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Preface

This book is based on the knowledge, experience, and findings of the authors 
gained over decades of research, development, and teaching. To our knowl-
edge, this book is unique in bringing together all aspects of missile system 
development—guidance, control, navigation/estimation, and implementa-
tion. The richness of the contents of this book is due to having contribu-
tors in guidance and control, and estimation theories and implementation 
by authors who are themselves leaders in their respective fields. The chap-
ter contributors are at the forefront of modern developments in missile 
systems and are the originators of the concepts and algorithms described 
in each chapter, or have put them into practice in current missile systems. 
Many chapters cover the basic theory in a tutorial form that makes this book 
almost a text book on the latest topics in guidance theory, nonlinear control, 
or estimation.

We thank all contributors for taking the time to make valuable contribu-
tions to this book. We are especially grateful to the contributors from indus-
try, for whom this book was a long and arduous endeavor, undertaken in 
addition to their regular job demands.
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Introduction

Over the last 30 years, there have been many studies in the area of missile 
guidance. The result has been a great deal of progress, and several approaches 
to the problem have emerged. The basic problem is to intercept a target with 
great accuracy in an environment that is uncertain and noisy.

One of the earliest forms of missile guidance is that of command to line-of-
sight guidance. This involves establishing a line of sight between the track-
ing sensor and the target, as shown in Figure I.1.

There are four positions to be identified in order that the geometry be 
defined. These are the tracking radar, the missile position, the target posi-
tion, and the impact point. The missile is commanded onto or along the line 
of sight by use of a command link. Hence, the missile is fairly simple and 
only needs a communication link back to the guidance computer, which is 
usually located with the tracking sensor. The guidance computer and the 
tracking sensor can be located on a stationary platform, such as a ground sta-
tion for area defense, or on a mobile platform, such as an aircraft or helicop-
ter. This form of guidance is usually short range as a line of sight has to be 
established between the tracking sensor and the target and maintained over 
the whole of the engagement. It also requires an accurate tracking sensor for 
both the target and the missile and a means to discriminate between the two.

The other form of guidance is homing guidance, which has become the 
predominant mode of guidance in the recent past. The geometry of the guid-
ance of homing missiles is shown in Figure I.2.

There are three reference points defining the engagement geometry: (1) the 
missile plus homing head position, (2) the target position, and (3) the impact 
point. If the tracking sensor is placed in the nose of the missile, the sensor 
will get closer to the target as the engagement progresses. This makes the 
tracking of the target easier, but the main disadvantage is that the sensor 
must fit into the diameter of the missile and consume power that is stored 
on board. Hence, the range and accuracy of the tracking sensor are much 
less than those of the line-of-sight guidance. The guidance computer also 
has to be carried on board; hence, its size and power will also be reduced 
in comparison. All of these facts make the homing missile more complex 
and costly than the line-of-sight missile. The main advantage of the homing 
missile is the fact that when launched, it does not require a separate track-
ing sensor, which could become vulnerable to counterattack. It also means 
that several homing missiles can be launched at the same time. There has 
been a lot of interest in the development of homing guidance techniques in 
the literature, mostly on two themes: that of proportional navigation and the 
use of more modern control techniques such as optimal control. Variants on 
the proportional navigation algorithm that improve the performance against 
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maneuvering targets have been proposed. These rely on information about 
the target motion, usually the velocity and acceleration vectors, and so are 
more difficult to realize than the basic proportional navigation algorithm.

All of these rely on accurate measurements that can position the missile 
and the target, as well as estimate the target motion in terms of a velocity and 
acceleration vector. The main way of doing this is by means of the tracking 
sensor, which measures properties of the sight line between the missile and 
the target. Most guidance algorithms rely on the line-of-sight rotation rate 
and target relative range, with extra information coming from the range rate 

Line of sight

Impact point
Vt

VmRt

Rm

Figure i.1
Command to line-of-sight guidance.

Vm

Vt Lt

Lm

Line of sight

Impact point

Figure i.2
Homing geometry.
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if available. Modern trends are to also obtain information from third-party 
sensors with a networked capable system, but this is usually for the mid-
course guidance phase where the tracking sensor is not active. The research 
work detailed in this book deals only with the terminal guidance phase, 
between any midcourse guidance and the warhead fusing phase.

In order to develop algorithms to accurately guide the missile onto 
the target, a good understanding of the kinematics and dynamics of the 
engagement geometry is required. The kinematics describes the motion 
of the missile and the target in inertial space. This is necessary to define 
the effect of the guidance commands on the geometry of the engagement. 
The dynamics are associated with the motion of the missile airframe in 
response to the changes in fin or thrust vectoring actuation of the missile. 
This mechanism produces the required maneuver of the missile derived 
from the guidance geometry. Hence, the guidance algorithm measures the 
engagement geometry, estimates the target dynamics, and produces com-
mands that change the missile dynamics in a closed-loop form, shown in 
Figure I.3.

To help put the following chapters in context, a short description of the 
kinematics of the engagement and the dynamics of the target and missile is 
given here. The description is not meant to be exhaustive but is sufficient to 
inform the reader about where each chapter fits into the engagement system.

Homing Guidance Kinematics

Figure I.4 is drawn for the case of a target that is flying in a straight line at 
constant velocity Vt. The missile is flying at velocity Vm, also in a straight 
line. Both trajectories are assumed to intercept at the impact point at point I. 
The target and missile centers of gravity (cg) together with the impact point 
form a triangle, which will be called the impact triangle. Two sides of the 

Target
motion

Guidance
algorithm

Missile
dynamics KinematicsMotion

estimator

Figure i.3
Homing guidance loop.
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triangle form the predicted straight line trajectories of the missile and the 
target, while the third is formed by connecting the missile and the target. If 
an observer was positioned at the missile cg, this line would establish a line 
of sight from the observer to the missile and is thus labeled the line of sight. 
In the real system, the observer is replaced by a homing head and the line of 
sight established between the missile homing head (usually sited in the mis-
sile nose, rather than the missile cg) and the cg of the target. For this simple 
analysis, the line of sight will be defined between the two cg’s.

To establish the conditions for impact, consider a time T such that the tar-
get has traveled in a straight line and at constant velocity from its initial posi-
tion in Figure 3 to the impact point. The length of this trajectory Lt will be

 Lt = VtT. (1)

In order for the missile to arrive at the impact point at the same time as the 
target, it must travel a distance Lm in the same time T, that is,

 Lm = VmT. (2)

The ratio of the trajectory lengths is then given by

 

L
L

V T
V T

V
V

m

t

m

t

m

t

=

= .

 (3)

The time of impact is a useful measure of the engagement progression and 
is sometimes used explicitly in the guidance algorithm. As such, it is labeled 
time to go or Tgo.

Equation 3 shows that in order to impact on a target flying at constant 
velocity in a straight line, the missile must maneuver until the trajectory 
lengths of the impact triangle are in the same ratio as the target and missile 
velocities. As the target velocity and heading are either unknown or esti-
mated, and targets can maneuver, there must be an active control system to 
acquire and maintain this impact geometry: this is the role of the guidance 
algorithm. The geometry is not fixed, however, as only the trajectory lengths 
need matching with the missile and target velocities. 

Figure I.4 shows the locus of possible impact triangles, where the missile 
position lies on a circle of radius Lm (the impact circle), and the missile velocity 
vector Vm lies along the radius of the impact circle. From this figure, it can 
be seen that an impact triangle can be produced to give a head-on collision 
(point A) or a tail chase (point B) and any variant in between.
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Line of Sight Kinematics

In order to form an impact triangle, the missile and target velocity vector 
must both point directly at the impact point. If the impact triangle is not 
established, the missile must maneuver until it is established. To investigate 
this maneuver, consider the geometry of the target and missile connected by 
the line of sight. Figure I.5 shows the geometry of a two-dimensional or planar 
engagement with a set of axes centered on the missile. The axes are defined 
such that the x axis is pointing up the sight line, the y axis is normal to the 
sight line in the plane of the engagement, and the z axis forms a right-handed 
set and points directly out of the engagement plane. The basis vectors i, j 
define these directions. The line of sight is also rotating at ωs rad/s around the 
z axis as the target moves relative to the missile.

The target position dtr, relative to the missile, in sight line axes is given by

 

d Ri

R

tr =

=
0







 (4)

where R is the closing range of the target. The velocity and acceleration of the 
target in sight line axes can be obtained by differentiation; hence, the target’s 
velocity vtr relative to the sight line axes is given by

Vm

Lm

LtVt

Sight line

Impact point

Figure i.4
Range of impact triangle locus.
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The target acceleration atr relative to the line of sight axes is obtained by fur-
ther differentiation and is given by
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Line of sight 
vm

vt

am i

j

Figure i.5
Homing engagement dynamic geometry.
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Inspection of Equations 7 and 8 shows that if the missile matches the target veloc-
ity normal to the sight line (the y axis), the sight line angular velocity and angu-
lar acceleration must be zero. Zero angular velocity follows from Equation 7, as 
to get the y axis velocity to zero for any closing range R, we must have

 ωs = 0 (9)

Using this information in Equation 8 shows that for zero relative acceleration 
in the y direction, and any closing velocity Vc, where

 V Rc = −  , (10)

the line of sight angular acceleration ω s must be zero, that is,

 ω s = 0. (11)

For the zero conditions in Equations 10 and 11, Equations 7 and 8 become

 v
V

a V
tr

c
tr

c=
0

=
0

−









−











. (12)

This implies that the line of sight maintains its orientation in space and 
shrinks in size until impact at a velocity of −Vc and an acceleration of − Vc, as 
shown in Figure I.6.

If the target maneuvers or the missile is not on a collision course, then the 
line of sight will rotate and
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Referring to Figure I.5, the missile velocity vector subtends an angle of θm to 
the line of sight, and the target submits an angle θt; hence

 

v
v

v

V

V

tr
trx

try

t

t

t t

=

= ( )

( )


























cos

sin

θ
θ




−










−

V

V

V V

m m

m m

t t m

cos

sin

cos cos

( )

( )

=
( ) (

θ
θ

θ θθ
θ θ

m

t t m mV V

)

( ) ( )sin sin
.

−











 
(15)

Similarly, the target relative acceleration atr is given by
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Impact point

Target

Line of sight

Missile

Figure i.6
Shrinking impact triangle.
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where atp is the target acceleration parallel to the line of sight, atn is the target 
acceleration normal to the sight line, and am is the missile latax. Note that 
Equation 16 implies that the target can accelerate both longitudinally and 
laterally, while the missile accelerates only laterally. Hence, the acceleration 
vector of the missile is normal to the velocity vector, as shown in Figure I.5.

Any guidance algorithm must determine the missile normal acceleration 
in response to any mismatch in geometry caused by initial heading errors 
or by target maneuver. The geometry is controlled much more effectively if 
the target accelerations in Equation 16 are known. This required some form 
of an estimator as the sensor measurements will not measure acceleration 
directly.

Airframe Equations of Motion

In the study of the control of missiles, the understanding of the dynamics 
of the airframe plays an important role. The dynamic behavior of the air-
frame dictates the way the missile responds to the control surfaces, how it 
reacts to disturbances, and how it flies in steady state or trim conditions. It is 
also important to understand the dynamics of the target, and the dynamic 
equations developed in this section are relevant to the target as well as the 
missile. The difference is that the aerodynamics and dynamics of the target 
airframe are not known, and so an approximation to these dynamics equa-
tion is necessary.

General free body motion will be considered, which is subject to gen-
eralized forces and moments. The equations of motion of the generalized 
free body are obtained by considering the six degrees of freedom (DOFs) of 
motion. Figure I.7 shows the DOFs of the body of a missile airframe.

p

U

q

vr

w

Figure i.7
Airframe coordinate system.
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The motion can be categorized into two forms of motion: translational 
motion and rotational motion. There are three DOFs associated with each 
category, and these are summarized in Table I.1.

These DOFs will be used to describe the motion of the free body in space, 
and the description of the motion will be a function of the application. If 
an autopilot is to be designed, it will be necessary to control the rotational 
velocities and the translational velocities by suitable measurement and 
actuation. If the control system is required to perform some form of guid-
ance (inertial guidance/navigation, for instance), then the added control 
of the translational displacements is required. In either case, the dynamic 
behavior of the airframe in response to the movement of control surfaces is 
required.

Free body motion describes how the airframe responds to the application 
of translational and rotational forces (moments). The forces and moments 
produce translational and rotational accelerations, which cause changes in 
the velocity and displacement of the airframe. Figure I.7 shows velocities 
measured in axes that are normally fixed in the airframe. As any axes set 
fixed in the airframe body will be subject to both rotational and translational 
accelerations, the dynamic description of the airframe will be complex as 
the equations of motion generated by Newton’s laws of motion assume a 
nonaccelerating set of axes. Another complication is apparent in most real 
control systems. This relates to the definition of the aerodynamic forces act-
ing on the body. Both actuators and sensors will be fixed in body axes and 
so will measure quantities relative to those axes. Inertia calculations are 
also easier in body axes if they are aligned with the principal axes of the 
body. Aerodynamic forces and moments, however, are usually referred to as 
“wind axes.” These are axes with the x-axis aligned with the direction of the 
airflow arriving at the airframe. These coincide only when the airframe is 
flying at zero incidence. For small incidence, the difference between the two 
axis sets will be small and can be ignored. For highly maneuverable missiles 
that pull significant incidence (≥15° for example), this approximation might 
have to be reviewed.

Consider first the motion of the missile airframe expressed in body axes. 
These axes are used mainly because the actuators and instruments are fixed 

Table i.1

Six DOFs of a Free Body

Motion Direction Displacement Velocity

Translational Forward x u
Sideslip y v
Vertical z w

Rotational Roll ϕ p

Pitch θ q

Yaw ψ r
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in the airframe body. The translational and rotational velocities can be writ-
ten in vector form as

 v
u
v
w

ui vj wk i j k
u
v
w

b b b b b b= = =












 + +













( )  (17)

and

 ω = = =
p

q

r

pi qj rk i j k
p

q

r

b b b b b b

















+ +













( ) 


 (18)

where the components ib, jb, and kb are unit vectors along the airframe body 
axes as shown in Figure I.8.

The translational and rotational free body equations are obtained by use 
of Newton’s second law of motion. This states that for any mass, the rate of 
change of momentum is equal to the applied force. If the translational and 
angular momentum are given by ht and ha, respectively, then

 
d
d
h
t

F Gt = +  (19)

 
d
d
h
t

Ta =  (20)

jh
kh

ih

Figure i.8
Airframe-defining vectors.
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where F is a vector of forces applied along the airframe axes such that

 F
X
Y
Z

=












 . (21)

G is the gravitational force given by

 G

G

G

G

x

y

z

=

















 (22)

and T is a vector of torques or moments such that

 T
L
M
N

=












 . (23)

Translational dynamics

Consider first the translational momentum equation 19. The translational 
momentum ht is given by

 ht = mv. (24)

Substituting for ht, and noting that m is a scalar variable that will be consid-
ered to be constant, yields

 m
v
t

F G
d
d

= + . (25)

As the axes are fixed in the body, the defining orthonormal basis vectors ib, jb, 
and kb will have angular velocity and hence will possess derivatives. In vec-
tor form, we have

 
d
d
v
t

v v= + ×ω  (26)

where × is the vector cross product. This can also be expressed in component 
form as
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Comparing equations gives
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Figure I.9 shows the derivation of the rate of change of the unit vectors.
Hence
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Collecting terms yields

 ω × v = Ωv (29)
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Figure i.9
Rate of change of unit vectors.
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The translational acceleration of the free body is then obtained by combining 
Equations 25, 26, and 29 to give, in matrix form,

 mv + mΩv = (F + G). (31)

Rearranging and multiplying both sides by m−1 yields

 v = −Ωv + m−1 (F + G). (32)

Equation 32 defines the translational dynamics of the free body.

rotational dynamics

The rotational or angular momentum is more complex than the translational 
momentum. It is written in a similar manner as

 ha = Jω (33)

where J is the inertia matrix given by

 J

J J J

J J J

J J J

xx xy xz

xy yy yz

xz yz zz

=

− −

− −

− −



















. (34)

The diagonal terms are moments of inertia given by
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and the off-diagonal elements are products of inertia given by
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Substituting for the angular momentum ha in Equation 20 yields

 
d

d
( )

=
J
t

T
ω

.  (37)

Again, as the axes are rotating, and noting that the inertia terms are treated 
as constant, we have

 
d

d
( )

= ( )
J
t

J J
ω ω ω ω+ × .  (38)

The cross product can also be written as

 ω × (Jω) = ΩJω. (39)

Hence, the rotational dynamics can be written as

 Jω + ΩJω = T. (40)

Multiplying by J−1 and rearranging gives

 ω = −J−1ΩJω + J−1T. (41)

Equation 41 defines the rotational dynamics of the free body airframe.

inertial/body axis transformation

Airframe motion is required in terms of a fixed inertial frame that is aligned 
with the earth when used in guidance geometries. As the dynamic equa-
tions for the airframe are expressed in airframe body axes, a translation 
between these frames is necessary. The basis for the translation is a coordi-
nate transformation. This transformation takes a vector quantity such as air-
frame velocity or acceleration (translational or rotational) expressed in one 
set of axes and transforms it into another set of axes. Consider a vector vb 
expressed in body axes as

 v

v

v

v

v i v j v kb

bx

by

bz

bx b by b bz b= =



















+ +  (42)
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and the same vector expressed in a fixed inertial axis set ve as

 v

v

v

v

v i v j v ke

ex

ey

ez

ex e ey e ez e= =



















+ +  (43)

where both axis sets share a common origin, as shown in Figure I.10.
Note that the subscripts b and e on vector v denote the description of the 

vector in different axes and do not denote different vectors. The relation-
ship between the components v vbx by

, , and vbz
 in the body axes and v vex ey

, , 
and vez

 in the earth axes can be explored by noting that vbx
 is the projection of 

vector v onto the x-axis of the body axis. This can be calculated by the inner 
product of the unit vector ib, defining the body x-axis, and vector v. Hence
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′ .

 (44)
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Figure i.10
Inertial and body axes.
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Similarly, the components of v in the earth axes can be calculated by

 

v i v
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 (45)

Substituting for vector v in Equation 43 into Equation 44 gives

 

v i v i v j v k

v j v i v j v

bx b ex e ey e ez e

by b ex e ey e

= ( )

= (

′

′

+ +

+ + eez e

bz b ex e ey e ez e

k

v k v i v j v k

)

= ( )′ + + .

 (46)

This can be rearranged to give
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If the earth components are calculated in the same manner by substituting 
for vector v in Equation 42 in Equation 45, this gives
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Equation 48 can be written in compact form as

 ve = Rvb (49)

where

 R

i i i j i k
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with the inverse transformation in Equation 47 as

 vb = R−1ve. (51)

Noting that for inner products, the order of the vectors is not significant, so that

 i′j = j′i. (52)

Inspection of Equations 47 and 48 yields

 R−1 = R′. (53)

This implies that the transformation matrix R is unitary. Note also that the 
terms in the R matrix represent the inner product of the three unit vectors in 
body axes with each of the unit vectors in earth axes. Hence, for any product 
such as ′i ib e,

 ′i ib e be= ( )cos θ  (54)

where θbe is the angle between the two vectors.
Three methods are mainly used to generate the transformation matrix R 

from body axes to earth axes: Euler angles, direction cosines, and quaterni-
ons. Analysis of these transformation representations is beyond the scope 
of this book. Suffice it to say that the rotation matrix can be represented in 
direction cosine form by

 

v Rv
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=

=
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(55)

where li, mi, and ni are called the direction cosines and are summarized in 
Table I.2.

Table i.2

Direction Cosines

Direction Cosine Value

l1 cos(ψ)cos(θ)
l2 sin(ψ)cos(θ)
l3 −sin(θ)
m1 cos(ψ)sin(θ)sin(ϕ) − sin(ψ)cos(ϕ)
m2 sin(ψ)sin(θ)sin(ϕ) + cos(ψ)cos(ϕ)
m3 cos(θ)sin(ϕ)
n1 cos(ψ)sin(θ)cos(ϕ) + sin(ψ)sin(ϕ)
n2 sin(ψ)sin(θ)cos(ϕ) − cos(ψ)sin(ϕ)
n3 cos(θ)cos(ϕ)
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autopilot algorithm development

The forces and moments in Equation 25 are usually functions of the transla-
tional and rotational vector components:

 
F F

T T

= ( , , , , , )

= ( , , , , , )

u v w p q r

u v w p q r .
 (56)

These can then be used to formulate the equations of motion for autopilot 
design. The equations governing the translational dynamics can also be 
written in terms of incidence angles (u, β, γ) rather than velocity vector com-
ponents (u, v, w), where

 

β

γ

=

=

w
u

v
u

.

 (57)

This does not alter the kinematics but requires the aerodynamics to be 
described in terms of the forward speed and the incidence angles:
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T T

= ( , , , , , )

= ( , , , , , )

u p q r

u p q r

β γ

β γ .
 (58)

guidance algorithm development

In most cases, the dynamics of the missile are not considered in the design 
of guidance algorithms, and the kinematics alone are used. This implies 
that the velocity vector can be controlled directly using commands deter-
mining the required rotation rates of the velocity vector. Hence, (p, q, r) can 
be directly controlled using guidance commands. Thus, for most guidance 
algorithms, we have Figure I.3 replaced by Figure I.11.

Target
motion

Guidance
algorithm KinematicsMotion

estimator

Figure i.11
Homing guidance for algorithm development.
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If the autopilot is retained, then the analysis becomes more complex but 
more realistic. One chapter in the book deals with the integrated design of 
both the autopilot and guidance systems.

Zero-effort miss

In benchmarking guidance algorithms, the zero-effort miss (ZEM) metric 
is sometimes used to test the effectiveness of the guidance algorithm. The 
ZEM is obtained by setting the lateral acceleration command to zero at 
specific times during the engagement and measuring the closest approach 
distance. This then determines the miss distance for zero maneuver or 
effort, hence the name zero-effort miss. A graphical interpretation of ZEM 
can be obtained by redrawing Figure I.5. If the target velocity vector is 
subtracted from both the target and the missile, then a relative velocity 
vector centered on the missile is obtained. Projecting a line along this rela-
tive velocity vector and constructing an orthogonal line centered on the 
target to intercept it produces a right-angle triangle with the ZEM as one 
side, as shown in Figure I.12.

The ZEM can be related to the pointing error angle, which is used for 
guidance in one of the guidance chapters. Note that the smaller the guid-
ance error, the smaller the ZEM; hence, a guidance algorithm that quickly 
reduces the guidance error and maintains a small error will have a small 
ZEM over the engagement. This is especially important for maneuvering 
targets.

Missile

Sight line

R

Target
ZEM

vtvm

m

Figure i.12
ZEM geometry.
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Challenges

From the previous sections, it is clear that several issues arise from the 
implementation of homing guidance. These are grouped under the follow-
ing headings.

•	 Target tracking. This is important as the guidance algorithms require 
accurate information concerning the position, velocity, and accelera-
tion of the target relative to the missile. The reduced capability of 
the sensor on board the missile, in terms of range and resolution, 
presents a significant problem. Estimators are mainly used to infer 
the target motion from the noisy sensor measurements, and these 
estimators have their own dynamics. This implies that the estimator 
is not instantaneous and will have an effect on the tracking accuracy. 
Specifically, the dynamic lag will mean that if a target maneuvers, 
there will be a delay in producing accurate estimates of the change 
in position, velocity, and acceleration. Also, because the sensor mea-
sures distance (with velocity if the sensor is capable of measuring 
Doppler), the estimate of velocity and acceleration will involve a 
form of integration with the associated errors and delays.

•	 Guidance algorithms. As the kinematics and dynamics of the guid-
ance equations are nonlinear, and the trend is toward smaller war-
heads and more accurate guidance solutions, this is still a challenge. 
Modern studies are also looking at the optimization of the midcourse 
guidance phase of the engagement to try to control the geometry of 
the engagement when target acquisition is attained. Shaping the tra-
jectory in the terminal guidance phase is also important to control 
both the endgame geometry and aim point. This will enable smaller 
warheads and a more effective kill mechanism to be used, result-
ing in a smaller cheaper missile with the potential for less collateral 
damage as the blast effect is smaller and more contained.

•	 Autopilot algorithms. The dynamics and aerodynamics of modern 
missiles are very nonlinear. Many modern missiles are required to 
fly at higher incidences to achieve higher lateral accelerations for 
more accurate guidance against highly maneuverable targets or 
have ram and/or scram jet intakes that produce both restrictions on 
incidence in specific lateral planes of the missile and highly nonlin-
ear aerodynamics. Thus, autopilot design must take into account the 
inherent nonlinear aerodynamics as well as the high dynamic pres-
sure ranges as the missile velocity changes over the engagement. 
Traditionally, autopilots have been scheduled over time or speed to 
take into account the high variability of the aerodynamic effective-
ness of the wings and the control surfaces, which can be of the order 
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of 5:1 over the operating envelope of the missile. Modern designs 
produce autopilots that are explicit functions of speed and incidence 
to produce a smoothly interpolating autopilot.

•	 Implementation issues. Several problems arise when implementing 
guidance, autopilot, and estimation algorithms. These involve the 
choice of tracking sensor, software implementation, fin actuation, 
motor type, as well as the size and type of warhead. All of these 
issues are dealt with in the book.

The book is separated into four main contributions. The first deals with the 
design of autopilots with contributions: 

•	 Robust Autopilot Design for Quasilinear Parameter-Varying Missile 
Model (A. Tsourdos and B. A. White)

•	 Polynomial Approach for Design and Robust Analysis of Lateral 
Missile Control (A. Tsourdos, B. A. White, and L. Bruyere)

•	 Control Design and Gain Scheduling Using Observer-Based 
Structures (D. Alazard)

•	 Adaptive Neural Network–Based Autopilot Design (K. Rajagopal 
and S. N. Balakrishnan)

These chapters deal with the design of autopilots over the whole flight 
envelop of Mach number and altitude. They also take into account the effect 
of changing aerodynamics as functions of incidence as well as Mach number 
and altitude. This is followed by a set of contributions on guidance. There 
follows a chapter that looks at the design of homing guidance integrated 
with autopilot design: Integrated Guidance and Control for Missiles (N. Harl, 
M. Dancer, S. N. Balakrishnan, E. J. Ohlmeyer, and C. Phillips).

This is followed by six chapters on different aspects and techniques 
applied to the homing guidance problem. These range from using sliding 
modes to produce a linear-type behavior for the nonlinear kinematic system 
equations to differential geometry, and optimal control applied to terminal 
geometry:

•	 Higher-Order Sliding Modes for Missile Guidance and Control (Y. B. 
Shtessel and C. H. Tournes)

•	 Neoclassical Missile Guidance (P. Gurfil)
•	 Differential Geometry Applied to Missile Guidance (B. A. White and 

A. Tsourdos)
•	 Differential Game-Based Interceptor Missile Guidance (J. Shinar 

and T. Shima)
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•	 Optimal Guidance Laws with Impact Angle Control (C.-K. Ryoo, 
M.-J. Tahk, and H. Cho)

•	 A chapter on the use of differential games, integrating the guidance 
law with the estimation of the target maneuver, follows: Integrated 
Design of Estimator and Guidance Law (J. Shinar and T. Shima)

The next contribution deals with the estimation problem using particle fil-
ters: Introduction to Particle Filters for Tracking and Guidance (D. Salmond)

The final contribution area deals with practical implementation issues in 
the design of a missile autopilot and guidance laws: The first chapter deals 
with the design of digital homing guidance laws and autopilots. The second 
contribution is a chapter on command to line-of-sight guidance systems, and 
the third is on the design of an autopilot control system, both of which model 
sensors, actuators, noise, and uncertainty, as well as deal with other aspects 
of implementation for a practical system: 

•	 Practical Techniques for Design of Multirate Digital Guidance Laws 
and Autopilots (C. A. Rabbath, N. Léchevin, and M. Lauzon)

•	 Design of CLOS Guidance System (G. Hexner and H. Weiss)
•	 Practical Considerations in Robust Control of Missiles (K. A. Wise)

The practical implementation of the tracking, guidance, and autopilot 
algorithms into a missile system is an important issue in that the theoretical 
designs require a lot of systematic reviews when inserting into a practical 
missile system. All of the components interact in some way and have charac-
teristics that need to be taken into account. These involve such diverse issues 
as the coupling between the homing sensor and the body motion. Radome 
aberration can produce apparent changes in the sight line to the target that 
can destabilize the guidance algorithm. The autopilot sensors (usually rate 
gyros and lateral accelerometers) also have biases, dynamics, and limits that 
will affect the implementation. One of the major effects in autopilot design 
will be the effectiveness of the actuators. For canard systems, the control fins 
are located at the front of the missile and can cause loss of lift and rolling 
moments that can severely affect the maneuverability of the missile. Rear 
control surfaces do not produce such effects, but introduce nonminimum 
phase effects as the fin movement to produce incidence will initially produce 
lateral accelerations in the opposite direction to that required, with some 
destabilization effects. If there are nonsymmetric aerodynamics, sensors, or 
warheads on the missile, then there is a preferred maneuver direction bank 
to turn (BTT), as opposed to a symmetric missile, which can maneuver lat-
erally in any direction skid to turn (STT). Both have their implementation 
problems.
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1
Robust Autopilot Design for Quasilinear 
Parameter-Varying Missile Model

Antonios Tsourdos and Brian A. White

1.1 Introduction

One of the most popular methods for applying linear time-invariant (LTI) 
control theory to time-varying and/or nonlinear systems is gain schedul-
ing [1]. This strategy involves obtaining Taylor linearized models for the 
plant at finitely many equilibria (“set points”), designing an LTI control 
law (“point design”) to satisfy local performance objectives for each point, 
and then adjusting (“scheduling”) the controller gains in real time as the 
operating conditions vary. This approach has been applied successfully for 
many years, particularly for aircraft and process control problems. Relatively 
recent examples (some of which involve modern control design methods) 
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include jet engines [2], active suspensions [3], high-speed drives [4], missile 
autopilots [5], and VSTOL aircraft [6–8].

Despite past success of gain scheduling in practice, until recently, little has 
been known about it theoretically as a time-varying and/or nonlinear con-
trol technique. Also, determining the actual scheduling routine is more of an 
art than a science. While ad hoc approaches such as linear interpolation and 
curve fitting may be sufficient for simple static-gain controllers, doing the 
same for dynamic multivariable controllers can be a rather tedious process.

An early theoretical investigation into the performance of parameter-vary-
ing systems can be found in the work of Kamen and Khargonekar [9]. During 
the 1980s, Rugh and his colleagues developed an analytical framework for 
gain scheduling using extended linearization [1,10,11]. Also, Shamma and 
Athans [12–14] introduced linear parameter-varying (LPV) systems as a tool 
for quantifying such heuristic design rules as “the resulting parameter must 
vary slowly” and “the scheduling parameter must capture the nonlineari-
ties of the plant.” Shahruz and Behtash [15] suggested using LPV systems 
for synthesizing gain-scheduled controllers, and Shamma and Cloutier [16] 
have used LPV plant models with μ-synthesis [17–19] for designing missile 
autopilots.

In this chapter, an autopilot design is described for a realistic model of a tac-
tical missile and robust stability of the closed-loop system investigated. The 
tail-controlled missile in the cruciform fin configuration [20] is modeled as a 
second-order quasilinear parameter-varying (QLPV) system. This nonlinear 
model is obtained from the Taylor linearized model of the horizontal motion by 
including explicit dependence of the aerodynamic derivatives on a state (side-
slip velocity) and external parameters (longitudinal velocity and roll angle). The 
first contribution is to consider this detailed QLPV (and thus nonlinear) model.

The autopilot design is based on input–output pseudolinearization [21–23]. 
The design makes Taylor linearization of the closed-loop system independent 
of the choice of equilibria. Thus, if the operating points are in the vicinity 
of the equilibria, then one and only one linear model will describe closed-
loop dynamics, regardless of the rate of change of the operating points. 
Simulations for constant lateral acceleration demands good tracking with fast 
response time. The second contribution is to interpret pseudolinearization as 
the restriction of feedback linearization [24] to the set of equilibria, and the 
third is to perform a successful pseudolinearizing design for a QLPV system.

1.2 Preliminaries

The purpose of this section is to present the background information neces-
sary to follow the context, meaning, and methodology of design and stability 
analysis developed in Section 1.3–1.4. First, a detailed description of the missile 
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under consideration is given in Section 1.2.1. Then several possible models use-
ful for the missile representation are defined in Section 1.2.2. Finally, Section 
1.2.3 describes the algorithm of pseudolinearization (and its mathematical 
and control theoretic contexts), as it is a fundamental tool for Section 1.3. 

1.2.1 Missile Model

Missile autopilots are usually designed using linear models of nonlinear 
equations of motion and aerodynamic forces and moments [25,26]. The objec-
tive of this chapter is robust design of a sideslip (yaw) velocity autopilot for 
a nonlinear missile model. This model describes a reasonably realistic air-
frame of a tail-controlled tactical missile in the cruciform fin configuration 
(see Figure 1.1). The aerodynamic parameters in this model are derived from 
wind-tunnel measurements [20].

The starting point for mathematical description of the missile is the linear-
ized model of the horizontal motion (on the xy-plane in Figure 1.1):

 v y v Ur yv= − + ζζ ( )translational dynamics  

 r n v n r nv r= + + ζζ ( )angular dynamics , (1.1)

where the variables are defined in Figure 1.1. Here v and r are incremental 
forms of the sideslip velocity V and body rate R, ζ is the rudder fin deflection, 
yv and yζ are semi-nondimensional force derivatives due to lateral and fin 
angle, respectively, and nv, nζ and nr are semi-nondimensional moment deriv-
atives due to sideslip velocity, fin angle, and body rate, respectively. Finally, 
U is the longitudinal velocity.

For a trim condition, the derivatives yv, yζ, nv, nr, and nζ in Equation 1.1 are 
assumed constant, so that it is a linear model. However, the aerodynamic 
forces and moments acting on the airframe are nonlinear functions of Mach 

p

r
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v
w

q

x

yz

FIGURE 1.1
Airframe axes.
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number, longitudinal and sideslip velocities, control surface deflection, 
aerodynamic roll angle, and body rates. Thus, for a wider (nontrim) flight 
envelope, nonlinear dependence of the derivatives in Equation 1.1 on these 
variables cannot be ignored. Indeed, Equation 1.1 must be rewritten by mak-
ing explicit the dependence so that it becomes the following nonlinear model 
[20,27]:

 

v y v Ur y

m V S C v V C Ur

v

o y o yv

= − +

= + −−

ζζ

ρ ζ
ζ

1
2

1 ( )
 

 

r n v n r n
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v r

z o n n o nr v
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−

ζζ
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2

1
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.  (1.2)

Here, m = 125 kg is the missile mass, ρ = ρo – 0.094h is the air density (ρo = 1.23 
kg m–3 is the sea level air density and h is the missile altitude), Vo is the total 
velocity, S = πd2/4 = 0.0314 m2 is the reference area (d = 0.2 m is the reference 
diameter), and Iz = 67.5 kgm2 is the lateral inertia. For the coefficients Cyv  , Cyζ

, 
Cnr

, Cnv
, and Cnζ

, only discrete data points are available, obtained from wind 
tunnel experiments. Therefore, an interpolation, involving the Mach number 
M ∈ [0.6, 6.0], roll angle λ ∈ [4.5°, 45°], and total incidence σ ∈ [3°, 30°], has 
been done with the results summarized in Table 1.1.

The total velocity vector 


Vo is the sum of the longitudinal velocity vector 


U and the incremental sideslip velocity vector 


v, that is, 
 



V U vo = + , with all 
three vectors lying on the xy-plane (see Figure 1.1). We assume that U ≫ v, 

TABLE 1.1

Coefficients in Nonlinear Model (Equation 1.2)

Coefficient name Interpolated Formula

Cyv
Sideslip normal force 0.5[(−25 + M – 60|σ|)(1 + cos 4λ) + (−26 + 1.5M – 30|σ|)

(1 – cos 4λ)]
Cyζ

Fin normal force 10 + 0.5[(−1.6M + 2|σ|)(1 + cos 4λ) + (−1.4M + 1.5|σ|)
(1 – cos 4λ)]

Cnr
Damping moment −500 – 30M + 200|σ|

Cnv
Sideslip moment s Cm yv

, where
sm = d−1[1.3 + 0.1M + 0.2(1 + cos 4λ)|σ| +

0.3(1 – cos 4λ)|σ| − (1.3 + m/500)]
Cnζ

Control moment s Cf yζ
, where

sf = d−1[2.6 − (1.3 + m/500)]
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so that the total incidence σ, or the angle between 


U and 


Vo, can be taken as 
σ = v/Vo, as sin σ ≈ σ for small σ. Thus, we have σ = = +v V v v Uo/ / 2 2 , so that 
the total incidence is a nonlinear function of the incremental sideslip velocity 
and longitudinal velocity, σ = σ (v,U).

The Mach number is obviously defined as M = Vo/a, where a is the speed of 
sound. Since V v Uo = +2 2 , the Mach number is a nonlinear function of the 
incremental sideslip velocity and longitudinal velocity, M = M (v,U).

It follows from the above discussion that all coefficients in Table 1.1 can be 
interpreted as nonlinear functions of three variables: incremental sideslip 
velocity v, longitudinal velocity U, and roll angle λ.

1.2.2 Taxonomy of Models

Missiles are required to operate over an expanded flight envelope to meet 
the challenge of highly maneuverable targets. In such a scenario, an auto-
pilot derived from linearization about a single flight condition will be unable 
to achieve suitable performance for the whole envelope. Thus, there is an 
inherent tension in autopilot design because of nonlinearity of the missile 
and linearity of the controller.

Mathematical representation of nonlinear missile dynamics lends itself 
to several interpretations. The interpretations aim at deriving models that 
adequately capture missile behavior and are practical for systematic control 
design. A taxonomy of dynamics models is presented in Table 1.2, which 
should be viewed in conjunction with Equation 1.2 and Table 1.1.

TABLE 1.2

Dynamics of Missile Models and Their Relationships

QLTV

x A x t x B x t u= , + ,( ) ( )
↙         ↘

QLTI QLPV

x A x x B x u= +( ) ( ) x A x t x B x t u= , + ,( ( )) ( ( ))θ θ
↓

LTV

x A t x B t u= +( ) ( )
↙         ↘

LTI LPV
x Ax Bu= + x A t x B t u= +( ( )) ( ( ))θ θ

Note: x = x(t) is the state, u = u(t) is the input, and θ = θ(t) are the external parameters 
(variables different from x and u).



6 Advances in Missile Guidance, Control, and Estimation

In the lower left corner of Table 1.2, we have the LTI model:

 
x Ax Bu
y Cx

= +
= ,  (1.3)

where u = u(t) ∈ ℝm is the vector of inputs, x = x(t) ∈ ℝn is the vector of states, 
and y = y(t) ∈ ℝq is the vector of outputs. Finally, A, B, and C are matrices with 
constant real entries, A ∈ ℝn×n, B ∈ ℝn×m, and C ∈ ℝn×q. This familiar model 
arises from Taylor linearization about a single flight condition (see Equation 
1.1) and is excellent for linear controller design but has rather limited appli-
cability for the whole flight envelope.

Traditionally, satisfactory performance across the flight envelope can be 
attained by gain scheduling local autopilot controllers to yield a global con-
troller. The global controller is a collection of LTI controllers designed for 
the corresponding family of LTI models obtained via Taylor linearizations 
about equilibria. An LTI controller of the collection is switched on when the 
current operating point of the flight envelope is in the vicinity of the relevant 
equilibrium. This switching schedule is determined by the scheduling vari-
ables, which are “external” in the sense that they are different from state 
x and input u. A precise mathematical description of the resulting control 
system has only recently been achieved (see Section 1.1) with LPV models, 
appearing in the lower right corner of Table 1.2:

 
x A t x B t u

y C t x

= +
=

( ( )) ( ( ))
( ( )) .

θ θ
θ  (1.4)

The entries of matrices A, B, and C are no longer constant as in the LTI 
model (Equation 1.3) but are time varying, making LPV models a special case 
of linear time-varying (LTV) models, as symbolized in Table 1.2. The varia-
tion over time is determined by the parameter θ, which is a generalization of 
scheduling variables. Gain scheduling requires “scheduling on a slow vari-
able,” which means that changes in θ should be much slower than changes 
in x and u. This requirement (violated for a rapidly maneuvering missile) is 
absent in the LPV model, and hence, it is a generalization of gain scheduling. 
This motivates recent interest in the LPV approach to autopilot design (see 
Section 1.2.1), as it promises to preserve the transparency of linear controller 
design, while reflecting the rapidly changing missile dynamics.

However, the LPV model is still a collection of linear designs, and in 
each of those, it is impossible to distinguish between real disturbances and 
normal manifestations of nonlinearity. Hence, any further improvement 
in performance and robustness can be achieved only by directly acknowl-
edging missile nonlinearity, rather than treating it as nuisance in a linear 
model. Thus, the nonlinear dynamics must be explicitly incorporated into 
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the mathematical description, but without undue generality. This is done in 
the upper part of Table 1.2. The topmost model is quasilinear time varying 
(QLTV), which in the context of Equation 1.2 and Table 1.1 is the most general 
framework we need:

 
x A x t x B x t u

y C x t x

= +
= .

( ) ( )
( )

, ,
,  (1.5)

The most important novelty in the QLTV model over the models in the 
lower part of Table 1.2 is that it is nonlinear, since matrices A, B, and C depend 
on state x; note also that Equation 1.5 is time varying (A, B, and C depend on 
time t, as well).

Obviously, the LTV model is a special case of the QLTV model, but more 
important are the two nonlinear special cases, as illustrated in Table 1.2. The 
top left one is the quasilinear time-invariant (QLTI) model, obtained from 
Equation 1.5 by simply dropping the explicit dependence on time t. The top 
right representation, the QLPV model, is the most relevant one for this paper:

 
x A x t x B x t u

y C x t x

= +
= .

( ( )) ( ( ))
( ( ))

, ,
,

θ θ
θ  (1.6)

Mathematical description of Equation 1.6 is the focus of this paper because 
close examination of Equation 1.2 and Table 1.1 reveals that with x ≜ (v   r)′, 
u ≜ ζ, and θ ≜ (U   λ)′, Equation 1.2 is of the form Equation 1.6. This is pursued 
further in Section 1.3.

1.2.3 Approaches to Nonlocal Linearization

This section summarizes three approaches to nonlocal* linearization, focus-
ing on input–output pseudolinearization, as it is used in Section 1.3 for auto-
pilot design. The actual exposition of input–output pseudolinearization is 
done in Section 1.2.3.3, and Sections 1.2.3.1 and 1.2.3.2 explain the context in 
which input–output pseudolinearization arose.

1.2.3.1 Linearization via Coordinate Transformation

When faced with a nonlinear ordinary differential equation, for example,

 � �x x x f x x t x= + =8 4
0 0( ) ( ), ,  (1.7)

* Here “nonlocal linearization” means a linearization of an ordinary differential equation or a 
control system other than Taylor linearization at a single equilibrium.



8 Advances in Missile Guidance, Control, and Estimation

where x: (t0, ∞) → ℝ, one would like to integrate it or to find explicit solu-
tions in closed form. An obvious approach is to guess a transformation, z = 
Φ(x), such that the resulting (transformed) Ordinary Differential Equation 
for z = z(t) can be integrated by already-known methods. Indeed, in the case 
of Equation 1.7, Φ(x) = x−3 results in

 � � �z z g z z t z x= − − =24 3 0 0 0( ) ( ) ( ), ,Φ  (1.8)

which is a linear (affine) equation and can be readily integrated, and then, 
using Φ−1, the solution of Equation 1.7 is recovered (note that Φ is singular 
at x = 0, though). The geometric meaning of this process is simple and is 
shown in Figure 1.2: the nonlinear right-hand side (RHS) of Equation 1.7, f, is 
transformed into the linear (affine) RHS of Equation 1.8, g. That is, what was 
nonlinear in the (x, f(x))-plane becomes linear in the (z, g(z))-plane through 
transformation Φ.

Even for this simple scalar example, it is obvious that guessing Φ, which 
exists, is differentiable for all x, or globally, and has a globally differentiable 
inverse Φ−1, is highly nontrivial.

A systematic approach to the above problem was proposed in the 1870s by 
the Norwegian mathematician Sophus Lie [28,29]. One finding of his theory 
is that only certain types of ordinary differential equations can be trans-
formed globally into linear ones. This is not surprising, since otherwise, all 
equations would just be linear ones in “wrong” coordinates.
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–60
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FIGURE 1.2
Linearization of Equation 1.7: (a) RHS f of Equation 1.7 in the (x, f(x))-plane; (b) RHS g of 
Equation 1.8 in the (z, g(x))-plane.
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1.2.3.2 Input–Output Feedback Linearization

Lie’s approach was extended in the 1980s [30,31] to affine nonlinear Single Input 
Single Output control systems (compare with the QLTI model in Table 1.2):

 
x f x g x u x t x

y h x

= + =
=

( ) ( ) ( )

( )

,

,
0 0

 (1.9)

where f: X → ℝn, g: X → ℝn, and h: X → ℝ are sufficiently smooth on the open 
set X ⊂ ℝn. The presence of output y in Equation 1.9 means that the transfor-
mation z = Φ(x) need not linearize the whole of state x ∈ X but only that part 
that will be visible from the output; the unobservable dynamics must be stable, 
though. The presence of control u in Equation 1.9 gives an additional “degree of 
freedom” for linearization, hence the name feedback linearization. In fact, if the 
system (Equation 1.9) has relative degree r < n in a neighborhood of x0 (locally 
at x0), then it is possible to find z = Φ(x) such that Equation 1.9 becomes [24]

 

�
�

�
�
�
�

z z

z z

z z

z b z a z u

z q z

r r

r

r r

1 2

2 3

1

1 1

=
=

=
= +
=

−

+ +

( ) ( )

( ))

( )

,

�
�z q z

y z
n n=

= 1

 (1.10)

where a(z) ≠ 0 for all z in the corresponding neighborhood of z0, and z0 = 
Φ(x0). If the neighborhood of x0 coincides with the state space X of Equation 
1.9, then the transformation is global (which is usually difficult to obtain). 
Note that Equation 1.10 is still open loop, that is, u is still present, so the extra 
“degree of freedom” has not been used yet. A convenient choice, made pos-
sible by the affine form of Equation 1.9, is

 u
a z

b z v= − +1
( )

( ( ) )  (1.11)

with the fictitious input v still to be determined. Given that the resulting rth-
order system is linear in state z and input v, it is straightforward to design a 
stabilizing control law v = K1z1 +…+ Krzr, where Ki, i = 1,…,r, are constants. If the 
desired output yd is nonzero, then the tracking error is e ≜ yd – y = yd – z1 and its 
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derivatives e y zi
d
i

i
( ) ( )= − +1, i = 1,…,r − 1. Hence, the tracking control law will be 

v = K1e +…+ Kre(r−1). Putting z = Φ(x) and v in Equation 1.11 gives the nonlinear 
feedback law in terms of x, so that transformation Φ can be viewed as an aux-
iliary tool for designing nonlinear feedback control law (Equation 1.11).

Note that the dynamics of order n − r, defined by qr+1,…,qn in Equation 1.10, 
are rendered unobservable, which is theoretically acceptable if the dynamics 
are stable.

Geometrically, the above algorithm means that the nonlinear surface 
defined by f and g on the (n + 1)-dimensional (x1,…,xn, u) space is transformed 
into another nonlinear surface on the (n + 1)-dimensional (z1,…,zn, v) space, 
whose restriction to the (r + 1)-dimensional (z1,…, zr, 0,…, 0, v) space is a 
hyperplane. Since the nonlinearity defined by qr+1,…,qn in Equation 1.10 can-
not be seen from the output, the hyperplane makes the closed-loop system 
linear of rth order, when considered from the input–output viewpoint.

1.2.3.3 Input–Output Pseudolinearization

Feedback linearization has several limitations [32], which include applicabil-
ity to affine systems (Equation 1.9) only and difficulty of extending the meth-
odology to Multiple Input Multiple Output systems. Also, finding a global 
transformation Φ usually is a daunting problem for real-world applications. 
Some of these limitations can be overcome if the requirement is relaxed to 
linearize the system only along its set of equilibria, not the whole state space. 
Such an approach [21–23] is called pseudolinearization and may be viewed as 
applying the principles of feedback linearization to gain scheduling.

Consider the nonlinear system with m inputs and q outputs:

 
x f x u

y h x

= ,
=

( )

( ),  (1.12)

where f: X × U → ℝn and h: X → ℝq are smooth and X ⊂ ℝn and U ⊂ ℝm are 
open sets. The set of equilibria of Equation 1.12 is assumed to depend on the 
parameter p ∈ P ⊂ ℝρ, P open, and is denoted as

 𝔈(p) = {(x0(p), u0(p))|f(x0(p), u0(p)) = 0}, (1.13)

where x0: P → X and u0: P → U are at least differentiable. It is important to 
note that parameter p, unlike θ in Table 1.2, need not be external, that is, p 
may depend on x and/or u. In particular, p may depend on both state x and 
external parameter θ, a fact that is used in Section 1.3.

Let x p x x p( ) ( ) − 0 , u p u u p( ) ( ) − 0 , and y p h x h x p( ) ( ) ( ( )) − 0  be the incre-
mental variables arising from Taylor linearization of the open-loop system 
(Equation 1.12) at an equilibrium from 𝔈(p). Setting A p f x x p u p( ) ( ( ) ( )) ∂ ∂ | ,/

0 0  , 
B p f u x p u p( ) ( ( ) ( )) ∂ ∂ | ,/

0 0
, and C p h x x p u p( ) ( ( ) ( )) ∂ ∂ | ,/

0 0
, the corresponding linear-

ized system is
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x p A p x p B p u p

y p C p x p

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

= +
=  (1.14)

with the additional assumption that Equation 1.14 is completely controllable 
and observable and has relative degree r for all points from 𝔈(p) and all p ∈ P.

The problem of input–output pseudolinearization is to find for system 
(Equation 1.12) the restriction of a transformation z = Φ(x) to 𝔈(p) and the 
restriction of a feedback law u = k(x,v)* to 𝔈(p), so that Taylor linearization of 
the resulting closed-loop system is independent of the choice of equilibrium 
from 𝔈(p) and parameter p from P. It should be emphasized that, unlike for 
feedback linearization in Section 1.2.3.2, we are not looking for a global trans-
formation z = Φ(x) and a global feedback law u = k(x, v). We seek only their 
restrictions to the parameterized family of curves {𝔈(p)}p ∈ P, so that we need 
not find the whole of Φ and the whole of k. This simplifies the design consid-
erably, but the resulting control law will be applicable only in the immediate 
neighborhood of {𝔈(p)}p ∈ P, not the whole X × U. However, Taylor lineariza-
tion of the resulting closed-loop system will be independent of p and thus of 
all equilibria of {𝔈(p)}. In this way, if the operating points are in the vicinity of 
the equilibria, then one and only one linear model will describe closed-loop 
dynamics, regardless of the rate of change of the operating points. Note that 
the design cannot guarantee anything beyond the immediate neighborhood 
of {𝔈(p)}p ∈ P.

Thus, for a SISO system (Equation 1.14), the restriction of transformation 
z = Φ(x) and feedback law u = k (x,v) to {𝔈(p)}p ∈ P should give the following 
Taylor linearization in the (z,v) space:†

 

�
�

�
�
�

�

z z

z z

z z

z v

z a x p u

r r

r

r r
T

1 2

2 3

1

1 1 0 0

=
=

=
=

=

−

+ + ( ( ) (, pp z

z a x p u p z

y z
n n

T

))

( ( ) ( ))

,

�
� =

=
0 0

1

,

 (1.15)

where only the n-dimensional vectors ar+1,…,an still depend on equilibria 
from 𝔈(p) and parameters from P. Since the dynamics defined by ar+1,…,an are 
unobservable (and therefore must be at least stable), the behavior of Equation 

* With v to be determined as a function of z and reference signal.
† Here, z z x p − Φ( ( ))0  and v v v p − 0( ) with u0(p) = k(x0(p), v0(p)).



12 Advances in Missile Guidance, Control, and Estimation

1.15 from the input–output, v y− , viewpoint is linear of order r and remains 
the same, no matter what the current values of x0, u0, and p are. This should 
be contrasted with Taylor linearization (Equation 1.14) of the open-loop sys-
tem (Equation 1.12).

Comparison of Equation 1.15 with Equations 1.10 and 1.11 shows that input–
output pseudolinearization may be interpreted as the restriction of feedback 
linearization to the parameterized family of sets of equilibria {𝔈(p)}p ∈ P. The 
focus is on a small portion of the p-parameterized (x,u)-space, that is, on lin-
earization along the parameterized family of curves {𝔈(p)}p ∈ P. Thus, it suffices 
to investigate the tangents ∂Φ/∂x ≜ T of Φ and ∂k/∂x ≜ F and ∂k/∂x ≜ G of k 
along {𝔈(p)}p ∈ P, rather than global properties of Φ and k. In particular [22,23], 
it is required that T(x0(p)) is invertible for all p ∈ P, feedback law u = k(x,v) is 
smooth and satisfies u0(p) = k(x0(p), v0(p)), and G (x0(p), v0(p)) is invertible for 
all p ∈ P. The two conditions on k were implicitly used in the third footnote, 
but explicit knowledge of k—or Φ—is not necessary even there, as v0(p)—and 
z0(p)—is never explicitly needed. Essentially, this is because the starting point 
of the design is Equation 1.14, which is then transformed into Equation 1.15).

The formula for the tangent of transformation Φ along {𝔈(p)}p ∈ P is [22,23]

 z T p x= ( )  (1.16)

with T given by

 T p

C p

C p A p

C p A p

T p

T p

r

r

n

( )

( )

( ) ( )

( ) ( )

( )

( )

=









−

+





1

1
























,  (1.17)

where rows Ti, i = r + 1,…,n can be obtained from

 

T p

T p
B p

r

n

+
















=
1

0
( )

( )
( )



,  (1.18)

which is a system of n − r linear equations in (n − r)n unknowns.
For the tangent of feedback law k along {𝔈(p)}p ∈ P, the formula is [22,23]

 u F p x G p v= +( ) ( ) ,  (1.19)
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where

 F(p) = −(C(p)Ar−1(p)B(p))−1C(p)Ar(p), (1.20)

 G(p) = (C(p)Ar−1(p)B(p))−1. (1.21)

Equations 1.16 through 1.21 transform a SISO (Equation 1.14) into Equation 
1.15. Design of a stabilizing control law (Equation 1.19) is complete when 
v K z K zr r= + +1 1  , where Ki, i = 1,…,r, are constants. If the desired output 

dy  is nonzero, then the tracking error is e y y y zd d − = − 1  and its deriva-
tives ( ) ( )i

d

i
ie y z= − +1 , i = 1,…,r − 1. Hence, the tracking control law will be 

v K e K er
r= + + −

1
1



( ). Putting z T p x= ( )  and v  in Equation 1.19 gives the 
feedback law in terms of x, so that transformation T can be viewed as an 
auxiliary tool for designing feedback control law (Equation 1.19). Thus, 
derived law (Equation 1.19) should be substituted in Equation 1.14.

Geometrically, {𝔈(p)}p ∈ P are general curves in the (n + m)-dimensional (x, u) 
space. They are projections of the corresponding (n + m + n)-dimensional 
curves from the (x, u, f(x, u)) space, where f is the RHS of Equation 1.12. Taylor 
linearizations in the (x, u, f(x, u)) space at different points of curves {𝔈(p)}p ∈ P 
involve straight lines of different tangents. Mapping Φ and feedback law k 
transform the general curves of the (x, u, f(x, u)) space into a single straight line 
,* whose projection on the (z, v) space is also a straight line, l. This line l is the 
image of curves {𝔈(p)}p ∈ P in the (z, v) space under Φ and k. Taylor linearization 
along l gives one tangent for all points of {𝔈(p)}p ∈ P, namely, the tangent of .

A simple illustration is given by the following example:

 





x x e x x u

x x x

y x

x
1 1

4
1 2

2 1 2

2

1= + +
= +
=

− / cos

.
 (1.22)

The set of equilibria E = , , | + + = + =− /{  }( ) cosx x u x e x x u x xx
1 2 1

4
1 2 1 2

1 0 0and  
is not parameterized for simplicity. The set is a general curve in the (x1, x2, u) 
space, as illustrated in Figure 1.3. Because of the simplicity of example 1.22, 
global state-space transformation Φ and global feedback control law k can 
be found, although it is not required by the design algorithm (Equations 1.16 
through 1.21). Indeed, Φ defined by z1 = x2 and z2 = x1 + x2 and k given by 
u x x e x vx= − − − +− /

1 1
4

2
1 2  linearize 𝔈, as shown in Figure 1.4. In other words, 

the straight line l in Figure 1.4 is the image of 𝔈 under Φ and k.

* A curve in the (x, u, f(x, u)) space is fully determined by values of x and u alone. Thus, trans-
formation of (x, u) into (z, v) by x = Φ−1 (z), and thus u = k (Φ−1 (z), v), fully determines the new 
shape of the curve.



14 Advances in Missile Guidance, Control, and Estimation

Example 1.22 is an illustration of feedback linearization restricted to the set 
of equilibria 𝔈, which effectively is pseudolinearization.

1.3 Augmented Lateral Acceleration Autopilot Design

As explained in Section 1.2.1, the missile model given by Equation 1.2 and 
Table 1.1 can be represented as

3
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FIGURE 1.3
Set of equilibria 𝔈 for Equation 1.22: (a) resulting curve in the (x1, x2, u) space; (b) curve and its 
projections on the coordinate planes.
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FIGURE 1.4
Linearized set of equilibria for Equation 1.22: (a) resulting straight line in the (z1, z2, v) space; 
(b) straight line and its projections on the coordinate planes.
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v y v U v Ur y v U

r n v U v n v U
v

v r
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= +
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p
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, , and , , ,
λ

ζ λ( )  (1.24)

Equation 1.23 leads to the following description:

 
x A p x B p u

y C p x

= +
=

( ) ( )

( ) ,  (1.25)

where

 A p
y p p

n p n p
B p

y p

n p
v

v r

( )
( )

( ) ( )
( )

( )

( )
=

−











=2 ,
ζ

ζ













=   ., C p y pv( ) ( ) 0 . (1.26)

Thus, Equation 1.23 can be seen as the QLPV model,* since p in Equation 
1.24 comprises both a state (sideslip velocity v) and external parameters (lon-
gitudinal velocity U and roll angle λ), so that the matrices (Equation 1.26) 
depend both on x and θ. On the other hand, in a previous paper [33], pseudo-
linearization has been applied to the missile, and a controller was derived 
(Figure 1.5). As an example, Figure 1.6 shows the uniform transient behavior 
of the closed-loop system across the flight envelope of the Horton missile.

* QLPV dynamics is x A x x b x u= +( ) ( ), ,θ θ .
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FIGURE 1.5
Block diagram representation of the missile autopilot design.
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An accelerometer is used to measure lateral acceleration. If the accelerom-
eter is placed at the missile center of gravity, the resulting system becomes 
the nonminimum phase, as the accelerometer measures the effect of both the 
body aerodynamic force and the almost instantaneous fin force. This also 
has the effect of making the relative degree zero. To overcome both of these 
effects, an augmented acceleration signal is used. As av = yvv + yζζ, augmenta-
tion can be obtained by mixing the accelerometer signal with the fin angle 
to eliminate the dependence of av on ζ to give av ≈ yvv. This approximation 
will not result in significant error in the control design because the fin force 
contribution is small in a well-designed airframe. The same effect can be 
obtained by moving the accelerometer forward from the center of gravity to 
the center of rotation. This also removes the dependence on ζ and makes the 
system the minimum phase.

Our design of the augmented lateral acceleration autopilot takes the 
second-order (n = 2) model (Equations 1.25 and 1.26) as the starting point. 
Noting that the relative degree r is 2, we then use formulae 1.16 through 1.21. 
Since in our case, r = n, we have no need for Equation 1.18, so that

 T p
C p

C p A p

y p

y p p y p
v

v v

( )
( )

( ) ( )

( )

( ) ( )
=













=
−

 0
2

2









.  (1.27)
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FIGURE 1.6
Constant incidence angle demand illustrates the uniform transient behavior of the Horton 
missile in the phase portrait.
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The control law will be

 u F p x G p w= +( ) ( ) ,  (1.28)

where w  is the fictitious input still to be determined in terms of x  and the 
reference signal. Matrix F is

 

F p C p A p B p C p A p

a p
b p b

( ) ( ( ) ( ) ( )) ( ) ( )

( )
( ) (

= −

= − −

−1 2

1 2
1

pp) 
 (1.29)

and scalar G is

 G p C p A p B p
a p

( ) ( ( ) ( ) ( ))
( )

= =−1 1
,  (1.30)

where
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= −
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,

yy p p
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( ) ( ) ( ) ( ) ( )
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2
2

,

.= −ζ ζ

 (1.31)

Substituting Equations 1.29 and 1.30 to Equation 1.28, the resulting pseudo-
linearizing control is

 ζ = − − +1
1 2a p

b p v b p r w
( )

( ( ) ( ) ),  (1.32)

which still requires defining w to ensure tracking.
Let e a av

d
v −  be the augmented lateral acceleration error, where av

d is the 
augmented lateral acceleration demand and  e av= −  with av

d = 0 so that the 
demand does not need differentiation, that is, piecewise constant. Then 
the final form of the control law is

 ζ
ζ

=
−

− − +1

1

1
2 1

a p
b p y p

y p

b p
y p

a b p r K e

v

v
v

( )
( ) ( )

( )

( )
( )

( ) ++






.K e2


 (1.33)

One can get the augmented lateral acceleration directly from the measured 
output—see the beginning of the section; moreover, using the nonlinear 
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relationship av ≈ yv (p)v, v can be recovered and hence a from  a y p vv= ( )  and 
where v is given by Equation 1.23. The constants K1 and K2, for instance, of 
the form K n1

2= ω  and K2 = 2ξωn, in Equation 1.33 are chosen in such a way 
that the performance can be achieved for the augmented lateral acceleration, 
which satisfies that the error equation is  e e en n+ + =2 02ξω ω .

Simulation results for 100 m/s2 constant demands in lateral acceleration are 
shown in Figure 1.7. The constants K1 and K2 are chosen with ωn = 60 rad/s 
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FIGURE 1.7
Simulation of the Horton missile for 100 m/s2 of augmented lateral acceleration demand.



19Robust Autopilot Design for Quasilinear Parameter-Varying Missile Model

and ξ = 0.7. This should give a three to four times faster response than in 
the open loop and achieve a settling time of 0.1 s. The observed steady-state 
error in lateral acceleration in Figure 1.7 is about 5% of the augmented lateral 
acceleration.

Recall that the augmented lateral acceleration demand was derived 
approximately from the normal lateral acceleration demand. The approxi-
mation neglected the fin force term yζζ. The effect of this term is evident in 
the nonminimum phase characteristic in normal lateral acceleration av, and 
it is clearly visible in Figure 1.7; note also that the initial fin angle ζ < 0. This 
is quickly overcome by the sideslip force as incidence builds up. The steady-
state error represents the fin force contribution that was neglected along the 
design process.

1.4 Robust Autopilot Design

1.4.1 Nominal Autopilot Model

The sideslip velocity autopilot closed-loop characteristic equation can be 
obtained by substituting control law (Equation 1.33) into Equation 1.23. This 
yields
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Assuming that the derivative avd  of the sideslip velocity demand is zero, 
we have  e av= − . Then the closed-loop equations (Equation 1.34) can be 
rewritten as

 
E p x A p x B p v
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with x, y, and p as in Equation 1.24, matrix Ac is
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where

 ac11 = yv(p)a(p) – yv(p)yζ(p)(b1(p) – K1) 

 ac12 = −p2a(p) – yζ(p)b2(p) 

 ac21 = nv(p)a(p) – yv(p)nζ(p)(b1(p) – K1) 
(1.37)

 ac22 = nr(p)a(p) – nζ(p)b2(p) 

and matrices E, Bc, and C given as
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(1.38)

In this section, the stability margins associated with parametric uncer-
tainty in aerodynamics parameters yv, U, nr, nv, and nζ are obtained along 
with the performance of the resulting robust autopilot as desired. In previ-
ous work [33], the robust analysis of the same missile using Kharitonov-type 
robustness metrics was performed. While that has given us a good insight 
of how robust our missile autopilot design is, it was not easily extended to 
redesign the controller to meet the robustness requirements and guarantee 
the performance under parametric uncertainty. That is one of the main con-
tributions of this paper.

1.4.2 Robust Performance Design

The pseudolinearization enables us to attain the desired level of perfor-
mance through the choice of coefficients K1 and K2. In this section, the idea 
is to estimate these coefficients of the pole placement controller according 
to the desired level of performance by using pole placement criteria. The 
performance of the system is better stated in the (z, w) space in which the 
nominal system is a second-order linear time-invariant system. Performance 
is then achievable; recall that the pseudolinearization has been applied for 
this purpose. The following work presents a state feedback design through 
Lyapunov theory for a parametric uncertain system.
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The parametric uncertain system that has been investigated represents a 
system with poor accuracy in its aerodynamic coefficients. Aside from these 
aerodynamic coefficients, the variation in forward velocity, which is explicit 
in differential equation 1.23, will also be considered as an uncertainty. Now, 
the vector of uncertain parameters can be written as p = [yv, U, nv, nr, nζ]T, 
where p2, that is, U, represents the forward velocity.

The closed-loop characteristic equation of the augmented acceleration 
autopilot can be obtained by substituting control law (Equation 1.33) into 
Equation 1.23. This yields
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with the same assumptions as in the previous section about yζζ and av
d 

neglected. The transformation (Equation 1.16) turns the (x, u) space to the 
(z, w) space, and then in this new space, the closed-loop equations (Equation 
1.39) can be written as
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where

 

a p p n p n p y p

n p p b p

a p

n p

v r v1 2

2 1

( ) ( ) ( ) ( )

( ) ( )

( )

(

= − −

+ +ζ ζ )) ( ) ( )

( )

y p b p

a p
v 2

 

 a p n p
n p b p

a p
y pr v2

2( ) ( )
( ) ( )

( )
( )= − +ζ

 

 a p
p n p

a pc ( )
( )

( )
= 2 ζ

 

 ai(p) = a1(p). 



22 Advances in Missile Guidance, Control, and Estimation

The nominal system can be written as follows with the assumption that yζ 
is neglected in a(p):
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The performance of the system is then handled by the equivalent to error 
dynamics equation:

  z K z K z av
d

1 2 1 1 1 0+ + − =( ) ,  

and it is stressed that z1 is the augmented acceleration.
Before the desired level of performance is described, it has to be noticed 

that the missile is limited by both its natural behavior and its actuator’s 
performance. The actuators limit the steering of the missile and, conse-
quently, its performance. These actuators are modeled as second-order sys-
tems; their characteristic is given by their angle range, ±0.3 rad, and their 
frequency response, 250 rad/s. Consequently, it has been chosen to keep 
the response of the pole placement controller within these constraints so 
that the actuators do not operate above their cutoff frequency. This is done 
by limiting the frequency response of the pole placement controller to less 
than 100 rad/s and keeping the damping ratio above the critic, for actuator 
fatigue and power consumption reasons. Additionally, the desired perfor-
mance requires that the system perform within 0.1 s of maximum settling 
time. The resulting D-stability region is shown in Figure 1.8, where the poles 
have to stay in the cone defined with half-angle π/4 and with the pole real 
part in the range between −40 and −100. It is difficult to take into account 
the physical angle range of the fins, so this will be checked through simula-
tions, a posteriori.

Some modified Lyapunov equations are used to state this D-stability region; 
they turn the usual Lyapunov equation into a family of linear matrix inequali-
ties for which the Linear Matrix Inequality Toolbox [34] for MATLAB® has 
been used. Assuming a region D = ∈ | + + <{ }z L Mz M zT

 0 , the matrix Aʹ 
would have all its eigenvalues in this region D if there exists a symmetric 
positive- definite matrix X satisfying the following LMI:

 (λi,jX + μi,jAʹX + μj,iXAʹ T )i,j < 0, (1.42)

where λi,j and μi,j represent, respectively, the matrix coefficients of L and M. 
For  our system, it has been applied in the case of state feedback control 
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where the above matrix Aʹ can be represented by the closed-loop matrix A + 
BK. This leads to the LMI

 (λi,jX + μi,jAX + μj,iXAT + μi,jBY + μj,iYTBT )i,j < 0, (1.43)

with Y = KX and X symmetric positive definite.
The nominal plant considered (Equation 1.41) is an LTI; however, when 

it comes to considering parametric uncertainties, the uncertain system is 
not anymore so, since it depends on the operating point (Equation 1.40). The 
uncertainties are, moreover, involved in a multiaffine form. The uncertain 
model has been brought to affine parametric form by introducing some over-
bounding, and consequently, the uncertain parameter is now extended from 
p = [yv, U, yζ, nv, nr, nζ]T to their two-by-two products as well. After a prelimi-
nary study,* it appears that some of the aerodynamic coefficients do not have 
much influence on the performance, and the design can be simplified using 
a limited number of parameters without significant differences. The most 
influential parameters have been so identified as p = [yv, U, nζ, yv, × U, yv, × 
nζ, U × nζ]T, where

 y y
y

yv v
v

v

= +








1

∆

 

* The study has been done by establishing the influence of each aerodynamic coefficient using 
a similar methodology as now presented for the design.

Re(z)–100 –70 –40

Im(z)

π
4

FIGURE 1.8
Robust performance of the pole placement controller for the Horton missile is presented as a 
D-stability region. All the poles of the system belong to the “trapezoid” area.
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The uncertain system from Equation 1.40 has an input matrix. This matrix 
increases consequently the complexity of the computation, and it is chosen 
not to take it into account in the following design. Then the following model 
(Equation 1.44) is used instead where the controller is set for the nominal 
model:

 




z

z a p a p
z a

z
v
d

1

2 1 2

1

2

0 1











=












−







( ) ( ) 




































+
−











−0
1 1 2

1

2

K K
z a

z
v
d 





.  (1.44)
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It was chosen to tackle the operating point dependence problem by con-
sidering a representative class of uncertain systems, and for each of them, 
the design of a controller for a parametric uncertain system is processed, so 
that the nonlinearities of the uncertain system are captured. The coefficients 
K1 and K2 are evaluated at each operating point, (σ, M), by solving LMI equa-
tions (Equation 1.43) such that the robust performance of the closed-loop 
system is achieved at each of these operating points. The set of controllers 
constitutes then a gain-scheduling controller. The carpet plots of these coef-
ficients are shown in Figure 1.9.

It is a complex problem to design these gains through the whole flight enve-
lope; however, approximating our model of uncertainties with a multiaffine 
model that captures the nonlinearities enables us to design a pole placement 
controller at each knot (see carpet plots in Figure 1.9). It can be shown that 
this linear interpolation between these knots leads to a self-scheduled con-
troller (K1(σ, M) and K2(σ, M)), and it would bring more confidence in the 
robust performance on the full flight envelope. This is checked in the next 
section through an analysis of the closed-loop system. This process should 
improve the robust performance of the overall system since the controller is 
self-scheduled in order to guarantee the robust performance along the flight 
envelope. It should be emphasized that the methodology developed so far 
has been of interest when it comes to giving a systematic tool to estimate 
gains in the pole placement controller, which verifies some performance 
robustness properties of the transient response. Since the LMI solver gives a 
solution among solutions, it has been chosen to build a smoother interpola-
tion of these raw controller gains. This leads us to consider the controller 
gains in Figure 1.10, where robust analysis has been performed in the same 
lines as for the previous raw controller analysis, which is now presented in 
the next section.

0

0.1

0.2

0.3

2
2.5

3
3.5

110
120
130
140

Incidence
(rad)

Incidence
(rad)Mach number

0

0.1

0.2

0.3

2
2.5

3
3.5

4000

5000

6000

Gain K2Gain K1

Mach number

FIGURE 1.9
Gain K1 (on the left) and K2 (on the right) of the pole placement controller for the Horton model 
through the whole flight envelope of the missile (λ = 0°).
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1.4.3 Robust Performance Analysis

The robust pole placement controller validity is now investigated. Because 
the self-gain–scheduled controller is built from linear interpolation between 
chosen gains (K1 and K2) and since it has been checked that the representa-
tive class of uncertain systems captures the nonlinearities, the self-scheduled 
controller designed previously is expected to give the whole system some 
robust performance. However, some of the simplifications in the design 
(compare Equation 1.40 with Equations 1.41 and 1.44) are then reconsidered 
in this section. For instance, the uncertain system described by Equation 1.40 
becomes, for the closed-loop system,
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 ai(p) = a1(p). 

For simplicity in this study, the term ai(p) is not taken into account in this 
analysis. This uncertain closed-loop system is then included in a polytope, 
and the LMI (Equation 1.42) is then solved, the feasibility of which is checked 
for some 5% uncertainty on each of the parameters of vector p along the 
whole flight envelope. It is important to note that some of the simplifications 
along the design have been removed, and the analysis chose a significant 
difference in the robust properties of the system. However, in this study, the 
parametric uncertainty boundaries are limited by the most sensible param-
eter without finding the maximum extent of all parameters; also. further 
analysis would extend each parameter boundary, for example, via Monte 
Carlo simulation.

Recall that the augmented acceleration demand is derived from the nor-
mal lateral acceleration demand. The effect of the term yζζ is evident in the 
nonminimum phase characteristic in normal lateral acceleration av, and 
it is clearly visible in Figure 1.11; note also that the initial fin angle ζ > 0. 
Simulations of the system with a lateral acceleration require 100 m/s2. The 
plain curves represent the nominal system, and the dashed curves represent 
the system under uncertainties. The transient response behaves as required, 
respecting the frequency bandwidth, the critic damping, and the settling 
time. Some prefilter has been added to make sure that the actuators do not 
saturate. However, for some of the 20% uncertainties (on each parameter), the 
performance is not achieved, that is, the damping ratio is not achieved, and 
the actuators are saturated.

1.4.4 Discussions

The performance of the class of uncertain systems is obtained; however, the 
nonlinearities of the uncertain system make it difficult to capture the whole 
system with a representative class of parametric uncertain systems. Here, 
in the context of a polytopic approach (analysis), these nonlinearities can 
make the polytope very complex and consequently computationally diffi-
cult to handle, but in principle, the approximation of the nonlinearities can 
be as accurate as required. A trade-off between complexity and accuracy is 
needed. In the robust performance analysis, the chosen class of uncertain 
systems tries to capture the nonlinearities according to the carpet plot in 
Figures 1.9 and 1.10, and overbounding has been used in order to get affine 
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parametric uncertainties. For big polytopes, current algorithms may fail to 
prove feasibility of the LMIs and may not bring any answer to our problem 
via this methodology. Because the Horton model and its uncertain paramet-
ric model can be approximated by a multilinear system with respect to inci-
dence and Mach number, the feasibility of the LMI is established to some 
extent.
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Simulation of the system for augmented lateral acceleration demand of 100 m/s2 with the nomi-
nal response (plain curve), 10% and 20% uncertainties on the aerodynamic coefficients.
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The conservativeness of this design/analysis could be reduced by consid-
ering the rate of change among the class of uncertain systems (e.g., the rate of 
change in Mach number). Moreover, in order to keep the presentation of this 
study simple, some parameters have been omitted both in the design and in 
the analysis.

1.5 Conclusions

It was shown that a reasonably realistic missile model could be described 
as a QLPV system. The pseudolinearizing autopilot consists of one con-
troller only, and “scheduling” is done automatically by feedback, giving 
total independence of the operating point. However, the pseudolinearizing 
design is (like gain scheduling) valid only in the vicinity of the equilib-
ria. It states performance of the closed-loop system (Figure 1.6), but pre-
vious studies have shown not-very-good robust performance. An attempt 
to achieve the desired transient response for a class of parametric uncer-
tain systems (Figure 1.11) was carried on by estimating the pole placement 
controller coefficients (Figure 1.10). This is a more systematic tool to tune 
some coefficients for which the closed-loop system is more likely to be 
robust. Finally, the robust performance analysis was done to validate this 
approach.
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2.1 Introduction

Polynomial eigenstructure assignment (PEA) [23] is a polynomial approach 
to eigenstructure assignment (EA) [17,19,21]. For a linear time-invariant (LTI) 
system, the PEA, similar to the EA, enables the placing of eigenvalues and 
eigenvectors and thus the shaping of the system response as desired with 
respect to inputs and outputs. Unlike the classical EA, the PEA enables the 
development of a solution for the eigenspace based on polynomial matri-
ces. Similar to the EA, this design approach is valid only for LTI systems, 
which results in designers usually resorting to some interpolation process. 
However, the design approach developed here makes use of the explicit lin-
ear parameter-varying (LPV) parameterization to design directly a suitable 
LPV controller. Therefore, the approach stays simple, attractive, and compa-
rable with other approaches while constructing an LPV controller [5,6].

Since the initial Kharitonov results for interval polynomials were pub-
lished, further research work in robust analysis has been motivated. The 
Kharitonov approach assesses an interval polynomial family’s stability 
by checking the stability of only the four Kharitonov polynomials, thus 
reducing an infinite problem to a finite one. This result was extended later 
to more general polynomial families like affine/linear [1] or even to some 
extent to affine/linear polynomial rational families [2,3]. Although various 
criteria were formulated in this framework, including H∞ and D-stability, 
most results rely on the zero-exclusion criteria, which in practice apply 
to the value set, while frequencies (or generalized frequencies) are swept 
across. For more complex families, such as affine/linear polynomial family 
with polytopic parameter space, one usually needs to resort to the edges 
theorem, which takes into account the parameter space edges instead of 
simply  its vertices and thus does not lead to a finite polynomial set. For 
multiaffine/multilinear polynomial families, the approach often pre-
ferred is the mapping theorem, which captures the value set of the family 
of polynomials in its overbounding convex hull. This convex hull can be 
determined from the parameter box vertices image, and thus, D-stability 
robustness can be investigated for multilinear parametric uncertain sys-
tems using these tools where the value set needs to be evaluated for a 
sweep across frequencies.

In the framework of the Nyquist stability theorem, however, some exten-
sions have been initiated recently and lead to a finite version, that is, the finite 
Nyquist theorem (FNT) [7], which requires only a finite number of (general-
ized) frequency checks to prove the stability (D-stability) of a polynomial. 
The polynomial family stability can be further stated using an extension 
of this latter theorem, that is, the finite inclusion theorem (FIT) [7]. Finally, 
combined with the mapping theorem, the D-stability robustness for multiaf-
fine parametric uncertain systems can be assessed within a finite number of 
polynomial/frequency checks.
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This paper focuses on the design of a missile autopilot and the robust 
analysis of the resulting flight control system. The tail-controlled missile 
in the cruciform fin configuration is modeled as a second-order quasilinear 
parameter-varying (QLPV) system. This nonlinear model is obtained from 
the Taylor linearized model of the horizontal motion by including explicit 
dependence of the aerodynamic derivatives on a state (sideslip velocity) and 
external parameters (longitudinal velocity and roll angle).

The autopilot design is based on the PEA. The design makes the closed-
loop system independent of the choice of equilibria. Thus, if the operating 
points are in the vicinity of the equilibria, then one and only one linear 
model will describe closed-loop dynamics, regardless of the rate of change of 
the operating points. Simulations for constant lateral acceleration demands 
show good tracking with fast response time. The contribution is to interpret 
the PEA as a new form of dynamic inversion [8,10] and to perform a success-
ful PEA design for a QLPV system.

Parametric stability margins for uncertainty in longitudinal velocity and 
semi-nondimensional aerodynamic derivatives [2,3,26] are analyzed using 
the FIT [7]. The analysis shows that the design is fairly robust with respect to 
parametric uncertainty. The contribution is to perform an effective robust-
ness analysis, despite the involved parametric dependencies.

In the following, the PEA is first described as a design approach for mul-
tiple input multiple output (MIMO) LTI systems in the framework of a struc-
tured and chosen controller. Robust analysis of single input single output 
(SISO) LTI systems is presented in the context of the FIT. Finally, the aero-
space application of lateral autopilot missile control is taken as an example to 
illustrate the discussed approaches and is applied in the framework of a mis-
sile LPV model. Simulation results show good D-stability while maintaining 
good robustness with respect to parametric uncertainties.

2.2 Polynomial eigenstructure Assignment

Assuming the LTI system in the following:

 x Ax Bu= +  (2.1a)

 y = Cx + Du (2.1b)

the eigenvalue/eigenvector null space equation can be written as a polyno-
mial null space equation as shown by

 ( )
( )
( )

A sI B
Z s

P s
− 













= 0  (2.2)
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where s represents both the eigenvalue and the Laplace variable. Z(s) and 
P(s) represent the eigenvector space and its associated control vector space, 
respectively. In the sequel, the eigenvectors and/or eigenspace are referred to 
by their corresponding polynomial matrices.

The open-loop transfer function Gy(s) can be written as

 Gy(s) = C(sI – A)−1 B + D (2.3)

and hence becomes a function of the eigenspace and its associated space as 
described in Equation 2.2. Thus,

 Gy(s) = CZ(s)P(s)−1 + D 

 = (CZ(s) + DP(s))P(s)−1 (2.4)

 = Z0(s)P(s)−1 

where

 Zo(s) = (CZ(s) + DP(s)). (2.5)

Consider the autonomous system under feedback with matrix gain con-
troller K(s):

 P(s) = K(s)Z0(s) (2.6)

where the system output is represented by Z0(s). The closed-loop system 
becomes

 

G s G s K s Z s

Z s P s P s

Z s

y
cl

y( ) ( ) ( ) ( )

( ) ( ) ( )

( )

=

=
=

−

0

0
1

0

 (2.7)

where the open-loop system dynamics is inverted, leaving zero dynamics 
unaffected.

Using the PEA, specifying a particular controller structure enables the 
designer to change the dynamics of the open-loop system without having to 
cancel out the zero dynamics. The next section introduces a particular con-
troller structure presenting sufficient flexibility for the purpose of aerospace 
application under consideration in this paper.
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2.2.1 Controller Structure

The controller structure [23] choice is driven by consideration of improving 
stability, performance, tracking, sensitivity, and robustness of the system. 
The controller structure shown in Figure 2.1 gives sufficient flexibility to pro-
duce such a design.

The outputs of the system are partitioned into controlled outputs yc and 
inner loop outputs yi. For the missile, controlled outputs are incidence, sideslip 
velocity, and acceleration, while the inner loop outputs are body rates from rate 
gyros. Both are required for good performance and robustness. The control-
ler Ka(s) shapes the tracking response of the closed-loop system to the desired 
demands, the controller Ku(s) shapes the input to the plant, Ki(s) feeds back the 
extra measurements available, yi, and Kc(s) feedbacks the controlled output yc, 
shaping consequently its transient response. Altogether, gains Ku(s), Ka(s), Kc(s), 
and Ki(s) compose a dynamic controller. For the case where the order of Ku(s) 
meets or exceeds the order of the other polynomial matrices Ka(s), Kc(s), and 
Ki(s), the resulting dynamic controller is proper and thus can be realized.

From the figure, the following system interconnection can be defined, 
where, for clarity, dependence in s is dropped:

 u K K e K y K yu a c c i i= − −− 





1  (2.8a)

 yc = Gcu (2.8b)

 yi = Giu (2.8c)

 e = r1 − yc (2.8d)

 eu = r2 − u (2.8e)

where Gc(s) and Gi(s) represent open-loop transfer functions for the con-
trolled and the inner loop outputs, respectively.

+ +
–

–

– –
–
+r1

r2
yc

Ki(s)

Gx(s)Ku(s)–1Ka(s)

Kc(s)

yi

Figure 2.1
Controller structure chosen for aerospace applications introducing dynamic gains Ku(s), Ka(s), 
Kc(s), and Ki(s) with yc, the controlled outputs, and yi, the additional, measured outputs.
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The transfer functions for the closed-loop system inputs and outputs are 
given by
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where ∆ = + + +− 









I K K K G K Gu a c c i i

1 ( )  is the transfer function of the open-
loop system.

From Equation 2.9, four transfer functions can be defined, as follows:

 T s K Kur u a1

1 1( ) = − −∆  (2.10a)

 T s K K K G K Gur u c a c i i2

1 1( ) ( )= − + +− − 



∆  (2.10b)

 T s G K Kyr c u a1

1 1( ) = − −∆  (2.10c)

 T s G I K K K G K Gyr c u c a c i i2

1 1( ) ( )= − + +− − 









∆  (2.10d)

where T syr1
( ) is the reference input response of the output, T syr2

( ) is its 
corresponding disturbance response of the outputs, T sur1

( ) is the actuator 
response to the reference input, and T sur2

( ) is the actuator response to the 
disturbance input.

As the outputs are partitioned into controlled and other outputs, the trans-
fer functions T syr1

( ) and T syr2
( ) can be split into transfer functions relating to 

the controlled outputs and the inner loop outputs. Each of them can be writ-
ten in the form of Equation 2.4 and thus lead to two eigenvectors composing 
Z0(s), namely, Z sc

0 ( ) and Z si
0( ), or

 Z s
Z s

Z s

c

i0
0

0
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( )
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 (2.11)

These relate to their respective open-loop transfer functions, Gc(s) and Gi(s). 
In fact, for a controllable and observable system, their coprime factorizations 
are given by

 G s Z s P sc
c( ) ( ) ( )= −
0

1  (2.12a)
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 G s Z s P si
i( ) ( ) ( ) .= −
0

1  (2.12b)

Using Equations 2.12a and 2.12b, each transfer function developed in 
Equations 2.10a through 2.10d can be expanded using the eigenvector 
polynomial forms, Z sc

0 ( )  and Z si
0( ), and their common polynomial associ-

ate polynomial matrix P(s). The reference input response transfer function, 
T syr1

( ), is then given by
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The remaining transfer functions can also be defined in a similar manner. 
For example, the actuator response transfer function, T sur1

( ), is given by
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The actuator disturbance response transfer function, Tur1
, becomes
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and finally the disturbance response transfer function, Tyr2
, becomes
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2.2.2 gain Matrix Structure

The controller structure introduced earlier is often used for aerospace appli-
cations and provides enough flexibility to design a closed-loop feedback 
system. The gains Ka(s), Ku(s), Kc(s), and Ki(s) are complex MIMO transfer 
functions that define the controller structure and need to be determined. 
For the PEA, static and dynamic controllers are considered, unlike other 
EA approaches. Trade-offs between closed-loop properties can thus be 
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performed, and this is made easier by having the closed-loop eigenspace as 
a design parameter. While the controller structure and order can be adapted 
to satisfy additional and multiple criteria including stability, performance, 
decoupling, and robustness, in practice, the designer faces the difficult task 
of narrowing down the space of suitable controllers. In previous work [22,23], 
an alternative controller structure is introduced, where each gain function is 
a coprime factorization [11], which simplifies Equations 2.10a through 2.10d. 
Singular value decomposition (SVD) of each matrix of the coprime factor-
ization and additional restrictions on the rotation matrices, including static 
rotation matrices and some identical rotations, led each gain matrix to take 
the form K(s) = LΣL(s)ΣR(s)R where Σi(s) [24], where each component is a ratio-
nal polynomial diagonal matrix. After an initial placement of the controller 
poles and zeros, the tuning of gains and rotation matrices is investigated in 
a similar fashion to root locus for MIMO systems. Finally, additional met-
rics guide the choices and improve the performance, robustness, sensitivity, 
decoupling, and actuation dynamics.

In the work presented here, a systematic design tool is to be developed 
in the framework of LPV systems. The controller structure is chosen such 
that the controller gains are simply chosen as polynomial matrices, which 
reduces the complexity of the search space for solutions and is better suited 
to the available tools for polynomial matrices. For the missile autopilot 
design, Ka(s) is taken as a pure integrator, I

s , to ensure zero steady-state error 

for a steady demand. This in itself is usual in autopilot design, as the perfor-
mance requirements, together with possible nonminimum phase zero trans-
fer functions for acceleration control, can lead to slow or unstable designs.

2.2.3 Matching Conditions

When the system satisfies the Kimura condition [16], n ≤ r + m − 1, where r 
is the number of inputs, m is the number of outputs, and n is the number of 
states, pole placement for the whole closed-loop system can be performed. 
For the missile dynamics, this condition is met. Hence, full EA is possible. 
For the PEA, this condition can be described by defining a desired closed-
loop system and matching Equation 2.13 to it. Such a formulation can be 
written as a coprime factorization:

 T s N s D sy
d

d d( ) ( ) ( )= −1  (2.17)

where Dd(s) is a polynomial matrix with the desired closed-loop eigenstruc-
ture, and Nd(s) is a polynomial matrix containing the open-loop zeros. By 
defining the desired closed-loop eigenstructure in this form, the effect of the 
system zeros can be managed in that they appear in the closed-loop transfer 
function. This implies that they are not cancelled out by the controller struc-
ture, and the matching conditions (Equation 2.18) must hold. Hence, in the 
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context of full feedback and with the controller structure of Figure 2.1, the 
feedback loop does not attempt to cancel open-loop zeros but retains them 
by meeting Equation 2.18a by defining Nd(s). As the controller has a free inte-
grator, it has a steady-state closed-loop gain of 1. Hence, the determinants of 
Nd(s) and Dds must be identical; this is reflected in condition 2.18b. Finally, as 
the system has the same number of inputs as controlled outputs, matching 
Ty(s) to T sy

d( )  leads to Equation 2.18c:

 | | = | |N Zd
c
0  (2.18a)

 Z Dc
d0 0 0( ) ( )=  (2.18b)

 D s N s sK s P s sK s Z s sK s Z sd d u c i
i( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + +0 0 ++ 

+Z s Z sc c
0 0( ) ( )  (2.18c)

where the superscript + designates the polynomial adjoint matrix. The con-
troller gains thus can be computed from Equation 2.18c by computing the left 
null space, which takes the form
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(2.19)

This equation is used to select the controller that matches the desired 
closed-loop system. Note that if only partial feedback is available, then the 
closed-loop transfer function is restricted, and not all closed-loop forms are 
attainable. This issue is dealt with in the paper when actuator dynamics are 
introduced.

The left polynomial null space is computed by simply reorganizing the 
polynomial matrices and applying a classic null space algorithm. This for-
mulation enables the designer to specify the desired order for the control-
ler by examining the effect of increasing the controller order on the ability 
to match the desired closed-loop structure. In fact, each polynomial matrix 
written in matrix polynomial form:

 K(s) = K0 + K1s + K2s2 + ⋯ + Knsn (2.20)

can be written in matrix coefficient form K:

 K K K K Kn= 











 2 1 0 .  (2.21)
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Thus, Equation 2.19 can be rewritten as

 K s K s K s I

PZ s

ZZ s

ZZ s

ZZDN s

u c i

c

ic
( ) ( ) ( )

( )

( )

( )
( )



























= 0.  (2.22)

Hence, solving for this null space with a first-order Ku and with constant 
matrices Kc and Ki gives rise to a fourth-order closed-loop system and hence
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where, for example, (Ku)i refers to the si coefficient matrix. For this system, the 
left null space of the right-hand matrix in Equation 2.23 is calculated using a 
standard SVD algorithm and takes the form

 X X X X Xu u c i I1 0 0 0 0   (2.24)

where X u c i I{ }1 0 0 0 0, , , ,  are constant matrices of appropriate column size, parti-
tioned to match controller matrices’ column sizes. The number of rows of the 
null space in Equation 2.24 determines whether a controller solution exists. 
If the row dimension of the null space is greater than or equal to the number 
of system inputs, then a controller having the correct dimensions can be con-
structed from the null space. There is an extra condition that must be met for 
existence, that is, X I0  must have full rank. This solution is then row-reduced 
using Gaussian elimination to take the form

 
Y Y Y Y I

Y Y Y Y

u u c i

u u c i

0 0 0 0

1 1 1 1

1 0 0 0

1 0 0 0 0















 (2.25)

where Y u c i
{ }
{ }
0 1

1 0 0 0
,

, ,,  are constant matrices of column size equal to their respec-
tive controller gain column sizes. The first row ensures the matching to the 
desired closed-loop system, and if there is a sufficient number of rows in 
the second row, then a linear combination (in a polynomial sense) added 
to the first row will also satisfy the matching condition for the desired 
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closed-loop system. If the controller space takes on this form, then addi-
tional criteria can be used to include performance, decoupling, and robust-
ness by reference to the remaining transfer functions in Equations 2.10a 
through 2.10d.

2.2.4 LPV Approach to PeA

EA has many well-established numerical approaches to design, and the main 
algorithms are surveyed in the work of White [21]. For linear parameter-
varying systems, most approaches produce local controller designs that are 
interpolated over the operating envelope. The resulting controllers all suffer 
from gain scheduling problems associated with defining the controller, in 
particular, issues associated with zero and pole interpolation. More recently, 
work has been done on a multimodel EA that uses embedded models in 
the controller design and interpolation, which results in high-order control-
lers. Model order reduction is then used to produce realistic controllers with 
promising results [18].

In this chapter, the polynomial null space for PEA controllers is computed 
symbolically using the polynomial framework. The solution produces a 
generic controller, and thus, the usual gain scheduling problem is replaced 
by an explicit parameterization matching the parameterization of the LPV 
system itself. However, for the solution proposed in this chapter, the PEA 
solution requires exact matching to the desired closed-loop system, and 
thus, the polynomial matrices Nd(s, p) and Dd(s, p) need to be chosen care-
fully. This condition will be relaxed in subsequent chapters. The polyno-
mial matrix Dd(s, p) can be selected to be independent of the operating point 
p, while the polynomial matrix Nd(s, p) is dependent on the open-loop zeros. 
The software package Mathematica is used to form the polynomial null 
space and test for matching with the controller structure and order con-
trolled throughout the operating envelope. The approach makes the closed-
loop system independent of the current operating point and thus produces 
a solution similar to dynamic inversion without the need to consider zero 
dynamics.

2.3 Robust Analysis

In this polynomial framework, parametric robustness is investigated simi-
larly to Kharitonov-type approaches [2,3]. While initial Kharitonov results 
reduce interval uncertain system stability to four extremal polynomials’ sta-
bility only, this has been generalized in different aspects to robust stability 
(D-stability) for polytopic uncertain polynomial families and even multiaf-
fine uncertain systems. The main result is an equivalence between stability 
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of an infinite polynomial family and stability of a finite polynomial family, 
thus reducing the problem complexity. Two studies by Wise [25,26] are exam-
ples of such a successful approach to aerospace applications. However, sta-
bility of this reduced (finite) polynomial family usually requires an infinite 
number of checks in sweeping across frequencies (generalized frequencies).

On the other hand, the recently introduced FNT [7,14] restates the well-
known Nyquist stability theorem to a sufficient number of (generalized) fre-
quencies in order to assess polynomial D-stability. To the expense of some 
conservativeness, this result has been further extended to polynomic poly-
nomial family stability (D-stability) in the FIT [7,12–15]. It then reduces the 
frequency sweep to a finite number of value sets, each needing to fit in a 
suitable sector angle.

Depending on the polynomial family type, the value set computation may 
be intensive. For a multilinear polynomial family, this is usually equivalent 
to the computation of the parameter space edge image, referring to the edges 
theorem [3]. However, applying the mapping theorem reduces the complex 
value set to its convex hull and thus is equivalent to the parameter space 
vertices’ image. Thus, the combination of the mapping theorem with the FIT 
infers that stability (D-stability) robustness can be achieved within a finite 
number of polynomial/frequency checks [7] for multilinear polynomial 
families.

2.3.1 D-Stability for Polynomial Family

This section describes extensions of the well-known Nyquist stability 
theorem, which simply relates the number of encirclements of the transfer 
function image for s moving along a closed contour to the relative degree 
of  the  transfer function. Similarly, the FNT assesses that all the roots of 
a polynomial in s are within a specific region of the s-plane with a finite 
number of checks. This approach should be distinguished from gridding 
methods since the number of checks can be as low as the order of the 
polynomial.

Theorem 2.1 (Finite Nyquist theorem [7]) Let p s s
j

n

j
j( ) =

=∑ 0
α  where n ≥ 0 

and αj ∈ ℂ, and let Γ ⊂ ℂ be a closed Jordan curve such that int(Γ) is convex. 
Then p is of degree n, that is, αn ≠ 0, and has all its roots in int(Γ) if and only 
if there exist m ≥ 1 angles θk ∈ ℝ and a counterclockwise sequence of points 
sk ∈ Γ, 1 ≤ k ≤ m, such that

 ∀ ∈ | − |<∗
+k m k k θ θ π1 ,  (2.26a)

 ∀ ∈ ≠∗k p sm k ( ) 0,  (2.26b)

 ∀ ∈ ≡∗k p s modm k k arg( ( )) ( )θ π2 ,  (2.26c)
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 | + − |<2 1π θ θ πn m .  (2.26d)

The notation m
∗  represents the range of strictly (*) positive integers (ℕ) 

ranging up to m (m included).
The necessary number of sectors to be considered can be assessed, and 

in the work of Djaferis [7], for sector angles of a
b

π π< , increment angle of 
( )b a

b
− π, and a polynomial family of order n, the number of necessary sectors 

to be considered m is given by the relation

 
2 2

2
bn

b a
m

bn
b a

m
−

≤ ≤
−

+ ∧ .is odd  (2.27)

and for the limit, if the sector angle is π, then the number of sectors is infinite. 
A simple example of a second-order system with symmetric D-region and 
using a sector angle of 3

4
π  leads to consideration of 9 generalized frequen-

cies, while for an asymmetric D-region, it would be 17 in total. The plots in 
Figure 2.2 show all sectors for such a case where sector increment is π

4
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An example of the FNT is now applied to the following polynomial p(s) 
(see Equation 2.28 for the plotted contour defined in Figure 2.3):

 p(s) = (s + 3)(s2 + 9.5s + 25). (2.28)

There are Nz = 3 roots inside the chosen contour, and this leads to a net 
number of counterclockwise encirclements of N = 3, which can be checked in 
Figure 2.3b. To satisfy assumption 2.26a, a sector angle of θ π

sec =
4

 is used, and 

their corresponding generalized frequencies sk are plotted on the contours of 
Figure 2.3. Following the contour, two successive points, for instance, points 
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labeled (a) and the next points (b), are separated by a sector angle increment 
θinc = π − θsec. Since there is no symmetry in this example and with the selec-
tion chosen, 9 points (m = 9) is sufficient to prove the encirclements of all the 
roots in the contour.

By selecting a sector angle less than π and consequently introducing some 
conservatism, the previous result can successfully generalize to polynomial 
families, and the stability (D-stability) of a polynomial family reduces to a 
finite number of frequency (generalized frequency) checks. These steps are 
given in the FIT. This theorem is often compared with the finite frequency 
test theorem, which similarly assesses stability of an affine family of poly-
nomials but, in contrast, requires precise knowledge of the frequencies to be 
checked.

Theorem 2.2. (Finite inclusion theorem [7]) Consider a polynomic family 
of polynomials, Φp(s). Further, let Γ ⊂ ℂ be a closed Jordan curve such that 
int(Γ) is convex. Then for all q ∈ Πb, p(s, q) ∈ Φ(s) is of degree n and has all its 
roots in int(Γ) if there exist m ≥ 1 intervals (ck, dk) ⊂ ℝ and a counterclockwise 
sequence of points sk ∈ Γ, 1 ≤ k ≤ m, such that

 ∀ ∈ − − ≤−
∗

+ +k d c d cm k k k k 1 1 1max( ), π  (2.29a)

 ∀ ∈ ⊂ | > ∈∗k p s re r c dm k b
j

k k ( ) { [ ]}, , ,Π θ θ0  (2.29b)

 max(dm – (c1 + 2πn), (d1 + 2πn) – cm ≤ π). (2.29c)

This theorem applies to polynomic polynomial families, and for affine/
polytopic polynomial families, it becomes an equivalence.

2.3.2 Multilinear uncertain Systems

The theorem presented earlier still requires evaluation of the value set at 
some few frequencies, and this may turn out to be complex owing to its poly-
nomial family structure. In fact, for the affine/linear polynomial family, the 
value set is generated from its parameter space (box case) vertices, and thus, 
the value set can be obtained from a finite number of polynomials from the 
polynomial family. However, for a more complex structure or parameter 
space, there are no such direct results, and this often leads to consideration 
of the edges theorem or the mapping theorem [2,3]. While the edges theo-
rem extends the previous results to affine/linear polynomial families on 
polytopic parameter space, the mapping theorem can capture more complex 
polynomial family structures at the expense of introducing some conser-
vativeness. In fact, the multiaffine polynomial family value set is a subset 
of its convex hull that can be obtained from the parameter space vertices. 
Note that the conservatism introduced here can be relaxed to some extent by 
subdividing the parameter space as many times as required in a recursive 
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manner. Finally, the FIT can be successfully implemented in a finite number 
of checks for multiaffine polynomial families using the mapping theorem.

Definition 2.1. (Multiaffine/multilinear polynomial family) A multi affine/
multilinear polynomial family, Φm(s), is a family of polynomials in the form 
of Equation 2.30

 p(s, q) = α0(q) + α1(q)s + α2(q)s2 + α3(q)s3 + ⋯ + αn(q)sn (2.30)

where p(s) is of order n and αi(q) are multiaffine/multilinear functions of q, 
∀i ∈ ℕn. Commonly, the parameter space q lies in parameter box Πb of dimen-
sion m + 1.

Multiaffine/multilinear denotes here that αi(q) could be of the form 
α α α αi i i i iq q q q b( )q = + + +0

0
1

1
2

0 1  for the parameter box Πb q q q q= ×− + +[ ] [ ]0 0 1
0

1, ,  
and where q = [ ]q q T

0 1 .
From this definition of polynomial family, some reduction can be obtained 

with the mapping theorem, and for this purpose, the following definition is 
necessary to capture the vertex polynomials of the polynomial family.

Definition 2.2. (Vertex polynomials) The vertex polynomials, Φm
V s( ), of the 

multiaffine/multilinear polynomial family, Φm(s), are the family of polyno-
mials described by the vertices of Πb, Πb

V . Then

 Φ Φ Πm
V

m b
Vs p s s( ) { ( ) ( ) }= ∈ ∈, ,q q  (2.31)

 where ,Π Πb
V

b m j j j jj q q q q= ∈ ∀ ∈ = ∨ =− +{ }.q   

The mapping theorem uses value sets and their convexity to overbound 
the family uncertain polynomial.

Theorem 2.3. (Mapping theorem) For a multilinear polynomial family, 
Φm(s), on Πb, the value set at s* of the polynomial family, Δ(s*), is included in 
its convex hull, co(Δ(s*)), and in the convex hull of the value set of its vertex 
polynomials Φm

V s( ), co(ΔV(s*)). Therefore

 ∀ ∈ ⊂ .s s sV* ( *) ( *) ∆ ∆  (2.32)

This result is important in reducing multilinear parametric problems to 
linear ones. Similarly, multilinear transfer functions can then be tackled, 
where the numerator and the denominator are included in their respective 
convex hulls at the expense of conservativeness. Finally, the division of poly-
topes gives a set formed of segments and arcs. Nyquist plots, Nichols charts, 
and Bode plots can be obtained as well.

Although the mapping theorem introduces some conservatism, since the 
convex could be significantly bigger than the actual value set, a reduction of 
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this conservatism can be performed with the drawback of more computa-
tions. The idea is to split the parameter space in subspace and consider each 
uncertain polynomial family independently. This approach is explained 
through the following example.

In fact, the multilinear uncertain polynomial Q(s, q1, q2) = p0(s) + (−6s + 2)
q1 + (−5s −1)q2 + (10s + 3)q1q2—example from the work of Bhattacharyya et 
al. [3]—has for a value set Δ(s*) at s* for an interval uncertainty q1 ∈ [0, 1] 
and q2 ∈ [0, 1]. The value set is given for a specific s* in Figure 2.4a, with the 
convex hull of Δ(s*), co(Δ(s*)), for the uncertain box (q1, q2) ∈ Π. The same 
uncertain box Π is split into four subboxes denoted Π11, Π12, Π21, and Π22, 
and Figure 2.4b represents their respective value sets for the same s*, Δ11(s*), 

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

1.2

P1

P1

P 2
P 2

3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

Re

3 4 5 6 7 8 9 10
Re

Im
Im

(a)

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

1.2

0

1

2

3

4

5

6

7

8(b)

Π

co(∆(s*))

co(∆11(s*))

co(∆12(s*))
co(∆22(s*))

co(∆21(s*))

∆21(s*)

∆22(s*)

∆11(s*)

∆12(s*)

∆(s*)

Π12 Π22

Π11 Π21

Figure 2.4
Although the value set image convexity is lost for multilinear systems, convexity properties 
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some extent. Compare co(Δ(s*)) with ∪ co sij( ( *))∆ . (a) With only one big uncertain domain. 
(b) Now, uncertainty domain is split in four.
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Δ12(s*), Δ21(s*), and Δ22(s*). Finally, their respective convex hulls are generated, 
co(Δ11(s*)), co(Δ12(s*)), co(Δ21(s*)), and co(Δ22(s*)), and their union, nonconvex 
and included in co(Δ(s*)), is less restrictive than Δ(s*) itself.

The major drawback of this approach is the increase in computation involved 
and the selection of the subspaces. In fact, a poor choice in the splitting of the 
parameter space may not reduce much the conservativeness of the convex hulls.

2.3.3 Developed Algorithm for D-Stability robustness

For a sector angle of 7
8

π π< , a symmetrical D-region (real polynomial), and 

considering third-order polynomials, 25 sectors should be sufficient. Note 
that the number of sectors depends on the order of the polynomial but not 
on the dimension of the parametric uncertainty vector, and although inde-
pendent, the complexity of the value set needs to be dealt with. Next is a 
suggested algorithm for such an approach.

•	 Select a sector angle, θsec (θ π
sec = 7

8
), and a corresponding increment, 

θinc (θ π
inc =

8
).

•	 The combination of θsec and θinc gives a condition for the number of 
sectors, m (this number can be halved for symmetric D-region).

•	 Generate the sectors, seci, ∀ ∈ =∗ − +i sec sec secm i i i , [ ], .
•	 For each sector, i m∈ ∗

 , find the generalized frequency on the 

D-contour, si, for each middle sector seci for which p s sec sec
i

i i( ), 0
2

= +− +

.

•	 Check that this nominal polynomial p(s, 0) satisfies the FNT at fre-
quencies si, so p(s, 0) is D-stable.

•	 Select an uncertainty box, Π, and an initial weighting αini, and initial-
ize all αi = αini.

•	 For each sector, i m∈ ∗
 .

•	 While αi and si still “change.” 
•	 Compute the vertices vtxi = p(si, αiΠ) from the vertices of Π.
•	 Compute the convex hull of vtxi, co(vtxi).
•	 Compute the maximum and minimum phases of co(vtxi), ϕ−(co(vtxi)) 

and ϕ+(co(vtxi)).

•	 There are now four cases: If φ− −>( ( ))co vtx seci i  and φ+ +<( ( ))co vtx seci i  , 
then increase αi according to absolute phase margin. If 
φ− −<( ( ))co vtx seci i  and φ+ +>( ( ))co vtx seci i , then decrease αi according 
to absolute phase margin. If φ− −<( ( ))co vtx seci i  and φ+ +<( ( ))co vtx seci i , 
then relative phase margin. If φ− −>( ( ))co vtx seci i  and φ+ +>( ( ))co vtx seci i , 
then relative phase margin. 
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•	 Always recenter si according to absolute or relative phase margins.
•	 End “While” and “For” loops.

•	 α α= ∈ ∗min ( )
i i

m
.

The algorithm to increase or decrease αi is based on bisection program-
ming and is not shown on the above algorithm. Upper and lower limits of 
αi, α i

− and α i
+, respectively, are updated, and the convergence is performed 

according to bisection approach. So, if αi can be increased, then the next αi is 

taken as α α α
i

i i= + +

2
; the same can be applied for decreasing αi.

To “simplify” the computation of the minimum and maximum phases 
of the value set convex hull, the zero-exclusion property is first checked, 
removing consequently the case where minimum and maximum phases 

reach sec seci i
− ++ −

2
π and sec seci i

− ++ +
2

π , respectively. In fact, further sim-

plifications are used since there is no need to determine the exact value set 
convex hull, and trying to do so usually implies sorting the various vertices 
in a specific order; instead, one can simply compare vertex phases and keep 
minimum and maximum vertex phases.

The phase margin is used many times in this algorithm to “recenter” the 
generalized frequency. First, this generalized frequency without using prior 
knowledge is taken centered in the sector, and then for each step, the algo-
rithm tries to shift this generalized frequency, taking into account the shape 
of the value set convex hull. In this attempt, the relative phase margins on the 
minimum, sec co vtxi i

− −− φ ( ( )), and on the maximum, sec co vtxi i
+ +− φ ( ( )), are 

compared, and the average is used to shift the generalized frequency. While 
the absolute phase margin performs a similar role, the effects are added 
instead of averaged. The effect of this approach is to try to center the value 
set convex hull in the middle of the sector. Note that this process depends 
fully on the sector selection, which does not adapt in the present algorithm.

Although the shift procedure is efficient, it would require computing each 
time the underlying polynomial roots and becomes a computational burden. 
Instead, an approximate mapping between polynomial phase and D-region 
contour was developed. This integrates a metric-like concept that respects the 
ratio between midsectors while moving along the D-contour. This approach 
turned out to be sufficient to reduce the computational burden and lead to 
a reasonable convergence rate without deadlocks; however, this algorithm 
relies on some ad hoc parameters at the moment.

Finally, many of the parameters could be adapted as the algorithm runs to 
improve the results; this encompasses θsec and θinc, which could depend on 
the particular sector of interest and not being uniform across. More practical 
would be to consider an adaptive algorithm with respect to each individual 
uncertainty instead of a uniform weighting gain α.
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2.4 Missile Lateral Autopilot Design

In this section, the PEA is applied to a quasilinear missile model, named the 
Horton missile model. The design leads to a linear parameter-varying con-
troller for a sideslip velocity control. Although the underlying system is non-
linear, the closed-loop system is made independent of the operating points 
and can thus be compared with dynamic inversion approaches.

2.4.1 Missile Model

The Horton missile model describes a realistic airframe of a tail-controlled 
tactical missile in the cruciform fin configuration, as shown in Figure 2.5. 
The aerodynamic parameters in this model are derived from wind-tunnel 
measurements [4,20].

The starting point for mathematical description of the missile is the following 
nonlinear model [4,9,20] of the horizontal motion (on the xy-plane in Figure 2.5):
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where the variables are defined in Figure 2.5. Here, v is the sideslip 
velocity, r is the body rate, ζ is the rudder fin deflection, yv and yζ are 
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Figure 2.5
Missile airframe axes.
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the semi-nondimensional force derivatives due to lateral and fin angle, 
respectively, nv, nζ, and nr are the semi-nondimensional moment deriva-
tives due to sideslip velocity, fin angle, and body rate, respectively, and 
finally, U is the longitudinal velocity. Furthermore, m = 125 kg is the mis-
sile mass, ρ = ρ0 – 0.094h is the air density (ρ0 = 1.23 kg m−3 is the sea level 
air density and h is the missile altitude in kilometers), Vo is the total veloc-
ity (in meters per second), S = πd2/4 = 0.0314 m2 is the reference area (d = 
0.2 m is the reference diameter), and Iz = 67.5 kg m2 is the lateral inertia. 
For the coefficients Cyv

, Cyζ
, Cnr

, Cnv
, and Cnζ

, only discrete data points are 
available, obtained from wind-tunnel experiments. Hence, an interpola-
tion formula, involving the Mach number M ∈ [2, 3.5], roll angle λ ∈ [4.5°, 
45°], and total incidence σ ∈ [3°, 17°], has been calculated, with the results 
summarized in Table 2.1.

