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Preface to the Third Edition
The third edition of Ballistics: Theory and Design of Guns and Ammunition is significantly
different from the second edition. The huge number of equations that are present in the
book have made it difficult to eliminate all of the errors and the second edition still con-
tained quite a few errors. We have done the best we could in continuing the process of
making corrections. For that, we are still indebted to the students and readers who have
taken the time and effort to point these out. It continues to be a humbling experience.
Unlike the second edition, very few problems were added. This was a conscious decision

so that we would be able to put in more material. This material came from a variety of
sources. We added a section in Chapter 3 on cubical and spherical grains since this was a
question constantly asked of us. We included a section in Chapter 5 on the design of gas-
operated weapons that was developed by the authors at the request of Brian Vuksanovich
and has helped him in some of his design work. It is very impressive to see that he has taken
this and run with it in his consulting. He is a pleasure to work with and we thank him for
inspiring us.
Some new assistance for us arrived on the scene as well. Dr. Eric Kathe from Benet Lab-

oratories and the United States Army Armament Graduate School assisted us by revamp-
ing the gun dynamics section of Chapter 5 and added a complete chapter on recoilless
weapons, which has become Chapter 6. He is certainly an expert in this area, and we are
indebted to him for his enthusiasm and hard work in putting this new material together.
Nathan Okun, a former Navy civilian, added a chapter on the penetration of steel armors

by ogival projectiles. Included in this new chapter is a great deal of historical background,
which the authors find extremely interesting. This interest is attested to by the large number
of terminal ballistics problems found in both of the previous editions that involved naval
gunfire and penetration. This new chapter delves into the historical metallurgy of naval
armors as well as presents the formulas for penetration of ogival projectiles into these
armors. Additionally, Mr. Okun’s codes are provided on the CRC website for use. We have
decided to hold off on including the equations for face-hardened armor, capped projectiles,
etc., for a future edition. Even though we did not include problems using these formulas
and codes (this time around), the interested reader might explore the differences in results
obtained if the formulas and/or codes are used in some of the problems that are currently in
the book. Mr. Okun’s knowledge on naval armors and projectiles of all nations is ency-
clopedic, and we sincerely appreciate him taking the time to write the chapter. The plots
provided in this new chapter were created by Mr. Mark Sproul by using the codes. There
was significant code work on his part to generate these plots and we are grateful for it.
Many other people assisted us in this edition. This assistance ranged from providing peer

reviewing to consulting to critical commentary on the book. They include (but are not
limited to): LTC (Dr.) Josh Keena (US Military Academy); Dr. Ryan Decker, Dr. Stephen
Recchia, David Geissler, Dr. Gordon Cooke, Dr. Thomas Recchia, Yin Chen, Adam Foltz,
Carlton Adam, Sandy Einstein, Don Chiu, Jonathan Jablonski, Steven Doremus, Jeff Ranu,
Elizabeth Reisman, Ken Klingaman, Pasquale Carlucci, Dr. Robert Dillon, Dr. Sam Sopok,
Dr. Robert Carson, Dr. Brian Fuchs, and Ed Rudnicki (all of the US Army Armament,
Research, Development and Engineering Center); Dr. Jon Yagla, James Poyner, and Dr. Carl
Dyka (all of the US Naval Surface Warfare Center, Dahlgren Division); Don Levin (Aber-
deen Test Center); Dr. TomMason (Los Alamos National Laboratories); Dr. Clive Woodley
xi
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(QinetiQ); Dr. Michael Nusca (US Army Research Laboratory); Dr. Kirk Vanden (Air Force
Research Laboratory); Byron Angel, Chris Carlson, Jack Joyner, and Dr. Kent Crawford (US
Gunnery Fire Control Group); and Joseph Backofen. One of the dangers with listing people
by name is that we will invariably forget someone who played a part. If we did omit
someone—you know how to contact us. Let us know and we will make things right.
We are again indebted to Dr. Jonathan Plant from our publisher, CRC Press, of the

Taylor & Francis Group, for once again encouraging us to undertake the revision and
facilitating its publication. We also thank Hector Mojena III, our project editor, for helping
us through the publication process.
Finally, the authors would like to thank Raymond Sicignano, an outstanding professional

artist, who created the cover art for this edition. Not only did he create the artwork, but he
also actually painted it on wood! This talented man’s work can be seen at his website: http://
www.raizart.com.
Disclaimer

The design, fabrication, and use of guns, ammunition, and explosives are, by their very
nature, dangerous. The techniques, theories, and procedures developed in this book should
not be utilized by anyone without the proper training and certifications. In the checking and
editing of these techniques, theories, and procedures, every effort has been made to identify
potential hazardous steps, and safety precautions have been inserted where appropriate.
However, these techniques, theories, and procedures must be exercised at one’s own risk.
The authors and the publisher, its subsidiaries and distributors, assume no liability and
make no guarantees or warranties, express or implied, for the accuracy of the contents of
this book or the use of information, methods, or products described within. In no event shall
the authors, the publisher, its subsidiaries or distributors be liable for any damages and
expense resulting from the use of information, methods, or products described in this book.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information,
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

http://www.raizart.com
http://www.raizart.com
http://www.raizart.com


Preface to the Second Edition
When we were asked to create a second edition of Ballistics: Theory and Design of Guns and
Ammunition, we were a bit concerned about what could or should be added or changed.
One thing that was certain was that the numerous errors that we became aware of through
teaching and student observations had to be corrected. For that, we are indebted to the
students and readers who have taken the time and effort to point these out. It was certainly
a humbling experience. Hopefully we got them all this time. With the errors corrected, the
task of deciding what we could put in to add more value to the book while maintaining an
introductory treatment rose to the forefront.
A great deal of work went into this edition that might not be apparent on the surface. We

added a large number of new problems and updated the solutions manual accordingly. In
fact, the solutions manual increased in size from 247 pages to 543 pages! One might notice
that the new problems do not have answers in the text. This was intentionally done to allow
instructors to assign these problems as tests or graded homework. We also added some
Mathcad® codes to the CRC website to assist our readers with solution of the problems.
These are available at http://www.crcpress.com/product/isbn/9781466564374.
The more obvious changes include an increase in topical areas. We decided to add a

section to Chapter 9 that would, in a general sense, discuss the topic of probability of first
round hit for direct fire weapons. This treatment is general and certainly does not even
attempt to reflect the state of the art since that data are not appropriate for a general
audience. Another area of major improvement is the additional sections added to Chapter
18, which discuss explosive equations of state. Dr. Ernie Baker, our professional colleague
and recognized expert in the field of explosives effects and insensitive munition design,
added this section. We are extremely grateful to him for this. His schedule was incredibly
busy, yet he found the time to assist us. Finally, there was a significant update to Chapter 21
on wound ballistics. During any course on terminal ballistics, it seems that this topic area is
the one people seem most interested in. Granted, the treatment is still general, and, as is
common in our experience, any statement made about the wounding process will be hotly
debated, we decided to put more flesh on the bones of this section. Hopefully it is of help,
keeping in mind the introductory nature of the treatment.
Michael S. L. Hollis is the creator of the cover art, which depicts a typical kinetic energy

penetrator in the midst of discarding its sabot. The sabot consists of the three “petals,” each
with bow shocks forming ahead of them, peeling away from the subprojectile. The flames
emanating from the rear of the subprojectile represent the tracer that allows the firer to
visualize its trajectory downrange. These projectiles are generally fired at high Mach
numbers and are used in weapons with bore diameters that range from 20–120 mm.
We are indebted to Jonathan Plant of CRC Press, Taylor & Francis Group, for encouraging

(i.e., gently prodding) us to undertake the work of revision and facilitating its publication.
xiii
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Preface to the First Edition
This book is an outgrowth of a graduate course taught by the authors for the Stevens
Institute of Technology at the Picatinny Arsenal in New Jersey. Engineers and scientists at
the arsenal have long felt the need for an armature of the basic physics, chemistry, elec-
tronics, and practice on which to flesh out their design tasks as they go about fulfilling the
needs and requirements of the military services for armaments. The Stevens Institute has
had a close association with the arsenal for several decades, providing graduate programs
and advanced degrees tomany of the engineers and scientists employed there. It is intended
that this book be used as a text for future courses and as a reference work in the day-to-day
business of weapons development.
Ballistics as a human endeavor has a very long history. From the earliest developments of

gunpowder in China more than a millennium ago, there has been an intense need felt by
weapon developers to know how and why a gun works, how to predict its output in terms
of the velocity and range of the projectiles it launched, how best to design these projectiles to
survive the launch, fly to the target and perform the functions of lethality, and the
destructions intended.
The discipline over the centuries has divided itself into three natural regimes: Interior

ballistics or what happens when the propellant is ignited behind the projectile until the
surprisingly short time later when the projectile emerges from the gun; exterior ballistics or
what happens to the projectile after it emerges and flies to the target and how to get it to fly
there reproducibly shot after shot; and terminal ballistics or once it is in the vicinity of the
target, how to extract the performance from the projectile for which the entire process was
intended, usually lethality or destruction.
Ballisticians, those deeply involved in the science of ballistics, tend to specialize in only

one of the regimes. Gun and projectile designers, however, must become proficient in all the
regimes if they are to successfully field weapons that satisfy the military needs and
requirements. The plan of this book is bilateral: first, an unfolding of the theory of each
regime in a graduated ascent of complexity, so that a novice engineer gets an early feeling
for the subject and its nomenclature and is then brought into a deeper understanding of the
material; second, an explanation of the design practice in each regime. Most knowledge of
weapon design has been transmitted by a type of apprenticeship with experienced
designers sharing their learning with newer engineers. It is for these engineers that this
work is intended, with the hope that it will make their jobs easier and their designs superior.
xv
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1
Introductory Concepts

The subject of ballistics has been studied for centuries by people at every level of academic
achievement. Some of the world’s greatest mathematicians and physicists, such as Newton,
Lagrange, and Bernoulli, solved problems in mathematics and mechanics that were either
directly or indirectly applied to the various ballistic disciplines. At the other end of the
academic scale, there are individuals such as James Paris Lee (inventor of the Lee–Enfield
rifle), who developed his first weapon (not the famous Lee–Enfield) at age 12 with no
formal education.
The dominant characteristic of any of the ballistic disciplines is the “push–pull” rela-

tionship of experiment and analysis. It is a rare event, even as of this writing, when an
individual can design a ballistic component or device, either digitally or on paper, and have
it function “as designed” in the field. Some form of testing and consequent tweaking of the
design are always required. This inseparable linkage between design and test is due to three
things: the stochastic nature of ballistic events, the infinite number of conditions into which
a gun–projectile–charge combination can be introduced, and the lack of understanding of
the phenomena.
The stochastic behavior that dominates all the ballistic disciplines stems from the tre-

mendous number of parameters that affect muzzle velocity, initial yaw, flight behavior,
etc. These parameters can be as basic as how or when the propellant was produced to what
was the actual diameter of the projectile measured to 0.0001 in. Even though, individually,
we believe that we understand the effect of each parameter, when all parameters are
brought together, the problem becomes intractable. Because of this parameter overload
condition, the behavior is assumed to be stochastic.
The number of battlefield and test conditions that a gun–projectile–charge combination

can be subjected to is truly infinite. For safety and performance estimates, the US Army is
often criticized for demanding test conditions, which could not possibly occur. While this
may be true, it is simply a means of overtesting a design to assure that the weapon system
is safe and reliable when the time comes to use it. This philosophy stems from the fact that
you cannot test every condition and because soldiers are an ingenious bunch and will
invent new ways to employ a system beyond its design envelope.
The lack of understanding of the phenomena may seem rather strong wording even

though there are instances where this is literally true. In most cases, we know that
parameters are present that affect the design. We also know how they should affect the
design. Some of these parameters cannot be tested because there is some other, more
fundamental variable that affects the test setup to a far greater degree.
The overall effect of ballistic uncertainty, as described earlier, is that it will be very

unusual for you to see the words always or never when describing ballistic phenomena in
this work.
3



4 Ballistics
1.1 Ballistic Disciplines

The field of ballistics can be broadly classified into three major disciplines: interior ballistics,
exterior ballistics, and terminal ballistics. In some instances, a fourth category named
intermediate ballistics has been used.
Interior ballistics deals with the interaction of the gun, projectile, and propelling charge

before the emergence of the projectile from the muzzle of the gun. This category would
include the ignition process of the propellant, the burning of propellant in the chamber,
pressurization of the chamber, first-motion event of the projectile, engraving of any rotating
band and obturation of the chamber, in-bore dynamics of the projectile, and tube dynamics
during the firing cycle.
Intermediate ballistics is sometimes lumped together with interior ballistics, but has come

into its own category of late. Intermediate ballistics deals with the initial motion of the
projectile as it is exiting the muzzle of the tube. This generally includes initial tip-off, tube
and projectile jump, muzzle device effects (such as flash suppression and muzzle brake
venting), and sabot discard.
Exterior ballistics encompasses the period from when the projectile has left the muzzle

until impact with the target. One can see the overlap here with intermediate ballistics. In
general, all that the exterior ballistician is required to know is the muzzle velocity and tip-off
and spin rates from the interior ballistician and the physical properties (shape and mass
distribution) from the projectile designer. In exterior ballistics, one is generally concerned
with projectile dynamics and stability, the predicted flight path and time of flight, and
angle, velocity and location of impact. More often, now than in previous years, the exterior
ballistician (usually called an aeroballistician) is also responsible for designing or analyzing
guidance algorithms carried onboard the projectiles.
Terminal ballistics covers all aspects of events that occur when the projectile reaches the

target. This means penetration mechanics, behind armor effects, fragment spray patterns
and associated lethality, blast overpressure, nonlethal effects, and effects on living tissue.
This last topic is becoming more and more important because of the great interest in less-
than-lethal armaments, and indeed, it has been categorized into its own discipline known
as wound ballistics.

1.2 Terminology

Throughout this work, we will be using the word gun in its generic sense. A gun can be
loosely defined as a one-stroke internal combustion engine. In this case, the projectile is the
piston, and the propellant is the air–fuel mixture. Guns themselves can be classified in four
broad categories: a “true” gun, a howitzer, a mortar, and a recoilless rifle.
A true gun is a direct-fire weapon that predominantly fires a projectile along a relatively

flat trajectory. Later on, we will decide what is truly flat and what is not. Notice the word
predominantly crept in here. A gun, say, on a battleship, can fire at a high trajectory some-
times. It is just usually used in the direct-fire mode. A gun can be further classified as rifled
or smooth bore, depending upon its primary ammunition. Guns exhibit a relatively high
muzzle velocity commensurate with their direct-fire mission. Examples of guns include
tank cannon, machine guns, and rifles.
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A howitzer is an indirect-fire weapon that predominantly fires projectiles along a curved
trajectory in an attempt to obtain improved lethal effects at well-emplaced targets. Again,
howitzers can and have been used in a direct-fire role; it is simply not one at which they
normally excel.
A mortar is a tube that is usually man portable used to fire at extremely high trajectories

to provide direct and indirect support to the infantry. Mortars generally have much shorter
ranges than howitzers and cannot fire a flat trajectory at all.
A recoilless rifle is a gun designed with very little weight. They are usually mounted on

light vehicles or man emplaced. They are used where there is insufficient mass to counteract
the recoil forces of a projectile firing. This is accomplished by venting the high-pressure gas
out of a rear nozzle in the breech of the weapon in such away as to counter the normal recoil
force.
A large listing of terminology unique to the field of ballistics is included in the glossary in

Appendix A.

1.3 Units and Symbols

The equations included in the book may be used with any system of units. That being said,
one must be careful of the units chosen. The literature that encompasses the ballistic field
uses every possible system and is very confusing for the initiate engineer. The US practice of
mixing the International System of Units, US Customary System, and centimeter–gram–

second units is extremely challenging for even the most seasoned veteran of these calcu-
lations. Because of this, an emphasis has been placed on the units in the worked-out
examples and cautions are liberally placed in the book.
Intensive and extensive properties (where applicable) are denoted by lowercase and

uppercase symbols, respectively. In some instances, it is required to use the intensive
properties on a molar basis. These will be denoted by an overscore tilde. In all cases, the
reader is advised to always be sure of the units.
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2
Physical Foundation of Interior Ballistics

2.1 Ideal Gas Law

The fundamental means of exchanging the stored chemical energy of a propellant into the
kinetic energy of the projectile is through the generation of gas and the accompanying
pressure rise. We shall proceed in a disciplined approach, whereby we introduce concepts
at their simplest level and then add the complications associated with the real world.
Every material exists in some physical state of either solid, liquid, or gas. There are several

variables that we can directly measure and some that we cannot but that are related to one
another through some functional relationship. This functional relationship varies from
substance to substance and is known as an equation of state.
Thermodynamically, the number of independent properties required to define the state of

a substance is given by the so-called state postulate, which is described by Wark [1]. For all
the substances examined in this chapter, we shall assume that they behave in a simple
manner. This essentially means that the equilibrium state of all our substances can be
defined by the specification of two independent, intrinsic properties. In this sense, an
intrinsic property is a property that is characteristic of (in other words, governed by)
molecular behavior.
The ideal gas law is essentially a combination of three relationships [2]. Charles’s law

states that the volume of a gas is directly proportional to its temperature. Avogadro’s
principle states that the volume of a gas is directly proportional to the number of moles of
gas present. Boyle’s law states that volume is inversely proportional to pressure. If we
combine these three relationships, we arrive at the famous ideal gas law, which states in
extensive form

p~v = NℜT (2.1)

where p is the pressure of the gas; ~v is the molar specific volume;N is the number of moles of
the gas; ℜ is the universal gas constant; and T is the absolute temperature.
The units of Equation 2.1 are not always convenient to work with. For this reason, the

form of the ideal gas law that we shall use most often in this text is

pv = RT (2.2)

In this case, p is the pressure of the gas; v is the specific volume (in mass units as we are
used to); R is the specific gas constant, unique to each gas; and T is again the absolute
temperature
7
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The specific gas constant can be determined from the universal gas constant by dividing
the latter by the molar mass:

R =
ℜ
M

(2.3)

where M is the molar mass of the gas (e.g., 15.994 lbm/lb mol for oxygen). There are many
other variants of the ideal gas law, which differ only in units. The other two versions that we
occasionally utilize are

pV = mgRT (2.4)

and

p = rRT (2.5)

In these equations, V (nonitalicized) is the volume the gas occupies; mg is the mass of the
gas; and r is the gas density.
One should always check the units when using these equations.
The pressure in a vessel filled with gas is caused by innumerable collisions of the gas

molecules on the walls of the vessel [2]. The more tightly packed the molecules are, the more
collisions occur—the higher the pressure is. Similarly, temperature excites the gas molecules
so that they move faster, collide more—thus also increasing pressure. It is these collisions,
among other things, that must be handled somehow by our equation of state.
The ideal gas law relies upon the fact that the gas molecules are very far apart relative to

one another [3]. If the molecules linger in the neighborhood of one another, they will be
influenced by strong intermolecular forces, which can either attract or repel them from
one another. Thus, the ideal gas law ignores this effect. The ideal gas law further assumes
that intermolecular collisions occur completely elastically (i.e., like billiard balls). These
assumptions must be kept in mind when using the ideal gas law. We shall soon see that
under the pressures and temperatures in a gun, these assumptions are invalid. Neverthe-
less, they provide us with a point of departure and a useful stepping-stone for our studies.
To use the ideal gas law to determine the state of the gas in a gun, we need to invoke
ic relationships. The second law of thermodynam

Q = DU +W + losses

y added to the system; DU is the change in intern
system; and the losses term contains all the ene
Our sign convention shall be that aQwill be positive when energy is added to the system,
DUwill be positive if the internal energy of the system is increased, andWwill be positive if
work is done on the system. Losses always remove energy from the system.
If we tailor Equation 2.6 to a gun launch situation, thenQwould be the energy released by

burning our propellant; DUwould be the change in internal energy of the propellant; andW
would be the work done on the projectile.
classic thermodynam ics can be stated as
follows:

(2.6)

where Q is the energ al energy; W is the
work done on the rgy that cannot be
recovered if, say, we pushed the projectile back to its starting position in the gun tube.

Let us further define the work term in the classical sense. It is typical of a first-year
engineering curriculum to define the work as follows:ð
W = F � dx (2.7)
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In Equation 2.7, work is defined as a scalar that results from the vector dot product of

nce over which the force acts, also a vector, dx (not
d type in this book). If we restrict our analysis to a
re acting on the base of a projectile, it only has on
s of the gun tube. If we imagine that this gun tube
align a coordinate system with the axis of the tube
be aligned with force vector F (i.e., the angle betwe
of the angle between them is unity), and our relatio
formally, the scalar product of these two vectors, gives us

F � dx = Fj j � dxj j � cos 0ð Þ = Fdx (2.8)

Our work definition for this case is then

W =
ð
Fdx (2.9)

This relationship for work has to be somewhat refined to fulfill our needs. We will need to
put the force acting on the projectile in terms of the pressure and would sometimes like the
volume to be included in the equation. If we look at the ideal gas equation of state in the
form of Equation 2.4, we do not see a force in there, but we do see a pressure term and a
volume term.
We know from the mechanics of materials [4] that

F = pA (2.10)

This has not been written in vector form so as to keep things simple (we will write it
differently later). Equation 2.10 states that the resultant force F on a body is equal to the
average pressure p on that body times the area A over which the pressure acts. So we can
rewrite Equation 2.9 using this result as

W =
ð
pAdx (2.11)

We now need to get volume in there somehow. We shall use the fact that except for the
chamber of a gun (and a few notable exceptions with the bore), the area over which the
pressure acts is constant and equal to the bore cross-sectional area that we have defined asA
earlier. The area of the rifling grooves does contribute here if the tube is rifled, but let us
assume a nice smooth cylindrical bore for now. If A is the cross-sectional area and dx is a
differential element of length, then the differential element of volume, dV, can be defined as

dV = Adx (2.12)

We can now write Equation 2.11 in terms of pressure and volume as

W =
ð
pdV (2.13)

You may recall this form of the definition of work from thermodynamics [5].
We now have two equations and a definition at our disposal as a pedagogical device that
force Fwith the dista e that all vectors are
characterized by bol gun system, we can
see that given pressu e direction to travel
due to the constraint is perfectly straight
(it never is) and we , then the displace-
ment vector dxmust en F and dx is zero;
therefore, the cosine n for a dot, or more

can help illustrate the energy exchange mechanism in a gun. The equations are an ideal gas
equation of state, Equation 2.4; and the second law of thermodynamics, Equation 2.6; and
the definition of how we defined work in Equation 2.13.
agine that we have a simple gun as depicted in Figure 2.1.
Let us im
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We shall assume that we have somehow placed a mass mg of a gas that behaves
according to the ideal gas equation of state in the tube and compressed it, adiabatically,
using the projectile, and no leakage has occurred. We shall further assume that there is no
friction between the projectile and the tubewall. Thus, in the situation depicted by Figure 2.1,
we have an ideal gas trapped between the projectile and the breech, compressed to some
pressure p at some absolute temperature T. We shall further assume that the projectile of
massmp is somehow held at position x = 0 and no gas or energy can escape. In this situation,
the volume the gas occupies, which we shall call the chamber volume Vc is given by

Vc =
πd2

4
l (2.14)

What we have essentially done is compressed the projectile against an imaginary spring
(the gas), which now has a potential energy associated with it. From a thermodynamic
standpoint, we can reduce Equation 2.6 to

0 = DU +W (2.15)

Recapping, we note that Q = 0 because there was no heat lost through the tube wall

l

d

L
x

 mg

mp

FIGURE 2.1
Simple gun system.
The losses were zero because we have no friction.
Now that everything is set, we need to release our projectile and see what happens. If we

substitute Equation 2.4 into Equation 2.13, we can write

W =
ð
mgRT

dV
V

(2.16)

This equation now shows how much work is being done on the projectile as a
function of the volume. It is noteworthy here that we are assuming that the gas that is
actually pushing on the projectile is massless. By this, we mean that no energy is being
applied to accelerate the mass of the gas. We will remove this assumption later in our
variable.
By our earlier assumptions, we stated that the process was frictionless and adiabatic.

Recall, again from thermodynamics, that this actually defines an isentropic process [1].
For a closed system (one with constant mass), it can be shown [6] that the absolute tem-
perature T of our system is related to the initial temperature of the gas Ti through

⎛ ⎞
−( )V γ 1
(adiabatic compression), and there is no propellant per se that will burn to generate heat.

studies. What we do not like about Equation 2.16 is that temperature still appears as a

T Ti=
⎝
⎜

⎠
⎟

V
c (2.17)
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ere V is the volume at a given time t;Vc is the initial chamber volume; and g is the specifi
at ratio of the gas (defined later).
f we substitute Equation 2.17 into Equation 2.16, we can write

V

wh c
he
I

W = mgRTiV
g −1ð Þ
c

ð
Vc

V−g dV (2.18)

This equation is easy to work with because we know most of the terms on the right-hand
side (RHS) when we set up our pedagogical gun. We know the mass mg of the gas. We
know R and g because we picked which gas it was. We know the initial temperature of the
gas and we know the chamber volume.
Now that we did all this work with volumes, we want to convert these back to distances.

A typical output desired by ballisticians is the pressure vs. travel (i.e., distance) curve. This
plot helps the gun designer determine where to make his/her tube thick and where he/she
can get away with thinning the wall. If we again recognize that our gun has a constant inner
diameter, we can use Equation 2.14 to write Equation 2.18 as

ðL

W = mgRTil

g −1ð Þ

0

l + xð Þ−gdx (2.19)

If we perform this integration, we obtain

W =
mgRTil

g −1ð Þ

1 − gð Þ l + Lð Þ 1−gð Þ − l 1−gð Þ
h i

(2.20)

We need to recall from dynamics that the kinetic energy of the projectile can be written as

1 2
KEprojectile = 2
mpVm (2.21)

where Vm is the muzzle velocity. If we assume that all the energy of the gas is converted
with no losses into kinetic energy of the projectile, then we can use Equation 2.15 to state
that

KEprojectile ¼ W (2.22)

We can make use of Equations 2.20 and 2.21 to write this as

1
2
mpV

2
m =

mgRTil
g −1ð Þ

1 − gð Þ l + Lð Þ 1−gð Þ − l 1−gð Þ
h i

(2.23)

This is an important result as it relates muzzle velocity to the properties, amount of the
gas used, and the mass of the projectile and includes the effect of tube length. We can use
this equation to estimate muzzle velocity. So a convenient form of this equation is

Vm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
mg

mp

RTil g −1ð Þ

1 − gð Þ l + Lð Þ 1−gð Þ − l 1−gð Þ
h is

(2.24)

In some instances, we would like to use these relationships to determine the state of the

gas or velocity of the projectile at some point in the tube other than the muzzle. If this is the
case, the procedure would be as follows:
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1. Solve for the work term up to the position of interest xproj using

W xproj
� �

= mgRTil
g −1ð Þ

ðxproj
0

l + xð Þ−gdx (2.25)

2. Determine the volume at the position of interest by using
� � 2 � �
4. Determine pressure from the ideal gas Equation 2.4.

This procedure is relatively straightforward.
If, as an example, we look at an idealized 155 mm compressed air gun and assume the

following parameters:

• Projectile weight = 100 lbm

• Initial pressure = 45 MPa (approximately 6500 psi)

• Tube length = 6 m

From Figures 2.2 through 2.4, we can depict the results of a calculation for temperature,
pressure, and velocity vs. distance for this idealized situation.

Problem 1
Assume that we have a quantity of 10 g of 11.1% nitrated nitrocellulose (C6H8N2O9), and it is
heated to a temperature of 1000 K assuming it changes from solid to gas somehow without
changing chemical composition. If the process takes place in an expulsion cupwith a volume of
10 in.3, assuming ideal gas behavior, whatwill the final pressure be in pounds per square inch?

Answer: p = 292
lbf
in:2
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FIGURE 2.2
Temperature vs. distance in an ideal gas gun.
V xproj =
πd
4

l + xproj (2.26)

3. Determine the gas temperature at this position from Equation 2.17.
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Pressure vs. distance in an ideal gas gun.
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2.2 Other Gas Laws

There are many times when ideal gas behavior is insufficient to model real gases. This is
certainly true under the pressures and temperatures of gun launch. Although there are
many models that attempt to account for the deviation of real gases from ideal or perfect
behavior [2,3], we shall examine only two, the simplest of which we shall use.
Ideal gas behavior is approached when the distance between molecules (known as the

mean free path) is large. Thus, molecules do not collide or interact with one another very

Distance (m)

FIGURE 2.4
Velocity vs. distance in an ideal gas gun.
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often. Temperature is a measure of the internal energy of the gas. Thus, when the tem-
perature is high, the molecules are moving around faster and have more of an opportunity
to interact with one another. Pressure is a result of how closely the molecules are packed
together; thus, a higher pressure tends to put the molecules in close proximity. It is for these
reasons that we cannot normally use the ideal gas law in gun launch applications.
The Noble–Abel equation of state is given by

p V −mgb
� �

= mgRT (2.27)

where p is the pressure of the gas; V is the volume the gas occupies; mg is the mass of the
gas; R is the specific gas constant; T is the absolute temperature; and b is the covolume of
the gas.
The covolume of the gas has been described as a parameter that takes into account the

physical size of the molecules and any intermolecular forces created by their proximity to
one another. Think of it as not having physical meaning but as simply a number that
allows for a better fit to observed experimental data. The units of the covolume are cubic
length per mass unit. Usually, the gas covolume is provided in the literature, but an
estimation tool has been provided by Corner [7], which will not be repeated here since
actual data exist.
Occasionally, the Noble–Abel equation of state is insufficient to suit our needs. At these

times, it is typical to use a van der Waals equation of state given by

p =
~RT

~v − b0
−
a0

~v2
(2.28)

In this case, p is again the pressure of the gas; ~v is the molar specific volume; ~R is the molar
specific gas constant, unique to each gas; T is again the absolute temperature; and a′ and b′
are constants particular to the gas.
The Noble–Abel equation of state is the basis for nearly all our work in this chapter;

therefore, Equation 2.27 is very important. At times, we may write it a little differently, but
you will always be reminded of where it originated.

Problem 2
Perform the same calculation as in Problem 1, but use the Noble–Abel equation of state and
assume the covolume to be 32.0 in.3/lbm.

lbf
#"
in:

Problem 3
A hypothetical “air mortar” is to be made out of a tennis ball can using a tennis ball as the
projectile. The can has a 2–1/2 in. inside diameter and is 8 in. long. If a tennis ball of the
same diameter weighs 2 oz and initially rests against the rear of the can, to what air
pressure must one pressurize the can in order to achieve a 30 ft/s launch of the tennis ball?
Assume that the tennis ball can be held against this pressure until released and that it
perfectly obturates and assume an isentropic process and ideal gas behavior with g = 1.4
for air.
Answer: p = 314:2 2
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A gun chamber has very little room for oxygen once it is stuffed with propellant. It is
important to note that for other reasons, there is always free volume in the chamber (called
ullage)—we will explain this later. For now, we should understand that although there is
someoxygen in the chamber, the amount is insufficient to completely combust thepropellant.
It is for this reason that propellants are formulated to contain both the fuel and the oxidizer.
In general, the propellant burning is an underoxidized reaction. This has some implications
as the propellant gases leave the muzzle—again, we shall discuss this in more detail later.
This brief introduction should make clear the reason to examine thermochemistry,

thermophysics, and combustion phenomena. To proceed, we shall first define each field of
study. The definitions by Cooper [8] shall be used here to describe the first two topics as
they are extremely straightforward and clear. Thermophysics is defined as the quantifica-
tion of changes in the energy state of a substance caused by changes in the physical state of
the material. An example of this would be the determination of the amount of energy
required to vaporize water in your teapot. Thermochemistry is then the quantification of
2.3 Thermophysics and Thermochemistry

Themain energy exchange process of conventional interior ballistics is through combustion.
Once ignited, the chemical energy of the propellant is released through an oxidation
reaction. This energy release will be in the form of heat, which, in turn, increases the
pressure in the volume behind the projectile (i.e., in a combustion chamber). The pressure
exerts a force on the projectile, which accelerates it to the desired velocity.
In general, combustion requires three main ingredients to commence: a fuel, an oxygen

source, and heat. In a common combustion reaction, such as an internal combustion engine
like the one in your car, oxygen is supplied to the reaction independently of the fuel. The
heat in this case is generated by a spark ignition and the burning of the air–fuel combination
sociate (break up) water molecules into hydrogen and oxygen. Combustion is defined by
Wark [1] as the quantification of the energy associated with oxidizer–fuel reactions. Thus,
combustion is a natural outgrowth of thermophysics and thermochemistry.
Now that we have categorized these three fields of study, we shall attack them in a

somewhat jumbled order. The reason for this is that from our perspective, we really need
not distinguish between any of them, and all them appear in our gun launch physics. It is
also important to realize that whether the energy change comes from a chemical reaction or
a phase change from solid to gas, as long as we can calculate the extent of the energy
change, we can perform a valuable analysis.
Energy to all intents and purposes consists of two types: potential and kinetic. Potential

energy can be considered as stored energy. There are many ways to store energy. We can
store energy by compressing a steel bar or spring, by lifting a mass to a higher elevation in
the gravitational field of the earth and by chemically preparing a compound that, whether
by combustion or chemical reaction, will release energy. Each of these forms of potential
energy, elastic strain, gravitational potential, and chemical potential energy, has a different
method of storing and releasing the energy, but they are all potential energies. There are
other forms of potential energy, but we need not deal with them in this context.
that ensues.
changes in a the energy state of a substance caused by changes in the chemical composition
of the molecules of the material. An example of this would be the energy required to dis-
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Kinetic energy is the energy of a mass in motion. It can be observed in objects that are in
translational motion or in rotational motion. To extract some or all this energy, it is nec-
essary to slow or stop the moving mass that has the kinetic energy. The energy in a spinning
flywheel is an example of rotational kinetic energy.
The field of thermodynamics is the study of energy transformations. It quantifies the

balance of energy between kinetic and potential. In thermodynamics, it is common to see
two energy transformation mechanisms: heat and work.
Heat transfer is essentially an exchange of energy through molecular motion. As we shall

soon see thatmolecules of a substance are always inmotion. The faster they are inmotion, the
hotter the substance is. These molecules can influence other molecules when they are placed
in contact with them, thus giving up some of their energy and increasing the energy of the
contacted substance. Temperature is a sensible measure of the internal energy of an object.
Work is a means of increasing the energy an object by the application of a force through a

distance. This method of energy transfer can create either potential energy, as in com-
pressing a spring, or kinetic energy as applied to a free, rigid mass. While the equations for
heat transfer can be the subject of entire texts (e.g., the book by Sucec [9]), work can be
defined through the vector equation

W = F � dx (2.29)

where W is the work done on or by the system; F is the force vector; and dx is the vector
distance through which the force acts, known as the displacement vector.
We must note that this is a vector equation. The work term is a scalar because the dot

product of two vectors results in a scalar. Because of the dot product term, the sign of W is
dependent upon the cosine of the angle between F and dx. Recall the definition of a dot
product as

A � B = ABcosq (2.30)

where A and B are the scalar magnitudes of the vectors A and B (Figure 2.5). If we use
Equation 2.30 with the variables of Equation 2.29, this tells us that if the angle between the
force vector and the displacement vector is between 0° and 90° or 270° and 0°, the work is
positive, i.e., it is work performed on the system. If, however the angle is between 90° and
270°, the work is negative and therefore work is performed by the system.
The internal energy U of a substance can be considered a form of potential energy. Some
This can clearly be done in general, but for the application of gun launch, it seems proper to
group it as a potential energy. The internal energy of a substance is manifested in the
molecular motions within that substance. These motions are generally translational or

A

B

θ

FIGURE 2.5
Depiction of two vectors for scalar product definition.
authors [5] categorize the internal energy separately from potential and kinetic energies.
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vibrational in nature. The molecules of a substance are attracted to and repelled by one
another and are in some degree of translational motion. Additionally, the attractive or
repulsive forces within a molecule itself allow us to use an analogy of springs holding the
atoms together. Imagine a structure of a water molecule, for instance, as depicted in Figure
2.6. If the oxygen and hydrogen atoms are assumed to be steel balls, and the molecular,
bond springs, we could pick this molecule up, hold the oxygen atom, and shake it. If the
springs were really stiff in bending and much less so in tension or compression, we would
see the hydrogen atoms oscillating in and out at some frequency. The greater the frequency,
the more energy we would need to put into the system. Even though the springs are stiff in
bending, it does not mean that they cannot bend. This just takes more energy. Like springs,
we can store energy in the molecules this way.
This simple model of a molecule is a crude but useful approximation. Imagine now that

we put our model on a frictionless surface, such as an ice hockey rink. If we hit the molecule
in a random way, we will excite these vibrational modes as well as create translational and
rotational motion. Now, if we fill the ice hockey rink with models, well, you get the idea. As
stated previously, the level of this interaction (collisions) must be represented somehow.
The metric used is internal energy with the level of activity defined as zero at the tem-
perature known as absolute zero (0° in the Kelvin or Rankine scales).
The internal energy also includes the energy required tomaintain a particular phase of the

material such as solid, liquid, or gas. Additionally, certain phases associated with molecular
structure, such as face-centered cubic (FCC) and body-centered cubic (BCC), are accounted
for in the internal energy.
Quite often we shall see internal energy and what is commonly known as “pdV” work

terms together in our energy balance equations. The term is called pdV work because it is
special and separate from work generated by, say, a paddle wheel moving fluid around.
This work term arises from pressure pushing on a given volume. If the volume changes by
an infinitesimal amount dV we essentially have force acting through a distance. To prove
this to yourself, look at the units. Because we see these terms together so often, it is con-
venient for us to group them into one term, which we will call enthalpy H. Mathematically,
the enthalpy is defined as

H = U + pV: (2.31)

Notice here that we have removed the differential from the work term. The reason for this
is that considering both enthalpy and internal energy, we are concerned with changes in

Oxygen
atom

Hydrogen
atoms

FIGURE 2.6
Model of a water molecule.
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H andU. Therefore, the differential appears whenwewrite the entire equation in differential
form as

dH = dU + pdV: (2.32)

For proof of this result, refer to any thermodynamics text (e.g., the books by Wark [1] and
Van Wylen and Sonntag [5]). An example of the difference between internal energy and
enthalpy is the rigid container or piston container. Consider a rigid container that has some
amount of gas in it. Assume the container is sealed so that matter cannot enter or leave. Let
us also assume that the container will allow energy to be transferred to and from the gas. If
we transfer heat (energy) to the gas, the temperature will rise as will the pressure. Since the
volume of the container is fixed, no work can be done; thus, all the energy added to the gas
is internal energy. From Equation 2.32, we see that in this case, the change in enthalpy
would be exactly equal to the change of internal energy.
Now we assume that instead of our container being rigid, the roof of the container is a

sealed yet moveable piston. In this case, once again, matter cannot escape; however, the
volume is able to change. Now the only thing holding up the roof is the pressure of the gas
acting to just counteract the weight of the roof itself. Let us add the same amount of heat
that we added to the original, rigid container. In this case, the temperature of the gas will
increase (but less than before) and the volume will increase because the piston is moveable,
and the pressure must remain constant and just sufficient to counteract the weight of the
roof. In this instance, the enthalpy would be greater than the internal energy because it
includes the work done in lifting the piston.
When a substance changes form, chemically or physically, energy is either absorbed or

released. The method that we use to quantify this energy change is through heats of for-
mation and the like. Although called a “heat,”what is really implied is an enthalpy change.
We shall proceed through these different enthalpy changes, attempting to list some of the
more common ones. For greater detail, the reader is encouraged to consult thermodynamics
texts in addition to the descriptions provided by Cooper [8]. Specific values for text prob-
lems will be given as needed. It is not the intent of the authors to tabulate the different
energy parameters of different materials.
When a substance is formed, atomic bonds in the constituent molecules are destroyed and

then recreated (at least, this is a clean way to think of it from a bookkeeping perspective).
The energy absorbed or generated by this process is commonly called the heat of reaction
DH0

r : The D reminds us that we are always concerned with changes in enthalpy from a
particular reference state (usually standardized as 25°C and 1 atm). The superscript 0 is a
convenient reminder that this is from a reference state of 1 atm. As the subscript, sometimes
we see “298”meaning 298 K. Although 298 K and 25°C are the same value, onemust always
be wary of the reference state chosen by a particular author.
The heat of formation DH0

f is the energy required to form a particular substance from its
individual component atoms. The heats of formation are the building blocks that determine
the heat of reaction. Any elemental substance in its stable configuration at standard con-
ditions has a heat of formation equal to zero at that state. For instance, diatomic nitrogen N2

has DH0
f = 0 at 25°C and 1 atm. We will provide an example of the heat of formation cal-

culation in a later section.
Now that with the aforementioned quantities defined, we can write an equation for the

heat of reaction

DH0
r =
X

products

DH0
f −
X

reactants

DH0
f (2.33)
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Equation 2.33 states that the heat of reaction for a given substance is equal to the sum of
the heats of formation of the final products of the reaction that created the substance
minus the sum of the heats of formation of the materials that had to be reacted together to
create the new substance. This is further reinforcement of the definition of the heat of
reaction. Recall that we stated that the atomic bonds of the molecules were destroyed and
then remade. This is essentially what Equation 2.33 is saying. The energy it took to create
each of the reactants has to be accounted for, and then the energy it takes to create the new
substances from the constituents is calculated—energy is conserved. If the heat of reaction is
a negative number, heat is liberated by the reaction; otherwise, it is absorbed.
When a compound is specifically combusted with sufficient oxygen to attain its most

oxidized state, the heat of reaction has a special name: the heat of combustion. The heat
of combustion is identified by the symbol DH0

c . The heat of combustion is typically
what is obtained when the propellant is burned in a closed bomb. The equation for the
heat of combustion mirrors that of the heat of reaction, the only difference being as
noted earlier:

DH0
c =

X
fully oxidized

products

DH0
f −
X

reactants

DH0
f (2.34)

The heats of detonation and explosion have meanings that seem to be reversed. The heat
of detonation is the heat of reaction taken when detonation products are formed from an
explosive compound during a detonation event. The formula for the heat of detonation is
given by

DH0
d =

X
detonation
products

DH0
f −
X
original
explosive

DH0
f (2.35)

What is termed the heat of explosion is the amount of energy released when a propellant
or explosive is burned (not detonated) and is given by

DH0
exp =

X
burning
products

DH0
f −

X
original

propellants

DH0
f (2.36)

The heat of afterburn is another type of heat of reaction that occurs often in propellants
and explosives. Because the composition of propellants and explosives usually force an
underoxidized reaction, the reaction products will often combine with the oxygen present
in the air outside the gun or explosive device, given sufficient temperature and pressure.
This secondary reaction results in a second pressure wave or blast and a fireball. The heat of
afterburn can be mathematically described as

DH0
AB =

X
fully oxidized

products

DH0
c −

X
remaining
detonation
products

DH0
d (2.37)

Not all energy changes involve chemical reactions. We mentioned earlier that changes in
physical state and structure require energy. When a solid melts to form a liquid or a liquid
solidifies, we call the energy required, the latent heat of fusion lf. These values are tabulated
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in any chemistry book or thermodynamics text. Some authors use different symbols so one
must, as always, be careful.
In a similar vein, the energy required to vaporize a liquid to a gas or condense a gas to a

liquid is known as the latent heat of vaporization and given by the symbol lfg.
If a material changes the structure of its atoms, say, from BCC to FCC, the energy is

known as the heat of transition lt.
There are many other types of material transitions that require energy. The types

described earlier cover the needs of this work.
2.4 Thermodynamics

The combustion process that occurs in a gun is a thermodynamic process. The term ther-
modynamics is a bit misleading because it implies that the dynamics of the combustion
process is examined. This is not quite true. Classical thermodynamics is based on the
examination of the various processes through equilibrium states. This is somewhat akin to
frames of a motion picture. We examine the state of the system before some event, and we

usually examine it at some point, later in time, we are interested in.
Some of the concepts of thermodynamics were introduced in earlier sections, work and

energy being the major ones. Here we shall look in detail at two ways of describing ther-
modynamic systems to proceed with our study.
We shall define energy for an arbitrary system as

E = U +
1
2
mV2 +mgz (2.38)

Equation 2.38 is our extensive form of the definition of the system energy E. In this
equation, U is the internal energy, m is the system mass, V is the system velocity, g is a
gravitational constant, and z is some height above a reference datum. The second and third
terms on the RHS of the equation are the kinetic and potential energies, respectively. If we
examine this equation, it is easy to see why some authors group the internal energy as a
separate energy type. However, in the case of a gun launch, the potential energy term is
insignificant. This focuses us on the transfer of energy between internal and kinetic.
We sometimes write Equation 2.38 in its intensive form as

e = u +
1
2
V2 + gz (2.39)

Recall from our earlier discussions that an intensive property is the associated extensive

property divided by mass.
We shall now examine the first law of thermodynamics as it is applied to two different

types of systems: a fixed mass of material and a fixed volume of space through which
material flows. The first type of analysis, where the material is a fixed mass, is known as a
Lagrangian approach, while the fixed or control volume (CV) approach is known as
Eulerian. Both are important from a ballistic analysis standpoint and are prevalent in
interior, exterior, and terminal ballistic studies.
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For a fixed mass of material, undergoing some thermodynamic process, the first law of
thermodynamics can be written as

Q1−2 +W1−2 = DE1−2 (2.40)

where Q is the heat or energy added to the system; W is the work performed on or by the
system; and DE is the change in the energy state of the material.
The subscript 1–2 simply lets us know that the process began at some state 1 and ends at

some state 2. The signs on the terms are very important. We assume a positive change in
energy comes about by adding heat to the system and doing work on the system. Thus,
work performed on the system is positive and heat added is positive. Different thermo-
dynamics texts write the first law slightly differently, but if you understand that the net
result of work on the system or heat transfer to the system is to increase its energy, then few
mistakes will be made.
An interesting observation of Equation 2.40 is that the energy state change has an infinite

number of paths that lead to the same result. For instance, if we wanted to add 24 kJ of
energy to some arbitrary system, we could do it by adding 12 kJ of heat and performing
12 kJ of work on the system. We could obtain the same result by adding 36 kJ of heat and
extracting 12 kJ of work from the system. The possibilities are limitless. This reinforces our
assertion that thermodynamics is really only concerned with end states.
aution is warranted at this point. Equation 2.40 does not say how the energy, onc
done within the system.
We shall now explicitly write out Equation 2.40 for a Lagrangian system

Q W m u V u V1 2 1 2 2 2
2

1 1
21

2
1
2− −+ = +⎛

⎝
⎜

⎞
⎠
⎟ − +⎛

⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

(2.41)

Here we have neglected the gravitational potential energy terms and used the intensive
form of the energy, multiplied by the system mass. As previously stated many times, we
would like to use enthalpies instead of internal energies. If this is the case, we can rewrite
Equation 2.41 using our relationship between the two from Equation 2.40. We shall use the
intensive form of Equation 2.40 to yield

Q W m h pv V h pv V1 2 1 2 2 2 2
2

1 1 1
21

2
1
2− −+ = − +⎛

⎝
⎜

⎞
⎠
⎟ − − +⎛

⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

(2.42)

Here we note that h is the specific enthalpy and v is the specific volume.
We shall now examine the first law of thermodynamics in the Eulerian frame of reference.

Recall that in the Eulerian frame, we chose a CV (real or imaginary) and observed how the
energy within the volume changes based upon the energy carried into or out of it by any
entering or exiting substance as well as any heat or work done at the system boundaries. It is
convenient for us to write the first law in terms of the time rate of change of energy, heat,
and work. We start by writing Equation 2.40 as a rate equation

dQ
dt

+
dW
dt

=
dE
dt

(2.43)
system boundaries while the distribution of energy between internal or kinetic energy is
C e
added to the system, is partitioned between potential (internal) energy and kinetic energy.
This reveals something. Heat and work are added to or removed from the system at the
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written as

_Q + _W = _mout eout + poutvoutð Þ − _min ein + pinvinð Þ (2.45)

Here, by multiplying the intensive properties by the mass flow rate _m, we have the rate of
change of the energy terms. We have also arbitrarily assumed one inlet and one outlet. If
more inlets or outlets in our CV were present and they had different mass flow rates or
pressures, we would have to consider each with a term identical to our outlet or inlet terms
given earlier. We now can make the substitution for our energy terms to yield

Q W m u V p v m u V p v+ = + +⎛
⎝
⎜

⎞
⎠
⎟ − + +out out out out out in in in in

1
2

1
2

2 2
iin

⎛
⎝
⎜

⎞
⎠
⎟ (2.46)

In this case, we have also assumed a uniform velocity over the inlets and outlets. With one
inlet and outlet, the mass flow in must equal the mass flow out so we can write Equation
2.46 as

Q W m u V p v u V p v+ = + +⎛
⎝
⎜

⎞
⎠
⎟ − + +⎛

⎝
⎜

⎞
⎠out out out out in in in in

1
2

1
2

2 2 ⎟⎟
⎡
⎣⎢

⎤
⎦⎥

(2.47)

Substitution of enthalpy into the aforementioned equation puts it into a compact form:

Q W m h V h V+ = +⎛
⎝
⎜

⎞
⎠
⎟ − +⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣⎢
⎤

⎦⎥
out out in in

1
2

1
2

2 2 (2.48)

In many fluid dynamics texts, there are wonderful examples of how these equations are
used with multiple inlets and outlets [11]. You may be asking yourself how useful are these
equations if we only use one inlet or outlet? The answer is that they are very useful. Except
for flows through muzzle devices or through internal ports such as bore evacuators and
ports for automatic weapons, a gun is a right circular tube that contains the propellant gas.
Any flow field analysis we perform on the moving gases will have just one inlet (toward the
breech) and one outlet (toward the projectile). Thus, as we develop our equations later for
in-bore motion, we can use these simple equations in the aforementioned form.
or

_Q + _W = _E (2.44)

Here the dots over the heat and work terms indicate the time rate of change of the var-
iable. Proper thermodynamics terminology would require us to use the d” instead of d in
Equation 2.43 because of path dependency considerations, but for our purposes, we shall
ignore this fact. The reader is advised to consult any thermodynamics text for a better
understanding of the difference.
The substitutions that were performed to arrive at Equation 2.41 are not as straightfor-

ward in this case. Because we have material entering and leaving the CV, we can imagine
that this material can enter or leave with a different pressure and density as it interacts with
our fixed CV. Because of this, we must account for the energy used to make these changes.
Alternatively, one can envision the material coming in at a higher pressure or density and
wanting to push our imaginary CV outward, but since we fixed our CV, it cannot. The
energy from this must go somewhere so it works on the fluid in and around our CV.
Mathematically, this results in the energy term in Equation 2.44 having to include a pv term.
This is sometimes known as flow work [10]. With this in mind, Equation 2.44 can be
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These equations have been repeated here because of their critical importance to our work.
In many instances, we will find that we require a relationship between internal energy or

enthalpy and temperature. If we have a gas that is not reacting and intermolecular forces are
small enough to ignore, we can consider the gas to be thermally perfect [12]. The impli-
cations of this are that internal energy and enthalpy are functions of the temperature alone.
With this model, we can write expressions for internal energy and enthalpy as follows:

du = cv dT (2.49)

dh = cp dT (2.50)

where cv is the specific heat at constant volume and cp is the specific heat at constant
pressure.
Normally, cp and cv vary with temperature. In many practical cases, this variation is

small, and we can further assume that the gas is calorically perfect, which results in the
aforementioned equations being written as

u = cvT (2.51)

h = cpT (2.52)

For a thermally or calorically perfect gas (not a reacting gas), there is a relationship
between cp, cv, and R. If we define g as the ratio of specific heats where

g =
cp
cv

(2.53)

then we can write the aforementioned relationships as

cp − cv = R (2.54)

cp =
gR
g − 1

(2.55)

cv =
R

(2.56)
The second law of thermodynamics defines the concept of entropy for us [1]. We know
from the second law of thermodynamics that

Tds = du + pdv (2.57)

or if we insert the definition of enthalpy,

Tds = dh − vdp (2.58)
As a review, we have two equations that state the first law of thermodynamics. For a fixed
mass of material (Lagrangian frame), we have

Q W m h pv V h pv V1 2 1 2 2 2
2
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21
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and for a fixed volume that material can flow in and out of (Eulerian frame), we have

Q W m h V h V+ = +⎛
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2
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⎣ ⎦
g − 1
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If we evaluate Equations 2.57 and 2.58 under the assumptions of a calorically perfect gas,
we obtain

s s c
T
T

R
p
p2 1

2

1

2

1
− = ⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟pln ln (2.59)
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In these expressions, the subscripts 1 and 2 indicate the initial and final states of the
substance, respectively. An isentropic process is a process in which there is no entropy
change. This is also known as a reversible process. In a real system, entropy must always
increase or, at best, stay constant. Many processes have slight enough entropy increases as
to be considered isentropic. Isentropic processes are also excellent for examining theoretical
limits on real processes. If we examine Equations 2.59 and 2.60 under an isentropic
assumption, we see that the left-hand side (LHS) is zero in both. This has implications that
allow us to write (for an isentropic process)
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Problem 4
The M898 Sense and Destroy Armor (SADARM) projectile weighs 102.5 lb. The projectile
was fired from a 56-caliber, 155 mm weapon, and a pressure–time trace was obtained. The
area under the pressure–time curve was (after converting the time to distance) calculated to
be 231,482 psi m. Calculate the muzzle energy of the projectile in megajoules. Assume the
bore area to be 29.83 in.2

Answer: E = 30.7 [MJ].

Problem 5
An 8 in. Mk. 14 Mod. 2 Navy cannon is used at Naval Surface Warfare Center Dahlgren,
Virginia, for “canister” firings. These firings are used to gun harden electronics that are carried
in an 8 in. projectile. The projectile used weighs 260 lb. The measured muzzle velocity is
around 2800 ft/s. Calculate the muzzle energy of the projectile in megajoules. Assume the
bore area to be 51.53 in.2 The rifled length of the tube (distance of projectile travel) is 373.65 in.
Answer: E ≈ 43 [MJ].

2.5 Combustion

As stated in the previous two sections, combustion is the process through which the energy
of the solid propellant is converted to useful work. The purpose of this section is to quantify

the oxidation reaction. The tactic we shall employ is to examine the more common,

everyday combustion processes that combine (relatively) simple fuels with air to produce



Physical Foundation of Interior Ballistics 25
work. In this way, we shall hopefully bring to mind the combustion thermodynamics that
has been taught at an undergraduate level and perhaps has been forgotten or not exercised
since it was first learned.
If we utilize the concept of a fixed CV, we can imagine a combustion chamber as depicted

in Figure 2.7. In this CV, we can envision a mass of fuel entering as well as some mass of air.
The two are then combusted with one another and the gaseous products leave as a mixture.
We can write the first law of thermodynamics for this system then as in Equation 2.46,
which we shall repeat here with subscripts that reflect Figure 2.7:

Q W m h V m h V+ = +⎛
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⎟m h V

(2.62)

In Equation 2.62, we can see how the heat and energy generated are affected by the
amount of mass flow, the enthalpies, and the velocities of the fuel, the oxidizer (air in this
case), and the product gases. We require some means of determining the energy converted
through the chemical reaction. We achieve this through the balancing of the chemical
reaction. We shall return to Equation 2.62 once we have discussed chemical reactions.
One of the most important compounds in the study of combustion is air. We shall adopt a

convention that is standard in many thermodynamics texts [5,13,14] that model air as 21%
diatomic oxygen (O2) and 79% diatomic nitrogen (N2). This means that every mole of
oxygen carries with it 3.76 mol of nitrogen. This relationship comes about because

0:79
moles N2

mole air

� �

0:21
moles O2

mole air

� � = 3:76
moles N2

mole O2

� �
(2.63)

As can be seen in Table B.1, the molecular weight for our simple model of air is
28.97 kg/kg mol.
The balancing of a chemical reaction determines what the molecular composition of the

combustion products will be and furthermore helps us quantify the amount of energy
absorbed or released. If energy is absorbed in a chemical reaction, in other words, if we had
to add energy to force the reaction to completion, the reaction is said to be endothermic. If
heat is liberated, the reaction is said to be exothermic [15].
A reaction can be said to be theoretically or stoichiometrically balanced if the reaction

goes to completion and there is no excess oxygen in the products [1]. We shall define a
mfuel

mproducts•
•

mair
•

FIGURE 2.7
Fixed CV combustion chamber.
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complete reaction as one in which all the oxygen combines first with all the hydrogen to
form steam and then with all the carbon to form carbon dioxide. Oxygen has a greater
affinity for combining with hydrogen than with carbon [1]. The only time that carbon
monoxide (CO) will be formed is if there is insufficient oxygen. We must keep in mind that
in any real reaction, there will usually be some amounts of carbon monoxide and other
compounds such as nitric oxide (NO) in the combustion products. We shall return to this
issue later. For the time being, we shall assume that the only reaction products in the
stoichiometric reaction are CO2 and H2O. The balancing of these chemical reactions is an
important part of our study of the combustion process, which we shall now examine.
We shall use two convenient forms of chemical equations: a molar-based equation and a

mass-based equation. In the molar-based equation, we shall usually combust 1 mol of fuel
with some amount of air. The result may be multiplied by the number of moles of fuel
actually burned to obtain a final answer. When the mass-based equation is employed, we
generally use one mass unit of fuel (pound-mass or kilograms) and some amount of air,
again multiplying the solution by whatever the actual mass of fuel happens to be. The
techniques just described are applicable to a system where the mass is fixed. The same
equations can be used with mass or molar flow rates if the system happens to be a steady
flow or open system.
It is informative to balance the chemical reactions in the context of everyday systems that

combust a fuel with air. Usually, this fuel is a hydrocarbon composition. The stoichiometric
amount of air required would be enough so that all the carbon combusts with sufficient
oxygen to form CO2 and all the hydrogen combusts to form water or steam.
If we had a hydrocarbon fuel of chemical composition CxHy, we would like to find the

number of moles a of air required to completely combust the fuel, and we would write the
balanced chemical reaction as

CxHy + a O2 + 3:76N2ð Þ ! xCO2 +
y
2
H2O + 3:76aN2 (2.64)
a = x +
4

(2.65)

As an example, let us say we have 1 mol of benzene (C6H6) that we would like to burn in
air. The balanced, stoichiometric equation would be found by first determining a from
Equation 2.65

a = 6 +
6
= 7:5 (2.66)
4

Now the balanced equation is found using Equation 2.64:

C6H6 + 7:5 O2 + 3:76N2ð Þ ! 6CO2 + 3H2O + 28:2N2 (2.67)

This is an example of a stoichiometrically balanced equation using a molar basis. There
are times when a particular fuel is burned with too much air (overoxidized) or too little air
(underoxidized). The latter is usually the case with propellants in the chamber of a gun.
When a fuel is overoxidized, we usually categorize it by stating how much excess air is
included in the reaction. For instance, 50% excess air used in the reaction of Equation 2.67
would alter the balanced equation to be written as
We could solve for a to yield

y
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C6H6 + 1:5ð Þ 7:5ð Þ O2 + 3:76N2ð Þ ! 6CO2 + 3H2O + 3:75O2 + 42:3N2 (2.68)

If the fuel were burned with 50% deficient air, we would have

C6H6 + 0:5ð Þ 7:5ð Þ O2 + 3:76N2ð Þ ! 4:5CO + 3H2O + 1:5C + 14:1N2 (2.69)

In this case, we have used the rules set forth earlier where steam is formed first then
carbon monoxide. At this point, all the oxygen has been used up, so solid carbon is formed.
From this simple example, you can see that the amount of air used in the combustion is
critical to determination of the products.
We can now define an air–fuel ratio as the ratio mass of air combusted to the mass of fuel

combusted. This is given mathematically by

A –F =
mair

mfuel
=

_mair

_mfuel
(2.70)

If we continue using our three examples, we could find the mass fuel ratio for each of the
reactions defined in Equations 2.67 through 2.69. If we note here that the molar mass of
benzene is 78.11 lbm/lb mol and the molar mass of air is 28.97 lbm/lb mol, we have for the
stoichiometric reaction

A – FStoich =
7:5ð Þ molair½ � 4:76ð Þ 28:97ð Þ lbm

lbmol

� �

1ð Þ molC6H6

� �
78:11ð Þ lbm

lbmol

� � = 13:24
lbmair

lbmC6H6

� �
= 13:24 (2.71)

For the reaction with 50% excess air, we have

lbm
� �
6 6 lbmol

= 19:85 molair½ � (2.72)

For the reaction with 50% deficient air, we have

A – F50%deficient =
0:5ð Þ 7:5ð Þ molair½ � 4:76ð Þ 28:97ð Þ lbm

lbmol

� �

1ð Þ molC6H6

� �
78:11ð Þ lbm

lbmol

� � = 6:61
lbmair

lbmC6H6

� �
= 6:61 (2.73)
reaction. We have already introduced the concept of enthalpy as well as defined the
enthalpy of formation. We shall pause here to examine how a heat of formation is obtained.
We shall consider carbon dioxide for our example. If we have a combustion chamber in

which we react pure oxygen with solid carbon, we can put the two substances into the
container at 25°C and start the reaction somehow. The balanced equation on a molar basis
would be

C sð Þ + O2 ! CO2 (2.74)
A –F50%excess =
1:5ð Þ 7:5ð Þ molair½ � 4:76ð Þ 28:97ð Þ

lbmol

1ð Þ molC H
� �

78:11ð Þ lbm
� � = 19:85

lbmair

lbmC6H6

� �
mathematics required, we must quantify the energy released (or absorbed) by the chemical

Now that we have introduced the process of chemical equation balancing and some of the
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If we were to perform this experiment, we would find that the container would get hot.
Theoretically, we could extract this heat from the container until the temperature returned
to 25°C; if we were to do this, we would find that 393,546 kJ/kg mol of energy would have
been produced. An examination of Table B.1 reveals that this is exactly the value of the heat
of formation of carbon dioxide recalling that a negative value denotes heat given off by the
reaction.
The enthalpy of a substance allows us to quantify the energy state of a material. The

enthalpy of formation was defined as the energy required to form a particular composition
from its basic elements resulting in the compound as a product at some reference tem-
perature and pressure (we shall use 25°C or 298 K and 1 atm as this reference condition). If
we were to take this compound and arbitrarily increase its temperature or pressure by some
amount and if there were no phase change or change in composition, wewill have increased
its enthalpy. If we restrict our analysis to an ideal gas, it can be shown [1] that the enthalpy
is a function of temperature only. With this, we can write for a composition

�hT = �h0f + D�h298!T (2.77)

where �hT is the enthalpy of the material at temperature T; �h0f is the enthalpy of formation;
and D�h298!T is the change in enthalpy from the reference state to the temperature T.
We define D�h298!T as

D�h298!T = �h Tð Þ − �h0298
	 


(2.78)

Tables of enthalpies are located in Appendix B at the end of the book. As an example,
consider carbon monoxide at 2000 K. The enthalpy of this compound using Tables B.1 and
B.2 would be

hCO2000K
= −110, 541

kJ
kgmol

� �
+ 56, 737

kJ
kgmol

� �
= −53, 804

kJ
kgmol

� �
(2.79)

Now that we have worked with enthalpies a bit, we can begin to apply what we have
learned. We shall look at an example of these principles applied first to a closed bomb
where there is no work performed and then to a gun where there is.
For a closed bomb, we shall tailor Equation 2.42 to our needs. If we consider a closed

vessel, we realize that there is no velocity into or out of the CV, and there is no work
performed on or by the system. This allows us to write Equation 2.42 as

Q1−2 = m h2 − pv2ð Þ − h1 − pv1ð Þ½ � = m u2 − u1ð Þ (2.80)

If we write this equation on a molar basis as limit to ideal gas behavior, we can state that

Q =
X
i

Ni
�hprod − RuTprod

� �
−
X
i

Ni
�hreac − RuTreac
	 


(2.81)
The first law of thermodynamics states that

Q +W = Nproducts
�hproducts −Nreactants

�hreactants (2.75)

Here we have used specific values so that everything is on a molar basis. Since the
container is rigid, there is no work performed on or by the system; thus, Equation 2.75
reduces to
Q = Nproducts
�hproducts −Nreactants

�hreactants (2.76)
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This relationship is important because it tells us that the heat given off by the closed bomb
is affected by the enthalpy change of the chemical reaction and the temperature of the
products.
We shall examine a pressure vessel containing 0.001 kg of methane (CH4) and 0.002 kg of

air. The enthalpy of formation for methane is −74,850 kJ/kg mol and its molecular weight is
16.04 kg/kg mol. The reaction will begin at 298 K, and we shall remove enough heat from
the vessel that the final temperature becomes 1500 K. We would like to determine how
much heat is given off.
We need to balance the chemical reaction on a molar basis, so we shall determine how

many moles of methane and air we have in the container. For methane, we have

NCH4
=

0:001ð Þ kgCH4

� �
16:04ð Þ kg

kgmol

� � = 6:23� 10−5 kgmolCH4

� �
(2.82)

For the air, we have

Nair =
0:002ð Þ kgair

� �
28:97ð Þ kg

kgmol

� � = 6:90� 10−5 kgmolair
� �

(2.83)

Our balanced reaction is then

6:23� 10−5
	 


CH4 + 6:90� 10−5
	 


0:21ð ÞO2 + 0:79ð ÞN2ð Þ
! (2:9� 10−5)H2O + 9:56� 10−5

	 

H2 + 6:23� 10−5

	 

C sð Þ + 5:45� 10−5

	 

N2

(2.84)

We shall examine the reactants first. For the methane, we have

N h h R TTCH f u CH

kg mol
kJ

kg 

4 4
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For the oxygen and nitrogen, we have

N h h R Tf TN u N kg mol2 2
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The enthalpies of the reactants are thereforeX
i

Ni
�hreac − RuTreac
	 


= −4:82 kJ½ � − 0:036 kJ½ � − 0:135 kJ½ � = −4:99 kJ½ �
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For the products, we have (using the tables in Appendix B)
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The enthalpies of the products are then given byX
i

Ni
�hprod − RuTprod

� �
= −5:98 kJ½ � + 2:28 kJ½ � + 0:67 kJ½ � + 1:41 kJ½ � = −1:62 kJ½ �

The heat given off by the reaction is then calculated through Equation 2.81 as

Q = −1:62ð Þ kJ½ � − −4:99ð Þ kJ½ � = +3:37 kJ½ � (2.85)

This illustrates the process of calculating the amount of energy given off by a closed bomb
reaction as well as the effect of temperature on the reaction products. In this case, energy has
to be added to get the reaction to go to completion. It must be noted that had we decided to
lower the temperature of the products, energy would eventually have to have been
removed. This will be examined as a problem at the end of the chapter.
If we apply the same principles to a gun launch, we can determine the amount of energy

imparted to the projectile and, in so doing, obtain a feeling for the process of energy con-
version between propellant chemical energy and projectile kinetic energy.
Unlike the fixed boundary examined in the closed-bomb problem, a gun launch involves

a boundary that is moving (the base of the projectile). This problem is similar to a piston of
an internal combustion engine that undergoes one stroke. We have definedwork earlier as a
form of energy, and if we assume that all the energy of the propellant goes into heating of
the gaseous products, kinetic energy of the projectile, and a loss term (including friction and
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swelling of the gun tube), we can write the first law of thermodynamics as given in
Equation 2.75. Rewriting this by assuming the velocity of the seated projectile is zero, we
obtain our thermodynamic equation for a gun launch as

Q +
1
2
mV2 =

X
i

Ni
�hprod
� �

−
X
i

Ni
�hreac
	 


+ losses (2.86)

We have neglected potential energy changes here because they are usually quite small
relative to the other terms. We shall examine an example in the form of a potato gun to
illustrate the use of Equation 2.86 and the other methods of this chapter.
A potato gun is a device that people use to project potatoes at targets. These devices can

be very dangerous to the operator as well as the target. We would like to calculate the
muzzle velocity of a half-pound potato projectile used in a particular gun. This gun is made
of 2 in. diameter polyvinyl chloride pipe (a very good insulator). The projectile rests on a
stop when loaded through the muzzle so that there is a 6 in. long chamber. The device in
question was injected with 0.005 oz. (mass) of lighter fluid as a gas (n-butane—C4H10 (g)
�h0f = −124, 733 kJ=kg mol, n = 58.123 kg/kg mol) to fire the potato. We shall assume the
potato perfectly obturates and that there is no bore friction. The travel of the potato in the
gun tube is 24 in. The weapon is fired under standard conditions of 77°F and 14.7 psi.
Assume that the reactants and the products both exist at these conditions. We would like to
determine the velocity of the potato at the completion of combustion in feet per second
assuming no losses. Note that the combustion here is not modeled and likely is idealized
like an air standard Otto instantaneous combustion resulting in the mean value of the
pressure as the potato exits the tube. Refer to Problem 8 as well.
The chamber was 6 in. long and 2 in. in diameter, so our chamber volume is

Vi = Al = π
(2)2

4
½in:2� (6) ½in :� = 18:85 ½in:3� (2.87)

The air weighs 28.97 lbm/lb mol, and if we assume ideal gas behavior, the density of air is
calculated from

pv = RT ! r =
p
RT

(2.88)

r =
14:7ð Þ lbf

in:2

� �
28:97ð Þ lbm

lbmol

� �

(1545)
ft lbf

lbmolR

� �
12ð Þ in :

ft

� �
537ð Þ R½ �

= 0:0000428
lbm
in:3

� �
mair = rVi = 0:0000428ð Þ
in:3

18:85ð Þ in:3 = 0:0008068 lbm½ � (2.89)

The amount of fuel was given in ounces:

mfuel = 0:005ð Þ oz½ � 0:0625ð Þ lbm
oz

� �
= 0:0003125 lbm½ �
So the amount of air we actually have is

lbm
� � � �
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For the actual combustion, we need to use our mass information and convert it to molar
values, recognizing that the molar mass is the same whether it is in kilograms per kilogram-
mole or pound-mass/pound-mole. For the fuel and air, we have

Nfuel =
mfuel

nfuel
= 0:0003125ð Þ lbm½ � 1

58:123ð Þ lbm
lbmol

� � = 0:0000054 lbmol½ � (2.90)

Nair =
mair

nair
= 0:0008068ð Þ lbm½ � 1

28:97ð Þ lbm
lbmol

� � = 0:0000278 lbmol½ � (2.91)

For each pound-mole of air, we know that 1/4.76 lb mol of it is oxygen, so we have

NO2
=

1
4:76

0:0000278ð Þ lb mol½ � = 0:0000058 lb mol½ �

NN2
=
3:76
4:76

0:0000278ð Þ lb mol½ � = 0:0000220 lb mol½ �

Now we can write our combustion equation as

0:0000054ð ÞC4H10 gð Þ + 0:0000058ð ÞO2 + 0:0000220ð ÞN2 !
0:0000116ð ÞH2O + 0:0000216ð ÞC + 0:0000154ð ÞH2 + 0:0000220ð ÞN2

To determine the muzzle velocity, we start with our first law of thermodynamics equa-
tion, simplified by the fact that there is no heat transfer and no shaft work. Then the energy
of the fuel–air mixture equals the work done on the projectile plus the energy of the
products of combustion.

HR = Hp +Wp (2.92)

Let us look at the internal energies for each of the reactants:

Reactant
Enthalpy of Formation

(kJ/kg mol)
Enthalpy of Formation

(in. lbf/lb mol)

C4H10 (g) −124,733 −500,728,155

O2 0 0

N2 0 0
xð Þ kJ
kgmol

� �
0:4299ð Þ

BTU
lbmol
kJ

kgmol

2
664

3
775 778:16ð Þ ft lbf

BTU

� �
12ð Þ in:

ft

� �
! 4014:4x

in: lbf
lbmol

� �
(2.93)
The conversion used here is as follows:
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Wp = HR −Hp

We calculate HR first:

HR = NC4H10
�h0f + D�h298!T
	 


+NO2
�h0f + D�h298!T
	 


+NN2
�h0f + D�h298!T
	 


Plugging in the numbers we have, we get

HR = 0:0000054ð Þ lbmol½ � −500, 728, 155 + 0ð Þ in: lbf
lbmol

� �

+ 0:0000058ð Þ lbmol½ � 0 + 0ð Þ in: lbf
lbmol

� �

þ 0:0000220ð Þ lbmol½ � 0 + 0ð Þ in: lbf
lbmol

� �

HR = −2704 in: lbf½ �
We calculate Hp in a similar manner:

Hp = NH2O
�h0f + D�h298!T
	 


+NH2
�h0f + D�h298!T
	 


+NN2
�h0f + D�h298!T
	 


+NC
�h0f + D�h298!T
	 


Hp = 0:0000116ð Þ lbmol½ � −970, 862, 568 + 0ð Þ in: lbf
lbmol

� �

+ 0:0000154ð Þ lbmol½ � 0 + 0ð Þ in: lbf
lbmol

� �

+ 0:0000220ð Þ lbmol½ � 0 + 0ð Þ in: lbf
lbmol

� �

+ 0:0000216ð Þ lbmol½ � 0 + 0ð Þ in: lbf
lbmol

� �

Hp = −11, 262 in: lbf½ �

Then the work done on the projectile is

Wp = −2704 in: lbf½ � − −11, 262ð Þ in: lbf½ � = 8558 in: lbf½ �
For the products, we have

Product
Enthalpy of Formation

(kJ/kg mol)
Enthalpy of Formation

(in. lbf/lb mol)

H2O (g) −241,845 −970,862,568
N2 0 0

C2 0 0

H2 0 0
e will rearrange our first law equation as follows:
W
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Since this work equals the muzzle energy of the projectile,

Wp =
1
2
mV2 = 8, 558 in: lbf½ �

Therefore,

V =

ffiffiffiffiffiffiffiffiffiffi
2Wp

m

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð Þ 8558ð Þ in: lbf½ � 32:2ð Þ lbm ft

lbf s2

� �

0:5ð Þ lbm½ � 12ð Þ in:
ft

� �
vuuuuut = 303

ft
s

� �

Wow! That is pretty fast, but we used a lot of butane, assumed that the products return to
ambient conditions quickly, and neglected things. Also, note that the length of the tube did
not come into play. We would definitely have to account for this as we shall later see.
One important parameter in determining the amount of energy transferred to the pro-

jectile is the temperature of the product gases. As you can see from our example, an increase
in the temperature of the product gases will result in a decrease in the projectile velocity
because Hp goes up. Typically, we can assume the product gases exit at a temperature
between 0.6T0 and 0.7T0, where T0 is the adiabatic flame temperature of the product gases
[7]. The adiabatic flame temperature of a gas is the temperature that is achieved if the gases
burn to completion in the absence of any heat transfer or work being performed [1]. The
calculation of the adiabatic flame temperature is relatively straightforward but requires
iteration. This is beyond the scope of this chapter, but the reader is referred to the references
at the end of this chapter for a complete description of the procedure. In addition, there are
several commercially available codes (including some that come with the purchase of
textbooks now, for instance, the book by Cengel and Boles [13]). To achieve our objectives,
the temperature of the reaction products will always be given.

Problem 6
Calculate the A–F ratio for the combustion of the following fuels. Calculate the ratio with
both theoretical air and 10% excess air.

1. Benzene (C6H6)
Answer: 13.24 and 14.56

2. n-Butane (C4H10)
Answer: 15.42 and 16.96x

3. Ethyl alcohol (C2H5OH)
Problem 7
Let us examine a pressure vessel identical to the example problem in the text containing
0.001 kg of methane (CH4) and 0.002 kg of air. The enthalpy of formation for methane is
−74,850 kJ/kg mol and its molecular weight is 16.04 kg/kg mol. The reaction will begin at
298 K, and we shall remove enough heat from the vessel so that the final temperature
becomes 1000 K.
Answer: 8.98 and 9.88
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lowing steps:

1. Balance the stoichiometric reaction equation for acetylene.
2. Balance the actual equation neglecting the volume the acetylene occupies in the

chamber. Assume the air initially in the chamber is at 14.7 psia and 77°F.
3. Determine the increase in internal energy of the gas.
4. Assuming the gas is calorically perfect (DU=mgcvDT) and that cv = 0.33 BTU/lbmR

for the mixture, determine the increase in temperature of the gas.

Note: you will have to do 3 and 4 by iteration, first assuming a final reaction temperature,
carrying out the calculation for DU, and seeing if the DT you get matches—if not, iterate
again once you get an answer within say 10% that is good enough.

5. Based on the result of 4, determine the initial pressure on the tennis ball assuming
the specific gas constant of the products is R = 80 ft lbf/lbm R.

6. Use the result of 5 and possibly your results from Problem 2 to determine the
muzzle velocity of the tennis ball. Assume g = 1.4.

7. Determine the temperature of the gases at shot exit.

For acetylene, n = 26.038 lbm/lb mol and Dh0f = +97, 477 BTU=lbmol:

Problem 9
A potato is stuffed into the 3 in. diameter exhaust pipe of a car that is not running too well.
Incompletely combusted combustion products (assume gaseous heptane) (1 g) mixes with a
stoichiometric amount of air behind the potato and ignites. If the potato is wedged 4 in. into
1. Determine the maximum heat given off.
Answer: Q = +0.606 [kJ].

2. Compare the result in question 1 with the example problem in this chapter.
Answer: This situation removes 2.764 kJ more energy than the example.

Problem 8
A really interesting person takes the tennis ball mortar we built in Problem 3 and modifies
it—squirting in and igniting 0.003 oz. of acetylene gas (C2H2 (g)). If we assume that the
combustion kinetics is fast enough such that the energy release occurs before the ball can
move, we want to determine the muzzle velocity of the tennis ball. Proceed along the fol-
of the potato. Also, calculate the muzzle velocity assuming an isentropic expansion. For gas
expansion purposes, you can assume that the volume available initially behind the potato is
equal to the volume between the point of obturation and the end of the exhaust and assume
a “smeared” specific heat ratio of 1.3 for the product gases. Also assume that the com-
bustion begins at 500 K and completes at 1500 K. Assume that the total enthalpy at 500 K for
n-heptane (C7H16) is −120,000 kJ/kg mol.

Problem 10
Assume we have a quantity of 29 lb of 11.1% nitrated nitrocellulose (C6H8N2O9), and it is
placed in an empty chamber of a gun at 77°F and 14.7 psia. The chamber is 1160 in.3 in
the exhaust (i.e., it has 4 in. of travel) and weighs 0.25 lbm, and assuming the combustion
takes place before the potato moves, determine the theoretical maximum “muzzle” velocity
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volume. The propellant density is 0.060 lbm/in.3 If the air in the chamber is not neglected
and assuming the volume is fixed,

1. Write the balanced equation for this combustion (assume that the oxygen goes
preferentially into CO2 instead of CO this time—you will find the difference later).

2. Using the tables in Appendix B, estimate the adiabatic flame temperature of the
resultant gas (Hint: recall the definition of adiabatic flame temperature).

2.6 Solid Propellant Combustion

Now that we have examined the background of the thermochemistry and thermodynamics
of combustion, we shall see how this applies to the behavior of a burning solid propellant.
We shall endeavor, in this section, to come up with definitions and relationships that will
allow us to define the state of the propellant behind a projectile at any given time. The
process we will use is somewhat simplified because the real situation behind a moving
projectile is generally a two-phase, reacting flow field. Some of our assumptions, although
not necessarily valid in the purest sense, are good enough to predict bulk behavior of the
propelling gas.
In the previous sections, we have discussed how energy is evolved by the propellant. We

saw that thermodynamic properties were not dynamic at all, but merely means of
accounting for energy knowing the initial and end states and making assumptions on the
process between them. This section will allow us to add in some time dependency to the
equations to somewhat understand the rates at which combustion is occurring.
Solid propellants are generally nitrocellulose compounds that are manufactured by

nitrating through immersion in acid. The details of this process for various materials can be
examined in detail in the books by Corner [7], Cooper [8], Cooper and Kurowski [16], Hayes
[17], and Eringen et al. [18]. This material is then chopped and worked into a doughy
substance and pushed through dies to form various shapes. The material then has solvents
removed, and it is dried. When this process is complete, the propellant has the consistency
of uncooked (i.e., hard and somewhat brittle) pasta. Although this statement is general,
there are, as always, exceptions.
The burning of solid propellant is a surface phenomenon. The rate of gas evolution is

dependent upon the amount of surface area of the propellant. Because of this, the shape that
faster the propellant burns. These two behavioral observations tell us that if we can control
the geometry and confinement of a given propellant, we can, to a large degree, control the
rate of gas evolution.
We shall examine a single propellant grain to gain an understanding of how the geometry

affects the rate of evolution of gas. Consider a long cylinder of solid propellant that is
commonly referred to as a grain. If the cylinder were long enough, we could see that most of
the surface area would be located along the circumference and length. In other words, we
can neglect the two small surface areas that comprise the ends. This is illustrated in Figure
2.8. If we neglect the burning of the end surfaces, it allows us to examine the geometry
through simple mathematical relationships.
the propellant takes is extremely important. Burning is the mechanism of transforming
the solid propellant to a gas. The burn rate of a propellant is highly dependent upon the
pressure at which the burning reaction takes place. Essentially, the greater the pressure, the
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As our grain begins to burn, solid material will be evolved into gas. Thus, we can imagine
the solid surfaces shrinking toward the centerline of the grain. If we examine our grain from
the end looking down its axis, we would see a circular section as depicted in Figure 2.9. We
could then write an expression for the surface area of our grain as a function of its diameter
and length:

A tð Þ = πd tð Þl (2.94)

In this expression, A(t) is the surface area of the grain, d(t) is the diameter, and l is the
length. We have denoted the surface area and diameter as functions of time to remind us
of our assumption of no burning at the ends of the grain. After some time t, the grain
surface will have regressed such that our diameter has decreased. This is depicted in
Figure 2.10. This graphically shows us that at time t1, the grain clearly has more surface

This is where most of the surface area 
is located 

FIGURE 2.8
Long cylindrical propellant grain.

d

FIGURE 2.9
Propellant grain cross section.

d(t1)

d(t2)

FIGURE 2.10
Propellant grain cross section at two times.
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area than at time t2; therefore, as burning progresses, the rate of evolution of gas slows
down. This is commonly called regressive burning.
Propellant geometry is characterized by a quantity known as the web thickness or simply

the web. The symbol used for the web is D. The web is the smallest thickness of the initial
propellant grain. In the case of our cylindrical grain, it would be the initial diameter.
In the interior ballistics analysis of a gun system, we need to track how much gas is

evolved and how much solid is remaining. This is important because we have seen that all
our equations of state are dependent upon volume as well as pressure and temperature, and
these, in turn, affect the burning rate. The amount of solid propellant remaining is tracked
through use of the web fraction f. The web fraction is the fraction of web remaining at a
given time t. Through use of this web fraction, we can write an expression for the amount of
propellant remaining at any time as a function of the web:

d tð Þ = fD (2.95)

This is illustrated for a grain with a single perforation (colloquially known as a perf) in
Figure 2.11. It is important to note here that for a single perf grain, the web is defined as the
outside radius minus the inside radius. This is sometimes confusing for new ballisticians
since we useD as the web thickness. Also one can see from the figure that an advantage of a
single perf grain is that it burns from both the inside out and the outside in, thus decreasing
the surface on the outside while increasing the surface on the inside—known as neutral
burning behavior.
The use of the web fraction is convenient because, mathematically, it is a function that

varies from unity to zero. The manner in which it varies may be somewhat complex, but at
least, the end states are well defined. An example plot of web fraction vs. time is shown in
Many times, we are more interested in the volume of the propellant that has evolved into
gas rather than the fraction of the web remaining. It should be clear that the two quantities
are related since the gas had to come from the solid material and conservation of mass states
that we can neither destroy nor create mass. This is handled through use of the fraction of
propellant burnt f. Since f is a function of f and f is a function of time, we see that f must
also be a function of time. Since propellant geometries can be fairly complicated, f can be a
rather complicated function of f. For simple shapes, this relationship is straightforward. For
instance, a single perforated grain has the functional relationship that

f tð Þ = 1 − f tð Þ (2.96)

fD

D

Figure 2.12. In this figure, tB is the time at which all the propellants have evolved into gas—
the burnout time.
FIGURE 2.11
Burning of a single perforated propellant grain.
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Most shapes can be simplified to express f as a quadratic function of f through use of a
shape function q:

f tð Þ = 1 − f tð Þ½ � 1 +qf tð Þ½ � (2.97)

This expression allows us to cover almost any simple geometry, the most notable
exception being a sphere. Figure 2.13 depicts how variation in the shape function affects the
relationship between f and f.
With the formulations earlier, we have been able to mathematically define the effect of

propellant geometry on the rate of gas evolution. The second important parameter in this
generation of gas was stated to be the effect of pressure on burning. Whenever a propellant
burns, say in a fixed volume, two competing processes are happening: the volume into
which the gaseous propellant is moving is increasing because there is less solid material—
this decreases the pressure—and the more and more propellant gas is being pushed into a
confined space—this increases the pressure. The rate at which the surface area decreases

1

f

tB

t
f = fraction of remaining web 
f = f (t) f (0) = 1

f (tB) = 0

FIGURE 2.12
Fraction of remaining web vs. time.
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D
dt

= −b pB tð Þ − P1½ � (2.100)

Equation 2.99 is by far the most commonly used in computer codes. Caution must be
exercisedwhen using burn rate data from the literature as the units will be an indicator of the
proper burn rate form of the governing equation. If we examine the units ofD df/dt, we see
that they are in terms of [length]/[time]. This type of data is usually obtained from a strand
burner. A strand burner is a device that can accuratelymeasure the rate of linear burning in a
propellant. The book by Kubota [19] contains an excellent diagram of a strand burner.
If we consider a pressure vessel so thick as to be rigid and the amount of propellant so

small such that we can neglect its contribution to the volume, we can describe the burning
of the propellant as a constant-volume process. This is the essence of closed-bomb testing.
We can further assume that this pressure vessel can be thermally isolated and the gas
behavior is ideal. In this case, our closed bomb, with internal volume V, would resemble
Figure 2.14. Since we assumed ideal gas behavior, we can write an expression for pressure
as a function of volume and temperature:

pBV = mgRT (2.101)
V

affects this relationship. The simplest model for the relationship between burn rate and
pressure is given by

D
df
dt

= −bpB tð Þ (2.98)

where D(df/dt) is the time rate of change of the web (i.e., the burning rate); b is a burn rate
coefficient; and pB is the pressure (we will discuss the subscript later).
The negative sign comes about because the amount of propellant would be increasing if

D(df/dt) were to result in a positive number. This simple relationship facilitates our anal-
ysis of propellant behavior in a gun. Other relationships can more accurately describe
propellant behavior, but their complexity is such that computer codes must be used to
obtain answers with them. Two very common burn relationships are

D
df
dt

= −b pB tð Þ½ �a (2.99)
df

FIGURE 2.14
Diagram of a closed bomb.
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ere pB is the pressure; V is the volume; mg is the mass of the gas; R is the specific ga
nstant; and T is the temperature.
hen we place our solid propellant into the closed bomb, it has an initial weight that w

uld call c. So initially, we can write

c = rVsolid (2.10
Vcyl:grain = π
D2

4
l (2.103)

This volume at any time t can be expressed as

V tð Þcyl:grain = π
d tð Þ½ �2
4

l (2.104)

Because mass is conserved, the amount of solid propellant burned is equal to the amount
of gas generated. This is an important concept. If we started with 1 lbm of propellant and
completely burned it, we would be left with 1 lbm of gas. Based on this, we can write for the
mass of the gas as

mg tð Þ = r Vcyl:grain − V tð Þcyl:grain
h i

= r
π

4
l D2 − d tð Þ½ �2� �

(2.105)

We discussed the fraction of propellant burnt f earlier. We are now in a position to
formally define it as

f tð Þ ≡ mg tð Þ
c

(2.106)

If we substitute Equations 2.102, 2.103, and 2.105 into Equation 2.106, we obtain

f tð Þ = r π
4 l D2 − d tð Þ½ �2� �

r π
4 lD

2 = 1 −
d tð Þ½ �2
D2

 �
(2.107)

Now we insert Equation 2.95 into Equation 2.107 to yield

f tð Þ = 1 −
fD
D

� �2

= 1 − f 2 = 1 + fð Þ 1 − qfð Þ (2.108)

Comparing this expression (derived for a cylindrical grain) to Equation 2.97 shows that
the shape factor q = 1 for a cylindrical grain. Also, by comparison to Equation 2.96, we see
that the shape factor q = 0 for a single perforated grain. Essentially, any shape factor can be
derived using this same procedure. So up to this point, we have determined that the shape
factor

• q = 0 for single perforated grains
wh s
co
W e

wo

2)

where r is the density of the solid propellant and Vsolid is its volume.
If we now assume that the propellant is cylindrical, we can write its volume as the

product of its cross-sectional area and its length. The initial diameter is the web for a
cylindrical grain, so

• q = 1 for cylindrical grains
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An interesting thing has happened. We started this section attempting to find a rela-
tionship for the mass of gas evolved from the solid propellant, and we have come around to
finding the relationship between f and f again. The key procedure here is now to rearrange
Equation 2.106:

mg tð Þ = cf tð Þ (2.109)

This is the relationship that governs the amount of gas evolved from the burning pro-
pellant. It looks rather simple, but consider that f is a function of f and t, and f is a function of
pB and t. We shall return to this later.

The burning propellant in our closed bomb must generate pressure. To take this further,

we need to rearrange Equation 2.98 into

pB tð Þ = −
D
b

df
dt

(2.110)

In this expression, we know that D is the initial web and, therefore, a constant, and we
shall assume that b is a constant (b actually increases somewhat with pressure).
Because we want to work with masses of substances, f is not a convenient variable. We

shall use a relationship to express it in terms of f. At this point, caution must be exercised.
Recall that the relationship between f and f varies with propellant geometry. We shall
proceed using our cylindrical grain relationship (Equation 2.108). Rearranging Equation
2.108, we obtain

f tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f tð Þ

p
(2.111)

If we differentiate this relationship with respect to time, we obtain

df
dt

= −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f tð Þp df

dt
(2.112)

This form allows us to rewrite Equation 2.110 as

pB tð Þ = −
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip df

(2.113)

2b 1 − f tð Þ dt

We now have all the expressions we need to bring this together. We have an equation
of state:

pB tð ÞV = mg tð ÞRT tð Þ (2.114)

We have an expression for conservation of mass (relationship between mg and f):

mg tð Þ = cf tð Þ (2.115)

and we have an expression that relates the amount of pressure generated to the amount of
propellant burnt (burn rate equation):

pB tð Þ = −
D

2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f tð Þp df

dt
(2.116)

All these expressions are in terms of constants we know beforehand or f, f, and T.
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o describe the temperature of gas, we need to define a parameter often used in interio
llistics, the propellant force l. Propellant force is a constant that is defined as the amou
energy released from a propellant under adiabatic conditions. In other words, it is th
st energy one can obtain by burning a propellant. Mathematically, we express it as

l ≡ RT0 (2.11

ere R is the specific gas constant and T0 is the adiabatic flame temperature of the gas
his constant has units of energy per unit mass. Sometimes, T0 is referred to as th
cooled explosion temperature. In our development, we shall assume that all gases a
olved at the adiabatic flame temperature. There are many theories that describe com
stion. Introductory treatments are provided by Turns [20] and Borman and Ragland [21
t all the references in the end of this section cover the topic to some degree. Yang et al. [2
d Kuhl et al. [23,24] treat the topic in great detail. If we utilize this reactive assumptio
can rewrite Equation 2.114 using Equation 2.117 to give us

pB tð ÞV = lmg tð Þ (2.11

ow we can combine Equations 2.118 and 2.116 to yield (for a cylindrical grain)
T r
ba nt
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lmg tð Þ
V

= −
D

2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f tð Þp df

dt
(2.119)

We then substitute Equation 2.115 into the aforementioned expression, resulting in

lcf tð Þ
V

= −
D

2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f tð Þp df

dt
(2.120)

This can be rearranged to yield

1

f tð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f tð Þp df

dt
= −

2blc
DV

(2.121)

This is a separable, first-order, nonlinear, differential equation, which can be written in
integral form as
ð1
0

df
f tð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − f tð Þp = −
2blc
DV

ðtB
0

dt (2.122)

the solution of which is

ln
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
− 1ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p

+ 1

� ������
1

0

= −
2blc
DV

tjtB0 (2.123)

This expression is somewhat problematic because of its singular behavior at f = 1 and
f = 0. The equation was numerically approximated to yield

tB ≈ 350
DV
blc

(2.124)

In this case, the solution to this expression was problematic; however, in many cases, it

n be more readily evaluated. The techniques that will follow are much simpler from a
nd calculation standpoint.



44 Ballistics
ven though the closed bomb may seem academic, it is actually quite a useful device fo
termining propellant parameters. If we consider Equations 2.110 and 2.113, we see th
ce we know the initial webD, and we can measure the pressure, the only thing missing
nd f or f. Equation 2.114 tells us that if we measure pB and T and know V, we can get f o
hus, the closed bomb is useful for determining the burn rate coefficient b.

oblem 11
1 propellant is measured in a closed bomb. Its adiabatic flame temperature is 3906°F. I
lar mass is 22.065 lbm/lb mol. What is the effective mean force constant in feet pound
ce per pound-mass?

Answer: l = 305, 709
ft‐ lbf
lbm

� �

oblem 12
15 propellant was tested in a strand burner to determine the linear burning rate. Th
erage pressure evolved was 10,000 psi. If the burning exponent awas known to be 0.69
d the pressure coefficient bwas known to be 0.00330 in./s/psi0.693, determine the averag
ear burning rate B in inches per second.

Answer: B(p) = 1:952
in:
� �

s

Problem 13
Derive the functional form of f in terms of f for a flake propellant. Assume cylindrical
geometry.
Hint: Flake propellant consists of grains that have thicknesses much smaller than any other
characteristic dimension.

Answer: f(t) = 1 − f

Problem 14
An M60 projectile is to be fired from a 105 mm M204 Howitzer. The propellant used in this
semifixed piece of ammunition is 5.5 lbm of M1 propellant. M1 propellant consists of single
perforated grains (q = 0) with a web thickness of 0.0165 in., if the average pressure (over the
launch of this projectile) developed in the weapon is 20,455 psi. Calculate the average
burning rate coefficient in cubic inches per pound-force-second if the burn rate is (we use a
negative sign in the burn rate to make the form come out right later)

df
dt

= −185:9 s−1
� �

Answer: b = 1:50� 10−4
in:3

lbf‐s

� �

Problem 15
b is actually a function of pressure and temperature (it is really given in tables at 25°F at this
value). For simplification (and illustration), we will assume that it is constant. Given this
assumption, calculate the functional form of the web fraction f from Problem 14.

Answer: f = 1 −
bpavg t
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Problem 16
Given the data provided in Problems 14 and 15, determine the proper form of the fraction of
charge burnt.

Answer: f(t) = 185.9t

Problem 17
You are asked to characterize a commercial propellant. In order to do this, you take one
grain of the propellant and place it in a closed bomb of 0.5 in.3 volume, initially evacuated.
You have a temperature and pressure sensor in the device. After 0.063 s, you decide that the
propellant has fully combusted. You read the data—pressure was measured to be 3.706 psi
(this is not a big value, but it was only one small grain of propellant), but it looks as though
the temperature sensor is broken. The initial propellant grain weighed 0.003189 grains, and
it was 0.1 in. long by 0.01 in. diameter. Based on these data only—

1. Estimate the propellant force l in feet pound-force per pound-mass.
2. Estimate the linear burn rate coefficient b in inches per second per pounds per

square inch.
3. List all assumptions and explain why you believe these estimates are too high or

too low (certain assumptions maymake the estimates high while others make them
low)—there are at least four assumptions used here.

2.7 Fluid Mechanics

The entire field of ballistics is steeped in the principles of fluid mechanics. The flow of
propellant gases in the gun tube, the flow of the propellant gases through a muzzle brake
upon shot exit, the flow of the air around the projectile in flight, and, even, as we shall see,
the flow of target material during a penetration event canmany times bemodeled as a fluid.
This section is devoted to a basic treatment of fluid mechanics principles. We will use some
of these very soon; others will be used at a later time. All them are important in the study of
ballistics.
A fluid differs from a solid in its behavior when placed in shear. In general, fluids can

support little or no shear loads or tensile stress. Fluids are generally characterized by their
behavior under shear stress. Because a fluid will, in general, flow readily under a shear
stress, this behavior is normally plotted in a graph of rate of deformation vs. shear stress as
depicted in Figure 2.15.
A fluid is considered to exhibit Newtonian behavior if there is a linear relationship

between shear stress and rate of deformation. A fluid is non-Newtonian otherwise.
Somefluids such as an ideal plastic or a thixotropicmaterial actually do exhibit a yield stress.
In the case of an ideal plastic, after a certain yield stress is achieved, the material exhibits a
linear relationship between stress and deformation rate. A thixotropic material exhibits a
nonlinear relationship after yield stress is reached. An ideal fluid is one where the material
will flow and continue to accelerate regardless of the amount of shear stress applied.
Many of the fluids we will deal with are Newtonian. Mathematically, the relationship

between the applied shear stress and deformation rate is given by
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Newtonian
t = μ
∂ u
∂ y

(2.125)

Shear stressYield stress

Non-Newtonian

Ideal plastic

Thixotropic

Ideal fluid
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FIGURE 2.15
Rate of deformation vs. shear stress.
where t is the applied shear stress; μ is the dynamic viscosity of the fluid; and ∂u/∂y is the
deformation gradient (change in velocity with respect to a spatial coordinate).
The ratio of the dynamic viscosity to the fluid density occurs so often that it is customary

to define a kinematic viscosity as
where n is the kinematic viscosity and r is the density of the fluid.
In the section on thermodynamics, we introduced the concept of a Lagrangian or control

mass approach and a Eulerian or CV approach to solving transport problems. In exami-
nation of the behavior of a fluid, we need to develop both of these techniques. Our plan of
attack will be to develop these equations in a CV and provide equations to change the ref-
erence frame afterward. For amore complete treatment, the reader is referred to the books by
Fox andMcDonald [11], Anderson [12], White [25], Panton [26], Currie [27], andWhite [28].
The basis for our development of the following equations are the tenets that (1) mass must

be conserved and (2) Newton’s second law must hold true. Newton’s second law can be
written as X

F =
d
dt

mVð Þ (2.127)

where SF is the vector sum of all the forces acting on a body (or blob offluid or CV);m is the
mass of the body; and V is the vector velocity of the body.
It is important to note that throughout this work, V is volume (a scalar), V is velocity (as a

scalar quantity), and V is velocity (as a vector quantity).
Since CVs can be oriented in an arbitrary manner, it is important to understand that only

that component of velocity normal to the control surface (CS) (i.e., the boundary of the CV)
transports material or energy into the CV. If we examine Figure 2.16 where we have broken
the velocity vectors into normal and tangential components (denoted as V and V ,
n =
μ

r
(2.126)

n t

respectively), we can clearly see why this is so.
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Consider an arbitrary property N of a substance. We would like to see how this property
is transported into and out of a CV. If we define an intensive property h such that

h =
N
m

 or N = hm (2.128)

then we can write

dN
dt

=
∂

∂ t

ð
CV

hrdV +
ð

outflow area

hrV � dA +
ð

inflow area

hrV � dA (2.129)

This equation defines how a property of interest is transported into and out of the CV. If
we look at each of the terms, we see that this is an intuitively satisfying equation. The term
on the LHS is the time rate of change (decrease) of any property of the CV over a time of
interest. The first term on the RHS tells us how much of that property is stored in the CV
over this time. The second term on the RHS tells us how much material has left the CV,
while the third term tells us how much material has entered.
Now wait a minute! If we look at the signs on the second and third terms, they seem to be

incorrect—should not the stuff leaving have a negative sign and the stuff entering have a
positive sign? The answer to this is yes, but Equation 2.129 is written correctly. The key to
this seemingly inconsistent sign convention lies in the fact that the dot product in the second
term is positive when we define the area as a vector that points outward and is normal to

VVVt Vt

VnVn

CV

FIGURE 2.16
Depiction of normal and tangential velocity components with respect to an arbitrary CV.
approach.
Consider a CV in a gun tube located somewhere behind amoving projectile as depicted in

Figure 2.17. There will be a velocity associated with the propelling gases (we will see this
later) such that the gases are flowing in one side and out the other, but no gases flow
through the walls.

CS1 CS2
No flow through tube walls
the surface. Similarly, the inflow term will always lead to a negative number since the
velocity vector points inward and the area vector points outward.
We shall now examine the flow of propellant gases in a suitable CV located somewhere

behind a projectile at an instant in time. This will serve to foster the understanding of the CV

FIGURE 2.17

Typical gun tube CV (two-dimensional representation).
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The ends of this cylindrical CV are designated as CSs. The inlet side is CS1 and the outlet
side is CS2. If we would like to write an equation for how mass is transferred into or out of
this CV, we set N, the flow variable in Equation 2.129, equal to m, the property of interest.
When this is done, Equation 2.128 tells us that

h =
N
m

=
m
m

= 1 (2.130)

So for this case, we can write

dm
dt

=
∂

∂t

ð
CV

rdV +
ð

outflow area

rV � dA +
ð

inflow area

rV � dA (2.131)

We knowmass can neither be created nor destroyed, so dm/dt = 0, then we arrive at what
is commonly called the equation of conservation of mass, or the continuity equation. In a
general form, it is given as

∂

∂t

ð
CV

rdV +
ð

outflow area

rV � dA +
ð

inflow area

rV � dA = 0 (2.132)

The first term on the LHS states how the mass in the CV is changing with time. The
second term is the amount of mass exiting the CV, and the third term is the amount of mass
entering the CV.
The flow inside a gun tube is never steady or uniform. Nevertheless, it is informative to

look at this expression using these two assumptions to gain some physical insight into the
nature of the terms. The steady flow assumption means that there is no increase or decrease
in material flow into or out of our CV. This implies that the first term is zero. So for the
special case of steady flow, we have

ð
outflow area

rV � dA +
ð

inflow area

rV � dA = 0 (2.133)

Simply put, this equation states that what comes into the CV equals what goes out of
the CV.
Uniform flow is a special case where fluid viscosity effects are neglected. This results in a

constant velocity across the CS’s. In essence, the velocity at the wall of the gun tube is the
same as the velocity on the centerline of the tube. We will discuss this and its implications in
more detail later.
When we apply this assumption to Equation 2.133 and note thatV · dA is negative at CS1

(because the vectors have opposite directions) and positive at CS2, we obtain the following
simple relationship:

r1V1A1 = r2V2A2 = _m (2.134)

Thus, under the steady flow assumption, the mass flow rate m. is constant.
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We shall now examine the use of momentum mV as our flow variable. The use of
Equation 2.128 with this flow variable yields

h =
N
m

=
mV
m

= V (2.135)

Now we can include this into Equation 2.129 to obtain

d mVð Þ
dt

=
∂

∂t

ð
CV

VrdV +
ð

outflow area

VrV � dA +
ð

inflow area

VrV � dA (2.136)

Through Newton’s second law, we know that the term on the LHS (time rate of change of
momentum) equals the forces on the system. The first term on the RHS is the change in
the momentum of the system through storage in the CV. The second and third terms are the
momentum leaving and momentum entering the CV, respectively. It is again informative to
examine the steady flow case, which reduces our equation to

F =
ð

outflow area

VrV⋅dA +
ð

inflow area

VrV⋅dA (2.137)

Here we have replaced the time rate of change of momentum term with the force. Once
again, we shall use the uniform flow assumption to facilitate our understanding of
this equation. Consider the same gun tube CV as earlier, drawn slightly differently in
Figure 2.18.
As discussed earlier, the velocity and area scalar products result in a negative sign on the

inflow and a positive sign on the outflow side. With this uniform flow assumption (recall
that we also included a steady flow assumption to reduce the equation to the form of
Equation 2.137), our Equation 2.137 would become

F = r2V2V2A2 − r1V1V1A1 (2.138)

Note that this is still a vector equation with the vectors V1 and V2 determining the
direction of F. If we had already worked out or it was obvious what direction the resultant
force would be in, then we could write

F = r2V
2
2A2 − r1V

2
1A1 (2.139)

Equation 2.138 only tells us part of the story. It tells us the inertial reaction of the CV to the
LHS in response to or independent of this, body forces and surface tractions.

CS1 CS2

V1
V2

A1 A2

No flow through tube walls

FIGURE 2.18
Typical gun tube CV (three-dimensional representation).
forces arising from a fluid passing through it. There are two types of forces that occur on the
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Body forces are those that act through the bulk of the material (i.e., directly affecting every
molecule). Examples of this are gravitational loads and electromagnetic loads. It is cus-
tomary to write these loads on a unit mass basis to be consistent with the rest of the
equation. In many cases, these are small and are neglected.
Surface tractions are forces that act on the CS. These forces tend to be large and can be

categorized into normal forces and shear forces. As the name implies, normal forces act
normal to the CS. Pressure is the most common normal force. Because pressure cannot be
negative, it always acts opposite to the surface area vector.
Shear stresses are a result of the propensity of fluid to stick to a solid (or other fluid)

surface. The fluid viscosity, as defined earlier, is a measure of the intensity of these stresses.
Shear stresses always act opposite to the direction of flow and along the CS. If a fluid is
modeled as inviscid, there can be no shear stresses.
Picking up from Equation 2.138, if we model a flow as steady with no viscosity, there will

still be pressure forces present. This is depicted in Figure 2.19.
Since pressure forces always act opposite to the area vector, it is customary to define the

pressure forces as

Fp = −

ð
outflow area

pdA −

ð
inflow area

pdA (2.140)

In Equation 2.140, the signs of the area vectors would define the direction of the force.
Before we establish a CV with viscous forces acting, it is instructive to describe these

viscous forces and their effect on the flow field. As previously established, viscosity is a
property of a fluid. The greater the viscosity of a fluid is, the more difficult it is to shear the
material. If the viscosity is high enough or the flow velocity is low enough, a fluid will
exhibit what is known as laminar flow. Laminar flow is a very orderly shearing of the fluid
from a solid surface where the fluid sticks to the boundary. In a tube or pipe, after some
entrance length required for the flow to establish itself, the fluid will achieve a parabolic
velocity distribution as depicted in Figure 2.20.

p1
p2

A1
A2

CS1 CS2

FIGURE 2.19
CV with no viscous forces acting.

Tube wall

V

FIGURE 2.20

Laminar velocity profile in a tube.
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The laminar profile in Figure 2.20 is in stark contrast to the uniform profile that we had
assumed in our previous discussions depicted in Figure 2.21. If the flow velocity is high
enough or the viscosity low enough, the flow will transition from laminar flow to what is
known as turbulent flow. Turbulent flow is characterized by a large number of eddies that
swirl around in the flow. These eddies are important in that they tend to distribute momen-
tum, energy, and matter throughout the fluid resulting in better mixing and very different
transport properties. Many more flows are turbulent than laminar. The dimensionless
parameter that governs this behavior is known as the Reynolds number and is given by

Red =
rVd
μ

=
Vd
n

(2.141)

where Red is the Reynolds number and is dimensionless; r is the fluid density; V is the fluid
velocity; d is a relevant characteristic length of the system (an internal diameter of a pipe, a
length of a projectile, etc.); and μ and n are the dynamic and kinematic viscosities of the
fluid, respectively.
If the Reynolds number is high enough, the flowwill be turbulent. This demarcation is, in

general, a range of values that also depends on whether the flow is an internal one (such as
the gas flow in a gun tube) or an external one (such as the flow about a projectile). The
velocity profile of a turbulent flow is depicted in Figure 2.22. Here we can see that the effect
of the eddies is to distribute the momentum, resulting in a profile that is flatter and more
akin to our inviscid flow model of Figure 2.21.
If we now return to our discussion on the surface tractions, we can discern that the effect

of fluid viscosity is to create a shear stress at the boundary between the fluid inside a gun
tube and the solid tube itself (i.e., on our CS). If we consider the diagram in Figure 2.19, we
can redraw this figure to include the effect of shear stresses as depicted in Figure 2.23.

V

Tube wall

FIGURE 2.21
Uniform velocity profile in a tube.

V

Tube wall
FIGURE 2.22
Turbulent velocity profile in a tube.
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Since the shear stress tw acts all over the area of our CV, we can add a term for this into
Equation 2.140 to obtain an expression for all the surface forces as follows:

Fsurface = −

ð
outflow area

pdA −

ð
inflow area

pdA −

ð
surface area

twdA (2.142)

We can insert this into our expression for the conservation of momentum Equation 2.137
to obtain, for steady flow,

−

ð
outflow area

pdA −

ð
inflow area

pdA −

ð
surface area

twdA

=
ð

outflow area

VrV � dA +
ð

inflow area

VrV � dA (2.143)

or, in a more general sense,

−

ð
outflow area

pdA −

ð
inflow area

pdA −

ð
surface area

twdA

  =
∂

∂ t

ð
CV

Vr dV +
ð

outflow area

VrV � dA +
ð

inflow area

VrV � dA
(2.144)

The next transport property we shall examine is that of energy. In Sections 2.4 and 2.5, this
was discussed to a degree. The objective of this section is to demonstrate that we can use the
same transport Equation 2.129 to come up with the energy equations we have used earlier.
We start by recognizing that our transport variable is energy E. With this in mind, Equation
2.128 can be rewritten as

h =
E
m

= e (2.145)

Recall that lower case letters are intensive properties. Then we can write

dE
dt

=
∂

∂ t

ð
CV

er dV +
ð

outflow area

erV � dA +
ð

inflow area

erV � dA (2.146)

This states that the change in energy of a system is equal to the change in energy stored in
the system minus that which is advected away plus that which is advected into the system.

p1
p2

A1 A2

CS2CS1 τw

FIGURE 2.23
Surface tractions on a gun tube CV.
Recall from Equation 5.6 that
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dQ
dt

+
dW
dt

=
dE
dt

(2.147)

From our definition of work, we know that

W =
ð
pdV (2.148)

But volume is nothing more than a length times an area. This allows us to write

W =
ð
px � dA (2.149)

If we take the derivative of this expression with respect to time assuming pressure is an
average value over the time increment, we can write

dW
dt

=
ð
p
dx
dt

� dA =
ð
pV � dA (2.150)

There are many types of work terms. The aforementioned term happens to be called pdV
work or pressure work. The other types of work, such as shaft work, are usually not present
in a gun launch so we shall neglect them. The insertion of Equation 2.150 into Equation
2.146 and rearranging yields

d
d

dV d
CV outflow area inflow area

Q
t t

e e
p

e=
∂
∂

+ +⎛

⎝
⎜

⎞

⎠
⎟ ⋅ +∫ ∫ ∫ρ

ρ
ρV A ++⎛

⎝
⎜

⎞

⎠
⎟ ⋅

p
ρ

ρV Ad (2.151)

In the section on thermodynamics, we defined the specific energy through Equation 2.39.
If we insert this definition into the aforementioned expression, we obtain

d
d

dV d
CV CS

Q
t t

e gz
V

u
p

=
∂
∂

+ + + +
⎛

⎝
⎜

⎞

⎠
⎟ ⋅∫ ∫ρ

ρ
ρ

2

2
V A (2.152)

Here we have combined the last two terms on the RHS of Equation 2.151 with the
understanding that the integral of the last term in Equation 2.152, being an integral over the
entire CS, accounts for the difference between inflow and outflow. It is informative to look
at this equation with respect to a gun launch. The term on the LHS represents the transfer of
heat to or from the system. The first term on the RHS represents the change in stored energy
of the system (such as energy released by propellant combustion). The last term on the RHS
is the change in energy of the system. Since gravitational potential energy, the product gz, is
small relative to the other energy terms, it is usually neglected allowing us to rewrite the
expression as

d
d

dV d
CV CS

Q
t t

e
V

u
p

=
∂
∂

+ + +
⎛

⎝
⎜

⎞

⎠
⎟ ⋅∫ ∫ρ

ρ
ρ

2

2
V A (2.153)

Earlier in this section, we introduced the common practice of characterizing a fluid based
on its behavior under shear stress. This allowed us to come up with a relationship between
applied shear stress and deformation rate. Another distinction has to be made between
fluids with respect to the density. If the density is considered constant in a fluid or solid that
we model, we call this material incompressible. If the density varies, we must analyze the

problem with the assumption of compressible material. This has many ramifications. The
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most significant ramification is that if the material is incompressible, then the energy
equation is decoupled from the momentum equation and we can solve them independently
[25]. This makes problem solving much simpler. We do not have this luxury when the
density significantly varies.
In fluid flows, such as those that we shall study later, a dimensionless parameter known

as the Mach number Ma is used as a measure to determine the effect of compressibility,
among its other uses. The Mach number is given by

Ma =
V
a

(2.154)

where V is some characteristic velocity in the material and a is the speed of sound in the
material.
In general, if the Mach number is below 0.3, the deviation from incompressible flow is

small so the assumption of incompressibility leads to an acceptably small error [16]. In an
ideal gas, the speed of sound is given by the relation

a =
ffiffiffiffiffiffiffiffiffiffi
gRT

p
(2.155)

where g is the specific heat ratio; R is the specific gas constant; and T is the absolute tem-
perature (i.e., in Rankine degree or Kelvin).
The speed of sound in any material is formally defined as

a =

ffiffiffiffiffiffiffi
∂ p
∂ r

s �����
s

(2.156)

That is to say that the speed of sound in a material is equal to the square root of the
partial derivative of pressure with respect to density evaluated with constant entropy.
The interested reader is referred to any of the following books for the detailed proof of this
equation: Masterson et al. [15], Cooper and Kurowski [16], and White [25].
The speed of sound is essentially the fastest speed at which a disturbance can be prop-

agated by molecular interaction. If a disturbance is created that is strong enough, a shock
will form. This shock must always move faster than the speed of sound in the material. We
will discuss this in detail later.
In the study of compressible flows, it is common practice to utilize stagnation values in

many of our calculations. Stagnation values are the values of the enthalpy, pressure, tem-
perature, and density that are achieved by adiabatically slowing a flow down to zero
velocity. The assumption of adiabatic behavior is warranted in many of the situations we
will examine, particularly in exterior ballistics. The stagnation enthalpy is given by

h0 = h +
1
2
V2 (2.157)

In this and the following equations, the subscript 0 indicates the stagnation value; V is
the velocity of the flowing fluid, and the values without the subscript are the static value; in
the case of Equation 2.157, h is the static enthalpy. Equation 2.157 holds for any material. If the
material is an ideal gas, we can define the stagnation temperature, pressure, and density as

T0 = h +
1
2
V2

cp
 or 

T0

T
= 1 +

g − 1
2

Ma2 (2.158)
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In each of these cases, thermodynamic relations have been used for an ideal gas (Equation
2.61).
Shock waves are formed in materials when disturbances of sufficient strength propagate

through the medium. Sufficient strength is a term that we throw about rather loosely to
describe conditions where shocks are formed—it can be cast in terms of flow velocities or
pressures (the two are linked as we shall see). Shocks can be classified as normal or oblique,
depending upon the direction of material flow into them. They can also be analyzed as
steady or transient. In general, shocks can take curved and rather complex shapes, but the
simple analytical tools we have allow us to look at them only under simplified geometries.
More complex geometries require the assistance of a computer.
We shall only examine normal shocks in this brief review and direct the reader to Cooper

and Kurowski [16] for the handling of oblique shocks. The best way to examine the behavior
of a shock is to look at a shock tube. This simple device will allow us to introduce all the
materials necessary for the introductory study of ballistics and set the stage for later work
when we discuss stress waves in solids.
Before we look at a shock tube, we need to discuss the principle of superposition as

applied to shock waves. Consider two shocks as depicted in Figure 2.24. One of these
cases is a stationary shock where we could consider ourselves “riding on the wave,” while
in the other case, we can consider ourselves to be sitting on the ground watching the shock
pass by. If, in both cases, the shock were passing into a stagnant medium, we would see
some important correlations. The passage of a shock wave always induces motion that
follows thewave. Consider the situationwherewe are sitting on the ground; the air about us
is stagnant, and all of a sudden, a shock passed by us just as is shown in Figure 2.24b. If the
shock were moving at velocity U, we would feel an induced motion, a wind, immediately
afterward moving at velocity up in the same direction that the shock was moving. If we
experienced this same situation, but instead, were riding on the shock, wewould feel a wind
of velocity U coming toward our face. This would be analogous to the situation in Figure
2.24a. In this situation, velocity V1 would be equal to U. Note the direction of the velocity
vectors in the figure. The velocity vector of magnitude V2 is moving away from the wave.
The figure is drawn correctly, but in the case that was just described, based on superposi-
tion, sinceU is larger than up (and it always is), if we were riding on the wave, we would see

V1V2

Gas motion 
upstream

Gas motion 
downstream

Uup > 0

Stagnant gas
ahead of shock 

Fluid in motion
behind shock 

x(a) x(b)

FIGURE 2.24
(a) Stationary and (b) moving shock waves.
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material leaving us at velocity (U − up). When we examine a shock wave in the frame of
Figure 2.24b, we are said to be using a Eulerian frame of reference, if we analyze the very
same situation as shown in Figure 2.24a, we are using a Lagrangian reference frame.
The difference between Lagrangian and Eulerian reference frames is important because

we sometimes prefer to solve a problem in one frame or the other because the mathematics
are simpler. As long as the reference frame motion is accounted for, solving in one frame or
the other leads to the same answer.
We shall now use the Lagrangian approach to examine the governing equations for a

stationary normal shock wave. Consider the situation in Figure 2.25, where a shock wave is
moving to the left at velocity U. Since we would like to examine the behavior of this shock,
we will put ourselves in a reference frame attached to the shock itself. We form a CV
enclosing the shock only. We observe, while riding on this shock, that fluid enters the CV at
velocity U and leaves at velocity u2. We can write the conservation of mass, momentum,
and energy equations for this system as follows:

• Conservation of mass (continuity equation):

r1U = r2u2 (2.161)

• Conservation of momentum:

p1 + r1U
2 = p2 + r2u

2
2 (2.162)

• Conservation of energy:

h1 +
1
2
U2 = h2 +

1
2
u22 = h01 = h02 = h0 = constant (2.163)

We see from the last equation that across a shock wave, the stagnation enthalpy must
remain constant. This falls out directly from the fact that we assumed the shock wave was
adiabatic. These equations are coupled through a material model such as the ideal gas
equation of state (relates p, V, and T) and the calorically perfect assumption (relates h to T).
If we consider the special case where the shock under examination is moving into a stag-
nant fluid as depicted in Figure 2.26, we can write the aforementioned three equations as

r1U = r2 U − up
� �

(2.164)

p1 + r1U
2 = p2 + r2 U − up

� �2
(2.165)
FIGURE 2.25
Stationary shock wave.
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h1 +
1
2
U2 = h2 +

1
2

U − up
� �2

= h0 = constant (2.166)

The conservation of mass, momentum, and energy equations can be combined as detailed
by Kays and Crawford [10] and Cooper and Kurowski [16] to yield the Rankine–Hugoniot
relationship. This relationship determines how the energy changes across a normal shock
wave. It is very important and will appear again when the terminal ballistics material is
discussed. It can be written in terms of total specific energy e, or if some of the energy
components are negligible, it can be written in terms of enthalpy h. At this stage, we will use
the latter expression, but we shall switch when we discuss shock in the terminal ballistics
section. Writing the Rankine–Hugoniot relationship in terms of enthalpy, we have

h h p p2 1 2 1
2 1

1
2

1 1
− = −( ) −⎛

⎝
⎜

⎞

⎠
⎟ρ ρ

(2.167)

The strength of a shock is normally assessed by the change in pressure across it. In other
words, its strength is given by the ratio p2/p1. If we assume the material through which this
shock is propagating is an ideal gas, Equations 2.164 through 2.166 can be combined with
the relationships provided in Equation 2.61 to yield expressions that relate all the values
ahead of the shock to values after the passage of the shock. The details of this are available
in the book by Cooper and Kurowski [16]. These expressions are as follows:
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The real power of these equations lies in the fact that with just the strength of the shock
known, we can determine all the other items of interest. In the aforementioned equations,
we have seen that given the pressure ratio (i.e., the strength) of the shock, we know the
temperature behind the wave and the increase in density across the wave. We can also
determine the wave speed U and induced velocity up through
FIGURE 2.26
Stationary shock wave moving into a stagnant fluid.
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If we change reference frames to one in which we are stationary and the shock is moving,
then the assumption of constant stagnation enthalpy h0 is no longer valid. The reason is best
illustrated by an example. Consider the gas ahead of the shock wave. It was initially
motionless, so h1 = h01. After the wave passes, we know that the temperature must increase,
so h2 > h1. Additionally, the gas is now moving at velocity up so that we can see

h1 = h01 < h02 = h2 +
1
2
u2p (2.172)

It is by this very same logic that the stagnation pressure, temperature, and density must
also increase.
We have discussed some governing equations, but let us break for a moment to discuss

why a gas shocks up. If we closely examine Equation 2.170, we see that a higher pressure
causes a faster motion of the wave. If we imagine a shock wave as depicted in Figure 2.27
moving to the right, we can pick out three points that we shall follow for some time. Point A
is essentially the beginning of the pressure increase and at the unshocked initial pressure.
Point B is at some pressure in between the peak pressure of the shock and the initial
pressure of the material into which the shock is propagating. Point C is at the peak shock
pressure. From Equation 2.170, we see that the local velocity of point B must be greater than
point A and that the local velocity of point C is greater still. This means that at some time t,
these points must converge, thereby forming a step discontinuity in pressure. This step
discontinuity is the way we model the shock—there is actually a very small distance over
which a shock will develop so that the pressure increase is rapid, but continuous. With this
information, we see that compression shocks are the only admissible shocks. Later we will
introduce rarefactions that are the converse of shocks. Since the pressure decreases in a
rarefaction wave, the wave will tend to spread out over time and distance.
Now that we have the governing equations, we shall examine the behavior of a shock

wave in a shock tube. A shock tube is a device as depicted in Figure 2.28 that contains two

p
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B B

C C

t, x

FIGURE 2.27
Formation of a shock wave.
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Equation 2.173 needs to be solved for the initial shock strength p2/p1, but afterward,
Equations 2.161 through 2.171 can be directly used to calculate the parameters of interest.
The details of this derivation can be found in the book by Cooper and Kurowski [16].
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FIGURE 2.29
Shock tube after some short time t. (From Anderson, J. D., Modern Compressible Flow with Historical Perspective,
McGraw-Hill, New York, 2003. With permission.)
separated by a diaphragm
and another at lower pressu
l) as can their temperatures.
lot showing that the pressur
gion 1, and the diaphragm
will propagate into the low
wave (to be discussed later
ressure. If we examine the s
as shown in Figure 2.29 wi
t interesting aspects of comp
the ideal gases in the shoc
he unsteady motion afterwa
e pressure behind the initial

Diaphragm

p1, T1, a1, γ1 14

p1

erson, J. D.,Modern Compressible Fl
.)
regions of gas. These regions are that can burst very quickly and
contain one gas at high pressure re. The gases could be different
(thus, all their properties as wel Below the graphic of the shock
tube is a pressure vs. distance p e in region 4 (the high-pressure
region) is greater than that in re divides the two regions. If the
diaphragm bursts, then a shock er pressure region, increasing
the pressure, and a rarefaction ) will propagate into the high-
pressure region, decreasing the p hock tube after some very short
time t, the situation will appear th the corresponding pressure–
distance profile. One of the mos ressible fluid flow is that if we
know what the initial states of k tube are, we can predict the
pressures and temperatures of t rd by Equations 2.161 through
2.171. In fact, we can predict th shock from

−2γ 4

p4, T4, a4, γ4

p
p4

FIGURE 2.28
Shock tube in its initial state. (From And ow with Historical Perspective, McGraw-
Hill, New York, 2003. With permission



60 Ballistics
The relationship between the incident shock velocity and the reflected velocity is derived
Cooper and Kurowski [16] and given by
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Here MaR is the Mach number of the reflected shock that can be converted to a velocity
through use of
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MaR =
UR + up

a2
(2.179)

In our discussions on shock waves throughout the terminal ballistics sections, we will
make use of time–distance diagrams, so-called t–x plots. It is prudent to introduce them
here as reinforcement of the shock wave discussion. A t–x plot places distance on the
abscissa and time on the ordinate. Because of this placement, which is opposite to the
the situation in Figure 2.30 and draw a t–x plot for it with the origin starting from the initial
diaphragm location, we would have a plot as depicted in Figure 2.31. We shall examine the
shocks in this diagram first. If we assume that the incident shock immediately forms (this is
not really true, as we learned earlier, but close enough for our purposes), it propagates
toward the wall that is located at point x2 in our figure. If we wanted to determine what the
velocity distribution was in this device at any time t, we would examine a horizontal line in
the figure. For instance, if we examined the situation at time t1, we would see that the
material in the unshaded region up to point x1 would have a velocity up, and everything
normal function vs. time plots, we need to adjust some of our logic that we have used to. For
instance, slopes of straight lines on these diagrams are reciprocal velocities. If we consider

between x1 and x2 (the wall) would have zero velocity. Once the incident shock reflects off
the wall, a new shock of velocity UR propagates back into the fluid. This is depicted by the
upper line in the diagram. Note that the slope is greater on this reflected shock, indicative of
a lower velocity than the incident wave. The material in the shaded region behind this wave
has been stagnated to zero velocity. We can use a t–x diagram to determine how a particle
moves over time. Consider a particle initially located at location x1. It remains stationary
until the shock wave passes by at time t1, as indicated by a vertical line. At time t1, the
incident shock passes it and induces a velocity up to the particle. When the particle moves at
velocity up, it will trace out a line on the diagram that has a slope of 1/up. While this particle
is moving at velocity up, the shock interacts with the wall and reflects at time t2. While the
reflected shock is approaching, the observed particle has no idea that anything is about to
happen and continues to move at velocity up until the reflected shock passes by at time t3.
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t
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x1 x2x3 x
FIGURE 2.31
t–x plot for the reflection of a shock wave. (From Anderson, J. D., Modern Compressible Flow with Historical Per-
spective, McGraw-Hill, New York, 2003. With permission.)
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This passage of the reflected shock stagnates the particle to zero velocity, and its motion (or
lack thereof) traces out a vertical line. A final point of interest regarding t–x plots is that we
can actually see the compression of the material. If we consider all the materials initially
between points x1 and x2, we see that after the passage of the shock and its reflection, it has
all been compressed to the region between x3 and x2. With this information, the basis for our
future discussions using t–x plots is established.
A rarefaction wave, sometimes known as an expansion or relief wave, is the means by

which nature handles a sudden drop in pressure. As we stated earlier, compression waves
(also known as condensations) eventually coalesce into shocks that are analyzed as step
discontinuities in pressure. This coalescence was brought about by the fact that the local
velocity increases with increasing pressure. In a rarefaction, the opposite is true. A rare-
faction increases over time because the pressure at the head of thewave is greater than that at
the tail of thewave. In the case of our shock tube, the head of the rarefactionwill propagate at
the local speed of sound in the material (a4 in Figure 2.29), while the tail will propagate at a
velocity (u3 − a3) that is equal to (up − a2). This is schematically depicted in Figure 2.32.
Throughout the rarefaction wave, the velocity continuously decreases between these two
values. Because of this continuous decrease in velocity, it is common tomodel the decrease as
a series of wavelets. The more wavelets we include, the smoother the curve. If we use Figure
2.32 to trace a particle path after the bursting of the diaphragm, we see that the particle
would not move until the head of the rarefaction wave passed by it. After the passage of the
head of thewave, the velocitywould continuously increase until the passage of the tail of the
wave, after which it would be moving at velocity up. The length of the rarefaction can be
determined at any time by scribing a horizontal line through the diagram. Ifwe do this at two
points in time on the diagram, we can see how the length of the wave increases.
t

Head slope = 1/UH = 1/(u4–a4) = –1/a4

Tail slope = 1/UT = 1/(u3–a3)

3

4

u = u4 = 0 
a = a4 4

3

u = u3
a = a3 

x = 0 is
diaphragm
location 

x

Particle path, 
slope = 1/u3 = 1/up

FIGURE 2.32
(See color insert.) t–x plot for a rarefaction wave.



the gases are directed 90° to the tube and the flow is steady.
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Answer: −2225.9 [N]
Problem 19
Some engineer gets the idea that if deflecting the muzzle gases to the side is a good idea,

then deflecting it rearward would be better (until, of course, an angry gun crew gets hold of
him/her). If the jet diameter is again 105 mm and the velocity and density of the gas (again
assume air) are 750 m/s and 0.457 kg/m3, respectively, find the force on the weapon in
Newtons assuming the gases are directed 150° to the tube and the flow is steady
(Figure 2.34).
Answer: −4153.5 [N]

F

FIGURE 2.33
Normal deflection of flow through a muzzle brake.
What is depicted in Figure 2.32 is a simple, centered rarefaction wave. A wave is con-
sidered simple if all the characteristics (the rays emanating from the origin) are straight.
Reflections of a rarefaction are somewhat more complicated than those of a shock. The
reflection of the head of the rarefaction wave must pass through the characteristics of the
rest of the wave being both affected by as well as affecting them. The result is that
the characteristics tend to bend, making the calculations somewhat more complex. We will
handle this in a simplified fashion later, but the interested reader is directed to Cooper and
Kurowski [16] for an outstanding treatment for handling these situations.
We now have sufficient information to handle the fluid mechanics of interior and exterior

ballistics. We shall treat the formation of shocks and rarefactions as necessary in the ter-
minal ballistics section.

Problem 18
The principle behind a muzzle brake on a gun is to utilize some of the forward momentum
of the propelling gases to reduce the recoil on the carriage. In the simple model that follows
(Figure 2.33), the brake is assumed to be a flat plate with the jet of gases impinging upon
it. If the jet diameter is 105 mm and the velocity and density of the gas (assume air) are
750 m/s and 0.457 kg/m3, respectively, find the force on the weapon in Newtons assuming
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Problem 20
Consider a shock tube that is 6 ft long with a diaphragm at the center. Air is contained
in both sections (g = 1.4). The pressure in the high-pressure region is 2000 psi. The pressure
in the low-pressure region is 14.7 psi. The temperature in both sections is initially 68°F.

F

30°
(typ.)

FIGURE 2.34
Rearward deflection of flow through a muzzle brake.
1. When the diaphragm bursts, determine the following:

a. The velocity that the shock wave propagates into the low–pressure region
Answer: 2798 [ft/s]

b. The induced velocity behind the wave
Answer: 1946 [ft/s]

c. The velocity of a wave normally reflected off the wall (relative to the
laboratory)
Answer: 1232 [ft/s]

d. The temperature behind the incident wave
Answer: 657 [°F]

2. Draw a t–x diagram of the event. Include the path of a particle located 2 ft from the
diaphragm.

Problem 21
An explosion generates a shock wave in still air. Assume we are far enough from the initial
explosion that we can model the wave as a one-dimensional shock. Assume that the
pressure generated by the explosion was 10,000 psi and the ambient atmospheric pressure,
density, and temperature are 14.7 psi, 0.06 lbm/ft3, and 68°F, respectively. Determine the
following:

1. The static pressure behind the wave (assume g = 1.4, and since we are far away
from the effects of the explosion, assume a1/a4 ≈ 0.5)
Answer: p2 = 376.6 [psi]



2. The velocity that the wave propagates in still air
Answer: U = 5294 [ft/s]

3. The induced velocity that a building would see after the wave passes
Answer: up = 4212 [ft/s]

4. The velocity of a wave normally reflected off a building
Answer: UR = 1921 [ft/s]
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3
Analytic and Computational Ballistics

Chapter 2 has provided us with the necessary background to discuss procedures that cal-
culate the behavior of projectiles and propellant in the gun tube. The chapter had to be brief
because detailed treatment of any one of the subjects could be (and is) collected into
complete texts in its own right. The reader is directed to the references at the end of the
chapter if a more complete background in the individual subject is felt to be necessary.
Much like other introductory texts on difficult subjects, this chapter shall begin with

fundamental treatments that will allow the reader to perform meaningful calculations of
interior ballistic problems. This simplified treatment will, by its very nature, not provide
exact answers but answers which are reasonable from an engineering viewpoint. As will be
discussed, more exact methods require a varying degree of computer assets.

3.1 Computational Goal

The interior ballistician is charged with devising a propellant charge that will deliver the
projectile of interest to the gun muzzle intact, with the desired muzzle velocity, with no
damage to the weapon from excess pressure and with high probability that successive
charges propelling the same projectiles will produce the same results. To do this, the bal-
listician must be able to predict a priori what the charge will do, i.e., what pressures will
both the gun and the projectile experience during travel down the bore and what the
velocity and acceleration profile would be during the travel to the muzzle. Over the cen-
turies, ballisticians, including some quite eminent mathematicians and physicists, have
devised computational schemes that can be used to make such predictions. We intend to
explore a few of these analytic tools in sufficient depth so that the physics and mathematics
become clear to the user, who would then also be able to discern reasonable answers from
patently erroneous ones.
It is important to understand how predictions of pressure and velocity are experimentally

verified in real guns. Such understanding has led to the development of pressure ratios that
allow the gun and projectile designers to knowwhat pressures are acting on the gun and on
the projectile at locations that practical instrumentation has some difficulty capturing.
Pressure is most readily measured at the base of the gun chamber, where the gas flow is
minimal or nonexistent. When pressure taps are introduced along the bore to take mea-
surements while the projectile is traveling and the gases are flowing, it has been found that
turbulent flow and shock waves make such measurements difficult to interpret. Copper
crusher gauges are used in which small copper cylinders are crushed to a barrel shape in the
gauge by the applied pressure and the distortion of the cylinders measured. These gauges
are placed in the base of the charge and recovered after firing. Distortion is checked against
a calibration chart and the pressure is quickly read. Of course, pressure measured in this
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way is representative only of the maximum pressure sensed by the gauge, which gives no
indication of its profile in time or in travel.
Even such a primitive measurement was and still is of use; because the designer would

know the maximum pressure, the projectile and gun would have to contend with an
indication that piezo-type pressure gauges are properly functioning. These gauges are still
widely used to check the pressure consistency of already developed charges. Knowledge of
how that copper pressure was related to pressures at other locations during the travel was a
great advance. When pressure ratios were devised that related chamber pressure to the
pressure at the base of the projectile during its travel down the bore, these were greatly
appreciated by the designers. Even better was the introduction of electronic piezo gauges
installed through the breech that allowed the measurement of pressure over time so that a
pressure–time profile could be available. The study of a few of the computational theories
that develop these ratios follows in succeeding sections.

3.2 Lagrange Gradient

To determine the time-dependent motion of the projectile, we need to make some
assumptions about the behavior of the gas pushing it out of the gun. These assumptions will
involve the pressure, mass, and density distribution of the gas. We shall refer to the sketch
in Figure 3.1 in the text that follows. We shall continue to use x as the distance from the
projectile base position at the seating location to its position at all later times with the time
derivative defined as

dx
dt

= _x = V (3.1)

pmax

pmuz

xpmax

x = L x

p

p
pB

pS

FIGURE 3.1
Pressure–distance relationship in a typical gun firing.
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Wewill first assume that the gas density is uniform in the volume behind the projectile at
time t. We can then write, for any time t, that

r = r xg, t
� �

(3.2)

In this equation, xg is the x-location of the gas mass center behind the projectile. We shall
also assume that there is no spatial gradient in density at any time; thus,

∂r
∂xg

�����
t

= 0 (3.3)

We can also write the continuity equation for a compressible fluid as

∂r
∂t

+
∂

∂xg
rVxg

� �
= 0 (3.4)

We can expand the continuity in Equation 3.4 as

∂r
∂t

+
∂r
∂xg

Vxg
+ r

∂Vxg

∂xg
= 0 (3.5)

Inserting our assumption of the absence of a spatial density gradient allows us to simplify
this expression to

∂r
∂t

+ r
∂Vxg

∂xg
= 0 (3.6)

Now because we stated that the density was not a function of x, we can remove the partial
derivative notation from the temporal term and rearrange to yield

1
r
dr
dt

=
∂Vxg

∂xg
(3.7)

Assume at this point that the solid propellant in the charge has all turned to gas; then,
what was initially a solid propellant of charge weight c is now a gas of identical weight c. So
the gas density is this weight divided by the volume the gas occupies or

r tð Þjc
c

V tð Þ (3.8)

Here, the subscript c refers to conditions after the charge has burned out, i.e., all the solid
has evolved into gas. If the base of the projectile has moved a distance x and the bore area is
A, then the volume behind the projectile containing gas is

V tð Þ = Ax tð Þ (3.9)

If we insert Equation 3.9 into Equation 3.8 and then take the derivative with respect to
time, the result can be simplified to

1
x
dx
dt

=
∂Vxg

∂xg
(3.10)
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Note that there is a difference here between x and xg:

• x is the location of the base of the projectile.

• xg is the location of the mass center of the gas.

If we integrate Equation 3.10 with respect to xg and use the boundary conditions ofVxg = 0
when xg = 0, then we get

xg
x

dx
dt

= Vxg xg
� �

(3.11)

Now, since x is the position of the base of the projectile at time t, we see that dx/dt is the
velocity of the projectile at time t, so we can write

V
x
=
Vxg

xg
(3.12)

This implies that the gas particle velocity linearly varies from the breech face to the
projectile base and is a fundamental tenet of the Lagrange* approximation. We can describe
the kinetic energy of the gas stream as

KEg =
1
2
mgV

2
xg (3.13)

But, as described earlier, the mass of the gas is its density times the volume it occupies at
time t; therefore,

KEg =
ðx
0

1
2
rAV2

xgdxg (3.14)

Moving the spatially constant terms rA/2 outside the integral and performing the inte-
gration gives us

KEg =
rA
2

V2

x2
x3g
3

�����
x

0

=
1
6
rAxV2 (3.15)

But we know from our earlier work that

rAx = c (3.16)

So we can write

KEg =
1
6
cV2 (3.17)

The total kinetic energy of the system (neglecting recoil) is

KEg =
rA
2

V2

x2
x3g
3

�����
x

0

=
1
6
cV2 (3.18)

But the kinetic energy of the projectile is

KEshot =
1
2
wpV

2 (3.19)

* Joseph-Louis Lagrange, 1736–1813, Italian French mathematician.

