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PREFACE 
 

 

Underwater Vehicles: Design and Applications first explores the 

application of the adaptive Kalman filter algorithm to the estimation of 

high speed autonomous underwater vehicle dynamics. 

The authors investigate the performances of different control schemes, 

from non-model-based to model-based and adaptive model-based, 

implemented on a low-inertia underwater vehicle for three-dimensional 

helical trajectory tracking. 

Control laws for collision avoidance in three-dimensional 

environments are introduced, considering scenarios where a vehicle detects 

arbitrarily shaped and nonconvex obstacles using sensors. 

Fading Kalman Filter (AFKF) with correction of process noise 

covariance (Q-Adaptation) for estimation of AUV Dynamics. The 

proposed approach in Chapter 1 is based on the adaptation scheme for the 

conventional KF algorithm, change in the noise covariance is detected and 

corrected via single or multiple fading factors that are introduced. The 

proposed AFKF algorithms give accurate estimation results despite the 

system uncertainty. The presented AFKF algorithms are simple for 

practical implementation and their computational burden is not heavy. 

These characteristics make introduced AFKF algorithms extremely 

important in terms of supplying reliable parameter estimation for the 

control system of the high speed AUV. Keeping in mind the harsh 

environments where AUVs are generally used, it is highly probable to 

come across/obtain a fault in the system inputs/parameters and so 
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preferring the proposed AFKF algorithms instead of the conventional KF 

may bring a significant advantage. 

Chapter 2 investigates the performances of different control schemes, 

from non-model-based (proportional-integral-derivative control, PID) to 

model-based (computed torque control, CT) as well as adaptive model-

based (adaptive proportional-derivative plus control, APD+), implemented 

on a low-inertia underwater vehicle for three-dimensional (3D) helical 

trajectory tracking. Then, the asymptotic stability of the resulting closed-

loop dynamics for each control scheme is proven based on the Lyapunov 

direct method. The performances of the control schemes, implemented on 

the Leonard underwater vehicle for 3D helical trajectory tracking, are then 

demonstrated through scenarios-based numerical simulations. The 

proposed simulations are conducted under the influences of the vehicle's 

buoyancy and damping changes, parametric variations; sensor noise, 

internal vehicle's perturbations; and water current, external disturbances 

rejection. Moreover, the authors demonstrate the task of transporting an 

object by the vehicle during underwater missions. The obtained simulation 

results show the effectiveness and robustness of the APD+ control scheme 

for tracking control of the low-inertia underwater vehicle in marine 

applications, outperforming the other controllers. 

Collision avoidance in 3D environments is important to the problem of 

planning safe trajectories for an autonomous vehicle. Existing literature on 

collision avoidance assumed that obstacle shapes are known a priori and 

modeled obstacles as spheres or bounding boxes. However, in 3D 

environments, an obstacle shape is unknown to the autonomous vehicle, 

and the vehicle detects an obstacle boundary using 3D sensors, such as 3D 

sonar. In Chapter 3, the authors introduce control laws for collision 

avoidance, considering scenarios where a vehicle detects arbitrarily shaped 

and non-convex obstacles using sensors. Moreover, the control laws are 

designed considering motion constraints, such as the maximum turn rate 

and the maximum speed rate of the vehicle. The effectiveness of our 

control laws is verified using MATLAB simulations. 
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ADAPTİVE ADJUSTMENT OF PROCESS NOİSE 

COVARİANCE İN KALMAN FİLTER  

FOR ESTİMATİON OF AUV DYNAMİCS 
 

 

Chingiz Hajiyev1,*, Sıtkı Yenal Vural1  

and Ulviye Hacizade2 
1Aeronautics and Astronautics Faculty,  

Istanbul Technical University, Istanbul, Turkey 
2Faculty of Engineering, Halic University, Istanbul, Turkey 

ABSTRACT 

Fading Kalman Filter (AFKF) with correction of process noise covariance (Q-

Adaptation) for estimation of AUV Dynamics. The proposed approach is based on 

the adaptation scheme for the conventional KF algorithm, change in the noise 

covariance is detected and corrected via single or multiple fading factors that are 

introduced. The proposed AFKF algorithms give accurate estimation results 

despite the system uncertainty. The presented AFKF algorithms are simple for 

practical implementation and their computational burden is not heavy. These 

characteristics make introduced AFKF algorithms extremely important in terms of 

supplying reliable parameter estimation for the control system of the high speed 

AUV. Keeping in mind the harsh environments where AUVs are generally used, 

                                                      
* Corresponding Author’s Email: cingiz@itu.edu.tr. 
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it is highly probable to come across/obtain a fault in the system inputs/parameters 

and so preferring the proposed AFKF algorithms instead of the conventional KF 

may bring a significant advantage. 

 

Keywords: autonomous underwater vehicle, adaptive Kalman filter, state 

estimation, fading factor, system uncertainty 

1. INTRODUCTION 

The research on underwater systems has gained an immense interest during the 

last decades with novel applications taking place in many fields. Therefore, 

significant number of autonomous underwater vehicles (AUVs) have been 

developed for solving problems involving a wide spectrum of scientific and 

applied tasks of sea research and development in the world. 

AUVs require a precise navigation system for localization, positioning, path 

tracking, guidance, and control during a long period of duty cycle [1]. In order 

to develop an accurate and robust navigation and control system for an AUV, it 

is necessary to derive an adaptive algorithm for estimation of AUV dynamics.  

Since it was proposed, Kalman filter has been widely used as an AUV 

motion dynamics parameters estimation technique and different Kalman filter 

types have been developed with that purpose [2, 3]. As a known fact; motion 

dynamics parameters estimation of an AUV cannot be solved by linear Kalman 

filters because of the inherent nonlinear dynamics and kinematics. In such a 

case Extended Kalman Filter (EKF) may be used instead. By using EKF, it is 

possible to estimate motion dynamics parameters of an AUV, which has a 

typical navigation sensor outfit such as compass, pressure depth sensor, and 

some class of inertial navigation system (INS) [4].  

In the normal operation conditions of AUV, conventional Kalman filter 

gives sufficiently good estimation results. However, if the measurements are 

not reliable because of any kind of malfunction in the estimation system, KF 

gives inaccurate results and diverges by time. The conventional KF has no 

capability to adapt itself to the changing conditions of the measurement system. 

Malfunctions such as abnormal measurements, increases in the background 

noise and the like affect instantaneous filter outputs and as a result the process 
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may end up with the failure of the filter. In order to avoid from such a condition, 

the filter must be operated robustly.  

KF can be made adaptive and hence insensitive to the prior measurements 

or system uncertainties by using various different techniques. Multiple Model 

Based Adaptive Estimation (MMAE), Innovation Based Adaptive Estimation 

(IAE) and Residual Based Adaptive Estimation (RAE) are three of the basic 

approaches to the adaptive Kalman filtering. In the first approach, various filters 

run parallel under different models for satisfying filter’s true statistical 

information. However, that can only be achieved if the sensor/actuator faults 

are known. Also, this approach requires several parallel Kalman filters to run 

and the processing time may increase in this case [5]. In IAE or RAE methods, 

adaptation is applied directly to the covariance matrices of the measurement 

and/or system noises in accordance with the differentiation of the residual or 

innovation sequence. To realize these methods, the innovation or residual 

vectors must be known for m epoch which causes an increment in the storage 

burden, as well as creating a requirement to know the width of the moving 

window [6]. Besides, in order to estimate the covariance matrix of the 

measurement noise based on the innovation or residual vector, the number, type 

and distribution of measurements must be consistent for all epochs within a 

window. 

Kalman filter may also be made adaptive by using fuzzy logic based 

techniques. When the theoretical and real innovation values of covariance 

matrices of the measurement or process noises are compared, and a variable 

which characterizes the discrepancy level between them is defined, then by the 

fuzzy logic rules, process or measurement covariance matrices can be adjusted 

[7, 8]. However, the essence of these kinds of fuzzy methods are human 

experience and heuristic information; in cases where such experience is lacking, 

they may not work. 

Another concept is to scale the noise covariance matrix by multiplying it 

with a time dependent variable. One of the methods for constructing such an 

algorithm is to use a single adaptive factor as a multiplier to the process or 

measurement noise covariance matrices [5, 9]. This algorithm, which may be 

named as Adaptive Fading Kalman Filter (AFKF), can be used when the 

information about the dynamic process or the priori measurements is absent 
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[10]. However, when the point at issue is the recent measurements, another 

technique to scale measurement noise covariance matrix and to make filter 

robust (insensitive to recent measurement faults) should be proposed. 

Therefore, if there is a malfunction in the measurement system, Robust Kalman 

Filter (RKF) algorithm with correction of measurement noise covariance (R-

adaptation) can be utilized. In this case, by using a measurement noise scale 

factor (MNSF) as a multiplier on the measurement noise covariance matrix, 

insensitiveness of the filter to the current measurement faults can be satisfied. 

Consequently, via a correction applied to the filter gain, good estimation 

behaviour of the filter will be secured without being affected from faulty current 

measurements [6, 11].  

One important problem that needs to be addressed in using KF is how to 

properly set up the covariance matrices of process noise (i.e., Q) and 

measurement noise (i.e., R). Note that the performance of the KF is highly 

affected by Q and R [12]. Improper choice of Q and R may significantly degrade 

the performance of KF and even make the filter diverge. 

The paper [13] proposes an estimation approach to adaptively adjust Q and 

R at each step of the EKF to improve the dynamic state estimation accuracy. An 

innovation-based method is used to adaptively adjust Q. A residual-based 

method is used to adaptively adjust the R.  

In Ref. [14] the problem of unknown system noises and uncertain 

measurement noises inherent in underwater cooperative navigation is solved via 

a variational Bayesian-based Adaptive Extended Kalman Filter. The Inverse 

Wishart distribution is used to model the predicted error covariance and 

measurement noise covariance matrix. The state, together with the predicted 

error covariance and measurement noise covariance, are adaptively estimated 

based on variational Bayesian approximation.  

In [15], the Unscented Kalman Filter (UKF) algorithm that is used for 

estimating the dynamics of an AUV is adapted against changes in the 

environment and provides accurate estimation results even in such cases. The 

main aim is to make the algorithm adaptive against the changes in the process 

noise covariance (Q-adaptation). The Adaptive UKF estimates the AUV’s 

dynamics. The numerical results confirm that the adaptive UKF gives better 

results than the regular UKF in cases where there are changes in the 
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environment. The results of this study show that it is not possible to get precise 

estimation results by the regular UKF if the model for the process noise 

covariance disagrees with the real value as a result of changes occurring in the 

environment. 

An adaptive extended Kalman filter (AEKF) is proposed in [16] by 

estimating the covariance matrix of prediction error and covariance matrix of 

measurement noise adaptively based on an online expectation-maximization 

approach. The presented AEKF does not require a window of data because the 

predicted error covariance matrix is estimated instead of the process noise 

covariance matrix, which makes it suitable for the case of unknown and time-

varying noise covariance matrices. 

In this study, AFKF algorithms with correction of process noise covariance 

(Q-adaptation) are introduced and applied for the motion dynamics parameters 

estimation process of an AUV. Two types of Q-adaptation procedures are 

presented; with single fading factor (SFF) and with multiple fading factor 

(MFF). The proposed AFKFs are considerably simpler than the existing and 

may be preferred, especially for the AUV motion dynamics estimation. 

Throughout the study, results of these proposed algorithms are compared using 

different types of system malfunctions (actuator faults) and the 

recommendations regarding their applications are discussed.  

The paper proceeds as follows; AUV motion dynamics mathematical model 

is given in Section 2. The novel AFKF algorithms are presented in Section 3. 

The simulation of testing algorithms as part of an AUV motion dynamics 

parameters estimation procedure is presented in Section 4. Section 5 gives a 

brief summary of the obtained results and the conclusions. 

2. MATHEMATICAL MODEL OF AUTONOMOUS 

UNDERWATER VEHICLE DYNAMICS 

AUV modeling is fairly complicated, and an exact analysis is only possible by 

including the underlying infinite dimensional dynamics of the surrounding fluid 

(sea water). While this can be done using partial differential equations in 

Computational Fluid Dynamics (CFD) computer tools, it still involves a 

formidable computational burden, infeasible for most practical applications.  
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AUVs move in 6 degrees of freedom (6DOF) since six independent 

coordinates are necessary to determine the position and orientation of a rigid 

body. The first three coordinates and their time derivatives are of translational 

motion along the x, y and z-axes, while the last three coordinates ( , ,   ) and 

time derivatives are used to describe the orientation and rotational motion.  

Instead of the sample AUV, the linearized model of REMUS torpedo will 

be used in calculations. Six different motion variables help to determine 

position and orientation. First three coordinates (x, y, z) are used to determine 

the position. Time derivatives of three coordinates (u, v, w) define transitions 

along x, y and z. Euler angles show the orientation. Time derivatives of Euler 

angles (p, q, r) express the rotational motion.  

 

 

Figure 1. 6-DOF AUV Angular and Translational Motions. 

2.1. Diving Subsystem of Sample AUV Model 

Basically, diving subsystem includes heave velocity w, angular velocity q in 

pitch direction, pitch angle θ, depth z and bending of stern surface (deflection)

s . Diving subsystem neglects sway velocity v, roll rate of rotation r, heading 

angle ψ, rotation mode (p, φ) and initial horizontal movements of X and Y. 
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Vehicle is assumed to move with constant 0
u velocity with respect to water and 

zero pitch angle. Linearized equations of motions in direction of Heave and 

Pitch angles are given below [17];  
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        (1) 

 

Equation (1) uses the hydrodynamic to which a linear decrease and 

deflection of stern surface to define external forces and moments is added. In 

addition, vertical distance between mass center Gz  and buoyancy center Bz  

model the moment from zBG . 

2.1.1. Discretization for Diving Subsystem 

Diving subsystem matrices are given below; 

 

 ,
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0 0

0 0 1 0
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  (2) 
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  (3) 

 



Chingiz Hajiyev, Sıtkı Yenal Vural and Ulviye Hacizade 8 

The mathematical model of the diving subsystem can be rewritten in the 

matrix form as; 

 

 
1 1

( ) ( )( ) ,D A X t M B t
D D D s

X t M 
 

   (4) 

 

where  

 ( ) [ ( ); ( ); ( ); ( )]DX t w t q t t z t   (5) 

 

is the state vector. 