The total velocity vector Vo is the sum of the longitudinal velocity vector 


U and the sideslip velocity vector 


v, that is, V U vo = +


, with all three vec-
tors lying on the xy-plane (see Figure 2.5). We assume that U ≫ v, so that the 
total incidence σ, or the angle between 



U and Vo, can be taken as σ = v/Vo, as 
sin σ ≈ σ for small σ. Thus, we have σ = = +v V v v Uo/ / 2 2 , so that the total 
incidence is a nonlinear function of the sideslip velocity and longitudinal 
velocity, σ = σ(v, U). As mentioned earlier, the missile is in cruciform configu-
ration; therefore, symmetry assumptions are invoked. Hence, despite the fact 
that the nonlinear model coefficients depend only on the absolute value of 
σ, due to the symmetry assumptions, the coefficients could be used for v < 0.

The Mach number is obviously defined as M = Vo/a, where a is the speed of 

sound, a = 340 – 4h. Since V v Uo = +2 2 , the Mach number is also a nonlinear 
function of the sideslip velocity and longitudinal velocity, M = M(v, U).

It follows from the above discussion that all coefficients in Table 2.1 can 
be interpreted as nonlinear functions of three variables: sideslip velocity v, 
Mach number M, and roll angle λ.

TAbLe 2.1

Coefficients in Nonlinear Model Equation 2.33

Interpolated Formula

Cyv
0.5[(−25 + M – 60 |σ|)(1+ cos 4λ) + (−26 + 1.5M – 30 |σ|)(1 – cos 4λ)]

Cyζ
10 + 0.5[(−1.6M + 2 |σ|)(1+ cos 4λ) + (−1.4M + 1.5 |σ|)(1 – cos 4λ)]

Cnr
−500 – 30M + 200 |σ|

Cnv s Cm yv
, where

sm = d−1[1.3 + 0.1M + 0.2(1+ cos 4λ) |σ| + 0.3(1 – cos 4λ) |σ| − (1.3 + 
m/500)]

Cnζ
s Cf yζ

, where
sf = d−1[2.6 – (1.3 + m/500)]
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2.4.2 Missile QLPV Form

Although the system in Equation 2.33 is already in a QLPV form, theoreti-
cally, one has to consider the linearization of the nonlinear system around 
its equilibria. For an equilibrium point (v0, r0, ζ0), it is possible to derive from 
Equation 2.33 linear models in incremental variables, δv v v − 0, δr r r − 0, 
and δζ ζ ζ − 0. In particular, for straight and level flight (with gravity influ-
ence neglected), we have (v0, r0, ζ0) = (0, 0, 0), so that the incremental and 
absolute variables are numerically identical, although conceptually different. 
In the rest of this paper, the model defined in Equation 2.34 can refer to the 
original QLPV form of the missile or its Taylor linearized version, as both 
forms present a QLPV form. Hence,
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where p is the scheduling parameter.
Wind-tunnel tests are performed for the modeling of the missile, but these 

experiments are usually conducted in some quasisteady conditions. This 
leads to an almost linearized version of the missile where the Mach num-
ber, roll angle, and incidence conditions have been included afterward and 
which in the present case leads to a QLPV representation. Note that for a 
sideslip velocity controller, the lateral acceleration demand is recast as a side-
slip velocity demand via the nonlinear relationship a = yv( p)v + yζ( p)ζ.

The controller structure presented earlier is now used in the LPV frame-
work, as shown in Figure 2.6, where gain Ka(s) is selected as a pure integrator 
to ensure zero steady-state error to a step input. This form is shown to be suf-
ficient to obtain a suitable controller with static controller gains. Note that, 
although the controller is presented in the figure as an LPV controller, it has 
a quasi-LPV static form.

+ 1
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p = (M, σ)

Ki(p)

Ku (p)–1 Gx (s, p)
yc

yi
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– – –

+

QLPV controller

Figure 2.6
QLPV controller structure chosen for a lateral velocity controller of the Horton missile includes 

Ka(s) as a pure integrator, 1
s

, and the gains Ku(s), Kc(s), and Ki(s) as scheduled scalar gains.
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2.4.3 Performance Objectives

In the context of an LPV system, the PEA presented so far is strictly valid 
only for the underlying LTI system. However, one may assign the eigen-
structure to be (almost) independent of the operating point. This would 
lead to (almost) identical closed-loop dynamics over the operating enve-
lope. Strict independence is not always possible because the approach 
does not cancel out open-loop zeros, and these may vary over the operat-
ing envelope. The resulting closed-loop dynamics, however, will be very 
similar to LTI system dynamics, which is often desirable for the designer. 
Additional zeros may be included in the design to aid in placing the closed-
loop system poles.

For static controller gains, the system is of the third-order, that is, second-
order plant and first-order pure integrator. The desired characteristic poly-
nomial is of degree 3 and can be written as

 Dd(s) = c0 + c1s + c2s2 + s3. (2.35)

Under the assumption that the zeros do not influence the response sig-
nificantly, the closed-loop transient step response can be chosen to pro-
duce a peak overshoot less than 5% and settling time less than 0.2 s. The 
desired characteristic polynomial coefficients are thus chosen as a combi-
nation of a second order with natural frequency wn = 30 rad/s and damp-
ing ratio ζn = 0.7 and an additional pole at −100. The controller does not 
introduce additional zeros, and there is no attempt to cancel out open-loop 
zeros; thus Nd(s) is constrained by Z sc

0 ( ) in condition 2.36a, and it repre-
sents the open-loop zeros.

The closed-loop transfer functions in Equations 2.13 and 2.17 match the 
following LPV conditions:

 N s p Z s pd
c( ) ( ), ,= 0  (2.36a)

 Z p D pc
d0 0 0( ) ( ), ,=  (2.36b)

 D s p sK s p P s p sK s p Z s p sK s pd u c i( ) ( ) ( ) ( ) ( ) ( ), , , , , ,= + +0 ZZ s p Z s pi c
0 0( ) ( ), ,+   (2.36c)

where polynomials Dd(s, p) and Nd(s, p) represent the desired closed-loop 
transfer function. Note that it is not always possible to achieve exact 
matching or, in other words, satisfy condition 2.36c), and different con-
troller structure and/or order may be required. However, for the SISO case 
presented here, this is straightforward, and a static controller achieves 
matching.
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Equation 2.36c can be written as

 [ ( ) ( ) ( ) ]
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=  (2.37)

where the left null space solution is used to construct the controller gains. The 
null space has to be of sufficient dimension to allow reduction by Gaussian 
elimination to satisfy the annihilator vector format with last term I. This is 
in fact equivalent to the condition in Equation 2.36c. Finally, the null space 
solution may not be limited to a single solution, and thus, any “linear” (in the 
sense of polynomial) combination of row vectors that produces the annihila-
tor vector format in Equation 2.37 is suitable. From these null space solutions, 
the controller gains Ku(s, p), Kc(s, p), and Ki(s, p) can be partitioned to produce a 
suitable controller for the controller structure shown in Figure 2.6.

2.4.4 Sideslip Velocity Controller

Consider a QLPV lateral velocity controller for the Horton missile for the 
case of state feedback. The output equation for sideslip velocity output is
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1 0
0 1

.  (2.38)

This equation sets matrices Z s pc
0( ),  and Z s pi

0( ),  while Z(s, p) and P(s, p) are 
determined from the state equation. In fact, for this case, in Equations 2.4 
and 2.38, Z0(s, p) is set equal to Z(s, p), and the null space solution of Equation 
2.37 is then solved by symbolic computation used to yield the annihilator 
parameterized polynomial by p. After further row reduction, the null space 
takes the vector form [ ]K K K Iu c i

T.
Equations 2.2 and 2.11 are computed and lead to Z0(s, p) and P(s, p), which 

represent the coprime factorization of the system:
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 P s p
c y p n p y p n p y p s n p s sr v v r v r( )

( ( ) ( ) ( ) ( ) ( ) ( )
, = − + − −0

22)
( ) ( ) ( ) ( )

.
n p y p y p n pr rζ ζ−













 (2.39)

The null space for Equation 2.37 can now be solved as a polynomial equa-
tion using the symbolic computation in Mathematica. This produces a mul-
tivariable polynomial null space, the polynomial rank of which is 3 since 
the constituent vectors do not have any null elements and are independent. 
Any “linear” vector combination in this null space, provided it satisfies the 
constant last term I as in the vector [ ]K K K Iu c i , gives rise to a controller for 
the system.

The controller gains Ku(s, p), Kc(s, p), and Ki(s, p) are identified by suitable 
partitioning of the resulting null space. For the present case, static control-
ler gains are sufficient to obtain a matching condition for the desired closed 
loop, and a unique LPV controller is obtained. The parameterized controller 
gains are as follows:

 K n y n y n y n y n y n yu r r r v r v= − + − −( )( ( ) )ζ ζ ζ ζ ζ ζ
2 2  (2.40a)

 

K c n n y n y n n y n y n y c n yc r r v r r r r v= − + − − + +1 2ζ ζ ζ ζ ζ ζ( ) ( )( ( )) )

( ( ) ( ))
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n n y y c n y y c y n y n yr v r v v r r

ζ

ζ ζ ζ ζ ζ+ − + + −2
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2
2
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where parameterization in p is dropped for ease of presentation, and a com-
mon dividing factor given by Equation 2.41 is omitted:

 c n y n y n y n yr v r v0
2 2( ( ) ).ζ ζ ζ ζ+ − −  (2.41)

A direct substitution of the coefficients c0, c1, and c2 of the desired closed-
loop denominator of the system as well as of the QLPV semi-nondimensional 
coefficients yv(p), yr(p), yζ(p), nv(p), nr(p), and nζ(p) leads to the desired control-
ler Equation 2.42:

 ζ = − − −






−K p
v v

s
K p v K p ru

d
c i( )

( )
( ) ( ) .1  (2.42)
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2.4.5 Multilinear Parametric uncertain System

The robust analysis is carried out on the Horton missile using the previ-
ous LPV controller. Using the missile model, Equation 2.34, the closed-loop 
system can be written as in Equation 2.7, where each polynomial vector is 
dependent on parameter p. Under no uncertainty the closed-loop system 
would match the desired closed-loop system.

First, the parametric uncertainty vector q is introduced, representing the 
semi-nondimensional aerodynamic coefficients and longitudinal velocity:

 
q =













T

v r v ry y y n n nζ ζ .
 

Each element of q is written as q qi i
0 1( )+ δ  for each i where qi

0  corresponds 
to its nominal value (depending on p in fact) and a relative uncertainty 
parameter δqi, which will be the quantity referred to as uncertainty.

From Equation 2.7, the closed-loop system for sideslip velocity output is 
now written in a simplified form (Equation 2.43), without expanding the 
nominal controller gains but considering uncertainties in the plant. The 
uncertainty thus takes a multilinear format:

 G s
a a s

K s a s a s au

( )
( ) ( )

( ) ( ) ( )
, =

+
+ + +

q
q q

q q q
1 2

3
3

2
4 5

 (2.43)

where

 a1(q) = q5q3 – q2q6 

 a2(q) = −q3 

 a3(q) = Ku(q1 + q5) – Kcq3 – Kiq6 

 a4(q) = Ku(q2q4 − q1q5) + Kc(q5q3 – q2q6) + Ki(q1q6 – q4q3) (2.44)

 a5(q) = q5q3 – q2q6. 

One can identify the zero as z q
q q
q

= −5
2 6

3
. The robust D-stability of the 

system can be assessed using the denominator of G(s, q) in Equation 2.43. As 
the nominal system changes over the flight envelope, the coefficients ai(q) in 
Equation 2.43 vary accordingly depending on p, ai(p, q).
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The parametric uncertain closed-loop system is therefore checked to be 
robust D-stable over its full flight envelope. This property ensures basic per-
formance of a missile face to parametric uncertainties. Moreover, the control-
ler design technique generates an LPV controller and by structure ensures 
zero steady-state error of the controlled output. The closed-loop system in 
Equation 2.43 is of the third order, and the poles are assessed to belong to 
the D-region.

2.4.6 robust D-Stability Analysis Criteria

The D-region has been shaped according to the following requirements:

•	 Minimum damping ratio of 0.7 (critical damping ratio)
•	 Maximum rising time of 0.1 s (with rising time taken as there times 

the time constant)
•	 Maximum natural frequency of 150 rad/s

The nominal system design places the poles in this D-region (Figure 2.7).
For ease of implementation, the D-region was restricted to polygon con-

tours. Although piecewise linear contour is not smooth and consequently 
not a Jordan curve, in practice, the FIT is using only a finite number of points 
describing this curve, so a Jordan curve could be found with these points, 
and the FIT would apply. In case of symmetry of the D-region across the real 
axis—this will be the case with real polynomials—computations are halved.
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Figure 2.7
D-region contour considered for D-stability robustness property.
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2.4.7 Applying FiT

The sector angle for this application is 7
8

π π< , and since the D-region is 

symmetric and the polynomial for analysis is of the third-order, then only 
25 sectors are used. Note that the number of sectors depends on the order 
of the polynomial but not on the dimension of the parametric uncertainty 
vector.

Since the uncertainty parameter corresponds to the six independent semi-
nondimensional derivatives, the multilinear uncertainty quickly involves 
a dozen uncertain multilinear coefficients, and it stays difficult to tackle. 
However, the value sets are successfully reduced by applying the mapping 
theorem, and thus, the convex hull of the vertex polynomials is used instead 
(see Figure 2.8). This, however, could imply in some cases some conservatism 
as discussed in the previous section on the mapping theorem.

The closed-loop system is proved to be robust D-stable (see Figure 2.8a) 
where for the velocity controller up to ±11.64% of uncertainty on each coef-
ficient is achieved. In fact, these results could be underestimates of the true 
robust D-stability of the closed-loop system capabilities since conservatism 
is introduced when sector angles are limited to less than π, the mapping 
theorem convexifies the value set, and the uncertainty box is taken to be uni-
form over all components of the parametric uncertainty vector, which mostly 
depends on the limiting parameter.

Inspection of the form of the convex hull also reveals a few interesting 
points. In particular, one can notice from Figure 2.8b that Δyr and Δnζ are the 
main factors in the convex hull size and hence have a strong contribution in 
“D-destabilizing” the system. Moreover, further works showed that the value 
set of the D-contour map is almost a polygon where vertices could be computed 
from the extremal box formed by Δyr and Δnζ, or in other words, the value set 
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Application of FIT.
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is equivalent to an almost affine uncertainty. This last remark shows that the 
convex approach used for this analysis should not be so conservative indeed. 
Finally, Figure 2.8b does not exhibit the influence of Δyζ, the uncertainty on fin 
forces responsible for the nonminimum phase effect in the system.

The D-stability robustness analysis for each individual underlying a 
closed-loop system—at each operating point of its flight envelope depend-
ing on incidence and external parameters—is consequently assessed against 
real parametric uncertainties present in the missile semi-nondimensional 
derivatives.

2.4.8 Simulation results

Simulations have been carried out to check performance, robustness, and 
when possible, the extent of conservativeness involved. Because the system 
model does not include the actuator dynamics, the input is prefiltered accord-
ing to the design performance requirements. Figure 2.9 is the simulation 
for a missile flying at Mach 2.5 at 6 km altitude with a step lateral accelera-
tion demand from −100 to 100 m s−2. Damping and rising time are achieved 
according to the design requirements for the nominal system. The dotted 
curves show the simulations for up to ±20% uncertainty in all coefficients. 
These simulations show good performance and robustness for the sideslip 
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Simulations with the sideslip velocity controller with up to ±20% uncertainty on all six coef-
ficients (only major players were plotted here).
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velocity. The lateral acceleration, though, presents an expected steady-state 
error. This simulation does not guarantee to capture the worst case; however, 
as discussed in the previous section, the worst cases are highly dependent 
on uncertainties on yr and nζ, while others play a less important role.

2.5 PeA Including Actuator Dynamics

When actuator dynamics are included, an augmented system must be 
defined for the case of partial feedback since the actuator states are usually 
not available for feedback. Hence, for this case, only partial EA is possible for 
the augmented closed-loop system. Thus, Kimura’s condition, n ≤ m + r − 1, 
fails, and therefore, not all eigenvalues can be assigned independently.

In this section, the approach investigates the partial feedback case using the 
LPV framework, where both actuator requirements and/or system capabili-
ties are investigated. The augmented system design should not include any 
actuator states for feedback leading to a system with partial feedback rather 
than state feedback. In order to explore the design issues, a full state solution 
is first computed, and conditions on the feedback structure are imposed to 
remove the actuator states. Hence, the augmented system with full feedback 
is calculated initially. Then, the actuator state feedback is removed, which 
then results in a partial feedback solution. If the system design uses this 
approach, it enables the designer to assess the effect of the actuator dynam-
ics on the achievable eigenstructure. Hence, trade-offs between the speed 
of performance of the actuators and the overall system performance can be 
done. This is of importance as there is limited power and space available in 
missile structures, and the lowest actuator power solutions are strongly cor-
related with the actuator bandwidth. The effects of the actuator dynamics 
on the system’s performance are studied by examining two different cases. 
First, the desired closed-loop system is selected, and the actuator dynam-
ics performance requirements are assessed. Second, specific actuator per-
formance is selected, and the achievable closed-loop system performance is 
determined. These are successively investigated in the case of lateral veloc-
ity, lateral augmented acceleration, and lateral acceleration controller designs 
for first- and second-order actuator dynamics models.

2.5.1 Matching Conditions with Full Feedback

For this case, the actuator states are fed back using a virtual output, yl, and the 
controller structure is redefined including this virtual feedback with its cor-
responding virtual gain, Kl(s, p) (see Figure 2.10). The controller is designed 
using the PEA following Equation 2.13, where Kl(s, p) is obtained by suitable 
partitioning of Ki(s, p). In a similar manner to the Gi(s, p) transfer function, 
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Gl(s, p) and its associate Z s pl
0( ),  can be introduced, which corresponds to the 

open-loop system between the inputs and the actuator states. The closed-
loop transfer function can be derived from Equation 2.13 as follows:

 
T s p Z s p sK s p P s p sK s p Z s py
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.
 (2.45)

Splitting the overall transfer function into the corresponding controlled 
output transfer functions, measured output transfer function, and actua-
tor state output transfer function does not affect the flexibility of the PEA 
approach. MIMO systems can also be dealt with in a similar manner with-
out reducing controller gains to SISO or multiple input single output (MISO) 
polynomial matrices.

However, conditions 2.36a through 2.36c still need to be satisfied as the 
desired closed-loop system is required to match the desired performance 
objectives. This is represented by conditions 2.46a through 2.46c:

 N s p Z s pd
c( ) ( ), ,= 0  (2.46a)

 Z p D pc
d0 0 0( ) ( ), ,=  (2.46b)
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 (2.46c)

where polynomials Dd(s, p) and Nd(s, p) represent the desired closed-loop 
transfer function. This can be written as a null space equation:
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Figure 2.10
Specific QLPV controller structure including actuator state feedback, yl, through gain Kl(s,p).
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(2.47)

where the null space of this last vector gives direct access to the controller 
gains.

2.5.2 Lateral Acceleration Design with Full State Feedback Control

The full feedback design for a lateral acceleration controller performed on 
the augmented system including actuator dynamics is now considered. First-
order actuator dynamics are assumed as follows:

 l t l t u tl l( ) ( ) ( )+ =τ τ  (2.48)

where l represents the fin angle output from the actuator, u is the command 
input, and τl is the time constant of actuator dynamics.

The state equation for this augmented system becomes
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(2.49)

and the output Equation 2.50 includes the lateral acceleration and the yaw 
rate, together with the actuator state, fin angle l:

 y
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u.  (2.50)

The D matrix normally present for lateral acceleration control vanishes 
owing to the introduction of actuator dynamics; however, zeros are not 
affected, and hence, the nonminimum phase zero is still present.
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In a similar manner to previous designs for this controllable and observ-
able augmented system, a controller is derived by solving Equation 2.47. The 
closed-loop system is shown to be of the fourth-order owing to the open-
loop system being (second order) with actuator dynamics (first order) and an 
additional integrator in the control loop (first order) for steady-state accuracy. 
The full controller then takes the form

 u K s p
a a

s
K s p a K s p r K s p lu

d
c i l= − − − −




−( , )
( )

( , ) ( , ) ( , )1





.  (2.51)

Simulations are carried out with actuator dynamics having a time constant 
τl = 300. The four closed-loop system poles are chosen to be two poles at −60 
and a conjugate pair with natural frequency 30 rad/s and critic damping 
ratio 0.7. Simulations for the Horton missile are shown in Figure 2.11 and 
show satisfactory performance.
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Figure 2.11
Simulation of Horton missile controlled in lateral acceleration and including actuator dynam-
ics, in response to a lateral acceleration demand of 100 m s−2 with constant Mach number 2.5 
and constant altitude 6 km. Pole assignment of the closed-loop system is two poles at −60 and 
a conjugate pair with natural frequency 30 rad/s and critic damping ratio 0.7.



66 Advances in Missile Guidance, Control, and Estimation

2.5.3 Lateral Acceleration Design with Partial State Feedback Control

In practice, the actuator states are not available, and thus, only partial feed-
back is possible. The idea, then, is to remove the virtual actuator feedback by 
zeroing the gain Kl(s, p), thus constraining the achievable closed-loop system.

Preliminary studies using Nyquist plots using some reference actuator 
dynamics show that actuator dynamics is usually required to be four to 
five times faster than the desired closed-loop system. While the studies pre-
sented in the paper confirm such results, the approach is more systematic 
and enables the designer to further analyze the closed-loop system perfor-
mance as a function of actuator dynamics.

Hence, the full feedback design is amended by additionally requiring the 
actuator feedback gain, Kl(s, p), to be zero. Doing so reduces the null space 
solution of Equation 2.47 to a subset of its subspace and hence constrains 
either actuator dynamics or closed-loop system dynamics. Both cases are 
investigated.

After row reduction, the null space for Equation 2.47 takes the form
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where any linear combination (in the polynomial sense) of the second row 
added to the first row defines a possible controller. Specific linear combina-
tions are searched in order to identify the subspace that produces zero gain 
Kl(s, p). However, this is not always possible, and further conditions on either 
closed-loop structure or actuator dynamics can be imposed to generate suit-
able subspaces that contain zero gain solutions for Kl(s, p). For instance, the 
rank of the polynomial space associated with Kl(s, p) can be controlled by 
adding constraints on the closed-loop system pole assignment. This task is 
performed by symbolic computation using Mathematica, and thus, system-
atic design is achieved for some prespecified closed-loop EA ranges. Such a 
null space takes the fundamental form

 [ ]Y Y Y Iu c i
0 0 0

0 0 0 0  (2.53)

with an alternative form given by
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where any linear combination (in the polynomial sense) of the second row 
added to the first row spans the space of suitable controllers.
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Alternatively, when no suitable controller is found, the designer can choose 
either to increase the controller order or to change the controller structure. 
Increasing the controller order may increase the null space and thus the 
space of suitable controllers. Changing the controller structure affects the 
design flexibility and eventually the matching capabilities.

2.5.4 Actuator Dynamics of First Order

Assuming actuator dynamics (Equation 2.48) of the first-order augments the 
system by adding one state variable in a similar manner to Equation 2.49, 
the output matrix as defined in Equation 2.50 is slightly modified to define 
lateral augmented acceleration rather than pure lateral acceleration.

Equation 2.47 can then be solved in the form of Equation 2.53 by imposing 
conditions on the actuator time constant, τl, while still achieving the desired 
closed-loop performance. The minimum actuator dynamics requirement in 
terms of time constant τl is shown in Figure 2.12a for the lateral velocity and 
lateral augmented acceleration controller and in Figure 2.12b for the lateral 
acceleration controller, for specific pole assignment of the overall closed-loop 
system. The pole assignment is chosen to be identical to the previous designs: 
two poles at −60 and a conjugate pair with natural frequency 30 rad/s and 
damping ratio 0.7.

The requirements for the lateral velocity design and lateral augmented 
acceleration design are identical; this is justified by the fact that they are 
simply related by the aerodynamic derivative yv(p). However, the lateral 
acceleration control results shown in Figure 2.12b indicate that this is more 
demanding on actuator dynamics than the velocity controller. This is partly 
due to the fact that the nonminimum phase character of the controlled out-
put has a significant part to play in the achievable performance.
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Actuator dynamics time constant τl requirement for first-order actuator imposing fourth-order 
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Hence, the designer can characterize the actuator dynamics and can choose 
the maximum τl requirement across the flight envelope. For this case, a band-
width of around 300, which corresponds to a cutoff frequency of around 
50  Hz, is a satisfactory solution. This choice ensures that the LPV system 
performs as required for a controller without actuator state feedback.

Next, the simulation for the lateral acceleration controller for a step input 
of 250 m s−2 is shown in Figure 2.13.

Once the actuator bandwidth has been chosen, it can be fixed. The perfor-
mance across the flight envelope can be assessed by solving Equation 2.45 
while still maintaining Kl(s, p) = 0 while varying the closed poles of the sys-
tem. Hence, the closed-loop system pole locations are not frozen across the 
flight envelope, and this allows more flexibility in the design than for most 
dynamic inversion techniques.

In Figure 2.14, pole locations vary slightly along the flight envelope where 
the first-order actuator dynamics is selected with time constant, τl = 300. 
By design, the dominant conjugate pair is fixed with a natural frequency 
30 rad/s and damping ratio 0.7 across the flight envelope, while the two other 
poles can vary but are always to the left of −60. In fact, selecting a more accu-
rate upper bound for the time constant in the previous analysis would bring 
the worst case to exactly −60.
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Finally, for a slow actuator system with a time constant τl = 150, the closed-
loop system cannot meet the pole location requirements, and the perfor-
mance is affected (see Figure 2.15). It can be seen that the actuator has less 
amplitude in Figure 2.15 than in Figure 2.13; however, there is more accelera-
tion overshoot.
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actuator with time constant τl = 300.

100
0

–10

–20

–30

–40

–50

80

60

40

20

0
0 0.5 1 1.5 2 32.5 0 0.5 1 1.5 2 32.5

0 0.5 1 1.5 2 32.5 0 0.5 1 1.5 2 32.5

0.005
0

–0.005
–0.01

–0.015
–0.02

–0.025
–0.03

0.4

0.6

0.8

0.2

0

Time (s)

Lateral acceleration Lateral velocity

Yaw rate Fin angle

(r
ad

)

(r
ad

/s
)

(m
/s

2 )

(m
/s

)

Time (s)

Time (s) Time (s)

Figure 2.15
Lateral acceleration step response of Horton missile including underspecified first-order actua-
tor dynamics of time constant, τl = 150, for lateral acceleration controller. Acceleration demand is 
100 m s−2, while Mach number varies from Mach 2 to Mach 3.5, and altitude stays constant at 6 km.
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2.5.5 Actuator Dynamics of Second Order

The same approach can be applied to any actuator dynamics model order. 
For example, actuator dynamics of the second order can be included and 
partial feedback solutions examined in a similar manner to the first-order 
actuator case. Actuator dynamics are then modeled as

  l l l ul l l l+ + =2 2 2ζ ω ω ω  (2.55)

where l represents the fin angle output, u is the fin angle input, ωl is the natu-
ral frequency, and ζl is the damping ratio of the actuator dynamics.

The system is now augmented by two state variables as
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and the output equation includes lateral acceleration, yaw rate along with fin 
angle, and its first derivative to give
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The first row of the output matrix for lateral acceleration as defined in 
Equation 2.57 is now changed for both lateral velocity or lateral augmented 
acceleration but omitted here as it has similar structure.

With the same controller structure as previously defined, the null space 
equation 2.51 remains the same as for the first-order case, although Kl(s, p) 
is now a vector of dimension 2 rather than 1. Equation 2.47 is solved and 
results in the form of Equation 2.53 by imposing conditions on the actuator 
dynamics, ωl and ζl, while requiring the desired closed-loop performance to 
be achieved. The actuator dynamics requirements in terms of ωl and ζl are 
presented in Figure 2.16 for the lateral velocity and lateral augmented accel-
eration controller and in Figure 2.17 for the lateral acceleration controller. The 
closed-loop system is now a fifth-order system with pole assignment similar 
to the previous first-order actuator study. Hence, one pole is chosen at −60, 
with a conjugate pair with natural frequency 30 rad/s and damping ratio 0.7, 
and the other conjugate pair with natural frequency 110 rad/s and damping 
ratio 0.6.
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For the velocity and the lateral augmented acceleration controller case, the 
actuator dynamics requirements are around a natural frequency of 160 rad/s 
and a damping ratio in the range of 0.5 to 0.7. These requirements seem rea-
sonable since such actuator dynamics are practical. As already mentioned, 
the requirements for lateral velocity and lateral augmented acceleration are 
identical. As with the first-order actuator, the second-order actuator results 
have a more demanding requirement for actuator bandwidth due to the non-
minimum phase character of the acceleration output. This is shown in Figure 
2.17, and a natural frequency of 240 rad/s for a damping ratio in similar range 
of 0.5 to 0.7 is required to meet the closed-loop specifications.
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In a similar manner to the first-order actuator dynamics case, once the 
actuator dynamics is fixed, the designer can assess the closed-loop system 
performance across the flight envelope by solving Equation 2.45 while still 
maintaining Kl(s) = 0. The performance is estimated from the pole locations, 
which change slightly along the flight envelope. The pole locations are found 
to be sensitive to the actuator damping ratio as shown in Figure 2.18a, where 
the actuator damping ratio sweeps from 0.5 to 0.7 while its natural frequency 
stays constant at 160 rad/s. By design, the dominant conjugate pair is fro-
zen with a natural frequency of 30 rad/s and damping ratio 0.7 with a pole 
fixed at −60 across the flight envelope. This results in the other conjugate pair 
varying significantly from slightly damped to underdamped.

Selecting the same actuator dynamics for lateral acceleration control 
shows unsatisfactory pole locations in Figure 2.18b. Selecting better actuator 
dynamics with higher-frequency bandwidth as suggested by previous anal-
ysis leads to improved performance. For instance, the pole location for actua-
tor dynamics with natural frequency around 300 rad/s and damping ratio 
ranging in [0.5, 0.6] and [0.6, 0.7] is shown in Figure 2.19a and b, respectively.
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Scenario of pole location across flight envelope for a panel of second-order actuators with natu-
ral frequency 160 rad/s and damping ratio ranging from 0.5 to 0.7.
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2.6 Discussions and Conclusions

A successful lateral autopilot design was achieved for a realistic quasilinear 
parameter-varying missile model. This showed that QLPV models are ame-
nable to dynamic inversion design of appropriate controllers using the same 
parameterization for plants and controllers. The controller was obtained via 
the PEA. The effects of the actuator bandwidth on the closed-loop system 
performance were also studied, as were the requirement of dynamics and 
order of the actuators in order to achieve the desired performance.

The proposed QLPV controller is free of the difficulties associated with 
gain scheduling, as it consists of one controller only, and “scheduling” is 
done automatically by feedback, giving total independence of the operating 
point. Nevertheless, the PEA design is valid only (as gain scheduling is) in the 
vicinity of the equilibria. The scheduling is directly performed with a QLPV 
controller and does not need any form of interpolation. The eigenvalues 
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Figure 2.19
Scenario of pole location across flight envelope for a panel of second-order actuators with natu-
ral frequency 300 rad/s and varying damping ratio for lateral acceleration control. (a) Damping 
ratio, ζl, ranging from 0.5 to 0.6. (b) Damping ratio, ζl, ranging from 0.6 to 0.7.
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and eigenvectors of the resulting closed-loop system fully characterize its 
response, and they are suitable to capture the control engineer objectives, 
stability and performance. In essence, the approach achieves dynamic inver-
sion but in contrast to the involved transformation does not require cancel-
lation of the zero dynamics. It is consequently applicable to nonminimum 
phase systems as well and thus to a broader class, unlike other dynamic 
inversion approaches.

The PEA approach using the symbolic solutions enabled trade-off studies 
to be undertaken that allow the designer to select the appropriate actuator 
bandwidth to produce satisfactory performance. This is important in missile 
autopilots as there are usually limits placed on the power and energy avail-
able for the actuator.
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3.1 Introduction

Observer-based controllers (e.g., linear quadratic Gaussian [LQG] controllers) 
are quite interesting for different practical reasons and from the implemen-
tation point of view. Probably the key advantage of these controller struc-
tures lies in the fact that the controller states are meaningful variables as 
estimates of the physical plant states. It follows that the controller states can 
be used to monitor (online or offline) the performance of the system. Such a 
meaningful state allows us also to initialize the state of the controller or to 
update controller state during control mode switching. Note that this simple 
property does not hold for general controllers with state-space description:

 
K K K K

K K K

x A x B y

u C x D y


= +
= +





 .
 (3.1)

Another well-appreciated advantage comes from the ease of implementa-
tion of observer-based controllers. In addition to the plant data, only two 
static gains (the state-feedback gain and the state-estimator gain) define 
the entire controller dynamics. In return, this facilitates the construction 
of gain-scheduled or interpolated controllers. Indeed, assuming the plant 
model is available in real time, observer-based controllers will only require 
the storage of these two static gains of lower dimensions instead of the huge 
set of numerical data in Equation 3.1 to update the controller dynamics at 
each sample of time. Note that if we are using an interpolating procedure to 
update the controller dynamics, the general representation in Equation 3.1 is 
highly questionable from an implementation viewpoint and in many cases 
will lead to an insuperable computational effort. This was in our opinion a 
major impediment for a widespread use of modern control techniques such 
as H∞ and μ syntheses in realistic applications and particularly for problems 
necessitating real-time adjustment of the controller gains. These approaches 
produce high-order controllers expressed under a meaningless state-space 
realization. Note also that this last point is relevant if a controller reduction 
has been performed after the design.
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To approach this problem, a general procedure is proposed in this chapter 
to compute an observer-based realization for an arbitrary given controller and 
a given plant (for both continuous and discrete time cases). Independently of 
the solver used for the control design, such a procedure allows providing a 
realization with a meaningful state vector. In the work of Alazard [1] and 
Cumer et al. [10], it is shown that by observer-based realization, it is also con-
venient to isolate high level-tuning parameters (potentiometers) in a com-
plex control law. As the observer-based realization exploits the model of the 
plant, one can also guess that such a realization is very convenient to update 
the controller to any change in the model or to build a parameter-dependent 
controller K(s, θ) from a parameter-dependent model G(s, θ).

Among other potential advantages of observer-based realization, we 
would like to point out the possibility of handling actuator saturation con-
straints by exploiting this information into the prediction equation. Since 
we do not cover this matter in this document, the reader is referred to [31] 
and references therein for more details. More theoretical discussions on the 
implementation of gain-scheduled controllers that exploit information on 
plant nonlinearities are given in [19] and [20].

The practical solution to handle nonstationary problems (like launch vehi-
cle control design during atmospheric flight) or nonlinear problems consists 
of designing a family of controllers at various flight instants or various flight 
conditions and then interpolating (gain scheduling) these various control-
lers. It is well known that the nonstationary behavior of interpolated control 
laws depends strongly upon the controller realizations that are interpolated. 
Observer-based realizations are very attractive from the gain scheduling 
point of view [25,28]. The main reason is that the controller states are consis-
tent and have physical units if the model on which the observer-based real-
ization is built has physical states. Then, observer-based realizations of given 
controllers are a good alternative to provide gain-scheduled controllers.

From the control design point of view, the observer-based realization of a 
controller allows a simple solution to the inverse optimal control problem to 
be proposed. This solution, called the cross standard form (CSF), is a canoni-
cal augmented standard plant whose unique H∞ or H2 optimal controller is a 
given controller [11]. The general idea is to apply the CSF to a given control-
ler in order to set up a standard problem that can be completed to handle 
frequency-domain H2 or H∞ specifications.

In the second section of this chapter, we present the procedure to compute 
the observer-based realization of a given controller and a given model. The 
reader will find more details in [3]. The application of this procedure to a very 
simple missile model is proposed in the third section to illustrate the interest 
of an observer-based controller for gain scheduling, controller switching, and 
state monitoring. This application has been chosen for its pedagogic feature: 
demo files can be downloaded on a Web page for readers to run these illus-
trations on their own personal computer. In Section 3.4, the CSF is presented 
and also applied to the same academic example: a low-order controller is 
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improved to fulfill a template on its frequency-domain response. The exten-
sions of these results to the discrete-time case are gathered in Section 3.5. In 
Section 3.6, CSF and gain scheduling using observer-based realizations are 
applied to the control design for a launch vehicle on the full atmospheric 
flight envelope [32,33]. Concluding remarks and future works are proposed 
in the last section.

3.2 observer-Based Realization of a Given Controller

In this section, we briefly recall central ideas behind the Youla parameteriza-
tion and show how it can be used to find the state estimator–state feedback 
structure of an arbitrary compensator associated with a given plant.

Consider the stabilizable and detectable nth-order system G(s) (m inputs 
and p outputs) with minimal state-space realization:

 
x Ax Bu
y Cx Du

= +
= +
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The so-called Youla parameterization of all stabilizing compensators built 
on the general LQG controller structure is depicted in Figure 3.1, where Kc, 
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Kf, and Q(s) are, respectively, the state-feedback gain, the state-estimator 
gain, and the Youla parameter.

The compensator associated with this structure is easily shown to have the 
following state-space description:
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where AQ, BQ, CQ, and DQ are the four matrices of the state-space represen-
tation of Q(s) associated with the state variable xQ. Hereafter, x̂ denotes an 
estimate of the plant state x.

The Youla parameterization principle is based on the fact that the closed-
loop transfer function between the input e and the innovation εy y Cx Du= − −ˆ  
is null (see the work of Luenberger [22] for instance). As a consequence, 
changing Q(s) leads to various compensators, but the closed-loop transfer 
function remains unaffected. It is readily shown that this closed-loop trans-
fer function can be represented by the state-space form (Equation 3.4) involv-
ing the estimation error εx x x= − ˆ :
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From this representation, the separation principle appears clearly and can 
be stated in the following terms:

•	 The closed-loop eigenvalues can be separated into n closed-loop 
state-feedback poles (spec(A − BKc)), n closed-loop state-estimator 
poles (spec(A − KfC)), and the Youla parameter poles (spec(AQ)).

•	 The closed-loop state-estimator poles and the Youla parameter poles 
are uncontrollable by e.

•	 The closed-loop state-feedback poles and the Youla parameter poles 
are unobservable from εy. The transfer function from e to εy always 
vanishes.
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Now let us consider a stabilizing nKth-order controller K0(s) with minimal 
state-space realization:
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u C x D y
K K K K
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= +





 . 
(3.5a) 

  (3.5b)

In the sequel, the following notations will be used:

 Jm = (Im − DKD)−1
 and Jp = (Ip − DDK)−1, (3.6)

with the following properties:

•	 JmDK = DKJp, JpD = DJm

•	 Im + DKDJm = Jm, Ip + JpDDK = Jp.

We are first going to express the compensator state equation (Equation 
3.5a) as a Luenberger observer of the variable z = Tx. So, we will denote

 x zK = ˆ  (3.7)

According to Luenberger’s formulation [22], this problem can be stated as 
the search of

 T F Gn n n n n pK K K K∈ ∈ ∈× × ×
  , ,  

such that

 ˆ ˆ ( )z Fz G y Du TBu= + − +  (3.8)

is an (asymptotic) observer of the variable z, that is, z z− ˆ vanishes as t goes to 
infinity. Luenberger has shown that the constraints

 TA − FT = GC, and F stable, (3.9)

ensure that this holds true. Then, with the output equation (Equation 3.5b), 
the state-space representation of the compensator reads

 
ˆ ( ( ) ) ( ( ) )

ˆ

z F TB GD C z G I DD TBD y

u C z D y
K p K K

K K

= + − + − +

= +






. (3.10)
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With Equation 3.7, the identification of Equations 3.5 and 3.10 leads to the 
algebraic relations

 G = (BK − TBDK)Jp (3.11)

 F = AK + (BKD − TB) JmCK. (3.12)

These equations with Equation 3.9 guarantee that we are dealing with an 
observer-based controller. Note that the stability of F (Equation 3.9) is secured 
whenever the original controller (Equations 3.5a and 3.5b) is stabilizing. Indeed, 
from Equations 3.2 and 3.10, a closed-loop state-space realization reads

 




x

z

A BJ D C BJ C

GC TBJ D C F TBJ C
m K m K

m K m Kˆ













=
+
+ +





























x
ẑ . (3.13)

Let us consider the change of state coordinates involving the estimation 
error εz z z= − ˆ:

 
x
z

x I

T Iz

n

nK
ˆ









 = =

−





























M M
ε

with
0














− =and M M1 . (3.14)

The new state-space realization highlights the separation principle:

 




x A BJ D C C T BJ C

Fz

m K K m K

ε



















= + + −










( )

0 



















x

zε
. (3.15)

Thus, the set of n + nK closed-loop eigenvalues includes the nK eigenvalues 
of F. Therefore, F is stable if the initial controller is stabilizing.

Substituting Equations 3.11 and 3.12 in the first relation in Equation 3.9, we get

 (AK + BKDJmCK)T − T(A + BJmDKC) − TBJmCKT + BK JpC = 0 (3.16)

Thus, the problem is reduced to solving in T the generalized nonsymmet-
ric and rectangular Riccati equation (Equation 3.16) and next to computing F 
and G using Equations 3.12 and 3.11, respectively.

Equation 3.16 can also be reformulated as

 [ ]−








 =T I A I

Tcl 0  (3.17)
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where the characteristic matrix Acl associated with the Riccati equation 
(Equation 3.16) is nothing else but the closed-loop system matrix:

 A
A BJ D C BJ C

B J C A B DJ Ccl
m K m K

K p K K m K

:=
+

+





















. (3.18)

The Riccati equation (Equation 3.16) can then be solved by standard invari-
ant subspace techniques that consist of the following:

•	 Finding an n-dimensional invariant subspace S := Range(U) of the 
closed-loop system matrix Acl, that is,

 AclU = UΛ. (3.19)

 This subspace is associated with a set of n eigenvalues, spec(Λ), 
among the n + nK eigenvalues of Acl. Such subspaces are easily com-
puted using Schur factorizations or eigenvalue decompositions of 
the matrix Acl. See [15] for more details.

•	 Partitioning the vector U that spans this subspace conformably to 
the partitioning in Equation 3.18:

 U
U
U

U n n= ∈


















×1

2
1,  . (3.20)

•	 Computing the solution

 T U U= −
2 1

1 . (3.21)

Narasimhamurthi and Wu [24] have shown that the existence of a solution 
T satisfying Equation 3.16 is guaranteed whenever the eigenvalues of the 
Hamiltonian matrix Acl are distinct. In Proposition 3.3, a necessary condition 
is given for the existence of a solution T. In the general case, however, there 
are finitely many admissible subspaces S and thus many solutions. Each 
solution corresponds to a particular choice of n eigenvalues among the set of 
closed-loop eigenvalues of Acl.

Then, given an nth-order plant and an nKth-order compensator, one can com-
pute the linear combination T xn nK ×  of the plant states, which is estimated by the 
compensator state. An analogous result is also discussed by Bender et al. [8].

The reader will find in http://personnel.supaero.fr/alazard-daniel/demos/
demo_obr.html an interactive MATLAB® function cor2tfg to compute the 
matrices T, F, and G from a given controller K0 and a given plant G.



85Control Design and Gain Scheduling Using Observer-Based Structures

3.2.1 Augmented-Order Compensators

In this section, we consider the problem where nK ≥ n, and our aim is to 
find a state-feedback gain Kc, a state-estimator gain Kf, and a dynamic Youla 
parameter Q(s) with order nK − n, such that the observer-based compensator 
structure in Figure 3.1 is equivalent to the original controller (Equations 3.5a 
and 3.5b). We will assume that T has been computed by the previous tech-
nique according to an admissible choice of n poles among the n + nK closed-
loop poles. Next, F and G can be computed from Equations 3.11 and 3.12.

Let us consider the Schur decomposition of Acl used to solve in T the Riccati 
equation (Equation 3.16):

 A
U U
U U

U U
cl F

= ∗




































∗ ∗
1 3

2 4

1 2

0
Λ

Λ UU U3 4
∗ ∗


















. (3.22)

U U
U U

1 3

2 4


















 is a unitary (n + nK) × (n + nK) matrix with U n n

1 ∈ ×
 , U n nK

2 ∈ ×
 , 

U n nK
3 ∈ ×
 , and U n nK K

4 ∈ ×
 .

From Equations 3.13 and 3.15, we can write

 
A BJ D C C T BJ C

F

I

T I
m K K m K n

nK

+ + −











=
−












( )

0

0

































−
A

I

T Icl
n

nK

0
. 

(3.23)

As T U U= −
2 1

1, substituting Equation 3.22 in Equation 3.23, one can derive*

 F V V V U U U UF= = −− −Λ 1
2 1

1
3 4with  (3.24)

ΛF is an nK × nK upper triangular matrix, which can be decomposed by blocks 
with block sizes nK − n and n. The adequate decomposition of V and V−1 
allows us to write

 F V V
W
W

F F

F
=


































[ ]1 2
11 12

22

1

20

Λ Λ

Λ






 (3.25)

* Because 
U U
U U

1 3

2 4


















 is a unitary, it can be shown that U U U U U4 4 2 1

1
3

∗ −= −  and U U U U3 4 2 1
1 0∗ ∗ −+ = .
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with

 V V V V
W
W

n n

n
n n n

K

K

= =
−

−

−


















[ ]
.

1 2
1 1

2
 

and
}

}  (3.26)

Let us perform the change of variable

 ẑ V V w
w

= 





























1 2
1

2
 (3.27)

in Equations 3.8 and 3.9 and introduce the notations

 
G

G

W
W

G
T

T
1

2

1

2

1
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= ;


































= W
W

T1

2
. (3.28)

Equations 3.8 and 3.9 then become

 
� �

� �

� � �

�

w F w F w G y Du T Bu

w F w G

1 11 1 12 2 1 1

2 22 2 2

= + + − +

= +

( )

(( )y Du T Bu− +





 2
�  

(3.29a)

   (3.29b)

and

 
T A F T F T G C

T A F T G C
1 11 1 12 2 1

2 22 2 2

   

  

− − =

− =





 . 
(3.30a) 

  (3.30b)

Now, we will assume that the Schur decomposition has been performed 
in such a way that T W T2 2

 =  is nonsingular (in Proposition 3.4, a necessary 
condition for T to be full column rank is given), and we perform the second 
change of variable:

 w T x2 2=  ˆ . (3.31)

From Equations 3.29b and 3.30b, one can derive

 ˆ ˆ ( ˆ )� � �
x Ax Bu T G y Cx Du= + + − −−1

2 2 . (3.32)
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Using now Equations 3.30a and 3.31 to substitute F w12 2


 into Equation 3.29a, 
we get

 � � � � �
w F w T x G y Cx Du T Ax Bu1 11 1 1 1 1= − + − − + +( ˆ) ( ˆ ) ( ˆ ). (3.33)

Premultiplying Equation 3.32 by T1


, subtracting it from Equation 3.33, and 
using the last change of variable

 w T x xQ1 1− = ˆ  (3.34)

we obtain

 � � � �� �
x F x G T T G y Cx DuQ Q= + − − −−

11 1 1
1

2 2( )( ˆ ). (3.35)

From Equations 3.7, 3.27, 3.31, and 3.34, one can easily derive the global 
linear transformation between the compensator original state xK and the new 
states x̂ and xQ:

 x z V T
x

x
K

Q= =












ˆ [ ]
ˆ1 . (3.36)

Then, the compensator output equation (Equation 3.5b) can be expressed as

 u C Tx C V x D yK K Q K= + +ˆ 1  (3.37)

or

 u J C T D C x C V x D y Cx Dum K K K Q K= + + + − − ( ) ˆ ( ˆ )1 . (3.38)

The identification of the set of Equations 3.32, 3.35, and 3.38 with Equation 
3.3 provides all the parameters for the observer-based controller structure 
shown in Figure 3.1:

 

K T G W T W G

K J C T D C
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c m K K

Q

= =

= − +

= =
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J C V

D J D
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Q m K

1

.  

(3.39)

  

(3.40)

  

(3.42)

  

(3.43)

  
(3.41)

  
(3.44)
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Proposition 3.1

If nK = n, then T is square, and the decomposition (Equation 3.25) of F is such 
that V2 = In×n and V1 is empty. Then, Equations 3.39 through 3.44 become

 Kf = T −1G = (T −1BK − BDK )Jp (3.45)

 Kc = −Jm(CKT + DKC) (3.46)

 Q(s) = DQ = JmDK. (3.47)

This result then specializes to those of Bender and Fowell [7].

3.2.2 Discussion

There is a combinatoric of solutions according to the choice of the partition 
of the closed-loop eigenvalues, first, in the computation of matrix T, and sec-
ond, in the decomposition of matrix F. Hereafter, some rules are proposed to 
reduce the number of admissible choices.

Proposition 3.2

The n eigenvalues chosen for the computation of the solution T of the Riccati 
equation (Equation 3.16) using the invariant subspace approach are the n 
eigenvalues of the closed-loop state feedback associated with the equivalent 
observer-based controller, that is, spec(A − BKc).

Proof 

From Equations 3.18 through 3.20, we have

 
A BJ D C BJ C

B J C A B DJ C
I
T

m K m K

K p K K m K

n n
+

+





















×








 =









× −I

T
U Un n

1 1
1Λ . (3.48)

The first row of this matrix equality reads

 A BJ D C C T U Um K K+ + = −( ) 1 1
1Λ . (3.49)
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Using Equation 3.40, we have

 A BK U Uc− = −
1 1

1Λ . (3.50)

Thus, the eigenvalues of Λ are the eigenvalues of A − BKc. As a consequence, 
the nK remaining eigenvalues are the Luenberger observer poles [i.e., spec(F), 
see also Equation 3.15], which are shared, in Equation 3.25, between the nK − n 
Youla parameter poles [i.e., spec(AQ)] and the n closed-loop state-estimator 
poles [i.e., spec(A − KfC)].

Hereafter, we are considering the set of equations (from Equations 3.18, 
3.19, and 3.22)

 
A BJ D C BJ C

B J C A B DJ C
U
U

m K m K

K p K K m K

+
+






















1

2

































= U
U

1

2

Λ  (3.51)

and we shall give a necessary condition, on the choice of the subspace S, for 
the existence of a solution T (i.e., for U1 to be invertible).

Proposition 3.3

Consider U1 and U2 associated with some n-dimensional invariant subspace 
S of Acl. Assuming there is some uncontrollable plant eigenvalue that is not 
in spec(Acl|S), then U1 is singular. In other words,

 if ∃ λ ∉ spec(Λ) s.t. λ is (A, B) uncontrollable, then U1 is singular. (3.52)

Proof

Consider the (A, B) pair and let λ denote an uncontrollable eigenvalue with 
associated left-eigenvector u. That is,

 uT [ A − λI | B] = 0 (3.53)

Then, premultiplying Equation 3.51 by [uT 0], we get

 uT[A + BJmDKC)U1 + BJmCKU2] =uTU1Λ. (3.54)
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From Equations 3.53 and 3.54, it follows that

 uTU1(Λ − λI) = 0. (3.55)

Thus, if λ ∉ spec(Λ), then uTU1 = 0; that is, U1 is singular.

We also have a dual property that concerns the column rank of T (i.e., for 
U2 to be full column rank). It can be stated as follows.

Proposition 3.4

Consider U1 and U2 associated with some n-dimensional invariant subspace 
S of Acl. Assuming there is some unobservable plant eigenvalue in spec(Acl|S), 
then U2 is column rank deficient. In other words,

 if ∃ λ ∈ spec(Λ) s.t. λ is (A, C) unobservable, then U2 is column rank deficient.  
  (3.56)

Proof

Omitted for brevity. See Proposition 3.3.

Propositions 3.3 and 3.4 are quite useful when an observer-based real-
ization for H∞ or μ controllers must be computed from the standard prob-
lem augmented with input and output frequency weights (see the work of 
Alazard and Apkarian [3] for more details).

Remark 3.1

Among all the admissible choices, the only restriction that can reduce the set 
of solutions is that complex conjugate pairs of poles cannot be separated if 
we are seeking state-space representations with real coefficients. Note that 
such a choice is not always possible. For instance, consider the plant G(s) = 
1/s and the compensator K0(s) = 2/(s + 2). Then, the computation of the state 
feedback–state estimator form leads to Q = 0, Kc = 1 + i (or 1 − i) and Kf = 1 − i 
(resp. 1 + i). Although the gains Kc and Kf are complex, the transfer function 
of the controller has real coefficients. It can be easily shown that

•	 If n (model order) is even, then a real solution always exists.
•	 If n is odd, then a real solution T exists if the number of real eigenval-

ues in spec(Acl) is at least equal to 1, and a real parameterization (Kc, 
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Kf, Q(s)) exists (in the case nK > n) if the number of real eigenvalues in 
spec(Acl) is at least equal to 2.

The following selection rules have proved also useful in practical applica-
tions of the method:

•	 Affect the fastest poles to spec(AQ) in such a way that the Youla 
parameter acts as a direct feedthrough in the compensator.

•	 Assign to spec(A − BKc) the n closed-loop poles that are the “nearest” 
from the n plant poles in order to respect the dynamic behavior of 
the physical plant and reduce the state-feedback gains.

•	 Assign fast closed-loop poles to spec(A −KfC) to have an efficient 
state estimator.

3.2.3 in Brief

The procedure to compute the observer-based form and the dynamic Youla 
parameter of a given nKth-order compensator associated with an nth-order 
plant (nK ≥ n) can be summarized as follows:

•	 Compute the closed-loop matrix Acl (Equations 3.6 and 3.18) and split 
up the n + nK eigenvalues of Acl into three autoconjugate sets:
•	 n eigenvalues to be assigned to state-feedback dynamics 

spec(A − BKc)
•	 nK − n eigenvalues to be assigned to the Youla parameter dynam-

ics spec(AQ)
•	 n eigenvalues to be assigned to state-estimator dynamics spec(A 

− KfC)
•	 Compute a Schur or a diagonal decomposition of Acl (Equation 3.22) 

such that the eigenvalues are ordered on the diagonal according to 
the previous choice; that is, spec(Λ) = spec(A − BKc) and spec(ΛF ) = 
spec(AQ) ∪ spec(A − KfC).

•	 Compute T, F, and G with Equations 3.21, 3.12, and 3.11, respectively.
•	 Compute V, V1, V2, W1, and W2 with Equations 3.24 and 3.26.
•	 Compute the sought parameters Kc, Kf, AQ, BQ, CQ, and DQ using 

Equations 3.6 and 3.39 through 3.44.

The reader will find a demo file (corresponding to the example proposed in 
the work of Alazard and Apkarian [3]) and an interactive MATLAB function 
to compute the observer-based realization for a given controller and a given 
plant in http://personnel.supaero.fr/alazard-daniel/demos/demo_obr.html.
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The help of this function is given below (from Alazard and Apkarian [3]; 
see also OBR2COR and COR2TFG):
=================================================================
Observer-Based Realization of a given controller 
=================================================================
[KC,KF,Q,T] = COR2OBR(PLANT,SYS_K) compute a real Observer
Based Realization, that is the Youla parameterization
(defined by Kc, Kf and Q), of a given continuous-time
controller SYS_K for a given continuous-time plant
PLANT in the case:
 NK (SYS_K order) >= N (PLANT order):
 Remarks: * SYS_K, PLANT and Q are defined as SYSTEM matrices,
          * a real solution may not exist,
          * NQ (order of Q) = NK - N.
This function plots the map of closed-loop eigenvalues (red x)
and PLANT open-loop eigenvalues (blue +) in the complex plane.
Then, the user can choose, in an interactive procedure, the
closed-loop eigenvalue distribution between:
  * state feedback dynamics [A-BKc] (blue o),
  * state estimation dynamics [A-KfC] (red o),
  * Youla parameter dynamics (Q) (green o).
Uncontrollable eigenvalues are automatically assigned to [A-BKc].
Unobservable eigenvalues are automatically assigned to [A-KfC].
(the controller SYS_K is assumed to be minimal).
 Auto-conjugate eigenvalues are assigned together.
 T is the transformation matrix between the old and the new state
 space realizations of the controller:
     X_k = T X_hat.
 [KC,KF,Q,T] = COR2OBR(PLANT,SYS_K,TOL) allows a tolerance TOL
 (default: 10^-6) to be taken into account in the unobservable
 and uncontrollable subspaces computation.

3.2.4 reduced-Order Compensator Case

In the case nK < n [i.e., dim(z) < dim(x)], the observer-based structure shown 
in Figure 3.1 is no more valid. However, an interesting alternative can be 
derived using a reduced-order estimator.

It is interesting to point out the case where [TT CT] is a rank n matrix (i.e., 
p + nK ≥ n). Then, a reduced observer-based realization involving an estimate 
x̂ of the plant state x can be obtained by a linear combination of the compen-
sator state ẑ, plant input u and output y (see Luenberger [22]):

 ˆ ˆ ( )x H z H y Du= + −1 2  (3.57)

with the constraint

 H1T + H2C = In. (3.58)

Then, the separation principle still holds, and a Youla parameterization 
(with a static parameter DQ) built on such a reduced-order estimator reads



93Control Design and Gain Scheduling Using Observer-Based Structures
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 Cx Duˆ )
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 (3.59b)

 
 (3.59c)

 
TA FT GC

H T H C In

− =
+ =








 1 2 .  (3.60)

As previously, it can be easily shown that the closed-loop poles, with a compen-
sator defined by Equations 3.59 and 3.60, are distributed between the n closed-
loop state-feedback poles [spec(A − BKc)] and the nK estimator poles [spec(F)]. 
Equations 3.16, 3.12, and 3.11, which respectively provide T, F, and G, are still 
valid. The problem is therefore reduced to computing Kc, H1, H2, and DQ such 
that (from the identification of Equations 3.59b and 3.59c with Equation 3.5b)

 J C K D C H

J D K D C H D

H T H C I

m K c Q

m K c Q Q

n

= − +

= − + +

+ =

 ( )

( )

.

1

2

1 2








 (3.61a) 
  (3.61b)

   (3.61c)

It is easily deduced that

 Kc = –Jm(Ckt + DKC). (3.62)

This is the same as Equation 3.40, established in the augmented-order com-
pensator case.

To compute H1, H2, an DQ, the following situations can be considered:

•	 If 

−










1

T
C

 exists (which implies that nK + p = n), then
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n pK
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 (3.63)
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. (3.64)

  Hence, relationships 3.61a through 3.61c are satisfied for any DQ, 
and we can choose DQ = 0 without loss of generality.
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•	 If nK > n − p, then there are several solutions (H1, H2) satisfying 
Equation 3.61c. One can choose, for example, the least norm solu-
tion (in order to reduce the control gains) using the pseudoinverse 
of matrix [TTCT]:

 
H T T C C T

H T T C C C

T T T

T T T

1
1

2
1

= +

= +

−

−











[ ]

[ ] . (3.65)

  Then, from Equation 3.61

 DQ = (JmDK + KCH2)(Ip − CH2)−1. 

•	 If nK < n − p, it can only be stated that, in open loop, the compensator 
state ẑ is an estimate of the linear combination T of the plant state x, 
that is, the estimation error εz Tx z= − ˆ tends to 0 with the following 
dynamics:

 εz = (AK + (BKD – TB)JmCK)εz. (3.66)

In this case (nK < n − p), the only way around consists of performing a 
reduction of the plant until the previous technique is applicable. The com-
pensator is then interpreted as an observer-based compensator associated to 
the reduced plant.

In the next section, the interest of observer-based realizations of given con-
trollers is highlighted through three examples: plant state monitoring, con-
troller switching, and smooth gain scheduling on an academic second-order 
missile model.

3.3 Illustrations

The model of a missile between the angle of attack α and the thruster deflec-
tion δ can be roughly approximated by the second-order transfer function

 G s
s

( ) =
−
1

12
 

associated with the state-space realization

 
�
�� �=

0 1 0
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1 0 0

α
α
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. (3.67)
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Let us consider the following stabilizing controller (positive feedback):

 K s
s s
s s

0

2

2

27 26
7 18

( ) = − + +
+ +

. 

A state-space realization (modal canonical form*) of this controller reads
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. (3.68)

In this example, the closed-loop dynamics reveals multiple eigenvalues:

 spec(Acl) = {−2, −2, −2, −1}.

Then, there exist two admissible choices to solve in T the Riccati equation 
(Equation 3.16). The choice spec(A − BKc) = {−1, −2} and the application of 
the procedure provide the following parameterization:

 Kc = [3 3]; Kf = [4 5]T; Q = −1.

Then, the observer-based realization of K0(s) reads
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 (3.69)

associated with the estimated state vector ˆ [ ˆ ˆ ]x T= ,α α .
The corresponding MATLAB sequence using functions cor2obr and 

obr2cor† is:

G = pck([0 1;1 0],[0;1],[1 0],0); cor = tf([–1 –27 –26],[1 7 18]); 
[a,b,c,d] = ssdata(canon(cor,‘modal’)); K = pck(a,b,c,d); 
[Kc,Kf,Q] = cor2obr(G,K); Kob = obr2cor(G,Kc,Kf,Q)

A demo file for the following illustrations is also available at http:// 
per son nel.supaero.fr/alazard-daniel/demos/demo_obr.html.

* Such a canonical form can be easily obtained using the MATLAB macrofunction canon 
(version 6.5.1). For later versions, canon(SYS,'modal') provides a different state-space 
realization.

† See http://personnel.supaero.fr/alazard-daniel/demos/demo_obr.html.
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3.3.1 illustration 1: Plant State Monitoring

Figures 3.2 and 3.3 plot the closed-loop state responses (missile and con-
troller states) to initial conditions on missile states [α(t = 0) = 1 rad and 
α( )t = = −0 1 rad/s]. Figure 3.2 is obtained when the first controller realiza-
tion (Equation 3.68) is used, while Figure 3.3 is obtained with the observer-
based realization (Equation 3.69). For both simulations, the missile state 
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Figure 3.2
Responses to initial conditions on missile states—modal canonical realization of K0(s) 
(Equation 3.68).

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

0.5

–0.5

–1

–1.5

–2

1

ra
d–

ra
d/

s

Angle of attack: α
Angle of attack rate: dα/dt
Estimated angle of attack
Estimated angle of attack rate

Figure 3.3
Responses to initial conditions on missile states—observer-based realization of K0(s) (Equation 
3.69).
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responses are the same because the initial conditions are the same and the 
input–output behavior of the controller is independent of its realization. 
However, one can see in Figure 3.2 that there is no straightforward relation 
between controller states and missile states (α and α), while Figure 3.3 high-
lights that (after the transient response of the state estimator) the controller 
states of the observer-based realization are good estimates of missile states 
and can be used to monitor missile states for offline or inline analysis (for 
failure diagnosis purposes, for instance). As the plant states are meaningful 
variables, [α (in radians) and α (in radians per second)], one can also conclude 
that the state-feedback gain Kc has a physical dimension Kc = [3 rad/rad 3 s], 
while the dimension of the various components of realization (Equation 3.68) 
is not defined.

3.3.2 illustration 2: Controller Switching

Let us consider a second stabilizing controller

 K s
s

s s
1 2

1667 2753
27 353

( ) = − +
+ +  

and let us assume that the control law must switch from controller K0 to con-
troller K1 at time t = 5 s. This new controller increases closed-loop dynamic 
performances required, for instance, during the final flight phase (just before 
the impact). Indeed, the closed-loop dynamics is now

 spec(Acl) = {−3, −4, −10 + 10i, −10−10i}.

Note that the structure of this new controller K1 is quite different from the 
previous one (the direct feedthrough term is null in K1). An observer-based 
parameterization for K1(s) reads*

 Kc = [13  7]; Kf = [20  201]T; Q = 0.

The state vector initialization of the second controller K1 with the value 
of the state vector of the first controller at the switch time (5 s) can create an 
undesirable transient response (see Figure 3.4 when modal canonical real-
izations are used for K0 and K1). The meaningful state of the observer-based 
realizations of both controllers allows us to initialize correctly the second 
controller and so allows the transient response on the attitude α(t) to be 
reduced in a significant way (see Figure 3.5).

* This observer-based parameterization corresponds to the choice affecting the two real 
closed-loop eigenvalues (i.e., −3 and −4) to the state-feedback dynamics.
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3.3.3 illustration 3: Smooth gain Scheduling

Now, let us assume that one wishes to interpolate the controller from K0 to 
K1 over 5 s. The linear interpolation of the four state-space matrices of modal 
canonical realizations provides a nonstationary controller K(s, t) whose fre-
quency response with respect to (w.r.t.) time t is depicted in Figure 3.6. One 
can notice that this response is nonmonotonous at low frequency, and one 
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Figure 3.4
Responses to initial conditions and switch from K0(s) to K1(s) at time t = 5 s—modal canonical 
realizations of Ki(s).
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Responses to initial conditions and switch from K0(s) to K1(s) at time t = 5 s—observer-based 
realizations of Ki(s).
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can also easily check that, at time 2 s, the controller K(s, 2) does not stabilize 
the plant G(s).

The interpolation of the four state-space matrices of observer-based real-
izations of K0 and K1 provides a smoother interpolation (see Figure 3.7). One 
can also check that this new interpolated controller stabilizes G(s) for all time 
t ∈ [0, 5 s].
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Figure 3.6
K (s,t): singular value w.r.t. time.
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3.4 Cross standard Form

In most practical applications, the control design problem can be expressed 
in the following terms: Is it possible to improve a given controller (often, a 
simple low-order controller designed upon a particular know-how or good-
sense rules) to meet additional H2 or H∞ specifications? Or in other terms, is 
it possible to take into account a given controller (which meets some closed-
loop specifications) in a standard H2 and H∞ control problem? To address this 
problem, the notion of CSF is introduced in this section for a given nth-order 
plant and an arbitrary given stabilizing nKth-order controller. The CSF can be 
seen as a solution for both inverse H∞ and H2 optimal control problems, that 
is, the CSF is a standard augmented problem whose unique H∞ and H2 opti-
mal controller is an arbitrary given controller. The CSF is directly defined 
by the four state-space matrices of the plant, the four state-space matrices of 
the given controller, and the solution T to the general nonsymmetric Riccati 
equation (Equation 3.16) introduced in Section 3.2 to compute the observer-
based realization of a given controller for a given plant. The CSF can be 
applied to full-order, low-order, or augmented-order controllers.

The interest for inverse optimal control problems motivates many works 
[13,14,17,18,23,26]. The practical interest of such solutions lies in the possibility of 
mixing various approaches or taking into account different kinds of specifica-
tions [27,29,30]. In the particular case of the H∞ optimal control problem, the vari-
ous contributions address restrictive cases: state-feedback controller in [14] and 
single-input single-output controller and specific sensitivity problem in [17]. But 
a solution for the general case (multi-input multi-output, dynamic output feed-
back of arbitrary order) has never been stated. This general case is addressed in 
[26]: for a given weight system W(s) and a given controller K(s), the problem is to 
find all the plants G(s) such that  F F W G Kl l( ( ) ), , ∞ < γ  (see Figure 3.8). Note that 
the problem considered in this section is different since the plant G(s) [that is, the 
lower right-hand transfer matrix of the standard augmented plant P = Fl(W, G)] 
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W11
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W31
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W13
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u
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Figure 3.8
Block diagram of standard plant P, weight function W, model G, and controller K.
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is given and corresponds to the model of the plant between the control input 
and the measured output.

The convex closed-loop technique [9] seems also an attractive approach 
to take into account a given controller and additional H2 or H∞ constraints. 
However, such an approach needs a Youla parameterization of the controller 
and so is limited to full-order (observer-based) controllers. Furthermore, this 
approach leads to a very high-order controller.

In Section 3.4.1, the CSF is defined as a solution to H2 and H∞ inverse opti-
mal control problems, for an nth-order linear time invariant (LTI) system and 
an nKth-order stabilizing LTI controller. In Section 3.4.2, an analytical expression 
of a CSF is proposed for low-order controllers (nK ≤ n), and the existence of such 
a CSF is discussed. In Section 3.4.3, this new CSF is extended for augmented-
order controllers and so encompasses previous results presented in [5]. Finally, 
the missile second-order example is used in Section 3.4.4 to highlight the way to 
use CSF to take into account an initial low-order compensator and a frequency-
domain specification in an augmented standard problem.

3.4.1 Definitions

The general standard plant between exogenous input w, control input u, con-
trolled output z, and measurement output y is denoted by

 P s
P s P s

P s P s
zw zu

yw yu

( )
( ) ( )

( ) ( )
=











 , 

with corresponding state-space realization

 P s

A B B

C D D
C D D

p

( ) : =
1 2

1 11 12

2 21 22


























. (3.70)

Let us consider again the plant G(s) defined in Equation 3.2 and the stabi-
lizing initial controller K0(s) defined by Equations 3.5a and 3.5b.

Definition 3.1: Inverse H2 optimal Problem

Find a standard plant P(s) such that

•	 Pyu(s) = G(s)
•	 K0 stabilizes P(s)
•	 K0(s) = argminK(s)  F P s K sl( ( ) ( )), 2

(namely, K0(s) minimizes  F P s K sl( ( ) ( )), 2).
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Definition 3.2: Inverse H∞ optimal Problem

Find a standard plant P(s) such that

•	 Pyu(s) = G(s)
•	 K0 stabilizes P(s)
•	 K0(s) = argminK(s) F P s K sl( ( ) ( )), ∞

Definition 3.3: Cross standard Form

If the standard plant P(s) is such that the four conditions,

•	 C1: Pyu(s) = G(s)
•	 C2: K0 stabilizes P(s)
•	 C3: Fl(P(s), K0(s)) = 0
•	 C4: K0 is the unique solution of the optimal H2 or H∞ problem P(s)

are met, then P(s) is called the CSF associated with the system G(s) and the 
controller K0(s) and will be denoted by PCSF(s) in the sequel.

By construction, the CSF solves the inverse H2 optimal problem and the 
inverse H∞ optimal problem. Note that the uniqueness condition C4 is rel-
evant in our context since we are looking for an H2 or H∞ design to recopy a 
given controller.

3.4.2 Low-Order Controller Case (nK ≤ n)

The following proposition provides a general analytical characterization of 
the CSF.

Proposition 3.5

For a given stabilizable and detectable nth-order system G(s) (Equation 3.2) 
and a given stabilizing nKth-order controller K0(s) with nK < n (Equation 3.5), 
a CSF reads

 PCSF

#
K K

K K K K K m K

p

s

A T B BD B

C T D C D DD D I D D

C I DD

( ) : =
−

− − − −
− KK D






























 (3.71)
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where T is the solution of the generalized Riccati equation (Equation 3.16) 
and where T # is a right inverse* of T (such that TT I#

nK
= ).

Proof

From Equation 3.71, it is obvious that conditions C1 and C2 are met. A state-
space realization of Fl(PCSF, K0) associated with state vector [ ]x xT

K
T T,  reads

 

A BJ D C BJ C T B

B J C A B DJ C B

C T C

m K m K
#

K

K p K K m K K

K K

+
+

− 0



























 

where Jm and Jp are defined in Equation 3.6. Let us consider the change of 
state coordinates (already defined in Equation 3.14):

 M M= =
−

−























1 0I

T I
n

nK
 (3.72)

where T is a solution of Equation 3.16 and TT I#
nK

= . The new state-space 
realization of Fl(PCSF, K0) reads

 

A BJ D C C T BJ C T B

A B D TB J C

C

m K K m K
#

K

K K m K

K

+ + −
+ −

−

( )

( )0 0

0 0






























. (3.73)

Thus, the n + nK stable closed-loop eigenvalues are composed of

•	 n eigenvalues of A + BJm(DKC + CKT), which are unobservable by the 
controlled output z of PCSF

•	 nK eigenvalues of AK + (BKD − TB)JmCK, which are uncontrollable by 
the exogenous input w of PCSF

Thus, condition C3 is met:

 Fl(PCSF(s), K0(s)) = 0.

In the next section, it is shown that it is always possible to find a right inverse T # 
of T such that the uniqueness condition C4 is met, and that ends the proof.

The general block diagram associated with PCSF is depicted in Figure 3.9.

* See also Proposition 3.6.
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One can notice that the CSF is a one-block problem and can be seen as 
a combination of well-known output estimation problem and disturbance 
feedforward (DF) problem [35]. Thus, if both cross transfers [Pzu(s) andPyw(s)] 
are minimum phase (no zero in the closed right half plane), then both H2 
and H∞ syntheses converge toward the same H∞ performance index (γ) [34]. 
However, for the standard problem PCSF, one can state that γ = 0 and that both 
syntheses are exactly equal.

3.4.2.1 Uniqueness Condition

The uniqueness condition (C4) can be proven considering the H2-optimal 
controller of PCSF: first of all, to vanish the direct feedthrough between exog-
enous inputs and controlled outputs in PCSF, a simple change of variable (u ← 
u – DK y) is performed to transform PCSF into the problem P sCSF ( ):

 

A BJ D C T B BJ

C T I

J C I DJ

m K
#

K m

K m

p p m

+
− 0
































 (3.74)

and thus

 
F P K F P K D

F P K

l CSF l CSF K

K
l CSF

( ) ( )

argmin ( ) ar

, ,

,

= − ,

=  ggmin ( )
K

l CSF KF P K D , + .
 

In the work of Doyle et al. [12] and Zhou et al. [35], it is demon-
strated that a standard problem P has a unique H2-optimal controller if 
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Figure 3.9
Block diagram of CSF PCSF(s) (case nK ≤ n).
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and only if P is a regular problem, that is, in our case, if cross transfers 

P s
A BJ D C BJ

C T Izu
m K m

K m

( ) : =
+

−




















 and P s
A BJ D C T B

J C Iyw
m K

#
K

p p

( ) : =
+















 have no 

invariant zeros on the jω-axis. It is clear that the n zeros of Pzu(s) are the n 
eigenvalues of ϕzu = A + BJm(DKC + CKT) [ϕzu is the dynamic matrix of P szu

−1( )] 
and, considering Equation 3.73, belong to the set of n + nK closed-loop eigen-
values and thus are stable by assumption. Thus, Pzu(s) has no zeros on the 
jω-axis.

The problem of the zeros of Pyw(s) is more complex: the n zeros of Pyw(s) are 
the n eigenvalues of ϕyw = A + BJm DK C − T #BK Jp C [ϕyw is the dynamic matrix 
of P syw

−1( )]. Then, premultiplying ϕyw by N = [T # T⊥], postmultiplying by N −1 = 
[TT T⊥]T, and using Equation 3.16, it becomes

 N N
A B D TB J C

T A BJ D C T B J C Tyw
K K m K

T

m K
#

K p

−
⊥=

+ −

+ −
1

0
φ

( )

( ) ⊥⊥





















. 

The n zeros of Pyw(s) are therefore composed of

•	 nK eigenvalues of AK + (BKD − TB)JmCK. Considering Equation 3.73, 
these eigenvalues belong to the set of n + nK closed-loop eigenvalues 
and thus are stable by assumption.

•	 n − nK eigenvalues of ϕ( ) ( )T T A BJ D C T B J C T# T
m K

#
K p= + −⊥ ⊥  whose 

location in the complex plane is discussed in the following 
proposition.

Proposition 3.6

It is always possible to find a right inverse T # of T such that all the n − nK 
eigenvalues of φ( T#) (and thus all the n zeros of the cross transfer Pyw) are not 
on the jω-axis.

Proof

The set of right-inverse matrices of T can be parameterized in the following 
way:

 T # = T+ + T ┴X



106 Advances in Missile Guidance, Control, and Estimation

where X is an (n − nK) × nK matrix of free parameters. Then,

 ϕ ϕ( ) ( ) ( )T X T A BJ D C T XB J CT# T
m K K p= = + −⊥ ⊥ ⊥. (3.75)

Thus, X allows the n − nK eigenvalues of φ to be assigned in the s-plane. The 
computation of X is in fact an eigenvalue assignment problem by a state feed-
back XT on the pair ( ( ) , ( ) )

T
m K

T
K p

TT A BJ D C T B J CT⊥ ⊥ ⊥+ .

Thus, Proposition 3.6 allows us to state that Pzu(s) has no zeros on the jω-axis. 
Thus, P sCSF ( ) is regular, and K0(s) is the unique solution of the H2-optimal 
problem PCSF.

As Fl(PCSF, K0) = 0, all controller solutions of the H∞-optimal problem are 
also solutions of the H2-optimal problem. Thus, K0(s) is also the unique solu-
tion of the H∞-optimal problem PCSF.

3.4.2.2 Existence of CSF

Proposition 3.7

The nonexistence of a full-row rank matrix T solution of the generalized non-
symmetric Riccati equation (Equation 3.16) implies the nonexistence of a CSF 
for G(s) and K0(s).

Contrariwise Proof

Let us assume that a regular CSF exists for the strictly proper stabilizing 
controller K0(s) − DK and for the stabilizable and detectable modified system 
G s( ) (such a change of variable is not restrictive):

 G s
A BJ D C BJ

J C DJ
m K m

p m

( ) : =
+















. 

Then, it is shown in the work of Doyle et al. [12] that the unique solution 
KH2



 of the corresponding H2-optimal problem involves a state-feedback gain 
Kc and a state-estimator gain Kf [according to the structure depicted in Figure 
3.1 with Q(s) = 0]. The n-th-order state-space realization of such a controller 
associated with the state vector x̂ reads

 K
A BJ D C BJ K K J C K DJ K K

KH
m K m c f p f m c f

c
2 0

�
: =

+ − − +
−
















. (3.76)
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As the solution is unique, K s K s DH K2 0


( ) ( )= − . Thus, the state-space realiza-
tion (Equation 3.76) is nonminimal if nK < n. Therefore, a projection matrix 
Sn nK ×  (full-row rank) exists such that x SxK = ˆ  and

 

S A BJ D C BJ K K J C K DJ K A S

SK B

K C

m K m c f p f m c K

f K

c K

( )+ − − + =

=

− = SS.

 

Thus, S solves the following equation:

 S(A + BJmDKC) + SBJmCKS − BK JpC − (AK + BKDJmCK)S = 0. (3.77)

This equation is exactly the same as the Riccati equation (Equation 3.16) in T. 
Thus, if T (or S) does not exist, then the CSF for given G s( ) and K0(s) − DK [or 
G(s) and K0(s)] does not exist.

Remark 3.2

This last proposition highlights that the controller ˆ ( )K s  provided by H2 or H∞ 
design on PCSF is nonminimal. It can be shown that the n − nK nonminimal 
dynamics in ˆ ( )K s  are assigned to the eigenvalues of φ(X) (Equation 3.75) and 
thus can be assigned by a suitable choice of X (see example in Section 3.4.4).

3.4.3 Augmented-Order Controller Case (nK > n)

In the case nK > n, the CSF is directly defined from the three parameters Kc, 
Kf, and Q(s) of the observer-based realization of K0(s) (see Figure 3.10 and the 
work of Alazard et al. [5] for the proof). These parameters can be computed 
using the procedure presented in Section 3.2.3.

3.4.4 illustration

The results of this section are illustrated on the missile example G(s) pre-
sented in Section 3.3. Let us consider the system described in Equation 3.67 
and the initial controller

 K s
s

s
s

s0
23 32

12
23

1 391
12

12 4
61 23

( ) = − −
+

= − + .
+

: = −
−














. 
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The only real solution T of Equation 3.16 reads

 T = [0.32787 − 0.032787].

Let us choose T # = T+. Then, the CSF (Equation 3.71) reads

 PCSF : =

.

.
0 1 12 079 0
1 0 21 792 1
3 26 23 1
1 0 1 0





















. 

It is easy to check that the optimal H∞ controller reads

 K s
s s

s s∞ = − + . + .
+ + .

( )
( )( )

( )( )
23

1 391 2 079
12 2 079  

The corresponding MATLAB sequence using function cor2tfg* is:

a=[0 1;1 0]; b=[0;1]; c=[1 0]; d=0; AK=-12; BK=4; CK=61; DK=-23; 
T=cor2tfg(pck(a,b,c,d),pck(AK,BK,CK,DK)) Tm1=pinv(T); 
plant=pck(a,[Tm1*BK-b*DK b],[-CK*T-DK*c;c],... 

[-DK+DK*d*DK,eye(size(d,2))-DK*d; eye(size(d,1))-d*DK d]); 
K=hinfsyn(plant,1,1,0,1000,0.01); [ak,bk,ck,dk]=unpck(K); 
zpk(ss(ak,bk,ck,dk))

Furthermore, Equation 3.75 reads

 φ(X) = −2.0792 − 0.39801X and φ(246.02294) = −100.

* See http://personnel.supaero.fr/alazard-daniel/demos/demo_obr.html.
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Figure 3.10
Block diagram of CSF PCSF (case nK > n).
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Then the choice

 T # = T+ + 246.0229T⊥ = [27.5  244.5]T

leads to a new PCSF and a new optimal H∞ controller:

 K s
s s

s s∞ = − + . +
+ +

( )
( )( )

( )( )
23

1 391 100
12 100

. 

In both designs, K∞ is not minimal, and K∞ = K0.

3.4.4.1 Improving K0 with Frequency-Domain Specification

In fact, K0 has been designed to assign the dominant closed-loop eigenvalues 
to −1 ± i. Indeed,

 poles of , ,
1

1
1 1 10

0−
= − + − − −

K s G s
i i

( ) ( )
{ }. 

The magnitude of the frequency-domain response of K0(s) is plotted in Figure 
3.11 (solid line). Now, let us assume that we want the controller to have a roll-off 
behavior beyond 10 rad/s and must fulfill the low-pass template also depicted in 
Figure 3.11 (gray patch). Such a specification can be formulated to attenuate mis-
sile flexible modes, which are not taken into account in the design model G(s).

This specification can be handled, in H∞ framework, in weighting the 
closed-loop transfer from a disturbance on the plant output (measurement 
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Figure 3.11
Frequency-domain responses (magnitude) of K0(s) (solid line), K(s) (dashed line), and template 
(gray patch).
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noise) to the plant input u.* It is obvious that, in the standard problem asso-
ciated to the CSF (see Figure 3.9), the plant input u is directly linked to the 
controlled output z. Then, in order to take into this frequency-domain speci-
fication, one can augment this standard problem with a noise w′ acting on 
the measurement y and weighted by a second-order high-pass filter (in order 
to get a –40 dB/dec roll-off behavior). The augmented CSF is then depicted 
in Figure 3.12. The high-pass filter W(s) is in fact a second-order derivative 

filter whose poles 
− − ±







1000

2
1( )i are introduced for properness reasons. 

The gain g is tuned by a trial-and-error procedure. The tuning g = 0.02 pro-
vides a fourth-order H∞ optimal controller K(s) whose frequency response is 
depicted in Figure 3.11 (dashed line). The template is now fulfilled, and one 
can check that the closed-loop dominant dynamics is assigned to the nomi-
nal values −1 ± i. Indeed,
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3.5 Discrete-time Case

Techniques presented in Sections 3.2 and 3.4 in the continuous-time case are 
now extended to the discrete-time case (proofs are omitted for brevity).

* Such a transfer reads K(Im − KG)−1 (with positive feedback).
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Figure 3.12
Augmented CSF to take into account roll-off specification (with T # = [27.5 244.5]T).
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The discrete-time plant G(z) (order n) is defined as
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. (3.78)

The discrete-time controller K0(z) (order nK) is defined as
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Two classical implementation structures of discrete-time observer-based 
controllers can be used: the predictor and the estimator structures.

3.5.1 Discrete-Time Predictor Form

The predictor form is described by
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This case is analogous to the continuous-time one. The construction proce-
dure is therefore the same. It provides the parameters Kc

p, K f
p, AQ

p , BQ
p , CQ

p , and 
DQ

p  of the Youla parameterization associated with the predictor form whose 
state-space representation reads
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3.5.2 Discrete-Time estimator Form

The estimator structure of an observer-based controller is now described as

ˆ( ) ˆ( ) ( )
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(3.82)

In contrast to the previous case, this discrete-time estimator controller 
exhibits a direct feedthrough between y(k) and u(k), but the separation princi-
ple still holds: the closed-loop transfer function between the input reference 
and the innovation y k Cx k k Du k( ) ˆ( ) ( )− − −/ 1  is zero, and the closed-loop 
poles can be split into the closed-loop state-feedback poles [spec(A − BKc)], 
which are unobservable from the innovation, and the closed-loop state- 
estimator poles [spec(A(I − Kf C))], which are uncontrollable by the reference 
input. The Youla parameterization associated with this structure is depicted 
in Figure 3.13 and reads
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(3.83)

We know from Sections 3.2 and 3.5.1 how to compute all the parameters 
(Kc

p, K f
p , AQ

p , BQ
p , CQ

p , and DQ
p ) of the predictor form and the corresponding 

Youla parameterization, from a given compensator (AK, BK, CK, DK) and a 
given plant (A, B, C, D). As a consequence, the parameters (Kc, Kf, AQ, BQ, CQ, 
and DQ) of the equivalent estimator form can be obtained by direct identifica-
tion of the representations in Equations 3.81 and 3.83. This yields
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3.5.3 Discrete-Time CSF

In the case of low-order controller (nK ≤ n), the general expression for the CSF 
(Equation 3.71) is valid for the discrete-time case.

In the case of the augmented-order controller (nK ≥ n), it is possible to define 
the CSF associated with an estimator form of the controller (Equation 3.83).
This CSF reads

 P z
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( ) : =
− − +

0

0 0
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. (3.85)

The block diagram associated with this CSF is depicted in Figure 3.14.
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Figure 3.13
Discrete-time Youla parameterization using state-estimator structure [where ˆ ˆ( )x x k kk = / − 1 ].



114 Advances in Missile Guidance, Control, and Estimation

3.6 Launch Vehicle Control Problem

CSF and gain scheduling using observer-based realization are illustrated in 
this section on a control design problem for a launch vehicle (representative 
of a strategic missile).

3.6.1 Description

This application considers the launch vehicle inner control loop.
According to Figure 3.15, the following notation is used:

•	 i: the launch vehicle angle of attack
•	 ψ: the deviation angle around axis w.r.t. the guidance attitude 

reference
•	 Va and Vr: the absolute and relative velocity, respectively
•	 w: the wind velocity
•	 β: the thruster angle of deflection
•	 z: the lateral drift rate

The rigid behavior is modeled by a third-order system with state vector 
:x zr T= [ ]ψ ψ  . This rigid model strongly depends on two uncertain 
dynamic parameters, A6 (aerodynamic efficiency) and K1 (thruster efficiency).

From Figure 3.15 and under small angle assumption, one can derive the 
angle-of-attack equation:

++
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+
+

+
+

++
–
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e

yu
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Kf

B
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D

Cz–1I

Q(z)

Figure 3.14
Discrete-time CSF.
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 i
z w

V
= + −ψ



. (3.86)

The discrete-time validation model considered in this section [i.e., the full-
order model Gf(z)] is characterized by the rigid dynamics, the dynamics of 
thrusters (order 2), sensors (order 2), and the first five bending modes (order 
10). The launch vehicle is aerodynamically unstable. Finally, the characteris-
tics of bending modes are uncertain (four uncertain parameters per mode).

3.6.2 Objectives

The available measurements are the attitude angle (ψ) and rate ( ψ). The con-
trol signal is the thruster deflection angle β. Launch vehicle control objec-
tives for the whole atmospheric flight phase are as follows:

•	 Performance with respect to disturbances (wind). The angle-of-
attack peak, in response to the typical wind profile w(t), must stay 
within a narrow band (±imax). This wind profile is plotted in Figure 
3.16 (dashed plot) and corresponds to a worst-case wind encountered 
during launches with a strong gust when aerodynamic pressure is 
maximal.

•	 Closed-loop stability with sufficient stability margins. This involves 
constraints on the rigid mode and also on the flexible modes. In fact, 
the first flexible mode is “naturally” phase controlled (collocation 
between sensors and the actuator), while other flexible modes must 
be gain controlled (roll-off). Thus, the peaks associated with the 

β
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X
x
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i

Vr Va
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+

Figure 3.15
Launch vehicle simplified representation.
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flexible modes (except for the first) on the frequency response of the 
loop gain [L(s) = K(s)G(s)] must stay below a specified level XdB for all 
parametric configurations (see Figure 3.21 as an example). From the 
synthesis point of view, the flexible modes are not taken into account 
in the synthesis model. However, a roll-off behavior with a cutoff 
frequency between the first and the second flexible modes must be 
specified in the synthesis.

•	 Delay margin must be greater than one sampling period.

All these objectives must be achieved for all configurations in the uncer-
tain parameter space (22 uncertain parameters including aerodynamics coef-
ficient, propulsion efficiency, and bending mode characteristics), particularly 
in some identified worst cases where the combination of parameter extremal 
values is particularly critical. In this paper, the robustness analysis is limited 
to these worst cases as experience has shown that they are quite representa-
tive of the robustness problem. A more complete μ-analysis is presented in 
the work of Imbert [16].

3.6.3 Launch Vehicle Control Design

The approach proposed to satisfy all these stationary objectives proceeds in 
two steps: the first one aims to satisfy time-domain specification (angle-of-
attack constraint), and the second one is an H∞ synthesis based on the CSF 
allowing the frequency-domain specifications (roll-off, stability margins) to 
be met.

The models used for the synthesis are discrete-time models including a 
zero-order hold.

imax

–imax

Wind profile w(t)

Angle of attack i(t)
(worst cases)

TfTi

Figure 3.16
Angle of attack i(t) (solid) obtained with K1(z) and wind profile w(t) (dashed, normalized unit).
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3.6.3.1 First Synthesis: Nonconventional LQG/LTR Synthesis

3.6.3.1.1 State Feedback on Rigid Model

The standard control problem is characterized by two controlled outputs i 
and z, two measurements ψ and ψ , one control signal β, and one exogenous 
input w (disturbance). This standard problem reads
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. (3.87)

Then, the gain Kd is computed such that the discrete-time control law 
βk d k

rK x= −  minimizes the following continuous-time LQ criterion:

 J z i r t x Qx R x Nr r T rT T
= + + = + +(∞
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with
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The model and the performance index are discretized by taking into 
account the zero-order hold at the input βk:
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for the discrete-time model x A x Bk
r

d k
r

kd+ = +1 2 β . The matrices (Ad, B d2 , Qd, Nd, and 
Rd) involving the matrix exponential are computed using Van Loan’s formula [21].

Adopting the notation

 K K K Kd z= [ ]ψ ψ, ,




, (3.90)

the gain Kd can be used to build a servo-loop of the measured variable ψ, 
that is,

 β ψ ψ ψψ ψk ref k k z kK K K z
k

= − − −( )






  (3.91)

where ψ
kref  is the input reference.
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3.6.3.1.2 Augmented State with Wind Dynamics

The wind dynamics is modeled by a stable first-order filter and is then dis-
cretized with the zero-order hold method:

 w A w wk w k k+ = +1  . 

This DF model introduces a new tuning parameter Aw. The discrete-time 
augmented problem corresponding to the state vector xa = [xy, w]T then reads
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with B e B
d

sT
A

1
0

1= ∫ η ηd .

In order to compute the new state-feedback gain Kd
a  associated with the 

augmented state xa, Equation 3.91 is used with ψ
kref  such that the angle of 

attack due to disturbance w is cancelled (see Equation 3.86), that is,

 ψ
kref

k kw z
V

= −
 . 

Then, the term żk

V
 is ignored because it can introduce nonstabilizing cou-

plings in the lateral motion. Finally, the gain Kd
a is obtained as

 K K
K

V
d
a

d= −












ψ . (3.93)

Following this procedure, the LQ state-feedback closed-loop dynamics is 
stable and satisfies

 spec spec spec( ) ( ) ( )A B K A B K Ad
a a

d
a

d d wd d
− = − ∪2 2 . 
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3.6.3.1.3 Kalman’s Filter with LTR Tuning

To compute the gain Gd
a of Kalman’s filter on the augmented model (Ad

a, B
d

a
2  , 

Ca
2 , D22), an LTR tuning is proposed. It is well known that stability margins 

of the LQ state feedback are degraded when Kalman’s filter is introduced 
in the control loop. The LTR procedure allows these stability margins to be 
recovered [6]. Thus, the state noise is composed of two disturbing signals: 
one on the wind model input (

w) and one on the control input β through a 
gain ρ  (LTR effect):

 W B B

I
V v

T

f
=













=


















ρ
ω

2 2
2

0

0

1 0
0

and . 

W and V are the covariance matrices of continuous-time noises on the state 
vector (xa) and the measurement vector ([ ]ψ ψ,  T), respectively. Therefore, 
the Kalman filter tuning depends on three parameters: ρ (LTR weighting), 
v (measurement-to-state-noise ratio), and ωf (in radians per second; rate-
to-position-measurement-noise ratio). ωf represents the frequency beyond 
which it is better to integrate the rate measurement ψ to estimate the position 
ψ̂ rather than to use the measurement position ψ directly.

The covariance matrices, Wd and Vd, of discrete-time noises on the state 
vector and the measurement vector are also discretized using Van Loan’s 
formulae.

This nonconventional LQG/LTR design yields a fourth-order compensa-
tor K1(z) involving the gains Kd

a  and Ga
d and the augmented model (Ad

a , B
d

a
2 , 

Ca
2 , D22) and is defined by Equation 3.83 without Youla parameter Q(z). The 

results obtained so far are presented in Figures 3.16 and 3.17.
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Figure 3.17
K1(z)Gf(z): Nichols’s plots for worst cases.
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In Figure 3.16, it can be observed that the performance requirements (angle 
of attack) are quite satisfied for all worst cases. In Figure 3.17, one can also 
note that the template for low-frequency stability margins is satisfied (this 
template is depicted in Figure 3.17 with the vertical line on the first critical 
point on the right-hand side), and the first flexible mode remains between 
two critical points for all worst cases (phase control). However, the roll-off 
effect is not strong enough: the template for gain margins on flexible mode 
numbers 2 and 3 (depicted in Figure 3.17 with the horizontal line at X dB) is 
not satisfied in any case. Note that Nichols plots are obtained with discrete-
time transfers: it appears that flexible modes 4 and 5 are aliasing between 
flexible modes 1 and 3. These modes are not significant for the control design.

3.6.3.2  Second Synthesis: H∞ Synthesis Using CSF for 
Frequency-Domain Specifications

In order to satisfy this last frequency-domain requirement, an H∞ synthesis 
is performed on the standard problem depicted in Figure 3.18.

This standard problem can be described as follows:

•	 Between inputs [e u]T and outputs [q2 y]T, one can recognize the 
CSF presented in Section 3.4, which will inflect the solution toward 
the previous pure performance compensator (LQG/LTR design).

•	 The output q1 is introduced to specify the roll-off behavior with a 
second-order filter F(z) in order to fulfill the gain margin template on 
flexible mode numbers 2 and 3.

The output q1 in fact weighs the second-order derivative of the control sig-
nal u. The frequency-domain response of F(z) is depicted in Figure 3.19. This 
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Figure 3.18
Pf (z): setup for the final H∞ synthesis.
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response exhibits a wide hump centered on the flexible modes 2 and 3. This 
hump frames peak variations of flexible modes 2 and 3 for all worst cases.

Then, the H∞ synthesis provides a sixth-order compensator K2(z). Analysis 
results are displayed in Figures 3.20 and 3.21. The time-domain performance 
specification is still met (Figure 3.20). Figure 3.21 shows that stability mar-
gins are good enough for all worst cases, and the roll-off behavior is now 
quite satisfactory.
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Figure 3.19
Singular values: F(z) (black) and Gf (z) (gray).
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Figure 3.20
Angle of attack i(t) (solid) obtained with K2(z) and wind profile w(t) (dashed).
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3.6.4 gain Scheduling

The previous stationary design has been applied for various instants ti along 
the flight envelope. The H∞ solver that has been used is the MATLAB macro-
function dhinfric because it provides the best index γ among the various 
algorithms proposed in the various MATLAB toolboxes. The drawback of 
this algorithm lies in the fact that the solution K zi

2 ( )  is not the central DGKF 
solution. Because of multiple variable changes performed to increase numer-
ical conditioning in Riccati equations, the realization of the solution has no 
physical meaning. The linear interpolation of the four matrices (AK

i , BK
i , CK

i , and 
DK

i ) provides a nonstationary compensator noted K2(z,t) with an awkward 
behavior as can be seen from the evolution of the singular value of K2(z,t) as 
a function of time t during the atmospheric flight (Figure 3.22).

This problem can be easily mastered using observer-based realizations. 
Thus, an observer-based realization of each compensator K zi

2 ( ) is computed 
using the approach presented in Section 3.2. The model used in this realiza-
tion is the transfer between u and y of the standard problem Pf (z) (see Figure 
3.18). The main difficulty with this approach is that the observer-based real-
ization is not unique and depends on the way the closed-loop dynamics 
F P z K zl f

i i( ( ) ( )), 2  is split between the state-feedback dynamics and the state-
estimation dynamics. Considering the particular structure of the standard 
problem Pf(z), this difficulty is easily overcome.

Let 
A B
C D

F F

F F














 be a realization of the weighting filter F(z). Then, the realiza-

tion of the augmented plant Pf(z) depicted in Figure 3.18 is given as
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0
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Figure 3.21
K2(z)Gf(z): Nichols’s plots for worst cases.
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One can also derive

 spec spec spec( ) ( ( )) ( )A B C− = − ∪1 2 2A I G C Ad
a

d
a a

F . 

The first term [spec( ( ))]A I G Cd
a

d
a a− 2  represents the stable dynamics of the 

Kalman filter previously designed. The second term [spec(AF)] stands for the 
roll-off filter dynamics, which must be chosen to be stable. It can be shown 
that our standard problem Pf (z) is a pure DF problem (see the work of Zhou et 
al. [35] and the appendix in the work of Voinot et al. [33]) and that half of the 
closed-loop dynamics of Fl(Pf (z), K2(z)) will be assigned to spec(A − B1C2) for 
any value of the final index γ. This dynamics must be assigned to the state-
estimation dynamics when one wants to find the equivalent observer-based 
realization of the compensator K2(z) using the procedure proposed in Section 
3.2. Then, the observer-based realization becomes unique.
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K2(z,t): singular value w.r.t. time.
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observer-based realization of each compensator K zi
2 ( ). The linear interpola-

tion of the four new matrices (ALQG
i , BLQG

i , CLQG
i , and DLQG

i ) provides a new non-
stationary compensator noted KLQG(z,t). The evolution of the singular value 
of KLQG(z,t) w.r.t. time t is presented in Figure 3.23. This response is signifi-
cantly smoother than the one in Figure 3.22.
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Obtained-margin-to-desired-margin ratios w.r.t. time.
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Figure 3.24 depicts the evolution of the stability margins during the whole 
atmospheric flight for all worst cases. Obtained-margin-to-desired-margin 
ratios (in percent) are plotted w.r.t. time for the low-frequency gain margin 
(LF margin: above the right-hand critical point in the Nichols chart), the 
high-frequency gain margin (HF margin: under the right-hand critical point 
in the Nichols chart), the attenuation of the flexible modes below XdB (corre-
sponding to the horizontal line in the Nichols chart), and the delay margin. 
One can notice that the specifications are met at each instant of the flight 
(ratios must be positive to fulfill specifications).

3.7 Conclusions

In this chapter, a procedure to compute observer-based structures for arbi-
trary controllers was proposed. This technique was based upon the resolu-
tion of a generalized nonsymmetric Riccati equation. Necessary conditions 
were given for the solvability of this equation in terms of observability and 
controllability properties of the plant. The interest of observer-based real-
ization for gain scheduling, controller switching, and state monitoring was 
highlighted on a very simple example. Demo files are available for readers 
who wish to practice.

Further work is still needed to exploit the multiplicity of choices in the 
distribution of the closed-loop poles between the closed-loop state-feedback 
poles, the closed-loop state-estimator poles, and the Youla parameter poles. 
This problem is particularly important to smoothly interpolate or sched-
ule a family of state-feedback gains and state-estimator gains for practical 
problems requiring some gain-scheduling strategy. The usefulness of these 
controller structures to handle input saturation constraints also deserves 
investigation.

The CSF was presented here as a particular solution of the inverse optimal 
control problem. The CSF can be used to mix various synthesis techniques 
in order to satisfy a multiobjective problem. Indeed, the general idea is to 
design a first controller to meet some specifications, mainly performance 
specification. Then, the CSF is applied on this first solution to initialize a 
standard problem, which will be completed to handle frequency-domain or 
parametric robustness specifications. This heuristic approach is very inter-
esting when the control law designer wants to

•	 Take into account a first controller based on a priori know-how and 
physical considerations

•	 Access modern optimal control framework to manage frequency-
domain robustness specifications and the trade-offs between these 
various specifications
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A multiobjective control design procedure based on the CSF was proposed in 
the work of Alazard et al. [5] and illustrated on an academic mixed- sensibility 
(two channels) control problem. Realistic applications of this approach in the 
field of aeronautics (flight control law design) were described by Alazard [2] 
and Alazard et al. [4] and, in this chapter, in the launch vehicle control design.

nomenclature

The following notations will be used all throughout this chapter.
AT A transposed
A+ Moore–Penrose pseudoinverse of matrix A
A⊥ Orthonormal basis for the null space of A
spec(A)  Set of eigenvalues for a square matrix A
In n × n identity matrix
ℝ  Set of real numbers
ℂ  Set of complex numbers
i  −1
x  Time derivation ( x x t= /d d ) 
s  Laplace variable
LQG  Linear quadratic Gaussian
Fl(P, K) Lower linear fractional transformation of P and K
||G(s)||2 H2 norm of the stable system G(s) 
||G(s)||∞  H∞ norm of the stable system G(s) 

G(s) := 
A B
C D













 Shorthand for G(s) = C(sI − A)−1 B + D
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4
Adaptive Neural Network–
Based Autopilot Design

Karthikeyan Rajagopal and S. N. Balakrishnan

4.1 Introduction

Traditionally, a missile autopilot is designed using linear control approaches. 
The plant model is linearized around a given trim point and then used for 
the resultant controller design [4, 15]. The initial design is then carried out by 
assuming that no coupling exists between the roll, pitch, and yaw axes. Thus, 
the controllers are designed individually for each axis. The pitch, yaw, and 
roll channel control system parameters are selected based on relative stabil-
ity margins (Bode methods) and missile response time requirements. The 
guidance loop provides the required pitch and roll axis acceleration com-
mands, whereas the yaw axis control loop operates in a regulator mode. In 
order to obtain consistent performance throughout the operational envelope 
of the missile, gain scheduling is used. Generally, control system parameters 
are scheduled with respect to slowly varying parameters like Mach number, 
dynamic pressure, altitude, and weight. Interpolation techniques are used to 
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obtain the controller gains at intermediate points. The final control system 
parameters are chosen based on a six-degrees-of-freedom nonlinear simula-
tion analysis.

System performance obtained from the classical design can further be 
enhanced by retuning the controller parameters based on a multivariable 
analysis [19]. An alternative approach is to use modern control theory based 
on state-space formulations that can explicitly take into account the coupling 
effects in designing the controller and can thus handle the multivariable 
nature of the problem. One such methodology can be found in the work of 
Williams [18], where the controller design for the pitch/yaw channels is car-
ried out using linear quadratic Gaussian (LQG) theory by considering the 
roll rate as an exogenous input. The controller gains for the pitch/yaw chan-
nel are scheduled with respect to both dynamic pressure and roll rate. Since 
all the states may not be available for control computation, LQG theory with 
loop transfer recovery is used for estimating the unmeasured states. The 
controller for the roll channel is a typical Single Input Single Output control-
ler designed using pole placement techniques. Further, to improve the track-
ing performance methodologies based on integral control, techniques like 
robust servo linear quadratic regulator can be considered [20]. All the meth-
odologies discussed above use a linear model for the controller design and 
rely on gain scheduling to make the controller work globally. Another type 
of gain scheduling approach that does not require linearization of the model 
at the trim point is called the linear parameter varying (LPV) approach [16]. 
In this approach, the missile dynamics are converted to a quasi-LPV form via 
a state transformation. The varying parameter is generally an endogenous 
variable like angle of attack; hence, the transformation is quasilinear. Once 
the quasi-LPV model is available, nonconservative solutions can be obtained 
using μ synthesis. Although a large amount of literature is available on the 
application of the LPV methodology to missile systems, its practical applica-
tion is restricted because of the difficulty in using complex missile models.

Nonlinear control methods provide an effective alternative for linear 
design approaches since they allow us to analytically design full envelope 
controllers without resorting to gain scheduling. Moreover, they can explic-
itly take care of aerodynamic and kinematic nonlinearities. One effective 
technique that can provide a solution for nonlinear regulator problems is 
the state-dependent Riccati equation (SDRE) method [5]. In this approach, 
the equations of motion of the missile are converted into a linear-like struc-
ture, and linear optimal control methodologies are used for the synthesis of 
nonlinear control. This technique can be applied to a broad class of systems 
where the cost function is quadratic. Cloutier and Stansbery [6] used SDRE 
method for nonlinear Missile autopilot design. But the SDRE method requires 
solving an algebraic Riccati equation at each sample time, which makes it 
computation intensive. A technique that is similar to the SDRE method but does 
not require online computation is the θ − D technique [21]. In this approach, 
an intermediate variable θ is used, which aids in finding an approximate 
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solution for the Hamilton–Jacobi–Bellman equation. The resulting nonlinear 
controller is a closed-form solution and so eliminates the need for solving 
online any algebraic equation.

One of the simplest nonlinear design methodologies is based on dynamic 
inversion (DI). In this approach, the nonlinearities are directly cancelled 
using a negative feedback, and they are replaced with the desired dynam-
ics. The desired dynamics is usually generated using a linear reference 
model, and typically only one such model is required for the full operation 
envelope of the missile. The nonlinear DI technique is easy to implement 
and thus offers many practical advantages over other nonlinear design 
techniques, but successful implementation involves addressing some criti-
cal issues. One of the most critical issues is the fact that the performance of 
the controller heavily depends on the precise prior knowledge of the plant. 
The controller has to deal with uncertainties that arise because of model-
ing errors, as well as unmodeled dynamics because of flexible structural 
modes, sensors, actuators, and any in flight hardware failure. In this regard, 
a significant amount of research is being carried out toward evolving robust 
DI techniques. The most common approach for providing robustness to 
the DI technique is to account for uncertainties in the outer loop control 
design. Adams [1] and Adams and Banda [2] first proposed using the DI 
technique for the inner loop control and using μ synthesis for the outer loop 
control. McFarland and D’Souza [10] also proposed using the combination 
of DI and μ synthesis in missile autopilot design. But it is always problem-
atic to quantitatively state how robust a controller design is in a nonlinear 
setting. Another practical problem with the DI technique is the assumption 
that full-state feedback is always available; this assumption is very restric-
tive in the case of agile missiles because of weight considerations. Although 
there are many theoretical extensions to the DI technique that assume only 
output feedback is available, their practical usage must still be evaluated. 
The DI technique cannot be directly used for nonminimum phase systems, 
and all tail-controlled missiles are nonminimum phase when the controlled 
variables of the missile are its pitch and yaw accelerations. By controlling 
the attitude of the missile directly instead of the body accelerations, the 
above problem can be overcome. But the guidance law has to be modified to 
derive relationships between the attitude of the missile and the commanded 
accelerations.

Real-time compensation of the control signal for modeling inaccuracies or 
even unexpected in-flight hardware failures is possible with various adap-
tive control algorithms. Adaptive control techniques can generally be classi-
fied into direct and indirect approaches. In the indirect approach, unknown 
plant parameters are explicitly estimated, and the control is designed assum-
ing the estimates as the true plant parameters. In the direct approach, the 
control parameters are directly tuned to cancel the unknown plant non-
linearity. In recent years, research on the model reference direct adaptive 
control techniques (MRAC) has gained significant attention. The objective 
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of the MRAC is to make the plant mimic the transient response of a ref-
erence model even if unknown nonlinearities are present. The difference 
between measured states and the reference state trajectory is used in esti-
mating the uncertainty. Recently, neural networks have emerged as a major 
tool for explicitly estimating the uncertainties in real time. Narendra and 
Parthasarathy [11] successfully used neural networks for identification and 
control of nonlinear dynamical systems. For robot control, Lewis [8] used 
online neural networks for approximating the uncertainties in real time 
and provided Lyapunov stability analysis that showed the boundedness of 
the tracking error and weights. Calise [3] and Kim and Calise [7] applied 
neural network–based direct adaptive control architecture for flight control. 
Sharma [17] and Wise [20] used neural network–based adaptive controllers 
to handle modeling inaccuracies in guided munitions and missile dynamics, 
respectively.

McFarland and Calise [9] combined the DI technique and neural network–
based adaptive controller for the control of an agile anti-air missile. The 
authors used an inner/outer loop architecture with the outer loop control-
ling the attitude of the missile aided by an inner loop that controls the mis-
sile body rates. The study uses single hidden layer neural networks in the 
inner loop for taking care of the uncertainties, and approximate DI is used 
for generating the fin deflection commands. A Lyapunov theory–based sim-
ple weight update rule is used for updating the weights in real time.