70 Ballistics



where wp is the projectile mass.
So the Lagrange approximation for kinetic energy is

KEtot p p= + = +⎛
⎝
⎜

⎞
⎠
⎟

1
2

1
6

1
2 3

2 2 2w V cV w
c

V (3.20)

In this development, the volume of gas is assumed to be a cylinder of cross-sectional area
A. In reality, it is not; while the bore is cylindrical, the chamber is not. Chamber diameters
can be much greater than bore diameters. To account for this, an effort to modify the
Lagrange gradient approximations has been performed [1]. This will be subsequently
explored. The changes from the Lagrange gradient will be found to be small but not
insignificant and the so-called chambrage gradient will be explained in Section 3.3 and
incorporated in the discussion of numerical methods in Section 3.4.
We can describe the linear momentum of the gas stream as

Momg = mgVxg (3.21)

But, again, the mass of the gas is its density times the volume it occupies at time t;
therefore,

Momg =
ðx
0

rAVxgdxg (3.22)

We can use our continuity relationship in Equation 3.11 to write

Mom  
d
d

 d  dg
g

g g=
⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟∫ ∫ρ ρA

x
x

x
t

x A
x
x

V x
x

g
x

0 0

(3.23)

Performing the integration gives us

Momg = rA
V
x
x2g
2

�����
x

0

=
1
2
rAxV (3.24)

If we recall Equation 3.16, we can write

Momg =
1
2
cV (3.25)

The total linear momentum of the system (neglecting the weapon) is

Momtot = Momshot + Momg (3.26)

The linear momentum of the projectile is

Momshot = wpV (3.27)

So the Lagrange approximation for linear momentum is

Momtot p p= + = +⎛
⎝
⎜

⎞
⎠
⎟w V cV w

c
V

1
2 2

(3.28)

Because we are looking for the parameters, we can readily measure breech pressure and
muzzle velocity, and we must develop predictive equations for them, i.e., equations for
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pressure in terms of charge parameters and equations of motion of the projectile. To do this,
we adopt a Lagrangian approach to track the motion of a particle of gas. What follows is a
derivation for the equation of motion for an element of gas. For a rigorous, complete
treatment, see any text on fluid mechanics, for example, that of Panton [2].
For differentiation that tracks a fluid element (the Lagrangian approach), the following

differential operator (called the substantial derivative or material derivative) is used:

D
Dt

=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(3.29)

where u, v, and w are the velocity components in the x, y, and z directions, respectively.
If we consider a one-dimensional flow operating on the velocity Vxg(x) (here Vxg is the

axial velocity and replaces u in Equation 3.29),

DVxg

Dt
=
∂Vxg

∂t
+ Vxg

∂Vxg

∂x
(3.30)

In vector notation, the gradient of a function is

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(3.31)

Force is the time rate of change of momentum:

F =
∂

∂t
(mv) (3.32)

It can be shown using Gauss’s theorem [3] that the rate of change of linear momentum of
the fluid inside a surface S in changing to surface S′ in time dt isð

V

r
dv
dt

dV (3.33)

From the equations of motion for an inviscid fluid, we know that the total force equals the
pressure on the boundary element integrated over the boundary plus the body force F
integrated over the mass in S orð

S

pndS +
ð
V

FrdV = −

ð
V

∇ pdV +
ð
V

FrdV (3.34)

Because by Gauss’s theorem, ð
S

pndS¼ −

ð
V

∇ pdV (3.35)

By setting the right-hand side (RHS) of Equation 3.35 equal to Equation 3.33, we getð
V

Fr −∇p − r
dv
dt

� �
dV = 0 (3.36)

Since V is arbitrarily chosen, the sum in brackets must equal zero:

Fr −∇p − r
dv
dt

= 0 (3.37)
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In the absence of a body force F, we can rewrite this as

dv
dt

=
1
r
∇p (3.38)

We can write Equation 3.38 as follows for one-dimensional flow and negligible body
forces:

dp
dxg

= −r
∂Vxg

∂t
+ Vxg

∂Vxg

∂xg

" #
(3.39)

Note here that we have used the substantial derivative for the velocity of the gas stream.
If we insert the relationship for the gas stream velocity we obtained through the conti-

nuity Equation 3.11 into Equation 3.39, we can write

d
d

d
dg

g

g
g

gp
x t

x
x

x
t

V
V

x
x

x= − ⎞
⎠
⎟

⎛

⎝
⎜ +

⎡

⎣
⎢

⎤

⎦
⎥ρ ∂

∂
∂
∂

(3.40)

or

d
d

d
d

d
d

d
dg

g g

g

gp
x t

x
x

x
t

x
x

x
t x

x
x

x
t

= − ⎞
⎠
⎟

⎛

⎝
⎜ + ⎞

⎠
⎟

⎛

⎝
⎜

⎡

⎣
⎢
⎢

⎞
⎠
⎟

⎛

⎝
ρ ∂

∂
∂
∂ ⎜⎜

⎤

⎦
⎥ (3.41)

We can combine terms in Equation 3.41 as follows:

d
d

d
d

d
d

d
dg

g g
2

gp
x

x

x
x
t

x
x

x
t

x

x
x
t

= − − ⎛
⎝
⎜

⎞
⎠
⎟ + +

⎡

⎣
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥
⎥

ρ 2

2

2 2

2

(3.42)

Simplifying the expression gives us

dp
dxg

= −r
xg
x

d2x
dt2

 or 
dp
dxg

= −r
xg
x
€x (3.43)

If we use our relationship between density and charge weight in Equation 3.8, we can
write

dp
dxg

= −
cxg
Ax2

€x (3.44)

We can integrate this expression with respect to the gas mass center as

ðxg
0

dp
dxg

dxg = −
c

Ax2
€x
ðxg
0

xgdxg (3.45)

Performing the integration yields

p = −
cx2g
2Ax2

€x + constant (3.46)

Let us now define pS as the pressure at the projectile base; pB as the pressure at the breech;
�p as the mean pressure in volume behind projectile; and pR as the pressure resisting pro-
jectile motion (force/bore area).
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We will develop the equations of motion both with a resistive force in the bore (such as
friction and the air being compressed in front of theprojectile) andneglecting the resistance. If
wewriteNewton’s second law for a projectile being acted upon by propellant gases,we have

w€x = ApS (3.47)
Writing this in terms of the acceleration, we get

€x =
A
w
pS (3.48)

where w is the projectile mass. Since the base of our projectile is at location x and the local
pressure on the base is pS, we can substitute these values into Equation 3.46 for xg and p to
obtain

pS = −
c
2A

€x + constant (3.49)

Keep in mind that this is a local condition that we applied to the gas in the vicinity of the
base (that the mass center of the gas is approximately at x). We can rearrange Equation 3.49
to yield our constant of integration:

constant = pS +
c
2A

€x (3.50)

If we use Equation 3.48, we obtain

constant = +S Sp
c
A

A
w

p
c
w

p
2

1
2

= +⎛
⎝
⎜

⎞
⎠
⎟ (3.51)

Inserting this constant back into Equation 3.46 gives us

p
cx

Ax
x

c
w

p
cx

Ax
A
w

p
c
w

= − + +⎛
⎝
⎜

⎞
⎠
⎟ = − ⎛

⎝
⎜

⎞
⎠
⎟ + +⎛

⎝
⎜

⎞g
S

g
S

2

2

2

22
1

2 2
1

2 ⎠⎠
⎟pS (3.52)

or

 +
2

S S
g
2

p p p
x

x
c
w

= −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1 2 (3.53)

This equation relates the pressure at the base of the projectile to that at the location of the
gas mass center. By similar logic, at the breech, xg = 0 and the pressure p = pB, so we can
substitute the values into Equation 3.53 to obtain a relationship between the breech pressure
and the pressure at the projectile base:

 = +
2

= 
2

B S S S p p p
c
w

p
c
w

1+⎛
⎝
⎜

⎞
⎠
⎟ (3.54)

The space-mean pressure is formally defined as

�p =
1
x

ðx
0

pdxg (3.55)

If we insert Equation 3.53 into this equation, we get

p
x

p p
x

x
c
w

x
x

= + −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫1

1
22

0

S S
g
2

gd (3.56)
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Solving this integral, inserting the limits of integration, and simplifying yields

�p =
1
x

pSxg + pS
c
2w

xg − pS
c
2w

x3g
3x2

" #x
0

(3.57)

Inserting the limits of integration gives us

�p = pS +pS
c
2w

−
1
3
pS

c
2w

(3.58)

By simplifying, we get

p p
c
w

= S 1
3

+⎛
⎝
⎜

⎞
⎠
⎟ (3.59)

This equation relates the space-mean pressure to the base pressure acting on the pro-
jectile. We now have equations that relate breech pressure to base pressure (Equation 3.54)
and space-mean pressure to base pressure (Equation 3.59). What is missing is a relationship
between breech pressure and space-mean pressure. We can arrive at the desired result by
dividing Equation 3.59 by Equation 3.54, simplifying to yield
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For easier manipulation, it is sometimes desirable to expand Equation 3.60 in a Taylor
series, which, neglecting higher-order terms, would be

�p
pB

= 1 −
c
6w

+ � � � (3.61)

To account for the effects of bore resistance, we again write Newton’s second law for a
projectile being acted upon by propellant gases and bore friction as

w1€x = A(pS − pR) (3.62)

Here we have used w1 to represent the mass of the projectile (you will see why later) and
have included a resistive pressure pR that fights the gas pressure. Note that the resistive
pressure is simply the resistive force divided by the bore cross-sectional area so that the
terms in the preceding equation can be conveniently grouped—it is not actually a pressure
at all. Writing this in terms of the acceleration, we get

€x =
A
w1

pS − pRð Þ (3.63)

Again, since the base of our projectile is at location x and the local pressure on the base is
pS, we can substitute these values into Equation 3.46 for xg and p to obtain

pS = −
c
2A

€x + constant (3.64)

Remember that this is a local condition that we applied to the gas in the vicinity of the
base where the mass center of the gas is approximately at x.
Following the same procedure that we used to arrive at a general expression for pressure,

but nowwith bore resistance, we rearrange Equation 3.64 to find the constant of integration
and, with simplification, arrive at
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constant = pS+
c
2A

€x (3.65)

If we use Equation 3.63, we obtain
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Inserting this constant back into Equation 3.64 gives us
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or
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or
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which relates the pressure at the base of the projectile to the pressure at the gas mass center,
but with the effect of bore friction included. Having this general equation, we can again
proceed as we did earlier to find equations that relate breech to base pressure, space-mean
to base pressure, and space-mean to breech pressure for the bore friction case. These are

pB = pS +
c

2w1
pS −

c
2w1

pR (3.70)
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If we plot breech, space-mean, and base pressure vs. x, the position of the projectile base,
we shall see that a gradient of pressure exists in which the breech pressure is always the
greatest and the base pressure is always the smallest. This is the so-called Lagrange gradient
and is fundamental to our modeling of the propellant gas. There are instances where this
gradient is reversed, and this usually means that we have a problem—a so-called negative
delta-p. This is indicative of a fragmented propellant charge caused by poor ignition. A
charge designed to move with the accelerating projectile, the traveling charge, is a notable
exception.
We are essentially prepared now to treat the F in the equation F = ma, which is, in its

simplest form, the base pressure times the base area. We now need to determine what
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generates the pressure, what the acceleration of the projectile will be, and how the accel-
eration and the ever-increasing volume behind the projectile affect the pressure. To do this,
we shall review the equations from our initial discussions of propellant burning as well as
revisit our notation before moving on to combining everything into the equations of motion
of the projectile.
We have previously defined the following quantities and shall simply list them here for

ease of reference. The first quantity is the acceleration €x of the projectile. The pressure acting
on the base of the projectile is the stimulus that causes the acceleration: pS(t) is the pressure
at the base of the projectile at time t.
We usually measure pressure at the breech of the weapon, and it is this pressure that we

are determining when we examine the burning of the propellant. We need to constantly
refer this breech pressure to the base pressure. We do this by invoking the Lagrange gra-
dient assumption, keeping in mind that we begin by neglecting bore resistance:

 = 
2

B S p p 1+⎛
⎝
⎜

⎞
⎠
⎟

c
w

(3.73)

We can write Newton’s second law for the force on the projectile base as

w€x = pSA (3.74)

If we substitute our Lagrange gradient into this equation to put it in terms of the breech
pressure and the projectile velocity, we can write

w V
t

d
d

= Bp
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w

A
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2
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⎞
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⎟

(3.75)

If we want to include losses, w can be replaced by w1, an effective projectile mass that can
be thought of as an added mass due to the combination of resistance of bore friction,
engraving by the rifling, resistance due to compression of the air ahead of the shot, etc.
Then, we have

w1 B
d
d

+⎛
⎝
⎜

⎞
⎠
⎟ =c V

t
p A

2
(3.76)

The burning of the propellant generates the pressure that pushes on the projectile. Let us
now recall the equation that relates the amount of propellant turned to gas

f = 1 − fð Þ 1 + qfð Þ (3.77)

Also recall that the rate of gas evolution (burning) is a function of the pressure

D
df
dt

= −b�p ≈ bpB (3.78)

In our earlier study of solid propellant combustion, we developed an equation of state for
the gas that related f to the pressure and the distance the projectile traveled

pB x + lð Þ = clf
A

1 +
c

2w1

1 +
c

3w1

2
64

3
75 (3.79)
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Finally, we have our equation of motion for the projectile:

w1 B
d
d

+⎛
⎝
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⎠
⎟ =c V

t
p A

2
(3.80)

whose initial conditions are x = 0, V = 0, and f = 1 at t = 0.
These equations may be manipulated to determine the parameters of interest as functions

of the fraction of the remaining web f = f(t): x is the projectile travel; V is the projectile
velocity; and pB is the breech pressure
If we combine Equations 3.79 and 3.80, eliminating the breech pressure between them, we

can write
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We can rearrange this to get the equation in terms of the projectile acceleration:
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This can be integrated, resulting in
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If we insert the initial conditions that V = 0 when f = 1, Equation 3.83 yields
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This gives us
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From the preceding equation, we can rearrange Equation 3.82 as follows:
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We can now substitute our relationship between velocity and fraction of web remaining
(Equation 3.86) into our projectile equation of motion (Equation 3.80), algebraically sim-
plifying it and inserting the relationship for base pressure (Equation 3.79) to yield
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This may be rearranged to obtain
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Using the chain rule transformation between distance and time,

df
dt

=
df
dx

dx
dt

= V
df
dx

(3.89)

This can be written as

df
dx

=
1
V

df
dt

(3.90)

Now let us substitute Equations 3.85 and 3.88 into Equation 3.90 and simplify the result to
yield

d
d

 
1

1

f
x

w c
A D x l f

= −
+ −

+⎛
⎝
⎜

⎞
⎠
⎟

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2

2 2

2

1

1
2

1
3

λφβ
( )( )

c
w
c
w ⎥⎥

(3.91)

To examine the rate of change of f, the fraction of web remaining, with the travel distance
x, we take the reciprocal of Equation 3.91:
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Here l is an initial chamber length, to be described subsequently.
By inserting the relationship between f and f, from Equation 3.77, we get
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Equation 3.93 is cumbersome, and following Corner [4], we find that we can define a
dimensionless central ballistic parameterM that is a function of the gun, the charge, and the
projectile, i.e., the system
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This simplifies our distance–web fraction relationship to

dx
df

= −M
x + lð Þ
1 + qfð Þ (3.95)

The dimensionless nature of M can be shown if we note that c and w1 are mass units. We
can also write the units of the burning rate coefficient as

b½ � = D
pB

df
dt

� �
⇒ b½ � = L2T

M

� �
(3.96)

The units of the propellant force l are

l½ � = energy
mass

h i
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ML
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Using these in our definition of the central ballistic parameter, we can show
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thereby demonstrating that M is dimensionless. Equation 3.95, repeated here,

dx
df

= −M
x + lð Þ
1 + qfð Þ (3.95)

shows how M relates the burning of the propellant f with the expansion of the volume
represented by x, the travel. A similar concept appears in all interior ballistic theories.
We are now in a position to compute the parameters that the interior ballistician really

seeks, the velocity of the projectile and the concomitant instantaneous breech pressure for
each point along its travel down the tube. If we wish to know the pressure on the base of the
projectile or the space-mean pressure in the volume behind the projectile, we only need to
apply the appropriate Lagrange approximation to the breech pressure. This is an extraor-
dinary result. By simply understanding the amount of propellant burnt and some gun or
propellant or projectile data, we have determined everything we need to know about the
interior ballistics.
We can now take the distance–web fraction relationship and directly integrate it. But we

must examine two distinct cases for q, the form factor of the grain. One where q ≠ 0 and one
where q = 0. Let us separate the variables in Equation 3.95 to obtain

dx
x + lð Þ = −M

df
1 + qfð Þ (3.99)

Then, we can write for q ≠ 0

ðx
0

dx
x + lð Þ = −M

ðf
0

df
1 + qfð Þ (3.100)

or for q = 0

ðx
0

dx
x + lð Þ = −M

ðf
0

df (3.101)
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The evaluation of the integral Equation 3.100 for q ≠ 0 gives us

ln x + lð Þ = −
M
q

ln 1 + qfð Þ + ln Kð Þ = ln K 1 + qfð Þ−M
q

� �
(3.102)

Solving for K with the initial conditions f = 1 at x = 0, we get

K = l 1 + qð ÞMq (3.103)

This constant, when inserted into the original Equation 3.102, gives us
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In a similar fashion, we can evaluate Equation 3.101 to give us the distance–remaining
web fraction relation for q = 0:

x + l = leM 1−fð Þ (3.105)

We now know how the web fraction f varies with distance and have, incidentally, shown
the algebraic simplification inherent in the central ballistic parameter M. We can now
pursue a relationship between pressure and web fraction. If we look at Equation 3.88, we
see the quotient on the RHS and note that this frequently occurs. We define it as our
Lagrange ratio RL, another simplification:

RL =
1 +

c
2w1

1 +
c

3w1

(3.106)

This will allow us to rewrite Equation 3.79 in a simpler form as

pB x + lð Þ = clf
A

RL (3.107)

Wewill make an assumption that the chamber and bore diameters are the same and relate
the volume behind the projectile to a fictitious chamber length l. (We will correct this
subsequently when we examine the chambrage gradient.)

Vi = Al = U −
c
d

(3.108)

In this expression,U is the empty chamber volume and c/d is the volume occupied by the
solid propellant charge.
We continue by substituting Equations 3.108 and 3.77 into Equation 3.107 and rear-

ranging to give our relationship between the breech pressure and the fraction of remaining
web for q ≠ 0.
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(3.109)

We can also proceed in similar fashion for q = 0 by substituting Equations 3.105 and 3.77
into Equation 3.107 to find the relationship between the breech pressure and the fraction of
remaining web.
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pB =
lcRL

Vi
1 − fð Þ 1 + qfð Þ exp −M 1 − fð Þ½ � for q = 0 (3.110)

In summary, we now have the definition of the central ballistic parameter (Equation 3.94)
and equations that relate velocity as a function of remaining web (Equation 3.85) and travel
as a function of remaining web for different form functions (Equations 3.104 and 3.105) as
well as breech pressure as a function of remaining web for different form functions
(Equations 3.109 and 3.110). With these, we can now integrate the governing equations and
find solutions for velocity at peak pressure, at all-burnt point of travel, and at muzzle exit.
Equations 3.109 and 3.110 are somewhat cumbersome to work with, so we shall define a

parameter Q as follows:
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Then we can rewrite Equation 3.109 in a more compact way:
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The maximum or peak pressure attained is then found by taking the first derivative of pB
with respect to f and setting it equal to zero:
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Let us solve Equation 3.113 for f. By introducing the subscript m to denote maximum, we
obtain the product of two terms:

1 + qfmð Þ M + qð Þ 1 − fmð Þ − 1 + qfmð Þ½ � = 0 (3.114)

In solving this, we have two choices here, either

1 + qfmð Þ = 0 or  M + qð Þ 1 − fmð Þ − 1 + qfmð Þ½ � = 0 (3.115)

The first would only be admitted for the special case of q = −M; thus, our criterion for
determination of fm is

M + qð Þ 1 − fmð Þ − 1 + qfmð Þ = 0 (3.116)

and

fm =
M + q − 1
M + 2q

(3.117)

Equation 3.117 works for all values of q. If we want to determine fm, the fraction of
propellant burnt at peak pressure, we call on our relationship between f and f (Equation
3.77). Here we have denoted peak values with the subscript m:

f = 1 − fð Þ 1 + qfð Þ (3.118)
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Substitution of Equation 3.117 into the preceding equation yields
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This, when simplified, gives

fm =
1 + qð Þ M + q + q M + qð Þ½ �

M + 2q½ �2 =
1 + qð Þ M + qð Þ 1 + qð Þ½ �

M + 2q½ �2 (3.120)

or the following (valid for all q):

fm =
M + qð Þ 1 + qð Þ2

M + 2q½ �2 (3.121)

In designing a gun (and for other reasons), it is desirable to know where a projectile is in
its travel down the bore when the pressure is at a maximum. This involves substitution of
Equation 3.117 into Equation 3.104, and for the case where q ≠ 0, this yields
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Simplifying, we finally get

xm + l = l
M + 2qð Þ
M + qð Þ

� �M
q
 for q ≠ 0 (3.123)

For the case where q = 0, we substitute Equation 3.117 into Equation 3.105, which we
rewrite as follows:

xm + l = l exp M 1 − fmð Þ½ � (3.124)

On substitution, we get
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Simplifying this result and substituting q = 0 into it gives us

xm + l = le for q = 0 (3.126)

for a zero form factor.
Knowing now the position of the peak pressure in the bore, we can then ask what the

breech pressure would be at this point. We can insert the value we have for the fraction of
remaining web at peak pressure fm back into the breech pressure equation for q ≠ 0
(Equation 3.109):

p Q f f
f

M

Bm m m
m= − +

+
+

⎛
⎝
⎜

⎞
⎠
⎟( )( )1 1

1
1

θ θ
θ

θ (3.127)

Analytic and Computational Ballistics 83



With considerable algebraic simplification including substituting the values for Q, and
the Lagrange ratio RL for the case q ≠ 0, we finally arrive at
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Following a similar procedure, we now insert the value we have for the fraction of
remaining web at peak pressure fm into the breech pressure equation for q = 0 (Equation
3.110):

pBm
= Q 1 − fmð Þ exp −M 1 − fmð Þ½ � (3.129)

Then, substituting for Q and RL and simplifying, we see that we have characterized the
breech pressure at the instant that peak pressure is achieved down the bore:
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Determining the breech pressure and travel when the solid grains have been completely
consumed is also of considerable interest. We shall use the subscript c to represent charge
burnout. If the charge is designed properly, it will burn out somewhere in the bore which
allows us to extract most energy from the propellant and reduce the muzzle blast. Recall
from our previous discussions that at t = 0, x = 0, f = 1, and f = 0, but at the all-burnt point
(subscript c), t= tc, x= xc, f= 0, and f= 1. Ifwe substitute f= 0 in Equations 3.109 and 3.110,we
obtain the breech pressure at the instant of charge burnout:
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and
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The travel of the projectile at burnout is a data point we usually want to know because if
this distance turns out to be longer than the barrel length, then the charge is not completely
burnt when the projectile exits. If we substitute f = 0 in Equations 3.104 and 3.105, we obtain
the position of the projectile at the instant of charge burnout

xc + l = l 1 + qð ÞMq  for q ≠ 0 (3.133)
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and

xc + l = leM for q = 0 (3.134)

It is a good idea to use these equations first to see whether the propellant burns out in the
tube with the parameters we have designed into the grain. Still-burning grains leaving the
tube signify a poorly designed charge. For completeness, however, if charge burnout
happens outside the bore, the pressure at the breech location when the projectile leaves the
muzzle may be calculated by evaluating f at the muzzle through Equation 3.104 or 3.105
and using this value to calculate pB from Equation 3.109 or 3.110. The muzzle velocity could
then be obtained from Equation 3.85.
If charge burnout is, as desired, in the bore, recall that there is still a net force (pressure)

pushing on the projectile. A simple means of calculating this pressure is to assume that the
process occurs so quickly that it is essentially adiabatic and that the gas behaves as an ideal
gas. With these assumptions and the initial conditions that the pressure is pBc and the
distance is xc, we have a closed form solution to the problem. It is vitally important to note
that the expansion of the gas after charge burnout is neither adiabatic nor isentropic;
however, the result is usually within about 5% with respect to pressure. The isentropic
relationships for an ideal gas are
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This equation relates pressure to specific volume in a general way, but we need to involve
the projectile travel as well. We can express the volume behind the projectile as a function of
distance as

V xð Þ = x + lð ÞA (3.136)

Then, the specific volume of the gas is this value divided by the mass of the gas, which we
know is still c after burnout. Thus, we can write Equation 3.136 in its intensive form as

v xð Þ = x + lð Þ A
c

(3.137)

Furthermore, we can specialize this to the point at which the charge burns out and write

v xcð Þ = xc + lð Þ A
c

(3.138)

We can now tailor Equation 3.135 to our needs by substituting the conditions at burnout
as our reference conditions
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This condition occurs often, so we define

r(x) =
x + l
xc + l

(3.140)
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which can be written in a more compact form as

�p xð Þ
�pc

= r xð Þ−g (3.141)

A sketch of this situation is depicted in Figure 3.2.
These extensive preparations have finally brought us to the goal of interior ballistics and

the design of a gun system—imparting a desired velocity to a projectile and being able to
repeat that process at will. We have developed the means for predicting how the propellant
burns over time, how the breech, space-mean, and base pressures vary with time, and
where the projectile moves to in relation to these pressures. Now we will focus on the
velocity of the projectile during this ballistic cycle. Recall that the kinetic energy of the
projectile plus the gas losses was written as
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The work done on the projectile and the gas from charge burnout to the point of interest
(usually muzzle exit) is

W = A
ðx
xc

�p dx (3.142)

Combining Equations 3.20 and 3.142 and inserting Equation 3.139 yields
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We must keep in mind that we are using space-mean pressure here because the work is
being done on both the projectile and the gas. We can use any of breech, space-mean, and
base pressures (with the appropriate relationship) because we know each in terms of the
others. Integrating and rearranging, we get
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FIGURE 3.2
Position of projectile at charge burnout.

86 Ballistics



Evaluation of the limits of integration yields
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By rearranging and inserting Equation 3.132 into the preceding equation, we get a
velocity relationship after burnout for q = 0:
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But recall that the volume Vi = Al, and if we define
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we can write
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Here again we revert to the cases of the form factor being zero or not zero and examine the
former first. Recall Equation 3.105. For conditions after charge burnout, there is no
remaining web ( f = 0), so we can write

xc + l = leM for q = 0 and f = 0 (3.149)

Rearranging this and substituting it into Equation 3.149 yields
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This allows us to calculate the velocity of a projectile after burnout of the web for q = 0.
The case for nonzero q requires further examination andmanipulation. In Equation 3.85, we
had a general expression for velocity as a function of remaining web. After burnout, this
becomes

V x
AD

w
c

( )c =
+⎛

⎝
⎜

⎞
⎠
⎟β 1

2
(3.151)

Since we are working with kinetic energy, squaring this gives
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We defined the central ballistic parameterM in Equation 3.94 and can rearrange it for our
purposes into the form
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When this is compared with Equation 3.152, we conclude that
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This is an important result—it says that just by knowing the physical parameters of the
weapon, projectile, and charge, one can predict the projectile velocity at charge burnout.
With this result and continuing the examination for nonzero q, we can then say that
Equation 3.150 is valid for any q. If we solve Equation 3.150 for the velocity at any point V
(x), insert Equation 3.154, and rearrange the terms, we get
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This result along with our earlier work now allows us to determine projectile velocity at
all points in the gun for charge grains of all form factors both before and after burnout.
We have been through many derivations that have led us to the essentials of interior

ballistics—breech pressure and velocity in terms of projectile travel. These results, fur-
thermore, are in closed form, accessible to computation by hand calculator. Specialized
pressures, space-mean pressure, and projectile base pressure may be computed from the
breech pressure data by using the Lagrange approximations. Projectile design and gun
design proceed from these equations. In the following sections, we shall discuss refinements
to the Lagrange formulation with an emphasis on the use of modern computer programs
that take the drudgery out of hand calculation and provide the ability to iterate solutions for
small changes in the parameters.

Problem 1
You are asked to analyze the pressure of a charge zero (igniter) firing in an M31 boom for a
120 mm mortar projectile. You decide to examine it as a closed bomb first. Assume we have
59 g of M48 propellant (properties given in the following). The volume of the closed bomb is
5.822 in.3. The propellant grains are balls (roughly spherical)with a diameter (web) of 0.049 in.

M48 propellant properties:

• Density r = 0:056
�
lbm
in:3

�
• Ratio of specific heats g = 1.21

• Covolume b = 26:72
�
in:3

lbm

�
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• Isochoric flame temperature T0 = 3720°F

• Burn rate exponent a = 0.9145

• Average burn rate coefficient b = 0:0095
in:

s psi0:9145

� �

• Burn rate D
df
dt

= 40:341
in:
s

� �

• Force constant l = 391, 000
ft lbf
lbm

� �

1. Come up with the equation for the web fraction f as a function of time.

Answer: f = (1 − 823.29t) [%]

2. For a sphere, the fraction of propellant burnt has the functional form f = 1 − f3;
write this in terms of time and f.
Answer: f = 2470t − 2,033,419t2 + 558,031,251t3

3. Determine how long it will take for the propellant to burn halfway through and all
the way through.

Answer: The time to burn through halfway is 0.6 ms

4. Using the Noble–Abel equation of state, determine the pressure in the vessel when
half of the propellant is burnt and when all the propellant is burnt. Note that this
cannot occur usually as the propellant is a charge zero firing that is vented into the
main ullage volume behind the mortar bomb (significantly greater volume).

Answer: p = 258, 746
lbf
in:2

� �

Problem 2
If we use the Lagrange approximation in the examination of a 155 mm projectile launch,
what is the average pressure in the volume behind a 102 lbm projectile if the breech pressure
is 55,000 psi? The propelling charge weighs 28 lbm.

Answer: �p = 52, 787
lbf
in:2

� �

Problem 3
A 120 mm projectile is to be examined while in the bore of a tank cannon at a time of 4 ms
from shot start. Over this time period, the projectile has acquired an average velocity of
1000 ft/s. The propellant grain (M15) is single perf (q = 0) with a 0.034 in. initial web. The
covolume of the propellant is 31.17 in.3/lbm. The density of the propellant is 0.06 lbm/in.3.
If the projectile weighs 50.4 lbm, the propellant weighs 12.25 lbm and the chamber volume
is 330 in.3. At this time, 0.02 in. of theweb remains. The propellant force is 337,000 ft·lbf/lbm.
Determine the breech pressure in the weapon. Be careful with the units!

Answer: pB = 21, 784
lbf
in:2

� �
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Problem 4
The Paris gun was a monstrous 210 mm weapon designed by Germany during the First
World War to bombard Paris from some 70 mi away. It was unique in that it fired the first
exoatmospheric projectile ever designed. The weapon had a chamber volume of 15,866 in.3.
Very little of the projectile protrudes into the chamber after it seats (so ignore the volume the
base occupies). The length of travel for the projectile from shot start to shot exit is 1182 in.
The projectile weighs 234 lb. The propelling charge weighs 430.2 lb. The propellant used
was specially designed and was similar to US M26 propellant. It consisted of 64–68%
nitrocellulose (NC), 25–29% nitroglycerin (NG) with 7% Centralite (symmetrical diethyl
diphenylurea [C17H20N2O]), and some other additives. The propellant was single perfo-
rated with a web thickness described in the following. Assume the propellant has the fol-
lowing properties. (Note that these are the authors’ guesses—a better estimate of the
properties can be found in the book by Bull and Murphy [5]).

• Adiabatic flame temperature T0 = 2881 K

• Specific heat ratio g = 1.237

• Covolume b = 1.06 cm3/g

• Density of solid propellant r = 1.62 g/cm3

• Propellant burn rate coefficient b = 0.0707 (cm/s)/MPa

• Web thickness D = 0.217 in.

• Propellant force l = 1019 J/g

1. Using the preceding data, determine (a) the projectile base pressure in pounds per
square inch, (b) velocity in feet per second, and (c) distance down the bore of the
weapon in inches for peak pressure.

Answer:

a. pSmax
= 31, 548

lbf
in:2

� �

b. Vpmax
= 2880

ft
s

� �
c. xpmax

= 270.1 [in.]

2. Determine the pressure in pounds per square inch at a point 3 in. behind the
projectile base when the charge burns out

Answer: px−3 = 28, 637
lbf
in:2

� �
3. Assuming that the gas behaves according to the Noble–Abel equation of state,

determine the muzzle velocity of the projectile in feet per second.

Answer: V = 5791
ft
s

� �

Problem 5

A British 14 in. Mark VII gun has a chamber volume of 22,000 in.3. A 5 in. of the projectile
protrude into the chamber after it seats. The length of travel for the projectile from shot start
to shot exit is 515.68 in. The weapon has a uniform twist of 1 in 30. The projectile weighs
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1590 lb. The propelling charge weighs 338.25 lb. The propellant used is called SC and
consists of 49.5% NC (12.2% nitrated) and 41.5% NG with 9% Centralite. Assume that SC
propellant has the following properties:

• Adiabatic flame temperature T0 = 3090 K

• Specific heat ratio g = 1.248

• Covolume b = 26.5 in.3/lbm

• Density of solid propellant r = 0.0567 lbm/in.3

• Propellant burn rate b = 0.000331 (in./s)/(psi)

• Web thickness D = 0.25 in.

• Specific molecular weight n = 0.04262 lb-mol/lbm

1. Determine the force constant l in feet-pound-force per pound-mass (ft.lbf/lbm).

2. Determine the central ballistic parameter for this gun–projectile combination.

3. Using the preceding data, determine the projectile base pressure, velocity, and
distance down the bore of the weapon for both peak pressure and charge burnout
assuming the grain is a cylindrical propellant (q = 1).

Answers:

l = 366, 246
ft lbf
lbm

� �

M = 1:933

pBm
= 43, 281

lbf
in:2

� �

pBc
= 26, 350

lbf
in:2

� �

pSm = 39, 120
lbf
in:2

� �

pSc = 23, 817
lbf
in:2

� �

Vpm = 1082
ft
s

� �

Vc = 2128
ft
s

� �

xpm = 75:6½in:�

xc = 293:7 in:½ �
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Problem 6
Verify that Equation 3.150 is valid for any q.

Problem 7
You are asked to design a gun to propel a fragment for an explosive initiation test at 3000 ft/s.
The diameter of the chamber and bore is to be 0.50 in. You have on hand some M10 flake
propellant with the ballistic properties given in the following. Because of space limitations,
the device (chamber and bore) cannot exceed 5 ft in length. The fragment plus sabot weighs
0.1 lbm. Assume that the propellant has the following properties:

• Adiabatic flame temperature T0 = 3000 K

• Specific heat ratio g = 1.2342

• Covolume b = 27.76 in.3/lbm

• Density of solid propellant d = 0.0602 lbm/in.3

• Propellant burn rate coeff. b = 0.00002468 (in./s)/(psi)

• Web thickness D = 0.011 in.

Propellant force l = 339,000 ft·lbf/lbm

1. Using the preceding data, determine the bore and chamber length for the weapon
as well as the amount of propellant required—be careful to leave some air space in
the chamber.

2. Once the system is established in 1, determine the central ballistic parameter, value
of peak breech pressure, and location of the projectile when peak pressure occurs.

Problem 8
A test of an experimental propellant grain yields a parametric relation for the fraction of
web remaining of

f tð Þ = C1t
2 + C2t + 1

In preceding equation, C1 and C2 are constants. The burn rate model for this propellant
was determined to be

D
df
dt

= −bpaB

Determine the expression for the velocity of the projectile as a function of time for a given
gun-projectile system. Describe the assumptions used and why they are relevant.

Problem 9
A black powder charge is to be designed to throw a 3 in. diameter firework canister that
weighs 2 lbs at 100± 2 ft/s. The tube is 3 in. in diameter and the chamberwhere the propellant
charge sits is 6 in. long. The projectile travel distance can be up to 18 in. long, but youmay size
the tube length. The propellant grains are spherical and obey the relation

f tð Þ = 1 − f 3
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The average diameter of the propellant grains (they vary quite a bit and they are not
exactly spherical) is 0.02 in. The tube can handle a maximum pressure of 2000 psi.
Assume that the linear burn rate for the black powder is 2.22 in./s measured at 3329 psi

and the force constant is 105,000 ft·lbf/lbm. Assume a specific heat ratio of 1.21 and a solid
density of 0.06 lbm/in.3. Listing all assumptions, do the following:

1. Develop the proper equations for the motion of the projectile.

2. Size the charge so that the systemwill function as required—make sure that it fits too!

3. Determine the peak pressure in pounds per square inch and the location of peak
pressure in inches.

4. Determine the location of charge burnout in inches and the velocity at burnout
in feet per second. Please note that if your design allows unburnt propellant to
exit the tube, please state that and calculate muzzle exit pressure and velocity in
this case.

5. Determine the muzzle velocity in feet per second.

Problem 10
A 7 perf grain is a very common geometry in weapons. The geometry is such that the web
between the outer diameter of the grain and the inside diameter of the outer perforations
and the web between the perforations themselves is equal.

1. Determine, up to the point of slivering, the equation for f(t) for any perforation size
and any web.

2. If possible, obtain an estimate for the value of q, assuming that the perforations are
¼ of the web thickness; if not, show why not.

End effects may be neglected.

Problem 11
A Japanese 18.1 in. type 94 gun was the largest weapon ever mounted on a warship. The
gun had a chamber volume of 41,496 in.3. An estimated 8 in. of the projectile protrude into
the chamber after it seats. The length of travel for the projectile from shot start to shot exit is
806.3 in. The weapon has a uniform twist of 1 in 28. The type 91 armor-piercing projectile
weighs 2998 lbs. The propelling charge weighs 794 lbs. The propellant used is called DC1

and consists of 51.8% NC (11.85% nitrated), 41.0% NG with 4.5% Centralite (symmetrical
diethyl diphenylurea [C17H20N2O]), 2.0% orthotolyl urethane (added as an improvement to
the Centralite), and 0.7% mineral matter (salts for wear and flash reduction) [6]. Assume
that the DC1 propellant has the following properties:

• Adiabatic flame temperature T0 = 3000 K

• Specific heat ratio g = 1.23

• Covolume b = 27.0 in.3/lbm

• Density of solid propellant d = 0.059 lbm/in.3

• Propellant burn rate b = 0.000300 (in./s)/(psi)

• Web thickness D = 0.184 in.
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• Propellant force l = 284,000 ft·lbf/lbm

1. Determine the central ballistic parameter for this gun/projectile combination.

2. Using the preceding data, determine the projectile base pressure, velocity, and
distance down the bore of the weapon for both peak pressure and charge burnout
assuming the grain is single perforated propellant.

3. Determine the muzzle velocity of the weapon and the pressure acting on the
projectile at muzzle exit.

Problem 12
A British “2 pounder” (so-called because the projectile weighed about 2 lbs) was their main
antitank weapon for the first two and a half years of the SecondWorldWar. It fired a 40 mm
projectile that weighed 1.94 lbm. The gun had a chamber volume of 23.0 in.3. Since the shot
had a flat base, when crimped to the cartridge case, none of the projectile protrudes into the
chamber. The length of travel for the projectile from shot start to shot exit is 70 in. The
weapon has a uniform right-hand twist of 1 in 30. The propelling charge weighs 0.583 lbs.
The propellant used was single perforated cordite. Assume that the cordite propellant has
the following properties:

• Adiabatic flame temperature T0 = 2442 K

• Specific heat ratio g = 1.21

• Covolume b = 31.32 in.3/lbm

• Density of solid propellant d = 0.059 lbm/in.3

• Propellant burn rate b = 0.00024 (in./s)/(psi)

• Web thickness D = 0.0197 in.

• Propellant force l = 318,000 ft·lbf/lbm

1. Determine the central ballistic parameter for this gun/projectile combination.

2. Using the preceding data, determine the projectile base pressure, velocity, and
distance down the bore of the weapon for both peak pressure and charge burnout.

3. Determine the muzzle velocity of the weapon and the pressure acting on the
projectile at muzzle exit.

4. Create pressure–travel and velocity–travel curves for this system. Annotate the
location of charge burnout on the pressure–travel curve.

Problem 13
Develop the equations required to model a propellant/charge/gun system where the
propellant behaves according to a bpa burn rate. Do this for both q = 0 and q ≠ 0. Describe, in
bulletized form, how you would solve these equations numerically.
Hint: Start with Equations 3.80 and 3.77 through 3.79, making sure that you alter Equation
3.78 to the new burn rate.

Problem 14
Write a code using any software you want to solve Problem 13. Only write the code so it
solves the interior ballistics problem up to charge burnout. Check the code by setting a = 1
and show that you get answers close to that obtained in Problem 12.
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Problem 15
Use your code developed in Problem 14 to obtain a solution to the same problem assuming
black powder is the propellant. Only use your code to take the problem to the all-burnt
point. Assume the properties of black powder are as follows:

• Adiabatic flame temperature T0 = ~2300 K

• Specific heat ratio g = ~1.22

• Covolume b = ~31 in.3/lbm

• Density of solid propellant d = 0.060 lbm/in.3

• Propellant burn rate b = 0.04044 (in./s)/(psi0.511)

• Web thickness D = 0.0197 in.

• Propellant force l = 105,000 ft·lbf/lbm

Problem 16
A Japanese (designed by the British firm of Vickers) 14 in./45 cannon is to be examined. It
fired a 14 in. (36 cm) projectile that weighed 1485 lbm. The gun had a chamber volume of
17,996 in.3 [6]. Assume 4 in. of the projectile protrudes into the chamber. The length of travel
for the projectile from shot start to shot exit is 540.8 in the study byCampbell [6]. Theweapon
has a uniform right-hand twist of 1 in 28. The propelling charge has four increments, where
each weighs 78.45 lbs. The propellant used was DC, which consisted of 64.8% NC, 30% NG,
4.5% Centralite, and 0.7% mineral matter [6]. Assume that the propellant geometry is such
that q = 0.1. Assume that the DC propellant has the following properties:

• Adiabatic flame temperature T0 = 3200 K

• Specific heat ratio g = 1.23

• Covolume b = 27.0 in.3/lbm

• Density of solid propellant d = 0.059 lbm/in.3

• Propellant burn rate b = 0.000298 (in./s)/psi

• Web thickness D = 0.165 in.

• Propellant force l = 365,000 ft lbf/lbm

The weapon was “zoned” to fire by using two, three, and four bags which were called,
“weak,” “reduced,” and “full” [7]. For each of these charge configurations, do the following:

1. Determine the central ballistic parameter for this gun–projectile–propellant
combination.

2. Using the preceding data, determine the projectile breech pressure for both peak
pressure and charge burnout.

3. Using the preceding data, determine the projectile base pressure, velocity, and
distance down the bore of the weapon for both peak pressure and charge burnout.

4. Determine the muzzle velocity of the weapon and the pressure acting on the
projectile at muzzle exit.

5. Plot the pressure vs. distance, based on the preceding results at the instant of peak
pressure and muzzle exit.
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3.3 Lagrange Gradient for Spherical and Cubic Grains

In our derivation of the Lagrange gradient approximations, we assumed a relation for the
fraction of the propellant burnt according to Equation 3.77. Over the years, formulations for
the handling of spherical and cubic grains have been developed (e.g., Venkatesan [8]) that
allow us to handle the problem in an analytic manner, although iteration is usually
involved. We shall examine a method that is fairly straightforward and follows from our
previous discussions.
We begin by expressing the fraction of propellant burnt for either a cube or a sphere as

f = 1 − f 3
	 


(3.156)

If we now pick up our derivation from Equation 3.92, whichwe repeat here for convenience,
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inserting Equation 3.156 into Equation 3.157 yields
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which we can expand to
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Using the definition of the central ballistic parameterM and simplifying allows us to write

dx
df

= −
M

1 + f + f 2ð Þ x + lð Þ (3.159)

We now separate the variables in Equation 3.159 and integrate to obtain

ðx
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1 + f + f 2ð Þ (3.160)

By performing the integration, we obtain
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By inserting the limits of integration and noting that at x = 0 and f = 1, we arrive at
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Then,
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Taking the antilog of both sides yields
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If we now insert this and Equation 3.156 into Equation 3.107, we obtain a relation for
pressure of the form
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By rearranging, we obtain our relationship between pressure and the fraction of the web
remaining.
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We now proceed along the path taken earlier to determine the relation for the values of
the various parameters at peak pressure. The equivalent form of Equation 3.112 for a cubic
or spherical grain is obtained by substituting Equation 3.111 into Equation 3.166 to yield
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Differentiating this and setting the result equal to zero results in a maximum or minimum
value:
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Because this equation is cubic in f, we need to find the value of f that lies between 0 and 1.
This is best accomplished through either iteration or numerical means. It involves solving
the equation
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The result is the value of f at peak pressure, again demoted as fm. Once this is obtained, we
can determine the fraction of propellant burnt, peak pressure, position, and velocity
through the following:

fm = 1 − f 3m
	 


(3.170)
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At charge burnout we simply substitute f = 0 in the preceding set of equations to obtain

fc = 1 (3.174)
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All the other calculations for the determination of the projectile pressure, position, and
velocity after charge burnout are identical to those introduced earlier. This includes the
methodology for determining whether the charge burns out in the tube or not

Problem 17
The following are the data for the three different powders used in the 8 in. rifled muzzle
loader. Initial data were provided by Kent Crawford. Some data were provided in the
literature brought to the attention of the authors by Byron Angel [9].
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Assume the following:

• Projectile weight: 180 lbm

• Propellant weight: see the table “Data Provided”

• Projectile and bore diameter: 8 in. (in actuality the projectile diameter was 7.92 in.)

• Adiabatic flame temperature: 2600 K

• Covolume: 5.02–5.68 in.3/lbm

• Specific heat ratio: 1.24

• Burn rate coefficient: see the table “Model Inputs and Outputs”

• Propellant force: see the table “Model Inputs and Outputs”

• Chamber length: see the table “Model Inputs and Outputs”

• Projectile travel: see the table “Model Inputs and Outputs”

Data Provided

Powder Form

Propellant
Weight
(lbm)

Propellant
Density
(g/cm3)

Expected Peak
Pressure
(tons/in.2)

Expected Travel
to Peak Pressure

(ft)

Expected
Muzzle Velocity

(ft/s)

Pellet 1 in. diameter
sphere

30 1.77 17.3 0.3 n/a

Pebble 0.625 in. cube
[9]

35 1.8 15.3 0.5 1391

RLG 0.14 in.
diameter
sphere [9]

30 1.77 n/a n/a 1330

Model Inputs and Outputs

Powder

Burn rate
Coefficienta b
(in./s)/(psi)

Propellant
Force l

(ft lbfl/bm)

Chamber
Length
(in.)

Projectile
Travel

Length (in.)

Calculated
Peak Pressure
(tons/in.2)

Calculated
Travel to Peak
Pressure (in.)

Calculated
Muzzle
Velocity
(ft/s)

Pellet 0.0068 101,100 19.5 96 17.3 4.435 1435

Pebble 0.0036 80,900 19.5 96 15.3 4.344 1391

RLG 0.0014 84,800 18.5 97 20.8 3.081 1330

Note: RLG, Rifle Large Grain.
a The burn rate coefficient is assumed to have a linear relationship with pressure, the value for the exponent of

black powder is usually assumed to be 0.511. This introduces an error of about 5% in the pressure.

Given the preceding information, verify the calculated peak pressure, calculated travel
to peak pressure, and calculated muzzle velocity.
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3.4 Chambrage Gradient

In our derivation of the Lagrange gradient approximations, we assumed that the chamber
of the gun was simply an extension of the bore. The volume of the chamber was converted
to a cylinder of bore diameter, and the tube was appropriately lengthened behind the
projectile. In doing this, we neglected the effects of short, larger-diameter chambers (the
definition of chambrage is the ratio of the diameter of the chamber to the bore inner
diameter), and all calculations that are functions of distance from the breech x − xs are
inaccurate in the distance term. If we account for these differences by deriving a chambrage
gradient, we find that the two methods yield similar but close answers. Nevertheless, one
should understand how the answers relate to each other and to the real problem. Fredrick
W. Robbins of the Army Research Laboratory, who has allowed us to base this section on
his excellent work, derived the chambrage gradient formulation as follows.
The formulation of the chambrage gradient follows much the same pattern that was used

in the development of the Lagrange gradient. It leads, however, to an algorithm that is best
applied with the aid of a computer. Small increments of time (hence, distance) are chosen,
and computations of pressure (breech, mean, and base), velocity, acceleration, and distance
traveled are made for the end point of the interval. The calculation is then repeated for the
next increment of time. This is done until the projectile exits the bore. A representation of the
situation is shown in Figure 3.3 for a chosen time step.
The definitions of the terms used in Figure 3.3 are shown in Figure 3.4.

VSV(x) = Ab
V(x)

V(xS) A(x)

Velocity of propellant gas 
at position x measured from 

the breech at the time of interest 
Velocity of the projectile  

at the time of interest 
Volume at position x 
at the time of interest 

Cross-sectional area of the weapon 
 at position x at the time of interest 

Cross-sectional area of the bore Volume behind the projectile base
 at the time of interest 

FIGURE 3.4
Definitions of terms used in chambrage gradient development.

Ab

A(x)
Vs

V(x)
x, V(x)

xs , V(xs)

FIGURE 3.3
Chamber with large chambrage.
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In Robbins’ derivation, certain integrals called J integral factors are developed and must
be computed. They are as follows:

J1 x0ð Þ =
ðx0
0

V xð Þ
A xð Þ dx (3.178)

J1 xsð Þ = J1 x0ð Þ + 1
Ab
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2
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� �
(3.179)

J2 xsð Þ = V x0ð Þ + Ab xs − x0ð Þ2
A2

b

� �
(3.180)

J3 xsð Þ = J3 x0ð Þ + AbJ1 x0ð Þ xs − x0ð Þ + V x0ð Þ
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6
xs − x0ð Þ3 (3.181)

J4 xsð Þ = J4 x0ð Þ + V x0ð Þ + Ab xs − x0ð Þ3� �
− V x0ð Þ½ �3

3A2
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The acceleration at any point a appears in one of our algorithm factors explicitly:

a tð Þ = a1 tð Þ + a2 tð Þps (3.183)

where
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a2 tð Þ = cA2
b

mp V xsð Þ½ �2 (3.185)

Another factor required in the algorithm is b(t) derived as

b tð Þ = −
cA2

bV
2
s

2 V xsð Þ½ �3 (3.186)

The way the algorithm is used is (roughly) as follows:
At each time step

• The breech pressure is calculated from the burning rate equations.

• J1 through J4 are calculated.

• a(t) and b(t) are calculated.

• The projectile acceleration, velocity, and distance down the bore are calculated.

• The volume behind the projectile is updated.

• The process moves to the next time step.

This gradient, while only slightly more accurate than the Lagrange gradient in the
computed distance from the breech, is used in some modern interior ballistic computer
codes.
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3.5 Numerical Methods in Interior Ballistics

In this section, we shall briefly discuss methods for solving the interior ballistics problem
through the use of computational tools. In recent decades, computational capabilities have
increased at an astronomical rate. One of the most famous early uses of the computer to
solve the exterior ballistics problem (firing tables) was the use of the electronic numerical
integrator and computer machine during and immediately after the Second World War. In
this case, the computer was used to solve tedious exterior ballistics problems in rapid order.
In the field of interior ballistics, the computer revolution has given the individual bal-

listician the tools (although some commercial packages can be expensive) to solve
extremely complicated interior ballistics problems and quickly optimize a system. The
complexity of these tools is driven by the physics that are incorporated in the partic-
ular code. We shall discuss some general categories of software, their uses, and their
limitations.
Many interior ballistics codes are of the zero-dimensional variety. In these types of codes,

the density of the propellant gas (as stipulated by the Lagrange approximation) is con-
sidered constant in the volume between the breech and the projectile. The Lagrange pres-
sure gradient is assumed to be in effect and results in a nice, always well-behaved launch.
These codes are extremely useful for predictive applications because they run fast. One of
the features of these codes that make them so useful is that we can easily include and track
burn characteristics of multiple propellant types (both geometry and chemical composi-
tion). This allows us to tailor the burn characteristics so that a particular pressure–distance
distribution is achieved while maintaining a particular muzzle velocity.
Another excellent feature of this type of code is that heat transfer to the weapon can be

accounted for in the energy balance. This provides a more realistic muzzle velocity than if it
is neglected and can be of great value to the gun designer. Friction and blowby effects can be
fudged in, and burn rate parameters varied to replicate actual tests. Additionally, the effects
of the regression of all surfaces (recall that we neglected end effects in our hand calculation
methods) can be simulated and accounted for. Zero-dimensional codes can also include the
effects of inhibitors on the propellant grains as well as highly nonlinear pressure–burn rate
relationships. Since zero-dimensional codes track the pressure, it is simple enough to use
them to develop recoil models as well. All in all, zero-dimensional codes are probably the
most effective tools at the disposal of the interior ballistician for basic ballistics design work.
Once a set of experiments have been conducted to validate these codes, their accuracy is
excellent.
A quasi-one-dimensional code is one in which the density of the propellant gas behind

the projectile is a known function of some other variable. An example of this would be a
zero-dimensional code that incorporated the chambrage gradient. Essentially, beyond the
ability to track the effect of variable chamber or bore area on the density, the limita-
tions and benefits of this type of code are the same as discussed in the zero-dimensional
section.
A one-dimensional interior ballistics code allows density to vary based on the physical

equations and conservation laws in the axial direction only. Thus, at a given cross section, the
density is considered constant throughout the radial direction. These codes are very good at
predicting pressure waves and can therefore estimate the pressure differential along the
volume behind the projectile. The benefit of this is that since propellant generally burns faster
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under higher pressure, the local burn rate and therefore the amount of gas evolved can be
tracked. This allows the user to see pressure waves develop and propagate. The disadvan-
tage is that since the code can only track pressure waves in the axial direction, unless the
charge fully fills the volume behind the projectile, it is difficult to completely match the
physics of the firing. This occurs because the presence of solids and gases in the chamber is
generally not uniform—the solids are usually at the bottom of the chamber. This affects the
gas dynamics. Solids will also be entrained by the gas flow down the bore, and some
modeling of their motion has to be accomplished (or ignored). In most cases, the propellant
bed is assumed to be a monolithic mass that regresses and stretches as the propellant is
burned. Although these codes are usually very good, the user should completely understand
the assumptions on how the propellant is allowed to move before using them.
A two-dimensional model is one where the density can vary in the radial direction as

well. These models are better at predicting pressure waves but take somewhat longer time
to run than one-dimensional models. Pressure can be tracked in the radial direction and the
propellant motion included. The same issues with propellant motion are present as they
were in the one-dimensional models, although it is possible to track propellant motion.
A three-dimensional model has it all. Because of this, they usually take an excruciatingly

long time to set up and run. This time constraint makes them generally reserved for failure
investigations rather than predictive simulations. Individual propellant grains can regress
and be tracked, and one can imagine the difficulty with this in the sense of model validation.
With suitable stress and failure models, grain fracture can also be examined. If erosion
models are incorporated, the effect of gas wash on propellant burn rate can even be
included. One has to ask oneself if all this is really necessary. In some cases, these models are
crucial; in other cases, they are certainly overkill. The usefulness of this type of model is still
somewhat limited by computer speed, but as computers become faster, the limitation will
change to a lack of accurate physical models for motion, surface regression, propellant and
gun tube erosion, grain fracture, etc. These issues are certainly solvable, but finding a
proponent who will fund the research is difficult.
Now that we have described the general types of models, it is important to explain their

use further. In general, all of them are used in a similar manner. We shall use the zero-
dimensional model as an example and leave the rest to the readers’ imagination (and
budget restrictions). Typically, a propellant formulation and geometry is chosen as a point
of departure given that we have a preliminary gun design and a projectile to work with.
This propellant is then further developed in terms of geometry or chemical composition.
Some zero-dimensional codes are provided with optimization subroutines so that partic-
ular characteristics of the ballistic cycle can be achieved. The pressure–time, acceleration–
time, and pressure–distance curves are examined and, if suitable, some experimental
charges are made up. The configuration is then fired and the results checked against the
code. These results can then be used to adjust burn rates and resistive characteristics, and
the model can be used to predict all future firings and design iterations.
A particular example of the power of these codes is their usefulness in assessing the

interior ballistics of systems that widely vary in matters of scale, for example, in mass of
projectile, diameter of bore, and muzzle velocity. In the 1960s, ballisticians J. Frankle and
M. Baer at the Ballistics Research Laboratories at Aberdeen, Maryland [10], and others
elsewhere devised codes largely based on Corner’s zero-dimensional analysis that we
described in detail in Section 3.2. Among these, the Frankle–Baer simulation, still in use
today, which examined and expanded on the basic energy equation,
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Energy released by burning propellant

= internal energy of gases + work done on the projectile + secondary losses

or

Q = U +W + losses (3.187)

developed equations of state of the propellant gases based on more recent thermody-
namic theories and refined the losses term from new experimental data. This led to more
refined ratios for breech, mean, and shot base pressures and more accurate equations of
motion for the projectile.
To examine the effects of scale, we computed the relevant pressure ratios for three widely

different gun–projectile combinations. We show these combinations, and the resultant ratio
values are shown in Tables 3.1 through 3.5. What is noteworthy is the applicability of the
theory over the range of size, projectile mass, and propellant type and volume. Notice also

TABLE 3.2

Burn Characteristic Inputs for Numerical Comparison of Corner and Frankle–Baer

Parameter
Expression or Value

(J. Corner)

M735
M1

M193

2
4

3
5 Expression or Value

(Frankle–Baer)

M735
M1
M193

2
4

3
5

Propellant impetus (force) l 3:64� 105

3:05� 105

3:32� 105

2
4

3
5 l 3:64� 105

3:05� 105

3:32� 105

2
4

3
5

Specific heat ratio g 1:2385
1:2592
1:26

2
4

3
5 g 1:2385

1:2592
1:26

2
4

3
5

Polytropic index 1
g − 1

n

TABLE 3.1

Inputs for Comparison of Corner and Frankle–Baer

Parameter
Expression or Value

(J. Corner)

M735
M1

M193

2
4

3
5 Expression or Value

(Frankle–Baer)

M735
M1
M193

2
4

3
5

Charge weight c 13:125
9:000

4:020� 10−3

2
4

3
5 c 13:125

9:000
1:020� 10−3

2
4

3
5

Projectile weight W 12:78
31:97

7:86� 10−3

2
4

3
5 wp 12:78

31:97
7:86� 10−3

2
4

3
5

Propellant type – M30
M1
Ball

2
4

3
5 – M30

M1
Ball

2
4

3
5
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TABLE 3.3

Pressure Gradient Calculations for Numerical Comparison of Corner and Frankle–Baer

Parameter Expression or Value (J. Corner) Expression or Value (Frankle–Baer)

�p
pS

1 +
c
3w 1 +

1
d

c
wp

1
d

n/a
1

2n + 3

"
1 + an

�
1 + c1bn
1 + c1n

�#

1
ab

n/a
"
2n + 3

d
+
2(n + 1)
c=wp

#

�p
pB

"
1 −

1
6

c
w

# "
1 −

1
d

� c
wp

�#
(1 − ab)

n+1

pB
pS

"
1 +

1
2

c
w

#
[(1−ab)

−(n+1)]

TABLE 3.5

Specific Gradient Comparison of Corner and Frankle–Baer for the M735, M1, and M193 Projectiles

�p
pS

�p
pB

1 +
1
2

c
w

Projectile Corner Frankle–Baer Corner Frankle–Baer Corner Frankle–Baer

M735 (105 mm KE) 1.342 1.342 0.829 0.917 1.514 (1.619) 1.464 (1.463)
M1 (105 mm HE) 1.094 1.091 0.953 0.956 1.141 (1.148) 1.142 (1.141)

M193 (5.56 mm ball) 1.170 1.161 0.915 0.929 1.256 1.250 (1.250)

TABLE 3.4

Specific Frankle–Baer Computations for the M735, M1, and M193 Projectiles

Projectile a b c1

1
d

e =
c
wp

1
ab (1–ab)

n+1

M735 (105 mm KE) 0.56 1.07 1.05 0.333 1.027 11.002 0.683
M1 (105 mm HE) 0.63 1.01 1.02 0.322 0.282 37.811 0.876

M193 (5.56 mm ball) 0.60 1.03 1.04 0.315 0.511 22.325 0.800
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the closeness of the pressure ratios for each projectile between the Corner and the Frankle–
Baer simulations.

3.6 Sensitivities and Efficiencies

Having explored the detailed development of theories of interior ballistic events, we will
now probe the outcome of varying some of the parameters that are under the control of the
charge designer. To do this, we will be referring back to definitions and equations devel-
oped under Section 3.2.
A useful quantity for our analysis is the dimensionless central ballistic parameter M

M
A D

w c

c
w
c
w

=
+

+⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2 2

1
2

1

1

2

1
3

1
2

λβ (3.188)

Of particular importance in this are the variablesD and b, the original web dimension and
the burning rate coefficient, respectively. If we examine

p
c

V

c
w
c
w

Mi
Bm e

=
+

+

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛
⎝
⎜

⎞
⎠
⎟

λ
1

2

1
3

11

1

(3.189)

we can see that, at least for the case of q = 0,M is in the denominator, and as the ratioD/b
decreases, M decreases, and from Equation 3.190, the peak pressure pB increases. That is, if
the original web size is decreased, the peak pressure will increase. This is a parameter much
under the control of the designer.
Referring again to Equation 3.188, we see that if the charge mass (weight) c is increased,

then M decreases (the c's in the gradient term largely cancel out and c in the first
term denominator governs). In Equation 3.189, c appears in the numerator and M in the
denominator causing pB, the peak pressure, to again rise.
Let us now examine the shift in location of xm, the point in travel where the peak pressure

exists.

xm + l = l
(M + 2q)
(M + q)

� �M
q

(3.190)

Equation 3.190 relates xm to M. If the ratio D/b or the charge mass c decreases, then M
decreases and, consequently, xm is reduced (it moves toward the breech). This kind of shift
is important in gun design since wall thickness and center of mass are important consid-
erations for weapon mounting.
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The sensitivity of muzzle velocityV to changes in web size or charge weight can be seen in

V x V x
c x l

l w
c

M
2 2

1
3

( ) − ( ) = +( )

+⎛
⎝
⎜

⎞
⎠
⎟

−

c
c eλ

ƒ
(3.191)

Here M is the governing term and is decreased as we showed earlier, if charge mass is
increased or web size reduced. Because M has a negative exponent in the equation, its
reduction drives an increase in V.
Finally, the influence of travel on muzzle velocity can be shown to be quite weak. The

computation is complex andwill not be shownhere. But, for example, by doubling the travel,
velocity increases only by a factor of about a tenth, hardly worth the effort in the real world.
There are two measures of efficiency that are of interest to the interior ballistician: pie-

zometric or pressure efficiency and ballistic or energy efficiency.
Piezometric efficiency ep is the ratio of the average pressure during the entire ballistic

cycle to the peak pressure during the cycle:

ep =
�p
pBm

(3.192)

An illustration of the space-mean pressure and maximum breech pressure is provided
in Figure 3.5.
Increasing ep implies that the muzzle pressure will be high (usually an undesirable trait)

and that the charge burnout point will move toward the muzzle (hopefully never outside
the muzzle). High piezometric efficiency usually means poor regularity, i.e., round-to-
round muzzle velocity repeatability is poor (an undesirable trait). For powerful, high-
velocity cannons, this efficiency is usually in the 50–60% range. Other cannons are lower.
High piezometric efficiency also implies that the expansion ratio, the ratio of total gun
volume to chamber volume, will be low: powerful guns have large chambers and consume
lots of propellant.
Ballistic efficiency eb is defined as the ratio of the kinetic energy of the projectile as it exits

the muzzle to the total potential energy of the propellant charge.

p

pBm

FIGURE 3.5
Average and maximum breech pressure for a typical gun firing.
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eb =
muzzle KE

propellant PE
=

1
2wV

2

lc
g − 1

=
g − 1ð ÞwV2

2lc
(3.193)

because the potential energy is defined as

propellant PE =
RT0

g − 1ð Þ and l = RT0 (3.194)

Increasing eb tends to shift the all-burnt position toward the breech and increases the
expansion ratio. Reducing the central ballistic parameter M by going to a smaller web will
also increase eb. The ballistic efficiency of most guns is approximately 0.33.
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4
Ammunition Design Practice

4.1 Stress and Strain

Before proceeding with our examination of design practices, a discussion of the funda-
mentals of the general state of stress in materials is in order. Consider an arbitrary cube of
material under load as depicted in Figure 4.1. The state of stress can be completely defined
by six stress components: sx, sy, sz, txy, tyz, and tzx. Here, we have used a Cartesian
coordinate system where the normal stresses are denoted by s and the shear stresses are
denoted by t.
The first subscript represents the plane in which the stress acts (defined by its normal

vector), while the second subscript indicates the direction of action. These components form
the stress tensor, which is actually a 3 × 3 matrix of nine elements, except that we have
assumed that txy = tyx, tzy = tyz, and txz = tzx. When written as a tensor, the state of stress in a
material is defined as

s =

sx txy tzx
txy sy tyz
tzx tyz sz

2
664

3
775 (4.1)

It can be shown that the coordinate system in which we measure the stresses can be
rotated so that the shear stresses vanish. The three remaining stresses are normal stresses,
known as the principal stresses, and are denoted as s1, s2, and s3.
These stresses are important because, regardless of what coordinate system we view

the component in, the stress state is uniquely determined. Also, in some materials, these
stresses are associated with failure and fracture.
These points are sometimes graphically shown through use of Mohr’s circle. The deter-

mination of the principal stresses will be discussed later in this section.
It is also very important to understand this when we try to experimentally examine the

stress levels in a part with a strain gage. Stress is a point function defined by force per unit
area expressed as

s =
F
A

(4.2)

where s is the stress; F is a force; and A is the cross-sectional area of the component.
The same equation also holds if we use the symbol t signifying a shear stress.
When we examine a structure, we are normally given the loads that are imposed on it. We

then either choose a material or evaluate a given material to see how it will behave under
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the applied loads. This process requires us to convert the external loads to stress. These
stresses will cause the movement of the material in the form of either stretching (tension) or
compression. This movement is the actual displacement of the material. There is an inter-
mediate analytical step between these two where we need to define the strain of the
material. The strain in the material is defined as the change in length of a part over its initial,
unstressed length. Mathematically, this is expressed as

e =
Dl
l

(4.3)

We require a relationship between stress and strain to evaluate material behavior under a
load. The link between stress and strain is called a stress–strain relationship. The most
common and simplest stress–strain relationship is that for a linear-elastic material. This is
known as Hooke’s law and is given for small deformations and uniaxial loading by

e =
s
E

(4.4)

where E is the modulus of elasticity, sometimes known as Young’s modulus. In a linear-
elastic material, any loading and unloading of the structure occurs along a curve in stress–
strain space that has a slope equal to the modulus of elasticity. Under the assumption of
general loading, the material will be “pulled in” in the transverse directions as it is longi-
tudinally stretched. The ratio of lateral strain to axial strain is denoted as n and called
Poisson’s ratio and is given for an isotropic material as

n = −
ey
ex

= −
ez
ex

(4.5)

This assumption of general loading changes our Hooke’s law relation as follows:

ex =
sx

E
−
nsy

E
−
nsz

E
(4.6)

ey = −
nsx

E
+
sy

E
−
nsz

E
(4.7)

 

 

σy

τyz

τzy

τzx τxz

τyx
τxy

σz

σz

σx σx

σy

FIGURE 4.1
Cartesian stress components.
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ez = −
nsx

E
−
nsy

E
+
sz

E
(4.8)

While we have defined e to represent longitudinal strain in a material, a different type of
strain can be examined—shear strain. Shear strain g is defined as the angular deviation of a
material from its original, undeformed shape. Shear strain is given by its own version of
Hooke’s law as

g =
t
G

(4.9)

where G is known as the shear modulus of the material.
In an isotropicmaterial,E, n, andG are not independent. The relationship that links them is

G =
E

2 1 + nð Þ (4.10)

When we perform hand calculations, it is customary to convert the loads to stresses, then
the stresses to strains, and finally strains to deformations. The process is somewhat different
(i.e., reversed) in a finite element analysis (FEA).
The determination of the principal stresses is important in several failure criteria. When a

part is being experimentally examined during a gun launch, it is customary to utilize a
strain gage. A strain gage measures the change in the length of a part using the fact that
resistance increases in a conductor as it is stretched. Strain gages are not always placed
along the directions in which it is desired to compute stress however. Since strain gages
only measure in-plane stress, it is common to transform this two-dimensional (2D) mea-
surement into a desired in-plane direction. To transform stress from the strain gage coor-
dinate system to the desired coordinate system, we use the following equations:

sx0 = sxcos
2q + sysin

2q + 2txy sin q cos q (4.11)

sy0 = sxsin
2q + sycos

2q − 2txy sin q cos q (4.12)

tx0y0 = txy cos2q − sin2q
	 


+ sy − sx

� �
sin q cos q (4.13)

In each of these equations, the primed variables are those in the desired direction and the
unprimed variables are those measured by the strain gages. This is depicted in Figure 4.2.
The rotation of coordinate systems in three dimensions is covered in excellent detail by

Budynas [1]. It was stated earlier that a rotation can be made such that the shear stresses

y

x

x ́  y ́
θ

σy

σx

σy
τx  y

σxτxy
ʹ

ʹ ʹ
ʹ

FIGURE 4.2
Transformation of stress components.
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vanish, and this results in what are known as principal stresses [2]. To determine the values
of the principal stresses, we determine the stress invariants through the solution of the
eigenvalue problem. The three stress invariants are given by

I1 = sx + sy + sz (4.14)

I2 = sxsy + sysz + szsx − t2xy − t2yz − t2zx (4.15)

I3 = sxsysz − sxt
2
yz − syt

2
zx − szt

2
xy + 2txytyztzx (4.16)

Once these invariants are obtained, the principal stresses are obtained through

s1 =
I1
3
+
2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I21 − 3I2

q
cos f (4.17)

σ
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= + − +⎛
⎝
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⎟
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I I cos (4.18)

σ
π

φ3
1

1
2

23
2
3

3
4
3

= + − +⎛
⎝
⎜

⎞
⎠
⎟

I
I I cos (4.19)

In Equations 4.17 through 4.19, the quantity f is calculated through

f =
1
3
cos−1

2I31 − 9I1I2 + 27I3

2 I21 − 3I2
	 
3

2

" #
(4.20)

Nowwe have all the basic information necessary to discuss failure criteria. Limits of space
prevent a more in-depth treatment of this topic. The reader is referred to the references at
the end of this chapter for a more detailed treatment.

Problem 1
For the state of stress in the following, find the principal stresses and the maximum shear
stress:

s½ � =
20 15 0

15 4 0

0 0 −9

2
664

3
775 MPa½ �

Answer: tmax = 19 [MPa]

4.2 Failure Criteria

When embarking on the design of a particular projectile component, we must initially
determine certain characteristics of the material contemplated for the design: Will we use
a metal or a plastic? Does it have a distinct yield point? Is it brittle or very ductile?
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Such determinations will govern which criteria we use when we calculate the stresses that
will cause the failure of the component. There are three commonly used criteria for yield or
failure: vonMises, which is also known as the maximum distortion energy criterion; Tresca,
which is known as the maximum shear stress criterion; and Coulomb, which uses a
maximum normal stress criterion. Other materials may require unique failure criteria, for
example, composites or nonisotropic metals may require Tsai–Wu or Tsai–Hill criterion.
The von Mises or maximum distortion energy criterion is typically used when the

component is to be made of metal. It assumes that the energy required to change the shape
of the material is what causes yielding and that a hydrostatic state of stress will not result in
failure. The materials for which it is used should have a distinct yield point. Our convention
shall follow that of structural engineers in which we shall assume tensile stress to be pos-
itive. By this criterion, we assume that the distortion of the material will precipitate
the failure. We shall order the stresses with 1 as largest to 3 being smallest and state the
following:

s1 − s2ð Þ2 + s2 − s3ð Þ2 + s3 − s1ð Þ2 = constant (4.21)

We set this constant equal to 2s2
Y or 6K2. Here sY is the yield stress in simple tension and K

is the yield stress in pure shear. This implies that

1
3
s2
Y = K2 (4.22)

or

K Y Y= ⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟

2
3 2

1 155
2

σ σ
. (4.23)

sY is also known as the equivalent stress, and either sY or K can be experimentally found. In
s1–s2–s3 space, the criterion is represented by an ellipsoidal surface whose inner region
symbolizes stress states that are safe (nondistorting). This is two-dimensionally shown in
Figure 4.3.
The Tresca or maximum shear stress criterion is used when the material is known to have

great ductility. It assumes that the failure mechanism is by slippage along shear planes

If stress state falls in this 
region, the component

 is OK

+σY

+σY

–σY

–σY

σ1

σ2

This is a 2D
representation of an
ellipsoid which also

includes the σ3 (out of the
plane of the paper)

direction

FIGURE 4.3
von Mises failure surface.
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generated by the shear stress in the material. This assumption says that the material will not
fail unless the shear stress it is experiencing is greater than that exhibited by a tensile test
specimen of the same material at its failure point. Again, we assume that tensile stress is
positive and orders the stresses with 1 being the largest to 3 being the smallest and state the
following:

s1 − s3ð Þ
2

= constant (4.24)

We set this constant equal to s2
Y or K. Here sY is the yield stress in simple tension and K is

the yield stress in pure shear. This implies that for a component not to exhibit failure,

s1 − s3ð Þ < sY (4.25)

and

sY = 2K (4.26)

as well as

s1 − s2ð Þ < sY, ðs1 − s3) < sY, and ðs2 − s3) < sY (4.27)

Once again, either sY or K can be experimentally found. In s1–s2–s3 space, this is rep-
resented by a polyhedral surface whose inner region includes all stress states that are safe
(nonfailing). This is shown as a 2D sketch in Figure 4.4.
The Tresca criterion is slightly more conservative if used for metals than von Mises. The

Tresca polyhedron is contained within (circumscribed by) the ellipsoid of von Mises.
The third failure criterion we will examine is the Coulomb or maximum normal stress

criterion. Here, we assume that the normal stress in the material will precipitate the failure.
Tensile stress is again assumed to be in the positive direction, and stresses from 1 to 3 are
again in order of decreasing magnitude. In this criterion, we require that for a material that
does not exhibit failure,

s1,s2,s3 < sU (4.28)

That is, all the principal stresses must be less than the ultimate stress sU in the material in
that particular direction. Recall that we use this for brittle materials where there is no yield

If stress state falls in this 
region, the component

is OK

σ2

σ1
+σY

–σY

+σY

–σY

This is a 2D
representation of a

polyhedron which also 
includes the σ3 (out of the 

plane of the paper) 
direction

FIGURE 4.4
Tresca failure surface.

114 Ballistics



point or yielding behavior. The failure surface is a rectangular polyhedron whose edges are
the ultimate stresses in each principal direction. Stress levels within the polyhedron will not
cause failure. A 2D representation is depicted in Figure 4.5. Even though this figure is shown
as a square, in many materials, the compressive strength is much greater than the tensile
strength, resulting in different limits and thereby changing the appearance (and sometimes
resulting in a name change aswell to aMohr–Coulomb criterion) of the failure surface. In this
instance, the failure surface would look like Figure 4.6. In the Mohr–Coulomb failure cri-
terion, a greater compressive normal stress allows the material to carry more load. This is
caused by the locking of slip planes akin to the sliding friction of a block causing greater
resistance when the block gets heavier (i.e., an increase in normal stress on the slip plane).
When this is applicable, our criteria result in an equation for the failure surface as follows:

max tj j − l � sð Þ½ � = sE (4.29)

If stress state falls in this 
region, the component

is OK

σUC

σUT

σ2

σ1
σUTσUC

Here σUC is the 
ultimate stress in 

compression and σUT
is the ultimate stress

 in tension 

FIGURE 4.5
Coulomb failure surface.

If stress state falls in this
region, the component is OK

This is a 2D representation
 of a polyhedron which also includes the  
σ3 (out of the plane of the paper) direction

Here σYC is the yield stress 
in compression and σYT is 
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σYC
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FIGURE 4.6
Mohr–Coulomb failure surface.
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This equation results in a greater stress to failure due to the internal friction coefficient l.
Since compressive strength is negative and l is a positive quantity, the equivalent failure
stress sE is greater with greater normal stress s.
Occasionally, it will be essential that we combine two or more of these criteria due to a

change in material behavior. We shall describe this in due course.

Problem 2
A component has principal stress values of 20,000, 56,000, and −220,000 psi (note that
negative means compressive stress); if the yield strength in a simple tension test of the
material was found to be 180,000 psi, will the part survive based on the von Mises failure
criterion?
Answer: No, the part will fail.

4.3 Ammunition Types

Just as weapons are categorized by their usage as guns (low angle, line of sight, direct fire),
howitzers (high angle, beyond line of sight, indirect fire), or mortars (very high angle, short
range, indirect fire), the munitions for them are also categorized, not by use, but by their
construction or assemblymethods. Ammunition can be fixed, separable, or separate loaded.
Fixed ammunition, usually called a cartridge, consists of a container for the propellant

charge, called the cartridge case, which is firmly attached to the projectile by crimping or
cement and that remains in the weapon after firing and is ejected near it or is consumed
during firing, and the projectile that flies downrange to the target. The charge, priming, and
ignition system are assembled inside the case and are not alterable. This type of ammunition
is characteristically used in tank, antiaircraft, aircraft weapons, and in most small arms
(rifles and pistols).
Separable ammunition (also called semifixed ammunition) also consists of the cartridge

case and projectile, but the case is not firmly attached to the projectile and can be removed in
the field to adjust the charge, which can be incrementally changed. This type of ammunition
was used in older howitzers and is still used in shotguns.
Separate-loaded ammunition (sometimes called separated ammunition) consists of the

projectile, which is loaded first into the weapon; the propellant charge loaded next; and
finally, the primer and igniter loaded last. The charge, which is supplied to the weapon site,
is in bagged increments and is altered, along with the quadrant elevation of the weapon, to
vary the range. The primer is usually loaded into the breechblock of the weapon. The block
is self-sealing and assumes this function, which in fixed ammunition is done by the car-
tridge case. Ammunition of this type is used in howitzers and large naval guns.
Mortar ammunition is essentially of the separated type. The charge is incremental to help

vary the range by altering the muzzle velocity. The charge increments are held in place on
the projectile body by clips or holders. Increments may be added or deleted in the field by
the gunner. Priming is done through an integral attachment to the projectile (a boom).
Primer initiation is by a firing pin in the weapon that strikes an initiator in the boom at the
termination of the fall of the projectile as it is dropped down the tube from the muzzle end.
Trigger firing is also possible in some weapon designs.
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The practical design of fixed ammunition cartridges, which is what we will mainly dwell
on, encompasses the design of the propellant charge ignition system, the construction of the
main body of the propellant charge, the design of the projectile body itself, including its
shape and mass distribution, and its obturation and stabilization components. The design
must also incorporate into the projectile the ancillary systems necessary for its intended
functioning, for example, fuzes, expulsion charges, explosive trains, and, in modern pro-
jectiles, guidance, and control.

4.4 Propellant Ignition

Energetic devices that are combined in a specific manner into the ignition train accomplish
the initiation of combustion of the propellant charge. The first of these elements is the highly
sensitive, detonator cup filled with material such as lead azide, which itself receives an
energy pulse from a trigger mechanism that delivers the pulse in the form of a mechanical
(spring actuated) or electrical (hot wire or laser) impulse. The sensitive mix is detonated by
the impulse and flashes into the main, less sensitive ignition charge. This material is con-
tained in the primer head.
Secondary ignition takes place in the main primer body, where the ignition material

known as the primer charge is stored. This material has traditionally been fine-grained
black powder, which is known to have certain undesirable properties such as hygrosco-
picity. Attempts have been made to replace black powder, but it still remains the chief
secondary ignition material. Two basic forms of primer charge are used in large caliber
munitions: flat base-pad igniter charges are used with separate-loaded bagged propellant
charges and in fixed, stick propellant charges; central core or bayonet-type primer bodies
are used in most fixed, loose, granular propellant charges.
The design goal of all ignition systems is to provide rapid but smooth ignition of the main

propellant charge avoiding at all cost pressure surges or spikes. Such surges can crush
individual grains or sticks causing large, uncontrolled increases in burning surfaces, and
uncontrolled burning of the main charge. Symptoms of such burning are negative delta
pressure (−Dp) waves, that is, negative gradients of pressure along the length of the
chamber. One cause of pressure surges are the so-called blind primers, where vent holes are
missing along the length of the primer body tube. The pressure buildup in the tube can
rupture it causing asymmetric ignition and a −Dp.
Other caveats are to avoid overly sensitive detonator mixes and to provide gas flow space

in the main propellant charge. Ignition and burning are surface phenomena, and too tightly
packed charges do not provide the necessary surfaces.

4.5 Gun Chamber

To the rear of the long cylindrical portion of the gun (the bore) is the chamber, shown in
Figure 4.7. The tapers shown facilitate the removal rearward of the spent cartridge case that
hugs the chamber wall. During the firing cycle, the case swells because of the internal
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pressure and firmly contacts the chamber wall sealing the gases from exiting rearward.
When the pressure decays, a properly designed case comes away from the wall and the
tapers ensure that it does not stick in the chamber. When a fixed round of ammunition is
loaded into the chamber, the rear face of the tube provides the stop and seat for the rim of
the case. During the expansion of the pressurized case, the forcing cone of the chamber
forms the seal for the hot gases by the extrusion and engraving of the rotating band in a
rifled bore or the extrusion of the obturating band in a smooth bore. The ratio Dc/D is
known as the chambrage, an important characteristic of the design. Large values of the
chambrage tend to cause turbulent flow of the gases as they enter the bore. Such turbulence
contributes to the erosion of the bore surfaces.
The gun designer is caught in a curious bind: for a desired volume of propellant, a large

chambrage provides a shorter cartridge length, frequently a highly desirable parameter in
the tight confines of a turret, for example; on the other hand, large chambrage values subject
the bore to more erosion. Some of this difficulty has been overcome by the use of erosion-
reducing coolants. It has been found that much of the erosive wear in high-performance
guns and howitzers can be ameliorated by the introduction of a cool liquid, gaseous, or
particulate layer between the hot propellant gases and the bore. Materials such as titanium
dioxide, wax, talc, or silicone oil have proven efficacious. If these materials are assembled in
the body of the propellant charge so that the gas flow keeps the coolant at the bore wall, a
substantial decrease of erosion results. This is called laminar flow and is observed in low-
chambrage guns. Thus, a compromise may have to be made in the chambrage to reduce the
turbulent flow.

4.6 Propellant Charge Construction

In fixed cartridges, the most common practice is to fill a metallic cartridge case with per-
forated granular propellant grains around a bayonet-type primer that has already been
inserted in the case. The grains commonly have seven perforations for progressive burning.
In high-performance rounds, vibrating the case to help settle the grains maximizes the

Tapers greatly exaggerated 
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Bottom of groove
Top of land

Rear face of tube 

FIGURE 4.7
Chamber geometry.
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loading density of the charge. Tank munitions are often loaded with perforated stick pro-
pellant. The sticks are bundled and carefully laid up around the boom and fin components
that intrude into the depth of the case. Supplementary granular propellant is occasionally
added to the stick bundles to further boost the charge mass and increase the progressivity of
burning. Rocket grain configurations with complex star and slit perforations have been
tried as well as 19-perf grains to raise the burning rate, but these are difficult to make and
are not standard.
Howitzer (separate-loaded) charges are made up of bagged increments that are ignited by

the last increment loaded, the base-pad igniter. A primer in the breechblock sets off the
igniter. In these and in the fixed ammunition charges, coolants are strategically emplaced to
promote erosion resistance. With bagged propelling charges, since there is no cartridge case
present, it is extremely important that all the materials be combusted. Great care is taken in
selecting materials—silk was used for many years in the navy—to assure that there are no
burning embers left in the weapon after it was fired. It is typical for a howitzer crewmember
to look down the bore and shout “bore clear” during firing operations. If burning materials
are present and a fresh charge is inserted into the bore, the propellant may ignite and cause
serious injury to the gun crew. This has been termed cook-off.
There have been extensive efforts to take advantage of the convenience of stowage, low

cost, and inherent safety of liquid bipropellants. However, severe operational and perfor-
mance problems have prevented their adoption. These problems have centered on com-
bustion instability that manifests itself in destructive, unpredictable pressure peaks,
particularly in bulk-loaded systems. Attempts to get around these so-called Taylor insta-
bilities have had some success with regenerative pressurized systems that atomize the
pumped-in liquids, ignite this cloud, and avoid the pressure wave unpredictability of an
ignited bulk of liquid. This concept, even though it has shown promise, may still not be able
to overcome the poor low-temperature properties of the liquid propellants. They show
marked increases in viscosity at low temperatures causing severe flow and pumping
problems.
Two other concepts of gun propulsion should be mentioned. These are the use of elec-

tromagnetically generated force to propel a projectile down a gun and the idea of using a
low-molecular weight gas to propel the projectile—the light gas gun. At the time of this
writing, neither concept has shown the ability to progress beyond the laboratory stage to a
fieldable weapon, although light gas guns are in common use in laboratories to reach
velocities with small projectiles approaching meteorite entry speeds.

4.7 Propellant Geometry

The geometry of the propellant grain is one of the parameters available to the interior bal-
listician to tailor the pressure curve in the gun. The production of gas from a grain depends
on the evolution of the total surface of the grain as the burning proceeds. If the surface area
increases with time, the grain is considered progressive. If the total surface remains constant
over time, the grain is neutral, and if the surface decreases with time, the grain is considered
regressive. The perforations in the grain affect the surface area and, therefore, the burning
characteristics. In cylindrical grains, the number of perforations is usually one of the
numbers in the sequence: 1, 7, 19, and 37. The largest number in use in theUnited States is 19,
and this is rarely found because of the difficulty of manufacture. The various types of grains
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are shown in Figure 4.8. The web D that is the smallest thickness of propellant between any
two surfaces is one of the major parameters in interior ballistic computations.

4.8 Cartridge Case Design

The design of a metallic cartridge case must fulfill four basic roles: the case must seal or
obturate the gun breech so that gases do not stream backward out of the gun; it must serve
as a protective container for the propellant charge; it must act as a structural member of the
cartridge assembly to allow for vigorous handling during shipping, stowage, and loading
into the chamber; and it must be easily extractable from the chamber after the round is fired.
Metallic cases have been used for much more than a hundred years, and the design prac-
tices are well established to fulfill these roles. Yet difficulties still arise in the extraction of the
case after firing—it can stick in the chamber, rendering the weapon useless until it is
removed. The case by itself cannot sustain the gun pressure and is intended to be supported
by the chamber walls. Yet, the case must be designed with sufficient clearance to permit
loading and ramming. The analysis of sticking that follows must be part of the design
engineer’s overall task before a new weapon can be fielded.
It is possible, through the use of some relatively simple equations, to determine if a

cartridge case will expand enough to stick in the chamber of the weapon after firing.
Graphically, we can depict this as shown in Figure 4.9. In this figure, we see the effect when
a case with a low yield strength is loaded to the same levels as a good case. The expansion
and contraction of the gun tube itself must be taken into account when the cartridge case is
designed. This condition can be approximated using a bilinear, kinematic hardening model
where the stress–strain curves of the case material are modeled, as depicted in Figure 4.10.
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FIGURE 4.8
Typical propellant grain geometries.
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The first step in this procedure is to model the gun tube. In this case, we assume that the
material is perfectly elastic—which will be the case for any properly designed tube—and
we can determine the radial expansion through [2]

utube =
a0

Etube b2 − a02
	 
 1 − nð Þ p1a

02 − p2b
2

� �
+ 1 + nð Þb2 p1 − p2ð Þ

h i
(4.30)

In this equation (which has been tailored from a previous formula for a thick-walled
cylinder because the point we are interested in is on the inside radius of the tube wall), a′ is
the inner radius of the chamber, b is the outer radius of the gun tube, p1 is the internal
pressure, p2 is the external pressure (usually conservatively taken as 0), n is Poisson’s ratio
for the tube material, and Etube is the modulus of elasticity.
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FIGURE 4.9
Stress–strain diagram of a normal case and one with low yield strength.
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FIGURE 4.10
Stress–strain diagram of a normal case and one with low yield strength modeled as bilinear kinematic hardening
materials.
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We now calculate the stress, strain, and displacement of the case through use of the thin-
walled cylinder equations [3]

ucase =
a2p1
Ecaseh

(4.31)

sqq =
ap1
h

(4.32)

eqq =
sqq

Ecase
(4.33)

In these equations, ucase is the radial expansion of the case, sqq is the hoop stress in the
case, eqq is the hoop strain, a is the outside radius of the case, and h is the case wall thickness.
Now, the gun tube will stop the case from expanding further once contact is made so the
maximum expansion of the case will be as follows:

rcase + ucasemax
= rtube + utube = rcase + aeqqmax

(4.34)

Because we know the pressure and the tube dimensions and, therefore, the value of utube,
we can calculate eqqmax

. We can then use this value to calculate the stress in the case at the
maximum expansion:

eqqmax
− eY =

sqqmax
− sY

Ecase-tangent
(4.35)

In this expression, the subscript Y indicates yield values and Ecase-tangent is the tangent
modulus of the cartridge case material. Once we determine the stress at the maximum
expansion, we need to recall that a material which has yielded will retract along its original
elastic modulus. Thus, we can write

ereturn =
sqqmax

Ecase
(4.36)

Now the residual strain in the case is given by

eresidual = eqqmax
− ereturn (4.37)

We can then find the permanent radial displacement through

uresidual = aeresidual (4.38)

If we now add uresidual to the original radius of the case a, we can see that if

uresidual + a ≥ a0, the case will stick (4.39)

or if

uresidual + a < a0, the case will not stick (4.40)

Over the last 20 years, the metallic case of drawn brass, extruded steel, or spirally
wrapped steel has been replaced in certain systems by a fully combustible or consumable
case. These cases are manufactured of felted nitrocellulose and usually consist of a base and
sidewall that are assembled with cement, filled with granular or stick propellant, and
attached to the projectile with clamps and cement. Since the cases are completely consumed,
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they do not seal the breech. With these munitions, a self-sealing breechmust be designed for
the weapon. For guns with nonsealing breeches that are already fielded for use with con-
ventional metallic cartridge cases, a case that has a metallic stub and a combustible sidewall
has been devised to take advantage of the small volume of the ejected stub in the confines of
a tank turret, for example, and the overall reduction in the cost and weight of the round.
While systems with the combustible case have been fielded, the success of this development
has not been complete. Occasional problems with the incomplete combustion of a case that
leaves smoldering residue capable of igniting the next loaded round (cook-off) have
required scavenging systems for the chamber to be installed. The inherent structural
weakness of nitrocellulose has also posed problems of case attachment and handling. Yet
the obvious advantages of the combustible case have kept the concept in the weapon
designer’s toolbox for possible use.

Problem 3
A design for a 105 mmweapon is being considered. The chamber is stated to withstand the
desired 35,000 psi and is essentially a steel cylinder of 4.5 in. inside diameter (ID) and 7 in.
OD (Etube = 30 × 106 psi, n = 0.3). We have decided to use brass with an outside diameter
(OD) of 4.490 in. If we use a bilinear, kinematic hardening model where the brass has a
modulus of elasticity of 15 × 106 psi, a local tangent modulus of 12.5 × 106 psi, a yield stress
of 15,000 psi (yield occurs in this material at e = 0.001), and an ultimate tensile strength of
45,000 psi, with the information given, what is the radial clearance between the case and the
chamber after firing neglecting thermal effects?
Answer: Approximately 0.004 in. radial clearance

4.9 Projectile Design

While propulsion systems are fairly straightforward in design because their intended use is
simple, projectiles widely vary in use, and as a consequence, their designs are complex and
demanding. The propulsion systemmust get the projectile through the launch environment
with consistent muzzle velocities, but without undue stress to the gun or the projectile. The
projectile, on the other hand, must withstand the forces of launch; be efficient, consistent,
and precise in its flight environment; and deliver its intended utility at the target. We will
explore only projectile design for launch in this section, reserving design for flight and
terminal effects until later.
Projectiles may be classified into two general types: cargo carriers and pure kinetic energy

deliverers. The cargo carriers include shells that deliver high explosives (HE), submunitions
and mines, pyrotechnics, smart munitions, and other specialized lethal systems, e.g.,
shaped charges (high-explosive anti-tank [HEAT]) and explosively formed penetrator (EFP)
shells. The kinetic energy delivery systems, used chiefly for the attack of armor, are
monobloc steel shot (armor piercing), saboted, long-rod, heavy metal penetrators (armor-
piercing, fin-stabilized, discarding sabot [APFSDS]), and older types of spin-stabilized,
saboted (armor-penetrating, discarding sabot [APDS]) projectiles.
The stresses induced into a projectile during launch are chiefly due to the acceleration that

the gases impart to it. The cargo carriers are shells whose stresses are due to relatively low
accelerations andwhich, except for the tank cannon-firedHEAT shell, achieve onlymoderate
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muzzle velocities. We will therefore explore the kinds of stresses and failures inherent in
shell-like structures under load in Section 4.10. Kinetic energy munitions, on the other hand,
are subject to extremely high accelerations and have high muzzle velocities. For these types,
we will explore the driving mechanism stresses and other aspects of these designs.
The gamut of topics in projectile design is almost unlimited. However, several suggest

themselves because of their general applicability or timely interest. Shell design is a ubiq-
uitous problem and will be explored in depth in Section 4.10. The use of buttress threads is
so common in projectile and gun design that it warrants its own in Section 4.11. Sabot
design is more specialized as are the problems of kinetic energy rods and their buttress
driving grooves. These will be explored in Section 4.12.
Modern projectiles employ a variety of electronic and electromechanical devices for

fuzing, target detection, and guidance and control. This relatively new engineering disci-
pline called “gun hardening” deals with designing these devices to survive the harsh
environment of gun launch.

4.10 Shell Structural Analysis

Most cargo-carrying projectiles, whether fin- or spin-stabilized, are designed with cargo
bodies in the shape of an axisymmetric cylindrical shell. Because the loads on these cylin-
ders are the result of spin and acceleration of the shells and their contents, the stresses
encountered are highly variable along and through their walls. These stresses will be
examined as will the consequences of failure criteria.
The symbols and definitions of the constants and variables of shell loading are listed next:

A—Bore area of the gun

a—Linear acceleration

d—Diameter of bore (across lands), diameter of assumed shear circle in base of shell

di—ID of projectile

do—OD of projectile

Fb—Maximum force on base of projectile and rotating band

FT—Maximum tangential force on projectile wall

FTR—Hoop tension (force) in wall of projectile resulting from rotation of the shell

F0T—Tangential force at section of shell

f′—Setback force

g—Acceleration due to gravity

h—Total depth of filler from nose

h′—Total depth of filler from nose end of cavity to section under consideration

Izz—Polar moment of inertia

I0zz—Polar moment of inertia of metal parts forward of section when section is ahead
of rotating band and aft of it when section is aft of the rotating band

n—Twist of the rifling

pb—Maximum propellant pressure
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ph—Filler pressure due to setback

prot—Filler equivalent pressure due to rotation, includes wall inertia

ri—Inside radius of projectile

ro—Outside radius of projectile

S—Compressive strength of the rotating band

S1—Longitudinal stress

S2—Tangential stress

S3—Radial stress

t—Shear stress

sY—Static yield stress in tension

T—Torque applied to the projectile

t—Base thickness, wall thickness

V—Muzzle velocity

w—Total projectile weight

w′—Weight of metal parts forward of section under consideration

w0
f—Weight of filler forward of section under consideration

a—Angular acceleration

rm—Density of projectile material

rf—Density of filler material

w—Angular velocity

rb—Radius of band seat

pband—Band pressure

We distinguish between thin-walled and thick-walled cylinders in this analysis so that the
designer may run quick, ballpark estimates of the stress levels encountered. In practice, FEA
is usually conducted on the components, but as emphasized earlier, the designer should
have a good idea of the bounds of the answer before beginning the FEA.
We begin with a review of basic mechanics of materials as applied to cylinders. If a

cylinder is subjected to an axial load and does not buckle, the axial stress can be determined
from

S1 = −
FAxial

A
= −

FAxial

π r2o − r2i
	 
 (4.41)

The stress–strain relationships for a cylinder are as follows:

err =
1
E

srr − n sqq + szzð Þ½ � (4.42)

eqq =
1
E

sqq − n srr + szzð Þ½ � (4.43)

ezz =
1
E

szz − n sqq + srrð Þ½ � (4.44)

Ammunition Design Practice 125



where n is Poisson’s ratio; srr is the radial stress; sqq is the transverse (hoop) stress; szz is the
axial stress; and E is Young’s modulus.
If a cylinder is subjected to a torsional load, it will twist. We typically assume that this

deformation is small and plane sections remain plane. Thus, when we apply a torque T to a
cylinder of length Lwith shear modulus G, and polar moment of inertia J, the structure will
rotate through an angle f (in radians):

f =
TL
JG

(4.45)

For a hollow cylinder,

J =
1
2
π r4o − r4i
	 


(4.46)

For a material that behaves according to Hooke’s law,

G =
E

2 1 + nð Þ (4.47)

Such a material under pure torsion will only exhibit shear stress according to

tqz =
Tr
J

(4.48)

While the thick-walled cylinder analysis, which we describe next, is an exact solution, a
quick way to assess the major stresses if the wall thickness is less than 10% of the cylinder
radius is to assume that the stresses in the radial direction S3 are negligible.
Thus, we examine only the meridional or longitudinal and the circumferential or hoop

stresses. We define S1 as the longitudinal stress, S2 as the hoop stress, and p as the pressure
depicted in Figure 4.11.
If the cylinder has closed ends, then internal pressure can cause a longitudinal stress

S1 = szz =
pr
2t

(4.49)

Otherwise, S1 = 0. Internal (or external) pressure always causes hoop stress

S2 = sqq =
pr
t

(4.50)

In practical shell design,we always performa thick-walled cylinder analysis assuming that
the stresses in the radial direction are significant enough to be considered. Thus, we must
examine longitudinal, hoop, and radial stresses. We again define S1 = szz = longitudinal

S1

S2
r

t

FIGURE 4.11
Thin-walled cylinder geometry.
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stress, S2 = sqq = hoop stress, S3 = srr = radial stress, and p = pressure. This is depicted in
Figure 4.12.
The following solutions are known as the Lamé formulas and assume open ends, which

implies S1 = 0 if no axial loads are present. If axial loads are present, they must be accounted
for. Internal (or external) pressure always causes hoop stress. (Note that the subscripts o and
i refer to the outer and inner surfaces, respectively.)

S2 = sqq =
1

r2o − r2i
	 
 pir

2
i − por

2
o −

r2i r
2
o po − pið Þ
r2

� �
(4.51)

With a maximum at r = ri. The radial stress can be calculated from

S3 = srr =
1

r2o − r2i
	 
 pir

2
i − por

2
o +

r2i r
2
o po − pið Þ
r2

� �
(4.52)

with a maximum again at the inner surface r = ri and equal to S3 = −pi.
Initially, we will analyze the state of stress caused by the centrifugal loading induced by

the rotation of a projectile in a rifled gun tube. In a spin-stabilized projectile, besides the
longitudinal loads induced by the acceleration through the tube, the rotation of the pro-
jectile, which is dependent upon the axial velocity and the twist of the rifling in the tube,
induces stresses in the walls. The twist of the rifling is usually measured in revolutions per
caliber of travel (i.e., a twist of 1 in 20 means the projectile makes one revolution in
20 calibers of travel [n = 20]). The units of n are calibers per revolution. If we multiply n by
the diameter, d, we get units of length per revolution:

n
caliber

revolution

� �
� d

length
caliber

� �
= nd

length
revolution

� �
(4.53)

Since there are 2π radians per revolution, the angular velocity a projectile has attained is
defined as

w =
2πV
nd

=

radians
revolution

h i length
time

� �
length

revolution

� � =
radians
time

� �
= t−1
� �

(4.54)

The centrifugal force directed radially outward on an element of material at radius r is

Fc = mar =
w
g
rw2 (4.55)

S2

S1rro

ri

S3

FIGURE 4.12
Thick-walled cylinder geometry.
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In the tangential direction, the inertial forces on an element of material can be determined
from

Ft = mat =
w
g
ra (4.56)

We can determine the centrifugal force on the cylinder wall caused by spinning the
cylinder in the absence of other loads by integrating Equation 4.55 from the inner diameter
to the outer diameter. To do this, we consider the differential element as depicted in Figure
4.13. From this diagram, we see that the mass of an infinitesimal annular ring of material is

dm =
dw
g

= r dV = rl2πrdr (4.57)

Inserting Equation 4.57 into Equation 4.55 yields

dFc = ar dm = rl2πr2w2 dr (4.58)

which, when integrated from the inner to the outer radius, gives

FcWALL = 2πrlw2
ðro
ri

r2dr =
2πrlw2

3
r3o − r3i
	 


(4.59)

This is the radial force on the wall due to the inertia of the wall material only. If the
projectile is filled with material, we need to account for this filler as well. Thus, if we
integrate from the centerline to the inner radius of the projectile wall, we obtain

FcFILL = 2πrFILLlw
2
ðri
0

r2dr =
2πrFILLlw2

3
r3i
	 


(4.60)

Projectile model
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FIGURE 4.13
Differential thickness element geometry.
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The total force acting on the projectile wall due to spin is then

Fc = FcWALL + FcFILL =
2πlw2

3
r r3o − r3i
	 


+ rFILL r3i
	 
� �

(4.61)

For stress computations, we require an internal pressure; thus, we need to convert the
centrifugal forces to an equivalent internal pressure. If we assume that our centrifugal forces
are acting on the interior of the shell, pushing radially outward, the area for our equivalent
pressure is

Arad = 2πril (4.62)

Thus, our equivalent pressure can be written as

prot =
Fc
Arad

=
w2

3ri
r r3o − r3i
	 


+ rFILL r3i
	 
� �

(4.63)

In Equation 4.56, we determined the tangential force arising from the angular accelera-
tion. If we perform a similar analysis to that which developed Equation 4.61, we will obtain
an expression for the torque as follows:

T = MWALL +MFILL =
1
2
πal r r4o − r4i

	 

+ rFILL r4i

	 
� �
(4.64)

The derivation of this is left as an exercise for the interested reader and is included as a
problem at the end of the chapter.
The formulas for calculating the tangential and radial stresses at radial location r in a

rotating cylinder where ro > 10(ro − ri) can be given as
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We are reminded that the longitudinal stress (assuming the structure does not buckle) is
simply the axial acceleration multiplied by the weight of all the materials forward of the
location of interest divided by the shell cross-sectional area—we will discuss this presently.
These formulas were developed for the centrifugal loading of a spinning projectile by forces
that act during both in-gun setback and flight. The axial load on a projectile, however, is for
the most part only present during acceleration in the tube, is a function of time, and occurs
whether the projectile is spinning or not. Beyond this, there is also an applied torque due to
the angular acceleration, which is applied through the rotating band or slip obturator. The
setback load and (if spinning) the centrifugal and torsional loads must all be superimposed
on the projectile to determine its state of stress.
The axial force on the projectile during firing is given by

F = psA, (4.67)

where ps is the pressure acting on the base of the projectile defined by the Lagrange
approximation

p p
c
w

s B=
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1
2

(4.68)
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The d’Alembert force is the force due to acceleration that exactly equals this pressure force

a =
psAg
w

(4.69)

At any axial position, the force on the cross-sectional area can be shown to be proportional
to the weight of material forward of the section:

f 0 =
w0

w
psA (4.70)

To calculate the force (or really the pressure) in the filler material, we usually resort to a
hydrostatic model

ph = rha = rh
psAg
w

(4.71)

where r is the density of the filler; h is the filler head height; and ph is the hydrostatic
pressure that is developed.
In a spin-stabilized projectile, the angular acceleration a is proportional to the linear

acceleration a, where

a = Ka (4.72)

Then,

a = K
psAg
w

(4.73)

where K has units of length−1 and is dependent upon the twist n (in calibers of travel per
turn), and the bore diameter d; thus,

K =
tan q
πd

=
2π
nd

(4.74)

where q is the angle between the circumferential twist distance and the axial distance
traveled. From Equations 4.73 and 4.74, we get

a =
2π
nd

psAg
w

(4.75)

If we define a tangential force applied to the rotating band of the projectile as FT, then the
torque on the projectile is

T = FT
d
2

(4.76)

We know that the torque is equal to the product of the polar moment of inertia of the
projectile and its angular acceleration

T = Izza (4.77)

Solving for the angular acceleration in terms of the tangential force, we get

a =
FT
Izz

d
2

(4.78)
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Inserting this into Equation 4.56 and solving for FT yields

FT =
π2Izzps
nw

(4.79)

Since

A = π
d2

4
(4.80)

The force that is applied by the rifling to the rotating band is transmitted through the
structure to regions both forward and aft of the rotating band. These forces are proportional
to the moment of inertia of the sections ahead of or behind the application of the torque load
I0zz. We assume that this force acts over a mean diameter of the outer and inner wall sur-
faces of the shell, and then we get

F0T =
16πI0zz

n do + dið Þ2
psA
w

(4.81)

Because the rotating band is intended to act as a gas seal (obturator) as well as the
rotational driver, designs typically exhibit a diameter over the band that is slightly larger
than the groove diameter of the weapon. The engraving action of the gun lands and the
interference fit in the grooves causes a plastic flow of the band, resulting in a pressure on the
band seat as well as a developed reaction in the gun wall. This pressure can be greater than
the gas base pressure on the projectile. Measurements of this pressure have been obtained
by strain gaging of the gun tube and computing the stress at the inner diameter of the
weapon. The pressure required to cause this stress is called the interface pressure. It has
been shown that cannelures or circumferential grooves cut into the band surface reduce this
substantially pressure by allowing room for band material to flow rather than being loaded
in a quasi-hydrostatic condition. This is depicted in Figure 4.14. The composition/material
of the rotating band can have a dramatic effect upon the behavior of the projectile in the tube
as well as tube wear. An excellent example of this relationship is contained in the report by
Montgomery [4].
We have the forces on the projectile structure but must now translate these into stresses

that allow us to determine how much design margin is present. Once determined, these
stresses are then linked to well-established failure criteria to determine the failure point of
the material. Since projectiles may bemade of a variety of materials, specialized criteria may

pband 

ps

Cannelures

FIGURE 4.14
Rotating band pressure.

Ammunition Design Practice 131



have to be used on each material. This full procedure is somewhat complicated and
beyond the scope of this book, but we will attempt to describe the basics through an
examination of a simple M1, highly explosive projectile structure depicted in Figure 4.15.
Assume a thick-walled cylinder as shown for stress calculations where S1j is the longi-

tudinal stress at the jth location; S2j is the hoop stress at the jth location; S3j is the radial stress
at the jth location; t11 is the longitudinal shear at the base; and t2j is the torsional (shear)
stress at the jth location
It is helpful to recap here all the loads on an element of projectile wall material at a

generalized location (such as point A) in the diagram. This element of material is

• Compressed in the axial direction due to the axial acceleration

• Loaded in tension in the hoop direction because of the wall mass being pulled
radially outward due to the spin

• Loaded in tension in the hoop direction because of the filler material moving
outward due to the setback load and the spin

• Loaded in shear due to the rotating band accelerating the projectile in an angular
direction

• Loaded in shear due to the greater stress in the outer wall than on the inside wall

Note that when including mass forward of a particular section, we must include all mass
transmitting loads to the section, e.g., fuze, bushings, and cups. The pressures applied to
our model of the M1 projectile are shown in Figure 4.16.
Now let us examine specific locations of interest along the shell where experience tells

us that failures might occur. For convenience, these have been tabulated in Table 4.1
and tailored to each individual location with the symbol, source load, and type of stress
noted.

ps

pband

FIGURE 4.16
Load conditions for an M1 highly explosive projectile.

j = 1
j = 2

j = 4Point A

r

z

j = 3

FIGURE 4.15
Stress locations in an M1 highly explosive projectile.
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At location 1, these are the formulas used to calculate stresses due to the setback of filler
on base, the moments caused thereby, and by gas pressure on base:

S11 = −ph (4.82)

S21 = 0 (4.83)

S31 =
r2o
t2

ps − phð Þ (4.84)

S031 = −ps
3r3o

2 r3o − r3i
	 


" #
+ ph

r3o + 2r3i
2 r3o − r3i
	 


" #
(4.85)

Equation 4.82 is the axial component stress. We can see that it is just driven by the reaction
of the fill and shell to the axial acceleration. Since this is a centerline location, by definition,
there is no hoop stress, which is defined by Equation 4.83. Equation 4.84 specifies the radial
stress assuming the base is flat faced. This comes about from the difference in the base
pressure reacting against the internal forces and attempting to push the center of the base
into the fill. Equation 4.85 is the radial stress equation assuming the base is a rounded
bottom (i.e., with the concave portion enclosing the fill). We can see from this equation that
the stresses are much lower as it carries the loadmore efficiently than a flat bottom shell. The
drawback is that a base of this type requires a skirted boat tail which is more expensive to
manufacture but saves considerable weight.
Moving to location 2, these are the stresses due to setback of filler, filler rotation, wall

rotation, and band pressure:

S12 = −
w0 + w0

f

w
psA

π r2o − r2i
	 


" #
+

ph + protð Þr2o
r2o − r2i
	 


" #
(4.86)

TABLE 4.1

Typical Stresses in a Highly Explosive Projectile and Their Sources

Type of Stress Symbol Source of Load

Compressive load on base S11 Setback of filler

Radial stress on base at centerline S31 Moments of filler setback and base pressures
(flat base)

Radial stress on base at centerline S′31 Moments of filler setback and base pressures
(round base)

Hoop stress at rear of the band S22 Setback of filler, rotation, and external
pressure (band and gas)

Radial stress at ends of band and
maximum ID

S32, S33,
S34

Rotation of projectile, filler setback, and filler
rotation

Longitudinal stress at ends of band
and maximum ID

S12, S13,
S14

Setback of metal parts in wall (filler
contribution usually neglected)

Hoop stress at forward end of band
and maximum ID

S23, S24 Filler pressure and rotation of wall

Shear stress through thickness t t11 Moments of filler setback and base pressures
(round base)

Torsional shear in projectile wall t22, t23,
t24

Setback of filler, rotation, and external
pressure (band and gas)
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⎟⎟ (4.87)

S32 = − ph + protð Þ (4.88)

At this location, we see that the axial stress defined by Equation 4.86 has two parts. The
first term on the right-hand side (RHS) is the inertia of all the fill and shell material ahead of
this location. The second term is the axial stress caused by the internal pressure of the fill
expanding. In Equation 4.87, the first term on the RHS is the contribution of spin to the hoop
stress and the second term is the restoring force caused by the gun tube pushing in on the
rotating band. Equation 4.88 is simply the radial stress caused by the rotation and com-
pression of the fill and wall.
Further forward on the shell at location 3, the stresses due to setback of filler, filler

rotation, wall rotation, and band pressure have identical formulas to location 2 but with, of
course, different values of the variables due to the lower hydrostatic pressure component:

S13 = −
w0 + w0

f

w
psA

π r2o − r2i
	 


" #
+

ph + protð Þr2o
r2o − r2i
	 


" #
(4.89)
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S33 = − ph + protð Þ (4.91)

Finally, at location 4, near the nose of the shell, the stresses due to setback of filler, filler
rotation, and wall rotation are as follows:

S14 = −
w0 + w0

f

w
psA

π r2o − r2i
	 


" #
+

ph + protð Þr2o
r2o − r2i
	 


" #
(4.92)

S p p
r r
r r24

2 2

2 2= +( ) +
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟h rot

o i

o i

(4.93)

S34 = − ph + protð Þ (4.94)

At each location, one must be certain to use the proper head height offiller and the proper
inner and outer radii of the shell.
We must also account for the shear stresses which are most severe at location 1. For

simplicity, we will assume a flat base and calculate the shear stress due to wall torsion.
Wherever these calculations are done on the shell, the proper Izz and the proper inner and

outer diameters must be used:

t11 =
ps − phð Þπr2i

2πrit
=

ps − phð Þri
2t

(4.95)

t22, t23, t24 =
F0T

π

4
d2o − d2i
	 
 = 64I0zz

n do + dið Þ3 do − dið Þ
psA
w

(4.96)
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A typical loading of the shell using known weights, pressures, and acceleration is shown
in Figure 4.17 and Table 4.2.
The common practice currently used in projectile design is to dispense with the hand

calculations and go right to an FEA. While this is usually very accurate and saves a good
deal of time, there are instances when one would like to check the answers through a hand
calculation. Let us examine one location on this 105 mm M1 High Explosive (HE) projectile
fired from an M2A2 cannon at 145°F.
Projectile data:

• Shell material: HF-1 steel

• Density—0.283 lbm/in.3

• Projectile OD—4.10 in.

• Projectile ID (average)—2.95 in.

• Projectile effective (including friction) mass (fuzed)—42 lb

• Projectile base intrusion into cartridge case—85.43 in.3

• Izz—80.24 lbm in.2

• Fill material: TNT

• Density—0.036 lbm/in.3

• Total length of explosive column—13.44 in.

• Izz—5.17 lbm in.2

Location of interest—
on inside wall

Section properties at or ahead of 6-in. location:

6 in.

CS00
X

Y
Z

Mass
OD
ID
Head height
Moment of inertia

m6 = 17.15 lbm
do6 = 4.10 in.
di6 = 2.95 in.
h6 = 8.189 in.
Izz6 = 41.15 lbm in.2

Polar MOI J6 = 108.3 in.4

FIGURE 4.17
Location of interest on a 105 mm M1 projectile.

TABLE 4.2

Typical Values for Use in a Highly Explosive Projectile Design

Component Weight (lbm) Loads

Fuze 2.1 Breech pressure (psi) 38,400
Body 34.0 Spin rate—maximum p (Hz) 82.4

Rotating band 0.4 Base pressure (psi) 37,150

Filler (TNT) 5.5 Acceleration (g) 11,873
Total 42.0 Angular acceleration (rad/s2) 348,600
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• Average fill cross-sectional area—6.49 in.2

• Fill surface area—124 in.2

The M1 projectile fired from our cannon is depicted in Figure 4.17. The properties of the
section ahead of the location of interest are provided in Figure 4.17. We shall determine the
stress tensor at the location shown. We shall assume that the projectile perfectly obturates
and that there is no friction between the projectile and the tube.
To begin, we should always draw a free-body diagram of an infinitesimal element at the

point of interest.
Let us look at the hoop direction first. We shall use Equation 4.51:

sqq =
1

r2o − r2i
	 
 pir

2
i − por

2
o −

r2i r
2
o po − pið Þ
r2

� �
(4.97)

σθθ

σθθ

In this case, r = ri and po = 0, so we can write

sqq =
1

r2o − r2i
	 
 pi r

2
i + r2o

	 
� �
(4.98)

The internal pressure is found through our equivalent pressure technique mentioned
earlier:

prot =
w2
pmax

3ri
r r3o − r3i
	 


+ rfillr
3
i

� �
(4.99)

prot =
82:4ð Þ2 rev

s

h i2
2πð Þ2 rad

rev

� �2

(3Þð1:475Þ ½in:� ð12Þ in:
ft

� �
32:2ð Þ lbm‐ft

lbf‐s2

� �

� 0:283ð Þ lbm
in:3

� �
2:05ð Þ3 − 1:475ð Þ3� �

in:3
� �

+ 0:036ð Þ lbm
in:3

� �
1:475ð Þ3 in:3

� � �

prot = 258
lbf
in:2

� �

For the hydrostatic component of the equivalent pressure, we know that

ph = rfillapmax
h6, (4.100)

ph =
0:036ð Þ lbm

in:3

� �
382, 300ð Þ ft

s2

� �
8:189ð Þ in:½ �

32:2ð Þ lbm‐ft
lbf‐s2

� �
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ph = 3500
lbf
in:2

� �

The equivalent internal pressure is then

peq = prot + ph, (4.101)

peq = pi = 3758
lbf
in:2

� �

The hoop stress is then

σθθ =
⎛
⎝
⎜

⎞
⎠
⎟ − ⎛
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Now let us look at the axial stress. This is the stress at the point due to two things: the
axial inertia of all the materials ahead of the cut setting back and the effective internal
pressure caused by the rotation of the projectile and the hydrostatic compression of the fill
material:

szz =
pir

2
i − por

2
o

	 

r2o − r2i
	 
 −

FAxial

π r2o − r2i
	 
 (4.102)

σzz

σzz

We shall use the radii given in the problem statement. We put negative sign in the
aforementioned equation to denote compressive stress because only the axial component
loads the inner wall in compression. The force acting on the section of interest due to setback
is given by

FAxial = m6apmax
(4.103)
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FAxial =
382,300ð Þ ft

s2

� �
17:15ð Þ lbm½ �
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lbf‐s2

� � = 203,600 lbf½ �

Using this result, we have
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Many times, we neglect the first term in the aforementioned equation for conservatism. In
the radial direction, we only have our equivalent pressure pushing radially outward, and
our location of interest is on the ID, so

srr = −peq (4.104)

srr = −3758
lbf
in:2

� �

σrr

σrr

The angular acceleration will generate a torque through the rotating band that results in a
shear stress in the plane normal to the axis of the projectile.

τzθ

τzθ

The torque on the projectile is also the opposite of the torque on the gun tube and comes
directly from Equation 4.77:

T6 = Izz6apmax
(4.105)

The moments of inertia were provided, and we must use the angular acceleration cal-
culated at peak pressure provided earlier. Now the torque comes about through

T6
2lbm-in.

rad
s

lbf-s
= ( ) ⎡⎣ ⎤⎦ ( ) ⎡
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T6 = 37,130 lbf‐in:½ �
The in-plane shear stress is given by

t =
Tr
J

(4.106)

Then, we have

τ θz =
( ) [ ] ⎛

⎝
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The shear stress caused by the rotation is generated by the shell trying to spin up the
explosive fill. The torque on the explosive fill is determined through

Tfill = Izzfillapmax
(4.107)

Tfill
2lbm-in.
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s
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Tfill = 4644 lbf in:½ �
This generates a force at the internal radius of

Ffill =
Tfill

ri
(4.108)

Ffill
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in.
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⎛
⎝
⎜

⎞
⎠
⎟ [ ]

= [ ]4644
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2
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.

Smearing this over the entire internal surface area gives us

trq =
3162ð Þ lbf½ �
124ð Þ in:2½ � = 25:5

lbf
in:2

� �

The axial shear is approximated as a worst case by calculating the hydrostatic pressure at
the bottom of the explosive column, transforming it into a force, and smearing that force
over the entire internal cavity area. We know that the entire explosive column height is

h = 13:44 in:½ �
Then the peak hydrostatic pressure of the fill is

ph = rfillapmax
h (4.109)

ph =
0:036ð Þ lbm

in:3

� �
382, 300ð Þ ft

s2

� �
13:44ð Þ in:½ �

32:2ð Þ lbm‐ft
lbf‐s2

� �
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ph = 5744
lbf
in:2

� �

By calculating this pressure over the average cross-sectional area of the projectile, we
obtain

Fbase = ph Aavgfill , (4.110)

FAxial = 5744ð Þ lbf
in:2

� �
6:49ð Þ in:2

� �
= 37, 280 lbf½ �

Now this force smeared over the interior surface area will yield the stress

trz =
−Faxial
Afill

= −
37, 280ð Þ lbf½ �
124ð Þ in:2½ � = −300

lbf
in:2

� �
(4.111)

We can now write our stress tensor

s =

srr trq trz
trq sqq tqz
trz tqz szz

2
664

3
775 =

−3,758 25:5 −300

25:5 11, 830 506

−300 506 −27,940

2
664

3
775 lbf

in:2

� �

It must be noted that these equations assumed that there were no other forces acting on
the projectile. For instance, in some projectiles with poorly designed rotating bands, leaking
of the propellant gases (known as blowby) causes the exterior of the projectile to be
pressurized. This load must be considered because it has been known to collapse projectiles
in development. Another point is that while it is common to check a projectile at peak
acceleration, the spin rate at this location is not a maximum. Maximum spin occurs at the
exit of the muzzle of the weapon where the velocity is the highest. It is always good practice
to check a projectile for maximum spin with no axial acceleration to simulate this.

Problem 4

A highly explosive projectile is to be designed for a 155 mm cannon using a
1
2
in. thick steel

wall with trinitrotoluene (TNT) as the filler material. Assume the shell and filler are a
cylinder 0.75 m in length. It is to be capable of surviving a worn-tube torsional impulse
(angular acceleration) of 440,000 rad/s2.

1. Derive the expression to calculate the torque on the projectile that achieves this
acceleration if the torque is applied at the OD of the shell.

2. Calculate the value of the torque assuming that the density of steel is 0.283 lbm/in.3

and TNT is 0.060 lbm/in.3

Hint: Start from FT = maT.
Answer:

1. T = MWALL +MFILL =
1
2
πal½r(r4o − r4i ) + rFILLr

4
i �

2. T = 796,600[lbf-in.]
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Problem 5
To participate in a failure investigation of an explosive, someone asks you to look at their
design of a cylinder that was supposed to hold the explosive during a 155 mm howitzer
launch. Assume the explosive sticks completely to the interior wall. The firing conditions at
the time of the failure were as follows:

1 in.

6.092 in.

1 in.

4 in.

10 in.

• Axial acceleration = 10,000 g
• Angular acceleration = 300,000 rad/s2

• Angular velocity = 100 Hz

The projectile was as shown earlier:
The wall is AISI 4140:

E = 30� 106
lbf
in:2

� �

n = 029,

r = 0:283
lbf
in:3

� �

The explosive is composition B:

rfill = 0:71
g

cm3

� �

Write the stress tensor for a point on the ID, 4 in. from the base.
Answer:

s =

srr trq trz
trq sqq tqz
trz tqz szz

2
664

3
775 =

−2265 21 −266

21 5564 −2864

−266 −2864 −19,307

2
664

3
775 lbf

in:2

� �
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Problem 6
A 155 mm projectile is fired from a tube with a 1 in 20 twist. Its muzzle velocity is 1000 m/s.
What is the spin rate at the muzzle in hertz?
Answer: 322.6 [Hz]

Problem 7
It is requested that a brass slip ring be constructed for a spin test fixture to allow electrical
signals to be passed (although really noisy) to some instrumentation. The design require-
ments are for the ring to have an ID of 4 in. and a length of 2 in. and be capable of supporting
itself during a 150 Hz spin test. How thick does the ring have to be? The properties of brass
are as follows: yield strength of 15,000 psi and density of approximately 0.32 lbm/in.3

Answer: 1/4 in. thickness will work, but it can be thinner.

Problem 8
A 155 mm projectile is to be designed with a rotating band designed to discard as the
projectile leaves the muzzle of the weapon. The rotating band is fixed to the projectile (so it
transmits the proper torque to the projectile) with splines that prevent rotational motion
relative to the projectile while allowing the band to expand in the radial direction for proper
discard. This function must occur at the highest as well as the lowest spin rates. The two
extreme muzzle velocities are 250 and 800 m/s, respectively, with corresponding peak axial
accelerations of 2,000 and 15,500 g, respectively. The projectile mass is 98 lbm and the axial
moment of inertia is 41 lbm−in.2 Geometry constraints require the band to have an
engraved OD of 6.2 in., and the outer diameter of the band seat (band ID) is 5.5 in. The band
is 2.5 in. long. The 48 rifling lands are 0.05 in. high and are 0.2 in. wide. Consider both a
copper and a soft iron band with the properties provided next and determine whether the
bands will.

1. Withstand the shear at peak angular acceleration
2. Break up upon muzzle exit
3. If one (or both) designs fail to work properly, what can be done with the analysis

and/or design to make it work? Is there anything we must be careful of?

Assume the following: The weapon has a 1 in 20 twist. At peak acceleration, only shear on
the rotating band need be considered. Ignore the increase in shear area caused by the rifling
helix. Ignore the stress concentration developed by the engraving for discard calculations.
Ignore the effect of the splines. For conservatism, onmuzzle exit, ignore the mass of material
above the rifling marks (i.e., use an OD of 6.1 in. for the band).
The properties for the copper and steel are as follows:

Copper Soft Iron

Ultimate tensile strength (psi) 35,000 40,000

Shear strength (psi) 19,250 22,000

Density (lbm/in.3) 0.316 0.263
Poisson’s ratio 0.28 0.34
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Problem 9
An experimental 40 mm gun has an average chamber inner diameter of 60mm. The weapon
is expected to develop a maximum breech pressure of 35,000 psi. If we would like the
weapon to withstand 10,000 cycles at this pressure and given the properties of the steel
given later, determine the OD of the chamber. Without proper design experience, an
interference fit can sometimes be catastrophic. If we were instead to design this chamber out
of two tubes, each at half of this thickness but with the outer tube compressing the inner
tube by 0.002 in. diametrally, what is the maximum pressure the design will accommodate
and still function for the 10,000 cycles?
Assume AISI 4340 steel with a yield strength (SY) of 100,000 psi. The endurance stress (S0n)

for 4340 is 0.875SY for the amount of cycles desired. Assume the following factors from our
cyclic loading discussion: CR = 0.93, CG = 0.95, and CS = 0.99. Assume the chamber
is open ended. The modulus of elasticity and Poisson’s ratio are 30 × 106 psi and 0.3,
respectively.

Problem 10
You are to design a fragment-throwing gun system for another organization to be used in
fragment impact testing. The gun is to throw a 22 g, 0.500 in. diameter, cylindrical fragment
at 2300 m/s. Your design must use a brass cartridge case to assist with obturation of the
breech. Other assumptions and information are

1. You do not need to design the breech—assume it will hold the cartridge case in
properly (in reality, we can always add more threads to the design).

2. Even though there will be a slight taper on the chamber (which must be larger than
the bore diameter for seating purposes), assume, for calculation purposes, that the
chamber is cylindrical at its maximum diameter.

3. The tube is to be steel and assume that the yield strength is 60,000 psi (this accounts
for the effect of cyclic loading). The modulus of elasticity is 29 × 106 psi. Poisson’s
ratio is 0.29.

4. Assume the propellant is either cylindrical or single perforated (and state your
assumption).

5. Choose from the following propellants:

Propellant
Linearized Burn
Rate b (in./s/psi)

Solid Density
d (lbm/in.3)

Adiabatic Flame
Temperature T0 (°R)

Propellant Force
l (ft-lbf/lbm)

Specific Heat
Ratio g

IMR 0.000132 0.0602 5103 327,000 1.2413
M12 0.000137 0.0600 5393 362,000 1.2326

Bullseye 0.000316 0.0590 6804 425,000 1.2523

Red dot 0.000153 0.0593 5774 375,000 1.2400
Navy pyro 0.000135 0.0566 4477 321,000 1.2454

6. Assume the cartridge case is brass and use a bilinear kinematic hardening model
where the brass has amodulus of elasticity of 15 × 106 psi, a local tangentmodulus of
13 × 106 psi, and a yield stress of 16,000 psi (yield occurs in this material at e = 0.002).
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7. Weight is not a major concern; however, you should make the design light enough
to be moved using reasonable test range equipment.

The design is to proceed as follows (not necessarily in the order given):

1. Interior ballistics design

a. Size the chamber length and diameter.
b. Determine the amount of propellant needed based on your choice of the

aforementioned propellants and propellant geometry (make sure it fits in the
chamber).

c. Determine a web thickness for the propellant.
d. Determine the length of the gun.
e. Determine V, pB, and x for the projectile at peak pressure.
f. Determine Vc, pBc, and xc for the projectile at charge burnout.
g. Determine the muzzle velocity of the projectile.

2. Gun tube design

a. Based on the calculations of part 1 develop a pressure–distance curve to use
as criteria for your gun design.

b. Determine the OD of the gun tube. To keep the design light as possible, use
the design rules provided in this chapter and taper the tube toward the
muzzle. If needed, over the chamber, you may shrink fit cylinders to build up
a composite tube.

c. Determine the weight of your gun and comment on if it is reasonable.

3. Cartridge case design

a. Determine a thickness and tolerance for your cartridge case.
b. Determine the OD and tolerance for the cartridge case.
c. Decide on a tolerance for your chamber ID.

Note that for these calculations show that the case may be easily extracted at the
limits of the tolerance.

It is important that you write down all your assumptions. It is also highly likely that
as you proceed further along with your design, you may come upon a situation that
requires you to revisit an assumption youmade earlier—this is to be expected, and it is
part of the design process.

4.11 Buttress Thread Design

There is a variety of instances where a buttress thread form is the desired means of
transmitting loads between mating components. In some instances, the thread form is not
the usual continuous spiral associated with a normal thread but a series of discontinuous
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grooves that exhibit the cross-sectional form of the buttress. In this section, we will discuss a
true thread with lead-ins and partial thread shapes, but we will assume that the basic
analysis will apply to buttress grooves as well.
Buttress threads are designed to maximize the load-carrying capability in one direction of

a threaded joint. There are many variations on such threads, but on ammunition compo-
nents, we predominantly use threads with a pressure flank angle (described later) of 7° as
shown in Figure 4.18. Thread callouts on drawings usually appear, e.g.,

2. 750-4UNC-2A LH Buttress

The meanings of these callouts are as follows:

• First number is the major diameter of the thread (here it is in inches).

• Second number is how many threads per inch.

• The letters are the thread form callout (UNC = Unified National Coarse).

• The last number is the class of fit of the thread related to clearances in the
engagement (3 is the tightest fit, 1 the loosest).

• The last letter determines whether the thread is male (A) or female (B) (mnemonic −
A = Adam = male).

• LHmeans left handed (there will be no callout if the threads are right-hand twist or
if the thread is a groove and not a continuous spiral).

Thread nomenclature of relevance is as follows:

• The major diameter is the largest diameter of the thread form.

• The minor diameter is the smallest diameter of the thread form.

• The pitch diameter is the diameter where there is 1/2 metal and 1/2 air.

We use buttress threads for several reasons: most important is to improve the directional
loading characteristics of the thread; also to allow for a more repeatable, controllable shear
during an expulsion event, i.e., if we want the thread to intentionally and controllably fail
allowing separation of the components; and to prevent thread slip in joints with fine
threads or threads on thin shell walls. If thread slip occurs, the threads can either dilate or

Pitch of the thread 

Pressure flank 

45°

7°

Load carrying
  or shearing  

FIGURE 4.18
Depiction of a standard buttress thread.
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contract elastically and the joint can pop apart with little or no apparent damage to the
threads.
When we design for strength, we typically calculate the strength based on the shear area

at the pitch diameter in the weaker material. This, of course, translates to half the length of
engagement of the threads. This is acceptable because we usually use conservative prop-
erties and add a safety factor to account for material variations and tolerances. We must
always base our calculations on the weaker material if the design is to be robust. When
designing to actually fail the threads, however, we need to bemore exact in our analysis and
take everything such as actual material property variation and tolerancing into account or
our answers will be wrong.
We will proceed in this analysis in meticulous detail, initially, as a cantilevered beam

subjected to compressive and tensile stresses caused by contact forces and bending
moments. This technique was first developed during the US Army’s sense and destroy
armor program by Dan Pangburn of Aerojet Corporation [5] and has been used by the US
Army.
We consider the thread form as a short, tapered, cantilever beam and assume that failure

will occur as a result of a combination of stresses and that combined bending and com-
pressive stress precipitate the failure. This is depicted in Figure 4.19. If we examine this
figure, we see that the distributed force F causes our beam to bend in the classical sense with
the loaded flank in tension and the unloaded flank in compression about the neutral axis.
We have separated an element of material out from point A in the figure. The free-body
diagram of this element shows that the bending of the beam puts it in tension, while the
loading on the pressure flank puts it in compression. It is this combined load that will cause
failure of the material.
If we were analyzing this in a finite element code, the bending and compression would

cause combined stresses and the part would fail by one of the failure criteria that were
discussed earlier. However, in this case, we will use the maximum shear criteria to check for
failure at some radius in the thread and will check the load at which failure occurs with the
von Mises criterion at the thread roots, di on the male thread and do on the female thread.
These are the diameters of the loading (i.e., the mating thread contact areas) as depicted in
Figure 4.20.
For simplicity, we shall call the male thread the “bolt” (subscript 1) and the female thread

the “nut” (subscript 2). The loading is further described by Figure 4.21. In this figure, the
radius r is the plane at which the threads will shear.

r

di

F

Element at
point A

Tensile stress
  from   

Compressive stress
from F

I
Mcσ =

I
Mcσ =

Neutral
axis

FIGURE 4.19
Depiction of a standard buttress thread.
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If we assume the contact is frictionless, the average normal stress is simply the total axial
force F divided by the projected area A. We have assumed that the normal stress is constant
over the contact area. This gives us a negative value because the stress is compressive.
Figure 4.22 shows the configuration where the normal force has been termed F4 and the
thread area is A4. Since an axial loading is what shears the threads, we need to project the
components of this force along the axis of the projectile (i.e., rotate through the angle f1).
This allows us to express the stress as

sN =
−F4
A4

=
−

F
cosf1
A

cosf1

= −
F
A

= sv (4.112)

r

di

F

do
Bolt (1)

The location where these
stresses are the greatest
is here along the contact

surface

FIGURE 4.20
Definition of load radii.

r

do

di

t2

t1

F2

F1 Nut (2) 

Bolt (1)  

 di = Inner diameter

 

1

r = Shear radius
do = Outer diameter

2

FIGURE 4.21
Loading diagram of buttress threads.
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Where sN and sv are the normal and axial stresses, respectively. By substituting the area A,
we get

sv = −
F

π

4
d2o − d2i
	 
 (4.113)

If we assume that failure takes place at a radius r, yet to be determined, the bearing force
on the external thread (bolt) that produces bending in the thread is

F
d

r1

2
2= − ⎛

⎝
⎜

⎞
⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥πσ v

o

2
(4.114)

Similarly, the force that produces bending in the internal thread (nut) is

F r
d

2
2

2

= − − ⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥πσ v

i

2
(4.115)

Now the pitch diameter is defined as the location where the thickness of the thread is one-
half the thread pitch. Since thread failure occurs at an assumed radius r, we need to define
the thicknesses of both the male and female threads at this location.
First, recall that the thread pitch is p and then define dpf as the internal (female) thread

pitch diameter and dpm as the external (male) thread pitch diameter. Then, t1 and t2 from our
earlier diagram can be expressed as follows:

t
p

r
d

1 1 22
= − −

⎛
⎝
⎜

⎞
⎠
⎟ +( )pm

2
tan tanφ φ (4.116)

t
p d

f2 1 22 2
= − −

⎛
⎝
⎜

⎞
⎠
⎟ +pf tan tan( )φ φ (4.117)

Then the bending stress can be calculated from simple beam theory as

s =
Mc
I

=
M

t
2

1
12

2πrð Þt3
=

3M
πrt2

(4.118)

A4

F

F4

1

A

FIGURE 4.22
Loading of a thread surface.
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where c is the distance from the point of interest r to the neutral (bending) axis and I is the
area moment of inertia of the cross-section. The bending stress in the external (male) thread
is then

σ
π1

1

1
2

3
=

−⎛
⎝
⎜

⎞
⎠
⎟F

d
r

rt

o

2
2

(4.119)

Similarly, we can show that the bending stress in the internal (female) thread is

σ
π2

2

2
2

3
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−⎛
⎝
⎜

⎞
⎠
⎟F r

d

rt

i

2
2

(4.120)

In considering the failure criteria, we shall assume that the maximum shear stress in the
material must not exceed 0.6 times the material strength in a tensile test. We will use the
yield strength as the strength of this material because at that point in failure, the geometry of
the part is changing. Experience has shown that once this begins to happen, the part is in the
process of failing anyway and will not recover.
In a state of combined loading, the maximum shear stress can be found from

tmax =
1
2
smax + sminj j (4.121)

This averaging can be shown to be

tmax =
s − sN

2
= 0:6Y (4.122)

Here we are reminded that sN and sv are therefore compressive negative numbers and Y
is the yield stress in tension. The equivalent stress at failure in the male thread is then

Y1 =
s1 − sv

1:2
(4.123)

and in the female thread, it is

Y2 =
s2 − sv

1:2
(4.124)

In these equations, Y1 and Y2 are the yield stress in the male and female threads,
respectively.
We will now combine Equations 4.123 and 4.119 as well as Equations 4.124 and 4.120 to

eliminate s1 and s2, respectively. This yields

Y1 = 1:25F1

1
2
do − r

πrt21
−
sv

1:2
(4.125)

and

Y2 = 1:25F2
r −

1
2
di

πrt22
−
sv

1:2
(4.126)
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We now combine Equations 4.125 and 4.116 as well as Equations 4.126 and 4.117 to
eliminate the thicknesses t1 and t2, respectively. This yields

Y F
d r

r p r d
1 1

1 2

21 25

1
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and
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We will now insert Equation 4.114 into Equation 4.127 and Equation 4.115 into Equation
4.128 to eliminate F1 and F2, respectively. This yields
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and
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Now we must solve Equations 4.129 and 4.130 in terms of sv. The first of these is

sv =
−Y1

G3 + G2 + G1 + G0 +
1
1:2

(4.131)

where

G3 =
0:15625d3o

r 0:5p − r tan f1 − r tan f2 + 0:5dpm tan f1 + 0:5dpm tan f2
� �2 (4.132)

G2 =
−0:3125d2o

0:5p − r tan f1 − r tan f2 + 0:5dpm tan f1 + 0:5dpm tan f2
� �2 (4.133)

G1 =
−0:625rdo

0:5p − r tan f1 − r tan f2 + 0:5dpm tan f1 + 0:5dpm tan f2
� �2 (4.134)

G0 =
1:25r2

0:5p − r tan f1 − r tan f2 + 0:5dpm tan f1 + 0:5dpm tan f2
� �2 (4.135)
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The second equation is

sv =
−Y2

H3 +H2 +H1 +H0 +
1
1:2

(4.136)

where

H3 =
0:15625d3i

r 0:5p + r tan f1 + r tan f2 − 0:5dpf tan f1 − 0:5dpf tan f2
� �2 (4.137)

H2 =
−0:3125d2i

0:5p + r tan f1 + r tan f2 − 0:5dpf tan f1 − 0:5dpf tan f2
� �2 (4.138)

H1 =
−0:625rdi

0:5p + r tan f1 + r tan f2 − 0:5dpf tan f1 − 0:5dpf tan f2
� �2 (4.139)

H0 =
1:25r2

0:5p + r tan f1 + r tan f2 − 0:5dpf tan f1 − 0:5dpf tan f2
� �2 (4.140)

We now solve Equation 4.113 for F, and we get

F =
π

4
sv d2o − d2i
	 


(4.141)

Substitution of Equation 4.131 for sv yields (for a full thread on the bolt)

F =
π

4
d2o − d2i
	 
 −Y1

G3 + G2 + G1 + G0 +
1
1:2

(4.142)

We perform a similar operationwith Equation 4.136, giving us (for a full thread on the nut)

F =
π

4
d2o − d2i
	 
 −Y2

H3 +H2 +H1 +H0 +
1
1:2

(4.143)

Equations 4.142 and 4.143 now contain only two unknowns, r and F. The procedure now
involves solving both Equations 4.142 and 4.143 and plotting the force F vs. r. The lowest
value in either equation is then the force (and location) at which the joint will fail. It is
recommended that these solutions be performed with the aid of a computerized numerical
calculation program such as MathCAD.
Partial threads can have a significant effect on the failure strength of a joint. If the joint

were designed to survive, it is generally best to ignore the additional strength afforded by
partial threads and base the designmargin on the calculationmethod earlier. When a joint is
designed to fail, however, the lead-in and run out must be accounted for unless sufficient
margin is available in the expulsion system such that two additional threads may be added
to the calculation, yet still allow the joint to be overcome with ease.
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4.12 Sabot Design

Sabots (French for “wooden shoe”) are used in both rifled and smoothbore guns to allow a
standard weapon to fire a high-density, streamlined subprojectile whose diameter is much
smaller than the bore, at a velocity higher than would normally be possible if the gun were
sized to the diameter of the subprojectile. Discarding sabots have been in general use since
the Second World War and are still popular (in fact, an artist’s rendition of a discarding
sabot is illustrated on the cover of this book). They are called “discarding sabots” since
they are shed from the subprojectile at the muzzle allowing it to fly unencumbered to the
target.
As previously stated, velocity is proportional to the square root of the pressure achieved

in the tube, the area of the bore, and the length of travel and inversely proportional to the
square root of the projectile weight. In mathematical terms,

V ∽

ffiffiffiffiffiffiffiffiffi
pAL
wp

s
(4.144)

We can see that if the area over which the pressure is applied is much greater than the area
presented at the rear of the subprojectile, a larger force would be applied to accelerate it than
if it were fired at the same pressure from a bore of its own diameter. Furthermore, decreasing
the launch weight of the as-fired assembly also increases the velocity. Therefore, we must
design as light a sabot as feasible so that we can maintain a very dense, small diameter
subprojectile (usually an armor penetrator). The combination of the full bore area; a dense,
streamlined subprojectile; and a lightweight sabot has the overall effect of generating
unusually high velocities, a characteristic essential for kinetic energy armor penetration.
There are many requirements for a successful sabot:

• It must seal the propellant gases behind the projectile (obturate).

• It must support the subprojectile during travel in the bore to provide stable motion
(called providing a suitable wheelbase).

• It must transfer the pressure load from the propellant gases to the subprojectile.

• It must completely discard at the muzzle of the weapon without interfering with
the flight of the subprojectile.

• The discarded sabot parts must also reliably fall within a danger area in front of the
weapon so as not to injure troops nearby.

• It must be minimally parasitic, i.e., it must be as light as possible and remove as
little energy from the subprojectile as possible.

These are formidable requirements that necessitate great ingenuity on the part of the
designers.
The problem has been solved in a variety of ways. In the 1950s, designers, chiefly British,

used cup- or pot-type sabots to launch APDS subprojectiles (Figure 4.23). The guns from
which these munitions were fired were rifled to launch conventional full caliber, spin-
stabilized rounds, and so the subprojectiles of the APDS rounds were spin-stabilized too.
Such armor-defeating munitions were highly effective against the tank armor of the times,
and pot-type, saboted, kinetic energy penetrators were adopted in tank cannon around the
world.
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Tank armor changed in the 1960s and became more difficult to penetrate with the
tungsten carbide cores of the subprojectiles in use. Initially, incremental changes were made
in the material of the core (sintered tungsten was used instead of sintered tungsten carbide),
but it was eventually realized that longer, smaller-diameter, high-density penetrators were
the answer. There are physical limits to the degree of subcalibering practical in spin-
stabilized projectiles: the spin required for flight stability increases as the square of the ratio
of bore to subprojectile for conventionally shaped projectiles, and it becomes nearly
impossible to spin-stabilize very long projectiles. Rifling twists were increased to attempt to
accommodate the APDS rounds; in one case, a 1:12 twist was tried when the normal twist
would have been 1:40. In the end, APDS designs were abandoned in favor of very long, fin-
stabilized penetrators (APFSDS) that used a radically different type of sabot (Figure 4.24).
The guns too were changed to smoothbores; although to preserve older weapons in use,
designers learned how to make fin-stabilized munitions fireable in rifled guns as well.
The basic type of sabot used with long-rod, fin-stabilized penetrators is the ring with its

subvarieties: base pull, double ramp, and saddle sabots. Whereas pot sabots were essen-
tially discarded rearward as a unit, ring sabots are segmented into three or more sections
and discard radially outward at the muzzle to clear the fins that are larger in diameter than
the rod. The finned subprojectile is frequently imparted with a slow spin to average out
unavoidable manufacturing asymmetries during flight that could cause trajectory drift.
This type of munition is now in the arsenals of all nations.
The design of the ring sabot begins with the stress analysis of the shear traction between

the sabot inner diameter and the penetrator outer diameter. This analysis is crucial for
determining the mass of the ring and thus the parasitic weight of the sabot. We will follow
the work of Drysdale [6] throughout this development. The essential parameters of the
computation are shown in Figure 4.25.

Rotating band
Sabot

Subprojectile

FIGURE 4.23
Simplified diagram of an APDS projectile.

Obturator Sabot
Subprojectile

Fins

FIGURE 4.24
Simplified diagram of an armor-piercing, fin-stabilized, discarding sabot (APFSDS) projectile.
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From this free-body diagram, we can infer that

T = ps A − Ap

� �
−msabota (4.145)

A reasonable estimate for the masses where the symbols are as follows:

msabot =
1
2
msubprojectile (4.146)

where T is the total shear traction force; A is the bore area; Ap is the area of the penetrator
cross-section; msabot is the mass of the sabot; msubprojectile is the mass of the subprojectile; a is
the projectile acceleration; ps is the pressure on the base of the shot (note that the net
pressure on the fins is zero); and s1 is the axial stress on the penetrator.
Because the sabot needs to be as light as possible, the material is usually much weaker

than the penetrator; thus, the sabot length depends mostly on the sabot material. If the
penetrator were weaker for some reason, the sabot length would depend upon that
material. Thus, we can write for the surface traction

Tallow =
π

2
dplsabottallow (4.147)

where dp is the diameter of the penetrator or subprojectile; Tallow is the allowable traction
force; and tallow is the maximum shear stress allowed in the weaker material.
The shear traction is usually transmitted through matching grooves or threads. Analysis

of these surfaces can be rather complicated but is similar to standard or buttress thread
design practice. Given no actual data on the allowable shear stress in the material, we can
use the following formulas based on the Tresca or the von Mises yield criterion:

tallow =
se

2
(4.148)

by the Tresca criterion or

tallow =
1:155se

2
= 0:577se (4.149)

by the von Mises criterion. In both of these expressions, se is the equivalent stress as dis-
cussed in Section 4.2. Thus, the allowable surface traction can be stated as

Tallow = Kπdplsabotse, (4.150)

where K is either 0.25 or 0.2885 dependent upon the failure criteria.

a

ps

ps

laft lsabot lfwd

T—Shear traction

FIGURE 4.25
Free-body diagram for rings and rods.
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If we substitute Equation 4.150 into Equation 4.145, we can solve for the proper sabot
length

Kπdplsabotse = ps A − Ap

� �
−msabota (4.151)

and
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But

Ap =
π

4
d2p (4.153)

Then,
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Now, by our earlier assumption (Equation 4.146),

psA = ma = msabot +msubprojectile

� �
a = 3msabota (4.155)

Then,
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(4.156)

By multiplying and dividing the second RHS term by Ap and simplifying, we get
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(4.157)

More generally, if the mass of the sabot is not half of the subprojectile mass, then we must
use Equation 4.154 to determine the proper length.
The shape of ring sabots evolved over time from quite heavy designs to highly efficient

ones. Early sabots were saddle shaped (Figure 4.26). These had points of high shear stress
concentrations near the ends.

Saddle 

Penetratorps

σ1

τ
Shear
stress 

Axial distance

FIGURE 4.26
Shear stress variation in a saddle-type sabot.
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These sabots had an excellent wheelbase (the distance between the forward and aft
bourrelets), which prevented balloting in the tube and provided good accuracy. The par-
asitic weight, however, was high, and sufficiently high muzzle velocities were not attained.
Single- and double-ramp sabots have come into use because of the favorable weight

reduction that can be obtained with this design. They utilize gun pressure to help clamp the
sabot to the penetrator and have the added advantage of maintaining an almost constant
shear stress between the sabot and the penetrator. The double-ramp sabot is shown in
Figure 4.27.
Detailed studies have shown that a higher-order (nonlinear) curved ramp yields a con-

stant shear stress under load. The method of solution for finding the best shape of the sabot
taper depends on a free-body analysis of the sabot and the penetrator. Figures 4.28 and 4.29
show differential elements of the subprojectile and the sabot, respectively.
If we examine Figure 4.28, we see that the axial forces consist of the net internal stress

(dszp/dz)Dz, the inertial resistance to acceleration rpVpa, and the shear stress imparted by
the sabot t. Similarly, on the sabot, we have the net internal stress (dszs/dz)Dz, the inertial
resistance to acceleration rsVsa, the shear stress imparted by the subprojectile t, and the
component of pressure in the axial (z) direction. We proceed by initially finding an
expression for the volume of the sabot free body. Details of this derivation are found in the
study by Drysdale [6]. The incremental volume of the sabot can be shown as follows:

Vs = π R2
s zð Þ − R2

p

h i
Dz (4.158)

Double-ramp sabot

Penetrator

σ1

τ

ps

Shear
stress

Axial distance

FIGURE 4.27
Shear stress variation in a double-ramp-type sabot.
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FIGURE 4.28
Differential element in a subprojectile showing forces acting.
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We then sum the forces on the sabot in the axial direction
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After the collection of terms and simplification, we get
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Note here that Rs and szs are functions of z.
Next, we find szp, assuming it is linear in z through the expression

szp =
F
A

=
1

πR2
p

rpVpa − 2πRptDz
� �

+ s1 =
1

πR2
p

rpπR
2
pa − 2πRpt

� �
Dz + s1 (4.161)

or

σ ρ
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= −⎛

⎝
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⎟ +a

R
z

2
1Δ (4.162)

where s1 is the axial stress in the penetrator as depicted earlier. Nowwe need to relate szp to
szs by applying the assumption of strain compatibility; i.e., the strain in the sabot equals the
strain in the penetrator.
We then use the appropriate elastic moduli and Poisson’s ratio in Hooke’s law to relate

the penetrator stresses to those in the sabot

ezs =
1
Es

szs − ns srs + sqsð Þ½ � = ezp =
1
Ep

szp − np srp + sqp

� �h i
(4.163)

Thus,

szs =
Es

Ep
szp − np srp + sqp

� �h i
+ ns srs + sqsð Þ (4.164)
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FIGURE 4.29
Differential element in a sabot showing forces acting.
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If we ignore the bimetallic nature of the components and assume that

srp + sqp = srs + sqs = −2ps (4.165)

then Equation 4.164 becomes

szs =
Es

Ep
szp + 2npps
� �

− 2nsps (4.166)

These assumptions allow the integration of the differential equation for R(z) producing
the profile in Figure 4.30 (solid curve).
Two of the basic types of sabots are shown in Figures 4.26 and 4.27. The double ramp also

incorporates a front air scoop to facilitate discard in the air stream as well as providing
additional bourrelets riding surface in the tube.
A great deal of work on the effect of sabot design parameters has been accomplished at

the US Army Research Laboratory (formerly the Ballistics Research Laboratory) and
Picatinny Arsenal. A treatment of the effect of sabot stiffness on how clean a projectile
launch is can be found in the study by Plostins et al. [7].

Problem 11
You are to design a rifled 20 mm gun system for an antivehicle application. The gun is to
throw a 0.25 lbm, 0.5 in. diameter, cylindrical subprojectile at 4500 ft/s. A sabot will be
placed on the outside of the subprojectile. The sabot can be any material you like and can
find properties for. The sabot shall be made of three pieces, which are at least 3 in. in length.
Your design must use a brass cartridge case to assist with obturation of the breech. Other
assumptions and information are

1. You do not need to design the breech—assume it will hold the cartridge case in
properly (in reality we can always add more threads to the design).

2. Even though there will be a slight taper on the chamber (which must be larger than
the bore diameter for seating purposes), assume, for calculation purposes, that the
chamber is cylindrical at its maximum diameter.

3. The tube is to be steel and assume that the yield strength is 60,000 psi (this accounts
for the effect of cyclic loading). The modulus of elasticity is 29 × 106 psi. Poisson’s
ratio is 0.29.

r

Sabot profile

Conical approximation
Penetrator OD

Reduction of thickness, R(z) by 
Increasing Es /Ep  
Decreasing τ
Increasing σθ
Increasing ps

z

FIGURE 4.30
Sabot radial profile. (Based on analysis from Drysdale, W. H., Design of kinetic energy projectiles for structural
integrity, Technical Report ARBRL-TR-02365, US Army Ballistic Research Laboratory, Aberdeen, MD, 1981.)
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4. Assume the propellant is either cylindrical or single perforated (and state your
assumption).

5. Choose from the following propellants:

Propellant
Linearized Burn
Rate b (in./s/psi)

Solid Density d
(lbm/in.3)

Adiabatic Flame
Temperature T0 (°R)

Propellant Force
l (ft-lbf/lbm)

Specific
Heat Ratio g

IMR 0.000132 0.0602 5103 327,000 1.2413

M12 0.000137 0.0600 5393 362,000 1.2326

Bullseye 0.000316 0.0590 6804 425,000 1.2523
Red Dot 0.000153 0.0593 5774 375,000 1.2400

Navy Pyro 0.000135 0.0566 4477 321,000 1.2454

6. Assume that the cartridge case is brass and use a bilinear kinematic hardening
model where the brass has a modulus of elasticity of 15 × 106 psi, a local tangent
modulus of 13 × 106 psi, and a yield stress of 16,000 psi (yield occurs in this material
at e = 0.002).

7. The weapon shall be as light as possible. The design is to proceed as follows (not
necessarily in the order given):

a. Interior ballistics design

i. Size the chamber length and diameter.
ii. Determine the amount of propellant needed based on your choice of

the aforementioned propellants and propellant geometry (make sure it
fits in the chamber).

iii. Determine a web thickness for the propellant.
iv. Determine the length of the gun.
v. Determine V, pB, and x for the projectile at peak pressure.
vi. Determine Vc, pBc, and xc for the projectile at charge burnout.
vii. Determine the muzzle velocity of the projectile.

b. Gun tube design

i. Based on the calculations of part a, develop a pressure–distance curve
to use as criteria for your gun design.

ii. Determine the OD of the gun tube. To keep the design light as possible,
use the design rules provided in this chapter and taper the tube toward
the muzzle. If needed, over the chamber, you may shrink fit cylinders
to build up a composite tube.

iii. Determine the weight of your gun and comment on if it is reasonable.

c. Cartridge case design

i. Determine a thickness and tolerance for your cartridge case.
ii. Determine the OD and tolerance for the cartridge case.
iii. Decide on a tolerance for your chamber ID.
iv. Note that for these calculations you must show that the case may be

easily extracted at the limits of the tolerance.
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d. Sabot design

i. It is important that you write down all your assumptions. It is also
highly likely that as you proceed further along with your design, you
may come upon a situation that requires you to revisit an assumption
you made earlier—this is to be expected, and it is part of the design
process.
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5
Weapon Design Practice

5.1 Fatigue and Endurance

Many parts in civil and military service are subject to fatigue. Fatigue is the term used for a
mechanical part that undergoes cyclic loading and fails suddenly. Unlike a component that
is simply overstressed and fails because the yield or ultimate strength is exceeded, a part that
is subject to fatigue failure has been subjected tomany small loads that stress the component
below the yield strength. Damage begins to accumulate through various mechanisms such
as microcrack growth or slipping along macroscopic boundaries. A simple example of
fatigue is one where you take a metal paper clip and bend it 90°. After this first bend, the
paper clip is still in one piece so the ultimate strength of the material was not exceeded
(although it certainly has yielded). If one repeats this multiple times with the same paper
clip, it will eventually break.* This failure can occur even without yielding the material.
A projectile usually undergoes one cycle of loading, so fatigue is normally a QWE issue.

