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Preface

The rapid technological development of new products, along with the grow-
ing desire of consumers to acquire the latest technology, has led to a new 
environmental problem: products that are discarded prematurely. But behind 
every problem lies an opportunity. In this case, the opportunity comes from 
reprocessing (processing used products), which leads to:

1. Saving natural resources: We conserve land and reduce the need to drill 
for oil and dig for minerals by making products using materials and 
components obtained from reprocessing rather than virgin resources.

2. Saving energy: It usually takes less energy to make products from 
reprocessed materials and components than from virgin resources.

3. Saving clean air and water: Making products from reprocessed materi-
als and components creates less air and water pollution than from 
virgin resources.

4. Saving landfill space: When reprocessed materials and components 
are used to make a product, they do not go into landfills.

5. Saving money: It costs much less to make products from reprocessed 
materials and components than from virgin resources.

Besides the above opportunities, an important driver for companies to 
engage in reprocessing is the enforcement of environmental regulations by 
local governments.

A reverse supply chain consists of a series of activities required to collect 
used products from consumers and reprocess them to either recover their 
leftover market values or properly dispose of them. Today, in practice, it has 
become common for companies involved in a forward supply chain (series of 
activities required to produce new products from virgin resources and dis-
tribute them to consumers) to also carry out collection and reprocessing of 
used products. This combined practice of forward and reverse supply chains 
is called a closed-loop supply chain. In the past decade, there has been an 
explosive growth of reverse and closed-loop supply chains, in both scope 
and scale.

Strategic planning (also called designing) primarily involves the structur-
ing (which products should be processed/produced in which facilities) of 
a supply chain over the next several years. It is long-range planning and is 
typically performed every few years when a supply chain needs to expand 
its capabilities. The issues faced by strategic planners of reverse and closed-
loop supply chains are evaluation and selection of new and used products, 
collection centers, recovery facilities, marketing strategies, and production 
facilities, as well as evaluation of the futurity of used products, selection of 
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secondhand markets, optimization of transportation of goods, synchroniza-
tion of supply chain processes, and supply chain performance measurement. 
In all of these issues, strategic planners must meet the following challenges: 
uncertainty in supply rate of used products, unknown condition of used 
products, and imperfect correlation between supply of used products and 
demand for reprocessed goods.

This book addresses the above issues amidst the above challenges in a 
variety of decision-making situations using efficient models. These mod-
els implement several quantitative techniques, such as analytic hierarchy 
process, eigen vector method, analytic network process, fuzzy logic, extent 
analysis method, fuzzy multicriteria analysis method, quality function 
deployment, method of total preferences, linear physical programming, goal 
programming, technique for order preference by similarity to ideal solution 
(TOPSIS), Borda’s choice rule, expert systems, Bayesian updating, Taguchi 
loss function, Six Sigma, neural networks, geographical information sys-
tems, and linear integer programming.

The issues addressed in this book can serve as foundations for other 
researchers to build bodies of knowledge in this new and fast-growing field 
of research, viz., strategic planning of reverse and closed-loop supply chains. 
Furthermore, the models proposed in this book for those issues can be utilized 
by industrialists for understanding how a particular issue in the strategic plan-
ning of reverse and closed-loop supply chains can be effectively approached 
in a particular decision-making situation, using a suitable quantitative tech-
nique or a suitable combination of two or more quantitative techniques.

The strategic planning of reverse and closed-loop supply chains remains 
an important and promising field of research. This is desirable from both 
environmental and economical points of view, because by using innovations 
in this field, environmentalists as well as industrialists can fully exploit their 
desired goals. The authors express their hope that this book will inspire 
further research and motivate new and rewarding research in this all too 
important field of study.
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1
Introduction

1.1 Motivation

The level of consumption by a growing population in this world of finite 
resources and disposal capacities has been continuously increasing. This 
is fueled by the growing desire of consumers to acquire the latest technol-
ogy, both at home and in the workplace, along with the rapid technological 
development of new products. As a result, the world now faces a serious 
environmental problem: waste, viz., used products that are discarded pre-
maturely. For example, an estimated 60 million computers enter the mar-
ket in the United States every year and more than 12 million computers are 
discarded every year, out of which fewer than 10% are reprocessed,* while 
the rest head to landfills [1]. According to the Environmental Protection 
Agency’s Municipal Solid Waste Fact Book, 29 states in the United States have 
10 or more years of landfill space left, 15 states between 5 and 10 years, and 
6 states fewer than 5 years [2]. Increased consumption results in increased 
use of raw material and energy, thereby depleting the world’s finite natural 
resources. The data [3, 4] presented in tables 1.1 and 1.2 give an idea about 
the materials and energy consumed in the manufacturing of microchips and 
LCD monitors, respectively. Apart from the excessive consumption of the 
world’s finite natural resources and disposal capacities, the presence of toxic 
material, such as lead, polybrominated diphenyl ether, mercury, and hexava-
lent chromium, in the discarded electronic equipment poses a serious threat 
to the environment. This environmental degradation is not sustainable by 
Earth’s ecosystem [6].

Reprocessing of used products helps in:

* Though direct reuse of the used products is infeasible in most cases, remanufacturing and 
recycling are the major reprocessing options applied in the industry. Remanufacturing is a 
process in which used products are restored to like-new conditions, and recycling is a pro-
cess performed to retrieve the material content of used products without retaining the iden-
tity of their components [5].
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1. Saving natural resources: We conserve land and reduce the need to drill 
for oil and dig for minerals by making products using materials and 
components obtained from reprocessing instead of virgin materials.

2. Saving energy: It usually takes less energy to make products from 
reprocessed materials and components than from virgin materials.

3. Saving clean air and water: Making products from reprocessed mate-
rials and components creates less air pollution and water pollution 
than from virgin materials.

4. Saving landfill space: When reprocessed materials and components 
are used to make a product, they do not go into landfills.

5. Saving money: It costs much less to make products from reprocessed 
materials and components than from virgin materials.

TABLE 1.1

Materials and energy used in manufacturing microchips

Material Description
Amount per 

memory chip

Annual use by 
industry

worldwide

Amount used to 
make chips in 
one computer

Silicon wafer 0.25 g 4,400 tons 0.025 kg

Chemicals Dopants 0.016 g 280 tons 0.002 kg

Photolithography 22 g 390,000 tons 2.2 kg

Etchants 0.37 g 6,600 tons 0.037 kg

Acids/bases 50 g 890,000 tons 4.9 kg

Total chemicals 72 g 1.3 million tons 7.1 kg

Elemental gases N2, O2, H2, He, Ar 700 g 12 million tons 69 kg

Energy Electricity 2.9 kWh 52 billion kWh 281 kWh

Direct fossil fuels 1.6 MJ 28 billion MJ 155 MJ

Embodied fossil 
fuels

970 g 17 million tons 94 kg

Water 32 liters 570 billion 
liters

310 liters

TABLE 1.2

Aggregate chemicals, energy, and water use in manufacture of LCD monitor
Material/input Amount used per monitor

Photolithographic and other chemicals 3.7 kg

Elemental gases (N2, O2, Ar) 5.9 kg

Electricity 87 kWh

Direct fossil fuels (98% natural gas) 198 kg

Embodied fossil fuels 226 kg

Water 1,290 liters
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As waste reduction is becoming a major concern in industrialized coun-
tries, the concept of reprocessing is gradually replacing a one-way perception 
of economy [7]. Increasingly, customers are expecting companies to minimize 
the environmental impact of their products and processes. Moreover, legisla-
tion extending producers’ responsibility has become an important element of 
public environmental policy. Several countries, particularly in the European 
Union, have introduced environmental legislation charging manufacturers 
with responsibility for the whole life cycle of their products. The obligations 
of collection of used products and their reprocessing have been enacted or are 
under way for a number of product categories, including electronic equipment 
in the European Union and Japan, cars in the European Union and Taiwan, 
and packaging material in Germany. Also, companies are recognizing oppor-
tunities for combining environmental stewardship with profitability, brought 
about by production cost savings and access to new market segments. In this 
vein, in the past decade, there has been an explosive growth of reprocessing 
activities in both scope and scale. However, in companies in the United States, 
reprocessing is still in its infancy. In the United States, cities and towns are 
responsible for retrieval of used products and proper disposal of the poten-
tially environmentally dangerous and waste components. According to a 
2003 report [8], in the state of Massachusetts, support is building for a refiled 
bill that would require manufacturers of electronic products to pay for col-
lection and reprocessing of those products after the end of their usage by the 
consumers. If passed, the statewide take-back program would be the first of 
its kind in the nation and would relieve cities and towns, which are bracing 
for local aid cuts, from the costs associated with collecting and disposing of 
electronic waste. The bill’s supporters say that cities and towns in the United 
States spend between $6 million and $21 million a year on such endeavors.

A reverse supply chain (also known as reverse logistics) consists of a series of 
activities required to collect a used product from a consumer and reprocess 
it (used product) to either recover its leftover market value or dispose of it. 
Implementation of any reverse supply chain requires at least three parties: 
collection centers where consumers return used products, recovery facilities 
where reprocessing (remanufacturing or recycling) is performed, and demand 
centers where customers buy reprocessed products, viz., outgoing goods from 
recovery facilities. Figure 1.1 shows a generic reverse supply chain.

Environmental consciousness suggests the production of new products from 
conceptual design to final delivery such that the environmental standards 
and requirements are satisfied. In the last decade, environmental conscious-
ness has become an obligation to many facilities in a traditional/forward 
supply chain (i.e., series of activities required to produce new products from 
raw material and distribute the former to customers), enforced primarily 
by governmental regulations and customer perspective on environmental 
issues [9, 10]. At the same time, many of these facilities are driven, mainly by 
profitability, to administer the reverse supply chain as well. The combination 
of forward and reverse supply chains is called a closed-loop supply chain. A 
generic closed-loop supply chain is shown in figure 1.2.
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Reverse/closed-loop supply chains are implemented in many industries, 
including commercial aircraft, automobiles, computers, chemicals, appli-
ances, and apparel [11].

A supply chain involves three phases of decision making: supply chain 
design, supply chain planning, and supply chain operation [12]:

Supply chain design: This phase is also called strategic planning. Dur-
ing this phase, a company decides how to structure its supply chain 
over the next several years. Decisions made by companies include 
the location and capacity of production and warehouse facilities, the 
products to be manufactured and stored at various locations, the 
modes of transportation to be made available, and the type of infor-
mation system to be utilized. Supply chain design decisions are typi-
cally made for the long term (years) and are very expensive to alter 
on short notice. Consequently, when companies make these deci-
sions, they must take into account uncertainty in anticipated market 
conditions over the next few years.

Collection
Centers

Recovery
Facilities

ConsumersUsed Products Used Products Demand
Centers

Recycled
Goods

Remanufactured
Products

FIGURE 1.1

Generic reverse supply chain.
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New Products 
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Raw Material 
Suppliers 

Used Products 

FIGURE 1.2

Generic closed-loop supply chain.
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Supply chain planning: This phase is also called tactical planning. Sup-
ply chain planning includes decisions regarding subcontracting of 
manufacturing, inventory policies to be followed, and timing and 
size of marketing promotions. For decisions made during this phase, 
the time frame considered is 3 months to a year. Companies must 
include uncertainty in demand, exchange rates, and competition 
over the time frame. Given a shorter time frame and better forecasts 
than the design phase, companies in this phase try to incorporate 
any flexibility built into the supply chain in the design phase and 
exploit it to optimize performance.

Supply chain operation: This phase is also called operational planning. 
During this phase, companies make decisions regarding individual 
customer orders. The goal of supply chain operations is to handle 
incoming customer orders in the best possible manner. Decisions 
include allocating inventory or production to individual orders, 
setting a date for an order to be filled, generating pick lists at a 
warehouse, setting delivery schedules of trucks, and placing replen-
ishment orders. Because operational decisions are made in the 
short term (minutes, hours, or days), there is less uncertainty about 
demand information.

This book focuses on strategic planning of reverse and closed-loop supply 
chains. The various decision-making problems faced by strategic planners of 
reverse and closed-loop supply chains include selection of used products to 
reprocess, evaluation of collection centers, evaluation of recovery facilities, selec-
tion of new products to produce, and optimization of transportation of goods.

Reverse and closed-loop supply chains differ from traditional/forward 
supply chains in many aspects and are complex to handle because of the 
inherent uncertainty involved in every stage of strategic planning (see 

chain cannot be adopted for a reverse or closed-loop supply chain.
This chapter is organized as follows: section 1.2 presents the overview of 

this book, section 1.3 gives the outline of the book, and section 1.4 gives 
some conclusions.

1.2 Overview of the Book

This book presents quantitative models for various issues faced by strategic 
planners of reverse and closed-loop supply chains amidst many challenges, 
such as uncertainty in supply rate of used products, unknown condition of 
used products, and imperfect correlation between supply of used products 
and demand for reprocessed goods.

table 1.3 [13]). As a result, strategic planning models for a forward supply 
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The complete list of issues addressed in this book is the following (see 
chapter 2 for further explanation of each of the issues):

Selection of used products

Evaluation of collection centers

Evaluation of recovery facilities

Optimization of transportation of goods

Evaluation of marketing strategies

Evaluation of production facilities

Evaluation of futurity of used products

Selection of new products

Selection of secondhand markets

Synchronization of supply chain processes

Supply chain performance measurement

The models for addressing the above strategic planning issues employ sev-
eral quantitative techniques, such as:

Analytic hierarchy process

Eigen vector method

Analytic network process

Fuzzy logic

TABLE 1.3

Comparison between forward and reverse/closed-loop supply chains
Forward supply chain Reverse/closed-loop supply chain

Product quality uniform Product quality not uniform

Disposition options clear Disposition options unclear

Routing of products unambiguous Routing of products ambiguous

Costs involved easily understood Costs involved not easily understood

Product pricing uniform Product pricing not uniform

Inventory management consistent Inventory management inconsistent

Product life cycle manageable Product life cycle less manageable

Financial management issues clear Financial management issues unclear

Negotiations between parties straightforward Negotiations less straightforward

Customer easily identifiable to market Customer less easily identifiable to market

Forecasting relatively straight forward Forecasting more difficult

One-to-many transportation Many-to-one transportation

Marketing methods well known Marketing complication by several factors

Process visibility more transparent Process visibility less transparent
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Extent analysis method

Fuzzy multicriteria analysis method

Quality function deployment

Method of total preferences

Linear physical programming

Goal programming

Technique for order preference by similarity to ideal solution (TOPSIS)

Borda’s choice rule

Expert systems

Bayesian updating

Taguchi loss function

Six Sigma

Neural networks

Geographical information systems

Linear integer programming

The issues addressed in this book can serve as foundations for other 
researchers to build bodies of knowledge in this new and fast-growing field of 
research, i.e., strategic planning of reverse and closed-loop supply chains. Fur-
thermore, the models proposed in this book for those issues can be utilized by 
industrialists for understanding how a particular issue in the strategic plan-
ning of reverse and closed-loop supply chains can be effectively approached 
in a particular decision-making situation, using a suitable quantitative tech-
nique or a suitable combination of two or more quantitative techniques.

1.3 Outline of the Book

This book is organized as follows:
In chapter 2, an overview of the strategic planning issues (see section 1.2) 

is presented, and it is explained how the decision-making situations could 
differ for each of the issues.

In chapter 3, a brief review of literature in the area of strategic planning of 
reverse and closed-loop supply chains is presented.

In chapter 4, each of the several quantitative techniques that are used in 
the strategic planning models presented in this book is briefly described.

In chapter 5, two models for selection of used products in two different deci-
sion-making situations are presented. The first model employs linear integer 
programming, and the second model employs linear physical programming.
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In chapter 6, five models for evaluation of collection centers in five differ-
ent decision-making situations are presented. The first model employs eigen 
vector method and Taguchi loss function. The second model uses eigen vec-
tor method, technique for order preference by similarity to ideal solution 
(TOPSIS), and Borda’s choice rule. The third model uses neural networks, 
fuzzy logic, TOPSIS, and Borda’s choice rule. The fourth model uses analytic 
network process (ANP) and goal programming. The fifth model uses eigen 
vector method, Taguchi loss function, and goal programming.

In chapter 7, five models for evaluation of recovery facilities in five differ-
ent decision-making situations are presented. The first model uses analytic 
hierarchy process. The second model employs linear physical programming. 
The third model uses eigen vector method, technique for order preference 
by similarity to ideal solution (TOPSIS), and Borda’s choice rule. The fourth 
model uses neural networks, fuzzy logic, TOPSIS, and Borda’s choice rule. 
The fifth model uses a simple two-dimensional chart.

Chapter 8 focuses on achieving transportation of the right quantities of prod-
ucts (used, remanufactured, and new) across a reverse or closed-loop supply 
chain, while satisfying certain constraints. Five models are presented in five 
different decision-making situations. The first model employs linear integer 
programming. The second model employs linear physical programming. The 
third and fourth models use goal programming and linear physical program-
ming, respectively. The fifth model employs fuzzy goal programming.

In chapter 9, three models for evaluation of the marketing strategy of a 
reverse/closed-loop supply chain in three different decision-making situa-
tions are presented. The first model employs fuzzy logic and technique for 
order preference by similarity to ideal solution (TOPSIS). The second model 
employs fuzzy logic, quality function deployment (QFD), and method of 
total preferences. The third model uses fuzzy logic, extent analysis method, 
and analytic network process.

In chapter 10, three models for evaluation of production facilities in five 
different decision-making situations are presented. The first model employs 
fuzzy logic and technique for order preference by similarity to ideal solution 
(TOPSIS). The second model employs fuzzy logic, extent analysis method, 
and analytic network process. The third model uses fuzzy multicriteria anal-
ysis method.

In chapter 11, it is shown how an expert system can be built using Bayesian 
updating and fuzzy logic, to decide whether it is more sensible to repair a 
used product of interest for subsequent sale on a secondhand market than to 
disassemble it for subsequent reprocessing.

In chapter 12, a fuzzy cost-benefit function is formulated and then used to 
perform a multicriteria economic analysis for selecting an economical new 
product to produce in a closed-loop supply chain.

In chapter 13, fuzzy logic, quality function deployment (QFD), and method 
of total preferences are used to select the market with the most potential in 
which to sell a used product from a set of candidate secondhand markets.
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In chapter 14, a model consisting of two design experiments that use the Six 
Sigma concept to achieve better synchronization in a reverse supply chain is 
presented. This model tailors the individual processes in such a way that the 
overall delivery performance is maximized.

In chapter 15, appropriate performance aspects and their enablers (drivers 
of performance metrics) are identified for a reverse/closed-loop supply chain 
environment, and a performance measurement model that uses linear physical 
programming (LPP) and quality function deployment (QFD) is presented.

Chapter 16 presents the conclusions of this book.

1.4 Conclusions

This chapter first presented the factors that motivated this project, viz., driv-
ers of reverse and closed-loop supply chains. Then the overview and outline 
of the book were presented.
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2
Strategic Planning of Reverse and 
Closed-Loop Supply Chains

2.1 Introduction

As explained in chapter 1, the first decision-making phase in a supply chain 
is supply chain design, which is also called strategic planning. Strategic plan-
ning primarily involves the structuring of a supply chain over the next sev-
eral years. It is long-range planning and is typically performed every few 
years when a supply chain needs to expand its capabilities [1].

The various issues faced by strategic planners of reverse and closed-loop 
supply chains are the following:

1. Selection of used products
2. Evaluation of collection centers
3. Evaluation of recovery facilities
4. Optimization of transportation of goods
5. Evaluation of marketing strategies
6. Evaluation of production facilities
7. Evaluation of futurity of used products
8. Selection of new products
9. Selection of secondhand markets

10. Synchronization of supply chain processes
11. Supply chain performance measurement

In all of these issues, strategic planners must meet the following chal-
lenges: uncertainty in supply rate of used products, unknown condition of 
used products, and imperfect correlation between supply of used products 
and demand for reprocessed goods.

This chapter gives an overview of the aforementioned issues (sections 2.2 
through 2.12, respectively) and how they could be addressed in a variety of 
decision-making situations using effective quantitative models. Section 2.13 
gives some conclusions.
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2.2 Selection of Used Products

Although many original equipment manufacturers (OEMs) are obligated to 
take products back from the consumers upon the products’ end of use (hence 
called used products), there are also many third-party companies that collect 
used products solely to make profit. These companies select only those used 
products for which revenues from recycle or resale of the products’ com-
ponents are expected to be higher than the costs involved in collection and 
reprocessing of used products and in disposal of waste. The various sce-
narios for selecting economical used products could differ as follows:

1. Evaluation criteria could be presented in terms of classical numeri-
cal constraints.

2. Evaluation criteria could be presented in terms of ranges of different 
degrees of desirability.

2.3 Evaluation of Collection Centers

Designing an efficient reverse or closed-loop supply chain requires selec-
tion of efficient collection centers where used products are disposed of by 
the consumers. These collection centers, after initial processing (for example, 
sorting), ship the used products to recovery facilities or production facilities 
where reprocessing operations such as disassembly and recycling/remanu-
facturing are carried out.

The various scenarios for evaluating collection centers for efficiency could 
differ as follows:

1. Supply chain company executives, whose primary concern is profit, 
could be the sole decision makers.

2. There could exist three different categories of decision makers: 
consumers, local government officials, and supply chain company 
executives. The weights (importance values) of evaluation criteria 
are given.

3. There could exist the same three different categories of decision 
makers given in scenario 2, but weights of evaluation criteria are not 
given (hence, must be derived).

4. Evaluation could be made from the perspective of a remanufactur-
ing facility interested in buying used products from the candidate 
collection centers. The goals are expressed in terms of performance 
indices (efficiency scores).
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5. Evaluation could be made in the same manner as in scenario 4, 
but the goals are expressed in terms of Taguchi losses (inefficiency 
scores).

2.4 Evaluation of Recovery Facilities

Efficient recovery facilities (where reprocessing operations such as disas-
sembly and recycling/remanufacturing are carried out) are as essential for a 
reverse supply chain as efficient collection centers. Hence, in addition to eval-
uation of collection centers (see section 2.3), strategic planning of a reverse 
supply chain involves evaluation of recovery facilities. The various scenarios 
for evaluating recovery facilities for efficiency could differ as follows:

1. Evaluation criteria could be given numerical weights (importance 
values).

2. Evaluation criteria could be presented in terms of ranges of different 
degrees of desirability.

3. Decision makers could have conflicting criteria for evaluation, and 
weights for evaluation criteria are given.

4. Decision makers could have conflicting criteria for evaluation, and 
weights for evaluation criteria are not given (hence, must be derived).

5. A very simple evaluation technique could be desired (where only 
the “most important” evaluation criteria are considered).

2.5 Optimization of Transportation of Goods

The focus of this issue is on achieving transportation of the right quantities 
of products (used, remanufactured, and new) across a reverse or closed-loop 
supply chain while satisfying certain constraints. The various scenarios for 
this problem could differ as follows:

1. Decision-making criteria for a reverse supply chain could be given 
in terms of classical supply-and-demand constraints.

2. Decision-making criteria for a reverse supply chain could be pre-
sented in terms of ranges of different degrees of desirability.

3. Besides optimal transportation of products, there could be a need to 
address the following issues in one continuous phase for a closed-
loop supply chain: selection of used products and evaluation of 
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production facilities. Also, the decision-making criteria could be 
presented in terms of classic supply-and-demand constraints.

4. The scenario could be the same as scenario 3, except that the deci-
sion-making criteria could be presented in terms of different degrees 
of desirability.

5. The scenario could be the same as scenario 3, except that the deci-
sion-making criteria could be imprecise.

2.6 Evaluation of Marketing Strategies

A reverse/closed-loop supply chain program is successful only if there is 
a high level of public participation in the program. The level of public par-
ticipation is shouldered by the marketing strategy of that program. Hence, 
evaluating the marketing strategy of a reverse/closed-loop supply chain pro-
gram is equivalent to evaluating how well the strategy is driving the pub-
lic to participate in the program. Whereas the drivers for governments and 
companies to implement a reverse/closed-loop supply chain program and 
evaluate the program’s marketing strategies are environmental conscious-
ness and profitability, respectively, the drivers for the public to participate in 
the program are numerous and often conflicting with each other (for exam-
ple, the more regularly a reverse/closed-loop supply chain program offers to 
collect used products from consumers, the higher the taxes the consumers 
will have to pay). The various scenarios for evaluating the marketing strat-
egy of a reverse/closed-loop supply chain program could differ as follows:

1. The program could be exclusively for reverse supply chain opera-
tions, i.e., absence of a closed loop.

2. The program could be for a closed-loop supply chain and the deci-
sion maker could be uninterested in considering interdependencies 
among evaluation criteria.

3. The program could be for a closed-loop supply chain and the deci-
sion maker could be interested in considering interdependencies 
among evaluation criteria.

2.7 Evaluation of Production Facilities

Efficient production facilities (not only new products are produced but also 
used products are reprocessed) are as essential for a closed-loop supply 
chain as efficient collection centers. Hence, in addition to selecting efficient 
collection centers (see section 2.3), strategic planning of a closed-loop supply 
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chain involves evaluation of production facilities. The various scenarios for 
evaluating production facilities for efficiency could differ as follows:

1. The decision maker could desire to structure the problem using a 
simple hierarchical model, wherein interactions among evaluation 
criteria could be ignored.

2. Interactions among evaluation criteria could not be ignored, which 
in turn leads to a more complex problem structure.

3. Interactions among evaluation criteria could not be ignored, and the 
decision maker could desire to see how close the rating of a candi-
date production facility is to the “ideal solution.”

2.8 Evaluation of Futurity of Used Products

Although a major driver for companies interested in collecting used prod-
ucts is recoverable value through reprocessing, those companies seldom 
know when those products were bought and why they were discarded. Also, 
the products do not indicate their remaining life periods. Hence, they often 
undergo partial or complete disassembly for subsequent reprocessing. The 
focus of this issue is to find out whether, for some products, it makes more 
sense to make necessary repairs to the products and sell them on second-
hand markets than to disassemble them for subsequent reprocessing.

2.9 Selection of New Products

The focus of this issue is to help companies select and produce only those new 
products for which revenues in the closed-loop supply chain are expected to 
be higher than the costs. The revenues include new product sale revenue 
(revenue from selling new products, viz., products in the forward flow of the 
closed-loop supply chain), reuse revenue (revenue from direct sale/usage in 
remanufacturing usable components of used products), and recycle revenue 
(revenue from selling material obtained from recycling of unusable compo-
nents of used products). The costs include new product production cost (cost 
to produce new products), collection cost (cost to collect used products from 
consumers), reprocessing cost (cost to remanufacture/recycle used products), 
disposal cost (cost to dispose of the material left over after remanufacturing 
or recycling of used products), loss-of-sale cost (cost due to loss of sale, which 
might occur occasionally, due to lack of supply of used products), and invest-
ment cost (capital required for facilities and machinery involved in produc-
tion of new products and collection and reprocessing of used products).