One of the major concerns with adaptive control techniques is their robust-
ness to unmodeled dynamics. When dealing with agile missiles, fast adap-
tation in estimating the uncertainties is needed to ensure the stability of 
the system and good performance. Achievement of such an objective calls 
for large adaptation rates. Large adaptive gains, however, may induce high-
frequency oscillations in the adaptive control signal, which, in turn, can 
excite the unmodeled dynamics of the missile leading to instability. Various 
adaptive control techniques have been proposed for solving the above prob-
lem. Nguyen et al. [12,13] proposed an optimal adaptive control law modi-
fication that minimizes the tracking error and also improves robustness 
allowing for large adaptation rate. Rajagopal et al. [14] proposed the use of a 
general observer structure instead of a reference model for uncertainty esti-
mation. This methodology separates the design of the nominal closed-loop 
dynamics from the estimation error dynamics. As a result, the estimation 
error dynamics can be made much faster than the nominal system dynamics, 
which allows for large adaptive gains. In this chapter, we will see the appli-
cation of direct model reference adaptive control technique proposed in [14] 
for the control of a generic air–air missile. The theory behind the derivation 
of the weight update rule is presented. Simulation results and the perfor-
mance of the methodology at different altitude conditions are presented to 
demonstrate the effectiveness of the adaptive control methodology.
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4.2 Nonlinear Air–Air Missile Model

The nonlinear equations of motion of a generic air–air missile model, used 
for simulations in this chapter, is given by
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Definitions of parameters used in Equations 4.1 through 4.7 are tabulated 
below:

Parameter Definition Parameter Definition

α Angle of attack h Missile flight altitude

β Sideslip angle Ix, Iy, Iz Moments of inertia about body 
frame

μ Bank angle about the 
velocity vector

δp, δq, δr Aileron, elevator, and rudder 
fin deflections

γ Flight path angle CA Axial force coefficient
p, q, r Body-frame roll, pitch, and 

yaw
CY Side force coefficient

V Missile speed Cz(−CN) Normal force coefficient
M Mach number C CN Yo o

, Normal and side force 
coefficients with zero fin

m Missile mass C C CN N Np q rδ δ δ
, , Side force coefficients with 

respect to aileron, elevator, 
and rudder fin, respectively

q Dynamic pressure Cl Roll moment coefficient

S Missile cross-sectional area Cm Pitch moment coefficient
d Missile diameter Cn Yaw moment coefficient
g Gravity Clo

Roll moment coefficient with 
zero fin deflections
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Clp
Roll moment coefficient 
with respect to roll rate

Cno
Yaw moment coefficient with 
zero fin deflections

C C Cl l lp q rδ δ δ
, , Roll moment coefficient 

with respect to aileron, 
elevator, and rudder fin, 
respectively

Cnq
Roll moment coefficient with 
respect to roll rate

Cmo
Pitch moment coefficient 
with zero fin deflections

C C Cn n np q rδ δ δ
, , Roll moment coefficient with 

respect to aileron, elevator, 
and rudder fin, respectively

Cmq
Pitch moment coefficient 
with respect to pitch rate

a ay
I

z
I, Acceleration along the inertial 

y and z axes

C C Cm m mp q rδ δ δ
, , Pitch moment coefficient 

with respect to aileron, 
elevator, and rudder fin, 
respectively

T Thrust

4.3 Missile Autopilot Control Loop Design

The acceleration commands from the missile guidance law are converted 
into corresponding attitude commands, that is, angle of attack, sideslip, and 
bank angle commands, using the bank-to-turn/skid-to-turn (BTT/STT) logic 
described in this section. The control objective is to make the missile follow a 
reference trajectory given by a second-order reference model of the following 
form in frequency domain:

 x s
s s

x sr
n

n n
c( ) ( )=

+ +
ω

ζω ω

2

2 22
 (4.8)

where xr r r r
T= [ ]α β µ  represents the reference trajectory for the attitude 

angles, xc c c c
T= [ ]α β µ  represents the commanded trajectory for the atti-

tude angles obtained using BTT/STT logic, and ωn, ζ are second-order model 
parameters that can be chosen appropriately to get the desired response time 
and damping characteristics.

Now to compute the required fin deflections so that the plant can closely 
follow the reference angles, the missile autopilot design has a two-loop 
structure.

 1) The outer loop converts the attitude commands into corresponding 
body rate commands for the inner loop.

 2) The inner loop converts the body rate commands into fin deflection 
commands for the actuator control loop.
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4.3.1 Outer Loop Control Design

For the nominal controller design of the outer loop, the nonlinear equations 
of motion (Equations 4.2 through 4.4) are linearized about the states of inter-
est, that is, angle of attack, sideslip angle, and bank angle. Thus, the linear-
ized equations of motion for the outer loop are given by

 x A x B u f x uol ol ol ol ol ol= + + ( , )  (4.9)

where Aol ∈ R3×3, Bol ∈ R3×3, xol
T= [ ]α β µ , u p q rol

T= [ ] , and fol(x, u) ∈ R3×1 
represent the effects of higher-order terms neglected during the lineariza-
tion process and any other nonlinearity that is unknown during the process 
of modeling. The parameters x and u represent the typical missile states and 
control inputs. The linearized state and control matrices for the outer loop 
evaluated at xo with xol

T= [ ]0 0 0  are given by
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The control signal uol is computed by using the DI technique. Let eol = xr − xol 
so   e x xol r ol= − , and the nominal controller for the case without any nonlin-
earity is given by

 u B e A xol ol ol ol olomn
( ).= −−1
  (4.11)

The unknown nonlinearities are estimated using online neural networks 
through a “modified state observer” (MSO). Let us assume that it is possible 
to approximate the nonlinearity within a given approximation error ε ∈ R3×1. 
In an ideal case

 fol(x, u) = WTϕ(xol) + ε (4.12)

where W ∈ R8×3 is the ideal neural network weight, and ϕ(xol) ∈ R8×1 is the 
basis function of the neural network. For our simulation, the basis function 
is taken as the Kronecker product of states of interest xol. So

 φ α β µ αβ βµ αµ αβµ( ) [ ] .xol
T= 1  (4.13)
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Since we will not know the ideal neural network weights, we have to esti-
mate the weights online. So the estimated uncertainty is given by

 ˆ ( , ) ˆ ( )f x u W xol
T

ol= φ  (4.14)

where Ŵ  is the estimated neural network weight. To estimate the neural net-
work weights, the MSO of the following form is constructed:

 ˆ ˆ ( ) ( ˆ ).x A x B u W x K x xol ol ol ol ol
T

ol ol ol= + + + −φ 2  (4.15)

The estimation error e x xol ol= − ˆ  is used in updating the estimated neural 
network weights. The time derivative of estimation error is given by

 � �e K e W xT
ol= − + +2 φ ε( )  (4.16)

where W W W= − ˆ .
To ensure that the estimation error and neural network weights remain 

bounded, the weight update law is derived by considering a Lyapunov-like 
function:

 V e Pe tr W WT T= + −( ) Γ 1  (4.17)

where tr is the trace operator, P is a positive-definite matrix, and Γ is the 
adaptive gain matrix. The weight update rule considered for updating the 
estimated neural network weights is given by

 ˆ ( ( ) ˆ ).


W x e P Wol
T= −Γ φ σ  (4.18)

In Equation 4.18, σ is the robustness factor. Now the time derivative of the 
Lyapunov function is given by

 � � � �� � � ��V e Pe e Pe tr W W tr W WT T T T= + + +− −( ) ( ).Γ Γ1 1

 (4.19)

By using the trace identity tr(xTy) = tr(yxT ) and substituting estimation 
error dynamics Equation 4.16 in Equation 4.19, we get

 � � � �V e K P PK e e P W x tr WT T T T
ol

T= − − + + + −( ) ( ( ) ) (2 2
12 2φ ε Γ ��W).  (4.20)



138 Advances in Missile Guidance, Control, and Estimation

Since W W W= − ˆ  and ��
�

W W= − ˆ , we substitute the weight update rule 
(Equation 4.18) in the above equation to yield

 � � �V e K P PK e e P W x tr W xT T T T
ol

T= − − + + −( ) ( ( ) ) ( ( (2 2 2 2φ ε φ ool
Te P W) ˆ ))− σ  

(4.21)

 
� � �V e Qe e P W x tr W x e P tT T T

ol
T

ol
T= − + + − +2 2 2( ( ) ) ( ( ) )φ ε φ rr W WT( ˆ )σ �  (4.22)

 
� �V e Qe e P tr W WT T T= − + +2 2ε σ ( ˆ )  (4.23)

where − = − +Q K P PKT( )2 2  is a solution of a Lyapunov equation. Now to sim-
plify Equation 4.23 using the properties of the trace operator

 tr W W W W W

W W W

T
F F F

F F

( ˆ ) ˆ ˆ

ˆ ˆ
max

 ≤ −

≤ −

2

2
..

 (4.24)

In Equation 4.24, W F is the Frobenius norm, and Wmax is the upper bound 
on the ideal weight, that is, W WF ≤ max. By using the norms of the terms on 
the right-hand side, an inequality can be obtained as

 
V Q e e P W W Wn F F≤ − + + −λ λ ε σmin max max( ) ( ) ( ˆ ˆ ).

2 2
2 2  (4.25)

Here λmin(Q) is the minimum eigenvalue of the Q matrix, λmax(P) is the 
maximum eigenvalue of P, and εn is the upper bound on the approximation 
error, ε ε≤ n.

Now to show that the estimated neural network weights and the estima-
tion errors remain bounded, it is necessary to show that when the trajectory 
of e and Ŵ starts outside a compact set, the time derivative of the Lyapunov 
function is negative so that the trajectory reaches a compact set and remains 
within this compact set for all time. This is shown by deriving upper bounds 
on the estimation error and the estimated neural network weights.

4.3.1.1 Upper Bound on Estimation Error

To estimate an upper bound on the estimation error, square on Ŵ  is com-
pleted as

V Q e e P W
W W

n≤ − + − −






+λ λ ε σ σmin max
max( ) ( ) ˆ2

2

2 2
2

2 mmax .
2

2



  (4.26)
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Hence, for V to be less than or equal to zero

 λ λ ε σmin max
max( ) ( )Q e e P

W
n

2
2

2 2
2

0− −






≥  (4.27)

which gives a bound on the estimation error as shown below:

 e ≥ β  (4.28)

where

 β
λ ε λ ε σλ

λ
=

+ +




max max min

max( ) ( ( ) ) ( )P P Q
W

n n
2

2

2
2

mmin ( )
.

Q
 (4.29)

4.3.1.2 Upper Bound of Neural Network Weights

In order to estimate an upper bound on Ŵ , the square on e  needs to be 
completed in

 V Q e e P W W Wn F F≤ − + + −( )λ λ ε σmin max max( ) ( ) ˆ ˆ2 2
2 2  (4.30)

which results in the following inequality:

 V Q e
P
Q

P
n≤ − −







+λ λ
λ

ε λ
λmin

max

min

max( )
( )
( )

( ( ))
2

mmin
max( )

ˆ ˆ .
Q

W W Wn F F

2
2

2
2ε σ+ −( )  

(4.31)

Hence, for V  to be less than or equal to zero

 2 0
2 2

2σ λ
λ

εW W W
P
QF F nmax

max

min

ˆ ˆ ( ( ))
( )

−( ) + ≤  (4.32)

 or 2 2 0
2 2

2σ σ λ
λ

εˆ ˆ ( ( ))
( )

.max
max

min

W W W
P
QF F n− − ≥  (4.33)
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This gives a bound on the neural network weights above which V will be 
negative:

 ˆ

( ( ))
( )max max

max

minW
W W

P
Q

F

n

≥
+ +2 4 8

4

2 2
2

2σ σ σ λ
λ

ε

σ
 (4.34)

 Ŵ F ≥ ζ/2 (4.35)

where

 ζ λ
σλ

ε= + +W W
P
Q nmax max

max

min

( ( ))
( )

.2
2

22  (4.36)

Hence, from Equations 4.28 and 4.35, it can be concluded that the estima-
tion error and neural network weights are uniformly bounded.

4.3.1.3 Outer Loop Controller Design

The outer loop controller is designed by taking into consideration the esti-
mated uncertainties:

 u B e A x W xol ol ol ol ol
T

ol= − −−1( ( )). φ  (4.37)

Note that the controller (Equation 4.37) designed using DI techniques 
allows us to totally eliminate gain scheduling and still provides consistent 
handling qualities all through the flight envelope.

4.3.2 Inner Loop Control Design

The demanded pitch, yaw, and roll rates from the outer loop are realized 
by using only a standard state feedback-based controller in the inner loop. 
The reason is the reference error eol-based outer loop DI adaptive control-
ler will automatically compensate for uncertainties in the inner loop. The 
states of interest in the inner loop are x p q ril

T= [ ] , and the control inputs 
are u p q ril

T= [ ]δ δ δ . For the controller design, first the nonlinear equations 
of motion (Equations 4.5 through 4.7) are linearized about the states of inter-
est xil. Then, the nominal controller is designed using the LQR theory. The 
linearized equations of motion for the inner loop are given by

 x A x B u f x uil il il il il il= + + ( , )  (4.38)

where Ail ∈ R3×3, Bil ∈ R3×3, and fil(x, u) ∈ R3×1 represent the effect of higher-order 
terms neglected during the linearization process and any other nonlinearity 
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that is unknown during the process of modeling. The linearized state and 
control matrices for the inner loop evaluated at xo with xil

T= [ ]0 0 0  and 
xol

T= [ ]0 0 0  are given by

 A

qSd
I V

C

qSd
I V

C

qSd
I V

C

il

x
l

y
m

z
n

p

q

r
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2

2
0 0

0
2

0

0 0
2





















at x0

,  

(4.39)
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at x0

.

 

To improve the transient performance of the inner loop, roll and pitch rate 
states are augmented with integral states. Let

 x p p q q ra I I
T= [ ]  (4.40)

where

 p p pI c

t

= −∫ ( )
0

dτ  (4.41)

 q q qI c

t

= −∫ ( ) .
0

dτ  (4.42)

The LQR controller is designed to minimize the following objective function 
with the appropriate state and control weighting matrices Q and R, respectively:

 J x Qx u Ru ta
T

a il
T

il= +
∞

∫ ( ) .
0

d  (4.43)
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The linear controller obtained for the inner loop is of the form

 u K p p p q q q r ril c I c I c
T= − − − −[ ]  (4.44)

where Kil ∈ R3×5 is the optimal gain matrix.

4.3.3 BTT/STT Command Logic

The logic for converting the commanded accelerations to commanded atti-
tude angles of missiles is a hybrid of BTT and STT commands. Depending 
upon the phase of missile flight, one or both sets of logic are used. The BTT 
command is used in the midcourse and terminal phases of flight to prevent 
the air breathing engine from flaming out. STT is used for small acceleration 
commands, which when executed in BTT mode may ask for large roll rates. 
As the missile approaches the endgame phase and passes a preset time-to-go 
threshold, both BTT and STT logic are executed simultaneously over a prese-
lected time interval to improve transient responses.

Depending on the magnitude of commanded accelerations, the BTT mode 
is divided into three regions in the inertial frame (I):

Condition Mode Attitude Command

a gc
I ≤ 0 1. STT control
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Here a a ac
I

y
I

z
I T

c c
= [ ]  is the commanded acceleration in the inertial frame, 

and a a ac y z
T

c c
= [ ]  is the commanded acceleration in the body frame. As men-

tioned previously, during the endgame phase, for a certain preselected time 
interval, both BTT and STT modes are executed simultaneously, and attitude 
commands are generated using the following formula:
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β
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ρ
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β
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ρ
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c

c
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c
STT
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+ −( )1
αα
β
µ

c

c

c
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 (4.45)

where the parameter ρ varies linearly from 0 to 1 over the time interval.

4.4 Simulation Studies

Simulation studies were carried out with a six-degrees-of-freedom nonlin-
ear missile model to investigate the potential of the MSO-based adaptive 
control methodology. As explained earlier, the linear nominal controllers for 
the inner and outer loops are designed only for the initial conditions. To com-
pensate for the uncertainties that arise due to neglected nonlinearities and 
change in environmental conditions, the MSO with the Lyapunov theory–
based weight update rule is used in the outer loop. Simulations were carried 
out at the following three altitude conditions:

Mach No.
Altitude

(ft.)

2.7 100
2.7 20,000
2.7 30,000 

Figures 4.1 through 4.10 show the simulation results obtained for the case 
of M = 2.7 and h = 20,000 ft. It can be observed from Figures 4.1 through 
4.3 that even though the nominal controller was designed only for the ini-
tial conditions, with the aid of an adaptive controller in the outer loop, the 
actual system was able to closely track the commanded attitude angles. The 
maximum transient in sideslip angle (Figure 4.2) is seen to be of the order of 
1°, which is acceptable. The demanded body rates (Figures 4.4 through 4.6) 
from the outer loop do not exceed the imposed hard saturation limit (200°/s) 
at any time. Examining the inner control loop performance, the actual body 
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rates are seen to closely follow the commanded rates (Figures 4.4 through 
4.6). It is important to note that the inner control loop has only a single linear 
controller designed at one nominal condition, but it is able to provide satis-
factory performance during the entire flight. Figure 4.7 shows the history of 
fin deflections over the entire simulation.

Figures 4.8 through 4.10 compare the estimated uncertainty output by the 
neural networks with the actual uncertainty. It can be observed that the esti-
mated nonlinearity closely follows the actual nonlinearity, and the estimates 
do not have any oscillatory behavior. Absence of oscillations is also reflected 
in the smooth commanded body rates generated by the outer loop.
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4.4.1 Performance at Various Altitude Conditions

In order to analyze the performance of the autopilot with off-nominal flight 
conditions, two different altitude conditions were considered: one with a 
minimum altitude of 100 ft. and another with a higher altitude of 30,000 ft. 
Figures 4.11 through 4.13 compare the performance of the outer loop in 
tracking the commanded attitudes at various altitude conditions. It can be 
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observed that the actual trajectories closely follow the commanded trajec-
tories. The inner loop is able to provide stable performance even with vary-
ing flight conditions as seen from the body rate plots (Figures 4.14 through 
4.16). Figures 4.17 and 4.18 show the fin deflection histories at h = 100 ft. and 
h = 30,000 ft., respectively. The uncertainty estimation is quite robust again 
with no oscillations observed in the uncertainty estimate in any of the con-
sidered flight conditions (Figures 4.19 through 4.21).
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4.5 Conclusions

This chapter presented the application of adaptive neurocontrollers for mis-
sile autopilot design. The proposed methodology used the DI technique for 
nonlinear controller design and MSO for uncertainty estimation. The com-
bination of DI controller along with MSO uncertainty estimator eliminates 
the need for gain scheduling to obtain consistent performance. Also, the 
observer structure of MSO allowed for separate design of estimation error 
dynamics from nominal dynamics design, thus allowing for fast adaptation. 
Simulation studies were carried out with a six-degrees-of-freedom nonlinear 
missile model varying the altitude conditions. Steady performance obtained 
at both nominal and off-nominal conditions demonstrated the potential of 
the proposed methodology for missile autopilot designs.
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5.1 Introduction

Interceptor systems for missile defense engagements, by virtue of their mission 
objectives, demand extremely accurate performance from all their components. 
This exacting requirement in turn needs guidance, control, and estimation sys-
tems that will guarantee intercept against highly nonlinear and complex target 
maneuvers or in seek-and-destroy missions. Therefore, careful attention should 
be paid to the development of guidance laws and control strategies that go into 
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the interceptors. There has been a lot of work in the published literature on mis-
sile guidance, control, and estimation problems [1,4,6,8,14].

Integrated guidance and control (IGC) design is an emerging trend in 
missile technology. This is a response to meet the need for improving the 
accuracy of interceptors and extend their kill envelope. Current and past 
practices in industry have been to design guidance and control systems sep-
arately and then integrate them to form the complete missile. The whole sys-
tem usually consists of a range of technologies from classical control theory 
to optimal estimation and control. These subsystems typically had different 
bandwidths. Despite the fact that this paradigm has been applied success-
fully on many systems, it can be argued that the overall system performance 
can be improved if the design exploits the synergy between the various mis-
sile subsystems. Furthermore, an IGC design will eliminate the number of 
iterations needed in the separate guidance-control design.

In 1984, Lin and Yueh [11] first addressed the application of an IGC scheme 
to a homing missile. An optimal controller was designed to combine the 
conventionally separated guidance law design and autopilot design into 
one framework by minimizing a quadratic cost function subject to intercept 
dynamics. The IGC design resulted in better RMS miss, the terminal angle of 
attack, the pitch rate, and the control surface “flapping” rate in the presence 
of unmodeled errors. In 1992, Evers et al. [7] extended the concepts presented 
in the work of Lin and Yueh [11] to include a first-order Markov model for 
target acceleration. The resulting IGC law was expected to be less sensitive 
to the errors in estimating the current target acceleration.

Menon and Ohlmeyer [13] employed the feedback linearization method 
in conjunction with the linear quadratic regulator technique to design a 
set of nonlinear IGC laws for homing missiles. Their IGC design was pre-
sented in three formulations, which were based upon three different guid-
ance objectives. A 6-degrees-of-freedom (DOF) nonlinear dynamic model of 
an air-to-air homing missile was simulated, and each of three IGC schemes 
achieved a specific favorable performance over the other. A disadvantage of 
the feedback linearization technique is that it could cancel beneficial non-
linearities. The IGC concept was further used by Menon and Ohlmeyer [12] 
by employing the state-dependent Riccati equation (SDRE) [5] technique. A 
command generator was used to prevent actuator saturation, and the goal 
included meeting a terminal aspect angle constraint. The design was evalu-
ated based on a 6-DOF nonlinear missile model with nonmaneuvering and 
weaving targets. Numerical results demonstrated the feasibility of the IGC 
design for the next-generation high-performance missile systems. At the 
Johns Hopkins Applied Physics Laboratory (publication restricted), Palumbo 
and Jackson [15] have been working on IGC schemes using finite-time SDRE-
based schemes with assumptions on the state evolution for easier solution to 
SDRE. However, solving the SDRE online is very time-consuming. In 2004, Xin 
et al. [23] applied the θ-D method, a method that yields near optimal closed-
form solutions to nonlinear optimal control problems to the IGC design 
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based on the same nonlinear missile model as in the work of Cloutier et 
al. [5] and achieved some good preliminary results. Compared to the SDRE 
approach, the θ-D controller gives a closed-form solution and, therefore, is 
easy to implement.

There have also been several approaches to solving the IGC problem by 
using the sliding mode control (SMC) technique. Shkolnikov et al. [16] used 
first-order SMC to develop an IGC system for a homing interceptor. They 
investigated the line-of-sight (LOS) rate and the transversal relative velocity 
component as possible sliding surfaces and developed guidance and control 
laws based on methods previously developed by Brown et al. [2] and Shtessel 
and Buffington [17]. An inner-loop/outer-loop approach was used, with the 
outer loop creating a commanded pitch rate that was tracked in the inner 
loop via the pitch fin deflection. Thus, the authors’ approach involved the 
creation of two separate control systems; a direct relationship between the 
control input (fin deflection) and the control objective (LOS rate), however, 
is not obtained. Shtessel and Shkolnikov [18] later modified their approach 
using second-order sliding mode rather than the first-order one as was used 
in the study of Shkolnikov et al. [16].

In Shima et al.’s paper [19], the zero-effort miss distance is used as the 
sliding surface. Unlike the previous sliding mode approaches to IGC, the 
authors formulated the guidance and control systems together in one loop 
and established a direct relationship between the control input and guidance 
objective. Performance of the integrated approach was compared to that of 
two different inner-loop/outer-loop designs, and it was shown that the inte-
grated controller led to superior results. The authors later applied their IGC 
approach to the particular cases of dual control missiles [9] and missiles with 
on–off actuators [10].

In this chapter, a general analysis of the IGC problem is first presented using 
the θ-D controller from [23]. First, a body-based IGC formulation is introduced, in 
which the fin deflections control both the rotational and translational motions 
of a missile. While the body-based formulation can produce acceptable miss 
distances, it is unfortunately very sensitive to how the various weights are 
tuned. To bypass the tuning difficulty, a more physically intuitive formulation 
of the dynamics, called the velocity-based IGC (VIGC), is developed.

After describing the body-based and velocity-based IGC formulations, 
a new solution technique to IGC named the sliding mode IGC (SMIGC) is 
presented. This approach exploits the finite-time reaching phase of the slid-
ing mode technique to ensure that a desired constraint will be achieved 
in a finite time. Sliding surfaces are chosen as functions of the predicted 
impact  point (PIP) heading error. In comparison to the previous sliding 
mode approaches to IGC by Shtessel and Idan et al., SMIGC makes several 
different contributions. First, by finding an exact expression for the impact 
of target acceleration on the heading error rate, SMIGC is able to account for 
the target acceleration in a novel fashion and yield small miss distances in 
the presence of agile targets. Next, implementing the SMIGC approach only 
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requires that the bound of the target acceleration be known. In this work, 
results from three-dimensional engagements are presented. Control laws are 
developed for the vertical and horizontal planes that can be used to intercept 
a target that is maneuvering in each of the planes with a simple roll autopilot. 
Finally, the SMIGC approach is implemented in a high-fidelity 6-DOF model.

5.2 Body-Based IGC Formulation

This section describes the development of the IGC framework using equations 
of motion (EOMs) developed in the missile body frame. Results of the applica-
tion of the θ-D nonlinear control technique [23] to these EOMs are shown.

5.2.1 Equations of Motion

In the IGC development to follow, the following EOMs are used for the missile:

 p M Ix x= /  (5.1)

 q M I I pr Iy x z y= − −[ ( ) ]/  (5.2)

 r M I I qp Iz y x z= − −[ ( ) ]/  (5.3)

 u F m qw rvm
x

m m= − +/  (5.4)

 v F m ru pwm
y

m m= − +/  (5.5)

 w F m pv qum
z

m m= − +/  (5.6)

where Ix, Iy, and Iz are the principle moments of inertia, m is the missile mass, 
Fx, Fy, and Fz are the aerodynamic forces acting on the missile, and Mx, My, 
and Mz are the aerodynamic moments. Note that for an axisymmetric mis-
sile, Iy = Iz. The superscripts m in Equations 5.4 through 5.6 indicate quanti-
ties relating to the missile.

Similarly for the target, the following EOMs are used:

 u a qw rvt
x
t t t= − +  (5.7)

 v a ru pwt
y
t t t= − +  (5.8)
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 w a pv qut
z
t t t= − +  (5.9)

Note that the superscript t indicates quantities that are related to the target, 
and the quantities u, v, and w are the target velocities represented in the mis-
sile body x, y, and z axes, respectively. The controller states defined in the 
next section will use the relative position and velocity of the missile relative 
to the target (i.e., v = vm – vt, y y yb b

m
b
t= − , etc.).

The aerodynamic forces and moments for the missile are modeled as

 F m c c c cx F A A A A/ = + + +( )η α β αβ
α β αβ0

 (5.10)

 F m cy F Y/ = η β
β  (5.11)

 F m cz F N/ = η α
α  (5.12)

 M cx l p= η δτ δ
 (5.13)

 M c cy m m q= +( )η α δτ α δ
 (5.14)

 M c cz n n r= +( )η β δτ β δ  (5.15)

where ηF qS m= /  and ητ = qSl.
Before the θ-D method can be applied, an extra state is needed in order to 

turn the system EOMs into the needed linear-like structure. This extra state 
is defined by

 λ λλ= −a  (5.16)

The extra state is simply a mathematical artifice that is used to factor the 
system EOMs without introducing singularities. Each time the control is cal-
culated, λ is set to 1.

The EOMs can be cast in the linear-like form

 x A x x B x= +( ) ( )δ  (5.17)

where the system state is selected to be x = [ p q r yb zb v w λ ]T and the input is 
δ = [ δp δq δr ]T. The system state–dependent matrices are given by
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5.2.2 Cost Function

To implement the guidance law into the IGC formulation, an appropriate cost 
function is used. The guidance law will attempt to cease motion in the LOS. 
This can be accomplished by driving the cross product between the relative 
position and velocity to zero. The cost function will place weights on the fol-
lowing values: y = [ p q r Δx Δy Δz ]T, where Δx, Δy, and Δz are the vector com-
ponents of the cross product. These values are related to the state vector by

 y = H(x)x (5.20)

where

 H x z y

u x
b b

( ) = −

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 bb

bu x

0

0 0 0 0 0 0



























 (5.21)



163Integrated Guidance and Control for Missiles

The final cost function is then

 J y Wy R t x H WHx R t x QxT T T T T T T= + = + = +
∞ ∞

∫ ∫( ) ( ) (δ δ δ δ δd d
0 0

RR tδ)d
0

∞

∫
 

(5.22)

where the cost on the states, Q = HTWH, results nicely from the “output” 
regulation.

5.2.3 Body-Based IGC Results

This section contains simulation results for the missile body-based IGC 
formulation using the θ-D nonlinear control technique. A description of 
the θ-D technique can be found in [23]. Through simulation testing for dif-
ferent launch scenarios, it was determined that the body-based IGC for-
mulation was very sensitive to weight tuning. The reasoning for this is 
discussed in the following section. When the weights are properly tuned, 
the body-based IGC scheme is capable of intercepting a weaving target 
as can be seen in Figure 5.1. In this scenario, the initial range is approxi-
mately 10,000 ft, and the target is weaving with a frequency of 1 Hz and 
max acceleration of 10 g’s. The fin deflections for this scenario are shown 
in Figure 5.2.
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5.2.3.1 Weight Sensitivity

It was found through simulation testing that the body-based IGC formulation 
is overly sensitive to the chosen weights in the cost function. To understand 
the source of this sensitivity, a simulation was run with ill-tuned weights 
and the motion restricted to the vertical plane. The results of this simulation 
are shown in Figure 5.3.

From the results in Figure 5.3, it is evident that the missile is actually turn-
ing in the opposite direction to that needed for intercepting the target. To 
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see what is happening in this case, the effects of position and velocity errors 
were individually eliminated by zeroing their respective error components 
in the control law. The results of these two simulations are shown in Figures 
5.4 and 5.5. From these figures, it appears that the effects of zb and w errors 
are competing with each other to steer the missile toward the target. Figure 
5.6 shows the same scenario with the effect of zb error restricted to 80% of its 
normal effect. These simulations indicate that the competing effect of zb and 
w errors is the underlying source of the extreme weight sensitivity of the 
body-based IGC formulation.
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5.2.3.2 Discussion of Missile Physics

With the IGC system developed in the missile body frame, the dynamics 
are derived so that the fin deflections control both rotational and transla-
tional motions of the missile. However, in actual missile physics, the fins pri-
marily adjust the orientation of the missile, and then the resulting incident 
flow produces forces that provide translational motion for the missile. In the 
body-based IGC formulation, this dominant effect of fin deflection results in 
the rotational errors, yb and zb, to be regulated more effectively than veloc-
ity errors, v and w. This phenomenon results in the missile actually sliding 
around the target instead of correctly steering toward the target as is demon-
strated in Figure 5.7.
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5.3 Velocity-Based IGC Formulation

In the previous section, a body-based IGC formulation was developed. It 
became evident that such a formulation was unable to accurately capture 
the physics behind missile motion. In this section, an alternate IGC formula-
tion based on the missile velocity, as opposed to the missile body frame, is 
described. The VIGC is first derived in a two-dimensional scenario and later 
extended to full three-dimensional missile engagements.

5.3.1 Missile IGC Design in Vertical Plane

The goal of any missile guidance and control scheme is to steer the missile 
so as to impact the target in a finite period of time. If the target is traveling 
with a constant direction and the missile is traveling in the desired direction 
for impact, then the PIP will be fixed in space. Given these circumstances, the 
goal of the missile guidance and control scheme can be construed as steering 
the missile velocity toward a fixed point in space: the PIP.

Figure 5.8 shows the geometry of the missile/target intercept problem. 
The missile is controlled via pitch fin deflections, which creates a torque on 
the missile. When the missile rotates, the incoming air impacts the missile 
with an angle of attack, α, which in turn creates a restoring moment and a 
normal force, aN, which turns the missile. The combined angular accelera-
tion produced from the pitch moment acting on the missile is denoted αy. 
The location of the PIP with respect to the missile is denoted by the coor-
dinates xv and zv, which lie along and normal, respectively, to the missile 
velocity vector. The pitch angle, θ, defines the orientation of the missile in 
the pitch plane.
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Missile intercept geometry.
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Since the goal of the missile guidance and control scheme is to turn the 
missile so that the velocity vector points at the PIP, the missile intercept prob-
lem can be formulated as driving the coordinate, zv, to zero. The derivatives 
of xv and zv are

 
x V zv m v= − γ  (5.23)

 
z xv v= γ  (5.24)

where γ = θ – α is the missile flight path angle. Equation 5.24 must now be dif-
ferentiated until the pitch fin deflection, δq, appears as a result of moments on 
the missile and not just from translational forces. The missile normal accel-
eration, aN, assuming constant missile velocity, Vm, is given by

 a VN m= γ  (5.25)

In this missile model, it is assumed that the normal acceleration is only a 
function of α and is normal to the velocity vector. While this in general is not 
true, it is a reasonable approximation for preliminary analysis. Equation 5.25 
then reduces to

 γ α α
α α

= =( / )qSc mV kN m N  (5.26)

where kNα
 is constant given the current assumptions, q Vm= ρ 2 2/  is the 

dynamic pressure, S is the reference area, and m is the missile mass.
Differentiating Equations 5.24 and 5.26 a second time results in

 
 


  z x x x z Vv v v v v m= + = − +γ γ γ γ γ2  (5.27)

   γ α γ
α α

= = −k k qN N ( )  (5.28)

where Equation 5.23 and the definition of γ have been used in the right equal-
ity of Equations 5.27 and 5.28, respectively. Also note that θ = q, the missile 
pitch rate. Since the pitch fin deflection, δq, has still not appeared, differenti-
ate Equations 5.27 and 5.28 to obtain

 
   z x z Vv v v m= − − +( )γ γ γγ γ3 3 2  (5.29)

  γ α γ
α

= −kN y( )  (5.30)
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In the missile model, it is assumed that the aerodynamic pitch moment con-
sists of only two terms: a moment produced by the pitch fin deflection, δq, 
and a restoring moment produced by α. Thus, the pitch acceleration is given 
by

 α α δ α δ
α δ α δy m y m y q m m qqSlc I qSlc I k k= + = +( / ) ( / )  (5.31)

with the assumption that kmα
 and kmδ

 are constant, and l is the reference 
length. Using Equations 5.30 and 5.31 in Equation 5.29 results in

 
  z k k k k k x zv N m N m q N v v= + − − − +( )

α α α δ α
α δ γ γ γγ3 3 22γVm  (5.32)

which now contains the pitch fin deflection. It is desired that zv be asymp-
totically stable, so δq should be chosen so that the closed-loop dynamics for 
zv is

   

 

z k z k z k zv z v z v z v+ + + = 0  (5.33)

where kz > 0, kz > 0, and kz > 0. By comparing Equations 5.32 and 5.33, the 
desired pitch fin deflection is found to be

 δ γγ γ γ γ γ
α αq v m N v m zz k k x V k z= − − − − −3 23

    




( ) vv z v z v N m vk z k z k k x− − 

 /
α δ

 (5.34)

5.3.1.1 Results

The control given by Equation 5.34 was simulated to validate its performance. 
The missile was initially traveling downrange with a velocity of 4850 ft/s, 
and the PIP was selected to be 10,000 ft downrange at an altitude of 300 ft. 
Figure 5.9 shows the resulting time history for zv when the closed-loop eigen-
values are selected to be –8, –12, and –16. It is clear that the fin deflection 
control has successfully driven zv to zero after approximately 1 s. The result-
ing missile trajectory is shown in Figure 5.10. During the first second of the 
simulation, the missile turns toward the PIP and then travels in a straight 
line until it reaches the PIP.

Figures 5.11 and 5.12 show the missile pitch angle and angle of attack histo-
ries, respectively, with time. Notice that the missile actually pitches up to an 
angle of a little over 12° before pitching down to the steady value of approxi-
mately 2°. This initial pitch up maneuver is required so that the induced 
angle of attack will be sufficient to turn the missile in the desired direction. 
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Once the missile velocity vector approaches the desired flight direction, the 
missile is able to pitch down since less of an angle of attack is required to 
finish the turn. The pitch fin deflection used to perform the maneuver is 
shown in Figure 5.13. A positive initial fin deflection is required to pitch 
the missile to 12°. Notice that after the initial fin deflection, the control level 
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drops, but the control never becomes negative. Since the aerodynamic pitch 
moment included a restoring moment due to angle of attack, the final pitch 
down maneuver of the missile is primarily accomplished with this restoring 
moment, and the pitch fin deflection simply serves to regulate the rate of the 
pitch down maneuver.
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5.3.2 Location of PIP

The new IGC formulation steers the missile toward a fixed point in space, 
the PIP, which will minimize the final miss distance. In order for the IGC 
formulation to work effectively, the PIP needs to be calculated with a high 
degree of accuracy.

5.3.2.1 Intercept Geometry

When the missile is correctly traveling toward the PIP, there exists a collision 
triangle, which is depicted in Figure 5.14. In this configuration, the distance 
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traveled by the missile, dm, in a certain period of time, tgo, will cause the mis-
sile to reach the same point as the target, which has traveled a distance dt in 
the same period of time. The current range between the missile and target is r.

The first step is to determine the distance traveled by both the missile and 
target in the yet unknown time tgo. Consider a general aerodynamic body 
traveling in a straight line with a drag that is proportional to the square of 
the vehicle velocity:

 a = dv/dt = −kv2 (5.35)

Using separation of variables, the velocity with respect to time is

 v = dx/dt = v0/(1 + kv0t) (5.36)

which, after using separation of variables a second time, results in the posi-
tion versus time:

 x x
k

kv t= + +0 0
1

1ln( )  (5.37)

Equation 5.37 can be used to determine the distance traveled by the missile 
and target in the time, tgo, with the initial velocities of the missile and target 
being Vm and Vt, respectively. By using km and kt as the proportionality con-
stants for the missile and target, respectively, the distances are

 d
k

k V tm
m

m m go= +1
1ln( )  (5.38)

 d
k

k V tt
t

t t go= +1
1ln( )  (5.39)

Now by using the law of cosines, the time-to-go, tgo, can be calculated. 
Noting the geometry in Figure 5.14, the law of cosines results in

 d r d rdm t t
2 2 2 2= + − cos φ  (5.40)

Substituting Equations 5.38 and 5.39 gives an expression that can be solved 
to determine tgo:

 r
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k V t
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t
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2 2 1
1
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ln( ) ln( )
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22 2
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k
k V t

m
m m goln( )  

(5.41)
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Once the value for tgo has been calculated, the location of the PIP can eas-
ily be constructed by determining the distance that will be traveled by the 
target, dt.

5.3.2.2 Approximate Solutions

It is difficult to find a closed-form solution to Equation 5.41; however, some 
interesting approximations can be made to the expression. Consider the 
Taylor series expansion for ln(1 + x):

 ln( )
( )

1
1

1

+ = − −

=

∞

∑x
n

x
n

n

n

 (5.42)

which converges if x ∈ (−1,1]. Using Equation 5.42 to approximate the dis-
tance traveled by the missile and target to first-degree accuracy results in

 dm = Vmtgo (5.43)

 dt = Vttgo (5.44)

which is simply the result that would be obtained if it were assumed that no 
drag acted upon either the missile or target. Using Equations 5.43 and 5.44 in 
Equation 5.40 results in a quadratic expression for tgo:

 r rV t V V tt go t m go
2 2 2 22 0+ − + − =( cos ) ( )φ  (5.45)

It is important to determine when the first-order approximation is valid. 
Since the Taylor series approximation given by Equation 5.42 is an alternating 
series, the truncation error is less than the magnitude of the first truncated 
term. With this observation, consider the percent error in the approximated 
travel distance

 pe = te/(d + te) ≤ M/(d + M) (5.46)

where d is the approximate distance and te is the truncation error, which is 
bounded by te ≤ M. For the first-order approximation, d = vt and M = kv2t2/ 
2 = aDt2/2, which gives pe ≤ aDt/(2v + aDt). To ensure that the distance is cal-
culated to within 10% of its actual value, the acceleration due to drag must 
satisfy the limiting condition

 a
v
tD ≤ 2

9
 (5.47)
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Next consider if the distances are approximated with second-order accu-
racy. In this case

 d V t a tm m go D
m

go= − 1
2

2  (5.48)

 d V t a tt t go D
t

go= − 1
2

2  (5.49)

which is the result that would be obtained if a constant drag was assumed 
to act on both the missile and target. In this case, a quartic expression for tgo 
results:
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(5.50)

Again it is important to consider the error in the second-order approxima-
tion. Following along the same lines as was done for the first-order case, 
to ensure 10% accuracy in the distance calculation, the drag acceleration is 
restricted by

 a
v
tD ≤ 1

2
 (5.51)

5.3.3 Extension to Three Dimensions

The IGC scheme developed in Section 3.1 makes use of a general inertial 
frame for the purpose of developing the EOMs for xv and zv. By making use 
of the generality of the inertial frame, one can select the instantaneous mis-
sile body frame for calculating the fin deflection. This is the key observation 
to extending the two-dimensional results to three-dimensional scenarios. 
Each time the control is calculated, the instantaneous missile body frame 
is used as a virtual inertial frame. Then the x–z and x–y planes serve as the 
two-dimensional planes for calculating δq and δr, respectively.

5.3.3.1 Results

Figure 5.15 shows the resulting trajectories when using the VIGC formula-
tion. In this scenario, the initial range is approximately 30 km with the mis-
sile initially traveling at 2 km/s and the target at 3 km/s. The initial target 
aspect angle is 10°, and the missile’s initial heading error is 8°. The scenario is 
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three-dimensional with the missile having a velocity component of approxi-
mately 174 ft/s perpendicular to the initial collision plane.

The final miss distance for the scenario depicted in Figure 5.15 was less 
than 3 × 10−5 ft. Such a low miss distance is obtainable since the missile was 
modeled as traveling in a straight line with no weave. Figure 5.16 shows the 
resulting fin deflections. Note that a 15° hard limit was placed on the pitch 
and yaw fin deflections. Finally, Figures 5.17 and 5.18 show the resulting total 
angle of attack/aerodynamic roll angle and the missile angular velocity com-
ponents, respectively, in the missile body frame.
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5.4 Sliding Mode Integrated Guidance and Control

In this section, a sliding mode approach to IGC, called SMIGC, is described. 
The goal of the SMIGC method is to obtain expressions for the pitch and 
yaw fin deflections that will send the heading errors, δα and δβ, to zero in a 
finite time. Once the heading errors are zero, the missile will be on a collision 
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course toward the PIP (and hence the target), and a hit will be achieved. Also, 
in the presence of a maneuvering target, the SMIGC approach only requires 
the bound of the target acceleration’s perturbation on the missile heading 
error. In order to achieve an accurate approximation for the bound of the 
target acceleration perturbation, an analysis is performed to determine the 
effects of target acceleration on the PIP heading error. The end result of this 
section is a set of control laws for the horizontal and vertical planes that can 
be used to engage maneuvering targets.

5.4.1 Effect of Target Acceleration on PIP Heading Error

It is assumed that the target can only accelerate normal to its direction of 
motion. Consequently, the target velocity direction can change but not its 
magnitude. Let the components of the target’s normal acceleration in the α 
and β planes be taken as Atα

 and Atβ
, respectively. In terms of these normal 

acceleration components, the target acceleration vector can be expressed in 
the inertial ˆ ˆ ˆx y z− −  frame as

 a x ytgt t t t t t t t tA A A A= + − −[ sin sin ]ˆ cos ˆ cos ˆ
α β β α

γ φ φ γ zz  (5.52)

where γt and ϕt are the target’s flight path angle and heading angle, 
respectively.

Now the expression for the rate of change of the PIP location can be found as

 r a v
r r a

r rPIP tgt go tgt
PIP msl tgt go

PIP msl

t
t

= −
− ⋅

−
( )

( )) ⋅ v rel

 (5.53)

where

 rPIP = rtgt + vtgttgo (5.54)

 vrel = vtgt − vmsl (5.55)

and tgo is the time-to-go. Substituting Equations 5.52, 5.54, and 5.55 into Equation 
5.53 and carrying out the required vector operations, Equation 5.53 becomes
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where

 A x x x t t z z z t tt m t go go t t m t go go t= − + − − +( ) sin ( ) cos γ γ  (5.57)

 B x x x t t y y y t tt m t go go t t m t go go t= − + − − +( ) sin ( ) cos φ φ  (5.58)

 C x x x t x x y y y t y yt m t go t m t m t go t= − + − + − + −( )( ) ( )(     mm t m t go t mz z z t z z) ( )( ).+ − + −    

(5.59)

As expected, Equation 5.56 shows that in the case of a nonmaneuvering 
target, the PIP location will remain constant. Next, it is desired to see the 
effect of target acceleration on the derivatives of the two heading errors, 
δα and δβ. These derivatives can be found in a straightforward fashion to be

 

δ δ αα
α

α
α

α
= + + ⋅V

R
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r z  (5.60)
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β
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R
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R
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Y rPIP
sin ( ˆ )

1
r y  (5.61)

where the ẑr and ŷr axes are as defined in Figures 5.1 and 5.2. The third terms 
in Equations 5.60 and 5.61 account for the effect of the target’s normal accel-
eration on the rate of change of heading errors through Equation 5.56. In 
order to simplify Equations 5.60 and 5.61, note that

 ˆ sin( )ˆ cos( )ˆz x zr m m= − − + −γ δ γ δα α  (5.62)

 ˆ sin( )ˆ cos( )ˆy x yr m m= − − + −φ δ φ δβ β  (5.63)

Substitution of Equations 5.56, 5.62, and 5.63 into Equations 5.60 and 5.61 
leads to
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α
α α

α α β
= + + +V

R
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D
R
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E

R
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N t tsin  (5.64)

 δ δ ββ
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β
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β α β
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R
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F
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A
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Am
Y t tsin  (5.65)
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where

 
D t
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− − +sin sin( ) cosγ γ δ γα tt m







−cos( )γ δα  (5.66)
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B
C

x
B
C

zgo t t m t m= − +






− − −sin sin( ) cos(φ γ δ γ δα  αα )  (5.67)
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 − − −sin sin( ) cos(γ φ δ φ δβ  ββ )  (5.68)
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− − +sin sin( ) cosφ φ δ φβ  tt m







−cos( )φ δβ  (5.69)

Equations 5.64 and 5.65 are exact expressions for the rate of change of the 
heading errors if the target is maneuvering. The variables D, E, F, and G have 
somewhat complex expressions in terms of the target and missile positions 
and velocities; however, for the control law implementation, only the bounds 
of those terms are used.

5.4.2 α-Plane SMIGC Control Law

This section describes the SMIGC derivation in the α-plane, with the end 
result being a control law for the pitch fin deflection. In this analysis, the 
target acceleration is considered to be unknown but bounded.

Recall from Equation 5.64 that the derivative of the heading error in the 
α-plane is

 δ δ αα
α

α
α α

α α β
= + + +V

R
k

D
R

A
E

R
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N t tsin  

Now noting that the derivatives of the angle of attack α and pitch rate q are 
given by

 α α
α

= − +k qN  (5.70)

 q k km m q= +
α δ

α δ  (5.71)
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and making the assumption that the target acceleration does not affect 
higher-order derivatives of the heading error, Equation 5.13 can be differen-
tiated until the pitch fin deflection δq appears, leading to

 δ δ δ αα
α

α
α

α α α
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It is now desired to derive an expression for the pitch fin deflection δq 
that will send the heading error δα to zero in a finite time. An appropri-
ate second-order system as a sliding surface sα to achieve this objective is 
given by

 sα α α αδ ζωδ ω δ= + + = 2 02  (5.74)

where ζ and ω are tuning parameters. In this work, the time-to-go is calcu-
lated as

 t
r

V
r

Vgo
r r

= = −  (5.75)

Also, it should be noted that when calculating Equation 5.74, the target 
acceleration terms in the δα  term are ignored. Ignoring the acceleration terms 
(for control calculations and not in the 6-DOF simulation test bed) was found 
to have a negligible effect on the final results.

The sliding surface can be differentiated to yield
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where
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 (5.77)

 I k kN m= −
α δ  (5.78)

Equation 5.76 shows that the sliding surface has a relative degree of 1, so 
a traditional first-order sliding mode (1-sliding mode) approach can be used 
to solve the control problem. Also, it is seen that in contrast to the sliding 
surface (Equation 5.23), the target acceleration terms are allowed to enter the 
sliding surface’s derivative. Any uncertainties in the derivative are assumed 
to be dealt with by the control δq.

In order to derive an expression for the control δq, a candidate Lyapunov 
function, V, is chosen as

 V s= 1
2

2
α  (5.79)

The derivative of the Lyapunov function of Equation 5.79 can then be 
found as

 

V s s s H I
D
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R
Aq t t= = − + +



















α α α
α α

δ ω
λ φ

2  (5.80)

It is now desired to select a value for the control input δq such that the 
Lyapunov function (and hence the sliding surface sα) will reach zero in a 
finite time. In this regard, δq is chosen as

 δ δ νq qI eq
= +1

( )  (5.81)

where δqeq
 is the “equivalent control”
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 δqeq
H=  (5.82)

and ν is an “extra” control term that is required in order to send the Lyapunov 
function to zero and deal with the uncertainty terms involving the target 
acceleration.

Substituting Equations 5.81 and 5.82 into Equation 5.80 leads to
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In order to make Equation 5.83 negative, the variable ν is chosen as

 ν η α
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sat( )sα  (5.84)

In Equation 5.84, the initial values of D, E, and Rα are used due to the fact 
that the initial value of each corresponds to its maximum value. Also, the 
maximum values of the target’s normal accelerations are used. Substituting 
Equation 5.84 into Equation 5.83 and simplifying leads to

 V s≤ − <η α 0  (5.85)

Equation 5.85 shows that the Lyapunov function’s derivative is negative for 
all sα ≠ 0, thus guaranteeing that the sliding surface of Equation 5.74 will be 
reached in a finite time given by

 t
s t

r ≤ α

η
( )0  (5.86)

Note that the sliding surface reaching time will be less than or equal to some 
maximum value of |sα (t0)|/η. In the absence of the unknown target accelera-
tion, the less than or equal to sign in Equation 5.86 becomes equality, which 
means that there will be a specific reaching time for the value of η that is 
selected.

It is interesting to observe that Equation 5.86 can be rearranged to solve 
for the value of η required to achieve a desired reaching time tr. The surface 
of Equation 5.74 will go to zero at a time less than or equal to tr, but the 
heading error δα will only go to zero after the sliding surface is reached, 
so some amount of time must be spent on the surface sα = 0. It is therefore 
important that the reaching time be less than the initial time-to-go to allow 
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time for the heading error to go to zero. In order to achieve this condition, 
η is chosen as

 η α=
−

s t

t tgo

( )

( )
0

0 3
 (5.87)

The value of η in Equation 5.87 ensures that the sliding surface will be 
reached in a time that is less than or equal to 3 s before the initial tgo. It 
was found that this choice for the reaching time provides ample time for the 
heading error to become extremely small.

Substituting Equations 5.82, 5.84, and 5.87 into Equation 5.81, the expres-
sion for the pitch fin deflection is obtained as
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(5.88)

The control law of Equation 5.88 will ensure that the α-plane heading error 
δα will go to zero in a time that is less than the initial time-to-go in the pres-
ence of a maneuvering or nonmaneuvering target. For the calculation of the 
control law, the variables needed are the instantaneous values of the heading 
error, the missile velocity, the angle of attack, the pitch rate, and the initial 
time-to-go. Finally, the saturation function sat(sα) in Equation 5.88 is used to 
prevent chattering.

5.4.3 β-Plane SMIGC Control Law

This section outlines the derivation of an expression for the yaw fin deflec-
tion δr for control in the β-plane. Steps in this development are fairly similar 
to the α-plane SMIGC derivation, so the derivation will not be as elaborate as 
in the previous section.

Recall from Equation 5.65 that the heading error derivative in the β-plane is
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Noting that the derivatives of the sideslip angle β and the yaw rate r are

 β β
β

= − −k rY  (5.89)

 r k kn n r= +
β δ

β δ  (5.90)
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and again making the assumption that the target acceleration does not affect 
the higher-order derivatives of the heading error, Equation 5.65 is differenti-
ated until the yaw fin deflection δr appears as
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As was seen with the heading error in the α-plane, the control input 
appears in the third derivative of δβ.

A sliding surface is now chosen as

 sβ β β βδ ζωδ ω δ= + + = 2 02  (5.93)

Next, the sliding surface is differentiated to yield
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where
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As was seen in the α-plane analysis, Equation 5.94 indicates that the sliding 
surface has a relative degree of 1.

In order to derive an expression for δr, a candidate Lyapunov function is 
chosen as

 V s= 1
2

2
β  (5.97)

The Lyapunov function’s derivative is then found as
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Now it is simply necessary to select δr such that the Lyapunov function, 
and hence sβ, will be guaranteed to go to zero in a finite time in the presence 
of unknown target acceleration. This finite time must be less than the initial 
tgo so that the heading error δβ will have enough time to become negligibly 
small according to the second-order system in Equation 5.93. Similar to the 
development in the previous section, an expression for δr that can satisfy 
these conditions is found as
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The yaw fin deflection control law of Equation 5.99 guarantees that the 
sliding surface of Equation 5.93 will go to zero in a finite time that is less 
than or equal to 3 s before the initial tgo in the presence of a maneuvering or 
nonmaneuvering target.

5.5 SMIGC Results and Analysis

In this section, numerical results from the application of the SMIGC approach 
to a missile-intercept problem are presented for a set of stressed three-
dimensional engagement scenarios. In each scenario, the missile must cor-
rect a large heading error in a small amount of time. Also, it is assumed that 
the engagement scenarios are post burn-out scenarios. In the inertial x–y–z 
frame, for these scenarios, the initial position vectors of the target and mis-
sile are rtgt = [55,000 ft 55,000 ft 105,000 ft]T and rmsl = [0 0 50,000 ft]T, and their 
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initial velocity magnitudes are taken as Vtgt = 9842 ft/s and Vmsl = 6561 ft/s. 
Also, it is assumed that the target is weaving at 5 g’s in both planes at a fre-
quency of 1 Hz. For this set of initial conditions, two different values for the 
initial heading error were chosen: 15° and 30°. In all simulations, the values 
of ζ and ω in Equations 5.74 and 5.93 are set to 0.707 and 5, respectively, and 
the boundary layer ε used in the saturation function is chosen as 0.001. The 
results from these simulations are shown in Figures 5.3 through 5.10.

Figures 5.19 and 5.20 show the missile and target trajectories for the 15° 
and 30° initial heading error cases. It can be seen that the SMIGC approach 
performs well in both cases, yielding miss distances of 0.1331 and 0.471 ft, 
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respectively. From Figures 5.21 and 5.22, it can be seen that the fin deflec-
tions and normal accelerations tend to increase as the initial heading error is 
increased, although all the values stay within safe bounds. Note that the yaw 
fin deflections are consistently higher than the pitch fin deflections. It makes 
sense that the yaw fin deflections are higher since the engagement is primar-
ily in the horizontal plane. These figures also indicate that, for both cases, 
the deflections and normal accelerations all exhibit the same pattern of an 
initially large value that tends toward zero as the heading error goes to zero. 
For the 15° and 30° heading error cases, respectively, the maximum fin deflec-
tion magnitudes are 10° and 23°, and the maximum normal accelerations are 
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30 and 60 g’s. The angle of attack and sideslip angle histories can be found 
in Figures 5.23 and 5.24, and it can be seen that the values exhibit the same 
trends as the fin deflections and normal accelerations. In particular, for each 
case, the missile initially rises to a large angle of attack and sideslip angle, 
and then the angles approach zero as the heading error goes to zero. For the 
15° and 40° heading error cases, respectively, the maximum angle-of-attack 
magnitudes are 2.8° and 10°, and the maximum sideslip angles are 13.5° and 
23°. Finally, Figures 5.25 and 5.26 show that the sliding surfaces and head-
ing errors are successfully sent to zero before the end of the engagement 
scenarios as desired. It should be pointed out that the heading error histories 
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show oscillations near zero. Corresponding oscillations can be observed in 
fin deflections, angle of attack, and pitch rate histories toward the end. A low 
pass filter could be used in control calculations to smooth these oscillations. 
An alternate method is to use higher-order sliding mode techniques. It was, 
however, felt that the current simpler structure does an adequate job and leads 
to very low miss distances, and therefore, there was no need to go for more 
sophisticated options. It should also be observed that a saturation function is 
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used, and only the bound of the target acceleration is known. Hence, while it 
cannot be guaranteed that the heading error will be sent exactly to zero, it can 
be guaranteed that the heading error can be made arbitrarily small.

5.6 Summary and Conclusions

In this chapter, the missile guidance and control designs were wrapped into 
a single IGC subsystem. The importance of selecting a proper and mean-
ingful formulation was brought out. It was shown how the body-based IGC 
formulation was unable to fully capture the complex physics behind missile 
motion. Since the velocity-based IGC method incorporates the missile phys-
ics, it is much more effective in a wide range of engagement scenarios.

A new IGC method, called the sliding mode IGC (SMIGC), was presented. 
A promising aspect of this approach is that it does not require exact infor-
mation about the target acceleration to be implemented but only its bounds. 
Results of the SMIGC approach with a 6-DOF nonlinear missile model were 
presented for a few taxing engagement scenarios. From the results, it appears 
that SMIGC can yield a favorable hit-to-kill accuracy against agile targets. 
Furthermore, the control laws were shown to result in moderate but reason-
able fin deflection histories.
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6.1 Introduction

6.1.1 Technical Challenges

The flight domain of aerospace vehicles has enlarged considerably over the 
last decades. As a consequence, the development of accurate plant models 
required for designing control laws becomes more and more expensive 
and difficult. Since the performance of Guidance Navigation and Control 
Algorithms developed using conventional control techniques is only as good 
as an underlying plant model used in their design, the robustness of the 
design presents an increasingly difficult technical challenge aggravated by 
the increasingly larger flight domain.

The challenge exists in the robust steering of the vehicles using a variety 
and possibly concurrent use of divert mechanisms such as aerodynamic lift, 
booster/sustainer orientation, and divert actuators, and use of either continu-
ous actuators or discontinuous actuators in the presence of uncertain shock 
waves and actuator malfunctions. The concurrent use of several different 
divert mechanisms poses a major technical challenge for the design of the auto-
pilot. This problem is aggravated by the fact that the different divert mecha-
nisms exert disturbing effects on each other. This is the case when thrusters are 
fired; the fuel mass ejected creates a thickening of the boundary layer, which in 
turn modifies the shock wave system around the vehicle thereby altering the 
characteristics of the lift. Likewise, the pressure system governed by the shock 
wave alters the static pressure at the exit of the nozzle and thereby modifies 
corresponding specific impulses. Research results have shown that the relative 
degree of multiplicative disturbances may reach up to 30% [1].

6.1.2 Why Sliding Mode Control?

Control in the presence of uncertainty is one of the main topics of modern 
control theory. In the formulation of any control problem, there is always a 
discrepancy between the actual plant dynamics and its mathematical model 
used for the controller design. These discrepancies (or mismatches) mostly 
come from external disturbances, unknown plant parameters, and unmod-
eled dynamics. Designing control laws that provide the desired closed-loop 
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system performance in the presence of these disturbances/uncertainties is a 
very challenging task for a control engineer. This has led to intense interest 
in the development of so-called nonlinear robust control methods [26], which 
are supposed to solve this problem. In spite of the extensive and successful 
development of robust adaptive control, H∞ control, and back-stepping tech-
niques [26], sliding mode control (SMC) [2, 23] remains, probably, the most 
successful approach in handling bounded uncertainties/disturbances and 
unmodeled dynamics.

Historically, sliding modes were discovered as a special mode in variable 
structure systems (VSSs). VSSs comprise a variety of structures. Certain rules 
are developed to switch between the structures in current time to achieve 
a suitable system performance, whereas using only a single fixed structure 
from the set of controllers could even be unstable. The result is VSS, which 
may be regarded as a combination of subsystems where each subsystem has 
a fixed control structure and is valid for specified regions of system behav-
ior. It appeared to be that the closed-loop system may be designed to pos-
sess new properties not present in any of the constituent substructures alone. 
Furthermore, in a special mode, named a sliding mode, these properties 
include robustness to certain (so-called matched) external disturbances and 
model uncertainties, as well as to unmodeled dynamics. Achieving reduced 
order dynamics of the compensated system in a sliding mode (termed partial 
dynamical collapse) is also a very important useful property of sliding modes. 
The development of these novel ideas began in the Soviet Union in the late 
1950s. The idea of SMC is based on the introduction of a “custom-designed” 
function, named the sliding variable. As soon as the properly designed sliding 
variable becomes equal to zero, it defines the sliding manifold (or the sliding 
surface in the linear case). The proper design of the sliding variable yields suit-
able closed-loop system performance while the system’s trajectories belong to 
the sliding manifold. The idea of SMC is to steer the system trajectory to the 
properly chosen sliding manifold and then maintain motion on the manifold 
thereafter by means of control, thus exploiting the main features of the sliding 
mode: its insensitivity to external and internal disturbances matched by the 
control, ultimate accuracy, and finite-time reaching of the transient.

The SMC design approach consists of two components [2]. The first involves 
the design of a switching function so that the system motion on the sliding 
manifold (termed the sliding motion) satisfies the design specifications. The 
second is concerned with the selection of a control law, which will make the 
sliding manifold attractive to the system state in the presence of external and 
internal disturbances/uncertainties. Note that this control law is not neces-
sarily discontinuous.

SMC-based observers allow estimation of the system’s states in the pres-
ence of unknown external disturbances, which can also be explicitly recon-
structed online by the observer [2].

The already matured classical SMC theory received a significant boost 
in the beginning of the 1990s: when a new “higher-order” paradigm was 
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introduced [10, 11, 14]. The introduction of this new paradigm was dictated 
by the following reasons:

 1. The classical sliding mode design approach requires the system rela-
tive degree to be equal to 1 with respect to the sliding variable. This 
can seriously constrain the choice of the sliding variable.

 2. Also, very often, a sliding mode controller yields high-frequency 
switching control action that leads to the so-called “chattering 
effect,” which is difficult to avoid or attenuate.

These intrinsic difficulties of classical SMC are mitigated by the higher-
order sliding mode (HOSM) controllers [10–12, 14] that are able to drive to 
zero not only the sliding variable but also its k − 1 successive derivatives (kth-
order sliding mode). The novel approach is effective for arbitrary relative 
degrees, and the well-known chattering effect is significantly reduced since 
the high-frequency control switching is “hidden” in the higher derivative of 
the sliding variable.

When implemented in discrete time, HOSM provides sliding accuracy 
proportional to the kth power of the time increment, which makes HOSM an 
enhanced-accuracy robust control technique. Since only the kth derivative of 
the sliding manifold is proportional to the high-frequency switching control 
signal, the switching amplitude is well attenuated at the sliding manifold 
level, which significantly reduces chattering.

The unique power of the approach is revealed by the development of practi-
cal arbitrary-order real-time robust exact differentiators, whose performance 
is proved to be asymptotically optimal in the presence of small Lebesgue-
measurable input noises. The HOSM differentiators are used in advanced 
HOSM-based observers for estimation of the system’s phase state in the pres-
ence of unknown external disturbances, which are also reconstructed online 
by the observers. In addition, HOSM-based parameter observers have been 
developed as well.

The combination of a HOSM controller with the above-mentioned HOSM-
based differentiator produces a robust and exact output-feedback controller 
[10, 11, 14]. No detailed mathematical models of the plant are needed. SMC of 
arbitrary smoothness can be achieved by artificially increasing the relative 
degree of the system, significantly attenuating the chattering effect.

The practicality of the classical SMC and HOSM control and observation 
techniques is demonstrated by a large variety of applications that include 
direct current-to-direct current (DC/DC) and alternate current-to-direct 
current (AC/DC) power converters, control of AC and DC motors and gen-
erators, robotic control, and aircraft and missile guidance and control [3–9, 11, 
13, 15–18, 25]. Integrated guidance and control is considered in the work of 
Sweriduk et al. [27] and Xin et al. [28] using optimal control techniques that 
usually lack robustness. Robust integrated guidance and automatic pilot 
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using traditional SMC [2] was studied in the work of Idan and Shima [3]. The 
integrated controller uses a canard control to steer a first sliding variable rep-
resenting the zero effort miss to zero, while a second, model-based sliding 
variable, representing pitch acceleration contributions of the angle of attack 
and tail control, is also driven to zero. Traditional SMC is used for developing 
robust to target maneuvers guidance laws for missile interceptors [3–9]. The 
approximation of traditional SMC by saturation functions is employed [3] to 
smooth out the guidance command by a price of losing robustness.

Development of the smooth robust guidance law to target maneuvers 
[11, 13] is essential for effectively following this law by autopilot and also for 
integrating guidance and autopilot [3, 5, 13].

The structure of this work is as follows. The fundamentals of traditional 
SMC are presented in Section 6.2. Section 6.3 presents the fundamentals of 
higher (second) order sliding mode (HOSM/SOSM) control and presents 
multiple HOSM/SOSM algorithms. Section 6.4 discusses the fundamental 
properties of HOSM/SOSM control. Section 6.5 presents the test case used 
to illustrate various algorithms, with discussion on the interception strategy 
and the notional ballistic missile interceptor, steered by continuous actuators 
during boost steered and by divert and attitude actuators during terminal 
flight. Section 6.6 presents the overall control architecture and the design of 
a smooth guidance law. Section 6.7 presents the inversion process that inter-
relates the inner loop inputs with the outer loop acceleration commands and 
several autopilot designs operating on continuous and discontinuous actua-
tors. Finally, Section 6.8 presents the conclusions.

6.2 Fundamentals of Traditional SMC

Assume that a dynamic system is described by a system of differential 
equations:

 � � �x f x B x u f x t x un m= + + ∈ ∈( ) ( ) ( , ), ,∆  (6.1)

where x is a state; u is control; B(x) ∈ ℝn×m and f (x) ∈ ℝn are known vector 
field and a matrix, correspondingly; Δf(x, t) is matched by control [i.e., there 
exists λ ∈ Rm so that Δf(x, t) = B(x)λ] unknown norm-bounded vector field 
∆f x t L( , ) ≤ . The problem is to design the control function u that drives x → 0 

in the presence of unknown bounded disturbance/uncertainty Δf(x, t).
In order to address the problem using traditional SMC, a sliding variable σ = 

σ(x) ∈ ℝm is introduced so that stirring x(t) to the sliding surface

 σ(x) = 0 (6.2)
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yields x → 0 as time increases.

Definition 6.1 

The control u = u(x) in Equation 6.1 that drives the state variable x to the slid-
ing surface (Equation 6.2) in finite time tr, and keeps them there thereafter in 
the presence of the bounded disturbance/uncertainty Δf(x, t), is called tradi-
tional SMC and an ideal sliding mode is said to be taking place in the system 
(Equation 6.1) for all t > tr [2].

The system dynamics in the sliding mode is described by Equation 6.1 
after substituting equivalent control that is defined as follows:

 

σ λ( ) ( )( ( ) ( ) ( ) )

( ) ( )

x G x f x B x u B x

u G x B x

eq
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Remark 6.1 

It is clear from Equation 6.3 that for the existence of the sliding mode, it is 
necessary that det[G(x)B(x)] ≠ 0. This condition means that the sliding vari-
able dynamics is supposed to have a vector-relative degree r

m

=  1 1 1, , ,…
� ����� �����

.

Finally, the system’s dynamics in the sliding modes becomes [2, 23]

 
x f x B x G x B x G x f x

x

= −  

=







−
( ) ( ) ( ) ( ) ( ) ( )

( ) .

1

0σ
 (6.4)

Apparently, that dynamics (Equation 6.4) is of a reduced n − m order that 
is named a partial dynamical collapse of the system (Equation 6.1) in the sliding 
mode. Also, the sliding mode dynamics (Equation 6.4) is insensitive to the 
matched bounded disturbance/uncertainty Δf(x, t).

The trajectory x(t) of the system (Equation 6.1) can be stirred to the sliding 
surface (Equation 6.2) in finite time tr and kept there thereafter by means of 
the SMC:
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 u G x B x G x f x L G x f= −   + +










−
( ) ( ) ( ) ( ) ( ) , ( ) (

1
ρ σ

σ
∆ xx L) , .≤ >ρ 0  (6.5)

The SMC (Equation 6.5) is discontinuous on the sliding surface (Equation 

6.2). Furthermore, since 
σ
σ

σ→ sign( ) as σ → 0 in finite time tr ≤
σ

ρ
( )0

, 

the SMC (Equation 6.5) changes its sign in the vicinity of σ = 0. This fact 
could yield a control chattering (zigzag motion) if the control sign does 
not change its sign exactly on σ = 0. Traditional SMC achieves insensitiv-
ity to matched disturbances by high-frequency switching of the control. 
While high-frequency switching of the control is perfectly acceptable when 
it applies to electrical or electronic circuits, it is not a viable solution for 
aerospace vehicles.

A possible remedy is introducing a boundary layer with high gain control 

[26], that is, replacing 
σ
σ

σ
σ ε

ε→
+

>, 0, but this approximation is unfortu-

nately detrimental to robustness.
A phase portrait of a sliding mode with a zigzag motion (chattering) in a 

generic second-order system is illustrated in Figure 6.1.
In order to attenuate chattering, it is desirable to hide a discontinuous 

high-frequency switching portion of the SMC σ
σ

 under the second- or 

higher-order derivative of the sliding variable. The second- and higher-order 
SMC techniques are invented to achieve this goal [10, 11, 14].

σ > 0
σ < 0

σ < 0
σ > 0 σ = 0

x2

x1

Figure 6.1
Traditional SMC.
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6.3 Fundamentals of HoSM/SoSM Control

Assume that a dynamic system is described by a system of differential equa-
tions (Equation 6.1) with m = 1, that is, with a scalar control function u. The 
sliding variable dynamics is derived:

 σ( ) ( ) ( ) ( ) ( ) ( ) ( , ).x G x f x G x B x u G x f x t= + + ∆  (6.6)

Suppose that G(x)B(x) = 0; then differentiating Equation 6.6, we obtain

 �� � �������� ��������σ ϕ ϕ
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( ) ( ) ( , )
( , )

x x x t b
x t

= + +0 0
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dd
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x
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 (6.8)

where the control u drives simultaneously σ → 0 and σ → 0  in finite time.

Definition 6.2

Considering the nonlinear sliding manifold (Equation 6.2), the control u = 
u(x) in Equations 6.1 and 6.6 that drives σ → 0 and σ → 0  in finite time tr  and 
keeps them there thereafter in the presence of a bounded disturbance Δf(x, 
t) is called the second-order sliding mode (SOSM) control, and an ideal SOSM is 
said to be taking place in system 6.1 for all t tr>  [10].

Remark 6.2

SOSM control handles a finite-time control problem in Equation 6.7 of rela-
tive degree 2 unlike traditional SMC that handles a finite-time single input 
control problem in Equation 6.3 of a relative degree 1.

The SOSM control is illustrated in Figure 6.2.
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Assume that

 0 0< ≤ ∂
∂

≤ ≤=K
u

K Cm M u σ σ  (6.9)

holds globally for some Km, KM, C > 0. Then Equations 6.7 and 6.9 generate 
the differential inclusion

 σ ∈ − +[ , ] [ , ] .C C K K um M  (6.10)

Most two-sliding controllers may be considered as controllers for Equation 
6.9 steering σ σ,  → 0  in (preferably) finite time. Such controllers are obvi-
ously robust with respect to any perturbations preserving Equation 6.9.

Hence, the problem is to find a feedback control law:

 u u= ( , )σ σ  

such that all the trajectories of Equations 6.9 and 6.10 converge in finite time 
to the origin σ σ= = 0  of the phase plane σ σ,  .

Several of the simplest and most popular controllers solving this problem 
are presented below.

6.3.1 Twisting Controller

The twisting controller [10, 14] was historically the first two-sliding control-
ler. It is defined by the formula

 u r r r r= − − > >1 2 1 2 0sign sign( ) ( ),σ σ  (6.11)

σ = 0

σ 
= 0

σ = σ =0

Figure 6.2
Second-order SMC.
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where r1 and r2 satisfy the conditions

 (r1 + r2)Km – C > (r1 − r2)KM + C 
(6.12)

 (r1 − r2)Km > C 

It is proven [7, 14] that the controller (Equations 6.11 and 6.12) guarantees 
the appearance of SOSM σ σ= = 0 in Equation 6.7 attracting the trajectories 
in finite time:

 T
q K r r C

q
K r r C
K r rm

M

M

≤
− − −

= − +
+

σ( )

( )[ ( ) ]
,

( )
(

0

1 1 2

1 2

1 2 ))
.

/

−








 <

C

1 2

1  (6.13)

6.3.2 Control Algorithm with Prescribed Convergence Law

It is known [10, 14] that a solution of a differential equation

 σ λ σ σ+ =
1 2

0
/

( )sign  (6.14)

and its derivative converge to zero (σ σ,  → 0) in finite time. The idea is to sta-
bilize Equation 6.14 using σ-dynamics of relative degree 2 given by Equation 
6.7 by means of traditional SMC. It yields to the SOSM controller with pre-
scribed convergence law [7, 14]:

 u K Cm= − ⋅ +





> − >ρ σ λ σ σ ρ λ ρ λsign sign /

1 2 20 2
/

( ) , , ,  (6.15)

that drives σ σ,  → 0  in Equation 6.7 in finite time.

6.3.3 SOSM Control Based on Nonlinear Dynamic Sliding Manifold

In order to avoid differentiation of σ in Equation 6.15, SOSM control u can 
be also designed based on nonlinear dynamic sliding manifold (NDSM) as 
follows [24, 25]:

 

u J J

J

= − = +

= −

ρ σ χ

χ λ σ σ β

sign

sign sign

( ),

( ) (
/ /



1 2 1 2
JJ)  

(6.16)
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where J is the nonlinear dynamic sliding variable; the coefficients β > λ > 0 
and ρ > 0  are sufficiently large. We will call the surface J = 0 described by 
the system 6.15 the NDSM.

It is proven [24, 25] that the control law (Equation 6.15) provides for the 
finite-time convergent second-order sliding mode J J= = 0.

As soon as the second-order sliding mode, J J= = 0, is established, the 
sliding variable second-order dynamics are described by Equation 6.14 and 

converges to zero in finite time, which is equal to 2 2e tJ( )/β , where tJ is the 

moment when NDSM dynamics reach zero, that is, J J= = 0.
It is worth noting that all algorithms, the twisting, the prescribed conver-

gence law, and the SOSM/NDSM algorithm, are high-frequency switching 
control laws. However, only the second derivative of the sliding variable σ is 
discontinued while continuity of σ σ,   is retained. It can be used to generate 
commands to the “on–off” actuators in the systems of relative degree 2. In 
order to achieve a given frequency of control switching, the sliding variable 
σ or NDSM J can be mixed with a dither signal of a given frequency. In this 
case, the control functions 6.11, 6.15, and 6.16 will be pulse width modulated.

When divert acceleration is continuous, which is the case with aerodynamic 
divert, or when the components of booster/sustainer thrust perpendicular to 
the velocity commanded acceleration are instrumental to the divert accelera-
tion, acceleration commands need to be smooth.

Assume that the inner loop autopilot commands are pitch rate commands. 
In such a case, the autopilot needs to calculate prescribed attitude rates 
through a process called inversion discussed in Section 6.6. Commanded 
rotation angles from velocity axes to body axes are calculated from com-
manded acceleration, and the calculation of corresponding body rates 
requires a differentiation. Consequently, for prescribed attitude rates to be 
continuous, corresponding prescribed acceleration commands used in their 
calculation need to be smooth.

The next three subsections are dedicated to continuous/smooth SOSM 
control that can be used for designing guidance commands.

6.3.4 Quasi-Continuous Control Algorithm

An important class of HOSM controllers comprises the so-called quasi- 
continuous controllers, featuring continuous control everywhere except at the 
two-sliding mode σ σ= = 0 itself. Since the two-sliding condition requires 
the simultaneous fulfillment of two exact equalities, generally, the trajecto-
ries never hit the two-sliding set. Hence, in practice, the condition σ σ= = 0 
is never fulfilled, and the control remains a continuous function at all times. 
The larger the noises and switching imperfections become, the worse the 
accuracy is and the slower the changing rate of u. As a result, chattering is 
significantly reduced. The following is the two-sliding controller with such 
features [10]:
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 u = − ⋅
+

+
ρ

σ β σ σ

σ β σ



1 2

1 2

/

/

sign( )
.  (6.17)

This control is continuous everywhere except at the origin. It vanishes on 
the parabola σ β σ σ+ =

1 2
0

/
( )sign . For sufficiently large ρ, there exist num-

bers ρ1, ρ2 : 0 < ρ1 < β < ρ2 such that all trajectories enter the region between 

the curves σ ρ σ σ+ = =i i
1 2

0 1 2
/

( ) , ,sign  and cannot leave.

6.3.5 Supertwisting Controller

Consider once more the σ-dynamics described by a system of relative degree 
1 and suppose that

 � �σ ϕ σ( ) ( , ) ( ) , , .x x t b x u u= + ∈  (6.18)

Furthermore, suppose that for some positive constants C, KM, Km, Um, q

 ϕ ϕ≤ ≤ ≤ ≤ < < <C K b x K b qU qm M M, ( ) , , .0 0 1/  (6.19)

The following continuous controller, named supertwisting controller [14], 
does not need measurements of σ. Specifically, define [10, 14]

 u u u
u u U

u U
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ϖ σ
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 (6.20)

With K Cmϖ2 >  and ϖ1  sufficiently large, the supertwisting controller 
(Equation 6.20) provides a two-sliding mode σ σ= = 0  attracting trajectories 
in finite time. The control u enters within finite time the segment [−UM, UM] 
and stays there.

In particular, the terms ϖ ϖ1 2,  can be calculated based on the upper bound 
ϕ ≤ C  of the first time derivative of the unknown right-hand side term as

 ϖ ϖ1 2
1 5 1 1= =.

,
.

.
K

C
K

C
m m

 (6.21)

It is the only known continuous controller that drives the output of the 
relative degree 1 system 6.18 to 0 (σ σ,  → 0) in finite time in presence of 
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uncertainties and disturbances. In other words, it can be used instead of a 
traditional sliding mode controller in order to avoid chattering.

The supertwisting control (Equation 6.20) is also used in SMC differentia-
tors that can be used, in particular, for differentiating σ in the SOSM control 
laws (Equations 6.11, 6.15, and 6.17).

Let the generic signal f(t) consist of a bounded Lebesgue-measurable noise 
with unknown features and an unknown base signal f0(t) with f L0 ≤  hav-
ing a known Lipschitz constant L > 0. The problem is to find real-time robust 
estimations of f0(t), with f t0( )  being exact in the absence of a measurement 
noise.

The proposed supertwist–based differentiator has a form

 




z z f t z f t z

z z

0 1 0

1 2

0 1

1 0 0

= − − − +

= −

λ

λ

( ) ( ( ))
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/
sign

sign −− f t( ))
 (6.22)

where z1 can be taken as the differentiator output [10, 14].
It is known [14, 15] that in the absence of noise, for any λ0 > L and for λ1 

satisfying the condition 
2

10
2

1
2

0

( )
( )

λ
λ λ

+
−

<L
L

, z f z f1 0 0 0→ → ,  in finite time.

In a case of the measurement noise that satisfies the inequality |f(t) – 
f0(t)| ≤ ε, the following inequalities are established in finite time for some 
positive constants μ1, μ2, μ3 depending exclusively on the parameters of the 
differentiator [14, 15]:

 z f t z f t v f t0 0 1 1 0 2
1 2

0 3
1 2− ≤ − ≤ − ≤( ) , ( ) , ( ) ./ /µ ε µ ε µ ε   (6.23)

6.3.5.1 Comparison of Supertwisting and Traditional SMC

In order to illustrate a difference between traditional SMC and SOSM per-

formances, supertwisting u = − − ∫2 3
1 2

σ σ σ τ
/

sign( ) sign( )d  and traditional 

SMC u = −3sign(σ) were used to drive a sliding variable σ in Equation 6.18 to 
zero with φ(x, t) = sin(2t), b(x) = 1. The results of the simulations are shown in 
Figures 6.3 through 6.5.

Both sliding variables reach zero in finite time in presence of unknown 
bounded disturbance. However, SOSM supertwisting control achieves this 
goal being continuous, whereas traditional SMC is a discontinuous high-
frequency switching function.
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6.3.6 Smooth SOSM Control

Consider once more the σ-dynamics described by a system of relative degree 
1 in Equation 6.18. The problem that is addressed in this section is to design 
smooth control u that drives σ σ,  → 0  [smooth SOSM (SSOSM)] in finite time.

Remark 6.3

This control is supposed to be a very good candidate for designing a guid-
ance law that is robust to target maneuvers.

The drift term φ(x, t) is to be cancelled by means of a special observer to 
be developed further. The prescribed compensated σ-dynamics in Equation 
6.18 is chosen as [11]
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 (6.24)

It is known [11] that if p ≥ 2, α1, α2 > 0 in system 6.22, then x1, x2 → 0 or 
σ σ,  → 0  in finite time [22].

6.3.6.1 Nonlinear Disturbance Observer/Differentiator

The sliding variable dynamics (Equation 6.18) are sensitive to the unknown 
bounded drift term φ(x, t) that can be estimated using the HOSM observer [10, 11].

Let the variables σ(t) and u(t) be available in real time, and |φ(m−1)| ≤ L has a 
known Lipschitz constant L > 0. The control function u(t) is Lebesgue measurable.

Consider the following HOSM observer [10]:
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It is proven in [10] that if σ(t) and u(t) are measured with some Lebesgue-
measurable noises bounded respectively by ε > 0 and kε(m–1)/m, and k > 0 is any 
fixed constant, then the following inequalities are established in finite time 
for some positive constants μi, ηi depending exclusively on k and the choice 
of parameters:
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 (6.26)

where the parameters λi are being chosen sufficiently large in the reverse order.
In particular, in the absence of input noises, the exact equalities are estab-

lished in finite time:

 z0 = σ(t), z1 = φ,…, zi = νi−1 = φ(i−1) i = 1,…m. (6.27)

It is worth noting that parameters λi can be chosen recursively so that 
parameters λ0,…,λk, which are valid for m = k, can serve (after changing 
the notation) as λ1,…,λk+1 with m = k + 1, which means that only λ0 is to be 
assigned. The simulation-checked set 8, 5, 3, 2, 1.5, 1.1 is sufficient for the 
observer design with m ≤ 5 [10].

6.3.6.2 Disturbance Cancellation

The prescribed compensated σ-dynamics (Equation 6.24) with p = m + 1, 
m ≥ 1, α1, α2 > 0 is easily provided using the HOSM disturbance observer 
(Equation 6.26) via control u [11]:
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When exact measurements are available, z1 becomes equal to φ(x, t) in a 
finite time, and the σ-dynamics are described by the finite-time stable system 
6.24 thereafter.

In particular, for m = 2, SSOSM control law (Equations 6.25, 6.27, and 6.28) 
becomes [11]
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with
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where z1 → φ(x, t) in finite time.
The controls Equations 6.28 and 6.30 can be interpreted as SSOSM controls 

since, being smooth, they provide finite-time convergence σ σ,  → 0.
It is worth noting that the supertwisting control (Equation 6.20) solves the 

same problem; however, it is only continuous but not smooth as the controls 
Equation 6.28 or Equation 6.30.

Remark 6.4

The generalized kth-order HOSM control algorithms u that can handle the 
kth-order sliding variable dynamics of the form [10]

 σ(k) = φ(x, t) + b(x)u (6.31)

driving the sliding variable and its (k – 1) consecutive derivatives to zero 
(  σ σ σ, , , ( )� … k− →1 0 ) in finite time are available [10]. Study of HOSM algo-
rithms for k ≥ 3 is beyond the scope of this work.

6.4  Discussion on Properties of Traditional 
and Higher-order SMC

Concluding our study of traditional and higher-order SMC, we could sum-
marize their properties as follows.

 (1) Insensitivity to matched disturbances. This property of HOSM control is 
common for both traditional SMC and SOSM. Different elements of the 
interceptor/kill vehicle (KV; such as the observers, the guidance, and 
autopilot) can operate in an integrated fashion where a controller auto-
matically compensates for the disturbances created by other elements 
without having to estimate their corresponding disturbing effects.
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 (2) Dynamical collapse. Unlike traditional SMC that guarantees only par-
tial dynamical collapse (reduction of system’s order in the sliding 
mode by 1 that is achieved in finite time), HOSM can achieve full 
dynamical collapse (reduction of system’s dynamics to algebraic 
equations in finite time) since it can handle the system’s dynamics 
of an arbitrary relative degree. For instance, SOSM control achieves 
a reduction of system’s order by 2. This is much more than an aca-
demic distinction; it means that at least in the absence of noise, when 
the sliding mode is reached, the transfer function of inner loops with 
relative degree greater than 1 could become an identity.

 (3) Continuous/smooth guidance laws. SOSM/HOSM controllers can yield 
continuous and even smooth controls that are applicable in multiple-
loop integrated guidance/autopilot control laws. This is especially 
important in our application where the guidance generates acceleration 
commands, the time derivatives thereof that are used in the autopilot to 
calculate commanded attitude rates. Should the commands generated 
by the guidance not be smooth, that would cause their time derivatives 
used to calculate the autopilot’s attitude rate reference profiles to be dis-
continuous, which is something the designer needs to avoid.

 (4) Continuous/discontinuous actuators. SOSM/HOSM techniques are 
nonlinear robust control techniques. Unlike designs based on linear 
control laws, which, when discontinuous actuators such as on–off 
actuators must be used, require the redesign of the initial control 
law into a discontinuous control law that approximates the effects of 
the initial control law, HOSM design produces directly, when need 
arises, an on–off pulse-width-modulated control law that achieves 
the same level of accuracy as a linear control law.

6.5 Mathematical Model and Problem Formulation

6.5.1 interception geometry

The missile-target engagement geometry is shown in Figure 6.6.
Relative kinematics along and perpendicular to the line of sight (LOS) are 

represented hereafter as [5, 11, 13]
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where r is the range along the LOS, λ is the LOS angle, γ is a missile flight 
path angle, λ ω λ=  (in radians per square meter) is the LOS rate, V⊥ = rωλ 
(in meters per second) is a transversal component of relative velocity in the 
reference frame rotating with the LOS, Γ is the missile normal accelera-
tion, and Γ∥ and Γ⊥ (disturbances; in meters per square second) are projec-
tions of bounded target acceleration along and orthogonal to the LOS. The 
target model used normal sinusoidal maneuvers as well as square wave 
maneuvers.

6.5.2 Missile Model

We are going to illustrate applications of HOSM/SOSM control to the missile 
guidance, navigation and control (GN&C) in the case of a missile steered by 
aerodynamic lift, divert, quasi-center of gravity (CG) on–off divert thrusters, 
and an orientable booster/sustainer as shown in Figure 6.7.
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Interception geometry.
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Figure 6.7
Proposed missile.
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The dynamics of such missile steered by combined effects of divert actua-
tors and pitch maneuver are given by [13, 16–19]:
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∆ ∆max , and ς = , and α, γ, and q represent the angle of attack, flight 

path angles (in radians), and pitch rate (in radians per second), respec-
tively; V is the longitudinal velocity of a missile (meters per second). The 
cumulative disturbances dα, dδ, and d∆ represent the unknown interactions 
between attitude thruster jets, divert thruster jets, and shockwaves, as well 
as bounded slow-varying perturbations/uncertainties in the stability deriv-
atives. Here it is assumed that 1 0+ > =d ii , , ,α δ ∆. Random disturbance 
samples dα, dδ, and d∆ are uniformly distributed in intervals ±Dα, ±Dδ, and 
±DΔ, respectively.

Actuator dynamics of divert and attitude actuators and continuous atti-
tude actuator are given by
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where δ and Δ are the normalized attitude and divert actuator forces, respec-
tively; ς represents the continuous attitude actuator deflection, and uΔ, uδ, 
and uς are the control inputs to the actuators.

Missile acceleration normal to the velocity vector is related to the flight 
path angle rate, without account for gravity, as follows:

 Γ = ⋅γ V.  (6.37)

The problem is in designing the feedback control law in terms of u = {uΔ, 
uδ, uς}T that provides intercepting a maneuvering target by an impact via 



215Higher-Order Sliding Modes for Missile Guidance and Control

driving r → 0 as time increases or via providing for |r(t*)| ≤ r0 (the r0 value 
is to be defined based on the size of the target) that implies the zero inter-
cept at tint ≤ t* in presence of bounded model uncertainties/disturbances dα, 
dδ , and d∆  and bounded unknown target accelerations Γ∥ and Γ⊥. The zero-
intercept option can be interpreted as achieving uniform ultimate bounded-
ness (UUB).

6.5.3 interception Strategy

The following intercept strategy [5, 11, 13] that yields a direct hit (zero inter-
cept) is proposed:

 V c r⊥ = 0  (6.38)

where c0 > 0 is some constant.
The viability of the intercept strategy (Equation 6.38) is studied in the fol-

lowing theorem.

Theorem 6.1

Assume that

(a) The intercept strategy in Equation 6.38 is enforced by means of the 
control law u = {uΔ, uδ, uς}T.

(b) Γ Γ
 

≤ LIM and |Γ| ≤ Γmax; then there exist the parameter values V∥(0) < 0 
and c0 > 0 that make the condition |r(t*)| ≤ r0 valid at given time tint ≤ t*.

Proof

Assumption (a) yields the following compensated engagement kinematics 
(Equation 6.32):
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Integrating Equation 6.39 taking into account assumption (b) and |sin(γ – 
λ)| < c1 < 1, the following inequality is obtained:

 r t r V t
c c

t
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( ) ( ) ( ) .max≤ + +
+ +

0 0
2

0
2

1 2
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 (6.40)

The minimal value of r(t) is identified as
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and zero intercept is achieved at
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The parameters V∥(0) < 0 and c0 > 0 that yield zero intercept, that is, |r(t*)| ≤ 
r0, can be selected to meet the condition

 V c c r t rLIM
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Γ Γ  (6.43)

The theorem is proven.
The problem of intercepting a maneuvering target via enforcing the inter-

cept strategy (Equation 6.38) is reformulated in terms of SMC. The goal is to 
design the control law

 u = {uΔ, uδ, uς}T (6.44)

that drives the sliding variable

 σ = −⊥V c r0  (6.45)

to zero on the trajectory of the system (Equations 6.38 through 6.42) in finite 
time.

The multiple-loop integrated guidance-autopilot design is accomplished 
using SSOSM control laws for control and observation as per Equations 6.29 
and 6.30.
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The problem is in designing the feedback control law in terms of u = {uΔ, uδ, 
uς}T that provides intercepting a maneuvering target by an impact via driv-
ing r → 0 as time increases or via providing for |r(t*)| ≤ r0 (the r0 value is to 
be defined based on the size of the target) that implies the zero intercept at 
tint ≤ t in presence of bounded model uncertainties/disturbances dα , dδ, and 
d∆  and bounded unknown target accelerations Γ∥ and Γ⊥. The zero-intercept 
option can be interpreted as achieving UUB.

6.6 Control Architecture

The integrated architecture shown in Figure 6.8 consists of a seeker, a guid-
ance subsystem (outer control loop), and autopilot subsystems (inner control 
loop). We present thereafter, without loss of generality, only the subsystems 
governing the motions in the pitch plane.

The seeker subsystem performs bore sight pointing in the LOS direction 
and estimates the rate of change of the LOS and the target acceleration nor-
mal to the LOS.

The guidance (outer loop) subsystem consists of a guidance and inversion 
that calculate the flight path angle, angle-of-attack pitch rate commands, 
and eventually, axial thrust commands. Unlike traditional guidance tech-
niques such as proportional navigation (PN) [20] that only achieves colli-
sion condition at the end of the interception, the proposed HOSM technique 
enforces collision condition or any other prescribed guidance throughout 
the entire interception, which reduces the peak interceptor to target accelera-
tion advantage.
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Control architecture.
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The autopilot (inner loop) subsystem includes flight-path-angle, pitch-rate, 
and angle-of-attack autopilots. The angle-of-attack autopilot is used initially; 
the angle of attack is continuously steered via continuous actuators. During 
the end game, the flight-path-angle autopilot and the pitch-attitude auto pilot 
are used concurrently. Hit-to-kill accuracy and short time responses are 
achieved by controlling the flight path angle via divert actuators. The concur-
rent tracking by the pitch-rate autopilot of the commanded pitch maneuver 
steers the angle of attack; the corresponding divert lift creates a “cooperative 
disturbance” to the flight-path-angle autopilot [18]. In summary, the flight-
path autopilot provides the “time constant,” and the angle-of-attack maneu-
ver provides a substantial increase in lateral acceleration.

6.6.1 Outer (guidance) Loop SSOSM Controller Design

In this subsection, the chosen sliding variable (Equation 6.45) is driven to 
zero in finite time via SSOSM acceleration control Γ in Equations 6.29 and 
6.30 format. The σ-dynamics are identified as

 � �σ γ λ= ( ) − −⊥ ⊥g V t V t r t t( ), ( ), ( ), ( ) cos( )Γ Γ  (6.46)
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Next, assuming the variables V∥(t), V⊥(t), and r(t) are measured, the function 
g(V∥(t), V⊥(t), r(t), Γ⊥(t)) is differentiable with a known Lipchitz constant L > 0, 
which is estimated in the Appendix; the target acceleration transversal to 
LOS Γ⊥(t) can be estimated by the HOSM observer (Equation 6.29).

Apparently, in the absence of input noises, we obtain Γ̂ Γ⊥ ⊥=  after a 
finite time of a transient process in the HOSM observer (Equation 6.29). If 
σ and cos( ) ( )γ λ− + +⊥Γ VV c V r

 0 2/  are measured with some Lebesgue-
measurable noises bounded by ε > 0 and ε2/3, respectively, then [10, 11]

 |z1(t) − Γ⊥| ≤ με2/3, μ > 0. (6.48)

The guidance law that drives σ → 0 in finite time is designed in terms of a 
control input Γ*(t) using SSOSM controls 6.29 and 6.30 with p = 3 and m = 2:
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Remark 6.5

The term − ′ = − ′⊥N
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r
N V



ω λ  is known as PN guidance [20]. Rewriting 

Equation 6.49 in the form
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 (6.50)

one can interpret the SSOSM guidance law as pseudo-PN guidance with the 
term Ud providing the finite-time convergence in absence of the measurement 
noise. The guidance coefficient Nʹ = 1 in Equation 6.49 is taken to be equal to Nʹ = 
4 in Equation 6.50 in order to have an adequate comparison of the SSOSM guid-
ance law given by Equation 6.50 and the traditional APN guidance law.

6.6.2 SSOSM guidance Simulation results

The engagement kinematics in Equation 6.32 was simulated using the pro-
posed SSOSM guidance in Equation 6.50. Figure 6.6 represents interceptor 
and target maneuvers, where once the guidance sliding variable reaches a 
close vicinity of zero as shown in Figure 6.9, the interceptor literally mimics 
target maneuvers as shown in Figures 6.10 and 6.11.
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One can note that during the first part of the trajectory, where continu-
ous divert is applied, interceptor acceleration is continuous. The spikes of 
interceptor acceleration in the latter part of the scenario are not caused by 
some unwanted chattering of the control but simply reflect the discontinu-
ous operation of divert actuators.
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Target and interceptor accelerations normal to LOS (step maneuvers).
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6.7 Autopilot

Proposed control architecture is a multinested architecture represented 
in Figure 6.5 where the HOSM guidance is the outer loop and the auto-
matic pilot represents the inner loop. The process used to calculate 
inner-loop commands from the output of the guidance loop is called 
the inversion process. It is presented in Section 6.7.1. We will present in 
Section 6.7.2 the design of a flight-path-angle autopilot and the designs of 
a pitch-rate autopilot and angle-of-attack autopilot in Sections 6.7.3 and 
6.7.4, respectively.

We use the angle-of-attack autopilot during boost flight when divert is 
continuous, and the attitude is controlled by continuous actuator and the 
pitch-rate autopilot during terminal flight when the attitude is controlled by 
on–off actuators. The nested autopilot architecture is shown in Figure 6.12. 
The block “Command Profiles” represents inversion process that generates 
commanded flight path angle and flight path rate profiles, pitch rate, and 
angle-of-attack profiles. The block “Divert Control” represents the flight path 
autopilot. The angle-of-attack autopilot is used during boost phase, and the 
pitch-rate autopilot is used during terminal flight.

6.7.1 inversion

Command profiles γ*, γ * , and γ *  are computed in real time in the inversion 
process as follows:
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where Γ*(t) is assumed to be differentiable. Second, the angle-of-attack 
command profile α* and its derivative are computed in real time assum-
ing full  knowledge of stability derivative Zα and γ *( )t , while nullifying 
direct effect of attitude and divert actuators δ and Δ in Equations 6.33 
through 6.36:
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The corresponding pitch rate command q* is calculated in real time as the 
sum of commanded flight path angle rate profile γ *( )t :

 q* .= + α γ* *  (6.54)

The pitch rate command profile q* is supposed to be followed by aero-
dynamic actuator control uδ. Clearly q → q* implies approximately following 
α → α* while creating a cooperative disturbance term Zαα in Equations 6.33 
through 6.35, and thus, owing to the robustness of SOSM, accurate tracking 
of commanded angle of attack α → α* is not required.

Remark 6.6

It is worth noting that tracking α* does not imply an accurate tracking of γ * 
since the purpose of the attitude on–off control is only to generate an aerody-
namic maneuver, which in effect is a “cooperative disturbance” that allevi-
ates the divert control effort.

Finally, the difference between γ* and γ is steered to zero by divert control 
uΔ in the presence of this cooperative disturbance thereby increasing signifi-
cantly (up to 100%) the missile overall divert maneuver capability.
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6.7.2 Second-Order NDSM-Based Flight Path Angle Autopilot

Equations 6.33 through 6.36 have vector relative degree [2, 2, 2] with respect 
to the vector output y = {γ, q, α}T. This calls for SOSM algorithms that are 
able to drive corresponding sliding variables and their derivatives to zero in 
finite time.

Remark 6.7

It is assumed that the missile mathematical model (Equations 6.33 through 
6.35) is of a minimum or slightly nonminimum phase.

The flight path angle sliding variable is introduced as

 σ ε ϖ ε τ τ ε γ γ ϖγ γ γ γ= + = − =∫ ( ) , ,d * rad/s.
0

50
t

 (6.55)

Equation 6.55 shows that, once the sliding surface σγ = 0 is achieved in 
finite time, εγ → 0 asymptotically. The following σγ input–output dynamics 
are derived:

 σ γ γ= −f t b u( ) ∆ ∆  (6.56)

where
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It is assumed that the disturbance fγ(t) is bounded in an operational domain 
Ωγ: |fγ(t)| ≤ Lγ, as well as d∆ < 1 , ZΔ > 0, and |α| ≤ 0.5, and then bΔ > 0, ′b∆ < 
bΔ < ′′b∆ , and the SOSM/NDSM-based divert thrust controller is designed in 
a form (Equation 6.16) as
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6.7.3 Second-Order NDSM-Based Pitch rate Autopilot

Following the SOSM/NDSM control design technique, the pitch rate sliding 
variable is introduced:

 σ ε ϖ ε τ τ ε ϖq q q

t

q q q= + ′ = − ′ =∫ ( ) , ,d * rad/s
0

20 . (6.58)

Equation 6.58 shows that, once the sliding surface σq = 0 is achieved at the 
finite time, the pitch rate tracking error εq converges to zero asymptotically 
according to the eigenvalue of σq = 0. Differentiating twice Equation 6.58 gives

 σ δ δq qf t b u= −( )  (6.59)

where
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It is worth noting that the thrust vectoring terms containing ς are removed 
since thrust vectoring is not used altogether with attitude actuators. One can 
easily show that the disturbance fq(t) is bounded in an operational domain 
Ωq : |fq(t)| ≤ Lq. Since it is assumed that dδ < 1  and Mδ > 0, then bδ > 0, ′bδ < 
bδ < ′′bδ , and the SOSM/NDSM control in Equation 6.16 can be employed for 
stabilizing σq and its derivative σq  at zero in finite time. The corresponding 
SOSM/NDSM-based attitude controller is given by
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6.7.4 SOSM Supertwist-Based Angle-of-Attack Autopilot

It is worth noting that, in reality, max |Zδδ + ZΔΔ| ≪ max |q| and max |Mδ| ≫ 
max |MΔ|. It means that the missile angle of attack α is mostly governed by 
the pitch rate q, which itself is controlled by the attitude on–off actuator δ. 
The sliding surface σα is defined as

 σ ε ϖ ε τ ε α α ϖα α α α= + ′′ = − ′′ =∫ d * rad/s.
0

20
t

, ,  (6.61)
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Differentiating Equation 6.60 twice with respect to time yields

 σ α α ς ς= −f t b u( )  (6.62)

where one can show that similar to Equation 6.46, fα(t) is a bounded variable 
while the term bς is defined by bς = Mς/τς. The angle-of-attack continuous con-
trol is supposed to be continuous while being robust to the disturbances. The 
supertwisting continuous control is designed in accordance with Equation 6.20:
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where the auxiliary sliding variable is introduced as

 S c cα α α α ασ σ= + > , .0  (6.64)

6.7.5 integrated SOSM guidance-Autopilot Simulation results

The designed HOSM guidance autopilot was simulated against the maneu-
vering target. The plots in Figure 6.13 reveal that the commanded flight path 
angle is followed very accurately. The result shows that the actual flight path 
rate is always superimposed to commanded value. One can see the separa-
tion between the initial phase of the flight, where the interceptor is steered 
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Tracking the flight path angle.
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by continuous angle-of-attack maneuver, with the last phase of the flight, 
where on–off divert actuators are used. The ripples in Figure 6.14 are the 
results of the on–off operation of the actuators.

Figure 6.15 shows the tracking of the pitch rate. During the first part of 
the interception, the attitude steering is achieved by continuous control, 
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whereas in the last part, it is achieved by on–off operation of attitude actua-
tors. Figure 6.16 represents the tracking of the angle of attack. During the 
first part of the interception, the autopilot tracks angle-of-attack commands, 
and not surprisingly, perfect accuracy is achieved. During the second part of 
the interception, the autopilot tracks pitch rate commands. Interceptor pitch 
rate spikes observed in Figure 6.15 are not the result of some chattering of the 
control but are caused by on–off pulse-width-modulation (PWM) operation 
of attitude actuators. Figure 6.17 represents the composite plot of attitude 
commands. During the initial part of the interception, it represents continu-
ous commands that are very small in magnitude, while in the last portion 
of the flight, it represents attitude on–off commands. For the interceptor to 
accelerate very rapidly as required, the sustainer thrust is very large. Figure 
6.18 represents the corresponding actuator responses. As a consequence, 
continuous attitude actuator deflections represented in the early portion of 
Figure 6.18 are very small and almost unnoticeable. One can note that the 
actuators are often commanded to shut down well before reaching the maxi-
mum amplitude.

One important advantage of the HOSM design when PWM actuators are 
used is that the control can be designed directly to operate with on–off actu-
ators. Traditional control design produces an initial linear control design, 
which then needs to be redesigned to work with PWM actuators. In the rede-
signing process, it is assumed that the pulses are rectangular. As this is not, 
by far, the case in our missile application as shown in Figure 6.18, this would 
yield the results that traditional control techniques would achieve to not be 
very good.
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Angle-of-attack tracking performance.
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6.7.6 Higher-Order SMC Quaternion Autopilot

In Section 6.7.1, we presented an inversion in the very simple case of a pitch 
motion and assuming flat nonrotating earth. While these assumptions are 
satisfactory for a missile with relatively slow velocities and relatively small 
ranges, they are not valid anymore when it comes to larger ranges and veloc-
ities. Given the insensitivity of the HOSM design to matched disturbances, 
the problem is not so much that terms fγ, fq, and fα in Equations 6.56, 6.59, 
and 6.62, respectively, are going to be different and much more complex as 
we represent trajectory dynamics and attitude dynamics over oblate rotating 
earth instead of flat nonrotating earth in Sections 6.7.2 through 6.7.4.

The new challenges are as follows:

 1. The calculation of prescribed attitude rates cannot be completed 
using simple pitch plane Equations 6.51 through 6.54. First, it is 
because attitude rates are defined in body axes while flight path 
angle and ground track angles are defined in the north-east-down 
(NED) local axis. As the vehicles move around the earth, the NED 
frame moves accordingly, and thus, it is necessary to add terms 
accounting for its rotation. The problem is compounded in oblate 
earth by the fact that down axis does not point toward the center of 
the earth but is simply locally perpendicular to the earth’s geoid.

 2. The challenge arises from the definition of angle of attack and side-
slip angles as Euler angle rotations. As such, the sideslip angle defi-

nition becomes singular when the flight path angle is ± π
2

.

 3. The third difficulty arises from the singularity and the nonlinearity 
of the relation between attitude rates and time derivatives of Euler 
angles:
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The approach adopted is to calculate the quaternion from velocity axes 
to any suitable reference (.) system such as the earth-centered-inertial (ECI) 
NED. Assuming that ECI is the chosen reference, the transformation from 
velocity to ECI is constructed as follows: The x-axis is directed along the 
vehicle velocity vector. The y- and z-axes of the frame are calculated as
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The corresponding quaternion is given by Q Qvel vel
T

/(.) /(.)= ( )T , where (.) rep-
resents the selected reference frame.

Posing R T= vel
T

/(.), the formulation for calculating the quaternion from a 
rotation matrix more frequently used is

 4 10
2

1 1 2 2 3 3q R R R= + + +, , ,  (6.67)
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This can also be written as
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This formulation of the quaternion may unfortunately become singular 
when q0 approaches zero. The rotation becomes a simple reflection and the 
vector e becomes undefined. The approach for overcoming this difficulty is 
to assume that the quaternion representing the rotation is now q1, q2, or q3 
and to calculate them by choosing one of the four possible formulations of 
Equations 6.67 and 6.70 as discussed in [21]:
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The other terms are calculated using
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The algorithm evaluates concurrently the four formulations and selects the 
formulation that yields the larger value of cos(ϕ/2). It is assumed here that 
the traditional formulation Equations 6.67 and 6.68 are used. It is reasonable 
to assume that the same quaternion formulation can be used throughout the 
entire flight.*

The reference quaternion representing the transformation from body 
frame to frame (.) is calculated as the quaternion product of the transforma-
tions by the quaternion velocity frame to frame (.) as
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where ⊗ is used to represent the quaternion product,
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where η and ξ represent the rotations around the y- and z-axes, respectively.
Prescribed roll, pitch, and yaw rates can be defined from the time deriva-

tive of the prescribed quaternion as
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* The problem discussed here is only posed by the initiation of a quaternion using a rotation 
matrix. Once the initial quaternion has been calculated, it suffices to update it, and it does not 
matter anymore as cos(ϕ/2) becomes zero thereafter. As cos(ϕ/2) → 0, there are occurrences 
of a sign change of the three other components: while in general, the quaternion represents 
a rotation of a frame, around a vector when cos(ϕ/2) = 0, it represents a symmetry between 
initial and terminal frames in which case the rotation vector ceases to be unique.
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Alternatively, we can calculate the prescribed attitude rate as
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Introducing the angle error ΔΩI as
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Three proportional integral surfaces define the desired behavior of the 
error response as
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where Ω represents the actual rotation rate in body axes.
Interestingly, when ω = ωp = ωq = ωr, Equation 6.77 can be represented as
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The term ( )ωω∆Q ∆Q+   represents a four-vector of sliding surfaces in the 
quaternion space. Equation 6.78 projects the four-vector of sliding surfaces in 
the quaternion space into a three-vector of sliding surfaces in body axes.

The control of pitch and yaw attitude motion during boost is achieved by 
means of continuous actuators. Corresponding control laws are designed as 
follows.

Handling the relative degree = 2 case, we proceed as in Section 6.7.4 and 
replace the supertwist design used in that section with an SSOSM controller 
as per Equations 6.29 and 6.30 as
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Since the SSOSM controller is designed to operate with systems of relative 
degree 1, we introduce, as in Section 6.7.4, auxiliary surfaces defined as

 ′ = +σ σ σ(.) (.) (.) .c   (6.80)

The control of pitch and yaw attitude motion during KV autonomous flight 
and the control of roll motion during boost and KV flight are achieved by means 
of on–off PWM actuators. Corresponding control laws are designed as follows.

Handling the relative degree 2 case, the SOSM/NDSM controller is used. 
Here there is no need for a smooth controller, and it would not make sense to 
design a smooth controller using Equation 6.79 to then design a PWM imple-
mentation thereof. The PWM-SOSM/NDSM controller is designed directly 
as per Equation 6.16 as
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6.7.7  Simulation results for integrated SOSM 
guidance-Quaternion Autopilot

The quaternion autopilot (Equation 6.81) was simulated for the missile-target 
engagement kinematics (Equation 6.32) and missile dynamics (Equations 
6.33 through 6.36). Figure 6.19 presents the four quaternion tracking errors, 
which are very small (less than 0.0008 most of the time). The spike at the end 
is caused by the switching from a continuous control as per Equation 6.79 to 
a PWM control law as defined by Equation 6.81. The switching of the control 
law and integrator reset actually only causes a minor and short transient error 
with a peak normalized amplitude that is equal to 0.015. The same can be said 
about the angle errors, which are less than 1 mrad most of the time and have a 
peak transient amplitude that is equal to 0.01 rad as shown Figure 6.20. 

Angles plotted in Figure 6.20 are sometimes called rolling, pitching, and 
yawing angles; they should not be confused with ordinary roll, pitch, and 
yaw Euler angles. Actually, roll rate, pitch rate, and yaw rate errors are 
the time derivatives of rolling, pitching, and yawing angle errors; but the 
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reciprocal is not true; rolling, pitching, and yawing error angles differ from 
the integrals of roll, pitch, and yaw rate errors by the initial conditions of 
integration. Attitude rate errors are shown in Figure 6.21.

Roll rate, pitch rate, and yaw rate errors are smaller than 0.03 rad/s most 
of the time with the exception of the very brief (less than 1 s) transient when 
the switching from the continuous actuator and the on–off attitude actuator 
takes place. In this simulation, it was assumed for expediency’s sake that 
the two autopilot modes were run back to back. A more detailed simulation 
would have included a brief coasting between the end of the booster and the 
beginning of the terminal flight.

As indicated before and as shown in the formulae presented before, the 
HOSM designs of different autopilot presented do not require values for 
interceptor control characteristics other than a very broad estimation of the 
upper bound of the disturbances. To demonstrate even further the inher-
ent robustness of the design, we have applied multiplicative disturbances 
to the magnitude of the actuators. Applying this disturbance, as shown in 
Figure 6.22, it is possible for the maximum magnitude of an actuator to be 
as some point in time 1.3 times the nominal value and 50 ms after to be 0.8 
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times this value. Evidently, such a rapid and large amplitude variation of the 
thrust level cannot be estimated in real time by a disturbance accommodat-
ing controller.

Likewise, the modeling of such effects would require very complex codes 
that account for the combination of the effects of the multiple simultaneous 
causes of such disturbances. In addition to the fast variation of the maximum 
thrust, a slow sinusoidal modulation has been introduced to account for the 
disturbances caused by slowly varying effects such as air density or velocity 
change.
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6.8 Conclusions

The fundamentals of HOSM control and the most widely used HOSM/SOSM 
control/estimation algorithms were presented. Using a nonlinear uncertain 
model of a notional ballistic missile interceptor, we showed that the entire 
Guidance Navigation and Control Suite could be designed based on HOSM 
algorithms. Owing to the robustness of HOSM/SOSM, a flight path angle, 
pitch angle, and angle-of-attack SOSM autopilots were designed achieving 
excellent performance. Moreover, the control architecture is very simple and 
does not require gain scheduling. The design included a smooth guidance 
law with its embedded estimator of target acceleration, an angle-of-attack 
autopilot yielding continuous control law used during boost flight, a flight 
path angle autopilot yielding on–off commands of the divert actuators, and a 
pitch rate autopilot yielding on–off commands of the attitude actuators, both 
of them used during the autonomous KV flight. The endo-atmospheric inter-
ceptor was steered during boost phase by combined effects of aerodynamic 
lift and the orientation of the booster thrust, while during the autonomous 
KV flight, it was steered by combined effects of lift and divert actuators. This 
is a regime where the interactions of aerodynamics around the body and the 
firing of actuator exert on each other considerable disturbing effects, which 
are, for all matters and purposes, practically impossible to model and to esti-
mate in real time. The proposed quaternion autopilot allows the direct con-
trolling of attitude quaternion with respect to some reference frame, such as 
ECI, using body axis moments created by attitude actuators, whether con-
tinuous or on–off attitude actuators. The proposed autopilot design circum-
vents a number of difficulties such as the earth curvature, earth rotation, 
and nonlinearities and singularities of the relation between Euler angles and 
attitude rates, which need to be accounted for when conventional control 
designs are used. Theoretical and simulation results showed that HOSM/
SOSM integrated guidance control is capable of remedying the difficult 
robustness challenge posed to missile system control in a simple and effec-
tive manner.

nomenclature

aα, aδ, aΔ   Distance from the center of gravity along the longitudinal 
axis of the aerodynamic center and application points of 
attitude and divert actuators (in meters).

dα, dδ, dΔ, δε  Disturbance factors applied to aerodynamic lift, attitude 
and divert actuators, seeker measurement noise.
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Dα, Dδ, DΔ  Disturbance terms are uniformly distributed within 
±D intervals. 

fq, fγ, fα Additive disturbances.