Gun tubes, however, undergo thousands of cycles, and fatigue is a major consideration in
their design. The US design practice is to assure that a weapon shoots out before it fatigues
out. What this means is that the weapon will become inaccurate because of wearing away
of the rifling or the bore itself well before it fails in a sudden manner because of fatigue. This
is determined by every maintenance crew by periodically checking the internal condition
of the bore of the weapon. If the bore has sufficiently worn away, the tube is condemned.
This condemnation is known to statistically occur after a certain number of rounds have
been fired. The limit to the number of firings is compared to the design fatigue life of the
weapon, and if the design was done correctly, there is sufficient margin remaining before a
fatigue failure will develop.
The endurance of a material is the ability of the material to survive multiple cycles of

loading. This ability of a material is graphically depicted in Figure 5.1. This figure is called
an S–N diagram. An S–N diagram plots the allowable stress in the material against the
number of cycles required by the designer. For example, if the designer required 10,000
cycles for a particular design using steel, it would be necessary to keep the stress below
approximately 31,000 psi.
Somematerials have an endurance limit. An endurance limit is the stress belowwhich the

material can withstand an infinite number of load cycles. Figure 5.1 shows that for this
particular steel, the endurance limit is around 24,000 psi. Aluminums are notorious for not
having an endurance limit. This means that aluminum components always have a finite
fatigue life expectancy.

* This example was chosen by the author because it has been so frequently used by Dr. Jennifer Cordes of Picatinny
Arsenal when she explains the nature of fatigue to new engineers or visitors.
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There are many contributing factors to the endurance of a component. Three of these
factors which we have already touched upon are the material of the part, the number of
loading cycles, and the stress level of each load cycle. Others are the rate of loading, rate of
load reversal, the surface finish of the component, and even confidence in the endurance
data used to generate the S–N diagram. Every reference that deals with this subject has a
different twist (no pun intended) to the governing equation. The books by Deutschman et al.
[1] and Norton [2] are excellent treatments of this behavior. A particularly simple approach
is to define the fatigue strength of a material (i.e., the load that cannot be exceeded by any
one cycle) as

Sn = S0nCRCGCS (5.1)

Here S0n is the stress in pounds per square inch read from an S–N diagram for the desired
number of cycles; CR is a factor that is chosen by the designer based on the reliability
required in the design; CG is a factor that is based on the rapidity of load reversal and
steepness of stress gradients in the component; andCS is a factor that accounts for the surface
finish. These factors effectively reduce the allowable stress in the part (they all should be ≤ 1).
Unfortunately, they are all subject to interpretation and vary with each material and
even from reference to reference. Some references use additional factors as well. The best
advice in the case of fatigue is for you to find a reference that has calculated fatigue in a
component similar to the one you are designing and base your design on that data.

Problem 1
It is desired to construct a 75 mm gun for a pressure of 43,000 psi. The chamber diameter has
been chosen to be 3.1 in. If we use AISI 4340 steel with a yield strength (SY) of 100,000 psi,
determine the outer diameter (OD) of the weapon over the chamber. Assume that the tube is
not autofrettaged and the endurance limit (S′n) for 4340 is 0.875SY for the amount of cycles
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FIGURE 5.1
S–N diagram for steel and aluminum.
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desired. Assume the following factors from our cyclic loading discussion: CR = 0.93, CG =
0.95, and CS = 0.99. Assume the chamber is open ended as a conservative measure.
Answer: 20 in. OD will just work.

Problem 2
A shotgun is to be modified so that it can be rigidly mounted to a vehicle. The recoil force is
estimated to be 800 lbf. There are two failure points: a weld on the barrel and two 10–32
screws connecting the receiver to the barrel. If we assume that each point of failure (the two
screws act together) must individually take the full load, determine howmany firings can be
achieved using the curve for steel provided in this chapter (Figure 5.1) and the following data:

• Both materials: CR = 0.8; CG = 0.85

• Screws: CS = 0.78; shear area = 0.019 in.2 each

• Welds (1/8 in. fillet): CS = 0.5; shear area = 0.247 in.2

Answer: The screws will survive approximately 2000 cycles; the welds will last an infinite
number of cycles.

5.2 Tube Design

In the discussion of the design of conventional projectile bodies that we completed earlier,
many of the concepts we introduced are now applicable, with particular modifications, to
the design of gun tubes. For example, the idea of safety margins has counterparts in the
design of a gun tube, but where a projectile has to withstand a single cycle of applied stress,
the gun tubemust remain serviceable for many cycles at stress levels verymuch comparable
to the fired projectile.
The gun tube designer is interested in determining the structure which has the minimum

weight, which usually translates to a minimum radial dimension, consistent with safely
firing a projectile. The projectile designer is usually interested in determining the projectile
structure of minimum weight sufficient to meet safety, reliability, and, especially, effec-
tiveness requirements. The projectile designer needs to know the maximum pressure on the
base of the moving projectile during its time in the tube, known as the single base maximum
pressure. Once this single pressure-induced stress is accommodated, the designer can move
on to other considerations. The tube designer, on the other hand, must know the maximum
pressure exerted on the tube at every axial location in the bore as the projectile transits the
tube. These are known as the station maximum pressures in tube design. We use the
projectile and charge combination which applies the most stress to the weapon (usually this
is the heaviest projectile and the biggest charge). These pressures are applied over and over
again as the tube is cycled with each shot fired, leading to the necessity to account for and
predict the fatigue failure of the design.
Finite element analysis (FEA) methods are used less frequently in gun design than in

projectile design because FEA is a much more difficult method when used to predict fatigue
failures. The reasons for this are that the gun launch phenomenon is highly transient, the
erosion of the weapon is impossible to predict at the present time, the boundary conditions
of a firing position change the dynamic response of the weapon, and, in overall gun design,
there are many different parts to consider. The tried-and-true hand calculation processes
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developed at the Watervliet, Frankford, and Picatinny Arsenals still yield excellent, reliable
weapons. But FEA will become more important as the codes develop and weight of the
weapon becomes more of an issue.
Another major consideration in tube design is the degradation of material strength with

temperature. The repetitive firing of a weapon with propellants burning in the chamber and
in the bore generates a large amount of heat. In tube artillery or tank cannons, the tem-
peratures developed can become high enough to begin to affect the material properties in an
adverse way. In rapid-fire weapons particularly, it is absolutely critical that the degraded
material strength properties be accounted for in tube and in chamber stress calculations.
There are several types of tube designs that may be encountered in service weapons: The

monobloc tube is made from one piece of metal, which is not the most efficient way to
construct a tube. The jacketed tube consists of separate layers or jackets built up as a
composite structure; this type is mostly obsolete now and is being replaced by a process
called autofrettaging or self-jacketing. The quasi-two-piece tube is formed by inserting a
liner into an otherwise monobloc, pressure-containing tube; this allows for a more resilient
material for the projectile to ride against and helps with the wear of the tube. British
warships used a now obsolete wire-wrapped tube construction that was cheap to make, but
quite inaccurate in use.
When we begin a design of a new tube, the interior ballistician computes the space-mean

pressure–travel and pressure–time curves for the most stressful projectile expected to be
fired at a temperature of 70°F. The maximum pressure of this curve gives the computed
maximum pressure (CMP), which is the nominal pressure for the gun. However, because of
the stochastic nature of a gun launch, the designer will add 2400 psi to the CMP. This is the
rated maximum pressure (RMP) for the weapon. This pressure is one which cannot be
exceeded by the average of the maximum pressures of a group of projectiles fired at 70°F:

RMP
lbf
in:2

� �
= CMP

lbf
in:2

� �
+ 2400

lbf
in:2

� �
(5.2)

After a statistically significant number of projectiles are fired out of the weapon, data are
taken to validate the CMP. This experimentally determined number is the normal operating
pressure for the weapon and should replace the CMP as soon as it is available and accepted.
Under service conditions, many rounds will be fired at many different operating tem-

peratures. We define the permissible individual maximum pressure (PIMP) as the pressure
which cannot be exceeded by any individual round under any service condition.
In design terms, it is calculated as 15% over the RMP:

PIMP
lbf
in:2

� �
= 1:15ð ÞRMP

lbf
in:2

� �
(5.3)

The permissible mean maximum pressure is the pressure that cannot be exceeded by the
average of all rounds fired under any service condition.
From an analysis standpoint, we need to define a pressure at which enough stress is

developed (assuming tube material at 70°F) at some point in the tube so that yielding
occurs; i.e., the elastic limit of the material is reached. This is the elastic strength pressure
(ESP) for the tube. At higher temperatures, we must also define an ESPhot to account for
material strength loss at temperature. A good example of how these concepts are applied
can be found in the report by Smith and Coppola [3].
When we examine the travel of the most stressful projectile down the tube, a point is

reached xmax, where the breech pressure is at maximum pB max. At this same instant, the

164 Ballistics



pressure on the base of the projectile is also at a maximum (but, as we saw in the section on
the Lagrange gradient, lower than the breech pressure) and will never increase beyond this
value (ps max < pB max). There is a pressure gradient at every point x, between the breech of
the weapon and the base of the projectile. With this in mind, it is worthy to note that the
pressure at any location forward of xmax will never “see” a pressure higher than that acting
on the base of the projectile at this point. Nevertheless, as a measure of the inbred con-
servatism of gun designers, we design the tube to the pressure experienced at the breech
while the projectile traverses the gun. These various pressures and the gradients are shown
in Figure 5.2.
Designing a gun tube requires knowledge of the stress state of the tube and a judgment of

what constitutes a failure when it is under stress. For this, we turn to the vonMises criterion
for failure under stress:

2s2
Y = s1 − s2ð Þ2 + s2 − s3ð Þ2 + s3 − s1ð Þ2 (5.4)

where s1 is the axial stress; s2 is the tangential stress; s3 is the radial stress; and sY is the
equivalent stress.
For an open-ended tube, s1 = 0, and Equation 5.4 becomes

s2
Y = s2

2 − s2s3 + s2
3 (5.5)

Recall the Lamé formulas for stress in a thick-walled tube:

sqq = s2 = pi
r2i
r2

r2 + r2o
	 

r2o − r2i
	 

" #

, maximum at r ¼ ri (5.6)

srr = s3 = pi
r2i
r2

r2 − r2o
	 

r2o − r2i
	 

" #

, maximum at r ¼ ri (5.7)

Let us put the Lamé formulas into a more useful form by letting

z =
ro
ri

> 1 and zx =
r
ri
> 1 (5.8)
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FIGURE 5.2
Pressure–distance curve for a gun tube.
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then,

sqq = s2 = pi
1

z 2 − 1
z 2
x + z 2	 

z 2
x

" #
(5.9)

srr = s3 = pi
1

z 2 − 1
z 2
x − z 2	 

z 2
x

" #
(5.10)

and

sqq max = s2 max = pi
z 2 + 1
z 2 − 1

 at r ¼ ri (5.11)

srr max = s3max = −pi at r ¼ ri (5.12)

Failure is considered to have occurred when the equivalent stress sY is greater than
the yield strength Y of the material. If we substitute Equations 5.11 and 5.12 into Equation
5.5 and substitute Y for sY, we get a solution for the ratio of internal pressure to yield
strength:

Y2 = pi
z 2 + 1
z 2 − 1

� �2
+ p2i

z 2 + 1
z 2 − 1

� �
+ p2i (5.13)

which by manipulation and expansion yields

Y2

p2i
=

3z 4 + 1

z 2 − 1ð Þ2
 or (5.14)

pi
Y

=
z 2 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3z 4 + 1

p (5.15)

If the relationship in Equation 5.15 is plotted on a semilog plot, we see that for a monobloc
tube (one which is made out of one piece) of yield strength Y and an internal pressure of 1/2
Y, we obtain a wall thickness ratio z = 2.75. This ratio rapidly becomes infinite as pi/Y !
0.58. This is depicted in Figure 5.3. Thus, pressure levels are restricted below this value. If
we consider that a good gun steel of 180,000 psi yield strength is used, the allowable internal
pressure should be kept lower than 100,000 psi. For modern, high-velocity cannons, this
restriction had to be overcome and the autofrettaging process described in the following has
been used with marked success.
Jackets improve the efficiency of the gun tube by utilizing more of the materials load-

carrying capacity. The design concept began around 1870 and has been in use since then, but
is now considered obsolete. The idea is that one can shrink fit one or more cylinders over the
inner cylinder or liner so that a compressive stress is induced in the inner layers. When an
internal pressure is applied, the stresses on the inner cylinders are relieved by the pressure
and then put into tension as the pressure is increased. Autofrettaging (self-jacketing) rather
than shrink fitting is now the process in use.
Autofrettage is a method of prestressing a tube to improve its load-carrying capability

as well as its fatigue life. The procedure consists of plastically deforming the interior of the
gun tube toward the outside diameter. Regions of the interior wall will now exceed the
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yield point, but the exterior will not have yielded. When the load is removed, the outer
layers of the material attempt to return to their unstressed state but cannot because of the
plastically deformed portion of the wall. Thus, an equilibrium condition is attained where
the outer wall regions remain in tension and the inner wall regions are in compression.
The process is physically accomplished by either pressurizing the interior of the tube with
water above its elastic limit or by pulling an oversized mandrel through the tube to force
the yielding.
The pressure induced to autofrettage is on the order of

pf = Y ln z (5.16)

This is the pressure required to barely stress the outer wall during the process. The
current practice is to keep this value below the ESP by at least 8% in a finished tube. To
further ensure that the OD never goes plastic, tubes are sometimes autofrettaged in
containers that act as an outer jacket during manufacture. Figures 5.3 through 5.7 illustrate
the process.
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FIGURE 5.3
Wall-thickness ratio as a function of internal pressure to yield stress ratio.
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Stress profiles in a monolithic tube.
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FIGURE 5.5
Stress profiles in an autofrettaged tube.
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Hoop stress vs. strain in an autofrettaged tube.
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Problem 3
The gun in Problem 1 is sized to a 20 in. OD. The manufacturer decides to autofrettage the
weapon with 75,000 psi of hydraulic fluid. Assuming that the material behaves elastic-
perfectly-plastic, approximately to what radial distance does the compressive layer extend
into the tube wall?
Answer: Approximately 0.57 [in.]

5.3 Gun Dynamics

In this section, we intend to discuss how a gun behaves as a dynamic entity, during a
projectile firing and immediately after the projectile exits the muzzle. We will discuss the
recoil response in terms of the forces and motions and the response known as gun jump.
We will not attempt to discuss recoil abatement or mounting techniques.
Recoil is generated on the gun by the reaction of its moveable parts to the impulse of the

gas pressure both while the projectile is in the tube and while the propelling gases are being
exhausted after the projectile exits. After projectile exits, we may simplify the actual process
to one that assumes that the breech pressure decays linearly with time. This period is called
the gas exhaust aftereffect and is shown in Figure 5.8.
We show the forces on the gun during the time the projectile is moving through the tube

(including the forces attributable to the rifling) in Figure 5.9. Note that the projectile friction
force FPr acts to tug the barrel to the right while in reaction, the acceleration of the projectile
is retarded by the same magnitude of force applied to the left. Friction is normally rather
small through launch with one important exception. Prior to shot start, it prevents motion
until sufficient pressure builds. For the remainder of this chapter, the relations assume that
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the shot start has occurred and the projectile is either accelerating to higher velocity or has
exited the gun.
During firing, the major forces on the gun include the breech pressure pB applied over the

generally larger diameter breech area, radially directed pressures along the length of pro-
pellant gas column that are contained by the strength of the walls and vectorally cancel, and
a modest forward force at the shoulder of the chamber where the local pressure vectors
include a forward component as shown in Figure 5.9. It is common to approximate the local
pressure at the shoulder to be equal to those at the breech. With this simplification, the
magnitude of the forces acting to accelerate the cannon to the left in recoil is

FR = ApB − FPr (5.17)

The remaining force acting on the cannon is the reaction to rifling torque if rifling is
present. This does not alter the recoil of the gun. Often a key fixed to the gun mount projects
into an axial keyway groove cut along the recoil length of the OD of the cannon. During
recoil, the groove slides past the stationary key acting as a cam to prevent the barrel from
rotating.
The major force on the projectile remains the lower projectile base pressure pS projected

over the bore area A as developed in Equation 3.48. The net force is reduced from the
pressure forces propelling the projectile to the right by the resistance force:

FP = ApS − FPr (5.18)

The resistance pressure is estimated as follows:

For smooth bores: FPr ≈ 0:01ApS

For rifled bores: FPr ≈ μ + tanað ÞFT
(5.19)

Rifling angle, α

d 

FR

FPr

FP
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Ft
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μFt
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FPr ≈ Ft (μ + tan α)
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cos α

FIGURE 5.9
Forces acting on a gun tube and projectile reactions.
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The rifling force is

F
k

d
FT P= ⎛

⎝
⎜

⎞

⎠
⎟2

2

tanα (5.20)

Here k is the radius of gyration of the projectile (Izz = wk2 in terms of axial moment of
inertia andmass), μ is the coefficient of friction, and a is the rifling angle. For rifled bores, the
interdependence on the net projectile force between Equations 5.18, 5.19, and 5.20 may be
iteratively solved, or friction may neglected as small in Equation 5.20 after shot start. Our
object is to find FP.
From the Lagrange approximation for the pressure gradient, we know that

p p
c
w

p
F
AB S S= + ⎛
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⎟

2
Pr (5.21)

Students and even seasoned ballisticians can become confused by how the resistance
force is introduced. The acceleration of the propellant column is the source of the pressure
elevation at the breech. We know from the Lagrange assumption that the center of the
propellant mass accelerates at half that of the projectile which is retarded by the friction. We
must therefore decrement the projectile base pressure by the equivalent resistance pressure.
The need for this is clearly seen if we consider when pressure and resistance forces are equal
before shot start. In this case, the breech pressure should not yet be elevated above the
projectile base pressure.
We have elected to neglect the pressure developed as the ambient gases ahead of the

projectile are accelerated out of the gun. This is valid when the mass of the ambient gas to be
ejected ahead of the projectile is negligibly small relative to that of the bullet. The volume of
the air would be modestly less than the displacement volume of the cannon, and the density
of air at standard conditions is 0.001225 kg/m3. The displacement volume is the product of
the bore area and projectile travel relative to the tube S0 as shown in Figure 5.10:

rairAS0 ≪ w (5.22)

Now let us examine the motion of the gun during recoil. This essentially depends on the
balance of momentum between the projectile and its propelling gases and the mass of the
gun. Let us first write a momentum balance in the direction of fire:

Mrecoil ¼ Mproj + Mprop:gas (5.23)

SRa SPa SRa

S0

wc/2wrecoil

FP

FIGURE 5.10
Diagram of gun displacements.
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We recall from the Lagrange approximation for the projectile and its propelling gas that
the momentum at shot exit is

Momentum at shot exit muzzle= +⎛
⎝
⎜

⎞
⎠
⎟w

c
V

2
(5.24)

Thus, at projectile exit,

V
w c
w

VRe =
+⎛

⎝
⎜

⎞

⎠
⎟

2

recoil
muzzle (5.25)

In this expression, wrecoil is the recoil mass of the weapon. This quantity includes all mass
attached to the tube that must be moved rearward when the weapon fires such as breech
closing mechanisms and sighting devices.
After the projectile has left the muzzle, the propellant gases exit at a velocity whose mass

averaged value �V can be approximated by

V =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

muzzle + �c2
q

(5.26)

where �c is the average speed of sound in the propellant gases (≈ 1000 m/s or 3200 ft/s) [5].
As an example, consider using Equation 5.26 with a muzzle velocity of 3442 ft/s:

V =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3442ð Þ2 + 3200ð Þ2

q
= 4700 ft=s (5.27)

This shows that old-fashioned guidance to assume V = 4700 ft=s would have been con-
servative as intended when muzzle velocities were generally lower than 3442 ft/s. We can
define an aftereffect coefficient by

�V = bVmuzzle (5.28)

Here we can estimate b from Equation 5.26.
Using b, we can write a new equation for the momentum balance:

wrecoilVfinal = w + bcð ÞVmuzzle (5.29)

This allows us to solve for the final velocity of the recoiling parts:

Vfinal =
w + bcð Þ
wrecoil

Vmuzzle (5.30)

During free recoil, the total distance traveled SRe is the sum of the distance traveled while
the projectile is in the gun SRa and the distance traveled during the gas ejection phase SRn:

SRe = SRa + SRn (5.31)

With no external forces acting, the common center of mass stays at rest, with half of the
charge mass lumped with the gun and half with the projectile. Once again, we write the
momentum balance:
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By considering that the velocities, on average, are distance divided by the time, we can
rewrite Equation 5.32 as a distance equation relative to an inertial reference frame before
shot start:
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We can see from Figure 5.10 that the recoil of the tube reduces the actual travel of the
projectile because the muzzle recoils rearward prior to shot exit. The relation between the
travel relative to the tube S0, the recoil of the cannon at shot exit SRa, and the effective
projectile travel relative to the inertial reference frame of the cannon at shot start SPa may be
found from Equation 5.33 as
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(5.34)

We can then see that the free recoil motion of the gun while the projectile is in the tube SRa
may be found from Equation 5.33 as
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And from Equation 5.34 we can show that
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We shall define the effective breech force at shot exit as

Fa = paA (5.37)

As mentioned in Equation 5.31, further motion of the gun in free or unconstrained recoil
occurs after the projectile has left the tube. It is caused by the momentum exchange of the
mass of gas still exhausting from the tube after the projectile is long gone. We look for an
estimate of the length of this motion SRn by examining the impulse of the gas. The duration
of the tube-emptying phase tn can be computed from the aftereffect impulse In by assuming
that the breech pressure force linearly decreases with time (see Figure 5.11):

In =
1
2
Fatn (5.38)

But impulse may also be defined as the change of momentum over time:

In = wrecoil Vfinal − VReð Þ (5.39)

By application of Equations 5.28 and 5.30, we can show that

I cVn muzzle= −⎛
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(5.40)
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If we solve for tn by inserting Equation 5.40 into Equation 5.38, we get
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2
2

(5.41)

Since we have assumed a linear velocity change between VRe and Vfinal, we may use the
trapezoidal rule of integration to compute an approximation for the remaining travel SRn:

SRn = tn
Vfinal + VReð Þ

2
(5.42)

In this analysis, we have assumed that the weapon was in free recoil. In real weapons, this
never occurs. We normally have recoil mechanisms that rely on pneumatic or hydraulic
systems to slow down and finally stop the recoil within a relatively short distance. These
forces need to be added to the preceding analysis to make it more accurate. The effect of a
muzzle brake should be added as well. We shall discuss more about this in Chapter 6.
Let us now consider the phenomenon known as “gun jump.” The axis of the gun bore,

which is where the gas forces are applied, is usually not collinear with the mass center of the
recoiling parts. This creates a moment couple often referred to as the “powder couple,”
which acts upon firing (Figure 5.12). This couple causes a rotation of the gun that usually

FR

Powder couple

CG

FIGURE 5.12
Powder couple illustrated.

t

tn

pB

Projectile in tube 

Projectile exit 

pa

Gas exhaust aftereffect 

FIGURE 5.11
Breech pressure–time curve for a typical gun firing.
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results in muzzle rise. This contributes to projectile jump but is by no means the sole cause
of it.
There are other dynamic reactions of the gun during firing. The gun is an elastic body, so

that when the propelling charge is ignited, many complicated structural reactions take
place. Stress and pressure waves are set up in the chamber and in the unpressurized portion
of the bore, loading the tube in a highly transient fashion. Swelling and elongation occur
due to pressure, the rotating band is engraved by the rifling (if present) causing local
stressing of the tube, and a thermal gradient is set up. These phenomena are highly com-
plicated, and we will not discuss them further here.

5.4 Muzzle Devices and Associated Phenomena

We use muzzle devices for three main reasons: reduce recoil, suppress flash, and decrease
report. Sometimes increased accuracy results from shot to shot because of reduced weapon
movement. Muzzle devices have also been devised to limit muzzle climb.
Muzzle brakes consist of surfaces placed perpendicular to the bore axis such that

impinging gases exert a net forward thrust on the weapon. This thrust is accomplished
through the conservation of momentum principles. Best design practice is to divert gases to
the sides of the weapon because rearward diversion could affect an exposed gun crew.
Downward diversion could kick up excessive debris and, without a balancing upward
diversion, would strain operating gun mechanisms.
There are generally two types of muzzle brakes: closed and open. Closed brakes channel

the exiting gases through fixed openings and usually have multiple baffles or ports. Open
muzzle brakes generally have only one baffle and direct the gas flow to a lesser extent than
closed brakes. The chief purpose of these brakes is to mitigate the recoil.
A blast deflector is similar in concept to a muzzle brake, although not designed to assist

recoil as much. The purposes of the blast deflector are to direct blast away from the gun
crew, minimize obscuration of the battlefield by limiting the amount of dust kicked up
during the discharge of the weapon, and, in the case of small arms, limit muzzle climb. A
detriment of a blast deflector is that to reduce dust, one usually needs to vent the gases
upward, which tends to load the tube and to support structure of the weapon. If the weapon
is already horizontal and the venting thrust has a large vertical component, this can be a
substantial loading.
There are four basic types of muzzle gas deflectors (Figure 5.13). The baffle type is

identical to a baffled muzzle brake with the gases vented to the sides of the piece. The
perforated type, sometimes called a “pepper-pot” brake, has multiple side ports in a tubular
section (none of the ports venting straight down). The T-type is the same as a single-baffle
muzzle brake and, lastly, the ducted type. This latter device has a complicated array of
ducting to divert the flow back and upward near the mounting trunnions. It diverts the
blast load so that it is carried by the trunnions. Unfortunately, at high quadrant elevations, it
ducts the blast toward the crew, which is not good.
Muzzle flash was noticed as a problem during the First WorldWar when significant night

actions were commonplace and suppression of muzzle flash became highly desirable. The
study offlash has used high-speed photography and other recording devices to distinguish
five types of flashes (Figure 5.14):
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1. Preflash—This is flash caused by blowby, a condition where propellant gas
leaks around the rotating band of the projectile or obturator and exits before the
projectile.

2. Primary flash—This is the flash caused by any propellant solids or gases that are
still burning upon muzzle exit of the projectile.

3. Muzzle glow—This is the illumination caused by gas inside the shock bottle
(defined later).

Primary flash 
(burning propellant)

Mach cone 
(Prandtl–Meyer expansion fan)

Barrel shock

Mach disk

Turbulent vortex Main propellant flow

Intermediate flash
(shock heating)

Secondary flash
(combustion with air)

FIGURE 5.14
(See color insert.) Muzzle blast structure.

Double baffle muzzle brake or blast 
deflector 

Gas flow

T-style muzzle brake or blast 
deflector 

Gas flow

Pepper-pot style muzzle 
brake or blast deflector 

FIGURE 5.13
Typical muzzle brake or blast deflector geometry.
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4. Intermediate flash—This is the illumination caused by gas that managed to get
ahead of the normal shock of muzzle gas ejection and is caused by the increased
pressure and temperature of the gas as it passes through the shock front.

5. Secondary flash—This is the flash caused by the reaction of the combustion
products when they enter the air (really, another, secondary oxidation reaction
transpires).

Propellant additives are often used, but do not sufficiently suppressflash and, besides, add
smoke. It was observed early on that muzzle brakes and blast deflectors actually suppressed
flash somewhat. This has led to the development of mechanical flash suppressors.
However, the only types of muzzle flashes that can be controlled by the attachment of a

mechanical flash suppressor are muzzle glow, intermediate flash, and secondary flash.
These all are affected by the presence of the expanding gas shock wave. Secondary flash is
the least controllable from a mechanical standpoint because the temperature of the pro-
pellant gas mixture may be so high that the shock is only an amplifying factor.
Various designs of suppressors have been developed, and they fall into two basic types

(Figure 5.15):

1. Conical flash suppressors appear similar to the bell end of a trumpet and are
sometimes called flash hiders.

2. Bar-type flash suppressors resemble a cage around the muzzle of the weapon. They
are difficult to clean, and if they are of an open-end design, then they can get caught
on objects such as clothing and vegetation during combat.

Smokeonabattlefield isdisadvantageous if notgeneratedwhereandwhen it isdesiredasan
obscurant. In the days of black powder, it was a real problem as the battlefield became
obscured for friend and foe alike. When nitrocellulose propellants were introduced, they
were called “smokeless powders” because they generated much less smoke than black pow-
der. Even with smokeless powders, large volumes of fire still produced significant quanti-
ties of smoke. An alternative would be to add chemicals to the propellant to reduce smoke,
but this usually increases flash and devices that suppress flash usually increase smoke.
Smoke generated from a weapon is usually made up of a solid–liquid–gas mixture and is

composed of metal or metal oxide particles from the cartridge case and its components, the

Bar-style flash suppressor

Simple silencer

FIGURE 5.15
Typical muzzle devices.
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projectile and the tube. Also present are water vapor or condensate liquid and chemical
elements such as carbon, copper, lead, zinc, antimony, iron, titanium, aluminum, potas-
sium, chlorine, sodium, and sulfur and other particulates. These components in themselves
obscure vision, but they may also combine with the atmosphere to allow water vapor there
to condense on the particles. Air temperature and relative humidity affect the density and
longevity of the smoke as well.
Smoke suppressors are really filters that capture the solid particulates, yet allow the

gaseous composition to pass through them. They are either electrostatic in nature or
mechanical filters. Electrostatic types are primarily used in a laboratory environment.
Mechanical types work by robbing momentum from the particles. The pores of these
suppressors must be quite large so that the gas flows through them without difficulty and
that only the particulates are removed.
These suppressors work by forcing the propellant gas to pass through nonstraight

channels similar to pores. The impingement of the particles robs them of momentum.When
the gas pressure in the suppressor (which is super caliber) becomes higher than the muzzle
pressure, the gas evacuates in the opposite direction to entry, leaving the solids and liquids
behind. The downside to this is that the suppressor adds weight to the tube at the muzzle
end, adds cost, and requires frequent maintenance.
There are three basic types of mechanical smoke suppressors:

1. Uniform perforation spacing where no attempt to control the flow is made.

2. Increasing perforation density toward the muzzle, which allows particles that
would normally build up closer to the muzzle to be spread more evenly in the
device because pressure drops in the axial direction.

3. A tapered bore type which is similar to the preceding type but includes a taper that
becomes smaller as one approaches the exit with a larger inner diameter near the
end at the rifling. This allows some axial impingement and helps spread out the
heavier particles.

Noise on the battlefield is also the subject of mitigation. Devices used to reduce noise,
which are sometimes referred to as silencers, attempt to reduce the report of the weapon.
Alternatively, some cannons use conical blast attenuation devices to project the noise away
from the weapon and those firing it. These are geometrically the same as conical flash
suppressors.
The removal of noise is important on the battlefield for several reasons. Noise affects

communications, is harmful to a soldier’s hearing, can reveal position, and makes covert
operations difficult. Noise is related to flash and blast, and reducing one of these usually
reduces noise as well. The filters used in smoke suppression generally also work well to
reduce noise.
In a closed-land vehicle, ship, or aircraft, there is frequently a differential in air pressure

between the interior and the exterior environment. When, after a round is fired, the breech
of the weapon is opened, there is a tendency for residual propellant gas in the bore to enter
the closed fighting compartment. This impairs sight and breathing, and burning particles
introduced into the compartment could ignite ready ammunition. Flashback could occur
when unreacted propellant gas combines with the air in the compartment similar to the
events at the muzzle. The removal of residual propellant gases is a major consideration in
the design of the crew compartments offighting vehicles. In a shipmounting, ventilators are
usually installed which mechanically push the muzzle gases out after shot exit. This
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equipment is rather large and is not practical in a land vehicle or aircraft. We design bore
evacuators or bore scavengers to deal with this problem in land vehicles and aircraft.
This method is simply to mount a chamber on the outside of the tube with ports that

connect directly into the tube bore. These ports are designed so that they discharge in the
direction of the muzzle. When the projectile passes the open ports, gas pressure builds up in
the evacuation chamber. Once shot exit occurs, the pressure in the tube eventually drops
below the evacuator chamber pressure. When this occurs, the gas trapped in the evacuator
rushes out of the muzzle, dragging with it the majority of the residual gas in the tube. This
generates a partial vacuum so that when the breech is opened fresh air is pulled in from the
compartment. If the breech is not opened for a while after firing, the vacuum dissipates, but
by then, the propellant gases should have been removed. These actions are shown in
Figures 5.16 through 5.19.
The phenomena of muzzle flows for which the variety of devices we have described are

meant to mask or mitigate are complex and are still under active study. We will examine
these flows in some detail at this point. We shall step through the muzzle exit process in the
order in which the events occur.

Atmospheric pressure

Atmospheric pressure

Reservoir

Inlet

Valves

Outlet

FIGURE 5.16
Projectile approaching bore evacuator.

Charging with high-pressure gas

Atmospheric pressureHigh-pressure gas

Some leakage

FIGURE 5.17
Bore evacuator charges with gas.

Charging with high-pressure
gas 

High-pressure gas 

FIGURE 5.18
Bore evacuator still charges with gas.
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As a projectile begins to move down the gun tube, it compresses the air ahead of it. The
gun tube acts like a shock tube in which a near-planar shock forms. When this shock exits
the muzzle, it forms a spherical shock wave as seen in Figure 5.20.
As the projectile moves faster and faster in the tube, if the velocity is low enough (that is

correct, “low enough”), a second precursor will form. This precursor moves faster than the
first one because it is moving into the higher-density fluid bounded by the first precursor as
seen in Figure 5.21.
No projectile ever perfectly obturates because gun wear occurs; rotating bands and

obturators erode; and in high-firing-rate weapons, barrel heating occurs, swelling the bore.
Aswe know, propellants are underoxidized, and because of this, any propellant gas blowby
will combine with the oxygen in the precursor flow fields and, when the temperature is high
enough, react. Because this occurs before projectile exit, it is known as preflash. It can occur
regardless of the presence of the precursors.
Several microseconds after the precursor shock appears, but before the projectile emerges,

the so-called barrel shock andMach cone form. This bottle-shaped structure is referred to as
the shock bottle. The barrel shock is created as the higher-pressure gases being compressed
by the onrushing projectile attempt to push their way into the high-pressure precursor flow

First precursor shock

Second precursor shock

Air at p∞, ρ∞

Air at p1, ρ1

Air at p2, ρ2

FIGURE 5.21
Second precursor shock formation.

Precursor shock

Air at p∞, ρ∞ 

Air at p1, ρ1

FIGURE 5.20
Precursor shock geometry.

High pressure

Lower pressure

Valve seals

Flow is induced to clear bore

FIGURE 5.19
Projectile has exited; bore evacuator discharges inducing outflow.
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field. One important concept to keep in mind is that pressure acts in all directions—it is a
point function. Think of the precursor flow field as “pushing in” on anything that is trying
to come out of the muzzle. Thus, the precursor flow field actually constrains the flow exiting
the muzzle. The Mach cone is generated by the fact that the fluid jet of the gas ahead of the
projectile suddenly sees that there is no more wall constraining it, and it tries to turn the 90°
corner but cannot, so an expansion fan forms. This is shown in Figure 5.22.
After the formation of the shock bottle but still before shot ejection, gases are still jetting

out of the muzzle. An annular vortex is formed as the gas at the center of the jet continues to
rush out while gas near the outer boundary is being robbed of momentum forming a vortex.
This is depicted in Figure 5.23. This vortex progresses downrange and will eventually
approach the precursor shock.
When the projectile obturator uncorks from the muzzle, there is more room for high-

pressure gases to escape. These gases may still be reacting and expand at a rate which

First precursor shock

Second precursor shock

Barrel shock
Mach cone

Air at p∞, ρ∞

Air at p1, ρ1

Air at p2, ρ2
Mixture at p3, ρ3

FIGURE 5.22
(See color insert.) Generation of the Mach disk.

First precursor shock

Second precursor shock

Barrel shock

Mach disk

Turbulent vortexMach cone

Air at p1, ρ1

Air at p2, ρ2

Air at p∞, ρ∞

FIGURE 5.23
(See color insert.) Formation of the turbulent vortex.
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results in them moving faster than the projectile. In many instances, they are supersonic
with respect to the projectile and a base shock forms. The projectile may be flying backward
in this flow. This propellant plume is constrained by the precursor flow field and rapidly
overtakes it, since it is at a higher temperature and pressure. The result is a bulge of the
propellant gases through the precursor shock both preceding and following the projectile.
This is depicted in Figure 5.24.
For some time after shot exit, the flow field remains as depicted in Figure 5.24. The tur-

bulent vortex and length of the main propellant flow increase, but the shock bottle remains
fairly constant. After this phase, the propellant flow leaving the muzzle diminishes. The
Mach disk retreats toward the muzzle and the shock bottle recedes. Upon completion of
this process, the situation is reminiscent of effluents from a smokestack as illustrated in
Figure 5.25.
Gay [4] describes the influence of the muzzle exit event on the accuracy and general

motion of the projectile. This motion can be critical in direct-fire applications.
We have examined the phenomena of muzzle exit flows and the types of muzzle devices

commonly used on weapons. The purpose of these devices is to affect the muzzle flow so
that certain physical phenomena are altered. Research in this field is still in its infancy, and
the literature abounds with theories and simulations.

Air at p1, ρ1

Air at p2, ρ2

Air at p∞, ρ∞

Second precursor
shock

Barrel shock

Main propellant flow

Mach disk

Turbulent vortex

Projectile base shock

First precursor shock

Main propellant flow
shock

FIGURE 5.24
(See color insert.) Shock structure at shot exit.

Turbulent jet

FIGURE 5.25
Turbulent jet formation.

182 Ballistics



5.5 Gas-Operated Guns

This section on gas-operated guns is located here in order to maintain continuity of the
treatment. If the reader is unfamiliar with shock physics, it is recommended that they skip
this section for now and proceed to read the other sections of interest, returning once the
section on shock physics has been read.
Gas-operated weapons have become increasingly important in the designs of semiauto-

matic and fully automatic small caliber weapons. Such designs usually incorporate a so-
called operating group (OG) that uses the gases generated to propel the projectile, ported
through orifices in the bore, to activate the OG components that feed the next round into the
chamber of the weapon. Some designs use a “direct impingement” methodology whereby
the actual bolt and attachments act as the “OG.” From an analysis perspective, they can be
viewed using similar equations.
The governing equations, their assumptions and limitations, and the use of the Lagrange

approximation to develop the equations of motions of both the projectile, whose propelling
gases are being tapped to move the OG, and the OG itself, are the objects of this section. The
representative symbols used in this section are described in Figure 5.26.
We will carefully describe the sequence of events during the firing of a gas-operated

weapon from the instant of trigger pull of a loaded gun:

1. Propellant ignition and initial burning are constant-volume pressurization pro-
cesses that occur behind the projectile until enough force is exerted to overcome the
initial resistance to motion, called “shot start.”

2. The projectile moves down the bore, accelerating as the propellant burns until (in
theory) all of it is converted to gas, called “burnout or all-burnt.” The equations
describing 1 and 2 are well known from our previous work as is the projectile
motion to the muzzle after burnout.

3. As the base of the projectile passes the port opening of the OG in the bore wall, gas
flows into the chamber behind the piston. The burnout of the charge may not yet

Vop

xop

dt
x. = V

dx
=Ps

x

V

PB
Mop

P

xg

FIGURE 5.26
Depiction of a gas operating system.
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have occurred, but the initial flow into the chamber will be modeled as a constant-
volume event prior to the OG movement.

4. Gas removal from behind projectile fills the volume of the gas cylinder while the
OG movement occurs. This movement is caused by the gas pressure, which is
greater than that of a spring holding the piston and operating rod in place.

5. At some point in time, the flow into the port will “choke”; that is, only a limited
mass of gas will get through the port opening even though the OG is moving and
continually compressing a spring.

6. Now returning our attention to the projectile, it exits the muzzle, and a rarefaction
wave passes back up the bore. When it reaches the location of the gas port, the
rarefaction wave passes into the gas cylinder of the OG as well as toward the gun
breech and eventually reaches the operating rod piston.

7. Once the rarefaction wave reaches the operating rod piston, the pressure drops,
and after any inertial effects of the motion cease, the operating rod is accelerated
back toward its original location by the compressed spring.

8. When the spring has pushed the piston all the way back to its initial location, the
cycle is complete.

Before proceeding with the analysis, it would be profitable at this point to discuss some of
the assumptions we are making about the equations of motion of the OG system.
The instant when the projectile passes the port is what we call tp and the position of the

projectile is xp. At this point, we assume that the density of the gas behind the projectile is
uniform or

r = r xg, t
� �

(5.43)

This is a bit of a courageous assumption since the gas will have to pass through the orifice,
which would act as a nozzle, and the compressible effects will have to be addressed:

r tð Þjc =
c

V tð Þ (5.44)

where the subscript c refers to conditions after the charge has “burned out”; i.e., all the solid
has evolved into gas. This volume V is now somewhat more complicated than before
because gas will be present both in the bore proper and in the gas cylinder. Physically, the
gas cylinder cannot instantaneously fill because of compressibility effects.
Regardless of the geometry of the orifice, it will behave according to the principles of

compressible fluid dynamics. This is an important consideration. Once a pressure differ-
ential is established across an opening, the flow rate will continue to increase until the
centerline velocity of the flow reaches the speed of sound in the gas. At this point, the flow
chokes, and the mass flow cannot be exceeded irrespective of howmuch larger the pressure
differential is. When the flow is choked, the Mach number reaches unity and can no longer
increase. The good news is that propellant gases are normally at high temperatures, and this
increases the speed of sound as we have seen in our earlier work. A high speed of sound
implies that the velocity will be high when the Mach number is unity.
If we have a gas port area of Aport, then assuming ideal gas behavior (close enough with

all our other assumptions), we can write
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and
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The pressure across the orifice that will cause choking is given by

p p∗ −( )=
+

⎛

⎝
⎜

⎞

⎠
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12
1γ

γ
γ (5.47)

The geometry of the orifice will always act to decrease the port area to some degree due to
viscous effects. We handle this through the use of an estimated “discharge” coefficient Cdscg,
giving us Aeff to replace Aport, an “effective” port area to account for the reduction in flow.
This can be written as

Aeff = CdscgAport (5.48)

This approach is common in fluid mechanics. The discharge coefficient varies a great deal
with geometry and is determined either empirically or through computational fluid
dynamics. If you have no preconceived value, experience has shown that it is acceptable to
start computations with a value of Cdscg between 0.60 and 0.62.
To begin a calculation, the pressure distribution is needed along the gun tube from the

time the projectile passes the gas port up until the projectile base leaves the muzzle. During
this travel, the gas cylinder is being filled. Since the pressure varies over this period, we
shall use the average base pressure on the projectile between the instant it passes the gas
port and the instant it exits the muzzle. Such an average pressure is

�pport =
1
2

pportME
+ psxp

� �
(5.49)

where �pport is the pressure value needed, pportME
is the pressure at the port at the moment of

muzzle exit, and psxp is the pressure at the base of the projectile as it passes the port.
Using the Lagrange gradient, we can write this as

p p
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(5.50)

As depicted in Figure 5.27, P is the distance from the bolt face to the gas port and L is the
total length of travel from bolt face to the muzzle.
With an estimate of the gas pressure filling the gas cylinder, we now need to know how

long this pressure is applied to the piston face. We shall assume this time to be the time it
takes a rarefaction wave to move from the muzzle to the gas port against the outward gas
flow. The reason this time was chosen is because the gas filling the gas port does not
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“know” the pressure should drop until this information is communicated from the pro-
jectile exiting the muzzle. Nature handles this through a rarefaction wave.
We have previously determined in our earlier ballistics work that the gas velocity linearly

decreases from the projectile velocity at the base of the projectile to zero at the breech or bolt
face. So that at an orifice (say, midway down the bore), the gas velocity can be given by

�Vg =
1
2
Vmuzzle (5.51)

Usually gas ports are closer to the muzzle, and if higher accuracy is desired, a better
estimate can bemade based on the Lagrange gradient, but for our purposes, this will suffice.
The rarefaction wave from the muzzle propagates toward the bolt face at the speed of

sound in the gas that is flowing toward the muzzle. If we assume the gun gas is an ideal gas,
we can write the speed of sound as

a =
ffiffiffiffiffiffiffiffiffiffi
gRT

p
(5.52)

Now this gas temperature has been reduced since the gas was generated at the adiabatic
flame temperature. But we can determine an average temperature to use for the speed of
sound through Equation 2.41. This temperature will be a little conservative since the actual
gas temperature at charge burnout is not the adiabatic flame temperature but something
lower. If we tailor Equation 2.41 to this particular situation, we obtain

T T
p
pavg
ME

c
= ⎛

⎝
⎜

⎞

⎠
⎟

−

0

1γ
γ (5.53)

When this value of the average temperature is inserted into the equation for the speed of
sound (Equation 5.52), we obtain

P

L

xop = 0

xg
Vxg

PB
Mop

Vop = 0
dt— x. = Vdx =

Pport

FIGURE 5.27
Depiction of a gas operating system at the instant the projectile passes the gas port.
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a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gRTavg

q
(5.54)

So the average speed of the rarefaction wave, which is moving against the gas flow, is
then

Vwave = a −
�Vg

2
(5.55)

At this speed, the rarefaction wave has to cover a distance of L − P to reach the gas port
from the muzzle, and the time this takes is

tgas =
L − P
Vwave

(5.56)

Now let us look at the gas cylinder. The pressure in it will depend on the rate at which gas
is entering from the bore. The operating piston, having begun tomove, causes the volume in
the cylinder to increase. The pressure in the cylinder depends upon the rate at which the
volume is increasing and the temperature of the gas in the cylinder. If we momentarily
ignore the temperature change, we can write an ideal gas equation of state for the gas
pressure in the cylinder as a function of time as

p tð Þ = m tð ÞRTavg

Vgc tð Þ (5.57)

The right-hand side of this equation is for the constant, choked, mass flow ratem(t), so we
can write

m tð Þ = mi + _mt (5.58)

We can tailor Equation 5.46 in terms of the updated variables at the port of pressure �pport,
the effective area of the port Aeff, and an average temperature Tavg to give us
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If we ignore the air that was originally present in the gas cylinder orm(0) = 0, we canwrite
from Equation 5.58 the mass flow m(t) at any time t as
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(5.60)

The cylinder volume at any time t is the initial empty volume plus any additional volume
created by the motion of the piston as given by

Vgc tð Þ = Ugc + Agcxop tð Þ, (5.61)

whereAgc, Ugc, Vgc(t), and xop are respectively the cylinder effective cross-sectional area, the
initial empty cylinder volume, and the volume of the cylinder increased by the piston
motion as it moved along the cylinder over the distance xop. These are depicted at the
instant the projectile passes the gas port in Figure 5.28.
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By inserting Equations 5.60 and 5.61 into Equation 5.57, we obtain
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which describes the pressure in the cylinder as a function of time. We could now get a more
accurate representation of the pressure in the cylinder by letting the temperature vary by
assuming adiabatic behavior through

T t T
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Then, the pressure in the cylinder at any time t is given by
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Using these results, let us look at the motion of the OG in the gas cylinder. Wewill assume
that there is some friction between the OG and the gas cylinder (ignoring friction is irrel-
evant since the equations must be numerically solved in any case, and friction would not
overly complicate the work).
We begin by applying Newton’s second law:
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x. = V=

Pport

xop = 0

PB
Mop

Vop = 0 Agc

Ugc

dt—dx

FIGURE 5.28
Cylinder geometry.
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Solving for the acceleration of the OG with the insertion of Equation 5.64 into Equation
5.65 allows us to take advantage of the pressure–time history of the OG;

d
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(5.66)

Equation 5.66 is a second-order, nonlinear, ordinary differential equation that must be
numerically solved. The friction term can be either a constant, a function of distance, a
function of velocity, or a function of both distance and velocity. This term is perhaps the
most elusive of all the terms and, depending on the system design, can be very important in
accurately predicting the motion.
The energy of the system, which consists of the gas cylinder and the OG (piston, springs,

rods, etc.) must be conserved, and we will write a rate equation following Equation 2.48:
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If we assume the only work done is pushing the piston, accelerating the gas, or over-
coming friction, we can write
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If, along with these assumptions, we carry over the ideal gas behavior and use Equation
2.50, we can modify Equation 5.68 to
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Performing the differentiation yields
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Finally, assuming calorically perfect behavior, by canceling terms, we can write Equation
5.70 as
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Using Equations 2.55 and 2.56, this can be written as
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And by using Equations 5.61 and 5.63, we obtain
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If we write Equation 5.73 in terms of the displacement of the piston, xop, and by inserting
Equation 5.58, we get
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This we rearrange to facilitate the numerical solution:

m
x
t

x

t
Q F

x
t

mRT

A x
op CV frict

avg gc

gc gc

d
d

d
d

d
d

U

U

2

2

1

1
= − + +

−( ) +(

−γ

γ ))

−
+( )

+( )
+ +⎛

⎝
⎜

⎞

−

−

γ

γ

γ

1

1
1
8

m mt RT A

A x

x
t

m
x
t

ai avg gc gc

gc gc

U

U

d
d

d
d ⎠⎠

⎟ −
−

+
⎛

⎝
⎜

⎞

⎠
⎟

2
2

1
1
2

m
RT

a
γ

γ
avg

(5.75)

and which we regroup as Equation 5.76, noting that the work done by the system is neg-
ative in this context:
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This equation is a nonlinear, second-order differential equation that we must numerically
solve. When numerical solutions are compared between Equations 5.66 and 5.76, we get
different answers, which is because the energy going into heating the gas actually increases
the pressure. We get greater accelerations using Equation 5.76, which is not an issue because
the solutions converge for the small times of the action. But without a doubt, Equation 5.76
is more accurate.
We can add a spring into Equation 5.66, where K is the spring constant and lund is the

undeformed spring length:
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And similarly, Equation 5.76 can be modified to incorporate a spring:

m
m x

t
x

t
Q F

x
t

mRT
op

spring
CV frict

avg gcd
d

d
d

d
d

U
+

⎛

⎝
⎜

⎞

⎠
⎟ = − + +

−

4

2

2

γ 11

1

1γ
γ

γ

−( ) +( )
− +( )

−
+( ) −

U

d
d

U

U

gc gc

und

avg gc gc

gc

A x
K x l

x
t

m mt RT Ai

++( )
+ +⎛

⎝
⎜

⎞
⎠
⎟ −

−
+

⎛

⎝
⎜

⎞

⎠
⎟

A x

x
t

m
x
t

a m
RT

a
gc

avgd
d

d
dγ

γ

γ
1
8 1

1
2

2
2

(5.78)

The time the pressure acts on the piston is of great interest to the gun designer since the
rate of fire depends on this time. While we have the interior ballistic tools to exactly
calculate how long it takes the projectile to leave the muzzle from when it just passes the
orifice, we can estimate this time by

tme =
L − P
Vmuzzle

(5.79)
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where tme is the time to muzzle exit. Then, the total time the gas is filling the gas cylinder is
given by

ttot = tme + tgas (5.80)

where ttot is the sum of the time the projectile takes to reach the muzzle from the gas port
and the time it takes for the rarefaction wave to cut offflow at the cylinder orifice. If we now
use this time to determine the position of the piston and assume the speed of sound in the
gas cylinder is far greater than that of the operating rod, we can estimate how long it takes
the rarefaction wave to reach the piston. This can estimated through

tpiston =
x ttotð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gRTavg

p (5.81)

Based on this value, an estimate of when the pressure is no longer acting on the piston can
be obtained from

tend = ttot + tpiston = tme + tgas + tpiston (5.82)

Although this equation is actually the time the head of the rarefaction wave reaches the
piston (which means the pressure is just starting to drop), it is a good approximation for
the point at which the spring begins to push the operating rod forward. Knowing that time,
the position of the OG can be estimated. This timeline is superimposed on a drawing of the
operating rod at the instant the pressure has begun to decay in Figure 5.29.
While some of the equations appear complicated, solutions can be reached through

numerical methods which yield details of value to the weapon designer. Details of the
design of the individual weapon can greatly affect the solutions. Exact models are possible
but involve coupled fluid–solid codes that support kinematics as well.

PB
Mop

P

tgas

tpiston

tme

xop ≈ maximum

FIGURE 5.29
Timeline superimposed on drawing of the system at the instant the pressure begins to decay.
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Gun Dynamics Nomenclature

c Charge mass
d Bore diameter
F Force
I Impulse
Izz Polar moment of inertia of projectile
k Radius of gyration of projectile
M Momentum
pB Breech pressure
pS Base pressure on projectile
S Distance
V Velocity
w Projectile mass
wrecoil Mass of recoiling parts
a Rifling angle
b Aftereffect coefficient
μ Coefficient of friction

Subscripts on F, S, V, M, and I

a Time when projectile exits the muzzle
n Aftereffect phase
o Total distance in tube
P Projectile base
Pa Reaction at the base when the projectile exits the muzzle
Pr Reaction on gun caused by projectile rotating band
Ps Reaction at the projectile base (essentially the same as P)
R Reaction at breech
Ra Reaction at breech until projectile exits muzzle
Re Reaction at end of recoil
Rn Reaction at breech from when projectile exits to the end of the aftereffect
t Tangential direction
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6
Recoil Arresting and Recoilless Guns

The recoil momentum endowed during gun launch can be problematic to manage. In this
chapter, we consider how recoil is arrested by most mounted cannon and introduce two
guns that manage recoil differently.
The baseplate-mounted trenchmortar is a very light cannon, limited to high-trajectory fire.
The recoilless gun is the focus of this chapter as it provides an enduring means to enable

large caliber guns to be fired from lightweight platforms.

6.1 Recoil Arresting

Most guns employ a recoil arresting system within a gun mount that provides space for the
recoil motion of the cannon in the opposite direction to that of the projectile. We may
consider a simplified recoil brake beneath the cannon as grounded to an inertial reference
frame as shown in Figure 6.1. Like Figure 5.12, this shifts the center of gravity below the
centerline of the barrel. As the cannon recoils to the left, the piston of the recoil rod travels
through the fixed recoil brake housing. Real gun mounts also include springs to later return
the cannon to its firing position that are not shown.
By combining Equations 5.24 and 5.30, we have an expression for the recoil momentum

imparted by firing a gun:

Mrecoil = w + bcð ÞVmuzzle (6.1)

This momentum endows the cannon with recoil velocity as we developed in Equation
5.31. This allows us to solve for the kinetic energy of free recoil as

KEfreerecoil =
M2

recoil

2wrecoil
(6.2)

We can see from this that the mass of the recoiling parts plays a critical role in attenuating
the recoil energy. It is useful to consider an idealized recoil arresting force FR as a constant
force applied until the recoiling parts are brought to rest after traversing some distance
behind the initial firing position. This ideal is approached in practice through the use of
variable orifice hydraulic brakes. Examination of Figure 6.1 reveals that the orifice constricts
as the cannon recoils further to the left. The increasing constriction tends to increase the
force while the slowing of the cannon tends to reduce it.
The total distance is the final recoil stroke SRf. The purpose of the recoil system is to apply

much smaller forces to the firing platform than the peak recoil force delivered by the
propellant gases at the breech as quantified in Equation 5.17. As the designed recoil
arresting forces are made smaller, the required final recoil stroke becomes larger. As the
design recoil strokes become large relative to the displacements at shot exit and after tube
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emptying (Equations 5.37 and 5.42), we may continue with the free recoil approximation.
Here, we make the approximation that the entire firing momentum, including the after
effect, is instantaneously imparted.Wemay then analyze relationship between the idealized
force and stroke using the free recoil approximation.

FRSRf =
M2

recoil

2wrecoil
(6.3)

We may consider space-limited applications, such as a gun turret, with SRf fixed. In this
case, the required recoil arresting force is inversely proportional to the mass of the recoiling
parts. Alternatively, we might consider the case of a carriage that can tolerate only a limited
maximum recoil force. Here, the required recoil stroke is inversely proportional to the mass
of the recoiling parts. These two scenarios and Equation 6.3 provide a potent disincentive to
reducing the mass of gun tubes and breeches.
In real weapons, recoil arresting forces will commence from the outset of the firing, and

they are not held constant. This topic of retarded recoil and sizing a variable orifice recoil
brake is beyond the scope of the text, but the reader is referred to the text byHayes [1]. Hayes
includes a description of the French 75 mm introduced in 1898, which is widely considered
the first modern recoiling artillery cannon and remained in use through World War II.

6.2 Muzzle Brakes

Muzzle brakes are shown in Figure 5.13. These devices divert the flow of propellant from
the muzzle to reduce the gas momentum contribution to recoil. A figure of merit is the gas
performance index of the muzzle brake G. The merit of a muzzle brake must consider the
reduction of the total momentumwithout the muzzle brakeMrecoil as computed in Equation
6.1 to the level attained with the muzzle brake Mw. Here we assume that the muzzle
velocity is left unaffected by the muzzle brake. By Equation 5.24, this means that the change
in recoil achieved by the muzzle brake may be solely attributed to changes in the propellant
momentum. The performance index is defined as the ratio of the magnitude of the recoil
reduction divided by the original propellant momentum without a muzzle brake [2]:

G ≡
Mrecoil −Mw

Mrecoil −Mproj
=
Mrecoil −Mw

bcVmuzzle
(6.4)

We may now rearrange and use Equation 6.1 to solve for the total momentum with a
muzzle brake as

Mw = Mrecoil − GbcVmuzzle = w + 1 − Gð Þbcð ÞVmuzzle (6.5)

FIGURE 6.1
Notional recoiling cannon.
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The case of G = 1 implies that the muzzle brake has eliminated all the gas momentum. A
performance index of G = 1/2 would reduce half of the gas momentum. Disadvantages of
muzzle brakes with high indexes include elevated blast near the gun crew, the sudden
application of large forces to the end of the cannon, and the weight often associated with the
structure required to endure these forces. We see from Equation 6.2 that the kinetic energy
of recoil increases with the square of total momentum. This amplifies the utility of
momentum reduction to ease the burden of recoil arresting.
We may now introduce the two kinds of guns that get around the recoil mass challenge.

6.3 Trench Mortar

The first approach to getting around the recoil mass is commonly employed by trench
mortars. These are described in the introduction as man-portable cannon than cannot fire a
flat trajectory at all. The reason is simple. Most mortars are fired off baseplates that couple
the recoil forces directly to the soil beneath them. A ball socket interface between the breech
of the cannon and plate allows traverse and elevation of the cannon. They are limited to fire
at elevations no less than 45°. The base plates are typically circular and employ vertical
projections or grousers that bite into the soil to better hold the baseplate in place. If the firing
elevation were made a little bit too shallow, the baseplate would shift during firing and
introduce accuracy errors. If fired far too low, rapid disemplacement of the cannon and
baseplate would ensue presenting a hazard.
A notional baseplate-mounted mortar is shown in Figure 6.2. These are generally muzzle

loaded weapons and rest on a lightweight bipod support that is not shown.
Mortars are typically low-pressure cannon. The reason can be readily understood by

reflecting on the required wall ratio of Equation 5.15. As the operating pressure becomes

FIGURE 6.2
Baseplate-mounted trench mortar cannon.
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small relative to the yield strength of the cannon, the required outer radius becomes close to
the inner radius of the tube. As a result, the load sharing becomes more nearly uniform
through the thin wall. This nearly uniform stress is more structurally efficient and allows for
a lighter cannon. This is an important attribute for a man-portable cannon.
The shells fired by trench mortars are also typically subsonic and intended for relatively

short ranges.

6.4 Recoilless Guns

A second way around the recoil mass challenge is to eliminate the recoil. For a brief period
following World War I, this was done by ganging two cannons together that shared a
common chamber. One cannon would fire the projectile at the intended target. The other
cannon sharing a common centerline would fire a countermass projectile in the opposite
direction. This is known as a Davis gun in tribute to its inventor, Commander Cleland Davis
[3]. The guns were mounted to slow-moving flying boat aircraft and were manned by
external gunners in the free airstream at the nose of the aircraft. They could manually point
the cannon and fire over the bow of the flying boat at submarines below. Although it is
successful at eliminating recoil, the Davis gun is cumbersome to reload, the two cannons are
rather heavy, and the firing of two projectiles leads to heavy ammunition.
The Soviets were the first to implement a new kind of recoilless gun. By 1937, they had

fully developed no fewer than three systems including 37, 76, and 305 mm guns [4]. The
305 mm gun was impressive in that it delivered a 250 kg shell to a range of 16 km. The first
significant use of this technology was by the Germans in their airborne invasion of Crete in
1941. These new guns did not use a countermass projectile to eliminate recoil. Instead, they
allowed propellant to escape from the gun chamber through a rearward-directed nozzle.
This produces thrust in much the same manner as rocket motor. The configuration is shown
in Figure 6.3.
For a given nozzle discharge area, the thrust generated may be balanced to that required

to eliminate gun recoil by imposing a flow constriction between the chamber and nozzle.
The minimum area of the constriction is known as the throat of the nozzle. A larger passage
will allow more propellant to pass through the nozzle increasing thrust. In contrast to the
Davis gun, the nozzle provides for very high discharge velocities. This reduces the quantity
of countermass that must be exhausted rearward reducing the weight of the ammunition
relative to the Davis gun. The nozzles may be achieved with short expansion nozzle cones
in place of the heavy second cannon of the Davis gun. This renders the weapon to be
compact and lightweight. For the same reasons as the mortar, relatively low-operating
pressure is often preferred to allow the mass efficiency of a thin-walled cannon.

FIGURE 6.3
Recoilless gun with central nozzle through the breech.

198 Ballistics



The nozzle is a form of a de Laval nozzle, with the convergent portion upstream of the
throat and the divergent portion downstream. This convergence and expansion is reflected
in the particle path trajectories shown in Figure 6.3. The early Russian and German guns
used a cartridge case with a plastic disk that would be unsupported by the closed
breechblock with a central hole down the middle. The disk would fulfill its role as a car-
tridge case describe in Section 4.8 as a container to protect the propellant charge and to
prove structurally robust during handing, shipping, stowage, and loading. It would serve
as a case seal during the early ignition of the propellant and then blow out of the gun
leaving in its absence the throat of the nozzle. This is known as a central nozzle design.
Clearly, unburnt solid propellant would tend to leak unimpeded through the nozzle,
reducing the efficiency of the system.
An American innovation during World War II was the use of an annular nozzle. Rather

than rupture the rear of the case, it was fully supported like a closed breech gun. Much of
the span of the camber was larger in diameter than the cartridge case. And the case wall was
perforated with a large number of small holes. A thin plastic liner inside the case served
to protect the propellant and would tear open early during the ignition of the propellant.
The propellant was then free to radially flow through the case wall into the larger chamber.
To exit the gun, the propellant flowed through four cut out regions forming the throats of
four small nozzles between the threads of the breechblock and cannon. This is shown in
Figure 6.4. The net area of all the case wall perforations was kept larger than that of the four
throats to prevent large pressure differences from developing that could bulge the cartridge
case and hinder extraction.
An advantage of this approach is that propellant gas passes through the perforations

more readily than unburned solid propellant. This reduces, but does not eliminate, leakage
of solid propellant through the nozzle. A second advantage is that the four narrower
nozzle throats allow a shorter expansion section to serve as the nozzle making for a more
compact breech interface. A third advantage is that during operation, the chamber volume
is significantly larger than that within the cartridge case alone. This allows the loading of a
larger propelling charge in the volume of the cartridge without resulting in higher than
desired operating pressure. As a result, the ammunition is less bulky for the perforated case
design.
Relative to closed breech guns, recoilless guns use much more propellant and generate a

new danger area behind the gun. The larger guns have widely been replaced by guided
missiles that have more than tripled the accuracy range. The depth of the danger area
behind the developmental 120 mm recoilless gun that lost the heavy antiarmor mission to
the tube-launched, optically tracked, wire-guided TOW missile reached 80 ft [3]. Firing the
launch rocket motor of the TOW missile more than doubled the depth of the danger area
beyond 160 ft. We will learn in the next section how to assess the increased propellant
consumption. Back blast assessment is beyond the scope of this text. An extensive discus-
sion of the back blast hazard is available in the handbook by the US Army Materiel
Command Headquarters [3].

FIGURE 6.4
Recoilless gun with an annular nozzle between the threads of a breechblock.
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6.5 Interior Ballistics of Recoilless Guns

The interior ballistic process at work in a recoilless gunmay be considered a hybrid between
that of a solid propellant rocket motor and a closed breech gun. Zero dimensional models
have been developed for recoilless guns [4], although they are subject to greater loss of
fidelity than for closed breech guns. We will discuss this fidelity issue later.
Let us simplify the recoilless gun into two separate devices: a closed breech gun firing to

the right and a solid propellant rocket directed to the left. If we impose a common area and
pressure between the breech of the gun and the chamber of the rocket, we now have a
coupled pair of zero-dimensional models of the system. Since the pressure and area are
common, the need for a breechblock and end closure to the combustion chamber vanishes,
and we may return to the common chamber of the recoilless gun of Figure 6.3. For
instructional purposes, it is useful to first consider them as separate devices.
Recoilless operation occurs when the total momentum developed by both devices cancels.

By combining Equations 5.24 and 5.30, we already have an expression for the recoil
momentum for the gun side model:

Mrecoil = w + bcð ÞVmuzzle (6.6)

We may use any desired gun model to design the propelling charge such as the one
introduced in Section 3.2 and develop the required pressure distance curve for the gun, as
shown in Figure 6.5.
Wemay then consider a portion of the same propelling charge granulation to burn within

the rocket chamber. The rocket nozzle may now be defined by its throat area and expansion
ratio. Typical recoilless gun contractions achieve a throat area of about 30% less than the
bore area. The expansion ratio is equal to the ratio of the nozzle exit area to that of its throat.
Many recoilless guns have expansion ratios of nearly 2.
For the zero-dimensional rocket model, we could use the adiabatic flame temperature of

solid propellant combustion and combine this with the common pressure imposed by the
breech pressure of a gun model to define the gas generation rate and reservoir state of
the nozzle gases. Then we could apply the isentropic relations of Equation 2.61 and the
Lagrangian frame of the first law of thermodynamics of Equation 2.42 to compute gas
velocity developed as pressure is lost through the nozzle. We may anticipate a problem
with this model. The breech pressure is modestly higher than the average gun pressure as
developed in Equation 3.59. As a consequence, the rocket chamber will burnout before the
gun, and it will prove impossible to maintain pressure balance after this occurs. We also
need an approximation to accommodate the leakage of unburnt propellant.
A less complicated approach for the rocket model is to borrow the concept of effective

nozzle exhaust velocity Vnozzle from rocket design practice [5]. If we further simplify and
consider an average effective exhaust velocity for the duration of the rocket burn, we may
treat the developed thrust in exact analogy to how the muzzle gas momentum was treated
using a mean exit velocity in Equation 5.27. Using this simplifying approach, the unburned

FIGURE 6.5
Zero-dimensional models of a closed breech gun balanced by a rocket motor.
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propellant is accounted for. All else the same, the effective exhaust velocity will decline as
more propellant is discharged unburnt. The total momentum developed by the propelling
charge mass dedicated to the nozzle cnozzle, is

Mnozzle = cnozzleVnozzle (6.7)

Typical solid propellant rockets may have effective exhaust velocities near 8000 ft/s.
Close combat missiles alternatives more comparable to recoilless guns tend to be under
6000 ft/s. The rocket community often prefers to divide the effective nozzle velocity by the
gravitational acceleration of the earth to define the weight specific impulse:

Isp =
Vnozzle

g
(6.8)

This results in nearly 250 s for an exhaust velocity of 8000 ft/s.
Three factors reduce nozzle performance for the recoilless gun. First, rockets need to

endure only one firing, so they often use high-adiabatic-flame-temperature propellants that
are too erosive for guns. This relegates guns to lower-energy and, therefore, lower-effective-
exhaust-velocity propellants. Second, recoilless guns leak in the range of one-fifth to one-
third of the propellant unburned through the nozzle. Third, the focus on compact designs
prefers recoilless expansion nozzles to be short with relatively low expansion. This leaves
5000 ft/s and 155 s to be more representative for the effective nozzle exhaust of recoilless
guns. The total recoilless charge may now be estimated to cancel the recoil between the two
zero-dimensional models:

c
V
V

w c
V
V

crecoilless
muzzle

nozzle

muzzle

nozzle
= ⎛

⎝
⎜

⎞

⎠
⎟ + + ⎛

⎝
⎜

⎞

⎠
⎟β (6.9)

The first term on the right-hand side of Equation 6.9 represents the propellant expelled
through the nozzle to counter the recoil of the projectile alone. It is the largest term for low-
velocity recoilless guns. The second term is the charge required to drive the projectile down
the bore of the gun as well as propelling those gases that follow the projectile down the gun.
The third term is the smallest for low-velocity guns. It is the additional propellant propelled
through the nozzle to counter the forward momentum of those gases following the pro-
jectile down the bore.
In the 1970s, Aviars Celmiņš [6], an interior ballistician in the Ballistic Research Labora-

tory, developed an early one-dimensional ballistics model for the launch bore of recoilless
guns. He relegated zero-order models to be coarse approximations that will be in error on
the order of 20% with respect to pressure. This leaves models like the one presented here
useful only for quick estimates reinforced by experimental checks.We already identified one
problem for such models arising after the burnout of the propelling charge. Celmiņš further
showed that because of the proximity of the nozzle to the chamber, the chamber pressure
falls more swiftly after burnout than would occur in a closed breech gun. As a consequence,
the chamber pressure and density fall resulting in some of the bore gases reversing their
forward speed to empty into the chamber. As a result, recoilless guns do not maintain recoil
balance throughout the entire launch. During burning earlier in the cycle, they may err to
introduce small levels of forward momentum to accommodate the loss of thrust later in the
cycle after burnout. Concern over this nonideal behavior should be tempered by the reality
that recoilless guns work well in practice over a wide variety of calibers and velocities.
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For our purposes, we now know that the aftereffect coefficient of Equation 3.26 is over-
stated. The recoilless gun problem later will show that this uncertainty leads to small
changes in the ballistics. Using b = 1/2 is likely a reasonable approximation [7].
One means to reduce the imbalanced thrust effect of burnout on recoilless ballistics would

be to delay it, perhaps until shot exit. Upon reflection, we may consider that the leakage of
unburnt propellant can occur only prior to burnout. Delaying burnout may be anticipated
to exacerbate leakage of unburned propellant. Therefore, this effect is likely best left
tolerated.

Problem 1
You are asked to analyze the mass of the charge require to fire a 100mm recoilless system. A
15 lb projectile is to be fired at a muzzle velocity of 1500 ft/s. The propellant properties are
listed in the following. Using Equation 3.150, you may assume a typical ballistic efficiency
of 33% to estimate c, the amount of charge allocated to the gun side of the recoilless gun.
You may consider two cases. First, the aftereffect is computed using Equation 5.28. For the
second case, use b = 1/2.

• Specific heat ratio g = 1.25
• Propellant force l = 375,000 ft-lbf/lbm
• Effective nozzle exhaust velocity Vnozzle = 5000 ft/s
Answer: c = 1.06 lb

crecoilless = 5.95 or 5.72 lb, assuming the full aftereffect increased the charge by
only 4%

Problem 2
We want to examine the ballistic efficiency of recoilless guns as a function of velocity.
We know that the ballistic efficiency of Equation 3.150 should decline at higher velocities
because more kinetic energy must be invested in the propellant gas column to keep up with
the shot as quantified in Equation 3.20. Let us suppose we know that the efficiency for the
close breech approximation to the gun and propellant of Problem 1 is 33% at 500 m/s and
declines to 25% at 1500 m/s. A linear fit between these two points is

ecb = 0:37 − 80V= 1, 000, 000 m=sð Þ (6.10)

Using the approximation of Equation 6.9, please plot the ballistic efficiency using Equation
3.150 for the total propelling charge of a recoilless gun between 500 and 1500 m/s. You may
use b = 1/2. What is the highest ballistic efficiency and at what muzzle velocity does it
occur?

Answer: The highest efficiency is nearly 10.2% near 4655 ft/s.
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7
Introductory Concepts

7.1 Definitions

Wewill beginwith the simplest case, the consideration of the projectile as a pointmass flying
in a vacuum with only the force due to gravity acting on it. Then, we will proceed to
introduce the force due to the pressure of the air, but still considering the projectile as a mass
concentrated at a point. Finally, we will consider the projectile as a three-dimensional body
acted upon by the air, its spin, and gravity. In the final sections of this part of the chapter, we
shall examine the complex motions arising from the coupling of projectile dynamics and
aeromechanical forces. Our object will be to examine the conditions necessary for a precise,
predictable, satisfactory trajectory enabling the projectile to fulfill its terminal ballistic utility.
Since this text is intended to have a broad scope, some of the material is not derived in

detail. The reader is encouraged to seek the more detailed treatments in the references noted
throughout each section.
Many of the principles and terms concerned with fluid mechanics required for the

understanding of interior ballistics were introduced in Section 2.7. These principles will be
extended in this section with a view toward an exterior ballistician—commonly called an
aeroballistician.
We shall first examine the elements of a trajectory as depicted in Figure 7.1. These terms

are commonly used in the military by gunners and researchers alike. Although most of the
symbols and terms in this figure are self-explanatory, some require comment. First is the so-
called map range. This is the range to the target that the gunner would see if he or she were
to plan firing using a map. The base of the trajectory is quite important and is defined as
being level in a plane with the firing point. Gunners of large-caliber weapons and mortars
take great care in assuring that the sights on the weapon are leveled in the direction
depicted as well as the plane out of the paper.
Since larger ordnance fires over extensive ranges, it is common to assume that the origin

of the trajectory is coincident with the ground beneath the artillery piece. The line of site and
angle of site (yes, they are spelled that way in much of the literature) are what the gunner
uses to aim at the target. As you can see, they only assist in the determination of the pointing
of the weapon and the relative height of the target.
An important feature of this diagram is the line of departure. You have probably noticed

that it is not collinear with the elevation of the weapon (i.e., where the bore is pointed).
The reality is that a projectile almost never leaves the bore of a gun aligned with the

bore—we shall discuss this in detail later. For now, we will simply state that this is due to
the dynamics of the projectile and gun as well as aerodynamic effects. It should be noted
that Figure 7.1 is drawn as two dimensional. The out-of-plane angular position of the
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projectile at muzzle exit is known as lateral or azimuthal jump. This will vectorially
combine with the vertical jump that is depicted to give a resultant jump vector.
The angle of lift and line of fall are defined for the level point; however, it is common to

see these used at the target even though, officially, these quantities at the target are called
angle of impact and line of impact (sometimes shot line).
The aerodynamics and ballistics literature are quite diverse, and the terminology is far

from consistent. This has particular significance in the coordinate systems used to define
the equations of motion. In this text, we shall use the coordinate system by McCoy [1] as
depicted in Figure 7.2. The primary difference between this scheme and those of, say,
Murphy [2], McShane et al. [3], Nicolaides [4], and Nielsen [5] is that the y-axis is deemed
to be positive pointing up, with the z-axis as positive to the right as opposed to the z-axis
down and y-axis to the right. This makes sense to the authors with up being a more intu-
itive positive direction. The only issues (and some people consider them significant) with
this scheme are that, first, the nice right-handed naming convention of the aerodynamic

Map range

Origin
Quadrant
elevation

Quadrant
elevation of
departure

Line of site

Line of elevation

Vertical jump

Base of trajectory

Trajectory

Angle of site

Angle of elevation

Maximum ordinate

Line of fall

Level point

Line of departu
re

Point of impact

Angle of lift

FIGURE 7.1
Elements of a trajectory.

x

y

z Positive roll

Positive yaw

Positive pitch

FIGURE 7.2
Definition of projectile coordinates.
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coefficients is disturbed (as we shall see later x–y–z corresponds to l–n–m not l–m–n as one
would normally like) and, second, what would normally be a positive rotation in the
y-direction (i.e., nose left) is defined as negative—we shall handle this when we define the
associated equations.
We shall now define some terminology and, more importantly, the forces, moments, and

associated coefficients that are used throughout this part of the chapter. It is important for
the reader to recognize that these force, moment, and coefficient definitions are by no means
an all-inclusive collection. Occurrences of additional forces or moments at times require
additional definitions—e.g., control deflections. We shall adhere to the broad scope of this
chapter by including only what is necessary for a basic understanding of ballistics.
We mentioned the yaw and pitch of the projectile earlier in this section. The projectile

geometry in an arbitrary state of yaw is depicted in Figure 7.3. This illustration shows the
projectile yawed and pitched to some angle at relative to the velocity vector. The illustration
also shows the trajectory which is defined as the curve traced out by the velocity vector.
Thus, the velocity vector is everywhere tangent to the trajectory curve. The inset shows the
decomposition of the angle between the projectile axis of symmetry x(OB) and the velocity
vector V(OA). We first measure the sideslip angle b(∠AOC) and then measure the yaw
angle a(∠COB) from the axis of symmetry x to side OC = V cos b. The side BC of right
triangle OBC then has a value of V cos b sin a. The resulting angle ∠AOB is defined as the
total yaw angle at, and, in triangle, AOB, where side AB = V sina t. It should be noted that
triangle ABC with sides V sin at, V cos b sin a, and V sin b is also a right triangle.
Most projectiles have at least a trigonal symmetry. This is symmetry about three planes

through the projectile long axis, 120° apart. Because of symmetry, it is common to vecto-
rially combine the yaw and pitch of the projectile into one term which we simply call total
yaw at. All our coefficients will be based on this total yaw. Later, when we discuss
advanced topics, it will be necessary to once again separate them.
An examination of Figure 7.3 shows that we can relate the total yaw to a and b through

sina t =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2b + cos2bsin2a

q
(7.1)

The drag on a projectile is the force exerted on it by the medium through which it is
moving, usually air. Since the drag is generated by the motion of the projectile through the
air, it is naturally directed opposite to the velocity vector as illustrated in Figure 7.4.
There are, in general, two types of drag: pressure drag and skin friction drag. This is

because nature can act on the surface area of the projectile in only two ways: normal to the

x

V
Trajectory

x
V sin αt

V cos β sin α

V sin β

V cos β V

O A

C

B

αtα

αt

β

FIGURE 7.3
Generalized yaw of a projectile.
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surface and along it. A third type of drag called wave drag is a form of pressure drag
generated by a shock wave formedwhen the local velocity along the surface of the projectile
reaches Mach 1. We will discuss drag in further detail later, but in all cases, it is convenient
to lump the effect of the drag into one coefficient called the drag coefficient. The drag force is
defined in terms of this drag coefficient as

Drag force = FD =
1
2
rSCDVV =

1
2
rV2SCD (7.2)

Equation 7.2 shows two forms of the defining expression for drag force, vector and scalar.
We shall define all our forces and moments in this way because; although we will initially
examine the scalar forms, it will be necessary later to use the vector forms. For now,
knowing that the drag force is opposite to the velocity vector and that it is a scalar quantity,
as depicted on the far right-hand side (RHS) of Equation 7.2, is sufficient.
Like many of the coefficients we shall discuss, the drag coefficient can be a complicated

function of the yaw angle. In a more general form, we can write the drag coefficient as the
sum of a linear part and a yaw-dependent term:

CD = CD0
+ CDd2

d 2 (7.3)

Here d is the total yaw defined as

d = sina t (7.4)

The first term on the RHS is the linear part of the drag coefficient, known as the zero-yaw
drag coefficient, while the second term is known as the yaw drag coefficient. The reason that
there is no intermediate term is that for a symmetric body, the drag has to be the same
whether the body is angled at, say +5° or−5°. This is discussedmore elegantly byMurphy [2].
We shall see later that the drag coefficient varies with Mach number in a complex manner.
Dynamic pressure is a quantity defined as 1/2rV2, where r is the density of a fluid that an

object is immersed in and V is the velocity of the fluid relative to the object. It is simply the
physical reaction of the fluidwhen trying to force an object through it and occurs so often that
it has been given its own name. This dynamic pressure is multiplied by a reference area S.
It is always important to knowwhat reference area is used in the definition of the coefficients.
In every case we shall examine, this reference area is based on the projectile circular cross
section. Also, as we shall soon see, moments require a length scale as well. In all these
instances, we shall use the projectile diameter as the reference length.
When a projectile spins in a medium, the viscous interaction of the medium and the

projectile surface is such that the projectile will spin down throughout the flight. This
phenomenon is accounted for by a moment applied to the projectile called the spin-
damping moment. It is defined as

x

V
Trajectory

Drag force αt

FIGURE 7.4
Drag of a projectile.
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Spin-damping moment = lp p
M V Sd

pd
V

C= ⎛
⎝
⎜

⎞
⎠
⎟

1
2

2
1ρ (7.5)

This moment is directed opposite to the spin vector p of the projectile as depicted in
Figure 7.5, and the tendency is for the projectile to spin down; thus, there is no negative sign
in Equation 7.5, because the vector handles the decay. One needs to note that the figure is
drawn for a right-hand twist. If a left-hand twist were involved, the spin vector p and the
spin-damping moment vector would be reversed.
Some projectiles have fins or jets which impart a roll torque to the projectile such that the

spin rate increases. This rolling moment is depicted in Figure 7.6 and defined through

Rolling moment = Mld =
1
2
rV2SddFCld (7.6)

In this expression, dF is a cant angle provided to the fins to generate the lift required to
sustain rotation.
Lift is defined as the aerodynamic force which acts orthogonal to the velocity vector. This

is depicted in Figure 7.7. The lift force can be defined in both scalar and vector notations as

Lift force = FL =
1
2
rSCLa

V� x�Vð Þ½ � = 1
2
rV2SCLa

d (7.7)

The lift force coefficient can be written in its nonlinear form as

CLa
= CLa0

+ CLa2
d2 (7.8)

With a symmetric projectile, we must note that if there is no angle of attack (i.e., d = 0),
then there is no lift. This is obvious even for the linear case since d appears in Equation 7.7.
Some authors prefer to work in coordinates other than those we are utilizing here. In those
cases, expressions such as Cx and CN are used for drag and lift, respectively. In these cases,

V
Trajectory

Mlp

x, p

αt

FIGURE 7.5
Spin damping of a projectile.
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V
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M1δαt

FIGURE 7.6
Roll moment of a projectile.
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it is important that proper transformations are used to change the coefficients. An example
of this is provided by McCoy [1].
At this point, we must discuss two quantities known as center of pressure (CP) and center

of gravity (CG) (sometimes called center of mass). The CG is the location on the projectile
where all the mass can be concentrated, so that for an analysis, the gravitational vector will
operate at this point. The CP is the point through which a vector can be drawn, i.e., the
resultant of all infinitesimal pressure forces acting on the projectile. For most projectiles that
are spin-stabilized, the CP is ahead of the CG, and the reverse is true with fin- or drag-
stabilized projectiles. Figure 7.8 is an illustration of this.
The separation of the CP and CG gives rise to an overturning moment in all projectiles

(Figure 7.9). As we shall see later, this moment is destabilizing for spin-stabilized projectiles
(which is why they must be spun) and stabilizing for fin-stabilized projectiles. The over-
turning moment (sometimes called the pitching moment) is defined as

Overturning moment = Ma =
1
2
rSdVCMa

V� xð Þ = 1
2
rV2SdCMa

d (7.9)

We can see from Equation 7.9 that this moment is a function of the angle of attack and
because of the cross product, a positive overturning moment (nose up) is oriented along the
positive z-axis.
The overturning moment coefficient can be written in a nonlinear form similar to the lift

and drag forces as

CMa
= CMa0

+ CMa2
d 2 (7.10)

x

V
Trajectory

FL
αt

FIGURE 7.7
Lift vector of a projectile.

CP

CG
(center of mass) 

FIGURE 7.8
CG and CP illustrated.
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When a body of circular cross section is immersed in a flow-field perpendicular to its axis
and is spun about its axis, a force known as the Magnus force is developed [6]. This force
comes about because on one side of the body, the free stream velocity of the flow is added to
the velocity of the surface, while on the other side, the free stream velocity is reduced by the
surface velocity. On the basis of Bernoulli’s equation (Equation 7.11), we see that along the
body surface streamline, the pressure must be higher on the side with the lower velocity [7]:

p
r
+
1
2
V2 + z = constant (7.11)

This results in a side force on the body as illustrated in Figure 7.10.
This might not seem like a big deal because a projectile almost never flies sideways, but if

we consider a projectile in a crosswind or, more importantly, one that is yawed, we see that
this side component can somewhat contribute to the aerodynamic loading. For all practical
purposes, however, if a projectile is not yawed in flight, then there is no Magnus force. The
Magnus force is defined for our purposes as

Magnus force N NP P
= = ⎛

⎝
⎜

⎞
⎠
⎟ ×( ) = ⎛

⎝
⎜

⎞
⎠
⎟F SV

d
V

C V S
d

V
C

α α
ρ

ω
ρ

ω1
2

1
2

2V x NN Pα
δ (7.12)

The Magnus force coefficient can be written in a nonlinear form in the same manner as
Equation 7.10, which we will not repeat (Figure 7.11).
In many cases, theMagnus force is small and is usually neglected with respect to the other

forces acting on the projectile. In contrast, the moment developed because of this force is
considerable. We define the Magnus moment as

V
Trajectory

Mα

x

αt

FIGURE 7.9
Overturning moment vector of a projectile.

Angular velocity, ω

Free stream velocity, V∞

Body radius, r

Upper surface velocity = rω– V∞

Lower surface velocity = rω+V∞ Body will move in this
direction—Magnus force

direction

FIGURE 7.10
Magnus effect on a projectile.
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Magnus moment
P P

= = ⎛
⎝
⎜

⎞
⎠
⎟ × ×( )⎡⎣ ⎤⎦ =M VSd

d
V

C V SdM Mα α
ρ

ω
ρ

ω1
2

1
2

2x V x
dd

V
CM

⎛
⎝
⎜

⎞
⎠
⎟ Pα

δ (7.13)

The Magnus moment significantly contributes to the stability of the projectile and will be
discussed in detail later. The Magnus moment coefficient can be written as a nonlinear term
in the same way as all our other coefficients.
The CP for the lift force and the CP for the Magnus force are usually not the same; thus,

the moments will act through differing moment arms. The reason for this is the different
physics that give rise to the different phenomena. These change during flight as well since
the yaw of a projectile changes as it moves downrange.
Pitch damping is the tendency of a projectile to cease its pitching motion due to air

resistance. It is usually more difficult to visualize for someone new to the field. It is rela-
tively simple to think about a right circular cylinder mounted in a fixture with its spin axis
held by a frictionless bearing on each end. If we spin the projectile, it will slow down
because of the sticking of the fluid to the surface and the resultant viscous action (remember
the bearings are magically frictionless). If we mount the projectile such that the bearing is
transverse to the long axis and spin it, we will still have the viscous action slowing the
projectile down; however, this will be overwhelmed by the pressure forces that retard the
motion, and the projectile will spin down much faster. This combination of forces is called
pitch damping. For projectiles, we can define the pitch-damping force as

Pitch-damping forces 
d
dN N N= = ⎛

⎝
⎜

⎞
⎠
⎟ +

+
F

q q
VSd

t
C VSdC

α
ρ ρ

1
2

1
2

x
αα

d
d

d
d

x
t t
−⎛

⎝
⎜

⎞
⎠
⎟

l (7.14)

Or, in scalar terms,

Pitch-damping forces N
t

N
t= = ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
+

F V S
q d
V

C
d

Vq qα
ρ

α1
2

2

⎠⎠
⎟

⎡

⎣⎢
⎤

⎦⎥
CNα

(7.15)

In Equation 7.15, we have defined the total pitching motion qt and the total rate of change
of angle of attack at as

qt =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 + r2

q
 and  _a t =

da t

dt
(7.16)

We note here that this pitch damping comes about through two motions. The first motion
is brought about through the pitching rate q, while the second is developed because of the
resistance to the changing angle of attack. This is described in eloquent detail by Nielsen [5].
The simplest way of depicting this is to assume a sinusoidal motion of a projectile along its
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FNpα
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αt

MMpα

FIGURE 7.11
Magnus force and moment on a projectile.

214 Ballistics



flight path. With this assumption, Figure 7.12 shows what motions would result if only q
was present and contrasts this with motion if only _a were present.
It is generally difficult to separate q and _a in experimental flight data. For this reason, the

two coefficients are almost always written as a sum and recorded in the literature as such.
With assumptions on the yawing motion of the projectile and the practice of combining
coefficients, as previously described in Equations 7.14 and 7.15, they can be combined as
detailed by McCoy [1] into

Pitch-damping force 
d
d

= 

N N N= = +( )+
F VSd C C

t

V Sd
q

q qα α
ρ

ρ

1
2

1
2

2

x

tt
N N

d
V

C C
q

⎛
⎝
⎜

⎞
⎠
⎟ +( )α

(7.17)

The pitch-damping force is, like the Magnus force, generally neglected because it is small
with respect to the other forces such as lift anddrag. Themoment caused by this pitch damping
is frequently significant (Figure 7.13). It can be mathematically described as follows:

Pitch-damping moment

d
d

= = ×⎛
⎝
⎜

⎞
⎠
⎟ +

+
MM Mq q

VSd
t

C VSd
α

ρ ρ
1
2

1
2

2 2x x
CC

t tMα
x x x×⎛
⎝
⎜

⎞
⎠
⎟ − ×⎛

⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

d
d

d
d

l (7.18)

In scalar form, we can write

Pitch-damping moment = tM V Sd
q d
V

C
d

VM Mq q+
= ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝α
ρ

α1
2

2 t ⎜⎜
⎞
⎠
⎟

⎡

⎣⎢
⎤

⎦⎥
CMα

(7.19)
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q = sin ωt

q = 0

α = 0

Motion with
α = sin ωt

FIGURE 7.12
Pictorial description of q and _a.

x

V, l
Trajectory

qtFN

MM

αt

q+ α

q+ α

FIGURE 7.13
Pitch-damping force and moment on a projectile.
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These can be simplified as per McCoy [1] into

Pitch-damping moment = M
d
dM M Mq q

VSd C C
t+

= +( ) ×⎛
⎝
⎜

⎞
⎠α α

ρ
1
2

2 x
x
⎟⎟ (7.20)

Pitch-damping moment = tM V Sd
q d
V

C CM M Mq q+
= ⎛

⎝
⎜

⎞
⎠
⎟ +⎡⎣ ⎤

α α
ρ

1
2

2
⎦⎦

(7.21)

At certain times and in some special cases, there are other combinations of forces and
moments, and therefore, additional coefficients require attention. Wewill not go any further
here as this chapter is meant to be most general.
We now have the basic terms defined that we shall use in our study of exterior ballistics.

7.2 Development of Total Yaw Angle from Orthogonal Measurements

In this section, we shall discuss how to obtain total yaw angle from two orthogonal mea-
surements obtained in a range firing. We shall assume that the cameras are perfectly
orthogonal. Any errors in this assumption have to be accounted for in the data reduction.
This procedure will not be covered because it will differ based on test configurations.
Assume that, through whatever data collection, we have been able to determine the two

vectors V and x as depicted in Figure 7.3. We shall assume a test range inertial coordinate
system similar to that used in Figure 7.2, where X points downrange, Y is up, and Z is to the
right as viewed from the rear of the weapon. This is depicted in Figure 7.14.
At this point, if we have the vectors determined in some manner, we can simply deter-

mine the total yaw angle directly from

αt =
⋅⎛

⎝
⎜

⎞

⎠
⎟

−cos 1 x V
x V

(7.22)
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FIGURE 7.14
Depiction of initial data from test range.
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We can take this further, determining the pitch and yaw angles, a and b, respectively as
depicted in Figure 7.3, through the following procedure. First, we need to rotate both the
velocity vector and the position vector through an angle such that the velocity vector is
aligned with the X-axis. To begin, let us write the velocity and position vectors in terms of
their components in the X, Y, Z system:

V = VXi + VYj + VZk (7.23)

x = xXi + xYj + xZk (7.24)

We shall now define the projection of the vectors (which are still vectors) by using sub-
scripts for the plane in which they lie. For instance, VXY is the projection of the velocity
vector V into the X–Y plane. This is illustrated in Figure 7.15. We shall call this angle g YX,
and it is defined as

γYX
Z Z

X Y Z

= ⎛

⎝
⎜

⎞

⎠
⎟ =

+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

− −sin sin1 1

2 2 2

V V

V V VV (7.25)

Similarly, we can define gZX as follows

γZX
Y

X Y Z

= ⎛

⎝
⎜

⎞

⎠
⎟ =

+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

− −cos cos1 1

2 2 2

V V

V V V

Y

V (7.26)

This is illustrated in Figure 7.16.
It is important to perform the rotation about the Y-axis first as it preserves the angle

betweenV and the X–Z plane. The proper rotation, however, is determined by the angle we
shall call dZX as illustrated in Figure 7.17.
We can write this angle as

δZX
Z

X
= ⎛

⎝
⎜

⎞

⎠
⎟

−tan 1 V
V

(7.27)
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FIGURE 7.15
Example of a projection of V onto the X–Y plane.
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Rotating V through this angle can be written as

V0 =

cos dZX 0 sin dZX
0 1 0

− sin dZX 0 cos dZX

2
664

3
775

VX

VY

VZ

2
664

3
775 (7.28)

We now follow the same procedure to rotate about the Z-axis but this time usingV′ as the
vector:

V00 =

cos dZX sin dZX 0

− sin dZX cos dZX 0

0 0 1

2
664

3
775

V0
X

V0
Y

V0
Z

2
664

3
775 (7.29)
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FIGURE 7.16
Example of a projection of V onto the X–Z plane.
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FIGURE 7.17
Rotation of V about the Y-axis.
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Now our velocity vector will be aligned with the X-axis, and if we perform the exact same
rotation on the projectile axis vector, we will have preserved the total yaw angle, and the
situation will be as illustrated in Figure 7.18. The equation is

x00 =

cos dZX sin dZX 0

− sin dZX cos dZX 0

0 0 1

2
664

3
775

cos dZX 0 sin dZX
0 1 0

− sin dZX 0 cos dZX

2
664

3
775

xX

xY

xZ

2
664

3
775 (7.30)

So we can now extract a and b from these equations:

α =
′′
′′

⎛
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⎞

⎠
⎟ =

′′

′′ + ′′ + ′′
⎛
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⎞

⎠
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− −sin sin1 1

2 2 2

x x
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Y Y

X Y Z
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β =
′′
′′

⎛

⎝
⎜

⎞

⎠
⎟

−tan 1 x
x

Z

X

(7.32)

These equations will be consistent with Equation 7.1.

Problem 1
In a test range, a 0.50-caliber M33 ball projectile has a velocity vector which is at an angle of
10° to the horizontal (assume zero azimuth) with a velocity of 3013 ft/s. The initial pitch and
yaw angles are 1.030° and 1.263°, respectively. The initial rotational rate of change of the
axial unit vector (dx/dt) is provided in the following. If the projectile has the following
coefficients at this particular instant, draw the situation and determine the following:

1. Velocity vector (ft/s)
2. Projectile axial unit vector (x)
3. Drag force vector (lbf)
4. Spin-damping moment vector (lbf-in)
5. Overturning moment vector (lbf-in)
6. Magnus moment vector (lbf-in)

X

Y

Z

x

V

αt

α

β

FIGURE 7.18
Completed rotation of both V and x about the Y- and Z-axes.
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Assume the weapon has a right-hand twist.
Projectile information:

CD = 0:2938

CMa
= 2:88

CLa
= 2:69

CNpa
= −0:01

Clp = 0:003

CMq
+ CM _a

� �
= −5:5

CNq
+ CN _a

� �
= 0:004

CMpa
= 0:05

r = 0:0751
lbm
ft3

� �

IP = 7:85 g�cm2� �
IT = 74:5 g�cm2� �
m = 42:02 g

� �
w = 15, 404

rad
s

� �

dx
dt

= 0:405e1 − 1:963e2 − 0:981e3f g rad
s

� �

Please supply all answers in an inertial coordinate system labeled 1, 2, and 3 with 1 being
along the downrange direction and 3 being to the right side. Treat all missing coefficients as
equal to zero. It is very important that you draw the situation. This will have a great deal of
influence in obtaining the correct answer.
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8
Dynamics Review

Throughout the study of exterior ballistics, dynamics play a great role in the flight of the
projectile. The Coriolis effect in long-range trajectories or drag changes due to the preces-
sional and nutational motion of the projectile are just two examples of the effect of projectile
body dynamics on flight. We will find that at least a cursory review of dynamics is essential
to the understanding of projectile motion. Analyzing dynamics of projectile flight is best
approached through the use of vectors, and we will begin our review with their study.
A vector is defined as a quantity with a magnitude and a direction. Two vectors are

considered equal if both their magnitude and direction are identical. However, this does not
mean that they have to originate at the same point; i.e., a translation has no effect on
whether vectors are equal. A scalar is simply a numerical quantity (a magnitude). When a
scalar and a vector are multiplied (in any order), they form a vector. Thus, we can define
any vector as a scalar magnitude multiplied by a vector of unit length (a unit vector) in the
proper direction (Figure 8.1):

A = AeA (8.1)

A vector can be written as the sum of its scalar magnitude in each individual coordinate
direction times a unit vector in that particular direction:

A = Axi + Ayj + Azk (8.2)

The magnitude of the vector is defined as

A = Aj j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

x + A2
y + A2

z

q
(8.3)

Vectors may be added together in any order by summing the individual components in
each direction. This is the commutative property:

A + B = B +A = Ax + Bxð Þi + Ay + By

� �
j + Az + Bzð Þk (8.4)

The following is also true when adding more than one vector together:

A + Bð Þ + C = A + B + Cð Þ (8.5)

Equation 8.5 represents the associative property of vectors. In all of the preceding
expressions, note that i, j, and k are the unit vectors in the x-, y-, and z-coordinate directions,
respectively.
Multiplication of vectors can occur in two different ways—each applicable to particular

situations. Consider the two vectors A and B shown in Figure 8.2; we define the scalar
product or dot product as

A � B = A � B � cos q (8.6)
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Both the commutative and associative laws of multiplication apply to the dot product:

A � B = B �A (8.7)

A + Bð Þ � C = A � C + B � C (8.8)

The dot product of two vectors is given by

A � B = Axi + Ayj + Azk
� �

� Bxi + Byj + Bzk
� �

(8.9)

This equation when expanded is

A � B = AxBxi � i + AxByi � j + AxBzi � k + AyBxj � i + AyByj � j + AyBzj � k + AzBxk � i
+ AzByk � j + AzBzk � k (8.10)

However, since the unit vectors are orthogonal and the dot product of two orthogonal
vectors is identically zero, while the dot product of parallel vectors is unity as follows from

i � i = j � j = k � k = 1 � 1 � cos 0°ð Þ = 1

i � j = j � i = j � k = k � j = i � k = k � i = 1 � 1 � cos 90°ð Þ = 0

Therefore, we can write

A � B = AxBx + AyBy + AzBz (8.11)

The second type of vector multiplication is the vector or cross product, which is defined as

A� B = A � B � sin qen (8.12)

A

B

θ

FIGURE 8.2
Vector pair illustrated.

A

eA

1

A

FIGURE 8.1
Vector and associated unit vector.
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Here en is a unit vector normal to the plane made by vectors A and B. This is depicted in
Figure 8.3. The cross product does not obey the commutative property because

A� B = −B�A (8.13)

The distributive property, however, does apply to the cross product. Thus,

A + Bð Þ � C = A� C + B� C (8.14)

The cross product of two vectors is given by

A� B = Axi + Ayj + Azk
� �

� Bxi + Byj + Bzk
� �

(8.15)

When expanded, Equation 8.15 can be written as

A� B = AxBxi� i + AxByi� j + AxBzi� k + AyBxj� i + AyByj� j + AyBzj� k

+ AzBxk� i + AzByk� j + AzBzk� k (8.16)

Since the unit vectors are orthogonal,

i� i = j� j = k� k = 1 � 1 � sin 0°ð Þen = 0 and i� j = 1 � 1 � sin 90°ð Þ = en

But, sincewe have a right-handed coordinate system, by the right-hand rule, the normal to
i and j is the unit vector k; thus, i× j = k.We can also invoke Equation 8.13 to get j × i =−i × j =
−k. We can carry this logic further to show that j × k = i or k × j = −i and i × k = −j or k × i = j.
Thus, we can rewrite Equation 8.16 as

A� B = AyBz − AzBy

� �
i + AzBx − AxBzð Þj + AxBy − AyBx

� �
k (8.17)

Equation 8.17 is the following determinant expanded by its minors:

A� B =

i j k

Ax Ay Az

Bx By Bz

��������

��������
(8.18)

We will proceed next to the calculus of vectors. Let us consider a vector A dependent
upon a scalar variable u, as shown in Figure 8.4. Then,A + ΔA corresponds to u + Δu and we
can write for its derivative

dA
du

= lim
Du!0

DA
Du

(8.19)

A

B
en

θ

FIGURE 8.3
Vector cross product normal unit vector.
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Differentiation is distributive so that

d A + Bð Þ
du

=
dA
du

+
dB
du

(8.20)

The chain rule also applies for scalar and vector products so that

d
du

gAð Þ = dg
du

A + g
dA
du

(8.21)

d
du

A � Bð Þ = dA
du

� B +A � dB
du

(8.22)

d
du

A� Bð Þ = dA
du

� B +A� dB
du

(8.23)

Consider a vector A dependent upon time t. If we take its derivative with respect to time,
we get

dA
dt

=
dAx

dt
i +

dAy

dt
j +

dAz

dt
k + Ax

di
dt

+ Ay
dj
dt

+ Az
dk
dt

(8.24)

If the coordinate system is inertial (i.e., it does not move), we can write

dA
dt

=
dAx

dt
i +

dAy

dt
j +

dAz

dt
k (8.25)

If the coordinate system is moving (like on a rotating earth), the rate of change terms for
the unit vectors cannot be neglected. This gives rise to what we call “Coriolis terms,” as we
shall discuss later.
We will now examine the kinematics of a particle. Kinematics is the study of the motion of

particles and rigid bodies without regard to the forces which generate the motion. Particle
kinematics assumes that a point can represent the body. The rotations of the particle itself
are neglected making this a three-degree-of-freedommodel. If we have the inertial reference
frames x, y, and z, the position of a particle P is defined by a position vector r drawn from
the origin to the particle as shown in Figure 8.5.
If the particle P moves along a trajectory T, its instantaneous velocity is always in a

direction tangent to the trajectory and its magnitude is the speed at which it moves along
the curve. Thus, the tip of this vector r traces out the trajectory (Figure 8.6) and the velocity v
is defined as the time rate of change of r, written as

ΔAA + ΔA

A

FIGURE 8.4
Vector sum illustrated.
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v =
dr
dt

(8.26)

If we were to take the velocity vector at every instant of time and fix its tail to the origin of
an inertial coordinate system, then the curve traced out by its tip would be called a
hodograph (Figure 8.7) and the velocity of the tip would be the time rate of change of
velocity or the acceleration a. Thus, we can write

a =
dv
dt

=
d2r
dt2

(8.27)

Now, if we examine the particle as moving in two dimensions only, we can break its
motion up into two components, one parallel to and one perpendicular to the position
vector r (Figure 8.8). The position vector written in this coordinate system is given by

r = rer (8.28)

So from our definition for the velocity in Equation 8.26, we get

v =
dr
dt

=
dr
dt

er + r
der
dt

(8.29)

x
r

y

O

P

z

FIGURE 8.5
Position vector.

x
r

y

O

PT

v

z

FIGURE 8.6
Trajectory curve.
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Since er is a unit vector (its magnitude is a constant = 1), the only thing that changes with
time is its direction.
This introduces the concept of curvilinear motion with radial coordinates (r, q). The

direction is defined by the angle q. For a small change in the angle q, we can write

der
dt

= lim
Dt!0

Der
Dt

(8.30)

However, we can observe that for small angles

Der = erj jsin Dqð Þ = 1ð Þsin Dqð Þ ≈ Dq (8.31)

We also see from Figure 8.9 that Δer acts in the eq direction; thus,

Der ≈ Dqeq (8.32)

Then, returning to Equation 8.30 we can write

der
dt

= eq limDt!0

Dq
Dt

=
dq
dt

eq (8.33)

Now, we can insert Equation 8.33 into Equation 8.29 to get the desired relation for the
velocity:

x

a

y

O

v

z

FIGURE 8.7
Hodograph.

er

r

eθ

θ

O

FIGURE 8.8
Differentiation of a vector through use of tangential and radial unit vectors.
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v =
dr
dt

=
dr
dt

er + r
dq
dt

eq (8.34)

The first term on the right-hand side of Equation 8.34 is the radial velocity, and the second
term is the tangential velocity; these are sometimes denoted as vr and vq, respectively. The
magnitude of the velocity is given by

v v v
r
t

r
tr= = + = ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟v 2 2

2 2

θ
θd

d
d
d

(8.35)

To obtain the acceleration in curvilinear coordinates, we need to take the time derivative
of Equation 8.34 as follows:

a
v

e e e
e

= = +⎛
⎝
⎜

⎞
⎠
⎟ = + +

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
dt t

r
t

r
t

r

t

r
t t

r
t tr r

rθ θ
θ

2

2
ee e

e
θ θ

θθ θ
+ +r

t
r

t t
d
d

d
d

d
d2

2
(8.36)

We have already solved for the derivative of er with respect to time; now, in a similar
manner, we will find the derivative of the tangential component. Again, since eq is a unit
vector, the only thing that changes with time is its direction. This direction is again defined
by the angle q, so for a small change in the angle q, we can write

deq
dt

= lim
Dt!0

Deq
Dt

(8.37)

But we see again that for small angles

Deq = eqj jsin Dqð Þ = 1ð Þsin Dqð Þ ≈ Dq (8.38)

which acts in the negative er direction as depicted in Figure 8.10. If

Deq ≈ −Dqer (8.39)

er

Δer

eθ

Δθ

er+ Δer

FIGURE 8.9
Rotation of the radial unit vector.
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then we can write

deq
dt

= −er limDt!0

Dq
Dt

= −
dq
dt

er (8.40)

Insertion of Equations 8.33 and 8.40 into Equation 8.36 yields

a e e e e e= + + + − ⎛
⎝
⎜

⎞
⎠
⎟

d
d

d
d

d
d

d
d

d
d

d
d

d
d

2r

t

r
t t

r
t t

r
t

r
tr r2

2

2

2θ θ θ θ
θ θ θ

(8.41)

Rearranging and combining like terms gives us

a e e= − ⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ + +

⎛

⎝
⎜

⎞

⎠
⎟

d
d

d
d

d
d

d
d

d
d

2 2

2

r

t
r

t
r

t

r
t tr2

2

2
θ θ θ

θ (8.42)

Each of these terms has a specific name and meaning in the dynamics of a body:

d2r
dt2

= radial acceleration

r
t

d
d

centripetal acceleration
θ⎛

⎝
⎜

⎞
⎠
⎟ =

2

d2q
dt2

= angular acceleration

2
dr
dt

dq
dt

= Coriolis acceleration

To move on in our study, we need to examine the planar kinematics of a rigid body. First,
we will examine a pure translation where we have a body-fixed coordinate system moving
relative to our inertial coordinate system. Here we note from Figure 8.11 that by vector
addition, we obtain

rB = rA + rB=A (8.43)

er
eθ

Δeθ

eθ + Δeθ

Δθ

FIGURE 8.10
Rotation of the tangential unit vector.

228 Ballistics



To determine the velocity of point B, which is under a pure translation, we have to dif-
ferentiate Equation 8.43 to get

vB =
drB
dt

=
drA
dt

+
drB=A
dt

(8.44)

We know, however, that since this is a pure translation (no rotation), drB/A/dt = 0 and
drA/dt = vA. Thus, for a pure translation,

vB = vA (8.45)

If we differentiate Equation 8.45, we get the acceleration of a point during a pure trans-
lation as

aB =
dvB
dt

=
dvA
dt

= aA (8.46)

We will now examine the rotation of a body fixed in space. Let us define the angular
velocity w as the time rate of change of angular position q; thus,

w =
dq
dt

(8.47)

Let us further define the angular acceleration a as the time rate of change of angular
velocity, or

a =
dw
dt

=
d2q
dt2

(8.48)

The angular velocity w and the angular acceleration a are depicted in Figure 8.12. We will
now look at the rotation in terms of the vector kinematic equations for point P. We first
examine the velocity whose direction we specify by the right-hand rule. Then, let us define
the position of point P by the position vector r as shown in Figure 8.13. Now we can
write the velocity v in terms of radial and circumferential components as we discussed
earlier.

O 

rA

rB rB/A

x 

y

x́

ý

A

B

Inertial coordinate system 
(fixed in space) 

Body-fixed coordinate
system (translates with the

body and the body
does not rotate)

rA = Position vector of point A 
rB = Position vector of point B 

rB/A = Relative position vector of
 point B with respect to point A 

vA = Velocity of point A
vB = Velocity of point B 

vB/A = Relative velocity of point B
 with respect to point A 

aA = Acceleration of point A
aB = Acceleration of point B

aB/A = Acceleration of point B with
  respect to point A 

FIGURE 8.11
Definition of vectors associated with rigid body translational motion.
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Thus, from Equation 8.34 we have

v =
dr
dt

=
dr
dt

er + r
dq
dt

eq (8.49)

But, since this is a rigid body, dr/dt = 0, so we get

v = r
dq
dt

eq = rweq (8.50)

If we were instead to draw the position vector from a more general location such as point
E in Figure 8.13, we see that

r = rP sin f (8.51)

If we substitute Equation 8.51 into Equation 8.50, we see a form we have derived earlier:

v = rPw sin feq (8.52)

This can be written in vector form if we invoke Equation 8.12. Thus, we have

v = w � rP (8.53)

We nowwill examine the acceleration whose direction is once more specified by the right-
hand rule. We shall define the position of point P by the position vector r as shown in

r P

O

r
P

O

dθ

α, ω, dθ

dθ

αω

θ
θ

FIGURE 8.12
Example of rigid body rotation. On the left is the body rotating in space. On the right is a view of this same body
looking down the axis toward O.

r
P

O v
r

P

O

E rP

ω

ω

FIGURE 8.13
Rigid body rotation. On the left is the body rotating at angular velocity w. On the right is a view of this same body
looking down the axis toward O.
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Figure 8.14. We can then write the acceleration a in terms of radial and circumferential
components as discussed earlier.
We need to recall Equation 8.42 and note that dr/dt = 0. This leaves us with

a e e= − ⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ +

⎛

⎝
⎜

⎞

⎠
⎟r

t
r

t
r

d
d

d
d

θ θ
θ

2 2

2
(8.54)

Here we need to note that the first term is negative because it acts in the negative radial
direction. Now, from our previous definitions, we can rewrite Equation 8.54 as

a = −rw2	 

er + rað Þeq (8.55)

We can define the normal and tangential components of acceleration as

an = −rw2er and at = raeq (8.56)

where an is the normal (centrifugal) acceleration and at is the tangential acceleration.
We can differentiate Equation 8.53 to obtain the more general result

a =
dv
dt

=
dw
dt

� rP + w
drP
dt

(8.57)

If we insert Equations 8.48 and 8.53 into Equation 8.57, we get the general vector form for
the acceleration of a rigid body rotating in an inertial coordinate system:

a = a � rP + w � w � rPð Þ (8.58)

To move closer toward a more general treatment, we shall now derive the kinematic
equations for the plane motion of a rigid body by using a translating coordinate system (the
body is free to rotate). We can break down any planar motion of the rigid body into a
translation and a rotation about some point. Let us choose point A in Figure 8.15 to be a
location about which the body rotates. Equation 8.43 is still valid, but dr/dt no longer
equals zero.
Thus, from Equation 8.44, we have

vB =
drB
dt

=
drA
dt

+
drB=A
dt

(8.59)

r
O

E P

r

P

O

rP

atan

an at

ω, α

ω, α

FIGURE 8.14
Rigid body rotation with acceleration. On the left is the body rotating at angular velocity w and accelerating with
angular acceleration a. On the right is a view of this same body looking down the axis toward O.
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Not only is drB/A/dt ≠ 0 but also, since we chose point A as one about which rotation will
take place, drA/dt is a pure translation and drB/A/dt is a pure rotation about point A. Thus,
we can write Equation 8.59 in terms of the velocities as

vB = vA + vB=A (8.60)

We saw earlier that for a pure rotation, we can write the velocity in the form of Equation
8.53. Thus, we have

vB=A = w � rB=A (8.61)

If we substitute Equation 8.61 into Equation 8.60, we obtain the vector equation for the
planar motion of a rigid body in which our coordinate system translates with a point in the
body but does not rotate with the body:

vB = vA + w � rB=A (8.62)

To obtain the acceleration of point B, we need to differentiate Equation 8.60; thus,

aB =
dvB
dt

=
dvA
dt

+
dvB=A
dt

(8.63)

Let us examine this equation term by term. The first term is straightforward, showing that
the acceleration of the translation is simply the linear acceleration of our chosen reference
point:

dvA
dt

= aA (8.64)

The second term is differentiated as follows:

dvB=A
dt

=
d
dt

w � rB=A
	 


=
dw
dt

� rB=A + w � drB=A
dt

(8.65)

We again need to call upon Equations 8.48 and 8.53 to get Equation 8.65 into a more
general form:

dvB=A
dt

= a � rB=A + w � w � rB=A
	 


(8.66)

O

rA

rB 
rB/A
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x́

ý

A

B

Translating coordinate
system (translates

with the body)

rA = Position vector of point A
rB = Position vector of point B

rB/A = Relative position vector of
point B with respect to point A

vA = Velocity of point A
vB = Velocity of point B

vB/A = Relative velocity of point B
with respect to point A

aA = Acceleration of point A
aB = Acceleration of point B

aB/A = Acceleration of point B withInertial coordinate system
(fixed in space) respect to point A

FIGURE 8.15
Definition of vectors associated with rigid body translational and rotational motions.
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Inserting Equations 8.64 and 8.66 into Equation 8.63 yields the kinematic equation for the
acceleration of a rigid body in a coordinate system that translates with the body. The
coordinate system in this case moves with the body but does not rotate, allowing the body
to rotate relative to the moving coordinate system:

aB = aA + a � rB=A + w � w � rB=A
	 


(8.67)

We shall now derive the kinematic equations for plane motion of a rigid body by using a
translating and rotating coordinate system (the body is capable of movement in both
coordinate systems). We choose point A in Figure 8.16 to be a location from which we want
to measure the motion of the body. At the instant considered, point A has a position rA, a
velocity vA, and an acceleration aA, while the x–y-axes (and the body) are rotating with
angular velocity w and accelerating with angular acceleration a.
Equation 8.43 is still valid for determination of the position vectors. For the velocity of

point B, we shall use the form

vB = vA +
drB=A
dt

(8.68)

If we examine our earlier derivations under the curvilinear motion and replace er with i
and eq with j (i and j represent the unit vectors in our x–y coordinate system), we obtain the
following relations:

di
dt

=
dq
dt

j = wj (8.69)

dj
dt

=
dq
dt

−ið Þ = −wi (8.70)

Using the definition of the cross product and noting they are orthogonal, Equations 8.69
and 8.70 can be rewritten as

di
dt

= w � i (8.71)

dj
dt

= w � j (8.72)
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rB /A
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x́

ý
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Coordinate system
(translates and rotates

independent of the body)

Inertial coordinate system
(fixed in space)

FIGURE 8.16
Definition of vectors associated with rigid body translational and rotational motions including a rotating local
coordinate system.
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If we look at the body and our moving coordinate system as shown in Figure 8.17, we see
that if the body translates and rotates relative to our x–y-axes, we can write, in light of
Equation 8.62,

drB=A
dt

= vB=A
	 


xyz + w � rB=A (8.73)

Substituting this into Equation 8.68 yields the general relation for the velocity of a point in
a rigid body as seen from an arbitrary coordinate system:

vB = vA + vB=A
	 


xyz + w � rB=A (8.74)

To obtain the acceleration of our point B, we need to differentiate Equation 8.74 with
respect to time; thus,

aB =
dvA
dt

+
d(vB=A)xyz

dt
+
dw
dt

� rB=A + w � drB=A
dt

(8.75)

Let us again move term by term through Equation 8.75. The first term is

dvA
dt

= aA (8.76)

Since our point A does not rotate, the acceleration of its translation is simply this linear
acceleration.
The second term is differentiated by first breaking up vB/A into its components along the

x and y-axes of our moving frame. Since we are looking only at motion on the x–y plane, the
z component is nonexistent:

vB=A
	 


xyz = vB=A
	 


xi + vB=A
	 


yj (8.77)

This allows us to write the second term as

d vB=A
	 


xyz

dt
=
d vB=A
	 


x

dt
i +

d vB=A
	 


y

dt
j + vB=A
	 


x
di
dt

+ vB=A
	 


y
dj
dt

(8.78)

The first pair of terms in Equation 8.78 is made up of the acceleration components of point
B relative to point A as seen by an observer moving with the coordinate system at point A.

rB/A x

y

A

B

ω

FIGURE 8.17
Body rotating in a moving coordinate system.

234 Ballistics



The second pair of terms of Equation 8.78 can be rewritten as the cross product of the
angular velocity of the x–y coordinate system and the velocity vector of point B relative to
point A. Thus, we can write

d vB=A
	 


xyz

dt
= aB=A
	 


xyz + w � vB=A
	 


xyz (8.79)

Returning now to Equation 8.75, in the third term, we simply rewrite the term dw/dt as a.
Finally, for the last term of Equation 8.75, we use Equation 8.73 to obtain

aB = aA + aB=A
	 


xyz + w � vB=A
	 


xyz + a � rB=A + w � vB=A
	 


xyz + w � w � rB=A
	 


(8.80)

After a slight rearrangement and combination of like terms, we have the general kine-
matic equation for acceleration of point B:

aB = aA + a � rB=A + w � w � rB=A
	 


+ 2w � vB=A
	 


xyz + aB=A
	 


xyz (8.81)

It is important to review each of the terms in Equations 8.74 and 8.81. First, let us review
the generalized velocity and acceleration equations we derived:

vB = vA + vB=A
	 


xyz + w � rB=A (8.74)

aB = aA + a � rB=A + w � w � rB=A
	 


+ 2w � vB=A
	 


xyz + aB=A
	 


xyz (8.81)

The terms in these equations have meanings as listed in Table 8.1.
As one can imagine the addition of the third dimension in these equations adds signifi-

cant complexity to the expressions although the basic principles remain the same. The
interested reader is referred to the book by Greenwood [1] or any similar text on dynamics
to familiarize themselves with the three-dimensional uses of these equations.

Problem 1
A 155 mm projectile is in flight at its maximum ordinate. At this instant in time, the nose of
the projectile is pointing along (and spinning about) the unit vector:

x = 0:998e1 + 0:030e2 + 0:056e3ð Þ

TABLE 8.1

Vector Terms Used in Equations 8.74 and 8.81

Variable Definition

rB/A Relative position vector of point B with respect to point A
vA Velocity of point A in the inertial coordinate system

vB Velocity of point B in the inertial coordinate system

(vB/A)xyz Relative velocity of point B with respect to point A in the x–y–z coordinate system

aA Acceleration of point A in the inertial coordinate system
aB Acceleration of point B in the inertial coordinate system

(aB/A)xyz Acceleration of point B with respect to point A in the x–y–z coordinate system

w Angular velocity of the x–y–z coordinate system measured from the inertial coordinate system
a Angular acceleration of the x–y–z coordinate system measured from the inertial coordinate system
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The projectile velocity vector is

V = 1199e1 + 0e2 + 49e3ð Þ ft
s

� �

In both of these cases, e1, e2, and e3 are unit vectors on the x, y, and z planes, respectively.
Also, at this location, the air density, spin rate, and projectile mass are as follows:

r = 0:052
lbm
ft3

� �
, p = w = 150

rev
s

h i
, and m = 100 lbm½ �

The projectile characteristics are assumed to be as follows:

CD = 0:29

CMa
= 3:0  CMq

+ CM _a

� �
= −10:2

CLa
= 2:12  CNq

+ CN _a

� �
= 0:002

CNpa
= −0:010 = −10:2 CMpa

= 0:51

Clp = −0:015

Please answer the following questions:

1. Draw the situation.
2. Determine the drag force vector.

Answer: FD = (−68.39e1 − 2.80e3) [lbf]
3. Determine the lift force vector.

Answer: FL = (−0.310e1 + 14.980e2 + 7.600e3) [lbf]
4. Determine the overturning moment vector.

Answer: MM = (−0.441e1 − 5.468e2 + 10.783e3) [ft-lbf]
5. Determine the magnus moment vector.

Answer:MMpa
=(0.043e1−0.732e2−0.369e3) [ft-lbf]
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9
Trajectories

Now that the basics of the terminology and the dynamic equations have been presented, we
shall begin to look at their uses in the form of prediction of trajectories. The aeroballistician
is usually faced with one of two problems: “If I want to hit a target at position x, to what
elevation (and perhaps with how much propelling charge) do I have to elevate the
weapon?” or “Myweapon is elevated to elevation x and I expect muzzle velocity y—where
is the projectile going to end up?”
To approach this in a logical and easily understandable fashion, we shall begin with a

great many simplifying assumptions, relieving these as we progress. Each section builds
upon the previous one so that we recommend even seasoned veterans progress in
numerical order.
Initially, we will look only at the effect that gravity imposes on the projectile, a vacuum

trajectory, so that even the air is removed from our area of concern, thus neutralizing the
fluid mechanics for a while. As we progress, we shall add in the atmosphere but neglect
dynamics, atmospheric perturbations, and earth rotation. One by one, we shall continually
step up the complexity until, finally, we shall introduce the full six degree-of-freedom
(6 DOF) equations.
One might initially think that these simplified models have no practical use, but are

merely educational stepping-stones. Nothing could be further from the truth. In many
instances, some of the complications only slightly affect the solution, and a ballistician is
well placed to assume them away. Some of these common situations will be pointed out as
they arise.

9.1 Vacuum Trajectory

In this section, we will make two broad assumptions: first, that the projectile mass is con-
centrated at a point (which allows us to neglect body dynamics affected by mass distri-
bution) and, second, that the only force acting on the projectile is that due to the acceleration
of gravity (this allows us to neglect the rather complicated fluid dynamic effects when a
solid body moves through a fluid). With these assumptions, the two governing differential
equations of motion are

m€x = 0 (9.1)

ÿ = −g (9.2)
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The solutions to these equations, found by integrating with respect to time, are

x = V0t cos f0 (9.3)

y = V0t sin f0 −
1
2
gt2 (9.4)

A sketch of this simplified trajectory is seen in Figure 9.1. Notice that unlike the gener-
alized trajectory shown previously in Figure 7.1, the terminal point is on the line y = 0, and
the entire trajectory is on the x–y plane.
But from Equations 9.3 and 9.4, we can write

y
x
= tan f0 −

gt
2V0 cos f0

(9.5)

By solving Equation 9.3 for time t, we get

t =
x

V0 cos f0
(9.6)

We can then write Equation 9.5 putting y in terms of x only. Therefore,

y = x tan f0 −
gx2

2V2
0cos

2f0
(9.7)

This equation is in the form of a parabola in x- and y-coordinates; the path the projectile
will follow in a vacuum. Solving for the range x when y = 0 gives

x 2V2
0 cos f0 sin f0 − gx

	 

= 0 (9.8)

This says that either x = 0 (the trivial solution) or

x =
2V2

0

g
cos f0 sin f0 =

V2
0

g
sin 2f0 (9.9)

x

y V0 = 800 m/s
V

mg

R = 20,000 m

0 = ?

FIGURE 9.1
Vacuum trajectory.
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Because the trajectory is a parabola, the maximum range is attained at

f0 =
π

4
(9.10)

since

sin
π

2
= 1 (9.11)

When we substitute this into Equation 9.9, the maximum range can be found to be

xmax =
V2

0

g
(9.12)

The maximum ordinate of the trajectory is at half the maximum range and is

ymax =
V2

0

4g
(9.13)

If we differentiate Equation 9.9 with respect to f0 and set this equal to 0, we can prove
Equation 9.10 as shown next:

dxmax

df0
=
2V2

0

g
cos 2f0 = 0 (9.14)

This gives the launch angle for maximum range in a vacuum as π/4.
Except for the maximum range, there are two quadrant elevations (QEs) that will allow a

projectile to impact at a given distance. We will designate the second QE with a caret “^.”
Its existence is due to the identity

sin f = sin 180° − fð Þ (9.15)

Then,

sin 2f0 = sin 2 90° − f0ð Þ (9.16)

Thus,

ˆ sinφ φ0 0
1

0
290 90

1
2

= °− = ° − ⎛
⎝
⎜

⎞
⎠
⎟

− gR
V

(9.17)

where x has been replaced by the range R. The maximum ordinate is achieved when the
y-component of the velocity is 0. By differentiating Equation 9.4 with respect to time and
setting the result equal to 0, we get

V0 sin f0 − gts = 0 (9.18)

or

ts =
V0 sin f

g
(9.19)
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Substituting this into Equation 9.4 gives

y V
V

g
g

V
g

V
g

s =
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟ =0 0

0 0 0 0
2

0
2 2

01
2

1
2

sin
sin sin sinφ φ φ φ

(9.20)

If we note that at impact, the y-coordinate is zero, we can find the time of flight (TOF) to
impact with Equation 9.4:

0 = V0tI sin f0 −
1
2
gt2I (9.21)

or

tI =
2V0 sin f0

g
(9.22)

This is double the time to the maximum ordinate and the trajectory in a vacuum is
symmetrical about this ordinate. Further evidence of the symmetry may be seen by
examining the angle of fall. If we differentiate Equation 9.7 with respect to x and substitute
the value of x we found at impact in Equation 9.9 in the differentiated result, we see that

dy
dx

����
I
= tan f0 −

sin 2f0
cos2f0

(9.23)

But

sin 2f0 = 2 sin f0 cos f0 (9.24)

Therefore,

tan fI = tan f0 − 2
sin f0
cos f0

= − tan f0 (9.25)

Thus, in a vacuum trajectory, the projectile impacts at the mirror image of the angle it had
when it was launched.
For any given launch velocity V0, the maximum range in a vacuum is achieved with an

initial launch angle of 45°. To reach any range shorter than the maximum, there are two
launch elevations, one greater than 45°, and the other less, a high angle and a low angle of
fire. The trajectory envelope is a curve that bounds all possible trajectories that attempt to
reach all ranges from zero to the maximum range possible for the given launch velocity [1].
We shall now mathematically describe this curve.
We know from Equation 9.7 that

y = x tan f0 −
gx2

2V2
0cos

2f0
(9.7)

This can also be written as

y = x tan f0 −
gx2

2V2
0
sec2f0 (9.26)

If we make use of the trigonometric identity sec2 f = 1 + tan2 f, we can, with substitution
and manipulation, write
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tan2f0 −
2V2

0

gx
tan f0 +

2V2
0

gx2
y + 1 = 0 (9.27)

Equation 9.27 is quadratic in f0 and, as such, when solved, yields two roots that corre-
spond to the two elevations that achieve the same range as discussed earlier.
The exceptions to this are when the range is zero or the range is maximum. These con-

ditions yield a repeated root. The other instances a repeated root occurs are whenever the
trajectory touches the trajectory envelope. This occurs only once at any given elevation.
If the roots of this equation are complex conjugates, the range in question cannot be
achieved with the given muzzle velocity. We can solve for all the double roots to obtain the
equation of the trajectory envelope.
We proceed by first completing the square in Equation 9.27 noting that

tan tan tan2
0

0
2

0
0
2 2

0
0
2 2

2
φ φ φ− +

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟

V
gx

V
gx

V
gx

(9.28)

By adding and subtracting a term, (V2
0=gx)

2, to Equation 9.27, we complete the square of a
part of the equation and can operate on the remainder of it:

tan tan2
0

0
2

0
0
2 2

0
2 2

0
2

2

2 2
1 0φ φ− +

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟ + + =

V
gx

V
gx

V
gx

V
gx

y (9.29)

Breaking apart Equation 9.29 into two terms and setting each equal to zero gives us from
Equation 9.28

tan tan tan2
0

0
2

0
0
2 2

0
0
2 2

2
0φ φ φ− +

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ =

V
gx

V
gx

V
gx

(9.30)

and

2
1 00

2

2
0
2 2

V
gx

y
V
gx

−
⎛

⎝
⎜

⎞

⎠
⎟ + = (9.31)

The double root in Equation 9.30 occurs when

tan f0 =
V2

0

gxe
(9.32)

Where xe = x on the envelope curve. We can also pursue the equation for the envelope curve
more directly:

2
1 00

2

2
0
2 2

V
gx

y
V
gxe

e
e

−
⎛

⎝
⎜

⎞

⎠
⎟ + = (9.33)

Where ye is the y-coordinate on the envelope curve. Equation 9.33 can be further rearranged
to yield the final equation of the trajectory envelope:

ye =
1
2
V2

0

g
−

gx2e
2V2

0
(9.34)

A typical trajectory envelope is illustrated in Figure 9.2.
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To move to a different subject in the study of the vacuum trajectory, when the trajectory
of the projectile is relatively flat, certain simplifying assumptions may be made, which
allow the equations of motion to be solved with greater ease. In particular, if we rewrite
Equation 9.7 as

y = x tan f0 −
gx2

2V2
0
sec2f0 (9.35)

We now take its derivative with respect to f0, and we get

d
d

y
x

gx
V

x
gx
Vφ

φ φ φ φ φ
0

2
0

2

0
2 0

2
0

0
2 0

2
01= − = −⎛

⎝
⎜

⎞

⎠
⎟sec tan sec tan sec (9.36)

Now because

sec2f0 = 1 + tan2f0

and if tan2 f0 ≪ 1, then sec2 f0 ≈ 1. This occurs when f0 < 5°. This is the requirement for
what is commonly called the flat fire approximation to be valid. We can then translate
Equations 9.35 and 9.36 into

y ≈ x tan f0 −
gx2

2V2
0

(9.37)

and

dy
df0

≈ x 1 −
gx
V2

0
tan f0

� �
(9.38)
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FIGURE 9.2
Trajectory envelope.
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Equation 9.38 can be even further simplified for short ranges if −
gx
V2

0
tan f0 ≪ 1, then

dy
df0

≈ x (9.39)

This is sometimes known as the rigid trajectory because the trajectory appears to rotate
rigidly with the elevation angle. The vertical error that arises from the use of the flat fire
approximation in a vacuum trajectory is

ey =
gx2

2V2
0
tan2f0 (9.40)

Which, as is readily seen, states that as the range or launch angle increases, the error
increases. Flat fire is characteristic of the engagements experienced with high-powered,
high-velocity tank cannons where initial launch angles for direct-fire ranges of several
kilometers are less than 5°. Elevation changes to correct fire are measured in fractions of a
degree (known as mils) as well. One mil is equal to 1/6400 of a circle.

Problem 1
A target is located at 20 km. The projectile muzzle velocity is 800 m/s. Assuming a vacuum
trajectory, at what QE should one set the weapon to hit the target?
Answer: f0 = 158.7 [mil]

Problem 2
The enemy in the aforementioned problem is very smart and has located his unit on the
reverse slope of a hill that is 3,000 m in height with its peak located 18,000 m from your
firing position. Assuming that the target is at the same level as you (just behind the hill),
determine a firing solution (QE, if there is one) to hit him assuming a vacuum trajectory.
Answer: It can be hit. You find the initial QE.

Problem 3
The US pattern 1917 (M1917) Enfield rifle was themost numerous rifle used by our troops in
the First World War. It was an easier rifle to manufacture than the M1903 Springfield (even
though the Springfield was officially the US Army’s service rifle), and the troops liked its
accuracy better. In fact, the famous Sergeant Alvin York was actually armed (there is still
argument over this today) with an Enfield, not a Springfield as is commonly believed, when
he single-handedly captured over 100 German soldiers in the Argonne Forest in 1918. The
pattern 1917 used the standard M1 30-’06 cartridge in US service. The bullet had a mass of
174 grains (a grain is a common unit of measure in small arms ammunition and is defined as
1/7000 lbm) and a diameter of 0.308 in. This cartridge–rifle combination has a muzzle
velocity of 2800 ft/s. Assuming a vacuum trajectory,

1. Determine the angle in degrees to set the sights on the rifle (i.e., the QE) if the target
is level with the firer and at a range of 200 yards.
Answer: f0 = 0.0705°
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2. If the target is at the same horizontal range but 20 yards higher, and the firer does
not adjust the sights, how much higher or lower will the bullet strike?

Answer: ymiss = −0.0125 [in.]

Problem 4
You are asked to create a rough safety fan for a maximum range test at Yuma Proving
Ground. The test consists of a US M198 155 mm howitzer firing an M549 projectile at
maximum charge with rocket off. The projectile weighs 96 lbm. The muzzle velocity is
880 m/s.

1. Using a vacuum trajectory, calculate and plot the trajectory envelope for the test.

Answer: R = 78940 [m]

2. Determine the longest TOF of the projectile.

Answer: tI = 179.4 [s]

Problem 5
It is desired to use a 105 mm battery to set up a line of illumination candles over an enemy
defensive position. The enemy is positioned in depth of about 2 km. Assuming that four
weapons are available and the candle array is to be placed such that the closest candle is
9 km away from the gun position (assume all guns occupy the same point in space) and
there is one candle every 500 m (i.e., four candles total at 9.0, 9.5, 10.0, and 10.5 km),
determine the QE for each weapon, the time set on each fuze, and the time and order of fire
of each gun such that all the expulsion events simultaneously occur at an altitude of 750 m
over the heads of the enemy. Assume a muzzle velocity of 600 m/s and a projectile mass of
30 lbm. Use a vacuum trajectory for the purposes of this problem. (Note that this would
never be acceptable in actual practice.)
Could the same result be achieved with less than four guns? Showwhy or why not with a

calculation.

Problem 6
The fire control problem: During the age of battleships, it was essential that a fire control
computer be installed on the ships. From 1915 onwards, these were mechanical devices by
which one could put in the course and speed of their own ship as well as the estimated
course and speed of the target ship. These data and the expected muzzle velocity of the
projectile (as well as TOF) allowed the guns to be aimed where the enemy ship would be
when the shells landed. To get a feel for the magnitude of the problem, we are going to
examine it in a greatly simplified form assuming a vacuum trajectory. Given the data that
follow, and assuming a vacuum trajectory, provide a firing angle off the bow, elevation, and
timing to fire each of four guns so that a pattern is created to hit if the target veers 10° to the
port or starboard of its present course. A hit can be assumed to occur if the shell lands on the
point where the enemy ship will actually be or if it lands in its “danger space.” Because of
the trajectory of the shells, a hit will occur if the trajectory passes over the target and lands
within 100 yards behind it—the ship creates a “shadow” or danger space. An example
pattern might look like the one drawn in the figure, but feel free to create your own

244 Ballistics



if it meets the aforementioned criteria. The shells should all be fired at the same time.
Assume that your speed estimate of the target is exact. Also assume the four guns are
mounted in two pairs so that you have only two azimuths to work, with but the elevations
can be independently varied. The target is about 400 ft long, so some error in azimuth is
acceptable—but the error should be quantified. Plot the impact points and target position at
the time of impact. Remember that your ship is moving!
The weapons are British 12 in. mark IX naval guns with a muzzle velocity of 2800 ft/s and

a maximum elevation of 20°.

12,000 yards

4,000 yards

20 knots

15 knots

25°

9.2 Simple Air Trajectory (Flat Fire)

As we progress in our study of exterior ballistics, we now introduce the concept of drag by
substituting air for the medium through which our point mass projectile flies. We do this so
that projectile dynamics do not enter yet into the equations of motion. We are essentially
still dealing with a spherical, nonrotating cannonball. Furthermore, to simplify the math-
ematics, we will insist on a flat fire trajectory, with launch angles below about 6°. A flat fire
trajectory is depicted in Figure 9.3. The methods and equations we will develop were used
in the 1950s for direct-fire calculations over relatively short ranges [1].

y

V0

V
mg

j

V0

Vx0

Vy0

0

0

i x

FIGURE 9.3
Flat fire trajectory.
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We begin with Newton’s second law in an inertial reference frame and use vector rep-
resentations (boldface) where appropriate:

F = ma (9.41)

m
dV
dt

= SF +mg (9.42)

Where m is the projectile mass; V is the projectile velocity vector; and t is the time;

a =
dv
dt

= vector acceleration; ∑F is the vector sum of all aerodynamic forces; and g is the

vector acceleration due to gravity.
The inertial reference frame allows us to neglect the Coriolis acceleration, which is the

result of the earth’s rotation. Since there is no angle of yaw, the lift and drag forces due to
yaw and the Magnus force due to spin are also negligibly small. These will be discussed in
detail later. Thus, only the projectile drag forces (base, wave, and skin friction) are working
to slow the projectile down, and gravity is pulling it toward the earth. The aerodynamic
drag force acting on the projectile is then given by

FD = −
1
2
rSCDVV =

1
2
rV2SCD (9.43)

Where CD is the drag coefficient, introduced earlier. Another coefficient in common use in
ballistics is the ballistic coefficient C, which is defined as

C =
m
d2

(9.44)

Where m and d are the mass and diameter of the projectile, respectively. As a matter of
convenience, we also define

Ĉ∗
D =

rSCD

2m
=
rπ
8

CD

C
(9.45)

This allows us to save a little energy in typing since this combination of parameters
appears so often. It is known as a starred coefficient [2]. Equation 9.45 stems from the fact
that S, the frontal area of the projectile, is

S =
πd2

4
(9.46)

We can combine Equations 9.42 and 9.45 and divide by the mass to get an expression for
the time rate of change of velocity (acceleration)

dV
dt

= −
1
2m

rSCDVV + g (9.47)

The negative sign was placed in front of the force (Equation 9.43) because the drag always
opposes the velocity vector (otherwise, it is called thrust). We can separate the velocity,
acceleration, and gravitational vectors into components along the coordinate axes so that
they will be convenient to work with:

dV
dt

= _Vxi + _Vyj + _Vzk + Vx
_i + Vy

_j + Vz
_k

� �
(9.48)
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and

g = −gj (9.49)

But because we are in an inertial frame, _i = _j = _k = 0, and therefore,

dV
dt

= _Vxi + _Vyj + _Vzk (9.50)

If we break Equation 9.47 into its components, we get three coupled, ordinary, nonlinear
differential equations

_Vx = −Ĉ�
DVVx (9.51)

_Vy = −Ĉ�
DVVy − g (9.52)

_Vz = −Ĉ�
DVVz (9.53)

The equation that couples Equations 9.51 through 9.53 is

V =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

x + V2
y + V2

z

q
(9.54)

We can linearize these equations by making a few assumptions. First, let us assume
that there is no crosswind, so Vz = 0, and if we further constrain the ratio of the
vertical velocity to the horizontal velocity to |Vy/Vx| = tan f < 0.1, then V and Vx

are within 0.5% of each other, and we have constrained the launch and fall angles
to be less than 5.7°, the angles introduced in the preceding section for the flat fire
approximation.
So with the assumptions that V = Vx and Vz = 0, we can develop Equations 9.51 through

9.53 into

_Vx = −Ĉ�
DV

2
x (9.55)

_Vy = −Ĉ�
DVxVy − g (9.56)

_Vz = 0 (9.57)

These differential equations use time as the independent variable. It is often convenient to
use distance as the independent variable. By making a common transformation of variables
to allow distance along the trajectory to be the independent variable instead of time, we can
improve our ability to work with these expressions. Performing the transformation results
in equations of the form

VxV
0
x = −Ĉ�

DV
2
x (9.58)

VxV
0
y = −Ĉ∗

DVxVy − g (9.59)

where the prime denotes differentiation with respect to distance.
By dividing both equations by Vx, we obtain Equations 9.60 and 9.61 that use the

downrange distance x as the independent variable. For these equations, an analytic solution
does exist:

V0
x = −Ĉ�

DVx (9.60)
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V0
y = −Ĉ�

DVy −
g
Vx

(9.61)

Equation 9.60 can be integrated by separation of variables as

V V C xx x

x

= −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∗ ∫0 1

0

exp ˆ
D d (9.62)

In this equation and future equations, we use a variable xi or ti as a dummy variable of
integration. Equation 9.61 can also be solved by quadrature methods since it is of the form

dVy

dx
+ Ĉ�

DVy = −
g
Vx

(9.63)

Equation 9.61 can be solved for Vy for initial conditions at x = 0, t = 0, and Vy=Vy0 as
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(9.64)

If we take the ratio of the x- and y-velocity components, we can obtain the relation for the
angle the velocity vector makes with the horizontal. This can be shown to be

tan tan expφ φ= − ⎛
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(9.65)

Where f0 is the initial launch angle.
To complete our study of the flat fire trajectory, we need to find the elements of it, i.e., the

x and y values along it, from launch to termination. To do this, we must integrate over time
the velocities we have found in Equations 9.62 and 9.64, which we had earlier transformed
into distance variables. We know by definition

y =
ðt
0

Vy dt and x =
ðt
0

Vx dt (9.66)

By substituting Equations 9.62 and 9.64 into each of the equations in Equation 9.66 in turn
and performing the integrations, we can show that with the initial conditions of x = 0, t = 0,
and y = y0,
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Now we can find t from Vx = dx/dt. By separating the variables and substituting
Equation 9.62 for Vx, we get

t
V

C x x
x

xx
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⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∫∫1

0

2

1

00

2exp ˆ
D* d d (9.68)
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Through a somewhat tedious set of algebraic substitutions and manipulations that are
contained in the book by McCoy [1], we can arrive at our desired equation in x and y; the
launch angle f0; the dummy range variables x1, x2, and x3; the initial launch velocity Vx0; the
initial ordinate y0; and the drag coefficient Ĉ�

D:
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The disadvantage of these equations is that the variation of drag coefficient has to be
simple to evaluate the integrals. Since the drag coefficient does not vary in a simple manner
with Mach number, this makes the analytic solutions inaccurate and difficult to accomplish.
Figure 9.4 depicts a typical drag curve that varies with Mach number. One can see from this
figure that there is no simple analytic solution to this variation. With computer power
nowadays, we usually solve or approximate the exact solutions numerically, doing the
quadratures by breaking the area under the curve into quadrilaterals and summing the
areas.
To integrate these equations analytically, we will examine three forms of the drag

coefficient:

1. Constant CD that is useful for the subsonic flight regime, M < 1

2. CD inversely proportional to the Mach number that is characteristic of the high-
supersonic flight regime, M ≫ 1

3. CD inversely proportional to the square root of the Mach number that is useful in
the low-supersonic flight regime, M ≥ 1
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FIGURE 9.4
Drag coefficient vs. Mach number for a typical projectile.
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First, we will examine the case of a constant drag coefficient. If we examine Figure 9.4, we
can see that this would be a useful approximation for our projectile behavior if the launch
velocity was, say, between Mach 0.8 and 0. We assume that the drag force varies with the
square of the velocity (the drag coefficient was the drag force divided by the dynamic

pressure
1
2
rV2), and we set the drag coefficient equal to a constant K1. We shall use

terminology consistent with that of McCoy [1] so that

Ĉ�
D =

rS
2m

CD =
rS
2m

K1 = k1 (9.70)

Which we then substitute in Equation 9.62:
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We can find t by substituting Equation 9.70 into Equation 9.68 to give
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or

t =
1

Vx0k1
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Noting that from Equation 9.62,
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and noting that (Vy0/Vx0) = tanf0, we can show through manipulation [1] that
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To find the angle of fall f as a function of range x and the instantaneous velocity at x, Vx,
we solve Equation 9.71 for k1:
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We now substitute Equation 9.76 into Equation 9.73 for t. Taking the result and recall-
ing that tan f = Vy/Vx for any x, we use this new equation for t and transform Equation
9.65 into
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Finally, to find the altitude y at any point along the trajectory as a function of the range and
the velocity at that range, we transform Equation 9.65 with the constant drag coefficient k1,
use the new equation for t that we derived earlier, and after manipulation arrive at
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A constant drag coefficient is useful when analyzing low-subsonic projectiles sincemost of
them have nearly constant drag coefficients. Also, projectiles at hypersonic speeds (usually
described as a Mach number greater than five) can be analyzed with this assumption (look
again at Figure 9.4). Essentially, we are linearizing the problem when we do this.
Our next effort will be to examine a nonconstant drag coefficient, one varying as the

inverse of the Mach number. In this case, we assume that the drag force varies linearly with
the velocity (because the drag coefficient is the drag force divided by the dynamic pressure,
1
2
rV2, and when we divide by the Mach number, we essentially divide by the velocity

times a constant). Now we set the drag coefficient equal to K2/M, then

CD =
K2

M
(9.79)

and

Ĉ�
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rS
2m

CD =
rS
2m

K2

M
(9.80)

Recall that the Mach number is V/a, where a is the speed of sound in air. Then, for our flat
fire approximation, we can define a constant k2 such that

k2 =
rS
2m

K2a (9.81)

Then,
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From Equations 9.55 and 9.56, we see that

_Vx = −k2Vx (9.83)

and

_Vy = −k2Vy − g (9.84)

Also from Equation 9.60, we see that

V0
x = −Ĉ�

DVx (9.85)

Using these three equations and proceeding in the same fashion as we did with the
constant CD, we can derive equations for the x- and y-velocities, the TOF to any range x,
the angle of fall f; and the trajectory ordinate at any range. These equations are (details in
the book by McCoy [1])

Vx = Vx0exp −k2tð Þ  in terms of tð Þ (9.86)
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These relations, for CD proportional to 1/M, are useful in the analysis of high-supersonic
projectiles such as kinetic energy armor penetrators where 2.5 < M < ∼5.
For the case where the drag coefficient varies as the

ffiffiffiffiffi
M

p
, we assume that the drag varies

with velocity to the 3/2 power and we set the drag coefficient equal to K3=
ffiffiffiffiffi
M

p
; then,
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We can define a new constant as
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We can then write (assuming V = Vx)
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Proceeding as we did in the earlier two cases, we can deriveVx,Vy, t, f, and the ordinate y.
The details of the derivations are again available in the book by McCoy [1]:
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These last equations (Equations 9.95 through 9.99) are useful for flight in the low- to
moderate-supersonic regime, 1 < M < 2.5.
In summary, we have derived the equations of motion assuming a flat fire trajectory. We

use them when the angle of departure and angle of fall are both below 5.7°. We have solved
them with three drag assumptions:

1. A constant drag coefficient that is useful in the subsonic and hypersonic regimes
and can be used over short distances in all Mach regimes

2. A drag coefficient inversely proportional to the Mach number that is useful in the
high-supersonic regime

3. A drag coefficient inversely proportional to the square root of the Mach number
that is useful in the low-supersonic flight regime

Problem 7
The French infantry rifle model 1886 called the Lebel was their standard weapon from 1886
into the First World War and even saw limited use in the Second World War. You can see
this 51 in. long monster in any movie involving the French Foreign Legion. It used an 8 mm
cartridge called the balle D with a bullet mass of 198 grains and a diameter of 0.319 in.
This cartridge–rifle combination has a muzzle velocity of 2296 ft/s. Assuming flat fire with
K3 = 0.5 and using standard sea level met data (r = 0.0751 lbm/ft3; a = 1120 ft/s)

1. Create a table containing range (yards), impact velocity (feet per second), TOF
(seconds), initial QE angle (minutes), and angle at impact (minutes) in 200-yard
increments out to 1000 yards.

