ji’s, of course, produce different types of mechanisms. For example, the
3j1 + 2j> type has n =5 links, and the 1j; + 2j3 type has n = 3 links.

Each mechanism type contains a finite number of kinds of mechanisms; there are as
many kinds of mechanisms of each type as there are ways of arranging the different types
of joints between the links. In Table 1.1, we saw that three of the six lower pairs have
one degree of freedom, the revolute, R, the prismatic, P, and the helical, H. Thus, using
any seven of these lower pairs, we obtain 36 kinds of type 7j; mechanisms. Altogether,

(b) ()

0))

(h)

Figure 10.1 (a) RCCC; (b) PCCC; (c) HCCC; (d) RSCR; (e) RSCP; (f) RSCH; (g) PPSC; (h) PHSC; (i) HHSC.
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Harrisberger lists 435 kinds of mechanisms that satisfy the Kutzbach criterion with a
mobility of m = 1. Not all of these types, or kinds, however, are likely to have much
practical value. Consider, for example, the 7j; type with all revolute joints, each connected
in series in a single loop.*

For mechanisms having mobility m = 1, Harrisberger selected nine kinds from two
types that appeared to him to be useful; these are shown in Fig. 10.1. They are all
spatial four-bar linkages having four joints with either rotating or sliding input and output.
The designations in the legend, such as the RSCH four-bar linkage in Fig. 10.1f, identify
the kinematic pair types (Table 1.1) beginning with the input and proceeding through the
coupler and the output back to the frame. Thus, for this linkage, the input is connected
to the frame by a revolute pair, R, and to the coupler by a spheric pair, S, the coupler is
connected to the output by a cylindric pair, C, and the output is connected to the frame by
a helical pair, H. The freedoms of these pairs, from Table 1.1 are R=1, 5 =3, C=2, and
H=1.

The linkages of Fig. 10.1a through Fig. 10.1c¢ are described by Harrisberger as type 1,
or of the 1j; + 3j> type. The remaining linkages of Fig. 10.1 are described as type 2, or of
the 2j1 + 1j» + 1j3 type. All have n = 4 links and have a mobility of m = 1.

10.2 EXCEPTIONS TO THE MOBILITY CRITERION

Curiously, the most common and most useful spatial mechanisms that have been
discovered date back many years and are, in fact, exceptions to the Kutzbach criterion.
As shown by the example in Fig. 1.6, geometric conditions sometimes occur that are not
accounted for in the Kutzbach criterion and lead to apparent exceptions. As a case in point,
consider that every planar mechanism, once constructed, truly exists in three dimensions.
Yet, a planar four-bar linkage has n = 4 and is of type 4j;; thus Eq. (10.1) predicts a
mobility of m = 6(4 — 1) — 5(4) = —2 (implying redundant constraints). However, we
know that the mobility is, in fact, m = 1. The special geometric conditions in this case
lie in the fact that all revolute axes remain parallel and are all perpendicular to the plane
of motion. The Kutzbach criterion does not consider such geometric conditions and can
produce false predictions.

Three more RRRR four-bar linkages are exceptions to the Kutzbach criterion, namely:
the spheric four-bar linkage; the wobble-plate mechanism; and the Bennett linkage. As
with the planar four-bar linkage, the Kutzbach criterion for these mechanisms predicts
m = —2, and yet they are truly of mobility m = 1. The spheric four-bar linkage is shown in
Fig. 10.2; the axes of all four revolute joints intersect at the center of a sphere. The links
may be regarded as great-circle arcs existing on the surface of the sphere; what had been
link lengths are now spheric angles. By properly proportioning these angles, it is possible
to design all of the spheric counterparts of the planar four-bar linkage such as the spheric
crank-rocker linkage and the spheric drag-link linkage. The spheric four-bar linkage is easy
to design and manufacture and hence is one of the most useful of all spatial linkages. The

* The only application known to the authors for this type is its use in the front landing gear of the
Boeing 727 aircraft.
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Figure 10.2 Spheric four-bar linkage.

Hooke or Cardan joint, which is the basis of a universal shaft coupling, is a special case of
a spheric four-bar linkage with input and output cranks that subtend equal spheric angles.