After discretization we obtain the diving subsystem model in the following 

form: 

 

 
* *

( ) ( ),( 1)D D D D DX A X k B U kk       (6) 

 

where 

 * *1 1
; ,D D D DA I t M A B t M B

 
           (7)  

 

( )DU k  is the control input coming from deflection [18].  

2.2. Steering Subsystem of Sample AUV 

Steering subsystem equations are shown below; 

 

 

0 00
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  (8) 
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  (9) 
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If the inverse of M matrix in (9) is calculated and both sides are multiplied 

with 1M   in (8), equation transforms to; 
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  (10) 

2.2.1. Discretization of Steering Subsystem 

A and B matrix are defined as below in equation (10): 

 

 

1
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 (11) 
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  (12) 

 

If SA  and SB  matrices are defined as (11) and (12), 
*

SA  and 
*

SB  matrices 

are also defined for discretization as below; 

 

 
* *

; ,
S S S S

A I t A B t B         (13)  
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Let us define the state vector as  
T

rS
X v r  . Then the mathematical 

model of the steering subsystem can be written in the discrete form as: 

 

 
* *

( 1) ( ) ( ),k k k
S S S S S

X A X B U       (14) 

 

Here, ( )SU k is control input by rudders. Discretized model (14) will be used 

for Kalman applications.  

3. KALMAN FILTER FOR ESTIMATION OF AUV DYNAMICS 

3.1. Optimum Linear Kalman Filter Equations 

Consider the following linear discrete dynamic system: 

 

              1 1, 1, ,X k k k X k B k u k G k k W k        (15) 

 

        z k H k X k v k  ,  (16) 

 

where ( )X k  is the m-dimensional state vector of the system at time tk, ( 1, )k k   

is the m m  transition matrix of the system,  B k is the m p  control 

distribution matrix,  u k is the 1p control vector; ( )W k is the r-dimensional 

random Gaussian noise vector (system noise) with zero mean and known 

covariance structure, ( 1, )G k k is the m r  transition matrix of the system 

noise, ( )z k is the s-dimensional measurement vector at time tk, ( )H k is the s m  

dimensional measurement matrix of the system, and ( )v k  is the s-dimensional 

measurement noise vector with zero mean and known covariance structure. 
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There is no correlation between the system noise ( )W k  and the measurement 

noise ( )v k .  

Apparently, the optimum Kalman filter (OKF) that estimates the state 

vector of the system (15) is expressed with the following recursive equations 

system [19]: 

Equation of the estimation value, 

 

  ˆ ˆ ˆ/ ( / 1) ( ) ( ) ( ) ( / 1)X k k X k k K k z k H k X k k     
  ,  (17) 

 

where;  

    ˆ ˆ( / 1) ( , 1) ( 1/ 1) 1 1X k k k k X k k B k u k           (18) 

 

is the extrapolation value, ( )K k is the gain matrix of the optimum linear Kalman 

filter:  

 

 
1

( ) ( / 1) ( ) ( ) ( / 1) ( ) ( )T TK k P k k H k x H k P k k H k R k


        (19) 

 

( )R k  is the covariance matrix of measurement noise. 

The covariance matrix of the filtering error is, 

 

  ( / ) ( ) ( ) ( / 1),P k k I K k H k P k k     (20) 

 

where I  is the identity matrix. 

The covariance matrix of the extrapolation error is, 

 

 ( / 1) ( , 1) ( 1/ 1) ( , 1) ( , 1) ( 1) ( , 1),T TP k k k k P k k k k G k k Q k G k k             (21) 

 

where ( 1)Q k  is the covariance matrix of system noise. 
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3.2. Adaptive Fading Kalman Filter 

In case of normal operation, where the model for the process noise covariance 

matches the real values, regular KF works without any divergence problem if it 

is tuned correctly for the issued problem. However, when a change occurs in 

the process noise covariance, the filter fails, and the estimation outputs become 

faulty.  

Hence, an adaptive algorithm must be introduced. So, as an adaptation on 

process noise covariance, Q-adaptation is performed, and the estimations of the 

filter are corrected without affecting good estimation characteristic of the 

remaining process.  

3.2.1. Adaptive Fading KF with Single Fading Factor 

In case of system malfunctions (for example, an actuator fault in the system that 

results with changes in the control distribution matrix), an approach for Q

adaptation can be followed. The covariance matrix of the innovation can be 

written as: 

 

 

( ) ( ) ( / 1) ( ) ( ) ( ) ( , 1) ( 1/ 1) ( , 1)

( ) ( ) ( ) ( , 1) ( 1) ( , 1) ( ) ( )

T T

T T T

P k H k P k k H k R k H k k k P k k k k

H k H k k G k k Q k G k k H k R k


           

           
  (22)  

 

in which adaptive factor (weight coefficient) ( )k  is calculated from the 

innovation sequence  

 

 ˆ( ) ( ) ( ) ( / 1)k z k H k X k k   
  

(23) 

 

analysis results.  

According to the proposed approach the gain matrix is changed when the 

following condition is valid [20]: 
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   

    
 

( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( / 1 ( ) ( ) ( ) ( ) ( )

( ) ( / 1) ( ) ( )

T T

T

T

tr k k tr E k k

tr E H k X k X k k v k H k X k X k v k

tr H k P k k H k R k

      

         
   

     (24) 

 

When a significant change in the conditions of operation of the 

measurement system occurs, the prediction of observations    ˆ / 1H k X k k   

will considerably differ from the observation results ( )z k . Consequently, the 

sum of the discrepancy squares on the left side of (24) will characterize the real 

filtration error, while the right side determines the theoretical accuracy of the 

innovation sequence, obtained on the basis of a priori information. If condition 

(24) is met, then the real filtration error exceeds the theoretical error. Therefore, 

it is necessary to correct the filter gain matrix beginning from this moment. In 

this case, by substituting (21) in (24) the following expression can be obtained; 

 

 

 

 

   

( ) ( )

( ) ( , 1) ( 1 / 1) ( , 1) ( )

( ) ( ) ( , 1) ( 1) ( , 1) ( ) ( )

T

T T

T T

tr k k

tr H k k k P k k k k H k

tr H k k G k k Q k G k k H k tr R k

  

       

       

  (25)  

 

Hence taking the expression  ( ) ( ) ( ) ( )T Ttr k k k k      into 

consideration, the following formula for the fading (adaptive) factor ( )k is 

obtained: 

 

   

 

( ) ( ) ( ) ( , 1) ( 1 / 1) ( , 1) ( ) ( )
( )

( ) ( , 1) ( 1) ( , 1) ( )

T T T

T T

k k tr H k k k P k k k k H k tr R k
k

tr H k G k k Q k G k k H k

           
 

       
  (26) 

Apart from that point, if there is a fault in the system, ( )k  must be put into 

process as, 
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 ( / 1) ( , 1) ( 1/ 1) ( , 1) ( ) ( , 1) ( 1) ( , 1),T TP k k k k P k k k k k G k k Q k G k k             (27)

  

If the left side of the expression (24) is greater than the right side, the fading 

factor value ( )k  will increase. This corresponds to the beginning of adaptation 

of filter. Consequently, the covariance matrix of innovation sequence ( )P k  (22) 

increases, and the filter gain matrix ( )K k  increases too, which will cause 

strengthening of the corrective influence of innovation sequence in the 

estimation algorithm and decrease the difference between the estimation value

ˆ ( / )X k k  and the actual value ( )X k . This will lead to the decrease of innovation 

sequence ( )k  and adaptive factor ( )k , weakening the corrective influence 

of innovation sequence. The final expressions of the proposed adaptive (Q-

adaptation) filtration algorithm with the single fading factor can be presented 

via the formulas (17), (18), (19), (20), (26) and (27). 

In contrast to the standard optimal filtration algorithm, in which the filter 

gain ( )K k  is changed by program, current measurements in the proposed 

algorithm have larger weight, since the coefficients of matrix ( )K k  are corrected 

by the results of each observation. This algorithm is adapted to the system 

operation conditions by the approximation of theoretical covariance matrix 

( )P k to the real covariance matrix of innovation sequence, by applying the 

changing adaptive factor ( )k . The mentioned change is accomplished using 

the matrix ( ) ( )Tk k  , which characterizes the real filtration error. The 

presented adaptive KF will ensure guaranteed adaptation of the filter to the 

change of system operation conditions. 

3.2.2. Adaptive Fading KF with Multiple Fading Factor 

In this case, again, the real and theoretical values of the innovation covariance 

matrix must be compared. When there is a system fault, the real error will 
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exceed the theoretical one. Hence, if a fading matrix k , built of fading factors, 

is added into the algorithm as given below [20], 

 

 
1

1
( ) ( ) ( )

( , 1) ( 1/ 1) ( , 1) ( ) ( , 1) ( 1) ( , 1) ( )

( )

k
T

j k

T T T

k k H k

k k P k k k k k G k k Q k G k k H k

R k

   

   

           





  (28)

 

 

 

Then the fading matrix can be determined as, 

 

 1

1

1
( ) ( ) ( ) ( ) ( , 1) ( 1/ 1) ( , 1) ( ) ( )

( ) ( , 1) ( 1) ( , 1) ( )

k
T T T

j k

T T

k k k H k k k P k k k k H k R k

H k G k k Q k G k k H k

   



 
            

 

     

   (29)

 
 

The gained fading matrix should be diagonalized since the Q  matrix must 

be a diagonal, positive definite matrix.  

 

  1 2, ,..., ndiag        ,  (30)  

 

where, 

 

  max 1,i ii    1,i n .  (31)  

 

where, ii represents the ith diagonal element of the matrix . Apart from that 

point, if there is a fault in the system, k

 must be put into process as, 

 

 
     

     

T

T*

Φ , 1 1/ 1 Φ , 1

,

( / 1)

1 1 ,( ) 1

P k k k P k k k k

G k k Q G

k

k k k k

   

 

  


  (32)

  
 

Remark that, due to the scale matrix or fading matrix the covariance of the 

estimation error of AFKF increases in comparison with OKF. Therefore, 
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adaptive algorithm is operated only when there is a system fault and in all other 

cases procedure is run optimally with regular Kalman filter. Process is 

controlled by the use of statistical information. At that point, the following two 

hypotheses may be introduced: 0 - the system is normally operating; 1 - there 

is a malfunction in the system. To detect failures, a statistical function may be 

defined as: 

 

 
1

1

( ) ( ) ( / 1) ( )
k

T T

j k m

k j HP j j H R j


  

         (33) 

 

where m  is the width of the moving window [21].  

This statistical function has 
2 distribution with s degree of freedom where

s  is the dimension of innovation vector. 

If the level of significance,  , is selected as, 

 

  2 2

, ;sP      0 1  ,  (34) 

 

the threshold value, 
2

,s can be found. Hence, when the hypothesis 1  is correct, 

the statistical value of ( )k  will be greater than the threshold value
2

,s , i.e.,:  

 

 
2

0 ,: ( ) sk    k  

 
2

1 ,: ( ) sk     k   (35)  

4. SIMULATION RESULTS 

The coefficients of REMUS torpedo will be used instead of sample AUV in 

calculations. The coefficients for steering subsystem of REMUS torpedo are 

given in [22]. Simulation results are presented in Figures 2-7. Figures are 

outputs of MATLAB program codes used for this purpose.  
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Figure 2. Actuator fault detection results when OKF is used. 

 

Figure 3. OKF estimation results in the case of actuator failure. 
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4.1. OKF Results 

Steering subsystem model is used to simulate the actuator malfunction case. It 

is shown that with OKF the mentioned statistical tests can be used to detect the 

actuator faults in the system. The control distribution matrix of the system is 

changed to simulate the actuator fault case. The results when fault is present in 

actuator channel are given in the Figures 2-4.  

 

 

Figure 4. Normalized innovations of OKF in the case of actuator failure. 
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actuator faults as we can observe. Figures 2-4 show that the OKF is affected 

from actuator fault and diverges by time. 
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actuator faults. It is observed that the adaptive filter gives better results 

compared to that of the OKF. 

 

 

Figure 5. Actuator fault detection results when AFKF with SFF is used. 

 

Figure 6. AFKF with SFF estimation results in the case of actuator failure. 
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Figure 7. Normalized innovations of AFKF with SFF in the case of actuator failure. 

 

Figure 8. Actuator fault detection results when AFKF with MFF is used. 
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4.3. AFKF with MFF Simulation Results 

AFKF with MFF is also simulated in case of actuator failure. As seen in Figure 

8, AFKF with MFF is insensitive to actuator faults. Figure 9 shows that, the 

results of the adaptive filter with multiple factor are also better than that of the 

OKF.  

As we can observe AFKF with MFF gives accurate results. The results of 

both the single and multiple fading factors filters are better than the results of 

the OKF. The adaptive filter estimation values converge to the real values and 

fault detection algorithm results stay under the threshold values. We can also 

conclude that the results obtained from AFKF with MFF are better than the 

AFKF with SFF results.  

 

 

Figure 9. AFKF with MFF estimation results in the case of actuator failure. 
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Figure 10. Normalized innovations of AFKF with MFF in the case of actuator failure. 

CONCLUSION 

This study is mainly focused on the application of the adaptive Kalman filter 

algorithm to the estimation of high speed autonomous underwater vehicle 

dynamics. In the normal operation conditions of AUV, conventional Kalman 
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malfunction occurs in the system, KF gives inaccurate results and diverges with 

time. This study introduces adaptive fading Kalman filter algorithm with the 

filter gain correction in the case of system malfunctions. By using defined 
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estimations are corrected without affecting the characteristic of the accurate 

ones. In this algorithm, by changing the adaptive factor, theoretical covariance 
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Application of the proposed adaptive filters to AUV dynamics shows that 
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provides correct results for both the regular and system failure conditions. 

Furthermore, the estimation system errors can be corrected without affecting 

the good estimation behavior. Simulation results show that the application of 

proposed algorithm to AUV fault tolerant steering and diving control system is 

beneficial.  

The presented AFKF algorithms are simple for practical implementation 

and their computational burden is not heavy. This approach does not require 

knowledge of the a priori statistical characteristics of the faults and can be used 

for both linear and nonlinear systems.  