© 2009 by Taylor & Francis Group, LLC

16 Strategic Planning Models for Reverse and Closed-Loop Supply Chains

2.10 Selection of Secondhand Markets

The focus of this issue is to select the market with the most potential in which 
to sell a repaired used product from a set of candidate secondhand markets. 
The main criteria for evaluation are before-sale performance (reflects the 
ability to attract new customers to the secondhand market), while-sale per-
formance (reflects the ability to motivate the customers to buy secondhand 
products while the customers are in the secondhand market), and after-sale 
performance (reflects the ability to attract old customers to the secondhand 
market).

2.11 Synchronization of Supply Chain Processes

Synchronization among the internal business processes of a supply chain 
is essential for effective management of the supply chain. Synchroniza-
tion in a supply chain means reducing the variability among the internal 
business processes or partners such that each stakeholder in the supply 
chain acts in a way that is appropriately timed with the actions of the other 
stakeholders [2]. The delivery performance of a supply chain is maximized 
largely by synchronizing the internal business processes such that the final 
product fits in the customer-specified delivery window with a very high 
probability.

The focus of this issue is to achieve synchronization of processes, such 
as procurement, inspection, disassembly, remanufacturing, transportation, 
and delivery, in a reverse supply chain.

2.12 Supply Chain Performance Measurement

The focus of this issue is to measure the performance of a reverse/closed-
loop supply chain with respect to various metrics, such as on-time delivery, 
green image, service efficiency, and location of facilities. Due to the inher-
ent differences in various aspects between forward and reverse/closed-loop 
supply chains (see chapter 1), the performance metrics and evaluation tech-
niques used in a forward supply chain cannot be extended to a reverse/
closed-loop supply chain.
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2.13 Conclusions

This chapter gave an overview of various issues faced by strategic planners of 
reverse and closed-loop supply chains in various decision-making situations.
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3
Literature Review

3.1 Introduction

As explained in chapter 1, a supply chain involves three phases of decision 
making: supply chain design (also called strategic planning), supply chain planning 
(also called tactical planning), and supply chain operation (also called operational 
planning). In most of the literature for reverse and closed-loop supply chains, 
tactical planning is addressed in conjunction with strategic planning.

In this chapter, a brief review of the literature related to the three phases 
of decision making in reverse and closed-loop supply chains, viz., strategic 
planning, tactical planning, and operational planning, is presented.

This chapter is organized as follows: section 3.2 presents a review of literature 
about operational planning in reverse and closed-loop supply chains, section 
3.3 gives a review of literature about strategic and tactical planning in reverse 
and closed-loop supply chains, and section 3.4 gives some conclusions.

3.2 Operational Planning of Reverse  
and Closed-Loop Supply Chains

Disassembly marks the first step in reprocessing of used products. Disas-
sembly is defined as a systematic method of separating a product into its 
constituent parts, components, subassemblies or other groupings through 
a series of operations. Disassembly can be of two types: nondestructive or 
destructive. Nondestructive disassembly is the process of systematic removal 
of the constituent parts from an assembly in a manner by which there is 
no impairment of the parts during the process. On the contrary, destructive 
disassembly involves separating materials from an assembly with an objec-
tive of sorting the different material types for recycling. Disassembly can 
be complete or partial. In a complete disassembly, the used product is fully 
disassembled, whereas in partial disassembly, the used product is not fully 
disassembled, and only certain parts or assemblies are recovered. See [15], 
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[29], [48], and [59] for a comprehensive list of issues related to disassembly 
planning and scheduling.

Pnueli and Zussman [64] propose a methodology that includes identifying 
reprocessing options of all the parts of a product and improving the prod-
uct’s design.

Penev and De Ron [63] discuss the determination of optimal disassem-
bly level and sequences of a used product, which provide conditions for the 
generation of profit while considering the environmental impact. In order to 
obtain the optimal disassembly process strategy, the authors utilize graph 
theory and cost analysis.

Lambert [50] proposes a methodology to identify the disassembly level in 
an economically optimal way. After disassembly, reusable parts/subassem-
blies are cleaned, refurbished, tested, and directed to the part/subassembly 
inventory for reprocessing operations.

Lambert and Gupta’s book [49] on disassembly modeling presents disas-
sembly in the context of the entire product life cycle. It examines disassembly 
on the intermediate level, incorporating design for disassembly, concurrent 
design, and reverse supply chain. The book also presents a comprehensive 
discussion of the theories and methodologies associated with disassembly, 
and the authors incorporate real-world case examples to explore the three 
main areas of application: assembly optimization, maintenance and repair, 
and reprocessing.

Gungor and Gupta [28] provide an exhaustive review of literature in the 
areas of environmentally conscious manufacturing and product recovery 
that includes several aspects of environmentally conscious manufacturing 
(design for environment, design for disassembly, etc.), common issues in 
product recovery (recycling, remanufacturing), disassembly process plan-
ning (production planning and inventory control issues), etc.

A disassembly line is perhaps the most suitable setting for disassembling 
large products. Gungor and Gupta [27] discuss the importance of a disas-
sembly line and identify the critical issues and complexities and their effects 
on the disassembly line.

Boon et al. [14] study the economic viability of recycling infrastructure in 
the United States in relation to the electronics industry. They use a goal pro-
gramming technique to study the sensitivity of several parties (disassemblers, 
recyclers, etc.) to different factors involved in the end-of-life processing.

Kongar and Gupta [40] and Imtanavanich and Gupta [34, 35] propose sev-
eral multicriteria decision-making methodologies in a disassembly-to-order 
setting under different decision-making environments, which, when solved, 
provide the number of used products to be taken back for reuse, recycling, 
storage, or disposal to meet the demand for those products/components.

Guide et al. [22] identify the problems associated with production plan-
ning issues in a closed-loop supply chain and advocate that each closed-loop 
supply chain differs from every other closed-loop supply chain and a “one 
size fits all” approach does not work. Each type of system offers different 
managerial concerns. They apply Hayes and Wheelwright’s product-process 
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matrix framework to examine three cases representing remanufacture-to-
stock, reassemble-to-order, and remanufacture-to-order environments, 
thereby extending the product-process matrix to include the insights on pro-
duction planning in closed-loop supply chains.

Rubio et al. [70] review an extensive list of articles on reverse logistics pub-
lished in the production and operations management field. They provide a 
database of articles published in the area of reverse logistics in the period 
1995–2005 by exploring the topic, methodology, and techniques of analysis, 
as well as other relevant aspects of research.

Meade et al. [58] provide an extensive review of literature in the area of 
reverse logistics as well as an overview of definitions and research opportu-
nities in this area.

Inventory control and production planning methods are thoroughly under-
stood and well established for traditional forward supply chains. However, 
available techniques for a traditional forward supply chain are not transfer-
able and adequate for a reverse supply chain. Guide and Srivastava [24] list 
the factors that complicate the inventory control and production planning in 
a reverse supply chain. These factors are as follows:

Probabilistic recovery rate of parts from the used products, which 
implies a high degree of uncertainty in material planning

Unknown conditions of recovered parts until inspected, thus lead-
ing to stochastic routings and lead times

Part-matching problem during the assembly process

Added complexity of a remanufacturing shop structure

Uncertainty in supply rate of used products

Problem of imperfect correlation between supply of used products 
and demand for reprocessed goods

Inventory control models in a reverse supply chain are required to keep 
track of various goods through the chains, viz., used products, remanufac-
tured products, recycled goods, etc. Inventory models for repairable items 
and maintenance systems where failed machines are replaced by warm 
or cold spares carry some similarities to the reverse supply chain models 
[11, 16]. Some authors consider deterministic models in which supply-and-
demand rates are constant. Mabini et al. [57] consider such a model with 
fixed setup costs for orders and remanufacturing and linear holding costs 
for used products and finished goods. Also, the model includes understock 
service-level constraint and machine sharing during the remanufacturing 
stage. Richter [68, 69] proposes a similar model under a different control 
policy where he provides formulation to calculate optimal values for con-
trol parameters and analyzes their dependence on the supply rate of used 
products. In a later paper, Richter [67] considers a mixture of two pure poli-
cies, total disposal and total remanufacturing in a deterministic system. In a 
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more recent paper, Teunter [78] studies a deterministic system with continu-
ous review and no lead times for outside procurement or remanufacturing. 
Although it is assumed that remanufactured products are as good as new 
ones, the associated inventory holding costs for remanufactured products 
are lower than those for new items. The author proposes an Economic Order 
Quantity (EOQ) control mechanism with fixed batch sizes and shows that 
in a given time period, the optimal batch size should be equal to 1 for either 
manufacturing or remanufacturing.

In repairable item inventory and remanufacturing systems, stochastic 
supply and demand occurrences are controlled by periodic and continuous 
review models. Periodic review models aim to minimize expected costs over 
a finite period and obtain optimal control policies under various assump-
tions. On the other hand, continuous review models monitor the inventory 
level incessantly and aim to find static control policies to obtain optimal con-
trol parameters to minimize the expected system costs. Simpson [75] con-
siders a periodic review model for separate inventories for serviceable and 
recoverable parts. He shows that a three-parameter control policy that con-
trols demand, remanufacturing, and disposal activities is optimal. Cohen 
et al. [17] consider a periodic review model in which used products can be 
placed in serviceable inventory directly. The authors assume that a fixed per-
centage of supplied products is returned to the manufacturer after a fixed 
lead time. The model optimizes the trade-off between holding and shortage 
costs. For a similar model, Kelle and Silver [38] utilize an integer program 
based on the net demand per period under chance constraints with fixed 
setup costs. Simpson’s model [75] is extended by Inderfurth [36] by consider-
ing the effects of nonzero lead times for the reprocessing process and orders. 
He considers a push system for remanufacturing to avoid the storage of used 
products and shows that the difference between these two lead times is an 
important complexity factor of the system. Kiesmuller and Van der Laan [39] 
consider a periodically reviewed system in a finite horizon with supply rates 
dependent on demand rates. The authors assume deterministic lead times 
and an independent stochastic demand process. They show that dependent 
supply rates provide a better inventory control performance. Teunter and 
Vlachos [77] consider the impact of disposal on the discounted average cost. 
Their model considers deterministic and equal lead times for remanufac-
tured and new items procurement.

Heyman [31] analyzes the continuous review inventory control case where 
incoming used products are disposed of whenever the inventory position 
reaches a predetermined level. The author assumes zero repair times and 
does not consider procurement lead times. In a following paper, Muckstadt 
and Isaac [60] present a production planning and inventory control model 
for remanufacturing. The authors develop an approximate control strategy 
with respect to reorder points and order quantities for a single-item prod-
uct case where used products are remanufactured. They consider fixed lead 
times and no disposal of used products. Van der Laan et al. [83] consider a 
single-product, single-echelon production and inventory system with used 
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products, remanufacturing, and disposal. In their paper, the authors compare 
the performance of three different procurement and inventory control strat-
egies. Salomon et al. [72] and Van der Laan and Salomon [82] develop and 
compare PUSH and PULL strategies for a joint production and inventory sys-
tem using both remanufactured and new parts. Korugan and Gupta [41] con-
sider a two-echelon inventory system with stochastic lead times and arrival 
rates. They model the system as a PUSH-type make-to-stock open queueing 
network, where along with the manufacturing and remanufacturing pro-
cesses, the demand arrivals are modeled as service. The authors report that 
increasing supply rates decrease the expected total cost, as the holding cost 
of a used product at the lower echelon is lower than the lost sales cost. Then 
Korugan and Gupta [42] look at the CONWIP problem of the hybrid produc-
tion systems with mutually exclusive manufacturing and remanufacturing 
processes. The authors generalize dynamic and static routing methods by 
applying an adaptive kanban control policy. The experiments conducted by 
the authors demonstrate that dedicated kanban control performs better with 
reasonable utilization rates, whereas adaptive kanban policy always outper-
forms nonadaptive policies. Udomsawat and Gupta [80] focus on the pro-
duction control aspect of the disassembly environment. The author adapts 
the kanban control mechanism to a disassembly line and develops a sys-
tem that uses several types of kanbans attached to various components and 
subassemblies.

Applicability of traditional production planning and scheduling methods 
for remanufacturing systems is extremely limited. Therefore, either new 
methodologies have to be developed or classical methods have to be modi-
fied to manage the complications of the product reprocessing process [81]. 
A number of authors propose that material requirements planning (MRP) 
techniques utilize a reverse bill of materials (BOM) to allow the manage-
ment and control of inventories in the remanufacturing environment [30, 47, 
62]. Guide and Srivastava [23] propose a specific structure for MRP mechan-
ics and evaluate a method to calculate safety stock for material recovery 
uncertainty. A multiobjective mathematical model formulation for a recycle-
oriented manufacturing system is presented by Hoshino et al. [32]. The opti-
mization model for the recycle-oriented manufacturing system is designed 
for a single product with m number of parts. Each part has three attributes 
associated with it: (1) reusable part, (2) not reusable but reproducible part, 
and (3) not reproducible or reusable part. The authors apply a goal program-
ming approach with two objectives: profit maximization and recycling rate 
maximization. Guide [25] proposes scheduling using the drum–buffer–rope 
concept as an alternative to the MRP method. Guide et al. [26] evaluate vari-
ous part order-release strategies in a remanufacturing environment using a 
simulation model. The authors focus on the problem of uncontrolled release 
of parts from disassembly operations, which may cause long queues at 
machine centers. This situation may increase lead times and their variabil-
ity, making customer service levels decline. Various types of order-release 
strategies are discussed, viz., a level strategy, a batch strategy, a local order 
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strategy, and a global order-release strategy, and the findings are mixed as 
to what is the best disassembly release mechanism. Ferrer and Whybark [19] 
describe the first fully integrated material planning system to facilitate man-
aging a remanufacturing facility. The approach extends the methods used 
for material planning in a remanufacturing environment in several ways. 
First, it explicitly links the volume of used products with the volume of 
sales. Second, it uses the bill of material for each component directly, with no 
need for modification. Third, the system derives the need for parts and uses 
optimizing procedures to determine the disassembly schedule. Finally, part 
commonality and different yield factors are explicitly included.

Aksoy and Gupta [2] model a hybrid manufacturing system with distinct 
cells for disassembly, testing, and remanufacturing activities. The hybrid sys-
tem is modeled as an open queueing network (OQN) with unreliable servers 
and finite buffers. Then Aksoy and Gupta [1] look at the effect of reusable 
rate variation on the performance of a remanufacturing system. The authors 
report that when the supply rate of used products is low, the total cost is rela-
tively insensitive to the reusability rate. However, as the supply rate becomes 
higher, the reusability rate has a significant effect on the total cost. The higher 
the reusability rate, the lower the total cost. Also, mean process time (average 
remanufacturing time) is sensitive to the buffer size, breakdown rate, repair 
rate, and service rate of the stations in the remanufacturing system. Vari-
ability in the buffer sizes in the network causes a significant variation in the 
mean process time. The authors also examine the trade-off between expand-
ing the buffer sizes and increasing the service capacity of machines [3, 4].

3.3 Strategic and Tactical Planning of Reverse  
and Closed-Loop Supply Chains

Strategic and tactical planning of reverse and closed-loop supply chains is 
a relatively new area of research, and hence only a few quantitative models 
and case studies have been reported in the literature. In this section, we pres-
ent a brief survey of those models and studies (see Fleischmann’s book [20] 
for a detailed survey of many of the case studies):

Veerakamolmal and Gupta [84] propose a cost-benefit function and 
a measure called “design for disassembly index” that analyzes the 
trade-off between the costs and benefits of end-of-life disassembly 
to find the optimum cost-benefit ratio for end-of-life retrieval. Their 
study helps in comparing two product designs by assessing feasible 
combinations of components to be retrieved from a used product. 
Further, it compares the combination with the highest cost-benefit 
from one design with those from the others.
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Louwers et al. [55] consider the design of a reverse supply chain for 
carpet waste in Europe. A continuous location model in which all 
costs are considered volume dependent is proposed. The nonlin-
ear model, when solved, determines the appropriate locations and 
capacities for the regional recovery facilities, taking into consider-
ation transportation, investment, and processing costs.

Ravi et al. [65] propose a balanced scorecard and analytic network 
process (ANP)–based approach to evaluate the alternative reverse 
logistics operations for used computers. It is a holistic approach that 
links financial and nonfinancial, tangible and intangible, and inter-
nal and external factors, for the selection of an alternative.

Beamon and Fernandes [10] propose a multiperiod mixed-integer 
linear programming model to study a closed-loop supply chain 
where manufacturers produce new products and remanufacture 
used products. Their model addresses issues that include which 
warehouses and collection centers should be open and which ware-
houses should have sorting capabilities.

Barros et al. [8] address the design of a supply chain for recycling 
sand from processing construction waste in the Netherlands. A four-
level sand recycling network is considered: (1) crushing companies 
yielding sieved sand from construction waste, (2) regional depots 
specifying the pollution level and storing cleaned and half-cleaned 
sand, (3) treatment facilities cleaning and storing polluted sand, and 
(4) infrastructure projects where sand can be reused. The locations 
of the sand sources are known and their supply volumes are esti-
mated based on historical data. The optimal number, capacities, and 
locations of depots and cleaning facilities are to be determined. The 
authors propose a multilevel capacitated facility location model for 
this problem formulated as a mixed-integer linear programming 
model and solved via iterative rounding of LP relaxations strength-
ened by valid inequalities. Listes and Dekker [53] propose a stochas-
tic programming–based approach for the sand recycling network to 
account for the uncertainties. The stochastic model seeks to find a 
solution that is approximately balanced between some alternative 
scenarios identified by field experts.

Savaskan et al. [74] study the problem of choosing the appropriate 
reverse channel structure for collecting the used products from cus-
tomers. They compare three decentralized closed-loop supply chain 
models with the manufacturer collecting the used products, the 
retailer collecting the used products, and a third party collecting the 
used products. The models are compared with respect to the whole-
sale price, product return rate, and total supply chain profits.

Ammons et al. [7] address carpet recycling in the United States. 
A logistics network that includes collection of used carpets from 
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carpet dealerships, as well as separation of nylon and other reusable 
materials while landfilling the remainder, is investigated. Although 
the delivery sites for recovered materials are assumed to be known, 
the optimal number and location of both collection sites and pro-
cessing plants for alternative configurations are to be determined. 
In addition, the amount of carpet collected from each site is to be 
determined. Facility capacity constraints are the main restrictions in 
view of the vast volume landfilled. The authors propose a multilevel 
capacitated mixed-integer linear programming model to address 
this problem.
Biehl et al. [13] simulate a reverse logistics network for carpet recy-
cling to manage highly variable return flows. They use an experi-
mental design technique to study the effect of system design factors 
as well as environmental factors that affect the operational perfor-
mance of such a reverse logistics network. From their study, the 
authors conclude that even with the design of an efficient reverse 
logistics network and use of sophisticated recycling technologies, 
return flows cannot meet demand for nearly a decade. They also 
discuss possible managerial options to address this problem, which 
include legal responses to require return flows and utilization of 
market incentives for carpet recycling.
Hu et al. [33] present a cost-minimization model for a multi-time-step, 
multitype hazardous wastes reverse logistics system. The authors 
formulate a discrete-time analytical model that minimizes total haz-
ardous waste reverse logistics costs subject to constraints, including 
business operating strategies and government regulations. The criti-
cal activities that include waste collection, storage, processing, and 
distribution are considered in their model. By using the proposed 
methodology, coupled with operational strategies, it is found that 
the total reverse logistics costs can be reduced by up to 49%.
Lieckens and Vandaele [51] combine queuing models with the tradi-
tional reverse logistics location model and formulate mixed-integer 
linear programming models to determine which facilities to open 
while minimizing the total cost of investment, transportation, dis-
posal, procurement, etc. By combining the queuing models, some 
dynamic aspects such as lead time and inventory positions, and 
the high degree of uncertainty associated with reverse logistics 
networks, are accounted for. With these extensions, the problem 
is defined as a mixed-integer nonlinear programming model. The 
model is presented for a single-product, single-level network, and 
several case examples are solved using genetic algorithms based on 
the technique of differential evolution.
Alshamrani et al. [5] study the reverse logistics network for blood dis-
tribution with the American Red Cross, where containers in which 
blood is delivered from a central processing unit to customers in one 



© 2009 by Taylor & Francis Group, LLC

Literature Review 27

time period are available for return to the central processing unit 
the following period. Containers not picked in the period following 
their delivery incur a penalty cost. This leads to a dynamic logistics 
planning problem, where in each period the vehicle dispatcher needs 
to design a multistop vehicle route while determining the number 
of containers to be picked up at each stop. A heuristic procedure is 
developed to solve the route design–pickup strategy problem.

Vlachos et al. [85] address the capacity planning issues in remanu-
facturing facilities in reverse supply chains through a simulation 
model based on the principles of system dynamics methodology. 
Apart from considering economic issues, their study takes into 
account environmental issues such as take-back obligations and the 
“green image” effect on customer demand. The simulation model 
serves as an experimental tool that helps in evaluating long-term 
capacity planning policies using total supply chain profit as a mea-
sure of effectiveness.

Lu and Bostel [56] study the facility location problem in a reman-
ufacturing network that has a strong interaction between the for-
ward and reverse flows of products. Remanufactured products are 
introduced as new ones into the forward flow. The authors assume 
that the demand is deterministic and the facilities are of three dif-
ferent types: producers, remanufacturing centers, and intermediate 
centers. The problem is modeled as a 0-1 mixed-integer program-
ming problem that is solved using an algorithm based on Lagrang-
ian heuristics.

Spengler et al. [76] study the recycling networks for industrial by-
products in the German steel industry. Recycling facilities with vari-
able capacity levels and corresponding fixed and variable processing 
costs can be installed at a set of potential locations. Thus, one needs 
to determine which recycling processes or process chains to install 
at which locations and their capacity levels. The authors propose a 
multilevel warehouse location model with piecewise linear costs, 
which is used for optimizing several scenarios.

Thierry et al. [79] propose a conceptual model for a closed-loop sup-
ply chain that addresses the situation of a manufacturing company 
collecting used products for recovery in addition to producing and 
distributing new products. The recovered products are sold under 
the same conditions as new ones to satisfy a given market demand. 
The distribution network encompasses three levels: plants, ware-
houses, and markets. All facilities are fixed externally, and hence no 
fixed costs are considered in the model. The objective is to determine 
the cost-optimal flow of goods in the network under the given capac-
ity constraints. The problem is formulated as a linear programming 
model, which can be solved for optimality.
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Berger and Debaillie [12] address a situation similar to that of Thi-
erry et al. [79] and propose a conceptual model for extending an 
existing forward supply chain with disassembly centers to allow for 
recovery of used products. The model is illustrated in a fictitious 
case of a computer manufacturer. Although the facilities in the for-
ward supply chain are fixed, the number, locations, and capacities 
of the disassembly centers are to be determined. In a variant of this 
model, the recovery network is extended to another level by sepa-
rating inspection and disassembly/repair centers. After inspection, 
rejected items are disposed of, whereas recoverable items are sent to 
the disassembly centers. To this end, the authors propose a multi-
level capacitated mixed-integer linear programming model.

Lim et al. [52] propose a mixed-integer programming model that 
takes into account multiperiod planning horizons with uncertain-
ties for a product with modular design and multiproduct configura-
tions. Besides maximizing overall profit, minimizing environmental 
impacts by minimizing energy consumption is considered.

Reimer et al. [66] model the economics of electronics recycling from the 
perspective of recyclers, generators, and material processors, individu-
ally. They propose a nonlinear mixed-integer programming model for 
optimizing processing decisions in electronics recycling operations.

Jayaraman et al. [37] analyze the logistics network of an electronic 
equipment remanufacturing company in the United States. The com-
pany’s activities include collection of used products from customers, 
remanufacturing, and distribution of remanufactured products. In 
this network, the optimal number and locations of remanufacturing 
facilities, and the number of used products collected, are to be deter-
mined while considering investment, transportation, processing, 
and storage costs. The authors propose a multiproduct capacitated 
warehouse location mixed-integer linear programming model that 
is solved to optimality for different supply-and-demand scenarios.

Krikke et al. [43] report a case study concerning the implementation 
of a remanufacturing process at a copier manufacturing company in 
the Netherlands. The reverse supply chain is subdivided into three 
main stages: (1) disassembly of return products to a fixed level; (2) 
preparation, which encompasses the inspection and replacement 
of critical components; and (3) reassembly of the remaining carcass 
together with repaired and new components into a remanufactured 
machine. Although the supplying processes and disassembly are 
fixed, optimal locations and flow of goods are to be determined 
for both the preparation and the reassembly operations. Based on 
a mixed-integer linear programming model, the optimal solution 
minimizing operational costs is compared with a number of prese-
lected managerial solutions.
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Kroon and Vrijens [46] consider the design of a logistics system for 
reusable transportation packaging. More specifically, a closed-loop, 
deposit-based system is considered for collapsible plastic contain-
ers that can be rented as secondary packaging material. The actors 
involved in the system include a central agency owning a pool of 
reusable containers; a logistics service provider responsible for stor-
ing, delivering, and collecting the empty containers; senders and 
recipients of full containers; and carriers transporting full contain-
ers from sender to recipient. In addition to determining the number 
of containers required for running the system and an appropriate 
fee per shipment, a major question is where to locate the depots 
for empty containers. An additional requirement is balancing the 
number of containers at the depots. The problem is formulated as a 
mixed-integer linear programming model that is closely related to a 
classical uncapacitated warehouse location model.
Salema et al. [71] point out that the majority of the quantitative mod-
els that exist in the area of reverse supply chain design are case spe-
cific and hence lack generality. To this end, they propose a generic 
reverse supply chain model that incorporates multiproduct man-
agement, capacity limits, and uncertainty in product demands and 
returns, and they propose a mixed-integer formulation that is solved 
using standard Branch and Bound (B&B) techniques.
Krikke et al. [45] focus on commercial returns that have nothing to do 
with environmental legislation. These returns are increasing due to 
trends such as product leasing, catalog/Internet sales, shorter product 
replacement cycles, and increased warranty claims. The authors pro-
pose several options for a closed-loop supply chain: reusing the prod-
uct as a whole, reusing the components, or reusing the materials.
Listes [54] presents a generic stochastic model for the design of net-
works constituting both supply and return channels, organized in 
a closed-loop system. The model accounts for a number of alterna-
tive scenarios, which may be constructed based on critical levels of 
design parameters such as demand or returns. A decomposition 
approach is suggested to solve this model, based on the branch-and-
cut procedure known as the integer L-shaped method.
Bautista and Pereira [9] address reverse logistics problems arising 
in municipal waste management. The usual collection system in the 
European Union countries is composed of two phases. First, citizens 
leave their refuse at special collection areas where different types of 
waste (glass, paper, plastic, organic material) are stored in special 
refuse bins. Subsequently, each type of waste is collected separately 
and moved to its final destination (a recycling plant or refuse dump). 
The study focuses on the problem of locating these collection areas. 
The authors propose a genetic algorithm and a GRASP heuristic to 
solve the problem.
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Dowlatshahi [18] identifies the present state of theory in reverse 
logistics by formulating the propositions for strategic factors. The 
approach used is grounded theory development. The strategic fac-
tors are delineated and evaluated in terms of specific subfactors asso-
ciated with each factor by the use of interview protocol and within 
the context of an in-depth analysis of two companies in different 
industries that are engaged in remanufacturing/recycling opera-
tions within reverse logistics systems. Based on these insights and 
strategic factors and subfactors, a framework for effective design and 
implementation of remanufacturing/recycling operations in reverse 
logistics is provided. This framework allows for the determination 
of the viability of used products/parts.
Amini et al. [6] discuss the competitive value of service management 
activities, particularly repair services, as well as the importance of 
the supporting role of effective reverse logistics operations for the 
successful and profitable execution of repair service activities. Also, 
they present a case study of a major international medical diagnos-
tics manufacturer to illustrate how a reverse logistics operation for a 
repair service supply chain was designed for both effectiveness and 
profitability by achieving a rapid-cycle time goal for repair service 
while minimizing total capital and operational costs.
Savaskan and Van Wassenhove [73] focus on the interaction between 
a manufacturer’s reverse channel choice to collect postconsumer 
goods and the strategic product pricing decisions in the forward 
channel when retailing is competitive. To this end, they model a 
direct product collection system, in which the manufacturer col-
lects used products directly from the consumers, and an indirect 
product collection system, in which the retailers act as product return 
points. The authors show that the buy-back payments transferred 
to the retailers for postconsumer goods provide a wholesale pricing 
flexibility that can be used to price-discriminate between retailers of 
different profitability.
Wojanowski et al. [86] study the interplay between industrial firms 
and government concerning the collection of used products from 
households. The authors focus on the use of a deposit-refund require-
ment by the government when the collection rate voluntarily achieved 
by the firms is deemed insufficient. A continuous modeling frame-
work is presented for designing a drop-off facility network and deter-
mining the sales price that maximizes the firm’s profit under a given 
deposit-refund. The customers’ preferences with regards to purchas-
ing and returning the product are incorporated via a discrete choice 
model with stochastic utilities.
Krikke et al. [44] develop quantitative modeling to support decision 
making concerning both the design structure of a product and the 
design structure of the logistic network. Environmental impacts are 
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measured by linear energy and waste functions. Economic costs 
are modeled as linear functions of volumes with a fixed setup com-
ponent for facilities. This model is applied to a closed-loop supply 
chain design problem for refrigerators using real-life data of a Japa-
nese consumer electronics company.
Nagurney and Toyasaki [61] develop an integrated framework for the 
modeling of reverse supply chain management of electronic waste, 
which includes recycling. The decision makers consist of the sources 
of electronic wastes, the recyclers, the processors, and consumers asso-
ciated with the demand markets for the distinct products. A multi-
tiered electronic recycling network equilibrium model is constructed. 
The authors also establish the variational inequality formulation. The 
variational inequality formulation allows for the formulation of the 
complex reverse supply chain network to obtain the endogenous 
equilibrium prices and material flows between tiers.
Gautam and Kumar [21] describe a multiobjective evaluation of the 
trade-offs among the number and size of drop-off stations, popu-
lation covered in a service network, average walking distance to 
drop-off stations by the population, and the distance traveled by 
collection vehicles. A geographical information system (GIS)–based 
model is proposed for the design of a solid-waste system consider-
ing waste generation, allocation, recycling options, and location of 
drop-off stations.