The wobble-plate mechanism is shown in Fig. 10.3. Note that all of the revolute axes
intersect at the origin; thus, it is also a spheric mechanism. Note also that input crank
2 rotates and output shaft 4 oscillates; also, when § = 90°, the mechanism is called a
spheric-slide oscillator, and if y > §, the output shaft rotates.

The Bennett linkage [2], shown in Fig. 10.4, is probably one of the less practical of
the known spatial four-bar linkages. However, it has stimulated development of kinematic

Figure 10.3 Wobble-plate mechanism.
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Figure 10.4 Bennett linkage.

theory for spatial mechanisms [1]. In this linkage, opposite links are of equal lengths and
are twisted by equal amounts. The sines of the twist angles, o and «, are proportional to
the link lengths, a; and a», according to the equation

sino| sinap
==+

a az

Two more exceptions to the Kutzbach mobility criterion are the Goldberg (Michael,
not Rube!) five-bar RRRRR linkage and the Bricard six-bar RRRRRR linkage [8].* Again,
it is doubtful whether these linkages have much practical value.

Harrisberger and Soni [11] identified all spatial linkages having one general constraint,
that is, that have mobility of m = 1, but for which the Kutzbach criterion predicts m = 0.
They identified eight types and 212 kinds and found seven new mechanisms that may have
useful applications.

The spatial four-bar RSSR linkage, shown in Fig. 10.5, is an important and useful
linkage. Since n = 4, j; = 2, and j3 = 2, the Kutzbach criterion of Eq. (10.1) predicts a
mobility of m = 2. Although this might appear at first glance to be another exception,
upon closer examination we find that the second degree of freedom actually exists; it is
the freedom of the coupler to spin about the axis between the two spheric joints. Since
this degree of freedom does not affect the input-output kinematic relationship, it is called
an idle degree of freedom. This extra freedom does no harm if the mass of the coupler is
truly distributed along its axis; in fact, it may be an advantage, since the spin of the coupler
about its axis may equalize wear on the two ball-and-socket joints. If the mass center of
the coupler lies off axis, however, then this second freedom is not idle dynamically and can
cause quite erratic performance of the linkage at high speed.

Note that all mechanisms that defy the Kutzbach criterion always predict a mobility
less than the actual mobility. This is always the case; the Kutzbach criterion always
predicts a lower limit on the mobility; the reason for this is mentioned in Sec. 1.6. The

* For pictures of these, see [12].
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v Figure 10.5 RSSR four-bar
linkage.

argument for the development of the Kutzbach equation, Eq. (10.1), came from counting
the freedoms for motion of all links before any connections are made, less the numbers
of these presumably eliminated by connecting various types of joints. Yet, when there are
special geometric conditions, such as intersections or parallelism between joint axes, the
criterion counts each joint as eliminating its own share of freedoms although two (or more)
of them may eliminate the same freedom(s). Thus, the exceptions arise from the false
assumption of independence among the constraints of the joints.

Let us carry this thought one step further. When two (or more) of the constraint
conditions eliminate the same motion freedom, the problem is said to have redundant
constraints. Under these conditions, the same redundant constraints also determine how
the forces are shared where the motion freedom is eliminated. Thus, when we come
to analyzing forces, we find that there are too many constraints (equations) relating the
number of unknown forces. The force analysis problem is then said to be overconstrained,
and we find that there are statically indeterminate forces in the same number as the error
in the predicted mobility.

There is an important lesson buried in this argument:* whenever there are redundant
constraints on the motion, there are an equal number of statically indeterminate force
components in the mechanism. Despite the higher simplicity in the design equations of
planar linkages, for example, we should consider the force effects of these redundant
constraints. All of the out-of-plane force and moment components become statically
indeterminate. Slight machining tolerance errors or misalignments of axes can cause
indeterminate stresses with cyclic loading as the mechanism is operated. The engineer
needs to address the question: What effects will these stresses have on the fatigue life of
the members of the mechanism?

On the other hand, as pointed out by Phillips [18], when motion is only occasional and
loads are not high, this might be an ideal design decision.” If errors are small, the additional
indeterminate forces may be small and such designs are tolerated although they may seem

* A detailed discussion of this entire topic forms one main theme of an excellent two volume set by
Phillips [18].
f Ibid, Sec. 20.16, The advantages of overconstraint, p.151.
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to exhibit friction effects and wear in the joints. As errors become larger, however, we may
find that binding becomes a major issue.