2. If an infantryman is looking at a target at 2000 yards, what angle will the sight have
relative to the tube assuming they used standard met in the design?

Answer: About 10.3°

Comment on the validity of this method with respect to question 2.
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Problem 8
British 0.303 in. ball ammunition is to be fired in an Mk.1 Maxim machine gun. The mass of
the bullets is 175 grains. When used in this weapon, it has a muzzle velocity of 1820 ft/s.
Assuming flat fire with K3 = 0.5 and using standard sea level met data (r = 0.0751 lbm/ft3;
a = 1120 ft/s)

1. Create a table containing range (yards), impact velocity (feet per second), TOF
(seconds), initial QE angle (minutes), and angle at impact (minutes) in 200-yard
increments out to 1000 yards.

2. The weapon was used by British units assigned to bolster the Italians in the Alps
during the First World War (Italy came in on the Allied side because they wanted
the Tyrol region fromAustria more than they wanted the Nice region from France).
At an altitude of 3000 ft, how much higher or lower will a bullet fired from this
weapon impact a level target if the sights are set using the sea level conditions
given earlier and the target is at 600 yards? At this altitude, assume the density and
temperature of the atmosphere are r = 0.0551 lbm/ft3 and T = 20°F.

Answer: y = 3.078 [ft] (too high)

Problem 9
The main armament in the Italian M13-40 during the Second World War was a 47 mm/32
caliber weapon designed and built by the Ansaldo Arms company. The most effective
antitank projectile it carried was an armor-piercing, ballistic capped round, which had a
muzzle velocity of 2060 ft/s. With this particular projectile–weapon combination, the
assumption of constant drag coefficient seems to yield reasonable results. The k1 value for
this case is 0.00025 [1/m]. Using the flat fire, point mass trajectory create a table of range
(yards), velocity (feet per second), initial QE (minutes), and impact QE (minutes) out to 1000
yards in 200-yard increments.

Problem 10
A US 37 mm projectile is fired with a muzzle velocity of 2600 [ft/s]. The projectile weighs
1.61 lbm. Assuming K2 = 0.841 [unitless] and using standard sea level met data (r = 0.0751
lbm/ft3; a = 1120 ft/s; R = 1716 [ft lbf/slug R])

1. Determine the drag coefficient CD and drag force on the projectile if the projectile is
fired in still air.
Answer: FD = 33.04 [lbf]

2. Create a table containing range (yards), impact velocity (feet per second), TOF
(seconds), initial QE angle (minutes), and angle at impact (minutes) in 100-yard
increments out to 800 yards.

3. If this weapon is used at an increased altitude and assuming that the density and
temperature of the atmosphere are r = 0.060 lbm/ft3 and T = 30°F, respectively,
how much higher or lower will the weapon have to be aimed to hit a target at 800
yards?

Answer: The weapon must be aimed 0.28 mil or 0.98 min lower.
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Problem 11
You are asked to create a rough safety fan for at maximum range test at Yuma Proving
Ground. The test consists of an experimental 155 mm howitzer projectile at a severe
overpressure charge. The projectile weighs 106 lbm. The muzzle velocity is 980 m/s.

1. Using a vacuum trajectory calculate and plot the trajectory envelope for the test.
2. Determine the longest TOF of the projectile.

If we assume an average constant drag coefficient (on the way up) of CD = 0.5/M and the
projectile were fired vertically, what would the maximum ordinate be? Assume standard
sea level met data (r = 0.0751 lbm/ft3; a = 1120 ft/s; R = 1716 [ft·lbf/slug·R]).
Hint: Look at the flat fire assumptions and rederive the equation of motion assuming there
never is an x-velocity.

Problem 12
The drag of a sphere belowMach number of 0.5 iswell approximated byCD =AM2 +BM+C,
where A = 0.0262, B = 0.0456, C = 0.4666, and M is the Mach number. If we would like to
analyze the motion of a cannonball fired from a demiculverin circa 1646, which fired a
spherical shot weighing 9 lbm and of 4.5 in. diameter, please develop the equation of motion
for Vx (only) as a function of downrange distance based on the flat fire assumptions. Then,
using standard sea level met data (r = 0.0751 lbm/ft3; a = 1120 ft/s; R=1716 [ft·lbf/slug·R]),
determineVx at a range of 1800 yards (the reportedmaximum range of theweapon). Assume
a muzzle velocity of 550 ft/s.

Problem 13
A French 240 mm projectile is fired from a model 1873 cannon with a muzzle velocity of
440 [m/s]. The projectile mass is 144 kg. Assuming K1 = 0.55 [unitless] and using standard
sea level met data (r = 0.0751 lbm/ft3; a = 1120 ft/s; R = 1716 [ft·lbf/slug·R])

1. Create a table containing range (meters), impact velocity (meters per second), TOF
(seconds), initial quadrant elevation angle (degrees), and angle at impact (degrees)
in 600 m increments out to 7800 m.

2. Experiments were conducted in France in 1884 to determine the effect of rotating
and locations on the range of this projectile. These experiments were reported on
by Breger in Notes on the Construction of Ordnance No. 27, in June 10, 1884. The
farther rearward the rotating band was placed, the greater the projectile yaw at
muzzle. The same QE that provided a range of 7800 m actually only made 7688 m
with a (assume constant) yaw angle of 4°. Assume that the 7800 m range was
achieved with zero initial yaw. With this information, calculate the yaw drag
coefficient CDd2

.

Problem 14
It is desired to develop a close protection system using a 0.50 caliber machine gun. The
muzzle velocity of the weapon is 2950 ft/s. The projectile is an M8 bullet with a diameter
of 0.50 in. and a mass of 0.09257 lbm. Since the projectile interception mission is to occur
relatively close to the firing platform, we can assume the projectile behaves according to
the flat fire assumption with a constant drag coefficient of K1 = 0.45 [unitless]. Assum-
ing the flat fire assumption is valid for the trajectory and the intercept point is to be 20 ft
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above the ground, develop a firing table for the intercept out to 300 yards in 50-yard
increments. Assume standard sea level met data (r = 0.0751 lbm/ft3; a = 1,120 ft/s; R =
1716 [ft·lbf/slug·R]).
Create a table containing range (yards), impact velocity (feet per second), TOF (seconds),

and initial quadrant elevation angle (degrees) in 50-yard increments out to 300 yards.
Comment on the accuracy of your answer.

Problem 15
If we were to assume that the flat fire conditions were to hold in a coordinate system
that were elevated to an angle q, rederive the differential equations in time and space
coordinates—do not solve them, just put them in the form of Equations 9.60 and 9.61. Also,
write the transformation equations between the normal and slant velocity (Vn and Vs) and
Vx and Vy.

Problem 16
One of the problems with hit-to-kill close protection systems is the ability to accurately
point the weapon and fire in a timely fashion at a very small target. Assume that we must
impact a sphere 4 in. in diameter at the ranges developed in Problem 14. For each range,
assuming perfect timing as well as perfect projectile tracking, determine the allowable
tolerance in QE to impact the target.

Problem 17
Let us now assume that the pointing against the incoming round in Problem 14 is absolutely
perfect. Determine the tolerance in lock time (officially the time from pulling the trigger to
weapon firing—but we will assume it is to muzzle exit) to hit the target at the conditions of
Problem 14. Assume that the incoming projectile is moving at 300 ft/s. How does this
change if the velocity estimate is ±20 ft/s?

Problem 18
The main armament of the last prewar US Heavy Cruisers (known as the tin-clads) was an
8 in./55 caliber weapon. The effective range of this weapon was 30,000 yards at an elevation
of 40°43′. During the SecondWorldWar, there were many night actions in the Pacific where
theseweapons were used at an extremely short range (less than 10,000 yards). You are asked
to create a firing table for this weapon at the short ranges. The muzzle velocity of the
weapon/projectile/propellant combination is 2500 ft/s. The projectile is an armor-piercing,
capped roundwith a diameter of 8 in. and amass of 335 lbm. Since the range is short, we can
assume the projectile behaves according to the flat fire assumption with a drag coefficient
inversely proportional to the Mach number of K2 = 0.62 [unitless] (note that this is not
really a great fit for this projectile). Assuming the flat fire assumption is valid for the tra-
jectory, develop a firing table for the system to 10,000 yards in 1,000-yard increments.
Assume standard sea level met data (r = 0.0751 lbm/ft3; a = 1,120 ft/s; R = 1716 [ft·lbf/
slug · R]).
Create a table containing range (yards), impact velocity (feet per second), TOF (seconds),

and initial quadrant elevation angle (degrees) in 1,000-yard increments out to 10,000 yards.

Problem 19
The analog fire control computers installed on board ships during the Second World War
were amazing devices. The inputs required were course and speed of the firing ship,
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estimated range to the target and course, and speed of the target. Inaccuracies in the target
course and speed estimates were compensated for by generating a “ladder”; this was a shell
pattern that was a linear array using as many guns as were available in one “salvo.” The
ideal result was that the target would end up directly in the middle of the salvo and be
“straddled.” Because of the relatively flat projection of the shells, being straddled usually
guaranteed that the target was hit by at least one projectile. The shorter the range to a target,
the larger the “danger space” offered and the better the chance of a hit. In this problem, you
assume the role of the fire control computer. The weapons available are nine 8 in. /55
caliber guns with the ballistic performance from Problem 18. Your ship is moving due north
at 30 knots (one knot is one nautical mile per hour or 2000 yards per 3600 s). At the instant of
fire, the enemy ship is dead ahead of your ship traveling at 35 knots on course 090 (see the
following figure) at a range of 8000 yards. Ignore the effect of the launch platformmotion on
the drag (only) of the projectile.

your ship

enemy ship

8,000 yds ϑ

± 30º 

1. Determine the firing solution assuming both ships continue straight ahead (QE and
relative angle to the bow of your ship) for one shell to impact the enemy. (Because
of the flat trajectory, it is good to aim so the shell falls a little behind the enemy
ship.)

Hint: Remember the projectiles are leaving from a ship that is moving!

2. Perform the same calculation if the enemy turns 30° toward the firing ship and 30°
away from the firing ship.

3. Using a method of your choosing, examine the sensitivity of the fire control
problem to (a) an incorrect firing ship speed, (b) an incorrect target ship course, and
(c) an incorrect target ship speed. Quantify their relative importance.

Problem 20
The US 7.62 mm Ball M80 (projectile diameter = 0.308 in.; mass m = 147 grains) is fired in a
test range. Based on data given next, estimate the coefficient CD. Assume the projectile is
fired with a muzzle velocity of 2810 ft/s, under standard sea level met conditions (r =
0.0751 lbm/ft3, a = 1120 ft/s). Justify your answer by explaining why you chose the
appropriate drag model. Validate your answer with an appropriate calculation.

Range (yards) V0 (ft/s) Vx (ft/s)

400 2810 1960

500 2810 1765
600 2810 1580
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Problem 21
Many times, all the data we need for a projectile are not provided to us and we have to
extract the information from different sources. You are given the following information
about a British 2 pounder projectile [3]:

• Projectile diameter: 40 mm
• Projectile weight: 2.375 lbm
• Muzzle velocity: 2600 ft/s
• Armor penetration as a function of distance

Distance (yards) Thickness Perforated (mm)

100 55

500 47
1000 37

1500 27

In terminal ballistics, we will find that, based on some work by Zener and Holloman in
1942, the penetration of this type of projectile is proportional to the velocity as follows:

V ∼ t

ffiffiffiffiffi
d
m

r
,

where t is the target thickness; d is the projectile diameter; and m is the projectile mass.
With only this information at your disposal,

1. Determine the best drag model for this projectile.
2. Generate the proper coefficient from the data.
3. Create a table of range (yards), velocity (feet per second), TOF (seconds), launch

angle (minutes), and impact angle (minutes) if the projectile is fired with nowind at
each position.

Please justify your answer.

Problem 22
A Hornady 0.308 in. diameter 208 grain Amax bullet is to be analyzed. Based on data
collected by Litz [4], it has the following drag characteristics:

V (ft/s) CD

1500 0.354

2000 0.306

2500 0.274
3000 0.250

If it is fired with a muzzle velocity of 2780 ft/s, assuming standard sea level met data (r =
0.0751 lbm/ft3; a = 1120 ft/s),

1. Determine a proper drag model to use over this range. Justify your answer by
comparing numbers from all three drag models that were introduced.
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2. Assuming K3 = 0.409, create a table of range (yards), velocity (feet per second), TOF
(seconds), launch angle (minutes), impact angle (minutes), and drift (yards) if the
projectile is fired with no wind every 100 yards out to 600 yards.

3. Determine the deflection in inches assuming the projectile experiences a headwind
of 20 ft/s for the entire flight. Tabulate every 100 yards out to 600 yards.

4. Determine the deflection in inches assuming the projectile experiences a crosswind
(left or right—your choice) of 20 ft/s for the entire flight. Tabulate every 100 yards
out to 600 yards.

Problem 23
Many precision shooters develop specific propellant loads for competition shooting for a
given propellant type, projectile, barrel, cartridge, and primer combination. The strategy for
optimizing a propellant loading is to incrementally increase the propelling charge with the
weapon aimed at the same location and determine the charge at which the projectiles
“group” the most. This method, called a Creighton Audette ladder test, finds the so-called
“sweet spot” of the gun. The projectiles group due to a combination of barrel motion owing
to recoil and vibration. To illustrate this point, let us assume that we have a perfectly rigid
(i.e., no vibration) 22 in. barrel that fires the projectile of Problem 22. Assume a range of 300
yards. Assume that the projectile velocity during barrel transit can be approximated as ½ of
the muzzle velocity. Also, assume that the recoil is fairly constant and causes a constant
upward rotation of the muzzle of 3.3 rad/s. For the following 20 velocities, determine the
muzzle velocity (which would correspond to a propellant load) that is in the sweet spot.
Please plot impact height vs. muzzle velocity.
Hint: The muzzle rise will affect the initial launch angle, but the flatter trajectory will
compensate to some degree. Although not done in practice, for this calculation, start at the
high muzzle velocity and track the bullet impact heights as you lower the velocity.

V0 (ft/s)

2780

2775

2770
2765

2760

2755
2750

2745

2740
2735

2730

2725
2720

2715

2710
2705

2700

2695
2690

2685
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Problem 24
Normally on a fin-stabilized projectile, the spin damping due to the body is much smaller
than that due to the fins. A 155 mm projectile weighs 101 lbm and is designed so that it
leaves the muzzle of the weapon at 600 m/s and spinning at 220 Hz. After 0.5 s, fins are
deployed. At this instant in time, the spin rate is 197 Hz and the velocity is 500 m/s. After
another 0.5 s, the projectile has achieved its steady state spin rate of 12 Hz and is at a
velocity of 400 m/s. The changes in polar moment associated with the fin deployment are
provided next (be sure to think about which one is before and which is after). Determine the
following:

1. The drag coefficient of the both flight configurations
2. The spin-damping coefficient for the body (only) and the fins (only)
3. The roll coefficient (C1d

) of the fins assuming a 1° cant

Assume

r = 0:076
lbm
ft3

� �
 a ≈ 330

m
s

h i
 IPA

= 10:1 lbm � ft2� �
 IPB

= 10:8 lbm � ft2� �
It is important in this problem, since it is pretty open ended, that you list all your
assumptions and present your answer in a manner appropriate to those assumptions.

Problem 25
In a test range, a 0.50 caliber M33 ball projectile is fired at an elevation of 10° with a muzzle
velocity of 3013 ft/s. The initial pitch and yaw angles are 1.030° and 1.263°, respectively.
The initial pitch and yaw rates are 2 rad/s nose down and 1 rad/s nose left, respectively. If
the projectile has the following coefficients at this particular instant, write the acceleration
vector and the angular momentum vector.
Please ignore the Coriolis acceleration and assume the weapon has a right-hand twist.

• Projectile information:

CD = 0:2938

CMa
= 2:88

CLa
= 2:69

CNpa
= −0:01

CMq
+ CM _a

� �
= −5:5

CNq
+ CN _a

� �
= 0:004

CMpa
= 0:05

r = 0:0751
lbm
ft3

� �

IP = 7:85 g‐cm2� �
IT = 74:5 g‐cm2� �
m = 42:02 g

� �
p = 15, 404

rad
s

� �

Please supply all answers in an inertial coordinate system labeled 1, 2, and 3, with 1 being
along the downrange direction and 3 being to the right side. Treat all missing coefficients as
equal to zero. It is very important that you draw the situation.

Problem 26
The projectile given in Problem 25 is fired off of a fast attack boat chasing down some
pirates. All the conditions in Problem 25 are identical except for the mounting of the
weapon and its movement. The weapon is mounted on the starboard (right) side of the
boat. At the instant of firing, the boat is moving at 40 knots in a straight line. The boat is
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rolling at 6 Hz. in a counterclockwise direction as viewed from behind. The boat is
pitching into a swell so that the bow is dropping at 3 Hz. The gunner is slewing
the weapon toward the bow at 1.5 rad/s while simultaneously lowering the muzzle at
2 rad/s. Assuming, at the instant of muzzle exit, the weapon is pointed directly to star-
board and has the same elevation as in the test firing (i.e., 10°), find the values for the
acceleration and angular momentum as was done in Problem 25. Comment on the results.
For a proper comparison, use the same coordinate system as in Problem 25 but now with
the 1 direction pointing to starboard and the 3 direction pointing to the stern of the boat.
Once again the drawings are important.

Problem 27
In a test range, a modified 105 mmM1 projectile is fired at an elevation of 7° with a muzzle
velocity of 1022 ft/s. The initial pitch and yaw angles are 1.0° and 1.5°, respectively. The
initial pitch and yaw rates are 3 rad/s nose down and 2 rad/s nose left, respectively. If the
projectile has the following coefficients at this particular instant, write the acceleration
vector and the angular momentum vector.
Please ignore the Coriolis acceleration and assume the weapon has a right-hand twist.

• Projectile information:

CD = 0:131

CDd2
= 4:20

CMa
= 4:30

CLa
= 1:65

CNpa
= −0:55

CMq
+ CM _a

� �
= −8:7

CNq
+ CNa

� �
≈ 0

CMpa
= −0:892

Clp = −0:028

r = 0:0751
lbm
ft3

� �

IP = 0:547 lbm‐ft2
� �

IT = 5:377 lbm‐ft2
� �

m = 32:1 lbm½ �

p = 932
rad
s

� �

Please supply all answers in an inertial coordinate system labeled 1, 2, 3 with 1 being along
the downrange direction and 3 being to the right side. Treat all missing coefficients as equal
to zero. It is very important that you draw the situation. This will have a great deal of
influence in obtaining the correct answer

Problem 28
Amodified 105 mmM1 projectile is fired downward at an angle of −45° from the horizontal
from an aircraft moving horizontally at 200 knots with a muzzle velocity of 1022 ft/s. The
initial pitch and yaw angles are 1.0° and 1.5°, respectively. The initial pitch and yaw rates
are 3.5 rad/s nose down and 2.5 rad/s nose left, respectively.

1. If the projectile is fired off the right side of the aircraft and has the following
coefficients at this particular instant, write the acceleration vector and the angular
momentum vector.

2. Write the acceleration vector and the angular momentum vector assuming
everything is the same except now the projectile is fired off the left side of the
aircraft.

3. Comment on the differences between parts 1 and 2.

Trajectories 261



Please ignore the Coriolis acceleration and assume the weapon has a right-hand twist.

• Projectile information:

CD = 0:131

CDd2
= 4:20

CMa
= 4:30

CLa
= 1:65

CNpa
= −0:55

CMq
+ CM _a

� �
= −8:7

CNq
+ CNa

� �
≈ 0

CMpa
= −0:892

Clp = −0:028

r = 0:0751
lbm
ft3

� �

IP = 0:547 lbm‐ft2
� �

IT = 5:377 lbm‐ft2
� �

m = 32:1 lbm½ �

p = 932
rad
s

� �

Please supply all answers in an inertial coordinate system labeled 1, 2, and 3, with 1 being
along the downrange direction and 3 being to the right side of the gun looking from the
breech (be careful as this will change between parts 1 and 2). Treat all missing coefficients as
equal to zero.

9.3 Wind Effects on a Simple Air Trajectory

We continue with our study of a point mass projectile model by adding a further compli-
cation to its flat fire trajectory—a crosswind or a range wind, as dynamic atmospheric
phenomena. In the basic equations, we have neglected any change in air density with a
change in altitude since the effect is small. We also have assumed the equations could be
solved in closed form. We want to be able to solve them with winds that are both constant
and variable along the flight path.
We begin with a modified version of Equation 9.47 by using vector notation

dV
dt

= −
rSCD

2m
~V V −Wð Þ + g (9.100)

or

dV
dt

= −Ĉ�
D
~V V −Wð Þ + g (9.101)

Where m is the projectile mass; W is the wind velocity vector; V is the projectile velocity
vector; g is the vector acceleration due to gravity; t is the time; r is the air density;

a =
dV
dt

is the vector acceleration; S is the projectile reference area; Ĉ�
D =

rSCD

2m
; and CD is

the dimensionless drag coefficient.
In the aforementioned equations, we have replaced the velocity vector V by the vector

(V − W) because drag measurements are made relative to the air stream not relative to the
ground. We have also replaced the scalar velocity (the speed) with

~V = V −Wj j
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This is the scalar difference of the projectile andwind velocities. A diagram of the problem
is shown in Figure 9.5.
We can resolve V, W, and g into components along the coordinate axes as follows:

V = Vxi + Vyj + Vzk (9.102)

W = Wxi +Wyj +Wzk (9.103)

g = −g j (9.104)

Note that

~V2 = V −Wj j � V −Wj j
and

Vj j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

x + V2
y + V2

z

q
This leads us to

V −Wj j � V −Wj j = Vx −Wxð Þ2 + (Vy −Wy)
2 + Vz −Wzð Þ2

Then,

~V =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vx −Wxð Þ2 + (Vy −Wy)

2 + Vz −Wzð Þ2
q

(9.105)

If we insert Equations 9.102 through 9.104 into Equation 9.101, we get

dV
dt

= −Ĉ∗
D
~V Vx −Wxð Þ

h i
i + −Ĉ∗

D
~V
	
Vy −Wy



−g

h i
j + −Ĉ∗

D
~V Vz −Wzð Þ

h i
k

We can separate this vector equation into its three scalar components:

_Vx =
dVx

dt
= −Ĉ∗

D
~V Vx −Wxð Þ (9.106)

j

k i

y

x

Wx

Wy

Wz
V0

0
V

FD

mg

Range

H
ei

gh
t

Defl
ec

tio
n

z

FIGURE 9.5
Coordinate system for projectile launch including wind effects.
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_Vy =
dVy

dt
= −Ĉ�

D
~V(Vy −Wy) − g (9.107)

_Vz =
dVz

dt
= −Ĉ�

D
~V Vz −Wzð Þ (9.108)

Equations 9.106 through 9.108 are the exact equations for a point mass trajectory of a
projectile acted upon by gravity, wind, and aerodynamic drag. They are first-order, non-
linear, coupled, ordinary differential equations that are coupled through Equation 9.105.
The nonlinearity, as previously discussed, creates difficulties when we attempt to analyti-
cally solve these expressions. We can solve the exact equations only by using numerical
methods. This will necessitate making the simplifying assumption of flat fire, which will
allow us to solve them in closed form. We can alter Equation 9.105 by multiplying by the
fraction (Vx − Wx)/(Vx − Wx) = 1 and then simplifying to get

~V = Vx −Wxð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + e2y + e2z

q
(9.109)

Where

ey =
(Vy −Wy)
(Vx −Wx)

(9.110)

and

ez =
Vz −Wzð Þ
Vx −Wxð Þ (9.111)

Using the binomial expansion of the form

ffiffiffiffiffiffiffiffiffiffiffi
1 + z

p
= 1 +

1
2
z −

1
8
z 2 +⋯

� �

We can operate on the radical of Equation 9.109, arriving at

~V = Vx −Wxð Þ 1 +
1
2

e2y + e2z
� �

−
1
8

e2y + e2z
� �2

+⋯
� �

(9.112)

Because the velocity of a projectile is usually much greater than winds of even hurricane
force, we can assume that

Wxj j, Wy

�� ��, and  Wzj j ≪ Vx (9.113)

and

e2y and e2z ≪ 1 (9.114)

If we look at the first inequality of Equation 9.114 and consider the assumptions of
Equation 9.113, we find that

ey =
Vy

Vx
−
Wy

Wx
≈
Vy

Vx
= tan f ≪ 1
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Thiswas the approximation developed around a similar binomial expansion in Section 9.2.
We recall that this relation restricted us to Vy/Vx < 0.1, which, by squaring, results in
the requirement that winds be at least two orders of magnitude smaller than the velocity Vx

and this is easily the case. The second inequality of Equation 9.114 is also satisfied ifWz andVz

are comparable in size from

ez =
Vz −Wzð Þ
Vx −Wxð Þ =

Vz −Wzð Þ
Vxð Þ ≪ 1

All this results in ~V and (Vx − Wx) being within about 1% of each other. So if ~V ≈
(Vx −Wx), we can rewrite Equations 9.106 through 9.108 as

_Vx =
dVx

dt
= −Ĉ�

D Vx −Wxð Þ2 (9.115)

_Vy =
dVy

dt
= −Ĉ�

D Vx −Wxð Þ(Vy −Wy) − g (9.116)

_Vz =
dVz

dt
= −Ĉ�

D Vx −Wxð Þ Vz −Wzð Þ (9.117)

Updrafts and downdrafts are usually so small (and usually have the same effect as a
crosswind for reasons we shall later describe) that we neglect them completely. Thus, we
shall set Wy equal to zero from now on. We will now look first at the effect where only a
crosswind is present (i.e., whereWx =Wy = 0) and then examine the effect of a headwind or
tailwind. If we make this substitution into Equations 9.115 through 9.117, we obtain

_Vx =
dVx

dt
= −Ĉ�

DV
2
x (9.118)

_Vy =
dVy

dt
= −Ĉ�

DVxVy − g (9.119)

_Vz =
dVz

dt
= −Ĉ�

DVx Vz −Wzð Þ (9.120)

Equations 9.118 and 9.119 are identical to Equations 9.55 and 9.56 from our earlier work in
the zero wind case. If we now change from time to space variables, as we did in the zero
wind case, and recall that dt/dx = 1/(dx/dt), then we arrive at the equations as follows:

V0
x = −Ĉ∗

DVx (9.121)

V0
y = −Ĉ∗

DVy −
g
Vx

(9.122)

V0
z = −Ĉ∗

D Vz −Wzð Þ (9.123)

Once again, the prime symbol represents differentiation with respect to x, and Equations
9.121 and 9.122 are identical to those developed for the zero wind case. Now we have
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already solved differential Equations 9.121 and 9.122 under their previous guise with the
result of

V V C xx x

x

= −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∫0 1

0

exp ˆ
D* d (9.124)

V C x V
g

V
Cy

x

y
x

x

= −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− ⎛

⎝
⎜

⎞
⎠
⎟∫ ∫exp expˆ ˆ

D D* d *
1

0 0

0
dd dx x

x

1

0

2

2

∫
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(9.125)

Equation 9.123 is somewhat more difficult to solve. It is a first-order, linear differential
equation of the form y′ + P(x)y = Q, whose solution, after the necessary integrations and
substitution of initial conditions that at x = 0 and Vz = 0, is

V C x C W C xz

x

z

x x

= −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎛

∫ ∫ ∫exp expˆ ˆ ˆ
D D D* d * * d1

0 0

1

0⎝⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dx2 (9.126)

From Equation 9.124, we see that the exponential is Vx/Vx0, and this can be directly
inserted into Equation 9.126. Also, if we assume that Wz is a constant, it can be removed
from the integral to give

V
V
V

W C C x xz
x

x
z

x x

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∫ ∫

0 0

1

0

2
ˆ exp ˆ

D D* *d d (9.127)

We can integrate
ðx
0

Ĉ�
D exp

 ðx
0

Ĉ�
D dx1

!
dx2 by parts in Equation 9.127 to yield

ˆ exp ˆ exp ˆ ˆC C x x C x C
x x x

D D D D
* * d d * d *

0
1

0
2 1

0 0
∫ ∫ ∫

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

xx xx x

x C x C C x x∫ ∫∫ ∫−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟d * d * * d dD D D2 2

00
1

0
1

ˆ ˆ exp ˆ

(9.128)

The integral of the last term can be solved through a series of substitutions and evalua-
tions at the limits to yield

ˆ exp ˆ exp ˆC C x C x
x x x

D D D* *d *d
0

1

0

1

0

1∫ ∫ ∫
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
− (9.129)

If this is inserted into Equation 9.127, the result is

V
V
V

W C xz
x

x
z

x

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥∫

0

1

0

1exp D* d (9.130)
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We can further manipulate Equation 9.130 by inserting the value of the exponential from
Equation 9.124. In doing so, we get

V
V
V

W
V

V
W

V
V

z
x

x
z

x

x
z

x

x
= −⎛

⎝
⎜

⎞
⎠
⎟ = −⎛

⎝
⎜

⎞

⎠
⎟

0

0

0

1 1 (9.131)

Since 0 < Vx < Vx0,Vz always has to be less than the wind speed Wz. Thus, Wz is an upper
bound on Vz.
If we examine the deflection due to a constant crosswind, we can write

z V t W
V
V

t W t
V

V t

z

z

t

z
x

x

t

z
t

x
x

t

= = −⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∫ ∫ ∫d  d d

0 0

0

0

1
1

0 0

== −⎛

⎝
⎜

⎞

⎠
⎟W t

x
V

z
x0

(9.132)

Equation 9.132 is known as the lag rule for predicting crosswind effects. It is an exact
solution for a constant crosswind. The quantity in the brackets is known as the lag time
because a projectile in a real atmosphere would take longer to reach the same range than
one fired in a vacuum.
Another interesting point is seen from examination of Equation 9.131. If Vx is always

equal to the initial x-velocity, no matter how hard the wind blows, the projectile will not be
affected. Thus, a rocket motor that maintains the initial x-velocity could make the projectile
insensitive to wind, a concept called automet. Note also that if the thrust is greater than the
initial velocity, the projectile will actually move into the wind.
We consider next the effect of a variable crosswind. A simple way to model this effect on a

projectile is to superimpose solutions for constant crosswinds over incremental distances
and piece the resultant trajectory together. This technique of superposition works only with
linear phenomena. However, since Equation 9.132 is linear in x and t, we can apply this
method. An alternative approach would be to apply Equation 9.132 in a piecewise fashion
using the information from the previous calculation in the subsequent one. To do this, we
shall rewrite Equation 9.132 as a difference equation

Dzi = Wzi Dti −
Dxi
Vxi0

� �
(9.133)

Where Dzi is the distance traveled in the z-direction from time i − 1 to the time i; Dxi is the
distance traveled in the x-direction from time i − 1 to the time i; Dti is the time between time
i − 1 to the time i; Wzi is the constant crosswind acting on the projectile between time i − 1
and time i; and Vxi0 is the x-velocity at time i − 1.
We can rewrite Equation 9.133 as

zi − zi−1 = Wzi ti − ti−1ð Þ − xi − xi−1ð Þ
Vxi0

� �
(9.134)

To use this method, one must first tabulate t, Vx, and x as described earlier and then
perform the calculation for z at each interval. With somemodifications, a forward difference
technique can also be used. These tedious calculations are best done with a computer
program for small intervals of time.
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We will now examine the effects of a constant range wind, both head on and a tailwind.
We do this by comparing the effects to a flat fire, no-wind flight and will determine the
effects on TOF, impact, and velocity at impact.
We make the initial assumption that there is no crosswind, i.e., Wy = Wz = 0, and insert

this into Equations 9.115 through 9.117, the component differential equations for a point-
mass, flat fire trajectory:

_Vx =
dVx

dt
= −Ĉ�

D Vx −Wxð Þ2 (9.135)

_Vy =
dVy

dt
= −Ĉ�

D Vx −Wxð ÞVy − g (9.136)

_Vz =
dVz

dt
= −Ĉ�

D Vx −Wxð ÞVz (9.137)

Because there is no crosswind, Equation 9.137 reduces to

Vz = 0

By a change of time to space variables and various algebraic manipulations, we can
change Equation 9.135 to

V C V C W
W
V

x x x
x

x

′ + = −⎛
⎝
⎜

⎞
⎠
⎟

ˆ ˆ
D D* * 2 (9.138)

Similarly, we do the same to Equation 9.136 and arrive at a distance equation in a y-
variable only:

V C
W
V

V
g

V
y

x

x
y

x

′ + −⎛
⎝
⎜

⎞
⎠
⎟ =

−ˆ
D* 1 (9.139)

Recall from our earlier discussion that the wind speed is about two orders of magnitude
smaller than the projectile velocity, so mathematically, we can express this condition as

Wx

Vx
≤ 0:01

We can then rewrite Equations 9.138 and 9.139, allowing them to be equalities as follows:

Vx
0
+ Ĉ�

DVx = 2Ĉ�
DWx (9.140)

and

Vy
0
+ Ĉ�

DVy = −
g
Vx

(9.141)

We can then solve these equations for Vx and Vy.
As we saw in the earlier solutions for the constant crosswind, with appropriate inte-

grations, algebraic manipulation, and the insertion of the initial condition that at x = 0 and
Vx = Vx0, we see that
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From Equation 9.129, recall that
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Using this fact and by substituting it into Equation 9.142, factoring the result, and con-
sidering that Wx is constant, we arrive at
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The first term on the right-hand side (RHS) of Equation 9.143 is simply the velocity decay
caused by drag of the projectile. The second term is the effect of the range wind on it. If we
examine Equation 9.124, which was an analysis for a firing in the absence of range wind, the
first term of Equation 9.143 represents Vx, the x-velocity with no wind. The second term,
when we substitute for the exponential, then represents the effect of the range wind on the
flight. Thus, we can see the range wind effects shown as the variable of interest with a tilde
(∼) in the following:

~Vx = Vx + 2Wx 1 −
Vx

Vx0

� �
(9.144)

This equation shows that at any time t, a tailwind (i.e., one blowing in the positive
x-direction) has the effect of increasing the velocity (relative to the ground), while the
opposite is true of a headwind. This is important because if we had a table of velocities vs.
range for the no-wind case, we could then tabulate the effect of range wind.
If we now look at the y-velocity, we can operate on Equation 9.141 with the initial

condition that at x = 0, Vy = Vy0. This provides us with the solution of the space variable
equation
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At this point, we can introduce the range wind by inserting Equation 9.143 for Vx,
arriving at
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This rather complicated integral can be simplified somewhat; however, another approach
[1] to the problem that makes use of the no-wind method previously used in Equation 9.144
simplifies things even further. This is seen as
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or  since
Vy0

Vx0
= tan f0,
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Further use of ~Vx and some algebraic manipulation gives

~Vy = Vx tan f0 − gVx

ðx
0

1
Vx

~Vx
dx2 (9.149)

Recalling Equation 9.144, we can rewrite the denominator of the integral as
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If we again use the fact that the wind velocity is at least two orders of magnitude smaller
than the projectile velocity, the last two terms in the product on the RHS vanish, leaving

Vx
~Vx ≈ V2

x (9.151)

Then, we can rewrite Equation 9.149 as

~Vy = Vx tan f0 − gVx

ðx
0

1
V2

x
dx2 (9.152)

This equation has exactly the same form as the flat fire equation for Vy. Hence, we can say
that for a flat fire trajectory, with a small range wind compared to the projectile velocity, the
vertical component of velocity is not appreciably affected.
We can now turn our attention to the TOF of a projectile with a constant range wind by

first defining an average downrange velocity following the procedure by McCoy [1] as

~Vxavg =
1
x

ðx
0

~Vx dx1 (9.153)

For ~Vx, we substitute Equation 9.144 giving
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By performing the integration on the second term of the integrand and rewriting, we get
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Rearranging Equation 9.154 and knowing that the velocity averaging also applies to the
no-wind case, i.e.,

Vxavg =
1
x

ðx
0

Vx dx1 (9.155)

We get
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The TOF can be expressed as the range divided by the average velocity for the case of
either no range wind or with range wind included. Thus, we can write

t =
R

Vxavg
(9.157)

or

~t =
R

~Vxavg

(9.158)

By taking the reciprocal of Equation 9.158, performing judicious substitutions, gathering
terms, and finally taking the reciprocal of the result, we can write
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This shows, as we would expect, that a tailwind (Wx positive) reduces the TOF, while a
headwind (Wx negative) increases it.
Let us summarize what we have done for crosswinds and range winds. We modified the

flat fire equations to account for crosswind and range wind. We use them when the angle
of departure and angle of fall are both below 5.7°. We solved the crosswind equations
assuming constant and variable crosswinds and introduced the classic lag rule. With var-
iable crosswinds, we saw that it is fairly accurate to piece the trajectory together using
locally constant values for the crosswind. We have solved the range wind equations
assuming only constant range wind. We could treat variable range wind in a manner
similar to variable crosswinds, but the difference in results is usually not worth the added
effort. For range wind, we used a solution technique that compared the velocities, positions,
and time to the no-wind case.
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Problem 29
A US 37-mm AP projectile is fired with a muzzle velocity of 2600 [ft/s]. The projectile
weighs 1.61 lbm. Assuming flat fire with K2 = 0.841 [unitless] and using standard sea level
met data (r = 0.0751 lbm/ft3; a = 1120 ft/s)

1. Create a table containing range (yards), impact velocity (feet per second), TOF
(seconds), initial QE angle (minutes), and angle at impact (minutes) in 200-yard
increments out to 1000 yards assuming no-wind effects.
Answer: At 1000 yards, V = 1837 [ft/s].

2. Determine the deflection of the projectile with a 20 mi/h crosswind blowing from
left to right as viewed from behind the weapon.
Answer: At 1000 yards, z = 6.217 [ft].

3. Determine the impact velocity, change in TOF and how high the projectile will hit if
fired at the same QEs with a 20 mi/h tailwind and no crosswind.
Answer: The projectile will hit 1.402 in. higher than expected.

Problem 30
A British 12 in. projectile has a K3 of 0.8 and a weight of 850 lbm. If it is fired at an initial QE
of 130 mil with a muzzle velocity of 2800 ft/s,

1. Create a table of range (yards), altitude (yards), velocity (feet per second), TOF
(seconds), inclination angle (degrees), and drift (yards) if the projectile is fired with
no wind.

2. Repeat part 1 if the projectile is fired with a headwind of 25 ft/s for the first 3000
yards of flight and a crosswind (left or right—your choice) of 35 ft/s for the
remainder of the flight. Tabulate every 1000 yards with the impact location as the
last entry in the table.

Problem 31
The US 0.30 caliber Ball M2 (projectile diameter = 0.308 in.) was the standard infantry rifle
cartridge inWWII. Based on data collected by McCoy [1], it is a 150 grain, flat-based Spitzer
shape with a K3 of 0.491 fromMach 1.2 to 3. If it is fired with a muzzle velocity of 2780 ft/s,
assuming standard sea level met data (r = 0.0751 lbm/ft3; a = 1120 ft/s):

1. Create a table of range (yards), velocity (feet per second), TOF (seconds), launch
angle (minutes), impact angle (minutes), and drift (yards) if the projectile is fired
with no wind every 100 yards out to 600 yards.

2. Determine the deflection in inches assuming the projectile experiences a headwind
of 20 ft/s for the entire flight. Tabulate every 100 yards out to 600 yards.

3. Determine the deflection in inches assuming the projectile experiences a crosswind
(left or right—your choice) of 20 ft/s for the entire flight. Tabulate every 100 yards
out to 600 yards.
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Problem 32
Precision shooters are always in search of “tight groupings,” that is, the grouping of the
impact points of the projectiles at a given range. We shall examine the rifle and projectile
combination given in Problem 31 and determine the effect each of several parameters has on
the precision. Vary each of the following parameters individually by 1% (up and down)
from Problem 31 and determine the miss distance in inches for a 200-yard range. Please
carry answers to five significant figures as a baseline of comparison:

1. Muzzle velocity
2. Projectile mass
3. Drag coefficient (CD)
4. Air density
5. Air temperature (in Rankine)
6. Launch angle of departure (we will assume this is due to weapon or shooter

motion)
7. Headwind (0 ± 0.2 ft/s)
8. Crosswind (0 ± 0.2 ft/s)
9. Choose any two of these and vary them together—what is the result? Is the answer

simply a linear superposition of the two individual errors? Why orWhy not? Is this
true for all of the parameters? Can you draw any conclusions from looking at all of
the results?

9.4 Generalized Point Mass Trajectory

In keeping with our practice of introducing ever-increasing complexity into our theory, we
will now remove most of the restrictions of the earlier work. We will examine the effects of
an unrestricted launch angle and make the high-angle fire of mortars and howitzers ame-
nable to trajectory analysis. We still reserve for later study the effects on flight of a three-
dimensional body whose shape, physical properties, and motions add a significant level of
complexity to trajectory analysis.
The aerodynamic behavior of a projectile can be examined from three separate view-

points: motion affected only by the acceleration of gravity and the initial velocity (vacuum
trajectory); motion affected by gravity, initial velocity, and aerodynamic drag (point mass
trajectory); motion affected by the shape, physical properties, and dynamics (which actually
manifests itself as changing drag) of the projectile, as well as gravity and launch conditions.
We will concentrate on the second viewpoint in this section.
In the equations that follow, we are assuming that the projectile is still a cannonball

with all of its mass concentrated at one point. This allows us to continue to neglect the
rigid body kinematics that would be present in a distributed mass. However, we shall
include wind effects, earth rotational effects, and, therefore three-dimensional motion.
As stated, flat fire restrictions are removed so that the analysis is applicable to all launch
angles.
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We begin with the same set of equations of motion, except for the addition of a term for
the Coriolis force mL:

F = ma, (9.160)

m
dV
dt

= SF +mg +mL (9.161)

Where m is the projectile mass; V is the velocity vector; t is the time; a =
dV
dt

is the vector

acceleration; SF is the vector sum of all aerodynamic forces; g is the vector acceleration due
to gravity; and L is the vector Coriolis acceleration due to rotation of the earth.
We also recall from our earlier work with wind effects

dV
dt

= −Ĉ�
D
~V V −Wð Þ + g (9.162)

Where W is the wind velocity vector and Ĉ�
D = rSCD=2m. In the aforementioned equa-

tions, we have replaced the velocity vector V by the vector (V − W) because drag mea-
surements are made relative to the air stream, not relative to the ground.We have also again
replaced the scalar velocity (the speed) with ~V = jV −Wj, which is the scalar difference of
the projectile and wind velocities. A diagram of this is shown in Figure 9.6.
Without repeating the entire procedure, it can be shown that we may separate Equation

9.162 into individual components to obtain the differential equations for a point mass:

_Vx =
dVx

dt
= −Ĉ�

D
~V Vx −Wxð Þ (9.163)

_Vy =
dVy

dt
= −Ĉ�

D
~V(Vy −Wy) − g (9.164)

_Vz =
dVz

dt
= −Ĉ�

D
~V Vz −Wzð Þ (9.165)

The scalar velocity ~V is again

~V =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vx −Wxð Þ2 + (Vy −Wy)

2 + Vz −Wzð Þ2
q

(9.166)

In all the aforementioned equations, the wind velocity is variable and is considered
positive when it blows in the positive direction of one of the coordinate axes. Equations
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FIGURE 9.6
Generalized point mass trajectory.
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9.163 through 9.165 are nonlinear, coupled differential equations which are the exact
solution to Newton’s laws governing the motion of a projectile affected by wind, gravity,
and aerodynamic drag. These equations are coupled through Equation 9.166. Now, as we
did in our discussion offlat fire, we would like to evaluate Equations 9.163 through 9.165 by
using the downrange distance x as the independent variable. To do this, we simply note that
for each of the time derivatives, we can write

_Vx =
dVx

dt
=
dVx

dt
dt
dx

dx
dt

= Vx
dVx

dx
= VxV

0
x (9.167)

And similarly

_Vy = VxV
0
y (9.168)

_Vz = VxV
0
z (9.169)

We can now write the three equations of motion with x as the independent variable as
follows:
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As we noted earlier, the vertical component of the windWy is usually extremely small and
will be neglected in further treatment. Further, as we mentioned, these equations are
impossible to solve in closed form, and we must resort to numerical methods for their
solution.
Without the restrictions of flat fire, projectiles fired at high angles of departure may tra-

verse the atmosphere to great altitudes. In their flight, they encounter air temperatures and
pressures that constantly change. These changes must be accounted for in the numerical
computations to adequately solve the trajectory. Hence, knowledge of the standard atmo-
sphere must serve as input to the calculations. There are two standards in common use:
Army Standard Metrology and the International Civil Aviation Organization (ICAO)
atmosphere. ICAO atmosphere is the most used of the two. Temperature and pressure vs.
altitude are shown for the ICAOmodel in Figure 9.7. These atmospheric models are usually
incorporated into ballistics codes.
Now, to become familiar with the physics of the Coriolis acceleration which was brought

to its final form by Gaspard de Coriolis in 1835, we will study the effects of the rotation of
the earth on a flat fire, vacuum trajectory example. We do this because we will be able to see
these effects without resorting to a computer for calculation. The effect is really due to the
fact that the firing point and target are located on the rotating earth; thus when the projectile
lands, the earth has rotated through an angle and has thus moved the target. Figure 9.8
shows the geometry of the earth, the latitude of the firing site, and the orientation of the
axes.
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The Coriolis acceleration is defined as

2w � vΒ=Α
	 


xyz = 2Ω� vð Þxyz (9.173)

We have written Equation 9.173 in this way because the angular velocity we are con-
sidering is that of the earth and our projectile velocity is relative to our firing position (and
therefore the earth), which moves with the x–y–z coordinate system. For this equation to be
useful to us, we have to write the angular velocity Ω of the earth in terms of our x–y–z
coordinate system. We will see that this acceleration is independent of the projectile weight
but dependent upon its velocity. From Figure 9.8, we see that we can readily define Ω in
terms of our moving coordinate system as

Ω = Ω cos L cosAZi + Ω sin Lj − Ω cos L sinAZk (9.174)

If we also note that v is defined as

vð Þxyz = Vxi + Vyj + Vzk (9.175)
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FIGURE 9.8
Angles used for coriolis acceleration calculations. Picture on the right represents a map of the corresponding area
on the globe.
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Then inserting Equations 9.174 and 9.175 into Equation 9.173 gives us

2Ω� vð Þxyz = 2Ω

(Vz sinL + Vy cos L sinAZÞi
−Vz cos L cosAZ − Vx cosL sinAZð Þj

(Vy cosL cosAZ − Vx sin LÞk

2
664

3
775 (9.176)

We will write the Coriolis acceleration in terms of a d’Alembert force (i.e., the negative of
what we have in Equation 9.176), so we shall define the Coriolis term in our equation of
motion (Equation 9.161) as

L = −2Ω� vð Þxyz = 2Ω

( − Vy cos L sinAZ − Vz sin LÞi
Vx cosL cosAZ + Vz cos L cosAZð Þj

(Vx sinL − Vy cos L cosAZÞk

2
664

3
775 (9.177)

Here we need to define the following variables:

• L is the vector Coriolis acceleration.

• Ω is the angular velocity of the earth about its polar axis = 0.00007292 (rad/s).

• L is the latitude of the firing site, positive in the northern hemisphere, negative in
the southern.

• AZ is the azimuth angle of fire, measured clockwise from north.

• Vx, Vy, and Vz are the velocities in the x, y, z directions, respectively, positive along
the positive coordinate axes.

Now that we have defined some terminology, we shall examine the effect that the Coriolis
acceleration has on a vacuum trajectory.While this is stretching the vacuum trajectorymuch
beyond its usefulness in ballistics, we remind the reader that the purpose is to demonstrate
the physics that result from Coriolis effects. We begin by recalling Equation 9.161:

m
dV
dt

= SF +mg +mL (9.161)

Now, since this is a vacuum trajectory, the force term on the RHS is zero, and we can
divide by the mass m to obtain the vector equation for a vacuum trajectory

dV
dt

= g + L (9.178)

Rewriting Equation 9.178 in terms of its vector components gives (note that the g term
appears only in Equation 9.180)

dVx

dt
= 2Ω

	
−Vy cos L sinAZ − Vz sinLÞ (9.179)

dVy

dt
= 2Ω −Vx cos L sinAZ + Vz cosL cosAZð Þ − g (9.180)

dVz

dt
= 2Ω

	
Vx sin L − Vy cosL cosAZÞ (9.181)
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We shall now provide examples of the effect. These examples are based on the work
of McCoy and can be found in his book [1]. Let us first consider a purely vertical firing (i.e.,
Vx = Vz = 0). One may initially consider this a trivial example, but for test purposes, we
occasionally do fire vertically. And, by the way, as we will see, what goes up does not come
straight down. Let us also choose due east as positive x, so AZ = 90°. With these
assumptions, Equations 9.179 through 9.181 become

dVx

dt
= −2ΩVy cos L (9.182)

dVy

dt
= −g (9.183)

dVz

dt
= 0 (9.184)

These equations are well behaved and no longer coupled, so we can solve them inde-
pendently. We shall integrate Equation 9.182 by first rewriting it, then integrating it:

dVx

dt
= −2Ω

dy
dt

cos L (9.185)

Vx = −2Ωy cos L + C (9.186)

To determine C, we know that at y = y0, Vx = 0 so we can write

Vx = −2Ωy cosL + 2Ωy0 cos L = −2Ω cosL y − y0ð Þ (9.187)

If you recall our coordinate system, this means a projectile fired straight up will drift to
the west and one fired (or dropped) straight down will drift to the east. Now we will
integrate Equation 9.183 to get

Vy = −gt + C (9.188)

Again, solving for the constant by inserting the initial conditions that at t = 0, Vy = Vy0,
we get

Vy = Vy0 − gt (9.189)

Now we shall rewrite and integrate Equation 9.189 a second time making use of the fact
that at t = 0, y = y0, to obtain

y = Vy0t −
1
2
gt2 + y0 (9.190)

We can now insert Equation 9.190 into Equation 9.187 and rewrite it as

d
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This can be integrated using the initial conditions that at t = 0, x = 0 to give

x L V t gty= −Ω −⎛
⎝
⎜

⎞
⎠
⎟cos

0

2 31
3

(9.192)
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Let us now look at the special case of a bomb dropped from a given height with Vy0 = 0,
and let y = 0. If we know the altitude from which we are dropping the bomb, we can
determine its TOF from Equation 9.190; thus,

y0 =
1
2
gt2 (9.193)

or

t =

ffiffiffiffiffiffiffiffi
2y0
g

s
(9.194)

If we insert this into Equation 9.192, we get

x g L
y
g

= ⎛

⎝
⎜

⎞

⎠
⎟

1
3

2 0
3 2

Ωcos
/

(9.195)

This says that since we are on the positive x-axis, the bomb will drift to the east. This drift
would be greatest at the equator and zero at the poles.
Another example that uses the vacuum trajectory analysis is a projectile that is fired

vertically upward with velocity Vy0. We can find the time to maximum ordinate from
Equation 9.189 knowing that at maximum ordinate Vy = 0:

t =
Vy0

g
(9.196)

If we insert this value of t into Equation 9.192, we get

x = −
2
3
Ωgt3 cos L (9.197)

The time to maximum ordinate can be put in terms of the height at maximum ordinate
ys through Equation 9.190:

ys =
1
2
gt2 (9.198)

Therefore, the time to maximum ordinate is

ts =

ffiffiffiffiffiffiffi
2ys
g

s
(9.199)

And therefore, the Coriolis-caused displacement at maximum ordinate along the x-axis is
found by inserting Equation 9.199 into Equation 9.197, giving

xs = −
4
3
Ω

ffiffiffiffiffiffiffiffi
2y3s
g

s
cosL (9.200)

Lastly, we can apply the Coriolis analysis to the vacuum trajectory, flat fire situation and
determine a correction for the acceleration in that case. We begin by making the usual
assumptions for the flat fire trajectory of

Vy ≪ Vx and Vz ≪ Vx (9.201)
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We substitute these into Equations 9.179 through 9.181, yielding

dVx

dt
≈ 0 (9.202)

dVy

dt
≈ 2ΩVx cos L sinAZ − g (9.203)

dVz

dt
≈ 2ΩVx sinL (9.204)

The solution of Equation 9.202 with the initial conditions of Vx = Vx0 at t = 0 yields

Vx ≈ Vx0 (9.205)

The solution of Equation 9.203, after insertion of Equation 9.205 with the initial con-
ditions of Vy = Vy0 at t = 0 and integrating, yields

V V gt
V
g

Ly y
x≈ − − Ω⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥0

01
2

cos sin AZ (9.206)

The solution of Equation 9.204 with the initial conditions of Vz = 0 at t = 0 yields the
following after insertion of Equation 9.205 and integration:

Vz ≈ 2ΩVx0t sinL (9.207)

If we now integrate Equations 9.205 through 9.207 subject to x = 0, y = y0, and z = 0 at t = 0
to get the displacements in the x, y, and z directions, we get

x ≈ Vx0 t (9.208)

y y V t
gt V

g
Ly

x≈ + − − Ω⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥0

2

0
0

2
1

2
cos sin AZ (9.209)

z = ΩVx0 t
2 sinL (9.210)

If we want to parameterize Equations 9.209 and 9.210 in terms of the downrange distance
x, we can rewrite Equation 9.208 as

t ≈
x
Vx0

(9.211)

We can then insert this value of time into Equations 9.209 and 9.210 to obtain

y y
V

V
x

gx
V

V

g
L

y

x x

x≈ + − −
Ω⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥0

2

2
0

0 0

0

2
1

2
cos sin AZ (9.212)

and

z ≈
Ωx2

Vx0
sinL (9.213)
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Equation 9.212 was rearranged in the following form (including the substitution of tan f0)
for comparison with Equation 9.37 and also modified to include a y0:

y ≈ y0 + x tan f0 −
gx2

2V2
0

(9.37)

y y x
gx
V

V
g

L
x

x≈ + − − Ω⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥0 0

2

22
1

2

0

0tan cos sinφ AZ (9.214)

From this comparison, we see that the incorporation of the Coriolis acceleration in the flat
fire vacuum trajectory manifests itself in a modification to the gravitational term. Thus, as
defined by McCoy [1], we can define a Coriolis factor fC as

f
V
g

Lx
C AZ= − Ω⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥1

2 0 cos sin (9.215)

and we could rewrite Equation 9.214 as

y ≈ y0 + x tan f0 − fC
gx2

2V2
x0

(9.216)

If we closely look at Equation 9.214, we note several things: the value of cos L is anywhere
between 0 and 1 for all possible latitudes; thus, if we were firing due north or due south,
there would be no effect on the vertical component of impact; if we fired due east (AZ = 90°),
the Coriolis effect essentially weakens the gravity term and the bullet would hit high; a due
west firing would strike low; and the maximum effect on gravity is to alter it by 1.8%. Since
sin L fluctuates between +1 and −1, the drift, the z-component, will vary right or left
depending on the hemisphere where the firing occurs.
Now that the physics of the Coriolis effect is understood, the only difference when applied

to the nonvacuum point mass trajectory is the fact that the velocity is changing with time
due to drag. This is best handled numerically and will not be covered here.
In summary, for the generalized point mass trajectory, we included drag but ignored the

dynamic effects of the projectile on drag. We described the origins of the Coriolis acceler-
ation acting on a projectile. The physics was demonstrated through the vacuum trajectory
and further examined with the flat fire assumptions. The incorporation of the Coriolis

x 

y V0 = 2800 ft/s

V
mg

0 = 130 mils

R = ?, z = ?

FIGURE 9.9
Graphical representation of long-range fire for Problem 33.
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acceleration into the generalized point mass assumption is only affected by the variation of
velocity over the trajectory and best handled numerically.

Problem 33
A projectile fired from a British 12 in. Mark IX naval gun had a muzzle velocity of 2800 ft/s
and was fired at a QE of 130 mil (Figure 9.9). Assuming a vacuum trajectory, at what
deflection would the shot hit the ground?
Assume the firing is taking place at 50° south latitude and the round is being fired due

north.
Answer: z = −75.8 [ft]

9.5 Six Degree-of-Freedom (6 DOF) Trajectory

In keeping with our plan of increasing the complexity of our analyses to more closely
approach the physical realities of projectile flight, we will now consider the projectile as a
distributed mass. Since projectiles are relatively stiff structures, a 6 DOF model can ade-
quately represent its position and attitude at any time. Each degree of freedom is tied to a
coordinate necessary to completely describe the position of a body.
While this model is necessarily more complex than anything we have studied so far, the

underlying physical principles remain the same. In the following work, we will use vectors
(boldface, nonitalicized letters) in many of the derivations. We continue to do this because
of the brevity and elegance of the notation.
In the equations that follow, we assume that the projectile is a rigid body of finite length

with its mass distributed based on its geometry. This allows us to account for the effect of
projectile attitude on drag and allows the full dynamics to come into play. We shall use
direction cosines with respect to the projectile axis of symmetry (and thus a coordinate
system with unit vectors i, j, and k that translates with the center of gravity (CG) but does
not rotate and remains aligned with the projectile axis) as opposed to Eulerian angles
(angles that are measured relative to the inertial coordinate system). This is illustrated in
Figure 9.10.

x, 1

y, 2

V

t

mg

i

j

k

z, 3

FIGURE 9.10
Coordinate system for 6 DOF model.
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Once again, we restate the equations of motion, which, for generality, includes a term for
rocket propulsion of the projectile. However, because this force is usually assumed to be
aligned with the longitudinal axis of the projectile, its effect on the motions we will study is
uncoupled from the other motions and may be added in afterward. Consequently, we will
ignore it in our further work:

F = ma (9.217)

m
dV
dt

= SF +mg +mL +SRT (9.218)

Where m is the projectile mass; V is the projectile velocity vector; t is the time; a =
dV
dt

is

the vector acceleration; SF is the vector sum of all aerodynamic forces; g is the vector
acceleration due to gravity; L is the vector Coriolis acceleration due to rotation of the earth;
and SRT is the vector sum of all rocket thrust forces (to be ignored).
We can also write the equation for the conservation of angular momentum as

dH
dt

= SM +SRM (9.219)

Where H is the vector angular momentum of the projectile; SM is the vector sum of all
aerodynamic moments; and SRM is the vector sum of all rocket thrust moments (to be
ignored).
Because the projectile is assumed to be symmetric, every axis transverse to the longitu-

dinal axis through the CG is a principal axis of inertia. The longitudinal axis itself is
also, of course, a principal axis of inertia. The definition of the inertia tensor, which we will
use, is

I =

Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

2
664

3
775 (9.220)

Here the diagonal terms are called the moments of inertia and the off-diagonal terms are
called the products of inertia. We know that there is a rotation that can be applied to this
tensor such that the off-diagonal elements go to zero. In this orientation, the axes are said to
be principal axes of inertia, and the tensor is written as

I =

Ix 0 0

0 Iy 0

0 0 Iz

2
664

3
775 (9.221)

In our coordinate system, we shall define the unit vectors, i, j, and k so that they all lie
along the principal axes of the projectile. Because of this unique situation, the total angular
momentum of the projectile can be expressed as the sum of two vectors: the angular
momentum about i and the angular momentum about any axis perpendicular to i through
the CG. Since the i-axis is what we usually call the polar axis, we will denote the polar
moment of inertia as IP. With the symmetry of the projectile, the other moments of inertia
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about axes perpendicular to i are known as the transverse moments of inertia Iy = Iz = IT.
We can then rewrite the inertia tensor as

I =

IP 0 0

0 IT 0

0 0 IT

2
664

3
775 (9.222)

If a projectile is spinning at spin rate p, the angular momentum about the polar axis is
defined as

HP = IPpi (9.223)

The angular momentum about any transverse axis is defined as

H i
i

T T
d
d

= ×⎛
⎝
⎜

⎞
⎠
⎟I

t
(9.224)

With this, we can write the total momentum vector as

H i i
i= + ×⎛

⎝
⎜

⎞
⎠
⎟I p I

t
P T

d
d

(9.225)

By defining a specific angular momentum h = H/IT, we can write

h i i
i= + ×⎛

⎝
⎜

⎞
⎠
⎟

I p
I t
P

T

d
d

(9.226)

If we take the derivative of Equation 9.226 with respect to time, we get

d
d

d
d

d
d

d
d

d
d

P

T

P

T

2h
i

i i i
i

i
t

I
I

p
I p
I t t t t

= + + ×⎛
⎝
⎜

⎞
⎠
⎟ + ×

⎛
⎝
⎜

⎞
⎠
⎟2

(9.227)

Since the cross product of a vector with itself is zero, we get

d
d

d
d

d
d

P

T

P

T

2h
i

i
i

i
t

I
I

p
I p
I t t

= + + ×
⎛
⎝
⎜

⎞
⎠
⎟2

(9.228)

In anticipation of a later need, we shall take the dot product and cross product of vector h
with unit vector i to get

h i i i
i

i⋅ = + ×⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ =

I p
I t

I p
I

P

T

P

T

d
d

(9.229)

h i i i
i

i
i× = + ×⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥× =

I p
I t t
P

T

d
d

d
d

(9.230)
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In Equations 9.229 and 9.230, we have used the orthogonality properties of vectors as
follows:

i � i = 1

i � j = i � k = 0

i� i = 0

i� j = k ! i� jð Þ � i = kð Þ � i = j∴ i� jð Þ � i = j

We will now examine all the forces and then the moments acting on the projectile
and combine them into Equations 9.218 and 9.219. We have discussed all these items in
Chapter 7, so we shall simply refresh their meanings briefly and move on. The first force
acting on the projectile is the drag force, which acts opposite to the velocity vector, so we have

Drag force = FD = −
1
2
rSCDVV (9.231)

The second force is the lift force, which we modified for our coordinate system as follows:

Lift force = FL = −
1
2
rSCLa

V� i�Vð Þ½ � (9.232)

This equation contains a vector triple product in it that we replace with the relationship
from vector algebra

A� B� Cð Þ = A � Cð ÞB − A � Bð ÞC (9.233)

Which, for the product in Equation 9.232, can be written as

V� i�Vð Þ = V2i − V � ið ÞV
When inserted into Equation 9.232, we have

Lift force = FL =
1
2
rSCLa

V2i − V � ið ÞV� �
(9.234)

The next force is the Magnus force, brought on by the spin or roll of the projectile and
taken from Equation 7.12:

Magnus force M Np= = ⎛
⎝
⎜

⎞
⎠
⎟ ×F V i

1
2
ρ αSV

pd
V

C ( ) (9.235)

However, from Equation 9.229, we know that p = (IT/IP)(h · i) and, from vector algebra,
V × i = −i × V. Then, we can manipulate Equation 9.235 to the form

Magnus force M N
T

P
p= = − ⎛
⎝
⎜

⎞
⎠
⎟ ⋅ ×F h i i V

1
2
ρ αSdC

I
I

( )( ) (9.236)

Next, we need to include the pitch-damping force from Equation 7.14, where we will
write v′ as the unit vector along the velocity vector:

Pitch-damping force d
d

d
d dN Nq= ⎛

⎝
⎜

⎞
⎠
⎟ + −

′1
2

1
2

ρ ρ αVSd
t

C VSdC
t

i i vd
tt

⎛
⎝
⎜

⎞
⎠
⎟ (9.237)
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If we assume dv′/dt = di/dt (this means that the rate at which the velocity vector is
rotating to follow the curve of the trajectory is much smaller than the rate at which the axis
of the projectile is moving) and we include Equation 9.230, we get a relation similar to
Equation 7.17:

Pitch-damping force
d
d

d
d

N Nq= ⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠

1
2

1
2

ρ ρ αVSdC
t

VSdC
t

i i
⎟⎟ (9.238)

or by Equation 9.230,

Pitch-damping force =
1
2
rVSd CNq

+ CN _a

� �
h� ið Þ (9.239)

With all our forces now expressed in terms of our defined coefficients, we can divide
Equation 9.218, omitting the rocket motor, by the projectile mass and inserting the coeffi-
cients to give

d
d

D L N T

P

pV
V i V i V h i

t
VSC

m
SC

m
V

SdC

m
I
I

= − + − ⋅ − ⎛
⎝
⎜

⎞
⎠
⎟ ⋅

ρ ρ ρ
α α

2 2 2
2[ ( ) ] ( ))( )

( )

i V

h i g

×

+
+( )

× + +
ρ αVSd C C

m
N Nq

2
ΛΛ

(9.240)

We will now examine the moments involved in Equation 9.219, the first of which is the
spin-damping moment written as

Spin-damping moment S lp= = ⎛
⎝
⎜

⎞
⎠
⎟M i

1
2

2ρV Sd
pd
V

C (9.241)

However, if we again insert Equation 9.229 into the aforementioned equation, we get

Spin-damping moment = MS =
1
2
rVSd2Clp

IT
IP

h � ið Þi (9.242)

The rolling moment comes from Equation 7.6 and is

Rolling moment = MR =
1
2
rV2SddFCld i (9.243)

The overturning moment can be written from Equation 7.9 as

Overturning moment = Ma =
1
2
rSdVCMa

V� ið Þ (9.244)

The Magnus moment can be written from Equation 7.13, and, by using the relations of
Equations 9.233 and 9.236, we get

Magnus moment = Mpa =
1
2
rSd2CMpa

IT
IP

h � ið Þ V − V � ið Þi½ � (9.245)

We can obtain the pitch-damping moment by rewriting Equation 6.19 as well as using the
relation of Equation 9.229 to get

Pitch-damping moment = Mq =
1
2
rVSd2 CMq

+ CM _a

� �
h − h � ið Þi½ � (9.246)
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We can now place all these relations into Equation 9.219, again omitting the rocket term,
to yield

dH
dt

= MS +MR +Ma +Mpa +Mq (9.247)

Equation 9.247 can be changed to a more desirable form by dividing by IT, which yields

dh
dt

=
MS

IT
+
MR

IT
+
Ma

IT
+
Mpa

IT
+
Mq

IT
(9.248)

This, in turn, may be rewritten by inserting the various moment equations derived
earlier as

dh
dt

=
rVSd2Clp

2IP
(h � i)i + rV2SddFCld

2IT
i +

rVSdCMa

2IT
(V� i)

+
rSd2CMpa

2IP
(h � i)½V − (V � i)i� +

rVSd2 CMq
+ CM _a

� �
2IT

½h − (h � i)i�
(9.249)

Note that the equations of motion are highly coupled to one another, and the reason we
call the model a 6 DOF is readily apparent. When we break the equations up into their
individual components, we have six equations and six unknowns (x, y, z, p, a, and b). Let us
recall that the x-, y-, and z-axes are axes fixed to the earth, independent of the projectile,
while i is the unit vector along the axis of symmetry of the projectile and has components
along the x, y, z earth axes, and p, a, and b are the spin rate, pitch, and yaw angles,
respectively. For convenience and clarity, and to facilitate analysis, we will relabel the x, y, z
unit vectors (normally i, j, and k) as e1, e2, and e3, respectively, letting the subscripts denote
the x-, y-, z-axes in that order (see Figure 9.10). Then, in terms of components in the earth-
fixed system,

h = h1e1 + h2e2 + h3e3 (9.250)

i = i1e1 + i2e2 + i3e3 (9.251)

V = V1e1 + V2e2 + V3e3 (9.252)

W = W1e1 +W2e2 +W3e3 (9.253)

We shall also define

v = V −W = V1 −W1ð Þe1 + V2 −W2ð Þe2 + V3 −W3ð Þe3 (9.254)

and further defining

v1 = V1 −W1ð Þ, v2 = V2 −W2ð Þ, v3 = V3 −W3ð Þ (9.255)

and

v =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 + v22 + v23

q
(9.256)
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We can insert the definition for v in place of V in Equations 9.245 and 9.249 to yield

d
d

(D L N T
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pV
v i (v  i)v h

t
vSC

m
SC

m
v

SdC
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I
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(9.257)

and

dh
dt

=
rvSd2Clp

2IP
h � ið Þi + rv2SddFCld

2IT
i +

rvSdCMa

2IT
v� ið Þ

+
rSd2CMpa

2IP
h � ið Þ½v − v � iÞið � +

rvSd2
	
CMq

+ CM _a



2IT

h − h � ið Þi½ �
(9.258)

Our goal is to examine Equations 9.257 and 9.258 and break each into three equations, one
for each coordinate direction (actually for the acceleration in each coordinate direction).
But before we attempt to break Equations 9.257 and 9.258 into their components, it will be
best to solve for some of the vector quantities that occur in them. Beginning with the second
term of Equation 9.257, we can, with appropriate vector multiplication, obtain

v � ið Þv = v21i1 + v1v2i2 + v1v3i3
	 


e1 + v1v2i1 + v22i2 + v2v3i3
	 


e2  

+ v1v3i1 + v2v3i2 + v23i3
	 


e3 (9.259)

Another useful relation is

v � ið Þ = v1e1 + v2e2 + v3e3ð Þ � i1e1 + i2e2 + i3e3ð Þ (9.260)

or

v � ið Þ = v1i1 + v2i2 + v3i3 (9.261)

However, we can show that

cosat =
v � ið Þ
v

=
v1i1 + v2i2 + v3i3

v
(9.262)

The next relations in Equation 9.257 are

h � ið Þ = h1i1 + h2i2 + h3i3 (9.263)

and

i� vð Þ =
e1

i1

v1

e2

i2

v2

e3

i3

v3

��������

��������
= i2v3 − i3v2ð Þe1 + i3v1 − i1v3ð Þe2 + i1v2 − i2v1ð Þe3 (9.264)

Now, also in Equation 9.257 is the term

h � ið Þ i� vð Þ = h1i1 + h2i2 + h3i3ð Þ i2v3 − i3v2ð Þe1 + i3v1 − i1v3ð Þe2 + i1v2 − i2v1ð Þe3½ � (9.265)
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But with the fact that (h · i) = IPp/IT as shown earlier, then we can write

h � ið Þ i� vð Þ = IPp
IT

i2v3 − i3v2ð Þe1 +
IPp
IT

i3v1 − i1v3ð Þe2 +
IPp
IT

i1v2 − i2v1ð Þe3 (9.266)

Another relation we have to deal with is

h� ið Þ =
e1

h1

i1

e2

h2

i2

e3

h3

i3

��������

��������
= h2i3 − h3i2ð Þe1 + h3i1 − h1i3ð Þe2 + h1i2 − h2i1ð Þe3 (9.267)

The next relation we generate with the help of Equation 9.229 is

h � ið Þi = IPp
IT

i1e1 +
IPp
IT

i2e2 +
IPp
IT

i3e3 (9.268)

In Equation 9.258, we need

v� ið Þ =
e1

v1

i1

e2

v2

i2

e3

v3

i3

��������

��������
= i3v2 − i2v3ð Þe1 + i1v3 − i3v1ð Þe2 + i2v1 − i1v2ð Þe3 (9.269)

And finally in Equation 9.258,

v � ið Þi = v1i1 + v2i2 + v3i3ð Þ i1e1 + i2e2 + i3e3ð Þ (9.270)

or

v � ið Þi = v1i
2
1 + v2i1i2 + v3i1i3

	 

e1 + v1i1i2 + v2i

2
2 + v3i2i3

	 

e2

+ v1i1i3 + v2i2i3 + v3i
2
3

	 

e3 (9.271)

Let us now look at Equation 9.257 with all the vector quantities broken into their
components
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Similarly, let us perform the same operation on Equation 9.258
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We will first operate on Equation 9.272 by collecting all the terms with the unit vectors e1,
then e2 and e3 and by putting them into the equations for linear and angular momentum:

dV1

dt
= −

rvSCD

2m
v1 +

pSCLa

2m
v2i1 − vv1 cosat
� �

−
rSdCNpa

p

2m
v3i2 − v2i3ð Þ

+
rvSd CNq

+ CN _a

� �
2m

h2i3 − h3i2ð Þ + g1 + L1 (9.274)

dV2

dt
= −

rvSCD

2m
v2 +

pSCLa

2m
v2i2 − vv2 cosat
� �

−
rSdCNpa

p

2m
v1i3 − v3i1ð Þ

+
rvSd CNq

+ CN _a

� �
2m

h3i1 − h1i3ð Þ + g2 + L2 (9.275)

dV3

dt
= −

rvSCD

2m
v3 +

pSCLa

2m
v2i3 − vv3 cosat
� �

−
rSdCNpa

p

2m
v2i1 − v1i2ð Þ

+
rvSd CNq

+ CN _a

� �
2m

h1i2 − h2i1ð Þ + g3 + L3 (9.276)

Next is Equation 9.273, where the same procedure will be followed:
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We can simplify Equations 9.274 through 9.279 considerably by defining the following
coefficients:

~CD =
rvSCD

2m
~ClP =

rvSd2ClPp
2IT

~CLa
=
rSCLa

2m
~Cld =

rv2SddFCld

2IT

~CNpa
=
rSdCNpa

p

2m
~CMa

=
rvSdCMa

2IT

~CNq
=
rvSd CNq

+ CN _a

� �
2m

~CMpa
=
rSd2CMpa

p

2IT

~CMq
=
r vSd2 CMq

+ CMa

� �
2IT

With these coefficients, we can write Equations 9.274 through 9.276 in a more compact form:

dV1

dt
= −~CDv1 + ~CLa

v2i1 − vv1 cosat
	 


− ~CNpa
v3i2 − v2i3ð Þ + ~CNq

h2i3 − h3i2ð Þ + g1 + L1 (9.280)

dV2

dt
= −~CDv2 + ~CLa

v2i2 − vv2 cosat
	 


− ~CNpa
v1i3 − v3i1ð Þ + ~CNq

h3i1 − h1i3ð Þ + g2 + L2 (9.281)

dV3

dt
= −~CDv3 + ~CLa

v2i3 − vv3 cosat
	 


− ~CNpa
(v2i1 − v1i2) + ~CNq

(h1i2 − h2i1) + g3 + L3 (9.282)

We can do the same with Equations 9.277 through 9.279:
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Now that we have the six coupled equations for our six accelerations, we would like to
determine the position of the projectile in space and time. We do this by creating a vector X
to the center of mass of the projectile. If we note that X = [xe1 + ye2 + ze3] in the earth-fixed
coordinate system, then we can break the individual components into

x = x0 +
ðt
0

V1dt (9.286)

y = y0 +
ðt
0

V2dt (9.287)

z = z0 +
ðt
0

V3dt (9.288)

Recognize that when firing a long-range weapon, we usually do so with grid coordinates
on a map of the earth. Amap is, in theory, created by peeling the geometry off a globe. Thus,
the coordinates and distances are correct in the downrange and cross-range directions
(x and z). However, the altitude y has to be corrected for the curvature of the earth. This is
depicted with the applicable equations in Figure 9.11. A similar rotation occurs with the
gravity vector as depicted in Figure 9.12.
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x2x2RRθ2

2RR222
E2 ≈E2 ≈ =

FIGURE 9.11
Altitude error over long trajectories.
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With this relationship, we can write the projectile position vector in earth coordinates as
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Where R is the average radius of the earth, taken to be 6,951,844 yards or 6,356,766 m. The
use of earth coordinates is recommended at ranges beyond about 2000 yards (at 2000 yards,
there is a 10.36 in. difference in height [1]). Furthermore, the acceleration of gravity varies
with altitude (and, in fact, latitude and longitude as well), and we need to consider this.
To complete the equations of motion, we must consider the form of the Coriolis accel-

eration vector. We have discussed this extensively previously so we shall simply write the
components of this vector as

L1 = 2Ω −V2 cos L sinAZ − V3 sin Lð Þ (9.290)

L2 = 2Ω V1 cos L sinAZ + V3 cos L cosAZð Þ (9.291)

L3 = 2Ω V1 sinL − V2 cos L cosAZð Þ (9.292)

or as a vector

L =

L1

L2

L3

2
664

3
775 e1 e2 e3½ � = 2Ω

−V2 cos L sinAZ − V3 sinL

V1 cosL sinAZ + V3 cos L cosAZ

V1 sin L − V2 cosL cosAZ

2
664

3
775 e1 e2 e3½ � (9.293)

We now have the differential equations of motion but need initial conditions to solve
them. Let us examine the projectile at the instant of muzzle exit without worrying about
how it attained its state of motion there (this is the job of the interior ballistician). We shall
define the initial tube angle in azimuth and elevation as q0 and f0, respectively. Then, our
initial velocity vector can be defined as
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FIGURE 9.12
Rotation of the gravity vector due to earth curvature and associated equations.
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V0 =

L1

L2

L3

2
664

3
775 e1 e2 e3½ � = V0

cos f0 cos q0
sin f0 cos q0

sin q0

2
664

3
775 e1 e2 e3½ � (9.294)

And, if we also take the wind into account, we have

v0 = V0 −W0 =

v10
v20
v30

2
664

3
775 e1 e2 e3½ � =

V10 −W10

V20 −W20

V30 −W30

2
664

3
775 e1 e2 e3½ � (9.295)

Here the usual relationships for these vectors apply. These are

V0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

10
+ V2

20
+ V2

30

q
(9.296)

v0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v210 + v220 + v230

q
(9.297)

The initial orientations of the body-fixed unit vectors in the earth-fixed system are

i0 = i10e1 + i20e2 + i30e3 =

i10
i20
i30

2
664

3
775 e1 e2 e3½ � =

cos f0 + a0ð Þ cos q0 + b0ð Þ
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j0 = j10e1 + j20e2 + j30e3 =

j10
j20
j30

2
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3
775½ e1 e2 e3 �

=
1ffiffiffiffi
Q

p
−cos2(q0 + b0) sin (f0 + a0) cos (f0 + a0)

cos2(q0 + b0)cos
2(f0 + a0) + sin2(q0 + b0)

− sin (q0 + b0) cos (q0 + b0) sin (f0 + a0)

2
664

3
775½ e1 e2 e3 � (9.299)

k0 = k10e1 +k20e2 + k30e3 =

k10
k20
k30

2
664

3
775½e1 e2 e3 �= 1ffiffiffiffi

Q
p

− sin q0 + b0ð Þ
0

cos q0 + b0ð Þ cos f0 + a0ð Þ

2
664

3
775 e1 e2 e3½ � (9.300)

In the aforementioned equations, a0 and b0 are the initial pitch and yaw angles, respec-
tively, of the projectile. Thus, they directly add to the weapon azimuth and elevation angles.
We define quantity Q following McCoy [1] as

Q = sin2 q0 + b0ð Þ + cos2 q0 + b0ð Þcos2 f0 + a0ð Þ (9.301)

If we now consider the rotation (w)ijk of the projectile about its axis of symmetry (thus
relative to the i–j–k triad) and we define an arbitrary initial projectile rotation as

w0ð Þijk = wi0i0 + wj0j0 + wk0k0 (9.302)

Here this initial angular velocity is dependent upon the initial orientation of the unit
vector i0. Then, the initial velocity of the unit vector can be written as follows:
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di0
dt

= (w0)ijk � i0 =

i0 j0 k0

wi0 wj0 wk0

1 0 0

��������

��������
= wk0j0 − wj0k0

h i
=

_i10
_i20
_i30

2
6664

3
7775 e1 e2 e3½ �

=

wk0 j10 − wj0k10
wk0 j20 − wj0k20
wk0 j30 − wj0k30

2
664

3
775 e1 e2 e3½ � (9.303)

Note that Equation 9.303 is a tensor equation. Tensors are higher-order vectors but can be
treated the same. If we insert the results of Equations 9.299 and 9.300 into the aforemen-
tioned equation, we get

_i10 =
1ffiffiffiffi
Q

p =
�
wj0 sin q0 + b0ð Þ − wk0cos

2 q0 + b0ð Þ sin f0 + a0ð Þ cos f0 + a0ð Þ � (9.304)

_i20 =
1ffiffiffiffi
Q

p = wk0cos
2 q0 + b0ð Þcos2 f0 + a0ð Þ + wk0 sin

2 q0 + b0ð Þ� �
(9.305)

_i30 =
1ffiffiffiffi
Q

p �
−wj0 cos q0 + b0ð Þ cos f0 + a0ð Þ − wk0 sin q0 + b0ð Þ cos q0 + b0ð Þ sin f0 + a0ð Þ � (9.306)

Continuing with our statement of the initial conditions, a positive pitch rotates the nose of
the projectile upward and a positive yaw rotates the nose to the left as viewed from the rear.
The initial value of the modified angular momentum vector is given by

h i i
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0= + ×⎛
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I p
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d
d

(9.307)

We can rewrite di0/dt as

di0
dt

= _i10e1 +
_i20e2 +

_i30e3 (9.308)

Which then allows us to write

i0 �
di0
dt

=

e1 e2 e3

i10  i20  i30
_i10  

_i20  
_i30

��������

��������
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� �
e1 + i30
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_i30

� �
e2 + i10
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_i10

� �
e3 (9.309)

We can then incorporate Equation 9.309 into Equation 9.307 to yield

h0 =

h10
h20
h30

2
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3
775 e1 e2 e3½ � =

IPp0
IT

i10 + i20
_i30 − i30
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IT
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IPp0
IT
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2
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777777775
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Here the initial value of the spin rate p0 is determined by the axial velocity and the twist
rate n (in calibers per revolution) of the weapon through p0 = 2πV0/nd. We have thus
completed all the initial conditions necessary to perform the calculation.
As we will discuss in a later section, the motion of the motion can be characterized as

epicyclic. The tip of a vector drawn from the CG of the projectile to the nose will trace out a
curve that contains two cyclic modes: a fast mode, known as nutation, and a slow mode,
known as precession. If the round is stable, these modes will eventually damp down to near
zero, leaving only some movement because of nonlinear forces and moments. We shall
explore this more later.
Some other terms come up in the succeeding sections that require definitions. Since they

are essential to the understanding of trajectories, we will define them now.
The yaw of a projectile of repose is the yaw created by the action of gravity on the pro-

jectile as it attempts to follow its trajectory curve. As stated earlier, the nose of the projectile
is usually above the trajectory. There is then a net aerodynamic force through the CP which
wants to rotate the nose up. With a right-hand spinning projectile, this results in a yaw of
the nose to the right. This is called the yaw of repose.
Failure to trail is a situation that arises when the base of the projectile does not follow the

nose (it flies base first after maximum ordinate). This is depicted in Figure 9.13.
The trail angle is the quadrant elevation angle (particular to a gun, projectile, and charge

combination) above which the projectile will not turn over and will fail to trail.
We can summarize this section by saying that for a rigid projectile, the 6 DOF model is as

accurate as one can get to the trajectories. If the model yields an inaccurate answer, the
problem is usually a wrong assumption in the metrology, initial conditions, or projectile mass
properties. Lastly, the only practical method of solving these equations is by numerical
methods, and, with the speed of computers today, the codes run very efficiently and quickly.
This last statementmakes it difficult togeneratemeaningfulproblems for the interested reader.
We have endeavored to create useful exercises by stipulating a large number of conditions
and requiring the reader to examine the accelerations of the projectile at a point in space.

Problem 34
A British bomber is flying at a speed of 200 mph in still air. If the 0.303 in. machine guns are
fired sideways, calculate the axial acceleration vector and the angular acceleration vector
acting on the projectile through use of the 6 DOF equations if the projectile is

x, 1

y, 2

V

mg mg

i

j

k

αt

V

z, 3

FIGURE 9.13
Projectile that has failed to trail.

296 Ballistics



1. Fired to the right
Answer:

a = −1376e1 + 5:89e2 − 1184e3½ � ft
s

� �

dh
dt

= 39:85e1 − 35, 922e2 − 2:45e3½ � rad
s2

� �

2. Fired to the left
Answer:

a = −1376e1 + 70:29e2 − 1184e3½ � ft
s2

� �

dh
dt

= 39:85e1 + 35, 922e2 + 2:45e3½ � rad
s2

� �

3. Discuss the effect of the angular momentum on the projectile nose (which way does
it tip?)

Please ignore the Coriolis acceleration; assume there is no yaw at muzzle exit and assume a
muzzle velocity of 2440 ft/s; the weapon has a right-hand twist.

• Projectile information:

CD0
= 0:35 CMq

+ CM _a

� �
= −16:2 IP = 0:00026 lbm‐in:2

� �
CDd2

= 3:46 CNq
+ CN _a

� �
= 0:003 IT = 0:00258 lbm‐in:2

� �
CMa

= 2:36 CMpa
= 0:02 m = 0:025 lbm½ �

CLa
= 2:81

CNpa
= −0:67 r = 0:060

lbm
ft3

� �
p = 2033

rev
s

h i
:

Please supply all answers in an inertial coordinate system labeled 1, 2, and 3, with 1 being
along the aircraft flight path and 3 being off the right side of the plane. Treat all missing
coefficients as equal to zero.

Problem 35
One of the interesting aspects of the forces acting on a projectile occurs as the projectile
leaves an aircraft sideways. This problem is encountered all the time in the AC-130 gunship.
Let us examine a 105 mmHE projectile being fired into a city from both the top of a building
and from the AC-130 in flight. The velocity of the projectile is 1510 ft/s. With the infor-
mation provided,

1. Calculate the total acceleration vector for both cases.
2. Comment on the differences.
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Positional information:north.

• 33.5° north latitude.
• Azimuth of velocity vector: 80° true.
• Angle of velocity vector to horizontal: −10°.
• Wind is calm.
• a = +2° (nose up); b = −1.5° (nose to the left looking downrange).
• The projectile nose is rotating to the right of the velocity vector at 0.5 rad/s.
• The aircraft is flying at 300 mph to the north.

Projectile information:

CD0
= 0:39 CMq

+ CM _a

� �
= −6:5 IP = 0:547 lbm‐ft2

� �
CDd2

= 8:0 CNq
+ CN _a

� �
= 0:005 IT = 5:377 lbm‐ft2

� �
CMa

= 3:80 CMpa
= 0:05 m = 32:1 lbm½ �

CLa
= 1:9

CNpa
= −0:01 r = 0:060

lbm
ft3

� �
p = 200

rev
s

h i
:

Please supply all answers in an inertial coordinate system labeled 1, 2, and 3, with 1 being
due north and 3 being due east.

Problem 36
The Paris gun was built by Germany in the First World War to shell Paris from 75 mi away.
The weapon was a 210 mm diameter bore with the shells preengraved to compensate for
wear of the tube. During firing of this weapon, all things such as wind effects and Coriolis
had to be accounted for (they really could have used a good 6 DOF model and a computer).
Write the acceleration vector for this projectile at an instant in its trajectory when the
velocity (relative to the ground) is 2500 ft/s and the following conditions apply (please note
that there is no rocket motor):

• Positional information:

48.75° north latitude.
Azimuth of velocity vector: 300° true.
Angle of velocity vector to horizontal: +10°.
Wind is blowing at 20 mph due south and horizontal.
a = 1°; b = 1.5°.
The projectile nose is rotating up at 2 rad/s.

• Projectile information:
CD = 0:28 CMq

+ CM _a

� �
= −16:5 IP = 19:13 lbm‐ft2

� �
CMa

= 3:50 CNq
+ CN _a

� �
= 0:005 IT = 66:40 lbm‐ft2

� �
CLa

= 2:50 CMpa
= 0:55 m = 220 lbm½ �

CNpa
¼ − 0:02 r = 0:060

lbm
ft3

� �
p = 150

rev
s

h i
:
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Note that the aforementioned numbers are guesses at the characteristics of the projectile;
they do not represent the performance of the real projectile as no data are available from any
source researched.
Please supply all answers in an inertial coordinate system labeled 1, 2, and 3, with 1 being

due west and 3 being due north.
Answer:

The linear acceleration vector is a = −85e1 − 33e2 − 35e3f g ft
s2

� �

The angular acceleration vector is 
dh
dt

= −14e1 − 42e2 + 38e3f g rad
s2

� �

Problem 37
An AC-130 is flying at a speed of 200 mph in still air. If the 105 mm weapon is fired
sideways, calculate the axial acceleration vector and the angular acceleration vector acting
on the projectile through use of the 6 DOF equations if the projectile is fired to the left.
Discuss the effect of the angular momentum on the projectile nose (which way does it want
to tip?)
Please ignore the Coriolis acceleration; assume there is no yaw at muzzle exit, and assume

a muzzle velocity of 1500 ft/s; the weapon has a right-hand twist.

• Projectile information:

CD0
= 0:39 CMq

+ CM _a

� �
= −6:5 IP = 0:547 lbm‐ft2

� �
CDd2

= 8:0 CNq
+ CN _a

� �
= 0:005 IT = 5:377 lbm‐ft2

� �
CMa

= 3:80 CMpa
= 0:05 m = 32:1 lbm½ �

CLa
= 1:9

CNpa
= −0:01 r = 0:060

lbm
ft3

� �
p = 220

rev
s

h i
:

Please supply all answers in an inertial coordinate system labeled 1, 2, 3, with 1 being along
the aircraft flight path and 3 being off the right side of the plane. Treat all missing coeffi-
cients as equal to zero.

Problem 38
An F-86 Saber jet flying with a speed of 600 mph. The aircraft is pulling up out of a dive and
the pilot is experiencing 2.5 g′s. The pilot fires his 0.50 caliber machine guns at a ground
target during the pull out. At the instant the plane makes an angle of 30° to the ground, a
projectile leaves the muzzle of the weapon with a muzzle velocity of 1800 ft/s, 3° to the
right of the bore axis and is rotating to the left at 2 rad/s in the plane of the gun, relative to
the gun. Also the projectile is pitched up 1.5° and yawed left 1° to the line of fire. Ignoring
Coriolis effects, write the vectors that completely define the initial conditions of the pro-
jectile so that you could use them in a 6 DOF model. Do not solve the equations of motion—
just write the initial conditions. Assume coordinate directions as follows:
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1. Horizontal direction in which the aircraft is flying
2. Straight up
3. To the right as viewed from the rear of the aircraft

Problem 39
In the study of ballistics, we normally neglect Magnus forces as small, and only the
moments generated by these forces are significant. In low-velocity projectiles, however,
Magnus forces may be considerable. Consider a baseball thrown with spin toward a batter.
The ball weighs 5 oz. and is 2.9 in. in diameter. The distance from the pitcher’s mound to the
home plate is 60 ft 6 inches. Assume the ball is thrown at 70 mph and that there is no wind.
The release point is 4 ft above the groundwith an upward angle of 4°. We need to determine
howmuch spin is required to move the ball 2 ft to the left as viewed from the pitcher. Please
perform the following calculations:

1. Assuming constant drag and Magnus force coefficients, develop the equations of
motion for the ball assuming flat fire is valid and the spin axis remains vertical for
the entire flight.

2. Determine the spin rate and direction to cause the desired motion.
3. Determine the final velocity, TOF, and height of the ball.
4. Determine if the assumption of flat fire really was valid.

Please list all your assumptions. The following coefficients may be assumed:

CD = 0:52; r = 0:076
lbm
ft3

� �
; CNpa

= 0:09

9.6 Modified Point Mass Trajectory

The equations of the 6 DOF model, when fully developed, described an epicyclical motion
with fast (nutational) and slow (precessional) modes that (hopefully) would damp out early
on, allowing the projectile to assume a yaw of repose for the remainder of the flight.
This yaw of repose, which remains nearly constant, we assume will account for most of
the drag induced by the yawing of the projectile. If we can simplify the 6 DOFmodel, which
is computationally expensive to run, by accounting only for the yaw of repose, we could
get a model that will allow the projectile to drift the proper amount and still be quite
accurate.
Once again, following McCoy [1], we will make the point mass assumption in the

equations that follow. Recall that because of this assumption, the projectile is essentially
represented as a cannonball with all its mass concentrated at one point. We shall then add
some details, which will account for the yawing of the projectile, by assuming the projectile
yaw is relatively constant or varies little with time compared to the steady state yaw angle.
This assumption is usually valid except in high-angle fire situations.
We begin with the usual equations of motion and Newton’s second law

F = ma (9.311)
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Particularized as

m
dV
dt

= SF +mg +mL (9.312)

Here the variables are the same as we described in the 6 DOF section. In the aforemen-
tioned equations, we replace the velocity vector V by the vector (V − W) because drag
measurements are made relative to the air stream n relative to the ground. We will also
again replace the scalar velocity (the speed) with the difference between the projectile and
wind velocities:

v = V −W ! ~V = jV −Wj (9.313)

The diagram of the problem is shown in Figure 9.14.
From our work on 6 DOF model, recall Equations 9.257 and 9.258, which we rewrite here

neglecting the pitch-damping and rocket forces:

d
d

[ ) ]
C

(D L N T

P

pV
v i v i v h i

t
vSC

m
SC

m
v

Sd

m
I
I

= − + − ⋅ − ⎛
⎝
⎜

⎞
⎠
⎟ ⋅ρ ρ ρ

2 2 2
2α α( ))( )i v g× + + ΛΛ (9.314)

dh
dt

=
rvSd2Clp

2IP
h � ið Þi + rv2SddFCld

2IT
i +

rvSdCMa

2IT
v� ið Þ

+
rSd2CMpa

2IP
h � ið Þ v − v � ið Þi½ � +

rvSd2 CMq
+ CM _a

� �
2IP

h − h � ið Þi½ �
(9.315)

Recall also from 6 DOF model (Equation 9.228) that introduces the polar and transverse
moments of inertia that we can write

d
d

d
d

d
d

P

T

P

T

2

2

h
i

i
i

i
t

I
I

p
I p
I t t

= + + ×
⎛
⎝
⎜

⎞
⎠
⎟ (9.316)
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FIGURE 9.14
Modified point mass trajectory.

Trajectories 301



Equations 9.314 and 9.315 may be simplified by introducing the tilde (∼) coefficients:

~CD =
rvSCD

2m
~ClP =

rvSd2ClPp
2IT

~CLa
=
rSCLa

2m
~Cld =

rv2SddFCld

2IT

~CNpa
=
rSdCNpa

p

2m
~CMa

=
rvSdCMa

2IT

~CNq
=
rvSd CNq

+ CN _a

� �
2m

~CMpa
=
rSd2CMpa

p

2IT

~CMq
=
rvSd2 CMq

+ CMa

� �
2IT

Using this notation, the modified equations are written as

dV
dt

= −~CDv + ~CLa
v2i − v � ið Þv� �

− ~CNpa

IT
IP

� �
h � ið Þ i� vð Þ + g + L, (9.317)

dh
dt

= ~Clp +
~Cld

� �
i + ~CMa

v� ið Þ + ~CMpa
h � ið Þ v − v � ið Þi½ � + ~CMq

h − h � ið Þi½ � (9.318)

or alternatively,

dV
dt

= −~CDv + ~CLa
v� i� vð Þ½ � − ~CNpa

v� ið Þ + g + L, (9.319)

dh
dt

= ~ClP +
~Cld

	 

i + ~CMa

v� ið Þ + ~CMpa
h � ið Þ v − v � ið Þi½ � + ~CMq

h − h � ið Þi½ � (9.320)

We have shown earlier that since the unit vector i is always perpendicular to its derivative
di/dt, the dot product of i and di/dt is identically zero. We shall combine Equations 9.316
and 9.320 to yield

I
I

p
I
I

p
t t

C C CP

T

P

T

2

2 l l M
d
d

d
d

 +  Pi
i

i
i

i (v i)+ + ×
⎛
⎝
⎜

⎞
⎠
⎟ = +( ) ×δ α ++ [  

d
d

M Mp qC C
tα i (v i)] i
i× × + ×⎡

⎣⎢
⎤
⎦⎥

(9.321)

We will now take the dot product of i with Equation 9.321 to yield

IP
IT

_p = ~Clp +
~Cld

� �
! dp

dt
=
IT
IP

~Clp +
~Cld

� �
(9.322)

Here use has been made of the facts that a cross product results in a vector that is
orthogonal to both of the original vectors and that the dot product of orthogonal vectors is
identically zero. These relationships are written in mathematical terms here:

i
i

i i i i
i

i i v i i i v i v

⋅ = ⋅ ×( ) = ⋅ ×⎛
⎝
⎜

⎞
⎠
⎟ =

⋅ × ×( )⎡⎣ ⎤⎦ ⋅ ×( ) = ⋅

d
d

0
d
d

0

t t
ω 0

= ××( ) =i 0.
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Equation 9.322 has an important consequence; for a rotationally symmetric projectile, the
spin is decoupled from the yawing motion. Now, if we substitute Equation 9.322 into
Equation 9.321, we get

C C
I
I

p
t t

C C C

l l
P

T

2

2

l l M

p

p

 
d
d

d
d

+ (

+( ) + + ×
⎛
⎝
⎜

⎞
⎠
⎟

= ( ) +

δ

δ α

i
i

i
i

i v×× + × × + ×⎡
⎣⎢

⎤
⎦⎥

i i (v i)] i
i

) [
d
d

M Mp qC C
tα

(9.323)

or

I
I

p
t t

C C CP

T

2

2 M M M
d
d

d
d

(  ) + [ ( ) + p q

i
i

i
v i i v i ]+ ×

⎛
⎝
⎜

⎞
⎠
⎟ = × × ×α α ii

i×⎡
⎣⎢

⎤
⎦⎥

d
dt

(9.324)

With Equations 9.319, 9.322, and 9.324, we have merely restated our 6 DOF model.
Murphy [2] formulated the differential equation of motion as a second-order equation in
terms of complex variables and solved it. The particular solution was the (relatively) con-
stant yaw of repose, and the complementary solution was the transient epicyclic motion. In
the modified point mass approach, we extract the particular solution and ignore the tran-
sient motion, instead concentrating on the yaw of repose, the drift, and the effect of the yaw
drag. We assume that the epicyclic pitching and yawing motion are negligible everywhere
along the trajectory, i.e., in many instances, reasonable, since it should damp early in the
trajectory and thus contributes little to the drift. We proceed by defining another unit vector
triad in the same sense as our i–j–k triad. Instead of it being aligned with the geometric axis
of the projectile, we align it with the velocity vector and utilize l–n–m as the principal
directions. We can then define l (Figure 9.15) as

l =
v
vj j (9.325)

and formally define our vector yaw of repose as

aR = l� i� lð Þ (9.326)

But we know that, where at is the total angle of attack,

l� i� lð Þ = 1ð Þ2i − l � ið Þl = i − 1ð Þ 1ð Þ cosatl (9.327)

i

j

l

αt
sin αt

cos αt

FIGURE 9.15
Projectile axial unit vector l illustrated.
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so that in terms of at

aR = l� i� lð Þ = i − cos atð Þl (9.328)

For simplicity [1,2], if we choose the plane that l lies in to be the plane that j lies in as well,
we can write Equation 9.328 as

aR ¼ i − cos at cosati + sinatjð Þ = 1 − cos2at
	 


i + sinatcos atj

then

aR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2atð Þ2 + cos2at sin2at

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin4at + cos2at sin2at

q
and

aR ¼ sinat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2at + cos2at

q
= sinat

We shall now differentiate Equation 9.328 with respect to time:

daR

dt
¼ di

dt
− cos atð Þ dl

dt
+ sinatl (9.329)

We have made the assumption early in this analysis that the yaw of repose is relatively
constant; thus, (daR/dt) ≈ 0. We also note that for a small yaw angle, sin aR ≈ 0 ≪ cos aR.
If we incorporate these approximations into Equation 9.329, we get

di
dt

= cosatð Þ dl
dt

(9.330)

Taking the time derivative of Equation 9.330 yields

d2i
dt2

= cos atð Þ d
2l

dt2
− sinatð Þ dl

dt
(9.331)

But the small angle approximation still applies so that

d2i
dt2

= cosatð Þ d
2l

dt2
(9.332)

We can also solve Equation 9.328 for i to get

i ¼ aR + cosatð Þl (9.333)

Since v and l are parallel and the cross products of parallel vectors are zero, we can write

i� v = aR+ cos atð Þl½ � � v = aR � v + cos atð Þl� v = aR � v (9.334)

and

v� i� vð Þ ¼ v� aR � vð Þ = v2aR − v � aRð Þv = v2aR (9.335)

Also, in a similar fashion operating on Equation 9.334, we can write

v� i = v� aR + cos atð Þl½ �¼ v� aR+ v� cos atð Þl = v� aR (9.336)
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We can also show that

i� v� ið Þ ¼ v cosataR + v sin2at
	 


l (9.337)

We now have relations in Equations 9.330, 9.332, and 9.333 for i, di/dt, and d2i/dt2,
respectively, and can substitute them into Equations 9.319 and 9.324 to eliminate i. We shall
start with Equation 9.319 and noting that

v� aR = vlð Þ � aR = v l� aRð Þ (9.338)

We get

dV
dt

¼ − ~CDv + ~CLa
v2aR þ ~CNpa

v l� aRð Þ + g + L (9.339)

It is also worth noting that

dV
dt

¼ d
dt

Vl =
dV
dt

l + V
dl
dt

= _Vl + V
dl
dt

(9.340)

We will now attack each term of Equation 9.324, but first we define

g = l � ið Þ = cos at (9.341)

Then, this and the succeeding relations follow as

IP
IT

p
di
dt

≈
IP
IT

p cosat
dl
dt

= g
IP
IT

p
dl
dt

(9.342)
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Combining the terms of Equation 9.324, we get
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(9.345)

At this point, we continue with our simplifying assumptions and neglect the Coriolis term
in comparison with the gravitational acceleration term and neglect the sin2at in comparison
to g. Thus, we can rewrite Equations 9.339 (including the relation of Equation 9.340) and
9.345 as

_Vl + V
dl
dt

= −~CDv + ~CLa
v2aR + ~CNpa

v l� aRð Þ + g (9.346)
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and
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We shall now take the vector cross product of l with Equations 9.346 and 9.347 and
observe how each term behaves: first, the left-hand side (LHS),
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Then each term on the RHS of Equation 9.346:

l� −~CDv
	 


= l� −~CDvl
	 


= −~CDv l� lð Þ = 0 (9.349)

l� ~CLa
v2aR = ~CLa

v2 l� aRð Þ (9.350)

l� −~CNpa
v

� �
l� aRð Þ = −~CNpa

v l� l� aRð Þ½ � = ~CNpa
v l� aR � lð Þ½ �

= ~CNpa
v aR − l � aRð Þl½ �

(9.351)

and

l� g = l� g (9.352)

Continuing on Equation 9.347, first the LHS,
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Then each term on the RHS of Equation 9.347:

l� ~CMa
v l� aRð Þ = ~CMa

v l� l� aRð Þ½ � = −~CMa
v aR − l � aRð Þl½ � (9.356)

l� ~CMpa
vg aR = ~CMpa

vg l� aRð Þ (9.357)

continuing
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and finally
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We will now insert Equations 9.348 through 9.352 into Equation 9.346 to get

V
t

C v C vl
l

l l l l g×⎛
⎝
⎜

⎞
⎠
⎟ = × − − ⋅ + ×d

d
[ ] ( )L

2
R N R Rpα α( ) ( )αα αα αα (9.361)

We then do the same with Equations 9.353 through 9.360, inserting them into Equation
9.347, yielding
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We now have a pair of equations that essentially comprise two vector variables: the yaw
of repose aR and the vector l × aR. Cumbersome as it may seem, this is a linear system that
can be readily solved through the use of matrices and their determinants to yield aR in
terms of l and the other scalars and coefficients. The solution for aR after much manipu-
lation is
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We can further simplify this expression by returning to Equation 9.346 and taking the dot
product of it with l. Through vector algebra and the use of the fact that (l · aR) = 0, we see
that

_V = −~CDv + l � gð Þ = −
rSCDv

2

2m
+ l � gð Þ (9.364)

When this is substituted back into Equation 9.346, we get

− ~CDv + l � gð Þl + V
dl
dt

= −~CDv + ~CLa
v2aR + ~CNpa

v l� aRð Þ + g (9.365)
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Which can be rewritten as

V
dl
dt

= ~CLa
v2aR + ~CNpa

v l� aRð Þ + g − l � gð Þl (9.366)

and by neglecting the Magnus force term as it is small and noting that l × (g × l) = g − (l · g)l,
we get

V
dl
dt

= ~CLa
v2aR + l� g� lð Þ½ � (9.367)

Remember that we wish to find a useful form with which we can calculate the quasi-
steady state yaw of repose as shown in Equation 9.363. That equation encompasses different
vector functions and time derivatives of l, but our ultimate goal is to find expressions that
only involve the measurable quantities of the aeroballistic coefficients, spin, gravity, and
velocity and not the unit vector, l. To do this, although it may seem a devious process, we
begin by taking the time derivative of Equation 9.367, getting

_V
dl
dt

+ V
d2l
dt2

= 0 +
d
dt

l� g� lð Þ½ � (9.368)

We use Equation 9.364 and substitute it in Equation 9.368, arriving at
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Noticing that dg/dt = 0 (if not, we really will have problems), we can rewrite this as

V
t t t

C v
t

d
d

d
d

d
d

d
d

D

2

2 2
l

l g
l l

g l
l= − ⋅ − ⋅⎛

⎝
⎜

⎞
⎠
⎟ +( ) (9.370)

If we examine the RHS of Equation 9.370 term by term and realize from Equation 9.367
that dl/dt can be solved for, then

− 2 l � gð Þ dl
dt

= −
2
V

l � gð Þ~CLa
v2aR + l � gð Þg − l � gð Þ2l� �

(9.371)

also,

d
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l
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1 2 2 2
α αα ) ( ) (9.372)

and

~CDv
dl
dt

¼
~CDv
V

~CLa
v2aR + g − l � gð Þl� �

(9.373)

Putting these expressions back into Equation 9.370 complicates things considerably, viz.,

V
d2l
dt2

= −
2
V

~CLa
v2 l � gð ÞaR + l � gð Þg − l � gð Þ2l� �

−
1
V

~CLa
v2 aR � gð Þl + g2l − l � gð Þ2l� �

+ ~CDv
dl
dt

(9.374)
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If we assume that the terms containing our modified lift ~CLa
and drag ~CD coefficients are

either small with respect to the other terms or cancel one another, the third term in Equation
9.374 disappears, and the others simplify to eventually give

V2 d
2l

dt2
= 3 l � gð Þ2 − g2
� �

l − 2 l � gð Þg (9.375)

Recalling that the triad (l, n, m) are unit vectors, with l in the direction of the velocity
vector, v, we can write l = v/v′ and can transform Equation 9.367 into

dl
dt

=
1
V

~CLa
v2aR +

1
v2

v� g� vð Þ½ �
 �

(9.376)

Likewise, our Equation 9.374, by dividing both sides by V, can be transformed to

d2l
dt2

= −
2
V2

~CLa
v v � gð ÞaR +

1
v

v � gð Þ g −
1
v3

v � gð Þ2v
� �

−
1
V2

~CLa
v aR � gð Þv +

g2

v
v −

1
v3

v � gð Þ2v
� �

+
~CDv
V

dl
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(9.377)

Now, if we examine each term of Equation 9.363, we will have to deal with such

terms as l� dl
dt

, l � d
2l

dt2
, and

�
l � d

2l
dt2

�
l −

d2l
dt2

:We can perform all the substitutions of these

terms with what we have shown in Equations 9.376 and 9.377, and then examine
the resulting Equation 9.363 for terms that can be neglected for comparative magnitudes.
When all the algebra is completed, the resulting equation, applicable to spinning projectiles
[1], is

ααR
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2
d
d=
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⎜
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⎟I p

t
Sdv C

v
V

ρ α

(9.378)

For nonspinning projectiles, we can simplify Equation 9.363 by removing the spin terms
and neglecting terms of small magnitude. The resulting expression is

aR =
~CMq

g 2 v� v� gð Þ½ �
~CMa

Vv3
(9.379)

The vector mechanics work out so that when there is a positive overturning moment
(statically unstable projectile), the yaw of repose vector points to the right for a right-
hand spin. The yaw of repose for a statically stable nonspinning projectile is such
that the nose points slightly above the trajectory. Either Equation 9.378 or 9.379 can be
inserted into Equation 9.361 and numerically integrated simultaneously with Equation
9.362 to yield the velocity and position at any time. This forms the basis of the modified
point mass method.

Problem 40
The Paris gun was built by Germany in the First World War to shell Paris from 75 miles
away. The weapon was a 210 mm diameter bore with the shells preengraved to account for
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wear of the tube. During firing of this weapon, all things such as wind effects and Coriolis
had to be accounted for. When the United States entered the war, the doughboys (the
nickname for American troops) were to take the St. Mihiel salient where the gun was
located. We shall assume that the Germans have turned the gun to fire on the Americans.
The projectile is at some point in space defined later. To demonstrate your knowledge of the
modified point mass equations,

1. Draw the situation.
2. Calculate the vector yaw of repose for this projectile using Equation 9.326.

Answer: aR = [0.008e2 + 0.002e3] [rad].
3. Write the acceleration vector for this projectile using Equation 9.339 at the instant in

its trajectory when the velocity (relative to the ground) is 2100 ft/s and the con-
ditions given next apply.

Note: You do not need all of the information given next. It is provided to you so you
can compare the differences in formulations with the 6 DOF model.

Answer:

dV
dt

= −61e1 − 29e2 − 10e3½ � ft
s2

� �

4. Why do we not need to obtain the angular acceleration vector dh/dt?

Positional information:

• 48° north latitude.
• Azimuth of velocity vector: 190° true.
• Angle of velocity vector to horizontal: +1°.
• Wind is blowing at 15 mph due south and horizontal.
• a = 0.5°; b = 0.25°.
• The projectile nose is rotating down at 1 rad/s.

Projectile information:

CD = 0:28 CMq
+ CM _a

� �
= −16:5 IP = 19:13 lbm‐ft2

� �
CMa

= 3:50 CNq
+ CN _a

� �
= 0:005 IT = 66:40 lbm‐ft2

� �
CLa

= 2:50 CMpa
= 0:55 m = 220 lbm½ �

CNpa
= −0:02

C1P = −0:01 r = 0:060
lbm
ft3

� �
p = 130

rev
s

h i
:

Supply all answers in an inertial coordinate system labeled 1, 2, and 3, with 1 being due
south and 3 being due west.

Problem 41
If we were to use a modified point mass assumption for both of the cases cited in
Problem 35,
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1. Calculate the vector yaw of repose for both cases.
Answer: aR= [0.0003e1 + 0.0060e2− 0.0009e3] for the building andaR= [−0.0009e1−
0.0007e2 − 0.0000e3] for the gunship.

2. Draw and explain what this vector represents.
3. Comment on whether this model is applicable for each case and why.

9.7 Probability of First Round Hit

The theories describing the characteristics of exterior ballistic trajectories that we have just
completed, while increasingly complex, do not deal with the problems of real-life gunnery.
What an artillery commander or a tank commander wants to know is what the probability
will be that the first round fired will land where desired. This is less of a problem for the
indirect fire mode, where a spotter can call in corrective advice to the gunner, than it is in the
direct fire mode, where the urgency of a first round hit may be a life-and-death matter.
When you fire your weapon at a visible enemy, youmay be subject to immediate return fire.
So a first round hit with high probability of target destruction is of primary interest to
gunner and commander.
Predicted fire is what we are talking about, particularly tank gun vs. tank target, and the

variables of the combat situation are what govern these probabilities. The advent of smart,
even autonomous munitions has, of course, reduced the problems of predicted fire, but at
great monetary expense and the subjection of such munitions to countermeasures that
negate their usefulness. The study of predicted fire is still a worthwhile exercise.
Firing real projectiles from real weapon systems involves interactions among many

variables. For example, the location (terrain) of the launching platform; the condition of the
gun, its age, wear history, and mounting method; aiming procedures including fire control;
condition of the crew including fatigue, experience, fear of attack; weather conditions,
including temperature, humidity, air density, and pressure; target location relative to the
launching platform and target size; and not least, the characteristics of the projectile itself.
Leaving these generalities, let us examine two of the areas where hit probabilities are

generated: the proving ground and troop training locations. In the proving ground, great
care can be taken to reduce, and even eliminate, some of the variables. For the ammunition
designer, this is the opportunity to assess how precisely the design functions round to
round: the gunner can take all the time he/she needs to aim the weapon—no one is
shooting back at him. The weapon can be new or in the early part of its wear life; the
propellant temperature can be closely controlled, reducing temperature effects on muzzle
velocity variations. In some cases, special mounts can be built so that even large caliber
cannon can be fired from what amounts to a bench rest similar to ones used with small
arms. The object of such care is to find out the round-to-round precision (sometimes called
dispersion) of the ammunition. This is not its accuracy, but is an important component of
what is known as “first round hit probability.”
The group (usually five or more projectiles made as identical as possible) fired under such

controlled conditions clusters about an average point called the “center of impact” or CI. It
is the predictability and reproducibility of the CI that assures the gunner and tank com-
mander that when the first round of an engagement is fired, it will go where it is intended.
Rarely are second and third rounds fired at the same target in combat.
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The normal course of a development program sees multiple cycles of design, manufacture
of test samples, and test and evaluation until a stable design is achieved. These cycles are
usually followed by a series of confirmatory tests that evaluate the performance of the stable
design under varying conditions of temperature, gun wear, range performance, and a host
of other tests. By normalizing the gun superelevations of each group after firing, it is
possible then to compare the CIs of the groups. At the proving ground, the azimuth or left-
right setting of the gun would be closely maintained as a constant. This comparison speaks
to the accuracy of the design, that is, the reproducibility of the CIs under varying conditions
of proving ground firings. The precision (dispersion) of the design would also be found
under these variations.
How would this scatter of the CIs relate to accuracy under real-world combat situations?

What could we then say about the probability of first round hit (PFRH) under combat
conditions? To answer these questions, serious studies have been conducted in probabilistic
terms about the conditions to be found around the world in combat in what are termed
quasi-combat conditions [5]. Extensive computer programs have been devised, as well, more
recently, to compute PFRHs for designs of direct fire munitions under quasi-combat con-
ditions [6]. Much of these theories and computations are dependent on the fire control
system of the vehicle and data collections of conditions of terrain and atmospherics around
the world. The original work in this area was done by H. Brodkin of the Pittman–Dunn
Laboratory at the now-defunct Frankford Arsenal in 1958 and remains classified.
As shown by Christman [7], the PFRH is dependent on certain fixed biases, variable

biases, and random errors. Hit probability computed this way is heavily dependent, as it
should be, on both the type of fire control system employed and the flight properties of the
projectiles being judged. For the predicted fire hit probabilities Christman computed in
1959, laser range finding with its very small ranging errors was not in use, neither were the
short times of flight of the fin-stabilized, small-diameter but highly dense, armor-defeating
projectiles (armor-piercing fin-stabilized discarding sabot). They were not yet invented.
The superelevation of the gun, that is, the amount of elevation above the line of sight to

the target that the gunner must use to lay the weapon, is greatly reduced when both the
flight velocity is increased and the drag of the projectile is reduced with its consequently
shortened TOF. These factors have greatly aided the improved PRFH with the latest tank
cannon and fire control systems now in use. It is nevertheless instructive to show the error
sources considered in a stationary-to stationary engagement of a tank to a vertical 2.3 ×
2.3 m target. Such computations are now carried out on computer programs similar to those
shown in the report by Bunn [5].
Some error sources are tabulated in Tables 9.1 and 9.2 [7].
As can be seen from Tables 9.1 and 9.2, there are many error sources that affect PFRH in a

quasi-combat situation. Some of these require explanation. For example,

• Zeroing: The weapon is zeroed by firing a small group usually at 1200 m range, in a
noncombat situation, recording the CI of the group and adjusting the optical fire
control system so that it has a basis from which range-affected variables can be set.
Once zeroed, the other fixed and variable biases and random errors remain to
determine the PFRH at the time.

• Cant: This error, caused by the unevenness of terrain, causes a tilt of the trunnion of
the weapon in both the roll and pitch attitudes and, thus, a consequent error in
superelevation (gun elevation above boresight) dictated by the fire control.

• Drift: This error is usually the result of the Coriolis effect, that is, the effect of the
rotation of the earth under the trajectory causing a deviation in the CI. This is
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dependent on the latitude of the firing and target sites as well as the hemisphere
(northern vs. southern hemispheres reverse the direction of the deviation).

• Fire control and parallax: These errors are the result of the slop in the mechanical
linkages of the controls and the small offset in the alignment of the optical sight
with the axis of the gun tube.

• Cross wind: This is a variable bias usually affecting the firing of different groups on
different occasions

• Laying error: This is the result of random performance of gunners sighting in on
targets and laying the gun from different directions occasion to occasion.

• Range estimation: This is a bias which is fixed for laser ranging but range dependent
for optical ranging.

• Round-to-round dispersion: This is a random error dependent on the type of
ammunition being fired. It can also vary from lot to lot in the same ammunition
type due to muzzle velocity variations shot to shot in the lot.

• Jump: This is what is left over in the error budget when all other errors are
accounted for.

The test procedure by the US Army Armor and Engineer Board [6] meticulously lays out
the testing procedures used in qualifying ammunition for service use. Appendix A provides
a nomogram for computing PFRH. It also provides techniques for measuring some of the
error sources mentioned.

TABLE 9.1

Horizontal Errors on First
Rounds—Quasi-Combat
Conditions

Fixed biases

Drift
Fire control

Jump, mean

Parallax
Variable biases

Cant

Fire control
Jump variation

Wind, cross

Zeroing
Cant

Fire control

Group center of impact
Jump variation

Observation of CI

Wind, cross

Random errors
Round-to-round dispersion

Laying error
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Wemust emphasize that this discussion only points out the complexity of the problem of
computing PFRH. If the model by Bunn [5] is used to run such computations, it requires
considerable detailed data input, which for modern tank, fire control, and ammunition
designs are not available to general audiences. Furthermore, recall that the discussion was
only for stationary-to-stationary situations where the opposing tanks are firing head on.
Targets moving must provide lead data. Firing from moving vehicles, with stabilized
turrets as in the USM1 Abrams tank, adds further error sources inherent in the stabilization
system but whose advanced computers and fire control systems may eliminate some of the
other errors.
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10
Linearized Aeroballistics

The aeroballistics topics discussed so far have built up to where the reader has an appre-
ciation for the techniques required to analyze projectile motion to a great degree of accuracy.
The culmination of this study was the development of the equations for a six degree-of-
freedom (6-DOF) model, which accurately describes the motion of a rigid body through air.
With a 6-DOF model in hand, the aeroballistician can examine the effects of a given con-
figuration. The word given was italicized for emphasis because the aeroballistician must
know the configuration properties before he or she analyzes the projectile. The implications
of this are that without other tools to determinewhat needs to be changed in a design to alter
the projectile behavior, one must simply guess at a new configuration, determine the aero-
dynamic coefficients, and reanalyze. This process can be very inefficient. The solution to this
problem is to develop a theory that can be used to quickly determine what must be changed
in a projectile to alter its flight behavior, make the changes, and reassess. This will be the
topic for the remainder of this section.
Linearized theory was (at least in the opinion of the authors) refined to an exceptional

degree by Murphy [1] in 1963. Other authors before and since [2–4] have developed similar
theories, and a good description of these can be found in the book byMcCoy [5]. Linearized
theory is so named because the aerodynamic coefficients are assumed to be linear functions
of the angle of attack. In other words,

Fj ∝ Cj0 sinatð Þ or Mj ∝ Cj0d sinatð Þ (10.1)

where the subscript j indicates any parameter of interest as introduced earlier. There are
good points and bad points (as always) with this technique. The good news is that the
mathematics become simple enough to determine quantities of interest extremely quickly
and find means of changing the flight characteristics of a projectile quickly. The bad news is
that the use of linear coefficients prevents us from duplicating some motions that occur
frequently enough in projectile flight to warrant the inclusion of their nonlinear brethren—
and the math becomes complicated to boot.
We will continue the practice of using the definitions of the appropriate vectors and

scalars based on the book by McCoy [5]. The choice is somewhat arbitrary, but for several
years now, the authors have used this lucid work as a supplementary textbook, and it is a
matter of convenience. Our coordinate system is defined as in Figure 10.1.
The aerodynamic coefficients introduced in the beginning of this chapter were written for

both forces and moments as

Fj =
1
2
rV2SCj (10.2)

Mj =
1
2
rV2SdCj (10.3)
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We have also defined the angular rates of the projectile as

p = Roll ðspinÞ rate (10.4)

q = Pitch rate (10.5)

r = Yaw rate (10.6)

The projectile angular position with respect to the velocity vector was given by

a = Angle of attack (10.7)

b = Angle of sideslip (10.8)

The aerodynamic coefficients are functions of the rates expressed in Equations 10.4
through 10.6, as well as angular positions expressed in Equations 10.7 and 10.8. Addi-
tionally, these coefficients are also functions of the time rate of change of a and b that do not
normally coincide with q and r. Thus, we can write

Cj = Cj(a, b, _a, _b, p, q, rÞ (10.9)

With this nomenclature, any coefficient can be normally expressed as a series expansion in
the seven variables
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In Equation 10.10, we have included the terms in parentheses to maintain the nondi-
mensional characteristics of the coefficient. We can see that this expansion results in a large
number of terms that must be carried. Seldom in aeroballistics do we require terms in this
expression beyond the second order, but they can be included if data are available. When
we discuss linear aeroballistics, we are limiting ourselves to the eight terms displayed in
Equation 10.10.
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FIGURE 10.1
Coordinate system for projectile aerodynamic coefficients.
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The linearization implies that

Cjk =
∂Cj

∂k

�����
k=0

(10.11)

Further simplifications will be made as we progress which will assist us in tackling the
mathematics. We shall make use in this section of starred coefficients. These coefficients are
defined in terms of their unstarred counterparts as

C�
jk =

rSd
2m

Cjk (10.12)

10.1 Linearized Pitching and Yawing Motions

In the beginning of this chapter, we discussed terminology that allowed us to describe the
pitching and yawing motion of a projectile. Because of the symmetry of typical projectiles,
we combined pitch and yaw into a total yaw without any explanation. In this section, we
will discuss the two motions separately and then formally make the assumptions that
allowed us to combine them. This approach was formulated by Murphy [1], and what
follows is basically that development with the coordinate system altered to fit our needs.
If we have a projectile as depicted in Figure 10.1 and allow it only to move in a truly

pitching motion, we can look down the z-axis and we would see what is depicted in
Figure 10.2. Some interesting observations can be made from this figure. First, we see that
the velocity vector V and the associated unit vector l are pitched up at angle f to the earth-
fixed coordinate system. The projectile is actually pointed above this angle by the pitch
angle a. The vector along which the projectile is pointed is the geometric axis unit vector x
and the spin (principal) axis unit vector i. In an axially symmetric projectile, these are
identical. We can see that through a rigid body rotation, this forces the unit vectors of the
transverse geometric axis y and transverse principal axis j to be rotated from the earth-fixed
Y-axis through an angle off + a. If we assume that the projectile is constrained to pitch only,
then the time rate of change of this total angle is q and the yaw angle and yaw rate are equal
to zero as depicted in the figure.

x, i

V, l

y, j

Y, J

X, I

β = 0
r = 0

= q
dt

α

d(     + α) 
+ α

Earth-referenced
coordinate system

FIGURE 10.2
Projectile in a pure pitching motion.
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In a similar manner, we can constrain our projectile to motion in the yaw plane only,
which is depicted in Figure 10.3. In this case, the velocity and its associated unit vector are
yawed with respect to the earth-fixed coordinate system by angle q. The projectile geo-
metric axis as well as the principal axis is yawed at angle b with respect to the velocity
vector. This results in a rotation of the transverse principle axis from the earth-fixed coor-
dinate system of q + b as depicted in the illustration. The rate of change of this total angle is
the yaw rate r, and because of our constraints, there is no pitching motion as identified in
the figure.
We shall now develop the equations of motion for each of these two specialized cases

with the purpose of combining them in the end. For the purpose of this development, we
shall define the force in the Y- and Z-directions using force coefficients CY and CZ,
respectively.
If we examine our projectile constrained to a pitching motion only, we can define the force

coefficient as

C C C C
d

V
C

qd
VqY Y Y Y Y0

= + + ⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟α α

α
α (10.13)

where we have restricted ourselves to the linear coefficients. We can see that this pitching
motion causes a force in the Y-direction that is affected by angle of attack, rate of change of
angle of attack, and pitching rate. An item worthy of note is that for a perfectly symmetrical
projectile, CY0

would be zero. It is included here for completeness and can be present if an
asymmetry exists.
The corresponding moment for pitching motion only is given by

C C C C
d

V
C

qd
Vqm m m m m0

= + + ⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟α α

α
α (10.14)

where the same comments about the nondimensionalization and Cm0
apply as well.

Now we will examine the equations of motion. The force and moment equations are
given by

F = ma (10.15)

M = I _a (10.16)

x, i

V, l

z, k

Z, K

X, I

= r
dt

d(θ + β)

α = 0
q = 0

θ

β

θ + β

Earth-referenced
coordinate system

FIGURE 10.3
Projectile in a pure yawing motion.
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If we define angles f̂ and q̂ as

f̂ = f + a (10.17)

q̂ = q + b (10.18)

then our scalar equations of a projectile in flight exhibiting pure pitching motion are

m
dVx

dt
≈ m

dV
dt

= Fx (10.19)

m
d2Y
dt2

= FY cos f̂ + Fx sin f̂ −mg (10.20)

d2f̂
dt2

=
MZ

IZ
(10.21)

If we examine a small time of the projectile flight, we can assume constant velocity. If we
further limit the pitching motion to small angles, we can assume

Fx = −FD ≈ 0 (10.22)

cos f̂ ≈ 1 (10.23)

sin f̂ ≈ f̂ (10.24)

These assumptions can be used in Equations 10.19 and 10.20 to yield

m
dV
dt

= 0 (10.25)

m
d2Y
dt2

= FY −mg (10.26)

We know that

FY =
1
2
rV2SCY (10.27)

If we then substitute Equations 10.13 and 10.27 into Equation 10.26, we obtain

m
Y

t
V S C C C

d
V

C
qd
V

m
q

d
d Y Y Y Y

2

2
21

2 0
= + + ⎛

⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥
−ρ α

α
α α

gg (10.28)

or, using our definition of starred coefficients, we have

d
d Y

*
Y
*

Y
*

Y
*

2

2

2

0

Y
t

V
d

C C C
d

V
C

qd
V

g
q

= + + ⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥
−

α α
α

α (10.29)

Equation 10.29 can be combined with Equation 10.21 to develop a single equation for
projectile motion. With this, the dynamic equation for the pure pitching motion of a pro-
jectile can then be described as

€a + Ĥ1d _a − M̂1a = Â1 + Ĝd (10.30)
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This linear, second-order differential equation with constant coefficients was established
by Murphy [1] and modified here (the terms with the d subscript) to account for the
assumption of zero drag. In this expression, we identify the coefficients as follows:

Ĥ C
k

C C
V
dq1 2

1
d Y

*

Z
m
*

m
*= − + +( )⎡

⎣
⎢

⎤

⎦
⎥
⎛
⎝
⎜

⎞
⎠
⎟α α

(10.31)

M̂
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21
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⎟

Z
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(10.32)
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k2Z =
IZ
md2

(10.35)

If we include drag (and, thus, ignore Equation 10.22) yet leave all the other assumptions
in place, we obtain a result identical to that of Murphy [1]. This results in Equations 10.30,
10.31, and 10.34 being modified to

€a + Ĥ1 _a − M̂1a = Â1 + Ĝ (10.36)

Ĥ C C
k

C C
V
dq1 2

1
= − + + +( )⎡

⎣
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⎤
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(10.37)

Ĝ
k

C C
g
dZ

q
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⎜

⎞

⎠
⎟
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*
D
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It is more convenient to examine the differential Equations 10.30 and 10.36 with dimen-
sionless distance (defined as s/d) instead of time as the independent variable. The time
derivatives of dimensionless distance can then be written as

d
d

s
t

V
d

= ⎛
⎝
⎜

⎞
⎠
⎟ (10.39)

and

d
d

2s
t

V
d2 =

⎛
⎝
⎜

⎞
⎠
⎟ (10.40)

With this, we can use the relations

d
d

d
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s
t
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to rewrite Equations 10.30 and 10.36, respectively, as

a 00 +H1da
0 −M1a = A1 + Gd (10.43)

a 00 +H1a
0 −M1a = A1 + G (10.44)

The coefficients in these equations are given by

H1d = − C�
Ya

+
1
k2Z

C�
mq

+ C�
m _a

� �� �
(10.45)

H1 = − C�
Ya

+ 2C�
D +

1
k2Z

C�
mq

+ C�
m _a

� �� �
(10.46)

M1 =
1
k2Z

C�
ma

(10.47)

A1 =
1
k2Z

C�
m0

(10.48)
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where V0 is the muzzle (or a reference) velocity of the projectile.
A similar procedure can be followed to define motion constrained to the yaw plane only.

This gives the result (details covered in the report by Murphy [1]) of

b 00 +H2db
0 −M2b = A2 (10.51)

b 00 +H2b
0 −M2b = A2 (10.52)

The coefficients in these equations are given by

H2d = − C�
Zb

+
1
k2Y

C�
nr
+ C�

n _b

� �� �
(10.53)

H2 = − C�
Zb

+ 2C�
D

1
k2Y

C�
nr
+ C�

n _b

� �� �
(10.54)

M2 =
1
k2Y

C�
mb

(10.55)

A2 =
1
k2Y

C�
n0

(10.56)

k2Y =
IY
md2

(10.57)
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Assuming a projectile is axially symmetric implies that any plane orthogonal to the polar
axis is a principal axis. This forces the two transverse moments of inertia to be equal and,
with an assumption of small yaw, allows us to write

IT = Iy = Iz ≈ IY = IZ (10.58)

This symmetry also allows us to equate the pitch and yaw coefficients. Thus, we define

CNa
≡ CYa

= CZb
(10.59)

CMq
≡ Cmq

= Cnr
(10.60)

CMa
≡ Cma

= Cnb
(10.61)

CM _a
≡ Cm _a

= Cn _b
(10.62)

Complex numbers are commonly used to define pitch and yaw angles. This is extremely
convenient because it allows us to collapse two differential equations into one. We shall
define the complex yaw angle as x, which shall be thus defined

x ≡ a + ib (10.63)

This definition allows one to look downrange as a projectile flies along a trajectory and
visualize the imaginary part of the equation affecting the yaw of the projectile and the real
part of the equation as affecting pitch. This is illustrated in Figure 10.4. In this figure, the
origin is the trajectory of the projectile looking downrange.
The two differential equations of motion Equations 10.44 and 10.52 can then be combined

by first multiplying Equation 10.52 by the imaginary number i and adding them together.
This results in

ξ   + Hξ  − Mξ = A + G V0

V

2

(10.64)

The coefficients in this equation are given by

H = − C�
Na

+ 2C�
D +

1
k2T

C�
Mq

+ C�
M _a

� �� �
(10.65)

M =
1
k2T

C�
Ma

(10.66)

iβ

α

FIGURE 10.4
Complex yaw plane.
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A =
1
k2T

C�
m0

+ iC�
n0

	 

(10.67)
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The solution to Equation 10.64 can be found for a nonspinning projectile to be [1]

x = K1 exp iy1ð Þ + K2 exp iy2ð Þ + K3 exp iy30ð Þ + xg (10.69)

In this equation, each term Kj is known as an arm to be subsequently described. Math-
ematically, we can express these terms as

Kj = Kj0 exp ljs
� �

(10.70)

Here we see that each arm is a function of its initial value (that occurring at the muzzle of
the gun) and an exponential damping term. The exponential damping term decides
whether the amplitude of the motion will decay, grow, or remain constant. The damping
terms are given by [1,5]

l1 = l2 = −
1
2
H (10.71)

The exponential terms in Equation 10.69 contain phase angles yj. These phase angles
represent the instantaneous angle that each arm makes with the imaginary axis. These can
be written in terms of their initial value and a turning frequency as

yj = yj0 + y 0
j s (10.72)

The turning frequencies are given for a nonspinning projectile by [1,5]

y 0
1 = −y 0

2 =
ffiffiffiffiffiffiffiffi
−M

p
(10.73)

The third term on the right-hand side (RHS) of Equation 10.69 is the so-called trim arm.
This is a measure of the amount that a fin-stabilized projectile will trim (i.e., fly with con-
stant pitch or yaw) during flight. It is given by

K3 exp iy30ð Þ = −
i Cm0

+ iCn0

	 

CMa

(10.74)

The fourth term on the RHS of Equation 10.69 is the yaw caused by interaction of the
projectile with the gravity vector, sometimes called the yaw of repose. It is defined as

ξ
α

g

M T D

M
=

−( )⎛⎝⎜
⎞
⎠
⎟i C k C

gd
V

C

q

2
2 (10.75)

To visualize the physical meaning of Equation 10.69, we shall imagine we have a pro-
jectile and we are looking downrange along the trajectory such that the complex plane lies
perpendicular to the trajectory curve. Our projectile will be at some arbitrary yaw angle.
This is depicted in Figure 10.5. We need to note that the arms usually do not point to the
nose of the projectile; they point to the symmetry axis; however, it is easiest to visualize the
situation by scaling them to point to the nose. Imagine that we follow the projectile depicted
in Figure 10.5 as it traverses the trajectory. We would see the nose motion swirling around.
Throughout this time, we would also see the length of each of the arms changing (growing,
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decaying, or remaining the same) as dictated by Equation 10.69. Additionally, we would see
the arms rotating around their respective origins at rates described by Equation 10.72. All
through this time, our viewpoint would be changing because we have our gaze fixed on the
complex plane, and it is rotating into the paper because of the curvature of the trajectory.
In the development of Equation 10.64 and its solution Equation 10.69, the spin of the

projectile was neglected. Because of this, these equations are specific to fin- or drag-
stabilized projectiles that have relatively small spin rates. Murphy [1], Vaughn [2], and
McCoy [5] developed the equation of motion for spinning projectiles in exactly the same
manner. The results essentially incorporate the third angular component known as the roll
or spin. The differential equation for a spinning projectile is given by

x00 + H − iPð Þx0 − M + iPTð Þx = −iPG (10.76)

In this formulation, we can utilize axial symmetry and, thus, define our coefficients as
follows:

H = C�
La

− C�
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1
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+ C�
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� �
(10.77)
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Ma

(10.78)
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La
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(10.79)
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FIGURE 10.5
Example of tricyclic arms.
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The solution to Equation 10.76 is

x = K10 exp l1s½ �exp i y10 + y 0
1s

	 
� �
+ K20 exp ½l2s�exp i y20 + y 0

2s
	 
� �

+ xg (10.82)

This equation is essentially the same form as Equation 10.69 except for the deletion of the
trim arm. It is also noteworthy that we have expanded the slow and fast arm terms and
exponents to display their exponential behavior. The expression is also commonlywritten as

x = K1 exp iy1ð Þ + K2 exp iy2ð Þ + xg (10.83)

where the definitions of Equations 10.70 and 10.71 apply. The lj terms are known as the
exponential damping coefficients, and the yj terms are the precessional and nutation fre-
quencies of the projectile. These are commonly defined as a complex pair where

l1,2 + iy1,2 =
1
2

−H + iP ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M +H2 − P2 + 2iP 2T −Hð Þ

q� �
(10.84)

As a parting note, we need to discuss the behavior of the fast and slow arms and the
associated motion that they undergo. For a nonspinning projectile, we shall examine
Equation 10.73. In this expression, the sign of M is important. For a nonspinning projectile,
M is negative. That tells us that the arms turn in opposite directions with K1 being positive
(clockwise) and K2 negative (counterclockwise). This is depicted in Figure 10.6.
Likewise for a spinning projectile, we need to examine the derivative with respect to s of

Equation 10.84. In this case, we would find that

y 0
1,2 =

1
2

P ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 − 4M

p� �
(10.85)

Here we shall see in the following section that for stability, this must result in a solution
that has no imaginary part. So both values of the root will have the same sign; thus, the two
arms turn in the same direction as shown in Figure 10.7.
Initial conditions that are present when the projectile leaves the muzzle of the weapon are

important as our starting point for the values of the fast and slow arms. These can even
cause drastically different flight behavior when nonlinear coefficients are introduced later.
The initial sizes of the fast and slow arms can be expressed as functions of the precession
and nutation rates, the damping exponents, and the initial yaw and yaw rates [5] as

K10 exp iy10ð Þ = x00 − l2 + iy 0
2ð Þx0

l1 − l2 + i y 0
1 − y 0

2

	 
 (10.86)

K2

K1

iβ (yaw)

α (pitch)

g

1′

2′

FIGURE 10.6
Example of tricyclic arms for fin-stabilized projectile.
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K20 exp iy20ð Þ = x00 − l1 + iy 0
1ð Þx0

l2 − l1 + i y 0
2 − y 0

1

	 
 (10.87)

Because the damping exponents are usually an order of magnitude or more smaller than
the precession and nutation rates, these equations can be simplified to

K10 exp iy10ð Þ = ix00 + y 0
2x0

y 0
2 − y 0

1
(10.88)

K20 exp iy20ð Þ = ix00 + y 0
1x0

y 0
1 − y 0

2
(10.89)

These equations are important because they allow one to determine the initial amplitudes
of the arms given an assumed or measured initial yaw, yaw rate, andmuzzle exit conditions
for a known projectile geometry.
The expressions introduced in this section are the basis for stability criterion to be

established next. In the next section, we shall discuss the behavior of these equations and
use them to define stability criteria for a projectile.

Problem 1
A 155 mm M549A1 projectile has the following properties and initial conditions:

CD = 0:3

CLa
= 0:13

CMa
= 4:28

Clp = −0:024

CMq
+ CM _a

= −26

CMpa
= 0:876

r = 0:0751
lbm
ft3

� �

d = 155 mm½ �

Vmuzzle = 3000
ft
s

� �
IP = 505:5 lbm-in:2

� �
IT = 6610 lbm-in:2

� �
m = 96 lbm½ �

K2

K1

g

iβ (yaw)

α (pitch)

1′

2′

FIGURE 10.7
Example of tricyclic arms for spin-stabilized projectiles.
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At an instant in time after launch when

p = 220 Hz½ �
f = d = 4°

V = 1764
ft
s

� �

determine

1. The yaw of repose
Answer:

bR = 0:00172 rad½ �
2. The precessional frequency in hertz

Answer:

dy2

dt
= 1:9 Hz½ �

3. The nutational frequency in hertz
Answer:

dy1

dt
= 14:9 Hz½ �

Problem 2
For the projectile given in Chapter 9, Problem 37, determine the precessional and nutational
frequencies in hertz.

10.2 Gyroscopic and Dynamic Stabilities

In the previous section, we developed a pair of equations and their solutions using linear
aeroballistic coefficients that allow us to examine the motion of a projectile in pitch, yaw,
and roll. These equations will now be examined in detail so that we can establish criteria for
a stable projectile. In so doing, we will examine some interesting characteristics of motion,
which will be displayed as curves in the complex plane.
We shall repeat the equations and their solutions here for ease of reference but leave the

coefficient definitions in Section 10.1 to preserve space. The governing equations are as
follows:

• For a nonspinning or slowly spinning projectile,

(10.90)
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with the solution

x = K10 exp l1s½ � exp i y10 + y 0
1s

	 
� �
+ K20 exp l2s½ � exp i y20 + y 0

2s
	 
� �

+ K3 exp iy30½ � + xg (10.91)

• For a spinning projectile,

x00 + H − iPð Þx0 − M + iPTð Þx = −iPG (10.92)

with the solution

x = K10 exp l1s½ �exp i y10 + y 0
1s

	 
� �
+ K20 exp l2s½ � exp i y20 + y 0

2s
	 
� �

+ xg (10.93)

For our general development of stability, we shall focus on Equation 10.92 and its solution
(Equation 10.93), since the trim term in Equation 10.91 can be easily dealt with separately.
If we examine Equation 10.93, we can readily see that nasty things can happen to us

mathematically because of the exponential terms. Since K10 and K20 are constants (they are
the initial magnitudes of the fast and slow arms, respectively), we can focus on the expo-
nential terms that they are multiplied by as a means of determining whether they will grow,
shrink, or remain the same.
We shall consider the exponential functions of y and y ′ first using the fast arm terms as

examples. The term y10 is a constant and will be ignored. This leaves the term y1s, which is
multiplied by i in the exponent. If y1′ is purely real, then, when multiplied by i, it becomes
purely imaginary in the exponent (because s must be real), the solution is oscillatory, and
this will cause the fast arm to increase and decrease in amplitude (i.e., oscillate), neither
increasing nor decreasing beyond the established limits of oscillation. This would be a
gyroscopically stable projectile. If it has an imaginary component, then, when multiplied by
i in the exponent, the solution has a real part. This real part will be multiplied by s and
continue to grow throughout the flight as s continually increases. This would result in a
gyroscopically unstable projectile.
The question to answer at this point is, “What governs whether the exponents have real or

imaginary parts?” This can be answered by the examination of a version of Equation 10.84,
whereby all aerodynamic forces and moments are ignored except for the largest (pitching)
moment. This has been shown [1,5] to result in a governing equation of

x00 − iPx0 −Mx = −iPG (10.94)

with the solution

x = K1 exp i y10 + y 0
1s

	 
� �
+ K2 exp i y20 + y 0

2s
	 
� �

+ xg (10.95)

resulting in

y 0
1,2 =

1
2

P ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 − 4M

p� �
(10.96)

where the subscripts 1 and 2 represent the fast and slow arms, respectively.
Using Equation 10.96, we recall that for a gyroscopically stable projectile, y′must be real;

therefore, for gyroscopic stability, we require that

P2 − 4M
	 


> 0 (10.97)

This expression has some interesting implications. If we look back at the definition of our
parameter M in Equation 10.66, we see that it is dependent upon the pitching moment
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coefficient. This happens to always be negative for a fin-stabilized projectile since the fins
impart a restoring moment. Unless there is some unique drag device, this moment is
positive in a non-fin-stabilized projectile. Because of this, a fin-stabilized projectile is always
gyroscopically stable because P2 must be positive. However, a non-fin-stabilized projectile
must have a spin sufficient to make P2 > 4M. We therefore define a statically stable projectile
as one in which M < 0. With this definition, a statically stable projectile is always gyro-
scopically stable.
Gyroscopic stability is a necessary but not sufficient condition for a stable projectile. The

second condition required is that of dynamic stability. Let us once again examine Equation
10.93, but this time, we shall assume that we have a gyroscopically stable projectile. This
means that the exponential terms containing y ′ decay or remain constant, leaving the terms
containing l as potentially destabilizing. We can readily see that since these are multiplied
by the downrange distance s, they must be negative to assure that the fast and slow arms
decay in magnitude. With this, we shall define a dynamically stable projectile as one in
which both ls are negative throughout the flight. Recall that we calculate l as the real part
of Equation 10.84. For convenience, we shall express them directly as

l1,2 = −
1
2

H∓
P 2T −Hð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 − 4M

p
� �

(10.98)

It should be noted here that, as is common in ballistics, there are always exceptions to any
rule. Some successful projectiles have been fielded where instability occurs for a very short
time in a flight or in a range where a certain projectile will never be fired. Of course, it is
always best to avoid these situations, but sometimes the lack of design space makes it
unavoidable. In these instances, the rational examination of the instability is necessary and
should be well documented.
We have mathematically shown how we define stability and the parameters that affect

stability. Sometimes, it is desirable to quantify how stable a projectile is. We do this through
use of a gyroscopic and dynamic stability factors.We define the gyroscopic stability factor as

Sg =
P2

4M
(10.99)

Here, with our earlier discussion, Sg > 1 to assure gyroscopic stability. In a similar fashion,
we can define a dynamic stability factor as

Sd =
2T
H

(10.100)

where for a symmetric projectile to be deemed stable, whether spinning or nonspinning, we
require

1
Sg

< Sd 2 − Sdð Þ (10.101)

For a statically stable projectile, we require that 0 < Sd < 2 for dynamic stability. This leads
to an interesting condition where one can spin a statically stable projectile too fast, resulting
in instability. This condition translated to dimensionless spin rate is given by

P <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M

Sd 2 − Sdð Þ

s
(10.102)
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for a statically stable projectile.
It is interesting to combine Equations 10.96 and 10.98 in various ways writing them in

terms of the dimensionless parameters P,M,H, and T. The details of this can be found in the
books by Murphy [1] and McCoy [5] with the following results:

P = y 0
1 + y 0

2 (10.103)

M = y 0
1y

0
2 − l1l2 (10.104)

H = − l1 + l2ð Þ (10.105)

PT = − y 0
1l1 + y 0

2l2
	 


(10.106)

If we again examine Equation 10.91 or 10.93, we see that the magnitude of the preces-
sional and nutational arms is highly dependent upon initial conditions. Without going into
details (which are described quite well in the book by McCoy), we can express these initial
conditions in terms of the complex angle of attack and damping parameters as

K10 exp iy10½ � = x00 − l2 + iy 0
2ð Þx0

l1 − l2 + i y 0
1 − y 0

2

	 
 (10.107)

K20 exp iy20½ � = x00 − l1 + iy 0
1ð Þx0

l2 − l1 + i y 0
2 − y 0

1

	 
 (10.108)

In these equations, x0 and x0′ are the initial complex yaw and yaw rates, respectively.
These parameters are determined by measurements as the projectile leaves the gun tube or
are assumed values.
We now have solid criteria by which we can determine whether a projectile will be stable

or not. These developments have been made assuming that the projectile aerodynamic
coefficients behave in a linear fashion. As such, a projectile is either stable or it is not. This
stability, even with our linear model, will change during the flight based on Mach number
and angle of attack. We will discuss in a later section how a nonlinearity can help or hurt
matters. The true power of these equations is that they can tell us which coefficients need to
be altered to affect stability. This can be used in instances where we want to change a
physical configuration to make a projectile “drop out of the sky” or design a round such
that it damps more quickly and can thus fly with lower drag. Other uses for these equations
allow for tweaking the flight characteristics for better flight behavior in general.

Problem 3
Upuntil the late 1960s, manyUS and foreign ships carried the Bofors 40mmgun as a general
light support weapon. Originally designed as an antiaircraft weapon, this gun served as an
antitank weapon if the situation required it, and its high rate of fire made it quite successful
as an antipersonnel weapon. Assuming the properties of the system given next,

1. Calculate the gyroscopic stability factor at the beginning and at the end of the flight
assuming a terminal velocity of 2450 ft/s and the spin rate is 10% lower than the
initial value.
Answer: At the beginning of flight, Sg = 5.814.