C  Reference length (in meters).
α, γ, q  Angle of attack, flight path angles (in radians), and 

pitch rate (in radians per second).
CLα

 Lift coefficient gradient with respect to angle of attack α.
V Longitudinal velocity of a missile (in meters per second).
Qa/b  Quaternion representing the transformation from 

frame a to frame b.
Ta/b Transformation from frame a to frame b.
V∥, V⊥  Relative velocity components parallel and normal to 

line of sight (LOS; in meters per second)
C

C
VMq

  Moment coefficient gradient with respect to pitch rate q 
(in seconds–1).

εα, εγ, εq
  Angle of attack and flight path angle and pitch rate 

tracking errors (in radians and radians per second).
Iyy  Moment of inertia around the pitch axis (in kilogram 

square meter).
Γ*, Γ, Γmax  Commanded, actual, and maximum interceptor nor-

mal acceleration (in meters per square second).
Γ̂ T

  Estimated target acceleration vector (in meters per 
square second).

Γ∥, Γ⊥  Target acceleration components along the LOS and 
normal to it.

g  Acceleration of earth gravity (in meters per square 
second).

m Missile mass (in kilograms).
δ, Δ Normalized attitude and divert actuator forces.
ς Continuous attitude control (in radians).
r Target-interceptor range along the LOS (in meters).
Tς, Tδ, TΔ Sustainer, attitude, and divert thrust (in newtons).
Zς, Zα, Zδ, ZΔ  Trajectory stability derivative with respect to ς, α, δ, 

and Δ, respectively (in seconds–1).
Mς, Mα, Mδ, MΔ  Pitch rate stability derivative with respect to ς, α, δ, and 

Δ, respectively (in seconds–2).
Tς, Tmaxδ, Tmax  Maximum sustainer attitude and divert actuator (in 

newtons).
uδ, uΔ, uς  Attitude, divert actuator, and continuous normalized 

attitude command.
ρ Air specific mass (in kilograms per cubic meter).
λ λ, ˆ  LOS angle and bore sight angle (in radians).
ωλ Rotation rate of the LOS (in radians per second).
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τδ, τΔ, τς  Time constants of attitude on–off actuators, on–off 
divert actuators, and continuous attitude actuators (in 
seconds).

(.)* Commanded, reference value of variable (.).
(.)δ; (.)Δ  Value, variable associated to attitude and divert on–off 

attitude actuators.
ε(.) e(.)  Angular and linear tracking error with respect to vari-

able (.).
(.)́  Variable associated with seeker bore sight steering.
(.)ʺ Variable associated with guidance.
( . )  Filtered variable.
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Appendix: evaluation of the Lipschitz 
Constant for outer (Guidance) Loop

It is assumed that the target acceleration transversal to the LOS Γ⊥(t) is dif-
ferentiable. Then the function g(V∥(t), V⊥(t), r(t), Γ⊥(t)) is also differentiable, 
and the function � �g V t V t r t t( ( ), ( ), ( ), ( ))⊥ ⊥Γ  is continuous everywhere except 
for r = 0. This singularity point occurs when intercept by impact happens. 
However, technically, the intercept by impact (“hit-to-kill”) happens when 
r ≠ 0 but belongs to the interval r ∈ [rmin, rmax] = [0.1, 0.25] m [2, 3, 11]. This 
fact is due to a certain size of the ballistic target and a particular intercept 
value of r0 ∈ [0.1, 0.25] m, named “zero intercept,” and depends on this size. 
Therefore, the function g(V∥(t), V⊥(t), r(t), Γ⊥(t)) is differentiable, and the function 
� �g V t V t r t t( ( ), ( ), ( ), ( ))⊥ ⊥Γ  is continuous everywhere until hit-to-kill “zero inter-

cept” happens. Its Lipschitz constant is estimated in the following theorem.

Theorem 2

Assume that |Γ| ≤ Γmax,  Γ Γ⊥ ⊥≤ LIM , Γ Γ⊥ ⊥≤ LIM , Γ Γ
 

≤ LIM , V t VLIM
⊥ ⊥≤( )

 
, 

V∥(0) = M ≪ 0, and M ≤ V∥(t) ≤ 0, in a reasonable flight domain. Then the 
Lipschitz constant L for � �g V t V t r t t( ( ), ( ), ( ), ( ))⊥ ⊥Γ  can be estimated as
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Proof

Using Equation 6.31 and taking into account inequalities |sin(λ – γM)| < c1 < 
1 and |cos(λ – γM)| < c2 < 1, the following inequality holds:
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2 22  and the theorem is 

proven.
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7
Neoclassical Missile Guidance

Pini Gurfil

7.1 Introduction

The challenging problem of missile guidance has been treated using several 
fundamental methodologies. The classical approach is to apply the missile 
maneuver acceleration proportionally to the measured line-of-sight (LOS) rate. 
The resulting guidance law is the well-known proportional navigation (PN). 
The modern approach to missile guidance is based upon optimal control theory 
(one-sided optimization) and differential games (two-sided optimization).

PN is the method most commonly used for guidance of homing mis-
siles. A vast amount of literature exists on the subject (see, e.g., the works of 
Shneydor1 and Zarchan2 and the references therein). Modern guidance laws 
have also been thoroughly analyzed.3–5 PN is known to yield reasonable miss 
distance when applied against nonmaneuvering or moderately maneuvering 
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targets, whereas modern guidance laws can theoretically achieve zero miss 
distance (ZMD) against highly maneuvering targets. This merit is obtained 
at the expense of additional information, required for the implementation 
of these guidance laws. In particular, an estimation of time-to-go and tar-
get maneuver is required. The latter requirement is problematic owing to 
the inherent time delay of the estimator,6–8 causing the modern guidance 
law performance to deteriorate. Moreover, modern guidance laws are often 
quite complicated; closed-form solutions exist only when system dynam-
ics are neglected or approximated to first-order9 or second-order10 transfer 
functions. This complexity demands a considerable real-time computational 
capability. Furthermore, due to the fact that modern guidance laws result in 
an inverse of the system dynamics, their robustness has been doubted.11

In this chapter, we suggest an alternative approach, wherein the guidance 
law relies on LOS rate measurement only, similarly to the classical PN, yet its 
performance is similar to modern guidance laws, in the sense that ZMD can 
be obtained against highly maneuvering targets. This approach is therefore 
termed neoclassical guidance.28−32 The main goal of this chapter is to present 
a new guidance law based upon LOS rate measurement only, whose main 
features are as follows:

 1. In the case where LOS rate measurement is not corrupted by noise, 
the new guidance law yields ZMD for any flight time, against targets 
performing an arbitrary (bounded) deterministic maneuver, random 
maneuver, or deterministic maneuver with a random starting time.

 2. The new guidance law yields ZMD for all flight times in the case 
of stochastic inputs, such as fading noise and passive- and active-
receiver noise.

 3. If the LOS rate measurement is corrupted by noise, a straightforward 
modification will give near-ZMD performance.

 4. The maneuver acceleration required to achieve ZMD performance 
remains within reasonable limits, such that the overall maneuver 
effort is smaller than that required by PN guidance (PNG).

An important caveat is that the said guidance method preforms best under the 
assumptions of linearized dynamics and minimum phase transfer functions.

In the derivation of our neoclassical guidance law, called ZMD-PNG, we rely 
on the basic kinematic scenario used for the formulation of the PNG intercep-
tion problem. Although in the general case, PNG is a nonlinear control problem, 
in order to apply known techniques of analysis and design, the system equa-
tions are linearized, yielding an equivalent linear time-varying system. The lin-
earization is valid when it is assumed that the missile and the target approach 
the collision course. It is known that the linearized model faithfully represents 
the guidance dynamics2,12,13 and that the miss distance associated with the lin-
ear approximation is very close to that obtained from the nonlinear model.2,13



243Neoclassical Missile Guidance

The most popular tool for the analysis of the linear PNG loop is the method 
of adjoints.2,14,15 This technique is based on the adjoint system impulse 
response and can be used to analyze miss distance caused by arbitrary inputs 
to the PNG system. Although this method renders analytical expressions for 
the miss distance as a function of flight time, it is very difficult to get closed-
form solutions for high-order systems or for cases where the effective PN 
constant is not an integer. Thus, the use of this method is mainly numerical, 
that is, simulations of the adjoint loop are carried out in order to analyze miss 
distance. Except for simple cases,2,15 no direct design information is available.

In this chapter, the adjoint formulae are utilized to the derivation of the ZMD-
PNG law. We first examine the miss distance formulae for three main cases: 
deterministic target maneuvers, stochastic inputs (such as fading noise, passive- 
and active-receiver noise, and random target maneuver), and deterministic tar-
get maneuvers with random starting times. The key observation is that when the 
dynamics of the guidance loop, given by some transfer function, is positive real, 
and the PNG coefficient is larger than some threshold value, ZMD is obtained 
for all cases mentioned. This, of course, requires lead compensation, which can 
be achieved by augmenting the guidance commands by proportional-derivative 
(PD) controller. To prevent noise amplification problems, one can use lead-lag 
compensation. The design considerations delineated in this chapter are illus-
trated in simulations, which verify that ZMD-PNG gives small miss distance 
against highly maneuvering targets—even when the LOS rate measurement 
is noisy. However, a few caveats are in order: ZMD-PNG was proven useful for 
minimum-phase systems only. There are no analytical methods for applying 
it to nonminimum-phase systems. In addition, it was developed using linear 
models; hence, care should be taken in nonlinear applications. There are cases 
wherein ZMD-PNG has been shown to exhibit sensitivity to noise and optimal 
avoidance maneuvers. Finally, the term “ZMD” refers to the ideal case only. In 
practical applications, the miss distance cannot actually be “zero.”

7.2 Miss Distance in PnG

The general formulation of a three-dimensional PN interception problem 
is rather complicated. However, assuming that the lateral and longitudinal 
maneuver planes are decoupled by means of roll control, one can deal with 
the equivalent two-dimensional problem in quite a realistic manner. We 
shall further assume that the geometry is two-dimensional. In addition to 
this basic assumption, we shall also assume that the gravitational component 
of the total missile lateral acceleration is compensated by means of g-bias. 
These assumptions enable the formulation of a general planar interception 
missile-target geometry as depicted in Figure 7.1. The figure describes a mis-
sile employing PN to intercept a maneuvering target.
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Based on Figure 7.1, a linearized model of the guidance dynamics can be devel-
oped. Such a model is widely used in the analysis of PNG.1,2,14,16 A block diagram 
describing the linear model is given in Figure 7.2. In this linear time-varying 
system, missile acceleration aM is subtracted from target acceleration aT to form a 
relative acceleration y. A double integration yields the relative vertical position y 
(see Figure 7.1), which at the end of the engagement is the miss distance y(tf). By 
assuming that the closing velocity VC is constant, the relative range is given by

 R = VC · τ (7.1)

where τ is the time-to-go, defined as

 τ  t tf − .  (7.2)

Reference line

VT

aT

aM

VM

γTλ

γM
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R y

λ

Figure 7.1
Two-dimensional geometry of a missile-target interception problem.
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Linearized PNG model block diagram including the kinematics, flight control system, and 
seeker dynamics.
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Dividing the relative vertical position y by the range given in Equation 7.1 
yields the geometric LOS angle λ. The missile seeker is represented in Figure 
7.2 as an ideal differentiator with an additional transfer function G1(s), repre-
senting the LOS rate measurement and noise filtering dynamics. The seeker 
generates a LOS rate command λC, which is multiplied by the PN gain Nʹ · 
VC to form a commanded missile maneuver acceleration aC, with Nʹ being the 
effective PN constant. The flight control system, whose dynamics are repre-
sented by the transfer function G2(s), attempts to adequately maneuver the 
missile to follow the desired acceleration command.

A common use of the model depicted in Figure 7.2 is miss distance analy-
sis. In particular, the method of adjoints is utilized.1,2,14,15 The adjoint tech-
nique is based on the system impulse response and can be used to analyze 
miss distance as a function of flight time, provided that the system is linear. 
This method is utilized for the analysis of miss distance due to determin-
istic disturbances,2 stochastic inputs,14 and deterministic target maneuvers 
with random starting times.15 The purpose of the subsequent discussion is to 
prove that there exists a class of PNG-based systems that yield ZMD for any 
type of input (deterministic, stochastic, random) and any given flight time.

7.2.1 Deterministic Disturbances

In the deterministic case, the miss distance is given by

 y t Q s y sf T( ) ( ) ( )= ⋅{ }−L 1  (7.3)

where

 Q s N H
s

( ) exp ( ) ′












∞
∫ σ σd  (7.4)

 G s G s G s( ) ( ) ( ) 1 2  (7.5)

 H s
G s

s
( )

( )
  (7.6)

and

 y s y tT T( ) ( ) .= { }L  (7.7)
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In the above expressions, L denotes the Laplace transform, and yT(t) denotes 
the deterministic system input, which can be either an initial condition or a 
deterministic target maneuver (see Figure 7.2). G(s) represents the LOS rate 
measurement and flight control dynamics of the PNG loop (see Figure 7.2) 
and is assumed to be asymptotically stable with G(0) = 1.

7.2.2 Stochastic inputs

Stochastic inputs are divided into two subcategories: noise inputs, such as fad-
ing noise, passive- and active-receiver noise (mainly in radar-guided missiles), 
and glint noise (mainly in radar-guided missiles and, to much smaller extent, in 
electro-optical missiles as well), and random target maneuvers, such as the ran-
dom telegraph maneuver.14,17 The expressions for the root-mean-square (RMS) 
miss distance in these cases, with Q(s) as in Equation 7.4, are well known.2,5

RMS miss due to fading noise, which is a range-independent LOS angular 
noise, is given by
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where ΦFN is the power spectral density (PSD) of the fading noise (in square 
radians per hertz). The RMS miss due to a passive-receiver noise is similarly 
given by
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where ΦPN is the PSD of the passive-receiver noise (in square radians per 
hertz). The RMS miss due to an active-receiver noise is
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where ΦAN is the PSD of the active-receiver noise (in square radians per 
hertz). Finally, the RMS miss due to glint noise is expressed as
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where ΦGN is the PSD of the glint noise (in square meters per hertz).
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A well-known example for a random target maneuver is the random tele-
graph. We remind the reader that a random telegraph maneuver represents 
a policy, starting at time zero, in which the target executes either a maximum 
positive or negative acceleration ±aT such that the number of sign changes 
per second follows a Poisson distribution and the average number of sign 
changes is ν per second. By demanding the equivalence of second-order miss 
distance statistics, the random sequence can be represented as a white noise 
passing through a shaping filter.18 Thus, the following expression for the 
RMS miss distance is obtained14,18:
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where ΦRT Ta= ( ) /max
2 ν  is the PSD of the white noise, passing through the 

shaping filter P(s) = 1/[s/(2ν) + 1].

7.2.3 Deterministic Target Maneuvers with random Starting Times

The target might initiate a maneuver at some random time during flight. It is 
assumed that the probability distribution function of the maneuver starting time 
is known. For instance, assume that the target performs a constant maneuver aT 
whose starting time is uniformly distributed over the flight time. By demanding 
equivalence of second-order miss distance statistics, this maneuver can be mod-
eled as a white noise, with PSD ΦS T fa t= 2/  passing through the shaping filter 1/s 
(see Zarchan2). In this case, the RMS miss distance is given by
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Another possibility is that the target performs a sinusoidal maneuver, 
whose starting time is uniformly distributed, that is, the phase of the maneu-
ver, denoted φ, is a random variable:

 aT(t) = aT sin(ωTt + φ). (7.14)

The random-phase sinusoidal maneuver can be represented as a white 
noise with PSD ΦSIN T fa t= 2/  passing through the shaping filter P(s) = 1/[ωT(s/
ωT)2 + ωT]. The RMS miss distance is given by14
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In the general case, any target maneuver with random starting time can be 
represented as a white noise with PSD Φin passing through a shaping filter 
P(s). Thus, the RMS miss distance is given by14
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In the subsequent discussion, we shall address the following problem: 
Determine the set of all possible strictly proper transfer functions H(s), 
defined in Equation 7.6, such that the miss distance becomes zero for all 
flight times and all possible deterministic, stochastic, and random inputs to 
the guidance systems.

That is, we wish to find the following class:

 H = {H(s) : y(tf) ≡ 0 ∀tf}. (7.17)

Notice that due to the definition of H(s), finding the class H immediately 
characterizes the set G, where

 G = {G(s) : y(tf) ≡ 0 ∀tf}. (7.18)

7.3 Class of All PnG-Based systems Yielding ZMD

Exclude for the moment the miss distance due to glint (Equation 7.11). Notice 
that in all other cases (Equations 7.3 and 7.8 through 7.16), if Q(s) was identi-
cally equal to zero, no miss distance would be obtained. Thus, to charac-
terize the class of ZMD-PNG–based systems, we have to find when Q(s) is 
equal to zero. To begin, we notice that Equation 7.4 can be rewritten into the 
following form:
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Since eNʹF(s) ≢ 0, Q(s) → 0 if and only if eNʹF(∞) → ∞, which requires F(∞) → ∞. 
Hence, it is required to determine H(s) for which F(∞) → ∞. To do this, the 
following theorem is introduced (for the complete proof, compare with the 
work of Gurfil29).

theorem 7.1

Consider a strictly proper rational function of the form
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where a(s) and b(s) are coprime polynomials. Denote by r the relative order of 
H(s), that is, r = deg[a(s)] − deg[b(s)]. Under these conditions,

 F H
iff r

iff r
( ) lim ( )

.
∞ = 





→
≥

∞ =





→∞ ∫σ
σ σd

0 2

1  (7.22)

The relevance of Theorem 7.1 to the classification of all PNG-based systems 
rendering ZMD is clarified by means of the following corollary.

Corollary of theorem 7.1

G(s) ∈ G if and only if b1 > 0, that is, G(s) is biproper (i.e., the degree of the 
numerator equals the degree of the denominator):

 G = {G(s) : b1 > 0}. (7.23)

The set G contains all the transfer function G(s) that imposes ZMD 
to the PNG system depicted in Figure 7.2. It is important to note that 
Theorem 7.1 and its corollary provide necessary and sufficient conditions. 
Consequently, if y(tf) ≡ 0 ∀tf, then G(s) ∈ G; conversely, if G(s) ∈ G, then 
y(tf) ≡ 0 ∀tf.

The interpretation of Theorem 7.1 and its corollary should be as follows. 
If G(s), the dynamics of the PNG loop, is biproper, that is, the degree of 
the numerator equals the degree of the denominator, the miss distance will 
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be identically zero for all flight times and all deterministic or random tar-
get maneuvers. Furthermore, in the stochastic case, ZMD is obtained for 
the cases of fading and passive- and active-receiver noise inputs. Since, in 
general, G(s) is a strictly proper transfer function, that is, the degree of the 
denominator is greater than the degree of the numerator, a guidance con-
troller composed of lead networks, such as PD controllers, should be added. 
However, pure lead causes noise amplification problems. Thus, instead of 
pure lead compensation, lead-lag networks should be used. The PN-based 
guidance law with the appropriate compensation will be called hereafter as 
ZMD-PNG.

It should be noted that the case of glint noise is different from all other 
inputs. First, observe that in the stochastic case, the expressions for miss 
distance comprise derivatives of Q(s), whereas in the case of glint (Equation 
7.11), the miss distance is calculated by taking the inverse Laplace trans-
form of 1 − Q(s). Consequently, we notice that if Q(S) ≡ 0, then for long flight 
times,
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That is, the RMS miss distance due to glint will be from the order of mag-
nitude of the PSD of the noise. This implies that the implementation of the 
ZMD-PNG law is more appropriate in low-glint systems, such as missiles 
with electro-optical seekers, rather than in missiles with radar seekers, 
where the glint is much more dominant.

The above discussion is valid under the assumptions that the missile 
maneuver acceleration is unlimited and that the LOS measurement is not 
corrupted by noise. In real systems, these assumptions must be alleviated. 
The purpose of the following sections is to generalize the ZMD-PNG formal-
ism for real-life systems.

7.4 Case of saturating Missile Acceleration

The design of a guidance law for a given missile is effected primarily from 
the a priori knowledge of the missile acceleration capability. When the 
missile-target maneuver ratio is known, a suitable extension of the ZMD-
PNG method can be synthesized by implementing functional analysis tools, 
mainly the concept of bounded-input bounded-output stability.20–22

The linear model used in previous sections of this chapter is based implic-
itly on the assumption of nonlimited missile maneuverability. Actually, every 
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real missile system is subject to maneuverability saturation due to aerody-
namic or structural constraints. To complete the guidance model description 
in this case, a new variable, the required missile maneuver acceleration, aR, 
is introduced. The nonlinear relationship between the actual and required 
missile maneuver is defined by
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Equation 7.25 implicitly assumes that the limit on the missile maneuver-
ability is of the aerodynamic type, owing to mechanical limits of control fin 
deflection or to hinge moment saturation. This limit is at the output of the 
guidance channel, as shown in Figure 7.3a. However, in many missiles, the 
limit is imposed on the acceleration command. This limit is usually designed 
to be sufficiently conservative, such that an aerodynamic saturation, men-
tioned earlier, is not reached. In this case, the limited acceleration command 
is denoted aL, where
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This limit is depicted in Figure 7.3b.
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Figure 7.3
(a) Limited output acceleration; (b) limited acceleration command.
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In a conventional PNG system, it is known16,19 that an infinite missile accel-
eration is required near to intercept (t → tf). This means that saturation is 
always reached, and miss distance will be greater than predicted by linear 
analysis. Our goal in this section is to characterize a ZMD-PNG system in 
which saturation is avoided.

Consequently, it is necessary to find some bound μ on the required missile-
target maneuver ratio, μr, defined as
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If μ is found to be smaller than the a priori known missile-target maneuver 
ratio μ0, no saturation will occur. In the case of PNG, owing to the divergence 
of the state variables at the vicinity of the interception, we have
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We shall prove that there is a way to modify the PNG law such that 
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A proper assessment of μ, together with a proper design modification of 
the PNG, might yield the required nonsaturating guidance system.

Inequality 7.30 describes a bounded-input bounded-output stability prob-
lem in the functional space L∞[0, tf]. This problem has been solved in the work 
of Gurfil et al.32 and may be summarized in the design guidelines, sufficient 
to avoid output acceleration saturation:

Design Guideline 1. Given flight control dynamics G1(s) and seeker 
dynamics G2(s), design a controller K(s) such that G(s) = K(s)G1(s)G2(s) 
is a phase lead network with a maximal phase lead not exceeding 
180o.

Design Guideline 2. Given the missile-target maneuver ratio μ0, choose 

Nʹ such that N/́(Nʹ − 2) ≥ μ0, or equivalently, ′ ≥
−

0

0
N

2
1

µ
µ

.

From Design Guideline 2, it is obvious that the smaller the value of μ0 is, 
the larger the Nʹ that should be chosen. When following the design guide-
lines, it is assured that saturation is prevented. However, we have still not 
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provided an insight into the newly developed guidance law. The purpose of 
the next section is to provide a new outlook on ZMD-PNG and show how it 
can be formulated as an estimation problem.

7.5 ZMD Guidance as estimation Problem

ZMD-PNG is merely PNG with an additional lead controller, designed to 
render the total dynamics of the guidance loop positive real. Owing to the 
inherent phase lead required, ZMD-PNG may significantly amplify the 
LOS rate measurement noise to infeasible levels. The purpose of this sec-
tion is to establish a suitable design procedure of ZMD-PNG for the general 
stochastic guidance system where the LOS rate measurement is corrupted 
by noise.

Let us first summarize the results of the previous discussion in the follow-
ing theorems:

theorem 7.2

Let {PR} be the class of positive real transfer functions, and denote 
G s G s G s( ) ( ) ( ) 1 2 . If ∃K(s) (“the guidance controller”) such that K(s)G(s)/s ∈ 
{PR}, then ∃aM < ∞ such that y(tf) = 0 ∀tf, ∀|aT| ≤ aTmax.

theorem 7.3

Let the missile maneuver acceleration aM be limited, |aM| ≤ aMmax. Denote 
μ0 = aMmax/aTmax. If ∃K(s) such that K(s)G(s)/s ∈ {PR}, and in addition, Nʹ ≥ 2μ0/
(μ0 − 1), then y(tf) = 0 ∀tf, ∀|aT| ≤ aTmax.

The positive realness requirement necessitates the guidance controller to 
be a PD phase lead controller of the form

 K s sZi

i

m

( ) ( )= +
=

∏ τ 1
1

 (7.31)

where m denotes the relative degree of G(s).
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In addition to the realization difficulty, the noise amplification of the PD 
guidance controller (Equation 7.31) may be prohibitively high. Thus, when 
the LOS rate measurement is corrupted by noise, the guidance controller 
must be modified into a lead-lag network so that a certain extent of filtering 
is used. This results in a suboptimal operation since the ZMD property does 
not hold when the positive realness condition is violated. However, when the 
filtering, or “roll-off,” is performed at high frequencies, a near-ZMD perfor-
mance can be achieved. The major question is, therefore, how to design an 
appropriate guidance controller for the stochastic case, which will provide 
the necessary noise filtering on one hand but will not increase the miss dis-
tance on the other hand. In order to quantify this trade-off, we first discuss 
the physical interpretation of the deterministic ZMD-PNG. This will provide 
us with the necessary tools needed in order to extend the ZMD-PNG law to 
the stochastic case.

The deterministic ZMD-PNG is implemented as described in Figure 7.4a. 
The kinematic LOS rate λ is measured by the seeker, whose output is the 
measured LOS rate, λm. λm constitutes an input to the guidance controller 
K(s). At the guidance controller output, we have

 ( ) ( )
( )

� � � ��λ λ τ λ τ λm eq m Z m Z
m

m

m

m
+ + ... +

+

1

1

 (7.32)
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Figure 7.4
Implementation of ZMD-PNG. (a) Deterministic case. Measured LOS rate is fed to the PD 
guidance controller, which generates an equivalent LOS rate. (b) Stochastic case. High-order 
LOS rate derivative estimator and a weighting vector generate an estimated equivalent LOS 
rate.
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and Cp
n is the usual combination space of choosing p terms out of n.

The variable ( )λm eq has LOS rate units. It represents the sum of the mea-
sured LOS rate, λm, and higher-order derivatives of λm multiplied by the 
coefficients of the polynomial K(s). Thus, ( )λm eq can be viewed as an equiva-
lent LOS rate. The equivalent LOS rate is multiplied by the PN gain NʹVC to 
form a commanded missile acceleration. In this sense, the ZMD-PNG law is 
a generalization of PNG; instead of applying an acceleration command that 
is merely proportional to the measured LOS rate, the acceleration command 
is proportional to an equivalent LOS rate.

The superior performance of ZMD-PNG is therefore a result of extracting 
additional information from the LOS rate measurement. In other words, a 
prediction procedure is employed to obtain the future state of the target. This 
can be immediately seen by recalling that2

  λ λ( ) {[ ( )] ( ) / }t N G s t a V tT C go= − ′ ⋅ +2 /  (7.34)

which implies

 λ( ) ~ ( / ).t f a RT  (7.35)

Hence, the use of λ (and possibly higher-order derivatives, if needed) as an 
additional signal for generation of the commanded maneuver acceleration is 
equivalent, in a sense, to using information regarding both target maneuver 
and relative range (or time-to-go), as required by optimal guidance methods. 
However, ZMD-PNG extracts this information indirectly from the LOS rate 
measurement, whereas optimal guidance laws (OGLs) need direct estimation 
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of target maneuver and either measurement or estimation of the relative 
range.

The measurement of the LOS rate is corrupted by noise, usually as a result 
of sensor imperfections (such as rate-gyro noise). A simple differentiation of 
the measured LOS rate to generate high-order derivatives is therefore infea-
sible. Rather, high-order derivatives should be estimated from the LOS rate 
measurement. To this end, consider the measurement equation

  λ λm s v= +  (7.36)

where v is a zero-mean Gaussian white noise, and λ s is the noise-free LOS 
rate measurement.

It is required to recover high-order derivatives of λ s  out of the noisy mea-
surement (Equation 7.36). The highest-order derivative required is deter-
mined by m, the relative order of G(s). A diagram of the estimation process, 
which constitutes the stochastic ZMD-PNG, is depicted in Figure 7.4b. The 
input to the estimator is the noisy measurement λm. The estimator provides 

the estimated high-order derivatives, ˆ , ˆ , ..., ˆ ,
( )

 

λ λ λs s s

m+1

 which are then combined 
using some weighting vector h to yield the estimated equivalent LOS rate:

 ( ˆ ) ˆ ˆ ... ˆ [ ]

ˆ

( )� � ��
�

�

λ λ λ λs eq s s m s
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mh h h h= + + + =
+

1

1

11

λλ

λ

λ

s

s

s
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ˆ .
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+

























1

h ΛΛ  (7.37)

Qualitatively speaking, since λm is the only measurement, the higher the 
order of the required LOS rate derivative is, the larger the estimation error 
will be. Fortunately, the relative order of the overall loop dynamics is often 
small; thus, practically speaking, there is usually no need to estimate LOS 

rate derivatives beyond the LOS jerk ( ˆ )


λs . Nevertheless, we consider here-
after the general estimation procedure.

In order to estimate high-order LOS rate derivatives, we use a variant of 
the well-known exponentially correlated acceleration (ECA) approach, which 
is a kinematic-model estimator23 first introduced by Singer24 for estimation 
of the target maneuver. Several modifications will be performed to adapt 
this approach to the estimation of high-order LOS rate derivatives. The new 
technique will be referred to as exponentially correlated high-order LOS rate 
derivative (ECH) estimation. The application of the ECA approach to estima-
tion of high-order LOS rate derivatives stems mainly from the firm relation-
ship between the target acceleration and the high-order LOS rate derivatives, 
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as pointed out in Equation 7.4, and the probabilistic interpretation of ECA, 
described as follows.

Let the highest-order LOS rate derivative, λ s

m( )+1

, be a zero-mean random 

variable uniformly distributed within the limits ±
+

( )
( )

maxλ s

m 1

. The probability of 

attaining an extremum value is πmax. The variance of λ s

m( )+1

 is therefore given 
by

 σ λ π
λs

m s

m

( )

( )

max

max[ ]/ .+ =


















+
+

1
2

1
2

1 4 3  (7.38)

Using a standard Wiener–Kolmogorov whitening procedure,25 a shaping 

filter of the exponentially correlated λ s

m( )+1

 can be derived:

 λ λ
τ τs

m
m

E E

t
t w t( )

( )

( )
( ) ( )+

= − +
1

 (7.39)

where τE is the random process correlation time, and w(t) is a zero-mean 
Gaussian white noise with PSD:

 q
s

m E= +2 1
2 3σ τ

λ
( )/ .  (7.40)

The dynamics of the ECH model can thus be written in the state space 
representation:
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where ΛΛT
S S S

m

= ,  ,
+

[ , ]
( )

� �� …λ λ λ
1

, Im is an m × m identity matrix, 0k×l is a k × l zero 
matrix, and w(t) is a zero-mean Gaussian white noise with PSD q,
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 (7.42)

The initial conditions satisfy

 
E

P

[ ( )] ( )

cov[ ( )] .
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0 0
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=

=
 (7.43)
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The measurement equation (Equation 7.36) is rewritten as follows:

 � …λm
Tv t v t= + = +[ , , ] ( ) ( )1 0 0 ΛΛ ΛΛc  (7.44)

where

 E[v(t)] = 0 (7.45)
 E[v(t)v(θ)] = rδ(t − θ) 

and r is the PSD of the measurement noise. It is important to note that r as 
used in the estimator design need not necessarily be equal to the actual LOS 
rate measurement noise. Also, we assume that the initial conditions, mea-
surement noise, and process noise are uncorrelated:

 E[Λ(0)w(t)] = E[Λ(0)v(t)] = E[w(t)v(t)] = 0. (7.46)

The ECH model formulated in Equations 7.41 through 7.46 can be used 
to obtain an estimated state vector Λ̂Λ  using the well-known time-varying 
Kalman–Bucy filter (TVKF):

 

ˆ ( ) ˆ ( ) ( )[ ˆ ( )]

( ) ( ) /

(

� �

�

ΛΛ ΛΛ ΛΛt A t t t

t P t r
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T= + −

=

k c

k c

λ

)) ( ) ( ) ( ) ( )/= + + −AP t P t A q P t P t rT T T�gg cc

 (7.47)

where

 P t E T( ) [( ˆ ( ˆ )]. ΛΛ ΛΛ ΛΛ ΛΛ− ) − )  (7.48)

Note that the ECH constitutes a kinematic-model estimator. Thus, ∃P > 0 
such that lim ( )

t
P t P

→∞
→ , and the steady-state Kalman–Bucy filter (SSKF) is 

given by
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/
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AP PA q
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T T
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=
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k c

k c

gg

λ

PP P rTcc / .= 0

 (7.49)

It is important to note that in the specific application discussed here, there is 
no significant advantage of using the TVKF rather than the SSKF. We are merely 
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interested in a structured, systematic, robust, and tunable method to roll off the 
noise obtained by a direct differentiation of λm. To this end, the performance of 
the SSKF is perfectly feasible. Moreover, since the analysis of ZMD-PNG and 
the associated proof-of-concept were carried out in the frequency domain, it is 
only natural to continue probing the problem in this manner.

With this notion in mind, we adopt the SSKF and obtain the vector of filter 
transfer functions between the m + 1 components of the vector Λ̂Λ and the 
input λm,
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= − −1 bF  (7.50)

where

 CF = Im+1 

 AF = A − k · cT (7.51)
 bF = k. 

Equation 7.50 presents a closed-form expression for the estimates 

ˆ , ˆ , , ˆ
( )� ��

…λ λ λs s s

m+1

. However, in order to obtain the guidance controller whose 

output is ( ˆ )


λ s eq, these estimates should be combined using some weighting 
vector h. Thus, in the stochastic case, we have

 K s
s

s
ss eq

m

T( )
( ˆ ) ( )

( )
( ).= =





λ

λ
h F  (7.52)

By observation, the denominator of K(s) is of order m + 1, and the numera-
tor is of order m. Thus, the overall effect of the ECH filter, in terms of the 
overall dynamics, is adding a first-order lag. This, of course, results in miss 
distance increase due to the violation of the positive realness condition 
stated in Theorems 7.2 and 7.3. The purpose of the weight vector h is to par-
tially recover the miss distance performance obtained prior to the filtering 
process. In practice, h quantifies the trade-off between miss distance and 
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noise filtering. A method for selecting this vector is as follows. First, note that 
Equation 7.50 can be partitioned as

 F( )
( )

( )

( )

( )

s
d s

n s

n s

n s
SSKF

m

=



















+

1
1

2

1



 (7.53)

where dSSKF(s) is the filtering dynamics of the SSKF, and ni(s) is the numerator 
polynomial of the (i-1)-order LOS rate derivative estimator. In the determin-
istic case, we had dSSKF(s) ≡ 1 since no filtering was used. To satisfy the posi-
tive realness condition in the deterministic case, formulated by Theorems 7.1 
and 7.2, h = [1, h1,…hm]T would have been required to satisfy

 [n1(s) + h1n2(s) + … + hmnm+1(s)] · G(s)/s ∈ {PR}. (7.54)

The same procedure can be adopted in the stochastic case. That is, first we 
ignore the presence of the denominator polynomial and assume dSSKF(s) ≡ 1. 
Next, we find h such that Equation 7.54 is satisfied. In a sense, this concept 
represents a variant of the separation principle, where the estimation and 
control designs are done separately and then interconnected. The overall 
system robustness reduction that stems from using the separation principle 
as a design methodology reflects itself in our case by the slight increase in 
miss distance compared with the deterministic case.

7.6 Illustrative example

In the previous sections, a new guidance law, ZMD-PNG, was synthesized. The 
purpose of this section is to investigate the performance of ZMD-PNG when 
implemented in a real-life electro-optical missile. Furthermore, a detailed com-
parison between ZMD-PNG, OGL, and PNG will be given. The comparison 
includes both deterministic simulation runs and a Monte Carlo analysis.

The missile models used here are believed to constitute a faithful repre-
sentation of a large family of electro-optical guided missiles. The real-life 
models include a detailed flight control system, which consists of an aero-
dynamic model, fin actuators, and sensors, and an electro-optical tracking 
loop, which includes a detailed model of the seeker and tracker. Both the 
flight control system and the tracking loop include nonlinear effects such as 
state saturation and field-of-view limits. Exogenous disturbances such as fin 
bias and measurement noise are modeled as well. For a detailed description 
of these models, the reader is referred to the work of Gurfil.32
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7.6.1 guidance Law Synthesis

In order to design a ZMD-PNG law, transfer functions of the flight control 
system, G2(s) = aM(s)/aC(s), and the tracking loop, G s m1( ) /=  λ λ, are required. 
These transfer functions can be found in two steps. First, the nonlinear terms 
are left out. Second, the resulting high-order linear models are reduced using 
a state truncation method, such as balanced realization. It is important to 
stress that this procedure is used for the guidance design only, not for the 
overall performance evaluation of the missile, where the complete, detailed 
nonlinear stochastic models are used.

We start with model reduction of the complex flight control system,32 which 
has 9 zeros and 13 poles. Using balanced realization state truncation, and the 
parameter values given in the work of Gurfil,32 the following reduced-order 
transfer function is obtained:

 G s
s

s s2
40 3 1

23 3 1 1 93 1
( )

.
( . )( . )

.≈ − +
+ +
/

/ /
 (7.55)

Obviously, G2(s) is nonminimum phase due to the fact that the missile is 
aft-steered. From the engineering standpoint, it is evident that the right half 
plane zero is “fast.” Hence, an additional state truncation yields

 G s
s2
1

0 56 1
( )

.
.≈

+
 (7.56)

This transfer function constitutes an adequate approximation to the over-
all flight control system dynamics in both the frequency and time domains. 
It is subsequently used for ZMD-PNG design.

The tracking loop overall transfer function, G1(s), is obtained in a similar 
manner. Using the numerical values in the work of Gurfil,32 neglecting the 
FOV saturation and the pure tracking delay, we have

 G s
s1
1

0 1 1
( )

.
.≈

+
 (7.57)

The overall transfer function of the guidance loop is therefore

 G s G s G s
s s

( ) ( ) ( )
( . )( . )

.= =
+ +1 2

1
0 1 1 0 56 1

 (7.58)

The relative order of G(s) is m = 2, so the highest order LOS rate derivative 

required is the LOS jerk, λS. Assume that the correlation time of λS is equal 
to the total time constant of the reduced-order system (Equation 7.58), that is, 
τE = 0.66. Applying, we write the ECH model for this case:
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where ΛΛT
S S S= [ , , ]  λ λ λ .

The PSD of the process noise is evaluated using Equation 7.40. To this end, 
let

 ( ) deg/s , . ,max max
λ πS = =750 0 53  (7.60)

which yields

 q = 45 000 2 9, deg /s .  (7.61)

The measurement equation is given by

 λm v t= +[ , , ] ( )1 0 0 ΛΛ  (7.62)

with

 r = 0.04 deg2/s2 (7.63)

Note that, generally speaking, the parameters in Equations 7.60 through 
7.63 constitute tuning parameters that reflect the usual trade-offs associated 
with the Kalman filter design.

The SSKF estimator is initialized as follows:

 ˆ .ΛΛ(0) = 0  (7.64)

The resulting transfer function vector is
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The next step is to choose the weighting vector h. To this end, we follow 
the design guideline discussed above:

 h = [1, 0.3, 0.2]T (7.66)

which yields the guidance controller

 K s F s
. s . s
s s

T( ) ( )
. .

= = + +
+ +

h
0 203 0 387 1

0 0001 0 038 0

2

3 2 ..
.

087 1s +
 (7.67)

The final step is choosing N .́ To this end, we utilize the design principle 
given in Theorem 7.2. Assuming that the missile-target maneuver ratio is 
μ0 = 2 requires Nʹ ≥ 4. We chose Nʹ = 5 to account for possible uncertainties in μ0 
(i.e., the case where the actual missile-target maneuver ratio is smaller than 2).

In summary, the ZMD-PNG command to the flight control system is

 a V
. s . s
s s

C C= ⋅ ⋅ + +
+ +

5
0 203 0 387 1

0 0001 0 038 0 087

2

3 2. . . ss
m+

⋅
1
λ .  (7.68)

The performance of the guidance law (Equation 7.68) will be compared 
to OGL and the classical PNG. The commanded OGL maneuver acceleration 
is9
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 (7.69)

where t̂go is the estimated time-to-go, âT is the estimated target maneuver, τD 
is the so-called “design” time constant, and ξ τ

ˆ /tgo D . Due to the fact that 
the most common OGL was originally conceived for first-order dynamics, 
there is a considerable mismatch between actual missile dynamics and the 
OGL. To deal with this mismatch, it was suggested26 to use a “design” time 
constant, τD, which is about 1.5 times larger than the equivalent time con-
stant of the system. In our case, the equivalent time constant is 0.66 s, so τD = 
1 s. It is also assumed that the time-to-go is estimated exactly, that is, t̂ tgo go= . 
For the estimation of the target maneuver, the following model was adopted

 ˆ .a e aT
s

T
a= ⋅− τ  (7.70)

In Equation 7.70, it is assumed that the target maneuver estimator consti-
tutes a pure time delay of τa seconds. We chose τa = 0.2 s, which is a rather 
optimistic value, since often the estimation delay is even larger.
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The PNG design is far simpler. The sole degree of freedom is N .́ We chose 
Nʹ = 5, so that with PNG, we have

 a VC C m= ⋅ ⋅5 λ .  (7.71)

7.6.2 engagement Scenario

The engagement scenario assumes a constant closing velocity of 1000 m/s 
and a missile velocity of 500 m/s. This means that the scenario is head-on (in 
terms of projection of the relative velocity on the LOS).

The target maneuver simulated to test the performance of the three guid-
ance laws was a random phase sinusoidal maneuver. In this maneuver, the 
target performs a periodic maneuver perpendicular to its velocity vector; 
this type of an engagement simulates a missile attempting to intercept a bal-
listic missile on atmosphere reentry, which is one of the most challenging 
problems faced by modern homing missiles.27 In this case, tested in the fol-
lowing simulations, the target performs a so-called barrel-roll maneuver. A 
projection of this maneuver on the plane yields a sinusoidal target accelera-
tion time history. In addition, it was assumed that the starting time of the 
maneuver is unknown; it can be initiated at any given time point within the 
flight time of the interceptor. This represents the fact that the ballistic missile 
maneuver is initiated randomly due to atmospheric perturbations. Thus, the 
target maneuver can be described by

 a t a tT T T( ) sin( )= +
0

ω φ  (7.72)

where aT0
 is the maneuver magnitude, ωT is the frequency, and ϕ is the phase, 

assumed uniformly distributed between 0 and 2π, which is completely equiv-
alent to a random maneuver initiation time. In this example, the numerical 
values chosen were a gT0

10=  and ωT = 1.7 rad/s. (This frequency is the opti-
mal avoidance frequency for Nʹ = 5; see the work of Shinar and Steinberg.19)

7.6.3 guidance Law Performance

The performance of ZMD-PNG, PNG, and OGL against the random phase 
sinusoidal target maneuver includes both deterministic simulation runs and 
a Monte Carlo analysis. In the deterministic examination, all the parameters 
are kept in their nominal values. The simulation was performed using the 
full nonlinear stochastic models described previously. For the deterministic 
case only, a constant flight time, tf = 5 s, and a constant target maneuver 
phase, ϕ = 0, were chosen. The time histories of the actual and commanded 
accelerations for VC = 1000 m/s are depicted in Figure 7.5.

Evidently, both ZMD-PNG and OGL yield superior performance compared 
with PNG. Note that with PNG, the actual maneuver acceleration saturates 
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1.5 s before impact, which seriously increases the miss distance. However, 
with ZMD-PNG, this saturation is avoided, as expected, and the miss dis-
tance is much smaller. Note also that ZMD-PNG requires a smaller maneu-
ver effort than OGL because the OGL used here is actually suboptimal due 
to the high-order system dynamics.

As seen in Figure 7.5, the acceleration command generated by ZMD-PNG 
is somewhat noisy. The noise level reaches ±1g at ±σ, which is feasible, and 
has no substantial implications on the performance of the system. The three 
guidance laws examined yielded the following miss distance:

 y(tf)|ZMD-PNG = −0.108 m, y(tf)|OGL = 0.114 m, y(tf)|PNG = 60.2 m. (7.73)

Thus, while ZMD-PNG and OGL render a similar miss distance, PNG 
induces a considerably larger miss. This implies that PNG cannot deal ade-
quately with sinusoidal targets, as was also mentioned by Zarchan.14

We proceed with a thorough statistical examination of the guidance law 
performance using a Monte Carlo technique. In each simulation run, param-
eter values, as well as the seed used to generate the noise signals, are ran-
domly selected according to prespecified probability distribution functions. 
After a large database of simulation runs has been created, the results, espe-
cially the miss distance, are statistically analyzed.

In this example, each simulation run used random parameter values and 
a random target maneuver phase. For each flight time, 300 simulation runs 
were performed. The procedure was repeated for flight times ranging from 
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Comparison of actual and commanded missile acceleration shows that ZMD-PNG requires 
less maneuver effort than OGL and PNG.
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2 to 10 s. In order to evaluate miss distance statistics, the mean value of the 
absolute miss distance, defined by

 y t y tf f i
i

( ) ( ) ,=
=

∑1
300

1

300

 (7.74)

was examined. In addition, standard deviations of miss distance for each 
flight time were considered. The results are depicted in Figures 7.6 and 7.7. 
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Figure 7.6 compares the mean value of absolute miss distance, and Figure 7.7 
compares the standard deviation of miss distance. PNG was not considered 
here because the deterministic examination showed that it yielded miss dis-
tance that was larger than the miss obtained with ZMD-PNG and OGL by 
an order of magnitude.

Clearly, ZMD-PNG yields smaller mean and RMS miss than OGL. This is 
true for all flight times greater than 2 s. Moreover, with ZMD-PNG, the miss 
distance is more robust to variations in flight times and in missile param-
eters. These observations imply that the newly developed guidance law can 
deal adequately with highly maneuvering targets. This merit is achieved 
with neither estimating target maneuver nor estimating time-to-go.

7.7 summary and Conclusions

In this chapter, a new guidance law was presented. The derivation of this law 
was composed of two main stages: first, linear PNG kinematics was adopted; 
then, the expressions for miss distance, derived by the method of adjoints, 
were analyzed. This analysis showed that ZMD could be obtained for any 
flight time, provided that the guidance transfer function is positive real and 
that the PNG coefficient is larger than some threshold value.

The design procedure of the new guidance law, ZMD-PNG, involves lead 
compensation. When the LOS rate measurement is noisy, lead-lag compensa-
tion may be used. Simulations of ZMD-PNG that compared its performance 
with PNG and an OGL have given rise to the following observations:

 1) The overall maneuver effort required by the ZMD is smaller than 
that required by PNG.

 2) The miss distance is considerably smaller than that obtained with 
either PNG or OGL. Actually, it is very close to zero.

Perhaps the main advantage of ZMD-PNG over modern guidance laws is 
that it does not require the estimation of target maneuver or time-to-go. It 
uses LOS rate measurements only.

The best performance of ZMD-PNG is expected in low-glint systems, such 
as missiles with electro-optical seekers. This is due to the inherent lead com-
pensation involved, which renders the system more sensitive to glint effects. 
Thus, the main drawback of ZMD-PNG is its sensitivity to the electro-optical 
target tracking noise, which is equivalent to glint in radar seekers. Systems 
having considerable target tracking noise may not be a suitable platform for 
ZMD-PNG.

ZMD-PNG constitutes a simple improvement to the well-known PNG 
law. It guarantees that the saturation of maneuver acceleration is avoided. 
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Based on previous studies, it was shown that preventing saturation yields 
ZMD. ZMD-PNG is based upon the assumption that the target maneuver 
is bounded. It offers two design guidelines to follow: First, the total dynam-
ics of the guidance system should be designed positive real; second, the 
effective PN constant should be chosen according to a simple function of 
the given missile-target maneuver ratio. ZMD-PNG exhibits a significant 
improvement compared with PNG. The main disadvantage of the proposed 
law is that it might increase noise sensitivity. However, this obstacle could be 
overcome by introducing some lag into the system.

ZMD-PNG applies an acceleration command proportionally to an equiva-
lent LOS rate instead of merely the LOS rate. The equivalent LOS rate is a linear 
combination of the measured LOS rate and high-order derivatives of the LOS 
rate estimated from the LOS rate measurement using a Kalman–Bucy filter.

ZMD-PNG does not require either estimation of target maneuver or mea-
surement of the relative range, as needed when implementing OGLs. ZMD-
PNG yields small, near-zero, miss distances against highly maneuvering 
targets for a wide range of flight times. This conclusion was established 
based upon Monte Carlo analysis of miss distance. The acceleration com-
mands generated by ZMD-PNG, although noisier than acceleration com-
mands of OGL, are reasonable in magnitude and are actually smaller than 
acceleration commands of an OGL designed for a first-order system.
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nomenclature

a Lateral acceleration
Lp Normed space
LOS Line of sight
Nʹ Effective navigation constant
OGL  Optimal guidance law
PN Proportional navigation
PNG Proportional navigation guidance
PSD Power spectral density
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PR Positive real
R Missile-target relative range
r Relative order of a rational function
tf Flight time
V Velocity
VC Closing velocity
y Relative vertical position
y(tf) Miss distance
ZMD Zero miss distance
γ Flight path angle
λ Line-of-sight angle
μ Bound on maneuver ratio
μ0 Given maneuver ratio
μr Required maneuver ratio
τ Time-to-go
τ1 Missile time constant
ζ Damping coefficient
ωn Natural frequency

Subscripts:

( )T Target
( )M Missile
( )C Commanded value
( )f Final value
( )0 Initial value
∥·∥p p-norm

Superscripts:

() Time differentiation
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8
Differential Geometry Applied 
to Missile Guidance

Brian A. White and Antonios Tsourdos

8.1 Introduction

Homing guidance is usually referred to as two-point guidance, as there are 
two reference points defining the engagement geometry: the missile and 
the target. There has been a lot of interest in the development of homing 
guidance techniques in the literature over the past 30 years or so. Some of 
the literature has focused on the development of geometric approaches to 
guidance algorithm design. The use of differential geometric concepts gives 
the approach a sound basis for more generalized guidance techniques that 
allow for curved as well as straight trajectories to be considered for both the 
target and the missile. Augmented proportional navigation (PN) includes 
the target acceleration as part of the algorithm but still assumes straight-line 
interception geometry.
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8.2 Homing Guidance Acquisition Geometry

The geometry of homing guidance for a nonmaneuvering target and missile 
is shown in Figure 8.1.

Figure 8.1 shows the case of a target that is flying in a straight line at constant 
velocity vt. The missile is flying at velocity vm, also in a straight line. Both trajec-
tories are assumed to intercept at the impact point at point I. The target and mis-
sile centers of gravity (c.g.) together with the impact point form a triangle, which 
will be called the impact triangle. Two sides of the triangle form the predicted 
straight-line trajectories of the missile and the target, while the third is formed 
by connecting the missile and target c.g. This establishes the line of sight from 
the missile homing head to the target, and this line is thus labeled the sight line. 
In order to establish the conditions for impact, consider a time T such that the 
target has traveled in a straight line and at constant velocity from its initial posi-
tion in Figure 8.1 to the impact point. The length of this trajectory st will be

 st = vtT. (8.1)

In order for the missile to arrive at the impact point at the same time as the 
target, it must travel a distance sm in the same time T, that is,

 sm = vmT. (8.2)

The ratio of the trajectory lengths is then given by
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FIGURE 8.1
Homing geometry.
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Equation 8.3 shows that in order to impact on a target flying at constant 
velocity in a straight line, the missile must maneuver until the trajectory 
lengths of the impact triangle are in the same ratio as the target and missile 
velocities. As the target velocity and heading are either unknown or esti-
mated, and targets can maneuver, there must be an active control system 
to acquire and maintain this impact geometry. The geometry is not fixed, 
however, as only the trajectory lengths need matching with the missile 
and  target velocities. The range of impact triangles possible is shown in 
Figure 8.2.

This shows the locus of possible impact triangles, where the missile posi-
tion lies on a circle of radius sm (the impact circle), and the missile velocity 
vector vm lies along the radius of the impact circle. From this figure, it can 
be seen that an impact triangle can be produced to give a head-on collision 
(point A) or a tail-chase (point B) and any variant in between.

The ratio of velocities 
v
v

m

t

= γ  is important here as, if the ratio falls below 

unity, the possible missile position is restricted to a position in front of the 
target. The impact circle for a range of velocity ratios of

 γ = . .{ }2 1 5 1 0 75  (8.4)

is shown in Figure 8.3.
The missile is moving left to right ahead of the target, at initial ranges of 

1 km to 10 km, from the impact point, in steps of 1 km. The impact circle 
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stvt

Sight line
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FIGURE 8.2
Range of impact triangle locus.
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for each of these points is then plotted. From this figure, it can be seen that 
a velocity ratio larger than 1 produces possible missile positions for impact 
both behind and in front of the target, as the circle encloses the target at the 
origin of the coordinate system. The impact circles for velocity ratios less 
than or equal to unity show that there is a region that cannot produce an 
impact triangle, as the circle does not enclose the target. This implies that 
for certain missile positions relative to the target, no intercept is possible. A 
simple example would be a tail-chase geometry, where the missile is to the 
left of the target. A velocity ratio of 2 or greater is desirable to enable the tar-
get to be engaged from any relative missile position. Current trends are to 
reduce the cost of missile systems, and so, the speed advantage required for 
acquisition under all conditions will be lost as missiles with speed ranges 
comparable with the target are designed. Such systems are usually area 
defense systems where the predominant geometry is head-on rather than 
tail-chase; hence, the missile will almost always have an impact geometry 
to guide onto.

The conditions for interception can be examined by exploring the geom-
etry in Figure 8.1. As has been stated, the intercept geometry is not unique; 
the only condition that is required for a nonmaneuvering intercept is that the 
ratio of the trajectories is the same as the ratio of the missile and target veloci-
ties. Figure 8.4 shows the intercept geometry that is required.

The geometry is drawn using the sight line axes centered in the missile; 
hence, x is along the sight line, and y is normal to it, with r as the sight line 
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range between the missile and the target. From the figure, using the sine 
rule, we have
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As the target angle to the sight line (θt) varies, the intercept point I will 
change. The locus of the intercept point can be determined by using 
Pythagoras on two triangles. The first is (M I N), made up of the missile 
position M, the intercept point I, and the intercept of the normal from the 
intercept point onto the sight line N. The second is triangle (T I N), replacing 
the missile position with the target position. Hence,

 s x ym
2 2 2= +  

 s r x yt
2 2 2= − +( ) .  

(8.7)

Using Equation 8.4, this yields
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Completing the square yields
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This equation represents a circle with radius rl and center cl with respect to 
the sight line axes, where

 r
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This circle represents the locus of the intercept points and can be used 
to assess the guidance algorithm. Figure 8.5 shows the intercept locus for a 
range of γ given by Equation 8.4.

For γ > 1, the circles enclose the target, which implies that the missile can 
intercept the target for any target velocity direction. This is shown in Figure 
8.6 for γ = 2.

For the case of γ < 1, the missile is enclosed within the circle, implying that 
it can only intercept targets that have a velocity vector that intercepts the 
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locus. Figure 8.7 shows a case for γ = 0.75, where the target velocity vector 
does not intercept the locus and hence cannot be intercepted by the missile.

The locus also has another interpretation. Given that the target is travel-
ing at constant velocity in a fixed direction, as shown in Figure 8.8, the locus 
represents the earliest intercept that the missile can achieve. This is based 
on the fact that the shortest distance between two points is a straight line. 
Hence, the straight-line intercept geometry in Figure 8.8 represents the earli-
est intercept geometry. This implies that if the target maneuvers away from a 
straight-line trajectory to get to the intercept with the circular locus, then the 
missile can achieve the intercept within the circle that contains the target if it 
travels on a straight-line trajectory. Conversely, if the missile deviates from a 
straight-line trajectory, then the intercept point must lie outside the intercept 
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circle. This interpretation is useful in capturing the area in which the target 
can evade intercept and also the area in which the missile can successfully 
defend.

8.3 Differential Geometry Kinematics

Consider a two-dimensional engagement scenario, shown in Figure 8.9.
As the sensor that determines the relative motion and position of the target 

and missile is located in the nose of the missile for homing guidance, the 
sight line between the target and the missile is an important measure of the 
relative geometry. From Figure 8.9, we have

 r = rt − rm. (8.11)
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Defining derivatives with respect to time r and with respect to arc length 
rʹ by

 ′ =r
rd

ds  

 r
r= d

dt
 

(8.12)

and differentiating Equation 8.11 with respect to time yields

   r r rt m= −  (8.13)
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.  
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If the assumption is made that both the missile and target velocities are 
constant, and by noting that the sight line range r vector can be expressed 
in terms of sight line coordinates defined by basis vectors ts and ns, where 
ts is the basis vector along the sight line and ns is the basis vector normal 
to the sight line, as shown in Figure 8.9, Equation 8.13 can be written in the 
form

   r r r= −t m  

  r r V Vs s s t t m mt n t t+ = −θ .  
(8.15)

This equation represents the components of the target velocity relative 
to the missile. Components of the relative velocity along and normal to the 
sight line are given by projection onto the basis vectors ts and ns. Hence,
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Missile-to-target relative acceleration is given by differentiating Equation 
8.15 and noting

 s s s
t n= θ  

 s s s

n t= −θ  (8.18)

to give

 ( ) ( ) (      
r r r r r Vs s s s s s s s s t tt n n n t+ + + − =θ θ θ θ

2
tt t− Vm m ).  (8.19)

Hence, the Serret–Frenet equations can be rewritten in terms of a constant 
velocity trajectory in the form
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where κ is the curvature of the missile trajectory, and θ is the instantaneous 
rotation rate of the Serret–Frenet frame about the binormal vector b. The nor-
mal vector n is a unit vector that defines the direction of the curvature of the 
trajectory (cf. Figure 8.9), and the binormal vector b is orthonormal to t and n, 
forming a right-handed triplet (t, n, b). Hence,

 ( ) ( ) .    r r r r V Vs s s s s t t t m m m− + + = −2 2 22θ θ θ κ κt n n n  (8.22)

Components along and normal to the sight line can be determined by pro-
jection onto the basis vectors ts and ns. For a missile producing a lateral accel-
eration fm, where

 
f V

V
m m m

m m

=
=

2κ

θ .  (8.23)

The acceleration components along and normal to the sight line can be 
determined as

 ( ) r r f fs t s t m s m− = ′ . − ′ .2
θ t n t n  (8.24)

 ( ) .r r f fs s t s t m s m  θ θ+ = ′ . − ′ .2 n n n n  (8.25)
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8.4 Geometric Guidance

The guidance algorithm that defines the missile lateral acceleration fm deter-
mines the missile response to target motion. For fixed velocity, Equation 8.23 
shows that the curvature κm is linearly related to the lateral acceleration fm. 
For a geometric approach, the curvature κ is a more natural parameteriza-
tion for the intercept trajectory. Two cases will be considered:

•	 Direct intercept missile with a non maneuvering target
•	 Maneuvering intercept missile with a maneuvering target

The second of these cases is developed in the paper of White et al. [1] and 
will be presented in a modified manner in this chapter. Although these cases 
are treated separately, they produce a unified guidance algorithm by control-
ling the sight line geometry. Consider each case in turn. The geometry of 
each intercept configuration is determined by the requirement to match the 
missile arc length sm to the target arc length st. For constant velocity target 
and missile, these are related to the missile and target velocities such that

 s sm t= γ  

 γ = v
v

m

t

.  
(8.26)

8.4.1 Direct Intercept Geometry of Nonmaneuvering Target

This geometry is the classic PN geometry case, where the missile and the 
target are assumed to have a constant velocity and, once on the intercept 
trajectory, fly in straight lines with no maneuver. The geometry of a nonma-
neuvering target with a direct, straight-line-intercepting missile trajectory is 
shown in Figure 8.10.
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FIGURE 8.10
Guidance geometry: direct intercept of a nonmaneuvering target.
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Note that the intercept triangle TIM is invariant in that as the missile and 
the target move along their respective straight-line trajectories, the TIM 
triangle does not change shape but shrinks as the missile approaches the 
intercept point. The missile-to sight line angle θms and the target-to-sight line 
angle θts remain constant over the whole engagement. From the intercept 
triangle in Figure 8.10, forming a vector sum, we have

 smtm = rts + sttt (8.27)

and noting the matching condition in Equation 8.26 gives

 γsttm = rts + sttt 

 t t tm
t

s t
r
s

= +
















1
γ

.  
(8.28)

Equation 8.28 shows that the missile tangent vector tm can be obtained 
from the target tangent vector tt and the sight line tangent vector ts. As this 
represents the solution for all intercept triangles, the ratio r/st will be fixed 
for a particular geometry, regardless of the size of the impact triangle. It can 
be visualized as a vector addition and is shown in Figure 8.11.

This representation is in a nondimensional form and will thus represent 
the solution for all ranges between the missile and the target. The ratio r/st 
is fixed for the whole solution, and thus, as the range r decreases, so will the 
target arc length st. Given the geometry of the target basis vector tt and the 
range basis vector ts, the direction of the missile basis vector tm is fixed. In 
Equation 8.28, the ratio r/st can be obtained by the use of the cosine rule in 
Figure 8.11. From Figure 8.11, we have
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FIGURE 8.11
Guidance geometry: matching condition.
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This quadratic in r/st can be solved explicitly to give
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st

ti ti







= ± + −cos( ) cos ( ) .θ θ γ2 2 1  (8.30)

Given that γ > 1 and that r > 0 and st > 0, the solution is
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= + + −

= + −
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 (8.31)

This solution can be used to find the required direction of the missile tan-
gent vector mt̂ . Direct substitution of (r/st) into Equation 8.28 gives

 m
t

s t
r
st̂ t t= +

















1
γ

 (8.32)

where mt̂  is the required missile tangent intercept solution for the engagement.

8.4.2 Guidance Algorithm for Direct Intercept

From Section 8.4.1, the condition required for the intercept of a nonmaneu-
vering target is given by

 m
t

s t
r
s

ˆ .t t t= +
















1
γ

 (8.33)

A geometric interpretation of Equation 8.33 is shown in Figure 8.11. An 
error vector can be defined as the angle θε, between mt̂  and tm, where mt̂  is the 
solution of Equation 8.33. The form and stability of the guidance algorithm 
can be determined by use of a simple Lyapunov function V, given by

 V = 1
2

2θε  (8.34)
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where θε is the angle between the missile tangent tm and the required tangent 
vector mt̂ , given by

 θ θ θε = −m m
ˆ .  (8.35)

The time derivative of the function V is given by

 
d
d
V
t

= θ θε ε .  (8.36)

Hence, for stability, we require

 θ θε ε < 0.  (8.37)

From a definition of θε, we have

 εθ θ θ 

= −m m
ˆ  (8.38)

where m
ˆθ  is the rate of change of the desired tangent vector mt̂  as the geom-

etry changes, and m
θ  is the rate of change of the missile tangent vector tm. The 

rate of change of the desired missile tangent vector mt̂  is given by differentia-
tion of Equation 8.33 to give

 
m

t
s

t
s

r
s t

r
s

ˆ .

t t t=
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1
γ

d
d

 (8.39)

As the target is not maneuvering, the rate of change of the target tangent 
vector tt = 0. The sight line vector ts rate of change is given by Equation 8.18, 
and hence
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r
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1
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.  (8.40)

This equation shows that the rate of change is made up of components 
along the sight line basis vectors ts and ns. In fact, as the missile tangent 
vector mt̂  is a unit vector, the resultant rate of change must be normal to the 
desired missile tangent vector along mn̂ . Hence,

 
m m m
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r
s t
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=
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θ

γ θ
1 d
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 (8.41)

where m
ˆθ  will have maximum and minimum values given by the maximum 

and minimum values of the components in Equation 8.41. The rate of change 
of r/st in Equation 8.41 can be obtained from the solution in Equation 8.31:
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Differentiating this equation with respect to time gives
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Also, from the definition of θti and the fact that the target is nonmaneuver-
ing, we have
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Hence,
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Hence, Equation 8.41 can be written as

 m
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s ti s s
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 (8.46)

or
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1
n t n ..  (8.47)

To help in obtaining the maximum and minimum values, note that each 
component of m

ˆθ  in Equation 8.33 can be visualized by simple geometry. 
Figure 8.12 shows the geometric construction of mt̂ . The figure shows that 
there are maximum and minimum values for the rate of change m

ˆθ .



288 Advances in Missile Guidance, Control, and Estimation

From the figure, assuming that the sight line to target angular rate ti
θ  is 

given by the sight line rate s
θ , then the rate of change, at the maximum and 

minimum points, is given by

 
m

t
s

r
s

ˆ .

θ γ θ= 1
 (8.48)

This assumes that the rate of change of r/st at these points is zero due to the 
fact that the vector ts is normal to the circle at these points. The maximum 
length of r/st is given by

 max
1

1
1

γ γ
r
st







= +
 

 max .
r
st







= +γ 1  

(8.49)

Also from the figure, the minimum ratio is given by

 min
1

1
1

γ γ
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 min .
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= −γ 1  

(8.50)
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For both the minimum and the maximum, the target and missile tangent 
vectors are parallel to the sight line. Hence,

 ( ) ( ).γ γ− ≤ ≤ +1 1
r
st

 (8.51)

Also, from the definition of θti and the fact that the target is nonmaneuver-
ing, we have

 
ti s t
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Hence,
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(8.53)

This property can be used to formulate a guidance law to guide the mis-
sile tangent vector tm onto the desired tangent vector mt̂ . From the Lyapunov 
equation, we have,
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ε ε
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 (8.54)

If the missile is controlled using the following guidance law:

 m s K θ γ θ θ θε ε= − +






−1
1

 

 K > 0 

(8.55)

then we have
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which is negative semidefinite. The missile tangent vector tm is controlled by 
defining the curvature of the missile trajectory. This is achieved by applying 
lateral acceleration. The curvature of the trajectory and hence the tangent 
vector is controlled by the Serret–Frenet equations:

 m m m mVt n= κ  (8.57)

 m m m mV
n t= −κ  (8.58)

or
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 (8.59)

A physical interpretation of the Serret–Frenet equations can be obtained 
by examining Figure 8.10, where the missile target and normal vectors tm 
and nm are shown. A positive κm rotates the tangent vector tm in the direc-
tion of the normal vector nm, with the speed of rotation m

θ  being given by 
the magnitude of the curvature. Substituting for the missile trajectory cur-
vature gives

 

κ θ

γ θ θε

m
m

m

m
s

V

V
K

=

= +






−






















1
1

1

 

 K > 0. 

8.4.3 Direct Intercept Engagement Simulation

An engagement was simulated for a 300 m/s target against two missile 
velocities with γ = .{ }2 1 5 . The sensor is assumed to be able to measure

•	 Range
•	 Range rate
•	 Sight line angle
•	 Sight line rate
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The target is flying on an initial course of 90° and at a range of 10 km on 
an initial bearing of 0° to the launch site of the missile. The missile Latax is 
capped at 40g.

For this case, the target acceleration is zero. Two cases are considered to 
show the global convergence of the solution. The first is an engagement 
where the initial missile bearing is set to 0°. This will set the missile to within 
90° of the correct flight angle for interception. The second case considered 
is when the initial missile bearing is set to 180°, which will set the missile 
onto a bearing that initially is moving away from the target. This case is 
particularly testing, as a solution for PN is for the missile and target to be of 
an impact geometry with both traveling away from each other. The sight line 
rate for this case is zero, and PN will not demand any acceleration; hence, the 
geometry will be maintained. Because of the global convergence properties 
of the approach, this will not happen for this algorithm. The results for θm = 0° 
are shown in Figure 8.13a through d.

The target is acquired when flying at θt = 90°, and the missile is launched at 
a range of 7 km at θm = 0°. The guidance gain is set to K = 1 and shows good 
convergence, as seen by the convergence of the Lyapunov variable ε. The case 
for γ = 1.5 is shown in Figure 8.14.

The case for an initial missile angle of −90° for γ = 2 is shown in Figure 8.15 
and for γ = 1.5 in Figure 8.16.
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FIGURE 8.13
Nonmaneuvering target and missile with γ = 2 and θm = 0°.
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Nonmaneuvering target and missile with γ = 2 and θm = −90°.
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8.4.4 Maneuvering Intercept Geometry of Maneuvering Target

This approach can be extended to the second case: that of a constant maneu-
ver target trajectory being intercepted by a constant maneuver missile trajec-
tory. The geometry of a maneuvering target with a maneuver intercepting 
missile trajectory is shown in Figure 8.17.

The intercept point I can be determined by considering the target maneu-
ver arc and the missile maneuver arc geometry. This is shown in Figure 8.18.
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FIGURE 8.16
Nonmaneuvering target and missile with γ = 1.5 and θm = −90°.
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Following the same approach as the nonmaneuvering target with direct 
intercept, the intercept triangle TIM is defined by the target chord vector tLt 
and the missile arc chord vector tLm.

 LmtLm = rts + LttLt (8.60)

where the arc chord basis vectors tLm and tLt can be obtained from the mis-
sile and target basis vectors tm and tt by a rotation through −θta/2 and −θma/2, 
respectively. The arc lengths Lm and Lt are given by

 Lm = βsm 

 β θ
θ

= sin( )ma

ma

/
/

2
2  

 Lt = αst 

 α θ
θ

= sin( )
.ta

ta

/
/

2
2

 

(8.61)

Equation 8.60 can thus be written in the form

 t t tLm
t

s Lt
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1
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α .  (8.62)

The matching condition for the maneuvering missile case can be visual-
ized as a vector addition, as shown in Figure 8.19.
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Maneuver intercept geometry of a maneuvering target.
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From this figure, the matching condition can be calculated by again apply-
ing the cosine rule to the intercept triangle TIM. Hence,
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2 2 22 0
r
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− − =α θ γ β αcos( ) ( ) .  (8.63)

This equation has no explicit solution, unlike the case for the nonmaneu-
vering target and missile. A solution is possible, however, by iteration. The 
arc length sm and the arc angle θma are related by

 γ θ
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r
s
r
t ma

m







=  (8.64)

together with

 θ κ
γ κ

θta
t

m
ma= .  (8.65)

An implicit solution to Equation 8.63 is possible by iteration, as κm and r/st 
can be treated as independent variables. Initialization is straightforward in 
the initial missile curvature of κm = 0 with r/st given by Equation 8.30 for the 
nonmaneuvering case. Hence, given an initial κm and r/st, the angle θma can be 
determined using Equation 8.64, and the angle θta can be determined using 
Equation 8.65. As both α and β can now be evaluated using Equation 8.61, a 
new solution for r/st can be calculated using
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Guidance geometry: matching condition.
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The new estimate of missile curvature κm can be obtained by substituting 
the new value for r/st in Equation 8.64. Hence,
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The new solutions for κm and r/st can then be used to iterate onto a further 
solution. This iteration continues until the values of κm and r/st converge onto 
a solution. The solution to this equation also shows that the missile curva-
ture κm can vary from zero to a maximum. The maximum solution is given 
by the condition that

 β2γ2 − α2sin2(θti) ≥ 0 (8.68)

in order to ensure that the solution is real. The maximum κm can be obtained 
by differentiating Equation 8.67 to give
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Now,
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Hence,

 

∂
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Setting this to zero and rearranging yields

 (β2γ2 – α2sin2(θti)) + cos(θti)(β2γ2 – α2sin2(θti))1/2 + γβ(cos(θma/2) – β) = 0 (8.73)

This is also well behaved and can be solved iteratively using Newton’s 
algorithm.

8.4.5 Guidance Algorithm for Maneuvering Intercept

From Section 8.4, the condition required for maneuvering intercept of a 
maneuvering target is given by
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With the same Lyapunov function as the nonmaneuvering case in Section 
8.4.2, we have, as before
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To calculate m
ˆθ , the rate of change of the desired missile tangent chord vec-

tor Lmt̂  is required. Thus,
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This equation can be written in the form
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and
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The solution to Equations 8.80 and 8.81 will result in a vector that points in the 
direction of the missile normal vector nm with magnitude given by m

ˆθ . Hence, 
if the same guidance law as the direct intercept case is used, where
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then the Lyapunov function will again be negative definite, as is given by
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8.4.6 Maneuver Intercept Engagement Simulation

An engagement was simulated for a 300 m/s target against two missile 
velocities with γ = .{ }2 1 5  with the same sensor suite as for the nonmaneu-
vering case. The target is flying on an initial course of 90° and at a range of 
10 km on an initial bearing of 0° to the launch site of the missile. The missile 
Latax is capped at 40g.

For this case, the target acceleration is ±2g. Again, two cases are consid-
ered to show the global convergence of the solution. The first is an engage-
ment where the initial missile acceleration is set to 2g and the second to −2g. 
In both cases, the initial missile bearing is set to 0°. The results for target 
acceleration of −2g and missile acceleration of 2g are shown in Figure 8.20a 
through d.

The target is acquired when flying at θt = 90°, and the missile is launched at 
a range of 7 km at θm = 0°. The guidance gain is set to K = 1 and shows good 
convergence, as seen by the convergence of the Lyapunov variable ε. The case 
for γ = 1.5 is shown in Figure 8.21.

The second case for target acceleration of 2g and for an initial missile accel-
eration of 2g for γ = 2 is shown in Figure 8.22, and the one for γ = 1.5 is shown 
in Figure 8.23.

Again, convergence is shown, and the target is intercepted.
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FIGURE 8.20
Maneuvering target (−2g) and maneuvering missile (2g) with γ = 1.5 and θm = 0°.
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(c) Lyapunov function (d) r/st variable
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FIGURE 8.21
Maneuvering target (−2g) and maneuvering missile (2g) with γ = 2 and θm = 0°.
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FIGURE 8.22
Maneuvering target (g) and maneuvering missile (2g) with γ = 2 and θm = 0°.
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8.5 Geometry Control

The geometry of the engagement can be controlled to some extent by exami-
nation of the impact triangle. The figure is reproduced in Figure 8.24.

The intercept point I is stationary for the missile and target velocity vec-
tors lying along the impact triangle sides. To see this, consider the velocity of 
the impact point vI with respect to the target T. We have

 vIt v t s tt t t t t= +


.  (8.84)

The rate of change of the impact point must lie along the target velocity 
vector for the case of a nonmaneuvering target, as the impact point must lie 
along the target trajectory. Hence,

 v v sI t t= +


.  (8.85)

Now from Section 8.4.1, intercept conditions must obey Equation 8.31, 
reproduced here:
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FIGURE 8.23
Maneuvering target (2g) and maneuvering missile (2g) with γ = 1.5 and θm = 0°.
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Differentiating this equation with respect to time gives
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Now,
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and for a nonmaneuvering target,
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FIGURE 8.24
Intercept geometry.
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Substituting for r and s
θ  yields
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Substituting into Equation 8.85 yields
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2 2








vt .  (8.91)

For impact, the sight line rate θs = 0, or

 γ sin(θm) − sin(θt) = 0. (8.92)

Hence, for impact, we have

 vI = 0 (8.93)

and the impact point is stationary in space.
In order to change the position of the impact point, the missile-to-sight line 

angle θm can be set to give a positive or negative rate of change of the impact 
point along the target tangent vector tt.

References

 1. B. A. White, R. Zbokowski, and A. Tsourdos. Direct intercept guidance using 
differential geometry concepts. IEEE Transactions on Aerospace and Electronic 
Systems, 43(3), July 2007.

 2. F. P. Adler. Missile guidance by three dimensional proportional navigation. 
Journal of Applied Physics, 27:500–507, 1956.

 3. R. K. Aggarwal. Optimal Missile Guidance for Weaving Targets. In 35th IEEE 
Conference on Decision and Control, pp. 2775–2779, 1996. 

 4. G. M. Anderson. Comparison of optimal control and differential game intercept 
missile guidance laws. AIAA Journal of Guidance and Control, 4(2):109–115, 1981.



304 Advances in Missile Guidance, Control, and Estimation

 5. S. N. Balakrishnan, D. T. Stansbery, J. H. Evers, and J. R. Cloutier. Analytical 
Guidance Laws and Integrated Guidance/Autopilot for Homing Missiles. In 
IEEE International Conference on Control Applications, pp. 27–32, 1993. 

 6. G. W. Cherry. A General Explicit, Optimizing Guidance Law for Rocket-
Propellant Spacecraft. In AIAA/ION Astrodynamics, Guidance and Control 
Conference, 1964. Paper 64-638.

 7. Y. C. Chiou and C. Y. Kuo. Geometric approach to three dimensional missile 
guidance problem. Journal of Guidance, Control, and Dynamics, 21(2):335–341, 
1998.

 8. H. Cho, C. K. Ryoo, and M. J. Tahk. Implementation of optimal guidance laws 
using predicted missile velocity. Journal of Guidance, Control, and Dynamics, 
22(4):579–588, 1999.

 9. J. R. Cloutier, J. H. Evers, and J. J. Feeley. Assessment of air-to-air missile guid-
ance and control technology. IEEE Control Systems Magazine, 9(6):27–34, 1989.

 10. J. E. Cochran Jr., T. S. No, and D. G. Thaxton. Analytical solutions to a guidance 
problem. Journal of Guidance, Control, and Dynamics, 14(1):117–122, 1991.

 11. R. G. Cottrell. Optimal intercept guidance for short range tactical missiles. AIAA 
Journal, 9(7):1414–1415, 1971.

 12. R. G. Cottrell, T. L. Vincent, and S. H. Sadati. Minimizing interceptor size using 
neural networks for terminal guidance law synthesis. Journal of Guidance, 
Control, and Dynamics, 19(3):557–502, 1996.

 13. C. D. Yang, E. B. Yeh, and J. H. Chen. Generalized guidance law of homing mis-
siles. IEEE Transactions on Aerospace and Electronic Systems, 25, 898–902, March 1989. 

 14. E. A. Dijksman. Motion Geometry of Mechanisms. Cambridge University Press, 
Cambridge, 1976.

 15. J. E. Steck and S. N. Balakrishnan. Use of Hopfield neural networks in optimal guid-
ance. IEEE Transactions on Aerospace and Electronic Systems, 30(1):287–293, 1994.

 16. A. Gray. Modern Differential Geometry of Curves and Surfaces with Mathematica. 
CRC Press, Boca Raton, 2nd edition, 1998.

 17. M. Guelman. A qualitative study of proportional navigation. IEEE Transactions 
on Aerospace and Electronic Systems, 7:637–643, July 1971.

 18. S. Gutman. On optimal guidance for homing missiles. AIAA Journal of Guidance 
and Control, 3(4):296–300, 1979.

 19. E. J. Song, H. Lee, and M. J. Tahk. On-line suboptimal midcourse guidance 
using neural networks. In The Society of Instrument and Control Engineers Annual 
Conference, Tottori, Japan, pp. 1313–1318, 1996. 

 20. C. Y. Kuo and Y. C. Chiou. Geometric analysis of missile guidance command. 
IEE Proceedings: Control Theory and Applications, 147(2):205–211, 2000.

 21. C. Y. Kuo, D. Soetanto, and Y. C. Chiou. Geometric analysis of flight control 
command for tactical missile guidance. IEEE Transactions on Control Systems 
Technology, 9(2):234–243, 2001.

 22. H. Lee, Y. I. Lee, E. J. Song, B. C. Sun, and M. J. Tahk. Missile guidance using 
neural networks. Control Engineering Practice, 5(6):753–762, 1997.

 23. K. Y. Lian, L. C. Fu, D. M. Chuang, and T. S. Kuo. Nonlinear autopilot and guid-
ance for a highly maneuverable missile. In American Control Conference. IEEE, 
Baltimore, pp. 2293–2297, 1994. 

 24. G. Lightbody and G. W. Irwin. Neural model reference adaptive control and 
application to a BTT-CLOS guidance system. In IEEE International Conference on 
Neural Networks. IEEE, Florida, pp. 2429–2435, 1994. 



305Differential Geometry Applied to Missile Guidance

 25. C.-F. Lin. Modern Navigation Guidance and Control Processing. Prentice-Hall, New 
Jersey, 1991.

 26. C. M. Lin and Y. J. Mon. Fuzzy-logic-based guidance law design for missile 
systems. In IEEE International Conference on Control Applications. IEEE, Toronto, 
Canada, pp. 421–426, 1999. 

 27. J. M. Lin and T. S. Chio. Guidance system design by LEQG/DC method. Journal 
of Control Systems and Technology, 4(1):1–11, 1996.

 28. J. M. Lin and S. W. Lee. Bank-to-turn optimal guidance with linear exponen-
tial quadratic Gaussian performance criterion. Journal of Guidance, Control, and 
Dynamics, 14(5):951–958, 1995.

 29. M. M. Lipschutz. Differential Geometry. Schaum’s Outline Series. McGraw-Hill, 
New York, 1969.

 30. Yang S. M. Analysis of optimal midcourse guidance law. IEEE Transactions on 
Aerospace and Electronic Systems, 32(1):419–425, 1996.

 31. P. K. Menon and E. J. Ohlmeyer. Integrated design of agile guidance and control 
systems. In 7th IEEE Mediterranean Conference on Control and Automation, Haifa, 
Israel, pp. 1469–1494, 1999. 

 32. S. K. Mishra, I. G. Sarma, and K. N. Swamg. Performance evaluation of two 
fuzzy-logic-based homing guidance schemes. Journal of Guidance, Control, and 
Dynamics, 17(6):1381–1391, 1993.

 33. O. Ariff, R. Zbikowski, A. Tsourdos, and B. A. White. Differential geometric 
guidance based on the involute of the target’s trajectory. Journal of Guidance, 
Control, and Dynamics, 28(5):990–996, 2005.

 34. B. O’Neill. Elementary Differential Geometry. Academic Press, San Diego, 2nd edi-
tion, 1997.

 35. N. F. Palumbo and T. D. Jackson. Integrated missile guidance and control: A 
state dependent Riccati differential equation approach. In IEEE International 
Conference on Control Applications. IEEE, Hawaii, pp. 243–248, 1999. 

 36. I. Rusnak. Guidance law based on an exponential cost criterion for high order 
missile and maneuvering target. In American Control Conference, IEEE, Chicago, 
pp. 2386–2390, 1992. 

 37. I. Rusnak. Advanced guidance laws for acceleration-constrained missile, ran-
domly maneuvering target and noisy measurements. IEEE Transactions on 
Aerospace and Electronic Systems, 32(1):456–464, 1996.

 38. D. J. Salmond. Foundations of modern missile guidance. Journal of Defence 
Science, 1(2):171–180, 1996.

 39. D. Serakos and C.-F. Lin. Linearized kappa guidance. Journal of Guidance Control 
and Dynamics, 18(5):975–980, 1995.

 40. D. Serakos and C.-F. Lin. Three dimensional mid-course guidance state equa-
tions. In Proceedings of the 1999 American Control Conference. IEEE, San Diego, 
CA, vol. 6, pp. 3738–3742, 1999. 

 41. N. A. Shneydor. Missile Guidance and Pursuit. Kinematics, Dynamics and Control. 
Horwood Publishing, Chichester, 1998.

 42. J. Z. Ben-Asher and I. Yaesh. Advances in Missile Guidance Theory. American 
Institute of Aeronautics and Astronautics, Reston, 1998.

 43. P. Zarchan. Tactical and strategic missile guidance. Progress in Astronautics and 
Aeronautics, vol. 124, AIAA, 1990. 





307

9
Differential Game-Based 
Interceptor Missile Guidance

Josef Shinar and Tal Shima

ConTenTS

9.1 Introduction ................................................................................................308
9.1.1 Vector Equations for Interceptor Missile Guidance ..................308
9.1.2 Pursuit–Evasion Game Formulation ........................................... 310
9.1.3 Modeling Assumptions ................................................................ 311
9.1.4 Linearized Interception Model .................................................... 312

9.2 Generalized Solution of Linear Differential Games ............................. 314
9.2.1 Generalized Game Formulation .................................................. 314
9.2.2 Terminal Projection Transformation ........................................... 316
9.2.3 Hard or Soft Control Constraints ................................................ 317

9.3 Bounded Control Linear Differential Games ........................................ 318
9.3.1 Ideal Pursuer and Evader Dynamics .......................................... 318
9.3.2 Ideal Evader and First-Order Pursuer Dynamics ..................... 322
9.3.3 First-Order Evader and Pursuer Dynamics ............................... 324
9.3.4 Dual Maneuver Devices ................................................................ 326
9.3.5 Time-Varying Parameters .............................................................330

9.4 LQ Differential Games ..............................................................................333
9.4.1 General Solution of LQ Differential Games ...............................333
9.4.2 Ideal Pursuer and Evader Dynamics ..........................................336
9.4.3 Ideal Evader and First-Order Pursuer Dynamics .....................336
9.4.4 First-Order Evader and Pursuer Dynamics ............................... 337
9.4.5 Dual Maneuver Devices ................................................................338
9.4.6 Time-Varying Parameters ............................................................. 339

9.5 Conclusion ..................................................................................................340
References ............................................................................................................. 341



308 Advances in Missile Guidance, Control, and Estimation

9.1 Introduction

9.1.1 Vector Equations for Interceptor Missile Guidance

The large family of guided missiles can be divided into two main groups: 
those that are aimed to hit static or slow-moving surface targets (build-
ings, tanks, ships, etc.) and those whose targets are airborne (and probably 
maneuvering) objects. Missiles of the second category are called interceptor 
missiles. The motion of an interceptor missile, as well as that of its target, 
takes place in 3-D space. The relative motion of the interceptor missile with 
respect to the target is also 3-D. In the equations of 3-D relative motion, bold 
letters indicate vectors.

The line-of-sight vector R, connecting the interceptor missile and the tar-
get, is

 R R R= − = ⋅T M R
� �R 1 .  (9.1)

The relative velocity vector VR = VT – VM can be decomposed into two com-
ponents, one along the line-of-sight vector and the other normal to it:

 V V V VR T M R R R= − = ⋅ + ⋅ = ⋅ +� � �� � �R R R n1 1 1 ∆ .  (9.2)

The normal component is proportional to the range R (the length of the 
line-of-sight vector) and changes the direction of R at the rate of ΩR:

 ∆Vn nR R= ⋅ = ⋅ ⋅
�� �
1 1R RΩ .  (9.3)

The line-of-sight angular velocity vector (line-of-sight rate) is

 ΩΩ R R R/
R

= × = ⋅( ) .R V R2 1Ω Ω



 (9.4)

The three unit vectors [


1R, 


1n, 


1ΩR
] define a Cartesian (right-handed) line-of-

sight coordinate system. Between these unit vectors, the following relation-
ships exist:

 

        

1 1 1 1 1 1 1 1 1R R RR R R
= × = × = ×n n nΩ Ω Ω; ; . (9.5)

Moreover,

 
�� � �� �
1 1 1 1R R R R= ⋅ = − ⋅Ω Ωn n; .  (9.6)
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In an interception, the range rate R (obtained as a scalar product of the 
vectors VR and 



1R) is generally negative. Its magnitude is called the closing 
velocity Vc:

 V R V V Vc n= − = + ; ( )R
2

c
2 2∆ . (9.7)

The relative motion takes place in a plane, defined by the vectors R and VR. 
This plane, however, is not a fixed one in general, because the vector R also 
changes its direction if ΩR ≠ 0.

The vector of relative acceleration aR = aT – aM is

aR R R R R R
d
d

= ⋅ + ⋅ ⋅ = ⋅ + ⋅ ⋅ + ⋅
t

R R R R Rn n( )� � � �� � � � �1 1 1 1Ω Ω Ω ⋅⋅ + ⋅ ⋅ − ⋅ ⋅
� � � �
1 1 12

n nR RΩ ΩR R R,

which can be rewritten as

 aR R R R R= − ⋅ ⋅ + ⋅ + ⋅ ⋅( ) ( ) .�� � � � �
R R R R nΩ Ω Ω2 1 2 1  (9.8)

If aR = 0, the direction of the relative velocity vector remains constant, and 
the plane of relative motion does not rotate. In this case, two scalar differen-
tial equations are obtained:

 
R R− ⋅ =ΩR

2 0  (9.9)

 R R⋅ + ⋅ = Ω ΩR R2 0.  (9.10)

Equation 9.10 can be directly integrated, yielding

 R R2
0
2⋅ = ⋅ =Ω ΩR R0

constant.  (9.11)

If the components of the acceleration vectors aT and aM are given, the 
rela tive  motion in an interception scenario can be constructed based on 
the solution of the nonlinear differential equation (Equation 9.8). This equa-
tion clearly illustrates that the interception scenario is governed by non-
linear dynamics  in 3-D space. A nonlinear planar analysis is valid only if 
aR = 0.

Both aT and aM are generated by respective acceleration commands in the 
respective (interceptor and target) body frames. The relationship between 
the actual and commanded accelerations is described by some transfer 
functions in the respective body coordinates. The guidance law of the 
interceptor is the realization of the strategy U(X, t) that maps the available 
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information to the acceleration command aM
c , where X is the state vector. 

The acceleration command of the target aT
c  is determined by another strat-

egy V(X, t).

9.1.2 Pursuit–Evasion Game Formulation

An (aerial) interception scenario belongs to the family of so-called pursuit-
evasion problems. The objective of the interceptor missile (called in the 
sequel the pursuer) is to destroy the target (called in the sequel the evader). 
Target destruction can be achieved either by a direct hit or (if a hit cannot 
be achieved) by detonating an explosive warhead in its vicinity. Therefore, 
the natural cost function of the interception is the distance of the closest 
approach (called in the sequel the miss distance) to be minimized by the 
pursuer.

The evader’s acceleration strategy can be either known or unknown to the 
pursuer. If (and only if) the evader’s acceleration strategy or its future actual 
acceleration profile is known to the pursuer, the interception can be formu-
lated as a one-sided optimal control problem. Otherwise, the evader’s trajec-
tory is not predictable, and the optimal control formulation is conceptually 
inappropriate. In such a case, assuming that the evader’s acceleration bounds 
are known, a robust control formulation, requiring successful interception 
against any feasible (or admissible) target maneuver, can be used.

Since in many aerial interception scenarios the evader’s acceleration is 
independently controlled, another relevant formulation of the problem is in 
the context of zero-sum differential games. In such a game, the pursuer and the 
evader wish to optimize (minimize/maximize) the same cost function by 
simultaneously determining their respective optimal strategies. If the pro-
cesses of minmax and maxmin lead to the same solution, the game has a saddle 
point, and the respective optimized cost is the value of the game. In such a 
case, the solution of the game is a triplet, composed of the optimal strategies 
of the pursuer and the evader and the value of the game, all expressed as a 
function of the state variables.

Based on such a game solution, the interceptor’s guidance law (the real-
ization of the optimal pursuer strategy) and the best evasive maneuver (the 
realization of the optimal evader strategy) can be found. If both players use 
their optimal strategies, the outcome of the interception (the guaranteed miss 
distance) will be the value of the game. The pursuer cannot achieve a smaller 
miss distance, and the evader cannot generate a larger one, as long as the 
opponent uses its optimal strategy.

The formulation of an aerial interception as a zero-sum differential game 
was first suggested by Isaacs [1], and since then, it has been used in a great 
number of research papers and publications. Due to the nonlinear nature 
of the scenario, only very few reduced dimensional pursuit–evasion games, 
based on oversimplified assumptions, could be solved.
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9.1.3 Modeling Assumptions

In order to obtain some kind of generalized (hopefully closed-form) solu-
tions, in all analytical studies, a set of simplifying models relating to the 
scenario and to the interceptor’s and target’s dynamics were used. When the 
analytical solution is obtained, it becomes necessary to verify the validity of 
each simplifying assumption in the context of the solution. In the sequel, the 
most common assumptions are reviewed.

A great part of interception analysis has been carried out in a determinis-
tic mind set, assuming that all state variables and parameters are known to 
both participants. This means that all state variables of the problem can be 
(and are) measured with high accuracy. This perfect information assumption 
is unfortunately not valid. Some variables, such as acceleration of the oppo-
nent, are not measurable, so they have to be reconstructed from measured 
data by an observer. Moreover, all measurements are imprecise. This fact 
is expressed by saying that an actual measurement is the sum of the actual 
value plus an additive error, modeled as a noise of a given family. Having a 
large sequence of measurements, the noise can be filtered, and the unmea-
sured state variables can be obtained from an estimator. Nevertheless, the 
outcome of a realistic noise-corrupted scenario will not be the same as the 
outcome of a perfect information analysis.

Another frequently used assumption is that the flying vehicles can be rep-
resented by their center of gravity, where the mass is concentrated. Such an 
assumption, neglecting the angular motions, called the point-mass approxi-
mation, is very useful for trajectory computations and for miss distances that 
are either negligibly small or very large. If the miss distance is of the order of 
the interceptor and/or the target dimensions, a lethality analysis with more 
details is needed.

In many studies, interceptor and target velocities are assumed to be 
constant or known as a function of time. In the case of a maneuvering 
aerial vehicle, this assumption is simply not physical due to the maneuver-
dependent induced aerodynamic drag force. The different velocity profiles 
lead to different flight times and different miss distances.

The maneuvering dynamics of a flying vehicle have in fact a rather 
complex (not necessarily linear) structure, while in many studies, ideal 
(instantaneous) dynamics or first-order linear dynamics are assumed. 
While the assumption of ideal interceptor dynamics can lead to totally 
unrealistic results, the representation of first-order dynamics preserves, 
at least qualitatively, correct behavior. In any case, the value of the equiva-
lent time constant has to be selected carefully for approximating the true 
dynamics.

In a great number of studies, the interception is confined to a plane, mostly 
for the sake of simplicity. Even if guidance laws developed using planar 
models can work in 3-D space, such an analysis may neglect some inherently 
3-D features of the scenario.
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9.1.4 Linearized Interception Model

In spite of adopting some, or even all, of the above-mentioned simplifying 
assumptions, interception kinematics remains generally nonlinear. There is no 
need to emphasize the difficulties of analyzing nonlinear problems, particularly 
when optimization is involved. Therefore, much effort has been devoted to creat-
ing linear interception models in order to obtain closed-form optimal solutions. 
The linearization is based on assuming that the relative interception trajectory is 
sufficiently close to the initial collision course trajectory, to be used as a reference.

The notion of a collision course comes from an ancient naval background 
for intercepting a vessel by another. It relates therefore to a planar constant 
speed scenario. The collision plane is defined by the line-of-sight vector R and 
the velocity vector of the evader (target) VE. Assuming that the target moves 
on a straight line and the pursuer (interceptor) velocity is larger (VP > VE), 
there exists a unique direction in the interception plane for the pursuer to 
reach the evader in a finite time, as illustrated in Figure 9.1.

Assuming constant speeds (  V VP E= = 0), the two conditions for collision 
can be written as

 VP sin ϕP − VE sin ϕE = 0 (9.12)

 V V R VP P E E c0
cos cosφ φ− = − = > 0, (9.13)

where ϕP and ϕE are the respective aspect angles. Equation 9.12 is the scalar 
expression of the vector product between R and VR in the collision plane, 
indicating (see Equation 9.4) that ΩR = 0, that is, the initial line-of-sight angle 
λ0 remains fixed. Equation 9.12 determines the required direction of the 
interceptor missile with respect to the nonrotating line of sight:

 (ϕP)col = sin–1[VE(sin ϕE)/VP]. (9.14)

P0

VP

φP

VE φE

E0R0

λ0

C

X

Y

FIGurE 9.1
Collision course geometry.
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This direction, called the collision course, is constant ( φP = 0) as long as the 
target does not maneuver ( φE = 0) and the velocities are fixed. Equation 9.14 
can have a unique solution only if VP > VE, as in a missile/aircraft intercep-
tion. If VP < VE, as in the case of antiballistic missile defense, there may be 
either two solutions or none.

If at the start of the interception engagement the difference |(ϕP)0 − (ϕP) col| is 
small, and during the interception the differences |ϕE(t) − (ϕE)0| and |ϕP(t) − 
(ϕP)col| also remain small, one can write two sets of identical linear equations 
of motion normal to the reference line of sight in two perpendicular planes. 
By setting λ0 = 0, the line-of-sight angle λ(t) also remains small. It means that 
a valid trajectory linearization, based on the smallness of angular deviations 
from the collision course geometry, also leads to decoupling of the original 
3-D motion in two planar motions in perpendicular planes [2]. The valid-
ity of the linearization is preserved, even if the velocities VM and VT are not 
constant but known as a function of time. In an aerial interception scenario, 
where both the interceptor and the target are equally affected by gravity, the 
respective term can be left out of the equations, and the direction of the two 
perpendicular planes is immaterial. This decoupling property is the reason 
for which the large majority of the interceptor missiles are designed in a 
cruciform configuration, having two identical guidance channels acting in 
perpendicular planes. In the sequel, this chapter concentrates on linearized 
planar interception models.

In such a linearized planar interception model, the X-axis of the (inertial) 
coordinate system is aligned with the initial line of sight, that is, ⇒ R0 = x0.

Based on Equation 9.13, the relative motion in the X direction becomes 
predictable as a function of time:

 x(t) = R(t) = R0 – Vct = Vc(tf – t), (9.15)

where tf = R0/Vc is the predicted final time of the engagement (collision). The 
state variable of interest is the relative position y between the interceptor 
missile and the target normal to the initial reference line of sight as seen in 
Figure 9.2:

 y(t) = yE(t) – yP(t). (9.16)

The basic equations of motion normal to the initial line of sight and the 
respective initial conditions are

 
y t V t V t y( ) sin ( ) sin ( ); ( )= − =E E P Pφ φ 0 0  (9.17)

 
 y t a a y V Vn n( ) ( ) ( ) ; ( ) sin sin= − = −E P E E P P0

0 0
φ φ , (9.18)

where (aE)n = aE cos ϕE(t) and (aP)n = aP cos ϕP(t) are the acceleration compo-
nents normal to the initial line of sight. The relationship between the actual 



314 Advances in Missile Guidance, Control, and Estimation

accelerations and the respective acceleration commands ( )a nE
c  and ( )a nP

c  is in 
general determined by a transfer function. Thus, the equations of a linear-
ized planar pursuit–evasion game can be written in the following form:

 
X u v= + +AX B C , (9.19)

where X ∈Rn is the state vector { ( , , ( ) , ( ) , )}XT
P E= y y a an n� … , and u and v are 

the normalized control variables {( ) ( ) ; ( ) ( ) }max maxa u a a v an nP
c

P E
c

E= =  satisfying 
the constraints

 |u| = 1; |v| = 1 (9.20)

while A is an n × n matrix, and B and C are n-dimensional vectors. This nota-
tion assumes that the maneuvering dynamics of neither the pursuer nor the 
evader are ideal, so in this case, both lateral accelerations are state variables.

9.2 Generalized Solution of Linear Differential Games

9.2.1 Generalized Game Formulation

As already mentioned in Section 9.1.2, an aerial interception engagement of 
an independently controlled maneuverable evader has to be formulated as a 
zero-sum differential game of pursuit–evasion. It is a two-person zero-sum 
game that in many ways can be considered as a “two-sided” optimal control 
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FIGurE 9.2
Planar interception geometry.



315Differential Game-Based Interceptor Missile Guidance

problem, but its solution is generally more complicated. Although the neces-
sary conditions of game optimality look similar to those of a two-sided opti-
mal control problem, the sufficiency conditions are different and are more 
difficult to verify.

A two-person zero-sum differential game is defined by the following 
elements:

a. Admissible game space
b. Differential equations describing the game dynamics
c. The appropriate initial conditions
d. Admissible control sets of the players

e. Conditions of game termination
f. The cost function of the game J
g. The players’ roles (who is the minimizer/maximizer?)
h. The information pattern of the game

For a linearized interception model, the first elements (a–d) are defined 
in the previous section by Equations 9.16 through 9.20, and the interception 
terminates at a fixed time tf, are defined in Equation 9.15.

The natural cost function of an interception engagement is the miss 
distance

 J = |DX(tf)| = |y(tf)|, (9.21)

where

 D = (1, 0, … 0). (9.22)

In an interception, the roles of the players are obvious: the pursuing inter-
ceptor wants to minimize the miss distance, and the evading target wants to 
maximize it. In this chapter, similar to many other studies, perfect information 
is assumed, which means that both players have perfect knowledge of the 
state variables and the parameters of the engagement.

The solution of a two-person zero-sum differential game consists of four 
elements: the optimal strategies of the two players and (possibly) two out-
comes, namely, the upper value and the lower value of the game. The players’ 
strategies (U for the minimizer and V for the maximizer) are mappings from the 
sets of information available for each player to the respective set of admis-
sible controls. Since the players optimize the cost function independently, it 
is important whether the minimization or the maximization occurs first. The 
upper value of the game Jup is defined as

 Jup = min max {J(U, V)} = max {J(U*, V)} (9.23)
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while the lower value of the game Jlow is

 Jlow = max min {J(U,V)} = min {J(U,V*)}, (9.24)

where U* and V* are the respective optimal strategies. These two outcomes are 
generally different. Obviously

 Jup ≥ Jlow. (9.25)

If both outcomes are equal (min max = max min), one says that the game 
has a value J*, and the respective optimal strategies U* and V* are saddle 
point strategies (in other words, the game has a saddle point). If the information 
available for each player is the state vector of the game, the realizations of the 
optimal strategies are feedback controls. One has to note that satisfaction of 
the necessary conditions of game optimality provides only candidate optimal 
strategies. One way to verify the fulfillment of the sufficiency conditions is to 
fill the entire game space with candidate optimal trajectories.

Perfect information pursuit–evasion games with separated dynamics 
admit a saddle point and have a value. The game solution provides the opti-
mal guidance law of the interceptor missile (optimal pursuer strategy), the 
optimal missile avoidance strategy (optimal evader strategy), and the respec-
tive guaranteed outcome (value) of the game.

A useful methodology that facilitates the solution of linear games is pre-
sented in the next subsection.

9.2.2 Terminal Projection Transformation

The vector differential Equation 9.19 can be reduced to a scalar one by using 
the transformation [3, 4] that can be called a terminal projection:

 Z(t) = DΦ(tf, t) X(t), (9.26)

where Φ(tf, t) is the transition matrix of the original homogeneous system 
Ẋ AX=  and D = (1 0 0 0 …). The new state variable, denoted by Z(t), is the 
zero-effort miss distance, the miss distance that is created if none of the players 
use any control until the final time of the interception. The notion of the zero-
effort miss distance has a central role in modern missile guidance theory.

The cost function of the interception game can be written as

 J = |Z(tf)|. (9.27)

The time derivative of Z(t) becomes, using the well-known property of the 
transition matrix Φ Φ( , ) ( , )t t t tf f= − A,

 
� � �Z t B t t u t C t t v tf f( ) ( , ) ( ) ( , ) ( )= + , (9.28)
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where

 
 B t t t t C t t t tf f f f( , ) ( , ) ; ( , ) ( , ) .= =D B D CΦ Φ  (9.29)

Integrating Equation 9.28 yields

 
Z t Z t B t t u t C t t v t dtf f f

t

t f

( ) ( ) { ( , ) ( ) ( , ) ( )} .= + +∫    (9.30)

Since the dynamics of Z(t) is directly controlled by u(t) and v(t), the realiza-
tions of the candidate optimal strategies of the players (the bounded normalized 
optimal control functions) are

 u t B t t Z tf* sign( ) { ( , ) ( )}= −   (9.31)

 v t C t t Z tf* sign( ) { ( , ) ( )}.=   (9.32)

Substituting Equations 9.30 and 9.31 into Equation 9.29 yields

 
Z t Z t Z t B t t C t t dtf f f

t

t f

( ) ( ) { ( )} ( , ) ( , ) .= − −{ }∫sign    (9.33)

Assuming that Z(t) does not change sign, a candidate optimal trajectory 
that terminates with the miss distance Z(tf) can be constructed by backward 
integration using Equation 9.33, and one can verify whether the family of 
such (regular) trajectories fills the entire game space. Regions that are left 
empty by such constructions are singular, and within them, another pair of 
optimal strategies has to be found. This procedure will be carried out in the 
sequel using different dynamic game models.

9.2.3 Hard or Soft Control Constraints

In reality, every interceptor missile and airborne target has inherent physical 
limitations on the maximal value of the admissible lateral accelerations. Such 
a saturation phenomenon creates inherently nonlinear dynamics with the 
difficulties of obtaining closed-form solutions. There are two well-known 
approaches to circumvent the effects of nonlinearities. The first one, as was 
demonstrated previously, consists of limiting the acceleration commands to 
the value of the maximal value of the admissible lateral accelerations, as indi-
cated by Equation 9.20. In this case, the realizations of the candidate optimal 
strategies can become discontinuous (of the “bang-bang” type) as seen in 
Equations 9.31 and 9.32. Such “hard” control constraints guarantee that the 
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actual lateral accelerations respect the admissible physical limits (at least as 
long as the physical limits are nondecreasing). The resulting chattering con-
trol creates an unnecessary excessive control effort and may also create other 
inconveniencies of implementation. Examples of pursuit–evasion games 
with bounded control are given in Section 9.3.

The other approach is motivated for obtaining a smooth control realiza-
tion. It ignores the “hard” control constraints, but in order to avoid unneces-
sary excessive control efforts, the controls are included as a weighted penalty 
in the cost function. Such an approach creates a linear quadratic (LQ) prob-
lem formulation, which can be considered as a “soft” control constraint. The 
resulting control solution (as long as conjugate points are avoided) will be 
smooth, and saturation of the acceleration can be avoided by proper tuning 
of the penalty weighting coefficients. Examples of pursuit–evasion games 
with LQ formulation are given in Section 9.4.

9.3 Bounded Control Linear Differential Games

In this section, several dynamic models of planar linearized pursuit–evasion 
games with bounded control are presented. The presentations use the scalar 
(reduced) state variable Z, the zero-effort miss distance, while the indepen-
dent variable is the time-to-go defined by

 tgo = tf – t. (9.34)

9.3.1 Ideal Pursuer and Evader Dynamics

This is the simplest game model, denoted as DGI (Differential Game/Ideal), 
where the directly controlled normalized lateral accelerations are the control 
variables (u = (aP)n/(aP)max; v = (aE)n/(aE)max) and the state vector has only two 
components:

 XT = ( , ).y y  (9.35)

The components of the transition matrix Φ(tf, t) involved in this case are

 φ11 = 1; φ12 = tgo, (9.36)

yielding the following expression for the zero-effort miss distance:

 Z t y ytgo go( ) = +  . (9.37)
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The respective components of the vectors B and C are

 b1 = 0; b2 = −(aP)max; c1 = 0; c2 = (aE)max (9.38)

and consequently

 
 B t t t a C t t t af go P f go E( , ) ( ) ; ( , ) ( ) .max max= − =  (9.39)

By denoting the pursuer/evader maneuver ratio as

 
µ = ( )

( )
max

max

a
a

P

E

 (9.40)

one obtains for such a game

 
J Z t Z t t a Z tgo go E* ( ) ( ) ( )( ) { ( )}.max= = = − −0

1
2

12 µ sign  (9.41)

From Equation 9.41, it is clear that the game solution is determined by the 
value of μ. If μ < 1, the zero miss distance cannot be achieved from any initial 
condition. Optimal trajectories originate from the tgo-axis (serving as a dis-
persal line) and fill the entire game space (Figure 9.3).

If μ = 1, the optimal trajectories are lines that are parallel to the tgo-axis, 
 filling the game space, as seen in Figure 9.4.
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FIGurE 9.3
DGL/I game space decomposition for μ < 1.
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If μ > 1, the zero miss distance is guaranteed from a part of the game space 
(capture zone). The boundaries of this region are two symmetrical parabolas 
determined by the equation

 
± = −Z t t ago go E*( ) ( )( )max

1
2

12 µ , (9.42)

as shown in Figure 9.5.
Within this singular region, denoted as D0, the optimal strategies are arbi-

trary, and the value of the game is constant (zero). Outside it, there is the 
regular region, denoted as D1, where the optimal strategies are given by 
Equations 9.31 and 9.32, while the value of the game depends on the initial 
conditions according to Equation 9.33. This game solution was published in 
[5]. The implementation of an interceptor guidance law based on this game 
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solution, denoted DGL/I, is not unique due to the existence of the singular 
region for μ > 1, which is the case of practical interest. One option is to use 
the “bang-bang” guidance law of Equation 9.31 everywhere. Another option 
suggested in [5] is to use in the capture zone a linear guidance law in such a 
way that on the boundaries of the region, the maximal admissible accelera-
tion is reached. This guidance law turns out to be proportional navigation 
(PN) because if linearization is valid, then the line-of-sight angle λ(t) ≪ 1 can 
be written as

 λ(t) ≅ tan λ(t) = y(t)/x(t). (9.43)

Using this approximation, the line-of-sight rate becomes

 



   

λ =






= − = −d
dt

y
x

yx yx
x

y
x

x
x

y2 2 .  (9.44)

Since for the linearized geometry x(t) = Vc(tgo),

 





λ = + = +
y

V t
y

V t V t
y yt

go go go
go

c c c
2 2

1
[ ].  (9.45)

The linear approximation of the miss distance is y(tf). Therefore, the expres-
sion for the linearized predicted zero-effort miss distance for PN becomes

 Z t y ytPN ( ) = +  go, (9.46)

leading us to conclude that

 

λ( ) ( ).t
V t

Z t
c go

PN= 1
2  (9.47)

The classical form of PN is

 ( ) .a N VP n = ′ c
λ  (9.48)

In order to obtain maximal admissible acceleration on the boundaries of 
the capture zone, the effective navigation ratio Nʹ depends on μ. By using 
Equation 9.42 with Equations 9.46 through 9.48, the appropriate value of Nʹ is

 Nʹ = 2μ/(μ − 1). (9.49)
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By accepting this suggestion, the interceptor guidance law can be expressed 
in the entire reduced game space (Z, tgo) by using the saturation operator:

 

( ) ( )
( )

( )
max

max

a a
Z t

t a
P n P

PN go

go P

=
−








sat

2
1 2

µ
µ




.  (9.50)

The model of ideal dynamics, being far from reality, is unable to provide a 
reliable element in guided missile design. For such a purpose, more realistic 
models are needed.

9.3.2 Ideal Evader and First-Order Pursuer Dynamics

This model is motivated by acknowledging the strong effect of interceptor 
dynamics on the homing performance and approximates it by a first-order 
transfer function. Assuming ideal evader dynamics (although this is not 
possible in reality) provide the “worst case” for the pursuer and thus allows 
one to be on the “safe side” for guided missile design.