3.4 Conclusions

In this chapter, a brief review of the literature related to the three phases of 
decision making in reverse and closed-loop supply chains—strategic plan-
ning, tactical planning, and operational planning—was presented.
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4
Quantitative Modeling Techniques

4.1 Introduction

In this book, quantitative models for a number of crucial issues in strategic 
planning of reverse and closed-loop supply chains are presented. Depend-
ing on the decision-making situation, each model makes use of one or more 
of the quantitative techniques introduced in this chapter. It must be noted 
that only the basic concepts of each technique are presented here.

This chapter is organized as follows: Sections 4.2 through 4.19 introduce 
the concepts of analytic hierarchy process (including eigen vector method), 
analytic network process, fuzzy logic, extent analysis method, fuzzy multi-
criteria analysis method, quality function deployment, method of total pref-
erences, linear physical programming, goal programming, technique for 
order preference by similarity to ideal solution (TOPSIS), Borda’s choice rule, 
expert systems, Bayesian updating, Taguchi loss function, Six Sigma, neural 
networks, geographical information systems, and linear integer program-
ming, respectively. Finally, section 4.20 gives some conclusions.

4.2 Analytic Hierarchy Process and Eigen Vector Method

The analytic hierarchy process (AHP) is a tool supported by simple math-
ematics that enables decision makers to explicitly weigh tangible and intan-
gible criteria against each other for the purpose of resolving conflict or 
setting priorities. The process has been formalized by Saaty [1] and is used 
in a wide variety of problem areas, for example, siting landfills [2], evaluat-
ing employee performance [3], and selecting a doctoral program [4].

In a large number of cases (for example, [5]), the tangible and intangible 
criteria are considered independent of each other; in other words, those crite-
ria do not in turn depend upon subcriteria and so on. The AHP in such cases 
is conducted in two steps: (1) weigh independent criteria, each of which can 
compare two or more decision alternatives, using pair-wise judgments, and 
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(2) compute the relative ranks of decision alternatives using pair-wise judg-
ments with respect to each independent criterion.

1. Computation of relative weights of criteria: AHP enables a person to 
make pair-wise judgments of importance between independent 
criteria with respect to the scale shown in table 4.1. The resulting 
matrix of comparative importance values is used to weigh the inde-
pendent criteria by employing mathematical techniques like eigen 
value, mean transformation, or row geometric mean. This step is 
called the eigen vector method if an eigen vector is the employed 
mathematical technique.

2. Computation of the relative ranks: Pair-wise judgments of importance 
using the scale shown in table 4.1 are computed for the decision alter-
natives as well. These judgments are obtained with respect to each 
independent criterion considered in step 1. The resulting matrix of 
comparative importance values is used to rank the decision alterna-
tives by employing mathematical techniques like eigen value, mean 
transformation, or row geometric mean.

The degrees of consistency of pair-wise judgments in steps 1 and 2 are 
measured using an index called the consistency ratio (CR). Perfect consis-
tency implies a value of zero for CR. However, perfect consistency cannot be 
demanded because, as human beings, we are often biased and inconsistent 
in our subjective judgments. Therefore, it is considered acceptable if CR is 
less than or equal to 0.1. For CR values greater than 0.1, the pair-wise judg-
ments must be revised before the weights of criteria and the ranks of deci-
sion alternatives are computed. CR is computed using the formula

CR
n

n R

( max )
( )( )1

(4.1)

where max is the principal eigen value of the matrix of comparative impor-
tance values, n is the number of rows (or columns) in the matrix, and R is 

TABLE 4.1

Scale for pair-wise judgments
Comparative
importance Definition

1 Equally important

3 Moderately more important

5 Strongly important

7 Very strongly more important

9 Extremely more important

2, 4, 6, 8 Intermediate judgment values
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the random index for each n value that is greater than or equal to 1. Table 4.2 
shows various R values for n values ranging from 1 to 10.

The AHP is illustrated in the form of a hierarchy of three levels, where the 
first level contains the primary objective, the second level contains the inde-
pendent criteria, and the last level contains the decision alternatives. Also, an 
important feature of the AHP is that the tangible and intangible criteria in 
the second level must be chosen in such a way that they can somehow help 
the decision maker in comparing two or more decision alternatives.

4.3 Analytic Network Process

Analytic network process [6] (ANP) generalizes the AHP. AHP assumes inde-
pendence among the criteria and subcriteria considered in the decision mak-
ing, but real-life situations warrant against such assumption. ANP allows for 
dependence within a set of criteria (inner dependence) as well as between 
sets of criteria (outer dependence); therefore, ANP goes beyond AHP [7]. 
Whereas AHP assumes a unidirection hierarchical relationship among the 
decision levels, ANP allows for a more complex relationship among decision 
levels and attributes, as it does not require a strict hierarchical structure. The 
looser network structure in ANP allows the representation of any decision 
problem, irrespective of which criteria come first or which come next. Com-
pared to AHP, ANP requires more calculations and requires a more careful 
track of the pair-wise judgment matrices. ANP is used in a wide variety of 
problem areas (for example, analyzing alternatives in reverse logistics for 
end-of-life computers [7]; evaluating connection types in design for disas-
sembly [8]; and modeling the metrics of lean, agile, and leagile supply chain 
[9]). The steps involved in the ANP methodology are as follows:

Step 1: Model development and problem formulation: In this step, the deci-
sion problem is structured into its constituent components. The 
relevant criteria, the subcriteria, and alternatives are chosen and 
structured in the form of a control hierarchy.

Step 2: Pair-wise comparisons: In this step, the decision maker is asked 
to carry out a series of pair-wise comparisons with respect to the 
scale shown in table 4.1, where two main criteria are simultaneously 
compared with respect to the problem objective, two subcriteria are 

TABLE 4.2

Random index value for each n value
n 1 2 3 4 5 6 7 8 9 10

R 0 0 0.58 0.90 1.12 1.24 0.32 1.41 1.45 1.49



© 2009 by Taylor & Francis Group, LLC

40 Strategic Planning Models for Reverse and Closed-Loop Supply Chains

simultaneously compared with respect to their main criteria, and 
pair-wise comparisons are performed to address the interdepen-
dencies among the subcriteria. The relative matrix of comparative 
importance values is then used to weigh the criteria using math-
ematical techniques like eigen vector, mean transformation, or row 
geometric mean.

Step 3: Super matrix formulation: The super matrix allows for a resolu-
tion of interdependencies that exist among the subcriteria. It is a 
partitioned matrix, where each submatrix is composed of a set of 
relationships between and within the levels as represented by the 
decision maker’s model. The super matrix M is made to converge to 
obtain a long-term stable set of weights. For convergence, M must be 
made column stochastic; that is done by raising M to the power of 
2k+1, where k is an arbitrarily large number.

Step 4: Selection of the best alternative: The selection of the best alterna-
tive depends on the desirability index. The desirability index, DI, for 
alternative i is defined as

DI P A A Sj kj
D

kj
I

ikj
k

K

j

J j

11

(4.2)

where Pj is the relative importance weight of main criterion j; Akj
D

is the relative importance weight for subcriterion k of main crite-
rion j for the dependency (D) relationships among subcriteria; Akj

I  is 
the stabilized relative importance weight (determined by the super 
matrix) for subcriterion k of main criterion j for interdependency 
(I) relationships among subcriteria; and Sikj is the relative impact of 
alternative i on subcriterion k of main criterion j.

4.4 Fuzzy Logic

Expressions such as “probably so,” “not very clear,” and “very likely,” which 
are often heard in daily life, carry a touch of imprecision with them. This 
imprecision or vagueness in human judgments is referred to as fuzziness in 
the scientific literature. As the decision-making problem’s intensity grows, 
this imprecision leads to results that can often be misleading, if the fuzziness 
is not taken into account. Zadeh [10] first proposed fuzzy logic, after which 
an increasing number of studies have dealt with fuzziness in problems by 
applying fuzzy logic.
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When dealing with factors with uncertain or imprecise values, people use 
linguistic values like high, low, good, and medium,  to describe those factors. 
For example, height may be a factor with an imprecise value, so its linguistic 
value can be “very tall” or “very short.” Fuzzy logic is primarily concerned 
with quantifying vagueness in human perceptions and thoughts. The tran-
sition from vagueness to quantification is performed by the application of 
fuzzy logic, as shown in figure 4.1.

Zadeh proposed a membership function to deal with quantifying vague-
ness. Each quantified linguistic value is associated with a grade membership 
value belonging to the interval [0, 1] by means of a membership function. 
Thus, a fuzzy set can be defined as x X xA, ( ) [ , ]0 1 , where A is the 
degree of membership, ranging from 0 to 1, of a quantity x of the linguistic 
value, A, over the universe of quantified linguistic values, X. X is essentially 
a set of real numbers. The more x fits A, the larger the degree of member-
ship of x. If a quantity has a degree of membership equal to 1, this reflects a 
complete fitness between the quantity and the linguistic value. On the other 
hand, if the degree of membership of a quantity is 0, then that quantity does 
not belong to the linguistic value. The membership function looks like a typ-
ical cumulative probability function; however, the value of a membership 
function represents the possibility of a fuzzy event, whereas the value of a 
cumulative probability function represents the cumulative probability of a 
statistical event.

A triangular fuzzy number (TFN) [11] is a fuzzy set with three parameters 
(l, m, u), each representing a quantity of a linguistic value associated with a 
degree of membership of either 0 or 1. Figure 4.2 shows a graphical depic-
tion of a TFN. The parameters l, m, and u denote the smallest possible, most 
promising, and largest possible quantities that describe the linguistic value.

Vagueness Quantification
Fuzzy Logic 

FIGURE 4.1

Application of fuzzy logic.

Parameters of TFN 
l m

Degree of Membership 

0.0

1.0

FIGURE 4.2

Triangular fuzzy number.
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Each TFN, P, has linear representations on its left- and right-hand side such 
that its membership function can be defined as

P

x l

x l m l l x m

u x u m m x u

0

0

,

( ) / ( ),

( ) / ( ),

,, x u
(4.3)

For each quantity x increasing from l to m, the corresponding membership 
function linearly increases from 0 to 1, and while x increases from m to u, the 
corresponding membership function decreases linearly from 1 to 0.

The basic operations on TFNs are as follow [11, 12]; for example, P1 = (l, m,
u) and P2 = (x, y, z):

P P l x m y u z1 2 ( , , ) addition (4.4)

P P l z m y u x1 2 ( , , ) subtraction (4.5)

P P l x m y u z1 2 ( , , ) multiplication (4.6)

P
P

l
z

m
y

u
x

1

2
, , division (4.7)

Defuzzification is a technique to convert a fuzzy number into a crisp real 
number. There are several methods available for this purpose. The center-of-
area method [13] converts a fuzzy number P = (l, m, u) into a crisp number 
Q, where

Q
u l m l

l
( ) ( )

3
(4.8)

Defuzzification might be necessary in two situations: (1) when comparison 
between two fuzzy numbers is difficult to perform, and (2) when a fuzzy 
number to be operated on has negative parameters (in other words, we make 
sure that upon performing an arithmetic operation on a TFN, we get a TFN 
only; for example, squaring the TFN (–1, 0, 1) using equation (4.6) leads to (1, 0, 
1), which is not a TFN, and hence we defuzzify (–1, 0, 1) before squaring it).
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4.5 Extent Analysis Method

Chang [14] proposed a new approach to handle situations that require use 
of both fuzzy logic and AHP/ANP. First, TFNs (see section 4.4) are used for 
pair-wise comparisons; then by using extent analysis method [15], the syn-
thetic extent value of the pair-wise comparison is introduced, and by apply-
ing the principle of comparison of fuzzy numbers, the weight vectors with 
respect to each element under a certain criterion can be computed. The steps 
involved in the methodology are as follows.

Let X = {x1, x2, …, xn} be an object set and U = {u1, u2, …, um} be a goal set. 
According to the extent analysis method, each object is taken and an extent 
analysis for each goal, gi, is performed. Therefore, m extent analysis values 
for each object can be obtained, with the following signs: M1

gi, M2
gi, …, Mm

gi,
i = 1, 2, …, n, where all the Mj

gi (j = 1, 2, …, m) are TFNs.

Step 1: The value of fuzzy synthetic extent with respect to the ith object 
is defined as

S M Mi gi
j

j

m

j

m

gi
j

i

n

1 11

1

(4.9)

In order to obtain Mgi
j

j

m

1

, perform the fuzzy addition operation of 

m extent analysis values for a particular matrix such that

M l m ugi
j

j j j
j

m

j

m

j

m

, ,
111j

m

1

(4.10)

To obtain

j

m

gi
j

i

n

M
11

1

,

perform the fuzzy addition operation of Mgi
j (j = 1, 2, …, m) values such 

that
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M l m ugi
j
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m
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n
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i

n
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n

i

n

11 111

, ,
(4.11)

and then compute the inverse of the vector.
Step 2: The degree of possibility of M2 = (l2, m2, u2) ≥ M1 = (l1, m1, u1) is 

expressed as

V (M2 ≥ M1)
= hgt (M1 ≥ M2)
= {1, if m2 ≥ m1; 0, if l1 ≥ u2; (l1 – u2)/((m2 – u2) – (m1 – l1))} (4.12)

To compare M1 and M2, both V (M2 ≥ M1) and V (M1 ≥ M2) are required.
Step 3: The degree of possibility for a convex fuzzy number to be greater 

than k convex fuzzy numbers Mi (i = 1, 2, …, k) can be defined as

V (M ≥ M1, M2, Mk)
= V [(M ≥ M1) and (M ≥ M2) and … and (M ≥ Mk)]
= min V (M ≥ Mi), i =1, 2, k (4.13)

Let d’ (Ai) = min V (Si ≥ Sk), for k = 1, 2, n; k ≠ i. Then the weight vector 
is given by

W’ = (d’ (A1), d’ (A2), d’ (An))T (4.14)

Step 4: The weight vector obtained in step 3 is normalized to get the 
normalized weights.

These steps are applied to deduce the weights of main criteria with respect 
to the goal, subcriteria with respect to the main criteria, and alternatives 
with respect to the main and subcriteria. The rest of the procedure is similar 
to the traditional AHP/ANP.

4.6 Fuzzy Multicriteria Analysis Method

Multicriteria analysis problems require the decision maker to make qualita-
tive assessments regarding the performance of the decision alternatives with 
respect to each independent criterion and the relative importance of each 
independent criterion with respect to the overall objective of the problem. As 
a result, uncertain subjective data are present that make the decision-making 
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process complex [16]. AHP enables a person to make pair-wise judgments of 
importance between the independent criteria as well as the decision alterna-
tives. However, traditional AHP is criticized for its unbalanced scale of judg-
ment and failure to precisely handle the inherent uncertainty and vagueness 
in carrying out pair-wise comparisons.

Deng [17] proposed a multicriteria analysis approach that extends Saa-
ty’s AHP (see section 4.2) to deal with the imprecision and subjectiveness 
in the pair-wise comparisons. TFNs (see section 4.4) are used for pair-wise 
comparisons, and the concept of extent analysis method (see section 4.5) 
is applied to solve the fuzzy reciprocal matrix for determining the criteria 
importance and alternative performance. The -cut concept is used to trans-
form the fuzzy performance matrix representing the overall performance of 
all alternatives with respect to each criterion into an interval performance 
matrix. An overall performance index for each alternative across all criteria 
that incorporates the decision maker’s attitude toward risk is obtained by 
applying the concept of similarity to the ideal solution [18] using the vector-
matching function.

The selection process starts with determining the criteria of importance 
and performance of alternatives. By using TFNs, a fuzzy reciprocal matrix 
for criteria importance (W) or alternative performance with respect to a spe-
cific criterion (Cj) can be determined as

W C

a a a
a a a

j

k

k 

...

...
... ... .. ...

or 

11 12 1

21 22 2

aa a ak k kk1 2 ...
(4.15)

where

a

l s

l s l s k k m or nls

1 3 5 9

1 1 2

, , , , ,

, , , , , ... ; , , ,,

/ ,1 a l ssl (4.16)

By applying the extent analysis method, the corresponding criteria weights 
(wj) or alternative performance ratings (xij) with respect to a specific criterion 
Cj can be determined as

x w a aij j ls ls

s

k

l

k

s

k

or =
111 (4.17)
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where i = 1, 2, …, n; j = 1, 2, …, m; and k = m or n depending on whether 
the reciprocal judgment matrix is for assessing the performance ratings of 
alternatives or weights of criteria involved. The decision matrix (X) and the 
weight vector (W) can be respectively determined as

X

x x x
x x x

x x

m

m

n n

11 12 1

21 22 2

1

...

...
... ... ... ...

22 ... xnm (4.18)

W = ( , ,..., )w w wm1 2 (4.19)

where xij represents the resultant fuzzy performance assessment of alterna-
tive Ai (i = 1, 2, n) with respect to criterion Cj, and wj is the resultant fuzzy 
weight of criterion Cj (j = 1, 2, …, m) with respect to the overall goal of the 
problem. A fuzzy performance matrix Z representing the overall perfor-
mance of all alternatives with respect to each criterion is obtained by multi-
plying the weight vector by the decision matrix.

Z

w x w x w x
w x w x w x

m m

m m

1 11 2 12 1

1 21 2 22 2

...

...
... .... ... ...

...w x w x w xn n m nm1 1 2 2 (4.20)

An interval performance matrix [16] is derived by using an -cut on the 
performance matrix, where 0 ≤  ≤ 1. The value of  represents the decision 
maker’s degree of confidence in his or her fuzzy assessments regarding the 
alternative ratings and criteria weights. The larger the value of , the more 
confident the decision maker is about the fuzzy assessments, viz., the assess-
ments are closer to the most possible value a2 of the triangular fuzzy number 
(a1, a2, a3).

Z

z z z z zl r l r m11 11 12 12 1, , ... ll mr

n l

z

z

,

... ... ... ...

... ... ... ...

1

1 , , ... ,z z z z zn r n l n r nml nm1 2 2 rr

..

(4.21)

An overall crisp performance matrix that incorporates the decision maker’s 
attitude toward risk, using an optimism index  (  = 1 implies the decision 
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maker has an optimistic view, 0 implies a pessimistic view, and 0.5 implies a 
moderate view), is calculated.

z

z z z m

'

' ' '
...

... ... ... ...

... ..

11 12 1

.. ... ...

...
' ' '

z z zn n nm1 2 (4.22)

where

z z zij ijr ijl
'

( ) , [ , ]1 0 1 (4.23)

A normalized performance matrix with respect to each criterion is calcu-
lated from equation (4.22).

Z

z z z
z z z

m

m

11 12 1

21 22 2

...

...
... .... ... ...

...z z zn n nm1 2 (4.24)

where

z z zij ij ij
i

n
' '

( )2

1 (4.25)

Zeleny [18] introduced the concept of ideal solution in multiattribute deci-
sion analysis that was further extended by Hwang and Yoon [19], including 
negative solution to avoid the worst decision outcome. In line with this con-
cept, the positive- and negative-ideal solutions, respectively, can be deter-
mined by selecting maximum and minimum values across all alternatives 
with respect to each criterion as follows:

A z z z

A z z

m( , ,..., )

( ,

1 2

1 2 ,...., )zm
(4.26)
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where

z z z z

z z

j j j nj

j j

max( , ,..., )

min(

2

, ,...., )z zj nj2 (4.27)

By applying the vector-matching function, the degree of similarity between 
each alternative and the positive- and negative-ideal solutions can be calcu-
lated as

S A A A A A A

S

i i i i i

i

/ max( , )

A A A A A Ai i i i/ max( , ) (4.28)

where A z z zi i i im( , ,...., )1 2 is the ith row of the overall performance matrix, 
which represents the corresponding performance of alternative Ai with 
respect to criterion Cj. The larger the value of S Si i, , the higher the degree 
of similarity between each alternative and the positive-ideal and negative-
ideal solutions [20]. A preferred alternative should have a higher degree of 
similarity to the positive-ideal solution and a lower degree of similarity to 
the negative-ideal solution. Hence, an overall performance index for each 
alternative with the decision maker’s  level of confidence and  degree of 
optimism toward risk can be determined as

P S S S i ni i i i/ ( ), , , ,1 2 (4.29)

The larger the performance index, the most preferred the alternative is.

4.7 Quality Function Deployment

Erol and Ferrell [21] define performance aspects as the features that the deci-
sion maker wishes to consider in the selection process and enablers as the 
characteristics possessed by the alternatives, which can be used to satisfy the 
performance aspects.

The absolute technical importance ratings (ATIRs), which measure how 
effectively each enabler can satisfy all of the performance aspects, are com-
puted by

ATIR = 1, ...,j

i

I

d R j Ji ij

1 (4.30)
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where di is the importance value of performance aspect i relative to the other 
performance aspects, and Rij is the relationship score for performance aspect 
i and enabler j. Because there is an ATIR for each enabler j, for the compari-
son of all enablers, it is normalized to form the relative technical importance 
rating (RTIRj) as follows:

RTIR ATIR

ATIR
= 1, ...,j

j

j

j

J j J

1 (4.31)

4.8 Method of Total Preferences

RTIRs (see section 4.7), together with additional human expert opinions, are 
used to develop a single measure that reflects the rating of each alternative 
as follows [21]:

TUP RTIR WAn j nj

j

J

n
1 (4.32)

where TUPn is the total user preference for alternative n, and WAnj is the 
(defuzzified) degree to which alternative n can deliver enabler j.

For the purpose of comparison of all alternatives, TUP of each alternative 
is then normalized as follows:

NTUP TUP

TUP
n

n

n

n

N n

1 (4.33)

where NTUPn is the normalized total preference for alternative n, and N is 
the total number of alternatives.

The alternative with the highest NTUP is considered the one with the 
highest potential.

4.9 Linear Physical Programming

In the linear physical programming (LPP) method [22], four distinct classes 
(1S, 2S, 3S, and 4S) are used to allow the decision maker to express his or her 
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preferences for the value of each criterion (for decision making) in a more 
detailed, quantitative, and qualitative way than when using a weight-based 
method like analytic hierarchy process (see section 4.2). These classes are 
defined as follows: smaller is better (1S), larger is better (2S), value is better 
(3S), and range is better (4S). Figure 4.3 depicts these different classes.

The value of the pth criterion, gp, for evaluating the alternative of interest is 
categorized according to the preference ranges shown on the horizontal axis. 
Consider, for example, the case of class 1S. The preference ranges are:
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FIGURE 4.3

Soft class functions for linear physical programming.
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Ideal range: g tp p1

Desirable range: t g tp p p1 2

Tolerable range: t g tp p p2 3

Undesirable range: t g tp p p3 4

Highly undesirable range: t g tp p p4 5

Unacceptable range: g tp p5

The quantities tp1 through tp5  represent the physically meaningful values 
that quantify the preferences associated with the pth generic criterion. Con-
sider, for example, the cost criterion for class 1S. The decision maker could 
specify a preference vector by identifying tp1  through tp5  in dollars as (10 
20 30 40 50). Thus, an alternative having a cost of $15 would lie in the desir-
able range, an alternative with a cost of $45 would lie in the highly undesir-
able range, and so on. We can accomplish this for a nonnumerical criterion 
such as color as well by (1) specifying a numerical preference structure and 
(2) quantitatively assigning each alternative a specific criterion value from 
within a preference range (e.g., desirable, tolerable).

The class function, Zp, on the vertical axis in figure 4.3 is used to map the 
criterion value, gp, into a real, positive, and dimensionless parameter (Zp is, in 
fact, a piecewise linear function of gp). Such a mapping ensures that different 
criteria values, with different physical meanings, are mapped to a common 
scale. Consider class 1S again. If the value of a criterion, gp, is in the ideal 
range, then the value of the class function is small (in fact, zero), whereas 
if the value of the criterion is greater than tp5 , that is, in the unacceptable 
range, then the value of the class function is very high. Class functions have 
several important properties, including (1) that they are nonnegative, con-
tinuous, piecewise linear, and convex, and (2) that the value of the class func-
tion, Zp, at a given range intersection (say, desirable–tolerable) is the same for 
all class types.