2. Is the projectile stable throughout the flight?
Answer: Yes.
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3. Assuming that this is the longest time of flight for the projectile, at what spin rate
will the projectile become unstable?
Answer:

punstable < 1887
rad
s

� �

4. Where will the instability occur?
Answer: At the muzzle of the weapon.

Projectile and weapon information:

CMa = 3:10

Clp = −0:011

r = 0:067
lbm
ft3

� �

d = 40 ½mm�

Vmuzzle = 2850
ft
s

� �

IP = 1:231 lbm-in:2
� �

IT = 6:263 lbm-in:2
� �

m = 1:985 lbm½ �

n =
1
30

rev
cal

h i
Please note that this weapon actually has a progressive twist, but when faced with this
situation, you only need the muzzle velocity and the twist at the muzzle to calculate initial
spin.

Problem 4
For the projectile described in Problem 35 of Chapter 9,

1. Determine the precessional damping exponent.
Answer: l2 = −0.0000608

2. Determine the nutational damping exponent.
Answer: l1 = −0.001135

3. With 1 and 2, which of these modes will damp out?
Answer: Both

4. Determine the dynamic stability factor Sd.
Answer: Sd = 0.74

5. Consider a cargo projectile with identical properties to our projectile in Chapter 9,
Problem 35. The designer did not secure the cargo well enough so that the cargo
fails to spin completely up during gun launch in a worn tube. When this happens,
immediately after muzzle exit, the round spins down (and the cargo spins up a
little more) so that the projectile finally reaches a spin rate of 100 Hz. The velocity is
unaffected.

a. Determine the gyroscopic stability factor for each of the two situations.
Answer: Sg = 3.192 and Sg = 0.659.

b. Will both projectiles fly properly? Why or why not?
Answer: No, the second projectile will tumble.

Problem 5
A 155 mm HE projectile is fired from a cannon. The muzzle velocity of the projectile is
800 m/s and the twist of the rifling is 1:20. The projectile and filler properties are given next.
Assuming the aerodynamic forces and moments are negligible and that the projectile is
dynamically stable,
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1. Determine the initial spin rate of the complete projectile.
Answer:

pmuzzle = 1621:5
rad
s

� �

2. Determine the spin rate of the projectile in flight assuming the fill does not spin up
in the bore and both shell and fill come into dynamic equilibrium.
Answer:

ptotal = 1259:2
rad
s

� �

3. Determine the gyroscopic stability factors for 1 and 2.
Answer:

Sg = 16:54 and Sg = 9:97

4. Is the projectile stable in 1 and 2?
Answer: Yes.

Projectile and weapon information:

CMa = 1:07

Clp = −0:012

IPshell
= 431 lbm-in:2

� �
IPfill

= 124 lbm-in:2
� �

r = 0:067
lbm
ft3

� �

d = 155 mm½ �
Vmuzzle = 800

m
s

h i

IP total
= 555 lbm-in:2

� �
ITtotal

= 3335 lbm-in:2
� �

m = 106 lbm½ �

n =
1
20

rev
cal

h i

Problem 6
For the projectile given in Problem 5, determine the nutation and precession frequencies in
hertz.
Answer:

dy1

dt
= 42:05 Hz½ � and 

dy2

dt
= 0:67 Hz½ �

Problem 7
Assume the projectile in Problem 1 has slipped its rotating band, and the spin at the same
instant in time is 130 Hz. Is the projectile stable?
Answer: No.

Problem 8
What is the minimum spin (Hz) required to stabilize the projectile in Problem 1?
Answer: pmin = 140 [Hz].

Problem 9
For the projectile given in Chapter 9, Problem 37, determine the minimum spin rate for
stability. (Hint: Remember when a projectile is least stable.)
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Problem 10
A right circular cylinder is to be horizontally fired for an impact test. If the cylinder is made
of steel (r = 0.283 lbm/in.3) and it is 0.5 in. in diameter and 0.75 in. long,

1. Determine the spin rate required to stabilize the projectile (if it can be stabilized).
2. Comment on the preceding answer—what is dominant in the problem?
3. Determine the precessional and nutational frequencies of the projectile at this spin

rate in hertz.

The projectile properties are provided next:

CD = 0:4

CLa
= 0:18

CMa
= 8:0

Clp = −0:02

CMq
+ CM _a

= −29

CMpa
= 0:92

rair = 0:0751
lbm
ft3

� �

d = 0:5 in½ �
l = 0:75 in½ �

Vmuzzle = 6000
ft
s

� �

Problem 11
Modifications are made to a 155 mm M483A1 projectile so that it has the following prop-
erties and initial conditions:

CD = 0:2

CLa
= 1:975

CMa
= 4:573

Clp = −0:0285

CMq
+ CM _a

= −15:2

CMpa
= 1:20

r = 0:0751
lbm
ft3

� �

d = 155 mm½ �

Vmuzzle = 2900
ft
s

� �
IP = 537:1 lbm-in:2

� �
IT = 5753 lbm-in:2

� �
m = 103 lbm½ �

At an instant in time after launch when

p = 100 Hz½ �
f = d = 2°

V = 1000
ft
s

� �

determine

1. If the projectile is stable
2. The precessional frequency in hertz
3. The nutational frequency in hertz

Problem 12
What is the minimum spin (Hz) required to stabilize the projectile in Problem 11?
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Problem 13
For the projectile given in Chapter 9, Problem 25, determine the precessional and nutational
frequencies in hertz. Determine the minimum spin rate for the projectile to be stable.

Problem 14
For the projectile given in Chapter 9, Problem 27, determine the precessional and nutational
frequencies in hertz. Determine the minimum spin rate for the projectile to be stable.

Problem 15
For the projectile given in Chapter 9, Problem 28, determine the precessional and nutational
frequencies in hertz. Determine the minimum spin rate for the projectile to be stable. Does it
differ depending on which side of the aircraft it is fired from? Calculate it for both cases.

10.3 Yaw of Repose

In Section 10.1, we introduced the yaw of repose for a projectile and defined it in Equation
10.75 using the symbol xg. The subscript g was used to denote that this quantity comes
about through the action of gravity on the projectile. In terms of our dimensionless
parameters, we can rewrite Equation 10.75 as

xg =
PG

M + iPT
(10.109)

A qualitative look at this expression leads to some extremely interesting results. First and
foremost is that the spin rate directly affects the yaw. The greater the spin (and therefore, the
larger the value of P), the greater the yaw of repose is.
The second useful item to note is that the more abrupt the trajectory curve is, the greater

the yaw of repose is. In fact, if we look at the term G; it is linear in the cosine of angle of
attack f. For details of this form thatG takes, the reader is referred to the book byMcCoy [5].
Thus, when the projectile approaches maximum ordinate, the yaw of repose should be a
maximum given that all the other parameters remain constant. Because of the decay of the
other terms, the result is that the yaw of repose is usually a maximum shortly before or after
reaching maximum ordinate.
The sign of the yaw of repose is important. In our convention, the term P is positive for a

right-hand twist. Thus, a positive value of xg causes the projectile to nose over to the right.
Note that there can also be a significant pitch component to this quantity; this is easily seen
as the real part of Equation 10.109.
If we examine a plot of pitch (a) vs. yaw (b) for a British 14 in. projectile in Figure 10.8, we

can imagine the yaw of repose as the vector pointing to the right (viewed from the rear) to
the center of the precessional path similar to Figure 10.7. We can see that the magnitude as
well as the direction of this vector change as the projectile moves downrange. In Figure 10.8,
the projectile was analyzed using the PRODAS software and was fired with a muzzle
velocity of 2483 ft/s, spin rate of 71 Hz corresponding to a 1:30 twist with an initial pitch
angle of 0.1°. There was no initial yaw or pitch/yaw rate. This projectile has progressed
through only one and one-half yaw cycles (about 1.7 s) when the analysis was stopped to
yield a nice clear illustration.
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10.4 Roll Resonance

Until this point, we have assumed that the projectiles under study have been axially
symmetric. This rarely happens in practice because of manufacturing tolerances in a given
projectile design. In Chapter 11, we shall discuss the means of handling a slight mass
asymmetry. In this section, we shall discuss the implications of a geometric (including slight
mass) asymmetry as applied to a fin-stabilized projectile.
Fin asymmetries commonly occur when a finned projectile is manufactured or can be the

result of damage owing to rough handling. In the field of explosively formed penetrators,
which are normally drag- or fin-stabilized, inconsistencies can (and usually do) arise due to
the explosive formation process. In either case, this effect may be coupled with some mass
asymmetry as well.
In Equation 10.74, the trim arm was introduced, which would force a statically stable

projectile to fly with an angle of attack. It is for this reason that all fin- and drag-stabilized
projectiles are designed to slightly roll to increase accuracy. One can see from the way that
this equation was written that there is no change in the orientation of K30. It was fixed,
oriented at the initial angle y30.
To begin our assessment of this specific type of asymmetry, we shall start with the

governing equation for a spin-stabilized projectile (Equation 10.76) because the roll is going
to play a part. We shall alter the RHS to incorporate a forcing term representing the lifting
force and moment that is caused by the asymmetry (say, e.g., a bent fin). We shall write this
in such a way that the direction of the applied force and moment rotates with the projectile:

x00 + H − iPð Þx0 − M + iPTð Þx = −iA3 exp iyð Þ (10.110)

where

A
Sd
m k

C iC P C iC3 22
1

0 0 0
= ⎛
⎝
⎜

⎞
⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟ +( ) + −( ) +( )′ρ

ψ
T

m n Z Y0
(10.111)
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FIGURE 10.8
Pitching and yawing motion for a British 14 in. Mk I projectile fired at 2483 ft/s with a 0.1° initial pitch angle.
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y 0 =
pd
V

, dimensionless turning rate (10.112)

y =
ðs
0

y 0ds, dimensionless distance (10.113)

This development was put forth in the studies by Murphy [1], Nicolaides [2], and
McCoy [5]. If we look closely at these equations, we see that the forcing function A3 rotates
with the projectile.
If we solve Equation 10.110, assuming a solution for the particular part of

xp = K3 exp i y + y0ð Þ½ � (10.114)

where y0 is some arbitrary angle that contains the plane of the asymmetry, we obtain a
general solution for a constant roll rate of

x = K1 exp iy1½ � + K2 exp iy2½ � + K3 exp i y + y0ð Þ½ � (10.115)

and, after inserting the initial conditions, say, of y0 = 0, we obtain

K3 =
−iA3

y 02 − Py 0 +M − i y 0H − PTð Þ (10.116)

This is the expression for the yaw component caused by a lift force and corresponding
moment constrained to rotate at the projectile spin rate. If the spin rate is zero, the orien-
tation of this lift force will be fixed and the projectile will drift more and more in that
direction. This is not desirable from an accuracy standpoint so we must have some spin.
The denominator in Equation 10.116 is normally dominated by its real part becauseH and

the product PT are small by comparison. However, much like a resonance in a spring mass
system, if the roll frequency ever approaches either one of the precession or nutation fre-
quencies (and remains there for some time), the denominator in Equation 10.114 approaches
zero and the yaw becomes very large [1,5]. This usually occurs when the nutational fre-
quency is approached and is called roll resonance or spin pitch resonance [1]. Since pro-
jectiles are usually changing spin rate throughout their flight, this is only a problem if there
is a slow change of spin rate when the frequencies are close.
Another way of looking at this is to imagine a projectile where this asymmetry is present.

Since the asymmetry is at the same frequency as the nutation rate, every time the projectile
is at the outer limit of its motion, it gets kicked a little further, similar to pushing a child on a
swing. This disturbance grows as long as the two motions stay coupled (i.e., at the same
frequency); however, if they became out of phase, the problem would correct itself.
An example of roll resonance is depicted in Figure 10.9. In this case, an explosively

formed penetrator (EFP) was the device under test. Keep in mind that only the total angle of
attack is measured here so the yawing motion is not constrained to a single plane. We see
that as the EFP approached a spin rate of ∼300 rad/s, it locked in and flew very far off of
the target.

Problem 16
The roll resonance of a projectile occurs when the spin rate approaches a “forcing” fre-
quency of the projectile. This occurs more frequently in fin-stabilized projectiles than in
spin-stabilized projectiles, because in the latter, the spin rate is usually quite high in order to
maintain stability, the overturning moment is positive, and these forcing functions unless
they are intentional—like thrusters are usually due to asymmetries (like bent fins)—are
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usually small. If we examine the projectile of Chapter 9, Problem 37, instead as a fin-
stabilized projectile, we can write the equation for the pointing direction as

x = K1 exp iy1½ � + K2 exp iy2½ � + K3 exp i y + y0ð Þ½ � (10.117)

where the subscripts 1 and 2 represent the fast and slowmodes, respectively. The third term
is the forcing function where we can define

y 0 =
pd
V

(10.118)

and, after inserting the initial conditions, say, of y0 = 0, we obtain

K3 =
−iA3

y 02 − Py 0 +M − i y 0 H − PTð Þ (10.119)

Based onwhat you know about the behavior of imaginary numbers and Equations 10.118
and 10.119, determine the spin rate at which catastrophic yaw will occur. Use the aerody-
namic properties of the projectile from Chapter 9, Problem 37, but assume that the over-
turning moment is the negative of what was provided (we are essentially faking a fin-
stabilized version). You may assume that the velocity stays constant at 750 ft/s.
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EFP experiencing roll resonance. (Courtesy of Eric Volkmann, Alliant Techsystems, Hopkins, MN.)
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11
Mass Asymmetries

Until this point we have assumed that the projectile has been an axially symmetric body.
This allowed us to simplify the equations of motion considerably. Projectiles are rarely
axially symmetric. The asymmetry usually comes about through manufacturing tolerances,
damage due to rough handling, and cargo slippage, or more recently, they are simply
designed that way. The purpose of this section is simply to introduce the geometry of mass
asymmetries, which will be introduced into the equations of motion for the projectile in later
sections.
Mass asymmetries come in two categories: static imbalance and dynamic imbalance. In

a static imbalance, the center of gravity (CG) of the projectile is not located on the geo-
metric axis of symmetry. The geometric axis of symmetry can be defined by imagining a
projectile with the same exterior dimensions as the unbalanced projectile but of uniform
density. The symmetry axis would then be centrally located in the body of revolution (i.e.,
a perfectly axially symmetric body). In a statically imbalanced projectile, this axis would be
shifted to pass through the CG but remain parallel to the geometric axis. This is illustrated in
Figure 11.1.
A dynamically imbalanced projectile also has a CG that is offset from the geometric axis of

symmetry. In this case, however, the mass distribution is such that the principal axis of
inertia resides as some angle to the geometric axis as well. This is illustrated in Figure 11.2.
Whether a projectile is statically or dynamically imbalanced, we shall define the plane in

which the CG offset is located relative to some reference plane (we shall arbitrarily use the
x–y plane as the reference, which we have defined in earlier sections) using the symbol F.
This is illustrated in Figure 11.3 as viewed from the rear of the projectile.
The effect of these mass asymmetries on projectile flight can dramatically affect accuracy,

especially in direct fire systems. Consider a projectile with an imbalance in the gun tube.
While in the tube, the projectile is constrained to rotate about the tube geometric axis. If we
idealize this situation to say that the tube is perfectly straight, inflexible, and fits the
projectile snugly, we can further state that the projectile is constrained to rotate about its
own geometric axis. Note that there is a wealth of literature dedicated to the real situation
(e.g., [1–10]).
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12
Lateral Throwoff

Earlier in the book, we stated that projectiles rarely leave the tube with their velocity vectors
aligned with the geometric axis of the gun tube. This chapter and Chapter 13 describe this
behavior. The result of this behavior is weapon inaccuracy, and it must be well understood
by the practicing ballistician because, although it is not practical to completely eliminate the
behavior, we would like to reduce it to acceptable levels. The first component of this
behavior is known as lateral throwoff. It is a dynamic response of the projectile to either a
static or a dynamic imbalance and will now be described in detail.
If we imagine a projectile with a mass asymmetry as depicted in Figure 11.3, we can

imagine the spinning motion as viewed from the rear. If we ignore the axial velocity by
simply spinning the projectile at a high rate, say, between two flexible supports on a test
stand, we would see a wobble develop as a result of the centrifugal action on the center of
mass. All the time the projectile is being spun up in the gun, the tube walls and stiffness of
the supporting members prevent this wobble (to the extent the clearances allow) from
developing. At the instant the projectile is free from the constraints of the tube we expect it
to become affected by the centrifugal loading due to spin. This is known as lateral throwoff
because the effect is to fling the projectile in a direction off the tube centerline.
We can use the analogy of a vacuum trajectory to examine the lateral throwoff effect

generated by either a static or a dynamic imbalance. Consider the projectile asymmetry
from Figure 11.3. If we examine the projectile over a short period of flight, ignoring gravity
as well as assuming no drag because of the vacuum assumption, we would see the dynamic
forces acting on the projectile as depicted in Figure 12.1. In this figure, the only force acting
is the centrifugal force due to spin. This dynamic action will result in the force vector
changing direction, although since there is no angular acceleration or deceleration, it
maintains a constant magnitude. It is worth noting that we have resorted to our complex
plane in this example, as it is convenient to use in our development. At the instant, in
time depicted here, we can break the force into a component in the y-direction and one in
the iz-direction.
We are not necessarily concerned with the force acting on the center of gravity (CG)

per se. We want to see where the projectile moves because of this force. To accomplish this,
we need to use Newton’s second law. We know that

Fr = mar (12.1)

This is the centripetal force. The centrifugal force would be equal but opposite in sign.
From dynamics [1], we recall that

ar = −rp2 (12.2)

In the case we are considering here, we see that

r = e and F = pt (12.3)
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With this, we can write the magnitude of the force as

Fr = mep2 (12.4)

and the centripetal acceleration on the complex plane as

a = −
Fr
m

cos ptð Þ + i sin ptð Þ½ � = −ep2 cos ptð Þ + i sin ptð Þ½ � (12.5)

The complex velocity can therefore be expressed as

V = −ep2
ðt
0

½cos (pt) + i sin (pt)�dt (12.6)

Evaluating the integral and assuming that as the projectile leaves the muzzle, we have an
initial orientation of the mass asymmetry of F = F0 yields

V = −ep½sin (pt +F0) − i cos (pt +F0)� = ep½− sin (pt +F0) + i cos (pt +F0)� (12.7)

To see how much lateral movement has developed, we can again integrate

r = ep
ðt
0

½− sin (pt +F0) + i cos (pt +F0)�dt (12.8)

The evaluation of which yields

r = e cos pt +F0ð Þ + i sin pt +F0ð Þ½ � (12.9)

As an example, if we were only concerned with motion in the cross-range direction, we
could state

z = Im e cos pt +F0ð Þ + i sin pt +F0ð Þ½ �f g = e sin pt +F0ð Þ (12.10)
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FIGURE 12.1
Dynamic force acting on a statically or dynamically imbalanced projectile.
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To apply numbers to this example, let us consider a projectile that weighs 100 lbm and is
spinning at a rate of 270 Hz. We shall assume that the projectile has a CG offset of 0.25 in. If
this were the case, the velocity in the z-direction as well as the motion for the first 4 s of flight
can be seen in Figures 12.2 and 12.3. Here we have assumed that the CG offset has emerged
from the weapon at the 12 o’clock position.
The most interesting observation between the figures is that for this arbitrary emergence

of the CG offset, we see that the projectile would like to move laterally to the right for a
right-hand spin. This is commonly known as drift. Just to put things into perspective, the
muzzle velocity consistent with the 270 Hz spin rate is about 2750 ft/s, so the projectile
would only have gone about 0.4 ft to the right after it traversed 11,000 ft downrange.
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FIGURE 12.2
Velocity in the z-direction of a 100 lbm projectile spinning at 270 Hz with a 0.25 in. CG offset.
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FIGURE 12.3
Displacement in the z-direction of a 100 lbm projectile spinning at 270 Hz with a 0.25 in. CG offset.
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Wemust always bear in mind that this example was an idealized situation. In the case of a
real projectile, there are other forces acting which complicate the motion; however, it is
instructive to look at simplifications such as this to see the phenomenon at work. We will
now move on to examine the dynamic behavior in terms of the equations of motion of a
projectile from statically imbalanced and dynamically imbalanced projectiles. We shall see
how this affects lateral throwoff.

12.1 Static Imbalance

In Figure 11.1, we saw the effect on the principal axis of a static imbalance. Although this
rarely happens in production (imbalances are usually of the dynamic type), it can happen
and presents an interesting case. We shall follow the analysis procedure documented by
McCoy [2] in the development, correcting terms to fit our coordinate system.
If we examine the velocity of the center of mass of the projectile as it leaves the gun tube,

we see a scene as depicted in Figure 12.4. If the projectile is constrained as it continues down
the gun tube, the motion of the CG would resemble a spiral or helix similar to a thread on a
bolt, except that the pitch of the helix would continue to increase as the axial velocity
increases. We could express this mathematically using a cylindrical set of coordinates with x
indicating the axial distance, r indicating the radius of the CG from the centerline, and F
indicating the angular position from the vertical plane. If we assume that the tube is
straight, then the axial component of the velocity vector will be constrained along the tube
and our unit vector lwill adequately describe the direction. We shall use the unit vectors er
and eF to represent the radial and angular positions, respectively. If we use our instanta-
neous spin rate p as defined in Equation 12.3, we can write the tangential component of
velocity as

Geometric axis

CG

VΦ

ε

Φ

FIGURE 12.4
Velocity of the CG of a statically imbalanced projectile.
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VF = rpeF = epeF (12.11)

The axial velocity is simply

Vx = Vl (12.12)

Then, the velocity vector could be written in cylindrical coordinates as

V = Vl + epeF (12.13)

Or, if we like to remain in Cartesian coordinates, we can combine Equation 12.13 with
Equation 12.7 to yield

V = Vl + ep −sin pt +F0ð Þn + icos pt +F0ð Þmð Þ (12.14)

These Cartesian coordinates are useful when we want to write the velocity vector at the
muzzle of the weapon. The lateral throwoff caused by a static imbalance can be described as
the tangent of the angle of the projectile CG as it exits. For small angles (usually the case),
this is approximately the angle itself in radians. With this, we can define the lateral throwoff
at the muzzle owing to a static imbalance as

TL =
ep0
V0

− sin F0ð Þ + i cos F0ð Þ½ � (12.15)

where we have used t = 0 at the muzzle and specified the spin rate and muzzle velocity. We
must keep in mind that this is an angular measure for small angles or, more precisely, a
tangent of an angle. We can use the relationship

i exp iqð Þ = − sin q + i cos q (12.16)

to write

TL = i
ep0
V0

exp iF0ð Þ (12.17)

If the projectile has a rotating band that forces it to spin based on the rifling twist, this
expression can be written in terms of the projectile diameter and twist rate as well. This is
extremely straightforward and left as an exercise for the reader.

12.2 Dynamic Imbalance

The diagram of Figure 11.2 represents the most common case of a projectile asymmetry, a
dynamic imbalance. In this case, a lateral throwoff effect as described in Section 12.1 will
result as the projectile leaves the muzzle of the gun, and there will be significant flight
dynamic effects as the projectile moves downrange. Usually, this mass asymmetry is small
and can be treated as a small amount of mass removed from or added to a projectile at a
point defined by a radial set of coordinates from the CG. We shall use the former approach
following the development of McCoy [2]. This is depicted in Figure 12.5. Figure 12.6 depicts
how this removed mass is oriented relative to the CG offset in the radial direction.
The development put forward by McCoy [2] assumes that the removed mass is much

smaller than the overall mass of the projectile. As established earlier, we will use two
orthogonal coordinate systems. The first is our i–j–k triad, which is oriented along the

Lateral Throwoff 349



projectile axis as depicted in Figure 10.1. This coordinate system does not roll with the
projectile. We shall also make use of a second nonrolling coordinate system using the l–n–m
system depicted in the same figure. In this case, the coordinate system is oriented along the
velocity vector. The coordinate systems are related to one another, assuming small yaw
angles, through the relationships

   i = g l + an + bm (12.18)

j = −al + n (12.19)

k = −bl +m (12.20)

where a is the pitch angle, b is the yaw angle, and g is defined as

g = cosa cos b ≈ 1 (12.21)

CG
Principal axis of inertia

lE rE

rE
ε

Mass removed, mE

FIGURE 12.5
Dynamically imbalanced projectile with mass removed.
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ε
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FIGURE 12.6
Velocity of the CG of a dynamically imbalanced projectile.
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The angular momentum of the projectile is the vector sum of all the angular momenta and
is closely approximated by

H i i
i

r v= + ×⎛
⎝
⎜

⎞
⎠
⎟ − ×( )IP T E E E

d
d

p I
t

m (12.22)

Here H is the total angular momentum and vE is the velocity of the removed mass.
This velocity can be broken into two components, one owing to the rotation about the

spin axis and the other owing to the yawing motion of the projectile as follows:

v i r i
i

rE E E
d
d
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t

×( ) ×⎛
⎝
⎜

⎞
⎠
⎟×

⎡
⎣⎢

⎤
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Then, inserting this relationship into Equation 12.22 and combining terms gives us, after
the utilization of the vector triple product,
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(12.24)

If we examine Figure 12.5, we see that

rE � ið Þ = lE (12.25)

And we note that for a spin-stabilized projectile, the yaw rate di/dt is much smaller than
the spin rate p, so we can eliminate terms in Equation 12.24 to yield

H i i
i

r≈ ×⎛
⎝
⎜

⎞
⎠
⎟I p I

t
m plP T E E E

d
d

+ + (12.26)

We can express the mass asymmetry vector rE in terms of the projectile geometric axes as

rE = lEi + rE cosFj + rE sinFk (12.27)

This can be expressed in our coordinate system attached to the velocity vector through the
relationships in Equations 12.18 through 12.20 as

rE = lEg − rEa cosF − rEb sinFð Þl + lEa + rE cosFð Þn + lEb + rE sinFð Þm (12.28)

We can simplify this expression somewhat if we use the fact that both a and b are much
smaller than g. In this case, the expression would simplify to

rE = lEgð Þl + lEa + rE cosFð Þn + lEb + rE sinFð Þm (12.29)

We can take the derivative of Equation 12.29 by using the fact that the coordinate system
is effectively not rotating to write

drE
dt

= lE _gð Þl + lE _a − rEp sinFð Þn + lE _b + rEp cosF
� �

m (12.30)

Here we have used the fact that

dF
dt

= p (12.31)
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As in our previous analyses, we shall consider a short period of flight. By doing this, we
can neglect all forces and moments except the pitching (overturning) moment. This allows
us to equate the rate of change of angular momentum to the applied pitching moment:

d
d

d
d

d
d

d
dP T

2

2 E E
E

M
H i i r

l i
t

I p
t

I i
t

m pl
t

mC V≈ ×
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⎝
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⎠
⎟ = ×( )∗+ +

α

2 (12.32)

This expression can be written as a set of three equations in terms of each component as
follows:
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The details of this are provided by McCoy [2]. If we change the temporal derivatives into
spatial derivatives along a dimensionless downrange distance s and define the following:
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 M =
md2
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C∗
Μa

(12.37)

IE = mErElE (12.38)

we can rewrite Equations 12.33 through 12.35 as
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Here the primed quantities are differentiated with respect to s. With small yaw as well
as classical size assumptions (see the book by McCoy [2] and the report by Murphy [3]),
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we can neglect several of these terms because they are either products of small numbers or
summed with a much larger number. This results in Equation 12.39 vanishing altogether
and the other two transforming into

P M
I I
I

P′ − ″+ = ⎛
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⎟α β β E T

P
2

2 sinΦ (12.42)
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If we now multiply Equation 12.42 by −i and add it to Equation 12.43, we obtain
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If we invoke our definition of complex yaw angle, we can write this as
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The solution to this differential equation was discussed in Section 10.1. The difference here
is that the forcing term on the right-hand side is somewhat different. If we use a solution
written as

x = K1 exp iy1ð Þ + K2 exp iy2ð Þ + K4 exp iFð Þ (12.46)

where K1 and K2 are the solutions to the homogeneous part of the equation and K4 is
our new term which depends on the spin rate and the mass asymmetry we can solve for
the magnitude of the trim arm caused by the asymmetry. If we solve Equation 12.46 for
the particular solution, we find that this new trim arm caused by the mass asymmetry is
given by

K
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I I
I M

I P

4 2
=

− +
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E

T P
p

T

(12.47)

The third term in the denominator is usually very small so this term has been approxi-
mated (see the book by McCoy [2] and the report by Murphy [4]).

K4 ≈
IE

IT − IP
(12.48)

This trim arm due to a mass asymmetry is usually small.
Throughout this development, IP and IT have been used as the moments of inertia even

though, in the purest sense, the mass asymmetry removes the axially symmetric properties
of the projectile. For most cases, it is sufficient to use these quantities based on an axially
symmetric projectile.
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13
Swerve Motion

Following our procedure of slowly introducing complexity into the description of projectile
behavior, we shall now develop equations to characterize the remainder of what is known
in general as swerve motion. We saw in Chapter 12 that a mass asymmetry can cause
projectile motion transverse to the original line of fire even in a vacuum. We stated in that
section that a dynamic projectile imbalance was more common than a static imbalance but
either can actually occur.
Chapter 6 explains many aspects of projectile behavior that arise due to the presence of

the air stream. All the coefficients were functions of the angle of the attack observed by the
projectile relative to that air stream. If we examine how a statically or dynamically
imbalanced projectile would behave as viewed from above the trajectory curve based on its
spin, we would see motion as depicted in Figures 13.1 and 13.2. We must keep in mind that
the motion in these figures is greatly exaggerated for ease of viewing.
We can imagine, by looking at these figures, that the aerodynamic forces would be

considerable because even in the case of the statically imbalanced projectile, motion later-
ally across the trajectory will manifest itself in an angle of attack and therefore affect the
flight characteristics.
In this chapter, we shall describe and evaluate the aerodynamic forces that arise from this

behavior and include them in our equations of motion for projectile flight. We shall also
include the effect of configurational asymmetries such as bent fins or damaged form,
because these will result in similar behavior even without the mass asymmetry present. In
fact, to a varying degree, every projectile has a combination of both form and mass
asymmetries present.

13.1 Aerodynamic Jump

McCoy [1] showed that the equation of motion for the point mass solution plus swerving
motion is given by

d2y
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= C∗
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Trajectory

FIGURE 13.1
Motion of a statically imbalanced projectile.

Trajectory

FIGURE 13.2
Motion of a dynamically imbalanced projectile.
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where

IL =
ðs
0

ðs1
0

x ds1 ds2 (13.3)

Here we have used s1 and s2 as dummy variables representing integrations with respect
to s. Equation 13.2 describes the position of the projectile in a direction perpendicular to the
trajectory based on flat fire point mass assumptions.
Equation 10.72 was developed as a solution for x. McCoy [1] showed that the solution to

the double integral of Equation 13.3 can be obtained by substitution of Equation 10.72 into
Equation 13.3, resulting in

(13.4)

Here we have used

G0 =
gd
V2

0
(13.5)

R11 =
l2
1 − y 02

1

l2
1 + y 02

1

	 
2 (13.6)

R12 =
2l1y 0

1

l2
1 + y 02

1

	 
2 (13.7)

R21 =
l2
2 − y 02

2

l2
2 + y 02

2

	 
2 (13.8)

R22 =
2l2y 0

2

l2
2 + y 02

2

	 
2 (13.9)

If we make the assumption that l2
1,2 ≪ y 02

1,2, the aforementioned parameters become

R11 ≈ −
1
y 02
1
, R12 ≈ 0, R21 ≈ −

1
y 02
2
, and R22 ≈ 0 (13.10)
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Inserting these assumptions into Equation 13.4 yields the following result:

(13.11)

This result is important because it depicts the three components of swerve motion. The
first term on the right-hand side is called the aerodynamic jump JA, and it is what we will
examine for the remainder of this section. The second two terms are the epicyclic swerve SE
and will be discussed in Section 13.2. The third term is called drift DR and will be discussed
in Section 13.3. To keep things simple, we will restate the aerodynamic jump as

(13.12)

We should note a few things about Equation 13.12. First, we must keep in mind that in
Equation 13.11, this aerodynamic jump term is multiplied by a downrange distance s,
implying that it is actually an angular measure (for small angles). A second observation is
that the aerodynamic jump is completely dependent upon the initial conditions of the
projectile and how these couple in with the fast and slow arm turning rates.
If we insert our approximated initial fast and slow arm amplitudes from Equations 10.78

and 10.79 into Equation 13.12, we obtain

JA = iC∗
La

−ix00 − y 0
2x00

y 0
1 y 0

1 − y 0
2

	 
 + ix00 + y 0
1x00

y 0
2 y 0

1 − y 0
2

	 

" #

(13.13)

This can be rewritten [1] as

(13.14)

This result shows that by knowing the projectile mass properties and launch conditions,
we can determine to what angle a projectile will “jump.”We can envision this jump effect as
shown in Figure 13.3.
While we have said a great deal mathematically about aerodynamic jump, we have not

really described the physics behind it. Because of the presence of aerodynamic lift on the
projectile, there is a strong influence of angle of attack on the resultant motion. We saw
earlier that a projectile, through purely dynamic means, can yaw because of either spin or
some geometric asymmetry. When this happens, the aerodynamic forces change, either
improving or worsening the situation. This interaction of the aerodynamic forces with the
projectile manifests itself in the jump angle as depicted in Figure 13.3.
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13.2 Epicyclic Swerve

The second two terms in Equation 13.11 describe the epicyclic swerve of a projectile. We can
define this parameter specifically [1] as

(13.15)

McCoy [1] showed that this equation can be put into a more useful form through the use
of the relation

(13.16)

If we insert Equation 13.16 into Equation 13.15, we obtain

(13.17)

Following McCoy, we shall examine two special cases of this equation. The first is where
we have a projectile that is nonspinning (statically stable) and the second is a spin-stabilized
projectile with a good gyroscopic stability (measured at muzzle exit) of at least 1.5.
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FIGURE 13.3
Graphical representation of aerodynamic jump.
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For the nonspinning projectile, the following conditions apply:

M < 0, P = 0, and y 0
2 = −y 0

1 (13.18)

If we insert these conditions into Equation 13.17, we get

(13.19)

Now we can invoke the fact that the spin is equal to zero and insert Equation 10.59, in
which we shall neglect the trim and yaw of repose, into Equation 13.19 to yield
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2

0
α

α
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This relationship will produce a motion in exactly the same manner as the aerodynamic
jump developed in Section 13.1. It essentially couples the yawing motion of the projectile to
the swerving motion. Both will thus damp together, and the more yaw, the greater the
epicyclic swerve.
If we examine the spin-stabilized projectile, we can write

M > 0 and y 02
1 ≫ y 02

2 (13.21)

With the aforementioned mathematical statements, McCoy [1] stated that an excellent
approximation of Equation 13.15 for a spinning projectile is

(13.22)

An interesting comparison may be drawn between the epicyclic swerving behavior of a
spinning projectile and a nonspinning projectile. If we compare Equations 13.22 and 13.20,
we see that in the latter, the yawing motion and swerve are locked together and operate on
the same fixed plane. This is because the lift generated by the motion never rotates. In a
spin-stabilized projectile, the lift vector is always rotating; thus, the center of mass of the
projectile will move in a helical manner around the flight path. Furthermore, the motion
will be locked to the rate of turning of the slow arm and will damp or increase as the slow
arm does.
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13.3 Drift

The last term in Equation 13.11 describes the drift of a projectile. We can define this
parameter specifically [1] as

DR = i
PG0

M
s2

exp 2C∗
Dsð Þ − 2C∗

Ds − 1

2C∗
Ds

	 
2
" #

(13.23)

If we expand the term in brackets in a power series, we can rewrite this equation as
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(13.24)

The examination of the drift equation in this form has some advantages. First, we can see
that if a projectile has no spin, P = 0 and there is no drift. If we look at a fin- or drag-
stabilized projectile where M < 0, we see that the projectile will drift in the direction
opposite to the spin. That is, a left-hand spin will produce a right-hand drift and vice versa.
In a statically unstable (spin-stabilized) projectile whereM > 0, we see that the projectile will
drift in the same direction as the spin. It must be noted that this drift is very small compared
to the other swerve components as well as Coriolis drift. In fact, to even measure it, some
researchers [1] have fired two projectiles simultaneously out of side-by-side gun barrels
with both left- and right-hand twists to remove Coriolis and wind drift components, which
would equally affect each.
The interested reader should consult the book by McCoy [1] for further information on

this topic.
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14
Nonlinear Aeroballistics

Until this point, we have concerned ourselves with linear behavior of the aerodynamic
coefficients only. This is very convenient for direct fire projectiles and projectiles that fly
with very little yaw. It had the benefit of allowing us to make a black or white decision with
regard to projectile stability as well—the projectile was either stable or not. In real systems,
several of the coefficients are only linear over a small range of angles of attack. This can be
either helpful or hurtful to a particular design.
Limit-cycle motion is motion that develops over time in a projectile, whereby the angle of

attack of projectiles grows until a certain (sometimes rather large) angle is achieved. As the
angle of attack increases (or some other parameter such as the air density changes), the
coefficients change so that the projectile will actually become stable at some large angle of
attack. At first, this may seem like it is a desirable quality in a projectile; however, range is
sacrificed due to the larger drag generally associated with this large yaw. Some systems
have been unwittingly fielded in this condition, and it was only after a large number of
firings in the field that this was determined to be an issue.
This nonlinear behavior arises out of the interaction between the air and the surfaces of

the projectile. It is a rather complicated mechanism that can arise (many times in a dis-
continuous manner) from boundary layer separation, fin masking, vortex shedding, etc. All
of which are fluid dynamic phenomenon. This is and continues to be a challenging area of
aeroballistic research, where experimental, theoretical, and computational techniques are
pushed to the limit of their usefulness.
The next two sections will look at this behavior to some degree of detail; however, because

of space constraints, the reader is encouraged to consult the literature for more detailed
mathematical and theoretical treatment.

14.1 Nonlinear Forces and Moments

In general, we can divide nonlinear forces and moments into two categories: geometric and
aerodynamic nonlinearities. The geometric nonlinearities arise from the cosine terms in the
equations of motion that were eliminated when we assumed a small yaw angle. This small
angle assumption is generally valid for most projectiles in flight. If a projectile is flying with
a large yaw, the cosine terms must be retained and the resulting equations are more difficult
to solve. Since this behavior is usually designed out of projectiles, we shall focus on the
second type of nonlinearity, the aerodynamic nonlinearity.
The aerodynamic nonlinearity can exist even at angles of attack that are consistent with

the small yaw assumption. They arise due to the fluid–mechanic interaction of the air with
the solid projectile body. This interaction can consist of phenomena such as vortex shed-
ding, separation, and shock interactions.
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The most dominant force acting on the body is the drag force. In all our previous dis-
cussions, we have stated that the forces that arise due to other sources are small, and that is
still true for the case of nonlinearities; however, the moments caused by these other forces
cannot be neglected. We can define a nonlinear drag coefficient as

CD = CD0
+ CDd2

d2 +⋯ (14.1)

In this equation, the first term on the right-hand side is the zero-yaw–drag coefficient and
the second term is the yaw–drag coefficient. More coefficients can be added, but typically
the expression is truncated at the yaw–drag term.
There are essentially two common ways of determining the yaw–drag coefficient: exper-

imentally or computationally. Experimental evaluation is more common, although recent
advances in computational fluid dynamics (CFD) [1] have shown that it is possible to
extract coefficients directly from analyses. In either case, the overall drag coefficient at
multiple angles of attack is determined from either a direct force measurement (in the case
of a wind tunnel or CFD model) or the velocity decay (in a free flight test), and the results
are plotted as CD vs. angle of attack. The slope of the resulting line (hopefully, it is a line) is
then the yaw–drag coefficient, and the y-intercept is the zero-yaw–drag coefficient. In the
case of a free flight firing where the projectile is dragging down continuously, Murphy [2]
and McCoy [3] suggested an averaging scheme that has been successfully demonstrated
based on a great deal of experience.
The aforementioned technique is known as a quasi-linear approach because it defines a

linear function that is a solution to a nonlinear equation. The same approach is used to
determine the nonlinear moments, which are generally assumed to have the same form as
Equation 14.1.
In general, both the zero-yaw–drag coefficient and the yaw–drag coefficient are positive

values. In the case of the pitching or overturning moment of a spin-stabilized projectile, the
zero-yaw overturning moment coefficient is positive while the cubic overturning moment
coefficient is negative [3]. This condition can have some interesting effects on stability as
summarized by McCoy [3].
The overall equation of motion that includes all the nonlinear terms that is equivalent to

our linear equation (Equation 10.76) with the gravitational term neglected is

x00 + H0 +H2d
2 − iP

	 

x0 − M0 +M2d

2 + iP T0 + T2d
2	 
� �

x = 0 (14.2)

We can define our coefficients as follows:
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The solution to Equation 14.2 is

x = K10 exp l1s½ � exp i y10 + y 0
1s

	 
� �
+ K20 exp l2s½ � exp i y20 + y 0

2s
	 
� �

(14.10)

where again, we are reminded that the gravitational term has been neglected. McCoy [3]
has written expressions for the coefficients in terms of the damping exponents and turning
rates as follows:
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In terms of some of these parameters, McCoy [3] derived a form for the nonlinear lift
coefficient as
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As is readily apparent, these expressions are significantly more complex than their linear
cousins. Because of this, they are generally solved using numerical schemes. The interested
reader is referred to the studies by Murphy [4–7], Platus [8], Tobak et al. [9], Seginer and
Rosenwasser [10], Platou [11], and Cohen et al. [12] for a more detailed treatment as well as
examples of this behavior.
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Problem 1
If the projectile in Problem 1 of Chapter 10 happens to be flying at a limit-cycle yaw of 4°
with a spin rate of 130 Hz and a velocity of 1764 ft/s, what would the nonlinear pitching
moment have to be for the projectile to be marginally stable?

Hints:

1. Assume all the other coefficients are linear.
2. Recall the definition of the nonlinear pitching moment (you have the linear part in

Problem 1 of Chapter 10).
Answer: CMa2

= −119.079

14.2 Bilinear and Trilinear Moments

We have discussed nonlinear forces and moments and their implications in the previous
section. At this point, we shall turn our attention to nonlinear moments in which the cubic
behavior itself can be described by a bilinear or trilinear curve. This is evident when the
cubic coefficient is plotted vs. yaw angle. A bilinear coefficient would have two differ-
ent linear slopes, while a trilinear moment would have three. This is quite useful since
many experimental data can be fitted using these curves. In particular, we shall examine
the Magnus moment and its implications because this is the dominant moment in spin-
stabilized projectile flight behavior [3].
If we are examining projectile flight data, it is often tempting to fit a higher-order poly-

nomial curve to deal with the nonlinearity. This is usually not advisable since the abrupt
changes in behavior at certain angles of attack are caused by fluid–solid interactions such as
boundary layer separation and vortex shedding.
To describe the behavior of projectiles with nonlinear Magnus moment coefficients, we

shall use two examples: one with a linear cubic Magnus moment and one with a bilinear
Magnus moment. We are interested in two things: first, the effect of initial conditions on
projectile stability and, second, limit-cycle motion.
In the excellent treatment by McCoy [3], for illustrative purposes, the author suggested

assuming a linear pitch-damping moment with a cubic Magnus moment coefficient. This
will force H2 to be zero and allow Equations 14.16 and 14.17 to be written as
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−H0y 0

1 + P T0 + T2d2
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We can put these equations into the form

l1 = l10 + l12d
2
e1 (14.21)

l2 = l20 + l22d
2
e2 (14.22)
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where we can define
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With these expressions, we can draw plots of damping coefficients vs. yaw angle in a
manner similar to the coefficients.
At this juncture, we need to recall that these damping exponents will decrease the yaw of

their particular mode if they are negative and increase the yaw if they are positive. Thus,
negative values are stabilizing, and positive values are destabilizing. As a simple example,
let us look at a projectile that has a linear cubic Magnusmoment. In analyzing this projectile,
we create two plots of damping coefficient vs. yaw. These are depicted as in Figures 14.1
and 14.2.
In Figure 14.1, we can see that the fast mode damping coefficient is negative for all yaw

angles of interest (if the projectile is flying at an angle above 11°, we probably have a
problem). Thus, the fast mode will always damp for this projectile. Examination of Figure
14.1 reveals that as long as the projectiles yaw angle is below 5.73°, the slow arm will damp
to zero (recall that the yaw angle is equal to sin(d)); above this angle, it will grow without
bound. Although this angle is fairly large for a projectile, there have been instances docu-
mented where a slowly launched missile was stable when fired from one side of a fast
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FIGURE 14.1
Plot of fast mode damping coefficient vs. yaw for linear cubic fast mode.
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warship, but unstable when launched from the other [2,8]. The instability was caused by the
vector addition of the ships own speed with the launch velocity.
Figures 14.3 and 14.4 show the fast and slow damping exponents for a projectile with

bilinear cubic Magnus moment behavior. This is an interesting example because it illus-
trates how a projectile can enter into limit-cycle motion. Limit-cycle motion is motion in
which the projectile cones in a predictable manner about the velocity vector.
If we examine Figure 14.3, we see that, similar to our earlier case, the fast arm damping

coefficient is everywhere negative. Because of this, the fast mode will always damp to zero.
The interesting part of the story is shown in Figure 14.4. Here, we see that for small angles,
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368 Ballistics



the projectiles slow arm will continue to grow because the damping exponent is positive.
Once the amplitude of the motion grows beyond 5.74°, the sign of the coefficient changes
driving the motion back to zero. However, the motion cannot be driven all the way back to
zero because as soon as the angle decreases below 5.74°, the now positive damping coef-
ficient will again cause it to increase. The result will be a projectile that cones about the
velocity vector at a 5.74° angle.
These examples assumed that the velocity of the projectile has had no effect on the

exponents. We must always keep in mind that there are many interrelated phenomena that
affect these coefficients—the real world is a complicated place. This discussion should
provide you with a feel for the physics of the projectile behavior.
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15
Introductory Concepts

Terminal ballistics is the regime that the projectile enters at the conclusion of its flight. It has
been delivered into its flight by the interior ballistician, pursued and guided through its
flight by the exterior ballistician, and now, at its target, becomes the responsibility of the
terminal ballistician. The basic objective of firing the projectile is to defeat some type of
target, and we will study the widely varying phenomena of terminal effects that are the
tools of the terminal ballistician. These end effects are dependent on the design and mission
of the projectile. The most common of the missions are as follows: fragmentation of the
projectile body by its cargo of high explosives; penetration or perforation of the target by the
application of kinetic or chemical energy; blast at the target area delivered by the chemical
energy of the explosive cargo; and the dispersal of the cargo for lethal or other missions, e.g.,
smoke, illumination, and propaganda dispersal.
Since most terminal ballistic phenomena involve the generation and effects of stress

waves in solids, we will spend some time examining the details of this field. We must gain
some knowledge of terminal ballistic terminology to be able to study the theories of kinetic
energy penetration of solid targets; detonation, deflagration, and burning of energetic
materials; the fundamentals of shaped charges; fragmentation theories; blast effects; and
lethality with the study of wound ballistics.
We shall begin by introducing some concepts that we shall use throughout our study of

this field.
In examination of penetration theories, we need to consider the following items: What

constitutes defeat of the target? What is the source of the data for which we have to create a
theory? Does the theory track with respect to momentum balance or energy balance? How
many empirically derived constants are there in the model (this tells us how universal the
theory will be)? What simplifications and assumptions were made?
Penetration is defined as an event during which a projectile creates a discontinuity in

the original surface of the target. Perforation requires that after projectile or its remnants
are removed, light may be seen through the target. Since penetration is a somewhat sto-
chastic event, we need to define some statistical parameters. V10 is the velocity at which a
given projectile will defeat a given target 10% of the time. V50 is the velocity at which
a given projectile will defeat a given target 50% of the time, andV90 is the velocity at which a
given projectile will defeat a given target 90% of the time. These quantities are depicted in
Figure 15.1.
The 50% penetration velocity is commonly used as both an experimental measurement

and a production check. The following procedure illustrates its usage in an experiment. The
reader should refer to Figure 15.2 to illustrate the meaning. First, we should estimate V50

through a calculation. Once this is accomplished, we fire a projectile with aVs as close toV50

as we can achieve. Let us say that the velocity of this experimental firing is a bit over our
estimate (at 1 in Figure 15.2). Assuming shot 1 only partially penetrated, we considerably
increase the velocity, and let us say that we achieve complete penetration at 2 in the figure.
We now assume that V50 is midway between 1 and 2. We now would attempt to fire at the
velocity halfway between 1 and 2 (at 3), and, say, we get complete penetration. We would
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next lower the velocity to get a partial penetration, say, at 4, and then we would increase it
to get a complete penetration (but let us say that we get only a partial penetration at 5). We
would then have to increase the next shot velocity to 6.
Wewould continue the aforementioned procedure, commonly known as an up and down

test, until we obtained three complete penetrations and three partial penetrations with the
difference between the highest and the lowest velocities in the set less than 200 ft/s. At that
point, we would calculate the experimental V50 from

V50 =

X6

i=1
Vi

6
(15.1)

The limit velocity Vl (sometimes called the ballistic limit when referring to the armor) is
the velocity below which a given projectile will not defeat a given target. The technique for
determining it was invented by the US Army Ballistic Research Laboratory, Aberdeen,
Maryland. The object is to fire a few projectiles that achieve complete penetration, mea-
suring the residual velocity through the use of flash X-rays, and then generate a curve as
shown in Figure 15.3. We then plot the residual velocity after penetration vs. the striking
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Illustration of the V50 experimental procedure.
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velocity. Usually, there will be a lower limit that develops below which the armor is not
penetrated or the projectile gets stuck in the armor.
From experimental evidence, we know that the following factors affect the limit velocity:

material hardness, yaw at impact, projectile density, projectile nose shape, and length-to-
diameter ratio of the projectile. For the material hardness, in general, the harder the target,
the higherV50 becomes, while the harder the penetrator, the lowerV50 becomes, and there is
more residual penetrator. With respect to yaw at impact, the more yaw, the greater chance
for breakup or ricochet and the higher V50 becomes. With projectile density, we find that the
denser the projectile is, the lower V50 becomes. A blunter nose translates, in general, to a
higherV50. If the target is significantly overmatched, however, the nose shape has negligible
effect. The length-to-diameter ratio can go either way, and a great deal depends on the
obliquity of impact.
We will now introduce some concepts, which we shall use in our examination of pene-

tration events.

Vl

Vr 

Vs

FIGURE 15.3
Limit velocity illustrated.
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16
Penetration Theories

16.1 Penetration and Perforation of Metals

Metals are by and large the most common target of medium- to large-caliber projectiles.
Although small-caliber ammunition is generally used against soft targets, there are times
when even they are called upon to penetrate metal objects. This section will discuss several
models of penetration into two of the most common metals: steel and aluminum. While
these formulas are not exactly perfect for other metals, usually a metal will behave like one
or the other.
Projectiles may impact metallic targets under a wide range of velocities. The nature of the

target material is such that different velocities must be handled using somewhat different
techniques. At very low velocities (<250 m/s), the penetration is usually coupled to the
overall structural dynamics of the target. Responses are on the order of 1 ms. As the impact
velocity increases (500–2000 m/s), the local behavior of the target (and sometimes
penetrator) material dominates the problem. This local zone is approximately two to three
projectile diameters from the center of impact. With further increases in velocity (2000–
3000 m/s), the high pressures involved allow the materials to be modeled as fluids in the
early stages of impact. At impact speeds greater than 12,000 m/s, energy exchange occurs
at such a high rate that some of the colliding material will vaporize. This energy exchange
must be accounted for. We will not treat this last case as it is beyond the normal scope of
military applications.
A typical sequence of events that occur during a projectile impact is developed here [1].

Given that a projectile strikes a target, compressive waves propagate into both the projectile
and the target. Relief waves propagate inward from the lateral free surfaces of the
penetrator, cross at the centerline, and generate a high tensile stress. If the impact were
normal, we would have a two-dimensional stress state. If the impact were oblique, bending
stresses will be generated in the penetrator. When the compressive wave reached the free
surface of the target, it would rebound as a tensile wave. The target may fracture at this
point as will be seen in Section 18.3. The projectile may change direction if it perforates
(usually toward the normal of the target surface).
Because of the differences in target behavior based on the proximity of the distal surface,

we must categorize targets into four broad groups. A semi-infinite target is one where there
is no influence of distal boundary on penetration. A thick target is one in which the
boundary influences penetration after the projectile is some distance into the target. An
intermediate-thickness target is a target where the boundaries exert influence throughout
the impact. Finally, a thin target is one in which stress or deformation gradients are neg-
ligible throughout the thickness.
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There are several methods by which a target will fail when subjected to an impact. The
major variables are the target and penetrator material properties, the impact velocity, the
projectile shape (especially the ogive), the geometry of the target supporting structure, and
the dimensions of the projectile and target.
The failure modes of the target are depicted in Figure 16.1. They will now be described.

Spalling is very common and is the result of wave reflection from the rear face of the plate. It
is common for materials stronger in compression than in tension. Scabbing is similar to
spalling, but the fracture predominantly results from large plate deformation, which begins
a crack at a local inhomogeneity. These failure mechanisms will be expounded upon in
Section 18.3. Brittle fracture usually occurs in weak and lower-density targets. Radial
cracking is common in ceramic-type materials where the tensile strength is lower than the
compressive strength, but it does occur in some steel armor. Plugging occurs in materials
that are fairly ductile and usually when the projectile impact velocity is very close to the
ballistic limit. Petaling occurs when the radial and circumferential stresses are high and the
projectile impact velocity is close to the ballistic limit.
Because of the very high loading rates and correspondingly high temperatures, we need

to describe some phenomena that occur during penetration events. Terms such as these
occur throughout the literature, so it is good to understand what they mean.
The concept of adiabatic shearing is encountered in impacts where a plug has been

formed. On initial impact, a local ring of intense shear is generated. Since this occurs very
quickly (on the order of microseconds), the target does not have sufficient time to build up
any motion. Locally intense heat is generated. Because of the time scale and a large
deformation rate, the heat cannot be conducted away. Since the material properties are
weaker at this high temperature, the material tends to yield readily and flow plastically.
The process then feeds on itself. Finally, a plug is formed and breaks free. If the minimum

Plugging

Piercing
(ductile)

Petaling

Scabbing

Spalling
(brittle)

Spall ring

Star crack
Scab

Perforation Nonperforation

FIGURE 16.1
Target failure modes.
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perforation velocity is exceeded by more than about 5–10%, the plug will usually break up.
Blunt noses on projectiles tend to increase the propensity to fail a target by adiabatic shear.
Hydrodynamic erosion is an important concept in terminal ballistics. Metal cutting tools

such as water jets or soft metal penetrators and shaped charge jets can defeat a target by
hydrodynamic erosion. During hydrodynamic erosion, the penetrator material forces the
target material aside in a manner similar to a punch being pushed into the target material
except that the hole will be larger. This phenomenon usually occurs at impact velocities
over 1000 m/s. The deposition of the penetrator material on the walls of the hole is an
indication that this failure mechanism played a part in the penetration.
The hydrodynamic transition velocity is the velocity belowwhich the projectile and target

act as essentially elastic bodies and above which both target and projectile can be treated as
fluids. This concept is illustrated by the penetration sequence of Zukas et al. [1]. For all
penetration velocities, the target material is radially accelerated away from the axis
of penetration. At low velocities, elastic strain keeps the target material in contact with the
penetrator. At high velocities, the material is thrown away from the projectile, so that the
hole becomes bigger than the projectile diameter. The radial acceleration of the material is
greatest at the tip of the projectile. At the hydrodynamic transition velocity, the tip of the
penetrator deforms laterally. The projectile tip becomes spherically blunted and forms a
stable shape that penetrates the target for the remainder of the event. The transition velocity
inversely varies with the tip radius. Hydrodynamic transition velocity is possibly related to
the rate of rod erosion and plastic wave propagation.
Shear banding is a form of adiabatic shearing in which layers of material in a like state of

shear tend to form. There are discontinuities in stress and strain instead of a gradual
increase in shear strain near the disturbed region. Uranium and tungsten tend to display
this phenomenon. Normal material models used in finite element codes do not show this
effect. A model that includes thermal softening is required.
The analytical models in use today to solve these types of problems can be organized into

three broad categories: empirical or quasi-analytical, approximate analytical, and numeri-
cal. In empirical or quasi-analytical models, algebraic equations are developed from large
amounts of experimental data. These models are generally curve fits (results based). They
usually do not incorporate physics and tend to be configuration dependent. An approxi-
mate analytical model attempts to examine the physics of a particular aspect of the pene-
tration process or failure mechanism such as petaling and plugging. The mathematics
becomes tractable because we must make simplifying assumptions. They are usually
limited to particular situations. Numerical models usually attempt to solve the full equa-
tions of continuummechanics by using finite difference or finite element techniques. This is
the most general method. The problemwith numerical models is that good material models
are required, and this can be expensive.
Most analytical models can consider only one damage mechanism (like plugging or

fracture) or conservation law before they becomemathematically intractable. Some allow as
many as two mechanisms. The approach is to make simplifying assumptions. Typical
assumptions are to assume localized influence where the projectile is influenced only by a
small region of the target; to ignore rigid body motions; to ignore thermal, friction, shock
heating, and any material behavioral changes due to these mechanisms, and to assume that
the target is initially stress free, etc. One important thing to recognize is that a complicated
model does not necessarily yield a more accurate answer.
The perforation of finite-thickness plates in which plugging is the predominant pene-

tration mode is divided into three stages. In the first stage, locally, the material ahead of
the projectile is compressed and the mass is added to the projectile (i.e., the projectile
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decelerates somewhat and the added mass accelerates). In the second stage, more material
is accelerated but shearing is occurring on the surface area of the plug. In the third stage, the
plug has completely sheared out and both the plug and the projectile move with the same
velocity. If this model is used for an oblique impact, one must use the line-of-sight thickness.
At velocities from 1200 to 5000 m/s, the model used usually involves hydrodynamic
erosion of the projectile tip as the first stage as well. This can be followed by both plugging
and further tip erosion. In the third stage, we usually consider the projectile to be com-
pletely eroded and the plug is ejected from the armor [1].
Somemodels account for the flexibility of the target. This is usually required as the impact

velocities approach the limit velocity. In this case, a significant amount of energy is con-
sumed in both elastically and plastically bending the target plate.
We shall examine the underlying assumptions in a fewpenetration theories beforemoving

on to detailed examination of the theories themselves. Theories that are derived from a
momentum balance are typically used for thin plates. These theories can be usedwithminor
modifications when the target petals. They usually require that the projectile remains intact.
Theories that are derived from an energy balance are typically used for thick and mod-

erately thick plates. With moderately thick targets, plugging can occur. Thick plates are
usually defeated by a piercing phenomenon that also has distinct phases. The first phase is a
radial displacement of the target material. Sometimes, there is plugging at this stage. This
stage is followed by plastic flow and yielding of the target. The target material may well be
able to be treated like a fluid during this phase.
Many empirically based predictive relationships are based on energy approaches. A

particularly popular model takes the form of

E = kdmtn (16.1)

where we have

m + n ≈ 3 (16.2)

In these equations, E is the perforation energy; d is the projectile diameter; t is the plate
thickness; and k is an empirically derived constant (see Figure 16.2).

t

d

θ

FIGURE 16.2
Projectile impact problem illustrated.
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If we letm = 1.5 and n = 1.4, we get the famous DeMarre formula for normal impact. If we
would like to include an angle of obliquity in the aforementioned formula, it is common
practice to use

E = kdmtnsecpq (16.3)

Here p is an experimental parameter based on the projectile–armor combination and q is
the angle of obliquity measured from the normal to the plate. Sometimes, the armor fab-
rication process will affect the penetration. In this case, there is a function called the figure of
merit, where the perforation velocity of the armor is compared to that of mild steel:

FOM =
Vl

Vlmild steel

(16.4)

Note that in Equation 16.4, the velocity used does not necessarily have to be the limit
velocity. Another useful relationship commonly employed by the projectile designer is

Eperf =
1
2
mV2

perf (16.5)

Inserting Equation 16.3 into Equation 16.5 yields

V2
perf = 2k

dmtn

m
sec pq (16.6)

Now taking the square root and assimilating terms, we get

Vperf = k

ffiffiffiffiffiffiffiffiffiffi
dmtn

m

r
sec j qð Þq (16.7)

In 1886, DeMarre developed a famous formula for the penetration of a plate given a
normal impact:

mV2

d3
= a

t1:4

d1:5
(16.8)

where m is the penetrator mass; V is the impact velocity; d is the diameter of the projectile;
and t is the plate thickness, with a being an empirically derived constant.
As a word of caution, many of these formulas are dangerous because of the units in the

empirically derived constant; it is commonplace to see centimeter–gram–second (CGS)
units in these formulas as well. Over time, many have modified the DeMarre formula and
used it in the form

mV
d

t
d

2

3 = ⎛
⎝
⎜

⎞
⎠
⎟α
β

(16.9)

Here b is an empirically derived constant as well. In the aforementioned form, the
DeMarre formula is used when considering a normal impact. Some researchers have
extended its use to include an oblique impact, and it would then take the following form:

mV2

d3
= a

tg qð Þ
d

� �b
(16.10)

where g(q) is a function of the angle of obliquity and is most often taken as sec q.
We sometimes define the specific limit energy (SLE) as

mV2
l

d3
≡ SLE (16.11)
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Hans Bethe, a physicist at Cornell University in 1941, determined that for piercing-type
problems (i.e., thick plate perforation where a hole is laterally or radially widened by the
penetrator), the constant b should be equal to 1, thus yielding

mV2
l ∼ td2 (16.12)

Around the same time (1942), Zener and Holloman from Watertown Arsenal came up
with a formula for use when plugging or petaling is the predominant penetration mode.
They stated that in this case, b should equal to 2, thus yielding

mV2
l ∼ t2d (16.13)

In 1943, Curtis and Taub attempted to modify the DeMarre formula to account for a mode
change during the penetration event. In a thick plate, the mode changes at some point from
a piercing to a plugging at the rear surface. This results in a decrease in energy consumed
per unit path length, so the DeMarre formula had to be further modified to

mV
d

t
d

l
2

3 = +⎛
⎝
⎜

⎞
⎠
⎟α γ (16.14)

Here a and g are constants and g < 0. If we define t′ as depicted in Figure 16.3, then g is a
quadratic function of t′. Also t′ ∼ d and is the distance after the mode changes.
S. Jacobson, working at the Picatinny Arsenal in New Jersey, further refined the concept

that there is a different energy relationship for each of the two modes. For plugging, this is

Eplug = force � distance ≈ πdtYs � t (16.15)

where Ys is the shear yield strength of the material. For the piercing mode, we have

Epiercing = Yflow � V ≈
πd2

4
tYflow (16.16)

where V is the volume of the plug and Yflow is the flow or plastic yield stress of the target
material.
We can rewrite Equations 16.15 and 16.16 as

E k d
t
d

Yplug plug s= ⎛
⎝
⎜

⎞
⎠
⎟

3
2

(16.17)

E k d
t
d

Ypiercing piercing flow= ⎛
⎝
⎜

⎞
⎠
⎟

3 (16.18)

t΄
t

d

FIGURE 16.3
Section of a target plate that defines t and t′.
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If we graph both expressions, we obtain a plot as illustrated in Figure 16.4. To obtain
t/dcrit, we solve Equations 16.17 and 16.18 where

Eplug = Epiercing (16.19)

using the relations that

Ys ≈ 0:6Yflow (16.20)

kpiercing =
π

4
 and kplug = π (16.21)

Then, combining Equations 16.17 and 16.18, we get

π π
4

0 6 0 423 3
2

d
t
d

Y d
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d

Y
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d

⎛
⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟ → ⎛

⎝
⎜

⎞
⎠
⎟ =flow flow

crit
. . (16.22)

This value of t/d is the point where the mode of penetration changes from plugging to
piercing. Thus, against targets whose thicknesses are such that an attack by a penetrator
whose t/d ratio is greater than 0.42, we can expect that the penetration mode will be
piercing; otherwise, plugging is to be expected.
Lambert and Zukas proposed a model in 1982 while working at the Ballistic Research

Laboratory to cover more general cases of penetration. If we examine Equation 16.14, we
can see that as the plate thickness goes to zero, the residual velocity should approach the
striking velocity and the limit velocity should approach zero. Expressed mathematically,
we require that

lim
t!0

Vl ! 0 (16.23)

However, if we look at Equation 16.14, we note that if Vl = 0 and t = 0, it requires the
product ga to equal zero, which is not physically possible. Therefore, the Lambert model
replaces g by [exp(−t/d) − 1] as

mV
d

t
d

t
d

l
2

3 1= + −⎛
⎝
⎜

⎞
⎠
⎟ −

⎡

⎣⎢
⎤

⎦⎥
α exp (16.24)

E

t/d

Piercing mode

Plugging mode

t/dcrit

FIGURE 16.4
Energy in penetration modes based on the model of Jacobson.
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This forces

Vl = 0 at  t = 0 (16.25)

and

Vl = ∞ at  t = ∞ (16.26)

Since the penetrator volume is proportional to d2l and since there should be a dependence
on this volume in the SLE, we want to keep the dimension of diameter cubed in Equation
16.24; thus, we shall write

d d l d l
l
d

d
l
d

c c
c c

3 3
1

32
→ = ⎛

⎝
⎜

⎞
⎠
⎟ = ⎛

⎝
⎜

⎞
⎠
⎟

−
−

(16.27)

where c is a constant. We can then incorporate this into Equation 16.24 as
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d
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l
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α exp (16.28)

Next, we will include obliquity effects by adding in the angle of obliquity q through
replacement of t by t seck q. In this case, if k = 1, we have the true path length through the
armor plate (line-of-sight thickness). We shall define

z =
t
d
seckq (16.29)

We can now rewrite Equation 16.29 as
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If we solve Equation 16.30 for the limit velocity, we obtain

V
l
d

t
d

t
d

d
m

c
k k

l =
⎛
⎝
⎜

⎞
⎠
⎟ + −⎛

⎝
⎜

⎞
⎠
⎟ −

⎡

⎣⎢
⎤

⎦⎥
α θ θsec exp sec 1
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(16.31)

The Lambert model was used to examine the firing of 200 long rods into rolled homo-
geneous armor (RHA). The test conditions were as follows:

0:5 ≤ m g
� �

≤ 3630 0:6 ≤ t cm½ � ≤ 15

0:2 ≤ d cm½ � ≤ 0:5 0° ≤ q ≤ 60°

   4 ≤
l
d
≤ 30    7:8 ≤ r

g
cm3

� �
≤ 19:0

A least-squares fit of the results yielded the following: a = (4000)2, c = 0.3, and k = 0.75. If
we insert these into Equation 16.31, we get
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(16.32)

Please note the CGS units. The authors suggest that the model is applicable where t/d >
1.5. Also, we must note that nose geometry has a significant influence for t/d < 1.0. RHA or
good-quality steel is the target (the specific properties are unimportant).
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One measure of lethal effects once a projectile has perforated the target material is the
residual velocity. Vr is the symbol for the residual velocity of the penetrator. That is the
velocity that the penetrator moves with once it perforates the target. Mathematically, it is
defined in the Lambert model as

Vr =
0, 0 ≤ Vs ≤ V

a Vp
s − Vp

l

	 
1
p ,  Vs > Vl

( )
(16.33)

If we assume that Vs is large so that the absorption of momentum by the target is neg-
ligible, then the momentum balance can be written in terms of identifiable penetrator mass
and velocity (mr andVr) and the large quantity of unidentifiable target and penetrator ejecta
with each particle mi having a particular velocity Vi. Thus, the momentum balance is

mrVr +
Xn
i¼1

miVi ! msVs as Vs ! ∞ (16.34)

Even though Equation 16.34 is mathematically satisfying, in practice, it is usually difficult
to measure the mass and velocity of all the fragments, so most of the miVi will remain
unknown.
We shall now consider a general case of impact as illustrated in Figure 16.5. Here we shall

let m′ be the mass of the ejecta. We can then write

m0 = r
π

4
d3z (16.35)

where

z =
t
d
sec0:75q (16.36)

therefore,

′ = ⎛
⎝
⎜

⎞
⎠
⎟ =m d

t
d

d tρ π θ ρ π θ
4 4

3 0 75 2 0 75sec sec. . (16.37)
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FIGURE 16.5
General case of projectile impact.
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If we now assume that Xn
i=1

miVi = hm0Vr (16.38)

This is equivalent to stating thatm′ is the mass of material pushed ahead of the penetrator.
This mass, m′ is ejected with speed Vr (plugging theory), and the total momentum of the
ejecta jumble is proportional to m′Vr. We can also write, in the limiting case, that the
residual momentum approaches the initial momentum or, mathematically,

Mr

M
! 1 (16.39)

If we substitute Equation 16.38 into Equation 16.34, we get

mVr + hm0Vr ! msVs as Vs ! ∞ (16.40)

which can be rearranged to yield

V
V

m
m hm
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s
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r
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+
⎛
⎝
⎜

⎞
⎠
⎟ →∞
′

(16.41)

We know that if penetration occurred, Equation 16.33 applies, so we have

Vr = a Vp
s − Vp

l

	 
1
p (16.42)

We can divide Equation 16.42 by Vs to get
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which means that as Vs approaches infinity, the second term in the parentheses approaches
zero or

Vr

Vs
! a  as Vs ! ∞ (16.44)

This is illustrated in Figure 16.6.

Vr

Vr

Vs

Vs

mr + hm΄
ms

Vl

FIGURE 16.6
Asymptote on limit velocity.
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If we look at Equations 16.44 and 16.41, we see that

a
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m hm
=
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s

r
(16.45)

Furthermore, we can assume in the plugging mode that the mass of the penetrator does
not significantly change during penetration, so we get ms = mr = m. We can then write
Equation 16.45 as

a
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m hm
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(16.46)

There is empirical evidence that suggests that h ≈ 1/3, so we can write
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If we assume that the penetrator remains intact throughout the perforation event, we can
write

KEimpact = KElimit + KEresidual (16.48)

This can also be expressed as

V2
r ∼ V2

s − V2
l ! Vr ∼ V2

s − V2
l

	 
1
2 (16.49)

which, if written as

Vr = a V2
s − V2

l
	 
1

2 (16.50)

would say that p = 2. If we looked at momentum, we would get

Vs ∼ Vl + Vr (16.51)

which could be written as

Vs = a Vl + Vrð Þ (16.52)

Equation 16.52 implies that for a momentum balance, p = 1. Thus, it is clear that the value
for p should fall between 1 and 2. Lambert accounted for this by choosing

p = 2 + z = 2 +
t
d
sec0:75q (16.53)

where both p and z monotonically grow as

t
d
! ∞ and=or q ! π

2
(16.54)

also,

p ! 2 as t ! 0 (16.55)

Lambert also found that a better empirical fit was obtained if he let

p = 2 +
z
3
= 2 +

t
3d

sec0:75q (16.56)
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A numerical model for penetration was proposed by A. Tate to determine penetration of
metals [2]. The base equation for this model is

1
2
rp Vi − uð Þ2 + Yp =

1
2
rtu

2 + Rt (16.57)

where rp is the density of the projectile material; rt is the density of the target material; Vi is
the impact velocity; u is the instantaneous projectile velocity; and Yp and Rt are the ballistic
resistances of the projectile and target, respectively, defined as

Yp = 1:7sp (16.58)
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where sP is the yield strength of the projectile material; st is the yield strength of the target
material; and Et is the modulus of elasticity of the target material.
The way the Tate model is used is to numerically integrate Equation 16.57 until the

velocity goes to zero or perforation occurs. When the projectile stops, a second integration
determined the depth of penetration. When perforation occurs, the value of u is the residual
velocity. Tate states that the accuracy of this method is within 20%. One of the downsides of
the model is that it does not handle oblique impacts, but it can at least be altered by the line-
of-sight thickness.
If a penetrator hits a target at a great enough angle, it may ricochet. The ricochet process

can be described as follows. During impact, both the projectile and the target are elastically
compressed. When this energy is released, it will change the motion of the projectile.
Deformations because of resisting force of the target will change the direction of the
penetrator. Rotating moments are generated by internal forces acting within the projectile.
In general, thin plates do not allow ricochet except at extreme angles of attack. Tate

produced a ricochet formula for the critical ricochet angle (oblique impacts at angles greater
than this will ricochet):

tan3 β
ρ ρ

ρ
> +⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2
3

1
2 2 2

1
2p

P

p

t

V
Y

L d
Ld

(16.60)

Here Yp is a characteristic strength usually taken as the Hugoniot elastic limit (described
in Section 18.3), the subscripts p and t are projectile and target, respectively, and L, d, and V
are the length, diameter, and velocity of the penetrator, respectively.
As vehicles become lighter, aluminum is being used more and more as armor. It is

therefore necessary to determine the penetration capabilities of projectiles into aluminum.
Aluminum behaves a little differently than steel during penetration by ogival projectiles

in its tendency to be pierced rather than to develop plugs. A penetrator is usually of sig-
nificantly greater density than the target in most cases. One significant difference is the
evidence of a layer of aluminum with an altered microstructure on the penetrated surface.
This indicates a melt layer that is believed to assist in penetration.
A simple model of projectile penetration into aluminum was put forward by Forrestal et

al. in 1992 [3]. A distinct advantage of this model is its simplicity. A possible disadvantage is
that the empirical nature is not universal. Even though the studywas specifically performed
with 7075-T651 targets, it yields a fairly good representation of aluminum penetration.
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The model assumes normal impact of the projectile and that the projectile is rigid. This may,
at first, seem to be a restrictive assumption, but the method provides reasonable estimates
for slightly yawed projectiles if the angle is below about 5° and possibly further.
We first define the caliber radius head as

y =
s
d

(16.61)

where d is the diameter of the projectile; y is the caliber radius head; and s is the ogive
radius.
We can also define the nose length as

l =
d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y − 1

p
(16.62)

This geometry is illustrated in Figure 16.7.
We shall say that the resistance force of the aluminum target on the penetrator in this case

will have two components: one normal to the surface (normal stresses) and one tangential to
the surface (shear stresses and friction). If we lump the shear stress in with the stress owing
to friction and furthermore assume that the tangential stress is proportional to normal
stress, we can write

st = μsn (16.63)

where st is the tangential stress; sn is the normal stress; and μ is the proportionality constant
(coefficient of sliding friction).
Forrestal et al. [4] developed a formula for the axial force on an ogival nose:
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Here Vz is the instantaneous velocity during penetration. The stress function sn(Vz, q) is
assumed to be similar to that of a spherically symmetric expanding cavity (defined later). If
we let V be the constant velocity at which the tip of the projectile radially expands the hole,
then we can write the radial stress at the cavity surface as

s

lL

d

θ

FIGURE 16.7
Ogival penetrator for the model of Forrestal et al. [3].
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where sr is the radial stress; Y is the material yield stress; rt is the target density; and A and
B are constants defined as
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In these expressions, E is Young’s modulus and n is the strain hardening exponent
(assumes power law strain hardening). For an assumed incompressible 7075-T651 alumi-
num, Forrestal et al. [3] provided I = 3.896 and A = 4.609.
Empirically, curve fitting the stress–strain curves (thus including compressibility) for

7075-T651 yielded slightly different results with A = 4.418 and B = 1.068.
To approximate the normal stress on the ogive, we can replace the spherically symmetric

velocity V in Equation 16.66 with Vz cos q; then, we have
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If we insert Equation 16.70 into Equation 16.64, we obtain
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Now we integrate to obtain
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β ψ
ψ
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(16.74)

Now that we have an expression for force as a function of velocity, we need to come up
with how this varies during penetration.
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We can write Newton’s second law as

− Fz = m
dVz

dt
(16.75)

We can convert this time integral to a distance integral and rewrite it as follows:

− Fz = mVz
dVz

dz
(16.76)

One can write the mass of our projectile in terms of the parameters we have already
described. The mass of the cylindrical section of the projectile is

mcylinder = rp
πd2

4
L (16.77)

We can write the mass of the ogive as

mogive = rp
πd3

8
k (16.78)

where

k = − +⎛
⎝
⎜

⎞
⎠
⎟ − − −( ) −⎡

⎣
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⎦
⎥−4

4
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sin (16.79)

Now the total mass of the projectile is

m m m
d

L
kd= + = +⎛

⎝
⎜

⎞
⎠
⎟cylinder ogive pρ

π 2

4 2
(16.80)

If we insert Equations 16.80 and 16.72 into Equation 16.76, we get, after some
rearrangement,

− = +⎛
⎝
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⎞
⎠
⎟

+
d dp

z

t z
zz L
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Y V
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This can be integrated as

− = +⎛
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⎠
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The result of this integration is
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=
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where P is the final penetration depth and V0 is the impact velocity.
If the penetration depth P is greater than the target thickness, perforation will occur.
When this is the case, it is useful to be able to calculate the residual velocity of the

penetrator, which we do by integrating Equation 16.82 with different limits of integration:

− = +⎛
⎝
⎜

⎞
⎠
⎟

+∫ ∫d dp
z

t z
z

r

z L
kd V

Y V
V

T

V

V

0

22
0

ρ
α βρ

(16.84)

Penetration Theories 391



where T is the target thickness. Performing the integration yields

V Y
V

T

L
kd

Y
r

t

t

p t
exp= +⎛
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⎥
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βρ

βρ

ρ

α
βρ0

2
2
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(16.85)

This model has proven to be fairly accurate (within 15%) once the coefficients have been
tuned. It is fairly sensitive to the friction coefficient μ incorporated in both a and b, which
Forrestal et al. [4] suggested should be between 0 and 0.06.

Problem 1
AGerman 280 mm armor-piercing projectile weighs 666 lbm and is about 34 in. in length. It
strikes a British warship in the 1/2 in. thick vertical side plating at an angle of 12° from the
horizontal along the following path depicted. The initial impact velocity is 2000 ft/s.
Determine the residual velocity of the shell after passing through each compartment and
how far through the ship it will go (i.e., in which compartment will it stop).

Assume the density of the armor plate to be r = 0.283 lbm/in.3

Path of shell

12°

0.50 in. thick
0.25 in. thick7.00 in. thick

1.25 in. thick

4.00 in. thick
(Assume normal to shell path)

Answer: The projectile is arrested by the 1.25 in. deck.

Problem 2
An explosively formed penetrator impacts a 4 in. thick RHA plate at a velocity of 1500 m/s.
The penetrator parameters are given later. Determine if the penetrator will perforate the
target by using the Lambert/Zukas model given

1. A normal impact

Answer: Vl = 1299
�
m
s

�
; yes

2. An impact at 30° obliquity

Answer: Vl = 1389
�
m
s

�
; yes

Penetrator information:

l = 95 mm½ � m = 1:25 lbm½ �

d = 22 mm½ � Vs = 1500
�
m
s

�
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Problem 3
A German 7.5 cm Gr 34A1 projectile is fired at a 2 in. thick armor plate at a 30° obliquity.
The impact velocity is 400 m/s. The penetrator parameters are given later.

1. Determine whether the penetration mode will be plugging or piercing through use
of the Jacobson model for a normal impact.
Answer: Piercing

2. Determine if the penetrator will perforate the armor through the use of the Lambert
model.
Answer: No

3. Comment on the validity of the model.

Penetrator information:

l = 39 cm½ � m = 1:25 kg
� �

d = 7:5 cm½ � Vs = 400
�
m
s

�

Problem 4
A Japanese 20 mm projectile with the properties given later impacts the 1/2 in. thick alu-
minum armor plate on the rear gun mount of a US plane at 30° obliquity. If the projectile
and the armor have the properties given later,

1. Determine how deep the projectile will penetrate into the armor (assume μ = 0.03).
Answer: P = 53.1 [mm] = 2.09 [in.]

2. If the projectile perforates the armor, determine its residual velocity.

Answer: Vr = 423
�
m
s

�

Estimated penetrator information:

s = 40 mm½ � m = 128 g
� �

d = 20 mm½ � Vs = 500
�
m
s

�
 rp = 0:283

�
lbm
in:3

�

L = 60 ½mm�
Estimated armor information:

A = 4:418Y = 39, 000 psi½ � rt = 0:098
�
lbm
in:3

�

B = 1:068
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Problem 5
You are asked to design a “slug butt” for a test gun. The requirement for the device is to stop a
106 lbmsteel projectilemovingat 1000m/s.Youhaveavailable apile of 2 in. thickRHAplates
that you can stack together. Note that stacking plates together results in slightly worse per-
formance than that of a solidplate—butwecanaccount for this byaddingsomeextramaterial
to provide “margin.” Normally slug butts are constructed at an angle to deflect ricochets
downward and improve ballistic performance, but this decreases the “target” area.Given the
information provided earlier and later, determine the number of plates you need to prevent a
penetration and determine the angle of the slug butt—do not use an angle greater than 40° as
the target area will be too small. List all assumptions and comment on your design.
Projectile information:

l = 40 in:½ �
d = 155 mm½ �

rp = 0:283
�
lbm
in:3

�  

m = 106 lbm½ �

Vs = 1000
�
m
s

�

Armor information:

rs = 0:283
�
lbm
in:3

�
 available in 2 in: thick plates

Problem 6
AGerman 305 mm armor-piercing projectile weighs 894 lbm and is about 35.2 in. in length.
It strikes a British warship in the 3 1/4 in. thick turret crown at an angle of 20° from the
horizontal along the path depicted later. The initial impact velocity is 1800 ft/s. Determine
the residual velocity of the shell after passing through each compartment and how far
through the ship it will go (i.e., in which compartment will it stop).

Assume the density of the armor plate to be r = 0.283 lbm/in.3

20°

Path of shell 

1.50 in. thick

3.25 in. thick

9.00 in. thick

6.00 in. thick

1.00 in. thick

8.00 in. thick

15°

Problem 7
AGerman 280 mm armor-piercing projectile weighs 666 lbm and is about 34 in. in length. It
strikes a British warship in the 0.43 in. thick vertical side plating at an angle of 10° from the
horizontal along the path depicted later. The initial impact velocity is 1900 ft/s. Determine
the residual velocity of the shell after passing through each compartment and how far
through the ship it will go (i.e., in which compartment will it stop).
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Assume the density of the armor plate to be r = 0.283 lbm/in.3

Path of shell 
10°

1.50 in. thick

3.25 in. thick

9.00 in. thick

6.00 in. thick

1.00 in. thick

8.00 in. thick

15°

0.43 in. thick

Problem 8
A British short-magazine Lee–Enfield is fired at a sniper plate across no-man’s-land in
World War I (WWI) (because of the static nature of the fighting, snipers in the opposing
lines fired through small holes in thick metal plates to minimize exposure). The projectile
has a mass of 175 grains, and the projectile is 1.1 in. long and made of lead (ignoring the
copper jacket). The diameter is 0.310 in. The range to the target is 200 yards, so we can
assume an impact velocity of 1512 ft/s. The angle of impact is 12.85 min from the normal.
Using the Lambert–Zukas model, determine the thickness of armor plate that the projectile
will penetrate (i.e., obtain V50).

Assume the density of the armor plate to be rt = 0.283 lbm/in.3. Assume the density of
lead to be rp = 0.407 lbm/in.3.

Problem 9
Using the same information in Problem8, determine howdeep a projectilewill penetrate into
a 1 in. thick steel sniper plate assuming the impact is normal this time and the impact velocity
is 1800 ft/s. Use the Tate formula. The additional target and bullet properties are as follows:

sp = 10, 000
�
lbf
in:2

�

st = 36,000
�
lbf
in:2

�
 Et = 29, 000, 000

�
lbf
in:2

�

The Tate formula shows the energy balance between the projectile and the target. When
solved for the penetration depth, the following equation results:

P =
rp
Yp

ðVi

vc

u vð Þl vð Þdv

In this formula, u(v) is the instantaneous velocity of the base of the hole, v is the instanta-
neous velocity of the projectile, and l(v) is the instantaneous projectile length. The limits of
integration are between the impact velocity Vi and a cutoff velocity vc that depends on
whether the projectile is stronger than the target or not. For this case, we can use
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vc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Rt − Yp

rp

s
 forRt > Yp

The other terms are as follows:
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where L is the initial length of the projectile. Comment on the results.

Problem 10
At the end of WWI, the German navy surrendered to the British at Scapa Flow (a large
anchorage in northern Scotland). When it appeared that surrender negotiations were
breaking down, the German sailors opened the sea cocks (valves in the bottom of the ships)
and sank most of their ships within sight of astounded British onlookers. In the 1920s, the
British raised what ships they could and used them as targets to assess the penetration
and bursting characteristic of their heavy shell [5]. One such test was against the side armor
of SMS. Baden, the largest warship built by Germany during the war. We would like to
examine two impacts against the armor of this vessel. In each case, the projectile data are
given next:
Projectile information [6]:

l = 66 in:½ �
d = 15 in:½ �

s = 90 in:½ �      m = 1938 lbm½ �

rp = 0:283
�
lbm
in:3

�
 Vs = 1550

�
ft
s

�
Armor information:

rs = 0:283
�
lbm
in:3

�

For each of the following situations, determine the residual velocity of the projectile (if any):

 1: Gundeck     2: B� turretroof

  q = 16:5 °½ �       q = 75:25 °½ �
  t = 1:187 in:½ �      t = 4 in:½ �

  rt = 0:283
�
lbm
in:3

�
   rt = 0:283

�
lbm
in:3

�
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16.2 Penetration and Perforation of Concrete

Concrete-penetrating munitions have always been important in the military arsenal.
Bunkers, buildings, and walls are used as cover by an enemy, and it is required to perforate
the structure and deliver some type of lethal or nonlethal effect behind the obstruction.
Concrete comes in a variety of forms that have variable strengths, reinforcement geom-

etries, and material properties owing to curing. Each of these forms behaves somewhat
differently when impacted by a projectile. There is some evidence that once the impact
velocity of a projectile is great enough, one can ignore reinforcement, and only the concrete
strength becomes important. As a consequence of the high compressive strength of concrete
relative to its tensile strength, it tends to readily spall.
A relatively simple model of projectile penetration into concrete was put forward by

Forrestal et al. in 1994 [7]. This model has an advantage in its simplicity. But a slight dis-
advantage is that its empirical nature makes its global applicability somewhat limited. We
shall use this model as a fairly good representation of concrete penetration physics. The
model assumes normal impact of the projectile and that the projectile is rigid. This may
seem to be restrictive assumptions; however, the method provides reasonable estimates for
slightly yawed projectiles if the angle is below about 5° based on this author’s own work.
The point of departure is the determination of the force on the nose of the projectile that is

defined in a manner similar to a fluid mechanics analysis as

F =
πd2

4
t0A +NBrV2	 


(16.86)

with N defined as

N =
8y − 1
24y 2 (16.87)

In these equations, the projectile properties are as follows (see Figure 16.7): d is the diameter
of the projectile; y is the caliber radius head, defined in Equation 16.88; V is the projectile
velocity (assuming rigid body motion); and s (used in Equation 16.88) is the ogive radius.
The caliber radius head is defined as

y =
s
d

(16.88)

The target properties used in Equation 16.86 are as follows: r is the density of the target,
the product t0A is a shear strength parameter obtained from a triaxial strength test, and B is
a compressive strength parameter. In this model, the parameters are set as

B = 1 (16.89)

t0A = Sf 0c (16.90)

Here S is a dimensionless empirical constant that depends upon the unconfined com-
pressive strength f ′c. If we define the instantaneous depth of penetration as z, we find that
for z > 2d, we can write

F =
πd2

4
Sf 0c +NrV2	 


, z > 2d (16.91)
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This equation is valid for deep penetration depths. For depths less than two projectile
diameters, the penetration process is affected by surface cratering. Beyond two projectile
diameters, the hole caused by the projectile will be approximately equal to the projec-
tile diameter. This is known as the tunnel region. We shall define the penetration depth as P.
Below two projectile diameters, the damage to the concrete will, in general, be a conical

taper called the crater. This is illustrated in Figure 16.8.
In the surface crater region, the force on the projectile nose is proportional to the pene-

tration depth or, mathematically,

F = cz, 0 < z < 2d (16.92)

Here c is a constant, which we will soon define.
If we begin with Newton’s second law, we see that

F = ma = m
d2z
dt2

(16.93)

Here m is the mass of the projectile. Since we know the force acting on the projectile will
tend to slow it down, we can equate Equations 16.92 and 16.93:

m
d2z
dt2

= −cz (16.94)

We can rewrite Equation 16.94 as

d2z
dt2

= −w2z (16.95)

where we have defined

w2 =
c
m

(16.96)

2d

d

Crater region
Tunnel region

z

Direction of
penetration

FIGURE 16.8
Illustration of a concrete penetration.
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If we assume a solution of the form

z = A1 sinwt (16.97)

we can write

dz
dt

= A1w coswt (16.98)

d2z
dt2

= −A1w
2 sinwt (16.99)

Our initial conditions are such that at t = 0, dz/dt =Vs, whereVs is our striking velocity, so

Vs = A1w ! A1 =
Vs

w
(16.100)

Then, we have for z < 2d

z =
Vs

w
sinwt (16.101)

dz
dt

= Vs coswt (16.102)

d2z
dt2

= −wVs sinwt (16.103)

We now use a compatibility condition that at z = 2d, both Equations 16.103 and 16.91must
yield the same answer. We shall call the time it takes the projectile to reach 2d, t1, and the
velocity at that point will be V1; thus, at z = 2d, we have

Fjt=t1 =
πd2

4
Sf 0c +NrV2

1
	 


, z = 2d (16.104)

d2z
dt2

= −wVs sinwt1, z = 2d (16.105)

Since F = ma, we can combine the aforementioned equations to write

mwVs sinwt1 =
πd2

4
Sf 0c +NrV2

1
	 


, z = 2d (16.106)

Also at t = t1, Equations 16.101 and 16.102 can be written as

2d =
Vs

w
sinwt1 (16.107)

V1 = Vs coswt1 (16.108)

We now rearrange Equation 16.108 to

Vs =
w2d

coswt1
(16.109)

Penetration Theories 399



Now insert Equation 16.109 into Equation 16.106, giving us

mw22d =
πd2

4
Sf 0c +NrV2

1
	 


(16.110)

And if we make use of Equation 16.96, we can obtain c as

c =
πd
8

Sf 0c +NrV2
1

	 

(16.111)

We now need to find V1, which we do by squaring Equations 16.107 and 16.108 and
adding them, resulting in

V2
1 +

4cd2

m
= V2

s sin
2wt1 + V2

s cos
2wt1 (16.112)

Making use of a trigonometric identity and rearranging brings us to

c =
m
4d2

V2
s − V2

1
	 


(16.113)

If we now equate Equations 16.111 and 16.113, we get

V2
1 =

2mV2
s − πd3Sf 0c

2m + πd3Nr
(16.114)

Once we have V1 and c, the determination of the time t1 is simply found through the use
of Equation 16.108:

t
V
V

m
c

V
V

1
s s

1= ⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟

− −

ω
cos cos1 1 1 1 (16.115)

To summarize the analysis procedure for the crater region, we must first find V1 through
the use of Equation 16.114, then we find c through the use of Equation 16.113, and finally,
we find t1 through use of Equation 16.115.
If V goes to zero before time t1 is reached, the projectile never penetrates deeper than the

crater region and our analysis would be complete. The depth of penetration in this case
would be found from Equation 16.102:

V = 0 = Vs coswt (16.116)

This would occur when

wt =
π

2
! t =

π

2

ffiffiffiffiffi
m
c

r
! sinwt = 1 (16.117)

If we insert this result into Equation 16.101, we obtain the achieved depth of penetra-
tion P:

P = Vs

ffiffiffiffiffi
m
c

r
(16.118)
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The striking velocity that would make this true would be determined from Equation
16.114 with V1 set equal to zero. So for a projectile to stop before creating a tunnel, the
velocity is given by

VsNotunnel
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πd3Sf 0c
2m

r
(16.119)

If the projectile penetrates beyond two diameters into the concrete, it will enter the so-
called tunnel region. When the projectile continues into the tunnel region, there is a change
in the governing equation as discussed earlier. To determine the depth of penetration, we
begin by combining Equations 16.91 and 16.93 to obtain

m
d2z
dt2

=
πd2

4
Sf 0c +NrV2	 


, 2d < z < P (16.120)

We can transform our independent variable from time to distance, and we can write

mV
dV
dz

=
πd2

4
Sf 0c +NrV2	 


, 2d < z < P (16.121)

We rewrite Equation 16.121 as follows:

d
d

cV
z

d
m

Sf
V

N V= +⎛
⎝
⎜

⎞
⎠
⎟

′π ρ
2

4
(16.122)

Now we integrate it from V1 to zero and 2d to P, so we can write

V d
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dV (16.123)

which results in

P
m

d N
N V

Sf
d d P=

⎛

⎝
⎜

⎞

⎠
⎟ − <

′
2

2 22
1
2

π ρ
ρ

ln 1+
c

, (16.124)

If we have determined through the use of Equations 16.113 through 16.115 that a pro-
jectile will penetrate beyond the tunnel region, we can write a procedure to determine the
depth of penetration as follows. First, calculateV1, c, and t1 as described earlier for the crater
region. Then, calculate P from Equation 16.124. If this is greater than the concrete thickness,
the projectile will perforate. If not, the projectile will penetrate to depth P. It would be good
to see if a spall thickness is created (as will be described in Section 18.3) by the impact, and if
this is the case, we could add the spall thickness to P, and perforation may still result
(although with low residual velocity).
Since the dimensionless parameter S is obtained or experimentally verified, it would be

nice to know how close we came to our estimate by direct calculation. If one had an
experiment where a given projectile penetrated to depth P, we can back calculate S as
follows. We start with Equation 16.124 and rearrange thusly

S =
NrV2

1

f 0c

1

exp P − 2dð Þ πd
2Nr
2m

� �
− 1

 � (16.125)
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In an experiment, we are usually given the striking velocity, so we want to replace V1 in
this equation with Vs, so we use Equation 16.114:

S =
Nr 2mV2

s − πd3Sf 0c
	 

f 0c 2m + πd3Nrð Þ

1

exp P − 2dð Þ πd
2Nr
2m

� �
− 1

 � (16.126)

which can be simplified to
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(16.127)

With this equation, one can find S if you know the striking velocity and the concrete
strength. Forrestal et al. [7] calibrated this equation with several experiments. A repro-
duction of their chart is shown in Figure 16.9 with the addition of upper and lower bounds
based on their data. The equation used to determine S given the unconfined compressive
strength f ′c is

S = 93:48f 0c
−0:5603 (16.128)

Here recall that f ′c is in megapascals and S is dimensionless. Bounding equations are
shown in Figure 16.9. These equations were obtained through use of a curve fit routine.

Dimensionless empirical constant vs. unconfined compressive strength
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FIGURE 16.9
Determination of dimensionless parameter S for Forrestal et al. [8] concrete penetration model. (Reproduced from
Forrestal, M. J. et al., International Journal Of Impact Engineering, 15, 395–405, 1994.)
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Problem 11
A 0.50-caliber projectile is fired at an extremely thick concrete wall of 2100 psi unconfined
compressive strength and density of 0.084 lbm/in.3. It strikes with no obliquity and a
2000 ft/s velocity. How far does it penetrate?
Answer: P = 20.4 [cm]

Projectile information:

s = 63:50 ½mm� m = 662 ½grains�

d = 12:70 ½mm� Vs = 2000
�
ft
s

�

Problem 12
Areal density is a measure of the mass of 1 in.2 (or sometimes a square foot or meter) of a
material used as armor. Given a threat projectile with the properties provided later, find the
armor solution with the lowest areal density that prevents perforation if your choices are
steel with density 0.283 lbm/in.3, concrete of 2500 psi unconfined compressive strength and
density of 0.084 lbm/in.3, and aluminum with the following properties:

A = 4:418

B = 1:068

Y = 39, 000 psi½ �

rt = 0:098
�
lbm
in:3

�

Assume the projectile strikes with 15° of obliquity.
Penetrator information:

s = 35 mm½ �
d = 12 mm½ �
L = 15 mm½ �
m = 0:03 kg

� �
Vs = 600

�
m
s

�

rp = 0:283
�
lbm
in:3

�

Problem 13
We would like to compare defenses against the projectile in Problem 10. Assuming this
projectile impacts a steel plate at 0° obliquity, do the following:

1. Determine the thickness of the armor required to prevent penetration
2. Determine the thickness of 1500 psi unconfined compressive strength concrete

required to do the same, assuming that the concrete does not spall—assume a
density of 0.084 lbm/in.3 for the concrete—note that this particular shell has a
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secant ogive so as an estimate for the purposes of this problem—divide the
resultant ogive length by 2—please note that this is simply a guess and not based
on physics.

3. Comment on the validity of the answer to part 2.

16.3 Penetration and Perforation of Soils

In recent times, the penetration of soils has gained importance in the terminal ballistic field.
Enemy strong points have been encountered below a soil layer. Land mines need to be
defeated below various types of soils as well. It is therefore necessary to determine the
penetration capabilities of projectiles into soilswith the intention of defeating a buried target.
As a reasonable approach to determine soil penetration, we shall use the method of

Forrestal and Luk [8]. While other approaches exist, this rather simple procedure is excellent
for introducing the physics of the problem.
Soils widely vary in their behavior under penetration loadings. Because the behavior is

somewhat complicated, more parameters are needed to describe a soil than a material such
as a metal. The first thing we have to realize is that soil can be in a state where the density is
less than its locked density. The locked density is where the soil behaves like a solid or fluid
in compression (i.e., its states are defined by a hydrostat). We therefore need to introduce
two densities: p0, its initial density, and r*, its locked density. We also need to define h*, its
locked volumetric strain. Here we define h* as

h∗ = 1 −
r0
r∗

(16.129)

Two typical models used for soils come directly from our failure theories of structures.
They are the Tresca (maximum shear stress) theory and the Mohr–Coulomb theory of
failure. Both of these were introduced in Section 4.2. Here we shall use a combination of the
two: a Mohr–Coulomb yield criterion with a Tresca flow rule. For the Tresca criterion, once
a shear stress failure level is achieved, the material strength is not increased with increasing
load. With the Mohr–Coulomb criterion, the yield stress in the material increases with
compressive load. The combination of the two allows the material to resist more load as
compression is applied up to a point, then further increase in the compressive loading will
not affect the material strength.
Similar to the aluminum penetration model, we again define the caliber radius head as

y =
s
d

(16.130)

where d is the diameter of the projectile; y is the caliber radius head; and s is the ogive
radius.
We again define nose length as

l =
d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y − 1

p
(16.131)
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The method considers the resistance force of the soil on the penetrator to have two
components: a normal force (normal stresses) and a tangential force (shear stresses and
friction). If we lump the shear stress in with the stress owing to friction and furthermore
assume that the tangential stress is proportional to normal stress, we can again write

st = μsn (16.132)

where st is the tangential stress; sn is the normal stress; and μ is the proportionality constant
(a coefficient of sliding friction).
Forrestal et al. [4] developed a formula for the axial force on an ogival nose that we

introduced in Section 15.1 and we again use here:
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Here Vz is the instantaneous velocity during penetration. The stress function sn(Vz, q) is
assumed to be similar to that of a spherically symmetric expanding cavity.
At this point, we are going to depart from the mathematics to look at the penetration

event in a qualitative manner. Let us assume that we are at some axial location in the ogive
of the projectile and we are looking in the direction of penetration at time t. What we would
see is illustrated in Figure 16.10. The projectile would be opening a cavity at a rate that we
shall call Vt. The plastic zone would be expanding at some rate ct. Here c is the speed of the

Projectile

Plastic region

Elastic region

Undisturbed region

V t

c

c1

FIGURE 16.10
Elastic and plastic compression zones at a section of an ogive penetrating into soil looking in the direction of
penetration.
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plastic wave (dependent upon the Hugoniot jump conditions to be discussed in Section
18.1). The elastic zone would be expanding at a rate c1t. Here c1 is the speed of the dila-
tational wave in the material. It can be shown that V and c are related (as per the shock
theory that will be discussed in Chapter 18), and we can define a parameter g as

γ τ η= = +⎛
⎝
⎜

⎞
⎠
⎟ − −( )

⎡

⎣
⎢

⎤

⎦
⎥

V
c E

c1
2

1
3

1
3

* (16.135)

where E is Young’s modulus. With the aforementioned physics, Forrestal and Luk [8]
derived material response models for each of the three failure models we have discussed
earlier. For the detailed derivation, the interested reader is referred to that paper. The basic
idea was to have a general function for the force acting on the projectile nose that we can
integrate using Newton’s second law to obtain the velocity and penetration distance as a
function of time.
If we insert expressions that relate the radial expansion velocity of the cavity V to the

projectile penetration velocity Vz, we can put the expression for the retarding force in the
form

Fz = as + bs V
2
z (16.136)

where
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Here the coefficients A and B are dependent upon the material model used for the soil.
Recall that the definition for the Tresca criterion implies that once a material reaches its

state of maximum shear stress, it begins to plastically deform and cannot support any more
load. For a soil that behaves in a Tresca-type manner, we have
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Recall that the definition for the Mohr–Coulomb criterion implies that as the compressive
forces increase, it becomes harder to have the material fail in shear. For a soil that behaves in
a Mohr–Coulomb-type manner, we have
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Also note that the Tresca criterion behaves the same as the Mohr–Coulomb criterion with
l = 0. We define

a =
3l

3 + 2l
(16.143)

Because of a singularity in the governing equations, there is a special set of equations for
the Mohr–Coulomb criterion when we have l = 3/4. In this case,
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When a material behaves according to the model that combines both Mohr–Coulomb
and Tresca behaviors, things become slightly more complicated. Parameters A and B will
be dependent upon the rate of loading. One must keep in mind that this failure criterion
implies that up to some stress level, the material will have improved resistance to com-
pressive loading because of the internal friction of the grains, and after a limit load is
reached (tm), the material simply yields regardless of load. Thus, we can consider three
velocity regimes: V < Vmin, where the yielding is completely Mohr–Coulomb behavior;
Vmin < V < Vmax, where the yielding closest to the projectile is by Tresca criterion and the
yielding near the elastic–plastic interface is according to the Mohr–Coulomb criterion; and
V > Vmax, where the entire yield region is according to the Tresca model. We shall consider
each of these cases.
If V < Vmin, we stated that the yielding is completely according to the Mohr–Coulomb

model. Thus, Equations 16.141 through 16.145 apply. The equation required to determine
Vmin is
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Recall that tm is the stress level at which the material behaves according to the Tresca
model. We shall discuss how we determine V shortly.
If Vmin < V < Vmax, the zone of yielding material has two subzones: a zone next to the

projectile that behaves according to the Trescamodel and a zone next to the elastic region that
behaves according to the Mohr–Coulomb model. We shall first write the equation for Vmax:
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If we define a coordinate x that varies from 0 at the projectile surface to 1 at the elastic–
plastic interface, we can determine a coordinate xm, where the yield behavior changes from
Tresca to Mohr–Coulomb. Unfortunately, this crossover point has to be numerically solved
with the equation that follows:
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Keep in mind here that we know all the information (including V) and we are solving
for xm. A good math code will generally solve this equation quickly.
Once we have xm, then A and B are given at the projectile surface (Tresca) by
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These equations account for the fact that the yielding is Mohr–Coulomb outside of x = xm.
If V > Vmax, the yielding is completely according to the Tresca model. Thus, A and B are

given by
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To approximate the normal stress on the ogive, we can replace the spherically symmetric
velocity V in our previous equations with Vz cos q. We can write an equation for the normal
stress function on the ogive [6] as

sn Vz, qð Þ = tcA + r0B Vz cos q½ �2 (16.153)

We can write Newton’s second law as

− Fz = m
dVz

dt
(16.154)

We can then convert this time integral to a distance integral as before to yield

− Fz = mVz
dVz

dz
(16.155)

If we substitute Equation 15.136 into the aforementioned equation and integrate, we get
an equation for the acceleration, velocity, and depth of penetration, respectively, as a
function of time:
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If we determine the distance where the velocity of the projectile slows to zero, we obtain
the depth of penetration as
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where P is the final penetration depth and V0 is the impact velocity.
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So now that we have developed penetration formulas for soils, what do we do with them?
The use of models such as this one, as nice as it is, usually carries with it some practical
issues. A detailed model like this requires detailed material properties that, in practice, one
rarely has. It will usually require a test or two to calibrate it. Forrestal and Luk [8] suggested
using a value of 0.13 for h*. The authors claim the model is relatively insensitive to it. The
model was derived for normal penetration, but the authors claim good results up to impact
yaw angles of 30°. In this case, they used the line-of-sight penetration depth. As one might
expect, the accuracy of this particular model significantly varies with the properties of the
soil. Rocks, roots, and soil layers further complicate everything. Nevertheless, the model is
an excellent tool and describes the physics of soil penetrations well. This is a highly active
area of current research.

Problem 14
A 0.50-caliber projectile is fired at a soil berm with properties established later. How far
does it penetrate?
Answer: P = 84.9 [cm]

Projectile information:

s = 63:50 mm½ � m = 662 grains
� �

d = 12:70 mm½ � Vs = 2000
�
ft
s

�

Soil information (assume Mohr–Coulomb behavior):

Initial density r0 = 1860
�
kg
m3

�
 μ = 0:1

Locked density r� = 2125
�
kg
m3

�
 l = 0:33

tc = 1500
�
lbf
in:2

�
  E = 2� 107

�
lbf
in:2

�

tm = 2500
�
lbf
in:2

�

16.4 Penetration and Perforation of Ceramics

The desire to decrease the weight of vehicles coupled with constant improvements in
manufacture has increased interest in the use of ceramics as armor. The design of an
armored vehicle using ceramics requires an understanding of their behavior under impact
loads. The advantages of ceramic armor are its relatively low density, high hardness, and
high compressive strength. The disadvantages are that ceramics are usually brittle; they
have low tensile strength that when coupled with high compressive strength can be a
problem from a spallation standpoint; they allow the protection to be degraded in a multihit
situation; and they are somewhat expensive. Their complex structural behavior makes them
difficult to model, although this is a disadvantage only to the designers.
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The response of a ceramic to penetration is unique among those of all the other materials
discussed in this chapter. The material behaves differently depending on the radial con-
finement and whether it is backed or not. For reasons such as spallation, they are usually
backed by a fiber-reinforced composite, plastic, elastomer, or metal plate. If a ceramic is not
backed, it will most likely spall when subjected to a high-shock load. This spallation can be
analyzed by the techniques we will discuss in Chapter 18 on shock theory.
Although not exhaustive, this is a list of common ceramics currently either in use or being

studied for armor applications:

• Boron carbide (B4C)

• Silicon carbide (SiC)

• Titanium diboride (TiB2)

• Aluminum nitride (AlN)

• Alumina (Al2O3)

Historically, terra cotta (ceramic) armor has been found in Chinese tombs dating from
400 BC. Before WWI, the practice of placing coal bunkers around magazines to take
advantage of comminution, a phenomenon that we shall discuss shortly, is another example
of energy that is mirrored in ceramics.
If a ceramic is backed, one can take advantage of its high compressive strength to resist

penetration. This will cause the tip of the penetrator to deform. Large stresses then build up
in the penetrator. If the striking velocity is low enough, the penetrator will break up or
ricochet. This process is called interface defeat or infinite dwell. If the penetrator survives
the initial impact, the ceramic begins to fail. This process is complicated, which is why it is
difficult to model, but it is key to understanding the behavior and utilizing the ceramic to
the maximum extent possible.
The ceramic penetration process was documented by Cheeseman [9]. After an initial

dwell and several reflections of the shocks and rarefactions, the following events occur and
will either continue to perforation or stop when the penetration is arrested. Initially, tensile
cracks appear near the penetrator forming circular rings. These cracks propagate along the
principal stress planes that are usually 25–75° from the surface normal.
Once the cracks reach the distal boundary, they coalesce into conical form. At this point, if

the ceramic was not backed, a plug would be ejected and the material would be perforated.
If the plate is backed, then at the time when the conoid is formed, the stress is
circumferentially redistributed and radial cracks appear. After the appearance of radial
cracks, lateral cracking in the plane of the impact surface forms. This process is illustrated in
Figure 16.11. With backing material present that holds the ceramic plug in place, the
material has nowhere to go, so microcracking begins. This pulverizes the ceramic material.
This is known as the comminuted zone. The process of comminution and the sand-like
character of the comminuted material erode the penetrator at a rapid rate. The powdered
material continually gets in the way of the penetrator. This material radially flows outward
and rearward. A similar effect occurs during shaped charge jet penetration into sand bags.
The penetration of a ceramic armor is highly dependent upon the boundary conditions. It

is known that confinement increases the penetration resistance (increasing V50). This effect
is not because of the strength of the confinement material. A stiffer backing also increases
V50 to a point. There does appear to be an upper limit though. The key to good design
appears to be the movement of the neutral axis out of the ceramic material and into the
backing material [9].
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One of the parameters that must be considered when designing ceramic armor is the fact
that there can be large dynamic deflections during an impact. This can be more than twice
the static deflection left after a penetration event. Care must be taken in mounting sensitive
components in the sway space of the armor. Impact to the component may impede fighting
efficiency of the vehicle. This effect is still being investigated.
One can see from the process that modeling this event (either numerically or analytically)

is nontrivial. The numerical approach is the subject of intense research. A cursory look at the
problem shows that we need a model for the ceramic before fracture, a crack propagation
model, a microcracking model, and a model that handles the comminution, and after all
that, we have to model the behavior of the backing material.
Florence [10] developed a simplified model to determine the limit velocity for an

aluminum-backed ceramic armor plate. This model assumes that the projectile was a short
cylindrical rod, and the conoid is idealized and the loading on the backing plate is assumed
to occur across the base of this conoid. The backing material is assumed to fail when the
maximum strain in it exceeds its failure strain:

er = 1:82f að Þ K
S

(16.160)

Here er is the maximum strain in the aluminum, and the other parameters are defined
later. The parameter K is the kinetic energy of the penetrator given by

K = mp
V2

s

2
(16.161)

where mp is the penetrator mass and Vs is the striking velocity.
The strength parameter S is given by

S = sYhm (16.162)

where sY is the aluminum yield strength and hm is the thickness of the aluminum plate.

Tensile cracks
Conical fracture

surface

Lateral cracks

(a)

Radial cracks

(d)

(b)

(c)

FIGURE 16.11
Ceramic fracture process illustrated: (a) tensile crack formation, (b) conical fracture surface formation, (c) radial
crack formation, and (d) lateral crack formation.
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The momentum parameter f (a) is given by

f að Þ = mp

πa2 mp + mc +mmð Þπa2
h i (16.163)

Here the mass subscripts p, c, and m refer to the masses of the projectile, ceramic, and
backing plate material, respectively. We can rearrange these formulas to obtain the limit
velocity of the projectile–armor combination [8] as

Vl =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
erS

0:91ð Þmpf að Þ

s
(16.164)

This can be used exactly like the limit velocity in the Lambert model of Section 16.1.
More complicated models exist for ceramic penetrations. Walker and Anderson [11]

proposed a penetration model for ball ammunition penetrating ceramic backed by a metal
plate. The model assumes axisymmetric behavior, that a velocity profile in both the target
and the penetrator can be analytically specified, that the rear of the projectile experiences
only elastic waves (i.e., the plastic waves are arrested before reaching the rear surface), and
that the shear behavior of the target can be specified as a pressure-dependent flow stress
(Mohr–Coulomb) for the ceramic with a constant flow shear stress (vonMises) for the metal.
Themodel is quite detailed, and limitations on space prevent the inclusion of themodel here;
however, the interested reader is directed to the paper for a full description of themodel. The
model still has to be solved by computer, but the nice thing is that one can program it into
MathCAD or MATLAB® and quickly make many calculations. Since the model uses readily
available parameters, it can be run for anymaterials consistentwith the velocity andmaterial
behavior assumptions. The authors claim 15% accuracy, which is good.
Zaera and Sanchez-Galvez [12] proposed an interesting penetration model based on

Tate’s penetration equation. The model is elegant for its simplicity and seems to correlate
well with medium-caliber ammunition. The model neglects mushrooming of the projec-
tile and includes only deformation because of erosion. It assumes rigid, perfectly plastic
behavior in a zone confined to be near the projectile tip.
The three basic equations are as follows. For the penetration velocity u, we have

1
2
rp v − uð Þ2 + Yp =

1
2
rtu

2 + Rt (16.165)

where rp is the density of the projectile material; rt is the density of the target material; υ is
the projectile velocity; u is the penetration velocity; Yp is the dynamic yield strength in the
projectile; and Rt is the ballistic resistance of the target.
The time rate of change of the projectile length owing to erosion is

dL
dt

= − v − uð Þ (16.166)

Here L is the length of the projectile. Finally, the deceleration of the projectile is given by

dv
dt

= −
Yp

rpL
(16.167)

At some point in time, the pressure on the projectile nose will be unable to erode it further;
thus, Equation 16.167 will switch to
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dv
dt

= −
Rt +

1
2
rtv

2

rpL
(16.168)

To simplify the geometry in the model, the concept of equivalent length is invoked. In this
case, the length is adjusted based on the amount of material present in the projectile. The
equivalent diameter is given by

deq =

ðLp
0
d3 zð ÞdzðLp

0
d2 zð Þdz

(16.169)

The equivalent length is then

Leq =
4mp

πrpd2eq
(16.170)

As described earlier, when a projectile impacts ceramic armor, a fracture conoid develops
after interaction of the stress waves with the boundaries. We shall assume the time for this
event to be

tconoid =
hc
cL

+
hc

vrad:crack
(16.171)

where hc is the thickness of the ceramic (shown in Figure 16.12); cL is the longitudinal wave
speed in the material; and vrad.crack is the speed of radial crack growth.
We shall also assume, based on observations [10], that

vrad�crack =
1
5
cL (16.172)

During the penetration event, assuming the limit velocity is exceeded, the projectile tip
will meet the crack front at some time. This will effectively change the mode of penetration.
The equation for this is given by

z + scrack = hc (16.173)

Ceramic

dp

Projectile

hc

hm

Fracture
conoid

s

x

Rc

hct

α

Aluminum

FIGURE 16.12
Model of Zaera and Sánchez-Gálvez illustrated.
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The linear momentum equation assumes a constant velocity in the projectile (v), a jump
discontinuity in velocity based on our flow rule at the ceramic–projectile interface (u), and a
uniform velocity (w) in the metal backing plate. If we call pc the momentum, we can write

dpc
dt

= Ycπ
d2eq
4

− fmπRc (16.174)

where fm is the force exerted by the backing plate; Rc is the base radius of the fracture
conoid; and Yc is the penetration strength of the ceramic.
If we define hct as the instantaneous thickness of the ceramic and a as the conoid semiapex

angle, we can define Rc based on geometry as

Rc =
deq
4

+ hct tana (16.175)

We can now integrate Equation 16.174 to yield

p h u
d R d R

w
d R d R

c c ct
eq c eq c eq c eq c
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⎡

⎣
⎢

⎤

⎦
⎥ (16.176)

Since w was introduced, we have to alter Equation 16.165 to

1
2
rp v − uð Þ2 + Yp =

1
2
rt u − wð Þ2 + Rt (16.177)

Keep in mind here that when the projectile is in the ceramic, Rt = Yc, and when in the
backing plate, Rt = Ym.
Once the ceramic fractures and is comminuted, then its strength is significantly reduced.

This is accounted for by using

Y

Y t t

Y
u w
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t t

c
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⎝
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⎠
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⎨
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⎩
⎪
⎪

,

2 (16.178)

In this expression, uphase1 is the value of u at t = tconoid.
Zaera and Sanchez-Galvez chose an energy approach to the penetration of the metal

backing plate. The work dissipated by plastic deformation is given by

E h Y hp m m m= +⎛
⎝
⎜

⎞
⎠
⎟π δ δ2

3
2
3

(16.179)

where d is the deflection at the center of the plate and the subscript m refers to the backing
plate itself.
The time rate of change of plastic work is then

d
d

d
d

2
3

p
m m m m m m

E
t

h Y
t

h h Y w h= +⎛
⎝
⎜

⎞
⎠
⎟ = +⎛

⎝
⎜

⎞
⎠
⎟π δ δ π δ2

3
(16.180)
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The work to deform the interface is given by

T = πR2
c fmd (16.181)

Therefore, the time rate of change of this work is

dT
dt

= πR2
c fm

dd
dt

= πR2
c fmw (16.182)

The kinetic energy of the plate material is

Ek =
1
2
πR2hmrmw

2 (16.183)

It then follows that the time rate of change of kinetic energy is

dEk

dt
= πR2hmrmw

dw
dt

(16.184)

Equating Equations 16.180, 16.182, and 16.184 gives us

R f h Y h R h
w
t

c
2

m m m m
2

m m
2
3

+
d
d

= +⎛
⎝
⎜

⎞
⎠
⎟δ ρ (16.185)

When the projectile reaches the backing plate, the equation for the deceleration can be
written as

dv
dt

= −
Ym +

1
2
rm v − wð Þ2

rpL
(16.186)

We can use Equation 16.180 once more for the time rate of change of plastic energy and
modify Equation 16.182 for the time rate of change of work as

T = π
d2eq
4

Ymd (16.187)

and differentiating with respect to time

dT
dt

= π
d2eq
4

Ym
dd
dt

= π
d2eq
4

Ymw (16.188)

The kinetic energy for the backing plate is

Ek =
1
2
mmw

2 (16.189)

Its time rate of change is

dEk

dt
= mmw

dw
dt

(16.190)

This leads us to the equation for the deceleration in the plate as

dw
dt

=
π
d2eq
4

Ym − πhmYm
2
3
hm + d

� �
mm

(16.191)
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We need to define mm as the effective mass of the plate given by

mm = πrm R2hm −
d2eq
4

hm − hmtð Þ
" #

(16.192)

In this case, hmt is the distance left to the free surface of the plate (i.e., distance remaining
to be penetrated).
The armor is said to be perforated when

hmt = 0 (16.193)

This would be a piercing-/petaling-type perforation. Additionally, the armor can be
defeated by plugging if at any time

v = w (16.194)

Thus, the plug and projectile would be moving at the same rate.
The line-of-sight thickness can be used to handle obliquity. Thus, we would set

h0t =
ht

cos q
(16.195)

where q is our obliquity angle measured from the plate normal. We also have to be careful
that all our measurements are transformed to these lengths. Physical data show that after
about a 20° obliquity, the fracture of the ceramic starts to deviate from this model. The
authors show fair agreement up to 50° [12].
This model is much simpler than others and provides reasonable results. Unfortunately, it

still has to be coded into a computer to solve the equations simultaneously (and as the
penetrator moves into the backing plate, sequentially). It is nice because it can account for
obliquity. If one generally has to get more detailed than this, direct numerical simulation is
probably the best approach.
We have presented some analytic equations for the penetration of ceramic armor by pro-

jectiles. Ceramics are nearly always used with some type of backing plate. These models,
although fairly complicated, allow rapid analysis of designs. They do, however, need to be
coded to be used. If more detailed results are required, one must resort to direct numerical
simulation.

16.5 Penetration and Perforation of Composites

Composites have arguably been used as armormaterials since theMiddleAges. Advantages
of using composite materials are their relatively low density, their tailorable properties, and
fair to high strength. The disadvantages of composites are the inconsistency of hand layup,
the dependency of strength on manufacturing process, and the somewhat expensive nature
of theirmanufacture. Additionally, composites pose a problem to the designers because they
are difficult to model.
Composites resist penetration primarily by dissipating energy. Because of the complex

structure of the material, this energy dissipation manifests itself in the failure of portions of
the laminate, fiber breakage, matrix cracking, and delamination. Since composite properties
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can vary from isotropic to a complicated anisotropic, the behavior will depend upon the
configuration.
In chopped fiber composites, the material properties are usually isotropic. A notable

exception to this is in injection moldings where the fibers tend to align with the flow
directions near mold gate areas or areas of higher-velocity flow. An isotropic composite is
usually treated as we do a metal, and those formulas should work well. We recommend
that one try the Lambert model first or the Tate model.
Continuous fiber composites behave differently from metallic plates. A typical load–

displacement curve is shown in Figure 16.13. In this figure, after an initial delamination
point, where the load-carrying capability is degraded, we see increases and decreases in
load-carrying ability based on successive delaminations of material followed by a final plug
shear out. This delamination actually promotes energy dissipation by forcing the fibers to
elongate. In many composites, shear failure of the fibers as well as tensile failures dominates
during an impact [1].
It is extremely difficult to obtain an analytical model for the penetration of continuous

fiber composites. This is due to the change of energy dissipation as the composite is
damaged. Finite element methods have been utilized to determine limit velocities [1], but
there are nuances to each analysis that must be explained.
The first issue that must be dealt with is how to handle the damage and its effect on the

remaining strength of the composite. Some researchers have actually modeled each lamina
with its correct directional properties and assumed a failure criteria based on interlaminar
shear strength [1]. When the interlaminar shear strength is exceeded, the layer no longer
supports shear and the overall bending stiffness is reduced. This can be accounted for
explicitly having the model change internal constraints between layers or implicitly by
tracking the overall smeared bending stiffness of the composite and reducing it based on the
lamina that failed. Another means of handling the behavior of the composite is to average
the stiffness change because of the progressive failure of lamina as shown in Figure 16.14 [1].
The issue with this approach is that test data from some sort of penetration event are
required.
A second issue with analyzing fiber-reinforced composites is the actual failure of the

fibers themselves. The fibers can themselves delaminate from the matrix. They can also fail
in tension and are usually very sensitive to fracture. These issues of necessity complicate the
analysis.

Initial
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friction resistanceLo
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Progressive
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Displacement

FIGURE 16.13
Load–displacement curve for a typical continuous fiber-reinforced composite.
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Cheeseman [9] performed extensive work in the area of composite materials under impact
loads and made the following observations regarding their behavior. First, delaminations
tend to prefer moving along the fiber direction. Additionally, the compression of the com-
posite material (e.g., at clamped locations) tends to suppress delamination, as one would
expect. The extent of delamination linearly increases as the distal surface is approached if
perforation occurs. However, the delamination increases then decreases if no penetration
occurred. As the impact velocity increases, the delamination decreases, indicating that the
bending of the target becomes less significant. This is illustrated in Figure 16.15.
With the information presented here, we have seen that the penetration of composite

armor is by no means simple. We have discussed some issues with modeling these types of
materials and their general behavior during a penetration event. This is an area of intense
active research.
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FIGURE 16.14
Load–displacement curve for a typical fiber-reinforced composite modeled with averaged properties after initial
delamination.
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FIGURE 16.15
Extent of delamination in a composite with respect to increasing velocity during both perforating and non-
perforating impacts.
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17
Penetration of Homogeneous, Ductile
Chromium–Nickel Steel Naval Armor by Three
Representative Designs of Nondeforming Hardened
Steel Armor-Piercing Projectiles with Bare Noses

17.1 Introduction

The armoring of moving vehicles against enemy weapons has a long history, from Korean
naval sailing ships used against an invading Japanese fleet to the placing of rows of per-
sonnel shields on the sides of Viking longships to Leonardo da Vinci’s studies of armored
turtle-like land vehicles with cannons (the first “tanks”). However, until the beginning of
the nineteenth century, the ability to economically make anything but small handmade iron
and steel objects such as swords or pieces of suits of armor did not exist.
During the early part of the nineteenth century, the Industrial Revolution, scientific

research into chemistry, including that of iron and its variants, with several inventions
pertaining to the smelting, alloying, and forming of large iron and steel objects in mass-
production factories, finally allowed iron and steel to be applied to the large-scale manu-
facture of things such as railroad rails (a very large industry due to the huge numbers
required), steam engines, iron and steel frames for modern high-rise buildings, motorcars
and trucks (eventually including armored land vehicles, such as tanks), and ocean-going
ships. It is the last we are interested in this section: iron-hulled commercial ships and most
especially iron-armored “ironclad” warships (most still having wooden framing under the
armor at the start, although this rapidly changed to fully iron warships, inside and out, by
the late nineteenth century) that developed during the nineteenth and twentieth centuries.
The development of these ironclads started in the mid-nineteenth century for the first
successful warships and ended with the very large armored battleships and cruisers
introduced just prior to, during, and, in a couple of cases, just after World War II (WWII).
Even though this focus on naval vessels may seem somewhat specific, it is important to

the understanding of all types of armor. This is because these same materials were also
extensively used in the past for armored land vehicles (tanks, armored cars, etc.), some of
which are still in use and still have usefulness today in structures that have to be protected
from modern projectiles. So by going through the history, uses, and formulas associated
with naval armors, we shall gain a full understanding of their material behavior and how to
evaluate the performance of modern projectiles against them.
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The US Civil War resulted in many kinds of armored warships being constructed, from
small steamships made of woodwith some thin wrought iron plates on top protecting a few
cannon through naval warship-sized ironclad steamships especially made for this service,
such as the very radical USS. Monitor-type turreted ironclads and the somewhat more
conventional in gun placement, but still heavily armored, ironclads such as the CSS Virginia
(this first being made from the raised and repaired hull of the wooden frigate ex-USS
Merrimac by adding an armored “shed” to its upper hull with rows of cannon). Foreign
ironclads of the same time frame, the French wooden-hulled Gloire and the British iron-
hulled HMS Warrior, were very similar to their wooden predecessors in design, being
complete ocean-going warships, unlike most of the US Civil War designs, which had
limited or no ocean-going capability, being for coastal or river use. The experiences with
these designs, good and bad, gave the US Navy a good start as to what was required in an
ironclad warship and what was to be avoided, most especially a very solid basis in the
safety requirements needed when using the new weapons being developed at the time,
such as high explosives (dynamite, trinitrotoluene, picric acid [British lyddite], ammonium
picrate [explosive “D” in the US Army and Navy], etc.), torpedoes, and new “smokeless”
gun propellants, which resulted in considerable death and destruction over the years when
not manufactured, handled, and stored properly (with “properly” usually being the result
of the study of a major accident causing much death and destruction ashore or on a ship).
All of this had direct effects in determining what was needed in weapons to damage

and destroy ironclad warships, especially how to penetrate their protective armor and, of
course, how to make the armor better to frustrate those weapons.

17.2 Properties of Iron and Steel Materials Used in Ship Construction
and Armor

We are restricting ourselves here to the most widely used form of steel armor, made of
metal that can deform, bend, and stretch to absorb the impact of the enemy weapon to
reduce or completely negate its damage-causing effects on the portion of the ship being
protected (this is also the kind of armor steel used in most tanks prior to the revolution of
composite armors, explosive-reactive armors, and so forth). However, it is necessary to
show why it has the properties it has compared to the entire range of what iron alloys can
provide.
There are three major kinds of iron-based metals used for most purposes: wrought iron,

cast iron, and steel, with this last being the material with the extremely wide range of
possible properties and the one mostly used when the black art of steelmaking was finally
solved for industrial mass-production purposes. There were several competing defini-
tions of the word steel in the nineteenth century, which caused all sorts of confusion,
both technically and legally (patents, manufacturing licenses, access to raw materials, court
cases, laws, and even international politics were involved here). “Big Steel” was literally
true as a dominant factor in the industrial development of the world through the nineteenth
and twentieth centuries until today, with major fortunes won and lost over the years.
The most important element added to iron for most purposes is carbon, which has major

effects on the properties of iron both in the final product and in the various stages of
manufacture. All other elements and compounds added to iron to change its properties are
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secondary to the amount of carbon used and how the metal is processed to develop
enhanced properties in the metal. Carbon can do this because of the following:

1. At elevated temperatures (over 723–727°C or 1333.4–1340.6°F) iron radically
changes its crystal structure from the room-temperature ferrite to the elevated-
temperature austenite, even though it remains solid (although softer when so
heated, of course) throughout the entire manufacturing process. Note that the
melting point of pure iron is 1538°C or 2800°F, which is well abovewhatmostmass-
production manufacturing plant furnaces could reach during even the late nine-
teenth and twentieth centuries. For the most part, the amount of carbon and most
alloy elements used were added during the initial smelting of the metal from its ore
and remained unchanged during the later manufacturing processes (an exception
is adding carbon to the outer surface of an iron object, such as a ball bearing, to
harden it, which is called carburization or cementing as in the “Krupp-cemented”
form of naval armor; case-hardening; or, for another particular kind of naval armor,
“Harveyizing”). Austenite can absorb much higher percentages of carbon into its
crystal structure (up to 2.01% byweight, although rathermore by volume due to the
much lighter-weight carbon atoms involved) than ferrite can usually absorb at room
temperature (which is almost none). Because of this, various amounts of carbon can
be introduced into the iron material sent to the manufacturing plant so that at
various temperatures, the amount inside and outside the crystals can be changed
and then by further changing the temperature of the material quickly or slowly, the
carbon can be either squeezed out into the gaps between the forming ferrite crys-
tals at room temperature by slow cooling (annealing or normalizing), or if cooled
quickly (quenching or chilling), all or some of the carbon can be trapped in the room-
temperature ferrite crystals, changing the ferrite to other crystal types, as described
in the following. Mechanical working can cause internal heating and cooling inside
the material as it is deformed, so this too can cause local changes to the crystal
structure size and shape, as well as change the amount of carbon that stays inside
each crystal so processed. Very complex and/or subtle changes can be done by both
heat treatment and mechanical working, either together or in various separate
stages, during manufacture of the iron-based product being produced. The dis-
covery of these processes is what resulted in the history of iron and steel manufac-
ture over the centuries, but most especially in the late nineteenth and twentieth
centuries.

2. The true value of the carbon content of the iron comes into play when the temper-
ature is dropped at various rates and/or mechanical working is done by different
methods, such as hammering, forging, or rolling, which can greatlymodify the final
crystal structure of the product being made as it attempts to return into its natural,
room-temperature ferrite form. The carbon, if extremely slow cooling is used and it
is squeezed out almost completely into the narrow gaps between the ferrite crystals,
will change the ability of the crystals to “stick” to one another, allowing themetal to
remain soft and deformable, much like pure ferrite. If the temperature is lowered
more rapidly, with the exact rate to get a given effect dependent on the amount of
carbon in the alloy, some or all of the carbon is trapped in the forming ferrite crystals,
and some or all of the ferrite never can form. This is because it would require that no
carbon or other alloy element be present in the mix to interfere. Thus, a whole range
of alternate crystals can be created instead of, or in addition to, ferrite, which is the
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key to the extreme usefulness of carbon/iron alloys. The opposite extreme crystal to
ferrite is cementite, made up of a carbon atom chemically bound to three iron atoms
in an extremely hard, rigid, and brittle pyramid structure, with the larger crystals
made from clusters of these interlocking pyramids. This form of iron compound is
not stable at higher temperatures and dissolves back into carbon and iron to form
austenite. Since the amount of carbon needed to form large amounts of cementite
exceeds the 2.01% allowed in austenite crystals, cementite is virtually never the
major component of any crystal structure that it is part of, usually beingmixedwith
ferrite. This can be especially useful in a tough laminated structure of alternating
cementite and ferrite crystals inside an overall crystal form. This overall mixed
crystal form is called “pearlite” due to its luster under a microscope. Other crystals
with greater amounts of cementite-like internal structure are various kinds of bainite
andmartensite, which contain carbon in cementite-like bonds interlocked in various
wayswith ferrite-like structures, some very brittle and others less so, although all of
them are much harder and more rigid than pearlite. Martensitic steel is used in the
harder forms of tank armor. In the relatively soft steel naval armors, pearlite is the
primary crystal structure, displaying a good balance of toughness (crack resistance)
and hardness (strength and projectile penetration resistance). The higher the carbon
content, the easier it is to make the harder forms of room-temperature steel, but also
it becomes more difficult to toughen the final product when a lower hardness is
desired; finding the balance between the desired final properties, the difficulties in
making the intermediate forms of the product during the various stages of manu-
facturing, and the amount of carbon and other alloying elements (which can be
expensive) is the key to efficient steel manufacture.

17.3 Wrought Iron

Wrought iron was the first form of iron used in large-scale manufacture in the early to mid-
nineteenth century, later being almost completely replaced by various kinds of steel, once
improved steelmaking techniques were developed for mass-production of consistent,
reliable products. Some uses of poor-quality steel like that used in railroad rails worked
because the design was very forgiving, permitting low-quality control and variation of the
properties from rail to rail since, other than compression forces, once riveted into place, rails
did not need anything but the ability to withstand frictional wear and corrosion. This was
definitely not the case for most load-bearing construction uses, most especially for armor
that had to withstand extreme impact shock and penetration forces. Wrought iron is rather
soft by iron product standards, forming more or less the bottom edge of the Brinell hardness
(BHN) scale (100–105 by definition), compared to most construction steels at 140–170 BHN
and the naval armor steels in the 200–230 BHN range. Cementite is roughly 700 BHN. In
thin plates, loaded under strong impact forces, wrought iron deforms much like soft taffy,
which causes repair of holes to be difficult, since the widely dented and bent metal is very
difficult to plug for water tightness. This is not the case for thick armor plates, however, so
its use in ironclad warships where the underwater portion of the ship was usually
unreachable by enemy gun projectiles or protected by thick waterline armor was practical.
Wrought iron was essentially pure iron, with as low amount of impurities as possible,

including a minimum amount of carbon—under 0.08% by weight, although this definition
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varies in places—to which 4–7% byweight (again remember, muchmore by volume) silicon
is melted and thoroughly mixed in during manufacture. The silicon was obtained from pure
quartz sand. The silicon and low carbon content has the following beneficial properties:

1. The silicon instantly on contact with the air or water forms an extremely thin
surface layer silicon oxide (sapphire) and stops corrosion almost completely.
Indeed, HMS Warrior, the very first iron-hulled ironclad completed in 1859, was
rediscovered a few years ago still afloat, and although much abused over the years,
its original hull was still in good shape, and she was converted to a British naval
museum. This is one of its major advantages over even most modern steels.

2. Since it is so pure, wrought iron could not be readily melted in any large-scale
manufacturing plant during the nineteenth century through even the end of the
twentieth century. Thus, when smaller ingots of wrought iron had to be combined
into single larger masses to form some large plate or forged part of, say, a ship
structure (keel, for example), the smaller ingots had to be hammered or rolled into a
single piece with the joint being no weaker than the rest of the object. With the large
silicon content acting much like a soldering flux, two blocks of white-hot wrought
iron can be hammered/rolled into a single flattened piece, and the joint becomes
essentially invisible with no effect on the total structural strength of the final
product. This is actually better than many modern steels that have to be specially
welded at their joints to achieve equal strength there.

3. Since thematerial has almost no carbon, the rapidity of cooling themetal has almost
no effect on its overall strength, although rapid cooling can cause unwanted, brittle
“kinks” in the ferrite crystals as they rapidly form, so other effects of cooling have to
be considered. Thus, the combining of the iron as in part 2 and the forming of the
final object can mostly ignore mechanical working and heating techniques that
would cause major problems with higher carbon-content steel, where unwanted
hardening might happen and crack the object during manufacture. This is another
advantage of wrought iron over virtually all steels. This is also what allowed even
the rather primitivemethods ofmanufacture duringmuch of the nineteenth century
to be able tomanufacturewrought iron. It tookmanyyears to reach the same level of
expertise with steel.

17.4 Cast Iron

Cast iron is the opposite of wrought iron in that it usually contains well over the 2.01%
carbon that defines the maximum carbon soluble in steel, usually on the order of 4% carbon,
so it always has free carbon in the form of graphite mixed in and in between with its
ledeburite crystals. It also usually contains 1–3% silicon, which reduces its problems with
corrosion and thus allows objects made from it to have a long-term life after being man-
ufactured. Its main benefit in manufacturing is that it melts at a much lower temperature
than wrought iron or even most steels. This melting temperature is in the range 1150–1200°C
(2100–2190°F). This range can be economically reached in most manufacturing plants, so
that the metal can be poured into molds for very easy forming of objects, with only surface
grinding/machining needed to finish the product.
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With such a large amount of carbon, it always contains a large quantity of brittle
cementite-like crystal structures and although it is possible to form a somewhat ductile form
by extremely slow annealing, it is usually a material used only when impact shock or large
amounts of lateral shear forces are not envisioned to be supported by the design. Thus, it is
used in the construction of buildings when only stable vertical compression strength is
required (obviously not where earthquakes are a significant possibility).
The large amount of carbon interferes with the cohesion of the crystals inside the material,

and cast iron is usually rather weak compared to well-made steels in everything but pure
compressive strength. Cast iron is also used in such things as relatively cheap but very
strong mounting brackets under heavy machines, although again there cannot be a large
chance of unwanted shock effects that can crack this brittle material in this application.
Due to its brittleness, once a usual cast iron object has been made in a poured mold, very

little or no mechanical working of the object is possible, so any variations in its properties
postpouring must be completely accomplished by heat treatments alone. If the object is of a
more complex shape, applying heat treatments that have no unwanted side effects such as
warping can be difficult.
Due to its high carbon content, it is easy to quench after manufacture or chill by cooling a

portion of the mold it is poured into, both methods resulting in a very hard cementite-like
variant in the crystal structure of the material in the quenched/chilled region. While this
will make the hardened “white” cast iron part even more brittle than the usual “gray” cast
iron material, if the object can be made thick enough so that a deep layer of gray cast iron
remains behind the white cast iron surface layer, that gray cast iron can act as a shock
absorber, and the cast iron in this form can be used in armor. In this case, a form of “face-
hardened” armor is created where the material consists of two distinct forms of iron with a
mixed layer at their interface. In fact, huge, immensely thick (up to 31.5 in. [80 cm], although
most were about half of that in thickness) dome-shaped rotating gun turrets used in some
European land fortifications, starting in the year 1868 continuing through the 1890s, were
produced by a German armor manufacturer named Grüson. This was accomplished by
chilling the outer face of large individual wedge-shaped portions of the ring-shaped sides of
the turret and soldering them together with molten steel. The assembly was then topped
with a 76.2 mm (3 in.) flattened dome roof. The gun ports in the front were preshaped in the
mold where the turret was thickest, since the enemy was assumed to be where the guns
were pointed. These turrets were a complete success due to the fact that even steel pro-
jectiles of the time period, which had no protective caps on their noses, as later became the
norm in the twentieth century, shattered to pieces on the surface of these turrets and did
nothing but chip the surface and form minor cracks. What is known as Krupp cemented
steel armor used in large gun-equipped warships, starting in the mid-1890s and continuing
with variations through the end of WWII, was the improved, tougher steel version of this
type of armor, although in the case of steel, the face-hardening was done after the plate was
made by heating the face to a very high level and quickly cooling it using powerful streams
of cold water to get the deep face layer.

17.5 Steel

Once the main issues with steel were solved, steel replaced both wrought iron and cast iron
in all armor functions and in most construction functions as well. The first issues were the
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removal of impurities in the iron during smelting and development of a process to keep the
steel from getting too hard during the various stages of manufacture. With this addressed,
the steel was less brittle and therefore less prone to cracking. The second issue that was
solved was the development of proper alloying techniques to allow the middle of a thick
steel plate to properly cool without forming undesirable crystal structures. This, if not
remedied, tended to create defects that were hidden until the enemy hit the plate and it
broke apart.
Because there is a wide variation in the possible carbon content of steel and with the

possible addition of other alloying elements to maximize the desired properties while
suppressing the undesired properties in the final product, we can tailor the properties of
steel to behave very similarly to wrought iron at one extreme or, like cast iron, at the other
and anything in between. This is why the development of mass-produced steel essentially
created our modern world.
With regard to armor, what one desires in a homogeneous, ductile steel is maximum

possible strength to decelerate and, if possible, completely stop the incoming projectile if at
a near-normal impact or to gradually deformwhile continually exerting a lateral force away
from the protected region to cause the projectile to glance off if the impact is at an oblique
angle. These forces should ideally continue at full amplitude throughout the entire time the
armor is resisting the impact, so as not to act in a brittle manner and split apart prior to the
last possible moment of resistance. Unfortunately, in steel, the higher the strength (in most
cases), the closer the ultimate tensile strength (UTS) is to the yield strength (YS). Thus, in a
high-strength steel, the force that progressively damages the armor and reduces its resis-
tance ability is very close to the force that will completely defeat the armor and allow the
projectile to pass through. What we desire is the armor to delay the final failure, gradually
allowing penetration and, hopefully, outlasting the energy supply of the projectile so that
the projectile stops its penetration prior to the armor failing completely. This desired delay
requires a larger separation between the UTS and the YS to keep the resistance of the armor
below, but close to the UTS at all times by yielding at just the correct rate under the impact
to trade time for resistance and remove energy from the projectile. Too great a hardness,
resulting in a high UTS but a small UTS/YS separation, will result in brittle failure,
defeating the armor by truncating the length of time that the resistance continues, while too
low hardness means that the UTS is too low and the projectile can continue to penetrate
long enough to allow it to completely tear through the armor with energy to spare, despite a
wide UTS/YS gap. A balance must be struck for optimum resistance to the greatest number
of possible enemy projectiles that one expects the armor to be able to resist. One would not
expect the armor of a cruiser to defeat a battleship-caliber weapon, but it may be possible to
resist the most powerful enemy cruiser-caliber weapon under most battle conditions
through proper design.
For an optimum armor steel, we desire the lowest possible amount of carbon* that will

still allow the final product to have the necessary UTS to provide adequate deceleration/
glancing resistance to prevent the expected threat to penetrate under the widest range of
attack parameters. However, we also have a minimum carbon content that sets the melting
point of the steel, since the lower the percentage of carbon, the higher the melting point and
the more expensive the steel is to make. Most high-grade armor steels in the twentieth
century used 0.3–0.4% carbon (again, by weight, somewhat more by the volume taken up in
the steel), although some armors had as low as 0.2% and others had up to 0.5–0.55% carbon,
with the latter usually implying that the homogeneous, ductile armor steel was also going

* This would present the smallest chance of overhardening during manufacture.
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to be face-hardened. The best example of this was the Japanese new Vickers noncemented
(NVNC) homogeneous naval armor steel. Introduced in 1931, this steel had 0.55% carbon.
The Japanese developers also planned to use the identical steel for their Vickers-hardened
(VH) face-hardened armor in the Yamato class battleships, which were only in the very
earliest part of their design phase in 1931. Obviously, the Japanese Navy planned ahead.
Another desirable feature in armor is something to enhance toughness and minimize

hardness by making the existing carbon more efficient as a hardening agent but without the
accompanying brittleness of increased carbon. This is why most of the other alloying ele-
ments in twentieth-century armor steel were added. The most important elements found in
the final armor steel product other than carbon are as follows:

1. Nickel acts as a major toughening agent by replacing the very similar iron atoms at
various places in the pearlite crystals or associated ferrite crystals surrounding the
pearlite. It was typically used in 2.5–4% quantities in most armor steels, although
up to 7% was used in the first high-strength armor steels introduced around the
year 1890. These similar but different size atoms act like pieces of cloth caught in a
zipper when a crack tries to form, jamming the crack tip and greatly reducing
brittle behavior, i.e., increasing toughness, even at somewhat elevated hardness
levels compared to a steel without it.

2. Chromium, used in 2–3% quantities in many armor steels, is a corrosion inhibitor
and increases the ductility of the steel somewhat, but its primary purpose is that
when heated and quenched, it, like iron, forms carbides with the carbon, so that
new high-hardness, high-strength crystal structures occur in addition to those
formed by the iron with the available carbon. Thus, we obtain a higher strength
and hardness with the exact same amount of carbon present had chromium not
been added. An additional favorable property is that chromium slows down the
transition of austenite to the various low-temperature crystals, such as pearlite,
ferrite, martensite, and cementite, giving the steel more time to cool in the center of
a thick plate and thus preventing the center from forming undesired crystal
structures that can compromise the resistance of the plate under impact. The
addition of chromium is even more important in face-hardened armors due to this
last property, since the hardness change from a high value at the surface of the face
to a much lower value at the point inside the armor where the face and ductile back
meet critically depends on this cooling rate being precisely controlled.*

3. Silicon, when added in 0.05–0.15% quantities, does not instill the corrosion resis-
tance of wrought iron. It is usually combined with manganese in both regular
construction steels and steel armors to form a combination that has some of the
effects of the combined nickel–chromium combination described earlier, although
to a much lesser degree. Silicon, however, is much cheaper than nickel or chro-
mium.Many extrahigh-strength construction steels have very successfully used the
silicon–manganese combination to enhance the desired properties without exces-
sive loss in toughness. Nickel–chromium is, however, much better at preventing
cracking under impact shocks, so nickel or both nickel and chromium are added in
addition to silicon in many naval construction steels when ballistic protection is
also required. Many nations used compromise materials with limited toughness

* The first modern armor plate using chromium was a 15 cm (5.905 in.) thick chromium–nickel steel armor plate
manufactured and tested by the German firm of Krupp in 1894, being its Test Plate #420.
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against the major impact forces which provided resistance that was “good enough”
for stopping projectile fragments (for example, the JapaneseWWII cruisers in many
cases used the extra high-strength British-developed D steel* as both construction
steel and side armor). The US Navy refused to do this and never used its high-
tensile steel (HTS) that was developed for construction purposes and antitorpedo
bulkheads for armor. The USNavy always specified the full armor-grade Bureau of
Construction and Repair/Bureau of Ships special treatment steel (STS) or Bureau of
Ordnance class “B” armor (very similar materials) when any impact resistance was
required.

4. Manganese, added in 0.1–0.2% quantities, was combined with silicon, as described
in the previous paragraph, so as to provide moderate toughness and hard-
ness enhancement at a much lower cost than using nickel or chromium. In addi-
tion, manganese would chemically combine with much of the remaining sulfur in
the steel and render that undesired impurity ineffective, further enhancing the
toughness of the armor without changing anything else.

5. Molybdenum, added usually in 0.4% quantities or sometimes less, had the effect of
improving the toughness of steel at higher temperatures, allowing more rigorous
mechanical working or more rapid heat treatments while preventing cracking
compared to identical steels without this added alloying element. While rarely
used through the end of World War I (WWI), British, German, and Japanese armor
steels frequently used this element from the early 1930s through the end of WWII.
US armor manufacturers used molybdenum in a more limited manner: Bethlehem
used 0.35% molybdenum in its class B armor under 7 in. (17.78 cm) thickness, and
Midvale used 0.25% for class B plates under 15 in. (38.1 cm) thickness, while
Carnegie–Illinois never used any. It can be argued that these US manufacturers
produced the best-quality steel in the world at that time, so this element appears to
have been employed to ease production and not as a requirement for the optimum
armor strength.