Using such a model, the state vector of the game is

 XT = ( , , ( ) ).y y aP n  (9.51)

The components of the transition matrix Φ(tf, t) involved in this case are

 ϕ ϕ ϕ τ θθ
11 12 13

21 1= = = − + −−; ; [ ]t ego P , (9.52)

where

 θ = tgo/τP (9.53)

is the normalized time-to-go. The expression for the zero-effort miss distance 
becomes

 Z t y yt a ego go P n P
( ) ( ) ( ).= + − + −−

 τ θθ2 1  (9.54)

The respective components of the vectors B and C are

 
b b b

a
c c a cP

P
E1 2 3 1 2 30 0 0 0= = = = = =; ;

( )
; ; ( ) ;max

maxτ
, (9.55)

and consequently

 
 B t t a e C t t t af P P f go E( , ) ( ) [ ]; ( , ) ( )max ma= − + − =−τ θθ 1 xx .  (9.56)
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By using θ and the normalized zero-effort miss distance defined by

 z Z aP E= / ( )maxτ2 , (9.57)

the expression 9.30 becomes

 z z z h( ) ( ) ( ) ( )0
0

= − ∫θ θ θ θ
θ

sign{ } d , (9.58)

where h(θ) is defined as

 h
f f

( )
( , ) ( , )

max
θ

τ
=

−{ } B t t C t t

aP E
 (9.59)

and for this dynamic model

 h e( ) { [ ] } .θ θ µ θ θ θ
θ

θ
θ

d d
0 0

1∫ ∫= + − −−  (9.60)

One can see that for μ > 1, this integral has a minimum obtained at θ = θs, 
where θs is the nonzero solution of the equation

 μ[e−θ + θ – 1] − θ = 0. (9.61)

For small values of θ (θ < θs), the integrand is negative, which means that 
the zero miss distance [z(0) = 0] can never be achieved.

The two limiting trajectories (Z Z+ −
* *, ) that satisfy the condition that z(θ) does 

not change sign reach the θ-axis tangentially at θ = θs. The normalized game 
space is decomposed into a singular region D0, which is between these tra-
jectories for θ > θs, and the regular region D1. In D1, the optimal strategies are 
given by Equations 9.31 and 9.32, while the value of the game depends on the 
initial conditions.

In the singular region, the optimal strategies are arbitrary, and the value 
of the game is a nonzero constant Js. This singular game value, which is the 
smallest miss distance that an optimally playing pursuer can achieve against 
an optimally playing evader, depends on the physical parameter μ. Once θs is 
found from the solution of Equation 9.61, Js can be computed from Equation 
9.33 by setting z(θs) = 0 followed by direct integration between θs and zero. 
The larger the value of μ, the smaller the value of θs and consequently the 
smaller the value of Js. For a sufficiently large value of μ, the guaranteed miss 
distance Js is very small. Every trajectory starting in D0 must go through the 
throat [z(θs) = 0]. This is a dispersal point for the evader to decide on the maneu-
ver direction (Figure 9.6).
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The interceptor guidance law based on this game solution is denoted 
DGL/0. Its implementation (similarly to DGL/I) is not unique due to the 
existence of the singular region. One option is (similarly to DGL/I) to use 
the “bang-bang” guidance law of Equation 9.31 everywhere. In [6], it is sug-
gested to use in D0 a linear guidance law in such a way that on the bound-
aries of the region, the maximal admissible acceleration is reached. Another 
interesting option is to use in D0 an LQ game solution that guarantees reach-
ing the throat with minimal control effort.

The interceptor guidance law DGL/0 has an important advantage. Its 
implementation requires only (see Equations 9.45 and 9.54) the knowledge of 
the line-of-sight rate and its own acceleration but not the target acceleration. 
Although it cannot guarantee zero miss distance even in an ideal situation, 
the guaranteed miss distance can be made negligibly small by using suffi-
ciently high maneuverability advantage of the interceptor.

In the practically unimportant case of μ < 1, there is no singular region, 
and the game space decomposition looks similar to Figure 9.3.

9.3.3 First-Order Evader and Pursuer Dynamics

If there is sufficient information on the evader dynamics, approximating it by 
a first-order transfer function provides a more realistic and balanced game 
model than was used first in [7]. In this game, the state vector is

 XT = [ , , ( ) ,( ) ].y y a aE n P n  (9.62)

The components of the transition matrix Φ(tf, t) involved in this case are

 ϕ ϕ ϕ τ θ ε ϕ τθ ε θ
11 12 13

2
14

21 1= = = + − = −− −; ; [ / ]; [/t e ego E P ++ −θ 1] , (9.63)
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where

 ε = τE/τP. (9.64)

The expression for the zero-effort miss distance is

 Z t y yt a e a ego go E n E P n P
( ) ( ) [ / ] ( ) (/= + + + − −−

 τ θ ε τθ ε2 21 −− + −θ θ 1)  (9.65)

and the respective components of the vectors B and C are

b b b b
a

c c c
aP

P

E
1 2 3 4 1 2 30 0 0 0 0= = = = = = =; ; ;

( )
; ; ;

( )max ma

τ
xx ; ,

τE

c4 0=
 

(9.66)

leading to

  B t t a e C t t aP P f E E( , ) ( ) [ ]; ( , ) ( )max maxf = − + − =−τ θ τθ 1 [[ / ]./e− + −θ ε θ ε 1  (9.67)

For this game, the integral of h(θ) becomes

 h e e( ) ( ) / ./θ µ θ ε
θ

θ
θ

0 0
1 1∫ ∫= + − − + −( ){ }− − θ ε θ ε  (9.68)

Depending on the values of the physical parameters μ and ε, h(θ) can be 
either positive or negative. If μ > 1 and με < 1, the function has a minimum at 
θ = θs, where θs is the nonzero solution of the equation

 μ[e−θ + θ – 1] – ε[e−θ/ε + θ/ε – 1] = 0 (9.69)

and the game space decomposition is similar to the one of DGL/0 for μ > 1.
For μ > 1 and με ≥ 1, the only solution of Equation 9.69 is θ = 0, h(θ) is always 

positive, and the game space decomposition is similar to the one of DGL/I 
with μ > 1. In this case, from any initial condition inside the singular region 
D0, point capture [z(0) = 0] is guaranteed by using arbitrary strategies. For the 
case of μ < 1 and με ≥ 1, the singular region (where the zero miss distance can 
be achieved) is closed, as seen in Figure 9.7.

In Table 9.1, the conditions for various forms of game solution structures 
established in [8] are summarized.

Due to the existence of the singular region, the implementation of the inter-
ceptor guidance law based on this game solution, denoted as DGL/1, is also 
not unique, and options similar to those of DGL/I and DGL/0 can be adopted.
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It should also be noted that the implementation of DGL/1 requires the 
knowledge of the current evader maneuver as a component of the state vec-
tor, which cannot be measured from another platform. It has to be recon-
structed from available measurements by an observer in a noise-free case or 
by an estimator if the available measurements are corrupted by noise.

9.3.4 Dual Maneuver Devices

The first-order dynamic model used in the previous subsections is the 
simplest approximation to introduce the nonideal behavior of a control sys-
tem. In reality, the behavior of an airborne control system is more complex. 
It depends mainly on the location of the aerodynamic control surfaces. 
The force created by the deflection of a forward control surface (canard) 
is almost immediate, while the contribution of the other parts of the mis-
sile becomes active slightly later (due to the change of the angle of attack). 
On the other hand, using aerodynamic control surfaces located at the rear 
section of the missile creates a nonminimum phase effect because the initial 
direct lift is in the opposite direction compared with the total lift created 
by the required angle of attack. Therefore, it can be shown [9] that canard 
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control provides better homing performance than tail control. However, if 
the missile is to perform sharp initial turns, tail control may be selected 
because such controls saturate at higher angles of attack. By using both 
canard and tail controls, a reasonable design compromise can be obtained 
that provides overall better performance. Higher pitching moments can 
be created, and there is an option to create very fast direct lift (although 
of limited magnitude) for terminal corrections. The additional degree of 
freedom offered by the dual control system requires special consideration 
in the guidance and control design. In several studies, different blending 
strategies between the canard and tail have been suggested. In a recent 
paper [10], a guidance strategy tailored for a missile with dual controls has 
been proposed.

The closed-loop maneuvering dynamics of an interceptor missile with dual 
control can be approximated by two first-order biproper transfer functions:
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where aPc
 and aPt

 are the missile acceleration components (including the con-
tribution of the airframe) due to the control actions of the canard and tail, 
respectively, and ac

c and at
c are the commanded accelerations of the canard 

and tail channels. The constants dc and dt are the direct lift coefficients, and 
the second terms on the right-hand sides of Equations 9.70 and 9.71 represent 
the response of the missile airframe to the command. Note that the transfer 
function (Equation 9.70) is the minimum phase and that of Equation 9.71 is the 
nonminimum phase. Since we assume that the system is linear, the total accel-
eration of the interceptor missile, denoted as aP, is

 a a a d u d u aP Pc Pt c c t t P
b= + = + + , (9.72)

where aP
b  is the specific force acting on the missile airframe, excluding the 

direct lift contributions of the control surfaces.
The maneuvering dynamics of the target is approximated by a first-order 

(strictly proper) transfer function
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1 τ
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In order to avoid control saturation, it is assumed that

 a k a kc
c

c P c≤ ⋅ ≤ ≤max ; 0 1  (9.74)

 at
c

t P tk a k≤ ⋅ ≤ ≤max ; .0 1  (9.75)

The overall acceleration command should not exceed the maximum 
maneuvering capability of the airframe. Therefore, kc and kt must satisfy

 kc + kt = 1. (9.76)

The ratio between kc and kt determines the relative effectiveness of the canard 
and tail control channels. In the case of canard control, only kc = 1 and kt = 0, 
and for tail control, only kc = 0 and kt = 1. We assume that the control of the 
target is bounded by

 a aE
c

E≤ max.  (9.77)

The state vector in the equations of relative motion normal to the initial 
line of sight is

 XT
E P

By y a a= ( ) .  (9.78)

The corresponding equations of motion are
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The zero-effort miss distance, based on Equation 9.26, is similar to Equation 
9.65:

 Z t y yt a ago E E P
b

P( ) ( ) ( / ) ( ) ( )go = + + − τ ψ θ ε τ ψ θ2 2  (9.80)

where ψ(θ) = [e–θ + θ – 1] with the only difference being that (aP)n is replaced 
by ( )aP

b .
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The candidate optimal strategies for this problem are obtained in a similar 
way as for the previous models:

 u k Z tc c f
* [ ( )]= ⋅ sign  (9.81)

 u k Z t f dt t f t
* [ ( )] [ ( , )]= ⋅ ⋅sign sign θ , (9.82)

where

 f(δ, ζ) = δ ∙ ζ + (1 – δ)ψ(ζ) (9.83)

 v* = sign[Z(tf)]. (9.84)

We also define

 t f d tgo
t

t
t go P

go

= =
>

arg[ ( , / ) ].
0

0τ  (9.85)

Based on these candidate optimal strategies, the game space decomposition 
can be made. In Figure 9.8, a game space for μ > 1 with one singular region D0 
is plotted. In this singular region, the optimal strategies are arbitrary, and the 
value of the game is zero. Note that the region D1, where the optimal strate-
gies are Equations 9.81 through 9.84 and the value of the game is a function 
of the initial conditions, is divided into two subregions denoted as D1− and 
D1+ by a transition surface located at t tgo go

t= . When reaching this transition 
surface, the tail control changes its sign due to its nonminimum phase feature.

For the case where the pursuer has a disadvantage in maneuverability, 
that is, μ < 1, the decomposition is different. In such a case, a game space, 
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Game space with one singular region (μ > 1).
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composed of two singular regions denoted D0 and D00, is obtained as shown 
in Figure 9.9. In D00, the optimal strategies are arbitrary, and the value of 
the game is a nonzero constant. Nonetheless, there always exists another 
(small) closed singular region (D0) from which the zero miss distance can be 
guaranteed for the interceptor. The existence of such a capture zone is the 
consequence of the direct lift (with ideal dynamics) of the interceptor. More 
details on this problem can be found in [10].

9.3.5 Time-Varying Parameters

As mentioned in Section 9.1.3 on modeling assumptions, in most cases, 
the speeds of the interceptor missile and the target are not constant. In the 
examples given, until now, a constant speed assumption was adopted, and 
the longitudinal accelerations were neglected. The longitudinal accelerations 
may have a component normal to the line of sight and affect the homing 
process. Moreover, in an interception performed in the vertical plane, such 
as in ballistic missile defense, the maneuvering capabilities of the interceptor 
and the target also vary with altitude. Assuming that the time dependency 
of these values is known as a function of the time-to-go in a given engage-
ment, the resulting pursuit–evasion game can still be solved using a linear 
time-varying model of the problem, as proposed in [11].

The state vector in this problem also includes the aspect angles ϕE and ϕP:

 X = =[ ] [ , , , , , ]x x x x x x y y a aE P E P1 2 3 4 5 6, , , , , T T
 φ φ . (9.86)

Nevertheless, these aspect angles are assumed to be small, and the approxi-
mations cos(ϕi) ≈ 1 and sin(ϕi) ≈ ϕi (i = P, E) are uniformly valid, suitable for 
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linear analysis. Computation of the interception’s final time for a given initial 
range x0 of the endgame, needed for using the time-to-go, is obtained by

 t x x V t V t tf f

t

tf

= = − + =











∫arg [ ( ) ( )] .0 0E P d

0

 (9.87)

From the known velocity profiles VE(t) and VP(t), the respective longitudi-
nal accelerations axE(t) and axP(t) can be computed and substituted into the 
equations of motion, which become

 X = + + =A X B C X( ) ( ) ( ) ; ( )t t u t v X0 0  (9.88)

with
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 (9.89)

 B( ) ( )/maxt a tP E

T
=  0 0 0 0 0τ  (9.90)

 C( ) ( )maxt a tE P

T
=  0 0 0 0 0/τ  (9.91)

and the normalized controls

 u a a t uP
c

P= ≤/ ( );max 1  (9.92)

 v a a t vE
c

E= ≤/ ( ); .max 1  (9.93)

The zero-effort miss distance of this time variable problem is more com-
plex than for the case of constant parameters discussed in Section 9.3.4;
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where
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Comparing Equation 9.94 with Equation 9.65, one can see the corrective 
terms IIIi(tf, t) multiplying the lateral accelerations, as well as the additional 
terms due to the larger state vector.

This linear pursuit–evasion game with time-varying speeds and control 
bounds is solved similarly as the game with constant parameters in Section 
9.3.4. The decomposition of the game space is similar to those shown in 
Figures 9.3 through 9.7. The only difference is that the maneuverability ratio 
μ is not constant. Therefore, the rules of Table 9.1 have to be rewritten for this 
more general case. The game space decomposition depends on the behavior 
of the candidate optimal trajectory derivative defined by

 
dZ
dt

t Z
go

go

*
sign *

 Γ( )  (9.97)

and can be written explicitly as

 Γ( ) ( )[ ( ) ( )] ( )max maxt a t t III t a tgo P go P P go P E= + −ψ τ τ/ [[ ( ) ( )] .ψ τ τt IIIgo E E go E/ + t  (9.98)

These general rules can be summarized as follows:

If Γ(tgo) does not change sign and Γ(tgo) < 0 ∀ tgo ∈ (0,tf] ⇒ Figure 9.3.
If Γ(tgo) does not change sign and Γ(tgo) = 0 ∀ tgo ∈ (0,tf] ⇒ Figure 9.4.
If Γ(tgo) does not change sign and Γ(tgo) > 0 ∀ tgo ∈ (0,tf] ⇒ Figure 9.5.
If Γ(tgo) changes sign once and Γ(tf) > 0 while Γ(0) < 0 ⇒ Figure 9.6.
If Γ(tgo) changes sign once and Γ(tf) > 0 while Γ(0) > 0 ⇒ Figure 9.7.

Although cases where Γ(tgo) changes sign more than once can be imagined, 
their occurrence (as well as of Γ(tgo) = 0 ∀ tgo ∈ (0,tf]) is rather unlikely. In all 
cases, the condition for the existence of a capture zone (a region where the 
zero miss distance is guaranteed) is determined by the limit of Γ(0+) > 0.
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A simplified example with linearly varying speed and maximum accelera-
tion can be found in [8].

9.4 LQ Differential Games

9.4.1 General Solution of LQ Differential Games

In this section, the interception problem is solved using the framework of 
LQ differential games (LQDGs). The framework of an LQDG in its general 
formulation

 J t t t t t t tf
T

f f
T T

u
T

v= + + −X Q X X Q X u S u v S[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) (( ) ( )]t t t
t

tf

v

0

∫ d  (9.99)

allows investigation of a large variety of problems. Each component of the 
terminal state can have a different weighting. The first term in the integral 
can serve for trajectory shaping, and the penalty terms can deal with high 
dimensional controls.

This section concentrates on the interception problem and uses a simpler 
approach. The terminal part of the cost considers the miss distance only; tra-
jectory shaping is neglected, and the control variables are scalars. The anal-
ysis uses the dynamic model of planar linearized pursuit–evasion games 
(Equation 9.19) as well as the relevant zero-effort miss distance transforma-
tion (Equation 9.26). In the LQDG formulation, there are no constraints on 
the controls, but they are included as a weighted penalty in the cost function 
[11] in the form of

 J
b

Z t u t v t tf

t

tf

= + −∫2
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2

2 2 2 2

0

( ) [ ( ) ( )] .γ d  (9.100)

In this section, a slightly different, but essentially identical, cost function is 
used through dividing Equation 9.100 by b:

 J Z t u t v t tf

t

tf

= + −∫1
2

1
2

2 2 2

0

( ) [ ( ) ( )] .α β d  (9.101)

The cost is to be minimized by the pursuer and maximized by the evader 
subject to the dynamic Equation 9.19.
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The Hamiltonian of the game is

 H u v B t t u C t t vZ f= − + +0 5 2 2. ( ) [ ( , ) ( , ) ].α β λ  

f  (9.102)

The adjoint equation is

 λ λZ Z f ft Z t= =0; ( ) ( ), (9.103)

which yields for continuous λZ

 λZ(t) = Z(tf). (9.104)

Since the controls are not constrained, the candidate optimal strategies are 
obtained from
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Substituting Equation 9.105 into Equation 9.28 and integrating from an arbi-
trary t to tf, we get an expression for Z(tf) that is of the form

 Z(tf) = Z(t) − Z(tf)Fαβ(tf, t), (9.106)

which leads to

 Z(tf) = Z(t)/[1 − Fαβ(tf, t)], (9.107)

where Fαβ is

 F t t B t C tf f f
t
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2 2/ / d  (9.108)

Substituting Equations 9.106 and 9.107 into Equations 9.104 and 9.105, the 
candidate optimal strategies take the state feedback forms
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These feedback controls indicate that the LQDG solution exists (i.e., there is 
no conjugate point) if Fαβ < 1. In a recent paper [12], it has been shown that 
for a game with constant parameters, this condition exists if the following 
relationship is satisfied:

 α/β = σ ≤ min [μ2, μ2ε2] ≜ σ0. (9.111)

Based on the definition of σ ≜ kσ0 (0 < k ≤ 1) and Equation 9.111, the candi-
date optimal strategies (Equations 9.109 and 9.110) become
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It can be easily verified that candidate optimal trajectories generated by 
these strategies fill completely the reduced (Z, tgo) game space. Therefore, 
they are optimal strategies of an LQDG.

By letting the penalty coefficients α and β tend toward zero (called in the 
literature cheap control) but keeping their ratio σ constant, satisfying Equation 
9.111, a negligibly small miss distance can be achieved by the guidance law 
denoted LQDG/0:
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The corresponding optimal evader strategy is
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In order to avoid control saturation (i.e., respecting the physical constraint) 
using Equation 9.112 or 9.114 during interception, the value of μ has to be suf-
ficiently high.

In the following subsections, examples of LQDGs with different dynamic 
models are presented.
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9.4.2 Ideal Pursuer and Evader Dynamics

For this simplest dynamic model, Z(t) = ZPN(t), and

  B t t t a C t t t af go P f go E( , ) ; ( , ) .max max= − =  (9.116)

In this case, the value of ε is not determined. Therefore, the condition 9.111 
for not having a conjugate point becomes simply σ ≤ μ2. If this condition is sat-
isfied, the guidance law (the optimal pursuer strategy) can be written, assum-
ing cheap control, in a well-known form of PN (Equations 9.55 and 9.56):

 ( ) ( )maxa a u
N
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Z tP n P
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PN= = ′
2  (9.117)

with
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1 2( )
.

σ µ/
 (9.118)

The solution of this game was presented first in [13].

9.4.3 Ideal Evader and First-Order Pursuer Dynamics

For this model, Z(t) is given by Equation 9.63 and the expressions of B t tf( , ) 
and C t tf( , ) by Equation 9.67. Since in this model, the parameter ε, defined by 
Equation 9.64, is identically zero, Equation 9.111 predicts that for any given 
set of parameters (α, β, μ), there exists a game duration (tf) for which a conju-
gate point cannot be avoided. Nevertheless, for a given interception scheme 
where the values of tf and μ are determined, the weighting parameters (α, β) 
can be chosen to avoid a conjugate point.

The guidance law based on this game solution can be written in the format 
of Equation 9.117 with
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+ − + −
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If a cheap control approach is used for obtaining negligibly small miss 
distances and assuming that the game duration is such that there is no con-
jugate point, Equation 9.119 is reduced to
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9.4.4 First-Order Evader and Pursuer Dynamics

For this model, Z(t) is given by Equation 9.65 and the expressions of B t t( , )f  
and C t tf( , ) by Equation 9.67. In this case, by respecting the condition 9.111, a 
conjugate point can be always avoided, and a cheap control solution can be 
very attractive. The guidance gain Nʹ becomes more complicated by adding 
another term in the denominators of Equations 9.119 and 9.120. For the cheap 
control case
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− + − + − −
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e

e
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2

2 3 2
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σ µ θ θ θ θ
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, (9.121)

where

 g e e( , ) [ ]./ /θ ε ε ε θ εθ ε θ εθ ε θ ε= − − + + +− −3 6 6 12 33 2 2 2 3 2  (9.122)

In order to avoid control saturation (i.e., respecting the physical constraint) 
using the guidance laws indicated in this section during the interception, the 
value of μ has to be sufficiently high. For the model of the present subsection, 
the limit value of μ depends on ε and λ. Assuming λ = λ0 (k = 1), for ε ≤ 1 this 
limit is

 µ
ε ε ε

≥
+ −

3
32( )

 (9.123)

and for ε > 1 it is

 µ
ε ε

≥
+ −

3
1 3 2 .  (9.124)

If saturation of the commanded acceleration is admissible, that is, one 
applies as the guidance law a modified version of Equation 9.112 or for cheap 
controls Equation 9.114,
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where H1(θ) = [ ( , )]B t2
ft

tf τ τ∫ d  and H2(θ) = [ ( , )]C t2
ft

tf τ τ∫ d  the limit value of 

μ that guarantees a maximal capture zone can be smaller than the values 
required by Equations 9.123 and 9.124. For k → 1, this value approaches the 
value required for DGL/1. In this case, the capture zones of both guidance 
laws (namely, DGL/1 and the saturated version of LQDG/0 with k → 1) are 
almost identical, but the control effort of the modified LQDG guidance law 



338 Advances in Missile Guidance, Control, and Estimation

is lower. Both guidance laws also have similar performances with noisy 
measurements.

9.4.5 Dual Maneuver Devices

The quadratic cost function chosen for the derivation of an LQ guidance law 
for a dual control missile is

 J Z t u t u t v t tf t

t

tf

= + + −∫1
2
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2

2 2 2 2

0

( ) [ ( ) ( ) ( )]α α βc c t d , (9.126)

where the weights αc, αt, and β are all positive. Note that letting αc = 0 cor-
responds to a guidance law for a tail-controlled missile, while letting αt = 0 
corresponds to a canard control.

The zero-effort miss for this problem is given in Equation 9.80. Following 
the procedure outlined in Section 9.4.1, the following optimal strategies are 
obtained:
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and f(δ, ζ) was defined by Equation 9.83 as f(δ, ζ) = δ ∙ ζ + (1 – δ)ψ(ζ).
By adopting the cheap control approach leading to a perfect interception, 

one sets αc = αt = β = 0, but keeping the ratios αc/αt = κct, αc/β = σc, and αt/β = σt 
fixed, Equations 9.121 through 9.123 become
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From Equations 9.124 through 9.126, it is clear that perfect interception (i.e., 
zero miss distance) can be achieved, avoiding a conjugate point if the ratios 
σc and σt are selected so that for the existing physical parameters dc, dt, and ε 
and for θ ≤ θ0 = tf/τP
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More details on this problem can be found in [14].

9.4.6 Time-Varying Parameters

As in the case of bounded control linear differential games, solutions based 
on the assumption of constant speeds can be extended to more realistic sce-
narios, where the speeds and the maneuvering capabilities of both players 
are known as the function of time (or time-to-go) along the predicted nomi-
nal interception trajectory. A detailed discussion on this topic, with play-
ers that have first-order dynamics, is presented in [15]. Here only the main 
results are outlined.

The model with players of first-order dynamics is presented by Equations 
9.86 through 9.98. The solution of an LQDG with time-varying parameters 
can be easily constructed using these equations together with the general 
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solution of the LQDG presented in Equations 9.104 through 9.110 and 9.112 
through 9.115. The only difference to keep in mind relates to the limit value 
of the ratio (α/β), denoted by σ0, which provides the sufficiency condition for 
avoiding a conjugate point. Since in the time-varying case, μ is not constant, 
Equation 9.111 has to be replaced by another definition of σ0:
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By respecting the condition α/β = σ ≤ σ0, a guidance law based on the cheap 
control solution expressed by Equation 9.114 can be implemented.

9.5 Conclusion

In this chapter, an overview of interceptor guidance laws, derived using the 
formulation of perfect information zero-sum differential games, was pre-
sented. Closed-form solutions, implementable online in an airborne inter-
ceptor, were obtained by using planar linearized models.

Two families of interceptor guidance laws, both using the zero-effort miss 
distance concept, were obtained by assuming two different cost functions and 
control constraints. The first family, assuming bounded controls, was charac-
terized by discontinuous controls of the “bang-bang” type. The second family, 
based on an LQ formulation, provided a smooth control realization. However, 
when using this formulation, the cost that was optimized was not only the 
miss distance; similar performance as the first family could be achieved by 
applying a cheap control approach. A special effort was made for casting both 
guidance law families in a similar framework, enabling direct comparison.

This chapter summarized differential game-based guidance laws, known 
to the authors, starting from classical work like [13] and also including recent 
papers that introduced biproper dynamics and time-varying models.

The main advantage of the differential game formulation is its robustness 
with respect to the entire class of admissible future target maneuvers. Not 
including the contribution of the target acceleration in the zero-effort miss 
distance calculation is equivalent to assuming ideal target dynamics, which 
is a pessimistic (worst case) assumption, leading to a nonzero guaranteed 
miss distance.

For nonideal target dynamics, in order to achieve zero miss distances, 
the current target acceleration (which is one of the state variables) has to 
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be known. Other modern guidance laws, based on optimal control theory, 
assume (sometimes unjustified) knowledge of future target acceleration.

Simulation studies demonstrated that a pair of planar linear guidance 
laws in perpendicular planes can be implemented successfully in typical 3-D 
interception scenarios.

The basic limitation of these guidance laws is that they all are based on 
the assumption of perfect information. As mentioned in Section 9.1.3, this 
assumption, which is a necessity for obtaining closed-form deterministic 
solutions, is not valid in real interception scenarios. The existence of noisy 
measurements requires incorporating a state estimator in the guidance loop.

It should be obvious that the homing performance in a realistic noise- 
corrupted scenario cannot be as good as the one predicted by a perfect infor-
mation analysis. Instead of the deterministic figure of the guaranteed miss 
distance, the outcome of a realistic noise-corrupted scenario has to be pre-
sented in stochastic terms by the probability distribution of miss distances. 
The complex subject of how to design a state estimator for interceptor guid-
ance and how to incorporate it in the guidance and control system is the 
topic of a separate chapter.
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10
Optimal Guidance Laws with 
Impact Angle Control

Chang-Kyung Ryoo, Min-Jea Tahk, and Hangju Cho

Impact angle control guidance laws have a variety of applications for mis-
siles and unmanned aerial vehicles. For antiship or antitank missiles, ter-
minal impact angle control could maximize the effectiveness of warheads 
by attacking the weakest part of a target. For inertially or global positioning 
system-guided missiles, vertical approach to the target can reduce the miss 
distance by nullifying the effect of navigation error in the vertical channel. 
Impact angle control may find useful applications for a ground target not 
only to ensure that the warhead does not ricochet off the target but also to 
achieve maximum penetration performance. Impact angle control laws can 
also be used as a convenient tool for waypoint guidance or path planning of 
unmanned aerial vehicles. With these diverse application areas, there have 
been extensive studies on the issue. Among them, the optimal guidance 
laws (OGLs) with impact angle control, derived in the framework of o ptimal 
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control theory, draw special attention for their adaptability to various 
engagement circumstances.

In an attempt to replace the well-known proportional navigation (PN) 
guidance law that is widely used in various forms in practical homing mis-
sile applications, OGLs have been studied extensively for many years. It has 
been known that PN guidance with the navigation constant N is nothing 
but a special case of OGLs that minimizes the energy cost weighted by the 
inverse of (N − 3)th power of time-to-go [1]. It is worth noting at this point 
that the minimization of the energy cost, which is typically given by the inte-
gral of the square of the acceleration command, is closely related to that of 
aerodynamic drag [2] or the mean power consumption of the actuators and 
consequently to increased effective range of engagement or smaller actua-
tion systems. Many different formulations of the optimal guidance problem 
are possible, and the OGL satisfying the specified impact angle as well as 
the zero miss distance can certainly be obtained by using optimal control 
theory.

In this chapter, we show how to derive optimal impact angle control 
guidance laws by using the well-known result of the linear quadratic 
(LQ) optimal control theory. While we assume in the derivation that the 
speed of the missile is constant and the target is stationary or moving at 
constant speed, the resultant guidance laws can be applied for a vary-
ing-speed missile to intercept a maneuvering target and yield moderate 
performance.

An optimal control problem for a linear system and its solution are out-
lined in Section 10.1 for easy reference. In Section 10.2, the optimal impact 
angle control law for a lag-free missile is derived, and its properties are 
discussed. A time-to-go computation method based on curved path length 
over missile speed is provided. The performance of the OGL for a maneuver-
ing target will be also discussed in this section. In Section 10.3, an optimal 
impact angle control guidance law for a first-order missile will be derived. 
The optimal impact angle control laws can also be applied nicely to the 
energy-optimal waypoint guidance problem. This issue will be addressed 
in Section 10.4. The proposed approach can be used not only for waypoint 
guidance itself but also for real-time generation of the energy optimal trajec-
tory passing through multiple waypoints.

10.1 LQ optimal Control Problem and Its solution

In this section, we present a well-known LQ optimal control problem, the 
form of which is most frequently encountered when some optimal guidance 
algorithm is sought for an advanced missile system, and we summarize its 
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solution for the use in the subsequent sections. Consider the following LQ 
optimal control problem, which has wide applications in various fields: Find 
an optimal control function u(t) that minimizes the cost

 J x t S x t u Ru tf
T

f f
T

t

t f

= + ∫1
2

1
2 0

( ) ( ) d  (10.1)

subject to

 x Ax Bu x t x= + =, ( )0 0  (10.2)

with terminal constraint

 Dx(tf) = E (10.3)

where Sf ≥ 0 and R > 0. The solution u* to this LQ optimal control problem is 
found to be [4, 5]
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Simpler Case—Hard Terminal Constraint Only
The most widely used LQ optimal control formulation in guidance problems 
is to minimize overall control effort with hard terminal constraints. In this 
case, the above optimal control problem is reduced to the following: Find u(t) 
that minimizes

 J u Ru tT

t

t f

= ∫1
2 0

d  (10.6)
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subject to

 x Ax Bu x t x= + =, ( )0 0  (10.7)

with the terminal constraint

 Dx(tf) = E. (10.8)

The solution to this LQ optimal control problem is now given in a simpler 
form by

 u* = R−1BTFG−1(FT x − E) (10.9)

where

 F A F F t t DT
f f

T= − =, ( , )  (10.10)

 G F BR B F G t tT T
f f= =−1 0, ( , ) .  (10.11)

10.2  optimal Impact Angle Control Law 
for Lag-Free Missile (oGL)

The PN guidance law with the navigation constant Nʹ can be obtained as a 
solution to the LQ optimal control problem minimizing the time-varying 

weighted energy cost t ugo
N− ′−∫ ( )3 2 subject to zero miss distance [1]. (Nʹ here is 

called the navigation constant. The PN law with Nʹ = 3 is energy optimal, but 
Nʹ > 3 is recommended in practice to provide the missile with sufficient capa-
bility to deal with disturbances and uncertainties, such as initial  position/
heading error and abrupt target maneuver [6].)

In this section, we address an optimal guidance problem with the termi-
nal constraints of zero miss distance and specified impact angle. We follow 
the same line of thought in the problem formulation as in the derivation 
of PN with various navigation constants as a family of optimal guidance 
laws; in this way, we could see how the well-known PN guidance law with a 
certain navigation constant would change when an impact angle constraint 
is required additionally. In other words, the resulting guidance law could 
be regarded as a generalized PN that fulfills the additional impact angle 
constraint. We assume a lag-free missile and consider the same cost of time-
varying weighted energy in the formulation. Although the OGL is obtained 
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for a stationary target, we will see that the proposed law can also be applied 
to intercept a maneuvering target as in the case of the PN law.

10.2.1 Derivation of OGL

Consider the homing guidance geometry for a stationary target shown 
in Figure 10.1. Here, V, θ, and θf denote the missile velocity, the flight path 
angle, and the desired impact angle, respectively. The acceleration command 
applied normal to the velocity vector is denoted by u and the line-of-sight 
(LOS) angle by σ. Other variables in Figure 10.1 are self-explanatory.

The equations of motion for the homing problem are given by
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Under the assumption that V is constant and θ is small, we can linearize 
Equation 10.12 as
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Let

 v(t) = Vθ(t). (10.14)

Then, we obtain the linear differential equation

 x Ax Bu x x= + =, ( )0 0  (10.15)
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FiGure 10.1
Homing guidance geometry.
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where
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Now we consider the same LQ optimal control problem: Find u that mini-
mizes the cost
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subject to Equation 10.15 with Equation 10.17 and the terminal constraints
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Note that R is identical to the time-varying weighting function used in [1] 
where N + 3 turns out to be the navigation constant Nʹ of the PN guidance 
law. If we choose N = 0, we get pure energy optimal guidance command. 
Using the time-to-go dependent weighting function given by Equation 
10.21, we can shape the guidance command profile. For N > 0, the cost of 
control becomes radically expensive as t → tf so that the command eventu-
ally reduces to 0 at t = tf . If N < 0 is chosen, the command increases without 
bound or blows up.

Now we derive the state-feedback solution by using the result summa-
rized in the previous section. First, to compute F in Equation 10.9, set
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Then we have four differential equations for fij:
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The solutions of the above equations are easily obtained to be
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,  (10.24)

where tgo denotes the time-to-go and is defined by

 tgo = tf − t. (10.25)

Now, the right-hand side of Equation 10.11 is given by
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Integrating Equation 10.26, we have
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By substituting Equations 10.24 and 10.27 into Equation 10.9, the state- 
feedback closed-form impact angle control optimal guidance law for a lag-
free missile, which we call OGL [7] for brevity, is obtained as
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It is interesting to note that the above guidance gains are not linear to N. 
Examples of the guidance gain set { Nz, Nθ, Nf } for some integer values of N 
are shown in Table 10.1. Note that the following relationship between gains 
holds:

 Nz = Nθ + Nf . (10.30)

For N = 0, Equation 10.28 becomes the pure energy optimal impact angle 
control guidance law [8]. Note that if we use the relationship in Equation 
10.13, that is, z V= θ, and write z Vf f= θ , then we get

 u
t

N z t z N t z z
go

z go f go f* [ ( ) ( )].= − − − −1
2

    (10.31)

This guidance law is the same as the GENEX, the OGL proposed in [9]. If 
we choose N = 0 and Nz, θf = 0, then we get

 u
t

z t t v t
go

go* [ ( ) ( )]= − +1
6 42  (10.32)

which represents the optimal rendezvous solution discussed in [4] and [10].
The time history of the optimal control can be computed by substituting 

Equation 10.28 for u in Equation 10.13 and integrating and is found to be
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TabLe 10.1

Examples of Gain Set of OGL

N Nz Nθ Nf

0 6 4 2
1 12 6 6
2 20 8 12
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We thus see from Equation 10.33 that the optimal control is represented by 
an (N + 1)th-order polynomial function of tgo. For N = 0, the guidance com-
mand is a linear function of time and converges to a finite nonzero value of 
CS as t → tf (tgo → 0). Note that the magnitude of guidance commands with 
N > 0 always decreases to 0 as t goes to tf . The maximum magnitude of the 
guidance command occurs at t = 0 or t = tf for N = 0, while it always occurs 
at t = 0 for N > 0. Command convergence to 0 for N > 0 is a valuable property 
of OGL; it minimizes the possibility of command saturation in the termi-
nal homing phase, which might occur in situations not considered during 
the course of optimal guidance derivation, such as sudden target maneuver 
and large delay in missile maneuver. In other words, this property could 
give some margin for guidance command to handle external disturbances, 
model uncertainties, and command limits. If the missile speed decreases 
considerably in the final stage of engagement due to aerodynamic drag, we 
may have to use a larger gain set to avoid severe performance degrada-
tion. On the other hand, a smaller gain set is preferred to reduce sensor 
noise sensitivity. In most cases, the best guidance gain is chosen via non-
linear simulations taking account of all adversary effects, nonlinearity, and 
uncertainties.

Figures 10.2 and 10.3 represent the normalized command histories of OGL 
for θf = 0 and θ0 = 0, respectively. As discussed above, the guidance com-
mand of OGL approaches nonzero values for N = 0 (energy optimal case) and 
always converges to 0 for N = 1 and 2.

Note that if we take t (≥ t0), z(t), and θ(t) as initial values of the problem, then 
Equation 10.34 becomes
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FiGure 10.2
Normalized guidance command histories of OGL for θf = 0.
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If z(t) and θ(t) are the values on the optimal path from t0 to tf , then the 
optimal path newly obtained at t should coincide with that computed with 
initial conditions at t0 (this is called the principle of optimality [3]). Hence, 
we can deduce that as long as z(t) and θ(t) stay on the optimal path, CS and CR 
in Equation 10.35 remain the same constant values. We could thus check the 
degree of deviation from optimality by monitoring the changes in Cs and CR 
during the engagement. (Deviation from the optimal value is inevitable due 
to disturbances and uncertainties such as missile speed variation, time-to-go 
calculation error, and time lag of the missile response.)

By substituting Equation 10.33 into Equation 10.13 and integrating it, we 
observe that θ(t) and z(t) are (N + 2)th- and (N + 3)th-order polynomial func-
tions, respectively:
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Adjoint Analysis of OGL for First-Order Lag System
Together with the command limit, the time lag of missile response to com-
mand (hereafter, it is called missile autopilot lag) is one of the most dominant 
error sources when using the guidance laws derived under the assumption 
of a lag-free missile. Indeed, if OGL is applied to a missile model with auto-
pilot lag of an arbitrary order, both the miss distance and the impact angle 
error are inevitable. Here, we investigate the effect of the missile autopilot 
lag on the terminal guidance errors using the adjoint simulation method [11].

Figure 10.4 shows the linear homing loop using OGL for a first-order auto-
pilot lag system. While PN guidance loop considers only miss distance as 
an output, the impact angle control problem has two terminal guidance 
errors under consideration: miss distance and impact angle error. Hence, the 
adjoint simulations should be performed twice, once for miss distance and 
another time for impact angle error. Figures 10.5 and 10.6 show adjoint loops 
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Linear homing loop of OGL for a first-order lag system.

V
+
+

z0
Miss due
to θ0

Miss due
to z0

Miss due
to θf 

1
s

1
s

1
s

1
Vt

V
t

Nθ

Nz

Nf θf

θ0

δ(0)

1
V

–

1
τs + 1

FiGure 10.5
Adjoint loop of OGL for z(tf).



354 Advances in Missile Guidance, Control, and Estimation

for miss distance and impact angle error, respectively. These adjoint loops 
are obtained from the linear homing loop in Figure 10.4 by using the tech-
nique in [11].

In Figures 10.7 and 10.8, the miss distance due to initial heading angle is 
shown to be less sensitive to the change of N than that due to impact angle 
requirements. On the other hand, the impact angle error due to either initial 
heading or the required impact angles greatly varies according to the values 
of N, as shown in Figures 10.9 and 10.10. For PN guidance law, the miss distance 
due to initial heading angles increases as N decreases [11], but the miss dis-
tance and the impact angle error tend to decrease for OGL as N decreases. Both 
terminal errors can be made sufficiently small if tf is greater than 15 times τ. 
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This implies that the target acquisition by a missile seeker should occur suf-
ficiently far from the target to guarantee small terminal errors.

10.2.2 Time-to-Go Calculation for impact angle Control Laws

In general, time-to-go explicitly appears in the closed-form optimal guid-
ance laws like OGL, but it cannot be directly measured by any sensor or 
device. Therefore, one should estimate the time-to-go for the implementation 
of OGLs, and accurate estimation of time-to-go is frequently very important 
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because poor estimate not only degrades the guidance performance but also 
makes the overall missile trajectory deviate far from the optimal one [12].

The most widely used and the simplest time-to-go calculation method is 
the range over the missile velocity:

 t
R
Vgo = .  (10.37)

It is readily seen that Equation 10.37 is quite effective in many situa-
tions where the missile trajectory is almost straight or slightly curved. For 
the impact angle control laws, however, this method may not be adequate 
because the trajectory generated by the impact angle control laws is gener-
ally much curved. We therefore need a better time-to-go calculation method 
for OGL.

In this section, we devise a time-to-go calculation method for OGL where 
the path curvature is calculated by the approximated closed-form trajectory 
solution of OGL. It is based on the fact that the trajectory under OGL can be 
represented, in the ideal case, by some polynomial function of time-to-go, as 
seen in Equation 10.36, or of range-to-go, as discussed below.

As depicted in Figure 10.1, let x and z be the coordinates of the missile’s 
future trajectory in the LOS frame at t, and θ and θ f  be defined as θ + σ and 
θf + σ, respectively. Suppose that z is expressed as the (N + 3)th-order poly-
nomials of x:
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This approximation is quite reasonable for small θ because tgo in Equation 
10.36 can be replaced by x V/ . From the first equation of Equation 10.13
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N + 4 boundary conditions are required to determine the coefficients in 
Equations 10.38 and 10.39. For N = 0, there are four boundary conditions that 
involve the position and the flight path angle at t and at tf:
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For N ≥ 1, we need N additional conditions, which follow from the zero 
acceleration requirement at t = tf (or x = 0), as implied by Equation 10.33:
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Resultant coefficient sets for several N’s are shown in Table 10.2. Note that 
the trajectory approximation discussed here is available only for integer val-
ues of N.

TabLe 10.2

Coefficient Sets of Trajectory Polynomial

N a0 a1 a2 a3 a4 a5

0 0 −θ f θ θ+ 2 f

R
−

+θ θ f

R2

- -

1 0 −θ f 0 θ θ+ 3
2

f

R
−

+θ θ2
3

f

R

-

2 0 −θ f 0 0 θ θ+ 4
3

f

R
−

+θ θ3
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Once the future missile trajectory is obtained, tgo is simply calculated by 
the remaining length of the curved path to the impact point over the missile 
speed V:
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The time-to-go given by Equation 10.42 can be interpreted as the range over 
missile velocity compensated by the factor k that accounts for the length 
increase due to the path curvature. With the approximation given by
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the typical values of k for each N are found to be
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The proposed time-to-go calculation method does not require any spe-
cial information beyond usual measurement requirements for guidance law 
implementation. We note that the proposed method could produce large 
time-to-go calculation error in the beginning of the flight when θ π0 2= / , 
where the approximation d dz x  1 is not quite valid. However, this time-
to-go calculation error becomes negligible as the missile approaches the tar-
get since θ and θ f  are going to be nullified regardless of the values of θf .

10.2.3 implementing OGL: First Variant

The OGL given by Equation 10.28 yields the bad performance for some appli-
cations where the small angle approximation for linearization is not quite 
valid. For the simplicity of the discussion, let the time-to-go be calculated by 
the simplest way, that is, range over missile speed. Then the OGL of Equation 
10.28 can be rewritten as
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 u
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z t
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N t Nz f f* ( )
( ) .= − + +











2

θθ θ  (10.45)

For N > 0, u* is supposed to go to 0 as the missile approaches the target. 
We see from Equations 10.30 and 10.45 that this zero command at the impact 
instant is achieved with θ → θf and z/R → −θf as t → tf . Now note that for a 
larger impact angle, for instance, one near 90°, |z| is almost the same as R 
during the final phase of homing, which in turn implies that z/R approaches 
not −π/2 but −1 as t → tf . Thus, the guidance command in this case does 
not vanish as the missile approaches the target and might yield a consider-
able amount so that huge guidance error could occur. This problem can be 
avoided by selecting the guidance coordinate frame in such a way that θf 
is small; however, such a choice of guidance frame could develop large θ 
at other time regions of engagement, violating the small θ assumption and 
yielding nonoptimal behavior there. Nevertheless, large deviation of θ in 
the final phase of engagement from the assumption underlying our optimal 
guidance formulation is far worse, in terms of guidance error, than large 
digress in the earlier phase.

There is other way to resolve the problem where the performance of the 
guidance law (Equation 10.28) is made insensitive to the engagement geom-
etry (e.g., large impact angle) by using σ(t) instead of z(t) as a guidance vari-
able in the law. Note that when the sight line angle σ(t) is small, it can be 
approximated by

 σ( ) sint
z
R

z
Vtgo

= − ≈ −−1  (10.46)

and

 
 z V Vt tgo go= − ⇒ = −σ σ θ σ σ.  (10.47)

Equation 10.28 is now rewritten as

 u t
V
t

N t N t N
go

z f f*( ) [ ( ) ( ) ].= − − + +σ θ θθ  (10.48)

For convenience, OGL given by Equation 10.48 is called the first variant of 
OGL. Note that all variables in Equation 10.48 are angular variables, and the 
equation does not have the problem discussed above, even in the case of a 
large θf . In this sense, the first variant of OGL is more robust to engagement 
scenarios and has wider applications.
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Nonlinear Simulations
To examine the performance of the first variant of OGL and the time-to-go 
calculation method proposed in the previous section, we perform nonlinear 
simulations. Here, we are to compare the first variant of OGL with another 
well-known impact angle control law, the biased PN guidance (BPNG) pro-
posed in [13], which is simple to implement and does not use time-to-go.

BPNG in [13] is given by

 u t N V t tBPN b( ) ( ( ) ( ))= ′ − σ σ  (10.49)

where Nʹ is a navigation constant, σ( )t  is the LOS rate, and σb is the time-
varying bias term to control the impact angle. σb is defined by

 σ η σ σ
θ σb

dt
V t

N R t t t
( )

( ( ))
( )cos( ( ) ( ))

.= −
′ −

 (10.50)

Here, η is an arbitrary positive constant, and σd is the desired LOS angle 
at the time of impact for which we use θf in our simulation study. It is noted 
from Equation 10.50 that BPNG is singular when θ(t) = σ(t), and thus, the 
capture region and launch envelope of BPNG are more limited than the 
first variant of OGL. The most attractive feature of BPNG is that it does not 
require the knowledge of time-to-go. We choose N = 4.0 and η = 1.3 for BPNG 
as used in [13] for demonstration.

Two distinct cases of nonlinear simulations are considered—case 1: θ0 = 
θf = 90° and case 2: θ0 = 45°, θf = –45°. Initial conditions are shown in Table 
10.3. It is assumed that the speed of the missile is constant, there is no com-
mand limit, and the target is fixed.

Figures 10.11 and 10.12 show that the missile under OGL travels a longer 
path for a larger value of N, and the time of flight is increased accordingly, as 
shown in Figures 10.13 and 10.14. It is also shown in Figures 10.13 and 10.14 
that, for N = 1 and 2, the guidance command is large in the beginning of the 
flight and reduces to 0 as the missile approaches the target. However, for 
N = 0, the guidance command reaches a finite value, as expected in Equation 
10.33, that depends on θ0, r0, and θf. Although the guidance law with N = 0 
represents the optimum energy trajectory with the smallest flight time, this 

TabLe 10.3

Initial Conditions for Nonlinear Simulations

Parameters Values

Missile position (x0, z0) 0 m, 0 m
Missile velocity (V) 200 m/sec
Target position (xt, zt) 0 m, 4000 m
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property of nonzero terminal acceleration implies that it may produce larger 
miss distances when there are disturbances, acceleration command limits, 
and some uncertainties not considered beforehand.

We observe from Figures 10.13 and 10.14 that the guidance command of 
BPNG tends to blow up as the missile approaches the target. Thus, consider-
able terminal miss distance and impact angle error could result for BPNG 
if some command limit is imposed. It is also interesting to note that BPNG 
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command profile is quite similar to that of OGL with N = −0.5, though the 
latter is not shown here.

Figures 10.15 and 10.16 show the time histories of the estimated total time 
of flight tf(t), which is computed by the method proposed in Section 10.2.2. 
Note that quite a large tf estimation error is produced for case 1 in the begin-
ning of the flight, which occurs because small value approximation of d /dz x  
is not valid. For |θ0| ≤ 60°, the proposed time-to-go method provides good 
estimates for all N, as shown in Table 10.4. Here, the performance measure 
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Δtfmax(t)/tf (tf) is the normalized maximum estimation error of tf , where tf(t) = 
tgo  + t and ∆t t t t tf

t t
f f f

f
max max{ ( ) ( )}= −

≤ ≤0
. Table 10.4 shows that the proposed 

method provides far better estimates of the time-to-go than the conventional 
method of tgo = R/V. The negative values in this table mean the underesti-
mates of the time-to-go, which cause the guidance command to get larger 
than needed. No error sources, such as the system lag or the command satu-
ration, are taken into account in these simulations, and therefore, no termi-
nal errors (miss distances and impact angle errors) have been developed.
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10.2.4 OGL for Moving Target: Second Variant

Recall that OGL given by Equation 10.28 or its first variant given by Equation 
10.48 is a guidance law for a stationary target and does not give a satisfactory 
performance when the target is moving. We thus consider in this section an 
optimal guidance problem for a moving target in the same framework as in 
the previous sections.

Let the target travel with a constant velocity VT in the direction repre-
sented by the constant angle θT (Figure 10.17).

Let θMT be the angle that satisfies

 V sinθMT = VT sinθT. (10.51)

Note that if the missile maintains its flight direction θ(t) to be equal to θMT 
throughout the engagement and if z(0) = 0, then the trajectories of the missile 
and the target together with the initial sight line form a collision triangle.

Now let θ = θMT + Δθ. Then
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V V
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MT

= −
= + −
=
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sin ( ) sin
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θ θ
θ θ θ

θ
∆

ss cos sin sin .∆ ∆θ θ θ θ+ −V VMT T T

 (10.52)

TabLe 10.4

Time-to-Go Calculation Errors, Δtfmax/tf(%), for Lag-Free Autopilot

θ0 
(degrees)

θf 
(degrees)

R/V Proposed Method

N = 0 N = 1 N = 2 N = 0 N = 1 N = 2

90 90 −21.30 −39.21 −59.25 −3.28 −11.13 −26.52
−90 90 −31.86 −46.37 −63.66 −8.94 −18.32 −34.41
60 60 −10.24 −19.00 −29.44 −0.72 −2.44 −5.93
−60 60 −16.20 −23.63 −32.85 −2.07 −4.29 −8.20
30 30 −2.69 −5.00 −7.87 −0.05 −0.16 −0.40
−30 30 −4.43 −6.46 −9.05 −0.14 −0.30 −0.57

Target

Missile

R

VT

θT

θMT
θ

∆θ

–σ

V

z

FiGure 10.17
Interception geometry for a moving target.
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Assuming Δθ is small and letting V V MT= cos θ , we have

 z V VMT≈ =∆ ∆θ θ θcos .  (10.53)

Also, if we let u u MT= cos θ , then

 V V u uMT MT∆ ∆ θ θ θ θ= = =cos cos .  (10.54)

Thus, we have the following set of equations:

 




z V

V u

=

=

∆

∆

θ

θ .
 (10.55)

Remark. V sinθMT given in Equation 10.51 is the missile velocity compo-
nent to counter the target movement and to keep the missile near the target 
centered reference line, and Δθ can be considered to be the effective control 
used to form the missile trajectory as required around the reference line with 
the impact angle θf . Thus, if the reference line is chosen in such a way that 
θMT is not far from θf , then Δθ can be assumed to be small since θ should 
approach θf as time goes on when the applied guidance law works. Choice 
of such a reference line is always possible; take for example the base of zero-
effort collision triangle defined in [14] for the case of impact angle constraint.

Note that Equation 10.55 is exactly the same set of equations as Equation 
10.13 except for different symbols of variables. Thus, we can formulate the 
same optimal impact angle control guidance problem as in Section 10.2.1 
with the terminal constraints z(tf) = 0 and Δθ(tf) = θ(tf) − θMT = θf − θMT and 
obtain in a straightforward manner the solution given by
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 (10.57)

To get the second equality, we have used the relationship between the 
guidance gains given in Equation 10.30. Note that if the target is stationary, 
that is, VT = 0, then θMT = 0 so that Equation 10.57 reduces to Equation 10.28.
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If the target is indeed flying straight with constant velocity, we can imple-
ment Equation 10.57 with θMT computed by using the information from a 
target tracker, even before the missile launch. In practice, however, we need 
to consider the case of target maneuvering and thus constantly estimate 
somehow θMT during the engagement. An alternative way is to use other 
variables that can reflect the effect of varying θMT or, equivalently, of the tar-
get maneuver.

Note that z ≈ − Rσ for small σ so that  

z R R≈ − −σ σ. Hence, from Equation 
10.53, we have

 V R RMTcos .θ θ σ σ∆ ≈ − −

  (10.58)

Thus
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 (10.59)

or
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.  (10.60)

Substituting Equation 10.60 into Equation 10.57, we have
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where we have used the relationship in Equation 10.30 and R Rtgo≈ −   to get 
the second and third equalities.

Now that

 cos ( cos )θ θMT
T

T
V
V

= − −1 1
2

2
2  (10.62)
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from Equation 10.51, cosθMT ≈ 1 when V ≫ VT, which is the case for most 
realistic engagement scenarios. Thus, we now have an impact angle control 
guidance law for a moving target given by

 u N R
N V

tz
f

go
f* ( ).≈ − + −

σ θ θ  (10.63)

We note that Equation 10.63 is a biased true PN guidance law [15].
In implemental aspect, Equation 10.63 is more viable than Equation 10.57; σ 

and R can be obtained directly from a typical microwave seeker and θ from 
an on-board inertial sensor of the missile, and tgo is the only variable that 
the guidance computer has to estimate. The situation, however, is somewhat 
different when a passive sensor such as an infrared seeker is employed; in 
this case, the seeker does not provide the information of R, and we need to 
approximate R using some easily obtainable physical variables.

Note that
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when σ and Δθ are small.
Using Equations 10.61 and 10.64, we have

 u N V
V
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N V
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f

go
f* cos
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+ −1
θ

θ
σ θ θ  (10.65)

which in turn reduces, when V ≫ VT, to an alternative form of Equation 10.63:

 u N V
N V

tz
f

go
f* ( ).≈ + −σ θ θ  (10.66)

The impact angle control guidance laws (Equations 10.63 and 10.66) have 
been obtained from Equation 10.61 under the assumption that the target 
speed is slow enough when compared with the missile speed—as a matter 
of fact, Equations 10.63 and 10.66 can be derived by manipulating carefully 
the OGL (Equation 10.48) for a stationary target.
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Comparing Equation 10.63 or 10.66 with Equation 10.61, we also immedi-
ately note that the only difference between these guidance laws lies in the 
gains of σ and expect that the impact angle control guidance law of the form 
of Equation 10.63 or 10.66 will give moderate guidance performance against 
a maneuvering target as well as a constant-speed nonmaneuvering target. 
Finally, we note that Equation 10.63 or 10.66 is now independent of the choice 
of the reference line as is Equation 10.48.

Figures 10.18 through 10.21 show the results of the nonlinear engagement 
simulation for intercepting a constant-speed nonmaneuvering target with 
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the various impact angles. The second variant of OGL given by Equation 
10.66 with N = 0 has been applied. Here, we used the time-to-go computation 
method given by Equation 10.42 with Equation 10.44 in Section 10.2.2. The 
speed of the missile is 250 m/s, and the target travels at the constant speed 
of 100 m/s in the direction of 120°. From Figure 10.19, we observe that all the 
impact angle requirements are satisfied. We also note from Figure 10.20 that 
the LOS angles are not coincident with the flight path angles at the impact 
instant; this is because the target is moving.
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Missile guidance command histories (OGL for constant-velocity target).
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Figures 10.22 through 10.25 show the results of the nonlinear simulation 
for a maneuvering target with –2g. Other simulation conditions are the same 
as in the previous constant-velocity-target scenario. All the specified impact 
angles have been realized, as seen in Figure 10.23. It is also interesting to note 
from Figure 10.25 that the guidance commands abruptly change and tend to 
blow up in the later phase due to target maneuver that the guidance law does 
not take account of.
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FiGure 10.22
Missile/target flight trajectories (OGL for maneuvering target).
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10.3 oGL for First-order Lag Missile (oGL/1)

In the real world, the missile response is not perfect and should be modeled 
by a higher-order dynamics together with various nonlinear components in 
order to represent its behavior with high degree of fidelity. However, we rarely 
consider all the complexities of a missile model when developing an OGL 
simply because it is impossible or too complicated to get a closed-form solu-
tion and because the consideration of the first-order missile model provides 
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LOS angle histories (OGL for maneuvering target).
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in many cases sufficient improvement of performance over the guidance laws 
based on the assumption of perfect autopilot or lag-free missile response. In 
this section, we will derive the optimal impact angle control guidance law for 
a first-order missile model and discuss its performance.

Assume that the missile can be approximated by a first-order lag system 
with time constant τ, that is,

 
a s
u s s
( )
( )

.=
+
1

1τ
 (10.67)

Here, a is the achieved acceleration in response to the guidance command 
u and normal to the missile velocity as shown in Figure 10.1.

The equations of motion for a homing problem to intercept a stationary 
target are given by
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Under the assumption that V is constant and θ is small, we linearize 
Equation 10.68 as
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where

 v t V t( ) ( ).≈ θ  (10.70)

By augmenting Equation 10.67 to Equation 10.69, we obtain the linear dif-
ferential equation
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Now we consider the LQ optimal control problem: find u that minimizes 
the cost

 J R u
t f

= ∫1
2

2

0
( ) ( )τ τ τd  (10.74)

subject to Equation 10.71 and the terminal constraints

 Dξ(tf) = E (10.75)

where
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The state-feedback solution (OGL/1) to this optimal control problem can 
also be computed by the same method as used in the previous section and 
is given below:
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We can easily show that OGL/1 becomes OGL as τ → 0. Using Equation 
10.46, we obtain a variant of OGL/1 given by
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If the missile indeed has the first-order response lag with known time con-
stant τ, OGL/1 gives the best performance, as shown in Figures 10.26 and 
10.27. (Here, τ = 1 s is chosen.) As tgo

 → 0 (or t → tf), the guidance commands 
converge to 0 regardless of the choice of N and the initial conditions; this 
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result is worthwhile to note since OGL with N = 0 yields nonzero guidance 
command at the time of impact (Figures 10.2 and 10.3). We also observe that 
similar to PN law, larger initial guidance command is produced when larger 
N is selected.

If the missile responds exactly as the first-order lag model does, zero miss 
distance and zero impact angle error will be achieved by OGL/1. In prac-
tice, however, missile dynamics will differ from a simple first-order system, 
and some miss distance and impact angle error will occur. Nevertheless, if a 
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FiGure 10.26
Normalized guidance command histories of OGL/1 for θf = 0.
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missile has a large time lag in its response, OGL/1 will yield much smaller 
terminal guidance errors than OGL.

10.4 energy optimal Waypoint Guidance

In this section, an energy optimal waypoint guidance problem is addressed 
as an application of the impact angle control guidance laws. Consider a typi-
cal antiship missile (ASM) performing sea skimming at a prescribed altitude 
in order to enhance survivability. Careful path planning for the midcourse 
guidance of the ASM is then important to avoid obstacles and threats, such 
as islands and air defense systems of hostile forces; to minimize the chance 
of engaging in friendly forces; and so on. As depicted in Figure 10.28, the 
path planning of such ASMs can be easily accomplished by assigning appro-
priate waypoints on the way to the target. The midcourse guidance of an 
ASM is then to make ASM fly through those multiple waypoints in the given 
order and in an optimal fashion. Typical missile guidance laws can be used 
to guide the missile from one waypoint to another, regarding the second 
waypoint as a target. However, unlike the case of homing to a target, it is 
important at the time of hitting a waypoint to make the missile heading opti-
mal for the guidance to the next waypoints. Again, the impact angle control 
guidance plays an important role here.

Constrained
path

Waypoints

Obstacles

Target
ASM

Home

FiGure 10.28
Path planning example of ASM missions.
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In this section, a planar waypoint guidance method for ASMs or unmanned 
aerial vehicles (UAVs) is proposed, where the pure energy optimal guid-
ance law, OGL with N = 0, is used in between the two waypoints. We will 
look at the energy optimal trajectory optimization problem with waypoint 
constraints and show that it can be reduced to an unconstrained optimiza-
tion problem of finding the optimal boundary conditions at waypoints; the 
boundary conditions thus obtained are then achieved by the energy OGL. 
The proposed method generates the energy optimal trajectory by straight-
forward computation. Indeed, if the ASM is lag-free, optimal boundary con-
ditions become waypoint passing angles, which can be simply determined 
from a set of linear algebraic equations. Since there are no time-consuming 
numerical optimizations in this approach, the energy optimal trajectory pass-
ing through all the waypoints can be easily computed in real time.

10.4.1 equivalence of Optimal Control Problems

Consider N waypoints that will be visited by the ASM in a given order, as 
shown in Figure 10.29. We define the flight segment between the (i − 1)th 
waypoint and the ith waypoint as the ith segment. The position of the ith 
waypoint is denoted by (xi, zi), and the passing angle at that waypoint is 
given by θi. The position and the flight path angle of the ASM at t are denoted 
by (x(t), z(t)), and θ(t), respectively.

Now, consider the following energy optimal control problem.

OCP-1: Find u(t) that minimizes

 J u t dt u t dt
t

t

t
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Geometry of planar waypoint guidance.



378 Advances in Missile Guidance, Control, and Estimation

subject to
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with the constraints

 x(ti) = xi and z(t) = zi, for i = 0,1,…,N, (10.87)

where ti is defined as the time when the ASM reaches the ith waypoint, 
and t0 = 0 and tN = tf .
In OCP-1, different optimal control will be obtained depending on the 
values of ti if ti is fixed. Hence, ti in OCP-1 must not be fixed except i = 0 
and i = N in order to obtain the optimal control that globally minimizes 
the cost.
Let the cost of each segment in Equation 10.85 be defined by

 J u t t i Ni
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= =
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1 2( ) , , , ,d for   (10.88)

and u*(t) be the solution to OCP-1. The minimum cost J* is then
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Consider the following optimal control problem restricted to the ith 
segment.

OCP-2: For the given time interval [ti−1, ti], find u t( ) that minimizes

 J u t ti
t

t

i

i

=
−

∫ 2

1

( )d  (10.91)

subject to Equation 10.86 with the initial condition

 x(ti−1) = xi−1, z(ti−1) = zi−1, and θ(ti−1) = θi−1 (10.92)
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and the terminal constraints

 x(ti) = xi, z(ti) = zi, and θ(ti) = θi. (10.93)

Let u t*( ) be the solution to OCP-2; the minimum cost Ji
* is then obtained as

 
J u t ti

t

t

i

i
* [ ( )] .=

−
∫ * d2

1  
(10.94)

Note that OCP-2 is another formulation of the energy-optimal guidance 
problem with terminal constraint on the impact angle.

We define the sets of the waypoint passing times and angles as follows:

 T = {ti, i = 0,1,…,N} (10.95)

 Θ = {θi, i = 0,1,…,N}. (10.96)

Now suppose that the solution to OCP-1 is known. The optimal waypoint 
passing angle at the ith waypoint is denoted by θ θi it

* *( )= , where ti
* implies the 

optimal waypoint passing time. Let

 T t i Ni* { , , , ... , }*= = 0 1  (10.97)

 Θ* { , , , ... , }.*= =θi i N0 1  (10.98)

The following theorem provides the relationship between OCP-1 and OCP-2.

Theorem 10.1

If Θ = Θ* and T = T*, then J Ji i
* *=  for i = 1,…,N. Moreover, u t u t* *( ) ( )=  for 

t t ti i∈ −[ , ]* *
1 .

Proof

For the Nth segment, from the principle of optimality [3], JN
*  with u*(t) is 

the minimum cost for OCP-1. From the assumption, the initial conditions 
and terminal constraints of OCP-2 are identical to the boundary conditions 
of OCP-1 for the Nth segment. If u t u t* *( ) ( )≠ , there exists another optimal 
control for OCP-2. This contradicts that u t*( ) is the optimal control for OCP-
2. Hence, u t u t* *( ) ( )=  for t t tN N∈ −[ , ]* *

1  and J JN N
* *= . For [ , ]* *t tN N−2 , also from the 

principle of optimality, we see that J JN N− +1
* *  is the minimum cost. Therefore, 

J J J JN N N N− −+ ≤ +1 1
* * * * . Since J JN N

* *= , we have J JN N− −≤1 1
* * . This contradicts JN−1

*  
being the minimum cost of OCP-2 if θ θi i= * and t ti i= * for i = N – 2, N − 1. 
Hence, J JN N− −=1 1

* *  and u t u t* *( ) ( )=  for t t tN N∈ − −[ , ]* *
2 1 . By repeating the proce-

dure up to the first segment, we prove the theorem.
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Theorem 10.1 implies that the optimal trajectory passing through all the 
waypoints can be obtained as a family of the independent OCP-2’s solutions 
for each segment if Θ* and T* are known. We do not consider here the case 
where specific waypoint passing angles are prescribed; in this case, it can 
easily be seen that Theorem 10.1 still holds.

Now suppose that u ti
*( ), the optimal control of OCP-2, is given in a state-

feedback form:

 u t t x t z t t t t ti i i i
*( ) : ( , ( ), ( ), ( ); ) [ , ].= ∈ −Γ θ θ for 1  (10.99)

Under the assumption that such a state-feedback law exists, we consider 
the following parameter optimization problem:

POP-1: For the given ti, find θi for i = 0,1,…,N, which minimizes
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subject to Equation 10.86.

POP-1 is just the problem of finding the optimal waypoint passing angles 
when the state-feedback optimal control law of OCP-2 is applied for each 
flight segment. The following theorem states the relationship between POP-1 
and OCP-1.

Theorem 10.2

For a given T*, let � � �Θ* { , , , , }*= =θi i N0 1  be the solution to POP-1, and the 
minimum cost J* be given by
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=
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1 1
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Then, Θ Θ* *=  and J J* *= .
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Proof

Suppose that Θ Θ* *≠ . Then
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Recall that Γ is the state-feedback optimal control law obtained from OCP-2. 
By Theorem 10.1, if Θ* is used for OCP-2, we have
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The inequality given by Equation 10.102 can be satisfied only by violating 
the fact that J* is the minimum cost for OCP-1. Hence, by contradiction, the 
theorem is proven.

Theorem 10.2 states that, for the given T*, Θ* can be obtained as the solution 
to POP-1 without solving OCP-1 if the closed-form state-feedback OGL for 
OCP-2 exists. Once Θ* is obtained, the energy optimal trajectory for OCP-1 
can be produced simply by applying Γ, the state-feedback control law for 
OCP-2, to each flight segment. Thus, OCP-1 now reduces to the problem of 
finding Θ*, that is, to the POP-1. Note that POP-1 is a parameter optimization 
problem and can be solved with significantly less numerical effort compared 
with OCP-1.

Theorems 10.1 and 10.2 are easily expanded to the case for missiles with 
first-order lag autopilot where lateral acceleration is explicitly included in the 
missile kinematics [16].

10.4.2 Waypoint Guidance Scheme based on OGL

Pure Energy Optimal Guidance between Waypoints for Lag-Free System
Note that OCP-2 is nothing but a special case of the optimal control problem 
discussed in Section 10.2.1. In fact, the closed-form state-feedback solution Γ 
in Equation 10.99 is given by the pure energy optimal impact angle control 
guidance law, OGL (Equation 10.28) with N = 0, that is,
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or

 u t
V
t

t t
go

f*( ) [ ( ) ( ) ].= − −6 4 2σ θ θ  (10.105)

From Equation 10.33, the open-loop time history of the energy optimal 
control is

 u t C t CR go S*( ) = +  (10.106)

where CR and CS are constants, although they can be expressed in terms of 
the state variables as
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At t = 0, we have z(0) = 0, θ(0) = θ0, and tgo = tf . Hence, the constants CR and 
CS are
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The optimal cost J * defined in Equation 10.94 is then computed as
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 (10.109)

It should be noted here that J * is represented by a quadratic function of the 
initial launch angle and the terminal impact angle. By extending the result 
(Equation 10.109) to the multiple waypoints case, we can obtain an analyti-
cal expression of the cost function for POP-1 in terms of flight path angles at 
waypoints.

Calculation of Θ* for POP-1
Let σi be the slant angle of the line connecting the (i − 1)th-waypoint and the 
ith waypoint as depicted in Figure 10.30. Since θ0 and θf in Equation 10.109 
are defined with respect to the line between the initial point and the final 
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point of the flight segment, we obtain the analytic expression of the cost 
function for POP-1:

 

J u t t

V
t

t

t

i

N

i
i i

i

i

=

= − +

−
∫∑

=

−

[ ( )]

[( ) (

* d2

1

2
1

2

1

4
1

∆
θ σ θii i i i i i

i

N

−
=

− − + −∑ 1
2

1

σ θ σ θ σ)( ) ( ) ]

 (10.110)

where Δti = ti − ti−1. For simplicity, we approximate Δti by the minimum flight 
time for each segment as

 Δti ≈ Ri/V (10.111)

where Ri is the distance between the (i − 1)th and ith waypoints. Then, 
Equation 10.110 is rewritten as
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Here, σi and Ri are fixed and easily calculated from the waypoint positions.
Note that the energy cost is approximated by a quadratic function of the 

elements in Θ, the waypoint passing angles. Thus, the necessary condition to 
minimize Equation 10.112 yields a simple linear algebraic equation of Θ. The 
optimal trajectory can also be independently obtained for each leg defined 
by a set of consecutive waypoints. Depending on whether the initial and/
or final waypoint is fixed (prescribed) as illustrated in Figure 10.31, each leg 
belongs to one of the following four cases.

Initial point

zN

–σN

–θN

θ2
θ1

θ1

θ0

σ2σ1
z2

z1R1

R2

N th-w.p.

2nd-w.p.

1st-w.p.

FiGure 10.30
Definitions of σi and Ri.
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Case 1: Fixed θ0 and free θN.
In this case, the unknown parameter vector is defined by

 Θ* [ ]* * * *= −θ θ θ θ1 2 1 N N
T  (10.113)

and Θ* should satisfy the following necessary condition:
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From Equation 10.115, we have

 Θ* = −RA R
1σ  (10.116)

where
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and
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Case 2: Free θ0 and fixed θN.

 Parameter vector: Θ* [ ] .* * * *= − −θ θ θ θ0 1 2 1 N N
T  (10.119)

 Necessary condition: for
∂

∂
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In a manner similar to case 1, we have
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and
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Case 3: Fixed θ0 and fixed θN.

 Parameter vector: Θ* [ ] .* * * *= − −θ θ θ θ1 2 2 1 N N
T  (10.123)

 Necessary condition: for
∂

∂
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and
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Case 4: Free θ0 and free θN.

 Parameter vector: Θ* [ ] .* * * *= −θ θ θ θ0 1 1 N N
T  (10.127)

 Necessary condition: for
∂

∂
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and
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If the prescribed waypoints require a sharp turn, the approximation of the 
flight time given by Equation 10.111 may not be appropriate, and the error 
in the optimal solution calculated from the linear algebraic equations can 
be large. As illustrated in Figure 10.32, adding new waypoints in the course 
of the turn can alleviate this problem. If wind is encountered, the trajectory 
produced by the proposed waypoint guidance synthesis may deviate from 
the desired path, which is different from the behavior we expect in the path 
regulation methods. By assigning more waypoints along the trajectory, the 
wind effect could be overcome.
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The optimal waypoint guidance scheme is summarized in Figure 10.33. 
First, the scheme checks whether the waypoints in the remaining leg of the 
flight have been changed. If there is some waypoint change, the optimal 
waypoint passing angles are recalculated by using the linear algebraic equa-
tions. OGL then produces the guidance command for each flight segment 
with optimal flight passing angles at waypoints. The proposed guidance 
scheme produces the energy optimal trajectory in real time without any in-
flight numerical optimization.

The proposed method does not require additional hardware to implement. 
Since the position of each waypoint is fixed and known before or in flight, 
a navigation system to measure the current state of the ASM is sufficient to 
implement the proposed scheme.

Calculation of (sub–)optimal pass angles

Θ* = RA
–1σR

Command generation using OGL/0

Path planner

Vehicle dynamics

Waypoints change? No

Yes

FiGure 10.33
Energy optimal waypoint guidance scheme.

∆ti
true

∆ti
true ≥ ∆ti

a + ∆ti
b ≥ ∆ti

∆ti
a ∆ti

b

∆ti ≈ Ri/Vi – 1 i – 1i i

New waypoint

FiGure 10.32
Addition of a new waypoint for more accurate flight time calculation.
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10.4.3 Numerical examples

We compare a couple of trajectory solutions for a lag-free ASM: the numeri-
cal solution of OCP-1 and the solution of POP-1 using OGL. We investigate 
the performance of the proposed methods by carrying out nonlinear simu-
lations for two different mission scenarios. As shown in Figure 10.34, nine 
waypoints on a plane are considered. The last waypoint (WP9) coincides with 
the initial point, and thus, the entire flight path is divided into nine flight 
segments. In Scenario 1, there is no waypoint with the prescribed passing 
angle, while in Scenario 2, two waypoints have been prescribed the passing 
angles: 45° at WP3 and –180° at WP7. The speed of the ASM is 100 m/s and 
remains constant during the flight. These mission scenarios look unrealistic 
for an ASM, because the missile returns to the launch site again, but could 
serve as excellent examples to demonstrate the applicability to all possible 
cases of the prescribed boundary conditions.

To solve OCP-1 directly by a numerical method, we adopt the use of the 
input parameter optimization technique [17]. In this technique, a dynamic 
optimal control problem is converted to a static parameter optimization 
problem by parameterizing control input (this technique has recently been 
widely used for trajectory optimization owing to its robustness to the initial 
guess). Ten parameterized control inputs and the flight time for each seg-
ment are considered as the parameters to be optimized. That is, the param-
eter set is given by

 X Xi

i

N

=
=1


 (10.131)
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where N = 9 and

 Xi = {ui1, ui2,…,ui10, ti} for the ith segment. (10.132)

The total number of parameters to be optimized is 99 for OCP-1. After 
parameterization of the control input, some typical parameter optimiza-
tion method, such as sequential quadratic programming (SQP) [18], can be 
directly employed to solve the problem. The PC used in this example for 
optimization has a 3.0 GHz Intel CPU with 512 MB RAM. All programs are 
coded by C++.

In POP-1 with OGL as the guidance law for each flight segment, the lin-
ear algebraic equations to obtain Θ* are solved. Since Scenario 1 does not 
have any prescribed waypoint condition, it corresponds to Case 4 in Figure 
10.31. In Scenario 2, the entire flight path is divided into three distinct legs: 
Case 2 from WP1 to WP3, Case 3 from WP3 to WP7, and Case 1 from WP7 
to WP9.

For Scenario 1, both methods produce almost the same optimal waypoint 
passing angles as shown in Table 10.5. The minimum cost is achieved by 
OCP-1. The cost difference between OCP-1 and POP-1 using OGL is less than 
0.6%. From Figures 10.35 and 10.36, we observe that trajectories and guidance 
command profiles obtained from both optimization methods are similar. 
Numerical optimization for OCP-1 takes 278 s, while the proposed method 
(POP-1) requires only several milliseconds.

For Scenario 2, it takes 615 s to obtain the optimal solution to OCP-1. 
Again, the proposed method requires only a few milliseconds to obtain 
near- optimal results, shown in Table 10.6. In this scenario, the cost of the 

TabLe 10.5

J*, Θ* of Scenario 1 for Lag-Free ASM

oCP-1 PoP-1(oGL)

J* 4907.62 4937.00
θ0

*  (degrees) 84.35 84.17 
θ1

*  101.17 101.67 
θ2

* 50.96 49.15 
θ3

* −14.65 −14.28 
θ4

* 14.85 14.84 
θ5

* −48.31 −48.92 
θ6

* −123.21 −122.36 

θ7
* −143.92 −144.00 

θ8
* −155.42 −155.92

θ9
* 167.70 167.96
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proposed method differs from OCP-1 by only 0.3%. Figures 10.37 and 10.38 
show again that trajectories and command profiles obtained from both 
optimization methods are almost the same. It is worth noting from Figure 
10.38 that there are guidance command discontinuities at the prescribed 
waypoints.
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Note also that the numerical solutions for OCP-1 have been obtained with-
out consideration of any specified waypoint passing time ti. Hence, OCP-1’s 
trajectories for Scenarios 1 and 2 are globally minimizing the energy. On the 
other hand, the trajectories based on POP-1 using OGL may vary according 
to how we assign a passing time to each waypoint. Interestingly enough, the 
numerical simulation results show that OGL with Θ* obtained by POP-1 also 
produces the globally energy-optimized trajectory.
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TabLe 10.6

J*, Θ* of Scenario 2 for a Lag-Free ASM

oCP-1 PoP-1(oGL)

J* 9635.03 9664.06
θ0

*  (degrees) 81.46 82.08
θ1

* 106.91 105.85
θ2

* 30.78 34.54
θ3

* 45 (given) 
θ4

* –2.20 –1.92
θ5

* –46.90 –47.62
θ6

* –116.79 –116.47
θ7

* –180 (given)
θ8

* –144.32 –145.53
θ9

* 162.04 162.77
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10.5 summary

In this chapter, the optimal impact angle control guidance laws for a stationary 
target as well as for a constantly moving target have been derived, and their 
properties have been investigated. We have made a great deal of effort to exam-
ine OGL, the optimal impact angle control guidance law for a lag-free missile. 
With the consideration of the cost weighted by 1/tgo

N , OGL with different gain 
sets has been obtained and offers the freedom to choose depending on the cir-
cumstances, just as we choose different navigation constants in PN guidance 
law. OGL requires good estimates of time-to-go for the best performance. It 
has been shown in Section 10.2.2 that the time-to-go computation based on the 
curved path length over the missile speed yields a far better estimate than the 
usual method of range over missile speed. OGL can be expressed as a biased 
PN law, as we have explored in Section 10.2.3, where a moving target is consid-
ered; it is composed of the conventional PN term to intercept the target and the 
bias term to satisfy the impact angle constraint. In particular, one of the second 
variants (Equation 10.66) of OGL has been shown to give good performance 
for a maneuvering target as well as a constant-speed nonmaneuvering tar-
get when combined with the time-to-go calculation method in Section 10.2.4. 
In Section 10.3, the same formulation and methodology have been applied to 
extend the result to the case of missiles modeled by a first-order lag system.

Although OGL has been devised initially to intercept a target in the desired 
direction, it can also constitute a very efficient waypoint guidance scheme 
for ASMs or UAVs. By applying OGL to guide a vehicle from one waypoint 
to the next, and by assigning the flight path angle—or the impact angle—at 
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each waypoint in a proper (optimal) manner, the entire trajectory passing 
through all the waypoints becomes energy optimal. The optimal flight path 
angles at waypoints are given by a simple algebraic equation.

Not shown in this chapter, we note that OGL for a maneuvering target could 
produce huge impact angle error if a very large impact angle is assigned and 
that its launch boundary for successful intercept could be quite limited if the 
widely used time-to-go computation of range over closing velocity (or mis-
sile speed) is used. One of the main contributors to these problems is appar-
ently the inaccurate time-to-go computation, which does not take account of 
target moving. Further study is needed to address these issues.

List of symbols

a Acceleration of a missile
at Acceleration of a target
u Guidance command of a missile
θ Flight path angle of a missile
θt Flight path angle of a target
V Velocity of a missile
Vt Velocity of a target
σ Sight line angle
σ Line-of-sight angular rate (sight line angular rate)
R Closing range
R Range rate
J Performance cost
Nʹ Navigation constant
t Time
tgo Time-to-go
tf Time of flight
τ Time constant of a first-order lag system
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11
Integrated Design of Estimator 
and Guidance Law*

Josef Shinar and Tal Shima

* The mathematical models and the respective guidance laws based on linear differential 
game theory can be found in Chapter 9 of this book.
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11.1 Introduction

11.1.1 Role of Estimator in Guidance System

Almost all the guidance laws that are implemented in homing missile hard-
ware, as well as in most attempts to develop new guidance laws, have been 
based on assuming perfect (instantaneous, accurate, and disturbance-free) 
knowledge of all state variables. In many modern guidance laws, the knowl-
edge of target acceleration is necessary for achieving improved homing per-
formance. In reality, however, all the measurements acquired by the sensors 
of a guided missile are noise corrupted. To use these measurements as a 
basis of a feedback control, the noisy signals have to be filtered. Moreover, 
not all components of the state vector are measured or even measurable. For 
example, relative acceleration from a moving platform, or the acceleration of 
the other object, cannot be measured. Such state variables have to be recon-
structed in the ideal case, where the available measurements are noise-free, 
by an observer. In reality, such reconstruction has to be made by using the 
available noise-corrupted measurements by an estimator. Thus, in a guidance 
system, the estimator performs a dual role, the role of a filter and the role of 
an observer. Fulfillment of each role requires a different dynamical behavior. 
Smoothing out the erroneous effects of the measurement noise needs slow 
dynamics. At the other end, the reconstruction of nonmeasured state variables, 
which are required for an efficient feedback control, should be performed as 
quickly as possible. In designing the estimator, a compromise is needed.

In realistic interception scenarios with noise-corrupted measurements, 
the estimator has become an indispensable element of the guidance system 
because the homing performance of an interceptor missile has been limited 
by the estimation accuracy.

Most missile guidance laws were derived using a linearized kinematical 
model. It is well known that for a linear process with zero-mean Gaussian 
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white noise, the Kalman filter [1] is the optimal estimator in the sense of 
minimum variance. This optimality depends on the assumption that the fil-
ter design is based on the correct dynamic system model, which includes 
also the (deterministic) input. Model uncertainties are represented within 
the filter as a process noise, assumed to be also zero-mean Gaussian and 
white. Unknown inputs also can be considered as a stochastic process 
and are approximated [2] by the output of a (linear) shaping filter driven by 
Gaussian white noise. The above-mentioned optimality of the Kalman filter 
is achieved by taking into account the spectral densities of the measurement 
noise and the process noise. The estimation process has inherent dynamics, 
creating a nonzero time delay of the information on the estimated variables. 
Such a delay leads to the deterioration of the control performance, especially 
in the presence of disturbances or fast input changes.

11.1.2 Certainty Equivalence Validity

11.1.2.1 Background

The homing guidance of an interceptor missile is an optimal control prob-
lem (with the objective to minimize the miss distance) using a sequence of 
noise-corrupted measurements. Thus, it has to be considered as a stochastic 
optimal control problem. In order to reduce the complexity for solving such 
problems, two important properties for linear systems were formulated. The 
first one is called the separation property, and it says that control and the 
estimation logic can be derived separately. Another closely related (but not 
identical) property is the certainty equivalence, which states that the optimal 
control function of the stochastic optimal control problem is the same as the 
related deterministic optimal control problem, with the only difference being 
that the state variables are replaced by their estimated values. The valid-
ity of certainty equivalence has been rigorously proven a long time ago for 
linear quadratic problems with white Gaussian noise [3] and extended later 
to include also the cases with non-Gaussian and colored noise [4] as well as 
nonquadratic cost [5].

Realistic interceptor guidance problems are characterized (in addition to 
noise-corrupted measurements) by bounded controls and saturated state 
variables, as well as non-Gaussian random disturbances. The validity of 
the separation and certainty equivalence properties has never been proven for 
this class of problems. In spite of that, in the 50-year-long history of guided 
missiles, it has been of common practice to design the estimators and mis-
sile guidance laws independently. The estimators were simple Wiener or 
Kalman filters, and the guidance laws were derived using simplified (linear-
ized and planar) deterministic models. In most cases, such a comfortable 
design approach has been acceptable because, due to the substantial maneu-
verability advantage of guided missiles over their manned aircraft targets, it 
succeeded in satisfying the performance requirements.
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11.1.2.2 Illustrative Example

In a more stressing scenario, such as ballistic missile defense, the useful-
ness of relying on the separation and certainty equivalence properties becomes 
strongly questionable, as demonstrated by the following example [6]. This is 
a planar interception endgame scenario with the parameters given in Table 
11.1. The guidance law used by the interceptor (pursuer) is derived from the 
solution of a perfect-information linear pursuit–evasion game with bounded 
controls, called DGL/1 [7], and the estimator was a Kalman filter augmented 
with a shaping filter using an exponentially correlated acceleration (ECA) 
model [8]. Such a shaping filter has first-order dynamics with two tuning 
parameters, the correlation time of the maneuver τs and the (assumed) level 
of the process noise, expressed by its standard deviation σs = aE

max/Cs. In [6], 
the parameters of the shaping filter were τs = 1.5 s and Cs = 2; here, a similar 
example with τs = 0.4 s and Cs = 1 is added.

In a perfect-information (noise-free) planar scenario and without an estima-
tor in the guidance loop, the interception parameters of Table 11.1 guaran-
teed zero miss distance against any admissible target maneuver. Due to the 
noisy measurements and the presence of an estimator in the guidance loop, 
the outcome is very different.

The simulation results depicted in Figure 11.1 show the average miss dis-
tance of 100 Monte Carlo runs in a typical endgame scenario with “head on” 
initial conditions against a randomly maneuvering target. The commanded 
lateral acceleration of the target is of the “bang-bang” type, and the direction 
change can take place anywhere within the endgame’s short duration. The 
average miss distance is plotted as the function of (tgo)sw, the time-to-go of the 
direction change. These results indicate that if the direction change is com-
manded early enough, the resulting miss distance is very small. However, 
if the change in command takes place close to the final time, large miss dis-
tances are created.

TablE 11.1

Horizontal Endgame Parameters

Parameter Value

Interceptor (pursuer) velocity VP = 2300 m/s
Target (evader) velocity VE = 2700 m/s
Interceptor lateral acceleration limit aP

max = 20 g
Target lateral acceleration limit aE

max = 10 g
Time constant of the interceptor τP = 0.2 s
Time constant of the target τE = 0.2 s
Initial endgame range R0 = 20 km
Duration of endgame engagement tf = 4 s
Measurement noise σang = 0.1 mrad
Sampling rate f = 100 Hz
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The main reason for the degraded homing performance is the inherent 
delay introduced by the convergence time of the target maneuver estimation 
process. The guidance law DGL/1 can correct the error created by the delay 
only if the change of the acceleration command occurs in the early part of the 
endgame. In this case, the estimated acceleration converges to its true value, 
and sufficient time remains until intercept. The filter design minimizes the 
variance of the estimation error, and the guidance law receives almost cor-
rect values of the zero-effort miss distance soon enough for achieving good 
precision [95% of the miss distances are less than 20 cm for (tgo)sw beyond 
a critical value]. If the change of the acceleration command occurs later, 
the combination of such an estimator with the deterministic game optimal 
guidance law (OGL) fails to provide satisfactory results because of the delay. 
As will be shown in the sequel, there are other guidance laws that provide 
better performance, demonstrating that certainty equivalence property is not 
valid in this case.

The comparison of the two cases in Figure 11.1 indicates that the value of 
the delay can be reduced if the estimator bandwidth is increased by select-
ing different tuning parameters of the shaping filter. Using the faster shap-
ing filter, the estimation delay becomes shorter; the average “peak” miss 
distance is reduced from more than 10 m to only 4.6 m. This is achieved 
at the expense of less efficient filtering, which leads to larger residual esti-
mation errors and increased miss distances for changes of acceleration 
commands occurring in the early part of the endgame. In Figure 11.2, the 
cumulative probability distributions of the miss distances obtained for the 
acceleration command changes occurring with (tgo)sw > 1.6 s are compared 
for both estimators. For an improved homing performance, the error due 
to the estimation delay, as well as the variance of the converged estimation 
error, has to be reduced.
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The shaping filter model used in [6] is probably not ideal for this type of 
random bang-bang maneuver. By using another shaping filter that assumes a 
randomly starting (RST) maneuver [2] (a shaping filter that has only a single 
tuning parameter, denoted by Cr), the qualitative behavior is very similar. By 
enlarging the estimator bandwidth, the “peak” miss distance created by a 
maneuver switch executed near the intercept becomes smaller, but the miss 
distances obtained by earlier maneuver switch (denoted as the “plateau”) 
are slightly larger. Comparison of the “peak” versus “plateau” relationship 
for both shaping filters, as plotted in Figure 11.3, shows that for the present 
example, the ECA provides better results than the RST.
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11.1.3 Estimation in interception Endgames

The estimation error consists of two components. The first one is dynamic 
in nature and is expressed by the delay for converging to an eventually new 
value of the estimated state variable. The second component is of stochastic 
nature and expressed by the variance of the converged estimate. The design 
of a Kalman filter minimizes this second component. The reason for this 
approach has been that, in general, the control processes are of long duration, 
and abrupt variations of the state variables are not expected. In such cases, 
the estimation delay is not critical.

In an interception endgame, the situation is different. The endgame is of 
short duration, and estimation errors occurring near the intercept are crucial. 
In order to satisfy the requirement for a small miss distance, the estimation 
process has to become faster as the final time of the endgame approaches. 
Within the modern guidance laws, the knowledge of the time-to-go is an 
essential element, and a considerable effort is invested to obtain it accurately. 
However, the currently used estimation processes completely ignore this 
fast-changing variable, although it is available in the guidance system. For 
effective terminal guidance, this inherent lack of information of the classical 
Kalman filters has to be corrected.

The earlier-mentioned requirements to reduce both the estimation delay 
and the variance of the converged estimation error are contradictory. The con-
vergence time associated with identifying a rapid target maneuver change 
is composed of the maneuver detection time and the estimator’s response 
time. Short detection time comes at the price of high false-alarm rate, while 
short response time requires large bandwidth, generating large estimation 
errors. Good filtering, providing a small estimation error variance, requires 
narrow bandwidth, leading to a slow response. This controversy raises the 
following question: can a single estimator satisfy the contradictory requirements 
of homing accuracy? In the absence of available theory, the answer was sought 
in extensive Monte Carlo simulations [6]. These studies lead us to conclude 
that no estimator is globally optimal for all guidance laws/interception sce-
narios, and no unique “optimal” combination of guidance law and (Kalman 
filter type) estimator could be found for all feasible target maneuvers. 
Consequently, the answer to the above-raised question is negative, and new 
approaches have to be developed.

In the search for a suitable optimal estimator for the task of intercepting 
randomly maneuvering targets, a conceptual difficulty has been encoun-
tered. Since target maneuver dynamics is not ideal, the target acceleration 
is a state variable, a part of the interception model. As stated earlier, for lin-
ear systems with zero-mean, white and Gaussian measurement, and pro-
cess noises, the Kalman filter [1], based on the correct model of the system 
dynamics, is the optimal minimum variance estimator. The measurement 
noise used in interception simulations has indeed such characteristics, but 
the representation of a random target maneuver as the output of a shaping 
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filter driven by a zero-mean, white Gaussian noise [2] is only an approxima-
tion. Moreover, each type of target maneuver requires a different shaping 
filter approximation.

The disturbance inputs are random acceleration commands and can be 
discontinuous, representing a random jump process. They are bounded and 
certainly neither white nor Gaussian. In several recent papers [9, 10], it was 
shown that in such cases, the optimal estimator is of infinite dimension. 
Thus, every computationally feasible (finite dimensional) estimator can be, 
at best, only a suboptimal approximation, and the search for a single feasible 
optimal estimator associated with interceptor guidance is not a well-posed 
problem. Similarly, it should be of no surprise that the certainty equivalence 
and separation properties, both involving the concept of optimality, are not 
valid for the interception of randomly maneuvering targets. In investigating 
the interception of randomly maneuvering targets, the estimation and the 
guidance problems cannot be separately treated.

11.1.4 Partial Separation Property

For cases where the certainty equivalence property cannot be proven, a par-
tial separation property was asserted [11], stating that the estimator can be 
designed independently of the controller, but the derivation of the opti-
mal control function has to be based on the conditional probability density 
function (conditioned on the measurement history) of the estimated state 
variables. Unfortunately, there have been very few past works that used a 
rigorous practical approach for implementing this idea. In Section 11.4, sev-
eral recent studies, based on direct application of the “partial” separation 
property, are reviewed. In Section 11.5, a heuristic approach is attempted, 
based on the insight generated by extensive simulation results and on con-
trol engineering intuition.

11.2 estimation Process

11.2.1 Modeling Considerations

As mentioned earlier, in a guidance system, the estimator performs a dual 
role, the role of a filter and the role of an observer. Fulfillment of each role 
requires a different dynamical behavior. The observer design has to be based 
on the knowledge of the system model. Given an earlier state of the sys-
tem, a new state is computed by propagating the dynamic equations of the 
system ahead of time. Comparison of the output of this new state with an 
ideal (noise-free) measurement of the output at the appropriate time creates 
the reconstruction error. For a stable observer, this error converges to zero 
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asymptotically. In order to achieve a fast and reliable reconstruction, the gain 
of the observer can be selected as high as possible, subject to the acceptable 
stability margin. If the system model is perfectly known, but the measure-
ment of the output is noise corrupted, the difference (called the innovation) is 
due to the measurement noise. In order to minimize the variance of the estima-
tion error, the gain has to be inversely proportional to the covariance of the 
measurement noise. The larger this covariance is, the smaller the estimator 
gain is and the slower its dynamics is. The uncertainty of the dynamic sys-
tem model can be expressed as a process noise. In computing the estimated 
state, the estimator makes a compromise between two uncertain values, 
the propagated uncertain model and the noise-corrupted measurement. 
This compromise is determined by the estimator gain, which depends on 
the covariances of the measurement noise and the process noise. Unknown 
inputs can be considered as stochastic processes and are approximated [2] by 
the output of a (linear) shaping filter driven by Gaussian white noise.

A very important source of model uncertainty is the unknown value of 
the system input. As mentioned earlier, if the input is a random variable, it is 
generally modeled by a linear shaping filter driven by white Gaussian noise. 
In order to obtain a second-order statistical similarity between the actual 
random input and output of the shaping filter, it is necessary that the spectral 
density of the white Gaussian noise will be at the level that provides identi-
cal autocorrelation functions for both processes. In the case of an intercep-
tor missile homing on a randomly maneuvering target, this approach was 
adapted [2], but one has to remember that this is only an approximation. By 
this approach, the equations of the shaping filter become a part of the system 
model. Assuming that the dynamic model of the target is known, the ran-
dom element is the commanded target acceleration.

There are two types of target maneuvers discussed frequently in the lit-
erature as examples of random target maneuvers: (1) periodical maneuvers 
with random phase (a projection of a “barrel roll” type maneuver on a plane) 
and (2) “bang-bang” type maneuvers with random switch. In addition to the 
random elements, the structure of the maneuver itself contains unknown 
parameters, such as the frequency and the amplitude in the periodical case 
or the direction and the magnitude of the acceleration in a “bang-bang” type 
maneuver. In order to properly discover the correct dynamic model of the 
interception scenario, first the maneuver structure has to be identified. The 
search for the necessary unknown parameters of the maneuver has to be 
addressed subsequently.

11.2.2 Model identification

One way to overcome the problem of the unknown target maneuver model 
is to create a finite set of hypotheses corresponding to feasible maneuvers. 
This approach assumes that the actual target maneuver will be near to one 
of these hypotheses. The estimator constructed using such an approach is 
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called a multiple-model adaptive estimator (MMAE) [12]. The MMAE is com-
posed of a set of elemental estimators (Kalman filters), each one correspond-
ing to one of the possible hypotheses. The entire set (bank) of the Kalman 
filters runs in parallel, using the same measurement sequence. Using the 
innovation process of each elemental estimator, the a posteriori probability for 
the correctness of its hypothesis can be recursively computed. The estimated 
state vector can now be computed by fusing the state vectors of the different 
Kalman filters according to some criterion. The two commonly used criteria 
are the minimum mean square error (MMSE) [13] and the maximum a poste-
riori probability (MAP) [14]. In the MMSE method, the estimated state vector 
is the weighted average of the outputs from all the elemental filters, based on 
their a posteriori probabilities. In the MAP method, the estimated state vector 
of the filter with the maximum a posteriori probability is used.

In the past, MMAEs were seldom applied to interception scenarios because 
of the excessive computational load associated with the use of a large number 
of Kalman filters representing the possible evasion strategies [15]. In a later 
paper [16], an innovative approach was introduced. The estimator includes 
several models of the target maneuver with identical dynamics but different 
controls. This feature enables using many elemental filters in the MMAE 
with a highly reduced computational load. This reduction has no effect on 
the estimation accuracy. Thus, given a limited computational capacity, more 
models can be used, and a substantial improvement can be achieved in the 
homing accuracy.

11.3 Delayed-Information Differential Games

11.3.1 Deterministic Estimation Models

As mentioned earlier, for good homing performance, the error due to the 
estimation delay, as well as the variance of the converged estimation error, 
has to be reduced. Since the design of the Kalman filter provides minimum 
variance, the aim of some investigations was to compensate the effect of the 
estimation delay. One approach in this direction is to include the estimation 
delay in a deterministic model of the interception problem by neglecting 
the stochastic features of the estimation process due to the noise-corrupted 
measurements. Based on such approximation, the interception scenario of 
a maneuvering target is reformulated as a delayed-information pursuit–
evasion game with bounded controls. In this formulation, the evader has 
perfect information on all the state variables, as well as on the estimation 
delay of the pursuer. The game solution is based on an intuitive approach, 
inspired by the idea of reachable sets [17]. At every point of the time, the 
reachable set of the evader is created based on the information available to 
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the pursuer. The objective is to reach the center of the convex hull of this 
reachable set. The interceptor guidance law is determined by the optimal 
pursuer strategy of this game. In this chapter, several deterministic guid-
ance laws, based on different perfect-information models, are described. 
In principle, each of those models can be parameterized by the estimation 
delay, and for each case, another delay-compensating guidance law has to 
be derived.

11.3.2 Delay-Compensating Guidance law

11.3.2.1 Analytical Solution

The delay-compensating guidance law, which was first published in the 
literature [18, 19], is denoted DGL/C. It considered a linearized planar 
constant-speed game model with first-order dynamics of both players (like 
DGL/1) and a fixed delay (Δtest) in estimating the evader acceleration. Here, 
only the essential steps of the game solution, as well as the respective simu-
lation results, are presented and discussed. The interested reader can find 
the mathematical details in the references.

The corresponding perfect-information guidance law (DGL/1) is based on 
using the zero-effort miss distance as the state variable of the game. It is 
defined by

 Z t y yt a t a t( ) ( ) ( )go go p P go P E E go E/ /= + − + τ ψ τ τ ψ τ2 2  (11.1)

where y and y are the relative separation and its time derivative, respectively, 
aE and aP are the respective accelerations of the evader and the pursuer, all 
normal to the initial line of sight, τE and τP are the respective time constants, 
and ψ(.) is the function

 ψ(ζ) = e−ζ + ζ − 1 (11.2)

The state vector of the motion normal to the initial line of sight is defined 
as

 X x x x x y y a aT = =( , , , ) ( , , , )1 2 3 4  E P  (11.3)

and the game dynamics is described by the following set of differential 
equations and the respective initial conditions:

 
x x x1 2 1 0 0= =; ( )  (11.4)

 x x x x x2 3 4 2 2
00 0= − = ≠; ( )  (11.5)
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 x a x x3 3 3 0 0= − =( ) ; ( )E
c

E/τ  (11.6)

 x a x xP
c

4 4 4 0 0= − =( ) ; ( )/ Pτ  (11.7)

where aE
c and aP

c are the commanded lateral accelerations of the evader and 
the pursuer, respectively:

 a a tE
c

E= ≤max ( ) | |v v 1  (11.8)

 a a tP
c

P
max= ≤u( ) | | 1u  (11.9)

The nonzero initial condition x2
0 represents the respective initial velocity 

components not aligned with the initial (reference) line of sight. These com-
ponents are small compared with the components along the line of sight. 
The final time of the interception tf is given, allowing us to define the time-
to-go by

 tgo = tf – t (11.10)

The natural cost function of the game is the miss distance, defined as

 J = |x1(tf)| = |Z(0)|. (11.11)

The objective of the interceptor missile (the pursuer of the game) is the 
following.

Given the dynamic system (Equations 11.4 through 11.7) with the set of ini-
tial conditions and the constraints 11.8 and 11.9, minimize the cost function 
(Equation 3.11) against any admissible control v(t) of the evader, subject to the 
following set of available measurements:

 hi(t) = xi(t);  i = 1, 2, 4 ;  h3(t) = x3(t – Δtest). (11.12)

The basic idea of the delayed-information game solution is to replace Z(tgo), 
defined in Equation 11.1, with a new state variable Zc(tgo), which is the posi-
tion of the uncertainty set (reachable set) center created by the information 
delay Δtest. By denoting the first three terms of Equation 11.1 as Z0(tgo), the 
new variable Zc(tgo) can be written as

 Z t Z t Z tc
go go E

c
go( ) ( ) ( )= +0 ∆  (11.13)

where ∆Z tE
c

go( ) is the position of the center of the acceleration uncertainty seg-
ment. Due to the delayed measurement aE(t – Δtest), the uncertain value of 
aE(t) = x3(t) is bounded by
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 [x3(t)]min ≤ x3(t) ≤ [x3(t)]max (11.14)

where the extreme values [x3(t)]min and [x3(t)]max are computed by integrating 
Equation 11.6 with a aEE

c = − max
 and a aE

c
E
max= , respectively:

 [ ( )] ( ) (min
maxx t x t t e a et t

3 3 1= − − −− −∆ ∆ ∆
est

est/ est/τ ττ )  (11.15)

 [ ( )] ( ) (min
maxx t x t t e a et t

3 3 1= − + −− −∆ ∆ ∆
est

est/ est/τ ττ )  (11.16)

The center of the acceleration uncertainty segment is

 [ ( )] {[ ( )] [ ( )] } ( )max minx t x t x t a t t e3 3 3 2c /= + = − −∆ est
∆∆ est/t τ  (11.17)

and as a consequence, in the new variable Zc(tgo), defined in Equation 11.13, 
the term effected by the estimation delay is

 ∆ ∆ est
∆ /estZ /c

go( ) ( ) ( )t a t t e t= − −τ ψ τ τ τ2
. (11.18)

Comparing Equation 11.18 with the last term of Equation 11.1, one can con-
clude that the contribution of the evader acceleration to Zc(tgo) is discounted, 
due to the delay Δtest in its estimation, exponentially by its ratio to the time 
constant τE. For zero estimation delay, one obtains the zero effort miss of 
Equation 11.1, leading to the guidance law DGL/1, while for a very large esti-
mation delay, the term in Equation 11.18 becomes negligibly small, leading to 
a guidance law that does not consider evader acceleration (DGL/0).

Since the rigorous mathematical solution is rather complex [18], here only the 
main results are presented. The first step toward the solution is transforming 
the original imperfect (delayed) information game to a perfect-information 
game with delayed control of the evader. The necessary conditions of optimal-
ity provide the candidate optimal strategies of the game:

 u* = v* = sign {Zc(tgo)} (11.19)

leading us to determine the optimal game dynamics as

 dZc/dtgo = Γc(tgo, Δtest) sign {Zc(tgo)} (11.20)

with

 
Γc

go est P P go P

E
max

E go E

/

/

( , ) ( )

[ (

maxt t a t

a t

∆ =

−

τ ψ τ

τ ψ τ )) ( )]/ /e t et t− −+ −∆ ∆est E est E
go

τ τ1
 (11.21)
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By integrating Equation 11.21 for any value of Zc(0), the candidate optimal 
trajectories of the game are obtained. It is easy to see that for small positive 
values of tgo, Γc(tgo, Δtest) is negative, but if µ = aP E/max maxa  is sufficiently large, it 
becomes positive (for any value of ε = τE/τP > 0) as tgo increases. As a conse-
quence, the decomposition of the game space (Zc, tgo) has the structure shown 
in Figure 11.4 as an example, using the endgame parameters of Table 11.1.

The two limiting trajectories ( , )Z Z+ −
c* c*  that satisfy the condition that Zc(tgo) 

does not change sign reach the tgo axis tangentially at t tgo go
c

s= ( ) . This value of 
( )tgo

c
s is the nonzero solution of the equation

 Γc(tgo, Δtest) = 0. (11.22)

The (Zc, tgo) game space is decomposed into a singular region D0, which is 
between these trajectories for t tgo go

c
s> ( )  and the regular region D1. In D1, the 

optimal strategies are given by Equation 11.19, while the nonzero value of the 
game depends on the initial conditions.

In the singular region, the optimal strategies are arbitrary, all optimal trajec-
tories must go through the point ( , ( ) )0 tgo

c
s  and therefore the value of the game 

in this entire region is a nonzero constant Js
c. This singular game value, which 

is the smallest miss distance that an optimally playing pursuer can achieve 
against an optimally playing evader, depends on Δtest and the physical param-
eters of the game [the pursuer/evader maneuverability ratio μ = (aP)max/(aE)max 
and the evader/pursuer time constant ratio ε = τE/τP]. Once ( )tgo

c
s is found from 

the solution of Equation 11.22, Js
c can be computed from Equation 11.20 by 

setting Z t s
c

go
c( )  = 0 and by direct integration between ( )tgo

c
s and zero.

If μ > 1 and με ≥ 1, in the perfect-information game (Δtest = 0), the only 
solution of Equation 11.22 is ( )tgo

c
s = 0, and as a consequence, also Js

c = 0. For 
Δtest > 0, such a situation is excluded, and the game space decomposition 
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structure shown in Figure 11.4 remains valid for any combination of μ > 1 
and ε. It means that capture (i.e., zero miss distance) cannot be achieved due 
to the existence of the information delay. This important conclusion can be 
reconfirmed by comparing the analytical solution of this game expressed 
by ( )tgo

c
s and Js

c with the similar expressions [(tgo)s and Js] in the solution of 
the perfect-information game with the guidance law DGL/1. An example 
of these expressions for the endgame parameters given in Table 11.1 is pre-
sented in Figure 11.5 as functions of the estimation delay.

Implementation of the delay-compensating guidance law DGL/C is not 
straightforward. The guidance loop must include an estimator, and the 
appropriate value of the information delay (assumed to be constant) is not 
obvious. Depending on the actual model of the measurement noise, the 
information delay may vary with the range (time-to-go). The numerical 
value of the information delay that provides the best guaranteed homing 
performance has to be found, for any given estimator, by an offline search.
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11.3.2.2 Simulation Results

The analytical results of the previous subsection had to be tested by simu-
lations that include noise-corrupted measurements and an estimator in the 
guidance loop. For an endgame example, based on the data of Table 11.1, a large 
set of Monte Carlo simulations was carried out against a target performing a 
“bang-bang” type maneuver with randomly switched acceleration command. 
The estimator in the guidance loop was a Kalman filter augmented with a 
shaping filter using an ECA model [8] with different tuning parameters. For 
each estimator, defined by its tuning parameters, different values of the (a pri-
ori unknown) fixed estimation delay were tested. In order to obtain reliable sta-
tistics, in each endgame scenario (defined by the estimator, the assumed fixed 
estimation delay, and the timing of the switch for the maneuver command), 
100 randomly selected measurement noise samples were used.

The Monte Carlo simulations provided the following results. As expected, 
using DGL/C instead of DGL/1 resulted in reducing the value of the 
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maximum miss distance (“peak”) obtained by a late maneuver change but 
increased the miss distance variance obtained by earlier maneuver changes. 
By increasing the estimation delay used in the guidance law, the reduction 
of the “peak,” as well as the miss distances for early maneuver changes 
(“plateau”), became larger. While the miss distance of the “plateau” is mono-
tonically increasing with the assumed estimation delay, the reduction of the 
“peak” reaches saturation. The maximum amount of achievable reduction in 
the “peak” depends on the estimator parameters.

The larger the estimator bandwidth (the smaller the tuning parameters) 
becomes, the more reduction of the “peak” can be achieved. The results are illus-
trated in Figures 11.6a and b; the reduction of the “peak” together with the aver-
age value of the “plateau” are shown as the function of the assumed estimation 
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delay for the two estimators used in Figure 11.4. These results clearly indicate 
that in spite of the monotonic behavior, assuming excessive values of estimation 
delay is not useful. It seems that an assumed fixed estimation delay of the order 
of the (assumed) evader first-order time constant is a reasonable compromise.

In Figures 11.7a and b, the homing performances of DGL/C and DGL/1 
against randomly switched “bang-bang” type commanded evader accelera-
tion are compared using a slow and a faster ECA estimator. These figures 
clearly indicate the benefit of the deterministic delayed estimation model, 
assuming a constant information delay in the target acceleration, as well as 
its limitations. The guaranteed (worst-case) miss distance is substantially 
reduced, but very small miss distances cannot be achieved.

11.3.3 Refined Deterministic Estimation Models

The main reason for the limitations of the proposed deterministic estimation 
model is being only a rough approximation of the real estimation process. The 
stochastic features of the estimation process are neglected. The information 
of all the estimated state variables, not only the target acceleration, is delayed. 
Although the effect of these other delays is less important, they should not be 
fully neglected. The assumption of a constant information delay is also not 
accurate. The delay induced by the estimator dynamics, determined by the 
noise model and its power density, is generally range dependent.

Several recent works proposed new methods to improve homing perfor-
mance, using either refined deterministic estimation models or a more elabo-
rate computation. In [20], a more sophisticated computing method is used. 
Although it assumes that the information delay affects only the estimated 
target acceleration, it takes into account the (assumed-to-be-perfect) measure-
ments of the other state variables during the estimation delay. This method 
leads to an impressive reduction of the target acceleration uncertainty segment 
and consequently a new deterministic pursuit–evasion game. The guidance 
law based on this game solution yields an additional impressive reduction of 
the guaranteed miss distance compared with DGL/C. Unfortunately, simu-
lations incorporating a realistic noise model and an estimator in the loop 
show much less improvement in homing performance. In another study [21], 
the time-varying nature of the information delay induced by the estimation 
was assumed, showing a marginal improvement compared with DGL/C.