Basically, ranking of the alternatives is performed in four steps, as fol-
lows [23]:

Step 1: Identify criteria for evaluating each of the alternatives.

Step 2: Specify preferences for each criterion, based on one of the four classes
(see figure 4.3).

Step 3: Calculate incremental weights: Based on the preference structures 
for the different criteria, the LPP weight algorithm [22] determines 
incremental weights, wpr  and wpr  (used in step 4), that represent 
the incremental slopes of the class functions, Zp. Here, r denotes the 
range intersection.
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Step 4: Calculate total score for each alternative: The formula for the total 
score, J, of the alternative of interest is constructed as a weighted 
sum of deviations over all ranges (r = 2 to 5) and criteria (p = 1 to P), 
as follows:

J w d w d
rp

P

pr pr pr pr( )
2

5

1 (4.34)

where P represents the total number of criteria (each belonging to 
one of the four classes in figure 4.3), wpr and wpr are the incre-
mental weights for the pth criterion, and dpr and dpr represent the 
deviations of the pth criterion value of the alternative of interest 
from the corresponding target values. An alternative with a lower 
total score is more desirable than one with a higher total score.

The most significant advantage of using LPP is that no weights need to be 
specified for the criteria for evaluation. The decision maker only needs to 
specify a preference structure for each criterion, which has more physical 
meaning than a physically meaningless weight that is arbitrarily assigned 
to the criterion.

Note that there are no decision variables in the above ranking procedure. 
LPP can be used in a problem consisting of decision variables as well, by 
minimizing J in equation (4.34) and subjecting (if necessary) each criterion, 
gp, to a constraint that falls into either one of the four classes (also called soft
classes) in figure 4.3 or one of the following four hard classes:

Class 1H: Must be smaller, i.e., gp ≤ tp,max

Class 2H: Must be larger, i.e., gp ≥ tp,min

Class 3H: Must be equal, i.e., gp = tp,val

Class 4H: Must be in range, i.e., tp,min ≤ gp ≤ tp,max

4.10 Goal Programming

Linear programming [24] assumes that the objectives of an organization can 
be encompassed within a single objective function, such as maximizing the 
total profit or minimizing the total cost. However, this assumption is not 
always realistic, and there are several cases where the management focuses 
on a variety of objectives simultaneously. Goal programming provides a way 
of tackling such situations.
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Goal programming (GP; see [25]), generally applied to linear problems, 
deals with the achievement of specific targets/goals. The basic approach 
involves formulating an objective function for each objective and seeks a 
solution that minimizes the sum (weighted sum in case of fuzzy goal pro-
gramming) of the deviations of these objective functions from their respec-
tive goals. To this end, several criteria are to be considered in the problem 
situation on hand. For each criterion, a target value is determined. Next, 
the deviation variables are introduced, which may be positive or negative 
(represented by k and k, respectively). The negative deviation variable, 

k, represents the underachievement of the kth goal. Similarly, the posi-
tive deviation variable, k, represents the overachievement of the kth goal. 
Finally, for each criterion, the desire to overachieve (minimize k) or under-
achieve (minimize k) or to satisfy the target value exactly (minimize k + k)
is articulated [26].

Goal programming problems can be categorized according to the type of 
mathematical programming model. Another categorization is according to 
how the goals compare in importance. In the case of preemptive goal pro-
gramming, there is a hierarchy of priority levels for the goals, so the goals 
of primary importance receive first attention and so forth. In case of nonpre-
emptive goal programming, all the goals are of roughly comparable impor-
tance [24].

In goal programming, it is necessary to specify aspiration levels for the 
goals, and the overall deviation from the aspiration levels is minimized. In 
most real-world scenarios, the aspiration levels and weights/importance lev-
els of goals are imprecise in nature. In such situations, fuzzy GP comes in 
handy, allowing the decision maker to obtain compromising results for mul-
tiple goals with varying aspiration levels. In fuzzy GP, the aspiration levels 
are either in the “more is better” form or “less is better” form. [27]. A linear 
membership function μi that represents goal fuzziness for the “more is bet-
ter” form is expressed as [28]

i

i i

i i

i i
i i i

if G X g

G X L
g L

if L G X g

if

1

0

( )

( ) ( )

GG X Li i( )
(4.35)

while a linear membership fraction μi that represents goal fuzziness for the 
“less is better” form is expressed as
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( ) ( )

GG X Ui i( )
(4.36)

where gi, Li, and Ui are the aspiration level, lower tolerance limit, and upper 
tolerrance limit respectively for the fuzzy goal Gi (X).

The simple form of the fuzzy GP problem with p fuzzy goals can be stated as:

Maximize V i
i

p

( )
1

(4.37)

subject to i
i i

i i
i

i i

i i

G X L
g L

or U G X
U g

( ) ( )
(4.38)

AX b (4.39)

i 1 (4.40)

X i, 0 (4.41)

where V( )  is the fuzzy achievement function or fuzzy decision function. 
The objective is to obtain the μi value as close to 1 as possible. The weighted 
additive model is widely used in GP and multiobjective optimization prob-
lems to reflect the relative importance of goals. In this approach, the deci-
sion maker assigns weights as coefficients of individual terms in the simple 
additive fuzzy achievement function to reflect their relative importance. The 
objective function for the weighted additive model is expressed as

Maximize 
V wi i

i

p

( )
1 (4.42)

where wi is the relative weight of the ith fuzzy goal. Fibonacci numbers are 
used to assign weights to the goals. Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, etc. 
(the next number is a result of the summation of the previous two numbers). 
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The concept is applied by starting with numbers 1 and 2. For example, for 
two goals, the weights would be in the ratio of 1:2, which approximately are 
0.33 and 0.66. These weights are assigned to the two goals according to their 
priority levels.

In some situations, the goals/objectives are not commensurable, or the goals 
are such that unless a particular goal or subset of goals is achieved, other 
goals should not be considered. In such situations, the weighting scheme is 
not appropriate. The problem is divided into k subproblems, where k is the 
number of priority levels. In the first subproblem, the fuzzy goals belong-
ing to the first priority level will be considered and solved using the simple 
additive model. At other priority levels, the membership values achieved at 
earlier priority levels are added as additional constraints. In general, the ith 
subproblem becomes:

Maximize ( )s pi
s

(4.43)

subject to s
s s

s s

G L
g L (4.44)

AX ≤ b (4.45)

( ) ( ) , , , ,*
pr pr r j1 2 1 (4.46)

μs ≤ 1 (4.47)

X, μi ≥ 0,    i = 1,2,…, p (4.48)

where (μs)pi refers to the membership functions of the goals in the ith priority 
level and (μ*)pr is the achieved membership function value in the rth (r ≤ j – 1) 
priority level.

4.11 Technique for Order Preference by  
Similarity to Ideal Solution (TOPSIS)

The basic concept of the TOPSIS method [19] is that the rating of the alterna-
tive selected as the best from a set of different alternatives should have the 
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shortest distance from the ideal solution and the greatest distance from the 
negative-ideal solution in a geometrical (i.e., Euclidean) sense.

The TOPSIS method evaluates the following decision matrix, which refers 
to m alternatives that are evaluated in terms of n criteria [29]:

Criteria
C1 C2 C3 … Cn

Alternatives w1 w2 w3 … wn

A1 z11 z12 z13 … z1n

A2 z21 z22 z23 … z2n

A3 z31 z32 z33 … z3n

. …

. …

. …

. …
Am zm1 zm2 zm3 … zmn

where Ai is the ith alternative, Cj is the jth criterion, wj is the weight (impor-
tance value) assigned to the jth criterion, and zij is the rating (for example, on 
a scale of 1–10, the higher the rating, the better it is) of the ith alternative in 
terms of the jth criterion.

The following steps are performed:

Step 1: Construct the normalized decision matrix. This step converts the 
various dimensional measures of performance into nondimensional 
attributes. An element rij of the normalized decision matrix R is cal-
culated as follows:

r z

z
ij

ij

iji

m 2

1 (4.49)

Step 2: Construct the weighted normalized decision matrix. A set of weights 
W = (w1, w2, …, wn) (such that ∑wj = 1), specified by the decision 
maker, is used in conjunction with the normalized decision matrix 
R to determine the weighted normalized matrix V defined by V = 
(vij) = (rijwj).

Step 3: Determine the ideal and the negative-ideal solutions. The ideal (A*) 
and the negative-ideal (A–) solutions are defined as follows:

A v i m
i

ij* max for 1, 2, 3, .....,

= {p1, p2, p3, …, pn} (4.50)
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A v i m
i

ijmin for 1, 2, 3, .....,

= {q1, q2, q3, …, qn} (4.51)

With respect to each criterion, the decision maker desires to choose 
the alternative with the maximum rating (it is important to note that 
this choice varies with the way he or she awards ratings to the alter-
natives). Obviously, A* indicates the most preferable (ideal) solution. 
Similarly, A– indicates the least preferable (negative-ideal) solution.

Step 4: Calculate the separation distances. In this step, the concept of the 
n-dimensional Euclidean distance is used to measure the separation 
distances of the rating of each alternative from the ideal solution and 
the negative-ideal solution. The corresponding formulae are

S v p i mi ij j* ( )2 for 1, 2, 3, ..., (4.52)

where Si* is the separation (in the Euclidean sense) of the rating of 
alternative i from the ideal solution, and

S v q i mi ij j( )2 for 1, 2, 3, ..., (4.53)

where Si– is the separation (in the Euclidean sense) of the rating of 
alternative i from the negative-ideal solution.

Step 5: Calculate the relative coefficient. The relative closeness coefficient for 
alternative Ai with respect to the ideal solution A* is defined as follows:

C S
S Si

i

i i
*

*
(4.54)

Step 6: Rank the preference order. The best alternative can now be decided 
according to the preference order of Ci*. It is the one with the rat-
ing that has the shortest distance to the ideal solution. The way the 
alternatives are processed in the previous steps reveals that if an 
alternative has the rating with the shortest distance to the ideal solu-
tion, then that rating is guaranteed to have the longest distance to the 
negative-ideal solution. That means the higher the Ci*, the better the 
alternative.
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4.12 Borda’s Choice Rule

Borda proposed a method in which marks of m – 1, m – 2, …, 1, 0 are assigned 
to the best, second-best, …, worst alternatives, for each decision maker [30]. 
That means that a larger mark corresponds to greater preference. The Borda 
score (maximized consensus mark) for each alternative is then determined 
as the sum of the individual marks for that alternative, and the alternative 
with the highest Borda score is declared the winner. That means that the dif-
ferent decision makers unanimously choose the alternative that obtains the 
largest Borda score as the most preferred one.

4.13 Expert Systems

Expert systems are computer programs that can represent human exper-
tise (knowledge) in a particular domain (area of expertise) and then use a 
reasoning mechanism (applying logical deduction and induction processes) 
to manipulate this knowledge in order to provide advice in this domain. 
Although conventional computer programs also contain knowledge, their 
main function is to retrieve information and carry out statistical analysis 
and numerical calculations. They do not reason with this knowledge or 
make inferences as to what actions to take or conclusions to reach. Thus, 
what mainly distinguishes expert systems from conventional programs is 
the capability to reason with knowledge. The main components of an expert 
system are the following [31]:

Knowledge base: This is where the knowledge is stored. Typically, this 
consists of a set of rules of the form: if EVIDENCE, then HYPOTH-
ESIS. The knowledge is written in the knowledge base using the 
syntax of what is termed the knowledge representation language (e.g., 
Lisp and Prolog) of the system.

Inference engine: This reasons with the knowledge resident in the 
knowledge base using certain mechanisms.

Reasoning mechanism: This traces the path or the knowledge steps 
used to arrive at a conclusion and can relay it back to the user as 
the justification for this conclusion. Examples of this mechanism are 
deduction (cause + rule  effect), abduction (effect + rule  cause), 
and induction (cause + effect  rule).

Uncertainty modeling process: This aids the inference engine when 
dealing with uncertainty.
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A shell is an expert system that is complete except for the knowledge base 
[31]. Thus, a shell includes an inference engine, a user interface for pro-
gramming, and a user interface for running the system. Typically, the pro-
gramming interface comprises a specialized editor for creating rules in a 
predetermined format and some debugging tools. The user of the shell enters 
rules in a declarative fashion (if X, then Y) and ideally should not need to be 
concerned with the working of the inference engine. Expert system shells are 
easy to use and allow a simple expert system to be constructed quickly.

4.14 Bayesian Updating

Bayesian updating [32] is an uncertainty modeling technique that assumes 
that it is possible for an expert in a domain to guess a probability to every 
hypothesis or assertion in that domain and that this probability can be 
updated in light of evidence for or against the hypothesis or assertion.

Suppose the probability of a hypothesis H is P(H). Then the formula for the 
odds of that hypothesis, O(H), is given by

O(H) P(H)
1 P(H)–

(4.55)

A hypothesis that is absolutely certain, i.e., has a probability of 1, has infi-
nite odds. In practice, limits are often set on odds values so that, for example, 
if O(H) > 1,000, then H is true, and if O(H) < 0.01, then H is false.

The standard formula for updating the odds of hypothesis H, given that 
evidence E is observed, is

O(H|E) (A).O(H) (4.56)

where O(H|E) is the odds of H, given the presence of evidence E, and A is the 
affirms weight of E. The definition of A is

A P(E|H)
P(E|~H)

(4.57)

where P(E|H) is the probability of E, given that H is true, and P(E|~H) is the 
probability of E, not given that H is true.

Bayesian updating assumes that the absence of supporting evidence is 
equivalent to the presence of opposing evidence. The standard formula for 
updating the odds of a hypothesis H, given that the evidence E is absent, is
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O(H|~E) D).O(H)( (4.58)

where O(H|~E) is the odds of H, given the absence of evidence E, and D is the 
denies weight of E. The definition of D is

D P(~E|H)
P(~E|~H)

1–P(E|H)
1–P(E|~H) (4.59)

If a given piece of evidence E has an affirms weight A that is greater than 1, 
then its denies weight must be less than 1, and vice versa. Also, if A > 1 and D 
< 1, then the presence of evidence E is supportive of hypothesis H. Similarly, 
if A < 1 and D > 1, then the absence of E is supportive of H.

For example, while controlling a power station boiler, a rule “IF (tempera-
ture is high) and NOT (water level is low) THEN (pressure is high)” can also be 
written as “IF (temperature is high—AFFIRMS A1, DENIES D1) AND (water 
level is low—AFFIRMS A2, DENIES D2) THEN (pressure is high).” Here,

A P(Temperature is high | Pressure is high
1

))
P(Temperature is high | ~Pressure is high))

D P(~Temperature is high | Pressure is hig
1

hh)
P(~Temperature is high | ~Pressure is higgh)

A P(Water level is low | Pressure is high)
2 PP(Water level is low | ~Pressure is high)

D P(~Temperature is high | Pressure is hig
2

hh)
P(~Temperature is high | ~Pressure is higgh)

Sometimes, evidence is neither definitely present nor definitely absent. For 
example, if one is diagnosing a TV set that is not functioning properly, it is 
not definite if this is due to a malfunctioning picture tube. In such a case, 
depending upon the value of the probability of the evidence P(E), the affirms 
and denies weights are modified using the following formulae:

A' = [2.(A-1).P(E)]+2–A (4.60)

D' = [2.(1–D).P(E)]+D (4.61)

When P(E) is greater than 0.5, the affirms weight is used to calculate O(H|E), 
and when P(E) is less than 0.5, the denies weight is used.
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If n statistically independent pieces of evidence are found that support or 
oppose a hypothesis H, then the updating equations are given by

O(H|E &E &E ......E ) = (A ).(A ).(A ).....1 2 3 1 2 3n ...(A ).O(H)n (4.62)

and

O(H| E & E & E ... E ) = (D ).(D ).(D )....1 2 3 1 32n ....(D ).O(H)n (4.63)

Ai and Di are given by equations (4.64) and (4.65), respectively.

A P(E |H)
P(E |~H)i

i

i
(4.64)

D P(~E H)
P(~E |~H)i

i

i

|
(4.65)

4.15 Taguchi Loss Function

In traditional systems, the product is accepted if the product measurement 
falls within the specification limits [33]. Otherwise, the product is rejected. 
The quality losses occur only when the product deviates beyond the specifi-
cation limits, thereby becoming unacceptable. These costs tend to be constant 
and relate to the costs of bringing the product back into the specification 
range. Taguchi [33] suggests a narrower view of characteristic acceptability 
by indicating that any deviation from a characteristic’s target value results 
in a loss. If a characteristic measurement is the same as the target value, the 
loss is zero. Otherwise, the loss can be measured using a quadratic function, 
after which actions are taken to reduce systematically the variation from the 
target value.

There are three types of Taguchi loss functions: “target is best” (see 
figure 4.4), “smaller is better” (see figure 4.5), and “larger is better” (see 
figure 4.6).

If L(y) is the loss associated with a particular value of characteristic y, m is 
the target value of the specification, and k is the loss coefficient whose value 
is constant depending on the cost at the specification limits and width of the 
specification, for the “target is best” type,
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L y k y m( ) ( )2 (4.66)

For the “smaller is better” type,

L y k y( ) ( )2 (4.67)

For the “larger is better” type,

L y k y( ) / ( )2 (4.68)
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FIGURE 4.4

“Target is best” Taguchi loss.
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FIGURE 4.5

“Smaller is better” Taguchi loss.
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4.16 Six Sigma

Statistical process control techniques help managers achieve and maintain a 
process distribution that does not change in terms of its mean and variance 
[34]. The control limits on the control charts signal when the mean or vari-
ability of the process changes. However, a process that is in statistical con-
trol may not be producing outputs according to their design specifications 
because the control limits are based on the mean and variability of sampling 
distribution, not the design specifications.

Process capability refers to the ability of the process to meet the design 
specifications for an output. Design specifications are often expressed as a 
target value ( ) and a tolerance (T). For example, the administrator of an 
intensive care unit lab might have a target value for the turnaround time 
of results to the attending physicians of 25 minutes and a tolerance of 5
minutes because of the need for speed under life-threatening conditions. 
The tolerance gives an upper specification (U) of 30 minutes and a lower 
specification (L) of 20 minutes. The lab process must be capable of provid-
ing the results of analyses within these specifications (see figure 4.7); oth-
erwise, it will produce a certain proportion of “defects.”

Note that in most situations, 

T
U L

2  and

U L

2 ,

and hence it is assumed so here.
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FIGURE 4.6

“Larger is better” Taguchi loss.
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Two essential quantitative measures to assess the capability of a process 
are process capability ratio (Cp) and process capability index (Cpk).

4.16.1 Process Capability Ratio (Cp)

Assume that is the standard deviation of a process that produces a certain 
dimension of interest for an output (good or service). This certain dimension 
of interest will hereafter be called critical dimension. The process capability 
ratio (Cp) is defined as

C
U L

p
6

(4.69)

The numerator represents the specification width and the denominator cap-
tures the total width of the 3  limits of the process distribution. We consider 
two examples, one for Cp = 1 and the other for Cp = 2.

If Cp = 1, the specification width is the same as the distribution width. 
When the process mean ( ) is centered at (U+L)/2 without any shift from the 
target value, , the probability that the actual critical dimension is within 
the specification limits (assuming that the process distribution is normal) 
is 0.9973 (2,700 ppm defect rate). Similarly, if Cp = 2, the specification width 
is twice that of the distribution. When the process mean ( ) is centered at 
(U+L)/2 without any shift from , the probability that the actual critical 
dimension is within the specification limits is 0.999999998 (0.002 ppm defect 
rate).

4.16.2 Process Capability Index (Cpk)

The process capability ratio (Cp) is enough to find out whether a process is 
capable, only if  is centered at (U+L)/2 without any shift from . For exam-

L = 20 min τ = 25 min U = 30 min

FIGURE 4.7

Capable process.
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ple, the lab process may have a good Cp value (i.e., more than the critical 
value of, say, 1.5), but if  is closer to U, lengthy turnaround times may still 
be generated. Likewise, if  is closer to L, very quick results may be gener-
ated. Thus, in order to check whether  is not far away from , there is a 
need for an additional capability ratio, called the process capability index 
(Cpk).

Cpk is defined in [35] as

C C kpk p 1 , where k
T

(4.70)

This definition allows consideration of a mean shift, i.e., a shift of  from . The 
fraction k is the fraction of tolerance consumed by the mean shift. The Motorola 
convention uses a one-sided mean shift of 1.5 . This is motivated by com-
mon physical phenomena such as tool wear. If Cp = 2 and Cpk = 1.5 (i.e., mean 
shift consumes 25% of the tolerance), the probability that the actual critical 
dimension is within the specification limits is 0.9999966 (i.e., 3.4 ppm defect 
rate).

A process is said to be capable only if the process has good values (viz., 
more than the respective critical values) of both Cp and Cpk. If Cp is less than 
the critical value,  is too high. If Cpk is less than the critical value, either
is too close to U or L or  is too high.

Six Sigma is an art of management that originated at Motorola in the early 
1980s and is a business-driven, multifaceted approach to process improve-
ment, cost reduction, and profit increase. Its fundamental principle is to 
improve customer satisfaction by reducing defects in processes.

Traditionally, one needs both Cp and Cpk values in order to investigate 
whether the process of interest is a Six Sigma process. We illustrate this by 
calculating Cp and Cpk values (equations (4.69) and (4.70), respectively) for an 
n Sigma process (where n is any positive real number; the higher the value 
of n, the better the process is). We consider three different cases, viz., n = 3, 
4.5, and 6. It must be noted that the mean shift in each case is allowed to be 
up to 1.5 .

4.16.2.1 Three Sigma Process

See figure 4.8.

C
U L

p
6

6
6

1

C C kpk p 1 1 1 1 5
3

0 5. .

Hence, if Cp = 1 and Cpk  0.5, it is considered a Three Sigma process.
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4.16.2.2 4.5 Sigma Process

See figure 4.9.

C
U L

p
6

9
6

1 5.

C C kpk p 1 1 5 1 1 5
4 5

1. .
.

Hence, if Cp = 1.5 and Cpk  1, it is considered a 4.5 Sigma process.

4.16.2.3 Six Sigma Process

See figure 4.10.

C
U L

p
6

12
6

2

C C kpk p 1 2 1 1 5
6

1 5. .

Hence, if Cp = 2 and Cpk  1.5, it is considered a Six Sigma process.

U = + 3L = - 3

1.5

T = 3 T = 3

FIGURE 4.8

Three Sigma process.
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4.17 Neural Networks

A neural network is made up of simple processing units (called neurons) 
combined in a parallel computer system following implicit instructions based 
on recognizing patterns in data inputs from external sources [41]. Neural 
networks can model complex relationships between inputs and outputs or 
find patterns in data. Their usefulness derives from their ability to embody 
inferential algorithms that alter the strengths or weights of the network con-
nections to produce a desired significant flow. In this book, the following 
equation [42] is used (see chapters 6 and 7) to calculate the weights (impor-
tance values) of evaluation criteria considered in a strategic planning issue.

FIGURE 4.9

4.5 Sigma process.

FIGURE 4.10

Six Sigma process.
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Here, the absolute value of Wv is the weight of the vth input node (evalua-
tion criterion) upon the output node (rating of the decision alternative), nV is 
the number of input nodes (evaluation criteria), nH is the number of hidden 
nodes (can be any arbitrary number), Iij is the connection weight from the ith 
input node to the jth hidden node, and Oj is the connection weight from the 
jth hidden node to the output node. The connection weights [43] are obtained 
upon training the respective neural network.

4.18 Geographical Information Systems

A geographical information system (GIS) is a computer system with a set of 
processes for obtaining, managing, analyzing, and displaying data that have 
been located geographically [37]. In a more generic sense, GIS is a tool that 
allows users to create interactive queries (user-created searches), analyze the 
spatial information, edit data, and map and present the results of all these 
operations [38]. GISs have become powerful operation tools in the business 
world.

In this book (see chapter 6), GIS is applied for displaying data. The motivation 
for this application is a paper [39] that addresses the necessity for building 
the strategic planning process “around a picture,” to make the chairperson  
of the concerned supply chain company easily understand the “dense docu-
ments filled with numbers” and to convince him or her that it is important to 
implement the proposed action. To this end, an excellent GIS-based business 
mapping application, MapLand [40], is used to map the results obtained in 
different phases of a model.



© 2009 by Taylor & Francis Group, LLC

Quantitative Modeling Techniques 69

4.19 Linear Integer Programming

Linear programming problems are about optimization of a linear objective 
function, subject to linear equality and inequality constraints [36]. For exam-
ple, in canonical form, a linear programming problem can be expressed as

Maximize CTX (objective function)
subject to AX ≤ B and X ≥ 0 (constraints)

Here, X represents the vector of variables, whereas C and B are vectors of coef-
ficients and A is the matrix of coefficients. If the variables of a linear program-
ming problem are restricted to being integers, the programming is called linear 
integer programming.

Linear integer programming can be applied to various fields. Most exten-
sively, it is applied to business, economic, and engineering problems.

4.20 Conclusions

This chapter gave an introduction to various quantitative techniques 
employed by strategic planning models presented in different chapters of 
the book. Depending on the decision-making situation, each of the models 
uses one or more of the techniques introduced in this chapter.
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5
Selection of Used Products

5.1 The Issue

In many countries, especially in Europe, although many original equipment 
manufacturers (OEMs) are obligated to take products back from the consum-
ers upon the products’ end of use (hence called used products), there are also 
many third-party companies that collect used products solely to make profit. 
These companies select only those used products for which revenues from 
recycle or resale of the products’ components are expected to be higher than 
the costs involved in collection and reprocessing of used products and in dis-
posal of waste. The various scenarios for selecting economical used products 
could differ as follows:

1. Evaluation criteria could be presented in terms of classical numeri-
cal constraints.

2. Evaluation criteria could be presented in terms of ranges of different 
degrees of desirability.

In this chapter, two models to address the above scenarios are presented. The 
first model addresses scenario 1 and employs linear integer programming. The 
second model is for scenario 2 and employs linear physical programming.

This chapter is organized as follows: section 5.2 presents the first model, 
section 5.3 shows the second model, and section 5.4 gives some conclusions.