6. Vanadium was used only in the United States at 0.12% by Midvale in class B plates
under 15 in. (38.1 cm) thickness. Neither Bethlehem nor Carnegie–Illinois, nor any
other foreign armor manufacturer, ever used any, to the author’s knowledge,
through the end of WWII. Vanadiumwas initially used in large amounts by the US
automobile industry for sheet steel plates forming the outer covering of automobile
chassis and for springs. This last use, in springs, made them more resilient and less
likely to lose their elasticity as the automobile was bounced up and down
thousands of times each day over bumps and potholes in the road. It is still used for
this purpose, including watch springs and for any design with similar require-
ments. The use for chassis in cars was eventually ended when better metallurgy
eliminated the need for this very expensive alloying element. Why Midvale used it
in its armor is somewhat unclear, but test records made at the United States Naval
Proving Ground of ballistic test plates for acceptance testing shows that Midvale
plates had by far the least variation in any metallurgical properties from lot to lot of
any of the three aforementioned US armor manufacturers, showing a very con-
sistent product, perhaps partially due to this alloy addition.

7. Copper, added in usually about 0.1–0.15% quantities in most post-WWI Japanese
armor steels to replace an equal percentage of nickel, has some of the properties of

* D steel was introduced in the early 1920s.
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nickel, but to a lesser degree. Nickel was a critical material that was in short supply
in Japan, being entirely imported, so any and all steps to minimize its use in any
steels were made. In thinner armor, up to 8 cm (3.15 in.) thick, special grades of
copper noncemented (CNC) armor steels using up to 0.8% copper in place of an
equal amount of nickel were introduced in the late 1930s that met all the specifi-
cations of the previous NVNC armor steels of that thickness or less and, in so
doing, completely replaced NVNC for thinner armor, such as the antibomb armor
around the funnel uptakes of the Yamato class battleships. While the United States
and Britain were highly successful in their mid-WWII developmental efforts into
low-alloy steels with acceptable properties, none of the Axis powers seem to have
met with much success in this important topic, with only CNC armor steels coming
anywhere near the requirements of the regular full-alloy steels substituted in
WWII by those nations. To the author’s knowledge, only Japan used any significant
amount of copper in any armor or naval construction steel through the end of
WWII.

8. Sulfur and phosphorus are major impurities in many iron ores that cause exces-
sively brittle behavior under high-stress conditions, so they are removed to the
maximum amount possible in armors. A value of 0.035% or less for each was the
maximum allowed in the final ingot for WWII armor steels. This was accomplished
through the addition of chemical additives mixed into the molten steel during
smelting to combine with the sulfur and phosphorus or through the use of high-
pressure air or, more recently, by forcing pure oxygen through the liquid metal to
“burn off” these elements. When so chemically processed, the resultant compounds
either float to the surface or, less likely, sink to the bottom of the liquid steel mass.
During the final pouring of the liquid steel to form the ingots for selling to steel
manufacturers, the compounds that floated to the top are poured off first as “slag”
prior to forming the solid ingot for shipment. In addition, standard practice in
many steel smelting plants is to slice a portion of the top and bottom of the ingot off
and send these sliced-off portions to be remelted, and any impurities are added to
those recovered from the slag and sold to other manufacturers who can use these
chemicals. This produces final ingots with the minimum practical impurities. As
mentioned earlier, one of the beneficial side effects of using manganese is that it
chemically combines with sulfur and removes even more of that element from the
final alloy. Phosphorus must be removed in the slag during smelting. The author
is unaware of any equivalent to manganese to reduce its effects when still in the
iron alloy.

The final description of the homogeneous, ductile armor steel we shall use as the standard
because of its metallurgical properties. This steel is the average WWII US Navy grade of
STS/class B armor for midthickness plates that are 3–6 in. (76.2–152.4 mm) thickness [1],
derived by Dr. Allen V. Hershey, the head of the Ballistics Computation Division at the US
Naval Proving Ground, Dahlgren, Virginia, during WWII through 1955, when armor
research in the USNavywas cancelled and all further research sent to the US ArmyMateriel
Command personnel who developed tank armor. He then went into the new digital
computer developmental work there until his retirement in 1981. In this role, he developed
much of the software that was adopted as the first text-processing portion of the Autodesk
graphics engine used for the digital creation of drawings and other diagrams/pictures used
in modern computer-aided manufacturing design and documentation work. Each of the
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three WWII US naval armor manufacturers had their own views as to how UTS should
decrease with increasing plate thickness. Bethlehem Steel was able to keep the UTS virtually
constant at 106,000–107,500 psi over the entire range of thicknesses. Carnegie–Illinois
production practices resulted in a drop in the UTS from about 120,000 psi for the thinnest
plates down to 100,000 psi at 12 in. (30.5 cm), at which point, they were able to keep it
constant for all plates of greater thickness. Midvale production saw a drop in the UTS
linearly from 102,500 psi for the thinnest plates down to 92,500 psi for 18 in. (45.7 cm) plates
after which it remained constant for any thicker plates. As long as the plates failed by
ductile bending, stretching, and tearing and not brittle fracture (cracking), the change in
plate resistance as UTS went down was very gradual, so the thickest plates may have been
only about 90–95% as strong as the midthickness plates, but the thinnest plates were about
105–110% as strong as these midthickness plates. This tracks with US Army hardness value
drop observed in its rolled homogeneous armor (RHA) over its more limited range of
thicknesses and over its higher overall hardness range. RHA has to withstand small pro-
jectiles fired at short range hitting at very high velocity which is not usually the case for
naval armor. In navy applications, ogival projectiles impact at a much lower average
velocity, and the projectiles are usually of a diameter as large as or larger than the armor
thickness, with impacts occurring at a medium-to-high obliquity angles from the normal.
As plate size decreases, given constant metallurgy, the size of each crystal in the steel goes
up relative to the plate thickness. This is also true of the crystal size compared with the size
of the attacking projectile, assuming it is scaled to match a given set of conditions. At the
extreme, a tiny projectile would be usually hitting a single crystal. Since crystals such as
pearlite have internally much higher strength than the intercrystal bonds in the ferrite layer
surrounding much of the crystal surface, this means that the resistance to penetration for
this tiny projectile would be much greater than with larger projectiles against proportion-
ately larger plates. Thus, this effect, although actually rather gradual, means that thinner
plates tend to have a higher strength and toughness than thicker plates and can thus be
hardened somewhat more without loss of minimum required toughness, increasing the
total resistance of the thin plate [2].
This default standard “Hershey”USNavy homogeneous, ductile naval armor steel, either

STS or class “B,” had a BHN of 225 (note that this at the low end of the similar alloy for US
Army RHA); its UTS was 115,000 psi and its YS was 95,000 psi. Its percent elongation was
25% and its reduction in area was 60–70%. These properties were near the top for any such
parameters for all US and foreign armors in WWII. Its Charpy impact test values were also
near the top, although no direct values are provided in [2]; the properties were just dis-
cussed in comparison to foreign armors tested by the US Navy after WWII. It can be
considered as the “mid-thickness” armor plate mentioned in the previous paragraph.
The massive experience in steel manufacture from building construction, ship construc-

tion, railway construction, armor manufacture, and, the largest effect, automobile manu-
facture seems to have had a huge positive effect on US steel manufacture for all purposes,
including armor plate.

17.6 Projectiles

There are three different projectile designs used in this chapter description, giving a good
example of how complex this topic is.
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17.6.1 US Army WWII 15 lb (6.8 kg), 3 in. (76.2 mm) M79 Armor-Piercing
Monobloc Shot

For this projectile design [2–4], we shall define the normal kinetic energy density KEr as
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Equation 17.37 describes the energy of the associated with the velocity V component at
right angles to the plate face on initial impact at obliquity q divided by the volume of a
(minimum) circular hole of projectile diameter entirely through the plate of thickness t. This
will be used in some of the following figures.
Figure 17.1 is a plot of normal energy density vs. plate thickness for this projectile. A side-

view drawing of this projectile is included in the lower right of the figure. In this depiction
of the M79 projectile, the forward bourrelet and the rotating band are shown as shiny
surfaces.
This is the main standard all-steel projectile used by Hershey in most of his penetration

testing and computations. It was also scaled in testing to other projectile sizes. It was a very
simple design for an antitank weapon, with a bare nose, lacking any pointed windscreen to
decrease air drag, nor a thin-steel hood soldered to the nose to hold the windscreen on and
no thick hardened-steel armor-piercing (AP) cap to protect the nose from impacts that
might cause it to shatter and fail to penetrate. The idea of a hardened cap was used in most
post-1900 steel AP projectiles, termed APC by the US Army, but just AP in the US Navy.
The M79 projectile contained no internal explosive filler cavity, only a tracer, and had a
simple tangent ogive with a pointed tip. The ogive radius was 1.67 calibers, which extends
the length of the shell by 1.19 calibers above the end of the cylindrical body. The projectile
had a total length of 3.25 calibers. The M79 nose shape is about midway between the longer
pointed shapes used during WWI and the rather shorter points of most foreign WWII AP
projectiles and the even blunter oval-shaped noses of mostWWII US Navy hard-capped AP
projectiles (designed for optimum high-obliquity penetration of deck armor at long range).
Hershey had a large number of these 3 in. AP projectiles available for test purposes, since

many 76.2 mm US Army antitank guns and the up-gunned M4 Sherman tanks were
transitioning to the US Army M62 explosive-filled, base-fuzed APC projectile instead. This
obviously also influenced his choice of the standard test projectile.*

17.6.2 Experimental 3 in. (76.2 mm) and 0.78 in. (20 mm) Flat-Nosed Projectiles

The 3 in. projectiles were either specially made 13 lb solid shot projectiles or a set of 3 in M79
AP projectiles with their noses sliced off flat to yield short projectiles of 9–12 lb weight. All
were fired under Hershey’s supervision against various thicknesses of roughly average STS
plate at obliquities from normal to 75° from the normal. Many of the projectiles, penetrating
or not, suffered severe nose damage on impact, but enough of the projectile remained more-
or-less intact to give good impact results for an evaluation. Note that none of these pro-
jectiles were ever able to penetrate an STS plate thicker than one caliber at any obliquity,
completely shattering in the failed attempt and not even making a hole through the

* Hershey also had access to a large number of modified M79 projectiles with a flat nose that are described in
Section 17.6.2.
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FIGURE 17.1
(See color insert.) Normal energy density vs. plate thickness at various obliquity angles (q in degrees) for an M79
AP projectile.
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plate. Normal energy density vs. plate thickness for this type of projectile is plotted as
Figure 17.2.
In Figure 17.2, the sudden jump in the values in this figure is due to an estimate of the

requirement to double the striking velocity to achieve a shattered projectile penetration. It is
only an estimate, but it gives some idea as to why this flat-nosed projectile was not adopted
after tests.
A separate set of flat-nosed projectile tests to compare the 3 in. WWII tests was found [5].

These alternate test results are very similar to the US 3 in. projectile test results, just shifted
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FIGURE 17.2
(See color insert.) Normal energy density vs. plate thickness at various obliquity angles (q in degrees) for a flat-
nosed projectile of 13 lb.
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somewhat due to the different projectile and plates used, including the impossibility of
penetrating a plate over one caliber thickness. These additional tests were performed with
modern, specially made, extraheavy 20 mm (0.78 in.) flat-nosed, hardened-steel projectiles
fired at modern high-tensile steel construction plates of various thicknesses at normal
obliquity, which gave results that tracked with the US NavyWWII normal-impact 3 in. tests
in the shape of the curve generated for penetration vs. velocity. Because a different steel was
used as a target and in the projectiles and because of the significant difference in projectile
size and the much heavier relative weight of these smaller, but proportionally much longer,
projectiles, calibrating the effects of the scaled projectile weight difference was essentially
impossible, so the M79 scaling term and weight computation was used as the default in
performing the evaluations. It seems certain that this scaling and/or weight computation is
not correct, but it is the best information available. A constant was determined to multiply
the 20 mm US Navy Ballistic Limit (NBL) result for one plate thickness to get the identical
3 in. M79 proportional plate thickness NBL and all the other NBL test results for normal
impact and intact projectiles from both sets of tests overlaid one another perfectly. The
changes to the amount of energy to penetrate steel of various thicknesses with intact flat-
nosed projectiles thus appear to be identical no matter what the scale, projectile weight, or
plate strength. What is missing is a method to compute this constant for all possible plates
and projectile tests. Thus, at the time of the present writing, the 3 in. WWII tests are enough
to fully evaluate penetration results for armor up to one caliber thickness.
At the present writing, the author knows of only one test that was able to completely

penetrate, in an intact condition, a steel plate over one caliber thick. ThisWWII test involved
a Krupp experimental flat-nose 75 mm AP shot projectile fired against a 1.1-caliber Wotan
Hart* (Wh) plate at normal obliquity. Based on this evidence, such a thick-plate penetration
is not impossible with a full-width flat-nose projectile, but highly unlikely, with the pro-
jectile usually shattering to pieces without making a hole given the typical expected striking
velocities for standard-weight steel AP projectiles fired from WWII antitank guns.†

The US NBL vs. plate thickness plots for intact projectile penetrations generated for this
particular projectile were radically different from the conventional M79 projectile NBL
results. The normal energy density vs. plate thickness evaluation chart for this projectile
shape would be very different from those we have generated for pointed nosed M79
projectiles.

17.6.3 Experimental 13 lb, 3 in. Tapered Flat-Nose AP Projectile with Small Conical
Windscreen

After several naval battles during WWII, samples of Japanese 8 in. (20.3 cm) type 91 AP
projectiles were obtained, both intact and exploded. These projectiles were actually a form
of uncapped semi-armor-piercing (SAP) projectile with a tapered flat nose (flat face of 0.69-
caliber diameter), on top of which was placed a blunt ogival pointed “cap head” held in
place only by special weakened threads, which also held the long pointed windscreen on.
On impact with a ship structure or the ocean, the windscreen would be torn off. The cap
head would also come off unless the impact against the target was at 45° or less. If the
impact was at 45° or less, the impact forces would press the cap head onto the flat nose and

* Wotan Hart was an improved post-WWI German homogeneous naval armor in its hardened, maximum-
strength form used in cruiser armor and armored battleship decks.

† Note that it is possible that this single Wh plate had a defect (lamination, internal crack, etc.) that caused it to act
like a thinner plate in this test.

Penetration of Homogeneous, Ductile Chromium-Nickel Steel Naval Armor 435



hold it in place to form a bluntly pointed (more-or-less) conventional nose shape until the
armor was penetrated or the penetration was arrested, at which point, in either case, the cap
head and the projectile would separate. This cap head could also act as an AP cap in some
cases to improve the chance of penetrating face-hardened armor as the cap head shattered
on the surface of the plate, but provided little protection to the internal explosive filler if this
type of armor was hit, even if complete penetration was achieved. At impacts above 45°, the
side forces on the cap head would cause it to be laterally flung before it could do much to
the object struck. In this case, it would act as a separate subcaliber projectile with its own
trajectory, while the main projectile, now with the tapered flat nose with no cap head or
windscreen, would continue into the target. Normal energy density vs. plate thickness for
this type of projectile is plotted in Figure 17.3.
The purpose of this unique Japanese projectile design was to allow the projectile, if it hit

the ocean just short of the target at a highly oblique angle, to cut into the ocean surface
without ricocheting, allowing the shell to follow an underwater trajectory of up to 200
calibers (roughly 133 ft for an 8 in. projectile) distance and hit the enemy ship well below the
waterline, all while still moving at a reasonably high speed and oriented nose first. This
highly oblique angle could be down to as low as a 7° angle of fall at very close range. The
“diving effect”worked best in the range of 15–25° angle of fall. After impact with the water,
the cap head would be torn off and the tapered flat nose shape would allow the underwater
motion. This could allow the shell to completely bypass the heavy side armor of a cruiser or
battleship target and punch into the lower hull before exploding inside. In response to this
threat, the new WWII US battleships, the new Japanese Yamato Class battleships, and most
rebuilt older Japanese battleships had special tapered underwater belts to stop just this kind
of penetration. The 0.69-caliber méplat of the shell was exactly half of the surface area of the
full projectile diameter if a full-diameter flat nose had been used. This compromise shape
allowed not only the reduction of the effects of turbulence and flow separation that was
generated by the rather short conical bevel going from the bourrelet to the méplat, enabling
the continued nose-first trajectory, but also the reduction of the drag on the smaller flat face
enough to keep the projectile speed underwater to reach the designed 200-caliber path
length. The shape also generated some upward forces that prevented the projectile from
curving downward and missing the target ship until it had considerably slowed at the end
of its underwater trajectory. Additionally, shortening the time underwater prevented the
special, very long time delay base fuze (see the following) from detonating the shell in the
water before it could reach the target.
To allow this long underwater path to be realized, in addition to the tapered flat nose, an

extremely long 0.4 s base fuze delay was used in all Japanese type 91 AP shells 8 in. and
larger. This enabled the very long underwater path. The downside with this approach was
that with such a long fuze delay, a direct target hit would pass entirely through an enemy
ship without exploding unless it hit heavy armor thick enough to sufficiently slow it down
after penetrating.
Thus, the type 91 AP shell was an all-or-nothing design. For full explosive effect on the

target, it either hit the ocean short of the target and essentially worked like a miniature
torpedo or hit and penetrated the heavy armor of the target, if present. If neither of these
conditions were met, the shell simply passed through the target like a solid shot, causing
minimal damage unless it impacted something substantial on the inside.
The US Navy knew nothing about this intricate Japanese design philosophy for these

shells. They only had examples of the shells fired at them. So they wondered if the Japanese
had figured out something that the US Navy did not know concerning flat-nosed
projectiles.
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As a result of obtaining samples of Japanese shells, the US Navy contracted for a set of
specially made 3 in., 13 lb tapered flat-nosed SAP projectiles. These special projectiles were
the same weight as the regular US Navy 3 in. Mk 29/30 capped AP projectile, which was
designed for use against surfaced Japanese or German submarines. These uncapped,
tapered flat-nosed shells were termed common in the US Navy.* This set of special shells was

* Only shells with AP caps were designated as “AP” in the US Navy after about 1900.
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FIGURE 17.3
(See color insert.) Normal energy density vs. plate thickness at various obliquity angles (q in degrees) for a flat-
nosed projectile of 13 lb.
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produced by one of the major projectile manufacturers* under contract with the Navy. For
the tests which followed, the explosive cavities of the projectiles were inert filled. The shells,
however, were designed to allow them to be used as regular naval gun projectiles, with
explosive D fillers and standard US Army M66 0.16 s delay base fuzes installed (the same
fuze used in the 3 in. Mk 29/30 AP shell). The plan was that if tests proved successful, the
new shell would be issued to the fleet.
These shells differed from the larger Japanese AP shells in several ways: No cap head was

present, so no matter what angle of impact occurred, these tapered flat-nosed shells would
have a more difficult time penetrating the thicker gauges of homogeneous, ductile armor
plates at low obliquity. Also, more damage to the projectile when used against such plates
would occur on impact due to the higher deceleration on the plate surface caused by the flat
nose. These shells would be totally useless against face-hardened armor of any significant
thickness due to the absence of an AP cap allowing them to shatter on the surface of the
plate. The rather short, lightweight, conical windscreen was firmly screwed onto the edge of
the flat nose, so it would not easily come off on impact. Thus, the primary goal of the
Japanese shell design to prevent ricochet from the ocean surface and enable an underwater
hit was eliminated. The diameter of the flat nose was expanded to 85% of the projectile
diameter (2.55 in. [6.48 cm] for these 3 in. shells) to try to approximate the Japanese flat nose
better. The height of the tapered portion of the nose was 0.47 caliber, roughly the same as
the Japanese shell.
The test personnel likely fully expected that these common shells would act much like

previously run experimental fully flat nose shells covered in B earlier. This would be a
reasonable expectation since the nose taper was small, just 15% less than a fully flat nose
shape.
The testing significantly differed from expectations, however. The penetration curves

were almost as different from the fully flat nose test shells as they were from the M79 shell
results. The small 15% taper caused an enormous difference in the way the shell penetrated
the armor and how much energy was needed under various test conditions to achieve the
NBL with these shells.
This test series had another rather strange result that is apparent when the normal energy

density vs. plate thickness of the intact-projectile NBL values found during the testing are
compared to the previous fully flat nose projectile test series [2]. Each test series included
tests at a number of obliquities from normal to 75°. One would expect a cluster of data
points that varied above and below an average line drawn through the center of the test
data for various plate thicknesses at any given obliquity as was true for both the M79 and
fully flat nose projectiles when plotted in the literature [2].
That is not what happened. Instead, other than the normal impact curve for the thinner

plates, where the required energy (all of it since there was no obliquity angle here) went
upward somewhat compared to the other NBL test results, all of the normal energy density
plot data points for this special projectile for all obliquities, including normal impact against
the thicker plates tested, lay on a single straight line. The upward curve for the thinnest plates
at normal obliquities is possibly due to the plate “dishing” (denting over a wide area about
the impact circle) during the impact event because the nose was not sharp enough at its
edge to cut out the plate material in front of it until it had stretched as far as it could.† The
data points for thicker plates at normal obliquity (where reduced dishing occurs) or at all

* Carnegie–Illinois Steel Company was the manufacturer.
† Although for an oblique impact, the concentrated asymmetric pressure on the narrow corner of the flat forward
surface of the projectile pressing against the plate (the “chin” as described later) was enough to start a cut/notch
into the plate prior to major dishing occurring.
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oblique angles were all exactly on top of this straight line to the thickness of the pen used to
draw the line, with no distribution above or below the line whatsoever, in other words, a
perfectly identical function of normal energy vs. plate thickness for this projectile type under
every single test condition (except for the thin plates at normal mentioned earlier)! This is
difficult to comprehend, since the armor plates hit should have caused some variation due
to manufacturing tolerances, if nothing else.

17.7 Details on the M79 Nose Shape Effects on Armor Penetration
vs. Standard STS Plate

17.7.1 Normal Impact Results

When hit by the M79 AP projectile shape of any size at normal obliquity, the standard
armor behavior can be binned into three more or less distinct regions based on the plate
thickness in calibers (t/d) that have smooth transition regions between them (see the 0°
curve in Figure 17.1) [3,4].

17.7.1.1 Very Thin-Plate Regime

In this regime, plate dishing dominates as the primary energy absorber. The very thin-plate
regime ranges in plate thicknesses from zero through 0.02 calibers. In this regime, the plate
acts much like a trampoline when hit, forming a wide conical dish or dent about the impact
point. The thinner the plate, the wider the dish is. This dishing increases with decreasing
plate thickness until the dish reaches the entire surface area of the plate. This dishwidens at a
large fraction of the speed of sound in the steel, which is far greater than the projectile
velocities we are assuming here, so the dish will absorb quite a bit of impact energy as it
widens and deepens under the force of the forward-moving projectile nose tip. Eventually,
assuming the projectile impact velocity is above the (rather small) NBL for such a thin plate,
a maximum depth is attained as the armor material is stretched to its limit, at which point,
the tip of the projectile nose tears through the plate, which then curls back radially in several
triangular “petals” of the entire plate thickness, to allow the projectile through. This petal-
forming behavior is observed whether or not a dish actually develops in the thin plate. This
final tearing open of the petals causes very little added energy loss to the projectile since the
torn edges are so thin and the bending back of the thin-platematerial in the petals has almost
no energy associated with it. Since thinner plates have a larger diameter dish before the tear-
through point is reached, the energy to penetrate, small though it is, is actually greater for the
thinner plates in this regime than for the thicker plates in this regime, with amaximumvalue
just prior to either the plate thickness going to zero or when the dish reaches the edge of the
plate and cannot expand more due to the plate edge attachment supports stopping further
expansion of the dish. We therefore observe a downward curve of required energy per plate
unit thickness to penetrate. This is due to the observed shrinking of the dished area with
increasing plate thickness that attains a minimum at 0.02-caliber plate thickness. The energy
curve turns upward at this point because the thicker petals absorb a greater portion of the
energy as they are bent back than thinner ones. The region where petaling now dominates
the resistance to the projectile penetration, and dishing becomes negligible in its effects, is
above 0.04-caliber plate thickness. At this point, the dished region is still rather wide, but the
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shrinking rate of the dish diameter is now slowing down as the width of the dish reaches a
rough minimum for all thicker plates, so it essentially transitions to a rather small constant
energy loss for all plate impacts against thicker armor.

17.7.1.2 Midthickness-Plate Regime

This regime encompasses plate thicknesses between 0.04 and 0.425 calibers. The behavior is
dominated by petaling and cratering/wedging. We shall note here that what we have
termed wedging is called piercing in the literature as well as in earlier sections of this book.
We feel that this term is more descriptive of the physics of what happens in a penetration
eventwherematerial is pushed aside by the nose of the projectile. Starting from the end point
0.04-caliber plate thickness given in Section 17.7.1.1, the NBL and required penetration
energy increase almost linearly up to about 0.3 caliber thickness, at which point, the pene-
tration energy curve changes to a very slightly downward curve. This indicates a slightly
lower energy requirement to penetrate than the region up to 0.3-caliber plate thickness. This
upper region ends at 0.425 caliber at normal obliquity. Above this plate thickness, the
required penetration energy curve bends again and will be discussed in Section 17.7.1.3.
The 0.04- to 0.3-caliber region is completely dominated by the full plate-thickness petals

that are split open at the center of the impact site by the pointed nose to form several
radiating tears. These tears end up being slightly longer than the final circular hole radius in
the plate if impact occurs at the NBL, with the ring of triangular petals formed by these
radial tears being bent back until they are parallel with the projectile axis and, in an opti-
mally hardened armor, are usually snapped off of the plate by the passage of the remains of
the driving band through the hole.
This petal bending process requires that the projectile push against a resistance that

is directly proportional to the plate thickness. The metal is homogeneous, so each unit
thickness offers the same resistance force as any other unit thickness, adding up in this case
for the entire plate thickness over the full penetration time acting as a beam in bending. The
distance that the projectile has to move in contact with the bases of all these petals before the
petals completely bend out of the path of the projectile at the NBL and above is also directly
proportional to the plate thickness. Since the energy needed to accomplish this is the
product of force and distance, the work W is given by,

Epen = W = F � x (17.2)

We can define the force in this case as, for some constant K,

F = Kt (17.3)

where here we have assumed the scalar form since we know the direction of the force and K
is due to some constant metallurgical property of the plate steel. At each thickness incre-
ment in the plate of total thickness t, which is also the distance to be traversed, we can now
write

W = Kt2 (17.4)

The kinetic energy at the NBL provides the mechanism to just barely do the work
required to penetrate and is written as

KENBL =
1
2
wpV

2
NBL (17.5)
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At the NBL, we can equate Equations 17.4 and 17.5 to obtain

t = VNBL

ffiffiffiffiffiffiffiffiffiffiffi
1
2
wp

K

r
(17.6)

Thus, the plate thickness t was barely penetrated when the impact velocity is the NBL,
VNBL; the required kinetic energy to penetrate and t are both increasing rapidly and linearly
in this thickness interval.*
Above the 0.3 caliber plate thickness, when the nose tip of the projectile pushes into the

plate, the petaling layer at the surface opposite the impact is rigid enough that the plate
material in the impact face layer cannot move backward due to the resistance of the material
behind it. The thickness of this rear, more rigid layer runs from zero at the 0.3-caliber plate
thickness to a maximum of 0.125 caliber at the 0.425-caliber plate thickness. When this is the
case, instead of immediate petaling, the nose digs into the plate face, and as it approaches
the constant 0.3-caliber thick petaling layer at the rear of the plate, the face layer is bulged
up slightly in a ring around the nose tip and forms a jagged, narrow, craterlike lip hugging
the projectile nose. This crater widens with the widening nose as the projectile moves
deeper into the plate, and only when the nose tip starts to dig into the petaling region does
the plate start to bend back into petals to allow the projectile through. As a result, in this 0.3–
0.425 caliber thickness range, we still get a set of petals, but they are limited to only
0.3 caliber thickness. The remaining material in the difference between 0.3 caliber and the
actual plate thickness t ends up as a shallow bulge and narrow, jagged caliber-wide crater
ring (also called the “coronet” in US Navy documents) tightly surrounding the final impact
hole. From the 0.3 caliber plate thickness and up, the petals at the plate back always absorb
the same amount of energy from the penetration energy of the projectile at and above the
NBL.When the 0.425 caliber thickness is reached, the same thing occurs to the now-constant
energy lost due to forming the caliber-wide, 0.125 caliber deep sideways–compressed crater
zone in the plate face metal ringing the hole.
The amount of energy required to generate the crater is somewhat less than that needed

for petaling since the petals have to be bent over their entire length to 90° from their original
position. This requires more energy than merely bulging the crater metal radially from the
impact center to a diameter only slightly larger than the projectile diameter. This is why the
0.3–0.425 caliber thickness range has a somewhat less steep upward energy requirement as
plate thickness increases. The reason that the 0.3–0.425 caliber plate thickness zone is not
linear as in the petaling thickness zone is that this 0.125-caliber-thick zone is so thin as to
allow for a smooth transition from petaling to cratering and yields a shallow curve as the
mode changes. Before the cratering zone can assert its own linear behavior, it has reached its
maximum thickness and now only removes a constant amount of energy from the impacts
against any plates above 0.425 caliber thickness.
In the examination of Figure 17.1, for the 3 in. M79 AP projectile at normal obliquity, the

region of the curve between 0.3 and 0.425 caliber thicknesses is, as with the below 0.3-caliber
petaling region, steeply increasing in a nearly straight line as plate thickness increases. As
mentioned earlier, the interpretation of such an energy increase with thickness is that it is
the energy that is linearly accumulating, so that the energy needed to penetrate a given
thickness is the sum of the energies needed to penetrate all the thinner lamina in this
thickness range, being the final energy needed to penetrate the last plate thickness in the

* Note that this approximately linear function for full thickness petaling and plugging failure was originally
recognized by the famous physicist Hans Bethe when working for the US Army during WWII as described
earlier in this chapter.
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previous thickness range (e.g., the dishing region for a 0.04-caliber plate) plus an added
constant energy increment for each additional thickness increment t. The armor plate in this
0–0.425 caliber thickness range is resisting this projectile design as a single solid body in two
smoothly transitioning thickness steps and the projectile must punch through all layers of it,
in effect, simultaneously to completely penetrate.

17.7.1.3 Thick-Plate Regime

In Figure 17.1, a horizontal line with a constant energy density over a continuous range of
thicknesses would mean that each thickness increment is acting totally independent of any
other, much like swimming in water, where it does not matter if we are in an ocean or a
small swimming pool, we are only pushing against the water next to us, and the rest of the
water can be ignored. For this case, the formula for penetration would be of identical form
to the kinetic energy formula, with the plate thickness penetrated increasing as the work, as
described earlier, but in this case, the force F = K at all points (F is not a function of t). So we
can write

t = V2
NBL

ffiffiffiffiffiffiffiffiffiffiffi
1
2
wp

K

r
(17.7)

This means that penetration will increase much faster with increasing V at the NBL than
the linear case of Equation 17.5. We note that the steeper the curves in this figure, the more
energy is needed to penetrate as plate thickness increases and the less penetration will
increase with increasing striking velocity at the NBL. This graph is thus the inverse of a
more conventional penetration vs. striking velocity plot, yet it allows greater insight into the
effect of increasing impact energy and the various plate failure modes as plate thickness
changes.
Above 0.425 caliber thicknesses, the penetration event is dominated by the radial com-

pression of the hole created by the projectile. As with the crater zone, when the plate “stiff”
rear layer is above 0.3 caliber, the metal nearer the impact surface of the plate cannot move
backward easily. However, due to the crater material in the impact region of the plate,
material in the zone that lies between the cratering front region and petaling rear region
cannot move either forward to form a surface bulge nor backward to form petals. The armor
here is now sandwiched between these two layers and can only move directly radially,
compressing the armor surrounding the projectile nose as it widens as the projectile digs
deeper into the plate. This forms a very wide, although shallow, bulge of armor both at the
front and at the back of the plate due to material displaced from the center region of the
plate that is made up of the steel that was in what we shall call the final wedging volume.
This volume comprises the product of the cross-sectional area of the caliber-sized hole and
the thickness of the plate between the 0.425 caliber value used up by cratering and petaling
and the actual plate thickness. All further penetration resistance of the plate is that caused
by the energy required to move material radially out of the path of the projectile as this
region thickens with increasing target thickness, recalling that the cratering and petaling
zones are now constant-thickness, constant- energy loss regions. As plate thickness
increases, these two constant energy-draining regions at the plate face and rear become less
and less important, and it is this middle zone that is thickening and absorbing all the
increase in the total penetration energy. We call this centerplate zone in thicker plates the
“wedging” zone since that is what the pointed nose of the projectile is doing, wedging aside
the armor in front of it just like a metal wedge does in splitting open a wood log, although
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here the metal will smoothly deform outward from the center rather than crack apart if the
plate remains in the ductile region of its hardness range, as with the standard armor we are
discussing.
There is a smooth, but still rather sudden “kink” in the energy density vs. plate thickness

curve over a narrow thickness range at and above the 0.425 caliber point where the rate of
increase in the required penetration energy suddenly decreases. The steepness of this curve
gradually decreases even further as the plate thickness goes up towards the maximum
plotted in Figure 17.1 (2 calibers). What this indicates is that, as mentioned, the petaling and
cratering energy drains are now constant, so they merely establish a threshold energy at the
0.425 caliber minimum thickness for the wedging zone. The curved portion above that
minimum is entirely due to the added energy required to cause radial compression to
penetrate the center portion of the plate.
The fact that this portion of the energy density vs. plate thickness curve is much less steep

means the amount of energy needed to penetrate a still thicker plate is only partially being
passed on, with much of the energy increase still being dissipated both in the front cratering
and rear petaling regions and in the form of shockwaves, heat, and so forth. The rapidly
changing speed of the projectile as it is slowed by the armor causes different amounts of
energy loss in the wedging region near the plate face than in this region near the plate rear,
so no true steady-state (horizontal line) effect is reached in a real projectile/plate impact
scenario. Since the curve is slowly flattening out more andmore as plate thickness increases,
but not yet horizontal, the required loss in energy to penetrate the center wedging region of
thinner plates is still less than thicker ones, but the difference is continually decreasing.
However, if the striking velocity becomes high enough to penetrate plates much thicker
than two calibers, the projectiles start to shatter and eventually even soften or begin to melt
on impact, negating the penetration formulas being described here. As the plate thickness
increases well above two calibers, it would seem that eventually, the extremely thick
(“semi-infinite”) plate would completely absorb any noticeable compression of the dis-
placed armor in the region surrounding a hypothetical indestructible projectile, and the
penetration would indeed be just like penetration into water, with a horizontal, constant
energy increment needed if the plate thicknesses in Figure 17.1 were further increased.

17.7.2 Oblique Impact Results

When we look at Figures 17.1 through 17.4 for the 3 in. M79 AP projectile at various impact
obliquities, we note that the basic shape of these curves is the same as with the normal
incidence curve, either compressed, stretched, and/or offset from the normal incidence
curve. For comparison purposes, we have also included Figures 17.5 and 17.6 with all data
for all obliquities plotted [3,4]. The three oblique impact curves included in Figure 17.1 are
the end points as the curves shift from one obliquity to another. The 42.5° curve is the end
state of a smooth gradual compression of the normal incidence graph as obliquity increases
to that point. When the obliquity exceeds 42.5°, the curves smoothly reverse the trend and
stretch until they reach the 67.5-degree curve, where they again reverse and smoothly
compress down to the 80° curve, after which, no more evaluations are plotted. The curves
were truncated at 2 caliber plate thickness or 3500 ft/s (1067 m/s) striking velocity. The full
curves for the higher obliquities above 42.5° are usually truncated too. These choices were
made because the M79 projectile stops having a good chance of remaining in one piece
against thicker plates and higher velocities even at normal impact and will probably have
severe problems with major damage at higher obliquities.
What does this upward/downward undulation pattern with increasing obliquity mean?
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Note that when computing the normal component of the impact velocity for use in
determining the normal energy density value, we use the initial impact obliquity, as though
the projectile passes right through the plate at the NBL, totally unaffected by the impact
other than being slowed down. This is absolutely not the case in real oblique impact events,
most especially when the projectile is just barely capable of penetrating. In this case, it has a
relatively low average velocity as its nose traverses the plate and emerges from its back and
thus the projectile spends a relatively long time in the plate during the later portion of the
penetration event at the NBL.
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(See color insert.)Normal energy density vs. plate thickness from 0° to 45° (q in degrees) for an M79 AP projectile.
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At up to 42.5° obliquity, at the NBL the projectile will be turned by the target plate to
point more towards the plate normal (that is, acting as if it hit at a lower obliquity if it was
not so deflected). This is due to the very strong asymmetric surface forces acting on its nose
as it pushes through the plate. The plate, in effect, pushes and pulls on the projectile,
depending on how deep the nose is in the plate. Initially, the force is greatest on the side of
the projectile nose in contact with the plate—the chin—and pushes the nose away from the
plate, trying to cause it to glance off. In the under 42.5° region, however, the nose quickly
digs into the plate face and the gouged-out armor on the other side of the nose bulges
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FIGURE 17.5
(See color insert.)Normal energy density vs. plate thickness from 45° to 80° (q in degrees) for anM79 AP projectile.
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upward over the nose and reverses this net force as the nose goes deeper and deeper into the
plate. This causes the nose to be rotated in the direction more at right angles to the plate
face, reducing the angle that it exits the plate back compared to its original obliquity angle,
most strongly at and just above the NBL. Opposed to this up/down nose yawing motion is
the high spin of the projectile that is trying to keep the nose going in its original direction,
countering the forces generated by the armor. Since the nose deflection is causing, in effect, a
lower obliquity path through the plate as the nose is pushed into the plate by the projectile
inertia (sometimes termed normalizing of the path), the penetration is actually easier than if
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the projectile had remained going in its original direction unchanged. Thus, the required
normal penetration energy goes down compared to a simple NBL cos q rule, and the normal
energy density curve compresses to a lower level of impact energy required to penetrate
than at the NBL for normal impact (q = 0).
Note two things here: First, the initial forces on the nose are attempting to push the nose

away from the plate in a glancing manner. But since we are at the NBL and expect complete
penetration of the plate, the nose will rapidly dig deep enough into the plate in this
obliquity range at anywhere near the NBL velocity value and reverse this behavior, as
discussed earlier. Second, when the projectile strikes a plate of the same thickness, but at a
velocity significantly higher than the NBL, the forces have less time to act on the projectile as
it passes through the plate and the deflection will be less and less. Eventually, in the limit, at
a very high velocity, assuming the projectile stays in one piece, the projectile will pass
through the plate as if the plate was not even there (other than slowing it down, of course).
When evaluating postimpact effects, this behavior has to be included and has been to a
major extent in the HCWCALC3 and, with less confidence, in the two flat-nosed projectile
evaluation programs included on the NAVWEAPS website.
When the obliquity increases above 42.5°, the initial glancing forces on the projectile nose

rapidly increase due to increased leverage on the chin and increased time for these forces to
continue. It therefore requires a greater impact velocity to dig into the plate deep enough to
punch the nose through to the plate rear surface and trap the nose so that the armor pushes
the nose down, reversing the glancing effects before the projectile ricochets off the plate. Also,
note that the projectile will never slow to a stop when a nose-first penetration occurs at the
NBLat anobliquity higher than 45°. The projectile is decelerated, but theplate forces trying to
laterally oppose its penetration through the plate do not have as much effect on the speed of
the projectile parallel to the plate surface until the last possiblemoment, which is not enough
time to cause complete deceleration to a stop. In this case, the projectile goes from nose-up
ricochet to nose-down penetration with only a small increment of additional drag applied
during the complete penetration process near its end; most of the plate resistance prior to
making the final hole is due to drag along the projectile side as it bends the plate material
downward and sideways, forming a canoe-shaped gouge andwide dish to either side,with a
centerline split-open slot entirely through the plate when near the NBL, not in slowing the
projectile by direct force on its nose tip. The higher the obliquity, the longer this gouge/slot
becomes before final penetration at its end. The path deflection of the projectile is also not as
large at the NBL as it is at lower obliquity, for the same reason. Namely, since the projectile
never stopsmovingwhen going from ricochet to penetration, it already has the reduced time
in the plate thatwasmentioned in the previous paragraph, so themagnitude of the deflection
is compromised by this high remaining speed even at the NBL.
When the obliquity reaches 67.5°, the plates that can be penetrated within a maximum

striking velocity in the figure and in the code, 3500 ft/s, are thin plates. When impacted at
near the NBL, the impact forms a very long, canoe-shaped gouge in the plate, bending it
down and, as the velocity nears the NBL, splitting the plate open to form a long slot parallel
to the projectile path down its center. Obviously, tearing open such a slot will dramatically
reduce the strength of the armor at resisting the widening and deepening of the gouge, so
the required penetration energy will now begin to decrease with increasing obliquity. In
addition, as the obliquity increases, the maximum thickness of the plate that can be pene-
trated within the allowed maximum striking velocity continues to decrease, which makes
the effects of the torn central slot even more compromising to the total resistance of the
plate. Since dishing is still a considerable effect in such thin plates, even though petaling is
the most important, anything that compromises the dishing portion of the resistance by
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allowing the two sides of the long gouge (which is a form of a dish) to spread open easier
will reduce the required energy to penetrate. Thus, as the obliquity increases the remaining
12.5° to the maximum 80° value, the needed normal energy to penetrate nose first again
drops to about the same value that was true at 42.5° for a plate of a given thickness.
To summarize:

1. In the 0-42.5° obliquity range, the forces on the nose quickly cause the nose to be
refracted to less than the obliquity angle, so that at the NBL the projectile exits the
plate back at an exit angle of nearly right angles to the face at very close to a zero
remaining velocity. The normal energy density is less than the normal-impact
value, being lowest at 42.5°.

2. In the 42.5–67.5° obliquity range, the forces on the nose cause it to dig a long gouge
in the plate before finally penetrating at and above the NBL, and at above 45°, the
deceleration forces never stop the projectile completely (for nose-first penetration,
not the less well-defined base-first penetration [see the following]), so the final
deflection above 45° is never zero and is always less than in the under 45° range
even at the NBL, using a similar deflection formula that requires zero remaining
velocity at the NBL to get a right angle exit angle. The normal energy density
increases until it is well above the normal impact value, being highest at 67.5°.

3. In the 67.5–80° obliquity range, the plates become so thin within the velocity range
allowed by the penetration formulas (3500 ft/s maximum) that they tear open a
slot along their centers shortly after the initial gouge in the plate forms, reducing
their ability to resist the projectile, widening this slot enough to completely pen-
etrate, so the loss in projectile velocity as it penetrates (again, for nose-first pene-
tration, not for the less well-defined base-first penetration) is even less than in the
under 67.5° obliquity range, significantly increasing the remaining velocity at the
NBL and reducing the deflection of the projectile from its original path and making
the exit angle be closer to the obliquity angle at all times. The normal energy
density decreases again very rapidly and, by 80° obliquity, has gone down to the
point that it is not far from its lowest, 42.5° value.

17.7.3 Base-First Penetration

Starting at 67.5°, another effect occurs. When the long slot is torn at the bottom of the gouge
made in plates under about 0.25 caliber thick, the slot is narrow near the tip of the projectile
nose, but is rapidly widened as the pressure of the projectile side on the gouge bottom slides
up the slot following the nose. By the time the slot is under the base of the projectile, this
pressure has considerably widened the slot. If the nose of the projectile glances off, the base
of the projectile is forced down as the projectile rotates nose up, and at around the NBL, this
added force can punch the base through the plate and the projectile can be trapped and
“surf,” nose up, sideways through the plate, tearing a caliber-wide slot in front of it and
rapidly decreasing in velocity. When the projectile slows down enough, its spin can flip it
out of the slot either upward, so that it merely rolls around above the plate, or downward
through the armor, where it can roll around in the region behind the plate. In neither case
will the projectile be moving very fast after its long time in the slot, so its ability to penetrate
any significantly thick internal bulkhead behind the armor is negligible. Note that in
this case, the base fuze is highly unlikely to properly function, so the shell will usually act
like a dangerous rapidly spinning heavy weight randomly moving around the area. This
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base-first penetration at high obliquity against thin plates has a somewhat blurry NBL, since
there is a rather wide range of velocities where the projectile could flip either way near the
nominal average NBL value.
This base-first NBL will occur somewhat below the minimum NBL for a nose-first pen-

etration, causing such impacts to have two NBL values, in which case we term the base-first
NBL the trueNBL since it is the one that can penetrate at the lowest velocity. This situation is
indicated by the two NBLs for the 80° obliquity in Figure 17.1.
In a deck impact on a real target that allows a base-first “surfing” action to begin, the

actual armor plates are limited in size and usually have heavy reinforcement at their edges,
which may include doubling plates and I-beams bracing the armor, so in reality, the pro-
jectile cannot go very far before hitting something pretty solid that will cause it to imme-
diately have to “decide” if it will penetrate or bounce off. Some results at proving grounds
are not possible with actual structural considerations incorporated into the tests.

17.8 US Army WWII M79 AP Projectile Penetration of Average-Strength
US Navy WWII STS

In the following sections, we shall expand upon the discussion presented earlier and focus
on the penetration of a solid, ogival AP projectile into STS and describe the empirical
equations that are typical of this event. Although we introduced STS earlier in Section 17.6,
we shall now go into more detail on its properties.
STS is a chromium–nickel alloy. It was used as a full-strength armor-class steel by the

US Navy Bureau of Ships (BuShips) (previously the Bureau of Construction and Repair
before it merged with the Bureau of Engineering in 1941). The Carnegie, later Carnegie–
Illinois, Steel Company, a major part of US Steel Corporation, had the sole contract for this
material in the US Navy. STS was used in most ship hull armor protection,* bullet-proof
plating protecting anti-aircraft gun mounts and other lightly protected exposed hull-
mounted structures that needed to be impact resistant. A very similar material made by
Carnegie, Bethlehem Steel Corporation, and the Midvale Company for US Navy Bureau of
Ordnance (BuOrd) called class B armor was used in larger main and secondary gunmounts,
conning towers, and some other specific ship structures (mostly exclusive of the hull which
was under BuShips control) requiring higher degrees of protection. This steel was used
when maximum strength and/or protection from direct hits by projectiles and fragments of
projectiles or bombs was required. High-strength naval construction steel, called HTS,
which was about 80–90% as strong, was never allowed by the US Navy anywhere where
protection from direct weapon impacts was required. HTS was allowed for protection from
explosive blast and concussion, as in the deep side spaced protection systems in battleships
against torpedoes. STS is a direct descendant of the original German Krupp Company 15 cm
steel plate #420 tested in late 1894 and immediately introduced to replace the previous
nickel-only alloy maximum-strength armor steels that were in use. The French had intro-
duced these nickel alloy steels only four years earlier. WWII STS and class B armor was
somewhat better than the original Krupp “quality 420” steel mostly because it was tougher

* STS was used because it was homogeneous and ductile and had structural properties. Thick (and brittle) hull
face-hardened side belt and transverse citadel ends armor—“class A” armor—in large US Navy warships was
the BuOrd responsibility, and only it could contract for its manufacture.
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and cracked less and could stretch under impact more, which made it better against large-
caliber projectiles than the older forms of this armor steel.
US WWII STS/class B armor was about the best armor steel in the world at the time. It

was composed of a very clean ~0.2–0.3% (low) silicon–manganese carbon steel to which
roughly 3–3.5% nickel and 1.75–2.5% chromium were added (small amounts of molybde-
num and vanadium were added to some thicknesses of Bethlehem and Midvale class B
armor, but Carnegie never used either of these additional alloy elements). The nickel added
toughness. The chromium added some corrosion resistance and ductility, but mostly, it
allowed the creation of chromium–carbide crystals as previously described. This allowed a
lower-temperature quench for equal hardness and strength and allowed thicker plates to be
made without internal problems with undesired crystals forming deep inside due to too-
slow cooling.
STS/class B armor varied in its metallurgical properties with the UTS and YS decrease

with increasing thickness, which varied by manufacturer, as previously described. We shall
assume a “typical” plate of 225 BHN; 115,000 psi (792.9 MPa) UTS; ~95,000 psi (655.0 MPa)
YS; 25% elongation (minimum); and 60–70% reduction in area (minimum). It had a rather
good Charpy toughness of over 100 J/cm2 at 0°C. It had a density of 0.283 lbm/in.3

(0.007843 kg/cm3), similar to those of most high-alloy steels.
This armor had good deformation properties, being tough with little brittle cracking

exhibited under projectile impacts. Its major crystal structure was a form of normalized
pearlite/ferrite.
The M79 projectile is a simple design with a bare nose (no windscreen to improve

streamlining or any other nose covering whatsoever), about 9.5 in. (24.1 cm) long with a
simple single narrow copper rotating band. It had a tangent ogive nose shape of 1.67 cali-
bers radius. The nose length was 1.19 calibers, which was about 38% of its total length.
The projectile diameter was 3 in. (7.62 cm), and it weighed 15 lbm (6.8 kg). If we define
the projectile weight density as w/d3 for this projectile, we obtain a weight density of
0.556 lbm/in.3 This weight density is typical of the weight of AP projectiles of most nations
in WWII, including the US Navy medium-to-large- caliber AP projectiles prior to the
introduction of their unique “superheavy” or “20% overweight” AP designs used in the
last groups of US heavy cruisers and battleships. These heavier AP projectiles had w/d3

between 0.65 and 0.66. As a comparison, WWI common and AP projectiles, including
smaller-caliber ammunition of 5 in. (12.7 cm) and smaller in size, had about 0.41–0.51 for this
parameter, indicating lighter structure with less impact strength.
The shape of the nose of the M79 projectile is almost exactly in the halfway between the

longer pointed noses used in most AP gun projectiles from the 1890s through the 1920s
(usually tangent ogive noses with about 2 caliber radii) and the rather blunt points used by
most later AP projectiles. These blunter projectiles significantly varied in their nose shapes.
Starting in the early 1930s, newer AP projectiles used tangent ogives with radii reduced to
around 1.3–1.4 calibers or even blunter, but there were more complex but still pointed
noses, such as used in the Japanese battleship-sized type 91 AP shells introduced in 1931
and even round-tipped, oval-nosed AP projectiles introduced by the US Navy in the middle
of WWII. These very blunt Japanese and US designs were for maximum penetration ability
against medium-thickness deck armor at medium-to-high obliquity and medium-to-long
range, even at the cost of some penetration ability when hitting heavy homogeneous armor
at near normal obliquities at close range. Since most really heavy warship side armors used
during the twentieth century were not homogeneous, but face-hardened, where nose shape
was much less important, this use of such very blunt nose shapes was not a major problem.
The M79 projectile thus allows a good middle-of-the-road analysis of this topic.
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The projectile contained no internal cavity for an explosive fill, just a small recess in the
center of its base for a tracer. It was made from a hardened chromium–nickel steel alloy
somewhat similar to STS armor steel with the nose and upper body hardened (quenched) to
a very high level (around 600 BHN) to resist deformation while the center and lower body
were heat treated to be softer. This hardness rapidly and smoothly decreased from the
highest value at the nose to around 300 BHN near the base. The projectile was toughened
through tempering to reduce breakage when hitting the armor at an oblique angle.
We are going to assume here that this projectile never breaks or deforms in this discussion

to simplify the concepts involved. Figure 17.7 shows a plot of penetration of this projectile at
various obliquities vs. different thicknesses of armor plate.

17.9 More Detailed Definition of Armor Penetration for Ogival Projectiles

In Section 17.8, we developed some definitions of armor penetration. Now we shall expand
on this theme [3,4]. A number of definitions of what it meant for a projectile to “defeat” an
armor plate have been used over the years, both for testing purposes to accept armor and
projectile lots delivered from the manufacturer and for criteria as to the actual damage
inflicted on the enemy by a hit. Acceptance criteria for armor have tended to be somewhat
weaker than the criteria for projectiles. Much of the time, armor acceptance testing allowed
that only a crack in the plate through which light can pass through and be seen from the far
side needs to be met to establish success or failure as to whether the plates passed the
criteria established based on the projectile used, the striking velocity, and the obliquity of
impact path from the normal. Design and testing requirements only slowly changed from
normal for side armor aroundWWI up to 30° obliquity byWWII. Thin deck armor not only
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(See color insert.) Impact obliquity vs. NBL plate thickness from 0° to 80° (q in degrees) for an M79 AP projectile.
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continued to be tested against large-caliber shells at high obliquity (near battle conditions),
but also allowed for lower-obliquity testing against smaller shells, too, just like the heavy
side armor tests.
The US Navy changed its test success/failure criteria for armor to what became known as

the “ NBL” ca. WWI and retained it through the rest of its armor acceptance tests for
normal-to-medium obliquity. By this criterion, the plate had to have a hole made in it, and
the entire projectile if the shell remained intact, or about 80% of its body weight if the shell
was broken up, had to pass entirely through the plate and end up somewhere on the far
side. The body weight was considered the original weight of the shell minus its windscreen,
hood, or AP cap, if any. Any other effects of the postimpact condition of the projectile, given
it completely penetrated, by this criterion were ignored. For some face-hardened armors,
added criteria were included as to how much damage the armor must do to the impacting
projectile, but this was not universal (and was a mistake to enforce as it later turned out).
Since this discussion is limited to STS, we shall not dwell on this other criterion.
Projectile specifications required that the projectile hit at a higher velocity and, usually, at

a similar obliquity to the armor tests. To pass, the explosive cavity and base fuze insertion
areas* of the projectile had to remain undamaged, whether or not a fuze and explosive
charge had actually been fitted during the test. As a side note, the US Navy during WWII
required obliquities up to 35–40° for the larger AP projectiles, the toughest tests ever
required by anyone. Other kinds of damage to the shell were not considered of any sig-
nificance. When evaluating ship armor mockups, in many cases, the term defeat was raised
to the projectile criteria in some nations, although the US Navy decided that the regular
NBL was a good all-round criterion for such testing, although sometimes, this had to revert
to the through crack criteria for high-obliquity deck impact testing where complete pene-
trations were difficult to obtain.
We will always assume in this section that the NBL is the computed meaning of pene-

tration, with the single modification that at very high obliquity and thin plates, there can be
two NBLs, a lower one where the base of an intact projectile tears through the plate as the
nose tries to glance off, called NBL(BF), and a somewhat higher one where the projectile
goes through the armor nose first, just like for thicker plates or lower obliquity hits, called
NBL(NF). In the former case, the projectile may surf sideways tilted nose up through the
slot it is forming until it either completely punches through or flips upward and fails to
penetrate, in either case, most likely with its base fuze never being set off. The lower-
velocity NBL(BF) and the slightly higher NBL(NF) are noted in the following, when
applicable. The lowest-velocity applicable NBL is always called the true NBL here. The NBL
(BF) is somewhat more stochastic, probably indicating more like a 50% chance of going
through, with the percentage going to 100% at the NBL(NF), with the chance of armor
defeat averaging 75% chance in the gap between them.

17.10 Residual Velocity and Projectile Exit Angle

If a projectile impact is examined and the NBL is not achieved, no further calculations are
performed [3,4,6]. The projectile is assumed to have broken up, partially penetrated or
“bounced” off. If the projectile completely penetrates at or over the NBL, an estimate of how

* Usually, the base plug through which the explosive charge was inserted.
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fast the projectile is moving is made and in what direction relative to the normal of the plate
rear–surface in the impact obliquity plane the projectile exits. No out-of-plane deflection is
considered (although, due to projectile spin, a small sideways deflection may occur).
Below 45° obliquity, the projectile will be assumed to always be stopped or rebound if it

fails to completely penetrate. As a first approximation, a projectile striking at the NBL will
be assumed to just fall out of the plate back at zero residual (remaining) velocity andwith its
centerline exit angle normal to the plate rear surface. It is this normal from the rear face from
which the exit angle of the projectile is measured. When the projectile hits at an oblique
angle, the force on the chin of the nose (that side pressed up against the plate face) pushes
the nose as to make it glance off. As the nose digs in deeper, the armor material on the
opposite side, the “forehead,” quickly thickens and stops and then reverses the glancing
effect before it can rotate the projectile by much (we are assuming an impact near or above
the NBL here). The projectile then rotates toward the plate normal, rotating its base around
to hit the far side of the hole, which, in some projectile, impacts against thick armor, most
especially face-hardened armor, can break the projectile apart. We shall ignore any such
damage here. As mentioned, as a first approximation, at the NBL, the result is to have the
projectile nose point out the plate back, normal to the plate. This would be an exit angle of
zero degrees. In reality, the nose would end up pointing somewhere in a narrow cone about
that line, with a zero residual velocity. It would also be offset from the initial impact point
along the vertical plane of impact by the side forces pushing the nose. In a tapering plate, we
would assume the average plate thickness under the tip of the projectile nose, but add/
subtract, depending on the direction of the impact, half of the angle difference between the
face and back surfaces to/from the initial obliquity.
As the 45° obliquity is exceeded, the force on the chin increases further in the glancing

direction, and the impact velocity must be greater to push the nose deep enough into the
target plate to arrest the glancing forces, increasing the NBL above what a zero-residual-
velocity penetration would require. Thus, the nose would be moving more rapidly than it
required under 45° obliquity when glancing stops and the rotation back toward the plate
normal begins. As a result, neither the residual velocity nor the exit angle would be zero at
the NBL, with the higher the impact obliquity, the greater these minimum values would be.
In effect, the projectile goes from ricocheting from the face to “ricocheting” off the plate
back, bulging it up into a tilted “cave” topped by a forward-tilting pointed “spur” of bent
armor that held the nose from glancing off of the plate at the end of the elliptical gouge.
Below the NBL, the projectile will make a canoe-shaped gouge in the face until, at a higher
velocity, it hits hard enough to split the gouge as a slot under the chin of the nose, after
which the weakened armor that is now separated on each side of the slot can bend outward
sideways like “bomb bay doors” and allow the projectile to “belly flop” downward. The
behavior will become more prominent as the striking velocity is increased until, at the NBL,
its nose tip can hook under the end of the slot and bulge the armor up into the spur and cave
to push the nose down and allow it to completely penetrate.
The higher the velocity is above the NBL at any oblique impact, the less time the

deflection has to occur, and the closer the projectile gets to having its path undeflected with
the exit angle approaching the initial obliquity value, although usually offset sideways
somewhat. The loss in energy to penetrate as the path straightens out would probably be
lessened, too, but one usually just subtracts a constant energy loss based on the NBL and
keeps the energy loss constant.
In a base-first penetration, we shall assume that the projectile, if it does go all the way

through rather than flipping back upward and not penetrating, has essentially no residual
velocity to speak of and will be moving completely randomly as to its exit angle direction
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when it tumbles through the plate due to the interaction caused by its spin rate as it was
pushed around by the plate during the impact. In this case, there would be no fuze action
and, therefore, no real potential to cause major damage beyond whatever it flies into in the
space immediately behind the plate penetrated.

17.11 Basic Ogival Penetration Formulas and Definitions

Most of the older penetration formulas were set up to compute their ballistic limit velocity
Vl as the dependent variable from the other variables as inputs [2–4]. In some cases, this
limit velocity was defined slightly differently than we have done earlier, but for our pur-
poses, we shall assume it is similar. Because of the multiplicative factors used in these
equations, it is important that the inputs be entered using the correct units. The inputs
normally used were as follows: projectile diameter d in inches, projectile weightw in pound-
mass, obliquity angle q in degrees, target plate thickness t in inches, and, if used, a unitless
plate/projectile combined quality factor coefficient C, which adjusts the Vl value to match
the armor type to the projectile type being discussed, assuming that they are not the ones
used to create the original formula. The most important formula in the twentieth century
was for French Schneider et Cie. 1890 nickel steel homogeneous armor impacted by bare-
nosed, nondeforming, unbreakable tangent ogive-nosed projectiles with an ogive radius of
2.0, giving a nose height of 1.323 calibers. We shall use US Customary System (USCS) units
throughout this discussion. This formula was the DeMarre nickel steel formula, which,
interestingly enough, also used the US NBL definition of penetration well before most other
people. This formula is usually seen as

NBL = Vs = 1022C
t1:4

w0:5d1:7

 �
(17.8)

Here C, the DeMarre coefficient, modifies the striking (limit) velocity V expected to give
the NBL for the plate/projectile combination under study. It is about 1.21–1.22 for typical
STS-type nickel–chromium armor impacted by medium-nose height pointed-nose AP
projectiles at normal obliquity. There was an obliquity adjustment sometimes used, but it
was not very accurate and only worked for up to about 20° obliquity. Because of this, we
shall ignore oblique impact when talking about the DeMarre formula.
This formula is in a form fromwhich it is difficult to see the underlying physics. The use of

exponents 1.7, 1.4, and 0.5 clouds the issue, and no real understanding of what is going on is
apparent. A better way of writing this formula and other penetration formulas that will
illuminate the physics is as follows:
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Let us go over each term:

1. t/d: This is the thickness of armor of the given plate type penetrated at the NBL in
calibers, allowing test results of projectiles of different sizes and other test
parameters to be directly compared.
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2. K: Numerical constant to give the correct answer for the default projectile and
armor types used to generate the formula from empirical data.

3. QA: Armor quality factor based on metallurgical parameters of the steel used, as
demonstrated in penetration tests, replacing C and here multiplies the thickness t of
the armor, not the striking (limit) velocity V. The larger the QA, the smaller t is that
can be penetrated at a given V, since when building a warship or tank, one uses a
single armor plate, so one has to be chosen to remain within a weight budget and
still hopefully give adequate protection from whatever enemy threat is envisioned.
Since we may not know what that threat will be, we have no idea of what the NBL
will be for that specific threat until a threat assessment is performed on all weapons
that might be used against whatever plate material we are studying.

4. S: The scaling factor that shifts the penetration due to absolute size of the projec-
tile, which is one of the results from tests that shows how the armor responds
when we try to create a design for a battleship, say, scaled down to a cruiser
thickness against scaled-down cruiser guns. Usually, the larger the projectile, the
lower the NBL is, for identical projectiles and scaled identical plates that differ
only in size.

5. Mq: Obliquity thickness multiplier, either from an empirical formula or a lookup
table set or both; this term reduces the plate thickness that can be penetrated at a
given NBL or increases the NBL for a fixed plate thickness, as the impact obliquity
q goes from zero (normal impact) to the maximum angle calibrated. Based on
experience, it is usually cut off at 80°, but sometimes, it has to be less. Note that for
some nose shapes, such as flat noses, increasing the obliquity may not always result
in a higher NBL, but sometimes, an unchanged or even lower NBL can occur over a
range of obliquity values. This is not typical and is not the case for the M79 nose
shape.

6. w/d3: This is the apparent density of the projectile and is the same for exact scale
models of a single projectile design. For example, all German Krupp WWII naval
L/4.4 AP shells were very close to a single design, with only minor differences such
as the relative size of the base fuze and so forth to tell them apart if not labeled as to
which was which size. This term is important because it greatly reduces the con-
fusing effects of weight variations between projectiles, in this case, as a relative
scaling effect. It also allows different designs to be compared just based on their
weight differences. If there are other unexpected results during tests, the effects due
to relative weight of the various shells involved can be subtracted/divided out
here as part of the troubleshooting effort.

7. V: The striking velocity or, in complete penetration computations, the NBL.

Note that there is a separate exponent W for the apparent density (w/d3) term from the
exponent v for the striking velocity term. In face-hardened armor, those two values are
indeed separate and must be computed that way (v is much more important than W in
penetrating that kind of armor), but in homogeneous, ductile armor hit by pointed projec-
tiles, as we are discussing here, the total kinetic energy (½)mpV

2 is indeed the driving force
for penetrating STS-type armor, so trading w for V2 works reasonably well (excluding
projectile damage changes), and v is always twiceW. Thus, we can replace the separatew/d3

and V terms with a single term [(w/d3)(V2)]W.
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For the DeMarre nickel steel armor penetration formula, we get
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where there is no Mq term (it is not worth the trouble) and QA = C(2)(0.71429) = C1.42857, so
C = 1.21 for typical STS plate gives a QA = 1.313. Note that the very small scaling factor
S = d0.07144 roughly matches in the magnitude that found by Dr. Allen V. Hershey as he
developed most of the M79 formulas/database system that we shall use, evaluated for
STS, although S in his formulation is a somewhat different format to be described in detail in
the following.
The DeMarre Ni-steel formula is a one-size-fits-all equation that assumes that the method

of resistance of the armor to penetration at normal obliquities is the same for all plate
thicknesses against the default pointed AP projectile assumed. Between 0.2- and 1.1-caliber
plate thicknesses (the upper portion of the petaling range through the low end of the
wedging range), the curve is not too far off the actual resistance plot if a good choice for the
QA value (C in Equation 17.10) is made.* It completely fails in the dishing and lower
petaling range at the low end or in most of the wedging range at the top end, where the
methods of energy absorption by the plate are considerably different. Also, the major
changes caused by oblique impact to the energy absorption methods of the plate even in the
regime that work at normal obliquities means that the DeMarre Ni steel formula is of little
use in that case, too, without complicated tables of C values to match the actual curves. If we
require a large library of C values, we might as well start from scratch with a formula/
database that more closely matches the correct behavior.
The dependence on total kinetic energy for homogeneous, ductile armor penetration by

pointed projectiles is still valid. The curves that must be matched to compute the NBL are
rather more complex and will not use a simple single exponent W as in the DeMarre
Formula, so we instead write
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Here f indicates some complex function of variation of all the variables, even the constant
K is now a variable Kt that changes with plate thickness t to fit the empirically obtained
curves at any point with kinetic energy (KE) to match the test results over the entire range of
plate thicknesses and impact obliquities that we have good data on for intact projectiles. QA

is a constant for all plate thicknesses of a given plate type, not based on striking velocity, so
it is not modified by the KE adjustments.
Although we shall not go into all the numerous penetration formulas for ogival projec-

tiles, a particularly useful “universal” one was worked out by Dr. L. T. E. Thompson at the
US Navy’s Dahlgren Naval Proving Ground in the late 1920s [3,4]. It is given in two forms:
One is explicit in NBL or limit velocity, while the other is explicit in t/d, which is more
useful in examination of penetration physics.

* The optimum value of C to approximate the actual penetration curve for US Navy WWII STS with the US Army
76 mm M79 AP projectile at normal is 1.2205, slightly higher than the 1.21 value used in US Army and Navy
homogeneous armor acceptance tests ca. WWI.
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In these formulas, the thickness t and diameter d are in inches, the mass w is in pounds,
and the velocities are in feet/second. The factor F was used to compare test results in
experiments instead of V, and a “standard form” for averaged penetration tables and
specifications was calculated in 1931 from many US Navy 8 in. Mark 11 MOD 1 AP pro-
jectile tests at 0–75° obliquity as follows, with the angle q in degrees:
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The formulas as presented earlier were derived from averaged class B armor or STS plate
tests. Sometimes, in the literature, one finds the limit velocity based on the value of FSTD
written in terms of the “%NBL.” This is defined as

%NBL =
Vl

Vlð ÞSTD
� 100 (17.15)

where the limit velocity or NBL obtained in some actual test is compared to that obtained
against an “average” pre-1931 US Navy class B or STS plate by the standard 8 in. AP
projectile earlier. This gives a quick way to sort results compared to a defined standard for
evaluations of whatever properties one is studying. Detailed research work requires com-
paring the raw F values themselves, however.
Without going into the exact details of the following sets of equations, some of them may

be helpful for the reader against certain targets which will be noted. As always, be very
careful in the application of these formulas. Test data to validate the models are always
good. The units used in all the following formulas are those mentioned earlier, namely, the
thickness t and diameter d are in inches, the mass w is in pounds, and the velocities are in
feet/second. The angle q in degrees is not required as the formulas given in the following
were for low obliquity impacts.
The Fairbairn formula (UK, ca. 1865) espoused a linear increase of target thickness with

limit velocity that was nearly correct for thin wrought iron plates (t < 0.25d); it was given by
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Tressider created a formula (UK, ca. 1870) which was good for medium-thickness plates
(0.25d–0.75d) at low obliquity.* It was generally good for hard, brittle armor.

* It should be noted that the Tressider formula given in Equation 17.18 does not have the w/d3 exponent, at 0.5, as
half of the Vs exponent of 1.5. It is smaller than half, somewhat like, but not as extreme as, that used in the
Facehard program on the CRC website. It is the only other formula outside of Facehard that does this.
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In all the preceding and following formulas, the dn term implies that the scaling of the
diameter has a greater effect on penetration. Larger diameter projectiles tend to pierce a
similarly scaled armor plate more easily. Shearing and surface cracking also show up more
as the target thickness and projectile diameter increase. At the time of the development of
these equations, there may have beenmore manufacturing quality issues with thicker plates
which has crept into the formulas.
The Gâvre formulas (France, ca. 1870) are as follows:
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The tests at Gâvre Naval Proving Ground may have been against poorer quality plates
than the others. This shows up in the fact that the scaling term has amuchmore pronounced
effect. Additionally, the increase in penetration with increasing kinetic energy is less marked
than in the DeMarre formula.
In 1894, Krupp developed Krupp cemented (KC) armor. This cementation process was a

hardening of the face of the armor plate by putting it in contact with carbon during the
manufacturing process. This formed a thin, superhard layer about 1–1.5 in. (25–38 mm)
thick. In addition, a thick, less-hard layer was formed under that thin face surface to
reinforce it and markedly increase projectile damage. The total face-hardened layer was
around 35% of the total plate thickness. The Krupp formula for uncapped projectiles fired
against face-hardened armor is as follows:
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In the Krupp formulas earlier, penetration linearly increases with velocity. The damage to
the projectile during the experiments was worse as the plate thickness increased which
countered the higher impact velocity. There were large test-to-test variations potentially
due to the destruction of the projectile noses by the hardened face.
In 1891, the Harvey Steel Company in the United States developed an armor that had a

1–1.5 in. thick “cemented” face “baked into” the new French nickel steel armor* that con-
tained a large amount of nickel as an alloying element for greater impact toughness.

* This was the same face surface layer type used later in KC armor.
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Around 1895, the following formulas were developed by USNavy Ensign Cleland Davis for
penetration of uncapped projectiles into this material [8].
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This was the first attempt in the United States to develop a face-hardened armor formula.
The hardened face was 1–1 1/2 in. thick, regardless of total plate thickness. Plates caused
less and less damage to the projectiles, as they got thicker and were attacked by progres-
sively larger projectiles. It was noticed that poor projectiles shattered on impact. The total
kinetic energy approach used in this formula may be incorrect if the hardened pieces were
pushed through the plate.
Between 1895 and 1900, soft AP caps were added to almost all US Navy AP projectiles to

improve penetration into face-hardened armor. Ensign Cleland Davis modified his formula
to allow for capped projectiles fired into Harveyized armor as follows [8]:
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Neither Cleland Davis formula proved to be particularly accurate for the Harvey armor, but
the capped form was modified by Krupp engineers for general use for both homogeneous
armor and their KC armor later, replacing the DeMarre formula, with some success.

17.12 Program Formulas, Data Sets, and Evaluation Logic

Provided on the CRC website is a version of the HCWCLCR3 program developed by
the author from Dr. Hershey’s database and NPG reports and the author’s further analyses
[2–4,6]. This is a great improvement on the empirically derived formulas of the previous
section. In order to illustrate the physics and describe the computational logic, we shall
walk through the code step by step. In this section, we shall describe the formulas utilized in
two ways. The first (which will contain the equation number) is in the format used
throughout the book. The second, immediately following the first, will use the terminology
of the source code provided on the website and will not have an equation number.
We start by using the HCWCLCR3 program with the windscreen, hood, and AP cap

weights zeroed to reproduce a bare-nosed M79-type AP projectile. The NBL is computed
from the various plate and projectile parameter inputs and compared to a striking velocity
V, also input by the user to determine if complete penetration occurred and, if so, the
postimpact motion of the projectile.
The value used for f here, described in Equation 17.10, is based on Hershey’s averaged

curves [2] plus a failure strain adjustment formula, developed by the author, from the
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Krupp G.Kdos. 100 penetration curves for projectiles over 8 in. in size [9]. The formula is
given as
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T/D = (1/Qa){(W/D
3)(NBL)2/[(Kt)(S)/({%E}{Jt}{MOb})

2]}{1/[(2)(Texp)]}.

Here, eF is a function based on the strain (percent elongation) at failure of the target—
which is only used (set to a value other than 1.00) for projectiles over 8 in. (20.3 cm) in
diameter and when the steel has this strain under 25%—and T is an exponent term based on
thickness of the target plate. Equation 17.28 has roughly the same form as the DeMarre
formula (Equation 17.8), but differs in several major ways. Note the change to the t/d format
versions of the numerical constant (for each thickness interval) Kt and the scaling factor
term S; the rest of the terms remain in Hershey’s original formats modifying the NBL, hence
the square of their product to match the (NBL)2.
Note the added term Jt, which is needed due to the rather complex shape of the curve

relating the kinetic energy to the thickness of plate penetrated with plate thickness. As
discussed earlier, the energy-absorbing modes in the plate vary over a large range of
possibilities; these various modes overlap one another in places. The Jt term smoothens the
transitions from one mode to another.
If we put the formula back into a format for computing the M79 AP projectile NBL from

these inputs, we obtain
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NAVYBLM79 (1st Estimate) = (NUM)(J)(MOBLIQUITY)(SCALEFACTOR)[(QA)(TSLASHD)]TEXP/PROJDENSITY0.5,

where the computer program parameter “SCALEFACTOR” is a function of S that already
takes the exponent T into account and inverts the divisor S (see Equation 17.35).
When the parameter %E will modify the results (has a nonzero value and all use

requirements are met), we modify NAVYBLM79 as follows:

NAVYBLM79 (Final Value) = (NAVYBLM79(1st Estimate)) (1 - %E),

where the computer program calculates “%E” as defined by Equation 17.36. Otherwise, %E
is set to zero and the final value equals the first estimate.
Equation 17.29 is the format used in the HCWCLCR3 computer program when no

windscreen, hood, or AP cap is present. It is used in this format to determine whether or not
a given projectile hitting a given plate at a given striking velocity and obliquity angle will
penetrate or not, so the program has to compute the NBL first and then compare the input
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striking velocity to the NBL to determine the penetration result. We shall now go into detail
of the procedure.
First, except for the 1/QA term, all the terms in the “t/d =” format are set to the power of

the exponent 1/(2T), which is the replacement for the W exponent in Equation 17.9. The
requirement of the “2” in the denominator of 1/(2T) is because Equation 17.28 used (NBL)2

and Hershey’s various functions modify the NBL, not the plate thickness t, just like C in the
DeMarre formula (Equation 17.8), so in the “t/d =” format, the equation written here
requires this exponent to keep Hershey’s numerical values and formula formats consistent.
Second, the equation is broken down into a number of thickness range steps for the values

Kt. In the program, Kt is the inverse of the square of “NUM,” with “NUM” set equal to the
selected table value NC(n); Jt or “J” in the program is calculated from three selected table
values (JA(n), JB(n), and JC(n)); T or “Texp” in the code is set by the selected table value
TCOEF(n) in the program; and, for Ob > 45° only, part of Mq in the calculation. When t/d
(“TSLASHD” in the program) is computed from the user inputs, a lookup table counter
steps through various t/d cutoff values by incrementing its index “n” (“TSLASHDMAX(n)”
table entries in the program) until the correct “n” for the given thickness step is found, and
this defines the correct Kt, Jt, and T values to select.
Third, after the obliquity angle q or “Ob” in the code is input by the user, a decision is

made: If q is over 45°, then t/d and q are both used to select values from a large two-
dimensional matrix for Mq written as “MPTBL(m,n)” in the code. These data are then
interpolated both in the q and t/d directions to calculate a current value for the Mq
(MOBLIQUITY in the code) multiplier. If q is equal to or below 45°, the only interpolation is
in the obliquity direction between the two nearest straddling values from a separate
very small Mq table called “MPLTBITE(n).” The final value of Mq used is computed by

MOBLIQUITY = (Interpolated value from MPTBL(m,n) table)/COS(Ob), if Ob > 45°

or

MOBLIQUITY = (Interpolated value from MPLTBITE(n) table)/COS(Ob), otherwise.

This will be discussed in greater detail in the following.
We will now discuss the various parameters in this version of Hershey’s procedure.

1. The values of t/d, QA, and w/d3 are the same values shown in Equation 17.9.

2. The values of the upper cutoff, TSLASHDMAX(n), are obtained from Table 17.1.
The table was generated to select the value of “n” used to further determine NC(n)
and Kt, as well as TCOEF(n) to set equal to T (Texp in the code) and to select the
three values JA(n), JB(n), and JC(n) needed to compute Jt (J in the code). Here, user-
defined t/d is stepped through the many t/d threshold values shown in the fol-
lowing to determine the correct “n,”which is the opposite of how “n” is used in all
later “n”-indexed lookup tables.

Note how many steps there are at the low end of the plate thickness range, where
the energy-absorbing modes in the plate rapidly shift for even a small thickness change.
For example, penetrating a plate much over 2 calibers would require very low obliquity
and a low value of QA since we are limited in the program to striking velocities only up to
3500 ft/s (1066.8 m/s). At striking velocities above this value, the thermal and shock effects
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will make the calculations using this method inaccurate because these mechanisms are not
considered in the method.

3. The values of the numerical constant Kt are set from the square of the inverse of the
table entries NC(n) in Table 17.2. Numerically, we have

Kt =
1

NC nð Þ
 �2

(17.30)

Note that the table requires one to multiply the Kt column value by 10−6 to get the
actual Kt.
At high t/d values, the curve flattens out to nearly a constant horizontal line, indicating

that the penetration is becoming closer to t/d proportional to V2 = KE situation, as though
the projectile was passing through the armor which is behaving hydrodynamically. In this
hydrodynamic situation, only the armor that is in direct contact with the projectile at any
given moment is absorbing energy.

4. The values of the KE exponent T or “Texp” in the code is set from the table entries
“TCOEF(n)” in Table 17.3.

As mentioned with Kt earlier, at high t/d, the curve approaches a constant horizontal line,
indicating that the penetration is becoming more hydrodynamic, where T = 0.5. This the-
oretical completely flat horizontal penetration plot, with an exponent of 0.5 and Kt constant
from then on, is never actually reached because the front and rear portions of the plate

TABLE 17.2

Values of NC(n) and Kt for n Determined by Table 17.1

n NC(n) Kt × 106 n NC(n) Kt × 106

1 335.253920 8.896898 7 1179.94178 0.7182553

2 516.857560 3.743331 8 1179.94178 0.7182553
3 902.414250 1.227971 9 1173.77728 0.7258195

4 1290.90181 0.6000861 10 1201.73299 0.6924430

5 1687.69560 0.3510846 11 1227.31234 0.6638803
6 1361.41055 0.5395377

TABLE 17.1

Values of n Chosen from a t/d Ratio
Initially Calculated from Equation 17.27

n t/d n t/d

1 0.01156 7 1

2 0.05000 8 2
3 0.07500 9 3

4 0.10000 10 4

5 0.25490 11 6
6 0.47931
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crater and petal, which modify the penetration energy. As the plates get thicker, this energy
loss becomes a smaller fraction of the total energy loss. As the impact energy increases with
the increasing striking velocity needed to penetrate thicker plates, new significant effects
due to shock waves, compression and deformation of the projectile, and increased heating
of the plate and projectile at the impact site all begin to occur and make the assumptions
used here less and less accurate. This problem is increased by the fact that the speed of the
projectile through the plate is very high near the face and very low near the back at the NBL,
so even with a homogeneous material, it reacts somewhat differently at various depths,
precluding a uniform, perfectly KE-dependent relationship between the striking velocity
and the thickness penetrated. This is why there is a 3500 ft/s (1066.8 m/s) maximum on the
allowed striking velocity.

5. The value of the variable Jt is always 1.0, and all the JA(n), JB(n), and JC(n) are set to
zero for those thickness steps except for the three thickness intervals shown in
Table 17.4. This results in no influence of the Jt parameter on Equations 17.28 and
17.29.

The parameter Jt is a Green’s function that interpolates between two curves calculated
from different formulas, each of which is correct for its data interval. This allows us to
“feather” the mixed-data interval between two curves, matching the test data over the
bridging span by using a user-created, completely empirical equation. At each end of the Jt
curve, the function matches the value of formula used up to that point. Physically speaking,
the two intervals are where the dishing and petaling regions overlap (between n values of
2 and 3) and where the cratering/petaling and wedging regions overlap (n = 6). Jt con-
tinually changes the value of Kt for the selected interval into a variable “Kt(modified)” value
that is no longer a constant over the entire interval. Jt is not defined anywhere else in the
code and is neutralized by being set to 1.0 there. The formula for Jt in both intervals is the

TABLE 17.4

Values of JA(n), JB(n), and JC(n) for n Determined by Table 17.1

n JA(n) JB(n) JC(n)

2 −0.02 4682.6223 54.131113
3 −0.01 7200.0000 360.00000

6 0.02 802.10329 204.45613

TABLE 17.3

Values of T (Texp in the code) for n Determined by Table 17.1

n T or Texp 1/(2T) or 1/(2Texp) n T or Texp 1/(2T) or 1/(2Texp)

1 0.4336513 1.1530001 7 0.6196090 0.8069605

2 0.5306597 0.9422234 8 0.6387357 0.7827964
3 0.7166931 0.6976487 9 0.6462927 0.7736433

4 0.8549115 0.5848559 10 0.6248678 0.8001693

5 0.9713125 0.5147674 11 0.6095760 0.8202423
6 0.8141355 0.6141838
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following (it is always 1.0 when JA(n) is zero):

J
t
dθ = ( )⎛

⎝
⎜

⎞
⎠
⎟ − ( )JB n JC n (17.31)

Jdeg = [JB(n)](T/D) - JC(n),

Jsin = SIN(Jdeg).

Note: This angle is changed to radians for trigonometry in BASIC.
If sin (Jq) or Jsin in the code is negative, then we set Jsin = 0; otherwise, we use Jsin as is, in

which case

Jt = 1 + JA nð Þ sin Jqð Þ (17.32)

Jt = 1 + [JA(n)](Jsin).

Note that Jt is a distorted sine curve, curving upwhen JA(n) is negative and curving down
when JA(n) is positive, bent and stretched to follow the smoothed averaged data points in
the applicable interval as plotted on Hershey’s graphs in his documents [2,4].
Since Jt depends on t/d, for values of “n” where Jt is not 1.0, we have to solve for t/d

initially with Jt set to 1.0, then use the resulting t/d to solve the formula for Jt. We then use
this new, non-1.0 value of Jt to solve Equation 17.28, which will almost certainly be different
from the previous Jt = 1.0 solution for t/d. We can use this new t/d value to again solve for
Jt and continue this iteration loop until t/d and Jt converge, which results in the final value
of t/d.

6. The scale factor that allows larger projectiles of a given baseline design to have a
somewhat easier time penetrating scaled-up armor plates of the samemetallurgical
structure used by Hershey [2] is based on actual ballistic tests. Data which fed the
posttest analysis were derived from the results of STS-type steels being subjected to
loading at various rates from several sources. These data were averaged and
adjusted to the standard STS metal parameters used in the testing [1]. Hershey also
graphed wrought iron and mild steel high-speed load tests to show that the scaling
effect decreased in a predictable manner as the steel got stronger. This effectively
produces a smaller difference with projectile size against scaled plates, justifying
the scaling effect formula that he adopted for his analysis effort.

Since the scaling effect is based on striking velocity controlling the rates at which the
armor is being forced out of the path of the projectile, and since the metal fails by several
different modes, the energy absorption mechanism (dishing etc.) changes as a function of
plate thickness. Therefore, the scaling effect term in this penetration description is not a
simple constant as given in the DeMarre formula. Hershey’s NBL modifier equation for the
STS scale effect SF is

SF . ln= − ( ) ⎛
⎝
⎜

⎞
⎠
⎟1 0 04

3
d (17.33)
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where the standard 3 in. M79 AP projectile is the default center of the scaling adjustment
range. For the penetration calculation in HCWCALC, this is changed:

Ssq =
1
SFð Þ2 (17.34)

The exponent “2” in Equation 17.34 cancels the “2” in the “1/[(2)(Texp)]” exponent in
Equation 17.28. Since S appears in Equation 17.28, and since the Texp term varies with plate
thickness, the value of S as a function of projectile size also varies with plate thickness. Thus,
we write

S
T

=
( )

⎛
⎝
⎜

⎞
⎠
⎟

1
1

SF
(17.35)

For example, if the projectile is 6 in. in diameter and the plate is a half-caliber (3 in.) thick,
we have a t/d of 0.5. Examination of Table 17.1 shows that n = 7. Then,

SF . ln .= − ( ) ⎛
⎝
⎜

⎞
⎠
⎟ =1 0 04

6
3

0 98604 (E17.1)

so

S0 5

1
0 6196010 1 613941

0 98604
1 01415 1 023.

. .

.
. .=

( )
⎛
⎝
⎜

⎞
⎠
⎟ = ( ) = (E17.2)

Based on this calculation, we would need a plate that is 2.3% thicker (3.069 in.) to stop that
6 in. shell when impact occurs at the NBL of the thinner test plate hit by the 3 in. shell, on
average.
Similarly, for a 0.1-caliber plate, we have n = 4 and

S0 1

1
0 8549115 1 16971171

0 98604
1 01415 1 017.

. .

.
. .=

( )
⎛
⎝
⎜

⎞
⎠
⎟ = ( ) = (E17.3)

which is about a 25% smaller increase. Thus, scaling is variable here.
Note: This value for SF is for Ni–Cr steel of ca. 225 BHN. It has a larger change with plate

thickness for significantly weaker iron alloys such as mild steel (BHN = 140–160 and
coefficient 0.04 replaced by 0.06) or wrought iron (BHN = 100–105 and coefficient 0.04
replaced by 0.08), so they will require a variable QA as d changes. But this would be needed
only if, for some reason, the NBL of these rather weak and variable ballistic-quality
materials has to be determined to such a tight precision. This precision is rarely warranted.

7. The failure strain modification to Hershey’s M79 AP projectile analysis method-
ology was developed by the author, taken from the detailed penetration curves of
Krupp post-WWI Wh (or “Odin-hardened”) standard STS-type homogeneous,
ductile armor steel, drawn by the German firm of Krupp for the WWII German
Navy in 1940 [9]. In these graphs, for up to 8 in. projectile size, the charts more or
less tracked similar US Navy and British Navy computations, such as those based
here on the M79 AP projectile against STS-type armor. However, in these charts,
against larger shells, the Wh armor that the Germans assumed to be used by all
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warships, German and enemy, had its resistance to a normal impact drop off
steadily with increasing projectile size, even when using virtually identical late-
model German Psgr.m.K. L/4,4 projectiles* of 8 in. (20.3 cm), 11.1 in. (28.3 cm), and
14.96 in. (38 cm) sizes. The Psgr.m.K. L/4,4 were hard-capped AP (US Army APC)
projectiles with an overall of length of 4.4 calibers. The Krupp Wh metallurgical
specification for 1939 (prior to changes due to wartime shortages) show this armor
to be very similar to both US and British naval armors, except that it retained the
WWI minimum failure strain of 18% (US WWI STS had a requirement of 19%, for
comparison), while the improved WWII US and British armors now required a
much better strain to failure of 25%. It is possible that this is not the reason for the
Wh deficient functioning against large-caliber shells, but it is the only specification
parameter that is known to be significantly different between these armors. In
addition, post-WWII testing by both the Americans and British showed that this
problem was indeed the case. The only Wh plate that was significantly inferior to
US STS/class B armor plate was the very thickest one hit by the largest US pro-
jectile size in the test series. Detailed metallurgical analysis of the Wh armor
showed that it was a good quality material similar to the US and British armors
made to high standards by Krupp, so there does not seem to be any other
parameter other than strain to failure related to this large-projectile weakness
problem. Since the specified value is a minimum, actual plates would be somewhat
more elastic than this, on average. Unless Krupp was specifically making materials
far above its own design specifications in its plants and ignoring the actual met-
allurgical specification it created for its own Wh armor, the average failure strain
value for its Wh plates would be lower than the average of both US and British
WWII armors. Krupp would be the last company to accuse of such a thing because
of its highly conservative mind-set, so it is unlikely that they ignored that single
specification value, while meeting closely all the others, unless they purposely set
the bar extremely low to assure that all their plates would pass the acceptance
testing.

We are left with no alternative but to use theWh specification value for strain to failure as
the “typical” one for that armor type and do the same to any other steel whose specifica-
tions we use.
Using the G.Kdos. 100 penetration curves [10] and assuming a simple linear relationship

between projectile size and resistance drop, yet being conservative and assuming that the
effect was small if an even lower strain to failure was used by another armor-like steel (some
steel materials had down to 16% in this parameter), the following relationship forms the
basis of the effect:
If failure strain < 25% and d > 8 in., then the NBL multiplier (1 −%E), usually set to 1.0 for

no effect, is reset to the following value:

eF = 1 − 1 −

ffiffiffiffiffiffiffiffiffiffi
espec
25

r( )
d − 8
8

� �
(17.36)

* In this German terminology the P is for “Panzer” (armor); the s is for “Sprengstoff” (“high explosive” is the
German Navy definition); and the gr. is for “granate” (projectile/shell). The original German Navy AP projectiles
made prior to 1902 had no explosive filler and were named Stgr. (“steel projectiles”) to separate them from the
even older chilled cast iron shot used before.
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%E = 1 − [1 − √(Manufacturer’s spec% Elongation/25)][(D − 8)/8],

if (D > 8) and (Spec% Elongation < 25). Otherwise %E calculation is skipped (%E becomes,
in effect, 0), and the NAVYNBLM79 final value remains the first estimate value.
This is a second scaling effect term for the larger shells against armor that is too brittle to

fully stretch (25% or more is considered fully) before it tears apart. The larger the projectile,
the greater the distance the plate material at the impact center has to move to get out of the
way of the projectile. If the armor tears open too early in each of a series of virtual concentric
expanding rings, each ring thickness of the length of one test sample (50 mm in most metric
tensile test machines or 2 in. in the usual USCS tensile test machine), as a crude first
approximation, the weaker the armor will be as the number of these virtual rings (imagine a
“bull’s-eye” pattern) increases with projectile size. For a projectile up to 8 in. in size, the
expansion radially from the center to the edge of a hole will be at most 4 in. at zero obliquity,
and this means that only one full 2 in. test sample-length virtual ring, at most, is fully
stretched to failure, with part of a second outer ring that is not stretched to failure. Thus, for
the smaller projectiles, the metal failure results for rapid radial expansion are more or less
constant, and no significant failure strain effect occurs.
For an 18% maximum strain specification requirement, as with Wh, the drop in the NBL

against a 16 in. APC projectile would be

NBL NBLWh Whno
spec

ε ε
ε
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⎧
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⎪
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Here NBLWhe is the NBL for Wh armor with the strain effect, while NBLWhnoe is the NBL
for Wh armor with no strain effect. This is a very significant loss in protection against the
larger AP shells, which is not evident in US or British test data. Note that very thick
homogeneous, ductile armor usually has its Brinell hardness and ultimate tensile strength
values somewhat reduced compared to thinner plate due to difficulties in keeping the
crystal structure of the center of the plate of the desired type. However, even the modest
reduction in typical heavy plate strength due to this is not a factor in the 1939 version of
Krupp Wh armor, since Krupp’s specifications allow no such reduction, being identical for
all thicknesses.
Note that this reduction will apply to any homogeneous, ductile armor, including

essentially all WWI and earlier armors that have specifications that allow an ultimate strain
to be less than 25%. This shows the major improvements in metallurgy that occurred
betweenWWI andWWII in most homogeneous, ductile, and face-hardened armors. Even a
seemingly minor parameter such as average strain to failure, if improved markedly, can
have major effects in improving armor resistance.
Most experimental tests done by naval proving grounds and by manufacturers are with

projectiles that are economical to repeatedly use, usually at most 6 in. (15.2 cm), although
sometimes up to 8 in. (20.3 cm). Sufficient funding to use larger, battleship-size projectiles in
a major test series was rare. Since projectiles had to be over 8 in. in diameter to show the
preceding effect and the use of homogeneous, ductile nickel–chromium armor in thick
sections for protection against large projectiles was rare, these tests were simply not per-
formed. Even though virtually all WWI-era class B armor and STS and their foreign
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equivalents would have shown this effect if extensive tests of thicker solid plates had been
done, most battleships of the time only used rather thin laminated decks of STS-type or even
only HTS-type layers. Occasionally, these layers might be overlayed/underlayed with
nickel steel and/or mild steel plating. These complicated structures made detailed evalu-
ation of the various metallurgical factors in the steels difficult to distinguish due to effects of
laminating the various layers together. The moderately thick homogeneous, ductile plates
that were used were of various designs where failures in many cases were due to adjacent
plates pulling apart at the joints, not being penetrated in their centers when hit in AP
projectile tests. These tests were usually performed at high obliquity as well. Full-scale tests
with steeply falling, aircraft-dropped AP bombs against turret roofs were very rare, even in
WWII, where such attacks were much more likely, as happened twice at Pearl Harbor.
Nobody prior to the late 1930s, when solid single-plate heavy armor decks were introduced
in the new battleships, would have discovered a high strain effect in all of the “noise” due to
so many other factors. Indeed, the United States in WWII was the only nation to ever use
single heavy class B armor plates for conning towers and turret faces (and even here, some
laminated armor plates were employed for the thickest plates) in its new battleships. All
other nations used face-hardened armor for these areas so there was virtually no testing that
would have identified the high strain effect by anyone else except for the rather thorough
development tests by Krupp on its own Wh armor. This thick WWII US armor had its
maximum strain at or over the 25%minimum value described earlier, so tests with it would
not have shown this effect even had they been performed. One can only discover something
new when one has the ability to compare the new test results with known prior testing
where there is a clear understanding.

8. The largest modifier of armor resistance is the effect of changing the angle at which
the projectile hits the plate, the impact obliquity q, which is measured from the
normal, as used by the Americans and British in their tests. Other nations used
other reference angles. German tests, for example, used 90° as the plate normal.
This requires careful checking when using documents from foreign sources. We
keep Hershey’s methodology and tables for modifying the NBL for q, which are
based, in the code, on a modifier Mtable(q), multiplying the line-of-sight thickness
(1/cos q is used in the program as it is easier to compute). Thus we can write

Mq =
Mtable qð Þ
cos q

(17.37)

For q > 45°, the value of Mtable(q) resides in a large matrix “MPLT(m,n).” In the matrix
“m” increments obliquity in 2.5° steps and “n” increments plate thickness in 0.05-caliber
steps. Thus, this parameter depends both on q and on plate thickness t/d, up to a plate
thickness of 0.9 caliber, above which the thickness effect stops changing and only changes in
q will change the value of Mtable(q). Each computation linearly interpolates along the t/d
axis first. The twomatching q-axis table entries for the lower of the two straddling thickness
t/d-axis entries for the highest tabled Mtable(q) value that does not exceed the actual q are
interpolated to the actual t/d value. Then the same thing is done for the two closest q-axis
table entries immediately above the actual q for the t/d-axis interpolation. We now have a
new point below the actual q and a new point above the actual q, each already corrected for
its t/d-axis value. Now we linearly interpolate between these two new points onto the q-
axis to obtain the final Mtable(q) value to use.
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17.12.1 Obliquity Angles up to 45°

For q < 45°, there is only a single Mtable(q) value for any plate thickness, so linear inter-
polation between the tabled values using the actual obliquity is sufficient to compute the
Mtable(q) to generate the final NBLmultiplierMq via Equation 17.36 [3]. The table in the code
for this low obliquity range is “MPLTBITE(n)” and is incremented in 2.5° steps.
Up to 45° obliquity, the force under the chin of the projectile nose caused by the asym-

metric force on that side of the nose during initial impact is very rapidly reversed as the nose
digs deeper and deeper into the plate. This effect is either physically penetrating into a thick
plate or by stretching the center of the wide dish region as a funnel shape for a thin plate.
Since the deeper the nose digs in, the more the plate material accumulates above the nose on
the forehead (the portion of the nose on the direct opposite side from the chin). This is
depicted in Figure 17.8. Also, as the nose digs in and pushes forward somewhat parallel to
the surface, the armor material in front of the nose, parallel to the plate surface, to the depth
of the nose tip, gets pushed straight up and folded forward like the peeling from a wood
plane. This upward-bent face armor layer riding the forehead of the projectile is termed the
spur due to its curved shape. In effect, the spur builds up the weight of armor dislocated
from the surface of the plate on top of the armor further forward in the direction of
penetration parallel to the plate face. This buildup of this material above the nose of the
projectile greatly increases the force countering the glancing force on the chin very rapidly,
and the nose almost immediately begins to tilt the other way, into the plate, toward the
plate normal.
One would normally expect, in an ideal impact situation at the NBL, the nose to exit the

plate back surface at exactly right angles to the face (and to the back unless the plate had a
tapering cross-section) forming a more or less round hole in the plate back, even though the
hole in the plate face is oval in shape due to the original obliquity of the projectile. This
rotation of the projectile axis by a force surrounding the projectile nose so that the exit angle
qe (“Ex” in the code), measured from the extension of the normal line through the plate
back, causes the middle and/or lower body of the projectile to swing around using the nose
as the pivot and impact the roughly vertical far side of the hole. This is depicted in Figure
17.9. This phenomenon is termed base slap (this slap can also occur on the plate face if
the projectile completely glances off) and can cause major damage to the aft and middle
portions of the projectile and possibly even break it in two. Major projectile design

θ

d

t

FIGURE 17.8
Impact parameters defined.
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work to toughen the middle and lower body against this damage historically made up a
considerable portion of the design effort in iron and steel AP projectiles, with significant
success in some cases and bad failures in others.
Figure 17.10 is a plot of the penetration of an M79 projectile vs. various obliquities at

different t/d values. This figure clearly shows the nonlinearity in the penetration of this type
of projectile. Figure 17.11 is a plot of the normal kinetic energy density under the same
conditions as Figure 17.10. The difference with this plot is that the NBL was held constant
and the plate sloped and either thickened or thinned to provide the same NBL as the zero
obliquity case. It clearly shows that below a slope value of 45–50°, sloping the armor
actually results in a heavier plate to provide the same NBL than merely keeping the plate at
right angles and thickening it, while above this obliquity range, the sloping of the plate can
be considerably superior to thickening it. It is thus critically important to get a good idea of
the direction that the threat most probably will come from.
It should be noted that in Figure 17.11, a value above the normal (0° = vertical) dashed

line for that plate thickness and obliquity curve, as is true for all low obliquity tests, means
that the inclined thinner plate is not as resistant as a thicker vertical plate of the same weight
(i.e., sloping does not help). Only if the curve goes below this dashed normal line does the
sloping and thinning of the plate to keep the weight the same gain an advantage over just
making the vertical plate thicker, as seems to be true at high obliquity. Note that the curves
indicate that the thicker the vertical plate is, the greater the advantage of sloping an equal-
weight thinner plate at high obliquity.
As the striking velocity increases above the NBL, the projectile will pass through the plate

faster, so the deflection from the value of q to the value of qe steadily decreases until at some
very high velocity above the NBL, the projectile will essentially pass straight through with
no significant deflection.
Similarly, at under 45°, the residual velocity Vr of the projectile after it penetrates will be

essentially zero at the NBL, since the plate can stop the projectile. However, as with the exit
angle, the drop in the remaining energy will be that needed to penetrate at the NBL plus the
decreasing amount of energy lost due to the deflection from q to qe as the two approach one
another with increasing striking velocity. The component of the residual velocity, measured
along qe, is the velocity computed after subtracting the energy lost at the NBL and sub-
tracting an additional amount due to the deflection angle qd. This is because V was origi-
nally down the q-axis, and any lateral velocity component created when going from q to qe
is lost, too, when calculating Vr. Actually, there may be a change in the energy required to
penetrate as qe approaches q if V increases well above the NBL, but this is difficult to
determine, so we assume no difference as a general rule. With pointed projectiles against
STS armor, we assume no plugging, so no energy is lost throwing off such armor chunks
(this is a major computation in face-hardened armor, though!).

θ

Vs θe

θd

Vr

FIGURE 17.9
Change in angle of projectile velocity vector during penetration.
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(See color insert.) Penetration of M79 projectile at various obliquities and t/d ratios.
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FIGURE 17.11
(See color insert.) Areal density of plate required to provide the same NBL protection given various expected
impact obliquities.
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The algorithm used to compute the deflection angle in the code after a complete pene-
tration is given by

qd = q − qe (17.38)

The following procedure was found in the study by Recht and Ipson [6], in which the
authors fired small-caliber AP bullets at several thicknesses of high tensile steel plates at
different obliquities up to 45° and developed the following rather elegant set of formulas to
match the data that they obtained. It is used for all the homogeneous, ductile armor and
face-hardened armor computation programs described here. The assumption that in the
under-45° obliquity range, the exit angle is always at right angles to the plate back, giving a
deflection angle equal to the obliquity angle, is the only difference from Recht and Ipson [6].
We define the ratio of the striking velocity to the NBL:

Vrat =
V

NBL
(17.39)

VRAT = V/NBL.

We now define the ratio of the energy remaining with the projectile after the penetration
event to the energy required to barely penetrate the plate.

KErat = V2
rat − 1 (17.40)

Inserting Equation 17.39 into Equation 17.40, we obtain

KErat =
V2 −NBL2

NBL2
(17.41)

TMPVEL = (V2 - NBL2)/NBL2.

We now define a function of the total impact energy as a multiple of the penetration
energy at the NBL times the sum of that total energy plus the ratio of the remaining energy
after penetration to the original impact energy. This last term will approach twice the
impact energy ratio for large values ofV, but decrease to just the impact energy ratio itself as
V is approaches the NBL.

KEtot = V2
rat +

Vratffiffiffiffiffiffiffiffiffiffiffi
KErat

p (17.42)

If we insert Equation 17.41 into Equation 17.42 and manipulate the terms, we obtain
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V V

V
NBL

V NBL N
tot rat rat rat rat= +

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = +

−( )2 2

2

2 2 BBL

NBL V

2

2 2

( )
( )( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

(17.43)

which, after using Equation 17.39, yields

KEtot = V2
rat 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 −NBL2

V2

s8<
:

9=
; (17.44)
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TMPV = (VRAT2){1 + √[(V2 - NBL2)/V2]}.

We now define the central function of this algorithm from Recht and Ipson [6], which is
“sin q cos q” (SNCS):

SNCS = [SIN(Ob)][COS(Ob)].

This obliquity angle function goes to zero at both 0 and 90° with a maximum value of 0.5
at 45°.
We now set up values used to compute qd from tan−1 qd. The equations are

qd1 =
sin q cos q

KEtot
(17.45)

TMPDF1 = SNCS/TMPV,

qd2 = 1 − 4(qd1)
2 (17.46)

TMPDF2 = 1 - (4)(TMPDF12).

As V increases, KEtot approaches 2 times V2
rat and qd1 decreases toward zero. However, if

V is near the NBL, qd2 approaches the value of SNCS. For large V, qd2 approaches 1 and for
V near the NBL, qd2 approaches 1 − (4)(sin q cos q)2.
We now set up tan qd from trigonometric identities, using qd1 and qd2 defined earlier, with

the definition

tan qd =
sin qd
cos qd

(17.47)

Using Equations 17.45 and 17.46, we can write

tan qd =
1 −

ffiffiffiffiffiffiffi
qd2

p
2qd1

(17.48)

TAN(Df) = [1 - √(DF2)]/[(2)(DF1)]

and

θ θ
θd =

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−tan 1 2

1

1
2

d

d
(17.49)

Df = ARC[TAN(Df)]

Let us test the extreme values for qd when V is either very large or near the NBL:
If V is very large, then

tan qd =
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4( sin q cos q)2

p
2( sin q cos q)

! 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4(0)2

p
2(0)

(E17.6)
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but the value of qd2 inside the square root sign is decreasing as the square of qd1 decreases,
as well as the numerator approaching the value 1 − 1 = 0 when qd1 approaches zero, so the
numerator is decreasing faster than the denominator, and the entire formula thus
approaches zero, indicating that deflection will be close to zero, as desired for very large V.
If V approaches the NBL, then KEtot rapidly decreases to V2

rat, which is 1 when V equals
the NBL. At this end of the V range, qd1 = sin q cos q at the NBL and

qd2 = 1 − 4(qd1)
2 = 1 − 4(sin2qcos2q) = 1 − 4(sin2q)(1 − sin2q) (E17.7)

qd2 = 1 − 4(sin2q) + 4(sin4q) = 1 − 2(sin2q)
� �2

(E17.8)

so

tan qd =
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2(sin2q)
� �2q

2 sin q cos q
=

sin2q
sin q cos q

= tan q (E17.9)

Thus, the projectile exits the plate back along the normal line, since it is deflected by the
value of q, cancelling q completely.
The residual velocity Vr is calculated rather easily now (no armor plugging and, in this

case, the projectile weight is fixed).
We compute the remaining energy after penetration, assuming that the energy loss at the

NBL is a constant for all impacts above it. In the code, at this point, “NBL” = “VMIN” since
the program allows the projectile body to weigh less than the original projectile due to AP
caps, hoods, and windscreens, which we have ignored in this analysis. We also do not need
to compute the “Energy NBL” used in the above 45° computations. This will be discussed in
the following as it is more complicated. So, in the code, we set

VMIN = NBL

and define

KEremtot = V2 − V2
min (17.50)

ELEFTTOTAL = (V2 - VMIN2).

This is set equal to KErempen (“ELEFTPEN” in the code) since the projectile penetrator
weight is the entire projectile weight w:

KEremtot = KErempen (17.51)

We then adjust the value of Vr due to the deflection angle qd since the lateral component
of Vr is shifted by qd from q to qe as energy is absorbed by the plate, leaving only the
component directed down qe:

Vr = cos qd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KErempen

q
(17.52)

Vr = [COS(Df)][√(ELEFTPEN)].

Except for using a different Vmin and perhaps having KEremtot not equal to KErempen

due to changing projectile penetrator weights, this computation is identical for all Vr cal-
culations, including for over 45° computations.
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17.12.2 Obliquity Angles over 45°

For q > 45°, the process of obtaining ofMtable(q) was described earlier [3]. As with the under
45° calculation, Equation 17.36 still applies.
Ignoring base-first penetrations for the moment, we need qd, qe, andVr to be computed, as

with the under 45° obliquity range.
The very useful SNCS formula for computing qd only went up to 45° obliquity, so the

author adapted it to the over 45° obliquity range. It was assumed as a first approximation
that the qd adjustments would be symmetrical about 45°. However, there would be major
differences as to the energy absorbed by the plate at the NBL (all of it when q was below
45°). Unlike below 45°, the energy loss used to compute Vr from V would be greater than
the actual value lost due to projectile deceleration if the NBL in the simple KE formula
for the under 45° case was used for most of the range for the over 45° obliquity case. The
NBL is much more affected by the glancing forces at higher obliquity, and they redirect
the projectile, not slow it down. A method of reducing the energy loss to only those
forces that did decelerate the projectile was required to get the higher actual Vr for over
45° obliquity. Physically, the minimum residual velocity must also increase as obliquity
increases. This is because more and more of the penetration energy at the NBL goes into
deflecting rather than slowing down the projectile. The energy loss must also decrease,
increasing the residual velocity still more, just like the under 45° case, as V increases
above the NBL.
The following modified version of the SNCS formula for this high-obliquity range was

developed by the author. The method involves the determination of the “energy NBL,”
which uses a smaller Vmin value in place of the NBL to calculate the amount of energy
absorbed—that is, the projectile actually slowed down—by the plate in the KE formula
when computingVr. The rest of the needed NBL energy just caused the projectile to ricochet
with a considerable remaining velocity. The over 45° qd and Vr computations based on the
SNCS formula are identical to the under 45° computation, but using this modified Vmin

instead of the regular NBL.
We determine the ratio of the q to 45° (bottom edge); that is, how much bigger q is

than 45°:

E1 = 1 +
q − 45°

45°
(17.53)

E1 = 1 + (Ob - 45)/45.

The value of E1 linearly increases from 1.0 at 45° to 2.0 at 90°, although 80° is the cutoff
point in these computations. This is because all projectiles are assumed to ricochet at over
80° for any iron or steel plate hit. At 80°, E1 has a value of 1.778.
The SNCS term can be used to determine the amount of energy actually absorbed by the

armor plate at various obliquities compared to the total needed to penetrate at the NBL. We
normalize it to 1.0 at 45°, symmetrically dropping off to zero in both directions, with the q
range of interest here being the obliquity half above 45°:

E2 = 2 sin q cos q (17.54)

E2 = (2)(SNCS) = (2)[SIN(Ob)][COS(Ob)]

Note that E2 has a value of 0.34202 at 80°.
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The maximum energy absorbed at the NBL (all of it) will occur at q = 45° (note that this
must always match the result we obtain at 45° via the under 45° formulas). The absorbed
energy will decrease at the NBL as q increases, and ricochet, rather than deceleration,
becomes the method used to prevent penetration. This is essentially a mirror image of the
region below 45°. If we examine the ratio of the q − 45° ratio fraction E1 to the normalized
energy loss E2 at a given q, we can define E3 as

E3 =
E1

E2
=

1 +
q − 45°
45°

2 sin q cos q
(17.55)

E3 = E1/E2 = [1 + (Ob - 45)/45]/{(2)[SIN(Ob)][COS(Ob)]}.

At q = 45° this is equal to 1, so the energy is completely absorbed by the plate at the NBL
andVmin equals the NBL, as required. As q increases, the E2 denominator gets smaller while
the E1 numerator gets larger; thus, E3 increases more rapidly as q goes up. The maximum
value of q is 80°. This results in

E3max =
1 +

80° − 45°
45°

2 sin 80°ð Þ cos 80°ð Þ = 5:1979 (17.56)

We now compute the value of the energy NBL Vmin, defining the energy actually
absorbed in deforming and tearing open the armor plate at the NBL instead of merely
deflecting the projectile path through ricochet, which, as specified, is less than the NBL for
q > 45° and gets smaller as q increases. We shall use this Vmin to compute Vr, which will be
greater than it would have been in under 45° impacts. We set

E4 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E3 − 1

p
E3

(17.57)

E4 = √[(2)(E3) - 1]/E3

and

Vmin = E4ð Þ NBLð Þ (17.58)

VMIN = (E4)(NBL).

The function for E4 was chosen to give a good ballpark figure for this decrease in energy
loss. The actual loss considerably varies with small changes in projectile yaw, plate quality,
the exact obliquity angle, and the limits of these computations when the projectile hits actual
plates. With real impact scenarios, we need to know many things such as exactly where the
initial hit was; the direction the shell was going; how wide the plates are before a joint is
encountered; how theplates are connected (welded, bolting, or riveted); and the design of the
support structures of the plate behind/under them. This last consideration maymean that a
shell passing through a plate will have a high chance of running into such supports, par-
ticularly at plate edges and, thus, nowhitting I-beamsanddoublingplates and so forth. These
“nuisances” greatly modify, rather randomly, what happens to the projectile as it tries to
punch through the plate at a highly oblique angle. Real life is not simple!
At q = 45°, E4 = E3 = 1 and Vmin = NBL, as required, so all impact energy is going into the

plate to stop the projectile. At q = 80°, however,
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E4max =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 5:1979ð Þ − 1

p
5:1979ð Þ = 0:5897 (17.59)

so only 58.97% of the NBL is used to compute the loss of kinetic energy absorbed by the
plate, with the rest remaining with the projectile when it goes through the penetration
process of forcing a dish, gouge, slot, and, finally, a hole in the plate, making Vr nonzero
even at the NBL and usually much larger than the Vr computed for any given value of V
above the NBL for impacts below 45°.
The loss in energy to the projectile at the NBL at 80° is thus only (0.5897)2 = 0.3478 =

34.78%, meaning that other than the additional loss due to the deflection angle effect, which
varies with the striking velocity above the NBL, the projectile retains 65.23% of its original
energy after punching through the plate. Since such a plate has to be very thin to allow any
penetration at all within the maximum striking velocity used, this is quite reasonable.

17.12.3 Base-First Penetration at θ = 65° or Greater

At high obliquity, the projectile will ricochet at impact velocities below the NBL, with only
part of the energy being absorbed by the plate as the projectile skips off its surface [3]. This
absorption occurs by dishing the plate, creating a canoe-shaped gouge. The entire time the
projectile is in contact with the plate, it is bending the plate material downward and radially
outward under the pressure of the nose of the shell as the gouge is formed by the forward
motion of the shell along the surface. During this gouging, the nose is pushed from nose
down to nose up. If a high enough striking velocity is achieved, the bottom of the gouge will
split open into a long open slot that widens as V approaches the NBL. At the nose-first NBL
(NBL(NF) in the code), the nose digs in deep enough to push through the tip of the slot and
bulge the armor in front of it up. It will then bend this slot-tip armor upward and forward
into a plate-thickness triangular spur at the end of the slot and ricochet downward off of the
now raised plate back surface and through the spur-shaped, near-full projectile-width
opening in the plate, making an oval hole at the end of the slot. The value ofVr is never zero,
even at the NBL, for a nose-first penetration at over 45° obliquity, with the minimum Vr

increasing rapidly with obliquity. This was discussed in part 2 earlier.
However, if the projectile hits a plate of 0.101–0.25 caliber thickness at q = 65–67.49° or 0.1

caliber thick or less at 67.5–80°, there is a value of V, slightly under the nose-first NBL,
where the slot at the bottom of the gouge will widen to the point such that when the nose
finally rotates out of the gouge to ricochet away, the base slams down and finishes the
widening process to 1 caliber, allowing the lower body of the projectile to tear through and
the projectile to surf nose up through the gouge slot. During this motion, the projectile will
be held by the pinching in of the armor on either side of the slot being forced open in front of
the projectile. The steeper impact at 65° causes a shorter, deeper gouge and a more violent
rotation as the nose points upward, allowing the base to slam through a somewhat thicker
(up to 0.25 caliber) plate than at the slightly higher obliquity of 67.5°. At 67.5°, the maximum
thickness for this to occur drops to 0.1 caliber. This is thin enough to allow a base-first
penetration up to the maximum obliquity of 80°. The reason for the 0.101 caliber lower limit
in the 65–67.49° range is that in this angular range, the difference between the nose-first and
base-first NBLs is so small in thinner plates as to be not worth computing. Note that if the
plate is thinner than mentioned at the beginning of this paragraph, the nose will tear
through any plate where a base-first penetration might occur.
These base-first penetrations are rather stochastic. At the base-first NBL (NBL(BF) in the

code), there is a 50% chance of the shell flipping up and away (ricochet) or down and
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through (penetration). Additionally, since the actual value of the NBL is not that precise,
there are several percent errors possible from hit to hit either way. In the narrow velocity
interval between the NBL(BF) and NBL(NF), the chance of the shell flipping through the
plate rather than outward is probably at most about 75%. Also, it is highly unlikely that a
base fuze would be activated by a base-first penetration as the forces are not down the
length of the projectile to allow the firing pin to be thrown into the primer. In either case, up
and away or down and through, the projectile would be moving at a very low residual
velocity. If flipped through the plate, more or less at right angles to the plate back, the
projectile might be moving sideways or even bounce backward as the bent armor
straightens out when the projectile stops moving forward.
The NBL(BF) computations use the standard over 45° Mtable(q) values that NBL(NF)

computations use when they occur for plates that do not have an NBL(BF). As previously
mentioned, in the code, it is called the true NBL when it and the NBL(NF) can both occur;
otherwise, the NBL(NF) is the true NBL since it is the only NBL. To compute the slightly
higher NBL(NF) in plates, where both NBLs can occur, a separate computation using a
small, six-entry modified Mtable(q) table called “MPNF(n)” is used to compute NBL(NF).
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18
Shock Physics

18.1 Shock Hugoniots

A most lucid treatment of the Rankine–Hugoniot jump equations is found in the book
Explosives Engineering by Cooper [1]. In the shocking of a solid, it is critical that we com-
pletely understand these equations. The purpose of this section will be to gain an under-
standing of the equations required to characterize the shock front in a solid (or fluid).
First, we shall describe a Hugoniot. Simply put, a Hugoniot (Hyoo’ gon nee oh) is a curve

that contains all possible equilibrium states at which a material can exist. It is an empirically
derived curve that relates any two of the following variables to one another: pressure p;
shock velocity U; particle velocity u; and specific volume v (or density r). It is not an
equation of state, although it can be used in a similar manner. It is sometimes used as if it
was an isentrope even though it is not the same. It is not the same because entropy increases
across a shock. It is derived experimentally, and therefore, the experiment will have all the
irreversibilities present.
A velocity Hugoniot is an empirical relationship that relates particle velocity in a material

to the velocity of a shock front moving through that material. For most materials, it is a
simple linear relationship expressed in the form

U = c0 + su (18.1)

where U is the speed of propagation of the shock front; c0 is the bulk speed of sound in the
medium (not really a sound speed per se but the y-intercept of the Hugoniot curve); u is the
particle velocity; and s is an empirically obtained velocity coefficient.
In some materials, the curve is bilinear or trilinear, usually indicating a phase change,

although some authors have fitted quadratics or cubics to the curves.
The real power of this simple relationship is seen when we use it in conjunction with our

equations of mass conservation, conservation of momentum, and conservation of energy as
repeated next:

r1
r0

=
n0
n1

=
U − u0
U − u1

(18.2)

p1 − p0 = r0 u1 − u0ð Þ U − u0ð Þ (18.3)

e1 − e0 =
p1u1 − p0u0
r0 U − u0ð Þ −

1
2

u21 − u20
	 


(18.4)

where the subscript 0 represents conditions ahead of the shock wave and 1 represents con-
ditions after the passage of thewave. It is useful at this stage to examine an example problem.
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Example Problem 1
A slab of polystyrene has the following properties:

r0 = 1:044
gm
cm3

� �

c0 = 2:746
km
s

� �
s = 1:319

The particle velocity in an experiment is known to be u1 = 1.37 km/s. Calculate the shock
velocity and shock pressure.
The shock velocity follows from Equation 18.1, where, plugging in numbers, we have

U = 2:746ð Þ km
s

� �
+ 1:319ð Þ 1:37ð Þ km

s

� �
= 4:553

km
s

� �
(18.5)

The pressure is obtained from conservation of momentum (with p0 and u0 = 0) by using
Equation 18.3:

p1 = r0u1U = 1:044ð Þ g
cm3

� �
1:37ð Þ km

s

� �
4:553ð Þ km

s

� �
= 6:152 GPa½ � (18.6)

Now wait a minute. How did those units work out? It is good to remember that with
density in grams per cubic centimeter and velocities in kilometers per second, we obtain
answers in gigapascals. This is done so that we do not have a lot of zeros or 10x powers
around. Here is the breakout

(1:044)
g

cm3

� �
100ð Þ3 cm3

m3

� �
1

1000

� �
kg
g

� �
(1:37)

km
s

� �
(4:553)

km
s

� �
(1000)2

m2

km2

� �

  = 6:512� 109
kg
m s2

� �
6:512� 109

kg
m s2

� �
= 6:512� 109

kg‐m
s2

m2

2
664

3
775

  = 6:512� 109
N
m2

� �
= 6:512� 109 Pa½ � = 6:512 GPa½ �

(18.7)

You can see why we will not carry the units around in these examples any longer.
If we combine Equation 18.1 with our continuity and momentum equations [1], we

obtain the p–v Hugoniot in the following form:

p1 ¼ c20 v0 − v1ð Þ
v0 − s v0 − v1ð Þ½ �2 (18.8)

For simplicity, we assumed p0 and u0 were equal to zero in Equation 18.8. We need to
recall that the specific volume v is equal to 1/r. This Hugoniot then tells us how pressure
varies with density. Equation 18.8 is very powerful in the sense that it can tell us to what
pressure a material will jump if we know the change in density or specific volume. This
“jump” will occur through the formation of a shock wave. This can be seen on a p–v
diagram such as in Figure 18.1. In this figure, we have noted the elastic, elastic–plastic, and
plastic regions to be discussed later.
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We shall now look at another example.

Example Problem 2
A slab of aluminum has the following properties:

r0 = 2:785
g

cm3

� �

c0 = 5:328
km
s

� �
s = 1:338

If we shock this material with a pressure of 40.2 GPa, what will the density of the material
be behind the shock front? If the material is initially at rest, how fast will the particles move
behind the shock wave and what will the velocity of the shock wave be?
To determine the density of the material behind the shock front, we need Equation 18.8.

We note here, however, that this equation is in terms of the specific volume. We need to
convert our initial data as follows:

r0 ¼ 2:785
g

cm3

� �
=

1
v0

! v0 ¼ 1:359
cm3

g

� �
(18.9)

Now let us rewrite Equation 18.8. We need to rearrange our equation into a quadratic so
that we can solve it easily

v0 − s v0 − v1ð Þ½ �2p1 − c20 v0 − v1ð Þ = 0 (18.10)

Rayleigh line 

Hugoniot curve 

(v0, p0) 

p

v = 1/ρ

(v1, p1) 

(v2, p2) 

Elastic–plastic
region  

Elastic
region  

Plastic
region

p1

p2

p0  =  0
v1v2 v0

Constant slope
indicating sound 

velocity does not change 
with pressure  

FIGURE 18.1
p–v diagram showing elastic, elastic–plastic, and plastic regions of a material.
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Now if we put in our values noting that kilometers per second, cubic centimeters per
gram, and gigapascals are consistent units, we can write

v21 + 0:213v1 − 0:133 = 0 (18.11)

If we solve this using the quadratic formula

x =
−b ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p

2a

" #
(18.12)

we get

v1 =
−0:213 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:213ð Þ2 − 4ð Þ 1ð Þ −0:133ð Þ

q
2 1ð Þ = −0:107 ± 0:380

cm3

g

� �
(18.13)

v1 ¼ 0:273
cm3

g

� �
(18.14)

We chose this root because it is impossible to have a negative density. Thus, our density
behind the shock wave is

r1 =
1
v1

=
1

0:273
cm3

g

� � = 3:664
g

cm3

� �
(18.15)

nearly double the density. To find the speed at which the shock wave will propagate, we
need to do a little algebra. We know from our Hugoniot relation that

U = c0 + su (18.16)

We also know that from Equation 18.2 we can write, assuming that u0 = 0,

v0
v1

=
U

U − u1
(18.17)

If we put some numbers in here, we have

U = 5:328ð Þ km
s

� �
+ 1:338ð Þu1

km
s

� �
= 5:328 + 1:338u1

km
s

� �
(18.18)

and

v0
v1

=
0:359
0:273

= 1:315 =
U

U − u1
(18.19)

Substitution of Equation 18.18 into Equation 18.19 yields

1:315 =
5:328 + 1:338u1

km
s

� �

5:328 + 0:338u1
km
s

� � (18.20)
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Solving for u1 gives us

u1 = 1:88
km
s

� �
(18.21)

Our shock velocity then directly follows from Equation 18.18:

U = 5:328ð Þ km
s

� �
+ 1:338ð Þ 1:88ð Þ km

s

� �
= 7:84

km
s

� �
(18.22)

We could also have solved this using Equation 18.25.
A jump as described in the previous paragraph will take place through the formation of a

shock wave and proceed along what is called a Rayleigh line. The equation of the Rayleigh
line is derived by a combination of the mass and momentum equations and, for
convenience, setting u0 = 0. This results in

p1 − p0 ¼ U2

v0
−
U2

v20
v1 (18.23)

The slope of the Rayleigh line is then

slope =
U2

v20
= r20U

2 (18.24)

Recall from thermodynamics that the area under a p–v diagram represents the work done
on or by the system. Then if we shock a system up a Rayleigh line and allow it to relax along
the Hugoniot, the net work we have done on the system is determined from the area
between the curves. Figure 18.2 shows how, depending on the pressure to which we shock a
material, the wave speeds will vary. In fact, if we shock a material into the elastic–plastic
regimes, there will be two shocks, an elastic wave (precursor) that will move at the longi-
tudinal wave speed (speed of sound) in the solid and a plastic wave that will move at a
slower speed. We shall discuss this further later.
If we assume p0 and u0 are equal to zero and combine the momentum equation (Equation

18.3) with our U–u Hugoniot equation (Equation 18.1), we obtain the p–u Hugoniot in the
following form:

p1 ¼ r0u1 c0 + su1ð Þ ! p1 ¼ r0c0u1 + r0su
2
1 (18.25)

This relationship gives the pressure as a function of material velocity u, when the material
is initially at rest. If the material was not initially at rest, our equation would be a little more
complicated

p1 = r0c0 u1 − u0ð Þ + r0s u1 − u0ð Þ2 (18.26)

This equation was obtained by taking Equation 18.25 and subtracting the same equation
with u = u0. This would be appropriate if the wave was moving to the right (u1 > u0); thus, it
is aptly called a “right-going Hugoniot” in following with the derivation set forth by
Cooper [1]. If the wave was moving to the left (u1 < u0), we would have a left-going
Hugoniot and the equation would be

p1 ¼ r0c0 u0 − u1ð Þ + r0s u0 − u1ð Þ2 (18.27)
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The effect of having a nonzero u0 is to shift the x-intercept of the curve as depicted in
Figure 18.3.
We have these wonderful equations for left- and right-going waves (the Hugoniot) so

what do we do with them? By using Equations 18.26 and 18.27, we can calculate how a
wave will propagate (transmit) and reflect when two dissimilar materials impact one
another or when a shock crosses an interface where they are initially in contact. First, we
shall define the impedance Z. The impedance of a material is the product of its density and
the velocity that a shock wave travels in that material:

Z = rU (18.28)

The acoustic impedance of a material is the product of the material density times the
speed of sound (the speed of an infinitesimally small disturbance) in that material:

ZAcoustic ¼ rc (18.29)

When a shock wave crosses a boundary between materials of the same impedance, there
will be no reflection, and all of the wave will be transmitted into the new material—the
wave acts as though the interface is not there. If the materials are not in intimate contact, this
will not be the case.
We shall now introduce a means of looking at shocks known as a t–x plot. A t–x (time–

displacement) plot is used as a method of keeping track of material motion in a wave
propagation problem. An example of this type of plot is in Figure 18.4 for two slabs, which
will impact one another. Because time is the ordinate, the slopes of the lines are the
reciprocal of the velocity.

(v0, p0)

p

v = 1/ρ

(v1, p1)

(v2, p2) Elastic–plastic
region 

Elastic
region

Plastic
region

p1

p2

p0 = 0
v1v2 v0

Since the velocity of the wave is proportional to the
slope of the lines, a shock into the elastic–plastic region
will have two parts: an acoustic precursor which moves

faster than the plastic wave and a plastic wave 

pe –p

Since the velocity of the wave is proportional to the
slope of the lines, a shock into the plastic region will

have only one part moving faster than the speed of sound
in the material (recall our definition of a shock wave) pp

Since the velocity of the wave is proportional
to the slope of the lines on the p–v diagram,
a shock elastic region will move at the speed

of sound material 

FIGURE 18.2
p–v diagram describing the wave behavior in the elastic, elastic–plastic, and plastic regimes.
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When two slabs impact one another, the following conditions must apply: The pressure at
the interface must be consistent across the interface and the velocity of the particles at the
interface must be the same in both materials. Consider that we have slab B sitting at rest and
slab A impacts it with the initial conditions that slabs A and B are both stress free, but slab A
is moving (i.e., all the particles of slab A have the same particle velocity). Once impact
occurs, a shock wave of equal strength will pass into each material, a right-going wave in B
and a left-going wave in A. We can see this on a p–u plot in Figure 18.5. Let us consider
another example problem.

Example Problem 3
An experiment is set up in which a magnesium slab is launched at a slab of brass. The

velocity at impact is measured to be 2.0 km/s. Determine

p 

Right-going Hugoniot with  u0 = 0 

Right-going Hugoniot with u0 = 3 

u
Left-going Hugoniot with u0 = 3 

FIGURE 18.3
Effect of initial material velocity on a Hugoniot curve.

t

Front face of slab A
moving toward 

slab B
at velocity u0A

p = p1
u = u1
ρ = ρ1A

p = 0
u = 0
ρ = ρ0B

p = p1
u = u1
ρ = ρ1B

p = 0
u = u0A
ρ = ρ0A

Interface between
front face of 

slab A and
rear face of 

slab B 

Rear face of 
slab B

Shock propagating into 
slab B

at velocity UB

Shock propagating
into slab A

at velocity UA
(slope = 1/UA)

Impact 

x

FIGURE 18.4
(See color insert.) Time–displacement plot of a slab impact problem. (Cooper, P. W.: Explosives Engineering. 1996.
Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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1. The particle velocity in the two materials at the interface
2. The shock pressure at the interface
3. The speed at which the shock wave travels in the brass
4. The speed at which the shock wave travels in the magnesium

The slabs have the following properties:

Magnesium         Brass

  r0
Mg

= 1:775
g

cm3

� �
r0Brass = 8:450

g
cm3

� �

c0Mg
= 4:516

km
s

� �
  c0Brass = 3:726

km
s

� �
sMg = 1:256 sBrass = 1:434

Solution: The first thing we do is write the p–u Hugoniot equations for both materials; by
convention, assume that the magnesium plate is flying from left to right, then we need a
right-going Hugoniot in the target (brass) and a left-going Hugoniot for the flyer (mag-
nesium). We shall examine the brass first. A right-going Hugoniot is described by Equation
18.26, but since the brass was not initially moving, we can use Equation 18.25. Inserting
values for the brass, we have

p1 GPa½ � = 8:450ð Þ g
cm3

� �
3:726ð Þ km

s

� �
u1

km
s

� �

+ 8:450ð Þ g
cm3

� �
1:434ð Þu21

km
s

� �2
(18.30)

p 

p =  p1

p = 0

Right-going Hugoniot
for slab B  

Shock jump in slab A 

Left-going Hugoniot
for slab A 

Shock jump in slab B 

u u = u1 u = u0Au = 0 

FIGURE 18.5
(See color insert.) p–u Hugoniot plot for an impact event. (Cooper, P. W.: Explosives Engineering. 1996. Copyright
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)

486 Ballistics



p1 GPa½ � ¼ 31:485u1 + 12:117u21 (18.31)

Since we know that the compatibility relation requires pressure to be identical in both
materials at the interface, we can write the left-going Hugoniot for the magnesium, equate
the two expressions, and solve for the particle velocity (which must also be the same in both
materials at the interface). The left-going Hugoniot in the magnesium is given by Equation
18.27. Inserting our values yields

p1 GPa½ � ¼ 2:229u21 − 16:932u1 + 24:948 (18.32)

If we equate Equations 18.31 and 18.32, we obtain

u21 + 4:897u1 − 2:523 = 0 (18.33)

Now if we solve this using the quadratic formula, we get

u1 = 0:471
km
s

� �
(18.34)

Here we used the positive velocity since the other root is meaningless. To determine
the pressure at the interface, we can put this value back into either Equation 18.25 or
18.27 to yield

p1 = 17:52 GPa½ � (18.35)

To find the speed that the shock wave moves in each material, we call upon the U–u
Hugoniots for each (Equation 18.1). For the brass, we have

UBrass = (3:726)
km
s

� �
+ (1:434)u1

km
s

� �

= (3:726)
km
s

� �
+ (1:434) (0:471)

km
s

� � (18.36)

UBrass = 4:401
km
s

� �
(18.37)

Note that this velocity is to the right because we used a right-going Hugoniot. For the
magnesium, we have

UMg = 4:516ð Þ km
s

� �
+ 1:256ð Þ u0 − u1ð Þ km

s

� �

= 4:516ð Þ km
s

� �
+ 1:256ð Þ 2:0 − 0:471ð Þ km

s

� �
, (18.38)

UMg = 6:436
km
s

� �
(18.39)

This velocity is to the left because we used a left-going Hugoniot. Notice that we used u0 −
u1 in place of u1 because the shock velocity is relative to the wave.
When a shock wave propagates from a lower impedance material into a higher impe-

dance material, as always, the compatibility condition is such that the pressure must also be
continuous at the interface and the particle velocities must be equal. The higher impedance
material will cause the pressure to increase and this higher-pressure wave will propagate
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back into the lower impedance material (but at a lower velocity) and into the higher
impedance material at a lower velocity than the original wave. The particle velocity will be
the same (and lower) in both materials. We shall illustrate this with an example.

Example Problem 4
An experiment is set up in which a magnesium slab is shocked while in contact with a

slab of brass. The particle velocity at the interface is measured to be 2.0 km/s. Determine

1. The pressure generated at the interface
2. The speed at which the transmitted shock wave travels in the brass
3. The particle velocity in the magnesium before the impact
4. The speed at which the original shock pulse traveled in the magnesium
5. The pressure of the original shock pulse in the magnesium

The slabs have the following properties:

Magnesium          Brass

r0Mg
= 1:775

g
cm3

� �
     r0Brass = 8:450

g
cm3

� �

c0Mg
= 4:516

km
s

� �
      c0Brass = 3:726

km
s

� �
sMg = 1:256     sBrass = 1:434

Solution: If we examine Figure 18.6, we see that we should be able to determine the answer
to part 1 from the right-going Hugoniot in the brass.

p

Left-going Hugoniot
for material A 

Right-going Hugoniot for
 material A  

Pressure behind original  
shock in material A

Particle velocities in both materials
 behind generated shocks 

Right-going Hugoniot for 
 material B  

p = p2

p = p1

p = 0
u = 0 u = u2 u = u1A u = 2u1A

Pressure behind generated
shocks in both materials  

Particle velocity behind original
 shock in material A 

u

FIGURE 18.6
p–u diagram for low to high impedance shock propagation.
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A right-going Hugoniot is described by Equation 18.26, but since the brass was not ini-
tially moving, we can use Equation 18.25, but to stay consistent with our diagram, we will
say the particle velocity is u2 for this case:

p2 = r0c2u2 + r0su
2
2 (18.40)

Inserting values for the brass, we have

p2 GPa½ � = 31:485u2 + 12:117u22 (18.41)

We were provided with u2, so we can write

p2 GPa½ � = 31:485ð2Þ + 12:117 2ð Þ2 (18.42)

p2 = 111:438 GPa½ � (18.43)

The speed at which the transmitted shock wave travels in the brass can be directly found
from our U–u Hugoniot Equation 18.1. For the brass, we have

UBrass = 3:726ð Þ km
s

� �
+ 1:434ð Þu2

km
s

� �
= 3:726ð Þ km

s

� �
+ 1:434ð Þ 2:0ð Þ km

s

� �
(18.44)

UBrass = 6:594
km
s

� �
(18.45)

The particle velocity in the magnesium before impact is found by noting that we have the
point (u2, p2) on the left-going Hugoniot which, by definition, has to pass through point
(2u1A, 0) as well. Our equation for the left-going Hugoniot is Equation 18.27. Putting this
in terms of our diagram, we can write

p2 = r0Ac0A 2u1A − u2ð Þ + r0AsA 2u1A − u2ð Þ2 (18.46)

Inserting our values for magnesium, we can write

u21A − 0:202u1A − 13:297 = 0 (18.47)

from which we obtain the solution

u1A = 3:749
km
s

� �
(18.48)

The speed at which the original shock pulse travels in the magnesium falls out directly
from our U–u Hugoniot again:

UMg = 4:516ð Þ km
s

� �
+ 1:256ð Þu1A

km
s

� �
= 4:516ð Þ km

s

� �
+ 1:256ð Þ 3:749ð Þ km

s

� �
(18.49)

UMg = 9:225
km
s

� �
(18.50)

The pressure of the original shock pulse in the magnesium then follows from the
momentum equation:

p1A = r0Au1AUMg (18.51)
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p1A = 1:775ð Þ g
cm3

� �
3:749ð Þ km

s

� �
9:225ð Þ km

s

� �
(18.52)

p1A = 61:388 GPa½ � (18.53)

When a shock wave propagates from a higher impedance material into a lower impe-
dance material, the compatibility condition still requires the pressure be continuous at the
interface and the particle velocities be equal. The lower impedance material will cause
the pressure to decrease, and this lower pressure (relief) wave will propagate back into
the higher impedance material (at a higher velocity) and into the lower impedance material
at a higher velocity than the original wave. The particle velocity will be the same (and
higher) in both materials. Another example will illustrate the point.

Example Problem 5
An experiment is set up in which a brass slab is shocked while in contact with a slab of

magnesium. The particle velocity at the interface is measured to be 2.0 km/s. Determine

1. The pressure generated at the interface
2. The speed at which the transmitted shock wave travels in the magnesium
3. The particle velocity in the brass before the impact
4. The speed at which the original shock pulse traveled in the brass
5. The pressure of the original shock pulse in the brass

p 

Left-going Hugoniot
for material A

Right-going Hugoniot for
 material B  

Pressure behind original
shock in material A 

Particle velocities in both materials
 behind generated shocks 

Right-going Hugoniot for
material A  

Pressure behind generated
shocks in both materials 

Particle velocity behind original
 shock in material A 

p = p1

p = 0

p = p2

u u = 0 u = u1A u = 2u1Au = u2

FIGURE 18.7
p–u diagram for high to low impedance shock propagation. (Cooper, P. W.: Explosives Engineering. 1996. Copyright
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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The slabs have the following properties:

Magnesium         Brass

r0Mg
= 1:775

g
cm3

� �
    r0Brass = 8:450

g
cm3

� �

c0Mg
= 4:516

km
s

� �
     c0Brass = 3:726

km
s

� �
sMg = 1:256 sBrass = 1:434

Solution: If we examine Figure 18.7, we see that we should be able to determine the answer
to part 1 from the right-going Hugoniot in the magnesium.
A right-going Hugoniot is described by Equation 18.26, but since the magnesiumwas not

initially moving, we can use Equation 18.25, and to stay consistent with our diagram, we
will say the particle velocity is u2 for this case:

p2 = r0c0u2 + r0su
2
2 (18.54)

Inserting values for the magnesium, we have

p2 GPa½ � = 8:016u2 + 2:212u22 (18.55)

p2 GPa½ � = 8:016 2:0ð Þ + 2:212 2:0ð Þ2 (18.56)

p2 = 24:879 GPa½ � (18.57)

The speed at which the transmitted shock wave travels in the magnesium can be found
directly from Equation 18.1:

UMg = 4:516ð Þ km
s

� �
+ 1:246ð Þu2

km
s

� �
= 4:516ð Þ km

s

� �
+ 1:246ð Þ 20ð Þ km

s

� �
(18.58)

UMg = 7:008
km
s

� �
(18.59)

The particle velocity in the brass before impact is found by noting that we have point
(u2, p2) on the left-going Hugoniot which, by definition, has to pass through point (2u1A, 0)
as well. Our equation for the left-going Hugoniot is Equation 18.27. Putting this in terms of
Figure 18.7, we can write

p2 = r0Ac0A 2u1A − u2ð Þ + r0AsA 2u1A − u2ð Þ2 (18.60)

By inserting our values for brass, we have

u21A − 0:701u1A − 0:812 = 0 (18.61)

From this, we see that

u1A = 1:317
km
s

� �
(18.62)
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The speed at which the original shock pulse travels in the brass falls out directly from our
U–u Hugoniot again Equation 18.1:

UBrass = 5:615
km
s

� �
(18.63)

The pressure of the original shock pulse in the brass then follows from the momentum
equation:

p1A = r0Au1AUBrass (18.64)

p1A = 62:487 GPa½ � (18.65)

When two shock waves collide in the same material, the pressure will jump to a new
value that is greater than the sum of the two individual pressure pulses. Let us assume that
we have a wave originally traveling to the right at pressure p1 and a stronger wave origi-
nally traveling to the left at pressure p2 in a material. We need to reflect the Hugoniots of
these waves as shown in Figure 18.8 to solve for the resulting pressure p3. We shall examine
this again by example.

Example Problem 6
An experiment is set up in which a magnesium slab is shocked from both ends. The

pressure generated in the left-going shock is 20 GPa. The pressure generated in the right-
going shock is 10 GPa. Determine

p

Left-going
Hugoniot

Reflected right-
going Hugoniot

p = 0

Pressure behind
generated shock

Original left-going
wave pressure

Right-going Hugoniot 

Reflected left-
going Hugoniot

Original right-going
wave pressure 

p=p1

p=p3

p =p2

u = 2u2 u = u2 u = u3 u = u1 u = 2u1u = 0 u 

FIGURE 18.8
Collision of two shock waves. (Cooper, P. W.: Explosives Engineering. 1996. Copyright Wiley-VCH Verlag GmbH&
Co. KGaA. Reproduced with permission.)
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1. The particle velocity in the right-going shock
2. The particle velocity in the left-going shock
3. The resultant particle velocity in the material
4. The resultant pressure generated

The slab has the following properties:

Magnesium

r0Mg
= 1:775

g
cm3

� �

c0Mg
= 4:516

km
s

� �
sMg = 1:256

Solution: If we examine Figure 18.8, we see that we should be able to determine the answer
to part 1 from the right-going Hugoniot in the magnesium.
A right-going Hugoniot is described by Equation 18.26, but since the magnesiumwas not

initially moving, we can use Equation 18.25, and to stay consistent with our diagram, we
will say the particle velocity is u1 for this case:

p1 = r0c0u1 + r0su
2
1 (18.66)

Inserting values for the magnesium, we have

u21 + 3:624u1 − 4:521 = 0 (18.67)

Solving this, we obtain

u1 = 0:982
km
s

� �
(18.68)

The particle velocity in the left-going shock is found again by noting that we have
the left-going Hugoniot passing through the origin. Our equation for the left-going
Hugoniot is

p2 = r0c0 u2 − 0ð Þ + r0sðu2 − 0Þ2 = r0c0u2 + r0su
2
2 (18.69)

Inserting our values for magnesium, we have

u22 + 3:624u2 − 9:042 = 0

and, therefore,

u2 = −1:699
km
s

� �
(18.70)

The resultant particle velocity is found by taking these data, reflecting the Hugoniots
around u1 and u2, and eliminating the pressure (since it is equal to p3) from the equation. We
shall reflect the right-going Hugoniot first. This will result in a left-going Hugoniot where
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we know points (u1, p1) and (2u1, 0):

p3 = r0c0 u3 − 2u1ð Þ + r0s u3 − 2u1ð Þ2 (18.71)

or

p3 = 2:212u23 − 16:705u3 + 24:275 (18.72)

Now we need to examine the right-going Hugoniot where we know points (u2, p2) and
(2u2, 0):

p3 = r0c0 u3 − 2u2ð Þ + r0s u3 − 2u2ð Þ2 (18.73)

or

p3 = 2:212u23 + 23:049u3 + 52:779 (18.74)

If we now subtract Equation 18.72 from Equation 18.74, we can solve for u3, so we have

39:754u3 + 28:524 = 0 (18.75)

Therefore,

u3 = −0:717
km
s

� �
(18.76)

The pressure then can be found from either Equation 18.72 or 18.74:

p3 = 37:390 GPa½ � (18.77)

We have now completed our introduction of the Hugoniot curve and examined the use of
Hugoniots for an impact problem. We have demonstrated the behavior of shocks across an
interface and have examined infinite shock behavior in a single material (incipient shock
and collision of two shocks). These shocks were considered infinite because the driving
pressure was always present behind them, generating continued motion. Further reading is
provided in the references. We shall now move on to discuss rarefaction waves.

Problem 1
An experiment is set up in which a steel slab is shocked from both ends. The pressure

generated in the left-going shock is 20 GPa. The pressure generated in the right-going shock
is 10 GPa. Draw the p–u diagram and determine

1. The particle velocity in the right-going shock

Answer: u1 = 0:256
km
s

� �
2. The particle velocity in the left-going shock

Answer: u2 = 0:479
km
s

� �
3. The resultant particle velocity in the material

Answer: u3 = 0:223
km
s

� �
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4. The resultant pressure generated
Answer: p3 = 32.872 [GPa]

The slab has the following properties:

Steel

r0Steel = 7:896
g

cm3

� �

c0Steel = 4:569
km
s

� �
sSteel = 1:490

Problem 2
A strange jeweler wants to make an earring by launching a quartz slab at a slab of gold.

His high-tech instrumentation measures the induced velocity in the gold as 0.5 km/s.
Determine

1. The impact velocity

Answer: u0 = 3:420
km
s

� �

2. The shock pressure at the interface
Answer: p1 = 36.960 [GPa]

3. The speed at which the shock wave travels in the gold

Answer: UAu = 3:842
km
s

� �

4. The speed at which the shock wave travels in the quartz

Answer: UQ = 5:743
km
s

� �

The slabs have the following properties:

Quartz       Gold

r0Q = 2:204
g

cm3

� �
 r0Au

= 19:24
g

cm3

� �

c0Q = 0:794
km
s

� �
 c0Au

= 3:056
km
s

� �
 sQ = 1:695    sAu = 1:572

18.2 Rarefaction Waves

We have examined infinite waves in the previous section (i.e., waves in which the pressure
does not abate). In the shocking of a real material, the pressure pulse lasts for a finite time
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only, and then the material must expand back to a relaxed state. Nature accomplishes this
expansion through a rarefaction wave.
A rarefaction wave is the manner in which nature restores a material to its unshocked

state after the passage of a shock wave. Unlike a shock front (which is a nearly discontin-
uous jump in pressure), a rarefaction or relief wave will occur over some finite distance,
which will gradually increase with time. We typically assume that rarefaction waves occur
rapidly enough that the process may be considered adiabatic.
Recall that passing a shock wave through a material increases its internal energy as

shown through the Rankine–Hugoniot equation:

e e p p p p v v1 0
0 1

0 1 0 1 0 1
1
2

1 1 1
2

− = −
⎛

⎝
⎜

⎞

⎠
⎟ +( ) = +( ) −( )

ρ ρ
(18.78)

As a consequence of the second law of thermodynamics, we can write

dE = TdS − pdV (18.79)

Since we assumed that the rarefaction process is adiabatic, we know that

dQ = TdS = 0 (18.80)

Since on the Rankine or Kelvin scales, Tmust be positive, then, except in a special nonzero
case, dS must equal zero for this equation to be true. Thus, the rarefaction or relief process
must be isentropic. This presents us with a bit of a dilemma. Except for an ideal gas, we do
not have an isentropic relation to allow us to quantify the expansion process. If we had such
a relationship, it would, in theory, allow us to eliminate one of the variables in our Equation
18.79, which, through Equation 18.80, can be rewritten as

dE = −pdV ! E = E p,Vð Þ (18.81)

We have stated before that a Hugoniot curve is neither an equation of state nor an
isentrope. Here we will use it as if it was one and accept any errors that result.
We now know that we can handle a rarefaction wave through use of the Hugoniot. The

simplest way to illustrate how to obtain the rarefaction wave velocity is to consider the case
where the initial material velocity is equal to zero; we can then write

pju0=0 = r0uUR (18.82)

Taking the first derivative, we obtain

dpju0=0
du

= r0UR (18.83)

We also saw that we can write the p–u Hugoniot as

p = r0c0u + r0su
2 (18.84)

Taking the derivative of Equation 18.84, we obtain

dp
du

= r0c0 + 2r0su (18.85)

Eliminating dp/du between Equations 18.83 and 18.85 yields

r0UR = r0c0 + 2r0su (18.86)
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or

UR = c0 + 2su (18.87)

which is our final relation for the speed of the head of the rarefaction wave. This is depicted
in Figure 18.9. If we recall the speed of our shock wave (U–u Hugoniot), we would see

U = c0 + su (18.88)

If we were to shock a material with a certain pulse length l1 over a particular time t1, the
shock would have moved a distance

l1 = Ut1 (18.89)

The instant the applied load has ceased, a relief wave would begin moving into the
material and at a time t > t1, would be located at a distance from the point of shock initiation
of

d2 = UR t − t1ð Þ (18.90)

Since we saw from our examination of Equations 18.87 and 18.88 that UR > U, we can
determine the distance at which the relief wave will catch up to the shock wave through

Ut = UR t − t1ð Þ (18.91)

If we insert Equations 18.87 and 18.88 into this expression, we obtain

c0 + suð Þt = c0 + 2suð Þ t − t1ð Þ (18.92)

p

Right-going Hugoniot for material  

Rarefaction in material
Slope = unshocked density×UR

Shock jump in material
Slope  =  unshocked density×U

p = 0

p = p1

uu = 0 u = u1

FIGURE 18.9
Speed of the rarefaction wave head.
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which simplifies to

sut = c0t1 + 2sut1 (18.93)

Thus, the time required for the rarefaction wave to catch up with the initial shock is
determined from

t =
c0t1 + 2sut1

su
(18.94)

where we should know everything on the right-hand side (RHS) from the material and the
strength of the initial pulse.
We could then use Equation 18.95 to determine the catchup distance:

lc = Ut (18.95)

The book by Paul Cooper [1] offers the clearest treatment of rarefaction wave physics that
these authors have ever encountered. We shall endeavor to follow that method of expla-
nation here. Consider a finite square shock pulse of wavelength l as shown in Figure 18.10.
Recall that the shock velocity is dependent upon the pressure ratio across the disturbance.