The proposed AFKF algorithms may play an important role for the AUV 

control systems since it gives accurate estimation results despite the system 

faults. Given the harsh environments where the AUVs are generally used, it is 

highly possible/probable to encounter a fault, therefore preferring the proposed 

AFKF algorithms instead of the conventional KF may bring a significant 

advantage.  
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Chapter 2

FROM NON-MODEL-BASED TO ADAPTIVE

MODEL-BASED TRACKING CONTROL OF

LOW-INERTIA UNDERWATER VEHICLES

Auwal Shehu Tijjani and Ahmed Chemori∗

LIRMM, University of Montpellier, CNRS, Montpellier, France

Abstract

This chapter investigates the performances of different control

schemes, from non-model-based (proportional-integral-derivative con-

trol, PID) to model-based (computed torque control, CT) as well as adap-

tive model-based (adaptive proportional-derivative plus control, APD+),

implemented on a low-inertia underwater vehicle for three-dimensional

(3D) helical trajectory tracking. Then, the asymptotic stability of the re-

sulting closed-loop dynamics for each control scheme is proven based on

the Lyapunov direct method. The performances of the control schemes,

implemented on the Leonard underwater vehicle for 3D helical trajectory

tracking, are then demonstrated through scenarios-based numerical sim-

ulations. The proposed simulations are conducted under the influences

of the vehicle’s buoyancy and damping changes, parametric variations;

sensor noise, internal vehicle’s perturbations; and water current, external

disturbances rejection. Moreover, we demonstrate the task of transporting

an object by the vehicle during underwater missions. The obtained simu-

lation results show the effectiveness and robustness of the APD+ control
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scheme for tracking control of the low-inertia underwater vehicle in ma-

rine applications, outperforming the other controllers.

Keywords: non-model-based control, model-based control, adaptive model-

based control, computed torque control, PID, APD+, stability analysis, low-

inertia underwater vehicle

1. INTRODUCTION

1.1. Context

The high demand for raw materials on the land surface due to the rapid techno-

logical advances in industry and research activities broaden the exploration and

exploitation of subsea environments. These raw materials includes: crude oil

and natural gas, solid minerals (nickel, silver, copper, gold, cobalt etc), aquatic

plants and animals [1]. Being an alternative natural source of raw materials cur-

rently and in the near future, approximately less than 10% of the subsea is ex-

plored and exploited by human either for civil or military purposes [2], [3], [4].

Some of the characteristics that make the subsea challenging to explore and

exploit by the human despite its abundance deposit of raw materials include:

poor visibility especially at higher depths, poor or impossible electromagnetic

transmission which hinders online communications, highly dynamical and un-

structured nature of the environment, as well as the impact of waves and water

currents [5].

Being motivated by the challenges of the subsea as well as the high demand

for raw materials, research communities proposed using divers for exploring

and exploiting this environment. The proposed solution was associated to in-

herent challenges such as putting the lives of the divers at risk, the expensive

cost, the time-consuming, the low efficiency, etc. Based on these limitations,

other groups of research communities proposed using manned underwater ve-

hicles (MUVs) for exploring and exploiting the subsea environment. Although

the proposed idea was a big step forward, it was also associated with other chal-

lenges. For instance, when MUVs got stuck in a confined environment, the

lives of the personnel inside will be at risk such as the real-life scenario happen

with an MUV carrying seven personnel identified as AS−28. The vehicle was

trapped 15 years ago by underwater radar cables in the pacific ocean at a depth

of approximately 250m from the surface [5]. In view of the challenges faced by
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MUVs, with the recent technological advances in computational power of mi-

croprocessors, sensors, battery systems and vision system, unmanned underwa-

ter vehicles (UUVs) are becoming the ultimate tool for exploring and exploiting

subsea environments [6].

In general, UUVs can be classified into remotely operated underwater

(ROVs) and autonomous underwater vehicles (AUVs) [6]. During the explo-

ration and exploitation of the subsea, either for the civil or military purposes,

the mission may involve operations such as seafloor mapping, drilling, moni-

toring, inspection, debris cleaning, search and rescue, etc. These missions may

require the ability of the vehicle to make autonomously an intelligent decision.

The autonomous behaviours for instance could be station keeping, spatial tra-

jectory tracking, collision avoidance, desired velocity profile regulation, and so

on [7], [8]. The presence of intelligent behaviour in AUV broadens its oper-

ational context in subsea missions [7]. In this chapter, we focus on the spa-

tial trajectory tracking case. Even though designing an onboard control scheme

combining several autonomous behaviours for AUVs remains a challenging task

and an open research problem.

1.2. Related Work

Despite, the challenge of designing an onboard control scheme for AUVs,

various contributions have been proposed by several research communities to

resolve the problems of station keeping, spatial trajectory tracking, collision

avoidance, desired velocity profile regulation and classical path-following. Fo-

cusing on trajectory tracking and station keeping problems, some of the pro-

posed classical non-model-based controllers include: classical PD and PID con-

trol schemes for position and velocity regulation, respectively, of a fully actu-

ated AUVs, that have been proposed in [9]. Even though the authors focused

the work on control design and the stability analysis, the analytical stability

analysis of the control schemes designed are not conducted. Similarly, in [10],

the authors demonstrated the application of a PID control scheme for depth

motion control of micro-AUVs swamps through simulation and real-time ex-

periment. However, the obtained results show that the PID control scheme is

oscillatory at steady-state. For this reason, the authors proposed a bounded PD

control scheme to deal with this effect, and the proposed control scheme was

validated through simulations and real-time experiments. A real-time station

keeping problem was also addressed in [11] using classical PID control. More-
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over, the depth and heading control using a classical PID control scheme for

Amogh AUV has been proposed in [12].

Although PID control scheme demonstrated some level of AUV’s track-

ing control performance in the literature, keeping in mind the dynamical nature

of the subsea and the vehicle’s dynamics nonlinearity, this non-model-based

control scheme will certainly not be able to solve all the trajectory tracking

and station keeping problems for AUVs especially in high precision applica-

tions. For this reason, improved non-model-based control schemes such as

fuzzy logic-based PID [13,14], GA-based PID [15], saturation-based nonlinear

PD/PID [16], classical RISE control, etc. have been proposed. To improve the

performance of the classical PID controller for tracking control of mini-ROVs

in subsea applications, the idea of auto-adjustment of the feedback gains using

neural networks has been proposed in [17]. Although the authors demonstrated

the performance of the control scheme through simulations and real-time exper-

iments, the neural networks are always associated with long training time and

high computational cost. Also, in [18], a PID control approach has been pro-

posed for depth and yaw tracking of UUVs. To improve the performance of the

PID, the authors proposed using fuzzy gain scheduling to design the controller

at various operating points with optimal gains.

So far, the improved non-model-based controllers show superior perfor-

mance over classical non-model-based controllers, such as classical PD and

PID in trajectory tracking and station keeping for UUVs; however, having some

knowledge about the AUVs dynamics will certainly help to improve the perfor-

mance of the designed control scheme for these vehicles. Consequently, model-

based classical control (saturation-based nonlinear fractional order PD, nonlin-

ear PD based on variable saturation function, etc.) as well as model-based robust

control (nonlinear RISE, sliding mode, high-order sliding mode, etc.) have been

investigated in [19], [20] and [21], [22] respectively. Also, in [23] exact lineari-

sation and nonlinear model-based controllers have been proposed for set-point

regulation and trajectory tracking tasks. The performances of the proposed con-

trol schemes are evaluated through real-time experiments using Johns Hopkins

University remotely operated vehicle (JHU-ROV). However, the computational

time of the proposed controllers can be reduced using desired compensation in

the control schemes, which could be computed offline. Similarly, a nonlinear

model-based controller for six degrees of freedom position and velocity track-

ing has been proposed in [24]. The control scheme has been implemented on

the fully actuated JHU-ROV through both numerical simulations and real-time
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experiments. The obtained results show the better performance of the nonlin-

ear model-based controller when compared with a non-model-based controller.

A robust fuzzy controller for ROVs has been proposed by [25]. In the control

scheme, the membership functions are adjusted using genetic algorithms, which

modified the gains of the controller based on the task complexity assigned to the

ROV. Similarly, an optimised fuzzy controller for path tracking of an underwa-

ter vehicle has been proposed in [26], and validated experimentally on Sea-Dog

underwater vehicle. Also, three-dimensional spatial tracking control of a hybrid

AUV under the influence of underwater currents has been addressed in [27].

In spite of the notable performances of model-based robust control schemes,

in some subsea missions, their performances may be degraded drastically due to

inherent uncertainties in subsea environments, as well as in the vehicles them-

selves. To deal with these effects, several research communities proposed using

control schemes able to dynamically adjust themselves in real-time. Indeed,

the proposed idea opens another interesting field of research known as adaptive

control; based on the notion that the auto-adjustment will not only maintain but

also improve the desired control system performance.

In the context of underwater vehicles, adaptive control schemes have been

proposed by several research studies. For instance, an adaptive thruster fault

tolerant region tracking control with prescribed transient performance has been

investigated in [28]. Even though factors such as thruster fault, measurement

noise, parameter uncertainties and underwater currents were considered; ad-

ditional cases could be added to ascertain the effectiveness of the proposed

scheme. Similarly, adaptive tracking control and its improvement using a dis-

turbance observer for underwater vehicles have been proposed in [29] and [8]

respectively. Besides, a variable forgetting factor model-free adaptive control

for surface unmanned vehicles has been studied in [30]; this scheme could be

extended to the case of UUVs. Output constraints fuzzy-based adaptive tracking

control for autonomous underwater vehicles was investigated in [31]; where nu-

merical simulations were carried out to show the effectiveness of the proposed

scheme. An adaptive formation control based on output-feedback for an under-

actuated surface vehicle has been proposed in [32]. However, this scheme does

not consider measurement noise. In [33], an indirect adaptive control scheme for

intervention operations of AUV has been proposed. The robustness of the con-

trol scheme is enhanced with an extended Kalman filter (EKF), which is used to

take care of external disturbances, parametric uncertainties, payload variations,

sensor noise and actuator nonlinearity. Despite the proposed complex adaptive
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control schemes in the literature, still classical adaptive schemes are dominating

most of the real-time marine applications.

1.3. Chapter Contribution and Organisation

In this chapter, we propose to investigate design, stability analysis and effec-

tiveness of tracking control schemes, from non-model-based to model-based as

well as adaptive model-based and their application to control a low-inertia un-

derwater vehicle for marine missions. These vehicles are characterised with

high power to weight ratio, which makes them vulnerable towards any slight

variation in the system parameter.

The remaining parts of this chapter are organised as follow. In Section 2, the

low-inertia underwater vehicle description as well as its six-degree-of-freedom

modelling are introduced. Then, Section 3 is devoted to the proposed tracking

control schemes and their stability analysis. Numerical simulation results are

presented and discussed in Section 4, while Section 5 finalises the chapter with

some concluding remarks and future works.

2. VEHICLE DESCRIPTION AND MODELLING

2.1. Vehicle Description

To validate our proposed investigations in this chapter, we perform numeri-

cal simulation using a LIRMM’s underwater vehicle known as Leonard. Even

though some specific features of this vehicle are well described in [34] and [8];

we recall some of these essential features again to facilitate kinematics and dy-

namics formulations of the vehicle in this chapter. The vehicle can be cate-

gorised as a low-inertia hybrid underwater vehicle, that is, having both remote

and autonomous operation capabilities. Additionally, being a holonomic sys-

tem can be suitable for various marine missions. The vehicle’s translational

and rotational motions are determined by its thrusters’ allocation illustrated in

Figure 1.

Besides, the vehicle is equipped with six thrusters, energy consumption is

minimised by keeping neutrally both the vehicle’s pitch and roll close to zero

with respect to the horizontal. Table 1 summarises some of the vehicle’s hard-

ware components, as well as its parameters.
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F2

F1

F3

F6

F5

F4

Figure 1. View of Leonard underwater vehicle thrusters’ allocation, which pro-

duces forces responsible for the navigation of the vehicle.

Table 1. The main technical specifications of Leonard low-inertia

underwater vehicle

Hardware Components

and Parameters

Descriptions

Attitude Sensor Sparkfun MPU 9250, MEMS 9-axes gyrometer, accelero-

meter and magnetometer microprocessor.

Depth Sensor MS5803-14BA (Pressure Sensor).

Dimensions 0.75m (l) × 0.55m (w) × 0.45m (h).

Floatability 9N.

Mass 28kg.

Maximal Depth 100m.

Power 48V - 600W.

Sampling Period 0.05s.

Tether Length 150m.

Thrusters 6-Seabotix BTD150.

2.2. Vehicle Modelling in Six Degrees of Freedom

The kinematics and dynamics of a low-inertial underwater vehicle such as

Leonard can be derived with respect to 3D reference frames. These frames

are the earth-fixed and the body-fixed frames. Figure 2 illustrates the frames
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OI

Ob

zI

xI

yI

zb

surge,u

roll, p

yb

pitch,q

sway,v

xb

heave,w

yaw, r

Figure 2. Illustration of the earth-fixed frame (OI, xI , yI , zI) and the body-fixed

frame (Ob, xb, yb, zb) frames assignment for kinematic and dynamic modelling.

assignment, for guidance and navigation of Leonard underwater vehicle, using

SNAME (Society of Naval Architects and Marine Engineers) standard [34].

2.2.1. Vehicle Kinematics in Six Degrees of Freedom

For a rigorous kinematic formulation based on Figure 2, we can express the

time derivatives of the vehicle’s position and orientation in the earth-fixed frame

with respect to its linear and angular velocities in vehicle’s body-fixed frame as

follows:

η̇ = J(η)ν (1)

where ν = [ν1 ν2]
T is the vector of linear and angular velocities in the body-fixed

frame, ν1 = [u v w] ∈ R
3×1 and ν2 = [p q r] ∈ R

3×1, η = [η1 η2]
T denotes the

vector of position and orientation in the earth-fixed frame, η1 = [x y z] ∈ R
3×1

and η2 = [φ θ ψ ] ∈ R
3×1, while J(η) ∈ R

6×6 is a matrix of the 3D spatial

transformation between the earth-fixed frame and body-fixed frame.
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This transformation matrix J(η) is given by [35]:

J(η) =

[

J1(η2) 03×3

03×3 J2(η2)

]

(2)

where J(η1) and J(η2) are given by (3) and (4) respectively, as follows (see [35]

for further details):

J1(η2) =







cψcθ cψsθ sφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθ sφ +cψcφ sψsθcφ −cψsφ
−sθ cθ sφ cθcφ






(3)

J2(η2) =







1 sψtθ cψtθ

0 cψ −sψ
0 sφ/cθ cφ/cθ






(4)

with c angle, s angle and t angle representing cos angle, sin angle and tan angle

functions respectively, where angle = φ = θ = ψ .