5.2 First Model (Linear Integer Programming)

Section 5.2.1 presents the nomenclature for formulation of the linear integer 
programming model, section 5.2.2 presents the formulation of the model, 
and section 5.2.3 gives a numerical example to illustrate the model.
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5.2.1 Nomenclature

Cdf Disposal cost factor (cost per unit weight)
Cdx Disposal cost of product x
Cr Reprocessing cost per unit time
Crf Recycling revenue factor (revenue per unit weight)
Crpx Total reprocessing cost of used product x
CCx Collection cost of used product x
Dxy Disposal cost index of component y in used product x (0 = 

lowest, 10 = highest)
Exk Subassembly k in used product x
mxy Probability of missing component y in used product x
Mx Number of subassemblies in used product x
Nxy Multiplicity of component y in used product x
pxy Probability of breakage of component y in used product x
Pxy Component y in used product x
PRCxy Percent of recyclable contents by weight in component y of 

used product x
Rrcx Total recycling revenue of used product x
Rrsx Total resale revenue of used product x
Rrsxy Resale value of component y in used product x
RCxy Recycling revenue index of component y in used product x (0 

= lowest, 10 = highest)
Rootx Root node of used product x
SUx Supply of used product x per period
T(Exk) Time to disassemble subassembly k in used product x
T(Rootx) Time to disassemble Rootx

Wxy Weight of component y in used product x
x Used product type
Xxy Decision variable signifying selection of component y to be 

retrieved from used product x for reuse (Xxy = 1 for reuse, 0 for 
recycle)

y Component type
Z Overall profit

5.2.2 Model Formulation

The cost-benefit function [1] in the literature presents a technique to select 
the best used product for reprocessing from a set of candidate used prod-
ucts. The function consists of four terms: resale revenue, recycling revenue, 
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reprocessing cost, and disposal cost. The difference between the sum of the 
revenue terms and the sum of the cost terms gives the cost-benefit function 
value. The used product with the maximum cost-benefit function value is 
selected as the optimal one for reprocessing. The optimal solution (for profit 
maximization) also gives the best feasible set of components of retrieval from 
the selected used product. However, there is serious risk of making a bad 
choice of the used product using the cost-benefit function because the func-
tion implicitly makes two assumptions that are seldom valid in a reverse 
supply chain scenario: (1) every component selected for resale will be in a 
reusable state after disassembling the used product, and (2) that all the com-
ponents in the used product are in their original multiplicities. Therefore, 
here, a modified cost-benefit function is presented. This function incorpo-
rates the probability of breakage and the probability of missing components 
in the used product of interest. Then a linear integer programming model is 
formulated and implemented to the data of each candidate used product, in 
order to select the most economical used product to reprocess. Section 5.2.2.1 
presents the modified cost-benefit function, and section 5.2.2.2 gives the lin-
ear integer programming model.

5.2.2.1 Modified Cost-Benefit Function

The modified cost-benefit function for used product x consists of five terms: 
total resale revenue (Rrsx), total recycling revenue (Rrcx), total reprocessing 
cost (Crpx), total disposal cost (Cdx), and collection cost. It can be written as

Z R R C C CCrsx rcx rpx dx x (5.1)

The terms in the function are described as follows:

Total resale revenue: Rrsx is influenced by the resale value of individual 
components of the used product (Rrsxy), the number of components 
(Nxy), the probability of breakage (pxy), and the probability of missing 
components (mxy). The revenue equation can be written as follows:

R R N p m Xrsx rsxy xy xy xy xy
j Pxy Root

. .( ).
(

1
xx )

(5.2)

Total recycling revenue: Rrcx is influenced by the percentage of recyclable 
contents in each component (PRCxy); the weight of the components 
(Wxy); the recycling revenue index (RCxy), which is a number in the 
range 1–10 representing the degree of benefit generated by recycling 
a component of type y (the higher the value, the more profitable it is 
to recycle); the number of components (Nxy); the probability of break-
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age (pxy); and the probability of missing components (mxy). The recy-
cling revenue equation can be written as follows:

R PRC W RC N m N p mrcx xy xy xy xy xy xy xy x. . ( ( ) (1 1 yy xy
j Pxy Root

rfX C
x

) )
( )

(5.3)

Total reprocessing cost: Crpx can be calculated from the disassembly time 
of the root node of the used product (T(Rootx)), the disassembly time 
of each subassembly in the used product (T(Exk)), and the reprocess-
ing cost per unit time (Cr). The total reprocessing cost equation can 
be written as follows:

C T Root T Erpx x xk
k

Mx

( ) ( )
1

.Cr

(5.4)

Total disposal cost: Cdx can be calculated from the disposal cost index 
(Dxy), which is a number in the range 1–10 representing the degree 
of difficulty in disposing component y of used product x (the higher 
the number, the more difficult it is to dispose), the percentage of 
recyclable contents in each component (PRCxy), the weight of the 
components (Wxy), the number of components (Nxy), the probability 
of breakage (pxy), the probability of missing components (mxy), and 
the disposal cost factor (Cdf). The disposal cost equation can be writ-
ten as follows:

C D W PRC N m N pdx xy xy xy xy xy xy xy. .( ).( ( ) (1 1 1 m X Cxy xy
j Pxy Root

df

x

). ) .
( ) (5.5)

Collection cost: CCx is the average cost of collecting used product x from 
the consumers.

5.2.2.2 Linear Integer Programming Model

The following linear integer programming model maximizes the cost-ben-
efit obtained from reprocessing used product x:

Maximize Z R R C C CCx rsx rcx rpx dx x (5.6)

subject to Xxy = 0 or 1 for all x and y (5.7)
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The above formulation assesses the feasible combinations of components’ 
retrieval from a used product and compares the combination with the high-
est cost-benefit from one product against others.

5.2.3 Numerical Example

Two used products (1 and 2) are considered in this numerical example (see 
figures 5.1 and 5.2).

The data required to implement the model for the products are shown in 
tables 5.1 and 5.2, respectively.

Also, CC1 = 25, CC2 = 40, Crf = 0.5, Cr = 0.8/min, Cdf = 0.25/lb, T(Root1) = 6 
min, T(Root2) = 4 min, T(E11) = 3 min, T(E12) = 5 min, T(E21) = 2 min, and T(E22)
= 4 min.

Root1

E11

P11 P1 P1

E12

P14 P15

FIGURE 5.1

Structure of used product 1 (first model).

Root2

P21 P23
E22

E21

P22

P24 P25

FIGURE 5.2

Structure of used product 2 (first model).
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Upon solving the model with the above data using LINGO (v4), one gets 
total profit for used product 1 as $46.16 and total profit for used product 2 as 
$68.50. Hence, the decision maker will select used product 2 in this case.

5.3 Second Model (Linear Physical Programming)

Section 5.3.1 presents the formulation of the linear physical programming 
model, and section 5.3.2 gives a numerical example to illustrate the model. The 
nomenclature used to formulate the model is the same as in section 5.2.1.

5.3.1 Model Formulation

The criteria considered in the model fall into either class 1S or class 2S. Section 
5.3.1.1 presents the class 1S criteria, and section 5.3.1.2 gives the class 2S criteria.

5.3.1.1 Class 1S Criteria (Smaller Is Better)

Total collection cost per period (g1): g1 of used product x is calculated by 
multiplying the supply of x per period (SUx) by the cost of collecting 
one product from consumers (CCx):

TABLE 5.1

Data of used product 1 (first model)
Part Rrs1y N1y W1y Rc1y PRC1y D1y p1y m1y

P11 10 4 3 7 75% 3 0.02 0.0

P12 2 2 2.5 9 60% 2 0.05 0.0

P13 3.75 1 5 5 50% 6 0.0 0.5

P14 5 5 7 3 70% 1 0.1 0.3

P15 3 6 4 6 40% 7 0.4 0.02

TABLE 5.2

Data of used product 2 (first model)
Part Rrs2y N2y W2y Rc2y PRC2y D2y p2y m2y

P21 2.5 2 4 5 40% 2 0.0 0.05

P22 5 3 1 6 35% 6 0.0 0.1

P23 3 1 3 2 70% 8 0.1 0.0

P24 0.5 2 4.5 8 80% 5 0.15 0.2

P25 2 2 5 7 25% 7 0.1 0.25
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g SU CCx x1 (5.8)

Total reprocessing cost per period (g2): g2 of used product x is calculated 
using the disassembly time of the root node (T(Rootx)), disassembly 
time of each subassembly (T(Exk)), supply of x per period (SUx), and 
the remanufacturing cost per unit time (Cr):

SU T Root T E Cx x xk
k

M

r

i

( ) ( )
1

(5.9)

Total disposal cost per period (g3): g3 of used product x is calculated by 
multiplying the component disposal cost by the number of units of 
components disposed, as follows:

SU DI W PRC N m N b mx xy xy xy xy xy xy xy x. ( ) ( ) (1 1 1 yy
y

dfC) (5.10)

DIxy is the disposal cost index that varies in value from 1 to 10 repre-
senting the degree of nuisance created by the disposal of component 
y of product x, and Cdf is the disposal cost factor.

Loss-of-sale cost (g4): g4 of used product x represents the periodic worth of 
not meeting the demand on time. It can occur because of the unpre-
dictability in the supply of used products. This can be obtained from 
an expert in the field.

Worth of investment cost (g5): g5 of used product x represents the periodic 
worth of the fixed cost of the production facility and the machinery 
required to reprocess. This can also be obtained from an expert in 
the field.

5.3.1.2 Class 2S Criteria (Larger Is Better)

Total reuse revenue per period (g6): g6 of used product x is influenced by 
the supply of x per period (SUx), the resale value of component y
(RSRxy), the multiplicity of component y (Nxy), and the breakage and 
missing probabilities of component y (pxy, mxy). The reuse revenue 
equation can be written as follows:

SU RSRxy N m bx xy xy xy
y

. . .( )1
(5.11)
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Total recycling revenue per period (g7): g7 of used product x is influenced 
by the supply of x per period (SUx), the recycling revenue index of 
component y (RCRIxy), the percentage of recyclable content in com-
ponent y (PRCxy), the multiplicity of component y (Nxy), the weight of 
component y (Wxy), the recycling revenue factor (Crf), and the break-
age and missing probabilities of component y (pxy, mxy). The recycling 
revenue equation can be written as

SU RCRI W PRC N N m N mx xy xy xy xy xy xy xy. . . . . ( ) (1 1 xxy xy rf
y

b C) (5.12)

5.3.2 Numerical Example

Consider three used products (3, 4, and 5), whose structures are shown in 
figures 5.3–5.5, respectively.

The data for the three products are given in tables 5.3–5.5, respectively. 
The target values for the criteria are given in table 5.6, and table 5.7 shows 
the criteria values for each product. Table 5.8 shows the incremental weights 
obtained using the LPP weight algorithm [2].

Tables 5.9–5.11 show the deviations of criteria values from target values 
for the three products, respectively. For example, for criteria g1 of product 3, 
deviation at s = 2 is the absolute value of the number obtained by subtracting 
the criteria value (i.e., 7.5; shown in bold in table 5.7) from the target value 
(i.e., 10; shown in bold in table 5.6).

The total score for each product is calculated using equation (4.34) (using 
the incremental weights from the LPP algorithm and deviations from target 
values) and is shown in table 5.12. Because alternatives with lower scores are 
more desirable than ones with higher scores, used product 3 is the best of 
the lot.

5.4 Conclusions

In this chapter, two models are presented for selecting the most economical 
product to reprocess from a set of candidate used products. The first model 
uses linear integer programming, and the second model employs linear 
physical programming.
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Root4

P41 P43
E42

E41

P42

P44 P45

FIGURE 5.4

Structure of used product 4 (second model).

Root5

P52

P53
E52E51

P51

P54 P55

FIGURE 5.5

Structure of used product 5 (second model).

Root3

E31

P31 P3 P3

E32

P34 P35

FIGURE 5.3

Structure of used product 3 (second model).
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TABLE 5.3

Data of used product 3 (second model)
Part RSRxy Nxy W1y RCRIxy PRCxy DIxy pxy mxy

P31 6 3 3.5 5 0.65 6 0.1 0.3

P32 7 2 4.5 4 0.4 4 0.2 0.5

P33 5 4 5 5 0.3 4 0.4 0.1

P34 7.5 2 6 3 0.25 5 0.2 0.2

P35 5.5 1 5.5 2 0.45 1 0.5 0.0

TABLE 5.4

Data of used product 4 (second model)
Part RSRxy Nxy W2y RCRIxy PRCxy DIxy pxy mxy

P41 4 2 9 2 0.56 3 0.2 0.5

P42 6 5 3 1 0.5 6 0.2 0.2

P43 7 4 5 2 0.48 6 0.4 0.1

P44 2 2 6 3 0.2 1 0.1 0.1

P45 4.5 3 1 4 0.25 3 0.1 0.3

TABLE 5.5

Data of used product 5 (second model)
Part RSRxy Nxy W3y RCRIxy PRCxy DIxy pxy mxy

P51 4.5 3 8.5 5 0.4 5 0.1 0.3

P52 4 4 6 4 0.65 6 0.1 0.1

P53 5 6 4.1 2 0.2 3 0.2 0.0

P54 2 5 3.5 3 0.35 2 0.3 0.2

P55 3.5 1 2 1 0.25 7 0.5 0.5
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TABLE 5.6

Target values of criteria (second model)
Criteria tp1+ tp2+ tp3+ tp4+ tp5+

g1 10 12 15 17.5 20

g2 3 5 9 10 15

g3 1 4 5.5 7.5 8

g4 2 5 7.5 9 10

g5 1 4 8 9 10

Criteria tp1– tp2– tp3– tp4– tp5–

g6 10 12.5 15 20 25.5

g7 5 13 17.5 20 25

TABLE 5.7

Criteria values for each product (second model)
Criteria Used product 3 Used product 4 Used product 5

g1 7.5 7.5 10

g2 3.5 2.75 3

g3 2.97 1.6 1.8

g4 3.5 4 5

g5 2 2.5 2

g6 18.3 22.8 24.9

g7 18.4 15.7 19

TABLE 5.8

Output of LPP weight algorithm (second model)
Criteria Δwp2+ Δwp3+ Δwp4+ Δwp5+ Δwp2– Δwp3– Δwp4– Δwp5–

g1 0.05 0.0967 0.62773 2.63296 — — — —

g2 0.05 0.076 2.41416 0.020321 — — — —

g3 0.0333 0.3027 0.93408 24.33473 — — — —

g4 0.0333 0.16827 1.49184 11.10897 — — — —

g5 0.0333 0.09267 2.41416 10.26225 — — — —

g6 — — — — 0.04 0.0492 0.010258 0.122333

g7 — — — — 0.0125 0.037056 0.14936 0.022875
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TABLE 5.9

Deviations of criteria values from targets, for used product 3 (second model)
Criteria s = 2 s = 3 s = 4 s = 5

g1 2.5 4.5 7.5 10

g2 0.5 1.5 5.5 6.5

g3 1.9 1.1 2.6 4.6

g4 1.5 1.5 4 5.5

g5 1 2 6 7

g6 6.7 1.7 3.3 5.8

g7 6.6 1.6 0.9 5.4

TABLE 5.10

Deviations of criteria values from targets, for used product 4 (second model)
Criteria s = 2 s = 3 s = 4 s = 5

g1 2.5 4.5 7.5 10

g2 0.25 2.25 6.25 7.25

g3 0.6 2.4 3.9 5.9

g4 2 1 3.5 5

g5 1.5 1.5 5.5 6.5

g6 2.2 2.8 7.8 10.3

g7 9.3 4.3 1.8 2.7

TABLE 5.11

Deviations of criteria values from targets, for used product 5 (second model)
Criteria s = 2 s = 3 s = 4 s = 5

g1 0 2 5 7.5

g2 0 2 6 7

g3 0.8 2.2 3.7 5.7

g4 3 0 2.5 4

g5 1 2 6 7

g6 0.1 4.9 9.9 12.4

g7 5.93 0.93 1.57 6.07



© 2009 by Taylor & Francis Group, LLC

Selection of Used Products 85

References

1. Veerakamolmal, P., and Gupta, S. M. 1999. Analysis of design efficiency for the 
disassembly of modular electronic products. Journal of Electronics Manufacturing 
9:79–95.

2. Messac, A., Gupta, S. M., and Akbulut, B. 1996. Linear physical programming: 
A new approach to multiple objective optimization. Transactions of Operational 
Research 8:39–59.

TABLE 5.12

Total scores and ranks of products (second model)
Used product Score Rank

3 315.3144 1

4 339.1954 3

5 317.8653 2
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6
Evaluation of Collection Centers

6.1 The Issue

Strategic planning of an efficient reverse or closed-loop supply chain requires 
selection of efficient collection centers where used products are disposed 
of by the consumers. These collection centers, after initial processing (for 
example, sorting), ship the used products to recovery facilities or production 
facilities where reprocessing operations, such as disassembly and recycling/
remanufacturing, are carried out.

The various scenarios for evaluating collection centers for efficiency could 
differ as follows:

1. Supply chain company executives, whose primary concern is profit, 
could be the sole decision makers.

2. There could exist three different categories of decision makers: con-
sumers, local government officials, and supply chain company exec-
utives. Impacts* of evaluation criteria are given.

3. The situation could be the same as in scenario 2, but the impacts of 
evaluation criteria are not given (and hence must be derived).

4. Evaluation could be made from the perspective of a remanufactur-
ing facility interested in buying used products from the candidate 
collection centers. The goals are expressed in terms of performance 
indices (efficiency scores).

5. The situation could be the same as in scenario 4, but the goals are 
expressed in terms of Taguchi losses (inefficiency scores).

In this chapter, various models to address the above scenarios are pre-
sented. The first model addresses scenario 1 and employs the eigen vector 
method and Taguchi loss function. The second and third models are for sce-
narios 2 and 3, respectively. The main difference between these two models 

* In this chapter, we use the term impacts instead of the conventional term weights for impor-
tance values of evaluation criteria. This is to avoid confusion in the presence of the connec-
tion weights between different nodes of the neural network used in section 6.5.
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lies in the way the impacts are assigned to the criteria for evaluation of col-
lection centers. Whereas the second model uses the eigen vector method, 
technique for order preference by similarity to ideal solution (TOPSIS), and 
Borda’s choice rule, the third model uses neural networks, fuzzy logic, TOP-
SIS, and Borda’s choice rule. The fourth model is for scenario 4 and uses 
analytic network process (ANP) and goal programming. The fifth model, 
which is for scenario 5, uses the eigen vector method, Taguchi loss function, 
and goal programming. The main difference between the last two models is 
in the way the goals are expressed.

This chapter is organized as follows: Section 6.2 presents the first model. 
Section 6.3 gives the different decision makers (and their criteria) that are 
considered in the second and third models. Sections 6.4–6.7 present the sec-
ond, third, fourth, and fifth models, respectively. Finally, section 6.8 gives 
some conclusions.

6.2 First Model (Eigen Vector Method  
and Taguchi Loss Function)

In this model, the eigen vector method and Taguchi loss function are 
employed to identify efficient centers from a set of candidate collection cen-
ters operating in a region where a reverse supply chain is to be designed. 
Section 6.2.1 presents the evaluation criteria used in the model, and section 
6.2.2 illustrates the model using a numerical example.

6.2.1 Evaluation Criteria

This model assumes that the supply chain company executives, whose pri-
mary concern is profit, are the sole decision makers. Hence, the evaluation 
criteria do not consider factors such as “Is the collection center able to pro-
vide employment opportunities to the local community?” and “Is the col-
lection process convenient to the consumers?” (For factors such as these, see 
sections 6.4 and 6.5, where criteria of two additional different decision mak-
ers, viz., consumers and local government officials, are considered.)

The following are the evaluation criteria used in the model:

n value (the higher the n value, the lower the process defects, and 
hence the higher the profit; see section 4.16 for the concept of n Sigma). 
The n value of a collection center represents the center’s quality that 
could be a function of factors, such as functionality of used products 
collected, efficiency of collection, efficiency of delivery (to recovery 
facilities), and effectiveness of customer service. For example (see 
figure 6.1), let the upper specification (U) of the service time (critical 
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dimension) at a candidate collection center be 20 min (i.e., the con-
sumers discarding used products must not be made to wait too long 
at the collection center), the lower specification (L) be 10 units (i.e., the 
collection center personnel must spend at least some time inspect-
ing used products before accepting them from consumers), and the 
target value (τ) be 15 min. If the standard deviation (σ) of the service 
time is 2 min and the mean shift ( ) is 2.5 min, then the service 
process in the candidate collection center is a 2.5 Sigma process.

Per capita income of people in residential area (PI) (the higher it is, 
the greater the number of resourceful discarded products and the 
less the people will care about the incentives from the collection 
center)

Space cost (SC) (the lower, the better)

Labor cost (LC) (the lower, the better)

Utilization of incentives from local government (UI) (the higher, 
the better)

Distance from residential area (DH) (lower distance implies greater 
collection and hence greater profit)

Distance from roads (DR) (lower distance implies greater collection 
and hence greater profit)

Incentives from local government (IG) (higher incentives from 
local government imply higher incentives to consumers, and hence 
greater collection)

6.2.2 Model

The model is presented using a numerical example. Table 6.1 shows the pair-
wise comparison matrix for the criteria for evaluation of candidate collection 

FIGURE 6.1

Critical dimension of service process at candidate collection center (first model).
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centers. For example (see table 6.1), the per capita income of the people in the 
residential area (PI) is given five times more importance than the n value and 
three times more importance than the utilization of incentives from the local 
government (UI).

Table 6.2 shows the impacts of the respective evaluation criteria. These 
impacts are the elements of the normalized eigen vector of the pair-wise 
comparison matrix shown in table 6.1. For example (see table 6.2), the per 
capita income of the people in the residential area (PI) is given an impact of 
18% and the n value is given an impact of 11%.

The k value of the Taguchi loss function, in the case of each of the evalua-
tion criteria, is calculated as follows.

6.2.2.1 n Value

The loss function that applies to this criterion is “larger is better” (see equa-
tion (4.68)). If the decision maker considers 100% loss for an n value less than 
or equal to 4, then the value of k is 1,600%. Then, for a candidate collection 
center, if n = 5, L y( ) / ( ) %1600 5 642 . That means, with respect to quality 

TABLE 6.1

Pair-wise comparison matrix (first model)
Criteria n DH DR UI PI SC LC IG

n 1 1 1 3 1/5 1 1 1

DH 1 1 1 1 1 1 1 1

DR 1 1 1 1 1 1 1 1

UI 1/3 1 1 1 1/3 0.2 1 1

PI 5 1 1 3 1 1 1 1

SC 1 1 1 5 1 1 1 0.2

LC 1 1 1 1 1 1 1 1

IG 1 1 1 1 1 5 1 1

TABLE 6.2

Impacts of criteria (first model)
Criteria Impacts

n 0.11

DH 0.11

DR 0.11

UI 0.07

PI 0.18

SC 0.15

LC 0.11

IG 0.16
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(i.e., n value), the collection center is 36% short of the worst performance level 
(which, in this case, is n ≤ 4).

6.2.2.2 Distance from Residential Area (DH)

DH is considered the distance of the collection center from the center of grav-
ity [1] of all the residential areas around the center. The loss function that 
applies to this criterion is “smaller is better” (see equation (4.67)). If the deci-
sion maker considers 100% loss for a DH value more than or equal to 4 miles, 
then the value of k is 6.25%. Then, for a candidate collection center, if DH = 
3, L y( ) . ( ) . %6 25 3 56 252 . That means, with respect to the distance from 
the residential area, the collection center is 43.75% short of the worst-case 
scenario (which, in this case, is DH ≥ 4 miles).

6.2.2.3 Distance from Roads (DR)

DR is considered the average distance of all the roads in the region from the 
collection center of interest. The loss function that applies to this criterion is 
“smaller is better” (see equation (4.67)). If the decision maker considers 100% 
loss for a DR value more than or equal to 5 miles, then the value of k is 4%. 
Then, for a candidate collection center, if DR = 4, L y( ) ( ) %4 4 642 . That 
means, with respect to the distance from the roads, the collection center is 
36% short of the worst-case scenario (which, in this case, is DR ≥ 5 miles).

6.2.2.4 Utilization of Incentives from Local Government (UI)

Because this is a subjective criterion, the decision maker can obtain ratings 
(for example, on a 1–10 scale, where 1 is the worst and 10 is the best) of the 
candidate collection centers from experts in the field of reverse supply chain. 
The loss function that applies to this criterion is “larger is better” (see equa-
tion (4.68)). If the decision maker considers 100% loss for a UI value less than 
or equal to 5, then the value of k is 2,500%. Then, for a candidate collection 
center, if UI = 7, L y( ) / ( ) . %2500 7 51 022 . That means, with respect to the 
utilization of incentives from the local government, the collection center is 
about 49% short of the worst-case scenario (which, in this case, is UI ≤ 5).

6.2.2.5 Per Capita Income of People in Residential Area (PI)

The loss function that applies to this criterion is “larger is better” (see equation 
(4.68)). If the decision maker considers 100% loss for a PI value less than or equal 
to $30,000 per year, then the value of k is 90,000,000,000%. Then, for a candidate 
collection center, if PI = $50,000 per year, L y( ) , , , / ( , ) %90 000 000 000 50 000 362 .
That means, with respect to the per capita income of the people in the residen-
tial area, the collection center is 64% short of the worst-case scenario (which, 
in this case, is PI ≤ $30,000 per year).
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6.2.2.6 Space Cost (SC)

The loss function that applies to this criterion is “smaller is better” (see equa-
tion (4.67)). If the decision maker considers 100% loss for a SC value more than 
or equal to $1,000 per day, then the value of k is 0.0001%. Then, for a candi-
date collection center, if SC = $800 per day, L y( ) . ( ) %0 0001 800 642 . That 
means, with respect to the space cost, the collection center is 36% short of the 
worst-case scenario (which, in this case, is SC ≥ $1,000 per day).

6.2.2.7 Labor Cost (LC)

The loss function that applies to this criterion is “smaller is better” (see equa-
tion (4.67)). If the decision maker considers 100% loss for a LC value more 
than or equal to $15 per hour, then the value of k is 0.44%. Then, for a can-
didate collection center, if LC = $10 per hour, L y( ) . ( ) %0 44 10 442 . That 
means, with respect to the labor cost, the collection center is 56% short of the 
worst-case scenario (which, in this case, is LC ≥ $15 per hour).

6.2.2.8 Incentives from Local Government (IG)

Because this is a subjective criterion, the decision maker can obtain ratings 
(for example, on a 1–10 scale, where 1 is the worst and 10 is the best) of the 
candidate collection centers from experts in the field of reverse supply chain. 
The loss function that applies to this criterion is “larger is better” (see equa-
tion (4.68)). If the decision maker considers 100% loss for an IG value less than 
or equal to 7, then the value of k is 4,900%. Then, for a candidate collection 
center, if IG = 9, L y( ) / ( ) . %4900 9 60 492 . That means, with respect to the 
incentives from the local government, the collection center is about 39.5% 
short of the worst-case scenario (which, in this case, is IG ≤ 7).

Four candidate collection centers are considered in the numerical example: 
A, B, C, and D. Table 6.3 presents the L(y) for the evaluation criteria for each 
of the collection centers. For example, the Taguchi loss of B with respect to 
the per capita income of the people in the residential area is 52% (i.e., 48% 
short of the worst-case scenario).

The weighted loss of each collection center j is calculated by using the fol-
lowing equation and is presented in table 6.4.

Weighted loss of collection center j = WLi
i

ij (6.1)

where Wi is the impact of criterion i (see table 6.2) and Lij is the Taguchi loss 
(see table 6.3) of collection center j with respect to criterion i. For example, 
the weighted loss of D (see tables 6.2–6.4) is 0.11×63 + 0.11×55 + … + 0.11×67 
+ 0.16×41 = 64.31.