The very existence of the large number of planar linkages in the world testify that
such effects can be tolerated with appropriate tolerances on manufacturing errors, good
lubrication, and proper fits between mating joint elements. Still, too few mechanical
designers truly understand that the root of the problem can be eliminated by removing
the redundant constraints in the first place. Thus, even in planar motion mechanisms,
for example, we can make use of ball-and-socket or cylindric joints that, when properly
located, can help to relieve statically indeterminate force and moment components.

10.3 SPATIAL POSTURE-ANALYSIS PROBLEM

Like planar mechanisms, a spatial mechanism is often connected to form one or more
closed loops. Thus, employing methods similar to those of Sec. 2.7, loop-closure equations
can be written that define the kinematic relationships of the mechanism. A variety of
different mathematical tools can be used, including vectors [3], dual numbers [17],
quaternions [23], and transformation matrices [22]. In vector notation, the closure of a
spatial mechanism, such as the four-bar RSSR linkage shown in Fig. 10.5, can be defined
by a loop-closure equation of the form

r+s+t+C=0. (10.2)

This equation is called the vector tetrahedron equation, since the individual vectors can be
thought of as defining four of the six edges of a tetrahedron.

The vector tetrahedron equation is three dimensional and hence can be solved for three
scalar unknowns. These can be either distances or angles and can exist in any combination
in vectors r, s, and t. Vector C is the sum of all known vectors in the loop. Using spheric
coordinates, each of vectors r, s, and t can be expressed as a magnitude and two angles.
Vector r, for example, is defined once its magnitude, r, and two angles, 6, and ¢,, are
known. Thus, in Eq. (10.2), any three of the nine quantities r, 6,, ¢,, s, 6, ¢s, t, 6;, and ¢,
can be unknowns that must be found from the vector equation. Chace has solved these nine
cases by first reducing each to a polynomial [3]. He classifies the solutions depending upon
whether the three unknowns occur in one, two, or three separate vectors, and he tabulates
the forms of the solutions as shown in Table 10.1.

In Table 10.1, the unit vectors ®@,, ®;, and &, are axes about which the angles ¢y, ¢s,
and ¢, are measured. In case 1, vectors s and t are not needed; therefore, they are dropped
from the equation. The three unknowns are all in vector r. In cases 2a, 2b, 2¢, and 2d,
vector t is not needed and dropped; the three unknowns are shared by vectors r and s.
Cases 3a, 3b, 3¢, and 3d have single unknowns in each of vectors r, s, and t.

One advantage of the Chace vector tetrahedron solutions is that, since they provide
known forms for the solutions of the nine cases, we can write a set of nine program modules
for numeric evaluation. Eight of the nine cases have been reduced to explicit closed-form
solutions for the unknowns and therefore can be quickly evaluated. Only case 34, involving
the solution of an eighth-order polynomial, must be solved by numeric iteration.

Although the vector tetrahedron equation and its nine case solutions can be used to
solve most practical spatial problems, we recall from Sec. 10.1 that the Kutzbach criterion
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Table 10.1 Classification of solutions of the vector tetrahedron

equation
Known quantities
Degree of

Case number Unknowns Vectors Scalars polynomial
1 7,05, ¢r C 1

2a r, 0, s C, ®,8 o 2

2b r, 0, 0 C, @, @y br, S, Qs 4

2c Or, Or, s C, s r 2

2d Or, ¢r, s C, o 7,8, Ps 2

3a r, s, t C, 18t 1

3b r,s,0; C, 1,8, & t, ¢y 2

3¢ r, 0s, 04 C, T, @y, & S, Ps, 1, Py 4
3d 0r, 05, 6 C, &r, 5, ®; T, Pp, 8, Gs, 1, P 8

predicts the existence of up to seven j; joints in a single-loop, one-degree-of-freedom
mechanism. For example, the seven-link 7R linkage has one input and six unknown
joint variables [6]. Using the vector form of the loop-closure equation, it is not possible
to determine the values for the six unknowns, since the vector equation is equivalent
to only three scalar equations a