Unlike the compression shock, where the increasing pressure caused the part of the wave
initially behind the leading edge of the shock to catch up and form a front, at the rear end of
this disturbance, the pressure is decreasing. This causes the rearmost portions of the rare-
faction wave to fall further and further behind the incident shock. Additionally, since the
rarefaction wave is passing into an effectively denser material, the head of the wave will be
moving faster than the compression shock.
On a p–v diagram, we would see what appears in Figure 18.11 if we considered only

points 1, 2, and 3 in our square pulse shown in Figure 18.10.
From the p–v diagram in Figure 18.11, we can see that our wavelet from p1 to p2 will move

faster than the compression shock, and our wavelet from p2 to p3 will move slower. Over
time, the shape of the pulse will change as depicted in Figure 18.12.
Figure 18.12 is a very crude discretization to facilitate understanding. The more elements

we break the wave into, the closer the rarefaction wave gets as we approach the continuous

p 

p = p1

p = 0 3 

1 

2 U
u1

p = p1 p=0
u=0u = u1 

ρ =ρ1 ρ =ρ0

λ x

FIGURE 18.10
Simple model of a rarefaction wave. (Cooper, P. W.: Explosives Engineering. 1996. Copyright Wiley-VCH Verlag
GmbH & Co. KGaA. Reproduced with permission.)

498 Ballistics



(actual) situation. This is illustrated in Figure 18.13. If we wanted to draw a t–x plot of the
rarefaction wave illustrated in Figure 18.13, the result would appear as in Figure 18.14.
We shall now examine some classic rarefaction problems in detail. The first is quite

important for use in terminal ballistics—the reflection of a square wave at a free surface.
When a compressive pulse reaches a free surface in a material, recall that the condition of

zero stress on the surface must be maintained. Nature accomplishes this through the
generation of a relief (rarefaction) wave at the surface such that the total stress is zero. The
relief wave will exactly cancel the compressive wave. This has implications in stress
behavior, which we shall see later, and we shall see how we can treat that scenario a little
differently. The interaction with the free surface also results in a material velocity that is
double the material velocity behind the original compressive pulse. Let us consider the t–x
plot of a shock wave that encounters a free surface as depicted in Figure 18.15. The plot of
this interaction on a p–u diagram is shown in Figure 18.16. In these figures, we see that after
the compression shock encounters the free surface, a rarefaction wave propagates back into
the material, dropping the pressure down to zero and doubling the material velocity.

Rayleigh line of
compression

 shock   

Hugoniot curve 

(v0, p0), (v3, p3) 

p

(v1, p1)

p2

p1

(v2, p2) 

p0 = p3

p= 0

Rayleigh line of first rarefaction wavelet
 ( p1 to p2)—slope > compression

shock Rayleigh line 

Rayleigh line of second rarefaction
wavelet ( p2–p3)—slope < compression

shock Rayleigh line 

v = 1/ρv2v1 v0, v3

FIGURE 18.11
p–v diagram of a simple rarefaction wave. (Cooper, P. W.: Explosives Engineering. 1996. Copyright Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced with permission.)

p

p = 0 3 

1 

2 U

3 

1 

2 U

3 

1 

2 U

t, x

FIGURE 18.12
Rarefaction wave modeled as two wavelets catching up to incident shock. (Cooper, P. W.: Explosives Engineering.
1996. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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The rarefaction wave will have to travel back into material that is still approaching it at an
induced velocity created by the incident shock. This requires us to understand the difference
between Lagrangian and Eulerian coordinate systems. This is shown in Figure 18.17.
We have previously described Lagrangian coordinates as a coordinate system that is

movingwith the shock. Eulerian coordinates are stationary relative to the laboratory. All the
velocities we examined thus far were Lagrangian (this made our equations simple). When
wewant velocities in Eulerian coordinates, we need to account for themotion of thematerial
the shock is moving into. For instance, as previously mentioned, in our reflected shock,UR is
the Lagrangian velocity of the reflectedwave. The Eulerian velocity of this samewavewould
be UR − u1 or UR + u1 if you consider UR as negative in our lab and u1 as positive.
The interaction with a free surface will now be illustrated with an example.

p

p = 0
 

U U U

t, x

FIGURE 18.13
Rarefaction wave modeled as eight wavelets catching up to incident shock.

t 

x

Rarefaction wave head

Attenuated shock
wave

Rarefaction 
wavelets

Shock wave

Rarefaction wave tail 

If we took a slice in time at this point, 
we could determine the lengths of each

wavelet (this drawing is not to scale)

p = p1 
u = u1 
ρ =ρ1 

p=0
u=0
ρ =ρ0

λ

p=0
u=0
ρ =ρ0

FIGURE 18.14
Rarefaction wave modeled as eight wavelets on a t–x plot. (Cooper, P. W.: Explosives Engineering. 1996. Copyright
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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t

Shock moving
at velocity U
(slope = 1/U )

Free surface
at velocity 2u1
(slope = 1/2u1)

Free surface
initially at rest

Rarefaction fan

Rarefaction tail
Rarefaction head

p = 0 
u = 2u1 
ρ =ρ0 

p = p1 
u = u1 
ρ =ρ1 

p=0
u=0
ρ =ρ0

x

FIGURE 18.15
(See color insert.) t–x plot of a shock wave interacting with a free surface. (Cooper, P. W.: Explosives Engineering.
1996. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)

Left-going
Hugoniot

for rarefaction

Right-going Hugoniot for
incident shock

Shock
jump

Slope = ρ0URhead
Head of rarefaction

wave

Slope  =  ρ0URtail
Tail of rarefaction

wave

u = u1 u = 2u1u = 0 

p 

p =  p1

p = 0
u

FIGURE 18.16
p–u Hugoniot plot of a shock wave interacting with a free surface. (Cooper, P. W.: Explosives Engineering. 1996.
Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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Example Problem 7
An experiment is set up in which a magnesium slab is shocked with a constant pressure of

5.0 GPa. Determine

1. The particle velocity in the magnesium behind the incident shock before an
encounter with a free surface

2. The velocity of the free surface after the interaction
3. The particle velocity behind the surface after the interaction
4. The Lagrangian velocity of the leading edge of the rarefaction
5. The Eulerian velocity of the leading edge of the rarefaction

The material has the following properties:

Magnesium

r0Mg
= 1:775

g
cm3

� �

c0Mg
= 4:516

km
s

� �
sMg = 1:256

Solution: We can determine the answer to part 1 from the right-going Hugoniot in the
material. A right-going Hugoniot in a nonmoving material is described by Equation 18.25.
Inserting values for the magnesium, we have

p

Left-going Hugoniot
for flyer plate

p=0 

Right-going Hugoniot for
flyer plate

(used for rarefaction wave) 
Pressure behind shock
in both flyer and target

p1f = p1t 

Particle velocities in both materials
behind generated shocks

Right-going Hugoniot for
target

p=p1

Initial velocity of flyer plate 

A

B

Material velocity behind
rarefaction wave in flyer

Slope is the velocity of the
rarefaction wave in the flyer

uu  =  u0fu = u1u = 0u=u2f

FIGURE 18.17
Rarefaction wave speed determination.
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5:0  GPa½ � = 1:775ð Þ g
cm3

� �
4:516ð Þ km

s

� �
u1

km
s

� �

    + 1:775ð Þ g
cm3

� �
1:256ð Þu21

km
s

� �2 (18.96)

Following through, we have

5:0 GPa½ � = 8:016u1 + 2:229u21 (18.97)

or

u21 + 3:596u1 − 2:243 = 0, (18.98)

which results in

u1 = −1:798 ± 2:340 ! u1 = 0:542
km
s

� �
(18.99)

The velocity of the free surface is simply

u2 = 2u1 = 2ð Þ 0:542ð Þ km
s

� �
= 1:084ð Þ km

s

� �
(18.100)

The particle velocity behind the reflected wave is the same as the free surface velocity. The
Lagrangian velocity of the leading edge of the rarefaction is given by Equation 18.87:

UR = 4:516ð Þ km
s

� �
+ 2ð Þ 1:256ð Þu1

km
s

� �

= 4:516ð Þ km
s

� �
+ 2ð Þ 1:256ð Þ 0:542ð Þ km

s

� �
(18.101)

resulting in

UR = 5:877
km
s

� �
: (18.102)

The Eulerian velocity is found by noting that the reflected wave is moving in the negative
direction and the material behind it is moving in the positive direction, so we can write

URLab
= UR + u1 = −5:877

km
s

� �
+ 0:542

km
s

� �
= −5:335

km
s

� �
: (18.103)

We will now examine two cases where a flyer plate (a thin plate) impacts a thick target.
The flyer plate assumption allows us to ignore reflections of shocks from the free bound-
aries transverse to our impact direction. Case 1 is that of a flyer plate with an impedance less
than or equal to that of the target (Cooper [1] treats these individually, but the case where
they are equal is really the limiting case for a lower impedance flyer). Case 2 is that of a flyer
plate with a greater impedance than the target. An important item to note is that Hugoniots
are derived from compressive data; thus, if we have a tensile wave, we usually use a linear
model on the p–uHugoniot diagrams when negative values in pressure (tension) occur. The
slope of these lines is r0cL. Here cL is the longitudinal speed of sound in the material.
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If the flyer plate has an impedance less than or equal to that of the target on impact, a
compressive shock will propagate into both objects. The shock in the flyer will reflect from
the free surface of it and return as a rarefaction wave to the interface. When the rarefaction
wave reaches the interface, two things happen: the flyer will rebound off the target and a
new rarefaction wave will propagate into the flyer. Recall that waves reflect as like waves
when the boundary condition stipulates a higher impedance. A rarefaction wave will also
propagate into the target. This new rarefaction wave in the target will eventually catch up to
the shock front in the target and reduce its strength. In the flyer, since it has free surfaces
now, the waves will reflect in opposite sense until they equilibrate. The t–x plot and the p–u
Hugoniots follow in Example Problem 8.

Example Problem 8
An experiment is set up in which a brass slab is shocked by impact from a magnesium

flyer plate that is 1 mm in thickness. The impact velocity was measured to be 2.0 km/s.
Determine

1. The material velocity behind the generated shock
2. The pressure generated at the interface
3. The time duration of the shock pulse in the target
4. The velocity with which the magnesium plate will rebound

The materials have the following properties:

Magnesium       Brass

r0Mg
= 1:775

g
cm3

� �
    r0Brass = 8:450

g
cm3

� �

c0Mg
= 4:516

km
s

� �
    c0Brass = 3:726

km
s

� �
sMg = 1:256    sBrass = 1:434

cLMg
= 5:770

km
s

� �
    cLBrass

= 4:700
km
s

� �

Solution: Figure 18.18 tells us that to get the pressure generated at the interface, we need
to calculate the left-going Hugoniot in the flyer and solve it for the pressure since we have
the impact velocity and we know the target was initially at rest. The particle velocity in the
magnesium before impact is given, and we have located it in our diagram on the left-
going Hugoniot, which, by definition, has to pass through point (u0f, 0) as well. Our
equation for the left-going Hugoniot is Equation 18.27, which after insertion of the given
values yields

p1 = 2:229u21 − 16:932u1 + 24:949 (18.104)

Here we assume that the units are correct, andwe know the answer will be in gigapascals.
Also for our right-going Hugoniot in the brass, we can use Equation 18.25 to write

p1 = 12:117u21 − 31:485u1 (18.105)
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Equating Equations 18.86 and 18.87 yields

u21 + 4:897u1 − 2:523 = 0 (18.106)

Then

u1 = 0:470
km
s

� �
(18.107)

With Figure 18.18, it had to be positive. The pressure now comes from inserting this value
in either Equation 18.104 or 18.105:

p1 = 2:229ð Þ 0:470ð Þ2 − 16:932ð Þ 0:470ð Þ + 24:949 = 17:483 GPa½ � (18.108)

We have previously stated that the flyer plate will remain in contact with the target until
the shock wave propagates to the rear face of the flyer, reflects as a rarefaction wave, and
then reaches the front face. After this occurs, waves will continue moving back and forth in
the flyer until the material velocity equilibrates. To determine the time of impact, we break
the problem into two parts: the time it takes for the shock to reach the rear face and the time
it takes for the first rarefaction to reach the impact surface.
The time it takes the shock to reach the rear face is determined by noting that the speed of

wave propagation is the slope of the jump on the p–u Hugoniot divided by the initial
density. Thus, we can write

U =
p1 − p0

r0 u1 − u0ð Þ (18.109)

p

u

Left-going Hugoniot
for flyer plate 

u = u0fu = u1

p = 0 

Right-going Hugoniot for
flyer plate

(used for rarefaction wave)

u = 0 

Pressure behind shock 
in both flyer and target

p1f  =  p1t 

Particle velocities in both materials
behind generated shocks

Right-going Hugoniot for
target

p = p1

u  =  u2f

u  =  u3f

C

Left-going Hugoniot
back into flyer plate

Velocity at which flyer plate will rebound 

Particle velocities in flyer
behind rarefaction

Tensile stress in flyer plate 

Linear model for tensile 
stress 

FIGURE 18.18
p–u plot of a flyer plate interaction with target of higher impedance.
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By inserting our values, we obtain

U = −6:438
km
s

� �
= −6:438

mm
μ s

� �
(18.110)

Why did not we use Equation 18.80 or 18.78? The reason is that if we used Equation 18.80,
we would actually obtain the Eulerian velocity, which would be

p1 − p0 = r0 u1 − u0ð Þ U − u0ð Þ (18.111)

U = −4:438
km
s

� �
= −4:438

mm
μ s

� �
(18.112)

If we were interested in the velocity alone, relative to the lab, this would be the correct
answer. However, the material in the flyer is moving toward the interface during the shock
event so itwould appear to an observer on the shock that the facewillmove tomeet thewave.
We shall return to the problem. If the shock was moving toward the rear surface of our

flyer plate at 2.450 mm/μs, then it would reach the rear of the plate in

Dt =
l
U

=
1 mm½ �

6:438
mm
μ s

� � = 0:155 μ s½ � (18.113)

To determine the speed of the leading edge of the rarefaction wave, we need to examine
Figure 18.19. Here we see that the speed of the head of the rarefaction wave is the slope of

t 

Front face of flyer
moving toward target

at velocity u0f
(slope = 1/u0f )

p=  0

ρ =  ρ0f

u=  u2f

Interface between
front face of flyer and

rear face of target
at velocity u1
(slope = 1/u1)

Rear face of target
initially at rest

Shock propagating into target
at velocity Ut
(slope = 1/U t) 

Impact point 
Rear face of flyer 

moving toward target
at velocity u0f

(slope = 1/u0f) 

Front face of flyer 
moving away from

target at velocity u3f
(slope = 1/u3f) 

Rear face of flyer 
moving away from

target at velocity u2f
(slope = 1/u2f) 

Shock propagating
into flyer at velocity

Uf (slope = 1/Uf) 

Rear face of target
again at rest 

p = p1f = p1t
u = u1f = u1t
ρ = ρ1t

A

B

C

p=0
u=0
ρ =ρ0t

p = 0 
u = 0 
ρ =ρ0t 

p = 0 
u = u0f
ρ =ρ0f 

p = p1f
u = u1f
ρ =ρ1f 

x

FIGURE 18.19
(See color insert.) t–x plot of flyer plate interaction with a target of higher impedance. (Cooper, P. W.: Explosives
Engineering. 1996. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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the p–uHugoniot curve at the material pressure. Equation 18.83 was written for a left-going
rarefaction wave. In our case, the slope is the negative of this value which we know. Here
we need to use Equation 18.104 since this is the Hugoniot for the flyer. Taking the deriv-
ative, we have

dp
du

����
u=u1

= 4:458u1 − 16:932 = 4:458ð Þ 0:470ð Þ − 16:932 = −14:837 (18.114)

The rarefaction velocity is the negative of this value divided by the density of the material,
so we have

URhead =
14:837
1:775

km
s

� �
= 8:359

mm
μ s

� �
(18.115)

So the time it takes the rarefaction to reach the front face is

Dt =
1
U

=
1 mm½ �

8:359
mm
μs

� � = 0:120 μ s½ � (18.116)

Then, the total time for the shock pulse is the time between impact and the rarefaction
wave reaching the interface or

tshock = 0:155 μ s½ � + 0:120 μ s½ � = 0:275 μ s½ � (18.117)

To determine the velocity at which the magnesium plate will rebound, let us look at
Figure 18.18.
We have the densities of both materials, we have the longitudinal sound speeds, and we

have u2f, so we can find u3f by solving the following equations simultaneously:

r0Mg
cLMg

=
p3 − 0
u3f − u2f

! p3 = r0Mg
cLMg

u3f − u2fð Þ (18.118)

r0Mg
cLBrass

=
p3 − 0
u3f − 0

! p3 = r0BrasscLBrass
u3f (18.119)

Combining Equations 18.118 and 18.119 gives us

r0BrasscLBrass
u3f = r0Mg

cLMg
u3f − u2fð Þ (18.120)

8:450ð Þ 4:700ð Þu3f = 1:775ð Þ 5:770ð Þ u3f − u2fð Þ (18.121)

A neat way to find u2f is to note that the two Hugoniots for the magnesium are reflected
about the velocity u1. So we can write

u2f − u1 = u1 − u0f (18.122)

u2f = 2ð Þ 0:470ð Þ km
s

� �
− 2:0

km
s

� �
= −1:060

km
s

� �
(18.123)

Then, we can rewrite Equation 18.120 as

39:715ð Þu3f = 10:242ð Þ u3f − 1:060ð Þ (18.124)
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u3f = −0:368
km
s

� �
(18.125)

A t–x plot of this event is shown in Figure 18.19.
If the flyer plate has an impedance greater than that of the target on impact, a compressive

shock will again propagate into both objects. This shock will again reflect from the free
surface of the flyer and return as a rarefaction wave to the interface. When the rarefaction
wave reaches the interface, several things will happen: The rarefaction will again reflect in
the opposite sense (as a shock) because the material into which it is propagating is of lower
impedance, a new shock wave will propagate into the flyer as it digs into the target, and the
rarefaction wave will propagate into the target. This new rarefaction wave in the target will
again eventually catch up to the shock front in the target and reduce its strength. In the flyer,
the process will repeat until equilibrium is reached. The physics of this event is again best
described by an example problem.

Example Problem 9
An experiment is set up in which a magnesium slab is shocked by impact from a brass

flyer plate that is 1 mm in thickness. The impact velocity was measured to be 2.0 km/s.
Determine

1. The material velocity behind the generated shock
2. The pressure generated at the interface
3. The time duration of the initial shock pulse in the target
4. The material velocity behind the first rarefaction
5. The pressure behind the first rarefaction
6. The speed of the head of the first rarefaction wave in the target

The materials have the following properties:

Magnesium        Brass

r0Mg
= 1:775

g
cm3

� �
  r0Brass = 8:450

g
cm3

� �

c0Mg
= 4:516

km
s

� �
  c0Brass = 3:726

km
s

� �
sMg = 1:256     sBrass = 1:434

cLMg
= 5:770

km
s

� �
  cLBrass

= 4:700
km
s

� �

Solution: Figure 18.20 tells us that to obtain the pressure generated at the interface, we
need to calculate the left-going Hugoniot in the flyer and solve it for the pressure since we
have the impact velocity and we know that the target was initially at rest. We again do this
by simultaneously solving the left-going Hugoniot in the flyer and the right-going
Hugoniot in the target.
The particle velocity in the brass after impact is located at point A in Figure 18.20 on the

left-going Hugoniot, which, by definition, has to pass through point (u0f, 0) as well. Our
equation for the left-going Hugoniot (Equation 18.87) with the appropriate numbers

508 Ballistics



inserted is

p1 = 31:485ð Þ 2:0 − u1ð Þ + 12:117ð Þ 2:0 − u1ð Þ2 (18.126)

or

p1 = 12:117u21 − 80:165u1 + 111:650 (18.127)

Here we again know the answer will be in gigapascals. Also for our right-going Hugoniot
in the magnesium, we can write using Equation 18.85

p1 = 1:775ð Þ 4:516ð Þu1 + 1:775ð Þ 1:256ð Þu21 (18.128)

p1 = 2:229u21 + 8:016u1 (18.129)

Equating Equations 18.127 and 18.129 yields

u21 − 8:918u1 + 11:291 = 0 (18.130)

Then,

u1 = 1:528
km
s

� �
(18.131)

Here we used the least positive value because the velocity u1 has to be less than our initial
velocity. The pressure now comes from inserting this value in either Equation 18.127 or
18.129:

p

Left-going Hugoniot
for shock in flyer plate 

p=p1

p=0
u=0 u=u1 u=u0f

Pressure behind shock
in both flyer and target

p1f = p1t 
Particle velocities in both materials 

behind generated shocks 

Right-going Hugoniot for
shock in target

Initial velocity of flyer plate 

A

u

FIGURE 18.20
p–u plot of a flyer plate’s initial interaction with target of lower impedance. (Cooper, P. W.: Explosives Engineering.
1996. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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p1 = 2:229ð Þ 1:528ð Þ2 + 8:016ð Þ 1:528ð Þ = 17:453 GPa½ � (18.132)

We have previously stated that the flyer plate will remain in contact and dig into the
target in this case. Even though this is the case, the shock wave will still propagate to the
rear face of the flyer, reflect as a rarefaction wave, and reach the front face. It is at this time
that the initial pulse into the target will end. To determine the time of this event, we again
break the problem into two parts: the time it takes for the shock to reach the rear face and
the time it takes for the first rarefaction to reach the impact surface.
The time it takes the shock to reach the rear face is determined by noting that the speed of

wave propagation is the slope of the jump on the p–u Hugoniot divided by the initial
density. Thus, we can write

U =
p1 − p0

r0 u1 − u0ð Þ (18.133)

U =
17:453 − 0ð Þ

8:450ð Þ 1:528 − 2:0ð Þ (18.134)

U = −4:376
km
s

� �
= −4:376

mm
μs

� �
(18.135)

The shock will thus reach the rear of the plate in

Dt =
l
U

=
1 mm½ �

4:376
mm
μs

� � = 0:228 μs½ � (18.136)

To determine the speed of the leading edge of the rarefaction wave, we need to examine
Figure 18.21. Here we recall that the speed of the head of the rarefaction wave times the
initial density is the slope of the p–u Hugoniot curve at the material pressure. The slope is
the negative of this value which we know. We need to use Equation 18.127 since this is the
Hugoniot for the flyer. Then,

dp
du

����
u=u1

= 24:234u1 − 80:165 = 23:234ð Þ 1:528ð Þ − 80:165 = −43:135 (18.137)

The rarefaction velocity is the negative of this value, so we have

URhead =
43:135ð Þ

8:450ð Þ g
cm3

� � = 5:105
mm
μs

� �
(18.138)

So the time it takes the rarefaction to reach the front face is

Dt =
l
U

=
1 mm½ �

5:105
mm
μs

� � = 0:196 μs½ � (18.139)

Then, the total time for the shock pulse is the time between impact and the rarefaction
wave reaching the interface or

tshock = 0:228 μs½ � + 0:196 μs½ � = 0:424 μs½ � (18.140)
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The material velocity behind the first rarefaction in the flyer is found by solving the right-
going Hugoniot in the flyer plate for p2 = 17.453 GPa. So we have

p2 = 17:453 ¼r0c0 u1 − u2fð Þ + r0s u1 − u2fð Þ2 (18.141)

Inserting some numbers in here, we have

u22f − 5:654u2f + 4:865 = 0 (18.142)

Then,

u2f = 1:059
km
s

� �
(18.143)

Again u2f had to be less than u1.
Our next task is to find the pressure behind the first rarefaction wave in the flyer plate. We

shall refer to Figure 18.22 throughout this part of the discussion.
The rarefaction will drop our pressure along the Hugoniot from point A to point C as

shown in Figure 18.22. We need to reflect our right-going Hugoniot in the flyer plate about
material velocity u2f and simultaneously solve with our right-going Hugoniot in the target.
To reflect our flyer plate Hugoniot, we shall write the equation for a left-going Hugoniot
centered at u2f:

p3 = r0c0 u2f − u3fð Þ + r0s u2f − u3fð Þ2 (18.144)

p

Left-going Hugoniot
for shock in flyer plate 

Right-going Hugoniot for
flyer plate (reflection about (u1, p1)

used for rarefaction wave)

Particle velocities in both
materials behind 
generated shocks

Right-going Hugoniot
for shock 
in target

p=p1

u=u1

p=0

u=0 u=u2f u=u0f

Initial velocity of flyer
plate

A

B

Material velocity behind
rarefaction wave in flyer

Slope is the velocity of the 
rarefaction wave in the flyer 

Pressure behind shock 
in both flyer and

target

u

FIGURE 18.21
p–u plot of a flyer plate’s rarefaction behavior during an interaction with target of lower impedance.
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or

p3 = 12:117u23f − 57:149u3f + 46:932 (18.145)

You know the drill by now. We have to simultaneously solve this equation with Equation
18.129 from before since we are looking for the intersection of the two Hugoniots:

p3 = 2:229u23f + 8:016u3f (18.146)

This leaves us with

u23f − 6:590u3f + 4:746 = 0 (18.147)

Then,

u3f = 0:822
km
s

� �
(18.148)

The speed of the head of the rarefaction wave in the target will be different from the speed
of the rarefaction wave in the flyer. Recall that the speed of the head of the rarefaction wave
is the slope of the Hugoniot at the shock pressure. An examination of Figure 18.23 shows
this clearly.

p 

u

Left-going Hugoniot
for shock in flyer plate 

Right-going Hugoniot for  
flyer plate 

(reflection about (u1, p1) 
used for rarefaction wave) 

Particle velocities in both materials
behind generated shocks

Right-going Hugoniot 
for shock in target

p  =  p1

p=p3

u=u2f u=u0fu=u1p=0 u=0

Initial velocity of flyer plate

A

Material velocity behind
shock in flyer and

rarefaction wave in target

Second shock wave in flyer 

Right-going Hugoniot for 
partial rarefaction in target

C

Pressure behind shock
in flyer and rarefaction in target

p3f = p3t 

u=u3f

FIGURE 18.22
p–u plot of a flyer plate’s behavior during the second shock interaction with target of lower impedance. (Cooper,
P. W.: Explosives Engineering. 1996. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with per-
mission.)
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We can find this slope by differentiating the Hugoniot for the target, Equation 18.129, at
u = u1:

dp
du

����
u=u1

= 4:458u1 + 8:016 = 4:458ð Þ 1:528ð Þ + 8:016 = 14:828 (18.149)

UR head target =
14:828ð Þ
1:775ð Þ

km
s

� �
= 8:353

mm
μs

� �
(18.150)

A t–x plot of this event is shown in Figure 18.24.
To close out the subject of rarefaction waves, we will discuss how to use our previous

techniques to determine if spalling or scabbing of a material will occur. We shall discuss a
different method in the following section, but this is a good way to introduce the physics
involved.
Recall that in earlier discussions, we stated that in a compressive wave the material

velocity follows the wave, and in a rarefaction, the opposite is true. This behavior implies
that if two rarefaction waves collide, the tension of the material will result (tensile waves
will propagate away from the plane of collision). If this tensile stress exceeds the (dynamic)
ultimate tensile stress of the material, the material will scab or spall. Also recall that we
generally assume linear behavior of the material in tension (so the Hugoniots of the gen-
erated tensile waves will be straight lines). Once more, we shall illustrate the theory through
an example problem.

p

Left-going Hugoniot 
for shock in flyer plate 

Right-going Hugoniot for
flyer plate

(reflection about (u1, p1)
used for rarefaction wave) Pressure behind shock

in both flyer and target 
p1f =p1t 

Particle velocities in both materials
behind generated shocks

Right-going Hugoniot for
 shock in target

p=p1

p=0

Initial velocity of flyer plate 

A

B

Material velocity behind
rarefaction wave in flyer

Slope is the velocity of the 
rarefaction wave in the flyer 

Slope is the velocity of the
rarefaction wave in the target

uu=0 u=u2f u=u0fu=u1

FIGURE 18.23
p–u plot of the rarefaction behavior into the target during a flyer plate impact into a lower impedance target.
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Example Problem 10
An experiment is set up in which a brass plate is shocked by an explosive from both sides.

The shock pressure was measured to be 4.0 GPa. Determine if the brass will spall.
The material has the following properties:

Brass

r0Brass = 8:450
g

cm3

� �

c0Brass = 3:726
km
s

� �
sBrass = 1:434

cLBrass
= 4:700

km
s

� �

sUTSDynamic
= 2:1 GPa½ �

Solution: The only piece of information we have is the shock pressure (p1), but we do know
the equations for the two Hugoniot curves and the approximate tensile isentropes. The
situation is illustrated in Figure 18.25.
We can locate u1 on the left-going Hugoniot, which, by definition, has to pass through

point (u1, 0) as well. Our equation for the left-going Hugoniot is

p1 = r0c0 u1 − 0ð Þ + r0s u1 − 0ð Þ2 (18.151)

t 

Front face of flyer
moving toward target

at velocity u0f
(slope = 1/u0f) 

Interface between
front face of flyer and

rear face of target
at velocity u1
(slope = 1/u1)

Rear face of target
Initially at rest 

Initial shock propagating 
into target

at velocity Ut
(slope = 1/Ut) 

Shock propagating
into flyer

at velocity Uf
(slope = 1/Uf) 

A

B

C
D

EF

Rarefaction propagating into target
at velocity URt
(slope = 1/URt) 

p = p3f = p3t
u= u3f = u3t
ρ =ρ3t

p = p1f = p1t
u= u1f = u1t
ρ =ρ1tRarefaction propagating

into flyer
at velocity UR
(slope = 1/UR)

Rarefaction encounters
lower impedance

material and reflects as a
shock at velocity U2f

(slope= 1/U2f) 

p = p3f 
u = u3f ρ =ρ3f 

p = 0
u = u4f ρ =ρ0f 

p = 0
u = u2fρ =ρ0f

p = 0
u = u0f 
ρ =ρ0f 

p = 0
u = 0
ρ =ρ0t 

p = p1f
u = u1f
ρ =ρ1f

x

FIGURE 18.24
(See color insert.) t–x plot of flyer plate interaction with a target of lower impedance. (Cooper, P. W.: Explosives
Engineering. 1996. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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By inserting values,

4:0 = 8:450ð Þ 3:726ð Þ u1 − 0ð Þ + 8:450ð Þ 1:434ð Þ u1 − 0ð Þ2 (18.152)

u21 + 2:598u1 − 0:330 = 0 (18.153)

u1 = 0:121
km
s

� �
(18.154)

Now we have located our x-axis intercept on the aforementioned diagram. All that is left
to do is determine the equation for the tensile isentrope and solve for the pressure. Recall
that the slope of this isentrope is defined as

r0BrasscLBrass
=
0 − p2
0 − u1

! p2 = r0BrasscLBrass
u1 (18.155)

p2 = 8:450ð Þ 4:700ð Þ 0:121ð Þ = 4:805 GPa½ � (18.156)

Since this value is greater than the dynamic tensile strength of the material, the part will
spall.

Problem 3
An experiment is set up in which a tungsten penetrator is fired against a rigid target. The

impact velocity is 500 m/s. Determine the shock pressure and tensile stress and if the
penetrator will break up.
Answer: p1 = 44.672 [GPa], p2 = 53.26 [GPa], and it will spall.

p

u

Left-going Hugoniot
for rarefaction

u = u1
p = 0

Right-going Hugoniot for
rarefaction 

u = 0 

Left-going tensile
wave

p = p1

p = p2

u = –u1

Right-going tensile 
wave

FIGURE 18.25
p–u plot of the collision of two rarefaction waves. (Cooper, P. W.: Explosives Engineering. 1996. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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The material has the following properties:

Tungsten

r0W = 19:224
g

cm3

� �

c0W = 4:029
km
s

� �
sW = 1:237

cLW
= 5:541

km
s

� �

sUTSDynamic
= 2:0 GPa½ �

Problem 4
A 4 in. long steel bar impacts a 12 in. thick slab of 4340 steel at 1000 m/s and bounces off.

Assuming the impact is normal and using one-dimensional equations, determine

1. The duration of the impact event
Answer: Dt = 33.00 [μs]

2. The pressure developed at the interface
Answer: p1 = 20.980 [GPa]

4340 steel

r0Steel = 7:896
g

cm3

� �

c0Steel = 4:569
km
s

� �
sSteel = 1:490

cLSteel
= 5:941

km
s

� �

Problem 5
We would like to determine how fast a large fragment will be propelled by an explosion

usingHugoniots. Assumewe have a 6 in. cube of steel that has a pressure of 5.0 GPa applied
to one face for 3 μs.

1. Determine the velocity of the piece of steel by using the Hugoniot curve.
2. Determine the velocity of the piece of steel by using impulse and momentum

(it might help to reference a statics and dynamics book).
3. Compare the two methods and comment on the differences.
4. What can you do to the problem parameters to make the answers the same?
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Assume that the material does not spall at all. The material has the following properties:

Steel

r0Steel = 7:896
g

cm3

� �

c0Steel = 4:569
km
s

� �
sSteel = 1:490

cLSteel
= 5:900

km
s

� �

Problem 6
One of the ways that British troops tried to defeat snipers hiding behind a sniper plate

was to pull their bullets from the cartridge cases and replace them backward so that they
could be fired base first. This caused the plate to spall into the face of the sniper even though
the bullet had no prayer of penetrating. In theory, this might put more of an abrupt shock
pulse into the target. Assume that the bullet in Problem 8 of Chapter 18 was fired backward
and was able to impact at 1512 ft/s. Using Hugoniot curves for lead and steel, determine if
the 1 in. thick plate will spall.

18.3 Stress Waves in Solids

A stress wave is generated in a solid whenever an impact occurs—it is the way nature reacts
to this violent event. The stress wave affects both the penetrator and the target. It is a major
consideration in the breakup of the penetrator and is the primary cause of scabbing and
spalling of the target.
Stress waves in solids are either elastic or elastic–plastic in nature. By this we mean that in

the elastic regime, the material returns to its original shape, while in the plastic regime, the
material is permanently distorted. Howwe treat the materials involved depends on the rate
and intensity of loading. If these loads and rates are high enough, we can treat the materials
as fluids. We will often refer to a target as being semi-infinite with the effect that geomet-
rically, only the impact surface is present and there is no reflection of the stress wave once it
enters the target. This further implies that the material can only compress or move back-
ward from the free surface.
We also classify materials for the purpose of modeling as follows: isotropic (material

properties are independent of direction), anisotropic (material properties are dependent
upon direction), or orthotropic (material properties vary in three-orthogonal directions).
Inertial effects are said to be important when themotion of themass of thematerial is amajor
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consideration in the behavior. We further stipulate that a dilatational wave is one that only
involves normal stresses, and adistortionalwave is onewhere shear stresses are involved [2].
When an impact occurs in a material, several things happen simultaneously [3]: longi-

tudinal (dilatational) waves propagate into the material; transverse (distortional) waves
propagate at right angles to the longitudinal waves; Rayleigh surface waves propagate
along the surface and a small distance into the material; in a material that has layers with
different properties (such as a laminate or a composite), a Love shear wave may occur; and
depending on the geometry of loading, torsional or flexural waves may be generated. We
shall examine only the first two in detail, andwewill call the velocity of a longitudinal and a
shear waves as cL and cS, respectively.
The acoustic velocity (velocity of sound) in a solid medium is greatly influenced by the

boundary conditions. Using a cylindrical steel bar as an example, the material is considered
“bounded” if the wave encounters a boundary in the radial direction. Otherwise, the
material is “unbounded” [2].
We say the following about the acoustic velocities:

Extended unboundedð Þ   Bounded

c2L =
l + 2μ

r
=

E 1 − vð Þ
r 1 + vð Þ 1 − 2vð Þ  

E
r

(18.157)

c2S =
μ

r
=
G
r
=

E
2r 1 + vð Þ   

G
r

(18.158)

where E is the modulus of elasticity; l and μ are the Lamé parameters; v is the Poisson’s
ratio; G is the shear modulus; and r is the density.
We must note that since shear waves are, by definition, perpendicular to the main wave

front, the form of the equation does not change between the bounded and the unbounded
conditions. In a real wave, some mechanical energy is converted to heat. This is not con-
sidered in the models that we have just introduced.
In our discussions of compressible fluids, a wave simply rebounded off a solid boundary.

However, in a solid medium, a compression wave will reflect off a free surface as a tensile
wave. If the intensity of this tensile wave is greater than the ultimate tensile strength
of the material, the material will fracture. If the intensity of the loading is such that
the yield strength is exceeded, there will be two waves: an elastic wave (precursor in a rate-
independent [RI] material) and a plastic wave (very intense but rapidly attenuated in most
materials). At high loading rates, with a material that has a concave-up strain rate
dependency, a shock can form with the plastic wave overtaking the elastic wave. We have
seen this in our earlier work.
The stress–strain behavior of a material is characterized as either rate independent or rate

dependent. An RI material has stress–strain curves that are unaffected by a change in
loading rate. Examples of RI materials are aluminum and some steels. Examples of rate-
dependent materials are titanium and most steels. If the intensity of the load is about two
orders of magnitude above the strength of the material, we can consider both target and
penetrator as viscous fluids. In computer solutions, to impact phenomena, this is where the
term hydro-code comes from.
Proceeding into the analysis, we need to introduce indicial notation because this is a

compact way of writing the equations. For any vector F, in an x, y, and z space, we can write
it based on its components as
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F ¼ Fx + Fy + Fz (18.159)

In indicial notation, this vector is written as Fi, where i = 1, 2, 3, which is equivalent to our
x, y, and z space. We then have

Fi = F1 + F2 + F3 (18.160)

In this notation, a pair of distinct indices indicate a tensor:

sij =

s11 s12 s13

s21 s22 s23

s31 s32 s33

2
664

3
775 (18.161)

Repeated indices indicate a sum; for instance, the trace of our previous tensor is

sii = s11 + s22 + s33 (18.162)

A derivative with respect to a coordinate is indicated by a comma; thus,

sij,j =
∂sij

∂xj

∂sxx

∂x
∂sxy

∂ y
∂sxz

∂z

∂syx

∂x
∂syy

∂y
∂syz

∂ z

∂szx

∂x
∂szy

∂y
∂szz

∂z

2
6666666664

3
7777777775

(18.163)

Two repeated subscripts after the comma indicate a second derivative as follows:

ui,jj =
∂2ui
∂xj∂xj

=

∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

2
6666666664

3
7777777775

(18.164)

Two other terms are frequently seen: the tensor called the Kronecker delta dij and the
alternating tensor ϵijk. The Kronecker delta takes on the values as

dij = 1 if i = j  or  dij = 0otherwise (18.165)

The alternating tensor takes on the values as

ϵijk =

1  if ijk = 123, 231, or 312

0  if any two indices are alike

−1 if ijk = 321, 213, or 132

8>><
>>: (18.166)

Let us return to the physics of stress waves in a solid. In an elastic solid, we require three
relations to describe the material behavior: an equation of motion that requires the force to
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be converted into stress (force/unit area), an equation relating stress to strain for which we
will use Hooke’s law, and an equation relating strain to displacement.
If we begin with an equation of motion (Newton’s second law), we have, using indicial

notation to change from the vector form,

F = ma = m€u ! Fi = mai = m€ui (18.167)

Note that u here is the material displacement/position. If we divide Equation 18.167 by a
unit volume, we get

Fi
V

=
m
V
€ui (18.168)

We know that the mass per unit volume is defined as the density, and if we call the body
force per unit mass fi, we get

F mf
m

m
u f ui i

i i i
V V

V
V

= ⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ → =ρ ρ ρ (18.169)

We need to consider the internal forces in terms of stresses in our equation, so we shall
add another term to the left-hand side (LHS) to account for this with a derivation to follow.
Thus, we have

∂sij

∂xj
+ r fi = r€ui (18.170)

This is the equation of motion for a differential element of a continuum.
Although Equation 18.170 is a three-dimensional equation, we shall illustrate its deri-

vation in two dimensions. Assume we have a cube of material with volume dxdydz. The
mass of the cube is the density times this volume, and the body forces on the cube are fx and
fy for simplicity. We can then draw the situation (with dz into the paper) in two dimensions
as shown in Figure 18.26.
If we write the force balance in the x-direction, we obtain

r fx dxdydzð Þ + sxx dydzð Þ + ∂sxx

∂x
dx dydzð Þ − sxx dydzð Þ

+tyx dxdzð Þ + ∂tyx
∂y

dy dxdzð Þ − tyx dxdzð Þ = r dxdydzð Þ€ux
(18.171)

After we cancel terms and divide by the volume dxdydz, we obtain

r fx +
∂sxx

∂x
+
∂tyx
∂y

= r€ux (18.172)

Examined in three dimensions, the equation would be

r fx +
∂sxx

∂x
+
∂tyx
∂y

+
∂tzx
∂z

= r€ux ! r fi +
∂sij

∂xj
= r€ui (18.173)

If we recall Hooke’s law in its one-dimensional form, we get

s = Ee (18.174)
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In three dimensions, it is written for a homogeneous material using two material con-
stants, called the Lamé constants, as

sij = lekk∂ij + 2μeij (18.175)

Here we define the constants as

l =
nE

1 + nð Þ 1 − 2nð Þ (18.176)

μ = G =
E

2 1 + nð Þ (18.177)

where G is the shear modulus and n is Poisson’s ratio.
A strain–displacement relationship is the final equation necessary for our description of

wave motion. For a homogeneous continuum, it is usually written as

ε ij i j j i
i

j

j

i
u u

u
x

u
x

= +( ) + ∂
∂

+
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2

1
2

, , (18.178)

To obtain the material displacement as a function of forces and accelerations, we shall first
combine Equations 18.175 and 18.178

σ λ δ μ λ δ μij
k

k
ij

i

j

j

i

j

j
ij

i

j

u
x

u
x

u
x

u
x

u
x

= ∂
∂

+ ∂
∂

+
∂
∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

∂
∂

+ ∂
∂

+
∂uu

x
j

i∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ (18.179)

If we take the derivative of Equation 18.179 with respect to xj, we get

∂
∂

=
∂
∂ ∂

+ ∂
∂ ∂

+
∂
∂ ∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

σ
λ δ μij

j

j

j j
ij

i

j j

j

i jx
u

x x
u

x x
u

x x

2 2 2

(18.180)

Since dij is not equal to zero only when i = j, we can freely interchange i and j in the first
term on the RHS of Equation 18.180 to yield

σxx

σyy

dx

dy

fy

fx

dy
∂y

∂τyx

τxy

τyx

τyx  +

dx
∂x

∂τxyτxy +

FIGURE 18.26
Differential element for calculation of stresses.

Shock Physics 521



∂
∂

=
∂
∂ ∂

+ ∂
∂ ∂

+
∂
∂ ∂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

∂
∂

σ
λ μ μij

j

j

j j

i

j j

j

j i

i

x
u

x x
u

x x
u

x x
u

x

2 2 2 2

jj j

j

j ix
u

x x∂
+ +( ) ∂

∂ ∂
λ μ

2

(18.181)

If we insert Equation 18.181 into Equation 18.173, we get

μui,jj + l + μð Þuj,ji + r fi = r€ui (18.182)

or

μ
∂2ui
∂xj∂xj

+ l + μð Þ ∂2ui
∂xj∂xi

+ r fi = r€ui (18.183)

Equations 18.172, 18.174, 18.178, and 18.183 are the equations necessary to describe wave
motion in a material.
We want to simplify these equations to look like the wave equation. To do so, first we

define

D = ejj =
∂ui
∂xj

(18.184)

If we ignore the body forces, we can rewrite Equation 18.183 as

μ
∂2uj
∂xj∂xj

+ l + μð Þ ∂D
∂xi

= r€ui (18.185)

If we differentiate the aforementioned equation, we get

r
∂€ui
∂xj

= μ
∂3ui

∂xj∂xj∂xi
+ l + μð Þ ∂2D

∂xi∂xi
(18.186)

From our earlier definition, we can see that

∂€ui
∂xi

=
∂2D
∂t2

(18.187)

We can also see that

∂3ui
∂xj∂xj∂xi

=
∂2D
∂xj∂xj

=
∂2D
∂xi∂xi

(18.188)

So we now rewrite Equation 18.186 as

ρ λ μ λ μ
ρ

∂
∂

= +( ) ∂
∂ ∂

→ ∂
∂

= +⎛

⎝
⎜

⎞

⎠
⎟
∂
∂ ∂

2

2

2 2

2

2
2

2Δ Δ Δ Δ
t x x t x xi i i i

(18.189)

which is the classical wave equation of the form

∂2y
∂t2

= c2
∂2y
∂xi∂xi

(18.190)
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The solution to this equation is

y = f x − ctð Þ + g x + ctð Þ (18.191)

We previously stated that boundaries have a significant effect on wave propagation. If
the medium were infinite, waves would spherically propagate at the speed of sound
(wave velocity) in the material. The wave velocity in a material is defined for one-
dimensional wave motion as

c =

ffiffiffiffi
E
r

s
(18.192)

For a bar impact, if the ratio of the radius of the bar to the wavelength is much less than 1,
we can use these simplified equations. If we limit our study to longitudinal waves, our
wave equation reduces to

∂2u
∂t2

= c2
∂2u
∂x2

(18.193)

Much like the discussion we had about the fluid in a shock tube after the bursting of a
diaphragm, when a bar is stressed by a suddenly applied load, not all parts of the bar
immediately feel the impact. The waves created traverse the material and distribute the
stresses and strains accordingly. We will examine first the longitudinal wave (also called
dilatational, irrotational, or primary [P] wave). This wave moves in the same direction as
the pulse was applied. Next we will examine a transverse wave (also called a distortional,
rotational, shear, or secondary [S] wave). This wave moves normal to the applied pulse.
As in compressible flow, there are several ways we can describe the motion of the

material: stress vs. time; particle velocity vs. time; stress vs. distance; or particle velocity
vs. distance. The two velocities we will use quite frequently are the speed of sound in the
material c and the particle velocity at a point v. The symbol u represents axial displacement.
We shall make some simplifying assumptions in this treatment. We assume that the bar has
a length to diameter ratio of at least 10:1. We shall neglect transverse strain. We shall neglect
lateral inertia. We shall neglect body forces and internal dissipation (i.e., friction and
damping).
If we look at Newton’s second law for a longitudinal impact of force FL and bar mass m,

we have

FLdt = d mvLð Þ (18.194)

If we note that the stress s = FL/A and the mass m = rAdl, we can rewrite the afore-
mentioned equation as

sAdt = rAdldυL (18.195)

where dl is the distance the pulse has moved in time dt. We can simplify the aforementioned
equation to

s = r
dl
dt

dvL (18.196)
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But the speed of the pulse is dl/dt, so we can write for either a longitudinal or a shear
wave (changing the differential to a finite difference) as

s = rcLDvL (18.197)

t = rcSDvS (18.198)

As in the case of a wave in a fluid, when a wave in a solid reaches a boundary, it is
reflected. The normal stress on a free surface must be equal to zero so a compression wave
reflects as a tensile wave and vice versa. It can be shown that the shape of the reflected pulse
is the same as that of the incident pulse but opposite in sign. The position (displacement) of
the incident and reflected pulses (right and left running characteristics) is

uI = f x − ctð Þ (18.199)

uR = g x + ctð Þ (18.200)

In these and all subsequent equations, displacements, velocities, stresses, and strains with
the subscript I denote those occurring due to the incident pulse, whereas the subscript R
denotes the reflected pulse effects. At the boundary (x = l), we have

uIjx=l = f l − ctð Þ (18.201)

uRjx=l = g l + ctð Þ (18.202)

Also we need to note that the strain at x = l is

eIjx=l =
∂uI
∂x

����
x=l

=
∂

∂ x − ctð Þ f x − ctð Þ ∂ x − ctð Þ
∂x

����
x=l

= f 0 l − ctð Þ (18.203)

eRjx=l =
∂uR
∂x

����
x=l

=
∂

∂ x + ctð Þ g x + ctð Þ ∂ x + ctð Þ
∂x

����
x=l

= g 0 l + ctð Þ (18.204)

At the free boundary, the stress must be zero, so we have

snetjx=l = sI + sR = 0 (18.205)

But since s = Ee, we can write

snetjx=l = 0 = E f 0 l − ctð Þ + g 0 l + ctð Þ� �
(18.206)

f 0 l − ctð Þ = −g 0 l + ctð Þ (18.207)

We can define the net velocity at a point as

vnet = vI + vR =
∂uI
∂t

+
∂uR
∂t

(18.208)

The terms on the RHS are

vIjx=l =
∂uI
∂x

����
x=l

=
∂

∂ x − ctð Þ f x − ctð Þ ∂ x−ctð Þ
∂x

����
x=l

= −cf 0 l − ctð Þ (18.209)
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vRjx=l =
∂uR
∂x

����
x=l

=
∂

∂ x + ctð Þ g x + ctð Þ ∂ x + ctð Þ
∂x

����
x=l

= −cg 0 l + ctð Þ (18.210)

But at x = l, we can insert Equation 18.207 giving us

vnet = 2cg l + ctð Þ (18.211)

Thus, with a free boundary, the particle velocity and displacement are both double the
incident value when the waves overlap.
If the boundary was rigid, Equations 18.205 through 18.207 are no longer true, but we

know that the velocity must be zero, so we can write

vnet = 0 = −cf 0 l − ctð Þ + cg 0 l + ctð Þ (18.212)

cf 0 l − ctð Þ = cg 0 l + ctð Þ (18.213)

We can then write Equation 18.206 as

snetjx=l = E f 0 l − ctð Þ + g0 l + ctð Þ� �
= 2Ef 0 1 − ctð Þ: (18.214)

Thus at a rigid boundary, the stress is doubled while the displacement and particle
velocities are zero.
These equations allow us to visualize wave interactions with fixed or free ends as follows.

When a tensile wave encounters a free boundary, it is reflected as a compressive wave. If we
have a free surface, we can imagine a phantom pulse coming in from outside the bar as
depicted in Figure 18.27. With a fixed boundary, the imagined pulse is in the same sense as
the incident pulse as depicted in Figure 18.28.
When a bar elastically impacts a surface, a stress wave of strength rv0cL moves into the

bar, stopping the motion behind it. At time t = l/cL, the bar is stationary and in compression
and all of the kinetic energy has been converted to strain energy, which can be written as

u,v 

cL

Free surface 

u,v

Free surface 

–σ

–σ

+σ

+σ

cL

cL

cL

Net stress
particle velocity doubled = 0

FIGURE 18.27
Wave interaction at a free boundary. (From Zukas, J. A. et al., Impact Dynamics, Krieger, Malabar, FL, 1992. With
permission.)
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1
2
A0lrv

2
0 =

A0l
2E

rcLv
2
0

	 

(18.215)

When this wave encounters the free end, it reflects as a tensile wave with all the parti-
cles behind it moving at velocity v0 away from the impact surface. This is depicted in
Figure 18.29.
When a wave encounters a change in cross section (as illustrated in Figure 18.30) or in a

new material, part of it is transmitted and part is reflected. The conditions that must be
satisfied at the interface are that the forces must be equal and the velocities must be equal.
The general equations for this interaction are

u,v u,v

cL

cL

cL

cL

Fixed surface

+σ

+σ+σ

+σ

Net stress doubled
particle velocity = 0

FIGURE 18.28
Wave interaction at a fixed boundary. (From Zukas, J. A. et al., Impact Dynamics, Krieger, Malabar, FL, 1992. With
permission.)

Fixed surface 

l

t = 0

l 

t < l/cL

l

t = l/cL

cL

cL

l 

l/cL < t < 2l/cL

v = 0 

v = 0 

v = 0 

v0

v0

v0v0

t > 2l/cL

FIGURE 18.29
Elastic bar impact. (From Zukas, J. A. et al., Impact Dynamics, Krieger, Malabar, FL, 1992. With permission.)
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sT =
2A1r2c2

A1r1c1 + A2r2c2
sI (18.216)

sR =
A2r2c2 − A1r1c1
A1r1c1 + A2r2c2

sI (18.217)

where sT is the transmitted stress; sR is the reflected stress; and sI is the incident stress.
The implications of these equations are that if A2/A1 ! 0, the bar is effectively free and sR

approaches −sI. If A2/A1 ! ∞, the bar is effectively fixed and sR approaches sI. Also, sR
equals 0 if A2r2c2 = A1r1c1, and if r2c2 ≫ r1c1, the stress in the transmitted pulse is
approximately twice the incident stress.
When we look at shock waves in solids, we usually use plates to simplify the problem. In

plates, we assume uniaxial strain (three-dimensional stress). In bars, we assume uniaxial
stress (three-dimensional strain). The stress–strain diagrams of these two behaviors are
illustrated in Figure 18.31. The following analysis was originally developed by Zukas et al.
[2] and neglects thermomechanical coupling as well as assuming one-dimensional defor-
mation (i.e., the constraints are set up such that lateral strains are zero).
If we break the strain up into an elastic part (superscript e) and a plastic part (superscript

p), we can write the strain in three orthogonal directions as

e1 = ee1 + ep1 , e2 = ee2 + ep2 , e3 = ee3 + ep3 (18.218)

A1

A1 A2

A2

FIGURE 18.30
Bars of varying cross section.

Elastic with strain hardening

Elastic perfectly plastic

Hydrostat

σ
σ

ε ε(a) (b)

FIGURE 18.31
Comparison of (a) uniaxial stress and (b) uniaxial strain models in stress–strain diagrams.
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In uniaxial strain, we have

e2 = e3 = 0 ! ee2 = −ep3 and ee3 = −ep3 (18.219)

Because of symmetry, we can write

ep2 = ep3 (18.220)

The material is incompressible so

ep1 + ep2 + ee3 = 0 ! ep1 = 2ee2 (18.221)

This behavior is illustrated in Figure 18.32.
Thus, the total strain is

e1 = ee1 + ep1 = ee1 + 2ee2 (18.222)

If we note that s3 = s2, we can write

e1 =
s1 1 − 2nð Þ

E
+
2s2 1 − 2nð Þ

E
(18.223)

If we use a yield criterion such as von Mises, we can write

s1 − s2 = Y0 (18.224)

s1 =
E

3 1 − 2nð Þ e1 +
2
3
Y0 = Ke1 +

2
3
Y0 (18.225)

The bulk compressibility term K causes the stress to increase regardless of yield strength
or strain hardening. This is important as we shall later see and is depicted in Figure 18.31.
The reason that uniaxial strain is applicable in our work is that in the initial phases of

Elastic with strain hardening

Hugoniot
(hydrostat)

Y0

Y03
2

E
E(1–v)

(1–2v) (1+v)

Hugoniot elastic limit (maximum 
elastic stress for uniaxial strain)

Elastic 
perfectly

plastic

σHEL

σ σ

ε εUniaxial stress Uniaxial strain(b)(a)

FIGURE 18.32
Comparison of (a) uniaxial stress and (b) uniaxial strain models in stress–strain diagrams with parameters
established.
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impact, the material does not have time to laterally expand. Later on in the impact, a
condition closer to uniaxial stress may occur as the lateral deformation progresses. At
extremely high pressures (~100 GPa, ~14.5 × 106 psi), the material will behave like a
compressible fluid and will follow the Hugoniot curve (hydrostat). At lower pressures,
deviation from the Hugoniot curve will occur.
If the applied stress is above the Hugoniot elastic limit (HEL), two stress waves will

propagate through the material as was discussed in the previous sections. The first is an
elastic wave with speed

c2E =
E 1 − nð Þ

r0 1 − 2nð Þ 1 + nð Þ (18.226)

The second is a plastic wave with speed

c2p =
sB − sHEL

rHEL eB − eAð Þ (18.227)

In the aforementioned expression, sB and eB are the stress and strain caused by the pulse,
respectively; eA is the strain at the HEL; and rHEL is the material density at the HEL. After
the applied pulse is over, an elastic unloading wave is generated. This unloading wave
usually travels faster than the compressive wave, and, if the material region is long enough,
we will eventually catch up and unload the initial pulse. The point at which this occurs is
called the catchup distance. This behavior is illustrated in Figure 18.33.
The spalling of armor from a nonpenetrating or partially penetrating hit can be signifi-

cant. Some projectiles are even designed so that they simply create spall.
When a finite thickness material is impacted on one side by an object that either does or

does not penetrate, a stress wave will be generated, which can cause spalling or scabbing.
This is to be expected in materials that are strong in compression but weak in tension. We
are going to examine the impact event as a saw-tooth pulse in one dimension and assume
that the pulse propagates without change in stress or intensity. We define the failure

cp

cp

cp

up is the material velocity

x

x

x

cE

cE

cE

cE

cE +up

cE +up

cE +up

σ

x

FIGURE 18.33
Diagram depicting plastic wave attenuation. (From Zukas, J. A. et al., Impact Dynamics, Krieger, Malabar, FL, 1992.
With permission.)
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strength of a material as the point where the tensile stress reaches some critical value sF. The
length of the incident compressive pulse is defined as l and its magnitude is specified as sm.
The wave is reflected from the free surface with a net maximum tensile stress sT, which will
always occur at the leading edge of the wave (Figure 18.34).
At any time, we can write

sT = sm − sI (18.228)

where sI is the part of the compression wave remaining at an instant in time. If sT ever
exceeds sF, a fracture will occur. Thus at fracture, we can write

sF = sm − sI (18.229)

If we assume that this occurs at some instant, we will generate a spall thickness t1, and we
can write this spall thickness as

c

c

c

Free surface

ct = 4
1

ct = 2
1

ct =

t  <  0

t = 0

σT = –σm

σT = –σm

c  

c

+σm

+σm

σm
2σ1=

+σm

–σm

–σm

–σm

+σmλ

λ

λ

λ

λ

λ
σm
2σT =

FIGURE 18.34
Triangular pulse encounter with a free surface.
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sI

l − 2t1
=
sm

l
(18.230)

It can be shown that by eliminating sI between Equations 18.228 and 18.229, and using
Equation 18.230, we can write the spall thickness as

t1 =
sF

sm

l
2

(18.231)

Thus, if the initial pulse amplitude into the material is equal to its tensile strength, the
material will fail at a distance one-half of the pulse wavelength from the rear face. We also
need to note that if sm < sF, there will be no fracture, and if sm ≫ sF, there will be multiple
fractures.
If multiple fractures occur, the portion of the pulse trapped in a fractured piece will leave

with that piece (actually forcing it away), and the part of the pulse that remains in the
original target plate is defined through

l2 = l − 2t1 (18.232)

sm2
= sI (18.233)

If this occurs, we would enter these values back into our original equations to obtain

t2 =
sF

sm2

l 2

2
(18.234)

This process is repeated until conditions no longer permit spalling (i.e., smn
< sF).

We shall use the principle of impulse and momentum to determine the velocity of the
spalled piece. The momentum of the spall is

mvt1 = rt1Að Þvt1 (18.235)

The impulse imparted to the spall isð
Fdt =

sm + sIð Þ
2

A
� �

2t1
c

(18.236)

Here the average stress acting over the time the wave is trapped in the spalled piece has
been used. If we make the substitution for sI and combine Equations 18.235 and 18.236, we
get

vt1 =
2sm − 3sF

rc
(18.237)

If there is a second spall layer, the velocity of that will be

vt2 =
2sm − 3sF

rc
(18.238)

If there are more spall layers, their velocities will be

vtn =
2sm − 2n − 1ð ÞsF

rc
(18.239)
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The number of spall layers a wave will produce is given by

n =
sm

sF
(18.240)

Unlike a triangular pulse, a theoretically square pulse (shown in Figure 18.35) can spall
only one piece of material because of its discontinuous nature. The thickness will be either
zero (if sm < sF) or l/2 (if sm ≥ sF). The velocity imparted to the spalled piece will be
given by
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FIGURE 18.35
Square pulse encounter with a free surface.
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vt =
sm

rc
(18.241)

The previous formulas yield qualitative results only. Dynamic fracture can be divided
into four phases: nucleation of microcracks at many locations in the material, symmetric
growth of the fracture nuclei, coalescence of the fractures, and spallation owing to forma-
tion of a large fracture surface.
Spallation is such a common occurrence in armor that some terms have been established

to describe it. The incipient spall threshold is that combination of stress amplitude and pulse
duration below which no damage is detected in a specimen at ×100 magnification. The
complete spall threshold is the combination of stress amplitude and pulse duration at which
a large piece of material will spall. Because of the complicated nature of the phenomena, it is
difficult to predict exactly when and how a material will spall. There are various models all
of which attempt to describe the spallation process by some physical means, one of which
was introduced in Section 18.2.

Problem 7
A 4 in. long steel bar impacts a 12 in. thick slab of 4340 steel at 1000 m/s and bounces off.
Assuming the impact is normal and using one-dimensional equations, determine

1. The duration of the impact event (use Hugoniots)
Answer: tshock = 35.87 [μs]

2. The pressure developed at the interface (use Hugoniots)
Answer: p1 = 20.980 [GPa]

3. The thickness of the first spalled piece (if any) assuming the input pulse is a con-
stant square wave pulse throughout the impact event
Answer: t1 = 3.75 [in.]

Illustrate your answer to part 2.
Illustrate your answer to part 3.

      4340 steel

Modulus of elasticity ¼ 30:0 �106psi
	 


Modulus of rigidity shearð Þ ¼ 11:5 �106psi
	 


Poisson’s ratio ¼ 0:29

Ultimate tensile stress = 250, 000 lbf=in:2
	 


r0Steel = 7:896
g

cm3

� �

c0Steel = 4:569
km
s

� �
sSteel = 1:490

cLsteel
= 5:941

km
s

� �
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Problem 8
A Japanese 20 mm projectile with the following properties impacts a 7 in. thick concrete

wall at 0° obliquity. The concrete has a 1500 psi unconfined compressive strength and
density of 0.080 lbm/in.3. The concrete dynamic tensile strength is 1000 psi. If the projectile
has the properties given later,

1. Determine the duration of the impact event by using the assumption of
nonpenetration (use Hugoniots).
Answer: tshock = 24.85 [μs]

2. Determine whether the concrete will spall, and if so, determine the extent (in inches
of thickness) of the total spallation—list all assumptions.
Answer: t1 = 2.32 [in.]

3. Determine if the projectile perforates the concrete accounting for the spallation.
Answer: The projectile will perforate.

4. Using your ability to determine the timing of the penetration events, explain why
or why not the aforementioned model is valid; i.e., prove it using the numbers.

Estimated penetrator information:

s = 40 mm½ � m = 128 g
� �

d = 20 mm½ � Vs = 550
�
m
s

�
 rp = 0:283

lbm
in:3

� �

L = 60 mm½ �

Steel       Concrete    

r0Steel = 7:896
g

cm3

� �
r0Concrete = 2:232

g
cm3

� �
  

c0Steel = 4:569
km
s

� �
 c0Concrete¼ 4:0

km
s

� �
(estimate)

sSteel = 1:490   sConcrete = 1:4 (estimate)

cLsteel
= 5:941

km
s

� �
 cLConcrete

= 4:0
km
s

� �
(estimate)

Problem 9
If we include the effects of spallation in a concrete penetration problem, the resultant

concrete thickness will have to increase. Let us look at the penetration of 8 in. of reinforced
concrete wall at 0° obliquity with the projectile of Problem 11 in Chapter 16. Let us assume
the concrete (assuming reinforcement is included) has a 1500 psi unconfined compressive
strength and density of 0.084 lbm/in.3. The concrete dynamic tensile strength is 1000 psi. If
the projectile has the properties,

1. Determine the duration of the impact event using the assumption of
nonpenetration—use Hugoniots.
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2. Determine whether the concrete will spall, and if so, determine the extent (in inches
of thickness) of the total spallation—use any method but list all assumptions.

3. Using your ability to determine the timing of the penetration events, explain why
or why not the aforementioned model is valid.

Steel       Concrete    

r0Steel = 7:896
g

cm3

� �
r0Concrete = 2:232

g
cm3

� �
  

c0Steel = 4:569
km
s

� �
 c0Concrete = 4:0

km
s

� �
(estimate)

sSteel = 1:490   sConcrete = 1:4 (estimate)  

cLsteel
= 5:941

km
s

� �
  cLConcrete

= 4:0
km
s

� �
(estimate)

Problem 10
A 2 in. long steel bar impacts a 6 in. thick slab of 4340 steel at 1000 m/s and bounces off.

Assuming the impact is normal and using one-dimensional Hugoniot equations, determine
a material type and thickness of a backing material that is required to keep the interface
pressure below 2.5 GPa for the duration of the impact event. For full credit state, all your
assumptions.
Use these properties for the steel

      4340 steel

Modulus of elasticity �106psi
	 


= 30:0

Modulus of rigidity shearð Þ �106psi
	 


= 11:5

Poisson’s ratio = 0:29

Ultimate tensile stress lbf=in:2
	 


= 250, 000

r0Steel = 7:896
g

cm3

� �

c0Steel = 4:569
km
s

� �
sSteel = 1:490

cLSteel
= 5:941

km
s

� �

18.4 Detonation Physics

Now that we have talked about shock in nonreacting solids, it is appropriate to discuss how
these shocks behave in detonating materials. While the interested reader is again referred to
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the references to find more detailed treatment, we shall endeavor to introduce the concept
of detonation by building on what we have previously discussed.
In 1950, Zel’dovich, von Neumann, and Doering developed the so-called ZND model for

detonation [4]. This model is sometimes known as “the simple model” for a reaction. The
model is a one-dimensional model that neglects transport properties. In this model, the
leading part of the detonation wave is a nonreacting shock, a jump discontinuity called
the von Neumann spike. In the model, shocks of sufficient strength raise the density (and
the temperature) above the ignition point beginning the reaction. In the gas behind the final
state of reaction zone is the following flow that was denoted as moving with velocity up in
our previous work.
In the ZND model, there are essentially two conditions that can exist: the unsupported

case and the overdriven case. In the unsupported case, an initial shock starts the reaction,
and it can continue if the conditions are right or it can die out. In the overdriven case, there is
a force that continually drives the wave forward similar to the infinite shock pulses that we
have examined earlier. Our approach here will be to physically describe the types of waves
on a p–x diagram and then to relate these descriptions to the Hugoniot curves.
The unsupported case is depicted in Figure 18.36 as a p–x diagram. In this figure, there is

an initial shock that begins the reaction. The detonation wave velocity is D. This is com-
monly known as the von Neumann spike. This spike begins the chemical reaction that takes
place in the reaction zone immediately behind the shock. The reacted products are said to be
in their final state when they leave the reaction zone. Once the reaction is completed, there is
a rarefaction wave that follows the reaction zone. This is followed by the constant state
where the chemically altered gases follow the rarefaction. Sometimes, we like to imagine
that there is a piston that causes the induced velocity up, and this is depicted in the figure.
Later on, we shall introduce restrictions on this piston velocity that is consistent with our
unsupported definition.
The overdriven case is depicted in a p–x diagram as in Figure 18.37. Again, there is an

initial shock that begins the reaction. This spike begins the chemical reaction that takes place
in the reaction zone immediately behind the shock. The reacted products are said to be in

D

von Neumann
spike 

(v0, P0)

(v3, p3)

p

Steady
reaction

zone 

von Neumann
point 

Unsteady
following

flow

Final state

Shock

up

up

Rarefaction
(Taylor wave)

Constant
state

Piston

x

FIGURE 18.36
Unsupported detonation wave.
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their final state when they leave the reaction zone. In this case, however, there is no rare-
faction wave. Our imaginary piston is pushing the reacted gas at such a velocity that the
rarefaction cannot form. We shall soon see that this piston velocity, in either the unsup-
ported or overdriven case, completely determines the geometry and the velocity of the
detonation wave.
The ZND model has two main parts. First, we must determine all possible steady solu-

tions for the detonation wave velocityD. This will determine what the final state is. Then we
must find a following flow (piston velocity up) that is a function of the detonation velocity. If
this is greater than the minimum value of D, the wave is overdriven. If it is less than the
minimumD, the wave is unsupported. If it is equal to the minimum D, the wave is a steady
detonation wave. For now, we shall assume that the reaction takes place instantaneously.
Thus, the steady reaction zone is a jump discontinuity.
With a reactive flow, there are some nuances associated with the Hugoniot curves. The

first we must recognize is that once the reaction has taken place, we have a different
material than the solid unreacted material we started with. Because of this material change,
we have a different Hugoniot. It will be shifted toward the concave side as depicted in
Figure 18.38. Thus, any further shocks or rarefactions take place using this new curve.
If we assume that the products of the reaction are instantaneously produced by the shock

(i.e., the reaction zone is infinitesimally small in thickness), we obtain the simplest theory.
If we rewrite the conservation of mass equation using the detonation velocity, we obtain

r0D = r1 D − up
� �

(18.242)

Similarly, we can write the conservation of momentum as

p1 − p0 = p0Dup (18.243)

If we eliminate up from these two equations, we obtain the equation for the Rayleigh line:

r20D
2 −

p1 − p0ð Þ
v0 − v1ð Þ = 0 (18.244)

D
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p
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reaction
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von Neumann
point

Steady
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flow
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up
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(v2, p2)

(v0, p0)

Piston

x

FIGURE 18.37
Overdriven detonation wave.
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Here we have used the specific volume because we like to deal with p–v diagrams.
From our Rayleigh line Equation 18.244, we can see that it passes through point (v0, p0)

and has a slope of −r0D2. Some interesting things can be gleaned from this. First, we know
that r0 is positive and finite. If the Rayleigh line was horizontal, it would represent a det-
onation velocity of zero; hence, the detonation would not go anywhere. This is known as a
constant pressure detonation. If the line was vertical, this would represent an infinite det-
onation velocity, so the detonation would happen everywhere at once. This is known as a
constant volume detonation. This is illustrated in Figure 18.39.
If we eliminate D between Equations 18.242 and 18.244, we obtain the equation for the

Hugoniot curve:

u2p = p1 − p0ð Þ v0 − v1ð Þ (18.245)

Thus, if we are given up and D, everything else is known because we can find the
intersection of the Rayleigh line and the Hugoniot curve. If we write the energy equation
using specific volume, we obtain

e1 − e0 −
1
2

p1 + p0ð Þ v0 − v1ð Þ = 0 (18.246)

In this case, remember that the reaction is complete at state 1, andwe have the energy of the
unreacted explosive at state 0. We can then intersect this with the Rayleigh line (Equation
18.244) to determine the state of the explosive products. This is illustrated in Figure 18.40.
If we assume a polytropic gas (an ideal gas with constant specific heats), we can write the

equation of state as

pv = Rt (18.247)

Hugoniot curve of product gases

(v1, p1)

(v0, p0)

p

Hugoniot curve of original unreacted explosive 

v = 1/ρ

FIGURE 18.38
Hugoniot curve for reacted and unreacted material—overdriven detonation wave.
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Hugoniot curve 

Rayleigh line

(v1, p1)

(v0, p0)
Slope = –ρ0D2

Rayleigh line
for D = ∞

Rayleigh line
for D = 0 

v = 1/ρ

FIGURE 18.39
Constant-pressure and constant-volume detonation.
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e1 – e0 – (p1 + p0)(v0 – v1) = 01
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Rayleigh line

= 0ρ0
2D2 –
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(v0 – v1)

Hugoniot curve of original unreacted explosive

(v0, p0)

(v1, p1)

up
2 – (p1 – p0)(v0 – v1) = 0

v  = 1/ρ

FIGURE 18.40
Hugoniots of unreacted and reacted explosive.
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The energy equation then would be

e = CvT − lq (18.248)

with

q = Dh0r (18.249)

where Cv is the (constant) specific heat at constant volume; T is the absolute temperature;
q is the heat released from the reaction; and Dh0r is the heat of reaction of the complete
reaction.
In this equation, l is a parameter that varies from 0 to 1 indicating the degree of reaction:

• l = 0 means the reaction has not even begun.

• l = 1 means the reaction is complete.

In this simplest model, there are only two states, 0 and 1.
We can rearrange Equation 18.247 as follows:

T =
pv
R

(18.250)

If we recall the relationship between specific heat at constant volume and the gas
constant as

R = Cv g − 1ð Þ (18.251)

where g is the ratio of specific heats, we can then say that

T =
pv

Cv g − 1ð Þ (18.252)

Inserting Equation 18.252 into Equation 18.248 yields

e =
pv

g − 1ð Þ − lq (18.253)

Putting this result directly into our Hugoniot equation gives us

p1v1
g − 1ð Þ −

p0v0
g − 1ð Þ − lq −

1
2

p1 + p0ð Þ v0 − v1ð Þ = 0 (18.254)

By defining

μ
2 =

g − 1ð Þ
g + 1ð Þ (18.255)

we can express Equation 18.254 as

p
p

v
v

q
p v

1

0

2 1

0

2 4 2

0 0
1

2
0+

⎛

⎝
⎜

⎞

⎠
⎟ −⎛

⎝
⎜

⎞

⎠
⎟ − + − =μ μ μ μ λ

(18.256)

This is the equation of a hyperbola in the (v/v0, p/p0) plane centered at v/v0 = μ2 and
p/p0 = −μ2. This is a Hugoniot curve that defines all possible end states of the detonation
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reaction. If this is simultaneously solved with a Rayleigh line (Equation 18.244), their
intersection defines the state of the gas emerging from the reaction. The issue now is that the
slope of the Rayleigh line is dependent upon the detonation velocity so one of three families
of solutions exists:

• Two intersections of the Hugoniot by the Rayleigh line

• One intersection of the Hugoniot by the Rayleigh line

• No intersections of the Hugoniot by the Rayleigh line

This is depicted in Figure 18.41.
If the detonation wave speed D is sufficiently high, say, D = D1, then there will be two

intersections of the Rayleigh line with the Hugoniot. If the detonation wave speed D is
sufficiently high, say, D = DCJ, then there will be one intersection of the Rayleigh line with
the Hugoniot. If the detonation wave speedD is sufficiently low, say,D =D2, then there will
be no intersection of the Rayleigh line with the Hugoniot. If there are no solutions, then the
detonation will (under the assumptions of the model) die out. If there are two solutions, we
generally call the upper solution the strong solution, and the lower one, the weak solution
(S and W in Figure 18.41). If there is only one solution, we call this the Chapman–Jouguet
(C–J) solution.
For the strong solution, any disturbance created behind the wave will overtake the wave.

Examine the Hugoniot in Figure 18.41. The slope of a line tangent at S is greater than the
detonation wave Rayleigh line; therefore, any disturbance will move faster than the deto-
nation wave and will eventually catch up with it. Induced flow is subsonic relative to the
wave (i.e., c > D1 − u). In the weak solution, the induced velocity is supersonic with respect
to the detonation wave. The slope of a line tangent at W is smaller than the detonation wave
Rayleigh line; therefore, any disturbance will move slower than the detonation wave and
will fall farther and farther behind. Induced flow is supersonic relative to the wave (i.e.,
c < D1 − up).

v  = 1/ρ

p

(v0, p0)

C – J 

Hugoniot curve of product gases 

Hugoniot curve of original unreacted explosive
up

2– ( p1 – p0)(v0 – v1) = 0

Rayleigh line
D = D1S

W

Rayleigh line
D = D2

Rayleigh line
D = DCJ

e1 – e0 – ( p1 + p0)(v0 – v1) = 01
2

FIGURE 18.41
Possible intersections of Rayleigh line and Hugoniot curves.
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For the C–J solution, any disturbance created behind the wave will maintain its distance
from the wave. Oncemore, look at the Hugoniot of Figure 18.41. Since the line tangent at the
C–J point is the Rayleigh line, any disturbance will propagate at the same speed as the
detonation wave and will keep pace with it. Induced flow is sonic relative to the wave (i.e.,
c = D1 − up). If we recall the slope of the Rayleigh line as

d
d Rayleigh

p
v

p p
v v

⎛
⎝
⎜

⎞
⎠
⎟ = −

−
−

1 0

0 1
(18.257)

we shall divide our Hugoniot Equation 18.246 by (v0 − v1)
2 to obtain

e1 − e0ð Þ
v0 − v1ð Þ2 −

1
2

p1 + p0ð Þ
v0 − v1ð Þ = 0 (18.258)

Now we multiply by 2 and separate the first term into

2

0
0 1

1 0

0 1

d
d Hugoniot

e
v

v v

p p

v v

⎛
⎝
⎜

⎞
⎠
⎟

−( )
+

+( )
−( )

=
(18.259)

Let us distribute the negative sign on the second term to write

2

0
0 1

1 0

0 1

d
d Hugoniot

e
v

v v

p p

v v

⎛
⎝
⎜

⎞
⎠
⎟

−( )
+

− −( )
−( )

=
(18.260)

We can add and subtract p1/(v0 − v1) to obtain

2
2

0 1

1 0

0 1

1

0 1
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Hugoniot

(18.261)

The only way for Equation 18.261 to equal Equation 18.257 is for

d
d Hugoniot-CJ

e
v

p⎛
⎝
⎜

⎞
⎠
⎟ = − 1 (18.262)

If we recall from thermodynamics that on an isentrope,

d
d s

e
v

p⎛
⎝
⎜

⎞
⎠
⎟ = − (18.263)

therefore, the Rayleigh line and Hugoniot curve lie on the isentrope at the C–J point. The
implications of this are

γ = =
−
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⎜

⎞
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v
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(18.264)
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We can use this fact and assuming p0 ≈ 0 by substituting back into our Rayleigh and
Hugoniot equations to state that at the C–J point, the following are true:

pCJ =
r0D2

g + 1ð Þ (18.265)

vCJ =
v0g
g + 1ð Þ =

1
rCJ

(18.266)

upCJ =
D

g + 1ð Þ (18.267)

cCJ =
Dg

ðg + 1Þ (18.268)

We have stated that in this simplest theory, the reaction occurs instantaneously. Thus, as
soon as unreacted material passes through the detonation wave, it is instantaneously
converted to a new material. We can determine this final state by the intersection of the
Rayleigh line with the reacted material Hugoniot curve. In this theory, there are three cases
we must consider: D < DCJ, D = DCJ, and D > DCJ.
IfD <DCJ, the Rayleigh line does not intersect the Hugoniot curve of the reaction products

and we will not have a steady reaction—the reaction will die out. If D = DCJ, the Rayleigh
line intersects the Hugoniot curve of the reaction products at one point; the detonation
wave will continue to move into the unreacted material; and the detonation products will
move away from the wave, relative to the wave, at the sonic velocity. There is only one
solution—the reaction will be steady. If D > DCJ, the Rayleigh line intersects the Hugoniot
curve of the reaction products at two points (strong and weak). We will ignore the weak
solution as inadmissible because the pressure will have to drop. For the strong solution,
the detonation wave will continue to move into the unreacted material. In this case, the
detonation products will move away from the wave, relative to the wave, at a subsonic
velocity.
The speed of the reaction products up is also a parameter we must consider. Sometimes,

this problem is known as the piston problem since we can imagine a piston pushing the
reaction products at a speed up. Once we have determined the detonation velocity, we can
then find up.
First, we shall examine a strong solution where

up > upCJ
(18.269)

In this case, any decrease in piston velocity will generate a rarefaction wave that will catch
up to the detonation wave and the flow will equilibrate to the new velocity. If we have a
situation where

up = upCJ
(18.270)

and there is a rarefaction generated, it cannot catch up to the front because it will move at
the sonic velocity. If we have a situation where

up < upCJ
(18.271)
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then we need a rarefaction wave to reduce the flow velocity from the detonation wave
speed at the front (which, recall, must move at a speed of at least DCJ) to the speed of the
piston. This rarefaction wave will be time dependent. If the piston was moving at zero
velocity, then the tail of the rarefaction would stay attached to the detonation wave while
the head of the rarefaction would remain about halfway between the detonation wave and
the piston. This would be exactly halfway for a polytropic gas with p0 = 0. In common
problems, it will be typical to have the piston velocity less than or equal to zero. All these
conditions are illustrated in Figure 18.42.
Ifwe initiate adetonation at a point x=0and t=0andwehaveup<upCJ

, then a t–xplot of this
situationwould look like Figure 18.43. The detonation frontwouldmove at velocityDCJ, and
after a time t = t1, it would be at position x =DCJt1. Therewould also be a centered rarefaction
wave that, at the same time, wouldmove to position x = upt1. This centered rarefaction wave
is sometimes called a Taylor wave. A particle path is also depicted in the figure.
An equation of state is required to close the set of equations and solve a reacting flow

problem. There are some equations of state that do not explicitly treat the chemical reaction.
When we have such a case, empirical values are obtained for the relationships. Thus, each
new reaction must be calibrated through an experiment. We shall look at an equation of
state that does treat the reaction. In this case, all that is needed is the composition of the
reactants, the initial density, and the heats of formation.
The Kistiakowsky–Wilson equation of state is given by

pv
RT

= 1 + xebx (18.272)

p

x

pCJ
up > upCJ

p

x

pCJ up = upCJ

p

pCJ up < upCJ

x

FIGURE 18.42
Varying behavior of explosive reaction products—overdriven detonation wave. (From Fickett, W., and Davis,
W. C., Detonation: Theory and Experiment, Dover, New York, 1979. With permission.)
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Here

x =
k

v T + qð Þa (18.273)

where k is the effective mixture covolume determined through

k = k
Xm
i=1

ciki (18.274)

In these equations, a, b, k, q, and ki are empirical constants; ki is the covolume of each
species i; and ci is the mole fraction of each species i.
Unless better data are available, it is common to use a = 0.25, b = 0.30, k = 1, and q = 0.
Kamlet and Jacobs empirically fit data to come up with the following definitions at the

C–J state:

pCJ = zr20f (18.275)

DCJ = A
ffiffiffi
f

p
1 + Br0ð Þ (18.276)

f = N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MWavgDh0r

q
(18.277)

In these equations, z, A, and B are empirical constants in SI units (m, kg, s); z = 0.762;
A = 22.3; B = 0.0013; N is the number of moles per unit mass in kilogram-moles per
kilogram;MWavg is the average molecular weight of the gaseous products in kilograms per

t 

Rarefaction wave head
and detonation front 

Rarefaction wavelets

Piston velocity 
Rarefaction wave tail

DCJt1

u = up 

Constant state

Particle path
upt1

p = p2

t = t1

ρ = ρ2

u = 0
p = p0

ρ = ρ0

x

FIGURE 18.43
t–x diagram of reaction products—overdriven detonation wave. (From Fickett, W., and Davis, W. C., Detonation:
Theory and Experiment, Dover, New York, 1979. With permission.)
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kilogram-mole; Dh0r is the specific heat of reaction of the gaseous products in joules per
kilogram; D will be in meters per second; and p will be in pascals if r0 is in kilograms per
cubic meter.
If there are no solids in the reaction products, then [4]

N =
1

MWavg
(18.278)

Equation 18.277 then reduces to

f =
ffiffiffiffiffiffiffiffiffiffiffiffi
NDh0r

q
(18.279)

Equation 18.276 would then be

DCJ = A 1 + Br0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
NDh0r

4

q� �
(18.280)

Equation 18.275 would correspondingly be

pCJ = zr20
ffiffiffiffiffiffiffiffiffiffiffiffi
NDh0r

q
(18.281)

With this in mind, we shall now discuss a procedure for the simplest theory that allows us
to calculate the behavior of the reaction.
To estimate reaction product behavior, we must first develop the balanced chemical

reaction. With this, we need to estimate the heat of detonation. Usually, we know the heat of
formation of the unreacted explosive. We then calculate the heat of formation of the gas
mixture through

D�h0product gas =
X
i

NiD�h
0
f (18.282)

At this point, we must guess at the ideal temperature of the explosive products. This
guess is T∗

2 . We next calculate the ideal ratio of specific heats through

g = 1 +
R
Cv

(18.283)

We also know that

R =
Ru

MW
(18.284)

The universal gas constant is

Ru = 1:99
cal

g‐mol · K

� �
(18.285)

We can obtain the specific heat at constant volume through

Cv = A + BT (18.286)

where the constants A and B are provided in Table 18.1. We can calculate the average
specific heat of the products at our assumed temperature, and then use this value in
Equation 18.283.
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If we use our notation for averages and estimated values, Equation 18.283 becomes

g �
2 = 1 +

NRu

C∗
v

(18.287)

If we recall the energy equation that we will rewrite as

De = Cv T2 − T1ð Þ − q (18.288)

where

q = Dh0r (18.289)

we can rearrange this to

T2 =
De
Cv

+
q
Cv

+ T1 (18.290)

The first term on the RHS is the kinetic energy; the second is heat released. We know from
the energy equation that

De =
1
2

p2 + p1ð Þ v1 − v2ð Þ: (18.291)

If we factor p2 and v2 out of Equation 18.291, we get

Δe p v
p
p

v
v

= +
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⎝
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⎝
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⎠
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1 12 2
1

2

1

2
(18.292)

If we state here that p1 ≪ p2, we can write

Δe p v
v
v

= −⎛

⎝
⎜

⎞

⎠
⎟

1
2

12 2
1

2
(18.293)

TABLE 18.1

Coefficients for Specific Heat at Constant-Volume Calculation

Molecule

Heat of Formation
Dh0f (cal/mol) A B

Covolume k
(cm3/g mol)

H2 0 5.02 0.28 153

CO2 94,450 10.30 0.42 687

CO 26,840 5.82 0.33 386
H2O (g) 57,801 7.13 0.67 108

N2 0 5.68 0.37 353

OH 5,930 5.20 0.26 108
O2 0 5.86 0.28 333

NO −21,600 6.00 0.15 233

C (s) 0 4.52 0.20 0

Note: Cv (cal/g mol K) = A + B [T (K)]
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Recall our definition of the specific heat ratio

γ ≡ =
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(18.294)

Again, if p1 ≪ p2, we can write

γ ≡ =
−⎛

⎝
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⎞
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⎟
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v

p

v

1

21

2

(18.295)

Substitution of Equation 18.295 into 16.293 yields

De =
1
2
p2v2
g

(18.296)

If we now use the ideal gas relation, we obtain

De =
1
2
NRuT2

g
(18.297)

We can now write Equation 18.290 as

T2 =

1
2
NRuT2

gCv
+

q
Cv

+ T1 (18.298)

Now we can use Equation 18.297 to estimate T∗
2 :

T∗
2 =

1
2
NRuT

∗
2

g ∗
2 Cv

∗ +
q

Cv
∗ + T1 (18.299)

To use this equation, we substitute our guessed temperature into the RHS with our cal-
culated g∗2 and C∗

v. If the LHS comes out reasonably close to the RHS, we are done and our
guess was correct. If it does not agree, we use the new value to calculate a new g∗2 and C∗

v
and repeat the process until the solution converges.
To determine the detonation velocity, recall Equation 18.244 that we can rearrange as

D = v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 − p0ð Þ
v0 − v1ð Þ

s
(18.300)

We can factor this equation and use our definition of g to make it look as follows:

D v

p
p
p
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γ (18.301)
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If we multiply and divide the inside by v21, we obtain

D =
v0
v1

ffiffiffiffiffiffiffiffiffiffiffiffi
p1v1g

p
(18.302)

We can use Equation 18.266 to alter v0/v1 to yield

D =
g + 1ð Þ
g

ffiffiffiffiffiffiffiffiffiffiffiffi
p1v1g

p
(18.303)

This can be rearranged as

D = g + 1ð Þ
ffiffiffiffiffiffiffiffiffiffi
p1v1
g

r
(18.304)

And inserting the ideal gas equation of state, we obtain

D = g + 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
NRT
g

s
(18.305)

We can now calculate the ideal detonation velocity D* through

D∗ = g ∗
2 + 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRuT∗

2

g ∗
2 MWexplosive

� �
vuut (18.306)

Once we have these ideal values T∗
2 , g∗2 , andD*, we need to calculate the real values based

upon the covolume correction of Equation 18.272. Using Table 18.1, we determine a co-
volume for the product gas mixture through

k =
X
i

Niki (18.307)

Now we find our correction factor x1 from Equation 18.273 modified as

x1 =
k

v2 T∗
2

	 
a (18.308)

We can now use Tables 18.2 through 18.5 with interpolation to obtain
D
D∗ ,

T2

T∗
2
, x2, and

g2
g�2
.

These are the actual (nonideal) detonation wave velocity, temperature, and specific heat
ratio. To determine the pressure, we now can use

p D
x
x

2 0
2 1

2
1= −⎛

⎝
⎜

⎞

⎠
⎟ρ (18.309)

and to find the induced or material velocity, we use

u D
x
x

P = −⎛

⎝
⎜

⎞

⎠
⎟1 1

2
(18.310)
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TABLE 18.2

Specific Heat Ratio Table for Simple Formula Calculation

g ∗2 = 1:15 g ∗2 = 1:19 g ∗
2 = 1:23 g ∗2 = 1:27 g ∗2 = 1:31 g ∗2 = 1:35

x1 g2=g
∗
2 ∅ g2=g

∗
2 ∅ g2=g

∗
2 ∅ g2=g

∗
2 ∅ g2=g

∗
2 ∅ g2=g

∗
2 ∅

0.1 0.991 −0.004 0.989 −0.006 0.987 −0.007 0.985 −0.008 0.984 −0.010 0.982 −0.011

0.2 0.987 −0.003 0.983 −0.004 0.980 −0.004 0.977 −0.005 0.974 −0.006 0.971 −0.007

0.3 0.984 −0.001 0.979 −0.001 0.976 −0.002 0.972 −0.003 0.968 −0.004 0.964 −0.004
0.4 0.983 −0.001 0.978 −0.001 0.974 −0.002 0.969 −0.002 0.964 −0.002 0.960 −0.003

0.5 0.982 0.000 0.977 0.000 0.972 −0.001 0.967 −0.001 0.962 −0.001 0.957 −0.001

0.6 0.982 0.000 0.977 0.000 0.971 0.000 0.966 0.000 0.961 −0.001 0.956 −0.001
0.7 0.982 0.000 0.977 0.000 0.971 0.000 0.966 −0.001 0.960 −0.001 0.955 −0.001

0.8 0.982 0.001 0.977 0.000 0.971 0.000 0.965 0.000 0.959 0.000 0.954 −0.001

0.9 0.983 0.000 0.977 0.001 0.971 0.001 0.965 0.001 0.959 0.000 0.953 0.000
1.0 0.983 0.001 0.978 0.000 0.972 0.000 0.966 0.000 0.959 0.000 0.953 −0.001

1.1 0.984 0.001 0.978 0.001 0.972 0.001 0.966 0.000 0.959 0.000 0.952 0.000

1.2 0.985 0.001 0.979 0.001 0.973 0.000 0.966 0.000 0.959 0.000 0.952 0.000
1.3 0.986 0.000 0.980 0.000 0.973 0.001 0.966 0.001 0.959 0.001 0.952 0.000

1.4 0.986 0.001 0.980 0.001 0.974 0.000 0.967 0.000 0.960 0.000 0.952 0.000

1.5 0.987 0.001 0.981 0.000 0.974 0.001 0.967 0.000 0.960 0.000 0.952 −0.001
1.6 0.988 0.000 0.981 0.001 0.975 0.000 0.967 0.000 0.960 −0.001 0.951 0.000

1.7 0.988 0.001 0.982 0.000 0.975 0.000 0.967 0.000 0.959 0.000 0.951 −0.001

1.8 0.989 0.000 0.982 0.001 0.975 0.000 0.967 0.000 0.959 0.000 0.950 0.000
1.9 0.989 0.001 0.983 0.000 0.975 0.000 0 .967 0.000 0.959 −0.001 0.950 −0.001

2.0 0.990 0.000 0.983 0.000 0.975 0.000 0.967 0.000 0.958 0.000 0.949 0.000

2.1 0.990 0.000 0.983 0.000 0.975 0.000 0.967 0.000 0.958 −0.001 0.949 −0.001
2.2 0.990 0.000 0.983 0.000 0.975 0.000 0.967 −0.001 0.957 −0.001 0.948 −0.001

2.3 0.990 0.000 0.983 0.000 0.975 0.000 0.966 0.000 0.956 0.000 0.947 −0.001

2.4 0.990 0.000 0.983 0.000 0.975 −0.001 0.966 −0.001 0.956 −0.001 0.946 −0.002
2.5 0.990 0.000 0.983 0.000 0.974 0.000 0.965 −0.001 0.955 −0.002 0.944 −0.002

2.6 0.990 0.000 0.983 −0.001 0.974 −0.001 0.964 −0.001 0.953 −0.001 0.942 −0.001

2.7 0.990 0.000 0.982 0.000 0.973 −0.001 0.963 −0.001 0.952 −0.001 0.941 −0.002
2.8 0.990 0.000 0.982 −0.001 0.972 −0.001 0.962 −0.001 0.951 −0.002 0.939 −0.002

2.9 0.990 −0.001 0.981 0.000 0.971 −0.001 0.961 −0.002 0.949 −0.002 0.937 −0.002

3.0 0.989 0.000 0.981 −0.001 0.970 −0.001 0.959 −0.001 0.947 −0.001 0.935 −0.002
3.1 0.989 −0.001 0.980 −0.001 0.969 −0.001 0.958 −0.002 0.946 −0.002 0.933 −0.003

3.2 0.988 0.000 0.979 −0.001 0.968 −0.002 0.956 −0.002 0.944 −0.002 0.930 −0.002

3.3 0.988 −0.001 0.978 −0.001 0.966 −0.001 0.954 −0.002 0.942 −0.003 0.928 −0.002
3.4 0.987 −0.001 0.977 −0.002 0.965 −0.002 0.952 −0.002 0.939 −0.002 0.926 −0.003
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TABLE 18.3

Temperature Ratio Table for Simple Formula Calculation

g ∗2 = 1:15 g ∗2 = 1:19 g ∗2 = 1:23 g ∗2 = 1:27 g ∗2 = 1:31 g ∗2 = 1:35

x1 T2=T
∗
2 ∅ T2=T

∗
2 ∅ T2=T

∗
2 ∅ T2=T

∗
2 ∅ T2=T

∗
2 ∅ T2=T

∗
2 ∅

0.1 0.994 −0.005 0.992 −0.006 0.991 −0.008 0.989 −0.009 0.988 −0.011 0.986 −0.012

0.2 0.989 −0.005 0.986 −0.006 0.983 −0.007 0.980 −0.008 0.977 −0.010 0.974 −0.011

0.3 0.984 −0.004 0.980 −0.006 0.976 −0.007 0.972 −0.009 0.967 −0.009 0.963 −0.011
0.4 0.980 −0.004 0.974 −0.005 0.969 −0.007 0.963 −0.008 0.958 −0.010 0.952 −0.011

0.5 0.976 −0.005 0.969 −0.006 0.962 −0.007 0.955 −0.008 0.948 −0.009 0.941 −0.011

0.6 0.971 −0.004 0.963 −0.006 0.955 −0.007 0.947 −0.009 0.939 −0.010 0.930 −0.011
0.7 0.967 −0.005 0.957 −0.006 0.948 −0.008 0.938 −0.009 0.929 −0.011 0.919 −0.012

0.8 0.962 −0.005 0.951 −0.006 0.940 −0.008 0.929 −0.009 0.918 −0.010 0.907 −0.012

0.9 0.957 −0.005 0.945 −0.007 0.932 −0.008 0.920 −0.010 0.908 −0.011 0.895 −0.012
1.0 0.952 −0.006 0.938 −0.007 0.924 −0.008 0.910 −0.010 0.897 −0.012 0.883 −0.013

1.1 0.946 −0.006 0.931 −0.007 0.916 −0.009 0.900 −0.010 0.885 −0.012 0.870 −0.013

1.2 0.940 −0.006 0.924 −0.008 0.907 −0.010 0.890 −0.011 0.873 −0.012 0.857 −0.014
1.3 0.934 −0.006 0.916 −0.008 0.897 −0.010 0.879 −0.011 0.861 −0.013 0.843 −0.014

1.4 0.928 −0.007 0.908 −0.009 0.887 −0.010 0.868 −0.012 0.848 −0.013 0.829 −0.015

1.5 0.921 −0.007 0.899 −0.009 0.877 −0.010 0.856 −0.012 0.835 −0.014 0.814 −0.015
1.6 0.914 −0.008 0.890 −0.009 0.867 −0.011 0.844 −0.013 0.821 −0.014 0.799 −0.015

1.7 0.906 −0.008 0.881 −0.010 0.856 −0.012 0.831 −0.013 0.807 −0.014 0.784 −0.015

1.8 0.898 −0.008 0.871 −0.010 0.844 −0.012 0.818 −0.013 0.793 −0.015 0.769 −0.016
1.9 0.890 −0.009 0.861 −0.011 0.832 −0.012 0.805 −0.014 0.778 −0.015 0.753 −0.016

2.0 0.881 −0.009 0.850 −0.011 0.820 −0.013 0.791 −0.014 0.763 −0.015 0.737 −0.017

2.1 0.872 −0.009 0.839 −0.011 0.807 −0.013 0.777 −0.014 0.748 −0.016 0.720 −0.016
2.2 0.863 −0.010 0.828 −0.012 0.794 −0.013 0.763 −0.015 0.732 −0.015 0.704 −0.017

2.3 0.853 −0.010 0.816 −0.012 0.781 −0.014 0.748 −0.015 0.717 −0.016 0.687 −0.017

2.4 0.843 −0.011 0.804 −0.012 0.767 −0.014 0.733 −0.015 0.701 −0.017 0.670 −0.017
2.5 0.832 −0.011 0.792 −0.013 0.753 −0.014 0.718 −0.016 0.684 −0.016 0.653 −0.017

2.6 0.821 −0.011 0.779 −0.013 0.739 −0.014 0.702 −0.015 0.668 −0.016 0.636 −0.017

2.7 0.810 −0.011 0.766 −0.013 0.725 −0.015 0.687 −0.016 0.652 −0.017 0.619 −0.017
2.8 0.799 −0.012 0.753 −0.014 0.710 −0.015 0.671 −0.016 0.635 −0.016 0.602 −0.017

2.9 0.787 −0.012 0.739 −0.014 0.695 −0.015 0.655 −0.016 0.619 −0.017 0.585 −0.017

3.0 0.775 −0.013 0.725 −0.014 0.680 −0.015 0.639 −0.016 0.602 −0.017 0.568 −0.017
3.1 0.762 −0.012 0.711 −0.014 0.665 −0.015 0.623 −0.016 0.585 −0.016 0.551 −0.017

3.2 0.750 −0.013 0.697 −0.015 0.650 −0.016 0.607 −0.016 0.569 −0.017 0.534 −0.016

3.3 0.737 −0.014 0.682 −0.015 0.634 −0.016 0.591 −0.016 0.552 −0.016 0.518 −0.017
3.4 0.723 −0.013 0.667 −0.015 0.618 −0.016 0.575 −0.016 0.536 −0.016 0.501 −0.016
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TABLE 18.4

Detonation Velocity Ratio Table for Simple Formula Calculation

g ∗2 = 1:15 g ∗2 = 1:19 g ∗2 = 1:23 g ∗2 = 1:27 g ∗2 = 1:31 g ∗2 = 1:35

x1 D2=D
∗
2 ∅ D2=D

∗
2 ∅ D2=D

∗
2 ∅ D2=D

∗
2 ∅ D2=D

∗
2 ∅ D2=D

∗
2 ∅

0.1 1.094 0.090 1.093 0.089 1.090 0.089 1.090 0.087 1.089 0.086 1.088 0.085

0.2 1.184 0.088 1.182 0.087 1.179 0.087 1.177 0.086 1.175 0.085 1.173 0.083

0.3 1.272 0.088 1.269 0.087 1.266 0.086 1.263 0.084 1.260 0.083 1.256 0.082
0.4 1.360 0.088 1.356 0.087 1.352 0.085 1.347 0.084 1.343 0.083 1.338 0.082

0.5 1.448 0.088 1.443 0.087 1.437 0.085 1.431 0.084 1.426 0.082 1.420 0.081

0.6 1.536 0.089 1.530 0.087 1.522 0.086 1.515 0.084 1.508 0.082 1.501 0.080
0.7 1.625 0.089 1.617 0.087 1.608 0.086 1.599 0.084 1.590 0.082 1.581 0.081

0.8 1.714 0.090 1.704 0.088 1.694 0.086 1.683 0.084 1.672 0.082 1.662 0.080

0.9 1.804 0.090 1.792 0.088 1.780 0.086 1.767 0.084 1.754 0.082 1.742 0.079
1.0 1.894 0.091 1.880 0.089 1.866 0.086 1.851 0.084 1.836 0.082 1.821 0.080

1.1 1.985 0.092 1.969 0.089 1.952 0.087 1.935 0.085 1.918 0.082 1.901 0.079

1.2 2.077 0.093 2.058 0.090 2.039 0.087 2.020 0.084 2.000 0.081 1.980 0.078
1.3 2.170 0.094 2.148 0.091 2.126 0.088 2.104 0.084 2.081 0.081 2.058 0.079

1.4 2.264 0.095 2.239 0.091 2.214 0.088 2.188 0.085 2.162 0.081 2.137 0.078

1.5 2.359 0.095 2.330 0.092 2.302 0.087 2.273 0.084 2.243 0.081 2.215 0.077
1.6 2.454 0.096 2.422 0.092 2.389 0.088 2.357 0.084 2.324 0.081 2.292 0.077

1.7 2.550 0.097 2.514 0.092 2.477 0.088 2.441 0.084 2.405 0.080 2.369 0.076

1.8 2.647 0.097 2.606 0.093 2.565 0.088 2.525 0.084 2.485 0.079 2.445 0.075
1.9 2.744 0.098 2.699 0.093 2.653 0.088 2.609 0.083 2.564 0.079 2.520 0.074

2.0 2.842 0.099 2.792 0.093 2.741 0.088 2.692 0.082 2.643 0.078 2.594 0.074

2.1 2.941 0.099 2.885 0.093 2.829 0.088 2.774 0.082 2.721 0.077 2.668 0.073
2.2 3.040 0.100 2.978 0.093 2.917 0.087 2.856 0.082 2.798 0.076 2.741 0.071

2.3 3.140 0.100 3.071 0.093 3.004 0.087 2.938 0.081 2.874 0.076 2.812 0.071

2.4 3.240 0.100 3.164 0.093 3.091 0.086 3.019 0.080 2.950 0.074 2.883 0.069
2.5 3.340 0.100 3.257 0.093 3.177 0.086 3.099 0.080 3.024 0.074 2.952 0.069

2.6 3.440 0.101 3.350 0.092 3.263 0.085 3.179 0.078 3.098 0.072 3.021 0.067

2.7 3.541 0.100 3.442 0.092 3.348 0.084 3.257 0.077 3.170 0.072 3.088 0.066
2.8 3.641 0.100 3.534 0.092 3.432 0.083 3.334 0.076 3.242 0.070 3.154 0.064

2.9 3.741 0.100 3.626 0.091 3.515 0.082 3.410 0.076 3.312 0.069 3.218 0.063

3.0 3.841 0.100 3.717 0.090 3.597 0.082 3.486 0.075 3.381 0.067 3.281 0.061
3.1 3.941 0.100 3.807 0.089 3.679 0.081 3.561 0.071 3.448 0.066 3.342 0.060

3.2 4.041 0.099 3.896 0.089 3.760 0.080 3.632 0.072 3.514 0.065 3.402 0.059

3.3 4.140 0.099 3.985 0.088 3.840 0.078 3.704 0.071 3.579 0.064 3.461 0.057
3.4 4.239 0.098 4.073 0.086 3.918 0.077 3.775 0.069 3.643 0.062 3.518 0.056
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TABLE 18.5

Correction Factor Table for Simple Formula Calculation

g∗2 = 1:15 g∗2 = 1:19 g∗2 = 1:23 g∗2 = 1:27 g∗2 = 1:31 g∗2 = 1:35

x1 x2 ∅ x2 ∅ x2 ∅ x2 ∅ x2 ∅ x2 ∅

0.1 0.177 0.159 0.173 0.159 0.171 0.157 0.169 0.156 0.167 0.155 0.165 0.154

0.2 0.336 0.152 0.332 0.150 0.328 0.150 0.325 0.148 0.322 0.147 0.319 0.146

0.3 0.488 0.145 0.482 0.145 0.478 0.144 0.473 0.143 0.469 0.142 0.465 0.141
0.4 0.633 0.142 0.627 0.141 0.622 0.139 0.616 0.139 0.611 0.138 0.606 0.138

0.5 0.775 0.139 0.768 0.137 0.761 0.137 0.755 0.136 0.749 0.135 0.744 0.134

0.6 0.914 0.135 0.905 0.136 0.898 0.134 0.891 0.133 0.884 0.133 0.878 0.132
0.7 1.049 0.133 1.041 0.132 1.032 0.132 1.024 0.131 1.017 0.131 1.010 0.130

0.8 1.182 0.132 1.173 0.131 1.164 0.130 1.155 0.130 1.148 0.129 1.140 0.129

0.9 1.314 0.130 1.304 0.129 1.294 0.129 1.285 0.128 1.277 0.127 1.269 0.127
1.0 1.444 0.129 1.433 0.128 1.423 0.127 1.413 0.127 1.404 0.127 1.396 0.126

1.1 1.573 0.128 1.561 0.127 1.550 0.126 1.540 0.126 1.531 0.125 1.522 0.125

1.2 1.701 0.126 1.688 0.126 1.676 0.126 1.666 0.124 1.656 0.124 1.647 0.124
1.3 1.827 0.126 1.814 0.125 1.802 0.124 1.790 0.124 1.780 0.124 1.771 0.123

1.4 1.953 0.124 1.939 0.124 1.926 0.124 1.914 0.123 1.904 0.122 1.894 0.122

1.5 2.077 0.124 2.063 0.123 2.050 0.122 2.037 0.123 2.026 0.122 2.016 0.122
1.6 2.201 0.123 2.186 0.122 2.172 0.122 2.160 0.122 2.148 0.122 2.138 0.121

1.7 2.324 0.122 2.308 0.122 2.294 0.122 2.282 0.121 2.270 0.121 2.259 0.121

1.8 2.446 0.122 2.430 0.122 2.416 0.121 2.403 0.120 2.391 0.120 2.380 0.120
1.9 2.568 0.121 2.552 0.121 2.537 0.120 2.523 0.120 2.511 0.120 2.500 0.119

2.0 2.689 0.121 2.673 0.120 2.657 0.120 2.643 0.120 2.631 0.119 2.619 0.119

2.1 2.810 0.120 2.793 0.120 2.777 0.120 2.763 0.119 2.750 0.119 2.738 0.119
2.2 2.930 0.120 2.913 0.119 2.897 0.119 2.882 0.119 2.869 0.119 2.857 0.119

2.3 3.050 0.119 3.032 0.119 3.016 0.119 3.001 0.119 2.988 0.118 2.976 0.118

2.4 3.169 0.119 3.151 0.119 3.135 0.118 3.120 0.118 3.106 0.118 3.094 0.118
2.5 3.288 0.119 3.270 0.118 3.253 0.118 3.238 0.118 3.224 0.118 3.212 0.118

2.6 3.407 0.118 3.388 0.118 3.371 0.118 3.356 0.118 3.342 0.118 3.330 0.118

2.7 3.525 0.118 3.506 0.118 3.489 0.118 3.474 0.117 3.460 0.118 3.448 0.117
2.8 3.643 0.118 3.624 0.117 3.607 0.117 3.591 0.117 3.578 0.117 3.565 0.117

2.9 3.761 0.117 3.741 0.117 3.724 0.117 3.708 0.117 3.695 0.117 3.682 0.117

3.0 3.878 0.117 3.858 0.117 3.841 0.117 3.825 0.117 3.812 0.117 3.799 0.117
3.1 3.995 0.117 3.975 0.117 3.958 0.117 3.942 0.117 3.929 0.117 3.916 0.117

3.2 4.112 0.117 4.092 0.117 4.075 0.117 4.059 0.117 4.046 0.117 4.033 0.117

3.3 4.229 0.117 4.209 0.117 4.192 0.116 4.176 0.116 4.163 0.116 4.150 0.116
3.4 4.346 0.116 4.326 0.116 4.308 0.116 4.292 0.116 4.279 0.116 4.266 0.116
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While more realistic models exist for examining detonation, we will refer the interested
reader to the references for further study.

Problem 11
Tetryl (C7H5N5O8) is detonated in standard sea level air. Assuming nonideal behavior and

r = 0:86
g

cm3

� �
, MWmix = 213

g
g‐mol

� �
, and  D�h0f = +4:67

kcal
g‐mol

� �

1. Determine the reaction equation assuming no dissociation
2. Determine the temperature of the products behind the detonation wave T2

Answer: T2 = 3308 [K]
3. Determine the speed of the detonation wave D

Answer: D = 4742
�
m
s

�
4. Determine the pressure behind the detonation wave p2

Answer: p2 = 5.29 [GPa]
5. Determine the induced velocity of the gas behind the wave u2

Answer: u2 = 1296
�
m
s

�

18.5 Explosive’s Equations of State

Modeling the detonation and postdetonation dynamics produced by high explosives relies
on accurate descriptions of the high-explosive behavior. Often such modeling is done using
high-rate continuum models. In this modeling, the equation of state for the detonation
products is the primary modeling description of the work output from the explosive that
causes the subsequent effects. The Jones–Wilkins–Lee (JWL) equation of state for detonation
products is probably the currently most used equation of state for detonation and blast
modeling. The Jones–Wilkins–Lee–Baker (JWLB) equation of state is an extension of the
JWL equation of state that is also commonly used. This section provides a thermodynamic
and mathematical background of the JWL and JWLB equations of state, as well as
parameterization methodology.

18.5.1 JWL Equation of State

The JWL thermodynamic equation of state [5] was developed to provide an accurate
description of highly explosive product expansion work output and detonation C–J state.
For blast applications, it is vital that the total work output from the detonation state to high
expansion of the detonation products be accurate for the production of appropriate blast
energy. The JWL mathematical form is

p A
R

R B
R

R
E= −

⎛

⎝
⎜

⎞

⎠
⎟ −⎡⎣

⎤
⎦ + −
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⎠
⎟ −⎡⎣

⎤
⎦ +∗

∗
∗

∗1 1
1

1
2

2
Γ Γ Γ
V

V
V

Vexp exp
VV∗ (18.311)

where V* is the relative volume; E is the product of the initial density and specific internal
energy; and G is the Grüneisen parameter.
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The equation of state is based upon a first-order expansion in energy of the principal
isentrope. The JWL principle isentrope form is

ps ≡ A exp −R1V
∗½ � + B exp −R2V

∗½ � + V�− G+1ð Þ (18.312)

For JWL, the Grüneisen parameter is defined to be a constant:

G ≡
V∗dp
dE

����
V∗

(18.313)

Energy along the principal isentrope is calculated through the isentropic identity:

dEs = −ps dV
� (18.314)

Inserting Equation 18.312 and integrating yields

Es =
A
R1

exp −R
1
V�� �

+
B
R2

exp −R
2
V�� �

+
C

GV�G (18.315)

This relationship defines the internal energy referencing for consistency, so that the initial
internal energy release is

E0 = ECJ −
1
2
pCJ V∗

0 − V∗
CJ

	 

(18.316)

The general equation of state is derived from the first-order expansion in energy of the
principal isentrope:

p = ps +
dp
dE

����
V∗

E − ESð Þ = pS +
G
V∗ E − ESð Þ (18.317)

Combining Equations 18.312, 18.314, and 18.317 results in Equation 18.311, repeated here
for reference:
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From Equations 18.314 through 18.316, it can be seen that E0 represents the total work
output along the principal isentrope. For blast, this would represent the total available blast
energy from the explosive.

18.5.2 JWLB Equation of State

The JWLB thermodynamic equation of state [6] is an extension of the JWL equation of state.
JWLB was developed to more accurately describe overdriven detonation, while maintain-
ing an accurate description of highly explosive products expansion work output and det-
onation C–J state. The equation of state is more mathematically complex than the JWL
equation of state, as it includes an increased number of parameters to describe the principle
isentrope, as well as a Grüneisen parameter formulation that is a function of specific
volume. The increased mathematical complexity of the JWLB highly explosive equations of
state provides increased accuracy for practical problems of interest. The JWLB mathemat-
ical form is

p =
X
n

Ai 1 −
G

RiV∗

� �
exp −RiV

∗½ � + lE
V∗ (18.318)
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l =
X
i

AliV
∗ + Blið Þe−RliV

�
+ G (18.319)

where V* is the relative volume; E is the product of the initial density and specific internal
energy; and l is the Grüneisen parameter.
The JWL equation of state may be viewed as a subset of the JWLB equation of state where

two inverse exponentials are used to describe the principal isentrope (n = 2), and the
Grüneisen parameter is taken to be a constant (l = G).

18.5.3 Analytic Cylinder Model

An analytic cylinder test model that uses JWL or JWLB equations of state has been devel-
oped, which provides excellent agreement with high-rate continuum modeling. Gurney
formulation has often been used for highly explosive material acceleration modeling [7],
particularly for liner acceleration applications. The work of Taylor [8] provides a more
fundamental methodology for modeling exploding cylinders, including axial flow effects by
Reynolds hydraulic formulation. A modification of this method includes radial detonation
product flow effects and cylinder thinning. The modifications were found to give better
agreement with cylinder expansion finite element modeling [9]. One method of including
radial flow effects is to assume spherical surfaces of constant thermodynamic properties
and mass flow in the detonation products. The detonation products mass flow is assumed
to be in a perpendicular direction to the spherical surfaces. A diagram of a products con-
stant spherical surfaces cylinder expansion due to highly explosive detonation is presented
in Figure 18.44. It should be noted that flow velocities are relative to the detonation velocity
D. If constant detonation product properties are assumed across spherical surfaces, the
following model results using the JWLB thermodynamic equation of state.
The equation for mass conservation can be written as

rCJUCJA0 = rUA (18.320)

Detonation front

Cylinder

D

U

U

D

θ

Ucj

FIGURE 18.44
Diagram of the analytic cylinder expansion model.
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The conservation of momentum equation can be expressed as

pCJr
2
0 − pr2 =

m
π
D2cosq −

m
π
D2 + rU2r2 − rCJU

2
CJr

2
0 (18.321)

The conservation of energy can be written, in intensive form, as
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Assuming an isentropic process, we can express the pressure in terms of the principal
isentrope as

p A Ci
i

i

= −⎡

⎣
⎢

⎤

⎦
⎥ +

⎛

⎝
⎜

⎞

⎠
⎟∑
− +( )

exp
R ρ
ρ

ρ
ρ

0 0
1Γ

(18.323)

where
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We can express the Taylor angle (to be discussed in detail in the next chapter)

aT =
V
2D

= sin
q
2

(18.325)

We can write an expression for the area of a sphere as

A = πr2
2 1 − cos qð Þ

sin2q
(18.326)

Inserting Equation 18.323 into Equation 18.324 and integrating yields
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Using Equation 18.323 in Equation 18.322 yields
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Using Equation 18.321, we obtain
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Finally, combining Equations 18.320, 18.324, and 18.325, we obtain

ρ
ρ
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U r
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2
21

(18.330)

This set of equations is solved for a given area expansion (r/r0)
2 using Brent’s

method [10]. The spherical surface approach has been shown to be more accurate for
smaller charge-to-mass ratios without any loss of agreement at larger charge-to-mass ratios.
It should be recognized that this analytic modeling approach neglects initial acceleration
due to shock processes [11] and is therefore anticipated to be more accurate as the initial
shock process damps out. The model as expressed does not consider the fact that the cyl-
inders thin during radial expansion. One simple way to account for this wall thinning is to
assume that the wall cross-sectional area remains constant and rin and V represents the
inside radius and inside surface wall velocity:

Vout = V
rin
rout

(18.331)

r2out = r2in + r2out0 − r2in0 (18.332)

Figure 18.45 presents Arbitrary Lagrangian Eulerian 3D Code (ALE3D) high-rate con-
tinuum modeling of an explosively filled copper cylinder that is explosively expanded.
Figure 18.46 presents copper cylinder velocity histories from ALE3D compared to analytic

FIGURE 18.45
Modeling at 10 μs intervals for 0.1 in. thick copper cylinder.
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cylinder test modeling using identical JWLB equations of state for TNT and LX-14 using
1 in. diameter charges and 0.1 in. and 0.2 in. thick copper cylinders.

References

1. Cooper, P. W., Explosives Engineering, Wiley-VCH, New York, 1996.
2. Zukas, J. A., Nicholas, T., Swift, H. F., Greszczuk, L. B., and Curran, D. R., Impact Dynamics,

Krieger, Malabar, FL, 1992.
3. Rinehart, J. S., Stress Transients in Solids, Hyperdynamics, Santa Fe, NM, 1975.
4. Fickett, W., and Davis, W. C., Detonation: Theory and Experiment, Dover, New York, 1979.
5. Lee, E. L., Hornig, C., and Kury, J. W., Adiabatic Expansion of High Explosive Detonation Products,

Rept. UCRL-50422, Lawrence Livermore Laboratory, Livermore, CA, 1968.
6. Baker, E. L. An application of variable metric nonlinear optimization to the parameterization of

an extended thermodynamic equation of state, Proceedings of the Tenth International Detonation
Symposium, Edited by J. M. Short and D. G. Tasker, Boston, MA, pp. 394–400, July 1993.

7. Gurney, R. W., The Initial Velocities of Fragments from Bombs, Shells, and Grenades, BRL Report
405, US Army Ballistic Research Lab, Aberdeen Proving Ground, MD, 1943.

8. Taylor, G. I., Analysis of the explosion of a long cylindrical bomb detonated at one end, Sci-
entific Papers of Sir G. I. Taylor, Vol. 111:2770286, Cambridge University Press, Cambridge, UK
(1963), 1941.

9. Baker, E. L., Modeling and Optimization of Shaped Charge Liner Collapse and Jet Formation,
Picatinny Arsenal Technical Report ARAED-TR-92017, Picatinny Arsenal, Morris County, NJ,
January 1993.

10. Brent, R., Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, NJ,
1973.

11. Backofen, J. E., Modeling a material’s instantaneous velocity during acceleration driven by a
detonation’s gas-push, Proceedings of the Conference of the American Physical Society Topical Group
on Shock Compression of Condensed Matter, American Institute of Physics, New York, July 28,
2006, Vol. 845, pp. 936–939, 2005.

0.20

0.15

0.10

0.05W
al

l v
el

oc
ity

 (c
m

/u
s)

0.00

0.20
LX-14

0.15

0.10

0.05W
al

l v
el

oc
ity

 (c
m

/u
s)

0.00

TNT

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Analytic 0.1 in.
Analytic 0.2 in.

ALE3D 0.2 in.
ALE3D 0.1 in.

Analytic 0.1 in.
Analytic 0.2 in.

ALE3D 0.2 in.
ALE3D 0.1 in.

A/A0 A/A0(a) (b)

FIGURE 18.46
Copper cylinder velocity histories from ALE3D compared to analytic cylinder test modeling using identical JWLB
equations of state. (a) Copper cylinder expansion using trinitrotoluene as the explosive fill and (b) copper cylinder
expansion using LX-14 as the explosive fill.

Shock Physics 559



Further Reading

Achenbach, J. D., Wave Propagation in Elastic Solids, North Holland/Elsevier, Amsterdam,
Netherlands, 1975.

Anderson, J. D.,Modern Compressible Flow with Historical Perspective, 3rd ed., McGraw-Hill, New York,
2003.

Billingham, J., and King, A. C., Wave Motion, Cambridge University Press, Cambridge, UK, 2000.
Dremin, A. N., Toward Detonation Theory, Springer, New York, 1999.
Drumheller, D. S., Introduction to Wave Propagation in Non-linear Fluids and Solids, Cambridge Uni-

versity Press, Cambridge, UK, 1998.
Kolsky, H., Stress Waves in Solids, Dover, New York, 1963.
Lieber, C.-O., Assessment of Safety and Risk with a Microscopic Model of Detonation, Elsevier, Amsterdam,

Netherlands, 2003.
Lopanov, A. M., ed., Theory of Combustion of Powder and Explosives, Nova Science Publishers,

New York, 1996.
Zel’dovich, Y. B., and Raizer, Y. P., Physics of Shock Waves and High Temperature Hydrodynamic Phe-

nomena, Dover, New York, 2002.
Zukas, J. A., Nicholas, T., Swift, H. F., Greszczuk, L. B., and Curran, D. R., Impact Dynamics, Krieger,

Malabar, FL, 1992.
Zukas, J. A., and Walters, W. P. (Eds), Explosive Effects and Applications, Springer, New York, 1997.

560 Ballistics



19
Introduction to Explosive Effects

Explosive effects are an important consideration when dealing with projectiles that are
designed to deliver blast, fragments, or even deep penetrating effects such as a shaped
charge jet. Chapter 16 focuses on the penetration events that occurred when a relatively
solid projectile impacted the target. This impact resulted in either a nonpenetration/partial
penetration or a perforation. The latter effect was the sole cause of damage considered.
Before the advent of the kinetic energy (KE) long rod, even armor-piercing projectiles
carried some explosive that would burst the projectile (hopefully) after passage through the
armor of the target. This further damage mechanism would use fragmentation to destroy
the soft targets protected by the armor.
Some projectiles are designed as strictly high-explosive (HE) carriers. While these pro-

jectiles may have some armor-penetration capability, their primary job is to kill soft targets.
A soft target is one that does not require a large amount of KE to kill or one that requires a
large number of small perforations to destroy. Classically, soft targets are personnel, trucks,
aircraft, radars, etc. While a single, well-placed KE projectile would kill these targets, their
vulnerable areas are small; so to increase the probability of kill, a large number of slower-
moving or lower-mass fragments are required.
A further adaptation of focused explosive energy is the shaped charge, which is the

subject of Chapter 18. These devices can penetrate deep into armor and do not require any
delivery KE to be effective. The explosive effects we shall discuss here are used in Chapter 18
but further adapted for shaped charge jet analysis.
In this chapter, we will first discuss how an explosive wave propagates to generate

velocity in the metal casing that it is adjacent to. This will allow us to calculate the velocity
and direction of fragment flight. After this, we will discuss the penetration mechanisms
(very similar to ogival-nosed projectiles and KE long rods) of fragments.

19.1 Gurney Method

The objective of the Gurney method is to obtain algebraic relationships for metal velocity
when an explosive in contact with it is detonated. R. W. Gurney was a researcher who
worked at the US Army Ballistic Research Laboratory in the 1940s and studied explosively
driven metal plates during that time. The method is valid for both shaped charge analysis
and fragmentation problems. The Gurney method assumes that all explosive chemical
energy is converted into the KE of the fragments and expansion of the explosive products.
We call the Gurney energy E the energy that is converted from chemical energy to KE and
thus propels the metal and explosive products. This is in actuality only a portion of the
energy generated during an explosion. We further shall assume that the gaseous detonation
products expand uniformly with constant density.
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The method is based on the conservation of both momentum and energy and results in
answers that are usually within 10% of experimental results. The governing parameter in
the Gurney method is the mass-to-charge (m/c) ratio. This ratio is actually mass per unit
area (or length in some configurations) divided by charge per unit area (or length). The
method works in its basic form for 0.1 ≤ m/c ≤ 10.0. It is believed that the accuracy of this
method comes about through offsetting errors [1]. The method ignores rarefaction waves in
the explosive that would cause the calculated velocity to be too high, while at the same time
the method assumes that density is constant rather than being greatest at the surface of the
charge. This latter assumption causes the calculated velocity to be too low. With these
offsetting errors, the method is surprisingly accurate.
A slapper detonator or open-faced sandwich consists of explosive on one side and a metal

plate on the other side. This configuration is depicted in Figure 19.1. This configuration is
used extensively in explosive characterization tests but has been used in ordnance as well.
When the explosive is detonated, a velocity gradient is assumed to be set up as depicted
in the figure. In Figure 19.1, the y-coordinate is associated with a layer of particles
(a Lagrangian system) and thus can move. The velocities are interpreted as velocities after
all the detonation product gases have expanded to several times their initial volume.
If we assume a constant density throughout the gas products, we can show that

rgasy0 = c (19.1)

where y0 is typically taken as the initial thickness of the explosive since; based on our
assumptions, Equation 19.1 holds true for all time.
The velocity distribution for this configuration is given as

Vgas = V0 + Vð Þ y
y0

− V (19.2)

Without going into the detailed derivation (the derivation can be found in the book by
Walters and Zukas [1], pp. 47–49), we can write the final expression for an open-faced
sandwich as depicted in Figure 19.2 as
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The velocities for the metal fragments in the flat sandwich, cylinder, and tamper
configurations can also be derived [1] as follows. For the flat sandwich as depicted in
Figure 19.3, we have

Vgasmax = V0

Vgas = 0

y = y0

y = 0

Vgas (y)c = Explosive mass/unit area

m = Metal mass/unit area

Detonation side 

Vmetal = V

FIGURE 19.1
Open-faced sandwich configuration with velocity gradient. (FromWalters, W. P., and Zukas, J. A., Fundamentals of
Shaped Charges, CMC Press, Baltimore, MD, 1989. With permission.)
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Many configurations in common use for military applications require a cylindrical con-
figuration where a tube of metal is filled with explosive material. This is also a common
configuration for use in shaped charge jet analysis. For a cylindrical geometry as depicted in
Figure 19.4, we can write
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In some instances, it is necessary that the metallic plates are not of the same mass. This is
commonly referred to as the tamper configuration. The formula that expresses the metal
velocities for this configuration is

Vm =
ffiffiffiffiffiffi
2E

p 1 + A3

3 1 + Að Þ +
n
c
A2 +

m
c

� �−1=2
(19.6)

where

Vn = AVm (19.7)

A =
1 + 2 m=cð Þ
1 + 2 n=cð Þ (19.8)

c

m

FIGURE 19.2
Open-faced sandwich.

c

m/2

m/2

FIGURE 19.3
Flat sandwich.

c

m

FIGURE 19.4
Cylindrical geometry.
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In these cases, the subscript “n” refers to the thicker tamper plate and the subscript “m”

refers to the thinner driven plate. This is illustrated in Figure 19.5.
In some instances, it is informative to examine the behavior of a spherical geometry. The

equation that describes the metal velocity for the configuration illustrated in Figure 19.6 is
given as Equation 19.9. The derivation for this expression is found in the books byCooper [2]
and Carleone [3]:
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(19.9)

Sincem/c, n/c, and therefore A are dimensionless, the term
ffiffiffiffiffiffi
2E

p
has units of velocity, and

it is sometimes called the Gurney characteristic velocity, Gurney velocity, or the Gurney
constant. If analyzing an explosive for which there is no Gurney velocity, an approach
recommended by Kennedy (1970) as mentioned by Marshall and Sanow [2] is to use E ~
0.7HD, where HD is the heat of detonation. For most explosives, 0.61 < E/HD < 0.76.
As the m/c ratio approaches zero, the velocity of the fragments approaches a constant

value. For a flat sandwich, an open-faced sandwich, and an asymmetric sandwich (tamper),
this value is

ffiffiffiffiffiffi
6E

p
. For a cylinder, this value is

ffiffiffiffiffiffi
4E

p
. And for a sphere, this value is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(10=3)E

p
.

The Gurney method is fairly accurate, but of all the configurations, it is the least accurate
for the open-faced sandwich configuration. In this case, the metal velocity would be pre-
dicted too high. Unfortunately, more complex methods are not always worth the increased
accuracy.

c

n

m

FIGURE 19.5
Tamper configuration.

c

m

FIGURE 19.6
Spherical geometry.
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19.2 Taylor Angles

The previous section explains a means of determining the velocity to which a metal, initially
in contact with the explosive, will be projected. This section focuses on the Taylor method
that predicts the angle at which the metal will be thrown given a detonation event.
In the Gurneymethod, the equations assume that the metal moves normal to its surface. If

an explosive wave strikes the metal at some angle, this assumption is no longer valid and
the metal will be projected at some angle. It is in these instances that we need to invoke the
Taylor angle approximation. In this method, we assume that the metal is accelerated to its
final velocity instantaneously. We also assume this is a pure rotation, so no thickness
change or change in length of the metal occurs.
Consider a detonation wave that is propagating from right to left at velocityD as depicted

in Figure 19.7. During this time, the explosive wave moves from the initial position to point
O, the point initially at P moves to P0. If the detonation wave passes point P at time t = 0,
then we can show that

OP = Dt (19.10)

and

PP0 = Vt (19.11)

Then, it follows from geometric arguments noting that V is perpendicular to OP0

sinaT ≈ aT = sin
q
2
=

PP0

2OP
=

Vt
2Dt

=
V
2D

(19.12)

If we know D from the explosive properties and we can estimate V from the Gurney
method, we can get an idea of what q will be. Experiments usually use smear cameras and
measure VA, which relates to V through

VA = D tan q =
VN

cos q
(19.13)

UsuallyV,VN, andVA are within a few percent of one another. This allows us to use them
somewhat interchangeably. Also, for most explosives, V/2D is approximately constant [1].

c

m 

Detonation velocity D t = 0 Original charge
position 

Original metal
position 

O VN
VA

V 

P 

θ /2

θ

P΄

FIGURE 19.7
Taylor angle geometry. (From Walters, W. P.m and Zukas, J. A., Fundamentals of Shaped Charges, CMC Press,
Baltimore, MD, 1989. With permission.)
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If we examine a typical HE shell and assume a detonation velocity D from the fuze and
given that we know the geometry, we can generate a reasonable estimate for the spray
pattern of the fragments. We do this by dividing the shell into segments and solving for the
Gurney velocities and Taylor angles in each segment. We can curve-fit the data. Spread-
sheet programs are great for this task. However, there are specialized codes that perform
this task for us as well.
We shall illustrate the procedure with an example.

Example Problem 1
A projectile is to be fabricated from steel and filled with trinitrotoluene (TNT) as depicted in
Figure 19.8. For a detonation of the fill, graph the fragment velocities in meters per second
and Taylor angles in degrees vs. distance from the nose of the projectile. The required
properties for this calculation are given as follows:

TNT Gurney velocity (2E)1/2 = 2.039 km/s
TNT detonation velocity (D) = 6730 m/s
TNT density = 1.63 g/cm3

Steel density = 0.283 lbm/in.3

Solution: Let us get everything in consistent units, the density of TNT first:

rTNT = 1:63ð Þ g
cm3

� �
2:45ð Þ3 cm3

in:3

� �
2:046ð Þ
1000ð Þ

lbm
g

� �
= 0:059

lbm
in:3

� �
(19.14)

The next step is to get the sectional densities calculated for the fill and the case. We need to
use only four stations as depicted in Figure 19.9 because in the areas of constant cross
section, we need only one data point but the data will be slightly different at the transition
from the cone. We shall list only the calculations for the first location and depict the results
in a table by using the same procedure.
For cross section 1, we have

m1 = rsteel A1case

	 

= 0:283ð Þ lbm

in:3

� �
π 1:0032 − 0:7502
	 


in:2
� �

= 0:394
lbm
in:

� �
(19.15)
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Detonation wave propagation 

FIGURE 19.8
Projectile with an HE fill.
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For the fill, we want the dimension normal to the surface, so we need to determine the
angle of the surface as

α α= −⎛
⎝
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⎞
⎠
⎟ → = °−tan 1 2 25 0 75

10
8 531

. .
. (19.16)

c1 = rTNT A1fill
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Now the fragment velocity follows directly from

V E
m
c

= +⎛
⎝
⎜

⎞
⎠
⎟
−

2
1
2

1 2/
(19.18)

V1

1 2

2 039 1000
0 394
0 107

1
2

= ( ) ⎡
⎣⎢

⎤
⎦⎥
( ) ⎡

⎣⎢
⎤
⎦⎥

+⎛
⎝
⎜

⎞
⎠
⎟ =
−

.
.
.

/km
s

m
km

9997
m
s

⎡
⎣⎢

⎤
⎦⎥

(19.19)

For the Taylor angle, we first need to find the angle q/2 from our formula,

sin
q
2
=

V
2D

=
997ð Þ m=s½ �

2 6730ð Þ m=s½ � = 0:074 ! q
2
= 4:25° (19.20)

This Taylor angle would tend to tilt the fragment at 4.25° in the direction of the detonation
wave (toward the base), but at this point, our nose is canted 8.531° toward the projectile
axis; so the actual angle is 4.25° − 8.531° or −4.281° (see Figure 19.10).
If we take all of our data and put these in a table, we get Table 19.1. Figure 19.11 shows the

graph of these data.
A similar plot could be drawn using the Taylor angles listed in Table 19.1. It must be

noted that the slight velocity increase at the ogive/bourrelet transition (10 in. from the nose)
is an artifact of the way the projectile was discretized. We would normally assume that
there is a smooth tangency point at that location.

Problem 1
A Bangalore torpedo was a device built by the United States during the Second World
War to clear beach (or any other) obstacles. It consisted of a long tube filled with explosive

2.5 in. 2.25 in.  
0.75 in.  

20.00 in.  10.00 in.  

1.003 in. 

5.00 in.  1 2 3 4 

1 in. 

Arbitrary 

FIGURE 19.9
Projectile with an HE fill discretized.
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TABLE 19.1

Gurney Velocities and Taylor Angles for Projectile Fragments

Position
Axial Location

(in.) m = rV/L c = rV/L
Fragment Velocity

(m/s)
Taylor Angle aT

(°)
Projected Angle

a (°)

1 0.000 0.394 0.107 995 4.240 −4.291
2 5.000 0.732 0.426 1370 5.841 −2.690

3 10.000 1.056 0.959 1612 6.877 −1.653

4 11.000 1.056 0.938 1599 6.825 6.825
5 20.000 1.056 0.938 1599 6.825 6.825

2.5 in.  2.25 in. 
0.75 in. 

20.00 in.  10.00 in.  

1.003 in.  

V1

4.821° 

FIGURE 19.10
Taylor angle at the projectile nose tilted to account for ogive angle.
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FIGURE 19.11
Gurney velocity vs. distance from projectile nose.
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that was detonated on the end. Assume that we have a similar device made of steel and
filled with Composition B. The device is 3 ft long. The inside diameter (ID) is constant at
2 in. The outside diameter (OD) varies with length. The first foot of length is 2 1/4 in. in
diameter, the next foot of length is 2 3/4 in. in diameter, and the last foot of length is 3 in.
in diameter. Assuming that we detonate the device at the 2 1/4 in. end, perform the
following:

1. Draw a graph of the fragment velocities vs. length in feet and feet per second.
2. Draw a graph of the Taylor angles in feet and degrees from the device axis.

Assume that the tube is steel with a density of 0.283 lbm/in.3. Assume that the filler
density is 1.70 g/cm3. Assume that the detonation velocity is 7.89 mm/μs and the Gurney
constant is 2.7 mm/μs.

Problem 2
Assume that we used the Paris gun so often that it finally blew up. We want to determine
the velocity of the fragments and their Taylor angles. Assume the section where the
explosion took place is centered over a jacket transition. Therefore, the analysis consists of
two sections, each 4 ft long. The ID of the weapon is 210 mm. The OD of the forward section
is constant at 350 mm. The OD of the jacketed section is also constant at 420 mm. Assume
the explosion begins at the projectile and propagates rearward. Assume that the Gurney
constant for the filler/propellant combination is 1.8 km/s.

1. Draw a graph of the fragment velocities vs. length in feet and feet per second.
2. Draw a graph of the Taylor angles in feet and degrees from the bore axis.

Assume that the tube is steel with a density of 0.283 lbm/in.3. Assume that the filler/
propellant density averages to about 0.6 g/cm3. Assume that the detonation velocity is
16,500 ft/s.

Problem 3
Aprojectile is to be fabricated from steel and filled with TNT as depicted in Figure 19.12. For
a detonation of the fill, graph the fragment velocities in meters per second and the Taylor
angles in degrees vs. distance from the nose of the projectile. The required properties for this
calculation are given as follows:

TNT Gurney velocity (2E)1/2 = 2.039 km/s
TNT detonation velocity (D) = 6730 m/s
TNT density = 1.63 g/cm3

Steel density = 0.283 lbm/in.3

19.3 Mott Formula

The preceding sections outline the procedure for determining the velocity and directions
that the fragments of an exploded projectile will fly when the fuze is initiated. In this
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section, we examine the Mott formula, a method by which we can estimate the mass of the
fragments. We begin by describing the fragmentation process itself.
When we detonate an HE fill in a metallic cylinder (projectile), several things occur. First,

a detonation wave propagates along the axis of detonation. This results in pressure being
generated with the attendant stress being transferred to the metallic casing. At this point,
the case expands and ruptures by shear or brittle failure. If the case expands significantly
and removes significant energy from the detonation products, we have a condition known
as a terminal detonation. If the case expands very little before fragmenting, the result is
known as a prompt detonation. Once the case ruptures, fragments fly in directions
dependent upon the Taylor angle and their individual geometries. At some point, the
fragments may impact a target. The processes of detonation, acceleration, and flight have
been dealt with in detail in our prior work. Here, we shall concentrate on the fragmentation
process and penetration of the fragments themselves.
There are several factors that affect the fragmentation process: explosive brisance (see the

glossary in Appendix A), charge-to-mass ratio, casing diameter, casing wall thickness, and
mechanical properties of the casing. The fragmentation of the casing usually begins at the
OD through the formation of sharp radial cracks. These cracks then join with shear cracks
from the inside of the material (or not, if the material is extremely brittle). The cracks then
coalesce into long, longitudinal cracks. If the casing material is ductile enough, as the case
expands radially and during this process, the wall will thin out somewhat. Finally, the
casing will fragment completely. This is depicted in Figure 19.13.
Some general rules for case fragmentation based on material properties are presented

here. In general, a more brittle material such as gray cast iron will produce a very large
number of small fragments. This is desirable when lethal effects are to be localized to the
projectile area. A precision delivery would be required to use this property most effectively.
A more ductile material will generally produce a smaller number of large fragments.

30°

0.5 in. 0.5 in.

10°
1.212 1.116

2.013

0.956

1.186

0.431

0.5 in.
0.25 in.

0.4 in.

1.567

2.00 2.00

0.546

FIGURE 19.12
Projectile geometry for Problem 3.
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These fragments will be more lethal at longer ranges. This has the advantage of being able to
account for some inaccuracy in projectile delivery. It is generally accepted that changes in
the material microstructure affect this phenomenon.
The fragmentation process directly relates to the effectiveness of the weapon system.

More fragments means a greater probability of a fragment hit Ph. A larger fragment size
translates to a greater probability of a kill, given a hit, Phk. This trade-off must be made
through an effectiveness analysis. In other words, if the target we are looking to kill is
susceptible to even small fragment impacts, then we are better off with smaller fragment
sizes as that will maximize our probability of killing more targets. If, however, we can kill
the target of interest with a large fragment only, we must take the degradation in the hit
probability. Mathematically, we want to maximize the effectiveness through

Ehk = EhPhk (19.21)

where Ehk is our expected number of impacts that kill a given target and Eh is the expected
number of fragments that impact the target.
So what we have learned here is that more, small fragments means greater Eh and lower

Phk, while fewer, larger fragments means smaller Eh and larger Phk. If we would like to
quantify the total probability of a kill Pk, on a given target, we can write

Pk = 1 − e−Ehk (19.22)

There are several ways the fragmentation process can be controlled: explosive selection,
case material selection, heat treatment of the casing, prestressing, preforming, or explosive
wave shaping. One of the important things to remember is that the projectile body design
has to survive rough handling and gun launch. Sometimes, this is at odds with the desired
fragmentation effect and trades must be made. For a given target as well as any collateral
damage effects, control of the fragmentation process translates to control of the following:
fragment velocity, number of fragments, mass of the fragments, shape of the fragments, and
distribution of the fragments (i.e., the fragmentation pattern). We have already mentioned
how some of these contradict one another.
We have discussed some simple analytical approaches to determining fragment veloci-

ties and patterns in previous sections. However, experimentally, an arena test is the best

Ductile material—100% shear 

Partially brittle material—OD—cleavage/fracture, ID—shear 

Shear planes are 45° to tensile
load  

Bearing failure planes are
normal to applied tensile

load    
Brittle material—100% cleavage/fracture failure 

FIGURE 19.13
Fragmentation process.
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verification. An arena test is one in which we detonate the projectile of interest and sur-
round it with evaluation panels. A typical arena test setup is depicted in Figure 19.14. Two
types of panels are commonly used: velocity panels and fragment recovery panels. Velocity
panels are thin aluminum sheets between which there are sometimes placed light sources.
High-speed films taken during the fragmentation event reveal bright spots caused by
perforation. Since the distance is well known, the average velocity can be calculated from
the speed of the camera and time of arrival (appearance of the bright spot).
The recovery panels allow the velocity to be estimated from depths of penetration into the

panels. In mild steel panels, the depth of penetration can be estimated through

P cm
V= ⎛

⎝
⎜

⎞
⎠
⎟P

s1 3
4 3

1000
/

/
(19.23)

Here for mild steel, P is the depth of penetration (in.), c = 0.112,mp is the fragment weight
(oz), and Vs is the striking velocity (ft/s).
For composition board (Celotex) panels, we can write

Vs = 1865
P1=3

m0:1
p

(19.24)

where P is the depth of penetration (in.);mp is the fragment weight (g); andVs is the striking
velocity (ft/s).
In all cases, if the projectile that creates the fragment is moving at a high velocity, this

must be vectorially added to the fragment velocity in the effectiveness analysis. Mathe-
matically, this is given by

V2
0 = V2

projectile + V2
frag (19.25)

where V0 is the resultant initial fragment velocity; Vfrag is the fragment velocity resulting
from the detonation; and Vprojectile is the projectile velocity at the time of detonation.

0° 180°

Fragment recovery panels 

Velocity panels 

Cameras 

Shell 

FIGURE 19.14
Typical arena test setup.
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As we have discussed in Part II, an object that moves through air will lose velocity
because of the mechanisms of drag. This effect is usually more pronounced on fragments
because of their irregular and sometimes inconsistent shapes that present varying frontal
areas to the air stream. To simplify matters somewhat, it is typical to use a drag model that
assumes a constant drag coefficient for fragments. This model is given by

Vs = V0e
−k1x (19.26)

Here we define the constant k1 as we have in the exterior ballistics section by using

k1 =
rS
2m

CD (19.27)

In these equations, Vs is velocity of the fragment at impact; V0 is the initial fragment
velocity caused by the explosion (Gurney velocity); x is the distance from the point of
detonation to the point of impact; S is the presented area of the fragment; CD is the fragment
drag coefficient; r is the density of the ambient air in the vicinity of the detonation; and m is
the mass of the fragment.
Typical drag curves for fragments can be found in the book by Hoerner [4].
The mass of fragments is a critical piece of data in any effectiveness analysis. It is a

daunting task to determine how a naturally fragmenting warhead breaks up. If a warhead
contains preformed fragments, we can assume that the fragment size will be based on the
preformed geometry. Mott [5] proposed the following semiempirical equation for pre-
dicting the number of fragments in a naturally fragmenting warhead:

N m
M
M

m
M

( ) = −
⎛

⎝
⎜

⎞

⎠
⎟0

22 K K
exp (19.28)

where N(m) is the number of fragments greater than mass m; m is the mass of the fragment
(lbm); M0 is the mass of the projectile (lbm); and MK is a distribution factor defined in
Equation 19.29 (lbm1/2):

M Bt d
t
d

K = +⎛
⎝
⎜

⎞
⎠
⎟

5 6 1 3 1/ / (19.29)

where B is a constant specific for the particular explosive/metal combination; t is the wall
thickness (in.); and d is the ID of the projectile (in.).
The Mott coefficients B for mild steel cylinders combined with particular explosives is

given in Table 19.2 [2]. We also know that the charge-to-mass ratio has an effect; this is
implicit in the combination of B, t, and d.