The decision maker will select C because it has the lowest weighted loss.
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6.3 Evaluation Criteria for Second and Third Models

In evaluation of collection centers, one may have a scenario with three dif-
ferent categories of decision makers with multiple, conflicting, and incom-
mensurate goals, as follows:

Consumers whose primary concern is convenience

Local government officials whose primary concern is environmental 
consciousness

Supply chain company executives whose primary concern is profit

Therefore, the efficiency of a candidate collection center must be evaluated 
based on the maximized consensus among decision makers of the three cate-
gories. Sections 6.3.1, 6.3.2, and 6.3.3 present the lists of criteria that are consid-
ered for the three categories. Note that the criteria for the third category (supply 
chain company executives) are the same as those listed in section 6.2.1.

6.3.1 Criteria of Consumers

Incentives from collection center (IC) (higher incentives imply higher 
motivation to participate)

TABLE 6.3

L(y) values (%) of collection centers (first model)
Criteria A B C D

n (0.11) 35 54 40 63

DH (0.11) 25 15 37 55

DR (0.11) 32 10 9 90

UI (0.07) 100 75 64 50

PI (0.18) 65 52 40 50

SC (0.15) 20 10 5 100

LC (0.11) 15 18 20 67

IG (0.16) 78 64 36 41

TABLE 6.4

Weighted losses of collection centers (first model)
Collection center Weighted loss

A 45.95

B 37.02

C 29.85

D 64.31
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Distance from residential area (DH) (lower distance implies higher 
motivation to participate)
Distance from roads (DR) (lower distance implies higher motivation 
to participate)
Simplicity of collection process (SP) (simpler process implies higher 
motivation to participate)
Employment opportunity (EO) (the higher, the better)
Salary offered to employees at collection center (SA) (the higher, 
the better)

6.3.2 Criteria of Local Government Officials

Distance from residential area (DH) (lower distance implies greater 
collection and hence lower disposal)
Distance from roads (DR) (lower distance implies greater collection 
and hence lower disposal)

6.3.3 Criteria of Supply Chain Company Executives

n value (the higher the n value, the lower the process defects, and 

Sigma)
Per capita income of people in residential area (PI) (the higher it is, 
the more the number of resourceful discarded products, and the 
less the people will care about the incentives from the collection 
center)
Space cost (SC) (the lower, the better)
Labor cost (LC) (the lower, the better)
Utilization of incentives from local government (UI) (the higher, 
the better)
Distance from residential area (DH) (lower distance implies greater 
collection and hence greater profit)
Distance from roads (DR) (lower distance implies greater collection 
and hence greater profit)
Incentives from local government (IG) (higher incentives from local 
government imply higher incentives to consumers and hence greater 
collection)

hence the higher the profit; see section 4.16 for the concept of n



© 2009 by Taylor & Francis Group, LLC

Evaluation of Collection Centers 95

6.4 Second Model (Eigen Vector Method,  
TOPSIS, and Borda’s Choice Rule)

This model to select efficient collection centers is implemented in two phases. 
In the first phase, using the eigen vector method, impacts are given to the 
criteria identified for each category of decision makers (see section 6.3), and 
then TOPSIS (technique for order preference by similarity to ideal solution) is 
employed to find the efficiency of each candidate collection center, as evalu-
ated by that category. In the second phase, Borda’s choice rule is used to 
combine individual evaluations for each candidate collection center into a 
group evaluation or maximized consensus ranking. Furthermore, motivated 
by a paper [3] that addresses the necessity for building the strategic planning 
process “around a picture” to make the chairman of the concerned supply 
chain company easily understand the “dense documents filled with num-
bers” and to convince him that it is important to implement the proposed 
action (here, selection of particular collection centers), a GIS-based business 
mapping application, MapLand [4], is used to map the results obtained in 
both phases of this model.

The model to select efficient collection centers is presented using a numerical 
example. Three recovery facilities, E, F, and G, are considered for evaluation.

6.4.1 Phase I (Individual Decision Making)

Tables 6.5–6.7 show the pair-wise comparison matrices as formed for the con-
sumers, local government officials, and supply chain company executives, 
respectively. Note that not all of the criteria are considered here, because the 
focus is on the methodology.

Tables 6.8–6.10 show the impacts given for the criteria of the consumers, 
local government officials, and supply chain company executives, respec-
tively. These sets of impacts, calculated using the eigen vector method, are 
the elements of the normalized eigen vectors of pair-wise comparison matri-
ces shown in tables 6.5–6.7, respectively. For example, the impacts of the 
criteria DH (distance from residential area) and DR (distance from roads), 
shown in table 6.9, are the elements of the normalized eigen vector of the 
pair-wise comparison matrix shown in table 6.6.

The decision matrices for the consumers, local government officials, and 
supply chain company executives, for implementation of the TOPSIS for each 
category of decision makers, are shown in tables 6.11–6.13, respectively. The 
elements of these matrices are the ranks (ranging from 1 to 10) assigned to 
the collection centers with respect to each criterion for evaluation. A lower 
rank implies higher efficiency (with respect to that criterion).

To facilitate the construction of the pair-wise comparison matrices (see 
tables 6.8–6.10) and the decision matrices (see tables 6.11–6.13), representa-
tives from each category of decision makers could be invited to participate 
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TABLE 6.5

Pair-wise comparison matrix for consumers (second model)
Criteria IC DH DR SP EO SA

IC 1 1 1 2 1/2 1

DH 1 1 2 1 1 1/2

DR 1 1/2 1 1 1/7 1/2

SP 1/2 1 1 1 1 1

EO 2 1 7 1 1 1

SA 1 2 2 1 1 1

TABLE 6.6

Pair-wise comparison matrix for local government officials (second model)
Criteria DH DR

DH 1 2

DR 1/2 1

TABLE 6.7

Pair-wise comparison matrix for supply chain company executives (second model)
Criteria PI SC LC UI DH DR IG

PI 1 2 4 6 8 9 4

SC 1/2 1 2 6 8 9 1

LC 1/4 1/2 1 1 1 1 1

UI 1/6 1/6 1 1 1 1 1

DH 1/8 1/8 1 1 1 1 1

DR 1/9 1/9 1 1 1 1 1

IG 1/4 1 1 1 1 1 1

TABLE 6.8

Impacts for consumers (second model)
Criteria Impacts

IC 0.1621

DH 0.1515

DR 0.0960

SP 0.1434

EO 0.2533

SA 0.1938
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TABLE 6.9

Impacts for local government officials (second model)
Criteria Impacts

DH 0.6667

DR 0.3333

TABLE 6.10

Impacts for supply chain company executives (second model)
Criteria Impacts

PI 0.3876

SC 0.2599

LC 0.0781

UI 0.0634

DH 0.0598

DR 0.0585

IG 0.0927

TABLE 6.11

Decision matrix for consumers (second model)
Collection

centers IC DH DR SP EO SA

E 8 1 6 2 2 3

F 2 1 7 3 2 3

G 3 2 4 1 1 5

TABLE 6.12

Decision matrix for local government officials (second model)
Collection centers DH DR

E 2 1

F 2 1

G 3 2

TABLE 6.13

Decision matrix for supply chain company executives (second model)
Collection

centers PI SC LC UI DH DR IG

E 1 3 2 1 3 4 3

F 2 4 7 1 2 2 2

G 10 9 8 7 5 1 6
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in relevant survey questionnaires, individual interviews, focus groups, and 
on-site observations.

Now one is ready to perform the six steps in the TOPSIS for each category 
of decision makers. The following steps show the implementation of the 
TOPSIS for the consumers to evaluate E, F, and G.

Step 1: Construct the normalized decision matrix. Table 6.14 shows the 
normalized decision matrix formed by applying equation (4.49) on 
each element of table 6.11 (decision matrix for the consumers). For 
example, the normalized rank of collection center F with respect to 
criterion DH (see tables 6.11 and 6.14) is calculated as follows:

r22 2 2 2

1
1 1 2

0 4082. .

Step 2: Construct the weighted normalized decision matrix. Table 6.15 shows 
the weighted normalized decision matrix for the consumers. This 
is constructed using the impacts of the criteria listed in table 6.8 
and the normalized decision matrix in table 6.14. For example, the 
weighted normalized rank of collection center F with respect to cri-
terion DH, i.e., 0.0619 (see table 6.15), is calculated by multiplying the 
impact of DH, i.e., 0.1515 (see table 6.8), with the normalized rank of 
F with respect to DH, i.e., 0.4082 (see table 6.14).

Step 3: Determine the ideal and negative-ideal solutions. Each column in 
the weighted normalized decision matrix shown in table 6.15 has a 

TABLE 6.14

Normalized decision matrix for consumers (second model)
Collection

centers IC DH DR SP EO SA

E 0.9117 0.4082 0.5970 0.5345 0.6667 0.4575

F 0.2279 0.4082 0.6965 0.8018 0.6667 0.4575

G 0.3419 0.8165 0.3980 0.2673 0.3333 0.7625

TABLE 6.15

Weighted normalized decision matrix for consumers (second model)
Collection

centers IC DH DR SP EO SA

E 0.1478 0.0619 0.0573 0.0767 0.1689 0.0887

F 0.0370 0.0619 0.0669 0.1150 0.1689 0.0887

G 0.0554 0.1237 0.0382 0.0383 0.0844 0.1478
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minimum rank and a maximum rank. They are the ideal and nega-
tive-ideal solutions, respectively, for the corresponding criterion. 

solution (minimum rank) is 0.0619, and the negative-ideal solution 
(maximum rank) is 0.1237.

Step 4: Calculate the separation distances. The separation distances (see 
table 6.16) for each collection center are calculated using equations 
(4.52) and (4.53). For example, the positive separation distance for 
collection center F (see table 6.16) is calculated using equation (4.52), 
which contains the weighted normalized ranks of F (see table 6.15) 
and the ideal solutions (obtained in step 3) for the criteria.

Step 5: Calculate the relative closeness coefficient. Using equation (4.54), 
the relative closeness coefficient is calculated for each collection 
center (see table 6.17). For example, the relative closeness coefficient 
(i.e., 0.5435) for collection center F (see table 6.17) is the ratio of F’s 
negative separation distance (i.e., 0.1400) to the sum (i.e., 0.1400 + 
0.1176 = 0.2576) of its negative and positive separation distances (see 
table 6.16).

Step 6: Form the preference order. Because the best alternative is the one 
with the highest relative closeness coefficient, the preference order 
for the collection centers is G, F, and E (that means G is the best col-
lection center, as evaluated by the consumers).

The TOPSIS is implemented for the local government officials and the sup-
ply chain company executives in a similar manner. The relative closeness 
coefficients of the collection centers, as calculated for those two categories, 
are shown in table 6.18.

Figure 6.2 shows the mapping classification, as created using MapLand 
[4], for relative closeness coefficients. Figures 6.3–6.5 show the mapping of 

TABLE 6.16

Separation distances for consumers (second model)
Collection centers S* S–

E 0.1458 0.0942

F 0.1176 0.1400

G 0.0875 0.1495

TABLE 6.17

Relative closeness coefficients for consumers (second model)
Collection centers C*

E 0.3926

F 0.5435

G 0.6308

For example (see table 6.15), with respect to criterion DH, the ideal 
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TABLE 6.18

Relative closeness coefficients for local government officials and supply chain 
company executives (second model)

Collection centers Local government officials
Supply chain company 

executives

E 1.000 0.902

F 1.000 0.851

G 0.739 0.091

FIGURE 6.2

Relative closeness mapping classification (second model).

FIGURE 6.3

Mapping of collection centers for consumers (second model).
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the relative closeness coefficients as calculated for the collection centers by 
the consumers, local government officials, and supply chain company execu-
tives, respectively.

It is assumed that each collection center is in one of the three regions, and 
the three regions are mapped with respect to the relative closeness coefficients. 
The darker the region is, the higher the efficiency the corresponding collection 
center has (with respect to the corresponding category of decision makers).

6.4.2 Phase II (Group Decision Making)

Table 6.19 shows the marks of the collection centers as given using Borda’s 
choice rule for the consumers, local government officials, and supply chain 
company executives. Borda scores (group evaluations) calculated for E, F, and 
G (viz., 3, 5, and 3, respectively) are also shown. For example, the Borda score 

FIGURE 6.4

Mapping of collection centers for local government officials (second model).

FIGURE 6.5

Mapping of collection centers for supply chain company executives (second model).



© 2009 by Taylor & Francis Group, LLC

102 Strategic Planning Models for Reverse and Closed-Loop Supply Chains

for F (i.e., 5) is calculated by sum-
ming the marks of F for consumers, 
local government officials, and sup-
ply chain company executives (i.e., 1 
+ 2 + 2). Because F has the highest 
Borda score, it is the best of the lot.

Figure 6.6 shows the mapping clas-
sification, as created using MapLand 
[4], for the Borda scores. Figure 6.7 
shows the mapping of the Borda 
score of each collection center. It is 
obvious that F is the one with the 
highest efficiency.

TABLE 6.19

Marks and Borda scores of collection centers (second model)

Collection
centers Consumers

Local
government

officials

Supply chain 
company

executives Borda scores

E 0 2 1 3

F 1 2 2 5

G 2 1 0 3

FIGURE 6.6

Borda score mapping classification (second 
model).

FIGURE 6.7

Mapping of collection centers with respect to Borda score (second model).
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6.5 Third Model (Neural Networks,  
Fuzzy Logic, TOPSIS, Borda’s Rule)

This model assumes that neither numerical nor linguistic impacts are avail-
able for the evaluation criteria. It employs a neural network [11] to evaluate 
the efficiency of a collection center of interest (which is being considered for 
inclusion in a reverse supply chain), using linguistic performance measures 
of collection centers that already exist in the reverse supply chain. To this 
end, the model to evaluate the efficiency of a collection center of interest is 
carried out in three phases. In the first phase, the ratings of existing collec-
tion centers are used to construct a neural network that, in turn, calculates 
impacts of criteria identified for each category of decision makers given in 
section 6.3. In the second phase, the impacts obtained in the first phase are 
used in a fuzzy TOPSIS (combination of fuzzy logic and TOPSIS) method to 
obtain the overall rating of the collection center of interest, as calculated for 
each category. Finally, in the third phase, Borda’s choice rule is employed 
to calculate the maximized consensus rating (among the categories consid-
ered), i.e., efficiency, of the recovery facility of interest.

6.5.1 Phase I (Derivation of Impacts)

Suppose that one has the linguistic ratings of ten existing collection centers, 
as given by an expert in each category of decision makers described in section 
6.3. Using fuzzy logic, these linguistic ratings are converted into triangular 
fuzzy numbers (TFNs). Table 6.20 shows not only one of the many ways for 
conversion of linguistic ratings into TFNs but also the defuzzified ratings of 
the corresponding TFNs. Tables 6.21–6.23 show the defuzzified overall rating 
of each existing collection center as well as the collection center’s defuzzified 
rating with respect to each criterion, as evaluated by the consumers, local 
government officials, and supply chain company executives, respectively. 
Defuzzification of a TFN can be performed using equation (4.8).

A neural network is constructed and trained for each category of decision 
makers, using the defuzzified ratings of the existing collection centers with 
respect to criteria as input sets and the collection centers’ defuzzified overall 

TABLE 6.20

Conversion table for ratings (third model)
Linguistic ratings TFNs Defuzzified ratings

Very good (VG) (7, 10, 10) 9

Good (G) (5, 7, 10) 7.3

Fair (F) (2, 5, 8) 5

Poor (P) (1, 3, 5) 3

Very poor (VP) (0, 0, 3) 1
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ratings as corresponding outputs. In the example, there are ten input–out-
put pairs for each neural network because there are ten existing collection 
centers. Also, three layers are considered in each network, with five nodes in 
the hidden layer. The number of nodes in the output layer is one (for overall 
rating), and the number in the input layer is the number of criteria consid-
ered by the corresponding category. For example, figure 6.8 shows the neural 
network constructed and trained for the category of consumers.

After each neural network is trained, the following equation [2] is used to 
calculate the impacts of criteria considered by the corresponding category. 
Here, the absolute value of Wv is the impact of the vth input node upon the out-
put node, nV is the number of input nodes, nH is the number of hidden nodes, Iij 

is the connection weight from the ith input node to the jth hidden node, and Oj

is the connection weight from the jth hidden node to the output node:

TABLE 6.21

Ratings for consumers (third model)
Collection

centers IC DH DR SP EO SA Overall

C1 1 3 5 3 5 9 5

C2 9 1 3 5 7.3 9 7.3

C3 3 1 3 1 9 1 3

C4 3 9 1 7.3 1 7.3 5

C5 5 1 3 5 1 3 7.3

C6 9 3 7.3 3 5 7.3 3

C7 5 7.3 9 1 7.3 9 1

C8 1 5 1 5 3 1 9

C9 1 5 5 9 9 5 5

C10 5 9 5 3 9 3 1

TABLE 6.22

Ratings for local government officials (third model)
Collection centers DH DR Overall

C1 1 3 5

C2 9 1 7.3

C3 3 1 3

C4 3 9 5

C5 5 1 7.3

C6 9 3 3

C7 5 7.3 1

C8 1 5 9

C9 1 5 5

C10 5 9 1
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TABLE 6.23

Ratings for supply chain company executives (third model)
Collection

centers PI SC LC UI DH DR IG Overall

C1 1 3 1 3 5 1 3 5

C2 9 1 3 7.3 3 5 7.3 7.3

C3 3 1 7.3 9 1 7.3 9 3

C4 3 9 5 1 5 3 1 5

C5 5 1 5 5 9 9 5 7.3

C6 9 3 9 5 3 9 3 3

C7 5 7.3 3 1 7.3 9 1 1

C8 1 5 1 3 1 3 5 9

C9 1 5 3 5 9 9 1 5

C10 5 9 1 3 5 7.3 7.3 1

IC

PH

PR

SP

EO

SA

H

H

H

H

H

O

Input layer                             Hidden layer                           Output layer

FIGURE 6.8

Neural network for consumers (third model).
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Tables 6.24–6.26 show the impacts of the criteria considered for the consumers, 
local government officials, and supply chain company executives, respectively.

6.5.2 Phase II (Individual Decision Making)

Suppose that there are three collection centers, C11, C12, and C13, of inter-
est. A fuzzy TOPSIS method uses the impacts obtained in the first phase to 
calculate the overall ratings of the three collection centers.

The decision matrices formed for the consumers, local government offi-
cials, and supply chain company executives (with defuzzified ratings for 
C11, C12, and C13) in this example are shown in tables 6.27–6.29, respectively 
(Table 6.20 is used here, as well, to convert linguistic ratings given by each 
category into TFNs.) As in the second model (see section 6.3), the matrices 
can be constructed by inviting representatives from each category of deci-
sion makers to participate in relevant survey questionnaires, individual 
interviews, focus groups, and on-site observations.

Now one is ready to perform the six steps in the TOPSIS for each category 
of decision makers. The following steps show the implementation of the 
TOPSIS for the consumers, to evaluate C11, C12, and C13.

Step 1: Construct the normalized decision matrix. Table 6.30 shows the 
normalized decision matrix formed by applying equation (4.49) on 
each element of table 6.27 (decision matrix for the consumers). For 
example, the normalized rating of collection center C12 with respect 
to criterion DH (see tables 6.27 and 6.30) is calculated as follows:

TABLE 6.24

Impacts for consumers (third model)
Criteria IC DH DR SP EO SA

Impacts 0.01 0.13 0.06 0.18 0.19 0.43

TABLE 6.25

Impacts for local government officials (third model)
Criteria DH DR

Impacts 0.33 0.67

TABLE 6.26

Impacts for supply chain company executives (third model)
Criteria PI SC LC UI DH DR IG

Impacts 0.24 0.09 0 0.18 0.25 0.1 0.13
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Step 2: Construct the weighted normalized decision matrix. Table 6.31 shows 
the weighted normalized decision matrix for the consumers. This 
is constructed using the impacts of the criteria listed in table 6.24 
and the normalized decision matrix in table 6.30. For example, the 

TABLE 6.27

Decision matrix for consumers (third model)
Collection

centers IC DH DR SP EO SA

C11 3 9 1 7.33 1 7.33

C12 5 1 3 5 1 3

C13 9 3 7.33 3 5 7.33

TABLE 6.28

Decision matrix for local government officials (third model)
Collection centers DH DR

C11 3 9

C12 5 1

C13 9 3

TABLE 6.29

Decision matrix for supply chain company executives (third model)
Collection

centers PI SC LC UI DH DR IG

C11 5 1 5 5 9 9 5

C12 9 3 9 5 3 9 3

C13 5 7.33 3 1 7.33 9 1

TABLE 6.30

Normalized decision matrix for consumers (third model)
Collection

centers IC DH DR SP EO SA

C11 0.278 0.943 0.125 0.783 0.192 0.679

C12 0.466 0.105 0.376 0.534 0.192 0.278

C13 0.839 0.314 0.918 0.320 0.962 0.679
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weighted normalized rank of collection center C12 with respect to 
criterion DH, i.e., 0.014 (see table 6.31), is calculated by multiplying 
the impact of DH, i.e., 0.129 (see table 6.24), with the normalized rat-
ing of C12 with respect to DH, i.e., 0.105 (see table 6.30).

Step 3: Determine the ideal and negative-ideal solutions. Each column in 
the weighted normalized decision matrix shown in table 6.31 has a 
maximum rating and a minimum rating. They are the ideal and neg-
ative-ideal solutions, respectively, for the corresponding criterion. 
For example (see table 6.31), with respect to criterion DH, the ideal 
solution (maximum rating) is 0.122, and the negative-ideal solution 
(minimum rating) is 0.014.

Step 4: Calculate the separation distances. The separation distances (see 
table 6.32) for each collection center are calculated using equations 
(4.52) and (4.53). For example, the positive separation distance for col-
lection center C12 (see table 6.32) is calculated using equation (4.52), 
which contains the weighted normalized ratings of C12 (see table 6.31) 
and the ideal solutions (obtained in step 3) for the criteria.

Step 5: Calculate the relative closeness coefficient. Using equation (4.54), 
the relative closeness coefficient for each collection center is calcu-
lated (see table 6.33). For example, the relative closeness coefficient 
(i.e., 0.137) for collection center C12 (see table 6.33) is the ratio of 
C12’s negative separation distance (i.e., 0.041) to the sum (i.e., 0.041 
+ 0.257 = 0.298) of its negative and positive separation distances (see 
table 6.32).

Step 6: Rank the preference order. Because the best alternative is the one 
with the highest relative closeness coefficient, the preference order 

TABLE 6.31

Weighted normalized decision matrix for consumers (third model)
Collection

centers IC DH DR SP EO SA

C11 0.004 0.122 0.007 0.140 0.036 0.294

C12 0.006 0.014 0.022 0.095 0.036 0.120

C13 0.011 0.041 0.053 0.057 0.181 0.294

TABLE 6.32

Separation distances for consumers (third model)
Collection centers S* S–

C11 0.152 0.221

C12 0.257 0.041

C13 0.116 0.233
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for the collection centers is C13, C11, and C12 (that means C13 is the 
best collection center, as evaluated by the consumers).

The TOPSIS is implemented for the local government officials and the sup-
ply chain company executives in a similar manner. The relative closeness 
coefficients of the collection centers, as calculated for those two categories, 
are shown in table 6.34.

6.5.3 Phase III (Group Decision Making)

Table 6.35 shows the marks of the collection centers as given using Borda’s 
choice rule for the consumers, local government officials, and supply chain 
company executives. Borda scores (group evaluations) calculated for C11, 
C12, and C13 (viz., 5, 1, and 3, respectively) are also shown. For example, the 
Borda score for C12 (i.e., 1) is calculated by summing the marks of C12 for 
the consumers, local government officials, and supply chain company execu-
tives (i.e., 0 + 0 + 1). Because C11 has the highest Borda score, it is the best of 
the lot.

TABLE 6.33

Relative closeness coefficients for consumers (third model)
Collection centers C*

C11 0.592

C12 0.137

C13 0.668

TABLE 6.34

Relative closeness coefficients for local government officials and supply chain 
company executives (third model)

Collection centers Local government officials
Supply chain company 

executives

C11 0.754 0.619

C12 0.096 0.502

C13 0.354 0.415

TABLE 6.35

Marks and Borda scores of collection centers (third model)

Collection
centers Consumers

Local
government

officials

Supply chain 
company

executives Borda scores

C11 1 2 2 5

C12 0 0 1 1

C13 2 1 0 3
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6.6 Fourth Model (ANP and Goal Programming)

In this model, first the analytic network process (ANP) is used to calculate 
the performance indices (efficiency scores) of candidate collection centers, 
with respect to qualitative criteria taken from the perspective of a reman-
ufacturing facility interested in buying used products from the collection 
centers. Then goal programming is employed to determine the quantities of 
used products to be transported from the candidate collection centers to the 
remanufacturing facility while satisfying two important goals of the reman-
ufacturing facility: to maximize total value of purchase and minimize total 
cost of purchase. Sections 6.6.1 and 6.6.2 present the applications of ANP and 
goal programming, respectively.

6.6.1 Application of ANP

The problem of evaluating the efficiencies of the candidate collection centers 
is framed as a four-level hierarchy (see figure 6.9). The first level contains 
the objective of evaluation of the candidate collection centers. The second 
level consists of the main evaluation criteria taken from the perspective of a 
remanufacturing facility. The third level contains the subcriteria under each 

Reliability

Capabilities/
Responsiveness

Financial Issues

Cultural and
Strategic Issues

Others

Evaluating
Suppliers

Delivery Reliability

Conformance to
Specifications

Order Fulfillment  Lead
Time

Flexibility (Ability to adapt
to demand fluctuations)

Suppliers Design
Capability

Return/Warranty
processing costs

Pricing Structure

Quantity Discounts

Financial Stability &
Economic Performance

Level of co-op and
Information Exchange

Technical Capability

Reputation in Industry

Proximity

Safety and
Environmental Issues

Collection
Center 1

Collection
Center 2

Collection
Center 3

FIGURE 6.9

Hierarchical structure for ANP (fourth model).
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main criterion. The fourth level contains the candidate collection centers. 
The main and subcriteria considered are the following (see [5–9]):

Reliability: This criterion relates to a collection center delivering the 
used products at the right time, at the right remanufacturing facility, 
in the right quantity, and in the promised condition. The subcriteria 
considered under this main criterion are (1) delivery reliability and 
(2) conformance to standards.
Capability/responsiveness: This criterion reflects the velocity at which a 
collection center supplies the used products to the remanufacturing 
facility and the collection center’s ability to adapt to sudden demand 
fluctuations. The subcriteria considered here are (1) order fulfillment 
lead time, (2) flexibility in adapting to demand fluctuations, and (3) 
design capabilities.
Financial issues: This criterion reflects the costs and other financial 
aspects involved. The subcriteria are (1) return/warranty processing 
costs, (2) pricing structure, (3) quantity discounts, and (4) financial 
stability and economic performance of the collection center.
Cultural and strategic issues: This criterion consists of the follow-
ing subcriteria: (1) level of cooperation and information exchange 
between the collection center and the remanufacturing facility, (2) 
the collection center’s reputation in the industry, and (3) the collec-
tion center’s technical capability (how knowledgeable the collection 
center is about the product).
Others: This criterion considers miscellaneous aspects that are not 
considered in the other criteria. These aspects are (1) proximity of the 
collection center to the remanufacturing facility (it affects the trans-
portation cost and the transit time) and (2) safety and environmental 
aspects (because the collection center and the remanufacturing facil-
ity are closely involved, any safety issues with the collection center 
directly reflect on the remanufacturing facility’s reputation; envi-
ronmental aspects are concerned about the collection center’s effort 
in pursuing environmental consciousness or a “green” image).