2.2.2. Vehicle Dynamics in Six Degrees of Freedom

Many research studies have well described the dynamics of an underwater ve-

hicle [34], [5]. Inspired by these research studies and representation proposed

by [35], the dynamics describing the motion of our underwater vehicle, based on

SNAME notations in the vehicle’s body-fixed frame, can be written as follows:

Mν̇ +C(ν)ν +D(ν)ν +g(η) = τ +wext (t) (5)

where M ∈ R
6×6 defines the inertia matrix including the added mass effects,

C(ν) ∈ R
6×6 represents the Coriolis and centripetal matrix, D(ν) ∈ R

6×6 is

the hydrodynamic damping matrix including both linear and quadratic effects,

g(η)∈R
6×1 defines the vector of restoring forces and moments, τ ∈R

6×1 repre-

sents the vector of control inputs and wext(t)∈R
6×1 is the vector of time-varying

external disturbances.

Additionally, the matrices and vectors defined in the vehicle’s dynamics (5)

are described as follows:

The total contributions of the vehicle’s rigid-body inertia MRB and the inertia

of the added mass MA constitute the so-called inertia matrix M. This matrix can

be written as:

M = MRB +MA (6)
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Based on the assumption that we consider the motion of the vehicle at low-

speed, the matrix M can be simplified as follows:

M = diag{m+Xu̇, m+Yv̇, m+Zẇ, Ixx +Kṗ, Iyy +Mq̇, Izz +Nṙ} (7)

where m is the mass of the vehicle, {Ixx, Iyy, Izz} are the vehicle’s rigid-body

moments of inertia and {Xu̇,Yv̇,Zẇ,Kṗ,Mq̇,Nṙ} are the hydrodynamics added

masses.

Similarly, the Coriolis and centripetal matrix is usually expressed as (see

[35] for more details):

C(ν) = CRB(ν)+CA(ν) (8)

where CRB(ν) and CA(ν) denote the Coriolis and centripetal (rigid-body and

hydrodynamics) matrices, which are given by (9) and (10) as follows:

CRB(ν) =



















0 −mr mq 0 0 0

mr 0 −mp 0 0 0

−mq mp 0 0 0 0

0 0 0 0 Izzr −Iyyq

0 0 0 −Izzr 0 Ixx p

0 0 0 Iyyq −Ixx p 0



















(9)

CA(ν) =



















0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗ p

−Yv̇v Xu̇u 0 −Mq̇q Kṗ p 0



















(10)

The detail step-by-step process of obtaining approximate values of the hy-

drodynamics elements (Xu, Yv, Zw, Kp, Mq, Nr) of the vehicle’s D(ν) matrix

is addressed in [34]. Considering the low-speed motion of the vehicle, we can

approximate the damping matrix D(ν) as follows:

D(ν) = diag{Xu, Yv, Zw, Kp, Mq, Nr} (11)

Concerning the restoring forces and moments g(η), we assume that the cen-

tre of gravity coincides with the centre of the vehicle; as a result, the vector g(η)
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can be written as:

g(η) =



















fbsθ

− fbcθ sψ
− fbcθcψ

−zcbBcθ sψ
−zcbBsθ

0



















(12)

where B = Buoyancy, while fb and zcb are the buoyancy force and the position

of the centre of buoyancy of the vehicle, respectively.

We finalise the description of the vehicle’s dynamics terms with τ , which is

a control inputs vector responsible for the translational and rotational motions of

the vehicle. A particular motion pattern is possible through actuating a precise

vehicle’s thrusters configuration. The control input vector τ can be written as

follows:

τ = B? ·F? (13)

where B? ∈ R
6×6 is the thrusters’ allocation matrix, which maps all the control

inputs to their corresponding forces and moments for translational and rotational

motions of the vehicle, and F? = [F1 F2 F3 F4 F5 F6]
T is a vector of the forces

generated by the six thrusters of the vehicle.

3. PROPOSED CONTROL SOLUTIONS AND THEIR

STABILITY ANALYSIS

3.1. Control Solution 1: A Non-Model-Based Tracking Control

Scheme

A control scheme that can be designed based only on the system states is re-

ferred to as a non-model-based control scheme [36]. It does not require any

prior information on the system dynamics. There are many control schemes

proposed in the literature based on non-model-based structures. However, the

most famous scheme, widely used in industry, is the conventional proportional-

integral-derivative (PID) control scheme. Besides its implementation simplicity,

this approach works satisfactorily in many industrial applications [37]. Regard-

ing low-inertia underwater water vehicles, PID and PD control schemes have

widely been used in most of the real-time marine applications [38], [16]; there-
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fore in this section, we focus on the control structure based on the PID algorithm

as our non-model-based control scheme case study.

3.1.1. Background on PID Control Scheme

The classical PID control scheme has the following structure:

U(t) = Kpe(t)+Ki

∫ t

0
e(σ)dσ +Kd





de(t)

dt



 (14)

where U(t) is the control signal, e(t) defines the error signal, which is obtained

as the difference between the reference signal r(t) and output to be controlled

y(t), while Kp, Ki and Kd are respectively the proportional, integral and deriva-

tive feedback gains of the controller. Even though the feedback gains can be

selected easily during the implementation of the control scheme, the selection

of optimal feedback gains is a nontrivial task. Where each gain has a particular

effect on the system’s behaviour; for instance, an optimal value of Kp decreases

the response time and steady-state error of the closed-loop system, optimal Ki

value removes steady-state error and Kd improves the stability through increas-

ing the damping of the resulting closed-loop dynamics.

On the other hand, non-optimal gains selection may lead to the instability

of the resulting closed-loop dynamics. Several techniques have been proposed

in the literature for a relevant tuning of these feedback gains (see for instance,

[39]).

3.1.2. Application of the PID on Leonard Underwater Vehicle

We proposed to apply the classical PID structure given by (14) to our nonlinear

coupled six degrees of freedom underwater vehicle described in (5). The con-

troller is aimed to guide the vehicle to track the desired trajectories defined as

follows:

ηd(t) = [xd(t), yd(t), zd(t), φd(t), θd(t), ψd(t)]
T (15)

If we write the vehicle’s trajectories as:

η(t) = [x(t), y(t), z(t), φ (t), θ (t), ψ(t)]T (16)

Then, the tracking error e(t) can be expressed as follows:

e(t) = η(t)−ηd(t) (17)



From Non-Model-Based to Adaptive Model-Based Tracking Control ... 47

where e(t) is a vector of the tracking errors of all the six degrees of freedom,

and is expressed as, e(t) = [e1(t),e2(t), ...,e6(t)]
T , while ηd(t) and η(t) are the

desired and actual trajectories given by (15) and (16), respectively.

The control input vector τ to be applied to our underwater vehicle is de-

signed as follows:

τ =−JT (η)[τPID] (18)

where, the PID control law τPID can be expressed as follows:

τPID = Kpe(t)+Ki

∫ t

0
e(σ)dσ +Kd





de(t)

dt



 (19)

where τ = [τx, τy, τz, τφ , τθ , τψ ]T is the vector of the control inputs for

all the six degrees of freedom, e(t) is the vector of the tracking errors,

while Kp = diag{k1p,k2p, ...,k6p}> 0, Ki = diag{k1i,k2i, ...,k6i}> 0 and Kd =
diag{k1d,k2d, ...,k6d}> 0 are the PID feedback gains matrices.

The above designed PID-based control scheme can be illustrated by the

block diagram of Figure 3.

wext(t)

η(t)

ηd(t) − ++
τPID τ

−JT (η)
e(t)

Ki

∫ t
0 e(σ)d(σ)

Kpe(t)

Kd
de(t)

dt

Figure 3. Block diagram of the non-model-based PID control scheme imple-

mented on Leonard underwater vehicle.

3.1.3. Stability Analysis

To facilitate the stability analysis, let us consider the transformation of (5) into

the earth-fixed frame (OI , xI , yI , zI) using (1) as follows:

M?(η)η̈ +C?(ν ,η)η̇ +D?(ν ,η)η̇ +g?(η) = τ?(η)+wext(t) (20)
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where

M?(η) = J−T (η)MJ−1(η),

C?(ν ,η) = J−T (η)[C(ν)−MJ−1(η)J̇(η)]J−1(η),
D?(ν ,η) = J−T (η)D(ν)J−1(η),

g?(η) = J−T (η)g(η),
τ?(η) = J−T (η)τ

Assumption 1. The external disturbance wext(t), including water waves

and currents, is assumed to be Lipschitz continuous. Also, its time derivative

exists and is bounded:
∣

∣ẇiext
(t)

∣

∣≤ Li, i = 1,6.

Substituting (18) into (20), yields:

M?(η)η̈ =−C?(ν ,η)η̇−D?(ν ,η)η̇−g?(η)+wext(t)−τPID (21)

Before substituting (19) into (21), the integral term of τPID introduces an auxil-

iary state variable, which leads to the modification of (19) as follows:

τPID = Kpe+Kiζ +Kd ė (22)

where, ζ =
∫ t

0 e(σ)dσ is the auxiliary state variable and ė is the time derivative

of (17). Then, we can adopt the following change of variable [40]:

z = aζ +e (23)

where a > 0 and z = [z1, z2, ..., z6]
T .

Using this change of variable, (22) can be rewritten as follows:

τPID = K?
pe+K?

i z+Kd ė (24)

where K?
p = Kp−

1
a
Ki and K?

i = 1
a
Ki.

By substituting (24) into (21), the resulting vehicle’s closed-loop dynamics

can be rewritten as follows:

η̈ = M?(η)−1[−C?(ν,η)η̇−D?(ν,η)η̇−g?(η)+wext(t)−K?
pe−K?

i z−Kd ė] (25)

Then, (25) can be written in state-space form with a unique equilibrium

point as follows:
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d

dt







e

ė

z






=







ė

M?(η)−1[−C?(ν,η)η̇−D?(ν,η)η̇−g?(η)+wext(t)−K?
pe−K?

i z−Kd ė]− η̈d

ae+ ė







(26)

To guarantee the stability of the unique equilibrium point of this state-space

model, we propose to use the Lyapunov direct method by considering the fol-

lowing Lyapunov candidate function:

V(e, ė, z) =
1

2
ėT M?(η)ė+[g?T (η)+ η̇T

d D?(ν,η)]e+

∫ e

0
zT K?

pdz+

∫ e

0
zT K?

i dz (27)

To prove that V(e, ė, z) is a positive definite function and radially un-

bounded, the term 1
2 ėT M?(η)ė is positive definite, since M?(η) is a positive

definite matrix; also, in the second term D?(ν ,η) > 0 and it is possible to de-

sign ηd such that η̇d > 0. For the integral terms, we consider the following

arguments [16]:

∫ e

0
zT K?

pdz =

∫ e1

0
zT

1 k?
1pdz1 +

∫ e2

0
zT

2 k?
2pdz2 + ...+

∫ e6

0
zT

6 k?
6pdz6 (28)

∫ e

0
zT K?

pdz > 0, ∀ e 6= 0 ∈R
n (29)

where K?
p = diag{k?

1p,k?
2p, ...,k

?
6p}.

From the arguments (28) and (29), we can deduce that:

∫ e

0
zT K?

pdz→∞ as ‖e‖ →∞ (30)

Similarly, it is possible to apply the same above arguments to the second integral

term of V(e, ė, z) as follows:

∫ e

0
zT K?

i dz > 0, ∀ e 6= 0 ∈R
n (31)

leading to
∫ e

0
zT K?

i dz→∞ as ‖e‖ →∞ (32)
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From (27), the time derivative of V(e, ė, z) can be expressed as follows:

V̇(e, ė, z) = ėT M?(η)ë+
1

2
ėT Ṁ?(η)ė+ eT K?

p ė+ zT K?
i ė+g?T (η)ė+ η̇T

d D?(ν,η)ė

(33)

Injecting the closed-loop state-space dynamics (26) into (33), yields:

V̇(e, ė, z) = −ėTC?(ν ,η)η̇− ėT D?(ν ,η)η̇− ėT g?(η)+ ėT wext(t)− ėT K?
pe

−ėT K?
i z− ėT Kd ė− ėT M?(η)η̈d +

1

2
ėT Ṁ?(η)ė+eT K?

p ė+ zT K?
i ė

+g?T (η)ė+ η̇T
d D?(ν ,η)ė

(34)

Assumption 2. In this work, we consider that our vehicle moves at a low speed.

Based on Assumption 2, Ṁ?(η) = 0 and C?(ν ,η) ≈ 0, therefore (34) can

be rewritten as follows:

V̇ (e, ė, z) =−ėT D?(ν ,η)ė− [ėT Kd ė+ ėT M?(η)η̈d− ėT wext(t)] (35)

From (35), if we consider Assumption 1, it is always possible to design Kd of

the controller to compensate for the effect of wext(t) as follows:

Kid >

∥

∥wext(t)
∥

∥−
∥

∥M?(η)η̈d

∥

∥

‖ė‖
i = 1,6 (36)

where Kd = diag{k1d,k2d, ...,k6d}
Also, from (35) we can deduce that ėT D?(ν ,η)ė > 0, since D?(ν ,η) > 0.

Therefore, if (36) is satisfied, then ėT D?(ν ,η)ė > 0 will dominate the right-

hand side of (35). Consequently, we can conclude that V̇(e, ė, z) in (35) is

negative semidefinite. In accordance with the LaSalle’s invariance principle, the

origin of the resulting closed-loop dynamics is asymptotically stable [34], [40].

Remark 1. Even though the PID controller proposed here is non-model-

based, the process of tuning of its feedback gains is a nontrivial task. It can

be noticed in (36) that having some knowledge of the system dynamics (for in-

stance, inertia matrix M?(η) in our case) may help to select better PID feedback

gains, which could improve the overall performance of the controller.
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3.2. Control Solution 2: A Model-Based Tracking Control Scheme

In various marine missions, the performance of non-model-based controllers

is degraded due to external disturbances and parametric variations. Certainly,

integrating the system dynamics (partially or entirely) into a non-model-based

controller structure will help to improve its performance. Therefore, when a

non-model-based control scheme contains the dynamics (partially or entirely)

of the system it is known as a model-based control scheme [36]. However,

obtaining accurate and simple dynamics of a system, having all the properties

of the real system remains a challenging task. Concerning the control of our

low-inertia underwater vehicle, we propose to focus our study on the computed

torque (CT) control as an example of a model-based control scheme, which is

based on the full knowledge of the vehicle’s dynamics.