A recent work [22] considered, in addition to the information delay in the esti-
mated target acceleration, a smaller fixed delay in the relative velocity normal to 
the line of sight. Based on this model, a new deterministic pursuit– evasion game 
was formulated and solved. Simulation results, using the guidance law derived 
from the new game solution (denoted as DGL/CC) with realistic noise model 
and an estimator, showed an improvement in the reduction of the guaranteed 
miss distance compared with DGL/C against “bang-bang” maneuvers with ran-
dom switch. This improvement came at the expense of increased average miss 
distances against target maneuver switches at the early part of the endgame.
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11.3.4 Section Summary

In this section, several deterministic estimation models were reviewed. The 
stochastic features of the estimation process, as well as the eventual ran-
domness of the target behavior, are neglected in the deterministic models. 
Each of them led to formulation of a different deterministic pursuit–eva-
sion game model for the interception endgame of a maneuverable target. 
The game solution yielded the guidance law (the optimal pursuer strategy), 
the worst admissible target maneuver (the optimal evader strategy), and the 
guaranteed miss distance (the value of the game). The optimality of the game 
solution from the interceptor missile point of view is the reduction of the 
guaranteed (worst-case) miss distance compared with other guidance laws. 
This reduction came in each case at the expense of increasing miss distances 
against nonoptimal target maneuvers. For this reason, the practical value of 
such guidance laws is not obvious.

11.4 estimation-Dependent Guidance Laws

The attempts reviewed in the previous section were motivated by the prin-
ciple of partial separation property asserted by Witsenhausen [11], stating that 
the estimator can be designed independently of the controller, but the deriva-
tion of the optimal control function has to consider the results of the estima-
tion process. As mentioned earlier, there have been very few past works that 
used a rigorous practical approach for implementing this idea. In this sec-
tion, a direct and rigorous approach is taken by deriving the optimal control 
functions on the basis of the conditional probability density function (condi-
tioned on the measurement history) of the estimated state variables, taking 
explicitly into account the saturated acceleration command of the interceptor. 
In the next subsection, linear and nonlinear estimation-dependent guidance 
laws are presented for the case of Gaussian noise models, with the Kalman 
filter used for the estimation. In the following subsection, the assumption of 
Gaussian noise was abandoned, resulting in the use of a particle filter and an 
estimation-dependent guidance law, based on an extension of the reachable-
set concept.

11.4.1 Stochastic Optimal Control Guidance laws

In this subsection, linear and nonlinear estimation-dependent one-sided 
optimal control-based guidance laws are presented for the case where the 
noise is Gaussian. These problems have been solved in [23] and [24], respec-
tively. Here, only the essential elements of the derivation are given. For fur-
ther details, the reader is referred to the above references.
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11.4.1.1 Problem Formulation

Consider a first-order missile (pursuer) with a time constant τP and bound 
aP

max on the acceleration command. Its bounded control can be described by 
the following standard saturation function:

 sat u
U u U

u U u U

U u U

( ) =
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− ≤ ≤ +
− < −










P P

P P

P P

, (11.23)

where in the investigated problem, UP P
maxa= .

The target (evader) is assumed to perform a random maneuver with known 
statistics, and consequently, the respective shaping filter can be used for the 
derivation of the Kalman filter [25].

The state vector for this problem is defined by

 xT
E P= ( )y y a a , (11.24)

where y is the relative displacement between the target and the interceptor 
in the Y direction. The corresponding state equation is
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and w = [wE, wP] is a two-dimensional white Gaussian noise representing 
the target and the pursuing missile acceleration uncertainty. Their power 
spectral densities are q and σ P

2 , respectively.
It is assumed that the range to the target can be accurately measured and 

that the LOS angle is measured with white Gaussian noise ν with a standard 
deviation of σϕ:

 Y = cx + ν, (11.27)

where

 c = [1/r 0 0 0]. (11.28)



417Integrated Design of Estimator and Guidance Law

Moreover, a simplified glint model is assumed. Hence, the measurement 
statistics has a lower bound at a critical range rc:

 V =
>

⋅ ≤
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2 2

r r

r r
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. (11.29)

The cost function to be minimized is
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11.4.1.2 Estimator

Based on the one-way separation discussed earlier, the estimator is derived 
independently from the control law. The estimated state vector is denoted x̂. 
We denote the estimation error as e, and it satisfies

 e = −x̂ x. (11.32)

Assuming that ˆ , ( ), ( ), ( )x0 ω ω νT Mt t tand  are mutually uncorrelated, we 
obtain the following filter equations:

 ˆ ˆ ( ) ( ˆ )x Ax B K cxf= + + −sat u Y  (11.33)

 K P c Vf ee= −T 1  (11.34)

 P AP P A P c V cP GG P Pee ee ee ee ee ee ee
0= + − + =−T T T1 0; ( )  (11.35)

where Pee is the covariance matrix of the estimation error and Pee
0  is given. The 

estimator has the following initial statistics: E[ˆ( )] ˆx x0 = 0, E
T[ˆ( )ˆ ( )] ˆ ˆx x Pxx0 0 0= .

For the stochastic guidance law derivation presented next, we will use the 
expected value of the estimated state vector x̂ as well as the covariance matrix Pee.

11.4.1.3 Linear Stochastic Guidance Law

Let us first obtain the linear guidance law, denoted as SOGL, in the form of

 u = k xc ˆ . (11.36)
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We then approximate the nonlinear saturation function sat(u) with a random 
input describing function L [26] and obtain

 ˆ ( )ˆ ( ˆ )x A Bk x K cxc f= + + −L Y  (11.37)

 P (A Bk )P P (A Bk ) K VK Pxx c xx xx c f f xˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ;= + + + +L L T T
xx xxP( ) ˆ ˆ0 0=  (11.38)

while the cost function to be minimized is given by
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Notice that Pee does not depend on kc, and therefore, in the previous sec-
tion, the estimator was derived independently from the guidance law. The 
solution of this guidance problem constitutes a two-point boundary value 
problem. The details of the solution appear in [23]. The important aspect is 
that the solution yields kc(t) that is dependent on Pee(t), that is, an estimation-
dependent guidance law. Specifically, the guidance law is

 u
N t

t
Z tgo

go
go=

′( ) ˆ ( )
2  (11.40)

where ˆ ( )Z tgo  is the estimated zero-effort miss, expressed in this problem as 
(using a shaping filter as an integrator driven by white noise)

 ˆ ˆ ˆ ˆ [exp( ) ] ˆZ y yt a a tgo= + − − + − + M T go/θ θ 1 22 . (11.41)

Note that this form of the ZEM is equivalent to assuming in the perfect 
information derivation known constant target acceleration. Nʹ(tgo) is depen-
dent on Pee(t), satisfying lim ( )

t
N t

go
go→∞

′ = 3. Note that this guidance law degen-

erates to the classical OGL of Cottrell [27], with the appropriate navigation 
gain Nʹ(tgo), only if the acceleration bound is not active. In such a case, the 
problem is LQG, and the certainty equivalence principle is valid.

In Figures 11.8 and 11.9, the effective navigation gain of SOGL is plotted 
for an example scenario. The results are plotted for different saturation lim-
its and noise levels. It is evident that the effective navigation gain of SOGL 
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spreads the control effort over the entire scenario. It is also evident that as 
the saturation limit is raised, the maximum value of Nʹ occurs later in the 
scenario, since the need to perform hard maneuvers early in the engagement 
is reduced. Note that Nʹ obtained by solving the OGL case, calculated with 
the same finite terminal weight (s = 109) as used in the SOGL laws, coincides 
with the results of SOGL only for an extremely large acceleration limit. Also 
observe that as the noise level is raised, the maximum value of Nʹ increases 
and occurs earlier in the scenario, since the need to perform maneuvers early 
in the engagement is increased.

Remember that the actual gain is defined as ′N t t( )/go go
2 . It is clear that 

although SOGL enforces a larger navigation gain Nʹ(tgo), it actually provides 
significantly lower maximum gains than OGL. This is achieved since SOGL 
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considers from the outset the bounded acceleration and thus uses a higher 
navigation gain earlier in the scenario (larger tgo).

The homing performance compared with OGL was investigated in [23]. It 
was shown that as long as the saturation limit is active (i.e., the interceptor 
does not have a large maneuver advantage over the target), the new estimation-
dependent guidance law provides superior performance. If the interceptor has 
a large maneuver capability (i.e., the saturation influence is reduced), the guid-
ance laws have similar homing performance, as in the limit case of no satura-
tion, and SOGL degenerates to OGL.

11.4.1.4 Nonlinear Stochastic Guidance Law

The nonlinear stochastic guidance law for this problem was obtained in [24]. 
Here too, since the certainty equivalence principle is not valid, the resulting 
OGL depends on the conditional probability density function of the esti-
mated states. The general cost function chosen in this case was  

 J E t Ru tf

t

=   +
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2

2
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f

d . (11.42)

Note that this function is not necessarily quadratic. Selecting φ[x(tf)] = 
sfy2(tf), we obtain the same cost function as in Equation 11.30, enabling us to 
compare the results also with the LQG OGL.

In order to obtain the optimal control command, the resulting Hamilton–
Jacobi–Bellman equation

 0
1
2

2

2
2= ∂

∂
+ + ∂

∂








+ ∂
∂

v
t

l u
v

f u
v

x
g

u
min ( , ) ( , )x

x
x  (11.43)

needs to be solved numerically, where υ(x, t) is the optimal cost to go from 
the initial state x at time t. The solution was obtained using the Markov chain 
approximation method [28]. The essence of the method is in approximating 
the stochastic differential equation of the problem by a discrete time and 
space Markov chain. The Markov chain is obtained by the finite differencing 
equation (Equation 11.43) and by identifying the coefficients in the finite dif-
ference equation with the transition probabilities of the Markov chain.

The solution of this equation for the fourth-order state vector x is compu-
tationally intensive and is currently impractical when using a desktop com-
puter. In order to substantially reduce the amount of calculations required to 
obtain the numerical solution, the problem can be reduced to a scalar one by 
using the zero-effort miss distance concept.

In this approach, the target maneuver was modeled as a first-order Gauss–
Markov process:
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 a a wE E E E/= − +τ  (11.44)

where wE is a white process noise with spectral density Q. As a consequence, 
the expression of the zero-effort miss distance will be similar as in Equation 
11.1, rather than Equation 11.41, yielding

 Z a t w t= − ( ) + ( )sat( )c P go P E go E/ /τ ψ τ τ ψ τ2 . (11.45)

Using this approach, we obtain the nonlinear optimal control law in the 
form 

 u k t Z= ( , ˆ )go  (11.46)

where Ẑ is the output of the estimation process discussed in Section 11.4.1.2.
An example of the numerically obtained function k t Z( , ˆ )go  is plotted in 

Figures 11.10 and 11.11 for tgo = 0.25s and tgo = 0.5s, respectively. This non-
linear guidance law generates larger acceleration commands earlier in the 
scenario than the classical linear OGL. Further, lowering the bound on the 
missile acceleration causes the guidance law to reach saturation for lower 
values of the estimated zero-effort miss. In fact, for the acceleration bound of 
150 m/s2, the guidance law is essentially a sign function for the entire inves-
tigated time interval.

It is evident that this guidance law is slightly nonlinear, generating larger 
acceleration commands than a purely linear guidance law. Note that for the 
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acceleration limit of 1000 m/s2, the command is linear and is identical to the 
OGL gain.

The homing performance compared with OGL was investigated in [24]. It 
was shown that, similarly to SOGL presented earlier, as long as the satura-
tion limit is active, the new estimation-dependent nonlinear guidance law 
provides superior performance. Also, if the interceptor has a large maneuver 
capability, the guidance laws have similar homing performance, as here too 
in the limit case of no saturation, the guidance law degenerates to OGL.

Both SOGL and the nonlinear stochastic guidance law can be solved 
offline. The resulting gains can then be saved and implemented in real time 
by gain scheduling.

11.4.2 Fusion of Estimation and Guidance

While in the previous subsection, the measurement noise was assumed to 
be Gaussian, in a very recent research study [29], this limitation was aban-
doned, and an entirely new approach, allowing nonlinear dynamics, was 
developed based on the concept of the partial separation property [11]. In this 
study, the estimator is a particle filter [30], based on sequential Monte Carlo 
methods [31], that can deal with any noise model with arbitrary probability 
distribution function (PDF). Once the conditional PDF of the estimated state 
is available, a new guidance law that extends the concept of reachable sets [17] 
is developed. A successful interception (capture) is guaranteed as long as 
the interceptor’s reachable set at the predicted interception time includes the 
reachable set of the target. As the interception is progressing, both reachable 
sets contract. The interceptor’s reachable set converges to a singleton, while 
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the estimated position of the target is a set, expressed by the conditional PDF, 
due to the uncertainty created by the noisy measurements. As a consequence, 
capture (in the deterministic sense) cannot be guaranteed. The new guid-
ance law has, therefore, two phases. In the initial phase, where the require-
ment of inclusion is satisfied, the objective of the guidance law is to keep this 
inclusion property in the future as long as it is possible. This guidance law is 
of course not unique, and the remaining level of freedom can be used for tra-
jectory shaping in order to facilitate and improve the estimation process. From 
that point of time, when complete inclusion cannot be satisfied any more, the 
guidance objective becomes to maximize the coverage of the target’s esti-
mated position set by the reachable set of the interceptor. An extensive set of 
Monte Carlo simulations showed that the homing performance of this new 
approach is superior compared with that of a game optimal deterministic 
guidance law (such as DGL/1) using classical state estimates (assuming the 
validity of the separation and certainty equivalence properties). The only prob-
lem of this promising new approach is its heavy computational demand, and 
therefore, at the present, it cannot be implemented in real time onboard a 
homing interceptor missile. Nevertheless, it is expected that using advanced 
parallel computation methods, this difficulty can be overcome in the future.

11.5 Logic-Based Integrated estimation and Guidance

11.5.1 Engineering approach

The different mathematical approaches for synthesizing an integrated 
estimation/guidance law method for the interception of randomly maneu-
vering targets, presented in the previous sections, were either not fully 
satisfactory or not yet implementable in real time. In this section, an engi-
neering approach toward an integrated estimation and guidance algorithm 
is introduced. It is based on the insight gained by understanding the inher-
ent limitations of the classical estimation in a short-duration interception 
endgame. Since no single estimator can satisfy the requirements of homing 
accuracy, the different tasks performed by a classical estimator have to be 
separated and assigned to different elements within a corporate estimation 
system.

The main task, directly affecting the homing accuracy, is the estimation of 
the state variables (including the target acceleration) involved in the guid-
ance law. This task can be performed in a satisfactory manner by a narrow-
bandwidth filter if (and only if) the correct model of the target maneuver is 
available. Thus, at the initial part of the endgame, the task of highest prior-
ity is model identification using a multiple-model structure [32]. The filters 
for this task should be of sufficiently large bandwidth in order to complete 
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the model identification as quickly as possible. As the model identification 
is completed, the role of the state estimator is assigned to an appropriate 
narrow-bandwidth filter. As long as the target model does not change, this 
narrow-bandwidth filter provides the estimated state variables to the guid-
ance law. An eventual change in the target maneuver has to be detected by a 
“fast” detection filter in order to minimize the detection delay.

This engineering synthesis concept was first developed using a planar 
(horizontal) constant-speed model against a randomly switched “bang-
bang” target maneuver [33]. Later, it was extended and validated in a realis-
tic three-dimensional (3D) variable-speed endo-atmospheric ballistic missile 
defense scenario [34]. In the 3D scenario, two types of stressing random tar-
get maneuvers, namely, a randomly switched “bang-bang” target maneuver 
and a random phase “barrel-roll” type (spiral) maneuver, were considered.

In this section, these integrated estimation/guidance algorithms are 
explained together with their implementation, and the achieved homing 
performance is presented.

11.5.2 Planar algorithm

11.5.2.1 Estimation

In a planar scenario, a “bang-bang” type maneuver is the most effective for 
evasion; thus, the “model” has to include the direction of the current target 
acceleration. As long as the model is not identified, a simple Kalman filter and 
the guidance law DGL/0 [35], both ignoring the target maneuver, are used. 
After model identification, the state estimation is assigned to the appropri-
ate narrow-bandwidth filter, and the guidance law DGL/1 [7], considering a 
first-order target maneuver model, is used. If the anticipated direction rever-
sal (switch) occurs sufficiently far away from the end of the interception, 
there is enough time for the filter to converge to the new value. The DGL/1 
guidance law using the correct value of the target acceleration achieves small 
miss distances, as shown in Figure 11.1. However, if the change takes place 
after a “critical” time-to-go, there is not enough time available for this pro-
cess, and large miss distances are created.

Once this “critical” time-to-go, determined by the parameters of the 
narrow- bandwidth filter (tgo = 1.6 s in Figure 11.1), is identified, the estima-
tion/guidance strategy for the remaining part of the endgame is changed. In 
an earlier paper, also dealing with a planar scenario [16], a multiple-model 
estimator, where each estimator model assumed a different timing of the 
direction reversal (switch) of a “bang-bang” type maneuver, is described. 
Using such an estimator “tuned” to the correct switch eliminates the delay 
and yields excellent homing performance. Even if the switch occurs shortly 
after the time anticipated by the estimator, good performance is obtained. 
Due to this robustness property, a few adequately “tuned” estimators with 
not-too-narrow bandwidth can cover the range of interest (the remaining part 
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of the endgame). The relevant “tuned” estimator becomes active (replaces the 
narrow-bandwidth filter for providing state estimates to the guidance law) 
as soon as the direction change of the target model is observed by the “fast” 
detection filter.

11.5.2.2 Guidance Law Modifications

In spite of the improved estimation by the “tuned” estimator, if the change of 
direction occurs close to the end, the interceptor is unable to reach its maxi-
mum lateral acceleration and cannot correct the guidance error generated 
during the detection delay (due to the short time remaining). This deficiency 
is alleviated by increasing the lateral acceleration command for small values 
of time-to-go but still respecting the actual acceleration limits.

The increase in the commanded acceleration gain is expressed for tgo ≤ 
(tgo)sw by
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The parameter k is selected to satisfy

 | ( , )| maxa t k ap f P= . (11.48)

It must be less than 1; otherwise, the gain will become infinite. Its value 
depends on (tgo)sw and the value of aP at that very moment. The effect of this 
modification is illustrated in Figure 11.12.
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Further homing improvement is achieved by introducing a time-varying 
dead zone version of the signum function in the guidance law after the “criti-
cal” time-to-go is reached:
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 (11.49)

where Adz is the initial amplitude, and bdz is the exponential decay rate of 
the dead zone. This modification reduces the error created during the period 
of detection delay, as illustrated in Figure 11.13. The dead zone is used only 
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until the maneuver direction change is detected. In the simulations, the val-
ues of Adz = 50 m and bdz = 1/s were selected.

This modification, reducing the error created during the detection delay, 
is used only until the maneuver direction change is detected. The cumula-
tive miss distance distributions demonstrating the improvements achieved 
by the guidance law modifications for the case of a 0.1 s detection delay are 
shown in Figure 11.14.

11.5.3 Three-Dimensional algorithm

The planar algorithm from the previous section has been extended to deal 
with 3D endo-atmospheric BMD scenarios. A major element of the exten-
sion was to include two basic types of target maneuver models. The first 
one is a slowly varying, piecewise continuous planar “bang-bang” maneu-
ver, assuming a roll-stabilized target. For the sake of comparability with 
the work of Shinar et al. [33], the maneuvers are oriented in a horizontal 
plane. The amplitude of the maneuver is monotonically increasing as the 
target descends to lower altitudes. The second type of maneuver assumes 
a rolling target with a fixed angle of attack in body coordinates, creating a 
“barrel-roll” type (spiral) maneuver of time-varying (monotonically increas-
ing) amplitude. A spinning aerodynamically stable reentry vehicle will 
inherently perform a similar maneuver [36]. (In reality, the maneuver fre-
quency can be slowly time-varying, but in the short-duration endgame, it can 
be approximated as constant.) Each type of maneuver requires a different 
type of estimator. The distinction between the two different types of target 
maneuvers considered in this study is an essential element in this approach.

11.5.3.1 Estimation

The group of estimators for the “bang-bang” type maneuver is similar to the 
one used in [33]. The only difference is that instead of a constant-acceleration 
command, a monotonically increasing one is anticipated.

The second type of evasive target maneuver creating a “barrel-roll” type 
(spiral) trajectory of time-varying radius requires a different estimator. 
Because this is a typical 3D maneuver, two planar estimators have to be 
used to estimate the projections of the motion in two perpendicular planes. 
Within each plane, the motion is periodical with random phase, and there-
fore, the appropriate shaping filter has to be of the second order [2], assuming 
a known maneuver frequency. Such a Kalman filter estimates not only the 
target acceleration but also its time derivative (the “jerk”). If the maneuver 
frequency is correctly predicted, the output of such an estimator converges 
well to the actual maneuver even if its amplitude is slowly varying. As a 
consequence, the homing accuracy is satisfactory. However, if the frequency 
used in the estimator is incorrect, the estimation is degraded, and the hom-
ing performance is poor. The bandwidth of such a periodical estimator can 
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be tuned to allow a reasonable error in the predicted frequency without a 
great compromise in the homing accuracy.

The first task to be carried out, immediately as the interception endgame 
starts, is to distinguish between the two different maneuver types using a 
multiple-model structure [12]. The filters for this task are of large bandwidth, 
in order to complete the model identification as quickly as possible. If the 
actual maneuver is either planar or periodical with a frequency of p0 ≥ 1 Hz, 
this first phase of model identification can be completed within the first 0.5 s 
of the endgame. For periodical maneuvers of lower frequency, the identifica-
tion may require more time (about half a period).

Once the decision between the two types of maneuvers is made, the second 
phase of the target model identification for each one becomes different. For 
the “bang-bang” type target maneuver, the direction of the maneuver as well 
as the initial amplitude is provided by the first phase. For a “spiral” maneu-
ver, the frequency range of the model has to be identified with a reasonable 
accuracy. This process requires a large set of different estimator models and 
needs more time (up to a second), depending on the accuracy level.

After the completion of the model identification, the appropriate narrow-
bandwidth state estimator is selected to forward information to the guid-
ance law. Continuous computation of the a posteriori probabilities is used 
to confirm the correctness of the selection. For a “spiral” maneuver, no dra-
matic changes in the model are expected. For the “bang-bang” type tar-
get maneuver, an eventual change of direction is expected and has to be 
detected by a sufficiently fast detector. Following the detected change, the 
nearest “tuned” estimator is used, as in [33]. Since the development of such 
fast detector is yet incomplete [37], in the simulations, the detection delay is 
parameterized.

11.5.3.2 Guidance Law

In the first phase of the endgame, until the target maneuver is identified, 
a simple narrow-bandwidth estimator and a differential game-based guid-
ance law, denoted as DGL/0 [35], not requiring the knowledge of the target 
maneuver, are used.

The guidance law DGL/1 used in [7], where a planar scenario was inves-
tigated, was derived based on the assumption of constant speeds. Since in a 
3D scenario, the speeds are not constant and the bounds of the lateral accel-
erations vary with speed and altitude, the model of the game has to be modi-
fied. It is assumed that profiles of the time-varying parameters are known 
along a nominal trajectory. Such a model is suitable for the analysis of a real-
istic BMD scenario.

The guidance law based on the solution of this game [38], although quali-
tatively similar to DGL/1, strongly depends on the respective velocity and 
maneuverability profiles of the players. Due to the time-varying profiles, the 
expressions of the zero-effort miss distance and the other elements of the 
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solution become more complex, as shown in detail in [38]. In spite of this 
(algebraic) complexity, the implementation of the optimal missile guidance 
law, denoted as DGL/E, does not present essential difficulties. It requires, of 
course (in addition to the perfect knowledge of the current lateral accelera-
tion of the target), the speed and maneuverability profiles in the endgame 
that can be precalculated along a nominal trajectory.

If the target maneuver is planar, the guidance law modifications of Section 
11.5.2.2 applied to DGL/E are used. For periodical maneuvers, these modifi-
cations are not needed.

11.5.3.3 Simulation Results

For testing the validity of the 3D algorithm, endo-atmospheric interception 
scenarios terminating between altitudes of 20–30 km with an initial range 
of 20 km were considered with endgame duration of the order of 4.5 s. The 
data and the detailed summary of these simulations are presented in the 
Appendix. Homing accuracy statistics, expressed by the cumulative miss 
distance distributions, are based on 1000 Monte Carlo simulation runs for 
each scenario, assuming Gaussian noise and uniform reversal time (switch) 
or phase distributions.

The main results are summarized in the following.

 (1) Against random horizontal bang-bang maneuvers at three inter-
ception altitudes (20, 25, and 30 km), assuming a detection delay of 
0.1 s, miss distances of 20–30 cm (or less) for 95% of the cases were 
obtained, similar to the results in [33].

 (2) The homing accuracy against spiral target maneuvers of different 
roll rates using perfectly matched periodical estimators is indepen-
dent of the roll rate and similar to the accuracy against the “bang-
bang” maneuvers.

 (3) If the frequency used in the estimator is different from the actual roll 
rate, the homing accuracy is gradually degraded, depending on the 
size of the mismatch.

 (4) There is a significant performance degradation of the homing per-
formance if the maneuver type (bang-bang or periodical) is not cor-
rectly identified.

11.6 Conclusions

This chapter discussed the not-yet-completely solved problem of how 
to design and implement in a high-performance interceptor missile the 
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estimation process and the guidance law. The deficiency of the common 
practice, based on assuming the validity of the certainty equivalence and sepa-
ration properties, which created reduced homing accuracy and the lack of 
robustness with respect to random target maneuvers, is illustrated.

Several approaches attempted alleviating these difficulties. Recognizing 
the time delay associated with the estimation process and compensating for 
it led to a substantial reduction of the guaranteed miss distance against the 
optimal (worst-case) target maneuver. This reduction, based on a determin-
istic estimation model, came at the expense of less efficient homing against 
other nonoptimal target behavior.

More rigorous mathematical approaches that addressed directly the sto-
chastic optimization problem in different ways were based on the concept of 
partial separation property. These methods showed impressive improvements 
in homing performance but require a heavy computational load.

The “logic-based” integration of estimation and guidance, based on an 
engineering approach and presented in the last section, suggested a practi-
cally acceptable and implementable solution (which is probably only sub-
optimal) for realistic interceptions of randomly maneuvering targets in 3D 
space, such as endo-atmospheric ballistic missile defense.
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Appendix: Details of 3D Simulations

11.a.1 Simulation Data

In these simulations, the target is a generic TBM with aerodynamic control, 
performing either spiral or horizontal bang-bang evasive maneuvers. It is 
assumed to be launched from a distance of 600 km on a minimum-energy 
trajectory. It is characterized by a ballistic coefficient β = 5000 kg/m2 and 
a trimmed lift-to-drag ratio Λ = 2.6. Its velocity at reentry of an altitude of 
150 km is VE0 = 1720 m/s with a flight path angle of γE0 = −18° and a horizontal 
distance of 210 km from its surface target. 

The interceptor is a generic roll-stabilized two-stage solid rocket missile 
that has two identical guidance channels for aerodynamic control (skid to 
turn). Its seeker provides angular measurements at a sampling rate of 100 Hz. 
These angular measurements are corrupted by zero-mean white Gaussian 
angular noise of constant amplitude with a standard deviation of 0.1 mrad.

Both stages of the rocket motor have a specific impulse of Isp = 250 s. The 
propulsion, mass, and aerodynamic data of the stages are summarized in 
Table 11.A.1.

The second-stage rocket motor is ignited with a delay in order to guarantee 
that for any interception altitude, the endgame terminates with a positive 
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longitudinal acceleration and nondecreasing maneuverability. The velocity 
profiles for different interception altitudes are shown in Figure 11.A.1.

During the endgame, the maneuverability of the target is monotonically 
increasing, and as a consequence, the value of the interceptor/target maneu-
verability ratio, denoted by μ, is monotonically decreasing, as seen in Figure 
11.A.2. The maneuvering dynamics of the interceptor (pursuer) and the target 

TablE 11.a.1

Interceptor Data

tb (s) T (kn) m0 (kg) SCD (m2) SCLmax (m2)

First stage 6.5 229 1540 0.10 0.24
Second stage 13 103 781 0.05 0.20
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(evader) are approximated by first-order transfer functions with equal time 
constants τP = τE = 0.2 s. 

11.a.2 Simulation Results

The results presented in this Appendix are limited to the following cases: 
(1) homing accuracy against random horizontal bang-bang maneuvers (using 
the integrated estimation/guidance scheme in [33]) at different interception 
altitudes; (2) homing accuracy against spiral target maneuvers of different 
roll rates (p0) (using matched and unmatched periodical estimators), at the 
interception altitude of 25 km; and (3) homing accuracy degradation with 
wrong estimator type in both cases.

In Figure 11.A.3, the cumulative miss distance distributions against ran-
dom horizontal bang-bang maneuvers at three interception altitudes (20, 25, 
and 30 km) assuming a detection delay of 0.1 s are shown. The miss distances 
are 20–30 cm (or less) for 95% of the cases, indicating the potential for satisfy-
ing a hit-to-kill requirement.

The cumulative miss distance distributions against random phase spi-
ral target maneuvers with different roll rates with matched estimators are 
presented in Figure 11.A.4. It can be seen that if the maneuver frequency 
determined by the roll rate and the frequency used in the estimator are per-
fectly matched, the homing accuracy is independent of the roll rate (at least 
in the tested region) and similar to the accuracy against the “bang-bang” 
maneuvers.

However, if the frequency used in the estimator is different from the actual 
roll rate, the homing accuracy is degraded, as shown in Figure 11.A.5.

The importance of correct identification of the maneuver type is illustrated 
in Figures 11.A.6 and 11.A.7, showing the significant performance degrada-
tion if the wrong type of estimator is used.
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12.1 Introduction

12.1.1 Aims

The aim of this chapter is to introduce particle filters to those with a back-
ground in “classical” recursive estimation based on variants of the Kalman 
filter. We describe the principles behind the basic particle filter algorithm and 
present an application to a tracking and guidance example involving mul-
tiple objects. A detailed worked example including some simple MATLAB® 
code is described in the Appendix. We also show that the basic algorithm is 
a special case of a more general particle filter that greatly extends the filter 
design options. The chapter concludes with a discussion of computational 
issues and application areas.

The emphasis of this chapter is on principles and applications at an intro-
ductory level. It is not a rigorous treatise on the subject, nor is it by any 
means an exhaustive survey. For a more detailed introduction (especially 
from a target-tracking perspective), the reader is referred to the work of 
Ristic  et  al.  [1] (which uses the same notation as this paper). Other intro-
ductory articles include those of Djuric et al. [2], which includes applica-
tions to wireless communication problems; Candy [3], with an application 
to synthetic aperture sonar; and Fox et al. [4], focused on location estimation 
in a robotics context (which also discusses other Bayesian filters). Also see 
the extensive review [5]. For material on theoretical foundations and other 
applications, see [6–9] and a special issue of the IEEE Transactions on Signal 
Processing (Monte Carlo Methods for Statistical Signal Processing) [10]. For a 
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survey of recent advances in particle filters, the reader is referred to the work 
of Cappe et al. [11].

12.1.2 Recursive Estimation

There is an enormous range of applications that require online estimates 
and predictions of an evolving set of parameters given uncertain data and 
dynamics —examples include object tracking, vehicle guidance, navigation 
and control, forecasting of financial indices, and environmental prediction. 
There is, therefore, a huge “market” for effective recursive estimation algo-
rithms. Furthermore, if these problems can be posed in a common framework, 
it may be possible to apply general techniques over these varied domains. 
An obvious common framework consists of a dynamics model (describing 
the evolution of the system) and a measurement model that describes how 
available data are related to the system. If these models can be expressed in 
a probabilistic form, a Bayesian approach may be adopted.

12.1.3 Bayesian Estimation

The aim of a Bayesian estimator is to construct the posterior probability den-
sity function (pdf) of the required state vector using all available informa-
tion. The posterior pdf is a complete description of our state of knowledge 
about (or uncertainty in) the required vector. As such, it is key to optimal 
estimation—in the sense of minimizing a cost function—and to decision and 
control problems. The recursive Bayesian filter provides a formal mechanism 
for propagating and updating the posterior pdf as new information (mea-
surements) is received. If the dynamics and measurement models can be 
written in a linear form with Gaussian disturbances, the general Bayesian fil-
ter reduces to the Kalman filter that has become so widespread over the last 
40 years. Mildly nonlinear problems can be linearized for Kalman filtering, 
but grossly nonlinear or non-Gaussian cases cannot be handled in this way.

A particle filter is an implementation of the formal recursive Bayesian filter 
using (sequential) Monte Carlo methods. Instead of describing the required 
pdf as a functional form, in this scheme, it is represented approximately as a 
set of random samples of the pdf. The approximation may be made as good 
as necessary by choosing the number of samples to be sufficiently large: as 
the number of samples tends to infinity, this becomes essentially an exact 
equivalent of the functional form. For multidimensional pdf’s, the samples 
are random vectors. These random samples are the particles of the filter that 
are propagated and updated according to the dynamics and measurement 
models. Unlike the Kalman filter, this approach is not restricted by linear-
Gaussian assumptions, so much extending the range of problems that can be 
tackled. The basic form of the particle filter is also very simple but may be 
computationally expensive: the advent of cheap, powerful computers over 
the last 15 years has been key to the introduction of particle filters.
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12.1.4 Structure of the Chapter

In Section 12.2, we introduce the most basic version of the particle filter. 
Extension to a more general form and computational issues are discussed in 
Sections 12.3 and 12.4. An example of tracking in the presence of intermittent 
spurious objects is described in Section 12.5. In this section, we also show 
how the output of a particle filter can be used to generate a guidance demand 
without resorting to the usual “certainty equivalence” approach. This exam-
ple is derived from [12–14]. In Sections 12.6 and 12.7, we briefly review other 
applications of the particle filter and draw some conclusions. The Appendix 
gives a “worked example” of applying the basic particle filter to a simple, but 
highly nonlinear, example, and it includes some MATLAB code, which will, 
hopefully, aid understanding of the algorithm.

12.2 Basic Particle Filter

12.2.1 Problem Definition: Dynamic Estimation

The dynamic estimation problem assumes two fundamental mathematical 
models: the state dynamics and the measurement equation.

The dynamics model describes how the state vector evolves with time and 
is assumed to be of the form

 xk = fk−1(xk−1, vk−1), for k > 0. (12.1)

Here xk is the state vector to be estimated, k denotes the time step, and fk−1 is 
a known possibly nonlinear function. vk−1 is a white noise sequence, usually 
referred to as the process, system, or driving noise. The pdf of vk−1 is assumed 
known. Note that Equation 12.1 defines a first-order Markov process, and an 
equivalent probabilistic description of the state evolution is p(xk|xk−1), which 
is sometimes called the transition density. For the special case when f is lin-
ear and v is Gaussian, the transition density p(xk|xk−1) is also Gaussian. In the 
context of target tracking, Equation 12.1 is a model of target dynamics, and x 
is a target state vector including position, velocity, and possibly other target 
attributes.

The measurement equation relates the received measurements to the state 
vector:

 zk = hk (xk, wk), for k > 0, (12.2)

where zk is the vector of received measurements at time step k, hk is the 
known measurement function, and wk is a white noise sequence (the mea-
surement noise or error). Again, the pdf of wk is assumed known, and vk−1 
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and wk are mutually independent. Thus, an equivalent probabilistic model 
for Equation 12.2 is the conditional pdf p(zk|xk). For the special case when hk 
is linear and wk is Gaussian, p(zk|xk) is also Gaussian. For target tracking, 
Equation 12.2 is the sensor model.

The final piece of information to complete the specification of the esti-
mation problem is the initial conditions. This is the prior pdf p(x0) of the 
state vector at time k = 0, before any measurements have been received. In 
summary, the probabilistic description of the problem is p(x0), p(xk|xk−1), and 
p(zk|xk).

12.2.2 Formal Bayesian Filter

As already indicated, in the Bayesian approach, one attempts to construct 
the posterior pdf of the state vector xk given all the available information. 
This posterior pdf at time step k is written p(xk|Zk), where Zk denotes the set 
of all measurements received up to and including zk: Zk = {zi, i = 1,…k}. The 
formal Bayesian recursive filter consists of a prediction and an update opera-
tion. The prediction operation propagates the posterior pdf of the state vector 
from time step k − 1 forward to time step k. Suppose that p(xk−1|Zk−1) is avail-
able; then p(xk|Zk−1), the prior pdf of the state vector at time step k > 0, may be 
obtained via the dynamics model (the transition density):

 p pk k

k

k k( ) ( )x Z x| = |− −1 1

prior at dynamic
� ����� ����� x

ss posterior from
� ����� ����� � �����p k k

k

( )x Z− −

−

|1 1

1
������ dxk− .∫ 1

 (12.3)

This is known as the Chapman–Kolmogorov equation.
The prior pdf may be updated to incorporate the new measurements zk to 

give the required posterior pdf at time step k > 0:

 p pk k k k( ) ( )x Z z x| = |
posterior likelihood

� ���� ���� � ����� ���� � ����� �����p pk k k k( ) ( )x Z z Z| / |− −1 1

prior norrmalizing
denominator

� ����� ����� .  (12.4)

This is Bayes rule, where the normalizing denominator is given by 

p p pk k k k k k k( ) ( ) ( )z Z z x x Z x| = | |− −∫1 1 d . The measurement model regarded as a 

function of xk with zk given is the measurement likelihood. Equations 12.3 
and 12.4 define the formal Bayesian recursive filter with initial condition 
given by the specified prior pdf p(x0|Z0) = p(x0) (where Z0 is interpreted as the 
empty set). If Equation 12.3 is substituted into Equation 12.4, the prediction 
and update may be written concisely as a single expression.

Equations 12.3 and Equation 12.4 define a very general but formal (or con-
ceptual) solution to the recursive estimation problem. Only in special cases 
can an exact, closed-form algorithm be obtained from this general result. (In 
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other words, only in special cases can the posterior density be exactly charac-
terized by a sufficient statistic of fixed and finite dimension.) By far, the most 
important of these special cases is the linear-Gaussian (L-G) model: if p(x0), 
p(xk|xk−1), and p(zk|xk) are all Gaussian, then the posterior density remains 
Gaussian [15], and Equations 12.3 and 12.4 reduce to the standard Kalman 
filter (which recursively specifies the mean and covariance of the posterior 
Gaussian). Furthermore, for nonlinear/non-Gaussian problems, the first 
recourse is usually to attempt to force the problem into an L-G framework by 
linearization. This leads to the extended Kalman filter (EKF) and its many 
variants. For mildly nonlinear problems, this is often a successful strategy, 
and many real systems operate entirely satisfactorily using EKFs. However, 
with increasingly severe departures from the L-G situation, this type of 
approximation becomes stressed to the point of filter divergence (exhibited 
by estimation errors substantially larger than indicated by the filter’s inter-
nal covariance). For such grossly nonlinear problems, the particle filter may 
be an attractive option.

12.2.3 Algorithm of Basic Particle Filter

The most basic particle filter may be viewed as a direct mechanization of the 
formal Bayesian filter.

Suppose that a set of N random samples from the posterior pdf p(xk−1|Zk−1) 
(k > 0) is available. We denote these samples or particles by { }*xk

i
i
N

− =1 1.
The prediction phase of the basic algorithm consists of passing each of these 

samples from time step k − 1 through the system model (Equation 12.1) to 
generate a set of prior samples at time step k. These prior samples are written 
{ }xk

i
i
N

=1, where

 x f x vk
i

k k
i

k
i= − − −





1 1 1

* ,
 

and v k
i

−1 is a (independent) sample drawn from the pdf of the system noise. 
This straightforward and intuitively reasonable procedure produces a set of 
samples or particles from the prior pdf p(xk|Zk−1).

To update the prior samples in the light of measurement zk, a weight wk
i  is 

calculated for each particle. This weight is the measurement likelihood eval-
uated at the value of the prior sample: w pk

i
k k

i= |



z x . The weights are then 

normalized so they sum to unity: w w wk
i

k
i

j

N

k
j=

=∑ 

1
, and the prior particles 

are resampled (with replacement) according to these normalized weights to 
produce a new set of particles:

 { } Pr{ } ,* *x x xk
i

i
N

k
i

k
j

k
jw i j= = = .1 such that for all  
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In other words, a member of the set of prior samples is chosen with a prob-
ability equal to its normalized weight, and this procedure is repeated N 
times  to build up the new set { }*xk

i
i
N

=1. We contend that the new particles 
are samples of the required pdf p(xk|Zk), and so a cycle of the algorithm is 
complete.

Note that the measurement likelihood effectively indicates those regions 
of the state space that are plausible “explanations” of the observed measure-
ment value. Where the value of the likelihood function is high, these state 
values are well supported by the measurement, and where the likelihood 
is low, these state values are unlikely. (Where the likelihood is zero, these 
state values are incompatible with the measurement model—i.e., they can-
not exist.) Thus, the update procedure effectively weights each prior sample 
of the state vector by its plausibility with respect to the latest measurement. 
The resampling operation is therefore biased toward the more plausible 
prior samples, and the more heavily weighted samples may well be chosen 
repeatedly (see discussion of sample impoverishment below). The algorithm 
is shown schematically in Figure 12.1, and some MATLAB code for an exam-
ple application is given in the Appendix.

This simple algorithm is often known as the sampling importance resam-
pling filter, and it was introduced in 1993 [16], when it was called the boot-
strap filter. It was independently proposed by a number of other research 
groups, including Kitagawa [17] as a Monte Carlo filter and Isard and Blake 
[18] as the CONDENSATION algorithm.
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FiguRE 12.1
Schematic of basic particle filter.
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12.2.4 Empirical Distributions

The sample sets described above may also be viewed as empirical distribu-
tions for the required state pdf’s, that is, the prior

 p
Nk k

i

N

k k
i( ) ( )x Z x x| ≈ −−

=
∑1

1

1 δ  (12.5)

and the posterior in weighted or resampled form:
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This representation also facilitates a simple justification of the update 
phase of the basic filter using the “plug-in principle” [19]. Substituting the 
approximate form of the prior (Equation 12.5) into Bayes rule (Equation 12.4), 
we obtain
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where, by comparison with Equation 12.4, p
N

wk k
i

N

k
i( )z Z| ≈−

=∑1
1

1
 . For a more 

rigorous discussion of the theory behind the particle filter, see [6–8,11,20,21].

12.2.5 Alternative Resampling Scheme

A direct implementation of the resampling step in the update phase of the 
algorithm would consist of generating N independent uniform samples, 
sorting them into ascending order, and comparing them with the cumulative 
sum of the normalized weights. This scheme has a complexity of O(N  log 
N). There are several alternative approaches, including systematic resam-
pling, which has complexity of O(N). In systematic resampling [17], the nor-
malized weights wi are incrementally summed to form a cumulative sum 
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of w wC
i

j

i
j=

=∑ 1
. A “comb” of N points spaced at regular intervals of 1/N is 

defined, and the complete comb is translated by an offset chosen randomly from 
a uniform distribution over [0, 1/N]. The comb is then compared with the cumu-
lative sum of weights wC

i  as illustrated in Figure 12.2 for N = 7. For this example, 
the resampled set would consist of labels 2,3,3,5,6,6, and 7 of the original set. 
This scheme has the advantage of only requiring the generation of a single ran-
dom sample, irrespective of the number of particles, and it minimizes the Monte 
Carlo variation—see Section 12.2.7. This method is used in the worked example 
given in the Appendix (which includes MATLAB code for the procedure).

12.2.6 impoverishment of Sample Set

As already noted, in the resampling stage, particles with large weights may 
be selected many times so that the new set of samples may contain multiple 
copies of just a few distinct values. This impoverishment of the particle set is 
the result of sampling from a discrete rather than a continuous distribution. 
If the variance of the system driving noise is sufficiently large, these cop-
ies will be redistributed in the prediction phase of the filter, and adequate 
diversity in the sample set may be maintained. However, if the system noise 
is small or, in extreme cases, zero (i.e., parameter estimation), the particle 
set will rapidly collapse, and some artificial means of introducing diversity 
must be introduced. An obvious way of doing this is to perturb or jitter each 
of the particles after resampling (termed “roughening” in [16]). This rather ad 
hoc procedure can be formalized as regularization—where a kernel is placed 
over each particle to effectively provide a continuous mixture approximation 
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to the discrete (empirical) distribution (akin to kernel density estimation). 
Optimal kernels for regularization are discussed in [22]. Another scheme for 
maintaining diversity is to perform a Monte Carlo move (see [23]).

12.2.7 Degeneracy and Effective Sample Size

In the basic version of the filter described in Section 12.2.3, resampling is per-
formed at every measurement update. The function of this resampling process 
is to avoid wasting the majority of the computational effort in propagating 
particles with very low weights. Without resampling, as measurement data 
are integrated, for most interesting problems, the procedure would rapidly col-
lapse to a very small number of highly weighted particles among a multitude 
of almost useless particles carrying a tiny proportion of the probability mass. 
This results in failure due to an inadequate representation of the required 
pdf, that is, degeneracy. Although resampling counters this problem, as noted 
above, it tends to increase impoverishment, and so there are good arguments 
for carrying out resampling only if the particle set begins to degenerate [1,21].

A convenient measure of degeneracy is the effective sample size [24] 

defined by ˆ ( )N weff
j

N

k
j=

=∑1
1

2, which varies between 1 and N. A value 

close to 1 indicates that almost all the probability mass is assigned to one 
particle, and there is only one useful sample in the set, that is, severe degen-
eracy. Conversely, if the weights are uniformly spread among the particles, 
the effective sample size approaches N. It is often suggested that the resam-
pling process should be performed only if N̂eff  falls below some threshold 
(chosen empirically). If resampling is not carried out, the particle weights 
from the previous time step are updated via the likelihood w w pk

i
k
i

k k
i= |−1 ( )z x  

and then normalized. In this case, the required posterior pdf of the state 
is given by the random measure { , }xk

i
k
i

i
Nw =1, and these particles are passed 

through the system model in the prediction phase to generate xk
i

+1 for the 
next measurement update [so the prior distribution at k + 1 would be approx-

imated by p wk k
i

N

k
i

k k
i( ) ( )x Z x x+

=
+ +| ≈ −∑1

1
1 1δ ].

12.2.8 Sample Representation of Posterior pdf

An important feature of the particle filter is that it provides (an approxima-
tion of) the full posterior of the required state. Moreover, the representation 
of the posterior pdf in the form of a set of samples is very convenient. As well 
as being straightforward to produce summary statistics, many useful param-
eters for command, control, and guidance purposes can be easily estimated.

Kalman-like estimators produce estimates of the mean and covariance of 
the posterior (which completely specify the Gaussian pdf from this type of 
filter). These statistics are easily estimated from the particle filter sample set 
(using the plug-in principle) as
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However, the mean and covariance may be a poor summary of the poste-
rior, particularly if it is multimodal or skewed. A scatter plot of the samples, a 
histogram, or a kernel density estimate [25] is more informative for a 1- or 2-D 
state vector (or for marginals of the full state vector). Another useful descrip-
tor is the highest probability density (HPD) region. The (1 − α) HPD region is 
the set of values of the state vector that contains 1 − α of the total probability 
mass, such that the pdf at all points within the region is greater than or equal 
to the pdf of all those outside the region, that is, if H is the (1 − α) HPD region, 

then 
H

p∫ = −( )x xd 1 α and p(xʹ) ≥ p(xʺ) for all xʹ∊ H and xʺ ∉ H. The HPD region 

is usually considered only for scalars, and it may be difficult to find for mul-
timodal pdf’s. A simpler option is to find the percentile points on scalar mar-
ginals of the distribution. For example, the (1 − α)100 percentile point is given 
(roughly) by finding the largest Nα samples and choosing the smallest of these.

In many cases, the requirement is to find some particular function of the 
posterior, and the sample representation is often ideal for this. For example, 
for threat analysis, one may be interested in the probability that a target is 
within some particular region—this can be estimated by counting the num-
ber of particles falling within that region. Also, for decision and control 
problems, an estimate of the expected value of any form of cost or utility 
function C(xk) is simply given by
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This is the starting point for Monte Carlo approaches to the difficult prob-
lem of stochastic control—especially with nonquadratic cost functions [13,26].

12.2.9 Discussion

 1. Convenience. The basic particle filter is a very simple algorithm, and it 
is quite straightforward to obtain good results for many highly non-
linear recursive estimation problems. Thus, problems that would be 
difficult to handle using an EKF, state space gridding, or a Gaussian 
mixture approach are quite accessible to the “novice” via a blind 
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application of the basic algorithm. However, this is something of a 
mixed blessing: there is a danger that such challenging cases are not 
treated with proper respect and that subtleties and implications of 
the problem are not appreciated [27].

 2. Generality. The particle approach is very general. It is not restricted 
to a particular class of distribution or to a form of dynamics model 
(although the filters discussed in this paper do rely on the Markov 
property). Thus, for example, the dynamics may include discrete 
jumps and densities may be multimodal with disconnected regions. 
Furthermore, the measurement likelihood and transition density do 
not have to be analytical functions—some form of lookup table is 
quite acceptable. Also, support regions with hard edges can easily 
be included (see Section 12.6 below).

12.3 More General Particle Filters

In the basic version of the particle filter, the particles { }xk
i

i
N

=1 used to construct 

the empirical posterior pdf 
i

N

k
i

k k
iw

=∑ −
1

δ( )x x  are assumed to be samples 

from the prior p(xk|Zk−1). Furthermore, these samples { }xk
i

i
N

=1 are obtained 
from the posterior samples { }*xk

i
i
N

− =1 1  of the previous time step by passing 
them through the dynamics model. In other words, each support point xk

i  
is a sample of the transition pdf p k k

i( )*x x| −1  conditional on xk
i

−1
* . However, 

it is not necessary to generate the { }xk
i

i
N

=1 in this way; they may be obtained 
from any pdf (known as an importance or proposal density) whose support 
includes that of the required posterior p(xk|Zk). In particular, the importance 
pdf may depend on zk, the value of the measurement at time step k. This 
more general approach considerably broadens the scope for filter design.

The more general formulation is a two-stage process similar to the basic fil-
ter of Section 12.2.3, but these stages do not correspond directly to prediction 
and update phases. As before, we assume that N random samples { }*xk

i
i
N

− =1 1  of 
the posterior pdf p(xk−1|Zk−1) at time step k − 1 are available.

 1. Sampling. For each particle xk
i

−1
* , draw a sample xk

i  from an impor-
tance density q k k

i
k( , )*x x z| −1 .

 2. Weight evaluation. The unnormalized weight corresponding to sam-
ple xk

i  is given by
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empirical pdf of the posterior is given by p wk k
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Resampling with replacement according to the normalized weights 
produces a set of samples { }*xk

i
i
N

=1 of the posterior pdf p(xk|Zk). Note 
that if the importance density is chosen to be the transition pdf, that 
is, q pk

i
k
i

k k
i

k
i( , ) ( )* *x x z x x| = |− −1 1 , Equation 12.6 reverts to the basic par-

ticle filter. The general form of the weight equation (Equation 12.6) 
is essentially a modification of the basic form to compensate for the 
different importance density.

  The advantage of this formulation is that the filter designer can 
choose any importance density q(xk|xk−1,zk) provided its support 
includes that of p(xk|Zk). If this condition is met, as N → ∞, the result-
ing sample set { }*xk

i
i
N

=1 will be distributed as p(xk|Zk). This flexibility 
allows one to place samples where they are needed to provide a good 
representation of the posterior, that is, in areas of high probability 
density rather than in sparse regions. In particular, since the impor-
tance density may depend on the value of the received measurement 
zk, if the measurement is very accurate (or if it strongly localizes the 
state vector in some sense), the importance samples can be placed 
in the locality defined by zk [28]. This is especially important if the 
“overlap” between the prior and the likelihood is low—adjusting 
the importance density could avoid wasting a high percentage of 
the particles (i.e., impoverishment). There is considerable scope for 
ingenuity in designing the importance density, and a number of par-
ticle filter versions have been suggested for particular choices of this 
density. An optimal importance density may be defined as one that 
minimizes the variance of the importance weights. For the special 
case of nonlinear dynamics with additive Gaussian noise, a closed-
form expression for the optimal importance density can be obtained 
[21]. In general, such an analytical solution is not possible, but subop-
timal results based on local linearization (via an EKF or unscented 
Kalman filter) may be employed [1].

  As in the basic version of the filter, it is not necessary to carry out 
resampling at every time step. If resampling is omitted, the particle 
weights from the previous time step are updated according to
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  This general result is known as sequential importance sampling, 
and it is most easily derived by (formally) considering the full time 
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history or trajectory of each particle and marginalizing out past time 
steps [1, 6, 20, 21, 28]. This result is also the starting point for most 
expositions on particle filter theory (although, unusually, in this 
paper, the development has been from specific to general).

  Rao–Blackwellized or Marginalized Particle Filter. In many cases, 
it may be possible to divide the problem into linear-Gaussian and 
nonlinear parts. Suppose that the state vector may be partitioned 

as x
x
x

k
k
L

k
N

=


















 so that the required posterior may be factorized into 

Gaussian and non-Gaussian terms:
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 where p k
L

k
N

k( , )x x Z|  is Gaussian (conditional on xk
N) and p k

N
k( )x Z|  is 

non-Gaussian. In other words, the linear component of the state vec-
tor xk

L  can be “marginalized out.” Essentially, the term p k
L

k
N

k( , )x x Z|  
may be obtained from a Kalman filter, while the non-Gaussian 
part p k

N
k( )x Z|  is given by a particle filter. The scheme requires that 

a Kalman filter update be performed for each xk
N particle—see the 

excellent tutorial by Gustafsson [9] for a full specification of the algo-
rithm. This procedure is generally known as Rao–Blackwellization 
[21,29–31]. The main advantage of this approach is that the dimen-
sion of the particle filter state xk

N is less than that of the full state 
vector, so that less particles are required for satisfactory filter per-
formance (see below). This comes at the cost of a more complex algo-
rithm, although the operation count of the marginalized filter for 
a given number of particles may actually be less than that of the 
standard algorithm (see [32]).

12.4 Computational Issues

12.4.1 Computational Cost for Basic Filter

The computational cost of the basic particle filter (with systematic resam-
pling) is almost proportional to the number N of particles employed, both 
in terms of operation count and memory requirements. The computational 
effort associated with each particle clearly depends directly on the com-
plexity of the system dynamics and the measurement process. For exam-
ple, problems involving measurement association uncertainty may require 
a substantial measurement likelihood calculation (i.e., a summation over 
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hypotheses). For such cases, there is a strong motivation to find efficient 
ways of evaluating the likelihood—including approximate gating and the 
use of likelihood ratios (see examples in chapters 11 and 12 of [1]).

A notable advantage of the particle filter is that the available computa-
tional resources can be fully exploited by simply adjusting the number of 
particles—so it is easy to take advantage of the ever-increasing capability of 
cheap computers. Similarly, if the measurement data rate is variable, the filter 
can match the number of particles to the available time interval to optimize 
performance. (However, if the number of particles falls below a critical level, 
the filter performance may degrade to a point from which it cannot recover.) 
Also note that the filter is amenable to parallelization—until a resampling 
event occurs, all particle operations are independent [33,34].

12.4.2 How Many Samples?

This is the most common question about particle filters, and there is no sim-
ple answer. Classical analysis of Monte Carlo sampling does not apply as the 
underlying assumption—that the samples are independent—is violated. In 
the basic particle filter, immediately after the resampling stage, many of the 
particles are almost certainly identical—definitely not independent. Thus, 
unfortunately, particle filters are not immune to the curse of dimensional-
ity, although with careful filter design, the curse can be moderated (see the 
informative and detailed discussion by Daum [27] and Daum and Huang 
[35]). Generally, based on simple arguments of populating a multidimen-
sional space, one must expect the required number of particles to increase 
with the dimension of the state vector—hence, the attraction of the Rao–
Blackwellized or marginalized form of the filter.

The required sample size depends strongly on the design of the particle 
filter and the problem being addressed (dimension of state vector, volume 
of support, etc.). For certain problems, especially high-dimensional ones, an 
enormous, infeasible, number of samples may be required to obtain satisfac-
tory results with the basic filter. To obtain a practical algorithm in these cir-
cumstances, the designer has to be inventive. The theory outlined in Section 
12.3 provides a rigorous framework for exploring options, and with a careful 
choice of proposal distribution and/or exploiting Rao–Blackwellization, it 
may be possible to design a filter that gives quite satisfactory performance 
with a modest number of particles (a few hundred or even tens in some 
cases). However, the basic algorithm has the advantage of simplicity, so that 
the operation count for each particle may be lower than for a more subtle 
filter. Practical particle filter design is therefore a compromise between these 
approaches with the aim of minimizing the overall computational load. Also 
note that heuristic tricks may well be helpful.

The usual way of determining when enough samples are being deployed 
is via trial and error: the sample size is increased until the observed error in 
the parameter of interest (from a set of representative simulation examples) 
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falls to a steady level. If the required sample size is too large for the avail-
able processing resources, one may have to settle for suboptimal filter perfor-
mance or attempt to improve the design of the filter. This empirical approach 
is not entirely satisfactory, and more work in this area is required to obtain, 
at least, guidelines that are of use to practicing engineers.

Finally, note that filter initialization is often the most challenging aspect 
of a recursive estimation problem. In particular, if the prior information (i.e., 
before measurements are received) is vague, so that the initial uncertainty 
spans a large volume of state space, the direct (obvious) approach of populat-
ing the prior pdf with particles may be very wasteful. Semibatch schemes 
using the first few measurement frames may be useful.

12.5 tracking and Guidance Application

12.5.1 introduction

In this section, we describe an application of the particle filter to a nonlinear 
tracking and guidance problem [12–14]. The requirement is to track a target 
(T) in the presence of interfering, intermittent, spurious objects (D), and so 
guide a pursuer to intercept the target.

12.5.2 Formal Problem Statement

12.5.2.1 Dynamics Models

The dynamics of the primary target (T) are described by the following 
(known) discrete system model:

 xTk+1 = fTk (xTk, wTk) (12.8)

where xTk is the target state vector, wTk is system driving noise, and fTk 
describes the dynamics of the target.

At some random time step, the target may spawn a secondary object D in 
the vicinity of T. Thereafter, the secondary object moves independently of T 
according to the following dynamic model:

 xDk+1 = fDk(xDk, wDk) (12.9)

where xDk is the state vector of D. The initial distribution of xDk at birth is a 
(known) function of xTk. The secondary object disappears after a random 
period, and later, (following another random period) another object D may 
be produced. The birth/death sequence of the object D is described by a 
Markov process. If γk = 0 indicates that D does not exist at time step k and 
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γk = 1 indicates that D is in existence, the transitions 0 → 1 and 1 → 0 depend 
only on the probabilities

 p01 = Pr{γk = 1|γk−1 = 0} and p10 = Pr{γk = 0|γk−1 = 1} (12.10)

Clearly, Pr{γk = 1|γk−1 = 1} = 1 – p10 and Pr{γk = 0|γk−1 = 0} = 1 – p01. If the time step 
Δt is constant, the average period between the death of one secondary object 
and the birth of another is Δt/p01 , while the average lifetime of D is Δt/p10. Note 
that this model implies that only two objects may be present at any instant.

At k = 0, it is assumed that only the primary target T is present (γ0 = 0). The 
prior distribution of xT 0 is also assumed to be known.

12.5.2.2 State Vector

For this problem, it is convenient to define a system state vector

 X x xk Tk
T

Dk
T

k
T= ( , , )γ  (12.11)

which evolves with time according to Equations 12.8 through 12.10. Note that 
if γk = 0, xDk is redundant. In this case, it is convenient to set xDk = xTk.

12.5.2.3 Sensor Model

At each time step k, NMk measurements zik are received from a sensor car-
ried by the pursuer (whose position is precisely known). If only the primary 
target T is present (i.e., γk = 0), the probability of detecting the target is PTD. If 
the secondary, spurious object D is also present (i.e., γk = 1), depending on its 
proximity to the primary target and the relative geometry, the sensor may 
be capable of resolving two objects, or it may only be able to resolve a single 
composite object. If the two objects can be resolved, then the probability of 
receiving a measurement from T is PTD, and the probability of receiving a 
measurement from D is PDD (and these are independent events). If the objects 
cannot be resolved, the probability of receiving a single composite measure-
ment is PJD. These probabilities may be functions of the appropriate T or D 
states. Additionally, clutter measurements (independent of the two objects) 
may also be produced by the sensor. We assume that these clutter measure-
ments are uniformly distributed over the measurement space and that they 
are not subject to resolution limitations (although this would be significant 
only in exceedingly dense clutter). The number of clutter measurements 
received at a given time step follows a Poisson distribution with mean m.

Associated with each position measurement zik is a classification flag or sig-
nature parameter cik, which may provide an indication of the type of object 
from which the measurement originated (target, secondary object, compos-
ite, or clutter) but gives no direct information on object position. cik could be 
a discrete output (e.g., target, secondary object, or clutter) or a continuous 
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parameter such as a measurement intensity. The NMk measurements and 
classifications received at time tk are denoted

 ′ =Z z z zk k k k k N k N kc c c
Mk Mk

{( , ), ( , ), ( , )}1 1 2 2   

and the set of all data received up to and including time tk is denoted

 Z Z Z Zk k= ′ ′ ′{ , . . . }.1 2
 

It is assumed that the association between measurements and the objects 
is a priori unknown. An association hypothesis defines a mapping λ from 
the subscripts of the measurements to their source [target (T), secondary (D), 
composite (J), or clutter (C)]:

 λ:{1,2,…NMk} → T, D, J, C. 

Given λ, the conditional pdf’s of the measurements zik are denoted by

 
p i p i

p
T ik Tk D ik Dk

J ik

( ) ( ) ( ) ( )

(

z x z x

z

| = | =
|

if T, if D,λ λ
xx x zTk Dk C iki p i, ) ( ) ( ) ( )if J, if C.λ λ= =

 

The performance of the classifier is denoted similarly by pT(cik|xTk) for 
λ(i) = T, etc. Note that the classifier performance may be state dependent. It is 
assumed that these conditional distributions are known.

Although the specification of the classifier output is essentially identical 
in form to that of the measurements, it is convenient to make the distinction 
between z and c to emphasize that two quite different types of information 
are available, one of which is strongly indicative of object position, while 
the other is primarily dependent on object type. However, if the classifier 
output is state dependent (albeit only weakly), then this also provides some 
information on the object state vector. The particle filter is able to exploit this.

12.5.2.4 General Form of Measurement/Classification Likelihood

By careful consideration of the possible measurement-state associations, the 
likelihood of the state vector X given the data set Zʹ (dropping the time sub-
script k) may be shown to be (for m > 0)
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Here, the likelihood ratio
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The function gT (xT|Zʹ), which may be interpreted as the likelihood of xT for 
the case of a single target in clutter, is given by
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gD (xD|Zʹ) is similar, and
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Also, Pres(X) is the probability that T and D can be resolved (if γ = 1).
The likelihood (Equation 12.12) has three principal terms. The first of these 

(for γ = 0) corresponds to cases when the secondary object is not present so 
that only measurements from the target or clutter are available. The second 
term (for γ = 1 and Pres = 0) represents the case where the secondary object is 
present but it is not resolved, so that only measurements from the composite 
object or clutter are available. The third term (for γ = 1 and Pres = 1) corresponds 
to the case where again the secondary object is present, but it can be resolved 
from the target. Various special cases follow directly from this expression; for 
example, if γ = 0, the likelihood for a single target in clutter is obtained.

Note that if the functions gT (.), gD (.), gJ (.), T ( ). , 
D( ). , and  J ( ).  can be speci-

fied, then the likelihood (Equation 12.12) can be directly used in the particle 
filter update described in Section 12.2.3.

12.5.2.5  Expression for Likelihood with Gaussian 
Measurements and Uniform Clutter

The above solution is valid for any form of (time-independent) measurement 
error characteristic (including, e.g., quantization effects and skewed or truncated 
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distributions). Likewise, any form of clutter distribution may be employed pro-
vided it is independent of the state X. However, consider the common assump-
tions of Gaussian measurement errors and uniformly distributed clutter:

 pT(z|x) = pD(z|x) = N(z;h(x), R), pJ(z|xT, xD) = N(z;hJ(xT, xD), RJ), 

 and pc(z) = 1/V. 

Here, the measurements z are independent, zero mean Gaussian perturba-
tions about a function of the state. In the above expressions, N indicates a 
Gaussian pdf. For the resolved objects, the (possibly nonlinear) measurement 
function is h, and the covariance of the Gaussian perturbation or error is R. 
For the composite return, the measurement function hJ depends on both xT 
and xD. This function could depend on some centroid of xT and xD such as 
(xT + xD)/2. Also, the covariance of the measurement error has covariance 
RJ, which may be different from that of the resolved objects. For example, in 
the case of a radar sensor, the composite measurement might have a larger 
measurement error due to glint type effects. The parameter V in the clutter 
distribution is the volume of the sensor field of view (which is assumed to 
“comfortably” encompass T and D). Note that if the spatial density of the 
clutter measurements in the observation space is ρ, then m = ρV.

In this case, the likelihood p(Z|́X) of Equation 12.12 is specified by (for ρ > O)
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12.5.2.6 Cost Functions for Guidance Problem

In the guidance or pursuit problem, the overall goal is to achieve an intercept 
with a particular target in what may be a complex, multiple-object environ-
ment with substantial uncertainty. This is a stochastic control problem: the 
role of the tracking filter is to construct an estimate of the system state vector 
that can be used by a control law to generate a guidance demand (to drive 
interceptor actuators). In general, from a Bayesian/optimal control perspec-
tive, the filter produces a posterior pdf of the pursuer–target state (the infor-
mation state or sufficient statistic) to generate a control that minimizes the 
expected value of a specified cost function. In the case of intercept guidance, 
the cost function describes the requirement to minimize the miss distance 
(closest approach) between the pursuer and the required target, usually 
within some time or energy constraint. (For the rendezvous problem, the 
requirement is to minimize the velocity as well as the positional difference.)

The miss distance is the Euclidean distance between the pursuer and the 
target at the point of closest approach up to some final time step NF. The aim 
of the pursuer is essentially to minimize the miss distance via an appropri-
ate choice of future control demands U u u uk k k NF

+
+= { , , , }1   at each time step 

[given previous measurements and controls (Zk, Uk−1)]. Clearly, the achieved 
miss for a given control sequence Uk

+  depends on the future trajectory of 
the target. For most interesting interception problems, the pursuer does 
not have perfect information on the future target trajectory. This is because 
future target maneuvers are usually unknown and because the current tar-
get state (i.e., xT k) is not perfectly known but has to be estimated via the 
guidance estimator (where we assume that the pursuer state is perfectly 
known). A full stochastic control law should therefore take account of both 
these sources of uncertainty (i.e., the expectation of the future cost should be 
over these sources of uncertainty). For multiple-object scenarios, the latter 
factor will often be dominant. Thus, for the purposes of this example, we 
shall assume that if the current pursuer–target state were perfectly known, 
the future target path would be precisely defined, that is, the achieved miss 
m md d Tk k= +( , )x U . Under this assumption, if there is no explicit cost on the 
control action, the optimization problem at time step k is of the form
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for admissible control sequences Uk
+, where fc(.) is a cost function.

If the posterior distribution of xTk is represented by a set of samples { }*xTk
i

i
N

=1 , 
a possible approximation for Equation 12.16 is [13]
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Note that in this approximation, we have ignored the contribution of future 
measurements (zj for j > k) to learning about the future state. In the full stochas-
tic optimization problem, the expectation in Equation 12.16 is over the uncertain 
information from future measurements as well as more obviously over the cur-
rent state. This may result in control demands that cause the pursuer to deviate 
from a straightforward intercept course to improve observability of the system. 
This effect is known as “dual control” [36–38]. To attempt a full optimization 
over future measurements would massively complicate the solution [26]—espe-
cially for guidance against multiple objects. The approximation invoked here 
of ignoring future information is known as an open-loop optimal feedback 
approach [39]—and clearly, this precludes the possibility of dual effect. (For 
LQG assumptions, the certainty equivalence property holds, allowing a simple 
and most convenient optimal solution [39]—also without dual effect.)

The form of the cost function fc(md) requires careful consideration for multiple- 
object scenarios. In particular, the familiar quadratic cost may be inappropriate 
because it always attempts to drive the system toward the expected value of 
the state. For a multiple-object scenario, the expected target position may lie 
between two objects, and in the event that this situation persists as range closes, 
the quadratic cost could give rise to a guidance strategy that would ensure a 
miss. This is because the cost of missing is unbounded for the quadratic func-
tion: probability mass of the target distribution that is quite remote from 
positions accessible to the pursuer may still significantly affect the guidance 
demand. This clearly does not reflect the usual requirement in an interception 
problem: if the miss distance exceeds a certain threshold, the cost is effectively 
constant. Thus, it is more realistic to employ a bounded cost function, and in 
this paper, we have chosen to use an inverse Gaussian function of the form

 f m mC d d( ) exp( ),= − − /1 2 2σ  

where the parameter σ determines the extent of the “well” in the cost (see 
Tanner [40]). With this cost function, 0 ≤ fc(md) < 1, and the penalty for miss-
ing any target probability mass is essentially constant (near unity) if the miss 
distance exceeds 3σ.

12.5.3 Simulation Example

To illustrate the operation of the particle filter and guidance scheme, a single 
plane, tail-chase pursuit scenario has been simulated.

12.5.3.1 Object Paths

The target (T) moves at constant speed V0, initially in a straight line and 
then, after 25 time steps, at a constant turn rate of ω0. Three spurious objects 
(D1, D2, and D3) are generated at time steps 25, 40, and 55. At birth, each 
spurious object is collocated with the target and has the same velocity as the 
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target. Subsequently, the objects maintain their speed (V0) but immediately 
turn away from the target (i.e., at a constant turn rate of –ω0). Each D object 
survives for 20 time steps and then disappears. The paths of T, D1, D2, and 
D3 are shown in Figure 12.3. The pursuer also moves at a speed VM = 1.6V0 
and has a maximum turn rate of ωM = 3.75ω0 (and so has a maximum lateral 
acceleration six times that of the turning target). Its heading is controlled by 
a guidance demand uk (turn rate), which is updated at every time step. Thus, 
the heading ϕ of the pursuer is given by

 ϕk+1 = ϕk + ωM Δtuk (12.18)

where |uk| ≤ 1 and Δt is the time step period. (The pursuer is assumed to 
respond instantly to the demand—it is lag free). The initial position of the 
pursuer is behind the target and pointing roughly toward it, so the first part 
of the pursuer’s path is not visible in Figure 12.3 (note the unequal axis scales 
in this figure).

12.5.3.2 Sensor Measurements

The sensor, mounted on the pursuer, takes noise-corrupted measurements 
of range, range rate, and bearing with respect to nonrotating axes. (It is 
assumed that the position, velocity, and orientation of the pursuer are per-
fectly known with respect to a set of fixed axes, that is, it has a perfect inertial 
measurement unit.) The interval between measurements is Δt. The sensor 
has a finite field of view, which at each time step is centered on the expected 
“position” of the target in observation space, as estimated by the filter. Any 
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object falling within the sensor’s field of view is detected. The sensor is able 
to resolve T and D objects only if their angular separation is greater than 
Δθ = 0.01 rad, if their range separation is greater than Δr = 0.02 units, or if 
their range rate separation is greater than ∆r = .0 0005  units/Δt. Due to the 
geometry of the problem, the sensor is not able to resolve D objects for the 
first few time steps following their birth (shown as “composite T/D measure-
ments” in Figure 12.3). For resolved objects, the sensor measurements are a 
Gaussian perturbation about their actual values, with standard deviations 
in bearing, range, and range rate of Δθ, Δr, and ∆r, respectively. For unre-
solved objects, the perturbation center is the centroid of the pair. The spatial 
clutter density is ρ = 5 per radian per unit per unit/Δt. Associated with each 
positional measurement is a classification flag that gives information on the 
origin of the measurement. In this example, the classification flag can take 
three possible values. The probability of obtaining a particular flag value 
is indicated in Table 12.1. Note that the classification flag is independent 
between time steps. For this example, the flag gives a fairly strong indication 
if the measurement is from a composite, unresolved return (flag = 2 with a 
probability of 90%).

Measurements received from the sensor are subjected to a coarse accep-
tance test to reject any clutter returns that are remote from the filter’s esti-
mate of T and D. Simulated measurements accepted by the filter are shown in 
Figure 12.4. The first three traces in this figure show the “errors” in bearing, 
range, and range rate on the accepted measurements, that is, with respect to 
the actual position and velocity of the target. The spawning of the spurious 
objects D1, D2, and D3 from T is evident in the plot of bearing errors. Note that 
only in the case of D2 are all 20 measurements from the object accepted—D1 
and D3 pass out of the sensor’s field of view (so effectively dying from the fil-
ter’s perspective) before they are terminated. Also note that at certain times, 
measurements from more than one spurious object are accepted (e.g., at time 
step 58, measurements from T, D2, and D3 are accepted), thus violating a key 
assumption of the filter model. The fourth trace in Figure 12.4 shows the clas-
sification flag associated with each measurement. As one would expect from 
Table 12.1, the composite measurements are usually assigned a flag value 
of 2.

TABlE 12.1

Classification Probabilities

origin of Actual Measurement

Classifier output

1 2 3

T 0.60 0.30 0.10
D 0.30 0.60 0.10
Composite 0.05 0.9 0.05
Clutter 0.15 0.15 0.70



461Introduction to Particle Filters for Tracking and Guidance

12.5.3.3 Filter Models

The basic particle filter algorithm of Section 12.2.3 has been employed using 
N = 10,000 samples. The state vector Xk for the problem consists of Cartesian 
position and velocity coordinates for T and D together with the existence flag 
γ, so the general form (Equation 12.11) may be written as

 Xk
T

T T T T D D D D kx x y y x x y y= .( ), , , , , , , ,    γ  

The pursuer’s position and velocity are not included in the state vector as 
they are assumed to be perfectly known. The measurement likelihood is the 
general expression 12.12 with Gaussian measurement models specified by 
Equations 12.13 through 12.15 with covariance matrices R and RJ given by 
the above standard deviations Δθ, Δr, and ∆r . The measurement functions 
h and hJ are nonlinear functions that transform the Cartesian state vector to 
the polar measurements. The probability Pres(X) of resolving T and D is 0 or 1, 
depending on whether or not xT and xD are in the resolution cell specified by 
Δθ, Δr, and ∆r. The classifier information is in the form of discrete flags, so 
the classifier performance specifiers [pT(c|xT), pD(c|xD), pJ(c|xT, xD), and pc(c)] 
are the probabilities given by Table 12.1 (and are independent of X in this 
example). The assumed detection probabilities are PTD = PDD = PJD = 0.95. 
Thus, except for the detection probabilities and multiple spurious objects, the 
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measurement likelihood employed by the particle filter is exactly matched to 
the simulated data. So, the particle filter is able to directly exploit this highly 
nonlinear measurement information without invoking any approximations.

The dynamics models (Equations 12.8 and 12.9) for T and D are both rep-
resented by discrete, linear-Gaussian second-order models (i.e., near-constant 
velocity) with the same level of driving noise [13]. Thus, the filter cannot use 
dynamics to discriminate between T and D. The assumed Markov transition 
probabilities for the spurious object birth/death process are p01 = p10 = 0.05. So, 
the assumed average period between the death of one object and the birth of 
another is 20 time steps, and the assumed average lifetime of D is also 20 time 
steps. This assumed average lifetime is well matched to the simulated scenario, 
but the death-to-birth interval is much too short for the final part of the engage-
ment. Also note that the noise-driven, near-constant velocity, dynamics models 
are not matched to the constant turn-rate object paths. The initial (at birth) pdf 
of the state of D relative to T is assumed to be Gaussian centered on T with stan-
dard deviations of 0.05 units in x and y and 0.01 units/Δt in x  and y .

12.5.3.4 Guidance Demands

To determine a guidance turn-rate demand (Equation 12.18) that minimizes 
a cost function of the form of Equation 12.17, it is necessary to derive an 
expression for the miss distance md as a function of Xk, the pursuer’s state, 
and the sequence of future controls Uk

+. To simplify the optimization prob-
lem and to produce an intuitively satisfactory trajectory, the choice of future 
controls is restricted to a constant turn rate, that is, uj = uk for j > k. Thus, the 
requirement is reduced to selecting a single number uk from the range [−1, 
+1]. Using the assumption that future target maneuvers may be neglected 
(see Section 12.5.2.6), a simple approximate expression for the miss distance 
may be obtained so that the future cost fc(md) may be easily evaluated for the 
current state vector and any choice of uk [13]. Therefore, the expected future 
cost for the inverse Gaussian may be approximately evaluated using the 
target samples { }*xTk

i
i
N

=1  from the particle filter. For this simple problem, the 
value of uk that minimizes the expected cost and is used for guidance can be 
found by evaluating the expected cost (Equation 12.17) over a grid of points. 
The pursuer path generated by this procedure is shown in Figure 12.3—in 
this example, the achieved miss distance is about 0.004 units.

12.5.3.5 Filter Estimates

The filter’s estimate of the target track (the mean of the sample set 
{( , ) , , }* *x y i NTk

i
Tk
i : = 1  ) is shown in Figure 12.3. It can be seen that the track is 

noticeably pulled away from the target path by the presence of D2. However, 
as already noted, the mean of the samples is a poor summary of information 
from the particle filter. Figure 12.5 shows some subsets of the target samples 
at every third step from time step 30 to 66, that is, as the target is turning and 
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when D1 to D3 are being spawned. The presence of the D objects first draws 
the centroid of the sample clumps away from the target and then splits the 
clump when the D objects are resolved (indicating association uncertainty). 
In the cases of D1 and D3, the target samples (incorrectly) assigned to the 
D objects soon die out (due to the integration of classification information). 
However, some target particles cling to D2 until it dies (causing the deviation 
of the target track seen in Figure 12.3). This effect is also seen in Figure 12.6, 
which shows the evolution of the estimate of the marginal pdf’s p(yTK|Zk, Uk) 
as a histogram of the particles, that is, approximately in the cross-range direc-
tion. The multiple modes of these marginal pdf’s are due to the uncertainty 
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in associating measurements with the target, and the balance of the prob-
ability mass between the modes indicates the filter’s assessment of which 
corresponds to the true target.

12.5.3.6 Guidance Analysis

To analyze the guidance performance of the pursuer, it is useful to consider 
the estimated distribution of the miss distance for uk = 0, for the latter part 
of the engagement. This is called the zero-effort miss (ZEM) distribution, 
and for the particle filter (under the assumption of no future target maneu-
vers), it is represented by the sample set { ( , ) , , }*m u i Nd Tk

i
kx = : =0 1  , where 

md(.) is the approximate predicted miss discussed above. The ZEM distri-
butions for the last 37 time steps prior to fly-past are indicated in Figure 
12.7. In this figure, the vertical axis represents the miss distance, and time 
steps are shown along the horizontal axis. For each time step shown, the 
thickness of the vertical line represents the probability density of the ZEM 
(derived from a histogram of the ZEM sample set). Note that toward the end 
of the engagement, the ZEM distribution splits into two separate clumps 
corresponding to T and D2 (the upper clump being due to T). The mean 
of the ZEM is also shown: it passes between the clumps through a region 
of low-probability mass. Note that displacement of the ZEM distribution 
between time steps is strongly influenced by the chosen guidance demand. 
The extent of the miss that can be corrected by the pursuer’s control author-
ity (i.e., the available divert) is shown as upper and lower bounds in the 
figure. Clearly, as the time of fly-past is approached, this extent of available 
divert reduces to zero.
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In an ideal engagement, as the pursuer approaches the target, the ZEM dis-
tribution would collapse to a tight concentration, and the guidance demand 
would force this concentration toward zero miss distance. Specifically, to 
engineer a perfect intercept, the distribution of ZEM should remain within 
the available divert—hence the concept of reachable set guidance (see 
Lawrence [41]). Clearly, this is not possible for the current example due to the 
two diverging clumps of probability mass. However, the inverse Gaussian 
cost function produces a reasonable response to this problem. Roughly 
speaking, a minimum cost control is achieved by maximizing the ZEM prob-
ability mass contained within the well of the cost function. The result of this 
is to force the pursuer toward one of the two clumps as the ZEM distribution 
separates. Thus, a smooth transition is achieved from a hedging (and learn-
ing) guidance strategy to a hard decision prior to intercept.

12.6 other Applications

Particle filters have been employed in a wide range of domains: essentially, 
wherever there is a requirement to estimate the state of a stochastic evolving 
system using uncertain measurement data. Below, we briefly indicate some 
of the more successful or popular applications (with a bias toward tracking 
problems).

12.6.1 Tracking and Navigation with Bounded Support

Particle filters are ideal for problems where the state space has a restricted 
or bounded support. Examples include targets moving on a road network 
(the Ground Moving Target Indicator problem—see [42,43] and chapter 10 
of [1]), inside a building [44], or in restricted waters [45,46]. Hard edges and 
boundaries, which cannot be easily accommodated by Kalman-type filters, 
do not pose any difficulty for the particle approach. Essentially, the bounded 
support is simply flooded with particles.

12.6.2 Tracking with Nonstandard Sensors

The classical nonlinear tracking test case is the bearings-only problem with 
passive sensors (acoustic, electro-optical, or electronic support measures), 
and particle filters have certainly been applied to examples of this type (see 
[16,46] and chapter 6 of [1]). However, particle tracking filters have also been 
successfully implemented with range-Doppler sensors that provide mea-
surements of only observer–target range and range rate (see chapter 7 of [1]). 
An interesting application to a network of binary sensors (i.e., each sensor 
provides one bit of information) is reported in [47]. Also, particle filtering 
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of raw sensor outputs (such as pixel gray levels) has been examined by a 
number of workers in the context of track-before-detect (see chapter 11 of [1] 
and [48–51]).

12.6.3 Multiple-Object Tracking and Association uncertainty

The obvious way of approaching multiple target tracking problems is to con-
catenate the state vectors of individual targets and attempt to estimate the 
combined state. This approach is appropriate if the targets’ dynamics are 
interdependent (e.g., formation or group dynamics—see chapter 12 of [1]) 
or if there is measurement association uncertainty (or unresolved targets) 
due to object proximity [52]. Particle filters have been successfully applied 
in these cases for small numbers of objects (as in Section 12.5), although 
the evaluation of the likelihood function (for every particle) can be expen-
sive as it involves summing over feasible assignment hypotheses. An alter-
native, more efficient route suggested in [53] is to employ a probabilistic 
multiple hypothesis tracker likelihood, which effectively imposes indepen-
dence between object-measurement assignments. This approach may also 
be viewed as a superposition of Poisson target models (possibly including 
extended objects) [54]. Particle filtering is also an implementation mecha-
nism for the finite-set statistics probability hypothesis density filter [55–58].

12.6.4 Computer Vision and Robotics

Particle filtering was introduced to the computer vision community as 
the CONDENSATION algorithm [18]. In this application, the state vector 
includes shape descriptors as well as dynamics parameters. This has been 
a successful domain for particle filters, and there is now substantial litera-
ture especially in the IEEE Computer Society Conferences on Computer 
Vision and Pattern Recognition and the IEEE International Conferences on 
Pattern Recognition. Applications include tracking of facial features (espe-
cially using active contours or “snakes”), gait recognition, and people track-
ing (some recent publications include [59–62]). Particle filters are also well 
represented in the robotics literature: they have been successfully applied to 
localization, mapping, and fault diagnosis problems [44,63–65].

12.6.5 Econometrics and Financial Time Series

Progress in this field has tended to parallel, but to remain largely indepen-
dent of, engineering developments. However, in the case of particle filtering 
and Monte Carlo methods, there has been perhaps more “cross-over” than 
usual. Econometric applications include stochastic volatility modeling for 
stock indices and commodity prices [66–69].
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12.6.6 Numerical Weather Prediction

The requirement here is to update model states with observational data 
from, for example, weather satellites. This is known as data assimilation and 
can be viewed as a (very large) nonlinear dynamic estimation and prediction 
problem. A range of techniques is employed, including EKFs and “ensemble 
Kalman filters,” which use samples for nonlinear state propagation but fit a 
Gaussian for the Kalman update operation (see the special issue of the IEEE 
Control Systems Magazine [70]).

12.7 Conclusions

Over the past few years, particle filters have become a popular topic. There 
have been a large number of papers demonstrating new applications and 
algorithm developments. This popularity may be due to the simplicity and 
generality of the basic algorithm—it is easy to get started. Furthermore, 
the particle filter is not another variant of the EKF: it does not stem from 
linear-Gaussian or least-squares theory. It also appeals to both the practical 
engineer (algorithm tuning) and to the more theoretical community (with 
substantial challenges to develop performance bounds and guidelines for 
finite sample sizes). Undoubtedly, a key enabler for this activity has been the 
massive increase in the capability of cheap computers—as Daum [27] has 
pointed out, “computers are now eight orders of magnitude faster (per unit 
cost) compared with 1960, when Kalman published his famous paper.”

The basic or naive version of the particle filter may be regarded as a black 
box algorithm with a single tuning parameter—the number of samples. This 
filter is very effective for many low-dimensional problems, and perhaps 
fortuitously, reasonable results were obtained for state vectors with about 
10 elements without resorting to an enormous number of particles. For more 
challenging high-dimensional problems, a more subtle approach (exploiting 
Rao–Blackwellization and carefully chosen proposal distributions) is gener-
ally beneficial—there is a design trade-off between many simple or fewer 
smart particles. This (problem-dependent) compromise would benefit from 
further study.

Initially, most particle filter applications were in simulation studies or 
offline with recorded data. However, particle filters are now appearing as 
online elements of real systems—mainly in navigation and robotics appli-
cations. The technology (and necessary processing capability, e.g., exploit-
ing graphics processing units [33]) is now sufficiently mature to support the 
leap to such real-time system implementation. We expect to see a significant 
increase here in coming years.
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Appendix: Worked example—Pendulum estimation

To demonstrate the operation of the particle filter, we present an application 
to a pendulum estimation problem. A weightless rigid rod of length L is freely 
pivoted at one end and carries a mass at its other end. The rod makes an angle 
θ with the horizontal, and its instantaneous angular acceleration is given by

 θ θ= / − +( )( )cos1 L g v  

where g is the acceleration due to gravity and υ is a random disturbance. 
This differential equation is the motivation for the following simple discrete 
dynamics model:

 
θ θ θ θ πk k k k kt t L g v= + + / − +− − − −mod[ ( )( )cos , ]1 1
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 θ θ θk k k kt L g v= + / − +− − −













1 1 1( )( ) cos∆

 (12.19)

where θ has been restricted to the range [0, 2π), Δt is the fixed time step, 
and the acceleration disturbance υk is a zero mean, white, Gaussian random 
sequence of variance q. Thus, this example has a two-element state vector 
xk k k

T= ( , )θ θ  for k > 0. Measurements are obtained from the length of the 
rod projected onto a vertical axis, that is, L|sinθk|. These measurements are 
quantized at intervals of δ but are otherwise error-free, so

 zk = Qδ(L|sinθk|),

where the quantization operator Qδ(x) = (n − 1)δ for the integer n such that 
(n − 1)δ < x ≤ nδ. Thus, the likelihood of the state vector is

 p
z L z

k k

k k k

( )
sin

z x| =
< | | ≤ +

.









1

0

if

otherwise

θ δ
 (12.20)

In other words, given a measurement z, the projected length of the pendulum 
is equally likely to be anywhere in the interval (z, z + δ] but cannot be anywhere 
else. The problem is to construct the posterior pdf of the state vector ( , )θ θk k

T
  

given the set of measurements Zk and the initial conditions that θ0 is uniformly 
distributed over [0, 2π) and θ0 is Gaussian distributed with known mean and 
variance. The dynamics recursion (Equation 12.19), the likelihood (Equation 
12.20), and the above initial conditions completely specify the problem for 
application of a particle filter. This system is illustrated in Figure 12.8 for δ = L/3.
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The basic version of the particle filter has been applied to this example. 
Here, each particle is a two-element vector ( , )θ θ . As already indicated, the 
prediction phase of the filter consists of passing each particle through the 
dynamics model (Equation 12.19). A MATLAB code for this example is shown 
below. In this code, the posterior particles { }*x i

i
N

=1 are contained in the 2 × N 
array x_ post, where the two rows correspond to θ and θ, and each column 
is an individual particle. Similarly, the prior particles { }x i

i
N

=1 are contained in 
the 2 × N array x_prior, and nsamples is the number of particles N. The 
unnormalized weights for each particle are stored in the N element array 
likelihood, while the normalized weights and their cumulative sum are 
held in weight. It is easy to recognize the dynamics Equations 12.19 in the 
prediction phase and the likelihood 13.20 in the update phase.

Hopefully, this code listing will clarify the specification of the filter given 
in Section 12.3. Note that the complete filter can be expressed in a few lines 
of MATLAB: the basic algorithm is (embarrassingly) simple. Furthermore, 
there are no “hidden extras”: the code does not call any sophisticated numer-
ical algorithms (numerical integration packages, eigenvector solvers, etc.) or 
symbolic manipulation packages—except perhaps for the random number 
generator and the MATLAB array handling routines.

%**********************************************************************

%Generate initial samples for k=0:
x_post(1,:)      = 2*pi*rand(1,nsamples);
x_post(2,:)      =  theta_dot_init + sig_vel_init*randn(1,nsamples);

for k=1:nsteps

    % PREDICT
    F1           = dt*dt/(2*pend_len);      F2=dt/pend_len;
    drive1       = randn(1,nsamples);    % random samples for system noise
    accn_in      = (-gee+drive1*sig_a).*cos(x_post(1,:));
     x_prior(1,:) = mod( x_post(1,:) + dt*x_post(2,:) + F1*accn_in , 2*pi );
    x_prior(2,:) = x_post(2,:)      + F2*accn_in;

    % UPDATE
    % EVALUATE WEIGHTS resulting form meas(k):
    project      =  pend_len.*abs(sin(x_prior(1,:)));  % rod projection for each sample
    likelihood   = zeros(nsamples,1);
     likelihood( find( project>=meas(k) & project<meas(k)+delta ) )=1;
    weight       = likelihood/sum(likelihood);     % normalise weights
    weight       = cumsum(weight);                 % form cumulative distribution

    % RE-SAMPLING PROCEDURE (SYSTEMATIC)
    addit=1/nsamples; stt=addit*rand(1);
     selection_points=[ stt : addit : stt+(nsamples-1)*addit ];  j=1; %set up comb
    for i=1:nsamples
      while selection_points(i) >= weight(j); j=j+1; end;
      x_post(:,i) = x_prior(:,j);
    end;

    % OUTPUT:  store posterior particles (for analysis only)
    samp_store(:,:,k) = x_post;
end
%***********************************************************************
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This program has been applied to the data set shown in Figure 12.9. Here, 
the quantization interval is δ = L/2, so the only information available from 
the measurements is whether the projected rod length is greater or less than 
L/2 (i.e., one bit of information). The other parameters of this simulation are 
θ0 = 0.3 rad, θ0 2=  rad/s, Δt = 0.05 s, L = 3 m, and g = 10 m/s2, and the stan-
dard deviation of the driving noise υ is 7 m/s2. In the 10-s period shown, 
the pendulum changes its direction of rotation twice (after about 1 and 8 s), 
between  which it makes a complete rotation. The initial conditions sup-
plied to the particle filter are that the angular velocity θ0  is from a Gaussian 
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FiguRE 12.8
Pendulum with quantized projection measurement.
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distribution with a mean of 2.4 rad/s and a standard deviation of 0.4 rad/s. 
As already stated, the initial angle θ0 is uniformly distributed over (0, 2π) 
rad. The initial particle set is drawn from these distributions as shown in the 
above listing.

The result of running the filter with N = 1000 particles is shown in 
Figure 12.10. This figure shows the evolution of the posterior pdf of the angle 
θ obtained directly from the posterior particles. The pdf for each of the 200 
time steps is a simple histogram of the posterior angle particles. The evolv-
ing distribution consists of streams or paths of modes that cross and pass 
through regions of bifurcation. For this case of δ = L/2, the measurements 
switch between 0 and L/2 whenever |sinθ| = 0.5, that is, when θ = π/6, 5π/6, 
7π/6, or 11π/6. As is evident from Figure 12.10, at these transition points, the 
pdf modes sharpen. Occasionally, a path is terminated if it is incompatible 
with a measurement transition (e.g., for θ = 11π/6 at about k = 15). The actual 
angle of the pendulum is shown as a string of dots.

Note that N = 1000 is adequate to give a fairly convincing estimate of the 
posterior density, although it appears a little ragged in the region θ = π/6 to 
5π/6 about the vertically up position (where the angular velocity tends to 
be low and the pendulum may swing back or continue over the top). The 
ragged structure can be smoothed by increasing the number of particles—
Figure 12.11 shows the evolving pdf for the extravagantly large value of N = 
50,000. This produces a pleasingly smooth result but is otherwise very simi-
lar to the 1000 particle result. The N = 1000 case took about 5 ms per time step 
to run on a modest PC—a quite acceptable rate for the quality of the result. 
For N = 50,000, the time taken increased almost linearly to 260 ms per time 
step. Note that apart from the obvious time penalty, it is trivial to improve 
filter performance to approach the exact posterior pdf.
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476 Advances in Missile Guidance, Control, and Estimation

Discussion

This filtering example was chosen to demonstrate the particle filter because 
it is simple to specify and would be difficult to tackle using an EKF (or an 
unscented Kalman filter). It is also a low-dimensional case and so is an easy 
example for a particle filter. With some effort, it would be possible to develop 
a multiple-hypothesis Kalman filter to capture the multimodal nature of the 
posterior pdf and to include the 2π wraparound in angle. Also, it might be 
possible to represent the quantization function as a form of Gaussian mix-
ture. However, this would all be quite awkward and definitely approximate 
(and would probably be more computationally expensive). The particle 
approach avoids all such difficulties in this example. Also, the traditional 
summary descriptors of recursive estimation—the mean and covariance—
would be quite inappropriate for this example, where the posterior pdf is 
often multimodal and sometimes unimodal but highly skewed.
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13
Practical Techniques for the Design of Multirate 
Digital Guidance Laws and Autopilots

C. A. Rabbath, N. Léchevin, and M. Lauzon

13.1 Introduction

Guidance laws and autopilots are generally developed in the continuous-
time (CT) domain. Such systems act upon CT signals and may include exact 
filtered differentiation and integration. For example, the classical propor-
tional navigation guidance (PNG) law processes filtered line-of-sight (LOS) 
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rates [1]. However, in practice, guidance and control systems are implemented 
on digital hardware and, consequently, input and output discrete-time (DT) 
signals. Despite this fact, most homing guidance laws and autopilots pro-
posed recently have, for the most part, ignored the digital implementation 
issue. Homing guidance laws have been devised to improve performance 
of weapons in the presence of maneuvering targets, uncertain weapon 
dynamics and evader information, and limited acceleration capabilities 
[2–10]. Figure 13.1 shows the generic block diagram of a digital control sys-
tem with its required subsystems: digital processors, analog-to-digital (A/D) 
and digital-to-analog (D/A) converters, actuators, and sensors. It is known 
that a digital implementation may adversely affect the performance of the 
weapon, when compared with that of a CT control system, due to compu-
tational delays, quantization, and finite update rates [11]. For example, ideal 
sampling, which models the A/D conversion, is a periodic operation that 
outputs the value of a CT signal at every T instants of time, with a finite num-
ber of bits to represent the value of the DT signal. Intuitively, the faster the 
sampling process, the closer the value of the sampler output to that of the CT 
input signal. If the LOS rate is used by the guidance law, as is the case with 
PNG, the sampling rate should be selected fast enough such that sufficient 
information on the LOS rate is available for the guidance computations. Yet, 
sampling period T is a parameter that cannot always be selected as small as 
required by the designer. Indeed, modern weapons are increasingly subject 
to a greater number of onboard computations to foster an expanded level 
of autonomy. Although capabilities in computing are constantly improving, 
designers must exercise care when it comes to choosing the sampling and 
control update rates as the range of sampling rates available for guidance 
and control is constrained by the available hardware and software and by 
the variety of computing tasks performed onboard the vehicles. Ideally, the 
digital nature of the guidance and the autopilot systems, and the constraints 

Pursuer (missile)

Evader (target)

Sensors

Actuators

Autopilot
and

guidance law
A/DD/A

Digital processor

Figure 13.1
Missile guidance and autopilot as a digital control system.
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on the choice of the sampling and control update rates, should be addressed 
right at the synthesis phase, the reason being the need to guarantee ana-
lytically closed-loop stability and a certain level of closed-loop performance. 
Ultimately, approaches to the synthesis of autopilots and guidance laws war-
ranting a satisfactory level of performance for the largest range of sampling 
and control update rates are preferred. For example, it may happen that the 
available hardware and the computing requirements force the designer to 
implement the guidance law and autopilot schemes at a relatively slow rate, 
for which classical techniques of CT to DT guidance and autopilot conver-
sion fail to warrant satisfactory closed-loop performance. Furthermore, plant 
output, if processed digitally, may only be available to the autopilots and the 
guidance laws for relatively long update periods. The conversion of systems 
from CT to DT, known as digital redesign (DR), is favored in practice over 
the other approaches of direct DT design and sampled-data design [12], as 
DR takes advantage of the vast body of knowledge available with CT synthe-
sis methods, a variety of software tools for CT synthesis, and the intuitive 
physical interpretation of CT systems that engineers are most comfortable 
with. The classical DR approaches are based on the following principle: dis-
cretize the individual CT controllers with methods such as hold invariance, 
matched poles and zeros, and numerical approximation to differentiation 
and integration [13]. Such DR techniques, however, are known to be highly 
sensitive to sampling rate selection and may even result in unstable missile 
control systems when sampling rates are too slow.

With the availability of processors, data acquisition units, and I/O boards 
operating at various rates and with the presence of multiscale missile 
dynamics, there arises an additional level of flexibility for the utilization 
of the available resources, which could enable a reduction in the real-time 
computational burden. To achieve such an objective, guidance and autopilot 
must be designed to operate on signals evolving at multiple sampling and 
control update rates. The idea is as follows. The output of a dynamic system 
should be sampled at a rate selected with respect to the system dynam-
ics, as is well known [14]. In that sense, employing sampling rates tailored 
to the time constants of the CT plant output signals upon which the sam-
pling processes act and updating the DT control law at rates fast enough 
to warrant stability and performance may enable effective handling of the 
available computing resources. For example, missiles usually exhibit mul-
tiple dynamic scales, as the inner-loop angular rate feedback of a missile 
autopilot typically has a faster response than the outer-loop acceleration 
feedback [15]. Ideally, one would then sample the angular rate signal with 
a faster rate than that used for acceleration. If multirate sampling and con-
trol update is not implemented, the presence of multiple missile dynamic 
scales may result in a control system with overly sampled slow signals to 
accommodate the sampling of the fast signals and may preclude real-time 
execution. Alternatively, one may view multirate control as a means to 
compensating for the limited plant output sampling capabilities by means 
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of fast control input updates. As benefits of multirate control, Azad and 
Hesketh [16] show that using plant output sampling and control input hold 
at different rates may provide better trade-offs between performance and 
implementation costs, and Yang and Tomizuka [17] propose a multirate 
control scheme to reduce the real-time control computational burden for 
hard disk drive servo systems by updating components of the controller at 
different rates without performance degradation. For missile control, there 
have been works on multirate optimal autopilot [15] and dual-rate digital 
guidance law synthesis [18].

In this chapter, we discuss practical techniques for the design of digital 
homing guidance laws and autopilots. The methods put forth rely on opti-
mal control theory and handle implementations at multiple and at single 
sampling and control update rates. The design approaches guarantee per-
formance preservation in the process of going from an idealized CT missile 
control system to a practical multirate DT implementation. The fundamental 
concepts and tools needed for design are described in Section 13.2, includ-
ing the concept of DT lifting [19], which enables single-rate modeling and 
analysis of multirate weapon control systems. In Section 13.3, models are 
obtained for the kinematics of a two-dimensional engagement and for the 
uncertain missile dynamics. A robust homing guidance law is then devised 
as a three-step synthesis: design of CT robust guidance, modeling of multi-
rate generalized DT plant, and solution to the single rate robust DT control 
problem. In Section 13.4, dual-rate autopilot synthesis is described. Digital 
missile autopilots are usually obtained as follows: first, design a linear CT 
missile autopilot for each operating point in the missile flight envelope, then 
convert such controllers to single-rate DT systems, and schedule the param-
eters online. To relax the constraint on the value of the sampling period, 
at least to some extent, single-rate DR methods have been introduced over 
the last two decades [20–26]. These techniques take into account the CT con-
trol system topology and the plant dynamics in the conversion process. As a 
result, control systems exhibit satisfactory performances over a wider range 
of sampling rates when compared with classical (local) DR techniques [23]. 
Here, two digital autopilot design techniques are presented. Both consider 
the CT control system topology and the plant dynamics in the conversion 
process. One autopilot synthesis relies on the solution to a DT H2 optimal 
control problem, while the other technique takes advantage of well-known 
polynomial tools to warrant closed-loop stability while enabling complexity-
constrained controllers. In Section 13.5, to test the guidance and autopilots 
under various implementation conditions, simulations are carried out with 
high-performance computing and fixed-point, finite word length implemen-
tations. Sophisticated guidance and flight control laws require, in general, 
high-performance microelectronics. Here, however, we demonstrate that sat-
isfactory levels of performance can be achieved through careful synthesis of 
the guidance laws and autopilots without requiring high-end computational 
capability.
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13.2 Preliminary Concepts

13.2.1 Operators in DT Domain

Consider a DT signal f(k, T) : N → Rn, where T ∈ R+ is the sampling period 
and k ∈ N is the time step. f(k, T) can be written as the following sequence of 
vectors in Rn:

 f(k, T) = {…,f(0, T), f(1, T), f(2, T),…}. (13.1)

The shift operator q acting on f(k, T) is given as
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For a linear, time-invariant (LTI) DT system G with state x(k, T) ∈ Rn, input 
u(k, T) ∈ Rm, and output y(k, T) ∈ Rp, the state-space equation in the shift form 
is given as follows:

 x(k + 1, T) = Ax(k, T) + Bu(k, T) 

 y(k, T) = Cx(k, T) + Du(k, T) 
(13.3)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. Equation 13.3 is the classical 
expression for DT systems.

It is now a well-established fact that a DT system can also be expressed in 
the so-called delta form [27]. Using the DT signal f(k, T) the delta operator 
can be defined as

 δf k T
f k T f k T
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which is reminiscent of the numerical approximation to the derivative. It 
is easily seen that the delta operator can be expressed in terms of the shift 
operator. To obtain the state-space equations for a given DT system G in the 
delta form, one can use Equations 13.3 and 13.4, yielding
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where Cδ = C and Dδ = D. Inputs, states, and outputs are unaffected by the 
choice of either the shift or the delta form. Recall that Equations 13.3 and 13.5 
are two expressions for system G. The difference between Equations 13.3 and 
13.5 is the expression for the time evolution of the state.

For the details on the numerical and analytical properties of the delta form 
representation, the works of Goodwin and Middleton [27], Hori et al. [28], 
and Mori et al. [29] should be consulted. Finally, there exist other operators 
that have been used in the design of DT control systems [30].

13.2.2 relationships between DT and CT Systems

The concept of single-rate, LTI DT models of CT systems enables designers to 
establish the fundamental relationships that exist between a class of single-
rate DT systems and CT systems, even though the DT and CT domains seem, 
a priori, disjoint [28,29]. DT models arise from the desire to rigorously for-
malize the intuitive concept that the performance of a DT system obtained 
through the discretization of a CT system should approach, in one form or 
another, that of the originating CT system. Even though this type of con-
vergence is expected to be obtained de facto with any given discretization 
method, it is actually not always the case [31,32]. Furthermore, in the design of 
sampled-data control systems, the choice of hold and sampler must be made 
with care, especially in the age of generalized sampler and holds [33], where 
several choices are available beside the classical zero-order hold (ZOH). The 
definition of a single-rate DT model is given as follows.

Definition 13.1 

The single-rate, LTI DT system G expressed in the delta form in Equation 13.5 
is said to be a DT model of the CT system G  given as
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provided that

 lim lim lim lim
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From now on, a symbol with a bar represents a CT signal or a system under 
CT control. An explanation on the type of convergence as T → 0 is in order. 
If the parameters of a DT system satisfy the limits in Equation 13.7, it means 
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that for any fixed time t*, the output of the DT system, y(k, T) approaches that 
of the CT system, y t( *), in the following sense:

 lim ( *) ( )
T

y t y k T
→

− =
0

0,  (13.8)

provided that

 lim ( *) ( )
T

u t u k T
→

− =
0

0,  (13.9)

where u t( ) and y t( ) are, respectively, the input to and the output of the CT 
system, u(k, T) and y(k, T) are, respectively, those of the DT system, T is the 
uniform sampling period, and k is an integer such that kT ≤ t* < (k + 1)T. 
Furthermore, for a class of single-input, single-output systems HGS, where 
H is a single-interval hold satisfying the following:

 lim sup ( )
T T

H
→ ≤ <

− =
0 0

1 0
τ

τ ,  (13.10)

where H(τ) is the response function of the hold, and S is the ideal sampler, 
if G in Equation 13.5 is such that there exists at least one realization that 
approaches to one of G  in Equation 13.6 according to Equation 13.7, so that 
G is a DT model of G  according to Definition 13.1, then the output of HGS 
approaches, uniformly in time, that of G, as T → 0, whenever the input to 
HGS approaches uniformly in time that of G, with both input signals being 
continuous. The proof can be found in [32]. This statement forms the basis 
for the sampled-data model concept introduced in [32]. In other words, if 
we exclude quantization effects, an input–output convergence of a digital 
controller preceded by an A/D converter and followed by a D/A converter 
is assured, in the CT domain, provided that the DT controller is a DT model 
of a CT controller and the hold satisfies Equation 13.10. The natural conse-
quence is that the overall closed-loop system, with DT control, will approach 
the closed-loop CT system, as T → 0. The importance of the uniform-in-time 
convergence lies in the avoidance of undesired ripples or hidden oscillation 
effects, at least in the limit of T → 0.

13.2.3 Principal Discretization Methods

The main approaches to converting a CT system to a single-rate DT system 
can be classified into three classes: (1) numerical integration/differentiation, 
(2) hold equivalence, and (3) matched pole–zero [13,34]. Methods falling in 
the first class readily apply to both linear and nonlinear CT systems. The 
traditional approach to converting CT controllers to the DT domain is to 
employ a discretization method and to implement the resulting controller 
onboard the missile.



484 Advances in Missile Guidance, Control, and Estimation

13.2.3.1 Numerical Integration/Differentiation

As a CT system transfer function represents a differential equation, it is 
natural to try approximating the derivatives for numerical implementation 
of the ordinary differential equations. Assuming continuous derivatives for 
the states of a CT system, an approximation at any given sampling instant 
can be performed. One method widely used in aerospace is Tustin’s method, 
which can be viewed as a trapezoidal approximation of integration. In prac-
tice, Tustin’s method is applied as follows [13]. In the transfer function of a 
CT system, a DT system approximation is obtained by replacing s with
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where z is the complex variable traditionally used in DT system transfer 
functions. An alternative to z is the γ variable given as γ = (z – 1)/T [27]. 
Thus, a DT system can be represented by transfer functions in either the z 
or the γ variable. It is important to point out that the numerical integration/ 
differentiation method readily applies to the discretization of nonlinear CT 
systems. However, for relatively large values of T, the output samples of the 
CT and the DT systems may significantly differ.

13.2.3.2 Hold Equivalence

The hold-equivalent DT model of a CT system G is defined as G SGH= . To 
obtain G, proceed as follows. Assume that a known input is applied to the 
CT system. Typical signals include the step and the ramp inputs. Select a hold 
H that outputs such CT signals when subject to an appropriate DT input, and 
place this hold at the input channel of the CT system G. At the output of G 
place an ideal sampler S. Then, the outputs of G SGH=  and G are equivalent 
at the sampling instants. Such an approach warrants exact output response 
matching for a single input type through careful hold selection or design. The 
simplest hold-equivalence method is the so-called step-input invariance [13], 
where H is the ZOH. Step-input invariance guarantees exact matching of the 
output signals of LTI systems G and G, at the sampling instants, provided that 
G is subject to a unit-step input, whereas G is faced with a unit DT step input.

13.2.3.3 Pole–Zero Matching

An LTI CT system G with transfer function
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can be converted to a DT system G, with transfer function in the z vari-
able and with sampling period T by mapping the finite poles pi and zeros zi 
through the exponential given as

 p e z ei
z p T

i
z z Ti i= = .,  (13.13)

The DT transfer function is then
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The gain K is generally calculated with the objective of satisfying a gain 
requirement at a particular frequency. For matrix transfer functions, the pro-
cess can be performed for each matrix entry.

13.2.4 Multirate Systems

A multirate DT system comprises a minimum of two signals defined for dif-
ferent update rates. The rates are integer related. The most widely studied 
multirate system is the dual-rate control system. Figure 13.2 shows two classes 
of such systems. Feedback control systems with fast plant output sampling 
and slow control input update rate have the block diagram in Figure 13.2a. 
The case of fast control update rate, slow plant output sampling is shown 
in Figure 13.2b. The sampling periods are T and h. Period h is an integer 

G(s)
Digital
control

Digital
control G(s)

(a)

(b)

ST

ST

Hh

HT

Sh

ST

Figure 13.2
Dual-rate systems.
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multiple of period T. Since holds and samplers can operate at either period 
T or h, from now on, a subscript is used to indicate either period. In the 
figure, the digital control block may correspond to guidance and auto pilot 
subsystems, for example. Although not shown in the figure, each o utput of 
the multivariable plant G s( )  can be connected to either ST or Sh.

The so-called lifting method [19] enables the design and the analysis of 
dual-rate systems. Lifting is a mathematical tool that allows a designer to 
reformulate a dual-rate DT system into a slow, single-rate DT system. Then, 
all of the single-rate DT tools become available for the study of dual-rate 
systems. The DT lifting operation L takes a fast DT vector signal f(k, T) of 
size M and converts it to a slow MN-vector DT signal with period h = N ∙ T, 
expressed as f L(l, h); that is, L l lM MN: →∞ ∞

R R
. For example, with N = 3, lifting the 

DT scalar signal f(k, T) given as

 f(k, T) = {f(0, T), f(1, T), f(2, T),…} (13.15)

results in the DT vector signal fL(l, h), where l ∈ Z+, given by
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DT lifting is norm preserving [19]. L−1 is the inverse DT lifting and L−1L = I. A 
lifted DT system can be simply understood as a single-rate system that oper-
ates on at least one lifted signal.