TABLE 19.2

Mott Formula Coefficients for Typical Projectile Fills

Explosive B (Ib1/2 in.−7/6)

Composition B 0.0554

Cyclotol (75/25) 0.0493
Pentolite (50/50) 0.0620

TNT 0.0779

Composition A-3 0.0549
RDX/wax (95/5) 0.0531

Tetryl 0.0681
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When an HE warhead explodes, fragments fly in all directions. As previously mentioned,
these fragments seldom penetrate heavily armored targets—they are effective only against
light armor or soft targets. Because of this, we usually examine fragment impacts against
thin targets. Usually, this means that the target is thinner than any characteristic dimension
of the fragment. Simple shapes are usually considered for ease of analysis; the shapes are
usually cubes and spheres. The penetration behavior of a fragment is typically character-
ized by its residual mass and velocity once it has perforated the target material.
The fragment momentum equation is given by [3]

m0Vs = mrpVrp +mpVrm + I (19.30)

where m0 and Vs are the mass and impact velocity of the fragment relative to the target,
respectively; mrp and Vrp are the residual mass and velocity of the mass center of the
fragment pieces that perforate the target, respectively;mp andVrm are the residual mass and
velocity of the mass center of the target pieces that have broken free of the target, respec-
tively; and I is the impulse transmitted to the target owing to both the target stopping pieces
of the penetrator and the absorption of the shear energy by the target that is required to set
the mass mp free.
The energy equation for a fragment impact is given by [3]

1
2
m0V

2
s =

1
2
mrpV

2
rp +

1
2
mpV

2
rm +

1
2

m0 −mrp

� �
V2

0 + Ef +Ws (19.31)

where Ef is the energy associated with the plastic deformation of masses m0 and mp. It is
calculated as if mass mp were not attached to the target. Ws is the work associated with the
shearing mass mp while it is attached to the target. The third term on the right-hand side
represents the KE of the initial impact that remains with the target.
The residual velocity of a fragment after it perforates a soft target is important in esti-

mating its lethality. Recht [3] showed that an equation can be written for residual velocity of
a fragment as
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V V
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where Vx is a characteristic velocity that is normally replaced by V50. After one calculates
Vr, the impulse transmitted to the target can be calculated as a function of Vx through

I
m V
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1 1
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⎟ (19.33)

This impulse can be normalized to V50 to determine the optimum velocity of a fragment.
For a thin plate, if the penetration velocity is close to V50, the impulse transmitted to the
plate is maximized. In most damage theories, more damage occurs to a component with
more impulse applied. This means that if one would like to damage a component behind
thin armor, for maximum effect, one would like a fragment that gets through the outer
armor without a problem yet impacts the component near its V50.
Much like long-rod penetrators, fragments tend to lose mass as the penetration event

progresses. When a blunt fragment impacts a plate, material is eroded from the contact
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surface. This process occurs continually until the relative velocity between what remains of
the fragment and the contact surface drops below the plastic wave velocity in the fragment
material. Recht [3] developed the following equation for determination of fragment residual
mass:
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(19.34)

In this expression, mp is the plate plug mass (same as earlier); Q = s e=rpU2
c (dimen-

sionless parameter); se is the dynamic yield strength of fragment material; rp is the density
of fragment; and Uc is the plastic wave speed in the fragment material.
With this material, we have completed the treatment of fragmentation. These formulas

can be used with fair accuracy to predict fragment behavior from HE devices.

References

1. Walters, W. P., and Zukas, J. A., Fundamentals of Shaped Charges, CMC Press, Baltimore, MD,
1989.

2. Cooper, P. W., Explosives Engineering, Wiley-VCH, New York, 1996.
3. Carleone, J. (Ed.), Tactical Missile Warheads, American Institute of Aeronautics and Astronautics,

Washington, DC, 1993.
4. Hoerner, S. F., Fluid Dynamic Drag, Hoerner Fluid Dynamics, Vancouver, WA, 1965.
5. Mott, N. F., Fragmentation of shell cases, Proceedings of the Royal Society, London, Vol. A189,

pp. 300–308, 1947.

Further Reading

Zukas, J. A., and Walters, W. P. (Eds.), Explosive Effects and Applications, Springer, New York, 1997.

Introduction to Explosive Effects 575



http://taylorandfrancis.com

http://taylorandfrancis.com


20
Shaped Charges

Although shaped charges can trace their origin to the early 1900s (and some authors suggest
even further back), it was not until the Second World War that their use proliferated.
Monroe in the United States and von Foerster and von Neumann in Europe discovered that
a hollow charge, i.e., a block of explosive with a cavity on the target side, caused a deeper
penetration than a similar charge that had no cavity. About the time of the Second World
War, the combatants determined that if they lined this cavity with a metal and pulled the
charge back from the surface, they achieved an even deeper penetration. The penetration
depths achieved were on the order of several warhead diameters. These warheads were and
still are so effective that they continue to be developed by nearly every nation. It is the goal
of this chapter to describe their behavior and analysis.
Shaped charge warheads fall under the category of chemical energy warheads because

they do not require any kinetic energy (KE) from the delivery system to be effective. This
property makes them ideal for use in items such as shoulder fired weapons, grenades,
mines, and even static cutting charges. The oil industry as well as the steel industry use
them in large numbers to clear plugs or open up pores in rock to allow oil to flow into well
shafts. These devices are also used to cut large masses of steel plate and bars.
The process through which a shaped charge works is as follows:

1. An explosion is generated which passes a detonation wave over the liner.

2. The liner collapses from the rear forward and is squeezed by the pressure of the
expanding gases.

3. A jet of material forms, the tip of which moves at high velocity toward the target.

4. The remaining liner material is formed into a slug which follows the jet at a much
lower velocity (approximately 1/10 the tip velocity).

5. The tip then penetrates the target material and the overall length of the jet is
decreased until either the target is perforated or the entire jet is consumed.

This process generates high temperatures and pressures. As we have previously dis-
cussed, pressure much higher than the ultimate stress in the material allows us to model the
material as an inviscid fluid. This has led to several common misconceptions. Shaped
charges do not burn through the armor plate. This is believed to have been the misconstrual
of the acronym HEAT. which actually stands for high explosive anti-tank. As we have
stated earlier, high temperatures are generated during a penetration event, but it is the KE
of the jet that does the work. Shaped charges do not turn the liner into a liquid. When
pressures are orders of magnitude above the yield strength of the material (and they are
during a jet formation), we can treat the problem as a fluid dynamics problem even though
the liner material really is not a fluid. If we could somehow magically stop the detonation
process, we would have a solid rod of material. The formation of a typical shaped charge jet
is shown as Figure 20.1.
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The standoff s of a shaped charge is the distance from the base of the liner or cavity to the
target. This is illustrated in Figure 20.2. It is known that the standoff distance in shaped
charges has an optimum value for armor penetration. This is depicted in Figure 20.3. The
penetration performance is very sensitive to the standoff and performance rapidly decays if
it is too large or too small. Explosive reactive armor is an effective way to defeat a shaped
charge by breaking the jet up on impact, feeding additional material to erode the jet, and
altering the standoff. Standoff plates (you can see these in many Second World War pho-
tographs of German vehicles) and sandbags defeat shaped charges by respectively affecting
the standoff or forcing the jet to be consumed.
In addition to standoff, detonation symmetry is also very important. A slight asymmetric

geometry of the liner or charge ignition will result in inefficient or improper formation. This
is why most liners designed for military use are machined to precise tolerances. Charge-to-
liner mass (c/m) ratio greatly affects the velocity of the jet. If this ratio is too high, the liner
can fragment and fail to penetrate. If this ratio is too low, the jet velocity will not be high
enough for efficient penetration. Many authors use the inverse of this parameter as the (m/c)
ratio. The liner geometry has a pronounced effect on the jet formation because it affects how
the explosive wave collapses the liner and forms the jet.
Liner material also has an effect on penetration. This is illustrated in Figure 20.3 for

several different materials.

Explosive billet

Original shape of liner

JetSlug

FIGURE 20.1
Shaped charge jet formation.

s 

Target 

FIGURE 20.2
Standoff s of a shaped charge.
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20.1 Shaped Charge Jet Formation

The previous section introduced some general terms commonly used in discussing shaped
charges. In this section, we shall examine methods of predicting jet formation. Shaped
charge jet penetration is critically dependent upon proper formation of the jet. The ability to
predict this formation allows the designer to predict performance and even to optimize the
design. Although computational techniques now allow great accuracy in predicting jet
formation and penetration, it is always good practice to use a simplified analytical tech-
nique as a check of the computer models. While the analytic solution, with its associated
idealizations, is not as accurate as the computational solution, it will be close enough to gain
an appreciation of whether the code is outputting erroneous answers or not.
Birkhoff and others developed a theory in 1948 [1] that assumed that the pressures

generated by the explosive products are so great that the liner material strength could be
neglected. Because of this, liners are typically modeled as inviscid, incompressible fluids.
This was important because the modeling was greatly simplified. Birkhoff assumed that the
liner particles were instantly accelerated to their final collapse velocity. It was further
assumed that this velocity was constant throughout the formation. We know from expe-
rience that this is incorrect, as the tip of the jet moves faster than the tail or slug. This
analysis method was later modified by Pugh in 1952 to include the velocity gradient. The
model became only slightly more complicated, but the accuracy improved.
The theory that was developed is now known as the Birkhoff–MacDougal–Pugh–Taylor

theory. It is a fairly accurate, simple-to-use theory that allows for rapid estimates of jet and
slug velocities. The theory assumes no velocity gradient in the jet and that the particles of
the liner are instantly accelerated to their final velocity.
The theory models the liner collapse as follows. We shall use the nomenclature intro-

duced by Walters and Zukas [2] to describe this process, which is illustrated in Figure 20.4.
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FIGURE 20.3
Effect of standoff on jet penetration using 45° conical liners.
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Whenwe initiate an explosive behind a liner, after a time, the detonation wave will pass any
point of interest as depicted in Figure 20.4. The liner is assumed to collapse inward at a
velocity V0. We assume an instantaneous angle (2b) between the moving walls of the liner,
which is greater than the initial angle (2a). We assume that the detonation wave moves at a
constant velocity D. If we imagine ourselves in a Lagrangian reference frame attached to
point P in Figure 20.4, the liner material can be assumed to move inward along P′P and out
along PA with the pressure forces perpendicular to this motion. From the geometry in
Figure 20.4, we can show that [1]

V1 =
V0 cos b − að Þ=2ð Þ

sin b
(20.1)

The trigonometry for this is fairly detailed and well developed in the book by Carleone
[1]. If an observer was moving with point A as depicted in Figure 20.5, he/she would see
point P approaching at a velocity

V V V2 1 0
2

= + −⎛
⎝
⎜

⎞
⎠
⎟cos sinβ β α (20.2)
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FIGURE 20.4
Illustration of liner collapse. (From Walters, W. P., and Zukas, J. A., Fundamentals of Shaped Charges, CMC Press,
Baltimore, MD, 1989. With permission.)
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FIGURE 20.5
Jet formation in the Lagrangian frame. (FromWalters, W. P., and Zukas, J. A., Fundamentals of Shaped Charges, CMC
Press, Baltimore, MD, 1989. With permission.)
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We can solve for the detonation velocity D through

D
cosa

=
V0 cos b − að Þ=2ð Þ

sin b − að Þ (20.3)

If we were riding along in our coordinate system at point A, we would see both the slug
and the jet moving away from us at velocity V2 and the liner moving toward us at the same
velocity. As a reminder, we are assuming inviscid, incompressible flow in this case. If our
coordinate system was stationary (Eulerian), however, we would see the jet velocity as

Vj = V1 + V2 (20.4)

and the slug velocity as

Vs = V1 − V2 (20.5)

The mass of the system must be conserved, therefore at any time t, we can write

m = mj +ms (20.6)

where mj is the jet mass per unit length into the paper; ms is the slug mass per unit length
into the paper; and m is the liner mass per unit length into the paper.
If we now write the conservation of axial momentum, we obtain

mV2 cos b = msV2 −mjV2 (20.7)

We can solve Equations 20.6 and 20.7 simultaneously to write

mj =
1
2
m 1 − cos bð Þ (20.8)

ms =
1
2
m 1 + cos bð Þ (20.9)

It must be noted that this model assumes that the jet and slug velocities as well as their
cross-sectional areas are constant. With all these assumptions, we can write the velocities of
the jet and slug, respectively, in terms of our known detonation velocity as
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We can see from these equations that as a ! 0, the jet velocity approaches a theoretical
maximum.
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But b ! 0 as a ! 0, so

Vmax = 2D (20.13)

Thus, the maximum jet velocity can never exceed twice the detonation velocity of the
explosive.
Another noteworthy observation is that as a ! 0 and b ! 0, Vs ! 0. Also, as a ! 0, we

approach a cylindrical geometry of the liner. Cylindrical liners are well known for their high
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velocity and low mass jets. If we could somehow generate an explosive wave that moved
perpendicular to a conical liner, we would see that b = a and the velocities of the jet and
slug, respectively, could be expressed as

Vj =
V0

sina
1 + cosað Þ (20.14)

Vs =
V0

sina
1 − cosað Þ (20.15)

With this type of detonation wave, the jet velocity could be increased without bound by
decreasing a. However, we must note that as a ! 0, V0 ! 0 and mj ! 0. Therefore, the
momentum would also approach zero as shown in Equation 20.16:

mjVj =
mV0

2
sina ! 0 (20.16)

To perform calculations either by hand or with the help of a spreadsheet, the following
steps are provided:

• Determine the steady-state jet and slug velocities from Equations 20.10 and 20.11.

• Calculate the masses from Equations 20.8 and 20.9.

• Determine the momentum or energy or other parameters of interest from the
results.

This procedure tends to overpredict jet velocities somewhat. Also, since no velocity
gradient is present, jet stretching will not be predicted. Let us now look at an example of the
procedure.

Example Problem 1
A conical-shaped charge liner is to be fabricated from steel and filled with trinitrotoluene
(TNT) as the explosive. The thickness of the liner is to be 0.1 in., and the half angle a is to be
45°. The length of the liner is 5 in., and the charge outside diameter (OD) is 12 in. Determine
the following using the Birkhoff et al. theory:

1. Mass of the jet
2. Mass of the slug
3. Velocity of the jet
4. Velocity of the slug

The required properties for this calculation are given as follows:

• TNT Gurney velocity (2E)1/2 = 2.039 km/s
• TNT detonation velocity (D) = 6730 m/s
• TNT density = 1.63 g/cc
• Steel density = 0.283 lbm/in.3

Solution:
The first thing we need to do is get everything in consistent units, the density of TNT first.
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Next, we need to break the problem into sections and determine the Gurney velocity for
each section. (For this case, we shall use five 1 in. long sections as shown in Figure 20.6.)
We need to determine, for each section, the liner mass-to-charge mass ratio to determine

our velocity V0 for our later calculations. With our truncated cones, we will simply assume
that each section is a cylinder at the average radius of the section. Bill Walters [3] suggested
that to determine this ratio, we use dimensions of the charge perpendicular to the liner.
Then we can write the masses of the liner and charge as follows:
For cross section 1, we have
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Now the liner segment velocity follows directly from
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We can now use Equation 20.3 to find the angle b:

D
cosa

=
V0 cos b − að Þ=2½ �

sin b − að Þ (20.21)

It is convenient to solve this using iteration. Once we have these results, we can deter-
mine the jet mass and the slug mass using an average of the angles b. As you can see from

1 2 3 4 5

5.000 6.000

45°

FIGURE 20.6
Discretization of a shaped charge liner.
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our overall results contained in Table 20.1, when using this method, this angle does not vary
too much. Our average b is 61.768°, so we have
Answer:

1: mj =
1
2

2:223ð Þ lbm½ � 1 − cos 61:768°ð Þ½ � = 0:586 lbm½ � (20.22)

2: ms =
1
2

2:223ð Þ lbm½ � 1 + cos 61:768°ð Þ½ � = 1:637 lbm½ � (20.23)

The overall liner mass is the sum of all our individual masses tabulated in Table 20.1 (or it
could be calculated directly from the geometry). It is 2.223 lbm.
The jet and slug velocities are obtained for a conical liner from Equations 20.10 and 20.11:
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The answers are shown in Table 20.1. We could also have taken an average as well. For the
slug velocity, we have
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All our data for this problem are summarized in Table 20.1.
We shall just briefly discuss the PER theory, details of which can be found in the book by

Carleone [1]. The PER theory was developed by Pugh, Eichelberger, and Rostoker at the US
Army Ballistic Research Laboratory. The theory assumes a variable velocity during liner
collapse, which improves the correlation with experiment. Typically, as a liner collapses, the
collapse velocity decreases as the detonation wave progresses from the apex of the cone to
its base. This makes sense based on what we have learned so far since there is usually a
smaller explosive mass compared to the liner mass. The end result is that the tip of the
formed jet moves faster than the tail or slug, stretching the jet.
When the velocity of collapse decreases with time, the collapse angle b actually increases

as does the amount of material entering the jet. This is illustrated in Figure 20.7. If we
examine this figure, we see that as the detonation wave travels from point P to Q, the
element originally at P collapses to J. From the figure, we also see that the element at P′
arrives atM at the same time that P reaches J. If the collapse velocity were constant, point P′
would arrive at N instead, and the collapsed shape would be conical as we have seen in
Figure 20.4.

TABLE 20.1

Results of Computations for Jet and Slug Velocities

Position m = rV/L c = rV/L Segment Velocity V0 (m/s) b (°) Vj (m/s) Vs (m/s)

1 0.089 13.299 2864 62.310 5115.384 1280.944
2 0.267 12.928 2826 62.074 5063.423 1262.104

3 0.445 12.187 2784 61.818 5006.654 1241.659

4 0.622 11.075 2734 61.516 4939.138 1217.534
5 0.800 9.592 2669 61.122 4850.150 1186.366

Total 2.223 59.082 Average 61.768 4994.950 1237.721
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Since the derivation of this theory is adequately addressed in the book by Carleone [1], we
will not derive the detailed mathematics behind it. The interested reader is referred to that
work for the details.
The results based on Figure 20.7 yield an instantaneous velocity for the tip of the jet and

the tail of the slug as given in the following:
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Here u is defined as

u =
D

cosa
(20.28)

At any time, the mass must be in either the liner, the slug, or the jet, so we can write

dm = dmj + dms (20.29)

where

dmj

dm
= sin2 b

2
(20.30)

dms

dm
= cos2

b
2

(20.31)

We can now see that Equations 20.17 through 20.22 depend upon the cone angle 2a, the
detonation velocity D, the collapse angle b, and V0.
Nowwe shall let t be the elapsed time between the instant the detonation wave passes the

apex of the cone and define

T =
x
D

=
x

u cosa
(20.32)
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FIGURE 20.7
Geometry of the PER theory. (From Walters, W. P., and Zukas, J. A., Fundamentals of Shaped Charges, CMC Press,
Baltimore, MD, 1989. With permission.)
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We can then express the position of any particle of the liner, initially at a distance x from the
apex in cylindrical coordinates as

Z = x + V0 t − Tð ÞsinA (20.33)

r = x tana − V0 t − Tð ÞcosA (20.34)

where we define

A = a + d (20.35)

From this, the angle b can be shown to be

tan b =
sina + 2 sin d cosa − x sina 1 − tanA tan dð Þ V0

0=V0ð Þ
cosa − 2 sin d sinA + x sina tanA + tan dð Þ V0

0=V0ð Þ (20.36)

where

V0
0 =

dV0

dx
(20.37)

Equations 20.17 through 20.27 are typically solved by computer to determine the formation
parameters and describe the jet formation. It is beyond our scope to discuss the coding of
the equations. Results of this model are shown in the book by Carleone [1].

Problem 1
A conical-shaped charge liner is to be fabricated from copper and filled with composition B
as the explosive. The thickness of the liner is to be 0.1 in. and the half angle a is to be 45°. The
length of the liner is 3 in., and the charge OD is 7 in. Determine the following using the
Birkhoff et al. theory:

1. Mass of the jet
Answer: mj = 0.302 [lbm]

2. Mass of the slug
Answer: ms = 0.990 [lbm]

3. Velocity of the jet
Answer: Vj = 4752 [m/s]

4. Velocity of the slug
Answer: Vs = 1086 [m/s]

Note that depending on how you discretize the problem, you may get a somewhat (but not
too) different answer.
The required properties for this calculation are given as follows:

• Composition B Gurney velocity (2E)1/2 = 2.35 km/s
• Composition B detonation velocity (D) = 7890 m/s
• Composition B density = 1.717 g/cm3

• Copper density = 0.323 lbm/in.3

Problem 2
A conical-shaped charge liner is to be fabricated from copper and filled with composition B
as the explosive. The thickness of the liner is to be 0.15 in., and the half angle a is to be 30°.
The length of the liner is 5 in., and the charge OD is 8 in.
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1. Determine the following using the Birkhoff et al. theory:

a. Mass of the jet
Answer: mj = 0.410 [lbm]

b. Mass of the slug
Answer: ms = 1.787 [lbm]

c. Velocity of the jet
Answer: Vj = 7500 [m/s]

d. Velocity of the slug
Answer: Vs = 960 [m/s]

2. Estimate the jet length assuming constant velocity of the tip and slug if the standoff
is 1 m (use the fastest tip velocity and the average slug velocity).
Answer: L ≈ 0.875 [m]

The required properties for this calculation are given as follows:

• Composition B Gurney velocity (2E)1/2 = 2.79 km/s
• Composition B detonation velocity (D) = 7910 m/s
• Composition B density = 1.717 g/cm3

• Copper density = 0.323 lbm/in.
• Steel density = 0.283 lbm/in.3

20.2 Shaped Charge Jet Penetration

Now that we have discussed how shaped charge jets are formed, we will move to how they
penetrate their targets. As previously mentioned, shaped charge jets are formed at relatively
close standoffs. The jet stretches from the instant it is formed with velocities ranging from 10
(tip) to 2 km/s (tail). Because of this stretching, the jet will eventually break up, thereby
reducing penetration because of drift/tumbling of the jet segments. This is known as
particulation.
The penetration performance of shaped charge jets is dependent upon whether or not

they are continuous. The further away from a target that the jet is formed, the more the jet
will stretch. If this standoff distance is large enough, the jet will particulate. This particu-
lation complicates the penetration calculation.
The simplest penetration formula is attributed to Birkhoff [2], who assumed a constant

velocity of the jet and thus described jet penetration through a momentum balance

1
2
rj V −Uð Þ2 = 1

2
rtU

2 (20.38)

where rj is the jet density; rt is the target density; U is the velocity of the bottom of the hole
in the target; and V is the (constant) velocity of the jet.
By solving for U in the aforementioned equation and noting that the total penetration can

be described as follows, we can obtain an expression for the depth of penetration:
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P tð Þ =
ðt
0

U tð Þdt (20.39)

Here P(t) is the total penetration of the jet at time t.
From the aforementioned integral, we obtain the formula from the penetration of a

continuous velocity jet (called the density law):
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Here lj is the length of the jet. Equation 20.40 states that for a constant velocity jet, the
penetration is dependent upon only the jet length and the density ratio. If the jet is seg-
mented, Pack and Evans [2] proposed the following relation:

2rj V −Uð Þ2 = rtU
2 (20.41)

which implies

P l=
⎛

⎝
⎜

⎞

⎠
⎟j

j

t

2 1 2ρ
ρ

/

(20.42)

where lj is the length of the jet including the gaps between segments and rj is the jet density
calculated based on the length (including gaps) so that the overall density will be lower than
a continuous jet.
In this case, P ends up usually being lower. We must note that there are cases in which a

particulated jet can actually penetrate deeper into the target material than a nonparticulated
jet [2].
As the jet velocity decreases, there is a point where the constitutive strength of the

target material becomes important. There are formulas by Pack and Evans as well as by
Eichelberger that account for this [2].
The expressions developed so far assume that the jet velocity is constant. If this

assumption does not provide an accurate enough answer, we can use the formulas derived
by DiPersio and Simon [2] to account for jet stretching. This technique uses three different
formulas dependent upon where particulation occurs.
If the jet is continuous throughout the penetration event, we can write
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(20.43)

If particulation occurs sometime during the penetration event,

P =
1 + gð Þ V0t1ð Þ 1= 1+gð Þð Þðg =ðS1+g ÞÞ − Vmint1

g

( )
− s (20.44)

If particulation occurs before penetration,

P =
V0 − Vminð Þt1

g
(20.45)

In Equations 20.43 through 20.45, V0 is the jet tip velocity; s is the distance from the target
surface to the virtual origin of the jet (this is a theoretical origin derived from examination of
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a velocity–distance curve—to be explained later); t1 is the time from jet formation to
particulation; Vmin is the minimum jet velocity capable of penetrating the target material;
and g is defined as

γ ρ
ρ
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⎠
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t

j

1 2/

(20.46)

Vmin is a value that is usually between 2 and 8 km/s. There are various methods to
calculate Vmin, but we usually assume 2 km/s for the purposes of rough analysis. Some
authors use Umin—as we shall see later.
Vmin (or Umin) for a metallic target can be calculated through [4]

Vmin
cm
μs

� �
= Umin

cm
μs

� �
= 0:044 + 0:000206ð Þ BHNð Þ (20.47)

Note that this expression uses the Brinnell hardness number (BHN) of the target as a
parameter affecting penetration.
Another form of the nonuniform velocity jet equations similar to the DiPersio and Simon

equations is as follows [4]. For very short standoffs, defined as

0 ≤ s ≤ 1 + gð ÞVmint1
1 + gð ÞVmin

V0

� �1=g
(20.48)

the depth of penetration can be found through

P = s
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� �1=g
− 1

( )
(20.49)

or

P =
1 + gð Þ V0t1ð Þ 1= 1+gð Þð Þðg =ðS1+g ÞÞ − Vmint1

g

( )
− s (20.50)

For moderate standoffs, defined as

1 + gð ÞVmint1
1 + gð ÞVmin

V0

� �1=g
≤ s ≤ V0t1 (20.51)

the depth of penetration is given by

P =
1 + gð Þ
g
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1
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and for long standoffs where
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the penetration can be found through

P =
V0t1
g 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmint1ð Þ V0t1 + g sð Þ

p
(20.54)
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Mott, Pack, and Hill [4] developed a theory that accounts for the material behavior of the
jet. This theory is known as the MPH theory. In this theory, the density of a shaped charge
jet is given by

rj =
mj

Vj
=

mj

Ajlj
(20.55)

In Equation 20.55, we have used the density rj; mass mj, cross-sectional area Aj, length lj,
and volume Vj, of the jet. The MPH theory states that the penetration depth is given by

P = lj

ffiffiffiffiffiffiffi
lrj
rt

s
(20.56)

Here the parameter l is a factor which accounts for how the material behaves:

• For pure hydrodynamic behavior, l = 1.

• For a particulated jet, l = 2.

• For a jet which is hydrodynamic but particulates, 1 < l < 2.

If we insert Equation 20.46 into Equation 20.55, we obtain

P =

ffiffiffiffiffiffiffiffiffiffiffi
lmjlj
r tAj

s
(20.57)

We can modify this formula for the effect of standoff distance by assuming the distri-
bution of the jet mass is linear with its length or, mathematically,

lj = l0 1 + asð Þ (20.58)

Here l0 and a are constants and s is the standoff distance.
If we assume pure hydrodynamic behavior, then the volume of the jet is a constant and

l = 1. We know that

Vj = Ajlj (20.59)

and

P =

ffiffiffiffiffiffiffiffiffi
mjlj
rtAj

s
=

ffiffiffiffiffiffiffiffiffi
mjl2j
rtVj

s
= lj

ffiffiffiffiffiffiffiffiffi
mj

rtVj

s
(20.60)

If we include the effects of standoff, we can write

P = l0 1 + asð Þ
ffiffiffiffiffiffiffiffiffi
mj

rtVj

s
(20.61)

This states that P linearly varies with s or, mathematically,

P ∝ (1 + as) (20.62)

This behavior is graphically shown in Figure 20.8.
If we assume the jet particulates, then the cross-sectional area of the jet is a constant and

l = 2. Then Equation 20.57 can be written as
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P =

ffiffiffiffiffiffiffiffiffiffi
2mjlj
rtAj

s
(20.63)

If we include the effects of standoff, we can write

P =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjl0(1 + as)

rtAj

s
(20.64)

This states that P varies with the square root of (1 + as) or, mathematically,

P ∝ (1 + as) (20.65)

This behavior is illustrated in Figure 20.9.
If we assume that the jet is somewhat hydrodynamic and particulates, then both the

volume and area of the jet are variables and 1 < l < 2. In this case, Equation 20.57 applies
directly. If we modify this expression to include the effects of standoff, we can write

Jet at time t Jet at time t + Δt

Pe
ne

tr
at

io
n 

de
pt

h,
 P

Standoff s

P ∝ (1 + αs)

FIGURE 20.8
Hydrodynamic jet behavior.
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FIGURE 20.9
Particulating jet behavior.
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P =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmjl0(1 + as)

rtAj

s
(20.66)

This states that P varies with the square root of l(1 + as) or, mathematically,

P ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 1 + asð Þ

q
(20.67)

This behavior is illustrated in Figure 20.10.
The MPH theory can be modified to account for jet waver. Jet waver is the phenomenon

whereby the particles in the jet move off the flight axis as illustrated in Figure 20.11. This is
caused by imperfections in the formation, strain hardening of the jet material, and subse-
quent breakup that provides for asymmetric particles. These particles begin to rotate with
the end result being a jet that does not completely exert its energy in deepening the hole in
the target but widens the hole as the particles impact the sides. We can account for this by
adjusting the area term through

P λ (1 + αs)
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FIGURE 20.10
Mixed mode jet behavior.
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FIGURE 20.11
Wavering jet behavior.
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Aj = A1 1 + Bs2
	 


(20.68)

Here A1 and B are empirically obtained constants. This expression can be substituted
directly into our three penetration equations to yield

P =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjl0 1 + asð Þ
r tA1 1 + Bs2ð Þ

s
(20.69)
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s
(20.70)

P =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmjl0 1 + asð Þ
r tA1 1 + Bs2ð Þ

s
(20.71)

Here Equations 20.69 through 20.71 replace Equations 20.61, 20.64, and 20.66, respec-
tively. As we can see from Figure 20.11, we can use each of these equations to determine the
depth of penetration dependent upon the standoff distance.
Once we have decided upon the proper particulation model to use for the penetration

event,we determine the depth of penetration. To do this, we need to examine the penetration
event from a Lagrangian viewpoint. If we were watching the stationary target as shown in
Figure 20.12, we would see a hole that is deepening while the jet was shortening. In this
figure, the rear of the jet would have a faster velocityV than the speed at which the hole was
advancing U. It is convenient to analyze this problem from a Lagrangian viewpoint. If we
invoke the principle of superposition, we will obtain a situation as depicted in Figure 20.13.

V

U

FIGURE 20.12
Eulerian view of a jet penetration.

V − U

U

This plane would be stationary 

FIGURE 20.13
Lagrangian view of a jet penetration.
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In this case, the jet velocity, relative to the hole velocity, would be V – U, and an observer
moving with the hole would see target material approaching them at velocity U.
If we use an analysis technique that lets us imagine a jet of constant length passing

through the target material and somehow relate this to a hole depth, we would have the
visualization depicted in Figure 20.14.
With this model, we can write the conservation of momentum equations in the variables

that we have previously defined as

rj V −Uð Þ2 = r tU
2

l
(20.72)

With the exception of the coefficient l, this equation is identical to the Birkhoff equation
(Equation 20.38). If we collect the velocity terms and take the square root of both sides,
we get

U
(V −U)

=

ffiffiffiffiffiffiffi
lrj
rt

s
(20.73)

The depth of penetration is still given by Equation 20.39 and essentially results in the
penetration velocity times the penetration time, so we can write

P = UtP (20.74)

But we can state tp as

tp =
lj

(V −U)
(20.75)

Substitution of Equation 20.75 into Equation 20.74 yields

P = lj

ffiffiffiffiffiffiffi
lrj
rt

s
(20.76)

Again similar to the Birkhoff et al. theory with the exception of l, for different configu-
rations, we would assign a different value of l:
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FIGURE 20.14
Model that assumes constant jet length during penetration event.
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• For fluid (hydrodynamic) jets, l = 1.

• For particulating jets, l = 2.

• For mixed mode jets, 1 < l < 2.

We could also account for standoff by adjusting lj accordingly.
We shall now discuss the virtual origin concept. Many researchers have determined

relationships that use the virtual origin to describe shaped charge jet behavior [1,2,5]. The
virtual origin is an empirically derived distance that is obtained from multiple jet tests. We
have stated (repeatedly) that a real-shaped charge jet has a gradient in velocity from the tip
of the jet to the tail. The velocity is highest at the tip. If we assume that this velocity gradient
is linear, then when the jet impacts the target, we can say that the distance the tip (or any
part) has traveled can be written as

x = Vt + s (20.77)

Let us consider a situation where we fire three identical jets at different stand offs, say, 1,
1.5, and 2.5 m. If the tip velocity in each case is (say) 8 km/s and the tail velocity in each case
is variable, further assume that we get a time–distance curve for each jet as shown in Figure
20.15. With this, the virtual origin will be where all parts of each jet with the same velocity
line up and intercept the x-axis. This is depicted in the figure.
We have examined several models for the penetration behavior of shaped charge jets.

This is greatly dependent on their formation and particulation. These models are by no
means the end of all jet penetration analytical tools. There is still a great deal of work that is
ongoing to describe this important behavior.
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FIGURE 20.15
Virtual origin concept.
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Problem 3
A conical liner as shown in Figure 20.16 is to be fabricated from copper and filled with
composition A-3 as the explosive. The thickness of the liner is to be 0.10 in. The length of the
20° conical liner is 4 in., and the charge OD is 4 in. The case is fabricated from steel and is an
8 in. long cylinder and 0.12 in. thick.

1. Determine the following by using the Birkhoff et al. theory and ignoring effects of
confinement (if the region over the liner is discretized into four segments, that
should be sufficient):

a. Masses of the jet and slug
Answer: mj = 0.067 [lbm] and ms = 0.488 [lbm]

b. Velocities of the jet and slug
Answer: Vj = 8800 [ft/s] and Vs = 570 [ft/s]

c. The velocities of the case material (plot this as fragment velocity vs. case
length)

d. The direction in which the case material fragments will be projected (plot this
as departure angle vs. case length)

2. If the standoff is 8 in., determine the maximum penetration into a rolled homo-
geneous armor (RHA) plate at a 15° angle of obliquity by using the formula of
DiPersio and Simon and assuming no particulation.
Answer: P = 11.89 [in.]

The required properties for this calculation are given as follows:

• Composition A-3 Gurney velocity (2E)1/2 = 2.63 km/s
• Composition A-3 detonation velocity (D) = 8.14 km/s
• Composition A-3 density = 1.59 g/cm3

• Copper density = 0.323 lbm/in.3

• Steel density = 0.283 lbm/in.3
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8.000 
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FIGURE 20.16
Shaped charge of Problem 3.
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Problem 4
A conical-shaped charge liner as shown in Figure 20.17 is to be fabricated from copper and
filled with composition B as the explosive. The thickness of the liner is to be 0.15 in., and the
half angle a is to be 30°. The length of the liner is 5 in., and the charge OD is 8 in.

1. Determine the following using the Birkhoff et al. theory:

a. Mass of the jet
Answer: mj = 0.410 [lbm]

b. Mass of the slug
Answer: ms = 1.787 [lbm]

c. Velocity of the jet
Answer: VjAvg = 7491 [m/s]

d. Velocity of the slug
Answer: VsAvg = 965 [m/s]

2. Estimate the jet length assuming constant velocity of the tip and slug if the standoff
is 1 m (use the fastest tip velocity and the average slug velocity).
Answer: L ≈ 0.875 [m]

3. Using the aforementioned data and assuming that the virtual origin is 10 cm
behind the standoff measurement, estimate the penetration ability into mild steel
assuming the jet does not particulate using the formula of DiPersio and Simon.
Answer: P = 2.98 [m]

4. Compare the aforementioned answer in part 3 to that for the density law.
Answer: P = 0.935 [m]

The required properties for this calculation are given as follows:

• Composition B Gurney velocity (2E)1/2 = 2.79 km/s
• Composition B detonation velocity (D) = 7910 m/s
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FIGURE 20.17
Shaped charge of Problem 4.
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• Composition B density = 1.717 g/cm3

• Copper density = 0.323 lbm/in.3

• Steel density = 0.283 lbm/in.3

Problem 5
A trumpet liner is to be fabricated from copper and filled with composition A-3 as the
explosive. The thickness of the liner is to be 0.12 in. We shall approximate the trumpet liner
as indicated in the following where the half angle a is to be variable. The length of the liner
is 4 in., and the charge OD is 4 in.

1. Determine the following using the Birkhoff et al. theory:

a. Masses of the jet and slug
Answer: ms = 0.545 [lbm] and mj = 0.045 [lbm]

b. Velocities of the jet and slug
Answer: Vj = 5200 [ft/s] and Vs = 200 [ft/s]

2. If the standoff is 8 in., determine if the jet will perforate 5 in. of an RHA plate at a
70° angle of obliquity by using the formula of DiPersio and Simon and assuming no
particulation.
Answer: No, P = 3.3 [in.]

The required properties for this calculation are given as follows:

• Composition A-3 Gurney velocity (2E)1/2 = 2.63 km/s
• Composition A-3 detonation velocity (UD) = 8.14 km/s
• Composition A-3 density = 1.59 g/cm3

• Copper density = 0.323 lbm/in.3

• Steel density = 0.283 lbm/in.3
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21
Wound Ballistics

Until this point, we have dealt with the penetration of projectiles into inanimate objects.
One of the more distressing aspects of ballistics is the fact that it is used against living
creatures. This is not meant to imply that hunting is good or bad, but simply that there are
instances when people, intentionally or not, fire weapons at other people or animals, and
the effects of the bullet impact must be understood.
When a projectile is fired at a living creature, some amount of incapacitation is desired. If

a projectile is of the nonlethal type, trauma to the target must be minimized, and either a
fluid must be injected, the victim must be rendered physically immobile, or some other
effect must be obtained. If the projectile is of the lethal type, ideally one hit should subdue
the victim (through any protection), rendering them incapable of harm.
Because the subject of wound ballistics is as complicated as the anatomy of the target, we

shall conduct only a cursory review here, pointing the interested reader to some excellent
references for further detail. We shall only treat subjects that affect humans, although these
may affect animals in a similar manner.
An interesting statistic is that over 58% of combat casualties in the British army during the

First World War were caused by fragments rather than bullets [1]. This is interesting since
we all have seen movies (accurate or not) of wild charges into machine gun fire. This is
probably the case with most conflicts.
In the sections on aeroballistics, we have learned to treat projectile flight through a fluid

medium (air). While these equations still hold in a human body, the simplifications we
made do not always hold, andwemust take steps to include properties such as the elasticity
of tissue. The initial conditions such as entrance angle become important when dealing with
a wound. Additionally, a bullet is usually unstable in a human body, causing it to greatly
yaw or even tumble. Thus, bullet geometry, mass properties, and material strength matter a
great deal as far as the extent of damage is concerned.
Beforewe discuss the details any further, itmust be understood that there aremany people

who have diligently studied the field of wound ballistics during their entire careers. These
researchers have drawn on their wide experience, some from the engineering viewpoint and
some from the medical viewpoint, to reach conclusions and develop theories about wound
physics. They are probably all correct even though their viewpoints may be vastly different.
The reality is that “anything” can happen when a bullet interacts with a human. It has been
our experience that the experts can be categorized into two broad camps: the medical camp
and the engineering camp. The medical camp sees the wounds (even wounds that were
caused by an identical bullet at an identical entrance angle into an identical location) as
individually different, and each must be treated through a medical procedure based on the
caregivers’ experience, observations, and understanding. The medical camp believes that
the psychological and physiological effects of a wound will always be different and that no
conclusions can be drawn based on weapon type, etc. The engineering camp believes that
wounding can be quantified through physics. They believe that relationships (potentially
very complex) can be drawn based on energy, momentum, material properties, etc., which
can be used to quantify the effects of projectiles against persons. The truth is probably a
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combination of the ideas of both groups, but to date, no one has found the Holy Grail that
would bring it all together.
Based on the aforementioned discussion, it is very difficult to absolutely define inca-

pacitation to cover all possible aspects of wounding. When defining incapacitation, we
must set some criteria. We like three simple (although general) ones:

1. Whether the targets survive the wounding

2. What the targets are able to do after they are hit

3. How long the targets are able to do it after they are hit

Other authors define things differently and consider things such as whether the targets
are ambulatory after being hit and how far they can move; can they operate a vehicle; and if
armed, whether they can fire back or not. Criteria that we like are given by Marshall and
Sanow [2].
The study by Peters [3] states that there are several misconceptions about wounding that

must be addressed. One misconception is that the temporary cavity is the major cause of
tissue damage. This has probably grown out of extremely interesting videos that have been
published showing massive temporary cavities in projectile firings into gelatin blocks. It is
difficult to imagine, as a human, that these cavities would not cause huge amounts of
damage. In fact, this topic is rather hotly debated by experts. We shall pass no judgment
here, but simply state that the work of Peters suggests that less than 20% of all tissue
damage is caused by the temporary cavity.
Another misconception pointed out by Peters is that tissue damage is proportional to

kinetic energy of the projectile. Peters suggested that there is a relationship, but it is non-
linear. It was thought (and possibly still is) that the sizes of the maximum temporary cavity
and the permanent cavity were somehow proportional to energy deposited in the target by
the projectile. Peters suggests that there is a nonlinear relationship, but additionally, over
some ranges of the data, it can be linearized, which is possibly why the conclusion was
drawn.
Engineers who look at a person as an engineering structure at some point assume that the

volume of the permanent cavity must, in some way, result from material ejected from the
wound. That is, that the permanent cavity volume must equal the volume of material
ejected. This is not the case since a permanent cavity remains even when the bullet stops in
the target. The cause of this permanent cavity is primarily due to the inelastic deformation
of the tissue.
Peters and other researchers have shown that temporary cavities in humans or animals

will be of different sizes than those developed in gelatin blocks. Currently, this is a very
active area of research. There are even differences in cavity formation between animals and
humans to the extent that no scaling law has been universally established.
One of the most interesting aspects of wound ballistics is the inertial effect on a human

body. In many Hollywood action films, we routinely see people being picked up and
thrown several feet backward by impacts of small arms projectiles. When the numbers are
worked out with a 7.62 mm projectile at point blank range, the energy exchange (assuming
the bullet remains lodged in the target) is such that the rearward velocity is less than
0.2 mph. In fact, most human targets usually fall toward the shooter (unless they were
running away when hit).
We will next discuss some bullet types that are illustrated in Figure 21.1. A solid slug is

nothing more than a soft metal (usually a lead alloy) projectile that is engraved along its
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body length by the rifling to impart spin. A full metal jacket (FMJ) projectile is a solid slug
that is coated with a material such as copper to better withstand firing stresses and whose
residue can easily be removed from the inside of the gun tube. A semijacketed projectile or
open-tipped projectile is jacketed up to a small region of the nose. This region, being softer
than the jacketed region and unable to withstand the radial stresses upon impact, expands
as it enters the target, theoretically causing a more extensive wound. A hollow point pro-
jectile is similar to a semijacketed projectile except that the tip is actually concave. It uses
fluid mechanics coupled with the lower radial strength upon penetration to open larger.
Finally, the steel-core projectile has a hard core for penetration of metallic structures or
textile armor. One common type that is not shown is the wad cutter type, which can be fully
jacketed or not but have a cuplike shape to the nose so that they punch a nice, clean hole
through paper targets. There are many other projectile types such as slit jackets and dum-
dums, but usually, they fall into one of the aforementioned categories.
In the earlier paragraphs, we mentioned some terms such as temporary cavity and per-

manent cavity. We will now define some of these terms.
A laceration is a cut through tissue. The primary means of incapacitation of a projectile is

through laceration. Because of the complicated nature of the human body, a projectile that
penetrates can do anything from causing minor bleeding if no major organ or artery is
damaged to rapid death if a vital organ is hit. If a projectile impacts bone tissue or even
meets a severe gradient in density, it can be considerably deflected.
We learned a great deal about stress waves previously. When a projectile enters a human

being, it sends stress waves through the body. These waves and associated rarefactions can
cause damage, but it is generally agreed that these waves will primarily damage nerves and
can possibly collapse organs.
The temporary cavity is created through the process of cavitation introduced earlier in the

fluid mechanics section (Figure 21.2). It results from the adherence of the fluid molecules to
the surface of the projectile, and when the shear stress drops to zero on the surface, the flow
separates. This separation bubble can grow to 40 times the projectile diameter as the pro-
jectile passes through the body. Once the projectile has passed by, however, the radial
energy that it imparted to the tissue is removed, and the elasticity of the tissue causes it to
immediately collapse to a much smaller size. The largest extent that this bubble reaches is
known as the maximum temporary cavity while the small, equilibrium cavity is known as
the permanent cavity.
Projectile yaw has a dramatic effect on cavitation. As stated earlier, a projectile is usually

unstable in a human body. This causes it to considerably yaw and possibly tumble. As one

(a) (c) (e)

(b) (d)

FIGURE 21.1
Geometry of several small arm bullet types: (a) solid slug, (b) full metal jacket, (c) semijacketed, (d) hollow point,
and (e) steel core.
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can imagine, because of the relatively immense presented area of a projectile flying with a
large yaw, the separation and associated cavitation can be huge. In fact, if a projectile rotates
180°, it will usually exit the target base first. This is depicted in Figure 21.3.
The analysis of this flight behavior is extremely difficult because projectiles perform

differently depending upon what tissue they happen to be passing through. The following
is a short list of just a few of the different types of tissues that affect bullet passage through a
living creature:

• Bone

• Skull and brain

• Thorax/ribs

• Lung

• Intestine/stomach/bladder

• Muscle

Each of these tissue types will have a different effect on the projectile. It is even important
if an organ is flaccid (empty) or not or whether the target is living or dead. For simplicity,
the most general research is carried out on muscle tissue, and that is where a great deal of
work has been expended to come up with a suitable surrogate material for testing.

FIGURE 21.2
Temporary cavity.

FIGURE 21.3
Cavitation due to projectile yaw.
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Assuming we are discussing muscle tissue penetration, the first thing we must recognize
is that tissue has a nonnegligible tearing stress that must be overcome. This additional stress
must be incorporated into our drag model. We cannot emphasize the complexity of the
problem enough. Even though, in the discussion that follows, we shall assume a penetration
into homogeneous muscle tissue, we must always keep in mind that a penetration event is
much more complicated. We know that as a projectile enters muscle tissue, what was
once relatively simple aeroballistics becomes a more complicated problem of continuum
mechanics: in air, there was no yield stress to overcome (this is the major difference); the
viscosity and density of muscle are different from those of air. If the impact angle is low
enough, the nose of the projectile will enter first. The usual decrease in shear stress as we
progress along the projectile will occur, and at some point, the shear stress will reach zero
and the tissue will separate from the projectile forming a cavitation bubble. Throughout this
event, the projectile will slow down due to drag. There will also be a larger overturning
moment than in air because of the large force on the small area of the nose (higher density in
the dynamic pressure term), and in addition, the separation will take place ahead of the
center of gravity, increasing the moment arm. The drag force will also include the force
required to overcome the cohesive stresses in the tissue (tearing stress), which is not usually
included in aerodynamicmodels.Whatwas once a transonic/supersonic flow field becomes
a transonic (at best) or subsonic flow field. This is because the speed of sound in muscle
tissue is around 1500 m/s (4920 ft/s).
In comparison to the aerodynamic models we have presented earlier, Peters et al. [4]

developed a dragmodel that accounts for the tearing of the tissue. The equation of motion is
given by

−m
dV
dt

=
1
2
rV2ACD +

1
2
r aUð Þ2ACD (21.1)

or it can be written in terms of distance traveled as

−mV
dV
dx

=
1
2
rACD V2 + aUð Þ2� �

(21.2)

In these equations, m is the mass of the projectile; V is its velocity; r is the density of the
tissue; A is the presented area* of the projectile; CD is the projectile drag coefficient; x is the
distance the projectile has progressed into the tissue; a is a modification to CD; and U is a
characteristic velocity of the tissue (more on these last two terms will follow).
If we examine Equation 21.2, we see that if we exclude the second term on the right-hand

side, we get our classic equation for aerodynamic drag (assuming, of course, that the area is
a cross-sectional area S of the projectile). The second term accounts for the energy loss
associated with the tearing of the tissue and its movement away from the projectile.
The characteristic velocity is defined as
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(21.3)

These are empirically derived values. In Equation 21.3, d is the diameter of the actual
projectile, d6 is the diameter of a 6mmprojectile (in case youwant the units of d in a different

* Here the presented area is different from the cross-sectional area we used in the sections on exterior ballistics,
which is why A is used and not S.
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system), and U6 is a characteristic velocity for different materials determined through
experiments with a 6mmdiameter projectile. The parameter a in Equations 21.1 and 21.2 is a
function of the projectile type and the angle of attack of the projectile.
The stability criteria developed in Part II of this book work fairly well for behavior in the

human body. As stated earlier, the density terms must be increased as well as the effect of
Mach number. It is also recommended to add a force term as was included in Equation 21.2;
however, that would require a rederivation of the stability equations, which is beyond our
scope.
If a projectile has features that would cause it to expand upon impact with the more dense

human tissue, it will cause greater trauma. These were mentioned earlier as hollow point
and slit-jacketed bullets. The opening of the hollow point or jacket allows more of the
projectiles energy to be transferred to the body and the flatter surface directs the flow of the
tissue in a more radial direction. If a bullet is unstable in the body and it tumbles, there is
more surface area presented for the body to slow the projectile down, and thus, more
energy would be expended on the body. A greater amount of cavitation will occur as well
due to greater radial flow of the tissue. Depending on whether this expansion happens at
the entrance to the body, the exit, or somewhere in between, the wound would be affected
as depicted in Figure 21.4.
Some cursory remarks on the physical observations of wounds based on forensic science

are worth mentioning at this point. This should allow the reader to tie some of the physics
examined in the earlier sections of the book to the forensics literature.
Tattooing or stippling is a phenomenon where the target exhibits small marks on its body

near the entry wound. It is caused by the impact of burnt, partially burnt, and unburnt
propellant on the skin. It is less prevalent (but still may occur) if the wound was through
clothing. From the color of the marks, the forensic expert can discern whether the victim
was dead or alive prior to being shot. If the victimwas alive at the time of the wounding, the
marks will be reddish brown or orange in color. If the victim was deceased at the time of the
shooting, the marks will be grey or yellow. The marks themselves are not actually burns;
they are due to the impact of unburnt propellant grains and other ejecta from the firing.
Nitrocellulose-based propellants often quench quickly when subjected to the rapid pressure
decay as they leave the muzzle of the weapon. If the propellant was black powder,
however, they could actually be burns because black powder does not quench as readily.

Entrance Internal 

Exit 

FIGURE 21.4
Wounds that are affected by the time at which tumbling or bullet head expansion occurs.
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The range at which a target is fired upon affects the nature of the wound. Following
Dodd [5] we shall define the following basic range bands:

1. Contact

a. Hard contact—muzzle pressed into the skin

b. Contact—muzzle touching the skin

2. Near contact—muzzle very close to the skin

3. Intermediate

4. Distant

The distinctions between these will be elaborated upon. There are many texts specifically
devoted to the forensic evaluation of gunshot wounds [5,6], and these should be referenced
for more detailed descriptions of what is described next.
Close-range wounds are evidenced by the following: parts of shot shells, wads, pistons in

the body (if weapon was a shotgun); unburnt propellant (sometimes multicolored) in
wound; stippling/tattooing due to impact of unburnt propellant on skin which cannot be
wiped away in a postmortem examination (as mentioned previously, this is because most of
the “stuff” that was involved in the interior ballistic cycle is ejected at firing). In many cases,
the presence and type of clothing worn by the target will have some effect on the wound.
Contact wounds result when the muzzle of the weapon is touching or very near to the

skin when fired. In the case of hard contact, one normally sees a bruising or imprint from the
muzzle of the weapon and possibly the front sight. Because in the hard contact case the bore
is sealed against the skin, the propellant gases are forced deep into the wound, blackening
the cavity. The edges of the entry hole may be abraded. The abraded region is called the
abrasion rim. Grease and dirt from the bullet and bore may get wiped into the wound.
When this is present, it is called the grease rim or seared zone. The wound may show radial
indications of gas wash from an imperfect seal. In hard contact, there is generally no tat-
tooing or stippling. Since the propellant gases are at a high pressure and temperature,
shredded muscle from gas wash, which is bright pink/red, is usually observed. If the
weapon was pressed against a bony area, the woundmay be ragged, and the propellant gas
often strips skin from the bone.
In the contact case, a black ring will usually be present where muzzle gases exited and a

soot ring or sear ring will be elongated in the direction of fire.
The near contact case occurs when the muzzle of the weapon is roughly 1–3 calibers away

from the target. Usually there will be a wider soot ring than contact case about 4–6 calibers
in diameter. Onemay see both abrasion and grease rings under some soot. The soot buildup
will be opposite the direction of fire.
The intermediate range case is characterized as follows. Tattooing or stippling are usu-

ally present and of red-brown or orange color. The victims may have propellant particles
embedded in their skin. These particles are most prevalent when the cartridge used ball,
cylindrical, or single perforated grains. There may be a grease and/or an abrasion rim. For
pistols, intermediate range is about two to three barrel lengths. For rifles, intermediate
range is about 3 ft.
The distant range case is probably the one most encountered in military operations. In

most distant range cases, there will only be a bullet hole present. It is possible to observe an
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abrasion or grease rim. A low-velocity (subsonic) impact may exhibit a neat hole and a well-
defined abrasion rim, while a high-velocity (supersonic) impact may exhibit a hole with
radiating splits. The presence of the abrasion rim is largely dependent on the aerodynamic
shape of the bullet: A pointier projectile yields less abrasion rimwhile a blunter bullet yields
more abrasion rim.
Since in military operations one is more likely to encounter distant range and perhaps

intermediate range wounding, we shall discuss the behavior of different weapon-type
wounding in these situations. At these ranges, round nose bullets will typically exhibit less
well-defined entry holes and will bruise the target more. With handgun wounds at inter-
mediate ranges, bullets sometimes (but not always) mushroom due to their construction of
softer core material. Handgun wounds at distant range usually exhibit circular holes with
small tears.
With 0.22 rimfire cartridge wounds at intermediate range, the following is generally

observed. If the victim is shot in the head with a 0.22 short cartridge, the bullet rarely exits
the cerebral cavity, while the same location impacted with a 0.22 long or magnum car-
tridges may exhibit secondary skull fractures. At distant range, holes caused by 0.22 rimfire
cartridges are ice pick like. Hollow points in this caliber do not generally mushroom unless
they hit bone, and even then, they often just penetrate into it. If mushrooming does occur,
0.22 long rifle and magnum are more likely to do so.
Musket balls and canister shot rarely exit the body, and when they do, the exit wound is

large. In most cases, the entry wound is about the size of the ball, but the wound track is
usually larger than the ball. Minié balls are far more damaging than round balls and even
more damaging than FMJ bullets.
Center-fire rifle wounds at intermediate range can injure organs not in direct path due to

shock effects (although this is debated). These cartridges create a very large temporary
cavity. Occasionally clothing imprints are found on the entry area. At distant range, these
cartridges exhibit behavior that is very similar to that at intermediate range. The entrance
wound will usually be about two to three times the bullet diameter with the exit wounds
usually being larger than entry wound.
The location in which a victim is hit will have a great deal of influence on the incapaci-

tating effect of the projectile [2]. Nearly immediate incapacitation will occur when the
impact is in the region between the victims’ eyebrows and sternum. With a powerful car-
tridge, an impact in the pelvic area will cause a target to collapse. This is because the pelvis
is the main load-bearing region of the body. An impact in the stomach area usually takes the
longest time for incapacitation. With a handgun, unless the brain stem or upper spine is hit,
it usually takes about 5 s to incapacitate a victim. Less time is possible, but this is usually
due to the psychological state or medical particulars of the victim. Even when hit in the
heart, a handgun wound can take 10–15 s to incapacitate a victim. A hit in the liver, spleen,
or kidneys takes about 30–90 s to incapacitate, and a hit in the lungs takes over 90 s to
incapacitate the victim.
As mentioned earlier, the behavior of the projectile will be affected by the different tissue

types through which it passes. The different tissue types are similarly affected by the pro-
jectile differently based on their properties.
Bones are the hardest materials in the body. They behave somewhat like multilayer

composites. The skull has some unique behavior because of its makeup and geometry. The
calvarium has a softer layer called the diploe, which is sandwiched between two hard bony
layers. Bullet impact normal to the skull causes a condition called beveling. This is chipping
or spalling on the surface opposite entry. Radial fracture lines will typically emanate from
the hole. A trained pathologist can sometimes tell which hole occurred first in multiple hits
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based on how these cracks arrest themselves on previous cracks. Keyholing is a phenom-
enon observed in head wounds and occurs when the projectile enters the skull at an oblique
angle. Keyholing usually occurs on the entry surface of the entry wound with some bev-
eling on the inner surface of the entry wound. If the victims’ skull were empty, there would
only be a small entrance and exit hole. Beveling can also occur at the pelvis or on other
bones. The concept of spallation applies here equally well. Bullets have been observed to
ricochet off bones and even travel along them.
Internal organs have very different properties from one another and, therefore, respond

differently to bullet impacts. The effects will vary depending on the organ hit and the
velocity of the projectile. With a subsonic bullet, there will normally be a small, neat hole
with minimal cavitation. In the case of a supersonic bullet, we would generally see large
holes with large temporary cavities. Bullet breakup is also a major factor in wounding.
When, where, and how the projectile breaks up make a difference in wound severity.
Brain penetrations usually result in immediate collapse of the victim. The bullet path can

result in catastrophic damage. A large temporary cavity may cause the skull to explode or
the brain to be ejected from the skull. Impact in the frontal lobe may not cause immediate
incapacitation.
Impacts to the spinal cord usually result in impairment of the victims’ motor skills. Pos-

sible complete immobilization of the victim can occur depending on the impact site and
whether the spinal cord is severed.
Penetrations of the heart or major arteries are generally not immediately fatal. There will

be major internal or external loss of blood from the victim.
Impacts to the liver vary from victim to victim. This is because liver tissue can vary in

elasticity and hardness due to the victims’ health. If the victims’ liver is hardened, it may
actually spall. Death of the victim usually results from bleeding and is therefore not
immediate. Higher velocity round impacts to the liver are far more catastrophic. A human
liver generally has a specific gravity between 1.02 and 1.04, so it is close to water in density.
The liver is not elastic, and this results in large regions of bullet destruction. Because of this
inelasticity, the size of the permanent cavity is on the order of the temporary cavity.
Impacts to the stomach, gall bladder, and intestines are similar. These organs are known

as hollow viscera. Death from bullet penetrations of these organs usually results from
bleeding and is therefore not immediate. More damage results if the body is in the process
of digestion.
The kidneys are similar in structure to the liver. Impacts to the kidneys are more sur-

vivable than impacts to the liver because the fatty tissue present in the kidneys may contain
the resultant bleeding.
The bladder responds to impacts in amanner similar to the stomach.More damage results

from the penetration if the bladder is distended by urine. The bladder is protected to some
degree by the pelvis, although spall from the pelvis may contribute to bladder damage.
The spleen is a solid organ. Death from a spleen penetration usually comes about through

bleeding and is therefore not immediate. High-velocity projectiles may shatter the spleen
completely.
Muscle tissue was previously mentioned. It has a specific gravity between 1.01 and 1.02.

As mentioned earlier, it is a cohesive material that resists bullet motion. There will usually
only be a small region of bullet destruction. The elasticity of muscle tissue results in large
temporary cavities but small permanent cavities.
Lungs are extremely different from all of the other organs in the body. Lung penetrations

are fairly survivable dependent upon the extent of damage. If major blood vessels are
ruptured, then death comes through suffocation. The specific gravity of lung tissue is
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between 0.4 and 0.5. Lung penetrations exhibit very small temporary cavity formations and
a correspondingly small region of bullet destruction.
Incapacitation is probably the most controversial topic in all the ballistics disciplines. One

can safely say that there is no one right answer. As stated earlier, living beings are very
complicated targets influenced by their psychological as well as their physical state. Some
current incapacitation theories (as interpreted by us) are the following:

1. Kinetic energy deposition theory

2. Hit location theory

3. Judicious mixture theory

In all these cases, common sense must be your guide.
In the first two cases, the theory is usually couched as “all else being equal.” In reality, all

things are never equal. No one theory can explain anything, although people struggle to
define that one thing that can compare their favorite bullet to all others—the elusive “silver
bullet.”
The kinetic energy deposition theory states that projectile impact velocity has the greatest

influence on wound severity—all other things being equal. Damage to the target results
from laceration followed by bleeding in addition to tissue disruption and crushing. Shot
location is important—so all things are not really equal. This theory goes on to state that a
projectile that deposits more of its kinetic energy in the target will cause more damage.
Thus, if a projectile stays in the body, it has deposited all of its kinetic energy. Fackler [7]
disagreed with this. The shot location statement was incorporated due to the ability of
different organs to absorb kinetic energy. This comes about because of the density of the
organs and cohesiveness of the tissue. Organ density affects the ability to absorb kinetic
energy—more dense means more likely to be damaged. The cohesiveness of tissue is the
ability to dissipate kinetic energy by stretching. DiMaio [6] attributed kinetic energy loss to
four factors: the initial kinetic energy of the projectile, the yaw of projectile at impact, the
caliber and structure of projectile, and the tissue properties along the projectile path.
The greater the initial kinetic energy of the projectile at impact, the more there is available

to deposit into the target. The greater the kinetic energy, the greater the propensity for
projectile deformation and/or breakup. If the projectile does not deform, too much kinetic
energy may be viewed as undesirable as the projectile may pass through the target;
however, the target may still be incapacitated andmay bleed to death, but this takes time. A
pass-through certainly deposits less energy in the target (however, there was more to begin
with, so this may be a circular argument).
More yaw at impact means that it is more difficult to penetrate the target (remember the

effect of yaw on penetration?). If the projectile does penetrate the body, then the hole will be
bigger and the projectile will drag down faster—that means more kinetic energy deposited
in a target. It is an interesting side note that a projectile that does not penetrate and falls to the
ground actually deposits all of its kinetic energy into the target—Is this a hole in the theory?
Larger caliber and/or blunter projectiles deposit more kinetic energy in a target because

they have greater drag. Projectiles that expand deposit more kinetic energy into the target.
This is why there are projectiles that are designed to expand by using a hollow point, slit
jackets, lower hardness core, etc. Higher drag projectiles deposit more kinetic energy into
the target. Projectiles that fragment deposit more kinetic energy into the target as well.
Tissue properties along the projectile path are another factor in this theory. Greater density

tissue would allow more kinetic energy to be deposited by the projectile along the path.
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Greater tissue strength would allow more kinetic energy to be absorbed by the body.
Greater elasticity in the tissue would allow more kinetic energy to be dissipated. Fackler [7]
stated that projectiles with the same kinetic energy that impact different locations will have
completely different effects. This seems to be supported by at least parts of this theory.
DiMaio [6] had a theory which states that the same amount of damage occurs once some

critical projectile impact velocity is achieved. According to the theory, different projectile
types have different critical velocities. For FMJ projectiles and steel balls, the critical velocity
is between 800 and 900 m/s. For soft or hollow point projectiles, the critical velocity is
between 457 and 610 m/s.
To defend against projectile impacts, body armor has been developed since projectiles

were first fired. Metallic armors were good against ball ammunition, but armor-piercing
rounds can go through them easily. Textile/composite armor has met with better success at
stopping penetration, but it can still happen. Even with textile armor, some depth of pen-
etration or organ damage is still possible. In addition, the same mechanisms that we dis-
cussed about nonpenetrating damage are applicable here as well such as shock waves and
momentum transfer (which is even greater for a nonpenetrating hit than a pass-through).
In summary, we have touched upon several aspects of wound ballistics. A more com-

prehensive treatment is provided by Sellier and Kneubuehl [8]. It is a complicated and hotly
debated subject, yet one that is extremely fascinating.
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Appendix A

Glossary

Active homing: A method of guidance whereby the device is guided by electronics that
contain both a transmitter and a receiver, so that the munition can be adjusted onto
the target.

Autofrettage: A process by which the inner layer of material in a gun tube is plastically
yielded and held in compression by the outer layer. This increases the fatigue life of
the weapon by limiting the cyclic stress amplitude during repeated firings.

Autonomous munition: Amunition that needs no input from an outside source once fired.
Azimuth: The rotation of a weapon about the pintle or turret ring (side to side) as opposed

to elevation (q.v.) (which is up and down).
Bag charge:A propelling charge that is not contained in a cartridge case. It usually takes the

form of either a number of silk (or alternate material) bags or nitrocellulose based
hard casings that are filled with granular propellant.

Ballistic cap: See Windshield.
Balloting: The lateral motion of the projectile in the gun tube. This can be one of three

modes: the whole projectile moving side to side with its centerline remaining
parallel to the bore axis, the projectile nose and base rotating about the center of
gravity (centerline of projectile at an angle to bore axis), and projectile remaining
pushed to one side of the bore and rotating in a cyclic motion at the rifling twist rate.

Band seat: The annular groove in a projectile into which the rotating band is swaged or
welded.

Base: The rear end of a projectile.
Base gap: A gap between the explosive fill and metal base or wall of a projectile that can be

very dangerous. If the weapon is fired, setback forces compress the air in the gap
with a resultant heating. This process occurs over milliseconds so that the heat
cannot be transferred away. The resultant heat can detonate the explosive fill in the
bore of the weapon usually resulting in a loss of the weapon and the crew.

Battery: A group of three to six field artillery pieces.
Battery (second definition): The position of a weapon in its carriage when it is or is not

ready to fire. For instance, a weapon “out of battery” is not ready to fire, while a
weapon “in battery” is ready to fire.

Bayonet:A knife or spike that attaches to the muzzle of a rifle used in hand-to-hand combat.
Bayonet lug: A boss or protrusion located near the muzzle of a rifle that is the attachment

point for the bayonet.
Bent: A latch which engages the sear, preventing the firing pin from moving forward until

released by the sear.
Berdan primer: A primer whose anvil is an integral part of the cartridge case.
Bipod: A pair of supports that are used to steady a mortar or a gun, so that it can be aimed

or to increase accuracy by limiting muzzle movement.
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Boat tail: The angled rear end of a projectile.
Bolt: The device in a small arm that houses the firing pin. A bolt can bemanually operated or

automatically operated. The bolt usually obturates the breech of theweapon aswell.
Booster: A section of explosive charge, usually attached to the fuze whose purpose is to

accept the initiation from the primary detonator and amplify the detonation to
more reliably and completely initiate the main charge of a projectile. It can be made
from the same material as the main charge or different material. Its key charac-
teristic is proximity to the primary initiation train so that reliable and timely
ignition is assured.

Bore evacuator: A device connected to the bore of a gun by ports that fills with high-
pressure gas upon firing. After the projectile exits the muzzle of the weapon, this
high-pressure gas pushes any remaining smoke and burning embers out of the
tube before the breech is opened. It is used with vehicles that have closed firing
compartments so that the crew is not affected by smoke or any burning debris
entering the compartment. On warships, there is an external system that blows the
hot gases out (a bore scavenger).

Bourrelet (pronounced Boor’ rel lay): Regions of the projectile where the diameter is full
caliber (usually divided into a forward and an aft bourrelet and separated by the
undercut (q.v.)).

Boxer primer: A primer whose anvil is enclosed as part of the primer itself.
Breechblock: Device which allows access to the chamber for the loading of ammunition

into the weapon and closes to maintain pressure in the chamber during the ballistic
cycle. Normally, a breechblock is designed so that gravity drops it into place. Used
almost exclusively with cartridge cased ammunition.

Breech plug:Device which allows access to the chamber for the loading of ammunition into
the weapon and closes to maintain pressure in the chamber during the ballistic
cycle. It generally screws into the breech of the weapon with an interrupted thread
and can obturate the propellant gases if a cartridge case is not used.

Brilliant munition: A precision munition that can classify potential targets and potentially
select the one with the highest value.

Brisance: A property of an explosive that relates its shattering effect. This is related to the
rate of energy release in the explosive. A “brisant” explosive will shatter its con-
tainer rather than expand it to burst like a balloon.

Burster: A charge of energetic material in a projectile or munition that is intended to burst
the outer casing of the device and spread the contents over some defined area.

Butt: The end of a rifle that rests on the shoulder of the firer.
Caliber: The smallest internal diameter of a gun tube. Also, a unit of measure for a tube

length. A 155 mm 39-caliber gun tube is 39 × 155 mm or 6045 mm in length.
Canards: Control surfaces mounted to an airframe or projectile ahead of the center of

gravity or center of pressure.
Candle: The device carried in an illumination projectile that burns upon expulsion from the

projectile after parachute deployment. The purpose of the candle is to illuminate
the battlefield to allow combat to take place at night. Some candles illuminate in the
infrared spectrum so that they aid only soldiers equipped with infrared optical
equipment.

Canister: A projectile resembling a shotgun shell containing a burster charge and a large
number of metal balls or flechettes. The purpose of a canister round is to inca-
pacitate personnel in relatively close proximity to the weapon.
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Cannelure: Circumferential groove cut in a rotating band or projectile jacket to reduce
engraving pressure and allow a place for material to flow during the engraving
process.

Cap: A relatively thin metal device attached to the nose of an armor-piercing projectile to
grease the main penetrator by biting into the armor. It can also help penetration if
the projectile strikes at an oblique angle by rotating the projectile on impact normal
to the armor plate.

Carriage: The component on a weapon platform that connects the gun assembly to the trails
and wheels. See also Upper carriage and Lower carriage.

Cartridge: The assembly that contains the case, propellant, and projectile.
Cartridge case: The metal or energetic material that is attached to the base of some pro-

jectiles. The purposes of the cartridge case are to contain the proper amount of
propellant, keep the propellant protected against the environment, help obturate
the breech, and, in the case of a combustible cartridge case, provide additional
propelling energy to the projectile. The breech plug must obturate when a com-
bustible cartridge case is used.

Cartridge rim: The flange on the cartridge case that has several functions. It retains the
cartridge when the bullet is loaded into the chamber. It allows the extractor a
surface to interact with to remove the spent cartridge case from the weapon.

Center of gravity (CG): The location on a body where, analytically, all the mass can be
concentrated and the resultant force vector directed toward the center of the earth.
The resultant force vector is equivalent to the distributed load.

Center of pressure (CP): The location on a body in motion through a fluid where, ana-
lytically, all the pressure force (integrated over the surface of the body) can be
concentrated. The resultant force vector is equivalent to the distributed load.

Centering band: A band made of soft material attached ahead of the threaded region of a
projectile for the purpose of maintaining concentricity of the parts. Centering bands
have also been used on the exterior of projectiles to limit balloting or maintain a
central position in the bore.

Click: A military term for 1 km.
Clip: A device which contains several cartridges that is fed into the magazine of a weapon.
Closing plug: A threaded plug which seals the base end of a projectile (if base fuzed) or a

hi–low cartridge case (q.v.).
Commencement of rifling: The point in a gun tube atwhich the lands have attained full size.
Conical ogive: An ogive that is conical in shape.
Coppering: The deposition of copper from either rotating bands or jacketed projectiles

along the bore of the weapon.
Cradle: Device on a weapon platform that connects the sleigh to the trunnions and allows

the sleigh to rotate about the trunnions (i.e., rotate in elevation).
De-coppering agent: A material added to the propelling charge to react with the copper

deposited by the projectile during firing to eliminate the buildup of copper or
fouling of the gun tube.

Down bore: The direction from the breech toward the muzzle (in the direction of projectile
travel).

Elevation: The rotation of a gun about the trunnions (up and down).
Equilibrators: Devices which overcome the effect of gravity when a weapon is elevated

because the center of gravity of the weapon is usually ahead of the center of
rotation (the trunnions).
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ET fuze (electronic time fuze): A fuze that utilizes electrical energy and timing circuits to
count time to initiation. This type of fuze is much more accurate than an MT
(mechanical time) fuze.

Eutectic alloy: An alloy that has a physical state, under normal environmental conditions,
at the eutectic point on a phase diagram (near its melting point). These alloys are
used in designs where the high temperature of a fire will melt them and allow some
mechanism to drop or just open a vent hole.

Expulsion charge: A charge placed in a projectile whose purpose is to expel cargo.
Fin shroud: A ringlike structure used to tie fins on mortar rounds or rockets for structural

support. These devices usually have an adverse effect on drag.
Fins: Control surfaces mounted to an airframe or projectile aft of the center of gravity or

center of pressure.
Flash hole: A hole through which hot gases may pass to ignite energetic material in a

separate chamber or area.
Flash reducer: A mixture of material whose purpose is to reduce muzzle flash by either

lowering the temperature of the combustion or inhibiting the reaction of the pro-
pellant combustion products with the air. Reduction of flash usually results in
increased smoke.

Flechette: Small dart used for antipersonnel rounds.
Forcing cone: The region immediately down bore of the chamber where the internal

diameter of the tube tapers to the correct caliber.
Fusable lifting plug:A lifting plug containing a eutectic alloy that melts out if the projectile

is exposed to high temperature during storage allowing a pressure vent for the
expulsion charge material.

Fuze: A device that is attached to the nose, base or, in some instances, buried within a
projectile that contains the initiation mechanism for initiating end effects. Note that
in the US Army, it is correctly spelled with a z. This is not the case in the Air Force
or Navy documentation.

Gain twist: A scheme of rifling where the twist increases with down bore distance. The
intention is to minimize wear and angular acceleration of the projectile.

Grommet: A device used with copper rotating bands to protect the soft copper from
damage during rough handling; removed before ramming the projectile.

Grooves: The part of the rifling which is cut into the tube material. The internal diameter of
the grooves is larger than the internal diameter of the lands.

Guided munition: Amunition or projectile that has onboard guidance to steer it to the target.
Head: The portion of the bolt which presses up against the rear face of the cartridge case

through which the firing pin passes. The head obturates the breech with the
assistance of the cartridge case.

Headspace: The space between the head of the bolt and the forward lip of the chamber that
accepts the rim of the cartridge. It is important that the headspace not be too large
or small so that operation of the weapon can proceed smoothly.

HEAT (high explosive anti-tank): A projectile which uses a shaped charge for terminal
effects.

HEP (high explosive plastic):A projectile with a thin, soft shell that will mash upon impact
with a target.

HESH (high explosive squash head): Another name for a HEP projectile.
High explosive (HE): An energetic material that detonates, given a proper stimulus,

regardless of confinement.
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Hi-low: A propelling charge configuration in which there are two chambers: a high-
pressure chamber and a low-pressure chamber. The propellant burns in the high-
pressure chamber and exits through vent holes to pressurize the low-pressure
chamber. The gases in the low-pressure chamber actually push on the projectile to
impart the proper velocity.

Igniter core: A cylinder of pyrotechnic material whose purpose is to ignite the propelling
charge as uniformly as possible. The igniter core is usually initiated by an igniter
pad or a primer.

Igniter pad: A cloth pouch containing a sensitive pyrotechnic mixture sewn to the rear of a
bag charge. The function of the igniter pad is to accept the input flame from the
primer, amplify it, and either ignite the propellant or begin the burning of the
igniter core.

Jacket: A hoop of metal assembled around a gun tube to increase its strength.
Jet: See Shaped charge jet.
Laced jacket: The outer casing of some bag charges.
Lands: The part of the rifling with an internal diameter, i.e., the caliber of the weapon.
Laser designator: A device carried or mounted on a vehicle that can illuminate (sometimes

called “paint”) a target using laser energy, so that a semiactive laser-guided pro-
jectile can ride the beam to the target.

Lifting plug: A device threaded into the fuze well of a nose-fuzed projectile to lift the
projectile. It is removed before firing.

Lifting plug (energy absorbing): A device threaded into the fuze well of a nose-fuzed
projectile to lift the projectile. It is removed before firing. This device differs
from a standard lifting plug in that it is designed to shear off if the ogive of the
projectile is impacted, thereby preventing fuzing of the round. Its design came
about because HE projectiles would crack when dropped on the nose, the crack
going unnoticed, and the projectile would detonate in-bore when fired due to
structural failure.

Liner: A conical, hemispherical, or other shape manufactured out of metal or glass that,
when exposed to the properly conditioned detonation of an explosive, will form a
jet which will penetrate armor plate.

Loading density: The ratio of the weight of the powder charge to the volume of the empty
cartridge case or chamber. Also the density to which an explosive is consolidated.

Lock time: The amount of time between when a trigger of a weapon is pulled and the
weapon discharges.

Low explosive: An energetic material that requires the proper stimulus and confinement to
detonate. Gun propellants are low explosives.

Lower carriage: A platform-like structure on a field piece that contains the pintle and
connects the trails to the wheels or axle.

Lunette: Ring welded to the trails (or muzzle brake on some newer weapons) of a field piece
that allows the weapon to be towed.

Magazine: The device in a weapon that contains the cartridges.
Man-in-the-loop: A technique (frowned upon at one time by the US Army) whereby a

soldier is required to designate a target until the impact of the projectile.
Méplat: The blunt forward end of a projectile.
Mercy mission (MRSI—multiple rounds, simultaneous impact): A fire mission where the

weapons fire multiple projectiles, varying the elevation and charge, so that all the
projectiles impact the target area simultaneously.
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Mil: Angular unit of elevation or deflection, 1/6400 of a circle approximately 1/1000 of
the range. When used in a statement such as “The projectile had 5 mils of right
deflection,”means that the projectile fell 5 m to the right of the line of fire for every
kilometer of range.

MT fuze (mechanical time fuze): A fuze that utilizes stored mechanical energy in the form
of springs and gearing to count time from firing until initiation.

MTSQ fuze (mechanical time, super-quick fuze): A fuze that utilizes stored mechanical
energy in the form of springs and gearing to count time from firing until initiation
and has a point detonating mode that will initiate on contact with a surface.
This allows a backup if the time setting is in error and will detonate before the
projectile buries itself into the ground (which limits its effectiveness).

Mushroom: Device mounted in the breech plug of weapons that use bag charges to seal
(obturate) the breech upon pressurization of the chamber.

Obturation: The sealing of propelling gases behind the projectile and in the chamber of a
weapon.

Obturator: Plastic band which seals propelling gases behind the projectile during gun
launch (in spin-stabilized projectiles this device is used in conjunction with a
rotating band).

Ogive (pronounced Oh’ jive): Nose region of the projectile where the shape changes from
cylindrical to curved or conical.

Origin of rifling: The point in a gun tube at which the lands begin to rise from the forcing cone.
PD fuze (point-detonating fuze): A fuze which must impact an object to detonate.
PIBD fuze (point-initiating, base-detonating fuze): This type of fuze is used in HEAT,

HEP, or HESH ammunition to ignite the rear of the explosive column, thereby
setting up the proper conditions for jet formation or target spall. It initiates upon
impact of the projectile.

PIMP (permissible individual maximum pressure): Also called PMP (permissible
maximum pressure). The three sigma upper limit on the pressure produced from a
propelling charge conditioned to its maximum operating temperature. This is the
charge used to proof a weapon.

PIMP + 5%: The PIMP charge conditioned so as to produce 5% higher pressure.
Pintle: Pin on a field piece that connects the lower carriage to the upper carriage and allows

the weapon to traverse in azimuth.
Precision munition: A munition dispensed from a projectile or other device which uses a

type of on-board or off-board electronics to improve its accuracy over standard
munitions.

Pressure plate: A device used in a rifled mortar projectile to press on and expand a rotating
disk when the propellant burns and applies pressure to its face.

Primer: A device containing small amounts of sensitive energetic material that is ignited
first in a firing train. It may either be attached to the cartridge case or provided
separately with bag loading ammunition. There are several types of primers:
percussion primers rely on impact to begin the chemical reaction; stab primers rely
on friction; and electric primers rely on the proper supply of electrical energy.

Propellant increment: A bag or C-shaped container of propellant that allows the range of a
projectile to be altered by increasing or decreasing the amount of propellant.

Proximity fuze: See VT fuze.
Pusher plate: A device used to transmit the pressure generated by an expulsion charge to a

cargo stack. The pusher plate protects the cargo stack from damage during the
expulsion event.
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Receiver: The portion of a small arm that comprises the interface between the barrel, the
magazine, and the bolt.

Recoil cylinders: Cylinders filled with hydraulic fluid on a weapon platform that slow
down and stop the rearward motion of the weapon during and immediately after
firing.

Recuperators: Devices which push a weapon back into battery after recoil.
Rifling: Grooves cut into the bore of a weapon to impart spin to a projectile for stability.
Rotating band: A swaged, shrink-fit, or welded metallic or plastic band attached to the

projectile which is designed to engage the rifling of the bore and impart spin to the
projectile.

Rotating disk: A disk of soft material used in rifled mortar projectiles that is subcaliber to
allow a mortar round to drop down the tube initially, but when reacted upon by
the pressure plate, it expands into the rifling of the mortar tube and imparts spin to
the projectile.

Sabot (pronounced Sa bo’):A device used to increase the diameter of a subcaliber projectile
to stabilize it in the bore of a weapon. These devices are usually discarded upon
muzzle exit.

Sear: The protrusion mechanically interfaced to the trigger which locks the bent. When the
trigger is pulled, the sear moves off the bent allowing the firing pin to impact the
primer in the cartridge.

Secant ogive: An ogive in which the radius is centered at a point behind the end of the
cylindrical section of the projectile.

Semiactive homing: A method of guidance whereby the device is guided by electronics
that contain only a receiver (the transmitter being located off the munition), so that
the munition trajectory can be corrected onto the target.

Set forward: The rapid unloading of the projectile as it leaves the muzzle, i.e., the
unspringing of the compressed projectile structure when the base pressure drops
off.

Setback: The compressive reaction of the projectile mass to forward acceleration.
Shaped charge jet: A stream of metal in a high state of strain resulting from proper deto-

nation of an explosive encasing a liner. The jet has tremendous penetrating power,
and this form of terminal effect is utilized where kinetic energy of the projectile is
limited.

Sheathed core: The central penetrator in some projectiles. It is usually a solid slug of
material whose purpose is to penetrate a target by kinetic energy.

Shell splinters: Another name for fragments produced when a shell explodes.
Shot exit: Sometimes called muzzle exit. This is the moment at which the base of the

projectile clears the muzzle or muzzle device attached to a weapon.
Shot start: The moment at which the rotating band of a projectile shears and the projectile

begins moving into the rifled section of the weapon (separate loaded ammunition)
or the moment at which the projectile moves from the cartridge case (fixed
ammunition).

Shrapnel:A projectile, invented by Lt. Henry Shrapnel in 1784 that contained 1 in. diameter
steel balls for fragmentation effects. The name became synonymous to shell body
fragments when a projectile detonates.

Shroud lines: The lines on a parachute connecting the body being supported to the canopy
of the parachute.

Sleigh:Device on a weapon platform that allows the gun tube to axially move during firing
and recoil and during transportation.

Appendix A 617



Sling: The fabric or leather strap that allows the weapon to be carried on the back of a
soldier.

Smart munition: A precision munition that can distinguish between targets and nontargets
or countermeasures.

Soft recoil: Recoil system where the recoiling parts are accelerated forward to reduce the
rearward momentum as the projectile leaves the weapon.

Spades: Part of the trails on a field piece that dig in to the ground upon firing to arrest the
rearward motion of the weapon during recoil.

Split rotating band: A rotating band made up of multiple segments, either located on both
the shell wall and base or simply separated by shell wall material.

Stacking swivel: A swivel located near the muzzle of a rifle which allows several weapons
to be stacked in a pyramid shape, limiting the exposure of the weapons to dirt and
corrosion.

Standoff: The distance between the base of a liner and the intended target. There is an
optimum value of the standoff where penetration of a particular shaped charge is
optimum.

Standoff spike: A cylindrical protrusion at the nose of a HEAT projectile that impacts the
target, thus setting the proper standoff for the formation of a shaped charge jet.

Stock: The portion of a rifle which supports the barrel and by which the weapon is held.
Subcaliber: A term which describes anything with a diameter smaller than the bourrelet

diameter of a projectile or sabot.
Supercaliber: A term which describes anything with a diameter larger than the bourrelet

diameter of a projectile or sabot.
Supplementary charge: A charge added to HE rounds to further amplify the shock from a

booster for added assurance that the main fill will properly and completely
detonate.

Swivel: A loop which can either be fixed or pivoted, through which the sling passes and
allows the weapon to be carried on the back of a soldier.

Tangent ogive: An ogive whose radius begins exactly at the end of the cylindrical section.
Torsional impulse: The sudden rotation of a projectile as it engages the rifling after it has

acquired some forward velocity (a common condition in worn gun tubes).
Tracer:Adevice containing a pyrotechnic mixture which is inserted into the base of training

projectiles and some tactical projectiles. The purpose of the tracer is to allow the
firer to see where the projectiles are flying. The pyrotechnic composition in a tracer
is usually initiated by the propelling charge.

Trails: Part of a field piece that supports the weapon during firing and allows it to be towed.
Treeburst: A technique where PD fuzes are fired into trees over the enemies’ head to

maximize fragment lethality.
Trigger: The device pulled by the finger of an operator to rotate the sear and fire the

weapon.
Tripod: A trio of supports to maintain a weapon such as a recoilless rifle or a machine gun

steady, used primarily when portability is essential.
Trunnion: Pins on a weapon platform that connect the cradle to the upper carriage and

allow the weapon to elevate.
Undercut: Region of the projectile which separates the bourrelets and is subcaliber to

reduce friction and tube wear.
Upper carriage: A fork-like component on a field piece that contains the trunnions and

connects to the lower carriage through the pintle.
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Volley fire:Whenmultiple guns fire simultaneously at the same target. It is called a Salvo in
Navy parlance.

VT fuze (variable time fuze): An ET fuze that initiates in the vicinity of an object through
the use of a signal or other means, sometimes called a proximity fuze.

Wear additive: A material added to the propelling charge to reduce the wear on the gun
tube through either protectively coating the tube, flame temperature reduction,
lubrication, or reduction of corrosive reactions.

Wheel base: Distance between forward and aft bourrelets; the size of the wheel base affects
stability in the tube.

White phosphorus (WP): Smoke-producing compound used in smoke rounds which
produces a very dense obscuring smoke. White phosphorus reacts with air when
exposed and tends to burn very hot, creating an updraft which tends to lift the
smoke skyward which is not very desirable. Despite this, it is used frequently.

Windshield:A device used to make a projectile more aerodynamically efficient by reducing
drag, sometimes called a ballistic cap.

Wings: Lifting surfaces mounted near the center of gravity or center of pressure.
Wooden round: A projectile that does not require maintenance over its lifetime.
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Appendix B

Tabulated Properties of Materials

The properties given in Tables B.1 through B.14 have been assembled from the references
at the end of this appendix. Although not complete, these represent sufficient values to
do the problems included in the book. Since this is not thermodynamics or combustion
text, the tables are coarse. None of the problems in this text requires interpolation bet-
ween values in these tables. In fact, never interpolate with these tables. If the reader is
performing an analysis that requires more refined tables, the authors suggest any of the
texts in the references.
We have used the SI system for the tables since that was common among the references.

The reader will also note that the specific internal energies and enthalpies contain an
overbar—indicating that they are on a molar basis. This is reinforced in the units.
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TABLE B.1

Enthalpies of Formation for Select Materials

Material
Enthalpy of Formation (�h0f )298

(kJ/kg mol)
Molecular Weight (MW)

(kg/kg mol)

Carbon monoxide (CO) −110,541 28.010
Carbon dioxide (CO2) −393,546 44.011
Hydrogen (H2) 0 2.016
Hydrogen, atomic (H) 217,997 1.008
Hydroxyl (OH) 38,985 17.007
Water (H2O) −241,845 18.016
Nitrogen (N2) 0 28.013
Nitrogen, atomic (N) 472,629 14.007
Nitric oxide (NO) 90,297 30.006
Nitrogen dioxide (NO2) 33,098 46.006
Oxygen (O2) 0 31.999
Oxygen, atomic (O) 249,197 16.000
Carbon, solid (C) 0 12.010
Air n/a 28.97

TABLE B.2

Ideal Gas Properties of Carbon Monoxide (CO)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 110,541 0
500 116,484 5,943
1000 132,238 21,697
1500 149,388 38,847
2000 167,278 56,737
2500 185,577 75,036
3000 204,103 93,562
3500 222,776 112,235
4000 241,573 131,032
4500 260,489 149,948

TABLE B.3

Ideal Gas Properties of Carbon Dioxide (CO2)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 393,546 0
500 401,847 8,301

1000 426,971 33,425

1500 455,227 61,681
2000 484,966 91,420

2500 515,490 121,944

3000 546,437 152,891
3500 577,666 184,120

4000 609,159 215,613

4500 640,919 247,373
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TABLE B.4

Ideal Gas Properties of Hydrogen (H2)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 0 0
500 5,874 5,874

1000 20,664 20,664

1500 36,307 36,307
2000 52,968 52,968

2500 70,492 70,492

3000 88,733 88,733
3500 107,566 107,566

4000 126,897 126,897

4500 146,672 146,672

TABLE B.5

Ideal Gas Properties of Atomic Hydrogen (H)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 −217,997 0

500 −213,801 4,196

1000 −203,408 14,589
1500 −193,015 24,982

2000 −182,622 35,375

2500 −172,229 45,768
3000 −161,836 56,161

3500 −151,443 66,554

4000 −141,050 76,947
4500 −130,657 87,340

TABLE B.6

Ideal Gas Properties of Hydroxyl (OH)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 −38,985 0
500 −32,984 6,001

1000 −18,057 20,928

1500 −2,125 36,860
2000 14,791 53,776

2500 32,435 71,420

3000 50,605 89,590
3500 69,152 108,137

4000 87,977 126,962

4500 107,023 146,008
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TABLE B.7

Ideal Gas Properties of Water (H2O)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 241,845 0
500 248,792 6,947

1000 267,838 25,993

1500 290,026 48,181
2000 314,650 72,805

2500 340,957 99,112

3000 368,408 126,563
3500 396,640 154,795

4000 425,427 183,582

4500 454,635 212,790

TABLE B.8

Ideal Gas Properties of Nitrogen (N2)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 0 0

500 5,920 5,920

1000 21,468 21,468
1500 38,404 38,404

2000 56,130 56,130

2500 74,305 74,305
3000 92,730 92,730

3500 111,315 111,315

4000 130,028 130,028
4500 148,860 148,860

TABLE B.9

Ideal Gas Properties of Atomic Nitrogen (N)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 −472,629 0
500 −468,433 4,196

1000 −458,040 14,589

1500 −447,644 24,985
2000 −437,253 35,376

2500 −426,858 45,771

3000 −416,416 56,213
3500 −405,857 66,772

4000 −395,092 77,537

4500 −384,016 88,613
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TABLE B.10

Ideal Gas Properties of Nitric Oxide (NO)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 −90,297 0
500 −84,218 6,079

1000 −68,056 22,241

1500 −50,565 39,732
2000 −32,440 57,857

2500 −13,966 76,331

3000 4,698 94,995
3500 23,487 113,784

4000 42,383 132,680

4500 61,384 151,681

TABLE B.11

Ideal Gas Properties of Nitrogen Dioxide (NO2)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 −33,098 0

500 −24,980 8,118

1000 −728 32,375
1500 26,197 59,295

2000 54,149 87,247

2500 82,581 115,679
3000 111,211 144,309

3500 139,940 173,038

4000 168,763 201,861
4500 197,685 230,783

TABLE B.12

Ideal Gas Properties of Oxygen (O2)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 0 0
500 6,097 6,097

1000 22,721 22,721

1500 40,590 40,590
2000 59,169 59,169

2500 78,346 78,346

3000 98,036 98,036
3500 118,173 118,173

4000 138,705 138,705

4500 159,586 159,586
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Further Reading

Borman, G. L., and Ragland, K. W., Combustion Engineering, McGraw-Hill, New York, 1998.
Chase, M. W., NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society and the

American Institute for Physics, Woodbury, NY, 1988.
Turns, S. R., An Introduction to Combustion, 2nd ed., McGraw-Hill, New York, 2000.
Van Wylen, G. J., and Sonntag, R. E., Fundamentals of Classical Thermodynamics, 3rd ed., John Wiley &

Sons, New York, 1986.
Wark, K., Thermodynamics, 5th ed., McGraw-Hill, New York, 1988.

TABLE B.14

Ideal Gas Properties of Carbon (Graphite) (C)—in Solid Form

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 0 0
500 2,365 2,365

1000 11,795 11,795

1500 23,253 23,253
2000 35,525 35,525

2500 48,289 48,289

3000 61,427 61,427
3500 74,889 74,889

4000 88,646 88,646

4500 102,685 102,685

TABLE B.13

Ideal Gas Properties of Atomic Oxygen (O)

Temperature (K) �h(T) (kJ/kg mol) �h(T) − (�h0298) (kJ/kg mol)

298 −249,197 0
500 −244,852 4,345

1000 −234,336 14,861

1500 −223,898 25,299
2000 −213,485 35,712

2500 −203,070 46,127

3000 −192,623 56,574
3500 −182,116 67,081

4000 −171,519 77,678

4500 −160,811 88,386

626 Appendix B



Index

Page numbers followed by f and t indicate figures and tables, respectively.

A

Acceleration
angular, 229
centrifugal (normal), 231
Coriolis, see Coriolis acceleration
tangential, 231

Acoustic velocity, 518
Additives, propellant, 177
Adiabatic flame temperature, 34
Adiabatic shearing, 378

shear banding, 379
Aeroballistician, defined, 207
Aeroballistics

linearized, see Linearized aeroballistics
nonlinear, see Nonlinear aeroballistics

Aerodynamic drag force, 246
Aerodynamic jump, 355–359
Aerodynamic nonlinearity, 363
Aftereffect coefficient, 169, 169f, 172
Air–fuel ratio, 27
All-burnt, defined, 183
Altitude error, over long trajectories, 292
Alumina (Al2O3), 411
Aluminum

penetration and perforation of, 388–389
Aluminum-backed ceramic armor plate, 412–413
Aluminum nitride (AlN), 411
Aluminums, endurance limit, 161
Ammunition types, 116–117

fixed ammunition, 116, 117
mortar ammunition, 116
separable ammunition, 116
separate-loaded ammunition, 116

Amunition design practice, 109–160
ammunition types, 116–117
buttress thread design, 144–151
cartridge case design, 120–123
failure criteria, 112–116
gun chamber, 117–118
projectile design, 123–124
propellant charge construction, 118–119
propellant geometry, 119–120
propellant ignition, 117
Sabot design, 152–160
shell structural analysis, 124–144
stress and strain, 109–112

Analytic and computational ballistics, 67–108
Chambrage gradient, 100–101

definitions of terms used in, 100f

J integral factors, 101
Robbins' derivation, 101

computational goal, 67–68
development of pressure ratios, 67–68

Lagrange gradient, 68–95
for spherical and cubic grains, 96–99

numerical methods in interior ballistics,
102–106

sensitivities and efficiencies, 106–108
Angle of attack, 211–214
Angle of impact, defined, 208
Angle of lift, defined, 208
Angles

launch, 248, 249
pitch and yaw, 319–329
total yaw, 209, 210, 216–220
trail, 296

Angular acceleration, defined, 229
Angular momentum

defined, 284
projectile, 351

Angular velocity, defined, 229
APDS projectiles, 153f
APDS subprojectiles, 152
APFSDS, see Armor-piercing, fin-stabilized, dis-

carding sabot (APFSDS) projectile
Approximate analytical model

penetration and perforation of metals, 379
Armor-piercing, fin-stabilized, discarding sabot

(APFSDS) projectile, 153–154
Army Standard Metrology, 275
Arresting, recoil, 195–196
Asymmetries, mass, 341–342
Atomic hydrogen (H)

ideal gas properties of, 623t
Atomic nitrogen (N)

ideal gas properties of, 624t
Atomic oxygen (O)

ideal gas properties, 626t
Autofrettaging

defined, 164
pressure induced, 167
prestressing tube, method of, 166
tube

hoop stress vs. strain, 168f
process, 168f
stress profiles in, 168f

Automet, defined, 267
Avogadro's principle, 7
Azimuthal jump, 207–208
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B

Balle D, 253
Ballistic coefficient, 246
Ballistic disciplines, 4
Ballistic efficiency, 107
Ballistic limit, 374
Ballistics Research Laboratories at Aberdeen, 103
Bar-type flash suppressors, 177
Baseplate-mounted trench mortar, 197–198
Bayonet-type primer bodies, 117
Bilinear moments, nonlinear aeroballistics,

366–369, 367f–369f
Birkhoff–MacDougal–Pugh–Taylor theory,

579–580
Blast deflectors, 175, 177
Blind primers, 117
Body forces, 50
Bore evacuator

charges with gas, 179f
discharges inducing outflow, 180f
projectile approaching, 179f

Bore resistance, effects of, 75
Boron carbide (B4C), 411
Boundary conditions

ceramics penetration and perforation and, 411
Boyle's law, 7
Brakes, muzzle, 175, 177, 196–197
Breech, self-sealing, 123
Breech pressure, 74, 76, 77, 78, 80, 81, 83, 84, 95,

101, 107
Breech pressure–time curve, for typical gun

firing, 173, 174f
Brinnell hardness number (BHN), 589
Brittle fracture, 378
Bullet types, wound ballistics and, 600–601, 601f

full metal jacket (FMJ) projectile, 601, 601f
hollow point projectile, 601, 601f
open-tipped projectile, 601, 601f
semijacketed projectile, 601, 601f
solid slug, 600–601, 601f
steel-core projectile, 601, 601f

Burnout, defined, 183
Burn rate coefficient, 99
Burn relationships, 40
Buttress thread design, 144–151

C

Cant, error source, 312
Carbon (graphite) (C)

ideal gas properties of, 626t
Carbon dioxide (CO2)

ideal gas properties of, 622t
Carbon monoxide (CO), 26

ideal gas properties of, 622t
Cartridge, 116

case, 116
case design, 120–123

Cast iron, 425–426
Center-fire rifle wounds, 606
Center of gravity (CG)

defined, 212
for Magnus force, 214
of projectile, 341, 342f, 345, 347,

348, 349
Center of impact (CI), 311–312
Center of mass, defined, 212
Center of pressure (CP)

defined, 212
for Magnus force, 214

Centimeter–gram–second (CGS)
units, 381

Centralite, 91, 93
Central nozzle design, defined, 199
Centrifugal (normal) acceleration, 231
Ceramics

advantages and disadvantages, 410
examples, 411
penetration and perforation

of, 410–417
aluminum-backed ceramic armor plate,

412–413
boundary conditions, 411
design considerations, 412
equivalent diameter, 414
equivalent length, 414
fracture process, 411, 412f
history, 411
microcracking model, 412
model of, 412–413
velocity, 413
Zaera and Sánchez-Gálvez model,

414–416, 414f
CFD, see Computational fluid dynamics (CFD)
Chambrage, 118; see also Analytic and

computational ballistics
Characteristic velocity, 603–604
Charge-to-liner mass (c/m) ratio, 578
Charles's law, 7
Chopped fiber composites, 418
Closed muzzle brakes, 175
Close-range wounds, 605
Combustion, defined, 15
Composites

advantages, 417
chopped fiber, 418
continuous fiber, 418, 418f
disadvantages, 417
fiber-reinforced, 418–419, 419f
history of, 417
interlaminar shear strength, 418
isotropic, 418
penetration and perforation of, 417–419

Compression waves, 62
Computational fluid dynamics (CFD), 364
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Computed maximum pressure (CMP),
for weapon, 164

Concrete, 397
penetration and perforation

of, 397–404
crater, 398
fluid mechanics analysis, 397–400
illustration of, 398–399, 398f
model of, 397–402, 402f
penetration depth, 398, 400
striking velocity, 398, 401–402

Concrete-penetrating munitions, 397
Condensations, 62
Conical flash suppressors, 177
Conservation of angular momentum, 283
Constant drag coefficient, 250–251, 253
Constant jet length during penetration,

594, 594f
Contact wounds, 605
Continuity equation, 48
Continuous fiber composites, 418, 418f
Copper crusher gauges, 67
Cordite propellant, 94
Coriolis acceleration

calculations, 276f
d'Alembert force, 277
defined, 276
flat fire vacuum trajectory, 281–282
generalized point mass trajectory, 274, 275,

276, 277, 281–282
simple air trajectory (flat fire), 246, 260,

261, 262
on vacuum trajectory, 277

Coriolis factor, defined, 281
Coulomb, 113
Creighton Audette ladder test, 259
Cross product, vector

commutative property, 223
defined, 222
of two vectors, 223

Crosswind
effects, 262–273
error source, 313

D

Damping coefficients
vs. yaw angle, 367–368, 367f–368f

Dan Pangburn of Aerojet Corporation, 146
Davis gun, 198
Deflectors, muzzle gas, 175, 176f
de Laval nozzle, 198–199
DeMarre formula, 381

modification of, 382
Density law, 588
Design practice, weapon, see Weapon

design practice
Detonation symmetry, shaped charges, 578

Development, total yaw angle from orthogonal
measurements, 216–220

Discarding sabots, 152; see also Sabot
Dispersion, defined, 311
Displacements, gun, 171
Dot product

defined, 221
parallel vectors, 222

Drag, types, 209–210
Drag coefficient, 246

constant, 250–251, 253
defined, 210
forms, 249
Mach number vs., 249–251
nonconstant, 251
variation of, 249

Drag force, 285
Drift

defined, 347, 358
error source, 312, 313
projectile, 361

Dynamically imbalanced projectile, 341, 342f,
346f, 349–353, 356f

Dynamic pressure, defined, 210
Dynamics

gun, 169–175
review, exterior ballistics, 221–236

Dynamic stability
overview, 329–332
problems, 332–336

E

Elastic strength pressure (ESP), 164
Electronic piezo gauges, 68
Empirical/quasi-analytical models

penetration and perforation of metals, 379
Endurance, weapon design, 161–163
Enthalpy, 17–18
Enthalpy of formation, 28
Envelope, trajectory, 240, 241–242
Epicyclic swerve, 359–360
Equation of conservation of mass, 48
Equation of state, 7
Equivalent stress, 113
Eulerian, 20
Eulerian reference frames, 21, 23, 56
Eulerian view of jet penetration, 593, 593f
Explosive effects, 561–575

Gurney method, 561–564, 562f–564f, 568t
Mott formula, 569–575, 571f–572f, 573t
overview, 561
Taylor angles, 565–569, 565f–567f, 568t

Explosively formed penetrator (EFP),
123, 338–339

Explosives Engineering, 479
Exponential damping coefficients,

defined, 327
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Exterior ballistics
definitions, 207–216
dynamics, 221–236
lateral throwoff, see Lateral throwoff
linearized aeroballistics, see Linearized

aeroballistics
mass asymmetries, 341–342
overview, 207–220
swerve motion, see Swerve motion
total yaw angle from orthogonal measure-

ments, development, 216–220
trajectories, see Trajectories

F

Failure criteria, 112–116
Coulomb or maximum normal stress crite-

rion, 114
Mohr–Coulomb criterion, 115
tresca or maximum shear stress criterion, 113–

114
von Mises or maximum distortion energy

criterion, 113, 116
Failure modes, of target, 378–379, 378f
Fatigue, weapon design, 161–163
Fiber-reinforced composites, 418–419, 419f
50% penetration velocity (V50), 373–374, 374f, 375
Figure of merit, 196, 381
Finite element analysis (FEA), 111

methods in gun design, 163–164
Fin-stabilized projectile

geometric asymmetry, 337
gyroscopic and dynamic stabilities, 331
roll resonance, 338–339
tricyclic arms for, 327

Fire control and parallax, 313
Flashes, muzzle, 175, 176–177, 176f
Flat fire

approximation, 242, 243
trajectory, 245–262

overview, 245–253
problems, 253–262, 272–273
wind effects on, 262–273

Flows, muzzle, 179
Flow work, 22
Forces

acting on gun tube and projectile reactions,
169, 170

nonlinear aeroballistics, 363–366
aerodynamic nonlinearity, 363
geometric nonlinearity, 363
nonlinear drag coefficient, 364
nonlinear lift coefficient, 36
yaw angle, 363
yaw–drag coefficient, 364
zero-yaw–drag coefficient, 364

Fracture process, ceramics penetration, 411, 412f
Frankle–Baer simulation, 103–106
Full metal jacket (FMJ) projectile, 601, 601f

G

Gas cylinder, OG in, 188–189
Gas deflectors, muzzle, 175, 176f
Gas exhaust aftereffect, defined, 169
Gas mass center, 73
Gas-operated guns, 183–192
Gas particle velocity, 70
Gas stream velocity, 73
Generalized point mass trajectory, 273–282
Geometric axis, of symmetry, 341
Geometric nonlinearity, 363
Grain, 36–37

defined, 243
Gravity vector, due to earth curvature, 292, 293f
Gun(s)

dynamics, 169–175
gas-operated, 183–192
recoil arresting system, 195–196
recoilless, 198–202

interior ballistics, 200–202
overview, 198–199

Gun chamber, 117–118
Gun hardening, 124
Gun jump, defined, 169, 174
Gun launch, 30–31, 111
Gurney method, 561–564, 562f–564f, 568t
Gyroscopic stability

overview, 329–332
problems, 332–336

H

Heat of detonation, 19
Heat of explosion, 19
Heat of reaction, 18
Heat transfer, 16
High-explosive anti-tank [HEAT], 123, 124
Highly explosive projectile and their sources,

stresses in a, 133t
Highly explosive projectile design, typical values

for use in, 135t
Hit location theory, 608
Hit-to-kill close protection systems, 256
Hodograph, 225, 226f
Hollow point projectile, 601, 601f
Homogeneous, ductile chromium – nickel steel

naval armor, penetration of, 421–478
basic ogival penetration formulas and defini-

tions, 454–459
cast iron, 425–426
iron and steel materials properties, used in

ship construction and armor, 422–424
M79 nose shape effects on armor penetration

vs. standard STS plate
base-first penetration, 448–449
midthickness-plate regime, 440–442
normal impact results, 439–443
oblique impact results, 443–448, 444f–446f
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thick-plate regime, 442–443
very thin-plate regime, 439–440

ogival projectiles, 451–452
overview, 421–422
program formulas, data sets, and evaluation

logic, 459–478, 462t–463t
base-first penetration at q = 65° or greater,

477–478
obliquity angles over 45°, 475–477
obliquity angles up to 45°, 469–474, 469f–

471f
projectile designs, 431

3 in. (76.2 mm) and 0.78 in. (20 mm) flat-
nosed projectiles, 432, 434–435, 434f

13 lb, 3 in. tapered flat-nose AP projectile
with small conical windscreen,
435–439, 437f

US Army WWII 15 lb (6.8 kg), 3 in.
(76.2 mm) M79 armor-piercing
monobloc shot, 432, 433f

projectile exit angle, 452–454
residual velocity, 452–454
steel, 426–431
US Army WWII M79 AP projectile

penetration of average-strength
US Navy WWII STS, 449–451, 451f

wrought iron, 424–425
Hooke's law, 110, 520
Hoop strain, 122
Hoop stress, 122, 137
Hoop stress vs. strain, in autofrettaged

tube, 168f
Hoop tension, 124
Howitzer, 5

launch, 140
Howitzer (separate-loaded) charges, 119
Hugoniot elastic limit, 388
Hugoniots, shock, 479–495

defined, 479
example problems, 480–494

Hydro-code, 518
Hydrodynamic erosion, 379
Hydrodynamic jet behavior, 590–591, 591f
Hydrodynamic transition velocity, 379
Hydrogen (H2)

ideal gas properties of, 623t
Hydroxyl (OH)

ideal gas properties of, 623t

I

Ideal gas properties, 622t–626t
of atomic hydrogen (H), 623t
of atomic nitrogen (N), 624t
atomic oxygen (O), 626t
of carbon (graphite) (C)-in solid form, 626t
of carbon dioxide (CO2), 622t
of carbon monoxide (CO), 622t
of hydrogen (H2), 623t

of hydroxyl (OH), 623t
of nitric oxide (NO), 625t
of nitrogen (N2), 624t
of nitrogen dioxide (NO2), 625t
of oxygen (O2), 625t
of water (H2O), 624t

3 in. (76.2 mm) and 0.78 in. (20 mm) flat-nosed
projectiles, 432, 434–435, 434f

Incapacitation, 600, 601, 608
theories, 608

Industrial Revolution, 421
Initial launch angle, defined, 248
Initial velocity vector, defined, 293–294
Interface defeat (infinite dwell), 411
Interface pressure, 131
Interior ballistics, numerical methods

in, 102–106
interior ballistics codes, 102–103
three-dimensional model, 103
two-dimensional model, 103

Interior ballistics, of recoilless guns, 200–202
Interior ballistics, physical formation, 7–65

combustion, 24–36
A-F ratio, 34
definition, 15
enthalpies, 28
exothermic and endothermic reactions, 25
fixed control volume (CV) concept, 25, 28
mass and molar based equation, 26
muzzle velocity, 31, 32, 35
potato gun, 31
solid propellant, see Solid propellants,

combustion
stoichiometric reactions, 25, 26, 27, 35

fluid mechanics
body forces and surface tractions, 49
control volume approach, 46–50
gun tube CV, 52
intensive property, 47
kinematic viscosity, 46
laminar flow, 50, 51
Mach number, 54, 60
Newtonian behavior, 45
Reynolds number, 51
shear stresses and fluid viscosity, 50, 51
shock waves, see Shock waves
turbulent flow, 51, 67
work, 53

ideal gas law, 7–13
other gas laws, 13–14
solid propellant combustion, 36–45
thermodynamics, 20–24

first law
second law

thermophysics and thermochemistry, 15–20
Interlaminar shear strength, 418
Intermediate-thickness target, 377
Internal energy, 17
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International Civil Aviation Organization
(ICAO) models, 275, 276

Iron
materials properties used in ship construction

and armor, 422–424
Isentropic process, 24
Isotropic composite, 418

J

Jacobson model, 383, 383f
Jet formation, shaped charge, 577–578, 578f,

579–587, 580f, 583f, 584t, 585f
Birkhoff–MacDougal–Pugh–Taylor theory,

579–580
cylindrical liners, 581–582
detonation velocity, 581
discretization of, 583, 583f
example problems, 582–586
in Lagrangian frame, 580–581, 580f
liner collapse, 579–580, 580f
maximum jet velocity, 581
PER theory, 584–585, 585f

Jet penetration, shaped charge, 587–598
constant jet length during, 594, 594f
density law, 588
Eulerian view of, 593, 593f
formula for, 587–588
hydrodynamic jet behavior, 590–591, 591f
Lagrangian view of, 593–594, 593f
mixed mode jet behavior, 591–592, 592f
MPH theory, 590–592
particulating jet behavior, 591, 591f
particulation, 587
virtual origin concept, 595, 595f
wavering jet behavior, 592, 592f

Judicious mixture theory, 608
Jump

aerodynamic, 355–359
azimuthal, 207–208
error source, 313
gun, 169, 174
lateral, 207–208

K

Kinematics, of particle, 224
Kinematic viscosity, 46
Kinetic energy, 16
Kinetic energy deposition theory, 608–609
Kronecker delta, 519

L

Laceration, 601
Lagrange approximation, 70–71

for projectile, 171, 172
Lagrange gradient, 185, 186
Lagrange pressure gradient, 102

Lagrangian frame, 23
jet formation in, 580–581, 580f

Lagrangian or control mass approach, 46
Lagrangian reference frames, 56
Lagrangian view of jet penetration,

593–594, 593f
Lag rule, defined, 267
Lag time, defined, 267
Lambert model, 384–387, 385f, 386f, 413, 418
Lamé constants, 521
Lamé formulas, for stress, 165
Lateral jump, 207–208
Lateral throwoff, 345–353

defined, 345
dynamic imbalance, 349–353
overview, 345–348
static imbalance, 348–349

Launch angle, 248, 249
Laying error, 313
13 lb, 3 in. tapered flat-nose AP projectile

with small conical windscreen, 435–439,
437f

Lead azide, 117
Lebel, 253
Lift, defined, 211
Lift force, defined, 211
Limit-cycle motion, 363, 368
Limit velocity (Vl), 374–375, 375f

aluminum-backed ceramic armor plate, 412
asymptote on, 387–388, 387f

Linearized aeroballistics, 317–339
gyroscopic and dynamic stabilities

overview, 329–332
problems, 332–336

overview, 317–319
pitching and yawing motions

overview, 319–328
problems, 328–329

roll resonance
overview, 337–338
problems, 338–339

yaw of repose, 336–337
Linear pitch-damping moment, 366
Line of fall, defined, 208
Line of impact, defined, 208
Liner geometry, shaped charges, 578
Locked density, soil, 404

M

Mach disk, generation, 181
Mach number, 54, 60, 184, 210

drag coefficient vs., 249–251
Magnitude of vector, defined, 221
Magnus force

defined, 213
effect on projectile, 213f
moment on projectile, 214, 286
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Magnus moment, 366
coefficients, 366

Map range, defined, 207
Mass asymmetries, 341–342
Materials

enthalpies of formation for, 622t
ideal gas properties, 622t–626t

of atomic hydrogen (H), 623t
of atomic nitrogen (N), 624t
atomic oxygen (O), 626t
of carbon (graphite) (C)-in solid form, 626t
of carbon dioxide (CO2), 622t
of carbon monoxide (CO), 622t
of hydrogen (H2), 623t
of hydroxyl (OH), 623t
of nitric oxide (NO), 625t
of nitrogen (N2), 624t
of nitrogen dioxide (NO2), 625t
of oxygen (O2), 625t
of water (H2O), 624t

properties of, 621, 622t–626t
MathCAD, 151, 413
MATLAB®, 413
Maximum distortion energy criterion, 113
Maximum normal stress criterion, 113
Maximum shear stress criterion, 113
Mean free path, 13
Measurements, orthogonal, total yaw angle from,

216–220
Metals, 377

cutting tools, 379
penetration and perforation of, 377–396

aluminum, 388–389
approximate analytical model, 379
asymptote on limit velocity, 387–388, 387f
caliber radius head, 389
empirical or quasi-analytical models, 379
energy in (Jacobson model), 383, 383f
failure modes of target, 378–379, 378f
hydrodynamic erosion, 379
hydrodynamic transition velocity, 379
impact velocity, 391
of infinite-thickness plates, 379–380
intermediate-thickness target, 377
Lambert model, 384–387, 385f, 386f
nose length, 389
numerical models, 379
ogival penetrator, 389, 389f
penetration depth, 391
piercing-type problems, 382
projectile impact problem, 380–381, 380f
rolled homogeneous armor (RHA),

Lambert model, 384–386, 385f
semi-infinite target, 377
shear banding, 379
target material velocities, 377
target plate section, 382, 382f
targets, categories, 377

Tate model, 388–389
thick target, 377
thin target, 377

Microcracking model, 412
Misconceptions, wound ballistics, 600
Mixed mode jet behavior, 591–592, 592f
M79 nose shape effects on armor penetration

vs. standard STS plate
base-first penetration, 448–449
midthickness-plate regime, 440–442
normal impact results, 439–443
oblique impact results, 443–448,

444f–446f
thick-plate regime, 442–443
very thin-plate regime, 439–440

Modified point mass trajectory, 300–311
Mohr–Coulomb theory

penetration and perforation of soils and, 404,
407–409

Molar-based equation, 26
Moments

Magnus, 214, 286
nonlinear aeroballistics, 363–366

aerodynamic nonlinearity, 363
geometric nonlinearity, 363
nonlinear drag coefficient, 364
nonlinear lift coefficient, 36
yaw angle, 363
yaw–drag coefficient, 364
zero-yaw–drag coefficient, 364

pitch-damping, 215–216
Moments of inertia, defined, 283–284
Monobloc tube, 166
Monolithic tube, stress profiles in, 167f
Mortar, 5
Motions

linearized pitching and yawing
overview, 319–328
problems, 328–329

swerve, 355–361
aerodynamic jump, 355–359
epicyclic swerve, 359–360
overview, 355

Mott formula, 569–575, 571f–572f, 573t
MPH theory, 590–592
Multiplication, vector, 221–222
Muscle tissue penetration, 603
Muzzle devices and associated phenomena,

175–182
blast deflectors, 175, 177
bore evacuator

charges with gas, 179f
discharges inducing outflow, 180f
projectile approaching, 179f

brakes, 175, 177, 196–197
flashes, 175, 176–177, 176f
gas deflectors, 175, 176f
precursor shock geometry, 180, 180f

Index 633



propellant additives, 177
smokeless powders, 177

Muzzle velocity, 32, 95
sensitivity of, 107

N

Newton's second law, 391, 398, 406, 523
Nitric oxide (NO), 26

ideal gas properties of, 625t
Nitrocellulose, 12, 35, 36, 90, 122, 123, 177, 604

propellants, 177
Nitrogen (N2)

ideal gas properties of, 624t
Nitrogen dioxide (NO2)

ideal gas properties of, 625t
Noble–Abel equation of state, 14, 89
Noise, on battlefield, 178
Nonconstant drag coefficient, 251
Nonlinear aeroballistics, 363–369

bilinear and trilinear moments, 366–369,
367f–369f

damping coefficients vs. yaw angle, 367–368,
367f–368f

nonlinear forces and moments, 363–366
aerodynamic nonlinearity, 363
geometric nonlinearity, 363
nonlinear drag coefficient, 364
nonlinear lift coefficient, 36
yaw angle, 363
yaw–drag coefficient, 364
zero-yaw–drag coefficient, 364

Nonlinear drag coefficient, 364
Nonlinear lift coefficient, 36
Normal (centrifugal) acceleration, 231
Normal operating pressure, for weapon, 164
Numerical models

penetration and perforation of metals, 379
Nutation, defined, 296

O

Ogival penetrator, 389, 389f
One-dimensional interior ballistics code,

102–103
Open muzzle brakes, 175
Open-tipped projectile, 601, 601f
Operating group (OG), 183, 184, 188–189
Orthogonal measurements, total yaw angle from,

216–220
Outer diameter (OD), of weapon, 162–163
Overturning moment, 212, 213f, 286
Oxygen (O2)

ideal gas properties of, 625t

P

Paris gun, 90, 298, 309, 569
Particle kinematics, 224

Particulating jet behavior, 591, 591f
Particulation, 587–589, 593, 595, 596, 598
Penetration

of ceramics, see Ceramics, penetration
and perforation of

of composites, see Composites, penetration
and perforation of

of concrete, see Concrete, penetration
and perforation of

defined, 373
of homogeneous, ductile chromium – nickel

steel naval armor, see Homogeneous,
ductile chromium – nickel steel naval
armor, penetration of

of metals, see Metals, penetration
and perforation of

shaped charge jet penetration, 587–598
constant jet length during, 594, 594f
density law, 588
Eulerian view of, 593, 593f
formula for, 587–588
hydrodynamic jet behavior, 590–591,

591f
Lagrangian view of, 593–594, 593f
mixed mode jet behavior, 591–592, 592f
MPH theory, 590–592
particulating jet behavior, 591, 591f
particulation, 587
virtual origin concept, 595, 595f
wavering jet behavior, 592, 592f

of soils, see Soils, penetration
and perforation of

Penetration theories, 373–374, 374f
ceramics, penetration and perforation

of, 410–417
aluminum-backed ceramic armor plate,

412–413
boundary conditions, 411
design considerations, 412
equivalent diameter, 414
equivalent length, 414
fracture process, 411, 412f
history, 411
microcracking model, 412
model of, 412–413
velocity, 413
Zaera and Sánchez-Gálvez model,

414–416, 414f
composites, penetration and perforation

of, 417–419
concrete, penetration and perforation

of, 397–404
crater, 398
fluid mechanics analysis, 397–400
illustration of, 398–399, 398f
model of, 397–402, 402f
penetration depth, 398, 400
striking velocity, 398, 401–402
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50% penetration velocity (V50), 373–374,
374f, 375

limit velocity Vl, 374–375, 375f
metals, penetration and perforation

of, 377–396
aluminum, 388–389
approximate analytical model, 379
asymptote on limit velocity, 387–388, 387f
caliber radius head, 389
empirical or quasi-analytical models, 379
energy in (Jacobson model), 383, 383f
failure modes of target, 378–379, 378f
hydrodynamic erosion, 379
hydrodynamic transition velocity, 379
impact velocity, 391
of infinite-thickness plates, 379–380
intermediate-thickness target, 377
Lambert model, 384–387, 385f, 386f
nose length, 389
numerical models, 379
ogival penetrator, 389, 389f
penetration depth, 391
piercing-type problems, 382
projectile impact problem, 380–381, 380f
rolled homogeneous armor (RHA),

Lambert model, 384–386, 385f
semi-infinite target, 377
shear banding, 379
target material velocities, 377
target plate section, 382, 382f
targets, categories, 377
Tate model, 388–389
thick target, 377
thin target, 377

soils, penetration and perforation of, 404–410,
405f

caliber radius head, 404
locked density, 404
Mohr–Coulomb theory of failure and, 404,

407–409
nose length, 404
Tresca (maximum shear stress) theory in,

404, 406, 407–409
up and down test, 374
V10, 373, 374f
V90, 373, 374f

“Pepper-pot” brake, 175
Permissible individual maximum pressure

(PIMP), 164
PER theory, 584–585, 585f
Petaling, 378
Pgival projectiles

penetration of, 451–452
Piezometric efficiency, 107
piezo-type pressure gauges, 68
Pitch damping

force, 285–286
moment, 286–287

projectile, 214–216
Pitching moment, defined, 212
Pitching motion, linearized

overview, 319–328
problems, 328–329

Planar kinematics, of rigid body, 228–235
Plugging, 378, 379–380
Point mass trajectory, generalized, 273–282
Poisson's ratio, 110
Polar axis, defined, 283
Potato gun, 31
Potential energy, 15
Powder couple, defined, 174
Precession, defined, 296
Precursor shock geometry, 180, 180f
Preflash, defined, 180
Pressure–distance curve, for gun tube, 165
Pressure–distance relationship in a typical

gun firing, 68f
Pressure drag, 209
Primer initiation, 116
Priming, 116
Probability of first round hit (PFRH), 311–314
PRODAS software, 336
Products of inertia, 283
Projectile(s)

aerodynamic drag force on, 246
approaching bore evacuator, 179f
coordinates, defined, 208
design, 123–124
drag force, 285
drag of, 209–210
drift of, 361
dynamics, 221–236
exit angle, 452–454
fin-stabilized, 212
generalized yaw of, 209
lateral throwoff, see Lateral throwoff
lift vector, 211–212
linearized aeroballistics, see Linearized

aeroballistics
Magnus effect on, 213
mass asymmetries, 341–342
modified point mass trajectory, 300–311
overturning moment in, 212, 231f
pitch damping, 214–216
position at charge burnout, 86f
reactions, forces acting on, 169, 170
rolling moment, 211
simple air trajectory (flat fire), 245–262

wind effects on, 262–273
six DOF trajectory, 282–300
spin-damping moment, 210–211
spin-stabilized, 212
swerve motion, see Swerve motion
vacuum trajectory, 237–245

Projectile yaw, cavitation due to, 601–602, 602f
Propellant(s)
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additives, 177
charge construction, 118–119
force, 43
geometry, 38, 119–120
ignition, 117
nitrocellulose, 177

Q

Quadrant elevations (QEs), 116, 175, 239, 243
Quasi-battle conditions, 312, 314t
Quasi-combat conditions, 312, 313t
Quasi-linear approach, 364

R

Radial cracking, 378
Radial unit vector, rotation of, 226, 227f
Range estimation, 313
Range winds, 262–273
Rankine degree, 54
Rankine–Hugoniot equation, 496
Rankine–Hugoniot jump equations, 479
Rankine–Hugoniot relationship, 57
Rarefaction waves, 61–62, 495–517

example problems, 502–515
gas-operated guns, 184, 185, 186,

187, 192
head, speed of, 496–497, 497f
model of, 498, 498f
p–u Hugoniot plot of, 500, 501f
p–v diagram, 498, 499f
speed determination, 500, 502f
t–x plot of, 498–500, 499f–501f

Rated maximum pressure (RMP),
for weapon, 164

Recoil arresting system, 195–196
Recoilless guns, 198–202

interior ballistics, 200–202
overview, 198–199

Recoilless rifle, 5
Regressive burning, 38
Residual velocity, 452–454
Resistance pressure, estimation, 170
Reynolds number, 51
Ricochet formula, 388
Rifling force, 171
Rigid body

planar kinematics, 228–235
rotation, 229–235
translational motion, 228–229, 332, 333

Rigid trajectory, defined, 243
Roll, defined, 326
Rolled homogeneous armor (RHA),

384–385
Rolling moment, 211, 286
Roll resonance

overview, 337–338
problems, 338–339

Rotating band pressure, 131f
Rotation

radial unit vector, 226, 227f
rigid body, 229–234
tangential unit vector, 227, 228f

Round-to-round dispersion, 313

S

Sabot
APDS subprojectiles, 152–153
APFSDS, 153
basic type of, 153
design, 152–160
design of the ring, 153
differential element, 157–158
discarding, 123, 152
free-body diagram, 154
requirements for, 152
saddle-type, 155–156
shear traction, 154–155
single- and double-ramp, 156, 158

Sandbags defeat shaped charges, 578
Scabbing, 378
Scalar product, defined, 221
Scalar vector, 221
Self-jacketing

defined, 164
pressure induced, 167
prestressing tube, method of, 166
tube

hoop stress vs. strain, 168f
process, 168f
stress profiles in, 168f

Semifixed ammunition, 116
Semi-infinite target, 377
Semijacketed projectile, 601, 601f
Separated ammunition, 116
Sergeant Alvin York, 243
Shaped charge(s), 577–598

advantages, 577
detonation symmetry, 578
history, 577
jet formation, 577–578, 578f, 579–587, 580f,

583f, 584t, 585f
Birkhoff–MacDougal–Pugh–Taylor

theory, 579–580
cylindrical liners, 581–582
detonation velocity, 581
discretization of, 583, 583f
example problems, 582–586
in Lagrangian frame, 580–581, 580f
liner collapse, 579–580, 580f
maximum jet velocity, 581
PER theory, 584–585, 585f
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jet penetration, 587–598
constant jet length during, 594, 594f
density law, 588
Eulerian view of, 593, 593f
formula for, 587–588
hydrodynamic jet behavior, 590–591, 591f
Lagrangian view of, 593–594, 593f
mixed mode jet behavior, 591–592, 592f
MPH theory, 590–592
particulating jet behavior, 591, 591f
particulation, 587
virtual origin concept, 595, 595f
wavering jet behavior, 592, 592f

Liner geometry, 578
sandbags defeat, 578
standoff of, 578, 578f–579f
work process, 577

Shear banding, 379
Shear modulus of the material, 111
Shear strain, defined, 111
Shear stresses, 50
Shear waves, 518
Shell design, 124
Shell structural analysis, 124–144

basic mechanics, 125–126
constants and variables of shell loading,

defined, 124–125
practical shell design, 126–129
spin-stabilized projectile, 130–131
stress computations, 129–130

Shock bottle, defined, 180
Shock physics, 479–559

detonation, 535–554
ZND model, 536, 537

explosive's equations of state
analytic cylinder model, 556–559, 556f,

558f–559f
JWLB thermodynamic equation of state,

555–556
JWL thermodynamic equation of state,

554–555
Hugoniots, 479–495

defined, 479
example problems, 480–494

rarefaction waves, 495–517
example problems, 502–515
head, speed of, 496–497, 497f
model of, 498, 498f
p–u Hugoniot plot of, 500, 501f
p–v diagram, 498, 499f
speed determination, 500, 502f
t–x plot of, 498–500, 499f–501f

stress waves in solids, 517–535
acoustic velocities, 518
bars of varying cross section, 526–527, 527f
differential element for stresses calcula-

tion, 520–521, 521f

elastic bar impact, 526, 526f
plastic wave attenuation, 529, 529f
square pulse encounter with free surface,

532–533, 532f
strain–displacement relationship, 521–525
stress-strain behavior of material, 518
triangular pulse encounter with free

surface, 530f
uniaxial stress vs. uniaxial strain models,

527–529, 527f–528f
wave interaction at fixed boundary,

525–526, 526f
wave interaction at free boundary, 525,

525f
Shock waves, 55
Shot exit, shock structure at, 182
Shot start, defined, 183
Silencers, defined, 178
Silicon carbide (SiC), 411
Simple air trajectory, 245–262

overview, 245–253
problems, 253–262, 272–273
wind effects on, 262–273

Single base maximum pressure, defined, 163
Six degree-of-freedom (6 DOF) model,

282–300, 317
Skin friction drag, 209
Smoke

suppressors, 178
from weapon, 177–178

Smokeless powders, 177
S–N diagram, for steel and aluminum,

161, 162, 162f
Soils

locked density, 404
penetration and perforation

of, 404–410, 405f
caliber radius head, 404
Mohr–Coulomb theory of failure

and, 404, 407–409
nose length, 404
Tresca (maximum shear stress) theory

in, 404, 406, 407–409
Solid propellants, combustion, 36–45

burn relationships, 40
closed-bomb testing, 40
fraction of propellant burnt, 38, 41
long cylindrical propellant grain, 37f
neutral burning behavior, 38
propellant force, 43, 45
regressive burning, 38
web fraction, 38, 44

Solids, stress waves in, 517–535
acoustic velocities, 518
bars of varying cross section, 526–527, 527f
differential element for stresses calculation,

520–521, 521f
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elastic bar impact, 526, 526f
plastic wave attenuation, 529, 529f
square pulse encounter with free surface,

532–533, 532f
strain–displacement relationship, 521–525
stress–strain behavior of material, 518
triangular pulse encounter with free surface,

530f
uniaxial stress vs. uniaxial strain models,

527–529, 527f–528f
wave interaction at fixed boundary,

525–526, 526f
wave interaction at free boundary,

525, 525f
Solid slug, 600–601, 601f
Space-mean pressure, 74, 75
Spalling, 378, 411, 533
Specific limit energy (SLE), 381
Spin, defined, 326
Spin-damping moment, 210–211, 286
Spin pitch resonance, defined, 338
Spin-stabilized projectiles

governing equation for, 337
gyroscopic stability, 359–360
tricyclic arms for, 327, 328f

Stabilities, gyroscopic and dynamic
overview, 329–332
problems, 332–336

Stagnation values, 54
Standoff, of shaped charge, 578, 578f–579f
Starred coefficient, 246
State postulate, 7
Statically imbalanced projectile, 341, 342f, 346f,

348–349, 356f
Station maximum pressures, in tube design, 163
Steel, 426–431

materials properties used in ship construction
and armor, 422–424

Steel-core projectile, 601, 601f
Stippling, 604
Strain gage, 111
Stresses in a highly explosive projectile and their

sources, 133t
Stress profiles

autofrettaged tube, 168f
monolithic tube, 167f

Stress–strain diagram of a normal case, 121f
Stress–strain relationship, 109–112
Stress waves, in solids, 517–535

acoustic velocities, 518
bars of varying cross section, 526–527, 527f
differential element for stresses calculation,

520–521, 521f
elastic bar impact, 526, 526f
plastic wave attenuation, 529, 529f
square pulse encounter with free surface,

532–533, 532f
strain–displacement relationship, 521–525

stress-strain behavior of material, 518
triangular pulse encounter with free surface,

530f
uniaxial stress vs. uniaxial strain models,

527–529, 527f–528f
wave interaction at fixed boundary,

525–526, 526f
wave interaction at free boundary, 525,

525f
Substantial derivative or material derivative, 72
Sufficient strength, 55
Suppressors

flash, 177
smoke, 178

Surface tractions, 50
Swerve motion, 355–361

aerodynamic jump, 355–359
drift of projectile, 361
epicyclic swerve, 359–360
overview, 355

T

7075-T651 aluminum, 388, 390
Tangential acceleration, 231
Tangential unit vector, rotation of, 227, 228f
Tangential velocity, defined, 227
Tank munitions, 119
Targets

metals, penetration and perforation, 377
categories, 377
failure modes, 378–379, 378f

Tate model, 388–389, 418
Tattooing, 604
Taylor angles, 565–569, 565f–567f, 568t
Temporary cavity, wound ballistics,

600, 601, 602f
Terminal ballistics

basic concepts, 373–375
hydrodynamic erosion, 379
hydrodynamic transition velocity, 379
overview, 373
penetration, defined, 373
penetration theories, 373–374, 374f; see also

Penetration theories
terminology, 373
up and down test, 374

Terra cotta (ceramic) armor, 411; see also
Ceramics

Thermochemistry, defined, 15
Thermophysics, defined, 15
Thick target, 377
Thin target, 377
Thixotropic material, 45
Thrust, defined, 246
Tin-clads, defined, 256
Titanium diboride (TiB2), 411
Total yaw angle
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defined, 209, 210
development, from orthogonal

measurements, 216–220
Trail angle, 296
Trajectories, 237–314

defined, 209
elements, 207–208
envelope, 240, 241–242
generalized point mass trajectory, 273–282
modified point mass trajectory, 300–311
overview, 237
PFRH, 311–314
problems

generalized point mass trajectory, 282
modified point mass trajectory, 309–311
simple air trajectory (flat fire), 253–262,

272–273
six DOF trajectory, 296–300
vacuum trajectory, 243–245

rigid, 243
simple air trajectory (flat fire), 245–262

overview, 245–253
problems, 253–262, 272–273
wind effects on, 262–273

six DOF trajectory, 282–300
vacuum, 237–245

Transverse moments of inertia, 284
Trench mortar, 197–198
Tresca, 113
Tresca (maximum shear stress) theory

penetration and perforation of soils
and, 404, 406, 407–409

Trigger firing, 116
Trilinear moments, nonlinear aeroballistics,

366–369, 367f–369f
Trinitrotoluene (TNT), 140
True gun, 4
Tsai-Hill criterion, 113
Tsai–Wu, 113
Tube design, gun, 163–169

autofrettaged tube
hoop stress vs. strain in, 168f
process, 168f
stress profiles in, 168f

monolithic tube, stress profiles in, 167f
wall-thickness ratio, 167f

Turbulent flow, 51
Turbulent jet formation, 182
Turbulent vortex, formation, 181

U

Ullage, 15
Uncooled explosion temperature, 43
Uniform flow, 48
Up and down test, 374
US Army Armor and Engineer Board, 313
USArmyWWII 15 lb (6.8 kg), 3 in. (76.2mm)M79

armor-piercingmonobloc shot, 432, 433f

US ArmyWWII M79 AP projectile penetration of
average-strength US Navy WWII STS,
449–451, 451f

US Heavy Cruisers, 256
US pattern 1917 (M1917) Enfield rifle, 243

V

V10, 373, 374f
V50 (50% penetration velocity), 373–374, 374f, 375
V90, 373, 374f
Vacuum trajectory, 237–245
van der Waals equation of state, 14
Vector(s)

adding more than one, 221
associated unit vector, 221, 222f
calculus, 223
chain rule, 224
cross product, 222, 223
defined, 221
magnitude of, 221
multiplication, 221–222
pair, 222f
position, 225f
radial unit vector, rotation of, 226, 227f
rigid body rotation, 228–235
sum, 224
tangential unit vector, rotation of, 227, 228f
trajectory curve, 225

Velocity vector, defined, 293–294
Virtual origin concept, jet penetration, 595, 595f
Vl (limit velocity), 374–375, 375f

aluminum-backed ceramic armor plate, 412
asymptote on, 387–388, 387f

von Mises criterion, 113, 146

W

Water (H2O)
ideal gas properties of, 624t

Wave drag, 210
Wavering jet behavior, 592, 592f
Weapon design practice, 161–192

fatigue and endurance, 161–163
gas-operated guns, 183–192
gun dynamics, 169–175
muzzle devices and associated phenomena,

175–182
blast deflectors, 175, 177
bore evacuator, 179f, 180f
brakes, 175, 177, 196–197
flashes, 175, 176–177, 176f
gas deflectors, 175, 176f
precursor shock geometry, 180, 180f
propellant additives, 177
smokeless powders, 177

tube design, 163–169
autofrettaged tube, stress profiles in, 168f
autofrettage process, 168f
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hoop stress vs. strain, in autofrettaged
tube, 168f

monolithic tube, stress profiles in, 167f
wall-thickness ratio, 167f

Weapon mounting, 106
Web fraction, 38
Wind effects, on simple air trajectory, 262–273
Wound ballistics, 599–609

bones, 606–607
brain penetrations, 607
bullet types, 600–601, 601f
center-fire rifle wounds, 606
close-range wounds, 605
contact wounds, 605
distant range case, 605–606
engineering camp experts, 599–600
incapacitation, 600, 601, 608
incapacitation theories, 608
inertial effect on human body, 600
intermediate range case, 605–606
internal organs, 607
laceration, 601
medical camp experts, 599
misconceptions, 600
muscle tissue penetration, 603
overview, 599
permanent cavity, 600, 601
projectile yaw, cavitation due

to, 601–602, 602f
range bands, 605

statistics, 599
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FIGURE 17.1
Normal energy density vs. plate thickness at various obliquity angles (q in degrees) for an M79 AP projectile.
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FIGURE 17.2
Normal energy density vs. plate thickness at various obliquity angles (q in degrees) for a flat-nosed projectile of
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Normal energy density vs. plate thickness at various obliquity angles (q in degrees) for aflat-nosed projectile of 13 lb.
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Normal energy density vs. plate thickness from 0° to 45° (q in degrees) for an M79 AP projectile.
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FIGURE 17.5
Normal energy density vs. plate thickness from 45° to 80° (q in degrees) for an M79 AP projectile.
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FIGURE 17.6
Normal energy density vs. plate thickness from 0° to 80° (q in degrees) for an M79 AP projectile.
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FIGURE 17.7
Impact obliquity vs. NBL plate thickness from 0° to 80° (q in degrees) for an M79 AP projectile.
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FIGURE 17.11
Areal density of plate required to provide the same NBL protection given various expected impact obliquities.
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Time–displacement plot of a slab impact problem. (Cooper, P. W.: Explosives Engineering. 1996. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)



p 

p =  p1

p = 0

Right-going Hugoniot
for slab B  

Shock jump in slab A Shock jump in slab B 

u u = u1 u = u0Au = 0 

Left-going Hugoniot
for slab A 

FIGURE 18.5
p–uHugoniot plot for an impact event. (Cooper, P. W.: Explosives Engineering. 1996. Copyright Wiley-VCH Verlag
GmbH & Co. KGaA. Reproduced with permission.)
t

Shock moving
at velocity U
(slope = 1/U)

Free surface
at velocity 2u1
(slope = 1/2u1)

Free surface
initially at rest

Rarefaction fan

Rarefaction tail
Rarefaction head

p = 0 
u = 2u1 
ρ =ρ0 

p = p1 
u = u1 
ρ =ρ1 

p=0
u=0
ρ =ρ0

x

FIGURE 18.15
t–x plot of a shock wave interacting with a free surface. (Cooper, P. W.: Explosives Engineering. 1996. Copyright
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)



t 

Front face of flyer
moving toward target

at velocity u0f
(slope = 1/u0f) 

Interface between
front face of flyer and

rear face of target
at velocity u1
(slope = 1/u1)

Rear face of target
Initially at rest 

Initial shock propagating 
into target

at velocity Ut
(slope = 1/Ut) 

Shock propagating
into flyer

at velocity Uf
(slope = 1/Uf) 

A

x

B

C
D

EF

Rarefaction propagating into target
at velocity URt
(slope = 1/URt) 

p = p3f = p3t
u= u3f = u3t
ρ =ρ3f

p = p1f = p1t
u= u1f = u1t
ρ =ρ1tRarefaction propagating

into flyer
at velocity UR
(slope = 1/UR)

Rarefaction encounters
lower impedance

material and reflects as a
shock at velocity U2f

(slope= 1/U2f) 

p = p3f 
u = u3f 
ρ =ρ3f 

p = 0
u = u4f 
ρ =ρ0f 

p = 0
u = u2f 
ρ =ρ0f 

p = 0
u = u0f 
ρ =ρ0f 

p = 0
u = 0
ρ =ρ0t 

p = p1f 
u = u1f 
ρ =ρ1f 

FIGURE 18.24
t–x plot of flyer plate interaction with a target of lower impedance. (Cooper, P. W.: Explosives Engineering. 1996.
Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
t 

Front face of flyer
moving toward target

at velocity u0f
(slope = 1/u0f)

p=  0

ρ =  ρ0f

u=  u2f

Interface between
front face of flyer and

rear face of target
at velocity u1
(slope = 1/u1)

Rear face of target
initially at rest

Shock propagating into target
at velocity Ut
(slope = 1/U t) 

Impact point 
Rear face of flyer 

moving toward target
at velocity u0f
(slope = 1/u0f) 

Front face of flyer 
moving away from

target at velocity u3f
(slope = 1/u3f) 

Rear face of flyer 
moving away from

target at velocity u2f
(slope = 1/u2f) 

Shock propagating
into flyer at velocity

Uf (slope = 1/Uf) 

Rear face of target
again at rest 

p = p1f = p1t
u = u1f = u1t
ρ = ρ1t

A

B

C

p=0
u=0
ρ =ρ0t

p = 0 
u = 0 
ρ =ρ0t 

p = 0 
u = u0f
ρ =ρ0f 

p = p1f
u = u1f
ρ =ρ1f 

x

FIGURE 18.19
t–x plot of flyer plate interaction with a target of higher impedance. (Cooper, P. W.: Explosives Engineering. 1996.
Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)


	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface to the Third Edition
	Preface to the Second Edition
	Preface to the First Edition
	Authors
	Section I: Interior Ballistics
	Chapter 1: Introductory Concepts
	1.1 Ballistic Disciplines
	1.2 Terminology
	1.3 Units and Symbols

	Chapter 2: Physical Foundation of Interior Ballistics
	2.1 Ideal Gas Law
	2.2 Other Gas Laws
	2.3 Thermophysics and Thermochemistry
	2.4 Thermodynamics
	2.5 Combustion
	2.6 Solid Propellant Combustion
	2.7 Fluid Mechanics
	References

	Chapter 3: Analytic and Computational Ballistics
	3.1 Computational Goal
	3.2 Lagrange Gradient
	3.3 Lagrange Gradient for Spherical and Cubic Grains
	3.4 Chambrage Gradient
	3.5 Numerical Methods in Interior Ballistics
	3.6 Sensitivities and Efficiencies
	References

	Chapter 4: Ammunition Design Practice
	4.1 Stress and Strain
	4.2 Failure Criteria
	4.3 Ammunition Types
	4.4 Propellant Ignition
	4.5 Gun Chamber
	4.6 Propellant Charge Construction
	4.7 Propellant Geometry
	4.8 Cartridge Case Design
	4.9 Projectile Design
	4.10 Shell Structural Analysis
	4.11 Buttress Thread Design
	4.12 Sabot Design
	References
	Further Reading

	Chapter 5: Weapon Design Practice
	5.1 Fatigue and Endurance
	5.2 Tube Design
	5.3 Gun Dynamics
	5.4 Muzzle Devices and Associated Phenomena
	5.5 Gas-Operated Guns
	Gun Dynamics Nomenclature
	Further Reading

	Chapter 6: Recoil Arresting and Recoilless Guns
	6.1 Recoil Arresting
	6.2 Muzzle Brakes
	6.3 Trench Mortar
	6.4 Recoilless Guns
	6.5 Interior Ballistics of Recoilless Guns
	References


	Section II: Exterior Ballistics
	Chapter 7: Introductory Concepts
	7.1 Definitions
	7.2 Development of Total Yaw Angle from Orthogonal Measurements
	References
	Further Reading

	Chapter 8: Dynamics Review
	Reference
	Further Reading

	Chapter 9: Trajectories
	9.1 Vacuum Trajectory
	9.2 Simple Air Trajectory (Flat Fire)
	9.3 Wind Effects on a Simple Air Trajectory
	9.4 Generalized Point Mass Trajectory
	9.5 Six Degree-of-Freedom (6 DOF) Trajectory
	9.6 Modified Point Mass Trajectory
	9.7 Probability of First Round Hit
	References
	Further Reading

	Chapter 10: Linearized Aeroballistics
	10.1 Linearized Pitching and Yawing Motions
	10.2 Gyroscopic and Dynamic Stabilities
	10.3 Yaw of Repose
	10.4 Roll Resonance
	References

	Chapter 11: Mass Asymmetries
	References

	Chapter 12: Lateral Throwoff
	12.1 Static Imbalance
	12.2 Dynamic Imbalance
	References

	Chapter 13: Swerve Motion
	13.1 Aerodynamic Jump
	13.2 Epicyclic Swerve
	13.3 Drift
	Reference

	Chapter 14: Nonlinear Aeroballistics
	14.1 Nonlinear Forces and Moments
	14.2 Bilinear and Trilinear Moments
	References


	Section III: Terminal Ballistics
	Chapter 15: Introductory Concepts
	Chapter 16: Penetration Theories
	16.1 Penetration and Perforation of Metals
	16.2 Penetration and Perforation of Concrete
	16.3 Penetration and Perforation of Soils
	16.4 Penetration and Perforation of Ceramics
	16.5 Penetration and Perforation of Composites
	References

	Chapter 17: Penetration of Homogeneous, Ductile Chromium-Nickel Steel Naval Armor by Three Representative Designs of Nondeforming Hardened Steel Armor-Piercing Projectiles with Bare Noses
	17.1 Introduction
	17.2 Properties of Iron and Steel Materials Used in Ship Construction and Armor
	17.3 Wrought Iron
	17.4 Cast Iron
	17.5 Steel
	17.6 Projectiles
	17.6.1 US Army WWII 15 lb (6.8 kg), 3 in. (76.2 mm) M79 Armor-Piercing Monobloc Shot
	17.6.2 Experimental 3 in. (76.2 mm) and 0.78 in. (20 mm) Flat-Nosed Projectiles
	17.6.3 Experimental 13 lb, 3 in. Tapered Flat-Nose AP Projectile with Small Conical Windscreen

	17.7 Details on the M79 Nose Shape Effects on Armor Penetration vs. Standard STS Plate
	17.7.1 Normal Impact Results
	17.7.1.1 Very Thin-Plate Regime
	17.7.1.2 Midthickness-Plate Regime
	17.7.1.3 Thick-Plate Regime

	17.7.2 Oblique Impact Results
	17.7.3 Base-First Penetration

	17.8 US Army WWII M79 AP Projectile Penetration of Average-Strength US Navy WWII STS
	17.9 More Detailed Definition of Armor Penetration for Ogival Projectiles
	17.10 Residual Velocity and Projectile Exit Angle
	17.11 Basic Ogival Penetration Formulas and Definitions
	17.12 Program Formulas, Data Sets, and Evaluation Logic
	17.12.1 Obliquity Angles up to 45°
	17.12.2 Obliquity Angles over 45°
	17.12.3 Base-First Penetration at θ = 65° or Greate r

	References

	Chapter 18: Shock Physics
	18.1 Shock Hugoniots
	18.2 Rarefaction Waves
	18.3 Stress Waves in Solids
	18.4 Detonation Physics
	18.5 Explosive's Equations of State
	18.5.1 JWL Equation of State
	18.5.2 JWLB Equation of State
	18.5.3 Analytic Cylinder Model

	References
	Further Reading

	Chapter 19: Introduction to Explosive Effects
	19.1 Gurney Method
	19.2 Taylor Angles
	19.3 Mott Formula
	References
	Further Reading

	Chapter 20: Shaped Charges
	20.1 Shaped Charge Jet Formation
	20.2 Shaped Charge Jet Penetration
	References
	Further Reading

	Chapter 21: Wound Ballistics
	References
	Further Reading


	Appendix A
	Appendix B
	Index
	Color Inserts 