3.2.1. Background on the CT Control and Its Application

on Leonard Underwater Vehicle

The majority of the real systems are represented mathematically by nonlinear

differential equations which mainly result in a nonlinear closed-loop dynam-

ics, when controlled with model-based controllers. However, the CT control

scheme has the advantage of transforming the closed-loop dynamics of the non-

linear system into a linear closed-loop dynamics. As a result, we can use linear

systems design tools to analyse the resulting linear closed-loop dynamics. Ad-

ditionally, the CT controller can fulfil the tracking control objective without

necessary an optimal tuning of the feedback gains [40]. For the tracking con-

trol of Leonard underwater vehicle, we propose to design the CT controller as

follows:

τ = JT (η)

[

M?(η)η̈d +C?(ν,η)η̇ +D?(ν,η)η̇ +g?(η)−M?(η)
[

Kpe(t)+Kd
de(t)

dt

]

]

(37)

where τ = [τx, τy, τz, τφ , τθ , τψ ]T is the vector of the control inputs for all

the six degrees of freedom of the vehicle, J(η) is the transformation matrix,

e(t) is the vector of the tracking errors, Kp = diag{k1p,k2p, ...,k6p} > 0 and

Kd = diag{k1d,k2d, ...,k6d} > 0 are the feedback gains, M?(η) defines the in-

ertia matrix including the added mass effects, C?(ν ,η) represents the Coriolis

and centripetal matrix, D?(ν ,η) is the hydrodynamic damping matrix includ-

ing both linear and quadratic effects, and g?(η) defines the vector of restoring
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forces and moments.

Indeed, the terms M?(η), C?(ν ,η), D?(ν ,η) and g?(η) in the CT control

law (37) are obtained from the vehicle’s dynamics (20). The block diagram

of the CT controller structure implemented on Leonard underwater vehicle is

illustrated in Figure 4.

wext(t)

ν(t)

η(t)

ηd(t) − +++
τ

JT (η)

[C?(ν ,η)+D?(ν ,η)]η̇

e(t)
Kpe(t)

Kd
de(t)

dt

d2

dt2

d
dt

M?(η)

g?(η)

Figure 4. Block diagram of model-based CT control scheme implemented on

Leonard underwater vehicle.

3.2.2. Stability Analysis

To facilitate the stability analysis, let us begin by injecting the CT control law

(37) into the vehicle’s dynamics (20), resulting in:

M?(η)η̈ +C?(ν,η)η̇ +D?(ν,η)η̇ +g?(η) = M?(η)η̈d +C?(ν,η)η̇ +D?(ν,η)η̇

+g?(η)−M?(η)
[

Kpe(t)+Kd

de(t)

dt

]

+wext(t)

(38)

Then, we can rewrite the above closed-loop dynamics in the state-space form

as follows:

d

dt

[

e

ė

]

=

[

ė

M?(η)−1wext(t)−Kpe−Kd ė

]

(39)

Next, we can use the Lyapunov direct method to prove the stability of the re-

sulting closed-loop dynamics by considering the following Lyapunov candidate
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function:

V(e, ė) =
1

2
ėT ė +

∫ e

0
αT Kpdα (40)

The proposed Lyapunov candidate function is positive definite and radially

unbounded since 1
2
ėT M?(η)ė is positive definite, and the integral term satisfies

the following arguments:

∫ e

0
αT Kpdα =

∫ e1

0
αT

1 k1pdα1 +

∫ e2

0
αT

2 k2pdα2 + ...+

∫ e6

0
αT

6 k6pdα6 (41)

∫ e

0
αT Kpdα > 0, ∀ e 6= 0 ∈ R

n (42)

where Kp = diag[k1p,k2p, ...,k6p].
From the above arguments (41) and (42), we can deduce that:

∫ e

0
αT Kpdα →∞ as ‖e‖ → ∞ (43)

Next, since V (e, ė) is positive definite and radially unbounded, then we can

evaluate its time derivative along the trajectory of the resulting closed-loop dy-

namics as follows:

V̇ (e, ė) = ėT ë+eT Kpė (44)

Substituting (39) into (44) yields:

V̇ (e, ė) = ėT [M?(η)−1wext(t)−Kpe−Kd ė]+eT Kp ė (45)

which, we can be rewritten as follows:

V̇(e, ė) = −[ėT Kd ė− ėT M?(η)−1wext(t)] (46)

From (46), and based on Assumption 1, Kd can be designed to compensate for

the effect of wext(t) as follows:

Kid >

∥

∥wext(t)
∥

∥

mini

∣

∣λi{M?(η)}
∣

∣‖ė‖
, i = 1,6 (47)

where Kd = diag{k1d,k2d, ...,k6d}.

Finally, from (46) we can deduce that V̇ (e, ė) is negative semidefinite if

argument (47) is satisfied. This leads to the conclusion that the origin of the

closed-loop dynamics is asymptotically stable based on LaSalle’s invariance

principle.
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3.3. Control Solution 3: Adaptive Model-Based Tracking Control

Scheme

Even though having complete or partial knowledge of the system dynamics im-

proves the performance of the control scheme, the process of obtaining an ac-

curate model which represents real system remains a challenging task. Simi-

larly, tracking control of a low-inertia underwater vehicle with a model-based

controller may result in a high tracking error due to its challenging modelling

process, in addition to the variations of the vehicle’s parameters as well as the

unpredictable nature of the underwater environments. Besides, the parametric

variations, the high sensitivity of low-inertia underwater vehicles, the inherently

coupled nonlinearities in their dynamics drastically affect the control schemes

performances during marine missions. To deal with these issues, the designed

controllers for such vehicles should dynamically adjust themselves to neutralise

these effects in real-time. In the field of control systems, any controller with

auto-adjustment mechanism is referred to as an adaptive controller [2]. Hence,

an adaptive control technique can be considered as a process of designing a

control scheme with an auto-adjustment mechanism for a dynamical system un-

der the influence of parametric uncertainties in high precision applications [40].

However, the adaptive control scheme design requires accurate knowledge of

the system dynamics structure, which is used to characterise the uncertainty of

the system as a set of unknown parametric terms; this may help to facilitate the

controller design. The adaptive control scheme can be categorised as a direct

adaptive control technique or an indirect adaptive control technique. The direct

adaptive control technique deals with direct estimation of the control parame-

ters which are used to modify the system’s dynamics. However, the indirect

adaptive control technique involves the estimation of the system’s dynamics,

which is used in the design of the controller. For the case of our underwater

vehicle in this section, we focus on the implementation of an adaptive version

of PD+ controller (APD+) for trajectory tracking. This controller is designed

and implemented on the vehicle subsequently.

3.3.1. Background on the APD+ Control Scheme and Its Application on

Leonard Underwater Vehicle

A PD control structure combined with desire compensation terms, obtained

from a system dynamics as well as a predefined desired trajectory in tracking

control, is known as a PD+ control scheme. Besides, its implementation sim-
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plicity in real-time applications, the compensation terms in the control law can

be computed offline to reduce computational cost once the desired trajectory

is defined [40]. Considering these advantages of the PD+ control scheme, we

modify its structure by adding an adaptation to improve its robustness. The im-

proved control scheme is implemented on the highly uncertain dynamical model

with a nonlinear coupled behaviour of Leonard underwater vehicle. The design

and implementation of this control law as well as its adaptation mechanism for

Leonard underwater vehicle are given as follows:

τ = JT (η)

[

M?(η)η̈d +C?(ν,η)η̇d +D?(ν,η)η̇d−
[

Φϑ ϑ̂ T +Kpe(t)+Kd

de(t)

dt

]

]

(48)

˙̂ϑ = Γ−1
ϑ Φϑ

[

αe(t)+
de(t)

dt

]

(49)

where τ = [τx, τy, τz, τφ , τθ , τψ ]T is the vector of the six control inputs of the

vehicle, J(η) is a matrix which defines three dimensional spatial-transformation

between the earth-fixed frame and vehicle’s body-fixed frame, M?(η) defines

the inertia matrix including the added mass effects, C?(ν ,η) represents the

Coriolis and centripetal matrix, D?(ν ,η) is the hydrodynamic damping ma-

trix including both linear and quadratic effects, e(t) is the vector of the tracking

errors, Kp = diag{k1p,k2p, ...,k6p}> 0 and Kd = diag{k1d,k2d, ...,k6d}> 0 are

the feedback gains, α > 0, Γ−1
ϑ = diag{γ1,γ2, ...,γ6}> 0 is the adaptation gain

matrix, Φϑ is the regressor matrix, ϑ is the vector of the unknown constant

parameters to be estimated by the controller and ϑ̂ is the estimate of the ϑ .

The dynamics of Leonard underwater vehicle is characterised by its linearity

with respect to the dynamic parameters. We exploit this property of the vehicle’s

dynamics and focus on designing Φϑ and ϑ based on the terms (i.e. wext(t) and

g?(η)) which significantly affect the steady-state of the vehicle as follows [35]

[41]:
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Φϑ =
[

Φg, Φwext

]

with Φg =



















sθ
−cθ sφ 03×1

−cθcφ
−cθ sψ

03×1 −sθ
0



















and Φwext
= J(η)

(50)

and

ϑ̂ T =
[

ϑ̂ T
g , ϑ̂ T

wext

]T

with ϑ̂ T
g = [ fB zbB]T and ϑ̂ T

wext
= [wx, wy, wz, 0, 0, 0]T

(51)

where Φg and Φwext
are the regressor matrices of g?(η) and wext(t) respectively,

while ϑ̂ T
g and ϑ̂ T

wext
are the estimates of the unknown dynamic parameters of

g?(η) and wext(t) respectively. Further, wext(t) is considered as a water current

with irrotational components wx, wy and wz in earth-fixed frame.

The structure of the proposed APD+ control scheme implemented on

Leonard underwater vehicle is illustrated in Figure 5.

wext(t)

η(t)

ηd(t) −+
APD+

Controller
Equation(48)

Adaptation
Equation

(49)

τ
JT (η)e(t)

Figure 5. Block diagram of APD+ control scheme implemented on Leonard

underwater vehicle.
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3.3.2. Stability Analysis

For the ease of the stability analysis, we substitute the controller (48) into the

vehicle’s dynamics (20) and write the resulting closed-loop dynamics in a state-

space form as follows:

d

dt







e

ė

ϑ̃






=











ė

M?(η)−1
[

−C?(ν,η)ė−D?(ν,η)ė−g?(η)+wext(t)−Φϑ ϑ̂ T −Kpe−Kd ė

]

−Γ−1
ϑ Φϑ

[

αe+ ė

]











(52)

where ϑ̃ = ϑ − ϑ̂ .

Next, we consider the following Lyapunov candidate function:

V(e, ė, ϑ̃ ) =
1

2
ėT M?(η)ė+

1

2
ϑ̃ T Γϑ ϑ̃ +

∫ e

0
αT Kpdα (53)

The proposed Lyapunov candidate function in (53) is positive definite and ra-

dially unbounded since the first two terms are positive definite, and the integral

term satisfies the following arguments:
∫ e

0
αT Kpdα =

∫ e1

0
αT

1 k1pdα1 +

∫ e2

0
αT

2 k2pdα2 + ...+

∫ e6

0
αT

6 k6pdα6 (54)

∫ e

0
αT Kpdα > 0, ∀ e 6= 0 ∈ R

n (55)

where Kp = diag{k1p,k2p, ...,k6p}.
From arguments (54) and (55) above, we can conclude that:

∫ e

0
αT Kpdα →∞ as ‖e‖ → ∞ (56)

Then, the time derivative of (53) can be written as follows:

V̇(e, ė, ϑ̃ ) = ėT M?(η)ë+
1

2
ėT Ṁ?(η)ė+ ϑ̃ T Γϑ

˙̃ϑ +eT Kpė (57)

By substituting the closed-loop dynamics (52) into the time derivative of the
Lyapunov candidate function (57), we deduce:

V̇(e, ė, ϑ̃) = ėT
[

−C?(ν,η)ė−D?(ν,η)ė−g?(η)+wext(t)−Φϑ ϑ̂ T −Kpe−Kd ė
]

+
1

2
ėT Ṁ?(η)ė+ ϑ̃ T Γϑ

˙̃ϑ + eT Kpė

(58)
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Since we design the adaptation law of the controller based on the terms

which affect the steady-state of the vehicle, that is, wext(t) and g?(η), then these

terms can be rewritten in a regressor form as follows:

wext(t)−g?(η) = Φϑ ϑ T (59)

Then, substituting (59) into (58) leads to:

V̇(e, ė, ϑ̃) = −ėT [D?(ν,η)+Kd]ė+
1

2
ėT [Ṁ?(η)−2C?(ν,η)]ė+ ėΦϑ [ϑ T − ϑ̂ T ]

−ϑ̃ T Γϑ
˙̂ϑ
(60)

Injecting the adaptation law (49) into (60) above, leads to:

V̇(e, ė, ϑ̃) = −ėT [D?(ν,η)+Kd]ė+
1

2
ėT [Ṁ?(η)−2C?(ν,η)]ė+ ėΦϑ [ϑ T − ϑ̂ T ]

−ϑ̃ T Γϑ

[

Γ−1
ϑ Φϑ [αe+ ė]

]

(61)

Then, (61) can be rewritten as follows:

V̇(e, ė, ϑ̃ ) = −ėT [D?(ν ,η)+Kd]ė+
1

2
ėT [Ṁ?(η)−2C?(ν ,η)]ė+ ėΦϑ ϑ̃ T

−ϑ̃ T Φϑ αe− ϑ̃ T Φϑ ė

(62)

Based on Assumption 2 and the fact that C?(ν ,η) is skew symmetric, then we

can rewrite (62) as follows:

V̇ (e, ė, ϑ̃) = −ėT [D?(ν ,η)+Kd]ė− ϑ̃ T Φϑ αe (63)

From (63) above, it is possible to conclude that V̇(e, ė, ϑ̃ ) is negative defi-

nite; additionally, D?(ν ,η) > 0 and Kd > 0, and the second term on the right-

hand side of V̇(e, ė, ϑ̃ ), is negative. Even if, the second term on the right-hand

side of V̇ (e, ė, ϑ̃) changes its sign due to the possible high degree of uncertainty

on the external disturbance, then α can be designed so that the effect of this

second term becomes negligible, while the first term dominates the right-hand

side of V̇ (e, ė, ϑ̃). Consequently, V̇(e, ė, ϑ̃ ) will remain negative definite despite

the influence of these effects. Therefore, we can conclude that the origin of the

resulting closed-loop dynamics is asymptotically stable.
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4. SIMULATION RESULTS: A COMPARATIVE STUDY

To compare the effectiveness and robustness of the proposed three controllers

designed in the previous section, we implemented them on Leonard underwa-

ter vehicle described in section 2. During the implementation process of the

control schemes, various scenarios-based numerical simulations have been con-

ducted and the obtained results are discussed in the sequel. Before discussing

the obtained results, the proposed simulation scenarios are introduced.