The concept of single-rate DT models of CT systems discussed in Section 
13.2.2 can be extended to the case of multirate systems. A closed-loop multi-
rate system can then be made to approach a known reference system as 
the sampling rates are increased. Consider the CT missile control system 
in Figure 13.3a; the multirate digital control system in Figure 13.3b, where 
the update rates are 1/hg, 1/h, and 1/T Hz; and the digital missile autopilot 
in Figure 13.4, where ε represents either z or γ. The magnitude of the rates 
is as follows: 1/T > 1/h > 1/hg. For the purpose of illustration, dynamics in 
only one plane are considered. In Figure 13.3b, ag is the control input to the 
autopilot, δp is the fin deflection command, am is the actual missile accel-
eration, q is the missile body rate, and at is the target acceleration. For pitch 
plane dynamics, q corresponds to pitch rate, whereas in lateral dynamics, q 
is the yaw rate. For the CT control system of Figure 13.3a, similar definitions 
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apply, albeit with a bar to denote the CT control action. The block ensuring 
rate transition in Figure 13.3b, at least conceptually, from update rate 1/hg 
to update rate 1/h is labeled Hhg,h, the dual-rate hold [35], which is formally 
defined as follows.

Definition 13.2 

A dual-rate hold Hhg,h, is a system that receives a bounded DT input signal with 
period hg and outputs a bounded DT signal with period h. Consider u(k, hg), 
a DT scalar input to Hhg,h. With lifting done at period hg = M ∙ h, the lifted 
output of Hhg,h, labeled as yL(k, hg) ∈ RM×1, is given by Equation 13.17, where 
H h hg Rj

i− ∈1( ), , i = 1,…,M and j = −l,…,m − 1. Hhg,h has a nonzero DT impulse 
response at t = −l ∙ MT, −l ∙ MT + T,…,(m – 1)MT + (M – 1)T. Here, m ≥ 1 and 
l ≥ 0. In case of vector input signals in RN, H diag H Hhg h hg h hg h

N
, , ,, ,= { }1

  , where 
diag{∙} is the diagonal matrix and Hhg h

i
,  is the hold affecting the ith entry of the 

input vector signal as given by Equation 13.17:
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The simplest dual-rate hold is the DT ZOH [36], which has the following 
lifted output to a DT scalar input u(k, hg):

 y k hg u k hgL( ) ( ), ,=
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 (13.18)

with yL(k, hg) ∈ RM×1. Control inputs to the actuators, given as δp in Figure 
13.3b, are issued at the fastest rate to control the relatively fast dynamics. 
The computations associated with the control of the system from δp to am do 
not have to be completed within a cycle of T seconds; in reality, the comput-
ing requirement is relaxed through the use of a second rate of 1/h Hz, as 
opposed to processing the control computations at a single rate of 1/T Hz. 
This is one advantage of dual-rate control.

It may also occur that signals be required to transition from a fast rate to a 
slower rate. In such cases, a dual-rate sampler is required.
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Definition 13.3 

A dual-rate sampler Sh,hg is a system that receives a bound  ed DT input signal 
with period h and outputs a bounded DT signal at period hg = M ∙ h. The 
dual-rate sampler considered here outputs every Mth input.

For a DT scalar input u(k, h) lifted as
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(13.19)

the output of the dual-rate sampler is given as

 y l hg u l hgL( ) [ ] ( ), , , , ,=
=

1 0 0…� ����� �����
D

 (13.20)

with D ∈ R1×M.
Remarks (1) The dual-rate hold can be implemented as an up-sampler followed 

by an finite impulse response filter [14]. (2) The dual-rate sampler corresponds to 
a down-sampler. Decimation can be accomplished by preceding the dual-rate 
sampler with an appropriate low-pass filter [14]. (3) Decimator D and repeater 
R are given by Equations 13.20 and 13.18, respectively. Such blocks, which have 
been discussed in the literature, for instance in [26], can be readily implemented 
in software code.

13.3 Guidance synthesis via successive optimizations

This section presents the synthesis of the robust digital guidance laws whose 
objective is to achieve stable and accurate missile guidance in spite of uncer-
tainties in missile flight control system dynamics and constraints on mis-
sile acceleration. Before presenting the guidance synthesis, we formulate the 
models of the engagement.
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13.3.1 System Kinematics and Dynamics

Consider a two-dimensional engagement with geometry shown in Figure 
13.5. In the figure, vm is missile speed, and vt is target speed. The range 
r between the missile and the target is related to the closing velocity vcl as 
vcl = −dr/dt. The LOS angle λ(t) is the angle between the LOS and the fixed ref-
erence x-axis, and the relative separation between the missile and the t arget 
along the fixed reference y-axis is denoted as y(t). The equation expressing 
the relationship between the target and the missile accelerations is [8]
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where nm is perpendicular to LOS and corresponds to acceleration com-
mands obtained with true PNG. Note that Equation 13.21 applies to missiles 
under digital control. For the case of CT control, am is replaced with am . One 
can then obtain the following state-space equations representing missile-
target kinematics:
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Figure 13.5
Two-dimensional engagement.
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Suppose the CT missile autopilot in closed loop with actuators, missile 
dynamics, and sensors, as shown in Figure 13.3a, is modeled as an uncer-
tain flight control system. Some uncertainties arise from the variations in 
the missile flight control system performances over the entire operating 
envelope, while others are a consequence of the low-order approximation. 
With the knowledge that the flight control system actually implemented 
is obtained through a DR of the original CT flight control system, the dis-
crepancies between CT and DT systems can be interpreted and modeled as 
uncertainties in the original CT flight control system. To model the uncertain 
CT missile control system, we express the relationship between the actual 
missile acceleration, am, and the commanded lateral acceleration, ag, by the 
following interval transfer function [8]:
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where parameters τ2, ω, and ξ are assumed to lie in the following, known 
compact sets:
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Equations 13.23 and 13.24 model the uncertain flight control system over 
the range of admissible operating points. In state-space form, we can write
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The target maneuver is modeled as a first-order, zero-mean Markov pro-
cess [37] given by
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where τt is the acceleration time constant, and wt is a zero-mean white 
Gaussian stochastic input with covariance σt

2. From Equations 13.22, 13.25, 
and 13.26, the CT missile-target model P  with inputs ag and wt and output 
[ ]y am

T,  can be obtained as

 
d

d
X t

t
A X t B a t B w t B w to g m t

( ) ( ) ( ) ( ) ( )= + + +1 2 3
 

 P
y t

a tm o o

:
( )

( )













=
− −













1 0 0 0 0
0 0 0α β
� ���������� ��������� � �����

=

−










C

X t o

2

0 0 0 0 0
0 1 0 0 0

( ) α
����� ���������

= D

w t am

22

( )

 z t I X t
C

( ) ( )= ⋅
= 1



 (13.27)

where X x x at
T= [ ]1 2 1 2, , , ,ς ς , B Io2 = ⋅α , I is the identity matrix,
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and
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It should be noted that x1 and x2 are defined similarly to x1 and x2, from 
Equation 13.22, although the missile is under CT control. Matrix A  corre-
sponds to the normalized bounded plant uncertainty matrix.
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13.3.2 guidance Law Synthesis

With model P  available, the guidance scheme can be designed. The objective 
of the digital guidance law is to minimize missile–target relative separation 
y despite (1) missile acceleration magnitude limits, (2) onboard implementa-
tion at possibly slow sampling rates of 1/hg Hz, and (3) uncertain missile 
flight control system dynamics. To satisfy this objective, let us formulate the 
digital guidance law Chg as the following state-space equation:

 C
x k hg A x k hg B y k hg

a k hg C x khg
d d

g d
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+ = +

=
( ) ( ) ( )

( ) (

1, , ,

, ,, ,hg D y k hgd) ( )+
 (13.30)

where k ∈ Z+ = {0, 1, 2,…} is the time step, y(k, hg) is the missile–target relative 
separation available at every k ∙ hg time instant, and ag(k, hg) is the DT accel-
eration command. The guidance law in Equation 13.30 is obtained by means 
of a two-step procedure.

Step 1: Robust guidance law synthesis in the CT domain.
Let a CT guidance law C  be expressed as
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x t
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(13.31)

Calculate C  by solving a mixed H2/H∞ minimization of the gain of the 
missile–target plant model P  given in Equation 13.27. The CT guidance law 
aims at minimizing the H∞ gain from the finite energy input signal wm  to 
the output z  in Equation 13.27, and the H2 gain from the finite variance input 
signal wt to the output vector [ ]y am

T, , with the knowledge of the normalized 
norm-bounded uncertainties (Equation 13.29). Such a problem is standard 
in robust control theory [38]. Linear matrix inequalities (LMIs) can be used 
to obtain C  [18]. Indeed, the LMI formalism is an appropriate tool to com-
bining H2/H∞ minimization with pole constraint requirements defined by 
means of convex regions [39]. In doing so, it is assumed that the missile– 
target plant model satisfies the requirements of (Ao, B1) being stabilizable and 
(Ao, C2) being detectable. It is worth mentioning that the majority of known 
optimal guidance laws (OGLs) are calculated over a finite temporal horizon 
corresponding to the time-to-go, or an estimate thereof, in the final phase of 
the engagement. Here, however, the minimization is carried out over an infi-
nite temporal horizon during which the missile–target relative range asymp-
totically converges to zero. In such context, designers must carefully select 
the required closed-loop pole locations to ensure sufficiently fast missile 
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response, to minimize miss, while complying to constraints in the available 
missile acceleration.

Step 2: Multirate plant modeling.
Step 2.1: Fast discretization of the CT system formed by missile–target 

plant model in closed loop with robust guidance law C.
The closed-loop system is made of the CT robust guidance law given by 

Equation 13.31 in a closed loop with the uncertain missile–target plant model 
(Equations 13.27 and 13.29). The CT closed-loop system is converted to a fast DT 
system running at the short sampling period hf = hg/N where N is a positive inte-
ger. N can be selected arbitrarily, although it should be large enough so that the 
discretized system behaves as closely as desired to the CT closed-loop system. For 
the CT to DT conversion, one may use any of the principal discretization meth-
ods discussed in Section 13.2.3. These methods are known to yield DT models 
of CT systems, according to Definition 13.1, and thus have known time-domain 
characteristics, as hf → 0. With the fast closed-loop DT system known, one can 
then formulate the state-space equations in the delta form, with δ = (q – 1)/hf. The 
use of the delta operator is key at this stage of the design as it allows us to write 
the state-space form of the fast DT plant as one comprising the CT system matri-
ces with some error terms that vanish as the sampling rate is increased, there-
fore, bridging the gap between the DT and CT systems as the sampling period 
hf approaches zero [27]. As an additional benefit of the delta operator, a system 
expressed in the delta form is known to possess superior numerical proper-
ties than the same system expressed in the classical shift operator, especially 
for implementations at relatively fast sampling rates, as explained in [27]. The 
uncertain DT system is represented with the linear fractional transform formal-
ism [40] in Equations 13.32 and 13.33. Equation 13.32 corresponds to the nominal 
portion of the closed-loop DT system, whereas the parametric uncertainties and 
the extra terms arising from the discretization are given by Equation 13.33. The 
discretization errors are known to approach zero with an increase in sampling 
rate, as the fast DT plant is a DT model of the original CT system:

 δXcl(k, hf ) = FXcl(k, hf ) + GWcl(k, hf ) 
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In Equation 13.32, X k hf X k hf x k hfcl
T T

c
T( ) [ ( ) ( )], , , ,= , δXcl(k, hf ) = (Xcl(k + 1, hf ) − 

Xcl(k, hf ))/hf, ycl(k, hf ) is the missile–target relative separation, and am,cl(k, hf ) 
is the acceleration. Vector Wcl(k, hf ), which includes uncertainties, discretiza-
tion error, and noise, is given by
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where wm,cl(k, hf ) is the perturbation due to parametric uncertainties, 
w k hfm cl

d
, ,( ) and w k hft cl

d
, ,( ) represent discretization perturbations of the DT 

system when compared with the CT system, wt(k, hf ) is the sampled input 
to the maneuvering target, z k hf X k hfcl

x
cl( ) ( ), , ,=  and z k hf w k hfcl

t
t cl( ) ( ), ,,=  . 

The  closed-loop system matrices found in Equations 13.32 and 13.33 are 
defined as
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and ∥∙∥ is either matrix or vector norm, or absolute value. It is clear from 
Equation 13.36 that making the sampling period hf short enough results in 

the discretization errors, as given by vectors 
M I
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wm cl
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,  and M wt cl
d

3 ,  in 

the term GWcl(k, hf ) of Equation 13.32, approaching zero. The fast DT missile 
control system behaves as closely as desired to the CT robust control system 
simply by making hf sufficiently short and thus can be considered to be a DT 
model of the CT system, according to Definition 13.1.

Remark Matrix inversion, as is done in Equation 13.35, can be avoided by 
using series methods [41] to perform the numerical integration.

Step 2.2: Fast discretization of CT missile–target plant model.
CT plant P  given by Equations 13.27 through 13.29 is discretized at the fast 

rate hf using step-input invariance discretization. The resulting DT system 
Pol is given by

 δX(k, hf ) = AoX(k, hf ) + B1ag(k, hf ) + EW(k, hf ) 
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where z2(k, hf ) represents the missile–target relative separation to be minimized 
and the missile acceleration to be bounded and z∞(k, hf ) is the plant output 
connected to the uncertainties. Vector W(k, hf) in Equation 13.37 arising from 
parameter uncertainties, discretization, and noise can be described as follows:
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(13.38)

where w k hfa
d( ),  is a perturbation vector expressed as a function of the guid-

ance signal ag. Vector signal wa
d  results from the discretization error terms, 

which approach zero as hf → 0. Matrices found in Equations 13.37 and 13.38 
are defined as
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Step 2.3: Multirate generalized plant modeling for robust DT control synthesis.
The fast closed-loop missile control system given by Equations 13.32 and 

13.33 is taken as the reference system, exhibiting satisfactory performances 
in terms of acceleration and miss distance. To effectively use this knowl-
edge for the synthesis of the slow-rate guidance law Chg, a multirate general-
ized plant is modeled with a structure shown in Figure 13.6a. The plant has 
lifted input w k hgt

L( ), . Plant output e k hf z k hf z k hfcl( ) ( ) ( ), , ,= −2 2  is lifted to eL(k, 
hg). In Figure 13.6a, ∆hf

cl  is the closed-loop uncertainty operator. It represents 
parameter mismodeling and perturbation terms that arise from the use of 
delta representation (Equations 13.32 and 13.33). ∆hf

ol  is the open-loop uncer-
tainty operator. The guidance law Chg which is in closed loop with the gen-
eralized plant model, should be such that the gain from wt(k, hf ) to e(k, hf ) is 
minimized and the closed-loop system is stable. Such slow-rate digital guid-
ance law would then warrant an acceleration and a miss distance as close as 
possible to those of the reference system in spite of the uncertainties.

Step 3: Solution to single-rate DT robust control problem.
Referring to Figure 13.6b, let Twe be the system from wt

L  to eL. Furthermore, 
suppose that for a given hf

 
∆

∆

hf
cl
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0

0
1





















< / γ  (13.42)

where γ ∈ R+. The bound in the right-hand side of inequality (Equation 13.42) 
can always be made relatively small by reducing hf to yield a value of the 
bound at least as small as that for CT systems Pcl and Pol. Such convergence 
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property can be readily appreciated from Equations 13.36 and 13.41. Define 
Twe ∞

 to be the H∞ norm of Twe [38]. Then, the robust guidance law Chg is 
obtained by finding the smallest achievable Twe ∞

< γ  by means of LMI 
optimization. The problem includes pole placement constraints defined by 
means of convex regions in the γ plane [27]. Such regions are defined as the 
intersection of a vertical strip and a sector centered at the origin. The former 
determines the fastest pole of the closed-loop dynamics and accounts for 
hardware limitations, such as those imposed by actuator and sensor band-
width. The latter is selected so as to limit system oscillations.
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Figure 13.6
Generalized plant structure.
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13.4 Dual-Rate Autopilot synthesis

Two methods are presented for the synthesis of dual-rate autopilots. First, 
an optimal DR of a CT autopilot is presented. The technique relies on the 
solution of a DT H2 optimal control problem [42] allowing the conversion to 
either a slow-rate or a dual-rate control system while guaranteeing stability 
and performance, to some extent. Second, a polynomial approach to the DR 
of a CT autopilot [25] is described. The polynomial method warrants closed-
loop stability, even for implementations at relatively large sampling inter-
vals, taking advantage of well-known linear algebraic tools while enabling 
complexity-constrained controllers.

13.4.1 Optimal Dr

Consider a CT acceleration autopilot with the structure shown in Figure 13.7. 
Such feedback loop is typical of missile autopilots.

Controllers C1 and C2 are LTI systems. Over the entire flight envelope, such 
LTI controllers are scheduled accordingly. It is assumed that the CT autopilot 
satisfies the design specifications.

Step 1: Fast discretization of closed-loop system.
Precede each of the dynamic systems C1, C2, q p/ δ , and am p/ δ  by a ZOH 

HT and place the ideal sampler ST at each output. Then, there results the fast, 
single-rate DT closed-loop system shown in Figure 13.8, which can be sim-
plified. The selection of T depends on the design specifications and on the 
dynamics of the system under control. Period T should be selected short 
enough to accommodate the fast dynamics of q p/ δ .

Step 2: Dual-rate generalized plant modeling for slow DT controller 
synthesis.

From Figure 13.8, let G am p1 = / δ , G q p2 = / δ , C S C HT T T1 1, = , C S C HT T T2 2, =  , 
G S G HT T T1 1, = , and G S G HT T T2 2, = . Formulate a dual-rate generalized plant 
model as shown in Figure 13.9. Periods are related as h = N ∙ T, where N ∈ ℕ+. 
The generalized plant is connected to a slow controller to be synthesized, 
labeled C1,h, having output u(k, h) and input y(k, h). The dual-rate samplers 

ag

am

C1

C2

δp+

–
+
–

q(s)/δp(s)

am(s)/δp(s)

Figure 13.7
CT acceleration autopilot structure.
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ST,h and gain ρ ∈ R are design parameters. Controller C1,h can be obtained 
such that the induced norm from reference input ag(k, h) to measured out-
puts z1(k, h) and z2(k, h) is minimized. The dual-rate DT control system then 
provides an optimal approximation of the fast DT control system. It should 
be noted that the block diagram of Figure 13.9 is intended for reference input 
tracking.

Step 3: Solution to the optimal control problem.
The dual-rate DR problem can be formulated as follows. Given a fast DT 

control system comprising C1,T and C2,T, design a dual-rate DT control sys-
tem, with dynamic controllers C1,h and C2,T, such that its closed-loop step 

+

–

+
–

C1

C2

HT ST

STHT HT

HT

ST

ST

q(s)/δp(s)

am(s)/δp(s)

Figure 13.8
Fast DT autopilot.
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Figure 13.9
Dual-rate generalized plant for controller synthesis.
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responses optimally match those of the fast DT control system in the sense 
that J given in Equation 13.43 is minimized:

 J z k h z k h
k

= +
=

∞

∑
0

2

1

2

2( ) ( ) ., ,  (13.43)

The minimization of J is a DT H2 problem. With a unit DT impulse input 
ag(k, h) and an appropriate filter placed at the reference input channel to con-
vert the impulse signal to a step, the DT H2 problem consists of obtaining 
controller C1,h such that the DT H2 norm of the closed-loop system relating 
ag(k, h) to [z1(k, h), z2(k, h)]T is minimized.

13.4.2 Polynomial Approach to Dual-rate Dr

Consider again the closed-loop system shown in Figure 13.7. Such a system pro-
vides a model for the linear behavior of the missile under control around equi-
librium points. A polynomial approach to DR is applied to each CT closed-loop 
system warranting stability, in the DT sense, for any nonpathological value of 
T, as the roots of the characteristic equation of the CT closed-loop system are 
mapped inside the DT stability domain, either γ or z. This dual-rate DR takes its 
origin from the single-rate DR known as the plant input mapping method (see 
[25] and references therein). The five-step approach is described next.

Step 1: Calculate a CT closed-loop transfer function.
With reference to Figure 13.7, calculate closed-loop transfer function M s( ) , 

from ag  to u, with u being the output of C1:

 

M s
C s C s G s
C s G s C s G s

( )
( )[ ( ) ( )]
( ) ( ) ( ) ( )

= +
+ +

1 2 2

1 1 2 2

1
1

== u
ag

.
 (13.44)

Writing the transfer function from u  to am  as

 

G s
G s

C s G s

n s
d s

G

G

( )
( )

( ) ( )

( )
( )

,

=
+

=

1

2 21
 (13.45)

one can rewrite M s( )  as
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Step 2: Fix the structure of the DT autopilot and obtain the DT plant model.
Set the structure of the dual-rate digital missile autopilot to be that shown 

in Figure 13.10, which is more general than that of Figure 13.4. The control-
lers to be designed are A h1, , B h1, , and C h1, . Plant G corresponds to the system 
from u(k, h) to am(k, h). When the dual-rate hold is given as Hh,T = L−1R, with 
h = N ∙ T, the transfer function in z for the slow DT plant G is

 �

� �

G z h
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 (13.47)

where A, B, C, and D are matrices for the shift-form realization of the fast DT 
plant model shown in Figure 13.11. The shift-form realization is

 x(k + 1, T) = Ax(k, T) + Bu(k, T) 

 am(k, T) = Cx(k, T) + Du(k, T). 
(13.48)
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Figure 13.10
Dual-rate digital missile autopilot.
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Step 3: Obtain M from the knowledge of M and G.
Let the desired closed-loop transfer function from ag(k, h) to u(k, h) be given as

  







M z h K
m z h d z h

d z h
G

M

( )
( ) ( )

( )
,

, ,
,

=  (13.49)

where dG  is the denominator polynomial of Equation 13.47, fixed by the 
implementation structure of the digital autopilot. K, dM , and m  are deter-
mined as follows.

•	 Map roots of m s( )  to m z h( ),  through the exponential zi = exp(si ∙ h), 
where si are the roots of m s( )  and zi are the roots of m z h( ), , i = 1,…,η.

•	 Map roots of d sM ( )  to d z hM ( ),  through the exponential, as done in 
the previous step.

•	 Determine K  with objective of making M z h( ),  have the same gain as 
that of M s( ) at a frequency of interest.

Step 4: Obtain DT controllers A h1, , B h1, , and C h1, .
Calculate A z h( ), , B z h( ), , and C z h( ),  such that the transfer function from 

ag(k, h) to u(k, h) in Figure 13.10 is the desired closed-loop transfer function 
(Equation 13.49).

First, solve the following Diophantine equation for polynomials u and v:

 u z h d z h v z h n z h d z hG G M( ) ( ) ( ) ( ) ( ), , , , ,
  

+ = .  (13.50)

u(z, h) is of degree l, and v(z, h) has degree r. One approach to solving for u 
and v is to employ linear algebra. Write
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Fast DT plant model.
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By equating coefficients of like powers of z on both sides of Equation 13.51, 
the following matrix equation can be obtained:
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In the system of equations, AdXd = Yd, Ad ∈ R(M+1)×(l+r+2), Xd ∈ R(l+r+2)×1, and 
Yd ∈ R(M+1)×1. Interestingly, matrix Ad is full rank whenever the DT plant is 
irreducible [27]. One can then solve uniquely for u and v provided M + 1 = 
l + r + 2. To meet such a dimension condition, polynomials u and v must have 
degrees fixed to l = M − n and r = n − 1, respectively, whenever n ≥ 1. If this 
condition is not satisfied, a least-squares approximation can be obtained as 
ˆ ( )X A A A Yd d

T
d d

T
d= −1  when Equation 13.52 is overdetermined. With such X̂d , 

controller orders can be constrained, although closed-loop stability is not 
guaranteed.

Second, with the knowledge of u and v, controllers can be obtained in three 
ways.
 (1) Dynamic blocks A h1, , B h1, , and C h1,

 Let w(z, h) be an arbitrary, stable polynomial of degree l. If l ≥ η and l 
≥ r:
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 The conditions on l are not always met in practice. In fact, l ≥ r if and 
only if M ≥ 2n – 1. If the latter condition is not met, this means M + ϕ = 
2n − 1, where ϕ ∈ ℕ+. To obtain the controllers, do as follows. Modify 
Equation 13.49 to the following desired closed-loop transfer function:
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 where p(z, h) is an arbitrary, stable polynomial of degree ϕ. Then, 
solve the following Diophantine equation for u and v, with l = n − 1 
and r = n − 1:

 u z h d z h v z h n z h d z h p z hG G M( ) ( ) ( ) ( ) ( ) ( ), , , , , ,
  

+ = .  (13.55)

 When η ≤ M – n, the controllers are
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 (13.56)

 (2) Dynamic blocks B h1,  and C h1,

 A structure with static A h1,  and dynamic blocks B h1,  and C h1,  is pos-
sible when r ≤ η ≤ l. The controllers are
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 (3) Dynamic blocks A h1,  and C h1,

 A structure with static B h1,  and dynamic blocks A h1,  and C h1,  is pos-
sible when η ≤ r ≤ l and v(z, h) is stable. The controllers are
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,
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Remark The linear system of equations can be formulated using polyno-
mials expressed either in the z or in the γ operator. The γ operator is known 
to provide superior numerical results if the period h is relatively short; other-
wise, the use of the z operator is recommended.

Step 5: Reduce control system complexity (if required).
When the number of operations associated with the computations of the 

DT control law is unacceptable for the computing power available, individual 
controller orders must be constrained. Whereas the order of the inner-loop 
DT controller C2,T depends strictly on the local hold-equivalent discretiza-
tion of C s2 ( ), orders of the outer-loop DT controllers A h1, , B h1, , and C h1,  can be 
reduced, if required. Consider the desired closed-loop transfer function M 
in Equation 13.49. Convert M z h( ),  to M w h( , ), where

 w = −
+

.2 1
1T

z
z

 (13.59)
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Poles in the unit circle of the z-plane are known to be mapped to the left-hand 
side of the w-plane. Furthermore, conventional frequency domain synthesis 
and analysis methods for CT systems can be applied to systems expressed 
in the w operator even when h is relatively long [30]. With degrees M and n 
known, it is required to implement a DT autopilot such that a reduced-order 
version of M, denoted as MRO, is actually implemented. Let the order of MRO 
be MRO, the desired degree for the denominator polynomial of the closed-
loop system from ag(k, h) to u(k, h). Apply a CT model reduction method on 
M h( , )w , for instance, balanced truncation [43] or Routh–Pade [45] model 

reduction. This process results in M hRO( , )w . With either method, closed-loop 
stability is preserved. Convert system M h( , )w  to the z-plane using inverse 
transformation (Equation 13.59). Finally, solve a Diophantine equation of the 
form given by Equation 13.50 and calculate controllers according to Equation 
13.53 through 13.58. Clearly, the designer must make sure the controllers are 
causal and the closed-loop system is stable.

13.5 Numerical simulations

13.5.1 Digital guidance Laws

Assessment of the performance of the digital implementation of guidance 
laws is a key step in the design process, particularly when small, low-cost, 
digital boards are used to comply with volume, weight, and cost constraints. 
By digital implementation, we mean the coding of the guidance laws on 
finite-word-length, fixed-point microprocessors and accounting for the 
quantization effects of the A/D converters. In the sequel, the performance 
of the proposed DT guidance law is first analyzed in its original form. Then, 
to diminish the impact of truncation errors on closed-loop performance, a 
reduced-order, DT guidance law is derived and implemented on a 16-bit, 
fixed-point processor, emulated by means of the Simulink® fixed-point 
blockset.

Missile flight control (Equation 13.23) and target (Equation 13.26) models 
are used with parameters assumed to be normally distributed with the mean 
values corresponding to the nominal plant model. The nominal values are 
as follows:

 τt = 0.1 s, ω = 6.71 rad/s, ξ = 1.88, τ2 = −2.48 ∙ 10−2 s. (13.60)

The covariance and standard deviations are

 σ σ σω ξt s2 2 43700 2 0 1= ⋅ = / = . .−m rad s, ,  (13.61)
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In Equation 13.61, the subscript indicates to which parameter the covariance 
and standard deviations refer. Missile acceleration is saturated at ±200 m/s2. 

Initial conditions are defined as y(0) = 100 m and 
d
d

m/s
y
t

( )0 10=
 
. The time 

of flight is set to tf = 5 s.
Guidance law Chg is applied to the missile–target plant model with a ratio 

of 5 between hg and hf. Increasing this ratio may cause numerical problems 
during the synthesis phase, as the dimensions of the state-space matrices 
are proportional to the value of this ratio. Pole placement with ps = −1200, 
pf = −100, and ξr = 0.84 is used in the synthesis along with balanced-trunca-
tion model reduction [43]. The values for ps and pf are selected such that the 
solution to the LMIs does not result in large gain matrices. The choice for ps 
and pf constrains the transients of y(t) to smaller values, which in turn may 
prevent actuator saturation. ξr allows limiting oscillations in y(t). The result-
ing DT guidance law is calculated to be
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for hg = 0.05 and
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for hg = 0.1, which are both numerically implemented with the shift operator 
q = z−1 and the autoregressive and moving average (ARMA) representation 
shown in Figure 13.12.

The reduced-order guidance law, which is obtained by eliminating states 
associated with small Hankel singular values [44], is expressed as
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for hg = 0.05 and as
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for hg = 0.1. From now on, the full-order guidance law (Equations 13.62 and 
13.63) is denoted as FODTGL, the reduced-order guidance law (Equation 
13.64) is labeled RODTGL, and the digital implementation on an emulated 
16-bit, fixed-point processor of the reduced-order guidance law is DigDTGL. 
Figure 13.13 depicts Bode diagrams of transfer functions expressed in 
the Laplace operator and obtained from Equations 13.62 through 13.65 to 
which the local DR with Tustin’s method is applied. One can notice that the 
order reduction does not entail significant deterioration for frequencies in 
[0, 103] Hz.
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(a) Block diagram of digital guidance law and (b) ARMA representation.
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Through simulations, the proposed approach is compared with the OGL 
[2,46] and the zero miss distance PNG (ZMD-PNG) [8]. The CT OGL is 
given by
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where ˆ ( )a tt  is a delayed estimate of the target acceleration. The CT 
ZMD-PNG is
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Measurements of LOS rate, as required in Equation 13.68, can be obtained 
by means of a seeker. Seeker dynamics are modeled as [46]
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where λ(t) = y(t)/(Vc ∙ tgo). ZMD-PNG is discretized with Tustin’s method [13] 
at periods hg = 0.05 and hg = 0.1. The DT OGL is simply a sampled version of 
Equations 13.66 and 13.67. Numerically, the CT missile–target plant model is 
simulated with a variable step-size method, available with the MATLAB®/
Simulink software, in closed loop with the digital controllers. Zero-order 
holds and ideal samplers ensure the transition between CT and DT domains. 
A one-simulation time step delay is placed at the output of the controllers 
to model the computational delay associated with a digital implementation. 
Finally, first-order transfer functions given as 1/(0.1s + 1) are placed at the y 
and am channels to model sensor dynamics (range measurement, gyros).

Simulation results for the nominal missile–target plant model are shown 
in Figures 13.14 through 13.16. It can be seen in Figure 13.14 that FODTGL 
provides a missile–target relative separation converging asymptotically to 
zero and a miss distance relatively close to that obtained with DT ZMD-
PNG, as opposed to DT OGL, which results in the largest absolute miss dis-
tance, for both sampling periods tested. DigDTGL yields trajectories that are 
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relatively close to those obtained with FODTGL. From Figures 13.14 through 
13.16, FODTGL is shown to provide an output signal that does not saturate, 
is relatively smooth, and settles relatively rapidly, for both sampling periods. 
FODTGL presents satisfactory noise rejection property due to the global DR 
strategy adopted by the authors and the H2 norm minimization carried out 
during the first phase of the synthesis.

To test the robustness of the proposed guidance law, 500 simulation runs 
were carried out. In each simulation run, the parameters ω and ξ of the missile 
model were selected according to normal distributions N(ω, σω) and N(ξ, σξ), 
respectively, as described in Equations 13.60 and 13.61. The mean values for 
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Figure 13.14
Missile–target relative separations obtained with FODTGL, DigDTGL, DT OGL, and DT ZMD-
PNG for (a) hg = 0.05 s and (b) hg = 0.1 s.
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the absolute miss distances, denoted as y t f( ), and the standard deviations 
for the miss distances, given as σy, are shown in Table 13.1. It is clear from the 
table that FODTGL results in a value for y t f( ) relatively close to that obtained 
with DT ZMD-PNG at the shortest sampling period, whereas DT OGL offers 
the worst performance for both sampling periods tested. For the relatively 
large sampling time of hg = 0.1 s, FODTGL results in the smallest y t f( ) and 
σy, although y t f( ) is larger than that obtained for hg = 0.05 s. Clearly, at the 
largest sampling period hg = 0.1 s, using FODTGL results in miss distance, 
which is more robust to parameter variations than that obtained with sys-
tems equipped with DT ZMD-PNG and DT OGL.
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Missile accelerations obtained with FODTGL, DigDTGL, DT OGL, and DT ZMD-PNG for 
(a) hg = 0.05 s and (b) hg = 0.1 s.
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PNG for (a) hg = 0.05 s and (b) hg = 0.1 s.

TAbLe 13.1

Mean Values and Standard Deviations for Miss Distances (No Measurement Noise)

y t hf g( )( )== ..0 05 s σσy gh( )== ..0 05 s y t hf g( )( )== ..0 1 s σσy gh( )== ..0 1 s

FODTGL 0.246 0.453 0.892 0.166
DT 
ZMD-PNG

0.156 0.161 0.928 0.830

DT OGL 5.735 1.488 1.674 1.755
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While the controller is not designed to take into account the measurement 
noise in y(t), numerical simulations that include measurement noise and 
parameter uncertainties in ω and ξ are carried out. The nonstationary addi-
tive noise to the measurement of y(t) has normal distribution N(0, σy(k, hg)) 
where σy(k, hg) = r(k, hg) σLOS. The standard deviation in the LOS angle mea-
surement is set to σLOS = 0.2 mrad. For hg = 0.05 s and 0.1 s, the simulations 
result in y t f( ) = .0 253, σy = 0.532 and y t f( ) = .0 751, σy = 1.789, respectively. 
When the guidance law is implemented with a relatively long sampling 
period, the worst-case miss distance obtained with the noisy system is larger 
than that obtained in the absence of noise, the latter case being shown in 
Table 13.1. This could be the result of large magnitudes of pf leading to a 
closed-loop system sensitive to noise. However, a smaller magnitude of pf 
results in an infeasible LMI problem. It is clear, then, that a trade-off has to 
be made.

Mean values and standard deviations of miss distances obtained with 
guidance laws FODTGL, RODTGL, and DigDTGL are shown in Table 13.2. 
From the table, one can notice that y t f( ) is smallest for FODTGL and largest 
for DigDTGL when hg = 0.05 s. This behavior is expected since DigDTGL 
is the result of an approximation of RODTGL, which is itself a simplified 
version of FODTGL. This indicates that the analysis of the effect of the digi-
tal implementation constitutes an important design step for finite-precision 
implementation. Yet, values for y t f( ) obtained with RODTGL and DigDTGL 
are smaller than miss distances obtained with FODTGL for the sample 
period of 0.1s. For such a sampling period, standard deviations show that 
the upper limit of the 95% confidence interval of RODTGL and DigDTGL 
is greater than that of FODTGL. Those results have to be interpreted care-
fully as the technique of controller order reduction applied to FODTGL is 
achieved in an open-loop fashion and, thus, does not guarantee high perfor-
mance of the closed-loop system.

13.5.2 Digital Autopilots

The effectiveness of the proposed autopilots is demonstrated for two linear-
ized missile dynamics, exhibiting different time constants, and for classical 
and optimal CT autopilots.

TAbLe 13.2

Mean Values for Absolute Miss Distances and Standard Deviations Obtained with 
Different Implementations of Proposed Guidance Law

y t hf g( )( )== ..0 05 s σσy gh( )== ..0 05 s y t hf g( )( )== ..0 1 s σσy gh( )== ..0 1 s   

FODTGL 0.246 0.453 0.892 0.166
RODTGL 0.494 0.761 0.616 1.396
DigDTGL 0.548 0.869 0.620 0.733
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13.5.2.1 Optimal Redesign

Consider a symmetrical, tail-controlled missile with linearized pitch plane 
dynamics given as [47]
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and with idealized actuator dynamics. To control plant (Equation 13.70), a clas-
sical two-loop proportional and integral missile acceleration autopilot, shown in 
Figure 13.7, is designed as
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Various DR techniques are employed on this CT autopilot. Inner-loop gain 
control is applied at the fast rate and is the same for all the digitally rede-
signed autopilots, whereas the outer-loop DT controller is different from one 
technique of redesign to another. A set of outer-loop DT controllers obtained 
with the optimal DR is given as follows:
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Selected simulation results are shown in Figures 13.17 and 13.18. In Figure 
13.17, all three autopilots approach to the same time-domain behavior, as 
the outer-loop rate is increased, as expected from the concept of DT models. 
However, classical Tustin redesign cannot warrant closed-loop stability in the 
case of the slowest outer-loop rate, as this method does not take into account 
the closed-loop model in the discretization. With the proposed optimal DR, 
however, reference input tracking is always obtained. For slower rates, it is 
important to point out that overshoot and response times are increased. A 
disturbance input signal given as

 d(t) = 1 m/s2, 1 ≤ t < 2; 0 otherwise (13.73)
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is applied to the autopilots, and the responses are shown in Figure 13.18. The 
disturbance responses of CT autopilot and that of the DT autopilot obtained 
with the optimal redesign asymptotically reject the disturbances in all cases, 
whereas it does not with the classical, local DR approach.

13.5.2.2 Redesign with Polynomial Method

Consider, again, pitch plane dynamics for a symmetrical, tail-controlled 
missile, although the equations of motion come from Nichols et al. [48]. The 
dynamics of this missile are faster than those of the previous system; thus, they 
require faster sampling and control update rates. For an angle of attack of 10°, 
a speed of Mach 3, and an altitude of 20,000 ft., the linearized CT dynamics are
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where A represents actuator dynamics, from commanded to actual fin 
deflections. With reference to Figure 13.7, a reduced-order H∞ CT acceleration 
autopilot is given as
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The original controllers have order 7, and the magnitude of their coefficients 
is relatively large, making them unsuitable for practical implementation. In this 
case, order reduction allows obtaining low-order CT transfer functions and con-
troller coefficients of reasonable magnitude. To prevent having to implement 
a relatively high-order DT autopilot, or to use successive order reduction tech-
niques to warrant tractable DT controller orders at the cost of a loss in perfor-
mance, optimal redesign is not carried out. However, polynomial redesign is 
employed. The inner-loop DT controller is a ZOH equivalent of C2 running at 
the rate of 400 Hz. With the proposed poly nomial method, the outer loop is com-
posed of three fourth-order DT blocks, whereas local DR with Tustin’s method 
and with ZOH equivalence yields a single fourth-order outer-loop DT control-
ler. We constrain polynomials u and v in Equation 13.50 to be of degree 4, which 
requires solving Equation 13.52 with the least-squares method. With reference 
to Figure 13.10, for an outer-loop rate of 21 Hz, the DT controllers obtained with 
the polynomial redesign are
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Figures 13.19 and 13.20 present simulation results obtained for various 
implementation rates. Unit-step responses (Figure 13.19) and responses to 
the disturbance input given in Equation 13.73 (Figure 13.20) clearly demon-
strate that superior closed-loop performance is obtained with the proposed 
polynomial redesign when compared with classical approaches, although at 
the cost of an increased number of outer-loop controllers.
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13.6 Conclusions and Future Directions

This chapter presented practical techniques for the design of digital homing 
guidance laws and autopilots. The methods put forth enabled implementa-
tions at multiple and single sampling and control update rates. Fundamental 
concepts and tools needed for the design and the analysis of missile systems 
were discussed. These include lifting, DT modeling, discretization, dual-rate 
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holds and sampler, and optimal DT control. The proposed digital guidance 
laws and autopilots allow designers to take advantage of relaxed constraints 
on the values of the sampling and control update rates, at least to some extent, 
while warranting satisfactory performances despite adverse implementa-
tion conditions. Indeed, extensive numerical simulations of pursuer–evader 
engagements, carried out in part with digital-autopilot implementations with 
fixed-point, finite word length arithmetic, demonstrated that satisfactory lev-
els of precision to target can be achieved with the proposed synthesis of the 
guidance laws and the autopilots without requiring high-end computational 
capability. Future work should extend the proposed techniques to the case 
of nonlinear dynamic systems and study the integrated design of multirate 
guidance laws with autopilots. Therefore, a challenging research direction is 
the development of an integrated nonlinear guidance-autopilot system mini-
mizing the effects caused by quantization and finite word length implemen-
tations, among other design objectives.
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14.1 overview

A command to line-of-sight (CLOS) guidance system employs a single sen-
sor to measure the position of both the target and the interceptor missile. 
Usually, the single sensor is stationary and requires that the intercepting 
missile stay close to the line connecting the sensor to the target. The system 
operates by sending acceleration commands to the missile based on the sen-
sor measurement of the target and missile positions.

CLOS systems have an advantage in close-in point defense applications. 
The use of CLOS guidance makes possible a simpler and cheaper missile and 
at the same time employs a better-quality (more expensive) stationary sen-
sor. Some of the disadvantages of CLOS systems are the inherent limitation 
of being able to engage only one target at a time*; the requirement to maneu-
ver in order to engage a crossing target; and the limitation of the effective 

* In a more advanced system, the sensor may be a phased array radar system. Such a sensor 
is capable of simultaneously tracking several objects, freeing the missile trajectory from the 
constraint of staying on the line connecting the sensor to the target and enables the engage-
ment of multiple targets.
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range of such systems, because both the target and the missile measurement 
errors are proportional to the range.

The approach presented here is based on the linear quadratic Gaussian 
(LQG) formalism. Probably the first paper to suggest that the CLOS guidance 
problem may be formulated as a stochastic optimal control problem is [15]. 
Other possible approaches are [5, 9], and [12–14].

The principal components of this system are the sensor, the sensor plat-
form, and the missile. The sensor has a small field of view, and hence, the 
sensor platform must rotate the sensor, so that the target always stays within 
the sensor’s field of view. It is the guidance system’s job to ensure that the 
acceleration commands sent to the missile are such that the missile at all 
times remains within the sensor’s field of view. The guidance system consists 
of the target estimator, the missile estimator, and the guidance law. The func-
tions of the target estimator and the missile estimator are self-explanatory. 
The target estimator has a single design parameter, which is its bandwidth. 
The missile estimator and the guidance law must be designed as a single 
unit. The missile estimator contains both a model of the missile acceleration 
transfer function and an associated uncertainty model. The guidance law 
must be designed to operate with this uncertainty model and to maintain the 
stability of the guidance loop in the face of a certain amount of uncertainty 
in the missile transfer function.

When the missile is launched, a means must be provided to ensure that 
the missile enters the observation system’s field of view. This problem is 
addressed here in only its simplest solution: it is assumed that in addition to 
the main antenna used for tracking, there is also a wider antenna that shares 
the boresight with the main antenna and is used for tracking the missile 
in the period immediately following its launch.

The focus of this chapter is on the design and implementation of a CLOS 
guidance system. The kinematics of the motion of the missile pursuing a 
target and the calculation of the missile path are excellently presented in 
[11, 23, 27].

14.2 system operation

In Figure 14.1, a schematic block diagram of the guidance system is shown. 
The sensor measures the position of the target and the missile in its field 
of view. These measurements are passed to the target state estimator (TSE) 
and to the missile state estimator (MSE). The sensor platform receives the 
output of the TSE and uses the measurements of its built-in inertial measure-
ment unit (IMU) to rotate the sensor so that the target remains in its field of 
view. In addition, it outputs the readings of its IMU to both the TSE and the 
MSE. Both the TSE and the MSE require the IMU readings to generate their 
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respective estimates. The guidance law (GL) outputs missile acceleration 
commands to be transmitted to the missile and to be passed to the MSE. The 
inputs to the GL are the sensor platform IMU measurements and the state 
estimates of the TSE and the MSE. The missile carries out the acceleration 
commands, and after double integration, the missile position is obtained, 
which in turn is measured by the sensor.

14.3 system Component Requirements

14.3.1 Missile

The missile receives the acceleration commands from the guidance law, and 
its autopilot must generate fin deflections to cause the missile to carry out the 
commanded accelerations. The function of the missile is to carry its warhead 
to the close proximity of the target. The missile warhead size is determined 
by the expected miss distance, which in turn is determined by the expected 
target maneuver level, the missile’s own agility, the angular sensor observa-
tion errors, and the intercept range. As can be seen, these factors are all inter-
related, and the choice of a good operating point is a compromise among all 
these factors.

14.3.2 Sensor

The sensor measures both the target and the missile positions within its 
field of view. The sensor must be able to distinguish between the target 
and the missile. In addition, as will be shown, the availability of the time to 
intercept for the guidance law greatly reduces the miss distance. It is then 
advantageous to have a sensor capable of measuring the range to both the 
target and the missile.

TSE

MSE

Sensor

TGT

MSL

∫ ∫

∫ ∫

Sensor
platform

Guidance
law

TGT
Acc com

FIGURE 14.1
Schematic block diagram of a CLOS guidance system.
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14.3.3 Sensor Platform

The sensor is mounted on the sensor platform. The sensor platform must 
rotate the sensor so that the target remains within the sensor’s field of view 
at all times. The sensor platform must contend with disturbances resulting 
from both the target’s maneuvers and external loads, such as the wind act-
ing on the sensor structure. Optionally the position of the missile within the 
sensor field of view may be taken into account when designing the sensor 
platform’s control system.

14.3.4 Target State Estimator

The target is modeled as a first-order Gauss Markov process, which is the 
shaping filter associated with Singer model [24,27]. The target state is esti-
mated in the sensor coordinate system.

14.3.5 Missile State Estimator

The missile model has a deterministic part and a stochastic part used to 
account for the missile uncertainty. The missile state is also estimated in the 
sensor coordinate system.

14.3.5.1 Missile Acceleration Model

The missile acceleration model is derived from the known missile aM/acB 
transfer function. The design model is a first-order approximation to the full 
order missile aM/acB transfer function, obtained by the use of the balanced 
order reduction on the full order missile transfer function.

14.3.5.2 Missile Uncertainty Model

The missile uncertainty model serves to model acceleration deviations of the 
missile from the reduced first-order model. The source of the deviation may 
be the simplification of the missile transfer function to a first-order model, 
or it may be due to some imperfection within the missile itself. One such 
imperfection is the drift of the roll reference, which would cause the missile 
to carry out the acceleration commands in a plane rotated with respect to 
that intended by the guidance law.

14.3.6 Guidance Law

The TSE and the MSE are an integral part of the GL, which is based on an 
LQG design. The missile estimator and the GL must be designed as a sin-
gle unit. The missile estimator contains both a model of the missile transfer 
function and a suitable uncertainty model. The GL must be designed to oper-
ate in the face of variations in the missile transfer function.
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14.3.6.1 Ensuring Robustness of the Guidance Law

While the missile is far from the target, the GL acts as a regulator. The accel-
eration commands are designed to keep the missile within the sensor’s field 
of view, in the face of all possible target maneuvers and all possible distur-
bances acting on the interceptor missile. In order to accomplish this, it is 
assumed that the sensor platform tracks the target with small errors. Then 
the problem is equivalent to ensuring the robustness of any regulator, so that 
the usual tools, gain margin and phase margin, apply.

14.3.6.2 Terminal Guidance Law

The ultimate aim of the CLOS guidance law is to hit the target with a small 
miss distance, without violating the constraint of being within the sensor’s 
field of view at all times. Similar to other types of guidance, the use of termi-
nal guidance leads to considerable improvement in the miss distance.

14.4 system Models

System models are required both in the synthesis of the MSE and GL and in 
the subsequent analysis of the robustness of the system. Generally, the design 
models are simpler (lower order) than the models used in the robustness 
check. There is a one-to-one correspondence between the complexity of the 
missile model used in the synthesis phase and the complexity of the GL; hence, 
the simplest possible model is used in this phase. The robustness model, on 
the other hand, should include the variability of the missile transfer function.

14.4.1 Kinematic Model

In this section, the kinematics of a body moving in a rotating coordinate 
system is developed. The natural coordinate system for setting up the guid-
ance problem is the coordinate system rigidly attached to the sensor. The 
x-axis coincides with the boresight of the sensor, the y-axis is perpendicular 
to the x-axis and is horizontal when the roll angle of the sensor platform is 
zero, and finally, the z complements the x and y coordinates to form a right-
handed coordinate system.

Let p and v be the position and velocity, respectively, of a body expressed 
in the coordinate system just defined undergoing acceleration a. Then these 
quantities are related by
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is the angular velocity of the sensor platform.
When the sensor platform rotates on two gimbals mounted on a station-

ary base and the elevation angle is zero, then ωr
x = 0. In the remainder, it 

is assumed that the elevation angle is sufficiently small to allow neglecting 
ωr

x

 . In this case, ωr
x = 0, and Equation 14.1 can be decomposed into a pair of 

uncoupled equations. Here the equations for the motion in the x−y plane 
are presented. Similar equations (with the exception of some minus signs, 
and ωr

z  replaced by ωr
y ) exist for the x−z plane. These equations describe 

equally the motions of the two objects of interest: the missile and the target. 
The subscript i takes on value of M for the missile and T for the target. The 
kinematics in the x−y plane follow the equations
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In order for the CLOS system to operate properly, the angle between the 
sensor platform boresight and each object—the missile and the target—must 
be kept small. The dynamics of the angle between the boresight and object i 
is derived next. Define

 εi
z

i
y

i
xp p= /  (14.6)

where εi
z is approximately equal to the angle between the position of object i 

projected onto the x−y plane and the boresight. Differentiating Equation 14.6,
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where
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ri is the range to object i, and the approximation

 r pi i
x≈  (14.9)

was used. Using similar manipulations, the variable ω i
z  satisfies
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Note that the only approximation used in obtaining Equations 14.7 and 
14.10 was Equation 14.9, although the identification of εi with the angle 
between the boresight and object i, and ωi with the angular velocity of object 
i, depends on εi being small.

14.4.2 Missile Model

In the present chapter, only a simplified missile model is used since the focus 
of the chapter is the design of a CLOS guidance system. Only the elements of 
the missile model that impact on the guidance system design are modeled in 
detail here. The following components are included:

 1. Missile time constant
 2. Limit on missile acceleration
 3. Missile drag
 4. Missile engine thrust
 5. Varying missile velocity

Here a “three-loop autopilot” is assumed. (The design of such an autopilot 
is covered in several places; see for example [19] or [20]). In this case, the mis-
sile transfer function for aerodynamic acceleration commands perpendicu-
lar to the missile body in either the y or z direction is
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s z s z
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1 1

1 2 12 2ω ξ ω ))
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The values of the poles and zeroes of the transfer function vary according to 
the missile flight conditions. One set of possible values is shown in Table 14.1.
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A linear approximation is assumed for the missile aerodynamic coeffi-
cients. Their values for the vertical plane are shown in Table 14.2. The aero-
dynamic coefficients for the horizontal plane have the same numerical values 
but differ in their signs.

The dependence of this transfer function on the flight conditions is fully 
accounted for in the performance evaluation presented later. For the pur-
pose of developing the design model in Section 14.5, the transfer function 
is assumed to vary sufficiently slowly to allow neglecting the time-varying 
nature of the missile transfer function in the design process.

The missile acceleration is limited by the missile’s ability to reach and to 
maintain a large angle of attack. Here it is assumed that the missile is capable 
of sustained flight up to angle of attack of 25°. The acceleration limit, aM lim, is 
given by the formula

 a
Q S

m
C C C C

CM
m z m z

m
lim

pres ref
max= −δ α α δ

δ
α  (14.12)

where Qpres is the dynamic pressure, Sref is the reference area of the missile, 
and m is the missile mass. This equation summarizes the limitations on the 
missile acceleration due to aerodynamics. There may be an additional limit 
on the missile acceleration due to the finite strength of its structure.

The missile axial acceleration in the missile x body direction is given by

 a
T D

mM
x S= +

,  (14.13)

TABLE 14.1

Missile Transfer Function Parameters

symbol Value Units Description

zA 54.4 rad/s Zero location 
pA 12.7 rad/s Real pole location 
ωA 20.7 rad/s Frequency of complex poles 

ξA 0.4 Damping of complex poles 

TABLE 14.2

Missile Aerodynamic Coefficients for 
Vertical Plane

symbol Value

Cmα −20

Cmδ −18.75

Czα −25

Czδ −4

αmax 25°
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where T is the missile engine thrust, and the skin drag Ds is given by

 Ds = QpresSrefCx0 (14.14)

Note that the total force acting parallel to the missile’s velocity vector and 
causing the loss of the missile’s velocity may be obtained by expressing the 
aerodynamic forces acting in the “wind” coordinates. The dependence of Cx0 
on the Mach number is shown in Figure 14.2.

As the missile accelerates, its mass decreases according to

 m K TT=  (14.15)

where KT = −4.3 × 10−4 kg/N s is a proportionality constant, and T is the 
thrust exerted by the missile engine.

The variation of the missile mass and the thrust are shown in Figures 14.3 
and 14.4.

In addition to the full order transfer function in Equation 14.11, a simpler 
first-order model is required. This model is obtained from Equation 14.11 by 
the balanced order reduction:
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where j denotes either the y or z direction perpendicular to the missile body 
axis. Equivalently the transfer function associated with Equation 14.16 may 
be expressed as
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1
1

τ
τ

.  (14.17)

Strictly speaking, this model is valid in the lateral body coordinates. 
Here the liberty is taken of using the same transfer function to describe the 
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dynamics of the missile acceleration in the body, wind, as well as the sen-
sor coordinate systems. This first-order model is a good description of the 
low-frequency acceleration response of the missile. This model is a part of 
the MSE to be described in Section 14.6.3. The same model is also used in 
the system model for calculating the guidance gains in Section 14.5.3. There, 
a further approximation is made: whereas Equation 14.16 describes the mis-
sile’s response in its body coordinates, in Section 14.5.3, the same model is 
applied to the missile acceleration perpendicular to the sensor boresight. If 
the scenario is the interception of a target approaching the sensor close to its 
boresight, then this is very good approximation. On the other hand, the use 
of the same model for other scenarios is an approximation, which must be 
evaluated on the basis of the performance of the guidance system.

14.4.3 Missile Uncertainty Model

In order to ensure the robustness of the design, the deviation of the missile 
model from the simple model Equation 14.16 must be built into the design 
model. The model for ad

j , the deviation of the actual missile acceleration in 
the j direction from its assumed model, consists of a shaping filter with a 
white noise signal input:
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When Equation 14.18 is expressed as a transfer function driven by the 
white noise process wM

j , then τzd is the zero of the transfer function. The 
important feature of the model is that the spectral content of ad

j  remains 
nonzero at high frequencies. This desensitizes the guidance loop to high-
frequency uncertainty in the missile transfer function. The spectral density 
of the white noise process wM

j  is the same for all axes, σ M
2 .

The uncertainty acceleration ad
j  is a stochastic representation of the uncer-

tainty in the missile transfer function. There is no physical signal in the 
system, which it directly represents. It is used in the missile estimator to 
estimate the missile acceleration âM

j  as

 ˆ ˆ ,a a aM
j

M
j

d
j= +det  (14.19)

that is, âM
j , the estimated missile acceleration in the j direction, is repre-

sented as the sum of the deterministic acceleration aM
j

det  and the estimate of 
the uncertainty in the acceleration âd

j. The deterministic acceleration aM
j

det  is 
calculated by feeding the acceleration commands acB

j  into Equation 14.16 to 
obtain aM

j
det . Note that
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 E a y xd
j

M
j

d
j{ } ˆ ,| =  (14.20)

where yM
j  represents the missile measurements obtained from the sensor. 

Hence, for the purposes of calculating the missile acceleration, it would have 
been sufficient to use the first of the two equations in Equation 14.18. The 
addition of the white noise in the second equation of Equation 14.18 does 
influence the missile estimator gain; see Equation 14.114, which in turn influ-
ences the stability margins of the guidance control loop. The disturbance 
acceleration âd

j  is one of the outputs of the missile estimator.

14.4.4 Target Model

The target acceleration model is the Singer model [24]. As discussed in 
Section 14.6.2, the same model is used in all the axes. The stochastic model 
for aT

j , the target acceleration in each of the coordinate axes, is

 a a wT
j

T
T
j

T
j= − +1

τ
 (14.21)

where τT is the target acceleration decorrelation time, and wT
j  are continuous 

time white noise processes. The model includes two parameters: the decor-
relation time τT and the standard deviation of the target acceleration σ a

j

T
. The 

spectral density of the white noise wT
j  is for a given standard deviation of aT

j :

 ( ) ( ) .σ
τ

σT
j

T
a
j

T

2 22=  (14.22)

14.4.5 Sensor Platform Model

The sensor platform consists of an outer (azimuth) and inner (elevation) gim-
bal. It is assumed that the two gimbal actuator systems are uncoupled, and 
in fact, their dynamics are neglected here. It is further assumed that the sen-
sor platform tracking loop has a bandwidth of about 3–4 Hz and that the 
tracking loop is sufficiently stiff to be able to withstand the wind and other 
external disturbances.

The sensor platform’s angular velocity is measured by an IMU. The errors in 
the measurement of the sensor platform’s angular velocity are of some impor-
tance since it is the angular rate measurements that enable the estimators to 
relate measurements at different time instances. If the angular rate measure-
ment is in error, then a stationary object tracked by the sensor will have an 
apparent acceleration. It is assumed here that this apparent acceleration is 
negligible with respect to the assumed acceleration capability of the tracked 



540 Advances in Missile Guidance, Control, and Estimation

object. If this is not true, then the angular rate measurement error in the sen-
sor platform must be accounted for in the estimators’ process noise (see [26]).

The equations in Section 14.4.1 are valid for any sensor angular velocity ωr. 
For the purposes of calculating the guidance law, it is better to also include a 
model that predicts the average future values of the sensor platform angular 
velocity. To develop such a model, it is assumed, for the sake of developing 
the prediction, that the sensor platform tracks the target with zero angular 
error. Then the platform angular velocity is

 ωr
T T

T

p v

p
=

×
2

.  (14.23)

Differentiating Equation 14.23 yields
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Upon using the approximation that the sensor platform tracks the target 
with zero angular error, so that p pT

y
T
z= = 0, the identity p v v vT T T T× = × = 0 , 

and Equation 14.23, then
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14.4.6 Sensor Model

The basic sensor considered in this chapter is a fire control radar, operat-
ing in the Ku band, with a dish diameter of 1.5 m. In addition, there is also a 
smaller antenna, whose diameter is 0.3 m, which shares the same boresight 
as the main 1.5 m diameter antenna and is used to track the missile in the 
initial phase of its flight. Here only a minimal description of the parameters 
of the radar is presented. For a more complete description, see [8] and [25].

The S/N ratio of a radar signal is defined by the relation
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σ  (14.26)

where σT
cs  is the radar cross section of the target, and rT

  is the range where 
the radar signal to noise is 1 for a target with radar cross section of 1 m2.
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For example, to enable the tracking of a target with a radar cross section 
(RCS) of 2 m2 with a signal-to-noise ratio of 13 dB at a range of 20 km would 
require rT

 = 35 km. If the missile is also tracked using the skin signal, then the 
formula in Equation 14.26 (with the subscript T replaced by M) also applies. On 
the other hand, if the missile carries a beacon transmitter, then the formula
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 (14.27)

applies, where rM
  is the range where the beacon signal-to-noise ratio is equal 

to 1. For example, a signal-to-noise ratio of 20 dB at a range of 10 km would 
require an rM

  value of 100 km.

14.4.6.1 Measurement Error Approximations

There are three main sources for the radar measurement errors

 1. Thermal noise
 2. Glint noise
 3. Radar imperfections

Under the radar imperfection category, one may find radar antenna map-
ping errors, cross-polarization errors, receiver gain imbalance, etc. Here all 
of these errors are accounted for by setting a lower limit on the angular radar 
measurement errors of 1/50 of the radar 3 dB beam width.

The source of the thermal noise error is the finite value of the signal-to-
noise ratio. The radar angle measurement errors due to thermal noise are well 
approximated by a Gaussian random noise with a standard deviation of σε:

 σ θ
ε = 3

2
dB

/k S Nm ( )
,  (14.28)

where θ3dB is the antenna beam width at the 3 dB points, and km is the mono-
pulse slope, with a typical value of 1.6. The antenna beam width is approxi-
mately given by

 θ λ
3dB = k

DA  (14.29)

where λ is the radar signal wavelength, D is the antenna diameter, and kA is 
a constant dependent on the illumination of the radar aperture; typical value 
may be 1.2. In the case at hand, λ = 17.6 mm, so that the beam width is about 
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14 mR ≈ 0.8° for a 1.5 m diameter antenna and 70 mR ≈ 4° for the wider 0.3 
m diameter antenna.

The glint noise is due to the target scatterers separated in the cross-range 
direction producing fluctuations in the phase of the signal return [4, 8]. If 
the missile carries a beacon transmitter, then this noise, for the case of the 
missile, is negligible. The linear glint error measured at the target is usu-
ally taken to be about 1/6 of the linear extent of the target perpendicular 
to the line of sight from the radar position. It is generally a non-Gaussian 
correlated noise. For the purpose of this chapter, it is assumed that suitable 
measures are taken to minimize the correlation of the glint error from pulse 
to pulse. Once this is done, the effect of the glint error is approximated by 
white Gaussian noise for design purposes. To evaluate the performance of 
any particular system, a detailed simulation is generally required. In such a 
simulation, the glint noise can be modeled to any desired accuracy. The glint 
noise is converted to angular noise by dividing its value by the target range:

 σGl = σg/r, (14.30)

where σg is approximately 1/6 the extent of the target perpendicular to the 
line of sight to the radar.

The range measurement errors are generally small enough that the perfor-
mance of the system is little affected by these measurement errors. The range 
measurement error is an additive noise, whose standard deviation σr is

 σr
r

S N
= ∆

2( )
,

/
 (14.31)

where Δr is the radar range resolution.

14.4.6.2 Measurement Model

The radar provides three measurements: range, an elevation angle, and azi-
muth angle, which are denoted yx, yy, and yz, respectively. The range mea-
surement is modeled as

 y r nx x= +  (14.32)

where nx  is a zero mean white Gaussian random sequence with standard 
deviation as defined in Equation 14.31.

The two angle measurements in the elevation and azimuth directions (y 
and z direction) are modeled as

 y n j y zj j j= + =ε ; ,  (14.33)
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where the zero mean white Gaussian noise sequence nj  is the sum of the 
noises due to the thermal and glint noise contributions. The variance of nj  is

 ( ) ( ) ( ) ; ,σ σ σ εnj j y z2 2 2= + =Gl  (14.34)

where σGl and σε are defined in Equations 14.30 and 14.28, respectively, and 
(S/N) is calculated by Equations 14.26 and 14.27 for the target and the missile 
as appropriate.

14.5  Detailed Design of Missile state 
estimator and Guidace Law

In this section, the models making up the CLOS system, as presented in 
Section 14.4, are integrated, and the detailed design of the CLOS guidance 
system is carried out.

The design method used here is based on the use of LQG optimal control. 
In this formalism, the design parameters are

 1. The dynamic system model parameters
 2. The weights in the quadratic criterion function
 3. The intensities of the process noise levels

In particular, the guidance gains are not adjusted individually, but rather, 
the model parameters are adjusted until the desired system behavior is 
obtained. It is therefore of paramount importance to choose the system 
model well.

14.5.1 Design Configuration

The coordinate system for the guidance design is rigidly attached to the sen-
sor platform. Here it is assumed that the sensor platform is stationary. In 
this case, its roll rate is small, and it is here assumed to be negligible. Then 
the kinematic equations (Equation 14.1) neatly decouple into a horizontal y 
direction and a vertical z direction. The kinematics in the horizontal plane 
are described by Equations 14.7 and 14.10.

If the sensor platform is not stationary and there is appreciable roll rate 
about its boresight (its x-axis), then there are a number of possible approaches 
to the treatment of the problem. The simplest one is to define a virtual coor-
dinate system, which is attached to the sensor platform but is free to rotate 
about the sensor boresight and rotates with respect to the sensor platform 
so that its z-axis is always vertical and its y-axis is always horizontal. Then 
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in this virtual coordinate system, the kinematics are again neatly decoupled 
into horizontal and vertical components.

A second approach leaves the coordinate system attached to the sensor 
platform and, in the 3D realization of the target and missile estimators, 
transforms the states after the prediction step of the Kalman filter to the new 
coordinate system before processing each observation, to account for the cur-
rent roll angle of the sensor platform. The development of the 3D implemen-
tation of the target and missile estimators in Section 14.6 is compatible with 
this possibility.

There is a fundamental difference in the treatment of the change in the 
guidance system’s coordinates between the estimators and the guidance 
algorithm. The estimators need the history of the orientation of the coordi-
nate system, while the guidance law consists of multiplying the estimated 
states by a suitable gain vector. In the guidance law, then, only an instanta-
neous transformation is required to transform the missile acceleration com-
mand to a coordinate system in which the missile is able to interpret.

14.5.2 Continuous versus Discrete Time Models

All the design models including the process and observation noise models 
are expressed in continuous time. In the implementation, the observations 
arrive at discrete time instants and are processed by a discrete time Kalman 
filter. Throughout the remainder of the chapter, the same letter denotes 
both the continuous time and discrete time noise; the discrete time version 
is underlined, and the continuous time one is not. When the discrete time 
models are introduced, the conversion between the discrete time and con-
tinuous time noise intensities is presented.

14.5.3 The System Model

The guidance system works in the coordinate system attached to the sensor. If 
the roll rate of the sensor is sufficiently small, then the guidance problem sep-
arates into two uncoupled problems, one for the horizontal plane and one for 
the vertical plane. This is assumed. In this section, the attention is restricted to 
the horizontal plane. Hence, all angles and angular rates are around the z-axis, 
and the missile and target accelerations are in the y direction. In order to sim-
plify the notation, these directions are assumed to be understood and are not 
explicitly included in the symbols in the equations. A parallel development is 
possible for the vertical plane. Only the signs in a few of the equations for the 
vertical and horizontal planes differ. In particular, the signs of the acceleration 
terms in the vertical plane are opposite to those in the horizontal plane.

CLOS guidance systems generally cannot be designed with sufficiently 
high gain crossover frequency to make the system stiff enough to derive the 
missile acceleration commands only from the error signal, which in this case 
is the angular deviation of the interceptor missile from the sensor boresight. 
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The guidance system must rely on feed-forward from the target observa-
tions in order to close the guidance control loop. The way this is done in the 
LQG formalism is to include the target model and other disturbance models 
in the system dynamics. The state variables associated with the target and 
disturbance models are uncontrollable, but their presence is essential for a 
successful LQG-based design. The issues arising from the lack of control-
lability are addressed subsequently. In Section 14.4.1, the kinematics of two 
bodies moving in a rotating coordinate frame were derived. These equations 
are repeated here for convenience. The deviation from the boresight of either 
body, εi, follows the differential equation
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Each of the bodies’ angular velocities are governed by the differential 
equation
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To describe the kinematics of both the target and the missile, two sets of 
equations (Equations 14.35 and 14.36) are required, one set for the target, where 
the subscript i is replaced by T, and a second set for the missile, where the 
subscript i is replaced by M. It is more convenient to replace the missile states 
εM and ωM by the difference states, as defined in the following two equations:

 εd = εM − εT (14.37)

and

 ωd = ωM − ωT (14.38)

The difference angle εd and the difference angular rate ωd follow the dif-
ferential equations
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and
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After a little algebra, and substituting the definitions of Section 14.4, the 
following system equation is obtained:
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where
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The components of xc and x0 are
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The entries in the submatrices are
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It may be observed that

 1. The states xc are controllable, while the states x0 are uncontrollable.
 2. The dynamics of x0 contain unstable dynamics for an approaching 

target.
 3. The white noise w excites the uncontrollable states.

In order to implement the GL, estimates are required of all eight state vari-
ables. As described in Section 14.4, the observation noise for the missile and 
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the target are independent of each other. Further, the process noise exciting 
the missile is by physical considerations independent of the process noise 
exciting the missile disturbance states. It is therefore both feasible and advan-
tageous to estimate the missile and the target states in separate estimators. 
For the purpose of designing the CLOS guidance system, the target states (εT, 
ωT, and aT) and the corresponding missile states (εM, ωM, and aM) are estimated 
directly, while in the implementation, an estimator expressed in a Cartesian 
coordinate system is employed. The actual states used in the implementation 
of the estimators are listed in Tables 14.3 and 14.4.

The variables used in Equation 14.41 are straightforwardly obtained from 
the estimated states:

 ˆ ˆ ˆ ,εi i ip r= /  (14.51)

 ˆ ˆ ˆ ,ω i i iv r= /  (14.52)

where the subscript i may take on the value of M for missile or T for target. 
Recalling the assumption that the ranges to both the target and the missile 
are known with negligible error, then the transformations in Equations 14.51 
and 14.52 are linear, so that the Cartesian and polar implementations may be 
considered equivalent.

The missile estimator observes yM, where

 yM = εM + nM (14.53)

TABLE 14.3

Target Estimator State Variables

Variable Description

pT Target displacement from sensor boresight 
vT Target velocity perpendicular to the sensor 

boresight 
aT Target acceleration perpendicular to the 

sensor boresight 

TABLE 14.4

Missile Estimator State Variables

Variable Description 

pM Missile displacement from sensor boresight
vM Missile velocity perpendicular to the sensor 

boresight
xM Missile first-order approximate transfer 

function state variable
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and the target estimator observes yT,

 yT = εT + nT (14.54)

where nM and nT are independent white Gaussian random processes, with 
autocorrelation function with

 E n t n tM M nM
{ ( ) ( )} ( )+ =τ δ τ σ2  (14.55)

 E n t n tT T nT
{ ( ) ( )} ( ) .+ =τ δ τ σ2  (14.56)

14.5.4 Criterion Function

For the system to operate properly, the missile must be at all times in the 
sensor’s field of view. The sensor’s field of view is generally small so that the 
angular deviation of the missile from the sensor’s boresight must remain 
small at all times if the system is to operate as intended. In addition, at the 
final time, it is desirable that the miss distance to the target be small. The fol-
lowing criterion function expresses these aims:
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Note that only the controllable states are weighted. A GL is sought to mini-
mize the expected value of the criterion E{J} in Equation 14.57.

14.5.5 Optimal Control Solution

The optimal solution for minimizing the expected value of J is well known [7]. 
It is based on the use of the certainty equivalence and separation principles. 
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The control part of the solution is obtained by solving the Riccati differential 
equation:

 P PA A P PBB P Q= − − ′ + ′ −  (14.60)

 P(Tf) = Qf (14.61)

and then the optimal controller is

 a B Pxc = − ′ ˆ  (14.62)

where x̂  is the estimate of the system state vector

 x x
x

c=
















0

.  (14.63)

The matrices A, B, Q, and Qf are defined as

 A
A E

A
c=

















0 0

 (14.64)

 B Bc=










0

 (14.65)

 Q
Qc=













0

0 0
 (14.66)

 Q
Q

f
cf=













0

0 0
.  (14.67)

14.5.6 Design Parameters

The design parameters may be divided into two groups: the first group are 
parameters whose values are determined externally, and the second group 
are those whose values the designer uses to achieve the required robustness 
and performance goals. Among the parameters in the first group are the 
missile and target observation noise and the missile and target ranges. The 
parameters under the designer’s discretion are shown in Table 14.5.
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14.5.7 Design Method

While the missile is far from the target, the purpose of the guidance system 
is to generate missile acceleration commands such that the missile remains 
within the sensor’s field of view in the face of maneuvers by the target. 
Although the parameters r rM M/  and r rT T/  slowly vary in Equations 14.45 
through 14.47, this is essentially a stationary control problem. As such, the 
usual requirements for linear control design apply: the control loop should 
be robust to any expected plant variations while minimizing the influence 
of the disturbance inputs to the guidance loop. There are two main sources 
of disturbance inputs to the guidance loop. The first source is target maneu-
vers, and the second one is deviations of missile behavior from its design 
model. In addition, only noisy observations of the missile and the target are 
available. The noise must be filtered sufficiently well so that the noise content 
of the acceleration command sent to the missile does not exceed 10% of mis-
sile acceleration command dynamic range.

The simplest and probably the most widely used robustness test is to 
demand good margins in the Nyquist or Nichols plots. The simplest way 
to express the guidance loop’s ability to reject the disturbance inputs is to 
calculate its response to step inputs at the target command input and at the 
missile acceleration command input. Recall that the aim of the guidance loop 
is to keep the missile inside the sensor’s field of view at all times. This can be 
verified by inspection of the step responses of the angle between the sensor 
boresight and the missile position.

To examine these properties of the guidance loop, the steady-state solution 
of Equation 14.60 is required. One way of obtaining the steady-state solution 

TABLE 14.5

Values of Design Parameters

symbol Value Units Description

τd 2 s Missile disturbance model: time constant

τzd 0.1 s Missile disturbance model: inverse of zero
σ

xd
i 50 m/s2 Missile disturbance model: acceleration 

standard deviation

τT 3 s Target acceleration decorrelation time
σ aT

50 m/s2 Target maneuver standard deviation

qε 106−107 Criterion weight on angular deviation εd

qω qε/5 Criterion weight on angular velocity 
difference ωd

q
Tfε 108, rM ≤ 2000 m Terminal criterion weight on angular 

deviation εd(Tf)

108 (rM/2000)2, rM > 2000 m 
q

Tfω q
Tfε /5 Terminal weight on angular velocity 

difference ωd(Tf) 
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is to integrate Equation 14.60 numerically until the steady-state solution is 
reached. A simpler but more elegant method is to decompose the solution 
into a steady-state part and a terminal part and to use the steady-state part 
in the calculations.

14.5.8 Solution of Riccati Equation

It is convenient to be able to obtain the steady-state solution of the Riccati 
equation (Equation 14.60) without having to solve it numerically as a dif-
ferential equation. Fortunately, there is a lemma in Appendix A of [22] that 
makes possible such a calculation. In [22], the equivalence of the following 
two problems is shown.

PRobLeM 1
Minimize

 J x P x x Qx u Ru tf f f

Tf

1
0

1
2

1
2

= ′ + ′ + ′∫ [ ]d  (14.68)

subject to

 x Ax Bu= + .  (14.69)

PRobLeM 2
Minimize

 J x W x u Ru tf f f

Tf

2
0

1
2

1
2

= ′ + ′∫ d  (14.70)

subject to

 x A x Bucl= + .  (14.71)

Then optimization problems 1 and 2 are equivalent if

 A A B R B Pcl c c= − − ′1  (14.72)

 W P Pf f= −  (14.73)

and P  is the solution of the algebraic Riccati equation:

 ′ + − ′ + =−A P PA PBR B P Q1 0.  (14.74)
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In [22], the proof of the lemma shows that

 P P W= + ,  (14.75)

where W is the solution of the Riccati equation associated with Problem 2:

 W A W WA WBR B Wcl cl+ ′ + − ′ =−1 0.  (14.76)

Thus, the optimal control for Problem 1 is decomposed as

 
u u u

R B Px R B Wx
ss tc= +

= − ′ − ′− −1 1 .
 (14.77)

In other words, the optimal control is the sum of two control signals, uss, 
a steady-state term, and utc, a terminal control term. Hence, the use of this 
lemma makes it possible to write the solution of the optimization in Equation 
14.57 subject to the system dynamics Equation 14.41 as the sum of two opti-
mization problems: the first one over an infinite interval and the second one 
over a finite interval. Note that the second problem has a closed-form solu-
tion since there is no weighting of the states in the running cost. Note also 
that the solution of the terminal cost problem is solved for the closed-loop 
system obtained from the solution of the steady-state problem.

When the solution of Equation 14.74 is attempted, using one of the standard 
Riccati equation solvers, one is immediately confronted by a slew of error mes-
sages. The difficulty is that the system equations 14.41 contain uncontrollable 
unstable states. An approach to overcoming such a difficulty is presented in 
Section 9.6 of [10]. Note that the solution of Equation 14.60 is a well-defined 
problem with a solution. The difficulty arises from the attempt to convert the 
problem to the sum of an infinite time and a finite time problem.

To examine the problem more closely, write Equations 14.60 and 14.62 in 
terms of the submatrices. Then Equation 14.60 becomes

 P P A A P P B B P Qcc cc c c cc cc c c cc c= − − ′ + ′ −  (14.78)

 P P E P A A P B B Pc cc c c cc c c c0 0 0 0= − − − ′ − ′( )  (14.79)

 P P A A P P E E P P B B Pc c c c c c00 00 0 0 00 0 0 0 0= − − ′ − ′ − ′ + ′ ′ .  (14.80)

The differential equation 14.80 does not have a steady-state solution. The 
commanded acceleration in terms of the partitioned matrices is obtained by 
substituting into Equation 14.62:

 a B P x B P xc c cc c c c= − ′ − ′ˆ ˆ0 0  (14.81)
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so that P00 is not necessary for calculating ac. Equation 14.78 may be solved 
using the decomposition lemma, without encountering any difficulties. The 
differential equation satisfied by Wcc is

 W A W W A W B B Wcc cl cc cc cc cl cc cc c c cc+ ′ + − ′ =( ) ( ) .0  (14.82)

In particular, the steady-state (ac)ss part of the acceleration command may 
be expressed as

 ( ) ˆ ˆa B P x B P xc ss c cc c c c= − ′ − ′ 0 0  (14.83)

where Pcc  is the positive solution of the 3 × 3 algebraic Riccati equation:

 P A A P P B B P Qcc c c cc cc c c cc c+ ′ − ′ + = 0  (14.84)

and Pc0  is the solution of the linear Sylvester equation:

 P E P A A P B B Pcc c c cc c c c+ + ′ − ′ =0 0 0 0( ) .  (14.85)

This equation can also be written as

 P E P A A Pcc c cl cc c+ + ′ =0 0 0 0( )  (14.86)

where ( )A A B B Pcl cc c c c cc= − ′  is the closed-loop steady-state system matrix. 
The decomposition lemma may not be used to decompose Equation 14.79 
since the lack of existence of P00 calls into question the validity of the decom-
position lemma when applied to the system equations 14.78 through 14.80. 
However, substituting P P Wc c c0 0 0= + , where Pc0  is the solution of Equation 
14.86, into Equation 14.79 results in the differential equation for Wc0:

 W A W W A W A W B B Wc cl cc c cc cl c c cc c c c0 0 0 0 0 0 0+ ′ + + − ′ =( ) ( )  (14.87)

which happens to be the same equation as would have been obtained from 
partitioning Equation 14.76.

14.5.9 Summary of Design

The design as described to this point was carried out and is summarized 
here. A schematic block diagram of the GL in one coordinate is shown in 
Figure 14.5.

The target and missile measurements are inputs to the target and mis-
sile estimators. The rotation rate ωr of the sensor platform is obtained using 
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inertial instrumentation attached to the sensor platform and is a further input 
to the two estimators. The block labeled “Missile aM/ac” is an open-loop simu-
lation of the missile using a first-order approximation to the missile transfer 
function (see Equation 14.16). This block has two outputs. The first block out-
put is the missile acceleration, which is connected to the missile estimator. 
The block’s other output is the missile model internal state, xM. The variables 
εd and ωd are formed by the sum blocks (circles) as εd = εM − εT and ωd = ωM − ωT, 
from the outputs of the two estimators. The final block is the one labeled Kcc 
Kff, where the estimated variables are multiplied by the gains as in Equation 
14.62 or Equation 14.81 to obtain the commanded acceleration ac in the sensor 
reference frame. The total number of states in the GL is 8, with the missile 
and target estimators each containing three states, a single state in the missile 
block, and ωr, the angular velocity of the sensor platform. Note that the first 
term on the right-hand side of Equation 14.81 constitutes the feedback term 
and the feedback of the controllable states, and the second term involving the 
uncontrollable states constitutes the feed-forward term of the control signal.

In Figure 14.6, the Bode plot of the guidance loop opened at the input of the 
block labeled MSL in Figure 14.1 is shown.

In Figure 14.7, the step response of the difference between the missile 
angular position and the target angular position is shown, when the tar-
get undergoes a 1 m/s2 step acceleration. Assuming that the sensor platform 
tracks the target with small angular error, this response demonstrates the 
guidance system’s ability to maintain the missile inside the guidance beam 
when the target maneuvers. Note that the system contains an uncontrollable 
and unstable pole (from the target kinematics), so that for large values of 
time, the response becomes unbounded.

Both Figures 14.6 and 14.7 were plotted with all the random inputs in the 
system model set to zero, but their covariances maintained at their nominal 
values. The other system parameters may be found in Tables 14.1 and 14.5. 
The figures were plotted when the missile was at a range of 2500 m and the 
target at a range of 4500 m from the sensor platform; the missile velocity was 
450 m/s, and the target was approaching at a velocity of 300 m/s.

Missile
aM/ac

Missile
estimator

Targer
estimator

K cc

K f f ac

aMdet

εMmeas

εM
ωM

εd
ωd

ad

εT
ωT
aT

εTmeas

ωr

rM
rT

xM

FIGURE 14.5
Schematic block diagram of the CLOS guidance system.
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14.6 3D Implementation of target and Missile estimators

14.6.1 Generic 3D Estimator

The generic state estimator (GSE) is a 3D tracking filter whose measurements 
include range, azimuth, and elevation. The filter follows the TSE of [26] and 
consists of three independent single-axis filters whose time update stage 
involves rotation of the estimated target state.
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FIGURE 14.6
Bode plot of the open-loop transfer function.
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FIGURE 14.7
Step response of the guidance system to 1 m/s2 step in target acceleration.
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The discrete target state equations associated with a single axis in the sen-
sor frame are

 z k Fz k Gu k w ki i i i( ) ( ) ( ) ( )+ = + +1 Γ  (14.88)

where the elements of the state vector z consist of the relative position pi, the 
relative velocity vi, and the inertial acceleration ai in the ith coordinate of the 
sensor coordinate system:

 z k p k v k a k i x y zi i i i( ) [ ( ) ( ) ( )] ; , ,= ′ =  (14.89)

and w ki( )  is a white Gaussian sequence, which is the process noise in the ith 
coordinate.* The system matrix F and the input matrices G and Γ are speci-
fied in Sections 14.6.2 and 14.6.3 for the target and missile estimators, respec-
tively. These matrices differ slightly for the target and missile estimators and 
are defined subsequently.

The sensor measures the range to the target yx, the elevation angle, which is 
a rotation about the sensor y-axis, yy, and the azimuth angle yz. Both εy and εz 
are measured with respect to the sensor boresight. Assuming small angular 
deviations during tracking, the measurements taken in the sensor frame are

 y p nx x x= +  (14.90)

 y p p ny z x y= − +/  (14.91)

 y p p nz y x z= +/  (14.92)

where nx, nz, and ny  are additive observation noises in the three observa-
tions. They are zero mean white Gaussian sequences with variances

 

E n

E n

E n

x
n

y
n

z
nz

x

y

{( ) } ( )

{( ) } ( )

{( ) } ( )

2 2

2 2

2 2

=

=

=

σ

σ

σ
 (14.93)

and the relationship to the continuous time versions in Equations 14.55 and 
14.56 is

 σ σ
n s ni iT i x y z2 2/ = =; , ,  (14.94)

* Recall that the same symbol, w, is used to represent both the continuous time process noised 
as used in Section 14.5 and the discrete time sequence used here. Whenever the discrete 
sequence is meant, the symbol is underlined.
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where Ts is the sampling time, and ni represents either nM
i  or nT

i . Note that 
for a reasonably operating CLOS guidance system, |py| ≪ px and |pz| ≪ px, 
so that yx is a very good approximation of the range to the observed object. 
Alternatively, the observations may be expressed as

 y h z ni i i i= +  (14.95)

where

 hx = [ ]1 0 0  (14.96)

 h py x= − /[ ]0 0 1  (14.97)

and

 h pz x= /[ ].0 1 0  (14.98)

The notation is simplified if the estimator state is arranged in a matrix Z

 Z p v a

p v a

p v a

p v a

x x x

y y y

z z z

= 



 =

























.  (14.99)

That is, the state of each elemental coordinate filter is a row of the matrix Z. 
The time update is easily expressed in this compact notation:

 ˆ ˆZ C Z F U Gk k k k k k k| − , − − | − −= ′ + ′1 1 1 1 1  (14.100)

where Ck,k−1 is the rotation matrix from the previous position (instantaneously 
frozen) sensor platform coordinates to their present position:

 C I T

T T

T T

T T
k k r s

s r
z

s r
y

s r
z

s r
x

s r
y

s

, − ≈ − =
−

−
−

1

1

1Ω
ω ω

ω ω
ω ωrr

x 1



















 (14.101)

where Ωr is defined in Equation 14.2, and Uk is the matrix of deterministic 
inputs to the estimator:
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 U

u

u

u
k

x

y

z

=



















( )

( )

( )

.  (14.102)

In the approximation used in the estimator, the filters in the three coor-
dinates are decoupled (see [2] and [26]). Only the 3 × 3 covariance matrices 
in each of the three coordinate directions comprising pi, vi ai are calculated. 
This approximation would be exact if the sensor coordinate did not rotate, 
since both the process and measurement noises are independent from one 
coordinate direction to a different coordinate direction. Here it is assumed 
that the sensor rotation rate is sufficiently small to justify the approximation 
(see [2] and [26]). Each of the 3 × 3 covariance blocks of the ith coordinate is 
propagated according to

 P FP F Qk k
i

k k
i i

| − − | −= ′ +1 1 1 .  (14.103)

The equations used to update the estimates are presented next. First the 
covariance of the innovation Si is calculated as

 S h P hi i i i
ni= ′ +( ) ( )σ 2  (14.104)

then the Kalman gain Li

 Li = Pi(hi)́/Si (14.105)

and finally, the state is updated:

 z z L y h zk k
i

k k
i i i i

k k
i

| | − | −= + −1 1( ).  (14.106)

When i = y or i = z in Equation 14.106, then the estimated value of px and 
p̂k k

x
| −1 is substituted in hi. Finally the covariance is updated to reflect the 

observation

 P I L h P I L h L Lk k
i

k
i

k
i

k k
i

k
i

k
i

k
i

n ki| | −= − − ′ +( ) ( ) ( ) (1
2σ ii ′) .  (14.107)

14.6.2 Target Estimator

The target acceleration model is the shaping filter associated with the Singer 
model [24], as defined in Section 14.4.4. Here the same model is assumed in 
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all three coordinates. This is equivalent to assuming that the target is able to 
accelerate in any direction equally well. If it is known with certainty that this 
is not the case, then it is possible to include the target’s preferential accelera-
tion direction (see [6]). On the other hand, if the target does accelerate in a 
direction where the target acceleration is assumed to be zero, then there is a 
danger that the filter will diverge. It is then better to use an isotropic model 
unless there is 100% certainty that the actual target conforms to the assumed 
model.

Equation 14.100 neatly takes care of the effects due to the rotation of 
the coordinate system attached to the sensor platform. For the purpose of 
developing the Kalman filter equations, it is sufficient to consider the prob-
lem in stationary coordinates but to use Equation 14.100 for the time update 
step.

Using the isotropic model in continuous time for the ith coordinate, the 
target estimator dynamics are
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There are no deterministic inputs for the TSE. The observation equa-
tion conforms to the observation model described in the generic estimator 
(Equation 14.95).

An exact discretization of Equation 14.108 results in

 z k F z k wT
i

T T
i

T
i( ) ( )+ = +1   (14.109)

where wT
i  is a discrete time white noise sequence, and
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In the rest of this chapter, the approximate form of FT is used. The exact 
expression for the covariance of wT

i  is a bit complicated and is not repro-
duced here. It may be found in [3, p. 323]. There are a number of direct dis-
crete time models possible, which avoid the cumbersome discretization of 
Equation 14.108. Both of these models are detailed in [3, near p. 272]. The first 
model replaces the continuous noise w tT

i ( )  by a piecewise constant signal, 
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with the signal being constant between sampling times. The constant values 
of the signal are given by a random sequence w kT

i ( ). The statistics of w kT
i ( ) 

are chosen so as to retain the statistical properties of a kT
i ( ):

 z k F z k w kT
i

T T
i

T
i( ) ( ) ( )+ = +1 Γ  (14.111)
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For a given target acceleration level σ aT

2  assumed to be identical in all sen-
sor directions, the spectral density of w kT

i ( )  is σT
2 , where
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A second type of direct discrete time model is also possible. In the second 
type of model, the white noise sequence represents the increment in the tar-
get acceleration at each sampling interval. The increments are assumed to 
occur at each sampling time. This type of model is not pursued further. All 
the stochastic models here are based on the piecewise constant model.

The implementation of the TSE is shown in Figure 14.8. Note that the sen-
sor platform acceleration was assumed to be zero.

Ck,k–1

yT

Generic state
estimator in
sensor frame

zTˆ

FIGURE 14.8
Implementation of TSE using GSE.
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14.6.3 Missile State Estimator

In contrast to the target acceleration, the missile acceleration is approxi-
mately known since the acceleration commands are generated within the 
guidance algorithm. On the other hand, it is not possible to entirely rely 
on the missile acceleration command to calculate the acceleration since this 
would ignore any deviations between the model used to calculate the mis-
sile acceleration and the missile’s actual possibly nonlinear characteristics, 
as well as external influences acting on the missile. The model chosen for the 
MSE combines an approximate model of the missile transfer function to cal-
culate an approximation to the missile acceleration and a stochastic model 
for the difference in the missile acceleration calculated by the approximate 
model and the actual acceleration. The modeling of the deviations of the 
missile acceleration from the model is crucial for satisfactory performance 
of the system. This model also affects the robustness of the guidance loop; 
hence, the parameters of the model must be chosen with a view to satisfying 
the robustness requirements.

As in the TSE, the rotation of the coordinate axes is conveniently taken care 
of in the time update equation (Equation 14.100). Then for the purposes of 
developing the MSE, it is sufficient to consider the problem in inertial coor-
dinates but to rely on Equation 14.100 for the time update step.

As in the TSE, it is assumed that the disturbance acceleration model is 
isotropic. In continuous time, the missile estimator model in each coordi-
nate is
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Here the state xd
i  represents the low-frequency deviation of the missile 

acceleration from the acceleration aMdet calculated by the missile determinis-
tic acceleration model in the sensor coordinates. The continuous time white 
noise wM

i  plays a role similar to the continuous time noise wT
i  in the tar-

get estimator. The deterministic missile acceleration is calculated according 
to the model in Section 14.4.2, while taking note of the required coordinate 
transformation between the sensor coordinates and the missile body coor-
dinates, where Equation 14.16 is valid. The calculation of aM

i
det is presented 

toward the end of Section 14.7.
The discretization procedure follows the piecewise constant type dis-

cretization of the TSE in Section 14.6.2. The discrete time estimator design 
model is
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i
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and
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As was the case for the TSE, the approximate forms for the matrices FM, ΓM, 
and GM are used elsewhere within the chapter. The missile acceleration due 
to the stochastic input contains a white noise term; however, it is possible to 
calculate the noise intensity required for a given variance ( )σ

xd
i
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 (14.119)

where σ M
2  is the spectral density of the stochastic excitation w kM

i ( ), for all i.
The implementation of the MSE is shown in Figure 14.9, where it is also 

assumed that the sensor acceleration is zero. The calculation of the determin-
istic acceleration aMdet is described in Section 14.7.
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14.7 Real-time Implementation of the Guidance Law

In this section, several issues that are required to implement the GL in its full 
3D version are described.

14.7.1 Guidance Gain Calculation

For the purposes of this calculation, it is assumed that the parameters r rM M/  
and r rT T/  may be treated as sufficiently slowly varying as to be constant.

The most straightforward way of calculating the guidance gains required 
in Equation 14.62 is to integrate Equation 14.60 backward from the terminal 
time to the present time. This requires the solution of the matrix differential 
equation 14.60, which contains 32 unknowns. Hence, the computational load 
is equivalent to solving a 32nd-order nonlinear differential equation at each 
step. In this section, an alternative approach is explored.

In Section 14.5.8, it was shown that the acceleration command can be 
decomposed into the sum of a steady state and a time-varying terminal 
solution. The steady-state part (ac)ss was shown in Equations 14.83 through 
14.85. Hence, the steady-state part of the acceleration command requires the 
solution of a 3 × 3 algebraic Riccati equation (Equation 14.84) and a 3 × 5 
linear Sylvester equation (Equation 14.85). The simplest method for solving 
the steady-state algebraic Riccati equation is described in [16], and a more 
modern one may be found in [1]. Since the solution of the Riccati equation is 
required at each time step, the iterative algorithm of [16] has the advantage 
of being able to use the computation of the solution of the Riccati equation at 
a previous time step.

Ck,k–1

u

yM Generic state
estimator in
sensor frame

Missile
deterministic
acceleration

estimate

zM

acBaMdet

ˆ

TIS
ˆ



FIGURE 14.9
Implementation of MSE using GSE.
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The solution of the terminal control part is

 ( ) ˆa B Wxc tc = − ′  (14.120)

where W is the solution of the matrix Riccati differential equation (Equation 
14.76). This matrix differential equation has an analytically expressible solu-
tion [21]:

 W e W I GrW eA T t
f f

A T tcl f cl f= +
′ − − −( ) ( )( ) 1  (14.121)

where

 Gr e BB e
t

T
A T A Tf

cl f cl f= ′∫ − −′( ) ( )λ λ λd  (14.122)

is called the Grammian. At this point, Equation 14.121 must be considered as 
a solution in the formal sense only because P00  and hence Wf00 do not exist. If 
the formal manipulations are carried out, and all the matrices in Equations 
14.121 and 14.122 are partitioned as in Equations 14.64 through 14.67, then

 Gr
Grcc=













0

0 0
 (14.123)

 Gr e B B ecc
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T
A T
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A T
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f
cl f cl f= ∫ − ′ −′

( ) ( )( ) ( )λ λ λd .  (14.124)

Expanding Equation 14.120, it is observed that ac is expressed as
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 (14.125)

where

 Hc = Wfcc (I + GrccWfcc)−1 (14.126)

 H0 = −Wfcc(I + GrccWfcc)−1GrccWfc0 + Wfc0. (14.127)

It is observed that the solution 14.125 does not require Wf00, and in fact, only 
the submatrices Wcc and Wc0 of the solution to Equation 14.76 are required.
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To show that Equation 14.125 is actually a solution of the terminal guid-
ance problem, it is necessary to show that

 W e H ecc
A T t

cc c
A T t

cc
cl f cl f= − −( ) ( )( ) ( )  (14.128)

and

 W e H e ec
A T t

cc c
A T t

c
A T tcl f cl f cl f

0 0= +
′ ′− − −( ) ( ) (( ) ( ) ( )) ( )) ( )cc

A T tH e cl f
0 00

−  (14.129)

solve the differential equations 14.82 and 14.87. The simplest method is to 
substitute back into the differential equations and verify the solutions. This 
is straightforward but tedious. Two key intermediate results are

 H H e B B e Hc c
A T t

cc c c
A T t

cc c
cl f cl f= − ′ −′

( ) ( )( ) ( )  (14.130)

and

 H H e B B e Hc
A T t

cc c c
A T t

cc
cl f cl f

0 0= − ′ −′

( ) ( ) .( ) ( )  (14.131)

If Wfcc is invertible, then Equation 14.125 can be rewritten as the product of 
a time-varying matrix gain times a zero-effort miss like term

 ( ) ( )( )a B e H Zemc tc c
A T t

cc c
cl f= − ′ −′

  (14.132)

where Zem  is a three-component vector:
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The major task in evaluating (ac)tc is the calculation of Grcc, ( )( )eA T t
cc

cl f −  
( )( )eA T t

c
cl f −

0, and ( )( )eA T tcl f −
00. The easiest way to calculate the latter three is by 

the use of a good symbolic algebra program, using the Laplace transform:

 ( ) ( ( ) )e sI AA t
cc cl cc

cl = −− −



L 1 1  (14.134)

and

 ( ) ( ( ) ) ( ) ( )e sI A A sI AA t
c cl cc cl c

cl
0

1 1
0 0

1= − −− − −


L   (14.135)
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 ( ) ( )e sI AA tcl
00

1
0

1= −− −



L  (14.136)

where Acl is the closed-loop system matrix. It is partitioned as

 A
A A

A
cl

cl cc cl c

cl

=


















( ) ( )

( )
0

000  (14.137)

where

 ( )A A B B Pcl cc c c c cc= − ′  (14.138)

 ( )A E B B Pcl c c c c0 0= − ′  (14.139)

 (Acl)00 = A0. (14.140)

Some of the better symbolic algebra programs are even capable of out-
putting source code in a high-level language such as C. For the inversion of 
the first two Laplace transforms, the eigenvalues of (Acl)cc are required. This 
involves the solution of a cubic equation, or alternatively, some of the methods 
of calculating the solution of the 3 × 3 algebraic Riccati equation calculate the 
eigenvalues of the closed-loop system as a byproduct (see for example [1]). The 
eigenvalues of A0 may be obtained by inspection. Other methods for evaluat-
ing the matrix exponential may be found in [17] and [18].

The evaluation of (Gr)cc may be carried out either by numerically evaluat-
ing the integral in Equation 14.124 or by converting the problem to the solu-
tion of a differential equation:

 Gr A Gr Gr A B B Gr Tcc cl cc cc cl cc c c cc f

.
( ) ( ) ( ) .= + + =′ ′ , 0  (14.141)

Arranging the entries of Grcc in a column vector then converts the problem 
to the calculation of an exponential matrix (see [17] and [18] for the possible 
algorithms).

Another possibility for calculating Grcc is to use the Laplace transform plus 
symbolic algebra program to solve the differential equation resulting from 
arranging the elements of Grcc in a column vector.

14.7.2 Transformation from Estimator States to System Model States

The system model used to derive the guidance commands was defined in 
Equations 14.41 through 14.44 and has a mixture of polar and Cartesian 
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variables. On the other hand, the estimator states are exclusively Cartesian, 
as in Equations 14.88 and 14.89.

The transformation from the Cartesian estimated states to the angular 
deviations from the boresight follow their definitions in Equation 14.6, with 
the required adjustment of the signs in the two axes:

 ˆ ˆ ˆεi
y

i
z

i
xp p= − /  (14.142)

and

 ˆ ˆ ˆ ,εi
z

i
y

i
xp p= /  (14.143)

where i may be M or T for missile and target. Similarly the angular rate states 
are derived from Equation 14.8:

 ˆ ˆ ˆω i
y

i
z

i
xv p= − /  (14.144)

and

 i
z

i
y

i
xv pˆ ˆ ˆ .ω = − /  (14.145)

Also ε̂d
j  and ω̂d

j  are defined by

 ˆ ˆ ˆ ; ,ε ε εd
j

M
j

T
j j y z= − =  (14.146)

and

 ˆ ˆ ˆ ; , .ω ω ωd
j

M
j

T
j j y z= − =  (14.147)

The missile acceleration state, x̂M
j , j = y, z, is obtained by inputting into the 

missile dynamic model (Equation 14.16) the acceleration commands sent to 
the missile and propagating the differential equation.

The measured value of the platform’s angular velocity, ωr , is used directly 
in the guidance algorithm.

14.7.3  Transformation of Missile Acceleration 
Commands to Missile Body Coordinates

The acceleration commands calculated by the guidance system have so far 
been in the sensor coordinate system. Here, a transformation of the accel-
eration command is calculated such that when the acceleration commands 
are carried out by the missile autopilot perpendicular to the missile body, 
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the resulting missile acceleration perpendicular to the sensor boresight is as 
intended by the guidance system.

Recall that TWS is the coordinate transformation from the sensor platform 
to the missile wind axes and that TWB is the transformation from the missile 
body axes to the missile wind axes. Then
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and hence
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The transformation TWB is calculated under the assumption that the mis-
sile acceleration commands are actually performed. If this is not possible due 
to acceleration constraints, then the command is scaled in both axes so that 
the new command is within the capabilities of the missile:

 TWB

c c

c

c

=
−

−



















1

1 0

0 1

β α
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α

.  (14.150)

The angles of attack αc and βc are calculated using the relations

 αc a cB
zK a=  (14.151)

and

 βc a cB
yK a= −  (14.152)

where

 K
m

Q S
C

C C C Ca
m

z m z m

=
−pres ref

δ

α δ δ α
 (14.153)

where Qpres is the dynamic pressure, and Sref is the missile cross-section ref-
erence area. The coefficient Ka was obtained by assuming trim conditions at 



570 Advances in Missile Guidance, Control, and Estimation

the commanded acceleration (note: Ka < 0). Using Equations 14.150 through 
14.152, Equation 14.149 can be rewritten as
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.  (14.154)

The subscript c in αc and βc indicates that these angles of attack were calcu-
lated from the commanded accelerations. In Equation 14.154, the unknowns 
are acB

y , acB
z , and ac

x, while the known variables are aM
x , ac

y, and ac
z. Actually, 

ac
x

 , the missile acceleration in the boresight direction, is not used but is part 
of the solution. The accelerations acB

y  and acB
z  of Equation 14.154 may be 

solved to obtain

 a
T a T a T a

K a
cB
y WS c

x
WS c

y
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z

a M
x

= + +
−
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1
 (14.155)

and

 a
T a T a T a

K a
cB
z WS c

x
WS c

y
WS c

z

a M
x

= + +
−

31 32 33

1
.  (14.156)

Substituting Equations 14.155 and 14.156 into the first equation of Equation 
14.154, a single quadratic equation in ac

x  is obtained:

 c a c a cc
x

c
x

0
2

1 2 0( ) .+ + =  (14.157)

The coefficients ci depend on the entries in the transformation TWS and 
known values of the variables ac

y, ac
z, and aM

x  The following is noted:

 1. Equation 14.157 is a quadratic equation. It may have two real roots, 
no real roots, or a double real root.

 2. If there are two real roots, then the one with the most positive value 
is the desired one since ac

x is the missile acceleration along the bore-
sight toward the target, and it is desirable to have the missile velocity 
as large as possible.

 3. If there are no real roots, this indicates that there is no value of the 
lateral missile acceleration that when combined with the missile 
axial acceleration yields the required acceleration perpendicular to 
the boresight. In this case, the best approximation to the required 
acceleration is obtained by discarding the imaginary part of the 
solution and using the remaining real part.
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 4. Equations 14.154 and 14.157 take into account the missile axial accel-
eration, given by Equation 14.13. Observe that aM

x  is independent of 
the missile lateral acceleration.

 5. The actual missile acceleration command is obtained by substituting 
the solution, ac

x, into Equations 14.155 and 14.156.
 6. Note that in Equation 14.153, the dynamic pressure appears in the 

denominator, so that there is an inverse relationship between the 
dynamic pressure and Ka. Also, in Equations 14.155 and 14.156, 
the  coefficient Ka multiplies aM

x , so that the missile axial accelera-
tion has the most influence when the dynamic pressure is low, for 
example, immediately after the missile launch.

14.7.4 Gravity Compensation

Gravity, which has so far been neglected, in fact acts on the missile. It is bet-
ter to anticipate its effects rather than allowing it to cause the missile to devi-
ate from its flight along the boresight and rely on the resulting error signal to 
generate the required acceleration command.

There are two places where gravity needs to be considered in the guidance 
scheme: First, a gravity term, –TSIg, is added to the acceleration command 
calculated in the sensor frame before being transmitted to the missile; and 
second, a gravity term, TSIg, is added to the calculated deterministic missile 
acceleration before inputting it to the missile estimator (see Figure 14.11). The 
symbol g denotes the gravity vector in inertial space, g = [0 0 g]́ . Note that 
the input to the calculation of the missile deterministic acceleration includes 
gravity.

14.7.5 Sensor Frame versus Missile Body Frame Calculations

The missile acceleration commands calculated so far are in the sensor platform 
coordinate system; however, in reality, the acceleration commands sent to the 
missile are carried out in the missile lateral (y and z) directions. The model 
used to describe the missile lateral acceleration transfer function (Equation 
14.16) may be considered in the missile body coordinates or in the missile 
wind coordinates. Here it is convenient to regard the equation as being in the 
wind coordinates. On the other hand, in the kinematic differential equations 
14.39 and 14.40, the aM term is expressed in the sensor (S) coordinates. Hence, 
a more exact depiction of the dynamics would add the transformation ′TWS  
between the missile dynamics (Equation 14.16) and the kinematics (Equations 
14.39 and 14.40). Since the transformation ′TWS  varies much more slowly than 
the missile acceleration transfer function, Equation 14.16, the transformation 

′TWS, with a small approximation, may be applied to the missile acceleration 
command, rather than at the input to the kinematics. This interchange of the 
transformation and the missile dynamics is shown in Figure 14.10.



572 Advances in Missile Guidance, Control, and Estimation

Once this interchange is carried out, the inputs to the missile transfer func-
tion are ′T aWS cW

i , i = y, z. The guidance algorithm in fact calculates ac. Since ac is 
expressed in the sensor coordinates, an algorithm is required that transforms 
the missile acceleration commands to acceleration commands in the missile’s 
lateral body coordinates. This algorithm was presented in Section 14.3.

14.7.6 Guidance System Block Diagram

The complete guidance system block diagram implemented in three dimen-
sions, including gravity compensation, is shown in Figure 14.11.

In Table 14.6, the major blocks of the guidance diagram and the sections 
where the details of the algorithm were presented are shown.

In addition, several transformation matrices are required. The calculation 
of these and selected blocks are detailed in the following.

 1. Transformation TWS

  The transformation TWS is the transformation from the sensor 
frame to the missile wind frame. It is calculated from the estimated 
missile velocity and the assumption that the missile roll is at its 
nominal value, namely, that the y-axis is horizontal (assuming that 
the missile velocity is well away from the vertical).

 2. Block aMdet/ac

  The block is a very simplified representation of the missile lateral 
transfer function (Equation 14.16) implemented twice, once for the y 
and once for the z-axis.
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FIGURE 14.10
Interchange of missile transfer function and TSW.
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 3. Calculation of Missile Axial Acceleration
  The missile axial acceleration is calculated according to Equation 

14.13.
 4. Calculation of aMS

x
det

  The calculation is the same as the one presented in Section 14.3 but 
with the acceleration commands ac

i  replaced by the missile deter-
ministic accelerations aM

i
det. The acceleration in the sensor x direc-

tion is the root of the quadratic equation 14.157.

TABLE 14.6

Guidance Block Diagram Details

block equation section

a

a
M
i

c
i
det 14.16 14.4.2

Calc. of aM
x

det  14.7.3
Calc. of acc. cmd. in sensor frame 14.81 14.5.5
MSE 14.6.3
TSE 14.6.2
Calc. of acc. cmd. in body frame 14.7.3
Calc. of axial acc. 14.13 14.4.2

TSI

aMdet

aM

CK,K–1

YM

YT

aX
MM

aX
MB

aC

g
Trans. to
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axial acc.

Aerodynamics
parameters

Aerodynamics
parameters

Aerodynamics
parameters
and mass

�rust
profile
Mass

profile

MSE

TSE Calc. of acc.
cmd. in
sensor
frame

Calc. of
aMdet

Calc. of acc.
cmd. in body

frame To missile
autopilot

ˆ

TWS
ˆZM

ˆ

ZT

aMdet

ˆ

TWS
ˆ

y,z

XM
y,z

aMdet
y,z

X
aMdet

y,zaC aMdet
aC

y,z

XM
y,z

aMB
X

aMdet
y,z aMdet

x

aCB
y,z

+
+

+

–

FIGURE 14.11
Basic 3D implementation of GL.
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14.8 Performance

14.8.1 Background

The CLOS system performance was evaluated using a six degrees of free-
dom (6DOF) simulation. The simulation assumes that the CLOS system is 
composed of a missile launcher and fire control radar. The missile launcher 
and the fire control radar are both mounted on a single gimbaled platform 
that rotates in both elevation and azimuth to track the desired target. The 
main radar antenna is 1.5 m in diameter and has a beam width of about 0.8°. 
There is also a smaller radar antenna of 0.3 m diameter with a beam width of 
about 4°. The two antennas share a common boresight. The smaller antenna 
is used to track the missile during the first 1–2 seconds of its flight. The mis-
sile’s launch velocity is generally too small for sufficient dynamic pressure 
for effective flight control. To overcome this initial low dynamic pressure, the 
missile is launched with an elevation angle of 5°–7° above the boresight of 
the radar antennas. It is assumed that the missile carries a beacon, which is 
tracked by the radar system.

14.8.2 Simulation Description

The central element of the simulation is the 6DOF missile simulation. The 
aerodynamics and mass properties used were described in Section 14.2. The 
missile simulation consists of the complete 6DOF dynamics and a simplified 
three-loop autopilot with an ideal servo (one with a unity transfer function). 
The missile maneuverability was bounded by limiting both the angle of attack 
and the deflection angle of the fins at 25°. The missile time constant varied 
according to the dynamic pressure from about 500 ms at low dynamic pres-
sure to about 125 ms at high dynamic pressure. The missile velocity varied in 
accordance with the maneuvers carried out by the missile along its flight. An 
extremely simplified roll control dynamics was assumed in the simulation:

 ω φB
x

rk= −  (14.158)

where Kr is a constant and ϕ is the missile roll angle. A typical missile veloc-
ity profile is shown in Figure 14.12, when the missile is launched at t = 3 sec-
onds with an initial velocity of about 30 m/s. Here the missile tip-off as the 
missile leaves the launcher was ignored, although the tip-off may have a sub-
stantial effect on the missile flight path during the first 1–2 seconds of flight.

The radar noise is modeled by white Gaussian noise according to the for-
mulas in Section 14.6. The sampling interval used was 25 ms. The radar 
observation noise was the sum of the thermal (Equation 14.28) and glint 
noise (Equation 14.30). In addition, the standard deviation of the noise was 
lower bounded at 1/50 of the beam width (Equation 14.29) of each antenna.
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The radar antenna was assumed to be mounted on an outer azimuth and 
an inner elevation gimbal. The base of the gimbals was assumed to be sta-
tionary. Each gimbal angle was assumed driven by a simplified second-order 
control loop, and the control loops were driven by the radar observations. To 
achieve good tracking performance, the gimbal control loop included both 
feed-forward and feedback terms.

14.8.3 Scenario Description

The guidance system was tested in three scenarios, and with four variations 
to each scenario, where the parameters (generally the intercept range) of the 
scenario are varied. Table 14.7 summarizes the main parameters of the tested 
scenarios. The 3D views for all the possible variations of the missile and 
target paths are shown in Figures 14.13 through 14.15. Each scenario was 
designed to demonstrate one aspect of the performance of the CLOS guid-
ance system. The first scenario is the most elementary one; here the target fol-
lows the boresight, so the missile acceleration needs only to compensate for 
the gravity effects and the missile accelerations due to external disturbances, 
such as wind, and small asymmetries in the missile shape. The second 

TABLE 14.7

Scenario Description

target scenario 1 scenario 2 scenario 3

Trajectory Along boresight Step maneuver Crossing
Velocity 300 m/s 300 m/s 300 m/s
Acceleration 0 Step ±50 m/s2 0
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FIGURE 14.12
Missile velocity.
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scenario demonstrates the guidance scheme’s ability to intercept a missile, 
which performs a sudden maneuver near the intercept point. Here the target 
is assumed to perform a 50 m/s2 maneuver either in the positive or negative 
y direction, each with equal probability. Note that in this scenario, the target 
flies at a constant height of 1000 m, and not along the boresight. This presents 
an additional challenge to the GL especially for the shorter-range intercepts. 
The initiation of the target maneuver is uniformly distributed between 0 and 
2 s before the intercept. The target autopilot time constant was set at 0.5 s. 
The third and last scenario demonstrates the guidance scheme’s ability to 
intercept a crossing target. A crossing target poses a special challenge for 
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x (m)y (m)

h (m)

0
2000

4000
6000

8000
10,000

–3000
–2000

–1000
0

1000
2000

3000
0

200
400
600
800

1000
1200
1400

Missile
Target

Intercept

FIGURE 14.14
3D view of missile and target paths, scenario 2.