It is assumed that there exist interdependencies among the subcriteria on 
the third level in the hierarchy.

Three collection centers, S1, S2, and S3, are considered in the numerical 
example to illustrate the application of ANP. Table 6.36 shows the pair-wise 
comparison matrix for the main criteria (second level in the hierarchy) and 
also the normalized eigen vector of the matrix. The elements of the normal-
ized eigen vector are the impacts given to the main criteria with respect to 
the objective (first level in the hierarchy).

Tables 6.37–6.41 show the pair-wise comparison matrices of subcriteria with 
respect to their main criteria and also the corresponding normalized eigen 
vectors of the matrices. Note that each of the matrices in tables 6.36–6.41 has 
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a consistency ratio CR less than or equal to 0.1. For example, for the matrix in 
table 6.39, CR, using equation (4.1), is

( )
( )( )

.
( ) .

.max n
n R1

4 01037 4
4 1 0 90

0 0038..

Table 6.42 shows the matrix of interdependencies (called the super matrix 
M) among the subcriteria with respect to their main criteria. This super 
matrix M is made to converge to obtain a long-term stable set of impacts. For 
convergence, M must be made column stochastic, which is done by raising M 
to the power of 2k+1, where k is an arbitrarily large number. In the example, k
= 59. Table 6.43 shows the converged super matrix.

TABLE 6.36

Comparative importance values of main criteria (fourth model)

Criteria Reliability
Responsive-

ness
Financial

issues

Cultural
and

strategic
issues Others

Normalized
eigen vector

Reliability 1 1/4 3 1 1/6 0.114
Responsiveness 4 1 1 5 3 0.431
Financial issues 1/3 1/5 1 1/2 1/3 0.065

Cultural and 
strategic issues

1 1/3 2 1 1/3 0.102

Others 6 1/3 3 3 1 0.285

TABLE 6.37

Comparative importance values of subcriteria under reliability (fourth model)

Subcriteria
Delivery 

reliability
Conformance to 

specs
Normalized eigen 

vector

Delivery reliability (DR) 1 1/3 0.25

Conformance to specs (CS) 3 1 0.75

TABLE 6.38

Comparative importance values of subcriteria under responsiveness (fourth 
model)

Subcriteria

Order
fulfillment lead 

time (OFT) Flexibility (F)
Design

capability (DC)
Normalized
eigen vector

Order fulfillment 
lead time (OFT)

1 3 4 0.623

Flexibility (F) 1/3 1 2 0.239

Design
capability (DC)

1/4 1/2 1 0.137
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TABLE 6.39

Comparative importance values of subcriteria under “financial issues” (fourth 
model)

Subcriteria

Returns/
warranty

processing
costs (RC)

Pricing
structure (PS)

Quantity
discounts

(QD)

Economic
performance
and financial 
stability (EP)

Normalized
eigen vector

Returns/
warranty
processing 
costs (RC)

1 1/3 1/2 1/4 0.099

Pricing
structure 
(PS)

3 1 2 1 0.345

Quantity
discounts
(QD)

2 1/2 1 1/2 0.185

Economic
performance
and financial 
stability (EP)

4 1 2 1 0.37

TABLE 6.40

Comparative importance values of subcriteria under cultural and strategic issues 
(fourth model)

Subcriteria

Level of co-op 
and information 

exchange
(Co-op)

Technical 
capability

(TC) Reputation
Normalized
eigen vector

Level of co-op and 
information exchange 
(Co-op)

1 5 6 0.722

Technical capability (TC) 1/5 1 2 0.174

Reputation (R) 1/6 1/2 1 0.103

TABLE 6.41

Comparative importance values of subcriteria under others (fourth model)

Subcriteria Proximity (P)
Safety and 

environment (SE)
Normalized eigen 

vector

Proximity (P) 1 1/3 0.25

Safety and 
environment (SE)

3 1 0.75



© 2009 by Taylor & Francis Group, LLC

114 Strategic Planning Models for Reverse and Closed-Loop Supply Chains

TABLE 6.42

Matrix of interdependencies (super matrix M) (fourth model)
DR CS OFT F DC RC PS QD EP Co-op TC R P SE

DR 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CS 1 0 0 0 0 0 0 0 0 0 0 0 0 0

OFT 0 0 0 0.8 0.75 0 0 0 0 0 0 0 0 0

F 0 0 0.75 0 0.25 0 0 0 0 0 0 0 0 0

DC 0 0 0.25 0.2 0 0 0 0 0 0 0 0 0

RC 0 0 0 0 0 0 0.29 0.13 0.201 0 0 0 0 0

PS 0 0 0 0 0 0.53 0 0.62 0.6 0 0 0 0 0

QD 0 0 0 0 0 0.29 0.16 0 0.11 0 0 0 0 0

EP 0 0 0 0 0 0.163 0.53 0.23 0 0 0 0 0 0

Co-op 0 0 0 0 0 0 0 0 0 0 0.75 0.83 0 0

TC 0 0 0 0 0 0 0 0 0 0.8 0 0.16 0 0

R 0 0 0 0 0 0 0 0 0 0.2 0.25 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 1

SE 0 0 0 0 0 0 0 0 0 0 0 0 1 0

TABLE 6.43

Converged super matrix (fourth model)
Subcriteria Stabilized relative impact

Delivery reliability 1

Conformance to specs 1

Order fulfillment LT 0.44

Flexibility 0.38

Design capability 0.18

Returns/warranty 0.19

Pricing 0.38

Quantity discounts 0.15

Stability and economic performance 0.27

Co-op and information exchange 0.44

Technical capability 0.38

Reputation 0.18

Proximity 1

Safety and environment 1
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Table 6.44 shows the relative ratings of the candidate collection centers, S1, 
S2, and S3, with respect to the subcriteria. These ratings are obtained after car-
rying out pair-wise comparisons between the candidate collection centers with 
respect to the subcriteria and then obtaining the normalized eigen vector.

To obtain pair-wise comparisons, interdependencies, and relative ratings 
(see tables 6.37–6.44), decision makers could be invited to participate in rel-
evant survey questionnaires, individual interviews, focus groups, and on-
site observations.

Table 6.45 shows the desirability index calculated for each candidate col-
lection center using equation (4.2).

The overall performance index for each of the three collection centers 
is calculated by multiplying the desirability index (see table 6.45) of each 
collection center for each main criterion by the impact of that criterion (see 

TABLE 6.44

Relative ratings of collection centers with respect to subcriteria (fourth model)
Subcriteria/alternate

collection centers S1 S2 S3

DR 0.33 0.141 0.524

CS 0.345 0.543 0.11

OFT 0.274 0.068 0.657

F 0.109 0.309 0.581

DC 0.09 0.25 0.652

RC 0.681 0.216 0.102

PS 0.309 0.581 0.109

QD 0.376 0.151 0.471

EP 0.137 0.623 0.239

Co-op 0.33 0.075 0.59

TC 0.137 0.239 0.623

R 0.67 0.23 0.12

P 0.292 0.092 0.615

SE 0.137 0.239 0.623

TABLE 6.45

Desirability indices (fourth model)
Criteria/collection

centers S1 S2 S3

Reliability 0.3429 0.4432 0.2138

Responsiveness 0.0874 0.0528 0.2488

Financial issues 0.0783 0.148551 0.054

Cultural and strategic 
issues

0.1271 0.0438 0.2299

Others 0.176 0.2027 0.6211
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table 6.36) and summing over all the criteria. Table 6.46 shows the overall 
performance indices (efficiencies) for the three collection centers.

6.6.2 Application of Goal Programming

This section presents the application of goal programming to determine the 
quantities of used products to be transported from the candidate collection 
centers to a remanufacturing facility of interest while satisfying two impor-
tant goals of the remanufacturing facility: to maximize total value of purchase 
and minimize total cost of purchase. Section 6.6.2.1 gives the nomenclature 
used in the methodology, and section 6.6.2.2 presents the problem formula-
tion and a numerical example.

6.6.2.1 Nomenclature for Problem Formulation

ci Unit purchasing cost of used product at collection center i

dj Demand for used product j
g Goal index
i Collection center index, i = 1, 2, …, s
ki Capacity of collection center i
pi Probability of breakage of used products purchased from collec-

tion center i
pmax Maximum allowable probability of breakage
Qi Decision variable representing the quantity to be purchased from 

collection center i
s Number of candidate collection centers
wi Performance index of collection center i obtained by carrying out 

ANP

6.6.2.2 Problem Formulation

The following two goals of the remanufacturing facility are considered:

1. Maximize the total value of purchase (TVP).
2. Minimize the total cost of purchase (TCP).

TABLE 6.46

Overall performance indices (fourth model)
Collection center Performance index

S1 0.2318

S2 0.2322

S3 0.5359
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Whereas the first goal involves minimizing the underachievement of the 
target, the second goal involves minimizing the overachievement of the tar-
get. It is at the discretion of the decision maker to add any other goals that 
are relevant to the situation.

Goal 1: Maximize TVP: w Qi i
i

s

1

(6.3)

Goal 2: Maximize TCP: c Qi i (6.4)

Capacity constraint: Q ki i (6.5)

Demand constraint: Q di
i

j (6.6)

Quality constraint: d p Q pj i i
i

s

max
1

(6.7)

Nonnegativity constraint: Qi 0 (6.8)

The three candidate collection centers from section 6.6.1 are considered 
in this numerical example as well. Table 6.47 shows the data used for the 
goal programming problem (note that only one used product type is consid-
ered), and table 6.48 shows the results obtained by solving the problem using 
LINGO (v4).

From the application of ANP (see section 6.6.1), S3 is the highest-ranked 
collection center. When no other system constraints are in place, 750 units 
might be ordered from S3 before considering other collection centers. How-
ever, from the results obtained from the application of goal programming, 
it can be noticed that 650 units are ordered from S2 and the remaining 350 
units are ordered from S3. This may be attributed to the fact that the unit 
purchasing cost at S3 is higher than that at S2 (this was not considered in the 
application of ANP, where collection centers were evaluated with respect to 
qualitative criteria).

The total cost of purchase is found to be $935, and the total value of pur-
chase is 338.54 (aspiration level = 250).
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6.7 Fifth Model (Eigen Vector Method, Taguchi  
Loss Function, and Goal Programming)

In this model, first the eigen vector method and Taguchi loss function are 
used to calculate the weighted Taguchi losses (inefficiency scores) of can-
didate collection centers, with respect to qualitative criteria taken from the 
perspective of a remanufacturing facility interested in buying used products 
from the collection centers. Then goal programming is employed to deter-
mine the quantities of used products to be transported from the candidate 
collection centers to the remanufacturing facility while satisfying two impor-
tant goals of the remanufacturing facility: to minimize total loss of profit and 
minimize total cost of purchase. Section 6.7.1 presents the application of the 
eigen vector method and Taguchi loss function. Then section 6.7.2 presents 
the application of goal programming.

6.7.1 Application of Eigen Vector Method and Taguchi Loss Function

The following four qualitative criteria (taken from the perspective of a remanu-
facturing facility) are considered to evaluate the candidate collection centers:

Quality of used products (the smaller the defect rate of the used 
products supplied, the better)

TABLE 6.47

Data for goal programming model (fourth model)
Collection center S1 S2 S3

Capacity 300 650 750

Unit purchasing cost 1.2 0.9 1.0

Breakage probability 0.03 0.015 0.01

Net demand for the product = 1,000

Maximum acceptable breakage probability = 0.025

TABLE 6.48

Results (fourth model)
Collection center ANP rating Quantity ordered

S1 0.2318 0

S2 0.2322 650

S3 0.5359 350

Total value of purchase (TVP) = 338.54

Total cost of purchase (TCP) = 935
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On-time delivery (the smaller the number of delayed deliveries, the 
better)
Proximity (the closer the collection center from the remanufacturing 
facility, the better)
Cultural and strategic issues, such as flexibility in adapting to 
demand fluctuations, level of cooperation and information exchange, 
green image, and financial stability/economic performance (see sec-
tion 6.6.1 for explanations of these issues)

For the numerical example, three candidate collection centers, S4, S5, and 
S6, are considered. Table 6.49 shows the pair-wise comparison matrix for the 
criteria* and also the normalized eigen vector of the matrix. The elements 
of the normalized eigen vector represent the impacts given to the criteria. 
Table 6.49 has a consistency ratio CR of less than 0.1. Specifically, it is

( )
( )( )

.
( ) .

. .max n
n R1

4 13 4
4 1 0 90

0 048

It could be difficult to quantify the cultural and strategic issues criterion 
for the calculation of Taguchi losses. To this end, Monczka and Trecha’s [10] 
service factor rating (SFR) is used. SFR includes performance factors difficult 
to quantify but decisive in the selection process. In practice, experts rate these 
performance factors. For a given collection center, these ratings on all factors 
are summed and averaged to obtain a total service rating. The collection 
center’s service factor percentage is obtained by dividing the total service 
rating by the total number of points possible. Table 6.50 shows the service 
factor ratings for the various aspects of the cultural and strategic issues crite-
rion. The ratings are given on a scale of 1–10, the level of performance being 
directly proportional to the rating.

* Only the main criteria are considered in this model.

TABLE 6.49

Comparative importance values of criteria (fifth model)

Criteria Quality
On-time
delivery Proximity

Cultural and 
strategic

issues
Normalized
eigen vector

Quality 1 3 7 1 0.384899

On-time
delivery

0.33 1 4 0.2 0.137363

Proximity 0.14 0.25 1 0.166 0.052674

Cultural and 
strategic
issues

1 5 6 1 0.425064
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Table 6.51 shows the decision variables for calculating the Taguchi losses 
for the three collection centers.

Consider the quality criterion. The target defect rate/breakage probability 
is zero, at which there is no loss to the remanufacturing facility, and the 
upper specification limit for the defect rate/breakage probability is 30%, 
at which there is 100% loss to the manufacturer. For on-time delivery, the 
remanufacturing facility will incur losses if the products are delivered late 
and before the scheduled requirement. The specification limit of delivery 
delay is 5 days, and early delivery is 10 days, meaning that the remanufac-
turing facility will incur 100% loss if the deliveries are delayed by 5 days 
and are delivered 10 days before the scheduled delivery date. For proximity, 
loss will be zero at the closest collection center and the specification limit is 
up to 40% of the closest collection center, meaning that the remanufacturing 
facility will incur 100% loss when the collection center’s distance reaches the 
specification limit. For cultural and strategic issues, the specification limit is 
50% for the service factor percentage, at which the loss will be 100%, whereas 
there will be no loss incurred at a service factor percentage of 100%. The 
values of the loss coefficient, k (see equations 4.66–4.68), are 1111.11, 625, and 
25 for quality, proximity, and cultural and strategic issues, respectively. For 
on-time delivery, k1 = 4 and k2 = 1 (because an unequal two-sided specifica-
tion limit is considered for on-time delivery, there exist two loss coefficients, 
k1 and k2).

Table 6.52 shows the characteristic value and the relative value of each 
criterion for the three collection centers, S4, S5, and S6. For S4, the quality  

TABLE 6.50

Service factor ratings for cultural and strategic issues (fifth model)

Collection
center Flexibility

Level of co-
op and 

information
exchange

Green
image

Financial
stability and 

economic
performance Average

Average ÷ 
10

S4 7 6 6 4 5.75 57.5%

S5 5 7 8 5 6.25 62.5%

S6 6 5 8 8 6.75 67.5%

TABLE 6.51

Decision variables for selecting collection centers (fifth model)
Criteria Target value Range Specification limit

Quality 0% 0–30% 30%

On-time delivery 0 10–0–5 10 days earlier, 5 days 
delay

Proximity Closest 0–40% 40%

Cultural and strategic 
issues

100% 100–50% 50%
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characteristic value is 15% defect rate, which translates to 15% deviation from 
the target value. The relative values, together with the value of the loss coef-
ficient, k, are used to calculate (see equations (4.66)–(4.68)) the Taguchi loss 
for each collection center for each criterion (see table 6.53).

The weighted Taguchi loss (sum product of criteria impacts and Taguchi 
losses) is then calculated from the Taguchi losses of the collection centers 
(see table 6.53) and the impacts of the evaluation criteria (see table 6.49). 
Table 6.54 shows the weighted Taguchi loss and the normalized Taguchi loss 
for each collection center.

6.7.2 Application of Goal Programming

This section presents the application of goal programming to determine the 
quantities of used products to be transported from the candidate collection 
centers to a remanufacturing facility of interest while satisfying two impor-
tant goals of the remanufacturing facility: to minimize total loss of profit 
and minimize total cost of purchase. Section 6.7.2.1 gives the nomenclature 

TABLE 6.52

Characteristic and relative values of criteria (fifth model)

Quality On-time delivery Proximity
Cultural and 

strategic issues

Collection
center Value

Relative
value Value

Relative
value Value

Relative
value Value

Relative
value

S4 15% 15% +3 +3 8 33.33% 57.5% 57.5%

S5 20% 20% +1 +1 6 0 62.5% 62.5%

S6 10% 10% –8 –8 9 50% 67.5% 67.5%

TABLE 6.53

Taguchi losses (fifth model)
Collection 

center Quality
On-time 
delivery Proximity

Cultural and 
strategic issues

S4 24.99 36 69.43 75.61

S5 44.44 4 0 64

S6 11.11 64 156.25 54.86

TABLE 6.54

Weighted Taguchi losses (fifth model)
Collection center Weighted Taguchi loss Normalized Taguchi loss

S4 50.37 0.36

S5 44.86 0.32

S6 44.62 0.32
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used in the methodology, and section 6.7.2.2 presents the problem formula-
tion and a numerical example.

6.7.2.1 Nomenclature Used in the Methodology

Bj Budget allocated for collection center j
cj Unit purchasing cost of used product at collection center j
dk Demand for used product k
g Goal index
j Collection center index, j = 1, 2, …, s
Lossj Total loss of collection center j for all the evaluation criteria
rj Capacity of collection center j

pj Probability of breakage of used products purchased from collec-
tion center j

pmax Maximum allowable probability of breakage
Qj Decision variable representing the purchasing quantity from col-

lection center j
s Number of candidate collection centers
wi Impact of criterion i calculated by the eigen vector method
Xij Taguchi loss of collection center j for criterion i

6.7.2.2 Problem Formulation

The following two goals of the remanufacturing facility are considered:

1. Minimize the total loss of profit (TLP).
2. Minimize the total cost of purchase (TCP).

It is at the discretion of the decision maker to add any other goals that are 
relevant to the situation.

Goal 1: Minimize TLP: Loss Q TLPj j
j

s

1

(6.9)

Goal 2: Minimize TCP: c Q TCPj j
j

s

1

(6.10)
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Capacity constraint: Q ri i (6.11)

Demand constraint: Q dj
j

j (6.12)

Quality constraint: d p Q pk j j
j

s

max
1

(6.13)

Nonnegativity constraint: Qj 0 (6.14)

The three candidate collection centers from section 6.7.1 are considered in 
this numerical example as well. Table 6.55 shows the data used for the goal pro-
gramming problem (note that only one used product type is considered), and 
table 6.56 shows the results obtained by solving the problem using LINGO (v4).

From the application of eigen vector method and Taguchi loss function (see 
section 6.7.1), S6 is the highest-ranked collection center. When no other system 
constraints are in place, 750 units might be ordered from S6 before considering 
other collection centers. However,  from the results obtained from the applica-
tion of goal programming, it can be noticed that 543 units are ordered from S5 
and the remaining 457 units are ordered from S6. This may be attributed to 

TABLE 6.55

Data for goal programming model (fifth model)
Collection center S4 S5 S6

Capacity 300 650 750

Unit purchasing cost 1.2 0.9 1.0

Breakage probability 0.03 0.015 0.01

Net demand for the product = 1,000

Maximum acceptable breakage probability = 0.025

TABLE 6.56

Results (fifth model)
Collection center Normalized Taguchi loss Quantity ordered

S4 0.360148 0

S5 0.32078 543

S6 0.319072 457

Total loss of purchase (TLP) = 320

Total cost of purchase (TCP) = 945.7
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the fact (besides the system constraints considered in the goal programming 
problem) that the unit purchasing cost at S6 is higher than that at S5.

6.8 Conclusions

In this chapter, five models are presented for identifying efficient collection 
centers in a region where a reverse supply chain is to be designed. The first 
model employs eigen vector method and Taguchi loss function. The second 
model uses eigen vector method, technique for order preference by similarity to 
ideal solution (TOPSIS), and Borda’s choice rule. The third model employs neu-
ral networks, fuzzy logic, TOPSIS, and Borda’s choice rule. The fourth model 
uses analytic network process (ANP) and goal programming. The fifth model 
applies eigen vector method, Taguchi loss function, and goal programming.
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7
Evaluation of Recovery Facilities

7.1 The Issue

In addition to selecting efficient collection centers (see chapter 6), strate-
gic planning of a reverse supply chain involves selecting efficient recovery 
facilities where reprocessing operations, such as disassembly and recycling/
remanufacturing, are carried out. The various scenarios for evaluating recov-
ery facilities for efficiency could differ as follows:

1. Evaluation criteria could be given numerical impacts* (impor-
tance values).

2. Evaluation criteria could be presented in terms of ranges of different 
degrees of desirability.

3. Decision makers could have conflicting criteria for evaluation, and 
impacts for evaluation criteria are given.

4. Decision makers could have conflicting criteria for evaluation, and 
impacts for evaluation criteria are not given (hence must be derived).

5. A very simple evaluation technique could be desired (where only 
the “most important” evaluation criteria are considered).

In this chapter, various models to address the above scenarios are pre-
sented. The first model addresses scenario 1 and employs the analytic hierar-
chy process. The second model is for scenario 2 and employs linear physical 
programming. The third and fourth models are for scenarios 3 and 4, respec-
tively. The main difference between these two models lies in the way the 
impacts are assigned to the criteria for evaluation of recovery facilities. 
Whereas the third model uses the eigen vector method, technique for order 
preference by similarity to ideal solution (TOPSIS), and Borda’s choice rule, 
the fourth model uses neural networks, fuzzy logic, TOPSIS, and Borda’s 

* In this chapter, we use the term impacts instead of the conventional term weights for impor-
tance values of evaluation criteria. This is to avoid confusion in the presence of the connec-
tion weights between different nodes of the neural network used in section 7.6.
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choice rule. The fifth model is for scenario 5 and uses a simple two-dimen-
sional chart to identify efficient recovery facilities.

This chapter is organized as follows: Section 7.2 presents the first model. 
Section 7.3 shows the second model. Section 7.4 presents the different decision 
makers (and their criteria) that are considered in the third and fourth models. 
Section 7.5 presents the third model. Section 7.6 gives the fourth model. Sec-
tion 7.7 presents the fifth model. Finally, section 7.8 gives some conclusions.

7.2 First Model (Analytic Hierarchy Process)

In this section, analytic hierarchy process (AHP) is employed to identify effi-
cient facilities from a set of candidate recovery facilities operating in a region 
where a reverse supply chain is to be designed. Section 7.2.1 presents the 
three-level hierarchy for the AHP model, and section 7.2.2 gives a numerical 
example for the model.

7.2.1 Three-Level Hierarchy

The first level in the hierarchy contains the primary objective, i.e., to identify 
efficient facilities from a set of candidate recovery facilities. The last level in 
the hierarchy contains the candidate recovery facilities. The level in the mid-
dle contains criteria that must somehow be useful in comparing the candi-
date recovery facilities. For example, one of the criteria used in the hierarchy 
(see figure 7.1) is the fixed cost of the facility (CO). This criterion can compare 
the candidate facilities on the third level.

Though the criteria to be considered in a reverse supply chain seem simi-
lar to those considered in a forward supply chain (for example, [3] and [4]), 
there are three special factors in a reverse supply chain, that need to be incor-
porated in AHP in such a way that the hierarchy levels are not disturbed. 

Identification of potential recovery facilities

CO QO-QI TP/SU TP*DT CS

A B C D

Objective

Criteria

Alternatives

FIGURE 7.1

Three-level hierarchy for AHP (first model).
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Those special factors are average quality of used products, average supply of 
used products, and average disassembly time of used products.

Average quality of used products: Unlike in a forward supply chain, 
components of incoming goods (used products) of even the same 
type in a recovery facility are likely to be of varied quality (worn 
out, low performing, etc). Though the average quality of reprocessed 
(recycled/remanufactured) goods (QO) is a criterion that can com-
pare two or more candidate facilities, it is not justified to use QO as 
an independent criterion for comparison because QO depends on 
average quality of incoming products (QI). Thus, the idea is to take 
the difference between QO and QI as a criterion in the hierarchy.

Average supply of used products: The only driver to design a forward 
supply chain is the demand for new products, so, if there is low 
demand for new products, there is practically no forward supply 
chain. However, this is not the case in some reverse supply chains 
where, even if there is low supply of used products (SU), a reverse 
supply chain must be administered due to the drivers, such as envi-
ronmental regulations and asset recovery. In supply-driven cases 
like these, it is unfair to judge a recovery facility without considering 
SU in the hierarchy. Though throughput (TP) is a criterion that can 
compare two or more candidate recovery facilities, it is not justified 
to use TP as an independent criterion because TP depends on SU. In 
other words, a low SU might lead to a low TP, and a high SU might 
lead to a high TP. Thus, the idea is to take the ratio of TP to SU as 
a criterion in the hierarchy. The effect of a low TP is compensated 
for by dividing TP with a possibly low SU (by doing so, the facility 
under consideration is not underestimated). Similarly, the effect of 
a high TP is dampened by dividing TP with a possibly high SU (by 
doing so, the facility under consideration is not overestimated).

Average disassembly time of used products: The average disassembly 
time (DT) is not exactly the inverse of TP because TP takes into 
account the whole reprocessing (disassembly plus recycling/reman-
ufacturing) time. Unlike in a forward supply chain, components of 
incoming goods (used products) in a recovery facility are likely to 
be deformed or broken or different in number, even for the same 
type of products. Hence, incoming products of the same type might 
have different reprocessing times (unlike in a forward supply chain, 
where manufacturing time and assembly time are predetermined 
and equal for products of the same type). Because TP of a recovery 
facility depends upon DT, it is unfair not to consider DT in the hier-
archy. In other words, a high DT might lead to a low TP, and a low 
DT might lead to a high TP. Thus, the idea is to use the multiplica-
tion of TP and DT as a criterion in the hierarchy. The effect of a low 
TP is compensated for by multiplying TP with a possibly high DT
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(by doing so, the facility under consideration is not underestimated). 
Similarly, the effect of a high TP is dampened by multiplying TP
with a possibly low DT (by doing so, the facility under consideration 
is not overestimated).