4.1. Proposed Numerical Simulations Scenarios

The following scenarios are tested to evaluate the effectiveness and robustness

of all the proposed three control schemes on Leonard (low-inertia) underwater

vehicle:

Scenario 1 (nominal case): The main objective of this scenario is to obtain the

best control feedback gains, which will result in the best vehicle’s desired tra-

jectory tracking. The obtained gains are used in the remaining scenarios without

any modification.

Scenario 2 (external disturbance rejection): In this scenario, we consider the

presence of water current and the task of transporting an object by the vehicle

from a first point and dropping it at another point as external disturbances. The

ability of each controller to reject these disturbances and keeps the vehicle on

the desired trajectory is evaluated. Indeed, the task of transporting the object

and dropping it at a specific desired depth is illustrated in Figure 6.

Scenario 3 (robustness toward vehicle’s damping and buoyancy changes):

The main objective of this scenario is to evaluate the robustness of each con-

troller towards parametric variations such as the modifications of the vehicle’s

buoyancy and damping.

4.2. Nominal Scenario (Results and Discussion)

In this simulation test, defined previously as Scenario 1, the vehicle is intended

to follow a predefined 3D helical desired trajectory under the influence of in-

ternal disturbances such as sensor noise; external disturbances and parametric

uncertainties are not considered in order to obtain the best feedback gains to be

used in forthcoming scenarios. The obtained results are depicted in Figures 7-

11. The three controllers are able to guide the vehicle to follow the desired 3D
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Surface

Bottom

Testing pool

← object

Desired Trajectory→

Figure 6. Illustration of Leonard underwater vehicle following a predefined

desired helical trajectory while carrying an object from the surface and dropping

it at the bottom of the testing pool.

helical trajectory from the initial position (≈ 0m) to a depth of approximately

13m, which is near to the bottom of the testing pool. The vehicle completes this

mission in 720s and remains stable near to the bottom of the testing pool.

Besides the complex nature of the chosen trajectory, it has a medium ra-

dius (≈ 4m), which helps us to evaluate the robustness and effectiveness of the

proposed controllers to manoeuvre the vehicle in tracking the desired helical

trajectory. The six degrees of freedom, namely, surge and roll, sway and pitch

as well as heave and yaw evolution versus time are shown in Figure 7 (top plots),

Figure 8 (top plots) and Figure 9 (top plots), respectively. Figure 10 shows the

tracking results in 3D, which can help to visualise the motion of the vehicle in

3D easily during this test. Moreover, one can observe from Figure 7 (top left

plot), Figure 8 (top left plot) and Figure 9 (top left plot) under this scenario,

that all the three controllers effectively guide the vehicle to track the desired

trajectory in the surge, sway and heave, respectively.

Similarly, regarding the vehicle’s attitude tracking, the proposed controllers

guide the vehicle to track the desired roll and pitch with slight tracking errors

as shown in Figure 7 (top right plot) and Figure 8 (top right plot). However,

the roll and pitch tracking errors for the PID are slightly bigger as shown in

Figure 7 (top right plot) and Figure 8 (top right plot), respectively. These slightly

bigger tracking errors of the proposed PID controller can also be noticed in

Figures 7- 8 (middle right plot). Concerning the yaw tracking all the proposed
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three controllers are able to track the desired yaw as shown in Figure 9 (top

right plot). Also, the tracking errors of the proposed controllers in all the six

degrees of freedom of the vehicle are shown in Figures 7- 9 (middle plots). To

numerically evaluate the tracking performances of the proposed controllers for

position and orientation tracking of the vehicle, we use a performance index in

3D known as root mean square error (RMSE) expressed as follows:

RMSE(3D position/orientation)=





1

N

N

∑
i=1

[

e2
x/φ (i)+e2

y/θ(i)+e2
z/ψ(i)

]





1
2

(64)

where N denotes the number of time-samples, while ex/φ , ey/θ and ez/ψ are the

tracking errors in position and orientation on x, y and z axes, respectively.

Using (64) above, we compute the RMSE for both 3D position and orien-

tation of the controllers; the results of the computations are summarised in Ta-

ble 2. Next, the control inputs evolution of all the six degrees of freedom of the

vehicle for all the controllers are depicted in Figures 7- 9 (bottom plots). Then,

from the control signals evolution versus time obtained results, we numerically

estimate the energy consumption of each controller using the following index:

INT =

∫ t2

t1

∥

∥τ(t)
∥

∥dt (65)

where INT defines the integral of control signals, t1 = 1s and t2 = 720s

Since CT and APD+ controllers show superior tracking performances, con-

firmed by Table 2, we investigate their energy consumption using (65) as fol-

lows:

INT3D position APD+

INT3D position CT

=
7130

7005
= 1.02.

INT3D orientation APD+

INT3D orientation CT

=
209

214
= 0.98.

(66)

From (66) it is worth to note, that besides the superior tracking performance

of the APD+ controller, its energy consumption is approximately the same as the

CT controller in both desired position and orientation trackings. Hence, we can

conclude that the APD+ controller demonstrates superior tracking performance

than both the CT and PID controllers in this scenario. The uncertain parametric

estimations made by the APD+ controller are shown in Figure 11.
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Figure 7. Trackings performances comparison of the APD+, CT and PID con-

trollers implemented on Leonard underwater vehicle in the nominal scenario:

(upper plots) surge and roll trackings, (middle plots) surge and roll correspond-

ing tracking errors and (bottom plots) are the evolution of the vehicle’s control

inputs.

Table 2. Summary of the controllers performance indices

SCENARIO PID CT APD+

RMSE 3D-position Nominal Scenario 0.1133 0.0944 0.0618

[m] Combined Scenarios 0.5421 0.1382 0.1462

RMSE 3D-orientation Nominal Scenario 2.4026 0.9038 0.4618

[deg] Combined Scenarios 2.4108 0.9176 0.4629

4.3. Combined Scenarios (Results and Discussion)

To investigate the robustness of each controller in this test, we propose to com-

bine all the scenarios defined previously in one test, and the vehicle follows the

same desired trajectory as in the nominal case. The effect of sensor measure-

ment noise can be noticed in Figures 12- 14 (bottom plots), but more amplified

on the roll and pitch control signals of the proposed APD+ controller. When the

vehicle reaches a depth of 2.5m, the influence of a 3-kg object tied at the bottom

of the vehicle becomes active as illustrated in Figure 6. We can notice the effect
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Figure 8. Trackings performances comparison of the APD+, CT and PID con-

trollers implemented on Leonard underwater vehicle in the nominal scenario:

(upper plots) sway and pitch trackings, (middle plots) sway and pitch corre-

sponding tracking errors and (bottom plots) are the evolution of the vehicle’s

sway and pitch control inputs.

of this added mass as a sudden change in the overall mass of the vehicle at 150s

along the heave axis as shown in Figure 14 (heave plots), which can also be

visualised in 3D as shown in Figure 15; however, the vehicle yaw tracking is

less affected as illustrated in Figure 14 (yaw plots).

In the case of CT controller, the vehicle deviates slightly from the desired

trajectory, while the APD+ controller compensates for the effect within a short

time (about 4s) and keeps the vehicle around the desired trajectory; on the other

hand, it takes the PID controller about 40s to compensate for the same effect.

Also, the vehicle tracking is less affected on the surge, roll and sway in the case

of the proposed APD+ controller as compared to the remaining controllers, as

shown in Figure 12 and Figure 13 (sway plots). However, the pitch tracking of

the proposed APD+ controller is slightly affected as shown in Figure 12 (pitch

plots).

When the vehicle reaches 5m of depth, its damping and floatability are mod-

ified by +90% and +200%, respectively, to evaluate the robustness of the three

controllers towards parametric variations of the vehicle, which is clearly seen in

Figure 12 (roll plots), Figure 13 (pitch plots) and Fig 14 (heave plots) at about
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Figure 9. Trackings performances comparison of the APD+, CT and PID con-

trollers implemented on Leonard underwater vehicle in the nominal scenario:

(upper plots) heave and yaw trackings, (middle plots) heave and yaw corre-

sponding tracking errors and (bottom plots) are the evolution of the vehicle’s

heave and yaw control inputs.

300s. Concerning the roll and pitch tracking APD+ controller compensates for

this effect and keeps the vehicle very close to the desired trajectory. At the same

time, it takes the CT controller about 20s and 15s to compensate for the same

effect on roll and pitch, respectively. However, the PID controller oscillates

slightly around the desired roll, while tracking the desired pitch with a slightly

bigger tracking error.

As the vehicle reaches the depth of about 7.5m in 450s, the 3-kg object

tied to the vehicle touches the floor of the testing pool at the same time the

vehicle’s damping and floatability are rechanged to their nominal values. These

effects are clearly observed in Figure 12 (roll plots), Figure 13 (pitch plots) and

Figure 14 (heave plots), as well as in Figure 15 (3D plot), while all the three

controllers maintain approximately their superior performances in the surge,

sway and yaw trackings as shown in Figure 12 (surge plots), Figure 13 (sway

plots) and Figure 14 (yaw plots), respectively.

To further evaluate the ability of the controllers to reject external distur-

bances, when the vehicle goes to 10m depth, we apply a water current moving

at a speed of 0.35m/s to disturb the vehicle. Even though, the controllers reject
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Figure 10. Three-dimensional (3D) helical trajectory trackings performances

comparison of the APD+, CT and PID controllers implemented on Leonard

underwater vehicle in the nominal scenario.
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Figure 11. Parametric estimations of the APD+ controller implemented on

Leonard underwater vehicle for three-dimensional (3D) helical trajectory track-

ing in the nominal scenario.
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Figure 12. Trackings performances comparison of the APD+, CT and PID con-

trollers implemented on Leonard underwater vehicle in the combined scenario:

(upper plots) surge and roll trackings, (middle plots) surge and roll correspond-

ing tracking errors and (bottom plots) the evolution of the vehicle’s control in-

puts.

Figure 13. Trackings performances comparison of the APD+, CT and PID con-

trollers implemented on Leonard underwater vehicle in the combined scenario:

(upper plots) sway and pitch trackings, (middle plots) sway and pitch corre-

sponding tracking errors and (bottom plots) are the evolution of the vehicle’s

sway and pitch control inputs.
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Figure 14. Trackings performances comparison of the APD+, CT and PID con-

trollers implemented on Leonard underwater vehicle in the combined scenario:

(upper plots) heave and yaw trackings, (middle plots) heave and yaw corre-

sponding tracking errors and (bottom plots) are the evolution of the vehicle’s

heave and yaw control inputs.
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underwater vehicle in the combined scenario.



68 Auwal Shehu Tijjani and Ahmed Chemori

0 100 200 300 400 500 600 700 800
-15

-10

-5

0

5

z
b
B
 
[
m
N
]

z
b
B
 APD+

0 100 200 300 400 500 600 700 800

Time [s]

-5

0

5

10

15

20

f b
 
[
N
]

f
b APD+

Figure 16. Parametric estimations of the APD+ controller implemented on

Leonard underwater vehicle for three-dimensional (3D) helical trajectory track-

ing in the combined scenario.
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tracking in the combined scenario.
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the applied external disturbance, but as a consequence the controllers consume

a slightly higher amount of energy especially the CT controller as shown in Fig-

ure 12 (Forcesurge plot), Figure 13 (Forcesway plot) and Figure 14 (Forceheave

plot).

Finally, it is possible to conclude that the APD+ controller demonstrates su-

perior performance as compared to the CT and PID controllers. Even though

the CT controller shows similar performance to APD+ controller in terms of 3D

position tracking confirmed by numerical computation of RMSE given in Ta-

ble 2, the RMSE of APD+ controller for 3D orientation tracking from Table 2 is

50% less than the RMSE of CT controller. Moreover, the energy consumption

estimation using (65) shows that approximately the same energy is consumed by

both APD+ and CT controllers during 3D position trackings. However, concern-

ing 3D orientation tracking, the APD+ controller consumes 3.5% less energy

than the CT controller. The uncertain parametric and external disturbance esti-

mations by the APD+ controller are depicted in Figures 16 and 17, respectively.

From these figures representing uncertain parametric and external disturbance

estimations by the APD+ controller, one can observe the influence of all the

effects introduced during this simulation scenario.

CONCLUSION AND FUTURE WORK

In this chapter, the performances of the non-model-based (PID), the model-

based (CT) as well as the adaptive model-based (APD+) controllers have been

investigated for three-dimensional (3D) helical trajectory tracking of a low-

inertia underwater vehicle. The resulting closed-loop dynamics stability analy-

sis of all the three proposed controllers have been conducted based on Lyapunov

direct method. The controllers have then been implemented on Leonard under-

water vehicle for 3D helical trajectory tracking. Scenarios-based simulation re-

sults demonstrate the superior performance of APD+ controller, compared to the

two other controllers, for marine applications under the influences of parametric

variations, internal vehicle’s perturbations and external disturbances. In the near

future, we will focus on implementing these control schemes in real-time on

low-inertia underwater vehicles. Also, we may integrate observers in real-time

to all the controllers for velocity estimation, since the majority of the low-inertia

and low-cost underwater vehicles are not equipped with DVL (Doppler velocity

logger) sensors.
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Chapter 3

CONTROLLERS TO AVOID COLLISION

WITH 3D OBSTACLES USING SENSORS

Jonghoek Kim∗

Electronic and Electrical Convergence Department,

Hongik University, Sejong-City, South Korea

Abstract

Collision avoidance in 3D environments is important to the problem of

planning safe trajectories for an autonomous vehicle. Existing literature

on collision avoidance assumed that obstacle shapes are known a priori

and modeled obstacles as spheres or bounding boxes. However, in 3D

environments, an obstacle shape is unknown to the autonomous vehicle,

and the vehicle detects an obstacle boundary using 3D sensors, such as 3D

sonar. In this chapter, we introduce control laws for collision avoidance,

considering scenarios where a vehicle detects arbitrarily shaped and non-

convex obstacles using sensors. Moreover, our control laws are designed

considering motion constraints, such as the maximum turn rate and the

maximum speed rate of the vehicle. The effectiveness of our control laws

is verified using MATLAB simulations.