577Design of CLOS Guidance System

all CLOS guidance systems because the missile must expend an increasing 
lateral acceleration as it flies toward the target. Because of the small band-
width of the guidance loop, this is basically a test of the calculation of the 
feed-forward term in the acceleration command. In this scenario, both the 
intercept range and the cross range of the target were varied.

The missile and the target paths are shown in 3D plots in Figures 14.13 
through 14.15.

The projections of the missile paths on the X–Y and X–H planes are shown 
in Figures 14.16 through 14.18.
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Finally the root mean square (RMS) miss distances for the three scenarios 
and the four variations for each of the three scenarios are shown in Figure 14.19. 
The RMS miss distances are based on 100 Monte Carlo runs. The values of the 
main parameters used in the Monte Carlo simulations are shown in Table 14.8.

To get an idea of the source of the miss distance, consider the size of the 
assumed observation noise. A graph of the missile and target observation 
noise is shown in Figure 14.20. During the initial portion of the missile’s 
flight, the observations are from the wider secondary antenna, so that the 
standard deviation of the observation noise is much larger than for the mea-
surements in the main antenna. It may also be observed that for most of the 
engagement, both the target and the missile observations are limited by the 
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TABLE 14.8

Parameters Used in Monte Carlo Simulations

Parameter Value Reference

Missile Parameters
Czα −25 Table 14.2

Cmα −20 Table 14.2

Cmδ −18.75 Table 14.2
d 0.16 Table 14.2
m0 55 kg Figure 14.3
T 6400 N Figure 14.4
αmax 25° Table 14.2

Radar Parameters
σT

CS 2 m2 Equation 14.26

rM
 100,000 Equation 14.27

rT
 35,000 km Equation 14.26

kA 1.2 Equation 14.29
km 1.6 Equation 14.28
λ 0.0176 m Equation 14.29
D 1.5 m Equation 14.29

0.3 m Radar secondary antenna

σg 1 m Equation 14.30

Guidance Parameters
τd 2 s Equation 14.18

τzd 0.1 s Equation 14.18

σaT 50 m/s2 Equation 14.113
σ

xd
i 50 m/s2 Equation 14.119
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assumed minimum value of 1/50 of the antenna beam width for the obser-
vation noise. Translated into linear distance, the angular observation noise 
near the intercept is about 2.4 m for the missile and about 1.8 m for the tar-
get. The miss distances for the nonmaneuvering targets are smaller than the 
standard deviation of the individual observations, indicating that there is 
considerable filtering taking place in the missile and target Kalman filters. 
The small miss distances for crossing target indicate that the guidance does 
correctly calculate the feed-forward component of the missile acceleration 
command necessary for intercepting a crossing target in a CLOS guidance 
system. The considerably larger miss distances for the maneuvering target 
indicate the inherent difficulty of intercepting a target performing a maneu-
ver close to the intercept for any guidance system.

14.9 summary

In this chapter, the CLOS guidance problem was formulated in the LQG 
framework. The coordinate system used was the coordinate system rigidly 
attached to the sensor platform. The formulation suited the guidance prob-
lem well in that the resulting optimization problem turned out to be linear, 
although time varying. The inclusion of target-related, uncontrollable states 
resulted in the generation of both the feed-forward and feedback terms of 
the GL in the solution of the LQG problem.

It was shown that the solution of the linear quadratic optimal control prob-
lem is equivalent to a steady-state regulator problem and terminal control 
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problem. The terminal control problem has an analytic solution, while the 
regulator problem requires the numerical solution of a 3 × 3 algebraic Riccati 
equation. The separation of the solution into a regulator and a terminal con-
trol problem made possible the real-time numerical calculation of the guid-
ance gains.

The chapter covered a design and implementation method for a CLOS 
guidance system based on the LQG framework. The discussion included the 
conceptual phase of the design, which used simplified planar models; the 
numerical calculation in real time of the required gains; the issues arising in 
the 3D implementation of the blocks making up the GL; and finally, an evalu-
ation of the performance of the GL using 6DOF Monte Carlo simulation.
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List of symbols

Missile disturbance model parameters
(σM)2 Spectral density of wM

j . The same value is used ∀j.
1/τd

 The pole in the missile disturbance model
1/τzd

 The zero in the missile disturbance model
σ

xd
i
  The standard deviation of the missile disturbance accelera-

tion model internal state xd
i

ad
j  Missile disturbance acceleration

wM
j   Continuous time white noise input to the missile distur-

bance model in the j direction
xd

j  Missile disturbance model internal state variable

Missile deterministic model parameters
1/τzc

  The zero in the first order approximation to the missile 
transfer function

ωA, ξA
  Frequency and damping of complex pole in missile transfer 

function
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τM
  Time constant in the first order approximation to the missile 

transfer function
aM

j
det

  The deterministic part of the missile acceleration in the j 
direction

d Missile reference length
KT

 Missile engine constant
M Missile Mach number
m Missile mass
pA

 Real pole of the missile transfer function
T Missile engine thrust
xm

  The internal state of the first order approximation to the 
missile transfer function

zA
 Zero of the missile transfer function

Generic state estimator
σ

ni
 The standard deviation of the discrete time observation noise

ni Discrete time observation noise for coordinate i, i = x, y, z
Ts

 Filter sampling time
yj The estimator observations for the jth axis coordinate
Qi  The process noise matrix in the generic estimator for the ith 

coordinate
Z  Matrix of all 9 states of the generic estimator in sensor plat-

form coordinates
Zi The estimator state for the ith coordinate

system kinematic model
ωr

 Sensor platform angular velocity vector
∈i

j  The angle between object i and the boresight around the j axis
ω i

j   The angular rate of object i with respect to inertial space 
around the j axis

ri
 The range to object i

Missile related parameters and transformations
α Missile angle of attack
αmax

 maximum sustainable missile angle of attack
TBS

 Transformation from sensor to missile body coordinates
TBW

  Transformation from missile wind to missile body coordinates
TWS

 Transformation from sensor to missile wind coordinates
ac

j   The missile acceleration command perpendicular to the 
boresight in the j direction, for j = y, z

ac
x Missile acceleration in the boresight direction

acB
j   Commanded missile aerodynamic acceleration perpendicu-

lar to missile body in the j direction
aM lim

 Missile acceleration limit
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Cmα
 Missile aerodynamic moment coefficient

Cmδ
 Missile aerodynamic moment coefficient

Cx0
 Missile aerodynamic force coefficient in the x direction

Czα
 Missile aerodynamic force coefficient

Czδ
 Missile aerodynamic force coefficient

Qpres
 Dynamic pressure

Sref
 Missile reference cross section area

sensor model
λ Radar wave length

S
N





 beacon

 Radar signal to noise ratio for observing missile beacon

S
N





 skin

 The target radar signal to noise ratio

σ∊   Radar angular observation noise standard deviation due to 
thermal noise

σg
 Target linear glint standard deviation

σT
CS Target radar cross section area

σGl
 Target angular glint noise

σ
ni

  Additive observation noise standard deviation for the ith 
coordinate

θ3dB
 Radar antenna beam width at the 3 dB points

D Radar antenna diameter
kA

  Radar antenna illumination constant with typical value of 
1.2

km
 Monopulse slope with typical value of 1.6

rM


  Missile range where the missile beacon signal to noise ratio 
is unity

rT


  Range for 1 m2 target radar return signal for signal to noise 
ratio of 1

target parameters

σ aT
j   The standard deviation of the target acceleration in the j 

direction
τT

  Decorrelation time constant in the Singer model for the tar-
get acceleration

aT
j   Target acceleration perpendicular to the boresight in the j 

direction
wT

j   White noise exciting the Singer target acceleration model in 
the j direction

( )σT
j 2   Spectral density of white noise exciting the Singer target 

acceleration model in the j direction
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15.1 Introduction

The robust control of missiles is a multidisciplinary challenge in dynam-
ics, aerodynamics, propulsion, and controls. Figure 15.1 illustrates an art-
ist’s conception of a high-performance agile missile. The understanding and 
modeling of these disciplines are critical in the development of a missile’s 
flight control system. The control software (guidance and flight control) that 
controls the weapon system during flight is the linkage that connects these 
disciplines and makes the system perform as required. This chapter will dis-
cuss these disciplines and practical considerations in the control of missiles 
and guided munitions from a control engineer’s perspective.
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Figure 15.1
High-performance agile missile.
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If accurate system models are available, then the problem of control sys-
tem design is less difficult. However, in today’s ever-increasing competitive 
market, programs can seldom afford to accurately measure the dynamics to 
the level that mitigates all uncertainties and risks. This leads the engineer 
to the question—How accurately must we know these dynamics, and how 
can the robustness of the controller be measured, gauged, and improved? 
Most control system design methods used in practice are model-based and 
yield the specified performance only when the model is adequately known. 
Linear robust control methods developed in the late 1980s and early 1990s, 
such as μ-synthesis [1–4], have proven to provide robust stability, but system 
performance degrades for off-nominal design conditions. This chapter will 
address the robust control-of-missiles challenge by using optimal control 
theory [5–7], which has excellent performance and robustness properties, 
augmented with adaptive control [8,9] to further extend performance and 
robustness guarantees.

During the 1980s and 1990s, the control community produced new tools 
and design and analysis processes for linear robust control synthesis and 
analysis. Increased insight from these linear model-based methods led to 
further development of adaptive and nonlinear methods, followed by next-
generation system and parameter identification methods. These methods, as 
did the previous classical methods, attempt to provide industry’s engineers 
with the tools needed for robust control synthesis and analysis. If one is to 
synthesize a high-performance robust control, one must know how to ana-
lyze and test the robustness.

Historically, the development and transition of control technology evolve 
on a time scale that spans years, if not a decade. In almost a cyclic fashion, 
the control community develops new paradigms for control, new tools, tech-
niques, and processes, with these all building upon the methods of previous 
cycles. The industry then slowly filters these methods and, through a trial-
and-error process, implements them to develop new and evolving aerospace 
systems. New methods are typically blended with existing well-proven tech-
niques (such as classical and optimal) to address the industry’s design chal-
lenge. Methods that prove beneficial in terms of improving performance and 
robustness that are able to address key technical challenges, or that are able 
to reduce control system development costs, survive and get used. Those that 
prove to be just a stepping stone fall away and fail to pass the test of time.

Recent successes in developing weapon system control systems have com-
bined linear optimal control, used as a gain scheduled baseline control, with 
nonlinear adaptive methods to address uncertainties and guarantee com-
mand tracking in the presence of these uncertainties. This combination of 
linear and nonlinear control has proven to provide a method that yields 
robust high-performance control in the presence of significant uncertainty 
and that at The Boeing Company has been transitioned into production [10]. 
This chapter will focus on the practical considerations regarding these 
methods.
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This chapter will begin by presenting the dynamic models typically used 
for bank-to-turn (BTT) missiles and weapon systems, highlighting key aspects 
that can be exploited to improve overall understanding and lead to improved 
robust control synthesis. Analysis methods used to evaluate the control designs 
will then be discussed. Methods for directly measuring the robustness will be 
presented. Following this, case studies will be presented where optimal and 
adaptive flight control systems are designed, combined, and analyzed, show-
ing the reader how to apply the material presented in the first two sections.

15.2 Flight Control Design Models

This section presents the models used to design and analyze a missile auto-
pilot. Figure 15.2 shows a block diagram illustrating the component models 
included in a typical linear frequency domain analysis. State space mod-
els for each of these components are populated with data that represent the 
flight condition and understanding of the physical hardware. Time and fre-
quency domain analysis is performed on the model to evaluate performance, 
stability, and robustness properties. Rise time, settling time, and actuator 
usage in response to a step command input are collected along with stabil-
ity margins to show that the controller design meets mission requirements.

15.2.1 Dynamic Models

Typically, the body axis equations of motion (EOM) are used to design a 
missile flight control system. If the missile is a BTT or preferred orientation 
control weapon, then the autopilot is designed to command body-normal 
acceleration Az and to roll the airframe about the velocity vector. If imple-
mented correctly, this approach coordinates turns and minimizes unwanted 
out-of-plane accelerations. If the weapon is a skid-to-turn system, then accel-
erations are commanded in the vertical (normal) and directional (yaw) axes, 
and the body roll rate is regulated.
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time delay

Plant output
time delay

Zero order
hold
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body
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Figure 15.2
Missile autopilot linear analysis model.
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Assuming a rigid body, the linear and angular momentum vectors P = 
mV and H = Iω, respectively, are differentiated with respect to time and are 
equated to the forces and moments acting on the body. Performing the dif-
ferentiation with respect to a nonrotating coordinate system yields

 

d
d

d
d

P
t

mV mV mV

H
t

I I I

= + + ×

= + + ×









ω

ω ω ω ω( ).

 (15.1)

Assuming the mass and inertia time variations are negligible, Equation 15.1 
is equated to the forces F and moments M acting on the body. This results in
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The body forces F are modeled as gravitational forces G and aerodynamic 
forces A using F = mA + mG. Dividing Equation 15.2 by mass, multiplying 
by the inverse inertia matrix, and introducing the gravitational forces and 
aerodynamic forces yields
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Next, assume that the inertia cross products Ixy and Izy are zero, and expand 
the linear and angular velocity vectors into their component directions using 
V = [u v w]T for (x y z body axes) and ω = [p q r]T for (roll pitch yaw about the 
body axes). This results in the standard six-degrees-of-freedom body EOM 
written as
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where Gi models gravity, (X Y Z) models the linear accelerations produced by 
the aerodynamic forces, (L M N) models the angular accelerations produced 
by the aerodynamic moments, (Tx, Ty, Tz) models propulsion system forces, 
and (LT, MT, NT) models the moments produced by the propulsion system. 
Note that these variables have units of acceleration. The aerodynamic forces 
are modeled as nondimensional quantities and are scaled to units of force. 
This scaling is described by
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where q (in pounds per square feet) is the dynamic pressure, S (in square 
feet) is a reference area, m is the mass in slugs, and (Cx, Cy, Cz) are nondimen-
sional aerodynamic forces. The aerodynamic moments acting on the body 
are similarly modeled as
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where (Cl Cm Cn) model nondimensional moments, and l is a reference 
length. Note that the cross-axis inertia term Ixz couples the roll–yaw moment 
equations.

The gravitational forces are modeled as
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The pitch-plane angle of attack α and yaw-plane sideslip angle β are defined 
in Figure 15.3, along with the total angle of attack, αT. The stability axis coor-
dinates are a transformation of the body axes using α. The wind axis coordi-
nates are a transformation from stability axes using β.
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15.2.1.1 Aerodynamics

The missile’s aerodynamic forces (Cx, Cy, Cz) and moments (Cl Cm Cn) are typi-
cally modeled as functions of α, β, Mach, body rates (p, q, and r), α, β, the aero-
dynamic control surface deflections (δe, δa, and δr), center-of-gravity changes, 
and whether the main propulsion system is on or off (plume effects). Also, 
the aerodynamic forces may depend upon whether reaction jets are on or off 
(jet interaction effects). These complicated and highly nonlinear functions 
are used in the EOM to model the airframe’s aerodynamics.

Asymmetric vortex shedding is a nonlinear phenomenon that must be 
addressed when considering high angle-of-attack (AOA) flight. Figure 15.4 
illustrates the effect of asymmetric nose vortices at high AOAs with zero 
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Figure 15.3
Angle of attack and sideslip angle definitions.
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sideslip. Note that due to the asymmetric vortices, the out-of-plane moment 
(yaw moment) is larger than the in-plane moment (pitch moment). These 
asymmetric vortices can cause the nose to slice right or left and may require 
large control inputs to counter the effect. This phenomenon is often referred 
to as phantom yaw and can be mitigated by the addition of small nose strakes 
and/or nose bluntness. Figure 15.5 illustrates the possible reduction in out-
of-plane moment by modifying the missile’s configuration.

In addition to the challenge of overcoming phantom yaw, the missile’s 
static stability significantly changes with AOA. Figure 15.6 illustrates the 
changing pitch-plane stability with AOA. A positive slope is unstable, and 
a negative slope is stable. For the missile under investigation, aerodynamic 
control authority ends at or near 30º AOA, and some form of alternate control 
is needed to fly at high AOAs.
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Missile pitch-plane stability characteristics with angle-of-attack.
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When reaction control system (RCS) thrusters are used for control, there 
is an interaction of the jet plume with the free stream aerodynamic flow. 
Figure 15.7 illustrates this jet interaction, which is very nonlinear with 
AOA. Note the high/low pressure areas in the front/back of the nozzle. 
This occurs when the jet plume is entrapped by the free stream flow. The 
entrapped high-pressure region (times its area and moment arm) produces 
a moment on the missile that is larger than the jet thrust force times its 
moment arm [distance to the center of gravity (CG)]. By exploiting this 
phenomenon, a smaller reaction jet can be used, thus reducing propellant 
requirements. This amplification, if not accounted for, would be an increase 
in the loop gain in the flight control system, which can significantly impact 
stability.

If the jet plume penetrates the free stream flow, the high-pressure field 
does not form, with the net thrust force produced by the jet reduced by the 
low-pressure field. Thus, a 200 lb. thruster may produce only 80 lb. of thrust. 
This attenuation, if not accounted for, would be a decrease in the loop gain 
in the flight control system, which can also impact stability for an open-loop 
unstable missile.

A key parameter in modeling the jet interaction phenomena is the jet 
penetration height. This parameter indicates if there is amplification or an 
attenuation of the jet thrust (force). Unfortunately, this parameter varies sig-
nificantly with flight condition and is difficult to predict. These nonlinear jet 
interaction effects also cause the moments produced by the thruster not to be 
proportional to the thruster force.

15.2.1.2 Propulsion System Forces and Moments

For thrust vector control (TVC) actuators, the autopilot is designed to com-
mand the TVC actuator angle δT (in radians). For the RCS thrusters, the auto-
pilot is designed to command the thrust level TRCS (in pounds).

The TVC forces and moments are modeled using a constant thrust that 
is deflected by the actuator. It is assumed that the actuator can deflect the 
thrust vector only in the pitch (δTe

) and yaw (δTr
) planes, using two actua-

tors devoted to this task. (No roll control from the TVC actuation system is 

Bow shock
Separation shock Shocks in jet

Low pressureHigh pressure

Nozzle

Figure 15.7
Interaction of jet plume with free-stream aerodynamics.
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assumed.) The resulting thrusts (used in Equation 15.1) along the body axes 
are
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where T is the axial thrust of the main propulsion system. The roll, pitch, 
and yaw moments (LT, MT, NT) produced by the TVC will be the moment 
arm lT = xcg – xTVC times the above pitch and yaw forces, respectively, and are 
described as

 

L

M

N

l I T

I I I

lT

T

T

T xz T

xx zz xz

T

r



















=

−
−
sin( )δ

2

TT
I

l I T

I I I

T T

yy

T xx T

xx zz xz

e r

r

sin( )cos( )

sin( )

δ δ

δ−
− 2





























. (15.9)

An RCS jet also produces propulsion forces and moments. The reaction jets 
are assumed to be positioned such that no axial force is generated. The RCS 
is designed to provide roll, pitch, and yaw moment control. The forces pro-
duced by the pitch and yaw jets are modeled as
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 (15.10)

where Ty and Tz are the RCS thrust forces in the y-body (yaw) and z-body 
(pitch) directions, respectively. These moments produced by the thrusters 
are modeled by the xRCS thruster forces multiplied by the moment arm lT = 
xcg – xRCS. It is assumed here that the pitch and yaw jets are located at the 
same missile x-station xRCS.

Roll jets may also be used to control missile roll. These jets are symmetri-
cally placed so that only a rolling moment is produced, modeled as

 L
l T

IT
Roll Roll
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= . (15.11)
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Adding this to the moments produced from the pitch and yaw jets results in
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15.2.1.3 Angle-of-Attack and Sideslip Dynamics

The following derivation will form a set of differential equations describing 
the dynamics for V, α, and β valid for large α’s and β < 90°. Consider the fol-
lowing definition of the body velocities from Figure 15.3:
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where V is the magnitude of the missile velocity vector. This can be represented 
as a transformation of the wind-axis velocity vector to the body axes as follows:
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where the transformations Sα and Sβ are
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where c(•) and s(•) denote cos(•) and sin(•), respectively. Differentiating 
Equation 15.14 yields
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Inverting the coefficient matrix in the above equation yields
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Substituting from Equation 15.4 yields

 







V
V
V

W
p

q

r

u
v
w

α
β

α β
















= −

















×





( , )










+
















+



















+
X
Y
Z

G

G

G

T

T

T

x

y

z

x

y

z



































. (15.18)

Expanding Equation 15.15 results in
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15.2.1.4 Acceleration Dynamics

This section derives rigid body differential equations for the body axis accel-
erations at the CG. The body axis acceleration at the CG is given by
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Expanding these terms gives
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where the functional dependence of the aerodynamics on α, β, and the 
aerodynamic control surfaces δi is shown to highlight what terms will be 
differentiated. The aerodynamic effects due to body rates (from p, q, r) 
and the plunge effects (from α and β) are assumed zero. If these effects 
are known, then they should be included. Differentiating this expression 
yields
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where the subscripts denote partial derivatives. Grouping terms results in
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Substituting from Equation 15.17 yields
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Substituting for [ ]  u v w T  yields
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Note that the time rate of change of the accelerations is modeled proportion-
ally to actuator rates. Thus, an actuator dynamics model is required to model 
the accelerations as states in a state space model.

15.2.2 Autopilot Design Models

Maximizing overall missile performance requires choosing the appropriate 
autopilot command structure for each mission phase. This may include design-
ing a different autopilot for separation (launch), an agile turn (high AOA turn), 
midcourse (long flyout), and endgame (terminal homing) maneuvers. The auto-
pilot can command body rates, wind angles, attitudes, or accelerations.

During launch, a body rate command system is typically used. Rate com-
mand autopilots are very robust to the uncertain proximity aerodynamics. 
During an agile turn, directional control of the missile’s velocity vector rela-
tive to the missile body is desired. This equates to commanding AOA or side-
slip and regulating roll to zero. During midcourse and in the terminal phase, 
an acceleration command autopilot is typically used. At the end of terminal 
homing, during a guidance integrated fuse maneuver, the missile attitude 
may be commanded to improve the lethality of the warhead.

Separation, midcourse, and endgame autopilots have been designed and 
implemented in production missiles and are, in general, well understood. 
Autopilot designs for agile turns (high AOA flight) are significantly less 
understood. Missile performance during the agile turn can be maximized by 
maximizing the missile’s turn rate (higher turn rates lead to faster target 
intercepts). The missile’s turn rate (for a pitch-plane maneuver) is given by

 γ α α= −A A
V

z xcos( ) sin( )
. (15.26)

High turn rates can be achieved by commanding a constant high AOA or 
by commanding large values of normal acceleration [Az cos(α) – Ax sin(α)]. 
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Simulation studies have shown that due to the large changes in the missile’s 
velocity (V) at high AOAs (due to the high drag), commanding body accelera-
tions during an agile turn may not be desirable.

The nonlinear missile dynamics can be written as

 x f x u= ( ), . (15.27)

To form a linear model, partial derivatives of the fi are needed with respect 
to each state variable and each control input. These partial derivatives are 
evaluated at a specific design point (flight condition). This would typically 
be at a trimmed equilibrium condition; however, at high AOAs, the missile is 
generally not in what is considered an equilibrium condition.

For the sake of brevity, BTT autopilots will be discussed and used in the 
remaining sections of the chapter.

15.2.2.1 Pitch Autopilot Design Model

The pitch-plane nonlinear AOA and pitch rate dynamics are described in 
Equations 15.4 and 15.19. Neglecting the roll–yaw dynamics and linearizing 
about α0 results in

 




α α δ α α

α

α δ

α

= + + − ( ) + ( )( )
= +

1
0 0V

Z q Z T T

q M M

e e x z

q

sin cos

qq M M
e e T+ +δ δ

 (15.28)

where

 

Z
Z

G T X
X

x xα
α α

α
α

α
α

α= ∂
∂

= ∂
∂

− − −






− ∂
∂=



0

cos( ) sin( )
αα

α
δ δ

α α

δ
α α

+ + +
















= ∂
∂

= ∂
∂

=

=

G T Z

Z
Z

z z

e e
e

0

0



coos( ) sin( )α
δ

α

α

α α

α
α α α

− ∂
∂











= ∂
∂

= ∂
∂

=

=

X

M
M

M
M
q

e

q

0

0 == =

= ∂
∂

α
δ

α α
δ

0 0

M
M

e
e

.

 

Since most TVC actuators are limited to small deflection angles, sin( )δ δT Te e
≈  

and cos( )δTe
≈ 1, resulting in

 T T m T T m M l T Ix z T T T yy Te e
= = − = − ( )/ /( ) .δ δ  (15.29)
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To model RCS thruster forces (axial thrust T is due to main engine; see 
Equations 15.7 and 15.9)

 T T m T T m M l I Tx z RCS T T yy RCS= = = − ( )/ . (15.30)

Neglecting the influence of gravity on the AOA dynamics (since it is 
divided by V) and the T sin(α0) term (since it represents a constant) and com-
bining these into a linear matrix model results in
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This state space model can be used to design pitch autopilots at a specific 
flight condition (α0, Mach, altitude, CG). If Az rather than α is preferred as a 
state variable, then replace the α equation with Az from Equation 15.22 (this 
also requires removing α from the pitch rate dynamics and adding an actua-
tor model to include the terms proportional to the actuator deflection rates).

15.2.2.2 Roll–Yaw Autopilot Design Model

The lateral directional nonlinear dynamics are described in Equations 15.1 
and 15.16. Zeroing the pitch dynamics and linearizing about α0 (with β = 0) 
results in
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where the elements of the matrices were obtained in a similar manner to 
Equation 15.25. For TVC (assuming a small TVC angle δTr

), this results in
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Neglecting gravity results in the following linear autopilot design model:
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This state space model can be used to design roll–yaw autopilots at a specific 
flight condition (α0, Mach, altitude, CG). Note that β was assumed to be zero as 
for a BTT missile. This modeling assumption is used because at high AOAs, 
β must be kept very small to keep the roll channel controls from saturating.

15.2.3 Sensor Measurements

Most tactical missiles use strapdown inertial measurement units (IMUs) for 
navigation, which have three accelerometers and three gyros. The accelerome-
ters and gyros are arranged into a triad to measure accelerations along and 
rotational rates about the x-, y-, and z-body axes, respectively. Due to packag-
ing considerations, the IMU is usually not located at the missile’s CG.
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The location of the accelerometers relative to the CG greatly effects the 
measured accelerations and must be accounted for in the design of the flight 
control system. Ideally, if the accelerometers are located at the CG, then they 
measure just the translational accelerations. If the accelerometers are located 
off the CG, then they measure a combination of translational and rotational 
accelerations. This can be expressed as

 a a r rIMU CG IMU IMU= + × + × ×ω ω ω  (15.34)

where rIMU is a vector from the CG to the IMU and ω = [ ]p q r T. Note that 
the sensed accelerations are a nonlinear function of the body rates.

Linear sensor models are required for linear autopilot design. On sym-
metric airframes, the y- and z-axis CG offsets are usually small and can be 
neglected. The z-axis accelerometer is compensated for the x-axis CG offset 
as follows:

 A A x x qz z CG IMUIMU CG
= + −( ) . (15.35)

This effect can have a dramatic impact on the flight control system design. 
Equation 15.35 shows that the rotational dynamics are blended with the 
translational dynamics. This changes the zeros of the transfer function from 
the control input to the sensor output.

15.2.3.1 Shaping Zero Dynamics

Consider the transfer function from elevator δe to acceleration AzCG
 (from [5, 

Equation 4]) given by
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For tail-controlled missiles, this transfer function is nonminimum phase 
[has a right half plane (RHP) zero]. As the elevator δe deflects, the fin 
force Z

e eδ δ  accelerates the missile in the wrong direction. However, this 
fin force creates a pitching moment that rotates the missile. As the missile 
rotates, the  body force builds Zαα, accelerating the missile in the correct 
(commanded) direction. Aerodynamically unstable Mα > 0 tail-controlled 
missiles pose a considerable control challenge in that they have both RHP 
poles and zeros.

The transfer function from δe to AzIMU
 does not have the same zeros as using 

AzCG
. Figure 15.8 illustrates the location of the acceleration zeros as the sensor 

is moved along the body of the missile. When the IMU is aft of the CG, the 
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two zeros are real with one in the RHP. As the IMU moves forward of the CG 
to the center of percussion, the zeros bifurcate and become complex, moving 
in along the jω-axis.

The autopilot designer can shape the zeros in the acceleration transfer 
function by placing the sensor at a different location. Depending upon how 
the feedback gains are designed, this can be exploited to improve stability 
and transient performance. See Wise [7] for more discussion on zeros.

15.2.4 Actuator Models

15.2.4.1 Fin Actuator Model

There are four tail fins each driven by an electromechanical (EM) actuator. 
The fin actuator dynamics can be modeled with a second-order transfer 
function. The significant nonlinearities typically modeled include position 
and rate limits, as well as mechanical backlash.

The fin mixing logic that relates δe, δa, and δr commands to individual fin 
deflections is configuration specific and depends upon whether the missile 
is flown with an “x” or “+” tail. The logic for mixing these is not unique. One 
example, for an x tail, is given as
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where δe, δa, and δr are the autopilot pitch, roll, and yaw fin commands, 
respectively, distributed to the four fins, and δi, i = 1, …, 4, are the actual fin 
deflections. Note that it is the δi that exhibit the nonlinearities (fin and rate 
limits, backlash).
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Figure 15.8
Acceleration zeros.
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15.2.4.2 RCS Thruster Actuator Model

RCS actuators can be built with EM valves, hot gas poppet valves, hydraulic 
valves, and solenoid valves. They can be stand-alone systems (requiring their 
own propellant) or can be integrated with the main engine (bleed off the main 
engine chamber pressure). They can also be on–off or continuous (throttling).

Both the continuous and on–off RCS actuators can be modeled with a first-
order transfer function. The 63% rise time of the thrust is used to specify the 
time constant in the transfer function. The RCS thrust is magnitude and rate 
limited. In addition, some on–off designs cannot change states (on or off) 
until they are fully opened or closed.

15.2.4.3 TVC Actuator Model

TVC actuators operate in a similar manner to the fin actuators and are usually 
modeled with second-order transfer functions. The nonlinearities typically 
modeled include position and rate limits, as well as mechanical backlash.

Figure 15.9 shows a nonlinear TVC actuator response (no backlash mod-
eled) to a 10° square wave input. This response illustrates both the position 
and rate limiting. Also shown in the figure is a plot of thrust produced nor-
mal to the missile’s x-body axis. For a 5000 lbf main engine motor and a 
deflection limit of 10°, the maximum normal force is 868.24 lbf.

Using the response shown in Figure 15.9, the maximum thrust rate for the 
TVC actuator can be computed as a function of the TVC rate limit. A fast 
thrust rate is required to maintain stability and capture the high AOA com-
mand during the agile turn.

Figure 15.10 shows a comparison of the TVC thrust rate capability with that 
of a 500 lbf RCS jet, in which the RCS jet is parameterized by the time it takes 
the jet to reach full thrust.
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Thrust rate for TVC effector.
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For a 200°/s TVC actuator rate limit, the thrust rate is slightly less than 20,000 
lbf/s. This equates to a 500 lbf RCS jet that reaches its full thrust in 34.7 ms. At 
400°/s TVC rate limit, the equivalent RCS jet time to full thrust is 17.4 ms. This 
figure indicates that the TVC actuator system is somewhat slower than the 
RCS in developing normal thrust. High TVC rates will be required in order 
for the TVC actuator to slew the thrust vector to its maximum position. These 
high TVC rates will in turn drive the TVC power consumption and battery 
sizing requirements upward (increasing the cost and weight of the missile).

15.2.5 Flexible Body Dynamics

In deriving the autopilot design models, it was assumed that the missile was 
a rigid body. In fact, it is a flexible body, and these dynamics have a signifi-
cant impact on the sensed accelerations and body rates. The discussion here 
is limited to the airframe’s pitch plane. Also discussed is the tail-wags-the-
dog effect due to fin mass unbalance and inertias and TVC nozzle inertias 
(see [2] for more details on modeling these dynamics).

Consider the following flexible model:
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This linear analysis model describes the pitch-plane rigid body dynamics 
(α,q) combined with the first bending mode (b1), including the tail-wags-the-
dog effects proportional to δe.

The pitch rate gyro and z-axis accelerometer measurements are

 
q q F b

A A F b g

FLEX IMU A

zFLEX zIMU A

= + ′

= +

1

1

1

1



 / .
 (15.39)

Partitioning the A-matrix in Equation 15.38 into 2 × 2 blocks, the (1,1) block 
is the same as in Equation 15.28 and describes the rigid body dynamics. The 
(1,2) block describes the changes in the aerodynamic forces and moments 
due to the body flexure. The (2,1) block describes how the rigid body states 
(α,q) excite the bending mode. The (2,2) block describes the first bending 
mode’s second-order dynamics.

In addition to the rigid body states (α,q), the fin deflection δe also excites 
the bending dynamics. When the fin rotates, a bending torque is applied to 
the missile body that is proportional to both the fin’s inertia and any mass 
unbalance (if the fin CG is located off the fin’s rotational axis). This effect is 
called the tail-wags-the-dog effect (see Reichert [2] for more discussion) and 
can be significant. (When TVC is used, this effect is large because the nozzle 
is heavy and its CG is not located about its rotational axis.)

The IMU sensor measurements are corrupted by the flexible dynamics. 
Filters are designed to remove these signals from the sensed rates and accel-
erations. Unfortunately, these filters add gain attenuation and phase lag at 
the loop gain crossover frequency, thus impacting stability margins.

15.2.6 Control Power Analysis

The autopilot design models can be used to assess the control effector’s (aero, 
RCS, or TVC) capability to control the missile’s dynamics as the flight enve-
lope changes. This section presents a static control power analysis of the mis-
sile’s pitch dynamics, examining in which part of the flight envelope the aero 
control, RCS, and TVC effectors are the most useful.

Aero control effectors depend upon dynamic pressure to generate control 
power. At low velocities, aero control effectors have low control power. They 
also depend upon the AOA and lose effectiveness at high AOAs.

RCS thrusters provide a fixed level of thrust normal to the x-body axis 
(independent of flight condition, excluding jet interaction effects). The same 
level of control power is obtained at low and high velocities (neglecting jet 
interaction effects).

TVC exhibits the same characteristics as RCS (independent of flight condi-
tion). TVC actuators have a limited deflection that then limits the normal 
thrust. Control power data for the TVC designs are not presented, but the 
same trends apply to both the TVC and RCS effectors.
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A state space model for the missile’s dynamics can be written as x Ax Bu= +  , 
where the aero control and RCS inputs enter into the dynamics through the 
B matrix. The B matrix can be partitioned as B B BRCS= [ ]δ . The control effec-
tiveness, or control power, can be analyzed by computing the “size” of the B 
matrix as a function of AOA, CG location, altitude, and Mach number. The 
singular values of the B matrix are computed [22], and the maximum singu-
lar value is examined as the flight envelope parameters vary.

In order to minimize the amount of propellant used to perform maneu-
vers, it is important to know at what velocities and AOAs the aero controls 
are effective. Similarly, for RCS and TVC, it is important to know at what 
flight conditions the main engine must be providing thrust.

Study results show that the tail fins are very effective near zero AOA but 
lose their pitch moment capability as the AOA increases or as the velocity 
decreases (dynamic pressure decreases). The RCS jet’s pitch moment capa-
bility is constant with AOA and Mach number (neglecting jet interaction 
effects). At low Mach numbers, the RCS is more effective than aero control. 
At high Mach numbers, the aero controls are much more effective than 
the RCS jets. As the altitude increases, the aero becomes less effective and 
requires an increase in velocity to maintain its effectiveness (due to decrease 
in dynamic pressure).

Figure 15.11 summarizes data comparing missile fin and RCS effectiveness 
for an empty weight configuration. The RCS has a fixed magnitude versus 
Mach number. The three curves that change magnitude with Mach number 
represent the amount of aero control power for 0, 10, and 35 kft. altitudes. For 
small AOAs and above Mach 0.8, the fins are as effective as the RCS (data is 
for 0° AOA). As expected, at higher Mach numbers, the aero control is signifi-
cantly more effective than the RCS.
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15.2.7 Time Delays

Time delays, e−sT, occur due to the digital implementation of the flight control 
system and must be accounted for in stability and performance analyses. 
These delays are usually small in practice but add to the phase delay and can 
affect the phase margins. A second-order Pade approximation is typically 
used to model the time delay, creating a state space model to be included in 
Figure 15.2.

15.2.8 Zero-Order Hold effects

The implementation of the autopilot in a computer introduces digital sam-
pling effects that impact the phase margin of the system. The autopilot 
command that drives the actuators changes at the digital sample rate at 
which the autopilot is implemented. The command is held constant until 
the next frame. This holding effect is modeled as 1 − −e sTs, where Ts is the 
sample period. For an autopilot implemented at a 100 Hz digital rate, Ts = 
10 ms. A Pade approximation is again used to create the component model 
for Figure 15.2.

15.3 Frequency Domain Analysis and Robustness Measures

The stability and robustness analysis of a missile’s flight control system 
requires the use of both classical, single-input single-output (SISO) methods 
and modern, multi-input multi-output (MIMO) analysis methods. Stability 
requirements must be validated throughout the flight envelope, which 
requires all loops in the missile’s guidance and flight control system to be 
opened and analyzed for gain and phase margins. Many missile configu-
rations today have highly coupled cross-axis dynamics and aerodynamics, 
which requires multiple loops to be opened for stability analysis.

This section reviews MIMO analysis methods and relates them to their 
classical counterparts. These methods play a critical role in establishing both 
robust stability and robust performance.

15.3.1 Transfer Functions and Transfer Function Matrices

Many of the frequency domain analysis models for MIMO systems are natu-
ral extensions of transfer functions used to analyze SISO systems. However, 
unlike transfer functions for SISO systems, MIMO analysis models have dif-
ferent sizes depending upon where the loop is broken for analysis. When 
analyzing a missile’s flight control system for stability, it is typical to break 
all loops in a classical manner.
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Consider the SISO system shown in the block diagram of Figure 15.12. The 
loop gain for this system can be calculated by breaking the loop at the control 
generation point (plant input) and injecting a signal ui. The returned signal is

 u K s G s

L s

uo i= − ( ) ( )

( )
� ���� ����  (15.40)

in which L(s) is the loop gain transfer function. Differencing the injected signal 
ui and the returned signal uo results in

 
u u u K s G s u I K s G s u

I L s u

i o i i i

i

− = + = +

= +( )
( ) ( ) ( ( ) ( ))

( )
 (15.41)

which is the return difference for the loop. We will find later in this chap-
ter that the return difference matrix (RDM) plays a very important role in the 
development of stability robustness analysis tests for MIMO systems. The 
error transfer function for this system is

 
e s
r s K s G s

S s
( )
( ) ( ) ( )

( )=
+

=1
1

 (15.42)

where S(s) is the sensitivity function, which describes the error dynamics. 
Note that the sensitivity is the inverse of the return difference. The closed-
loop response to a command input is

 
y s
r s

K s G s
K s G s

T s
( )
( )

( ) ( )
( ) ( )

( )=
+

=
1

 (15.43)

where T(s) is the closed-loop transfer function. The transfer function T(s) is also 
called the complementary sensitivity since S(s) and T(s) satisfy the identity

 S(s) + T(s) = 1. (15.44)
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–
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• Scalar variables
• K(s), G(s) transfer functions

G(s)

Figure 15.12
SISO system with loop opened at plant input.
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Now, consider the multivariable equivalent of Figure 15.11 as shown in 
Figure 15.13. In Figure 15.13, the variables r, e, ui, uo, and y are vectors, with 
the controller K(s) an nu × ny matrix and the plant G(s) an ny × nu matrix. The 
figure shows the loop broken at the plant input. The loop gain L(s) is formed 
using the same procedure as in Equation 15.40, where L(s) = K(s)G(s) is an nu × 
nu matrix. Forming the RDM yields

 u u I K s G s ui o n iu
− = +( )( ) ( )  (15.45)

where I L snu
+ ( ) is also an nu × nu matrix. If this same procedure for calculat-

ing the loop gain is applied at the output of the plant, as shown in Figure 
15.13, the return difference dynamics are

 ′ − ′ = +( ) ′u u I G s K s ui o n iy
( ) ( )  (15.46)

which produces a loop gain and RDM that are ny × ny in dimension.
It is very important to learn that for MIMO systems, the loop gain is dif-

ferent at the plant input and plant output loop break points, which is unlike 
SISO systems. This dissimilarity is caused by the fact that matrices do not 
commute, but scalars do. Figure 15.14 summarizes the loop gain, return dif-
ference, sensitivity, and complementary sensitivity transfer functions and 
matrices for the SISO and MIMO systems shown in Figures 15.12 and 15.13.

Figure 15.14 lists the various matrices used to analyze MIMO control sys-
tems. In the remainder of this chapter, the subscript on the identity matrix 
indicating the dimension will be dropped for notational convenience.

15.3.1.1 Example

Consider the linear time-invariant (LTI) pitch-plane dynamics of the missile 
flight control system. The plant dynamics (A, B, C, D) can be written as

K(s)
nu × ny

G(s)
ny × nu
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Figure 15.13
MIMO system with loop opened at plant input.
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These dynamics form a single-input multi-output system. The transfer func-
tion matrix for the plant dynamics is

 G s C sI A B D

A

q

z

e

e

( ) ( )= − + =





















−1 δ

δ

 (15.48)

which is a 2 × 1 matrix. The autopilot (controller) for this plant contains pro-
portional plus integral control elements in the inner rate loop closure and 
outer acceleration loop closure, given by

 K s
K s a

sA
A z

z

z( ) =
+( )

 (15.49)
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Figure 15.14
SISO and MIMO matrices.
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and

 K s
K s a

sq
q q

( ) =
+( )

 (15.50)

with the controller transfer function matrix given by

 K s K s K s K sA q qz
( ) ( ) ( ) ( )=    (15.51)

which is a 1 × 2 matrix. The loop gain at the input to the plant is
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δ δ

 (15.52)

which is a scalar transfer function. To analyze stability for this system, any 
SISO analysis technique can be applied. If we examine the loop gain at the 
plant output, then
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which is a 2 × 2 matrix and is singular.
Figure 15.15 illustrates an LTI MIMO system with command r t ny( ) ∈R , 

plant disturbance w t ny( ) ∈R  and measurement noise v t ny( ) ∈R .
The output response from the system shown in Figure 15.15 is

 Y(s) = T(s)R(s) + S(s)W(s) + T(s)V(s). (15.54)
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Figure 15.15
MIMO control system.
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This equation shows how the output response depends upon the sensitivity 
and complementary sensitivity functions. At frequencies s = jω where com-
mands are to be followed, we want T(s) → 1, which shows that sensor noise is 
passed through the system into the output. It is not possible to reject sensor 
noise and track commands at the same frequencies. At frequencies where 
plant disturbances are to be rejected, we want S(s) → 0.

The error response E(s) can be formed by writing the following loop 
equations:

 

u Ke

y GKe w

z GKe w v

e r z r GKe w v

E s S s R

=

= +

= + +

= + = + + +

=( ) ( )( (ss W s V s) ( ) ( ))+ +

 (15.55)

which show that to make errors in tracking commands small, we want S(s) → 
0. Equations 15.54 and 15.55 illustrate the control design dilemma faced by 
engineers, that is, to make S(s) → 0 at low frequencies for command track-
ing and disturbance rejection and T(s) → 0 at high frequencies for sensor 
noise rejection and robustness to high-frequency unmodeled dynamics. The 
dilemma is that S(s) + T(s) = 1 at all frequencies, and as the sensitivity is made 
small, the complementary sensitivity is made unity, and vice versa.

15.3.2 Multivariable Stability Margins

Classical stability margin analyses use frequency response methods (Bode 
and Nyquist) in determining the relative stability of SISO systems. These 
methods manipulate the loop transfer function of the system to derive gain 
and phase margins, typical measures of relative stability. In multivariable 
systems (MIMO systems), the loop transfer function of the system is a com-
plex valued matrix, making it difficult to apply the same SISO methods to 
determine relative stability.

In SISO systems, the gain of the loop transfer function is easily determined 
by computing the magnitude of the complex-valued transfer function versus 
frequency. For MIMO systems, the notion of gain or magnitude for the loop 
transfer function matrix becomes a question of determining the magnitude 
of a matrix versus frequency. To accomplish this task, the singular values of 
the matrix can be computed versus frequency and used as a measure of its 
magnitude.

In this section, we are concerned with deriving stability margins for multi-
variable systems. The robust stability analysis tests and stability margin 
formulas developed here are derived from application of the multivariable 
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Nyquist theorem. These tests and formulas are natural extensions of the 
SISO tests reviewed in the previous section.

15.3.2.1 Singular Values

The singular value decomposition (SVD) of a matrix A of dimension n × m is 
A = UΣV*, where U and V are unitary matrices, whose columns denote left 
and right singular vectors of the matrix A, respectively. (Note the similarity 
to an eigenvalue decomposition.) Assuming that the matrix is of rank k, the 
nonzero portion of the singular value matrix is

 Σ
Σ

Σ=












=1
1 1

0

0 0
�

� �

�; [ ]diag σ σ k  (15.56)

with the singular values ordered in size with σ σ= 1 the largest and σ σ= k 
the smallest. The use of singular values plays an important role in analyzing 
the near singularity of matrices. If A is a square singular matrix, then σ = 0, 
and it is not invertible. The maximum and minimum singular values of the 
matrix A can be defined as

 σ( ) maxA
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Ax
x
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≠

=
0

2

2
2  (15.57)

 σ( ) minA
x
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x

=
≠ 0
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2

. 

The max and min optimization implied by Equation 15.57 can be eliminated 
by use of a property known as Rayleigh’s quotient.

15.3.2.1.1 Rayleigh’s Quotient

If A is a Hermitian matrix, then

 
min ( )min
x

x Ax
x x

A
H

H≠
=

0
λ  (15.58)

where λmin(A) is the minimum eigenvalue of A, and (•)H denotes complex 
conjugate transpose. (A matrix W is Hermitian if W = WH.) The minimum is 
attained when x is the eigenvector of A corresponding to λmin(A). Also,

 max ( )max
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x x

A
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λ  (15.59)
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where λmax(A) is the maximum eigenvalue of A. The maximum is attained 
when x is the eigenvector of A corresponding to λmax(A).

The maximum singular value of A (assume A to be complex valued) can 
be expressed as
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 (15.60)

Note that the product AHA is a matrix that is real, symmetric, and positive 
semidefinite, thus Hermitian. Applying Rayleigh’s quotient to Equation 15.60 
yields
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Similarly,
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The maximum singular value of the matrix A is the 2-norm of the matrix and 
in some sense represents how “big” the matrix is or how large the “gain” of 
the matrix is. The minimum singular value represents how nearly singular 
the matrix is. The condition number for a matrix, κ(A), is the ratio of the 
maximum and minimum singular values, given by

 κ σ
σ

( )
( )
( )

A
A
A

= , (15.63)

and is used by numerical analysts to gain insight into how invertible a 
matrix is.

Associated with each singular value are singular vectors that describe the 
“direction” of the singular value. Consider the matrix A ∈ ℂn×m with rank k = 
min(n,m). The k nonzero singular values of A, denoted as σi(A), are the strictly 
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positive square roots of the k nonzero eigenvalues of AHA (or equivalently 
AAH). This is expressed as

 σ λ λi i
H

i
HA A A AA( ) ( ) ( )= = > 0 . (15.64)

Each singular value has an input and output direction, which can be deter-
mined by examining the singular vectors associated with the SVD of the 
matrix. The SVD of a complex matrix A ∈ ℂn×m is

 A = UΣV* (15.65)

where U is an n × n unitary matrix (i.e., UH = U−1) consisting of orthonormal 
column vectors ui:

 U u un= [ ]1  , (15.66)

which are referred to as the left singular vectors of the matrix, V is a unitary 
matrix consisting of orthonormal column vectors vi

 V v vm= [ ]1  , (15.67)

which are referred to as the right singular vectors of the matrix, and Σ is a 
real n × m matrix given by

 Σ =
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The σi in Equation 15.68 is the ith singular value of the matrix A, with a cor-
responding left singular vector ui (Equation 15.66) and right singular vector 
vi (Equation 15.67). It is easy to show that
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The above equations can also be written as
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which shows that σ i
2 is an eigenvalue of AAH or AHA, ui is an eigenvector of 

AAH, and vi is an eigenvector of AHA.
Consider a square matrix A ∈ ℂn×n having rank k. Using an SVD, the matrix 

A can be represented using a dyadic expansion as

 A u v u v u v u vH H
k k k

H
i i i

H

i

k

= + + + =
=

∑σ σ σ σ1 1 1 2 2 2

1

 . (15.71)

The SVD of a matrix describes the gain through the matrix, with the 
maximum gain equal to the 2-norm of the matrix [ A A A2 1= =σ σ( ) ( )]. In 
addition to the gain, the SVD describes the direction associated with the 
gain. The dyadic expansion in Equation 15.68 indicates that the left and 
right  singular vectors describe the direction of the gain. The maximum 
gain through the matrix occurs with the input direction from v1 and output 
direction u1.

Further insight into the relationship between the gain of a matrix and the 
input/output vector directions can be gained through a simple geometric 
visualization. Consider the equation

 y = Au, (15.72)

which has two inputs and two outputs. If the input vector u has unit mag-
nitude, the possible input vector directions correspond to points on the unit 
circle shown in Figure 15.16. When the input vector has the direction OA 
corresponding to the direction of vector v1 in the SVD, the output y has the 
direction OA’ corresponding to the direction of vector u1 in the SVD. The 
magnitude (length) of vector OA’ is σ σ1( ) ( )A A= . Similarly, when the input 
vector has the direction OB, the output y lies along OB’ and has a magni-
tude σ σ2 ( ) ( )A A= . The gains corresponding to all other input directions 
fall between the maximum and minimum singular values as indicated by 
Figure 15.16.

Figure 15.17 illustrates the input-to-output mapping for a general transfer 
function matrix G(jω) ∈ ℂn×n. Here the singular value expansion provides 
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Figure 15.16
Principal gain direction.
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insight into the relative gain between input-to-output channels for a transfer 
function matrix.

15.3.2.1.2 Singular Value Facts

If the matrix A is invertible, that is, A−1 exists, then
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where ∥•∥F denotes the Frobenius norm. If the matrices U and V are unitary, 
then
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which says that unitary matrices preserve the singular values and ∥•∥2 of a 
matrix.

15.3.2.2 Multivariable Nyquist Theory

The multivariable Nyquist criterion gives a yes or no answer to the stabil-
ity question. Other methods such as computing the eigenvalues of the sys-
tem A matrix or solving a Lyapunov equation can also be used to answer 
the stability question. However, understanding the multivariable Nyquist 
criterion leads to important understanding of robustness analysis tests 
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Figure 15.17
Singular value decomposition.
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used to analyze model uncertainties. In addition, time delays esT are easily 
incorporated into the analysis in order to analyze MIMO systems with time 
delays.

The multivariable Nyquist criterion is derived from an application of the 
principle of the argument from complex variable theory.

Principle of the Argument

Let Γ be a closed clockwise contour in the s-plane. Let f(s) be a complex-
valued function. Suppose that

 1. f(s) is analytic on Γ.
 2. f(s) has Z zeros inside Γ.
 3. f(s) has P poles inside Γ.

Then f(s) will encircle the origin, 0, Z − P in a clockwise sense as s transverses Γ.
Let N(p, f(s), Γ) denote the number of encirclements of the point p made by 

the function f(s) as s transverses the closed clockwise contour Γ. If Γ equals 
the standard Nyquist D-contour (DR) encircling the RHP, and f(s) is a rational 
function in s, then N(0, f(s), DR) = Z − P.

If f(s) is factored where f(s) = f1(s)f2(s), then

 
N f s f s D N f s D N f s DR R R0 0 01 2 1 2, ( ) ( ), , ( ), , ( ),( ) = ( ) + ( )

= ZZ P Z P Z P1 1 2 2−( ) + −( ) = − .
 (15.73)

Consider the feedback system shown in Figure 15.18. The state equations for 
this system are
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u Kx

= +
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(sI – A)–1
x

Figure 15.18
State feedback LTI system.
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The closed-loop system is

 
x A BK x= +( ) . 

Let L(s) denote the loop transfer function matrix for this system, written as

 L(s) = K(sI − A)−1 B. 

The determinant of the RDM, det[I + L(s)], is equal to the closed-loop charac-
teristic polynomial divided by the open-loop characteristic polynomial, that is,
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(15.74)

Now, using the identity
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and using this in Equation 15.74 yields
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 (15.75)

where ϕol(s) is the open-loop system’s characteristic polynomial, and ϕcl(s) 
is the closed-loop system’s characteristic polynomial. If ϕcl(s) is stable (the 
closed-loop system is stable), then N(0, ϕcl(s), DR) = 0. From Equation 15.75, 
stability of ϕcl(s) requires that

 N s D N I L s Dol R R0 0 0, , , det ,φ ( )( ) + + ( ) ( ) = . (15.76)

With this understanding, we can state the multivariable Nyquist theorem.
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theorem 15.1: Multivariable nyquist theorem

The feedback control system shown in Figure 15.18 will be closed-loop stable 
in the sense that ϕcl(s) has no closed RHP zeros if and only if for all R suf-
ficiently large (radius of the D-contour)

 N(0, det[I + L(s)], DR) = −Pol (15.77)

or equivalently

 N(−1, −1 + det[I + L(s)], DR) = −Pol 

where Pol = N(0, ϕol(s), DR) equals the number of open-loop RHP poles.

The multivariable Nyquist theorem (MNT) states that closed-loop stability 
requires the number of encirclements made by the determinant of the RDM 
locus to be equal to the number of unstable open-loop poles. Encirclements 
can be counted relative to the origin (0, j0) or, as in classical Nyquist dia-
grams, about (−1, j0).

Stability margins for multivariable systems can be derived using the MNT 
by assuming that the controller K(s) stabilizes the nominal plant G(s) and that 
gain and phase uncertainties are large enough to change the number of encir-
clements made by the determinant of the RDM locus. The assumption that the 
nominal plant is stabilized by the controller tells us that the RDM encircles 
the origin Pol times in the proper sense. Gain and phase margins can be com-
puted by inserting a gain and phase variation keiϕ in between the controller 
K(s) and plant G(s) and solving for the gain k (with ϕ = 0) and phase ϕ (with k = 
1) that destabilizes the system. To proceed in a more general manner, consider 
the stability analysis model shown in Figure 15.19, where the uncertainties in 
the system (gain and phase uncertainties) are represented in a block matrix 
Δ(s) and the nominal plant and controller are represented in a matrix M(s). 
Techniques for deriving these models will be presented in the next section.

The stability analysis question is as follows: how large can the uncertain-
ties Δ(s) become before the system becomes unstable? The loop transfer 

Uncertainties

Dynamics

• Vector variables
• M(s), Δ(s) matrices

Δ(s)

M(s)

z

w

Figure 15.19
System block diagram with uncertainties.
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function matrix L(s) for this system is L(s) = Δ(s)M(s), with the RDM given 
by I + L(s) = I + Δ(s)M(s). Using the MNT, for the system to become unstable, 
the uncertainties Δ(s) must change the number of encirclements made by the 
det[I + L(s)] locus.

As long as the RDM I + L(s) is nonsingular (for s = jω along the D-contour), 
the number of encirclements made by the det[I + L(s)] locus will not change. 
This is best explained by examining the det[I + L(s)] locus as s transverses 
the DR contour. Fundamental to this approach is the assumption that the 
nominal closed-loop system is stable, that is, the control design stabilizes the 
open-loop system.

Assuming that the nominal closed-loop system is stable, ϕcl(s) is a stable 
polynomial, in that it has no RHP zeros. Let f(s) = det[I + L(s)], and represent 
f(jω) with its magnitude and phase as

 f(jω) = ∣f(jω)∣ejϕ(ω) (15.78)

as s transverses the DR contour in the s-plane.
Consider the jω axis path A shown in Figure 15.20, where 0 ≤ ω ≤ +∞. The 

section A locus of f(jω) is shown in Figure 15.21a. At low frequencies, the 
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Figure 15.20
Nyquist DR contour.
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Figure 15.21
Counting encirclements.
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magnitude of f(jω) is large due to the magnitude of L(jω). As ω → ∞, the loop 
transfer matrix (LTM) L(jω) → 0, resulting in the det[I + L(jω)] = 1 (1, j0). Along 
the infinite radius path B, s = ejψR, with R → ∞ and − ≤ ≤π ψ π/ /2 2. When 
R → ∞, L(jω) → 0. This results in encirclements of the point (1, j0). Section C 
will be the complex conjugate of the section A path. Figure 15.21b shows the 
entire locus and the number of encirclements N. Figure 15.21b shows there 
are two clockwise encirclements of the origin.

The number of encirclements N of the det[I + L(s)] locus must be equal to 
the number of open-loop unstable poles, Pol, if the closed-loop system is to be 
stable. If the det[I + L(s)] were equal to zero, then the number of encirclements 
would be indeterminate, or at least not equal to Pol. This is shown in Figure 
15.22. In order for the number of encirclements to change, det[I + L(s)] must 
equal zero at some frequency.

If ϕol(s) is a stable polynomial, then Pol = 0. An example det[I + L(s)] locus 
for this condition is shown in Figure 15.23. In order for stable system to be 
destabilized by uncertainties Δ, the origin must be encircled.

15.3.2.3 Stability Margins for MIMO Systems

Uncertainty models used for stability analysis may be categorized as unstruc-
tured or structured. If the system’s uncertainty is modeled as a full single-
block matrix, the uncertainty is unstructured. If the uncertainty is modeled 

Im

Re

N =0
N =2

Figure 15.22
Counting encirclements.

Im

Re

N =0

Figure 15.23
Counting encirclements.
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as a block diagonal matrix, the uncertainty is structured. Both unstructured 
and structured uncertainty analysis procedures use singular value theory to 
measure the size of complex valued matrices.

The following robustness theorems that are used to derive stability mar-
gins for multivariable systems are derived from an application of the MNT. 
Consider the control system shown in Figure 15.18. The basic problem is to 
determine the robustness of the design in the presence of uncertainties. This 
design has the state space realization using the triple (A, B, K) with the LTM 
given by

 L(s) = K(sI − A)−1B. (15.79)

We wish to determine to what extent the parameters in the LTM can vary 
without compromising the stability of the closed-loop system. From the pre-
vious section, we know that

 det[ ( )]
( )
( )

I L s
s
s

cl

ol

+ = φ
φ  (15.80)

where
ϕol(s) = det[sI − A]: open-loop characteristic polynomial
ϕcl(s) = det[sI − A + BK]: closed-loop characteristic polynomial.

Using the MNT, stability for this system can be stated as follows.
The system of Figure 15.18 will be closed-loop stable in the sense that ϕcl(s) 

has no closed RHP zeros if and only if for all R sufficiently large,

 N(0, det[I + L(s)], DR) = −P (15.81)

or equivalently

 N(−1, −1 + det[I + L(s)], DR) = −P (15.82)

where DR is the standard Nyquist D contour, which encloses all P closed 
RHP zeros of ϕol(s). Note that N(b1, f(s), D) is indeterminate if ϕ(s0) = b1 for 
some s0 on the contour D.

The stability robustness of a multivariable system can be observed by the 
near singularity of its RDM, I + L(s), at some frequency s = jω0. If I + L(s) is 
nearly singular, then a small change in L(s) could make I + L(s) singular. 
From a SISO viewpoint, this is the distance from the (−1, j0) point in the com-
plex plane made by the gain loci L(jω). If the gain loci then encircle the (−1, 
j0), point instability results. The robustness theory discussed here gives an 
analogous distance measure for multivariable systems.

Application of the MNT above is of little applicability as a robustness indi-
cator because det[I + L(s)] does not indicate the near singularity of I + L(s). 
The MNT only determines absolute stability. To determine the degree of 
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robustness for a multivariable system, we determine how nearly singular 
the RDM is by computing its singular values versus frequency.

Examining the magnitude of the singular values of the RDM will indicate 
how close the matrix is to being singular. This measure of closeness to singu-
larity is used in forming a multivariable gain margin, similar to the classical 
gain margin. However, as with many matrix norms, there is a restriction on 
the applicability of the singular value analysis. This restriction states that the 
compensated system described using the nominal L(s) is closed-loop stable.

Classical gain and phase margins are used to measure the robustness of SISO 
systems to perturbations in the feedback loop. Singular values are used in mea-
suring the robustness of multivariable systems. Let L′(s) denote the perturbed 
LTM, which represents the actual system and differs from the nominal LTM L(s) 
because of uncertainties in the open-loop plant model. Assume that L′(s) has the 
state space realization (A′, B′, K′) and open- and closed-loop polynomials given by

 ′ = − ′φol s sI A( ) det[ ]  (15.83)

 ′ = − ′ + ′ ′φcl s sI A B K( ) det[ ] , 

respectively. Define L(s,ε) as a matrix of rational transfer functions with real 
coefficients that are continuous in ε for all ε such that 0 ≤ ε ≤ 1 and for all s ∈ 
DR, which satisfies L(s,0) = L(s) and L(s,1) = L′(s). Using these definitions of the 
perturbed model, we are ready to state the following fundamental robust-
ness theorem.

theorem 15.2

The polynomial ′φcl s( ) has no closed RHP zeros, and the perturbed feedback 
system is stable if the following hold:

 1. a) ϕol(s) and ′φol s( ) have the same number of closed RHP zeros.
 b) ϕcl(s) has no closed RHP zeros.

 2. det[I + L(s,ε)] = 0 ∀ (s,ε) in DR × [0,1] and ∀ R sufficiently large.

This theorem states that the closed-loop perturbed system will be stable; if, 
by continuously deforming the Nyquist loci for the nominal system into that 
of the perturbed system I + L(s,ε), the number of encirclements of the critical 
point is the same for L′(s) and L(s), then no closed RHP zeros were introduced 
into ′φcl s( ), resulting in a stable closed-loop system.

This theorem is used to develop simple tests that are developed for dif-
ferent types of model error characterizations. Just as there is not a unique 



628 Advances in Missile Guidance, Control, and Estimation

representation for dynamic systems, there are many different forms for 
describing their modeling errors. The most common model error characteriza-
tions are additive errors and multiplicative errors (also described as relative 
or absolute errors). The classical gain and phase margins are associated with 
multiplicative error models since these margins are multiplicative in nature.

Let Δ(s) denote the modeling error under consideration. The additive 
model error is given by

 Δa(s) = L′(s) − L(s), (15.84)

and the multiplicative model error is given by

 Δm(s) = [L′(s) − L(s)]L−1(s). (15.85)

The perturbed LTM can be constructed using Equations 15.84 and 15.85. For 
the additive error model, we have

 L(s,ε) = L(s) + εΔa(s), (15.86)

and for the multiplicative error model, we have

 L(s,ε) = [I + εΔm(s)]L(s). (15.87)

Both Equations 15.84 and 15.85 imply the same L(s,ε) using different model 
error characterizations. In both Equations 15.84 and 15.85, L(s,ε) is given by

 L(s,ε) = (1 − ε)L(s) + εL′(s) (15.88)

showing that L(s,ε) is continuous in ε for ε ∈ [0,1] and for all s ∈ DR.
We have now defined the true perturbed plant model in terms of its nomi-

nal design model and the uncertainty matrix. The fundamental robustness 
theorem uses the RDM I + L(s,ε) to determine if the number of encirclements 
of the critical point will change with the uncertainties. This happens when 
I + L(s,ε) becomes singular, in which case det[I + L(s,ε)] = 0.

Using the multiplicative error characterization, the RDM is

 I + L(s,ε) = I + L(s) + εΔm(s)L(s) (15.89)

or

 I + L(s,ε) = A + B (15.90)

with A = I + L(s) and B = εΔm(s)L(s). For the perturbed system to be unstable, 
viewed through a change in the number of encirclements of det[I + L(s,ε)], the 
matrix A + B must be singular for some ε ∈ [0,1] and s ∈ DR. We know that 
A = I + L(s) is nonsingular (the RDM of the nominal design) since the nomi-
nal design is closed-loop stable. Thus, if the uncertainty is going to create 
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instability, then the matrix B = εΔm(s)L(s), when added to A, must make A + 
B singular.

A + B Argument

The minimum singular value σ( )A  measures the near singularity of the 
matrix A. Assume that the matrix A + B is singular. If A + B is singular, then 
A + B is rank deficient. Since A + B is rank deficient, then there exists a vec-
tor x ≠ 0 with unit magnitude (∥x∥2 = 1) such that (A + B)x = 0 (x is in the null 
space of A + B). This leads to Ax = −Bx with ∥Ax∥2 = ∥Bx∥2. Using the above 
singular value definitions in Equation 15.57 and ∥x∥2 = 1, we obtain the fol-
lowing inequality:

 σ σ( ) ( )A Ax Bx B B≤ = ≤ =2 2 2 . (15.91)

If the matrix A + B is singular, then σ σ( ) ( )A B≤ . For A + B to be nonsingular, 
σ σ( ) ( )A B> . This is precisely how the stability robustness tests are derived.

theorem 15.3: stability Robustness theorem—
Additive Uncertainty Model

The polynomial ′φcl s( ) has no closed RHP zeros and the perturbed feedback 
system is stable if the following hold:

 1. φcl s( ) has no closed RHP zeros.
 2. σ σ( ( )) ( ( ))I L s s s Da R+ > ∀ ∈∆  and for all R sufficiently large, with 

Δa(s) given by Equation 15.84.

See Wise [14] and references therein for proof of this theorem.

theorem 15.4: stability Robustness theorem—
Multiplicative Uncertainty Model

The polynomial ′φcl s( ) has no closed RHP zeros and the perturbed feedback 
system is stable if the following hold:

 1. ϕcl(s) has no closed RHP zeros.
 2. σ σ( ( )) ( ( ))I L s s s Dm R+ > ∀ ∈−1 ∆  and for all R sufficiently large, with 

Δm(s) given by Equation 15.85.
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The proof of this theorem uses the singularity of the A + B argument. 
Stability of the perturbed closed-loop system is guaranteed for a nonsingu-
lar I + L(s,ε). Thus,

 I + L(s,ε) = L(s)(I + L−1(s) + εΔm(s)). (15.92)

Here we assume that L−1(s) exists. If I + L(s,ε) is to be singular, then the 
matrix I + L−1(s) + εΔm(s) must be singular. Thus, to be nonsingular,

 σ σ ε( ( )) ( ( ))I L s sm+ >−1 ∆  (15.93)

or
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Depending upon the model error characterization, either additive or multi-
plicative, the robustness test is different. Theorems 15.3 and 15.4 are suffi-
cient tests for stability. As long as the singular value frequency responses do 
not overlap, stability is guaranteed. These theorems can be used to derive 
multivariable stability margins, also called singular value stability margins. 
They are a natural extension of classical SISO gain and phase margins to 
multivariable systems.

Consider the SISO system shown in Figure 15.24. Gain and phase margins 
for this system are computed by inserting a gain and phase variation k ei

i iφ
 in 

between the controller K(s) and plant G(s) and solving for the gain ki (with 
ϕi = 0) and phase ϕi (with ki = 1) that destabilizes the system.

Controller Plant

Controller Plant
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• K(s), G(s) matrices
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∆(s)
nu × nu
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ny × nu

Figure 15.24
Uncertainty models.
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First, consider the computation of a gain margin at the input to the plant. 
Place in each input channel a scalar gain εi ∈ C, with E s Ci

n nu u( ) [ ]= ∈ ×diag ε  
modeling these gains as a matrix. For the nominal condition with no uncer-
tainty, εi = 1, and the system is stable. Positive and negative gain margins 
would indicate how large and small, respectively, the scalar gain εi needs 
to be to destabilize the system. Our analysis problem will focus on inde-
pendent uncertainties in each channel, with the gain margin relating to the 
smallest gain uncertainty that can destabilize the system. Figure 15.24 indi-
cates how this gain uncertainty enters into the block diagram and how it can 
be represented using Δ(s).

As shown in Figure 15.24, Δ(s) = E(s) − I. For the nominal control system, let

 
min ( )

ω
σ βσI L+ =−1 . 

From Theorem 15.4, stability is guaranteed if σ σ( ( )) ( ( ))I L s s+ >−1 ∆ . For Δ(s) = 
E(s) − I, E s n nu u( ) ∈ ×C , the singular values of Δ(s) are

 σi(Δ(s)) = σi(E(s) − I) = ∣εi − 1∣. 

If the largest ∣εi − 1∣ is smaller than βσ, then for εi ∈ ℝ

 1 − βσ ≤ εi ≤ 1 + βσ, (15.95)

which guarantees a gain margin of [1 − βσ, 1+ βσ] for the system. If we consider 
the phase margin problem, εi = exp(jϕi(ω)), ϕi(ω) ∈ ℝ, E(s) = diag[exp(jϕi(ω))], 
then
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15.3.2.3.1 Singular Value Stability Margins

 1. RDM:
  Let min ( )

ω σσ αI L+ = , then

 
GM PMI L I L+ +
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 = ±1
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1

1
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σ, ; sin . (15.96)

 2. Stability robustness matrix:
  Let min ( )

ω σσ βI L+ =−1 , then
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σ, ; sin  (15.97)

 GM GM GM PM PM PMI L I L I L I L
= ∪ = ∪+ + + +− −1 1, . (15.98)

Note that the best minimum singular value from the RDM is min ( )
ω

σ I L+ = 

α σ = 1 (at high frequencies L → 0). Substituting this into Equation 15.96 pro-

duces a gain margin interval of GMI L+ = +∞






1
2

, . Converting to decibels pro-

duces GMI+L = [−6, +∞] dB. Similarly, the best minimum singular value from 
the stability robustness matrix is min ( )

ω σσ βI L+ = =−1 1 (at low frequencies 

L−1 → 0). Substituting this into Equation 15.97 produces a gain margin inter-

val of GM
I L+ − =1 0 2[ , ]. Converting to decibels produces GM

I L+ − = −∞ +1 6[ , ] dB.

15.3.3 Control System robustness Analysis

15.3.3.1 Analysis Models for Uncertain Systems

Stability analysis models for multivariable systems can be formed to analyze 
gain and phase uncertainties, neglected and/or mismodeled dynamics, real 
parameter uncertainties, and combinations thereof using methods identi-
cal to forming models for SISO systems. These models can be easily formed 
using block diagram algebra, signal flow graph methods, or algebraic 
manipu lation of loop equations. The resulting models will have a “struc-
ture” associated with them depending upon the specific problem, and the 
analysis will depend upon the structure.

Consider the multivariable control system shown in Figure 15.25. The block 
diagram shows uncertainties Δ1 at the input to the plant and uncertainties 
Δ2 at the output of the plant. The uncertainties Δ1 and Δ2 can be constructed 
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to model any type of uncertainty, depending upon the analysis question 
at hand (gain and phase margins, uncertain actuator or sensor dynamics, 
etc.). The RDM for the block diagram in Figure 15.25 is I + K(I + Δ2)G(I + Δ1). 
To ease analysis of this system, the block diagram shown in Figure 15.25 is 
transformed into the general analysis model shown in Figure 15.19.

Figure 15.19 illustrates a general control system analysis model in which 
the matrix Δ(s) models uncertainties and M(s) is a transfer function matrix 
modeling the dynamics between the output from the uncertainties and its 
input. The utility of this diagram is that it isolates the uncertainties from the 
known dynamics (plant +controller). Using this form, it is easier to deter-
mine the “smallest” Δ that destabilizes the system. We will use this ΔM rep-
resentation of the dynamics for many of our stability analysis problems. The 
matrix M(s) models the dynamics in the system that is assumed to be known 
and any weighting filters used to normalize the uncertainties.

The matrix Δ(s) will be a block diagonal matrix, with each matrix or scalar 
uncertainty in the system, Δi(s), located on the diagonal of Δ(s). The matrix M(s) 
is a block matrix where the ijth block is the transfer function matrix from the 
output of the jth uncertainty Δj(s) to the input of the ith uncertainty Δi(s).

Consider the loop equations from Figure 15.26 written as

 

z K s z w

z G s z w

1 2 2

2 1 1

= +

= +

( )( )

( )( ).  

Δ1 Δ2

K(s) G(s)

z1 z2w1 w2

• Vector variables
• K(s), G(s) matrices

Figure 15.25
Expanded system block diagram with uncertainties.
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Figure 15.26
Signal flow graph model for writing loop equations.
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Substituting the z2 expression into the z1 equation and manipulating yields

 

z K s G s z w w
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= + +

= + +
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z I K s G s

− = +

= − ))) ( ) ( ) ( ( ) ( )) ( ) .− −+ −1
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1
2K s G s w I K s G s K s w  

Substituting the z1 expression into the z2 equation and manipulating yields
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1
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Combining these two expressions and writing in matrix form yields

 

z

z

I K s G s K s G s I K s G s1

2

1











=
− −−( ( ) ( )) ( ) ( ) ( ( ) ( ))−−

− −− −

1

1 1

K s

I G s K s G s I G s K s G s K s

( )

( ( ) ( )) ( ) ( ( ) ( )) ( ) ( )













M s( )
� �������������������������� ���������������������������

w

w
1

2












. (15.99)

The loop equations for the uncertainties modeled in the system can be writ-
ten as
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 . (15.100)

The RDM is now I − ΔM. Many of the robustness tests focus on the singular-
ity of the RDM. This form isolates the uncertainties from the known system 
dynamics and controller, making it easier to determine the size of the uncer-
tainties that cause the return difference matrix to become singular.

15.3.3.2 Singular Value Robustness Tests

Singular value robustness tests are derived by examining the singularity of 
the RDM. If det[I − ΔM] = 0, then from the A + B argument of the preceding 
section, we know that
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 σ σ[ ] [ ]I M> ∆ . (15.101)

Using σ σ σ[ ] [ ] [ ]∆ ∆M M≤ , and the fact that σ[ ]I = 1, we obtain what is referred 
to as the small gain theorem (SGT):

 σ σ[ ] / [ ]∆ < 1 M . (15.102)

The SGT is a sufficient test for stability. If it is violated, the system may 
still be stable. It is also typically conservative, depending upon the struc-
ture of the uncertainty. This conservatism is introduced when the bound 
σ σ σ[ ] [ ] [ ]∆ ∆M M≤  is used. Bounding σ[ ]∆M  with the product σ σ[ ] [ ]M ∆  
ignores any structure that may be present in Δ and can produce a conserva-
tive analysis.

15.3.3.3 Real Stability Margin

At a fixed frequency ω, the real margin algorithm [13] maps the space D of 
uncertain parameters into the Nyquist plane using the MNT. This proce-
dure is shown in Figure 15.27 for a three-dimensional parameter space. The 
solid cube in the parameter space represents all allowable combinations of 
uncertain parameters. The vertices of this cube are the extreme variations 
allowed for each parameter. The uncertain parameters and nominal system 
dynamics are modeled using the ΔM representation shown in Figure 15.18. 

•  Map the hypercube solid into the Nyquist
    plane using the multivariable Nyquist theorem
•  Expand k until shaded region encloses origin
•  Δ-space of uncertain parameters
•  M-nominal closed-loop control system

3 Dimensional
parameter space

δ3

δ1

δ2V4 V8

F6

F7

F8F2

F3
F1

F5 F4
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V2

V3
V1 V5

V7

det[I + kΔM] 

det[I + kD M] 

Nyquist plane

co{det[I + kVM]}
(Convex hull) Im

Re

Critical
point

Robustness analysis tools
used to assess control
system robustness to

uncertain parameters (aero).

Figure 15.27
Real margin stability analysis.
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If there is a combination of parameters Δ0 that destabilizes the system, then 
det[I + Δ0M] = 0.

The bounds on the allowable parameter variations will form an np-dimensiona l 
polytope in the parameter space (in two dimensions, this is a rectangle). By 
scaling the parameter space, the polytope is transformed into a hypercube 
(a square in two dimensions). The scaled parameter-space hypercube solid, 
shown in Figure 15.27, maps into the shaded region in the Nyquist plane 
using the det[I + kΔM] function. The scalar real margin k multiplies Δ and 
is expanded until the shaded region encloses the origin (the nominal design 
matrix M is stable, so k = 0 is a stable point).

When mapping the hypercube solid into the Nyquist plane, it is not 
computationally feasible to compute the shaded region in Figure 15.27. 
However, the convex hull enclosing this region is easily computed. The 
convex hull enclosing this region is formed by mapping the hypercube 
vertices Vi into the points Fi in the Nyquist plane. The outer boundary 
enclosing all vertex points Fi is then the convex hull co{det[I + kVM]} (here 
det[I + kVM] represents the entire set of vertex points mapped into the 
complex plane). The real margin k is then expanded until the origin is 
contained in co{det[I + kVM]}. This provides a lower bound on k, denoted 
kl. An upper bound, denoted ku, is formed by splitting the parameter 
space into subdomains and recomputing k for each subdomain. This pro-
cedure is then repeated, improving the accuracy of k. As the parameter 
space is split into smaller and smaller subdomains, the unstable region 
in the parameter space is determined. (The general idea is that the union 
of infinitesimal slices in the parameter space, mapped into the Nyquist 
plane, approaches the true image of the hypercube.) The real margin k 
must be computed at each frequency along the jω axis. The minimum k, 
versus frequency, is then used as the real margin, denoted km. This defines 
the real margin as

 k k I k Mm = ∈ ∞[ ) − ={ }min , |det( )
∆

∆0 0 . (15.103)

15.4 optimal Flight Control Design

Robust high-performance flight control system design requirements are gen-
erally driven by high maneuver rates needed for postlaunch agile maneu-
vers, off boresight target updates, and/or terminal homing. The solution will 
tend toward a high-bandwidth autopilot design that satisfies the actuation 
position and rate limitations and is robust. Robustness concerns are often 
related to large launch envelopes and uncertainties in plant dynamics and 
aerodynamics throughout the flight envelope [15]. Optimal control methods 
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offer promising solutions to this complex control problem and have proven 
themselves in application.

This section presents the robust servomechanism design model. This 
model creates a problem formulation such that when solved using optimal 
control theory, it produces an autopilot that tracks commands from guidance 
with zero error and has excellent stability and robustness properties.

15.4.1 robust Servomechanism Linear Quadratic regulator

This section presents the method for constructing the robust servomecha-
nism linear quadratic regulator (RSLQR). Consider the following finite 
dimensional LTI first-order state space model:

 
x Ax Bu Ew

y Cx Du Fw

= + +

= + +
 (15.104)

with w an unmeasurable disturbance, and x nx∈R , u nu∈R , and y ny∈R . The 
command input vector r nr∈R  has dimension less than the number of out-
puts (i.e., ny < nr), and it is assumed that the following pth-order differential 
equation for r(t) is known, that is,

 r a r
p

i

p i

i

p( ) ( )

=
−

=
∑

1

 (15.105)

where ai are known scalars, and the superscript denotes the order of the 
derivative. The polynomial formed by the Laplace transformation of 
Equation 15.105 is

 a s s a sp
i

p i

i

p

( ) = + −

=
∑

1

 (15.106)

and describes a known class of inputs without knowledge of their magni-
tudes. For the disturbance inputs, we assume the same model as used for r(t):

 w a w
p

i

p i

i

p( ) ( )

=
−

=
∑

1

 (15.107)

where w(0) = w0 is unknown. Define the error signal as

 e = yc − r (15.108)
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where yc is a partition of the system outputs, y y yc nc
T= [ ] , yc

nyc∈R . Tracking 
in yc is regulation in e. The controller design objective is to make the command 
error approach zero e → 0 (yc → r) as t → ∞, in the presence of unmeasurable 
disturbances w(t), in a robust manner with respect to the plant description. 
Differentiating the error expression, Equation 15.108, p times yields

 e a e y a y r a
p
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p i

i

p

c

p

i c

p i

i

p p

i
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− = − − −
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=
∑ ∑

1 1

rr
p i
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p ( )−

=

=

∑












1

0
� ������� �������

. (15.109)

The second term of the right-hand side of Equation 15.109 is zero by defini-
tion. Using Equation 15.104, we have

 y C x D u F wc

p i

c

p i

c

p i

c

p i( ) ( ) ( ) ( )− − − −

= + + . (15.110)

Substituting this into Equation 15.109 yields
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(15.111)

The third term of Equation 15.110 is also zero by definition. This equa-
tion  defines a set of simultaneous differential equations. Let ξ and μ be 
defined as

 ξ α µ α= − = −
−

=

−

=
∑ ∑x x u u

p

i

p i

i

p p

i

p i

i

p( ) ( ) ( ) ( )

;
1 1

, (15.112)

which are linear combinations of the derivatives of the state and control sat-
isfying the reference command model dynamics. Substituting these into the 
error equation yields

 e e C D
p

i

p i

i

p

c c

( ) ( )

− = +
−

=
∑ α ξ µ

1

. (15.113)

Differentiating Equation 15.112 yields ξ α= −
+ − +

=
∑x x

p

i

p i

i

p( ) ( )1 1

1

. Using Equation 
15.104, we have
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A new state vector z may be defined as follows:

 z e e e
p

T

=






−
� �

( )1

ξ . (15.115)

This new state vector z has dimension n pnx yc
+( ). Differentiating Equa-

tion 15.115 yields the robust servomechanism design model system defined 
as

 � � �z Az B= + µ  (15.116)

with A and B given by
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. (15.117)

The RSLQR state feedback autopilot is obtained by applying linear qua-
dratic regulator theory to Equation 15.116. By regulating z, we regulate to 
zero both e and ξ. In steady state, this allows the state vector x to be non-
zero in which yc tracks the command r. This control formulation adds inte-
gral control action acting on the command error and creates a controller 
who is “type p,” which is required to track the class of signals described in 
Equations 15.105 and 15.106.

Consider a constant input command r. This gives r = 0 (p = 1) with 
a1 = 0 (Equation 15.106). The state space system using Equation 15.116 is 
given by

 �

� ����� ����� � ��
� �

z
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D

B
c

A

c

B
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+












0
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µ. (15.118)
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LQR control theory is applied to Equation 15.118 using the performance 
index (PI):

 J z Qz RT T= +
∞

∫ ( )µ µ τd
0

. (15.119)

The optimal steady-state control law for μ using state feedback is formed by 
solving the algebraic Riccati equation (ARE) using Q and R from Equation 
15.119. The resulting steady-state nu × (p + nx)-dimensional feedback control-
ler gain matrix Kc is partitioned as

 K K Kc I x= [ ]  (15.120)

where KI multiplies the feedback of the integral on the command error vec-
tor, and Kx multiplies the feedback of the states. The optimal control u is 
obtained by integrating μ, that is,

 u K K z K K e
x

K e K xI x I x I x= = − = −








 = − −∫ ∫ ∫µ τ τ τd d d[ ] [ ]


∫∫  

(15.121)

This controller mechanization yields integral control action on the com-
mand error to provide zero steady-state error command-following. The state 
vector x must be available for feedback. The implementation of this state 
feedback design is shown in Figure 15.18. We see from this approach that 
integral error control is added to the baseline plant dynamics. The “type” of 
controller, the number of integrators added, depends upon the class of sig-
nal to be tracked. For constant commands assumed here, p = 1, and a single 
integrator is added, producing a type 1 controller. For ramp-type commands, 
p = 2, and two integrators are added, producing a type 2 controller. In prac-
tice, type 1 controllers have been found to be acceptable in missile autopilot 
design problems.

The disturbance models from Equation 15.104 (Equation 15.107) satisfy 
the same differential equation as the command (Equation 15.105). This says 
that for constant commands, the controller will reject constant disturbances, 
with the magnitude of the disturbance unknown. For ramp commands, the 
controller will reject ramp disturbances, etc. The integral control action of 
the robust servomechanism is similar to what a “classical” integral control 
autopilot would provide.

15.4.2 Design Summary for rSLQr

The RSLQR incorporates integral control into an LQR state feedback design 
to build a type 1 controller. This will produce a controller that achieves zero 
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steady-state error to constant commands. The autopilot design model in state 
space form is

 

� � �
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A gain scheduled autopilot is designed by discretizing the flight envelope 
with α, Mach number, and altitude or dynamic pressure, linearizing the 
dynamics at the flight condition to form the LTI model (Equation 15.122), 
and solving an infinite time LQR problem with its associated ARE. From the 
ARE, the constant state feedback gain matrix is computed. The following is 
a summary of these LQR design equations:

 � � � � �x Ax Bu A B x R u Rn nx u= + − ∈ ∈, ,constant  (15.123)

 J x Qx u Ru Q Q R RT T T T= + = ≥ = >
∞

∫ ( ) ,dτ
0

0 0  (15.124)

 ( , ) , /
  A B A Qcontrollable detectable; 1 2( )  (15.125)

 ARE: PA A P Q PBR B P u R B Px K xT T T
c

    + + − = = − = −− −1 10 . (15.126)

Using the feedback gain matrix computed in Equation 15.126, the closed-loop 
system is given by

 � � � �x A BK x A xc cl= −( ) = . (15.127)

It is the robustness properties of this system under feedback that we wish 
to investigate. The feedback gain matrix Kc obviously plays a central role 
in establishing these properties, and the selection of the numerical values 
is important. If the gains were selected using a pole placement method, the 
robustness properties would be different from that of the LQR.
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There are many ways to select the LQR penalty matrices Q and R in Equation 
15.126 that influence the feedback gain matrix Kc. In general, the gains are 
proportional to how “large” Q is and how “small” R is, with the magnitude 
of the gains proportional to Q/R. Methods like Bryson’s rule [16] give good 
design guidelines for regulators, but in missile autopilot design, the goal is to 
achieve as high a bandwidth as possible (as fast a response as possible) sub-
ject to stability, robustness, and implementation constraints. The method used 
here to select Q and R is from Wise [17], and it uses LQR design charts to 
view performance versus bandwidth and selects numerical values by impos-
ing constraints on stability margin or actuator usage. The LQR design charts 
are created by parameterizing the LQR penalty matrices as follows:

 Q q R=























=11

1
0 0

0
0 0

0

1




; ; (15.128)

and numerically sweeping q11 [using q11 = logspace(1,6,100)]. At each value of 
q11, the ARE is solved, the gains are computed, and the design is evaluated in 
both the frequency and time domains. In the time domain, a step response 
is used to compute rise time, settling time, and actuator usage. These data 
are plotted versus loop gain crossover frequency forming the design charts.

Figure 15.28 illustrates the rise time and settling time versus loop gain 
crossover frequency for the missile data in Equation 15.122. The selected 
design point is indicated in the figure by a circle on the curve. The LQR 
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Figure 15.28
Rise time and settling time versus loop gain crossover frequency.
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penalty is q11 = 0.16681. The gain matrix computed from the ARE, Kc, and 
closed-loop system matrix Acl, Equation 15.127, are

 Kc = −[ ];0.0681 0.0099 0.7494 2.9394 0.0101  

 

 A BKc− =
− − −
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0 0

.
1.7497e+000 1.5516e+003 2.54755e+002
4.1241e-002 1.5110e+002

3.150

0 0 0
0 0 0 0 1 0

− −

−
.

33e+002 4.5702e+001 3.4651e+003 1.8216e+004 1.28− − − 337e+002
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15.4.3 guaranteed Margins from LQr

The LQR has excellent stability guarantees. We will briefly review these 
guarantees, examine the closed-loop system’s robustness to model uncer-
tainties, and look at how adaptive control theory can improve them further. 
Start with the ARE given in Equation 15.126. Add and subtract sP from the 
ARE to obtain

 − − − + =− − − −P P PBR B P QsI A sI AT T( ) ( ) 
 

1 0. (15.129)

Let Φ( ) ( )s sI A= − −


1. Multiply by BTΦT(−s) on the left and Φ( )s B on the right:

 BTPΦB + BTΦT(−s)PB + BTΦT(−s)PBR−1BTPΦB = BTΦT(−s)QΦB. (15.130)

Add R > 0 from the PI to both sides. Using the state feedback control in 
Equation 15.126, the LTM at the input to the plant is

 L s R B P s B K s BT
c( ) ( ) ( )= =−1

  Φ Φ . (15.131)

Using the LTM, we have
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which reduces to
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The matrix BTΦT(−s)QΦB is Hermitian positive semidefinite. Subtracting this 
matrix creates the inequality

 ( ( ))* ( ( ))I L s R I L s R+ + ≥ . (15.134)

Replacing R > 0 with λmin(R)I on the left and λmax(R)I on the right yields
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 (15.135)

which says that the RDM is always greater than 1 in magnitude. For a 
single-input system, at the plant input, this equates to the Nyquist loci 
never entering a unit disk centered at (–1,j0) in the complex plane. These 
conditions are shown in Figure 15.29. This promises a [−6 dB, +∞] gain 
margin and ±60° phase margin. This property is guaranteed from using 
the optimal gains and would not necessarily be present for other gain 
matrices.  Several questions arise as follows: How does this classical 
margin relate to the robustness properties relative to knowing the aero-
dynamic parameters, accurately knowing the actuator dynamics, and/
or any unmodeled high-frequency dynamics (flexible body dynamics)? 
Also, how does adaptive control contribute to the robustness and overall 
performance?
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Figure 15.29
Loop transfer function and return difference frequency responses for state feedback LQR.
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15.5 Adaptive Control Augmentation of Baseline Control

In this section, full state feedback model reference adaptive control (MRAC), 
uad, is used to augment the baseline robust servomechanism control in 
Equation 15.126, u = ubl + uad, to improve stability and command tracking 
in the presence of system uncertainties. The open-loop system to be used 
in forming the adaptive control is

 � � �x Ax B u f x Fr= + + +( ( ))  (15.136)

where f x np( ) ∈R  describes matched uncertainties, possibly nonlinear, in the 
dynamics (this will be expanded and discussed in the next section). The 
baseline control using the robust servomechanism from Equation 15.126 is 
calculated ignoring these uncertainties. The baseline control takes the form

 ubl = −Kcx. (15.137)

Substituting the baseline control into the open loop dynamics, Equation 
15.136 yields the following closed loop system:

 � � � �x A BK x Bf x Frc= − + +( ) ( ) . (15.138)

Without the uncertainties, that is, when f(x) = 0, the dynamics in Equation 
15.138 coincides with the model:

 � � �
� ���� ���� �x A BK x F rc

A Bref ref

= − +( ) ( ) . (15.139)

These system dynamics, (Aref, Bref), yield the desired stability and command-
following performance that is sought for the autopilot. As such, we choose 
the reference model for the MRAC using these dynamics:

 x A x B rref ref ref ref= + . (15.140)

As is the baseline control, these reference model dynamics are gain sched-
uled with flight condition.

There are different feedback/feed-forward architectures that can be used 
to define the MRAC increment uad that will augment the baseline control. 
Here, we choose a form that contains a state feedback term and a term that 
compensates for the matched system uncertainties f(x). Using this form, the 
control input u becomes

 u u u K x k x f xbl ad c

u

x
T

ubl ad

= + = − + −� � ����� �����
ˆ ˆ( ) . (15.141)
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In Equation 15.141, k̂x is the incremental adaptive feedback gain, and ˆ( )f x  
is the online approximator of the matched system uncertainty f(x). A feed-
forward neural network (NN) with N0 fixed radial basis functions (RBFs) 
in its hidden inner layer is used as the function approximation mechanism:

 f x x x x xi i f

i

N
T

f( ) ( ) ( ) ( ) ( )= + = +
=

∑ θ φ ε ε
1

0

Θ Φ . (15.142)

It is well known [18] that for a sufficiently large number of RBF neurons N0, 
there exists an ideal outer-layer RBF NN weights matrix Θ, which provides 
function approximation on a compact np-dimensional x domain Xp

np⊂ R , 
within the approximation tolerance ε0

*:

 f x x x x Xf p( ) ( ) ( ) * ,− ≤ ≤ ∀ ∈ΘΦ ε ε0 . (15.143)

Since the matrix Θ in Equation 15.142 is not known, an online estimate, Θ̂, is 
used. Thus, the corresponding function approximation error becomes

 f x f x x x x xT
f

T T
f( ) ˆ( ) ( ) ( ) ˆ ( ) ( ˆ ) ( ) (− = + − = − +Θ Φ Θ Φ Θ Θ Φε ε xx). (15.144)

Substituting the total control into Equation 15.136 yields
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TT T
fx Fr B x x( )( ) + + − +�(( ˆ ) ( ) ( )).Θ Θ Φ ε

 (15.145)

To form the adaptive control law, we derive error dynamics between the 
above closed-loop system and the reference model in Equation 15.140 and 
establish conditions on the adaptive gains to achieve bounded error tracking 
for all bounded reference commands r. In this process, we must assume that 
the matching conditions are satisfied. These conditions require that there 
exist ideal gains kx

T, not necessarily known, such that

  A B K k Ac x
T

ref− −( )( ) = . (15.146)

These conditions are central to how adaptive control enters into the system 
dynamics and is able to improve system robustness. It is important to estab-
lish reference dynamics that can be achieved by the system.

The tracking error between the system and the reference model is defined 
as e = x − xref. Differentiating and substituting yields
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(15.147)

where ∆K k kx x x= −ˆ  and ∆Θ Θ Θ= −ˆ . Note that the estimation error in approx-
imating f(x) with ˆ( )f x  is bounded as long as x ∈ Xp. This requires maintain-
ing the state x within this compact region.

Using a Lyapunov-based design approach coupled with Barbalat’s lemma, 
bounded output tracking can be achieved through an online parameter 
adaptation process. This requires forming a Lyapunov function and showing 
that its time derivative is negative within a compact subset of the extended 
system state space.

Define the candidate Lyapunov function as

 V e K e Pe K Kx
T

x
T

x x
T( , , )∆ ∆ ∆ ∆ ∆Θ Γ Θ Γ Θ= + ( ) +− −trace trace1 11∆Θ( )  (15.148)

where P, Γx, and ΓΘ are symmetric positive-definite matrices, and P is the 
unique solution to the following algebraic Lyapunov equation:

 PA A P Qref ref
T+ = − . (15.149)

Next, differentiate V to obtain
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Now, using Equation 15.149,
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 (15.151)

Next, use the identity aTb = trace(baT) to rearrange terms in Equation 15.151 
to obtain

 




V e Qe e PB x K K xe PBT T
f x
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x x

T= − + + +{ }−2 2 1Λ Γε ( ) ˆtrace ∆(( )
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 (15.152)

We want this expression to be negative. Suppose we choose expressions for 
the adaptive parameters ˆ ˆkx and Θ as follows:
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 (15.153)

Then

 � � �V e Qe e PB x Q e e PBT T
f= − − ≤ − +2 2

2

0ε λ ε( ) ( ) *
min . (15.154)

This will be negative outside the compact set E given by

 E e e
PB

Q
= ≤












:

*

( )min

2 0ε
λ

. (15.155)

The key to the implementation of the adaptive laws is the introduction of a 
projection operator [19] to bound the adaptive parameters:
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k k xe PB
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x x x
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= −( )
= −(

Proj
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 (15.156)

The bounded adaption parameters combined with Equation 15.155 provide 
sufficient conditions for bounded tracking outside of the corresponding 
compact set. Equation 15.155 also defines the size of the tracking error and 
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shows that its upper bound is proportional to the size of the approximation 
domain ε0

*. Consequently, in order to make the tracking error smaller, one 
would need to increase the number of RBFs to decrease the function approxi-
mation error, εf(x). In addition, a dead zone operation [20] must be added to 
prevent noise from causing parameter drift. The dead zone will also pre-
vent the adaptive increment from adjusting the baseline control when the 
model error is small. Damping can also be added to the parameter adaption 
laws, called σ-modification and e-modification [8]. Lavretsky [21] provides 
a μ-modification that will prevent undesirable behavior in the presence of 
position and rate-limited actuation.

15.6 Robustness Analysis of optimal Baseline Control

Section 15.3.1 showed that the nominal state feedback LQR autopilot pro-
vides infinite gain margin and at least a 60° phase margin. These excellent 
stability margins are guaranteed for complex uncertainties kejϕ at the plant 
input but do not necessarily reflect the robustness to uncertainties in the 
real parameter coefficients that constitute the model of the dynamics. In 
this section, we introduce real parameter uncertainties and investigate the 
robustness of the baseline control system to these uncertainties. This analy-
sis plays an important role in the validation and verification of the adaptive 
flight control system. What one will find is that each control architecture, 
and gains used in the architecture, possesses different sensitivity to uncer-
tainties in the model parameters. We will also see, via nonlinear simulation, 
that adaptive control can extend the system’s performance and robustness 
to uncertainties.

It is well known that classical gain and phase margins, including vector 
margin, do not necessarily mean that the system is robust to real parameter 
uncertainties. The state feedback system in Equation 15.127 has a scalar loop 
gain at the plant input and is described by L s K sI A Bc( ) ( )= −  . A Nyquist plot 
of L(s) is shown in Figure 15.30 and displays the excellent gain margin and 
phase margin of the LQR control. In transfer function form

 L s
s j s j

s s s
i i( )

( . . )( . . )
( . )( .

=
+ ± + ±

+ −
40 8 54 4 7 5 5 1

7 6 6 33 40 8 54 4
7 5 5 1
7 6 6 3)( . . )

( . . )
( . )( . )s j
s j

s s si

i

+ ±
=

+ ±
+ −

 (15.157)

note that the open-loop system is unstable (Mα > 0), and the actuator poles are 
exactly cancelled in L(s) (at the plant input only). The gain margin is [–9,+∞] 
db and the phase margin ±60. Next, consider a scalar real uncertainty δK at 
the input to the plant as shown in Figure 15.31. The closed-loop characteristic 
polynomial is s(s + 7.6)(s − 6.3) + δK(si + 7.5 ± 5.1j), with Figure 15.32 displaying 
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the root locus. The system is stable for all gain values δK > 0.28. This equates 
to a gain margin of (–11, +∞) dB. This root locus displays the excellent plant 
input stability margins of the baseline LQR control.

15.6.1 robustness Analysis Model

Consider real parameter uncertainties δi, δi ∈ Di ⊂ ℝ, i = 1, …, np, and define 
Δ = diag[δi]. A model of the closed-loop system is shown in Figure 15.33. 
Let D D D Dnp

= × ×1 2   denote the set of admissible parameter uncertain-
ties, Δ  ∈ D. The design goal is to have the baseline + adaptive controls 
provide robust stability and command tracking for real parameter uncer-
tainties contained within this set. The size of D is determined by analyzing 
the robustness properties of the system using the baseline LQR control. We 
would like for the baseline control to provide stability (not necessarily per-
formance) for all Δ ∈ D. The adaptive increment would then be designed 
to augment the baseline control and recover the command tracking perfor-
mance throughout Δ ∈ D, thus providing robust stability and performance. 
The analysis task is to determine the size of D in which the baseline control 
provides stability.

To analyze the effects of uncertainties in the real aerodynamic parameters 
that constitute the model, the ΔM stability analysis model shown in Figure 
15.18 is used. The matrix M describes the nominal stable closed-loop system, 
and Δ ∈ D describes the uncertain real parameters. The uncertainties in the 
aero parameters in Acl are modeled using pi = pi0(1 + δi). Uncertainties in the 
four aerodynamic stability derivatives Zα, Zδ, Mα, and Mδ are considered. 
Thus, δi ∈ Di ⊂ R, i = 1, …, 4, and D = D1 × … × D4. A state space analysis 
model for M(s) is formed by using the method of Morton and McAfoos [11] 
and Morton [12]. The closed-loop system is written isolating the uncertain-
ties as follows:

 A A Ecl i i

i

np

= +
=

∑0

1

δ  (15.158)

x

Kc

P

kx

∆

ˆ

Figure 15.33
Closed-loop system with uncertainties.
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where δ1 is the uncertainty in 
Z
V

α , δ2 is the uncertainty in 
Z
V

δ , δ3 is the uncer-
tainty in Mα, and δ4 is the uncertainty in Mδ.

When using state space models to analyze parameter uncertainties, the rank 
of the matrix Ei is used to describe the perturbation. The four parameters here 
are all rank 1 perturbations. Each multiplicative uncertainty δi represents a 
percentage variation in a parameter. A state space triple (AM, BM, CM) is formed 
for the matrix M by decomposing the matrices Ei using an SVD, Ei = UΣV*. For 
the nonzero singular values in Σ (if rank 1, then there is only one), the columns 
of BM are formed using the singular vector(s) from U, and the rows of CM are 
formed from the singular vector(s) in V. Each matrix Ei is written as

 U I V
b

k
ci

i

i

Σ Σ
1

2
1

2� � ��� ���* . (15.159)

The closed-loop matrix becomes

 A A b ccl i i i

i

np

= +
=

∑0

1

δ . (15.160)
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Next, consider breaking the loop at the uncertainty. The resulting model is
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 (15.161)

The loop can be closed with

 ui = δiyi. (15.162)

This results in
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δ δ xx. (15.163)

The state space triple for M is given by
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M s CM M n M

n

M= = =

















=0 1

1

[ ] ( ) (� � ssI A BM M− −) 1 . (15.164)

First, consider each aerodynamic uncertainty δi individually. In this case, 
M(jω) in Figure 15.18 is a scalar. Figure 15.30 shows the Nyquist plot for the 
loop gain, denoted L L L LZ Z M Mα δ α δ, , , and , respectively. Since each of these is a 
scalar, a simple root locus for each parameter can be computed to demon-
strate system sensitivity to that parameter variation. Figure 15.34 illustrates 
the positive gain root locus plots for each of the four aero coefficients, high-
lighting the gain at which they cause the system to go unstable. Analyzing 
each uncertainty individually shows that the system is not overly sensitive. 
This will not be the case when all four are analyzed simultaneously.

15.6.2 real Margin Analysis

The real margin analysis of Section 15.3.4 is useful in quantifying the con-
troller’s sensitivity to uncertainties in the aerodynamics. Using the model in 
Equation 15.164 that incorporates the baseline LQR control, the real margin 
is computed versus frequency. The minimum of k defines the real margin km.

Figure 15.35 shows a plot of k versus frequency, with the minimum km = 
0.4996 occurring at ω = 8.7041 rad/s. This represents a multiplicative vari-
ation of 50% in each of the four parameters. The admissible parameter 
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uncertainties are a hypercube defined with unit vertices scaled by km = 
0.4996. The convex hull co{det[I + kVM]} formed by the vertices is shown in 
Figure 15.36. It is evident from the figure that the hypercube vertex 14 is on 
the origin and represents the smallest destabilizing aero uncertainties. That 
vertex is defined as

 ∆0 1 1 1 1= − − −kmdiag[ ] . (15.165)
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If we perturb the aerodynamics using Equation 15.165 and substitute the 
uncertainties into the A in Equation 15.127, the resulting eigenvalues become 
λ1 = −11.4183, λ2,3 = −49.1306 ± 60.2178i, and λ4,5 = ±8.7046i, indicating loss of 
stability.

15.6.2.1 Comment

Our robust stability analysis of the LQR state feedback autopilot indicates 
that the excellent plant input stability margins provided by the optimal 
control law do not provide large robustness margins to uncertainties in the 
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aerodynamic parameters. The reason for this can be seen and understood 
from Equation 15.157 and the root locus plots examining each uncertainty 
individually. At the plant input, Equation 15.157 and Figure 15.32 show desir-
able zero dynamics for L and how the root sensitivity evolves to an increase 
in the loop gain. In comparison, Figure 15.34 shows that the zero dynamics 
for a system under the aerodynamic uncertainties is significantly different. 
These zero dynamics are the numerator polynomials for the transfer func-
tions from M(s) = CM(sI − AM)−1BM and are determined by how the aerody-
namic parameters enter into the dynamics. Since the closed-loop matrix AM 
contains the baseline feedback gains, these zero dynamics and the resulting 
real margin are influenced by the robust servomechanism architecture and 
feedback gains. However, there is nothing in our design process that allows 
us to achieve the excellent command-following performance and input sta-
bility margins and then shape these zero dynamics (independently) to make 
the system more robust.

15.7 Robust stability Analysis Using nonlinear simulation

In this section, simulation results will be used to demonstrate the robustness 
to matched and unmatched uncertainties. The stability analysis results from 
the previous section will be used to investigate the benefits that adaptive 
control introduces into the closed-loop system. In Section 15.4.2, the base-
line control was designed to stabilize and track commands using integral 
control. Under no uncertainty this baseline control works very well. Even 
though the baseline LQR control provides infinite positive gain margin at 
the plant input, the robust stability analysis of Section 15.6 showed that a 
relatively small (50%) multiplicative perturbation on the four primary aero 
coefficients could destabilize the baseline control.

The MRAC in Section 15.5 was designed to compensate for matched uncer-
tainties, f(x), that enter into the model as follows:

 � � �x Ax B u f x Fr= + + +( ( )) . (15.166)

These matched uncertainties can be a nonlinear state-dependent function. 
For simulation purposes, assume that the matched uncertainty is a linear 
function of the state and cancels the baseline control, that is, f(x) = Kcx. The 
open-loop system is unstable, so under this matched uncertainty, the adap-
tive control has to provide stabilization and command tracking. Figure 
15.37 shows the nonlinear simulation response to a step 3° AOA command 
varying the adaptive learning rate where Γx = Γθ from Equation 15.153 with 
Q = diag[ ]0 1 1 0 0  in Equation 15.149. We see that as the adaptive 
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learning rate increases, the adaptive response significantly improves and 
cancels the matched uncertainty.

Simulation testing has shown that the adaptive control algorithms are very 
good at cancelling matched uncertainties. This is guaranteed by the MRAC 
theory.

Next, consider no matched uncertainty, f(x) = 0, but introduce nonmatched 
parametric uncertainties Δ0 as analyzed in Section 15.3. These uncertainties 
enter into the model as

 � � �x A x B u f x Fr= +( ) + + +∆0 ( ( ))  (15.167)

which we see are not matched with the control. If we introduce 
∆0 0 5 1 1 1 1= − − −. [ ]diag , we know from Section 15.6.2 that the system 
under baseline control has two poles on the jω-axis. Figure 15.38 shows the 
system response with no matched uncertainty, f(x) = 0, with no adaptive con-
trol and with adaptive control varying the learning rate with Γx = Γθ. Under 
no control, the system is an oscillator. We see that for small learning rates, 
the response is unacceptable. For a very large learning rate (probably larger 
than can actually be used), the system stabilizes with an offset that is slowly 
converging to the command. (The simulation was run for 40 s to determine 
that it was in fact converging to the command, albeit slowly.) This uncer-
tainty model is not adequately compensated by the MRAC augmentation to 
the baseline control. We know that nonmatched uncertainties are not guar-
anteed to be cancelled or compensated by the MRAC theory. The uncertain-
ties must be in the form where

 ∆ = Bf x( )  (15.168)
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where f(x) is some function, possibly nonlinear, modeling the uncertainty. 
The uncertainties that can be compensated must influence the A matrix only 
in the bottom row of the matrix, as shown below:
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This is due to the fact that B is zero except for the last element. For example, 
let A + ∆ be of the form
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 (15.170)

where different parametric uncertainties were added to each column of 
A , but each was parallel to B. Figure 15.39 shows the nonlinear simulation 
results using Γx = Γθ = 200 and larger. We see that the response accurately 
tracks the reference command.
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Our simulation analysis has shown that the MRAC augmentation provides 
robustness to matched uncertainties. The MRAC was able to stabilize the 
nonmatched parametric uncertainties, which is still a benefit, but produced 
a steady-state error in tracking the command. It improves the system’s ability 
to compensate for uncertainties, but these uncertainties must be matched. 
The matching condition that must be satisfied if one is to achieve stability 
and command performance requires that the uncertainties lie within the 
range space of B. There are other methods, like backstepping, that allow 
one  to compensate for nonmatched uncertainties. In addition, L1 adaptive 
control has also demonstrated this property.

Our results have also demonstrated that tuning is required to achieve a 
desired response. The MRAC has the Lyapunov matrix Q, the learning rates 
Γx and Γθ, and the RBFs Φ(x) as tuning knobs. Each of these must be properly 
set to achieve the desired response and will need to be scheduled with flight 
condition.

15.8 summary and Conclusions

This chapter described a missile autopilot design that uses a baseline con-
trol, designed using an LQR and augmented with an adaptive increment 
to extend the system’s robustness to uncertainties. The baseline control 
was shown to possess excellent plant input gain and phase margins but 
did not provide large margins to parametric uncertainties introduced 
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in the system A matrix, as one would desire. The adaptive control was 
found  to  provide  excellent robustness to matched uncertainties, as 
expected.

In the introduction, several questions were posed. We now address these 
questions within the context of missile autopilot design based upon the 
results presented in the paper.

What makes a control system (missile autopilot) design robust? From a 
linear system robust control perspective, at every loop break point in the 
architecture where uncertainties are to be injected, the system needs to be 
positive real. This property will provide the desired gain and phase margins 
to the uncertainties. The author is not aware of any control design method 
that can achieve this. Thus, stability robustness and command tracking per-
formance must be analyzed.

Is it adequate to measure robustness using plant input gain margin and 
phase margin? No. This should not be the only analysis method used to 
assess robustness. As shown here, small parametric uncertainties can desta-
bilize a system that has excellent plant input and output stability margins. 
Practitioners know that they must check margins at both the plant input and 
output (all control and sensor channels). To understand how sensitive the 
design is to parametric uncertainties, or unmodeled dynamics, the appropri-
ate analysis model must be analyzed.

Do classical-type margins provide adequate robustness measures to 
uncertain possibly nonlinear aerodynamics and/or mismodeled/neglected 
high-frequency dynamics? No, small uncertainties can destabilize a sys-
tem that has excellent classical margins. Using a vector margin derived 
from the return difference dynamics does give improved analysis infor-
mation. Simulation analysis must be used when addressing nonlinear 
aerodynamics.

How does the choice of the feedback control law influence the robust-
ness? Results show that the zero dynamics play a key role in the robust-
ness properties. As the architecture is changed, these dynamics will also 
change.

How does one achieve high performance and still be robust using linear, 
model-based design approaches? Using models (A, B) to design the control 
law makes the design dependent upon how accurately the model is known. 
As gains are increased to get faster performance, the model accuracy must 
increase. By augmenting these approaches with adaptive increments, the 
system robustness and performance can be extended.

Can adaptive control theory be used in some way to maintain performance 
and provide robustness? Adaptive control extends the robustness and can 
address a bigger class of uncertainties, as compared with a linear control. 
Clearly, by combining the best from linear system theory and nonlinear and 
adaptive control theory, one can obtain a design that will achieve both per-
formance and robustness.
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transformation from, 567–568
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transformation from, 568–571

missile state estimator, 562–564
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target state estimator, 559–561
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Time models, discrete vs. continuous, 544
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Tracking and guidance application, 
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filter (TVKF)
Twisting controller
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Uncertainties, 589, 621, 645
analysis models for, 632–634
LTM, 627
robustness, 649, 651–652, 656–659
system block diagram with, 621

V
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