Keywords: collision avoidance, 3D environment, maximum turn rate, maxi-

mum acceleration, arbitrarily shaped obstacle
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1. INTRODUCTION

In recent years, significant advancements have been made in the capabilities of

Unmanned Vehicles. Collision avoidance is important to the problem of plan-

ning safe trajectories for these vehicles.

Many papers tackled collision avoidance in 2D environments [1, 2, 3, 4,

5, 6, 7, 8, 9, 10]. The Velocity Obstacle (VO) approach has been adopted to

avoid moving obstacles [3, 4, 7]. In the VO approach, it is assumed that an

obstacle maintains its velocity at all future times. The VO approach accounts for

collision checks at all future times (under the linear velocity assumption) and is

very fast to compute and is suitable for robotic applications, where the algorithm

is implemented on embedded systems that have limited computational resources

and hard real-time requirements [2]. [11] considered collision avoidance laws

for objects with arbitrary shapes. However, [11] is restricted to an arbitrary

obstacle in two dimensions.

Several authors addressed 3D collision avoidance [12, 13, 15, 22, 23]. Exist-

ing literature on collision avoidance assumed that obstacle shapes are known a

priori and modeled obstacles as spheres or bounding boxes [12, 13, 14, 15, 16].

However, in 3D environments, a vehicle detects an obstacle boundary using

3D sensors, such as 3D sonar. Thus, the vehicle can only access 3D points on

an obstacle boundary, not the entire obstacle [17, 18, 19, 20, 21]. Our control

laws are developed to avoid collision with each of these points. As far as we

know, the collision avoidance controllers presented in this chapter are novel in

considering the fact that an obstacle shape is unknown a priori and that the ve-

hicle detects an obstacle boundary using sensors. Since we do not use shape

approximations, our approach is suitable for avoiding an arbitrary shaped and

non-convex obstacles.

A vehicle cannot turn or accelerate with infinite acceleration due to hard-

ware limits. Considering the dynamic constraints of an UAV, [15, 22, 23] pre-

sented how to plan a global path for the UAV so that it reaches a goal while

avoiding collision. However, [15, 22, 23] did not consider a scenario where a

vehicle detects an obstacle boundary using on-board sensors. Note that a mov-

ing obstacle can change its velocity while it moves. However, the control laws

in [22, 23] did not use the velocity information of a moving obstacle, thus may

not be suitable for avoiding a fast moving obstacle.

[15] is based on the dynamic rapidly-exploring random tree(RRT) algo-

rithm, which expands the vehicle path iteratively until a path to the goal is found.
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This approach assumes that obstacle environments are known to the vehicle a

priori. However, this may not be feasible in practice. Also, there may be a

case where the goal is too far from the vehicle position in 3D environments. In

this case, it may not be feasible to generate a 3D path to the goal in real time.

Thus, [15] may not be suitable for a case where the vehicle detects an obstacle

boundary abruptly and the vehicle must re-plan to avoid the obstacle.

This chapter assumes that an obstacle maintains its velocity for a certain

amount of time (U time steps) in the future. Under this assumption, we provide

control laws to achieve collision avoidance within U time steps in the future.

Since we update control laws at each time step, we achieve collision avoidance

at each time step. In the case where the vehicle does not detect an obstacle

boundary, the vehicle just moves toward its goal.

In our control laws, we generate a safe velocity of the vehicle so that a col-

lision is avoided using the generated velocity. Our control laws use the velocity

information of a moving obstacle, thus are suitable for avoiding a fast moving

obstacle. Our control laws are designed considering motion constraints, such

as the maximum turn rate and the maximum speed rate of the vehicle. More-

over, our control laws are designed to generate a safe velocity as fast as possible

while minimizing the velocity change. As far as we know, the proposed col-

lision avoidance controllers are novel in considering the fact that an obstacle

shape is unknown a priori and that the vehicle detects an obstacle boundary us-

ing sensors. The effectiveness of our control laws is verified using MATLAB

simulations.

The chapter is organized as follows: Section 2 introduces the preliminary

information of this chapter. Section 3 discusses definitions and assumptions

related to this chapter. Section 4 introduces our control laws for collision avoid-

ance. Section 5 introduces MATLAB simulations to verify our method. Section

5.2 provides conclusions.

2. PRELIMINARY INFORMATION

2.1. Model

This chapter uses two reference frames: an inertial reference frame {I} and a

body-fixed reference frame {B} [24]. We introduce several definitions which

are used in rigid-body dynamics [24].

The origin of {I} is an appropriate location with the axes pointing North,
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East, and Down respectively. The {B} frame is fixed to the vehicle and acts as

the moving frame. The origin of {B} frame is at the center of gravity of the

vehicle.

φ, θ, ψ denote euler roll angle, euler pitch angle, and euler yaw angle in

the inertial coordinate system. φ, θ, ψ are used to place a 3-D body in any

orientation.

Let c(η) denote cos(η). Also, let s(η) denote sin(η). Let t(η) denote

tan(η).

The counterclockwise rotation of ψ about the z-axis in the inertial coordi-

nate system is represented by the following rotation matrix R(ψ).

R(ψ) =





c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1



 . (1)

The counterclockwise rotation of θ about the y-axis in the inertial coordinate

system is represented by the following rotation matrix R(θ).

R(θ) =





c(θ) 0 s(θ)

0 1 0
−s(θ) 0 c(θ)



 . (2)

The counterclockwise rotation of φ about the x-axis in the inertial coordi-

nate system is represented by the following rotation matrix R(φ).

R(φ) =





1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)



 . (3)

A single rotation matrix can be formed by multiplying the yaw, pitch, and roll

rotation matrices to obtain

R(ψ, θ, φ) = R(ψ)R(θ)R(φ). (4)

3. DEFINITIONS AND ASSUMPTIONS

Let q ∈ R3 denote the position of a vehicle. Let v = q̇ denote the velocity of

the vehicle. Let h = v
‖v‖

denote the heading vector of the vehicle.
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η(k) is used to indicate η at time step k. For instance, a vehicle at time step

k is located at q(k) ∈ R3.

The following equation shows the motion model of the vehicle in discrete-

time systems.

q(k + 1) = q(k) + v(k) ∗ dt (5)

Here, dt denotes the sampling interval of our discrete-time system.

Considering the hardware information of the vehicle, there are bounds for

v(k) as follows. The maximum speed of the vehicle is smax. This implies that

‖v(k)‖ ≤ smax. The maximum speed rate of the vehicle is amax, which implies

that

−amax ≤
(‖v(k + 1)‖ − ‖v(k)‖)

dt
≤ amax. (6)

The maximum turn rate of the vehicle is α. This implies that

A(v(k), v(k + 1)) < α ∗ dt (7)

for every time step k. Here, A(v1, v2) = arccos( v1·v2

‖v1‖‖v2‖
) denotes the angle

formed by two vectors v1 and v2.

Recall that the vehicle can access 3D points on an obstacle boundary using

sensors. Each point is called the obstacle point, say O. We assume that a vehicle

can estimate the position and velocity of an obstacle point. This assumption

is commonly used in collision avoidance algorithms based on VO approaches

[7, 3, 4].1

We say that the vehicle and an obstacle point collide in the case where the

relative distance between the vehicle and the obstacle point is less than r. To

avoid collision with an obstacle, it is assumed that the sensing range of a vehicle

is bigger than r. Let obstacle sphere denote the sphere centered at an obstacle

point O with radius r.

r is used to compensate for the inaccuracy of sensor measurements. In

other words, r is determined by measurement error of 3D sensors on the vehi-

cle. Many sensors (LIDAR, RADAR or any time-of-flight or vision sensors) are

1The velocity of an obstacle point is that of an obstacle which has the obstacle point on its

boundary. We can track an obstacle point with features to estimate the velocity of the associated

obstacle. [17, 21, 25] used 3D sensor, such as lidar, to estimate the position and velocity of

an obstacle. The approach in [17, 21, 25] can be used to estimate the velocity of an obstacle.

However, estimating the velocity of an obstacle is not within the scope of this chapter.
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bound to measurement error. As we consider a 3D sensor with large measure-

ment error, we need to set r as a large value. However, considering a 3D sensor

with small measurement error, we can set r as a small value.

4. CONTROL LAWS FOR COLLISION AVOIDANCE

4.1. Collision Prediction

We introduce how to predict collision between the vehicle q and an obstacle

point, say O, within U time steps in the future.

The prediction window size U is related to the maneuverability of the vehi-

cle. In the case where α is small, the vehicle cannot turn abruptly. This case,

the vehicle must begin collision avoidance maneuver from an instant when the

vehicle is far from an obstacle. Thus, we need to set U as a large value for safe

collision avoidance. However, in the case where α is large, the vehicle can turn

abruptly. This case, we can set U as a small value for safe collision avoidance.

Let k denote the current time step. Let A(k) denote A at time step k. We

consider the case where ‖q(k)−O(k)‖ > r. We assume that the vehicle moves

with a constant velocity v within U time steps in the future. Also, we assume

that O moves with a constant velocity vO within U time steps. Since ‖q(k) −
O(k)‖ > r, q(k) is outside the obstacle sphere centered at Ok .

Since both q and O move with constant speeds, a collision does not occur

between two time steps k and k + U in the case where

‖q(k)− O(k) + (v − vO)u ∗ dt‖ > r. (8)

for all u between 0 andU . As we vary u in (8) from 0 toU , q(k)+(v−vO)u∗dt
forms the line L(q(k), q(k)+ (v−vO)U ∗ dt). Here, L(A,B) indicates the line

segment connecting two points A and B.

Using (8), we derive the following lemma, which achieves collision avoid-

ance between two time steps k and k + U .

Lemma 1. An obstacle point O moves with a constant velocity vO between two

time steps k and k + U . Also, the vehicle q moves with a constant velocity v

between two time steps k and k + U . Suppose that q(k) is outside the obstacle

sphere centered at O(k). The vehicle avoids colliding with the obstacle point

between two time steps k and k + U in the case where L(q(k), q(k) + (v −

vO)U ∗ dt) does not meet the obstacle sphere.
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We apply Lemma 1 to provide a condition for collision avoidance within

U time steps in the future. We assume that vO does not change within U time

steps. Under this assumption, q can check whether it will collide within U
time steps. q checks if v, which does not consider collision avoidance, sat-

isfies the following basic collision avoidance condition within U time steps:

L(q(k), q(k) + (v − vO)U ∗ dt) does not meet the obstacle sphere centered at

O(k).

In the case whereL(q(k), q(k)+(v−vO)U ∗dt) does not meet the obstacle

sphere, the vehicle uses v as its velocity command within one time step, since

collision is avoided using v. In the case where L(q(k), q(k) + (v − vO)U ∗ dt)
meets the obstacle sphere, the vehicle searches for a feasible velocity to avoid

collision, using the method in the next subsection.

Next, Lemma 2 presents the collision avoidance condition analytically, us-

ing the basic collision avoidance condition.

Lemma 2. Let uc = (v(k)−vO(k))·(O(k)−q(k))
dt‖v(k)−vO(k)‖2 . If uc exists between 0 and U

while satisfying that v(k) 6= vO(k), then the vehicle avoids collision within U
steps as long as the distance between q(k) + ucdt(v(k) − vO(k)) and O(k) is

bigger than r. Otherwise, the vehicle avoids collision within U steps as long as

‖q(k) + (v − vO)U ∗ dt − O(k)‖ > r.

Proof. Let dmin denote the minimum distance between O(k) and a point on

L(q(k), q(k) + (v − vO)U ∗ dt). We present how to derive dmin analytically.

Let d(u) be defined as

d(u) = ‖O(k) − q(k)− (v − vO)u ∗ dt‖, (9)

where u is between 0 and U .

We next search for u minimizing d(u). To search for u minimizing d(u),

we find u satisfying that
∂d(u)

∂u
= 0. Let uc denote u satisfying this. We get

uc =
(v(k) − vO(k)) · (O(k)− q(k))

‖v(k)− vO(k)‖2 ∗ dt
. (10)

If uc exists between 0 and U while satisfying that v(k) 6= vO(k), then dmin

is d(uc). Otherwise, the point on L(q(k), q(k) + (v − vO)U ∗ dt), which is

the closest to O(k), is one end point of this line. Thus, dmin is min(‖O(k) −

q(k)‖, ‖q(k) + (v − vO)U ∗ dt− O(k)‖).
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Recall that dmin denotes the minimum distance between O(k) and a point

on L(q(k), q(k) + (v − vO)U ∗ dt). In the case where dmin is bigger than r,

the vehicle avoids collision within U steps, using the basic collision avoidance

condition. This lemma is proved using dmin derived in the previous paragraph.

4.2. Search for a Safe Velocity Vector Avoiding Collision

In the case where the collision avoidance condition is not satisfied for at least

one obstacle point, the vehicle searches for a safe velocity to avoid collision.

Once a safe velocity is found, then the vehicle uses the found velocity as its

velocity within one step. This maneuver is called the collision avoidance ma-

neuver.

To avoid an abrupt collision case, the vehicle does not move toward the

goal directly, as the vehicle detects any obstacle using its sensors. Also, we

set the minimum time interval I for the collision avoidance maneuver. Once a

collision avoidance maneuver is triggered at time step k, the vehicle does not

move toward the goal directly from k to k + I time steps.

We introduce two collision avoidance maneuvers: constant-speed safe ma-

neuver and variable-speed safe maneuver. The idea of these maneuvers is to

search for a velocity satisfying the collision avoidance condition, followed by

using the velocity to move the vehicle within one time step. The constant-speed

safe maneuver is to search for a feasible velocity to avoid collision, while not

changing its speed ‖v‖. The variable-speed safe maneuver is to search for a

feasible velocity to avoid collision, while changing its speed ‖v‖.

4.2.1. Constant-Speed Safe Maneuver

We consider constant-speed safe maneuver in Section 4.2.1. Let u = (1, 0, 0)T

denote the heading vector of the vehicle in the body-fixed frame. Using (4), we

have

v(k) = R(ψ(k), θ(k), φ(k)) ∗ ‖v(k)‖ ∗ u. (11)

We first search for the orientation of the body, say ψ(k), θ(k), φ(k), associ-

ated to v(k). Suppose that only the pitch and the yaw of the body are controlled

to achieve the desired heading. This implies that we set φ(k) in (11) as zero.

Then, using (11), we derive

h(k) = (h(k, 1), h(k, 2), h(k, 3))T , (12)
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where h(k) = v(k)
‖v(k)‖

is the heading vector at time step k. Also, h(k, 1) =

c(ψ(k))∗ c(θ(k)), h(k, 2) = s(ψ(k))∗ c(θ(k)), and h(k, 3) = −s(θ(k)). Here,

h(k, j) denote the jth element of h(k).

We solve (12) to get

θ(k) = atan2(−h(k, 3),
√

h(k, 1)2 + h(k, 2)2). (13)

We further solve (12) to get ψ(k). In the case where c(θ(k)) > 0, we get

ψ(k) = atan2(h(k, 2), h(k, 1)). (14)

In the case where c(θ(k)) < 0, we get

ψ(k) = atan2(−h(k, 2),−h(k, 1)). (15)

We use numerical methods to search for a safe velocity vector at time step

k + 1 to avoid collision. We search for a safe velocity in the velocity searching

space considering the maximum turn rate α.

The vehicle’s velocity vector in the body-fixed frame is (v(k), 0, 0), which

is depicted as a bold arrow on Figure 1. Since Section 4.2.1 considers constant-

speed safe maneuver, the velocity vector at time step k + 1 exists on the sphere

depicted on this figure. The velocity searching space in the body-fixed frame

is depicted as a spherical dome on Figure 1. The velocity vector at time step

k + 1 must exist on this dome-shaped velocity searching space to satisfy the

maximum turn rate α. See that the height of the dome is ‖v‖ ∗ (1 − c(α ∗ dt)).

Algorithm 1 provides numerical methods to search for a safe velocity vector

at time step k + 1 in the dome-shaped velocity searching space. N and M in

this algorithm are positive constants, indicating the fineness of our search. As

these constants increase, our search becomes more fine while increasing the

computational load.

In Algorithm 1, VB
c = R(φ0) ∗ R(ψ0) ∗ ‖v(k)‖ ∗ u indicates a velocity

vector, which exists in the velocity searching space, in the body-fixed frame.

In Algorithm 1, R(ψ(k), θ(k), 0) is multiplied to VB
c so that we derive VI

c , a

velocity vector in the inertial reference frame.

Algorithm 1 is designed to generate a safe velocity as fast as possible while

minimizing the velocity change. This algorithm searches for a safe velocity

vector at time step k + 1 using the following FOR loop: for ψ0 = 0, ψ0 =

ψ0 + α∗dt

N
, while ψ0 < α ∗ dt. This FOR loop implies that we check a vector

forming a small angle with v(k) before checking a vector forming a large angle

with v(k). Once a safe velocity is found, then the algorithm is done, and the

vehicle moves within one time step using the found safe velocity.
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‖v‖

X

Y

Z

α ∗ dt

Figure 1. The velocity searching space in the body-fixed frame. The velocity

searching space is depicted as a spherical dome.

Algorithm 1 Search for a Safe Velocity Vector at Time Step k + 1 (constant

speed)

the current time step is k;

for ψ0 = 0, ψ0 = ψ0 + α∗dt

N
, while ψ0 < α ∗ dt do

for φ0 = 0, φ0 = φ0 + 2∗π

M
, while φ0 < 2 ∗ π do

VB
c = R(φ0) ∗R(ψ0) ∗ ‖v(k)‖ ∗ u;

VI
c = R(ψ(k), θ(k), 0) ∗ VB

c ;

if VI
c satisfies collision avoidance condition withinU time steps; then

set VI
c as the velocity vector at time step k + 1;

get out of all loops;

end if

end for

end for

4.2.2. Variable-Speed Safe Maneuver

We consider variable-speed safe maneuver in Section 4.2.2. Recall that the

speed of the vehicle is bounded by smax and that ‖v̇‖ ≤ amax. Thus, the speed

of the vehicle at time step k + 1 is bounded as follows.

A ≤ ‖v(k + 1)‖ ≤ A+ B, (16)
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where A = ‖v(k)‖ − amax ∗ dt, and B = min(‖v(k)‖ + amax ∗ dt, smax) −
(‖v(k)‖ − amax ∗ dt) for convenience. B indicates the feasible range of the

vehicle’s speed at time step k + 1. Algorithm 2 provides numerical methods to

search for a safe velocity vector at time step k+ 1 using (16). See that the FOR

loop for v0 is at the most outer loop in this algorithm. This algorithm searches

for a safe speed using the following FOR loop: for v0 = A+B, v0 = v0 −
B

N
,

while v0 > A. This FOR loop implies that we check a velocity vector with high

speed before checking a velocity vector with low speed.

Algorithm 2 Search for a Safe Velocity Vector at Time Step k + 1 (Variable

Speed)

the current time step is k;

for v0 = A+ B, v0 = v0 −
B

N
, while v0 > A do

for ψ0 = 0, ψ0 = ψ0 + α∗dt

N
, while ψ0 < α ∗ dt do

for φ0 = 0, φ0 = φ0 + 2∗π

M
, while φ0 < 2 ∗ π do

VB
c = R(φ0) ∗R(ψ0) ∗ v0 ∗ u;

VI
c = R(ψ(k), θ(k), 0)∗ VB

c ;

if VI
c satisfies collision avoidance condition withinU time steps; then

set VI
c as the velocity vector at time step k + 1;

get out of all loops;

end if

end for

end for

end for

Algorithm 2 is suitable for a vehicle which can change its speed. Since many

underwater vehicles can change its speed by changing propeller rate, Algorithm

2 is better than Algorithm 1 considering collision avoidance effectiveness. Sim-

ulations are performed to verify the effectiveness of Algorithm 2.

4.3. A Safe Velocity Vector Is Not Found

There may be a case where a safe velocity vector is not found using Algorithms

1 and 2. This implies that we cannot find a safe velocity vector which assures

collision avoidance withinU time steps in the future.

In this case, we set Us = max(U/2, 1). Using this new Us, we check the

collision avoidance condition within Us time steps as follows: L(q(k), q(k) +
(v − vO)Us ∗ dt) does not meet the obstacle sphere centered at O(k).



86 Jonghoek Kim

In the case where the above condition is not met, then we use Algorithms

1 and 2 to search for a safe velocity vector based on Us, not on U . In the case

where the above condition is met, then we use v to control the vehicle within

one time step.

There may be a case where a safe velocity vector is not found using Us. In

this case, we decrease Us iteratively usingUs = max(1, Us/2), while searching

for a safe velocity vector using the decreased Us. Considering time efficiency,

we may stop decreasing Us before it reaches 1.

We acknowledge that there may be a case where a collision is unavoidable.

For instance, consider the case where the maximum turn rate and the maximum

speed rate of the vehicle are too small. Due to the strict motion constraints, the

vehicle cannot avoid collision with an obstacle which appears in front of the

vehicle abruptly.

5. MATLAB SIMULATIONS

The effectiveness of our variable-speed collision avoidance control laws in Al-

gorithm 2 is verified using MATLAB simulations. dt = 1 seconds, and I = 10

seconds. The goal of the vehicle is (0, 500, 50). The task of the vehicle is to

reach the goal while avoiding collision.

We say that a collision occurs in the case where the relative distance between

the vehicle and an obstacle point is less than r = 10 meters. Here, r is set

considering the uncertainty of range measurements. The initial speed of the

vehicle is 6.3m/s. The maximum speed of the vehicle is 12.75m/s. Initially,

we set U = 300. The maximum speed rate is 0.12m/s2. The maximum turn

rate is 1.2rad/s.
We consider a vehicle equipped with a forward-looking sonar sensor for

collision avoidance. The maximum sensing range is 100 meters.

In the simulations, we consider limited FOV of sonar sensors. The sensor

has 240 degrees horizontal scan and 240 degrees vertical scan. 24 rays are

evenly generated in the horizontal direction as well as in the vertical direction.

In total, 24*24 rays are generated to detect an obstacle at each time step.

To make our simulation more realistic, we simulated sensor rays with low

detection rate 0.68. This implies that we randomly select 68 percents of all

24*24 sensor rays and use the selected rays to detect an obstacle boundary. As a

selected ray intersects an obstacle, an obstacle point is generated at the intersec-

tion. In other words, an obstacle point is generated as a selected ray intersects
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an obstacle boundary. Obstacle points are then used as inputs of collision avoid-

ance control laws.

In the following simulations, we consider arbitrarily shaped obstacles, each

of which has distinct size. Also, we generated a non-convex tunnel in front

of the goal position so that the vehicle must move through the tunnel before

reaching the goal. The obstacle points detected by the vehicle’s sensors are

depicted with black points. The blue points indicate the vertices of each box-

shaped obstacle. Also, the trajectory of the vehicle is depicted with red circles.

The goal point is depicted with a green asterisk.

5.1. The Initial Position of the Vehicle Is (0, 50, 90)

This subsection considers the case where the vehicle starts from (0, 50, 90).

Figure 2 shows the top view of the 3D simulation result. Also, Figure 3 shows

the 3D view of the simulation result. These figures show that the vehicle reaches

the goal point while avoiding collision. See that obstacle points detected by on-

board sensors are generated on obstacle boundaries and that the vehicle moves

over the top of the first obstacle that it encounters. The height of the first obstacle

is 100 meters. Also, the vehicle moves through the tunnel just before reaching

the goal.

Figure 2. The vehicle starts from (0, 50, 90). (top view).
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Figure 3. The vehicle starts from (0, 50, 90). (3D view).

Figure 4 shows the yaw, pitch, and speed of the vehicle with respect to time,

considering the scenario in Figure 2. At 6 seconds, the vehicle detects an ob-

stacle boundary for the first time and begins to change its pitch to get over the

detected obstacle. At 22 seconds, the vehicle detects the second obstacle (lo-

cated at (0,300) in Figure 2) and changes its yaw to avoid the obstacle. See that

the vehicle changes its attitude and speed in order to achieve collision avoidance

while approaching the goal.

5.2. The Initial Position of the Vehicle Is (0, 50, 50)

This subsection considers the case where the vehicle starts from (0, 50, 50).

We first consider the case where all obstacles do not move. Figure 5 presents

the top view of the 3D simulation result, and Figure 6 presents the 3D view

of the simulation result. In these figures, obstacle points detected by on-board

sensors are generated on obstacle boundaries. Since the initial z coordinate of

the vehicle is not so large, the vehicle does not move over the top of the first

obstacle that it encounters. Recall that the height of the first obstacle is 100

meters. Also, the vehicle moves through the tunnel just before reaching the

goal.
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Figure 4. The yaw, pitch, and speed of the vehicle with respect to time, consid-

ering the scenario in Figure 2.

Figure 5. All obstacles do not move (top view).
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Figure 6. All obstacles do not move (3D view).

Figure 7 presents the yaw, pitch, and speed of the vehicle with respect to

time, considering the scenario in Figure 5. At 6 seconds, the vehicle detects

an obstacle boundary for the first time and begins to change its yaw to avoid

colliding with the detected obstacle. At 42 seconds, the vehicle changes its yaw

to get into the tunnel safely. Note that the vehicle changes its attitude and speed

to avoid colliding with obstacles while approaching the goal.

We next consider the case where one obstacle (the first obstacle that the

vehicle encounters) in Figure 5 move with velocity (0,-1,0) in m/s. The changing

position of an obstacle is plotted every 3 seconds. Figure 8 presents the top view

of the 3D simulation result, and Figure 9 presents the 3D view of the simulation

result. Two blue lines on top of the first obstacle that the vehicle encounters

indicate the trajectory of vertices of the moving obstacle. These figures verify

that the vehicle reaches the goal point while achieving collision avoidance. To

let the reader observe the vehicle’s motion more clearly, we uploaded the movie

of our vehicle on the following website: https://youtu.be/1ItxMnKcjWY.

Figure 10 presents the yaw, pitch, and speed of the vehicle with respect to

time, considering the scenario in Figure 8. At 6 seconds, the vehicle detects
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Figure 7. The yaw, pitch, and speed of the vehicle with respect to time, consid-

ering the scenario in Figure 5.

Figure 8. One obstacle moves (top view).

an obstacle boundary for the first time and changes its yaw abruptly to avoid

colliding with the moving obstacle. See that the vehicle changes its attitude and
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Figure 9. One obstacle moves (3D view).

speed to avoid colliding with obstacles.

Lastly, we observe the effect of changing dt. We set dt = 5 seconds instead

of 1 second. We consider the case where one obstacle (the first obstacle that

the vehicle encounters) in Figure 5 move with velocity (0,-1,0) in m/s. The

changing position of an obstacle is plotted every 15 seconds. Figure 11 shows

the top view of the 3D simulation result, and Figure 12 shows the 3D view of

the simulation result. Since we set dt = 5 seconds, the trajectory of the vehicle

gets less smoothed than the case where dt = 1 second. Also, obstacle points

are distributed more sparsely than the case where dt = 1 second.

Figure 13 shows the yaw, pitch, and speed of the vehicle with respect to

time, considering the scenario in Figure 11. At 6 seconds, the vehicle detects an

obstacle boundary for the first time and change its pitch and yaw for collision

avoidance. Figure 13 clearly shows that the vehicle’s attitude and speed change

at every dt = 5 seconds.

CONCLUSION

In this chapter, we introduce control laws for collision avoidance, considering

3D scenarios where a vehicle detects arbitrarily shaped obstacles using on-board
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Figure 10. The yaw, pitch, and speed of the vehicle with respect to time, con-

sidering the scenario in Figure 8.

Figure 11. One obstacle moves (top view). We set dt = 5 seconds.
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Figure 12. One obstacle moves (3D view). We set dt = 5 seconds.
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Figure 13. The yaw, pitch, and speed of the vehicle with respect to time, con-

sidering the scenario in Figure 11. We set dt = 5 seconds.
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sensors. Our control laws are designed considering the maximum turn rate and

the maximum speed rate of the vehicle. The effectiveness of our control laws

is verified using MATLAB simulations. As our future works, we will verify the

effectiveness of our control laws using experiments with underwater robots.

This chapter considers an obstacle which is not a deforming object. For

an underwater application, shape shifting aquatic life forms can be considered

as such deforming obstacles. Considering a deforming object, each obstacle

point can move with different velocities. As our future work, we will consider

collision avoidance with a deforming object.
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