An intangible criterion considered in this model is termed customer ser-
vice (CS). CS is a measure of how well a recovery facility utilizes the incen-
tives provided by the government, to what extent it meets the environmental 
regulations, what kind of incentives it gives the collection centers that supply 
the used products, and what kind of incentives it is giving the customers 
buying the reprocessed goods. The all-encompassing term customer service
is used here because any beneficiary is a customer, be it the government, the 
collection center,  or the actual customer buying the reprocessed goods.

7.2.2 Numerical Example

Consider the following example: Table 7.1 shows the pair-wise comparison 
matrix for evaluation of candidate recovery facilities. It also shows the nor-
malized eigen vector of the matrix. This vector represents the impacts given 
by the decision maker to the criteria.

Tables 7.2–7.6 show comparative ratings of the candidate recovery facilities, 
A, B, C, and D, with respect to the evaluation criteria CO, QO–QI, TP/SU,
TP×DT, and CS, respectively. They also show the normalized eigen vectors 
representing the relative ratings with respect to the criteria. Note that each of 
the matrices in tables 7.1–7.6 has a consistency ratio CR of less than or equal 
to 0.1. For example, for the matrix in table 7.4, CR, using equation (4.1), is

( )
( )( )

.
( ) .

. .max n
n R1

4 15 4
4 1 0 90

0 06

Table 7.7 shows the aggregate matrix of relative ratings of recovery facili-
ties with respect to each criterion in the second level of the hierarchy. This 
matrix is the collection of the eigen vectors obtained in tables 7.2–7.6.

TABLE 7.1

Comparative matrix for criteria (first model)

Criteria CO QO–QI TP/SU TP×DT CS
Normalized
eigen vector

CO 1 1/5 3 1 1/5 0.104

QO–QI 5 1 7 3 5 0.491

(TP)/(SU) 1/3 1/7 1 1/2 1/3 0.055

(TP)×(DT) 1 1/3 2 1 1/3 0.110

CS 5 1/5 3 3 1 0.240
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TABLE 7.2

Comparative ratings of recovery facilities with respect to CO (first model)
CO

Facilities A B C D
Normalized
eigen vector

A 1 3 6 2 0.460

B 1/3 1 7 3 0.310

C 1/6 1/7 1 1/4 0.050

D 1/2 1/3 4 1 0.180

TABLE 7.3

Comparative ratings of recovery facilities with respect to QO–QI (first model)
QO–QI

Facilities A B C D
Normalized
eigen vector

A 1 1 7 4 0.380

B 1 1 7 7 0.445

C 1/7 1/7 1 1/5 0.050

D 1/4 1/7 5 1 0.125

TABLE 7.4

Comparative ratings of recovery facilities with respect to TP/SU (first model)
TP/SU

Facilities A B C D
Normalized
eigen vector

A 1 1/7 1/3 1/2 0.072

B 7 1 2 7 0.574

C 3 1/2 1 1 0.212

D 2 1/7 1 1 0.142

TABLE 7.5

Comparative ratings of recovery facilities with respect to TP×DT (first model)
TP×DT

Facilities A B C D
Normalized
eigen vector

A 1 1/5 1/2 1/2 0.091

B 5 1 3 7 0.595

C 2 1/3 1 1 0.171

D 2 1/7 1 1 0.143
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By multiplying the matrix in table 7.7 with the normalized eigen vector 
obtained in table 7.1, the following normalized ranks are obtained for the 
recovery facilities: RankA = 0.26, RankB = 0.42, RankC = 0.09, and RankD = 
0.23. If the decision maker desires to choose only those recovery facilities 
that have ranks of at least 0.25, he or she would choose recovery facilities A 
and B.

7.3 Second Model (Linear Physical Programming)

In this section, the model to identify efficient recovery facilities using linear 
physical programming (LPP) is presented. Section 7.3.1 presents the nomen-
clature for the LPP model, section 7.3.2 presents the evaluation criteria that are 
considered in this model, and section 7.3.3 presents a numerical example.

7.3.1 Nomenclature for LPP Model

CSv Customer service rating of recovery facility v (numerical scale)

DTv Average disassembly time of products supplied to recovery facil-
ity v (time units)

TABLE 7.6

Comparative ratings of recovery facilities with respect to CS (first model)

CS

Facilities A B C D
Normalized
eigen vector

A 1 1/6 1/3 1/7 0.053

B 6 1 5 1/3 0.298

C 3 1/5 1 1/6 0.101

D 7 3 6 1 0.548

TABLE 7.7

Aggregate of ratings of recovery facilities (first model)
A B C D

CO 0.460 0.310 0.050 0.180

QO–QI 0.380 0.445 0.050 0.125

TP/SU 0.072 0.574 0.212 0.142

TP×DT 0.091 0.595 0.171 0.143

CS 0.053 0.298 0.101 0.548
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gi ith criterion for evaluation of candidate recovery facilities

ITuv Transit time between collection center u and recovery facility v
(time units)

K Transportation cost per unit time ($ per unit time)

Lv Labor cost at location of recovery facility v ($ per unit time)

Mv Inventory (space) cost at recovery facility v ($ per unit area)

OTvw Transit time between recovery facility v and demand center w
(time units)

QIv Average quality of products supplied to recovery facility v
(numerical scale)

QOv Average quality of outgoing products from recovery facility v
(numerical scale)

Rv Reprocessing cost at recovery facility v ($ per unit product)

SUv Supply to recovery facility v (products)

TPv Throughput of recovery facility v (products)

u Collection center

v Recovery facility

w Demand center

7.3.2 Criteria for Identification of Efficient Recovery Facilities

7.3.2.1 Class 1S Criteria (Smaller is Better)

The cost of transporting goods (used as well as reprocessed), g1, through a 
recovery facility v across the reverse supply chain is calculated using the fol-
lowing equation:

g IT K OT Kuv
u

vw
w

1 ( )( ) ( )( ) (7.1)

The operating cost, g2, incurred by a recovery facility v is the sum of the labor 
cost, the inventory cost, and the reprocessing cost. Thus,

g L M Rv v v2 (7.2)

7.3.2.2 Class 2S Criteria (Larger Is Better)

As explained in section 7.2, the difference between QO and QI is taken as a 
criterion for evaluation. Thus,

g QO QIv v3 (7.3)
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Also, TP is divided by SU and then taken as a criterion for evaluation:

g TP SUv v4 / (7.4)

Similarly,

g TP DTv v5 (7.5)

Customer service (CS) is taken as a criterion for evaluation in the physical 
programming model as well. Thus,

g CSv6 (7.6)

7.3.3 Numerical Example

Three candidate recovery facilities (E, F, and G) are evaluated using the LPP 
model and then ranked to identify the efficient ones.

Table 7.8 shows the target values for each criterion detailed in section 7.3.2. 
Table 7.9 shows the criteria values for each recovery facility. Table 7.10 shows 
the incremental weights obtained by using the LPP weight algorithm [2]. 
Tables 7.11–7.13 show the deviations of criteria values from the target val-
ues for facilities E, F, and G, respectively. Table 7.14 shows the total scores 
(obtained using equation (4.34)) and the ranks of the recovery facilities. It is 
obvious from table 7.14 that G is the most desirable facility and F is the least 
desirable. If the decision maker has a cutoff limit of, say, 100, he or she will 
identify facilities E and G as efficient.

7.4 Evaluation Criteria for Third and Fourth Models

Like in evaluation of collection centers (see chapter 6), in evaluation of recovery 
facilities one may have a scenario with three different categories of decision 
makers with multiple, conflicting, and incommensurate goals, as follows:

TABLE 7.8

Preference table (second model)
Criteria tp1+ tp2+ tp3+ tp4+ tp5+

g1 10 15 25 30 45

g2 12 14 15 16 17

Criteria tp1– tp2– tp3– tp4– tp5–

g3 0.6 0.4 0.3 0.2 0

g4 1.1 0.9 0.7 0.6 0.4

g5 250 200 140 120 100

g6 10 7 6 4 3
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TABLE 7.9

Criteria values for each recovery facility (second model)
Criteria Facility E Facility F Facility G

g1 22 30 15

g2 15 17 10

g3 0.4 0.3 0.1

g4 0.5 0.8 0.5

g5 200 220 145

g6 8 6 4

TABLE 7.10

Output of LPP weight algorithm (second model)
Criteria Δwp2+ Δwp3+ Δwp4+ Δwp5+ Δwp2– Δwp3– Δwp4– Δwp5–

g1 0.02 0.012 0.168 0.011 — — — —

g2 0.05 0.266 0.683 2.157 — — — —

g3 — — — — 0.05 0.115 0.380 1.252

g4 — — — — 0.05 0.280 0.215 1.252

g5 — — — — 0.033 0.077 0.253 0.835

g6 — — — — 0.033 0.077 0.979 2.505

TABLE 7.11

Deviations of criteria values of recovery facility E from target values (second 
model)

Criteria r = 2 r = 3 r = 4 r = 5

g1 d12+ = 12 d13+ = 7 d14+ = 3 d15+ = 8

g2 d22– = 3 d23– = 1 d24– = 0 d25– = 1

g3 d32– = 0.2 d33– = 0 d34– = 0.1 d35– = 0.2

g4 d42– = 0.6 d43– = 0.4 d44– = 0.2 d45– = 0.1

g5 d52– = 50 d53– = 0 d54– = 60 d55– = 80

g6 d62– = 2 d63– = 1 d64– = 2 d65– = 4

TABLE 7.12

Deviations of criteria values of recovery facility F from target values (second 
model)
Criteria r = 2 r = 3 r = 4 r = 5

g1 d12+ = 20 d13+ = 15 d14+ = 5 d15+ = 0

g2 d22– = 0.3 d23– = 0.1 d24– = 0 d25– = 0.1

g3 d32– = 0.3 d33– = 0.1 d34– = 0.1 d35– = 0.2

g4 d42– = 30 d43– = 20 d44– = 80 d45– = 100

g5 d52– = 4 d53– = 1 d54– = 0 d55– = 2



© 2009 by Taylor & Francis Group, LLC

134 Strategic Planning Models for Reverse and Closed-Loop Supply Chains

Consumers whose primary concern is convenience

Local government officials whose primary concern is environmental 
consciousness

Supply chain company executives whose primary concern is profit

Therefore, the efficiency of a candidate recovery facility must be evaluated 
based on the maximized consensus among decision makers of the three cat-
egories. Sections 7.4.1, 7.4.2, and 7.4.3 present the lists of criteria that are con-
sidered for the three categories.

7.4.1 Criteria of Consumers

Proximity to surface water (PS) (the closer the facility is to the sur-
face water, the higher the facility’s suitability, i.e., less hazardous)

Proximity to residential area (PH) (the closer the facility is to the resi-
dential area, the higher the facility’s suitability, i.e., less hazardous)

Employment opportunity (EO) (the higher, the better)

Salary offered to employees at recovery facility (SA) (the higher, 
the better)

7.4.2 Criteria of Local Government Officials

Proximity to surface water (PS) (the closer the facility is to surface 
water, the higher the facility’s suitability, i.e., less hazardous)

TABLE 7.13

Deviations of criteria values of recovery facility G from target values (second 
model)

Criteria r = 2 r = 3 r = 4 r = 5

g1 d12+ = 5 d13+ = 0 d14+ = 10 d15+ = 15

g2 d22– = 0.5 d23– = 0.3 d24– = 0.2 d25– = 0.1

g3 d32– = 0.6 d33– = 0.4 d34– = 0.2 d35– = 0.1

g4 d42– = 105 d43– = 55 d44– = 5 d45– = 25

g5 d52– = 6 d53– = 3 d54– = 2 d55– = 0

TABLE 7.14

Total scores and ranks of recovery facilities (second model)
Recovery facilities Total scores Ranks

E 99.85 II

F 117.95 III

G 52.26 I
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Proximity to residential area (PH) (the closer the facility is to the resi-
dential area, the higher the facility’s suitability, i.e., less hazardous)

7.4.3 Criteria of Supply Chain Company Executives

Space cost (SC) (the lower, the better)
Labor cost (LC) (the lower, the better)
Proximity to roads (PR) (the closer the facility is to roads, the easier 
is the transportation)
Quality of reprocessed products (QO)–quality of used products (QI)
(the higher, the better)
Throughput (TP)/supply (SU) (the higher, the better)
Throughput (TP)×disassembly time (DT) (the higher, the better)
Utilization of incentives from local government (UI) (the higher, 
the better)
Pollution control (PC) (the higher, the better)

7.5 Third Model (Eigen Vector Method, 
TOPSIS, and Borda’s Choice Rule)

This model to select efficient recovery facilities is implemented in two 
phases. In the first phase, using the eigen vector method, impacts are given 
to the criteria identified for each category of decision makers (see section 7.4), 
and then TOPSIS (technique for order preference by similarity to ideal solu-
tion) is employed to find the efficiency of each candidate recovery facility, as 
evaluated by that category. In the second phase, Borda’s choice rule is used 
to combine individual evaluations for each candidate recovery facility into a 
group evaluation or maximized consensus ranking.

The model to select efficient recovery facilities is presented using a numerical 
example. Three recovery facilities, H, J, and K, are considered for evaluation.

7.5.1 Phase I (Individual Decision Making)

Tables 7.15–7.17 show the pair-wise comparison matrices as formed for the 
consumers, local government officials, and supply chain company execu-
tives, respectively.

Tables 7.18–7.20 show the impacts given for the criteria of the consumers, 
local government officials, and supply chain company executives, respec-
tively. These sets of impacts, calculated using the eigen vector method, are 
the elements of the normalized eigen vectors of pair-wise comparison matri-
ces shown in tables 7.15–7.17, respectively. For example, the relative impacts 
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of the criteria PH (proximity to residential area) and PR (proximity to roads) 
shown in table 7.19 are the elements of the normalized eigen vector of the 
pair-wise comparison matrix shown in table 7.16.

The decision matrices formed for the consumers, local government officials, 
and supply chain company executives, for implementation of the TOPSIS for 
each category, are shown in tables 7.21–7.23, respectively. The elements of 
these matrices are the ranks (ranging from 1 to 10) assigned to the recovery 
facilities with respect to each criterion for evaluation. A lower rank implies 
higher efficiency (with respect to that criterion).

To facilitate the construction of the pair-wise comparison matrices (see 
tables 7.15–7.17) and the decision matrices (see tables 7.21–7.23), representa-
tives from each category of decision makers could be invited to participate 
in relevant survey questionnaires, individual interviews, focus groups, and 
on-site observations.

TABLE 7.15

Pair-wise comparison matrix for consumers (third model)
Criteria PS PH EO SA

PS 1 1/2 1/2 1/3

PH 2 1 1 1

EO 2 1 1 1

SA 3 1 1 1

TABLE 7.16

Pair-wise comparison matrix for local 
government officials (third model)

Criteria PS PH

PS 1 1/3

PH 3 1

TABLE 7.17

Pair-wise comparison matrix for supply chain company executives (third model)
Criteria SC LC PR QO–QI TP/SU TP×DT UI PC

SC 1 1 1 1 ½ 6 1 1

LC 1 1 1 1 1 5 2 1

PR 1 1 1 1/9 1/7 1 1 1/3

QO–QI 1 1 1 1 2 2 1 1/4

TP/SU 2 1 7 1 1 5 1 1

TP×DT 1/6 1/5 1 1/2 0.2 1 1/9 1

UI 1 1/2 1 1 1 9 1 1

PC 1 1 3 4 1 1 1 1
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Now one is ready to perform the six steps in the TOPSIS for each category 
of decision makers. The following steps show the implementation of the 
TOPSIS for the consumers to evaluate H, J, and K.

Step 1: Construct the normalized decision matrix. Table 7.24 shows the nor-
malized decision matrix formed by applying equation (4.49) on each 
element of table 7.21 (decision matrix formed for the consumers). For 
example, the normalized rank of recovery facility J with respect to 
criterion PH (see tables 7.21 and 7.24) is calculated as follows:

r22 2 2 2

1
2 1 3

0 2673. .

TABLE 7.18

Impacts for consumers (third model)
Criteria Impacts

PS 0.1277

PH 0.2804

EO 0.2804

SA 0.3116

TABLE 7.19

Impacts for local government officials 
(third model)

Criteria Impacts

PS 0.25

PH 0.75

TABLE 7.20

Impacts for supply chain company 
executives (third model)

Criteria Impacts

SC 0.1233

LC 0.1437

PR 0.0717

QO–QI 0.1198

TP/SU 0.1905

TP×DT 0.0491

UI 0.1356

PC 0.1663
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Step 2: Construct the weighted normalized decision matrix. Table 7.25 shows 
the weighted normalized decision matrix for the consumers. This 
is constructed using the impacts of the criteria listed in table 7.18 
and the normalized decision matrix in table 7.24. For example, the 
weighted normalized rank of recovery facility J with respect to cri-
terion PH, i.e., 0.0749 (see table 7.25), is calculated by multiplying the 
impact of PH, i.e., 0.2804 (see table 7.18), by the normalized rank of R2 
with respect to PH, i.e., 0.2673 (see table 7.24).

TABLE 7.21

Decision matrix for consumers (third model)
Recovery
facilities PS PH EO SA

H 2 2 4 1

J 4 1 7 3

K 5 3 3 1

TABLE 7.22

Decision matrix for local government officials (third 
model)
Recovery facilities PS PH

H 4 2

J 3 1

K 1 5

TABLE 7.23

Decision matrix for supply chain company executives (third model)
Recovery
facilities SC LC PR QO–QI TP/SU TP×DT UI PC

H 3 2 1 3 4 1 1 2

J 4 7 1 2 2 2 3 4

K 9 8 7 5 1 6 5 6

TABLE 7.24

Normalized decision matrix for consumers (third model)
Recovery
facilities PS PH EO SA

H 0.2981 0.5345 0.4650 0.3015

J 0.5963 0.2673 0.8137 0.9045

K 0.7454 0.8018 0.3487 0.3015
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Step 3: Determine the ideal and negative-ideal solutions. Each column in 
the weighted normalized decision matrix shown in table 7.25 has a 
minimum rank and a maximum rank. They are the ideal and nega-
tive-ideal solutions, respectively, for the corresponding criterion. 
For example (see table 7.25), with respect to criterion PH, the ideal 
solution (minimum rank) is 0.0749, and the negative-ideal solution 
(maximum rank) is 0.2248.

Step 4: Calculate the separation distances. The separation distances (see 
table 7.26) for each recovery facility are calculated using equations 
(4.52) and (4.53). For example, the positive separation distance for 
recovery facility J (see table 7.26) is calculated using equation (4.52), 
which contains the weighted normalized ranks of J (see table 7.25) 
and the ideal solutions (obtained in step 3) for the criteria.

Step 5: Calculate the relative closeness coefficient. Using equation (4.54), the 
relative closeness coefficient is calculated for each recovery facility 
(see table 7.27). For example, the relative closeness coefficient (i.e., 
0.3945) for recovery facility J (see table 7.27) is the ratio of J’s negative 
separation distance (i.e., 0.1511) to the sum (i.e., 0.1511 + 0.2318 = 0.3829) 
of its negative and positive separation distances (see table 7.26).

TABLE 7.25

Weighted normalized decision matrix for consumers (third model)
Recovery
facilities PS PH EO SA

H 0.0381 0.1499 0.1304 0.0940

J 0.0761 0.0749 0.2282 0.2819

K 0.0952 0.2248 0.0978 0.0940

TABLE 7.26

Separation distances for consumers (third model)
Recovery facilities S* S–

H 0.0817 0.2318

J 0.2318 0.1511

K 0.1604 0.2287

TABLE 7.27

Relative closeness coefficients for consumers (third 
model)

Recovery facilities C*

H 0.7394

J 0.3945

K 0.5878
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Step 6: Form the preference order. Because the best alternative is the one 
with the highest relative closeness coefficient, the preference order 
for the recovery facilities is H, K, and J (that means H is the best 
recovery facility, as evaluated by the consumers).

TOPSIS is implemented for the local government officials and supply chain 
company executives in a similar manner. The relative closeness coefficients 
of the recovery facilities, as calculated for those two categories of decision 
makers, are shown in table 7.28.

7.5.2 Phase II (Group Decision Making)

Table 7.29 shows the marks of the recovery facilities as given using Borda’s 
choice rule for the consumers, local government officials, and supply chain 
company executives. Borda scores (group evaluations) calculated for H, J, 
and K (viz., 5, 4, and 2, respectively) are also shown. For example, the Borda 
score for J (i.e., 4) is calculated by summing the marks of J for the consumers, 
local government officials, and supply chain company executives (i.e., 0 + 2 + 
2). Because H has the highest Borda score, it is the best of the lot.

7.6 Fourth Model (Neural Networks, Fuzzy  
Logic, TOPSIS, Borda’s Choice Rule)

This model assumes that neither numerical nor linguistic impacts are avail-
able for the evaluation criteria. It employs a neural network [6] to evaluate 

TABLE 7.28

Relative closeness coefficients for local government officials and 
supply chain company executives (third model)

Recovery facilities
Local government 

officials
Supply chain 

company executives

H 0.6715 0.5952

J 0.8487 0.5962

K 0.2941 0.4057

TABLE 7.29

Marks and Borda scores of recovery facilities (third model)

Recovery
facilities Consumers

Local
government

officials

Supply chain 
company

executives Borda scores

H 2 1 2 5

J 0 2 2 4

K 1 0 1 2



© 2009 by Taylor & Francis Group, LLC

Evaluation of Recovery Facilities 141

the efficiency of a recovery facility of interest (which is being considered for 
inclusion in a reverse supply chain), using linguistic performance measures 
of recovery facilities that already exist in the reverse supply chain. To this 
end, the model to evaluate the efficiency of a recovery facility of interest is 
carried out in three phases. In the first phase, the ratings of existing recov-
ery facilities are used to construct a neural network that, in turn, calculates 
impacts of criteria identified for each category of decision makers given in 
section 7.4. Then, in the second phase, the impacts obtained in the first phase 
are used in a fuzzy TOPSIS (combination of fuzzy logic and TOPSIS) method 
to obtain the overall rating of the recovery facility of interest, as calculated 
for each category. Finally, in the third phase, Borda’s choice rule is employed 
to calculate the maximized consensus rating (among the categories consid-
ered), i.e., efficiency, of the recovery facility of interest.

7.6.1 Phase I (Derivation of Impacts)

Suppose that one has the linguistic ratings of ten existing recovery facilities, 
as given by an expert in each category of decision makers described in section 
7.4. Using fuzzy logic, these linguistic ratings are converted into triangular 
fuzzy numbers (TFNs). Table 7.30 shows not only one of the many ways for 
conversion of linguistic ratings into TFNs but also the defuzzified ratings of 
the corresponding TFNs. Tables 7.31–7.33 show the defuzzified overall rating 
of each existing recovery facility as well as the recovery facility’s defuzzified 
rating with respect to each criterion, as evaluated by the consumers, local 
government officials, and supply chain company executives, respectively. 
Defuzzification of a TFN can be performed using equation (4.8).

A neural network is constructed and trained for each category of decision 
makers, using the defuzzified ratings of the existing recovery facilities with 
respect to criteria as input sets and the recovery facilities’ defuzzified over-
all ratings as corresponding outputs. In the example, there are ten input–
output pairs for each neural network because there are ten existing recovery 
facilities. Also, three layers are considered in each network, with five nodes 
in the hidden layer. The number of nodes in the output layer is one (for 
overall rating), and the number in the input layer is the number of criteria 

TABLE 7.30

Conversion table for ratings (fourth model)
Linguistic

ratings TFNs
Defuzzified

ratings

Very good (VG) (7, 10, 10) 9

Good (G) (5, 7, 10) 7.3

Fair (F) (2, 5, 8) 5

Poor (P) (1, 3, 5) 3

Very poor (VP) (0, 0, 3) 1
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TABLE 7.31

Consumer ratings of recovery facilities (fourth model)
Recovery
facilities PS PH EO SA Overall

R1 9 3 7.33 3 3
R2 5 7.33 9 1 1
R3 1 5 1 5 9
R4 1 5 5 9 5
R5 5 9 5 3 7.33
R6 1 3 5 3 5
R7 9 1 3 5 1
R8 3 1 3 1 9
R9 3 9 1 7.33 5

R10 5 1 3 5 7.33

TABLE 7.32

Local government officials’ ratings of recovery facilities (fourth 
model)

Recovery
facilities PS PH Overall

R1 9 3 5
R2 5 7.33 3
R3 1 5 9
R4 1 5 7.33
R5 5 9 1
R6 1 3 1
R7 9 1 7.33
R8 3 1 5
R9 3 9 5

R10 5 1 3

TABLE 7.33

Supply chain company executives’ ratings of recovery facilities (fourth model)
Recovery
facilities SC LC PR QO–QI TP/SU TP×DT UI PC Overall

R1 9 3 9 5 3 9 3 3 5
R2 5 7.33 3 1 7.33 9 1 1 3
R3 1 5 1 3 1 3 5 9 1

R4 1 5 3 5 9 9 1 5 7.33
R5 5 9 1 3 5 7.33 7.33 1 9
R6 9 3 9 5 3 9 3 3 9
R7 5 7.33 3 1 7.33 9 1 1 1
R8 1 5 1 3 1 3 5 9 3
R9 1 5 3 5 9 9 1 5 5
R10 5 9 1 3 5 7.33 7.33 1 7.33
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considered by the corresponding category. For example, figure 7.2 shows the 
neural network constructed and trained for the consumer category.

After each neural network is trained, the following equation [1] is used to 
calculate the impacts of criteria considered by the corresponding category. 
Here, the absolute value of Wv is the impact of the vth input node upon the
output node, nV is the number of input nodes, nH is the number of hidden 
nodes, Iij is the connection weight from the ith input node to the jth hidden 
node, and Oj is the connection weight from the jth hidden node to the output 
node:

| |
| |

| |

W

I

I
O

I

I
O

v

vj

ij
i

n j
j

n

vj

ij
i

n j

V

H

V
j

nH

i

nV

(7.7)

Tables 7.34–7.36 show the impacts of the criteria considered for the consumers, 
local government officials, and supply chain company executives, respectively.

PS

PH

EO

SA

H

H

H

H

H

O

Input layer                             Hidden layer        Output layer

FIGURE 7.2

Neural network for consumers (fourth model).
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TABLE 7.34

Impacts of criteria of consumers (fourth model)
Criteria PS PH EO SA

Impacts 0.17 0.18 0.27 0.38

TABLE 7.35

Impacts of criteria of local government officials 
(fourth model)

Criteria PS PH

Impacts 0.61 0.39

TABLE 7.36

Impacts of criteria of supply chain company executives (fourth model)
Criteria SC LC PR QO–QI TP/SU TP×DT UI PC

Impacts 0.06 0.02 0.10 0.19 0.11 0.39 0.10 0.02

TABLE 7.37

Decision matrix for consumers (fourth model)
Recovery
facilities PS PH EO SA

R11 1 5 1 5

R12 1 5 5 9

R13 5 9 5 3

TABLE 7.38

Decision matrix for local government officials 
(fourth model)

Recovery
facilities PS PH

R11 3 1

R12 3 9

R13 5 1

TABLE 7.39

Decision matrix for supply chain company executives (fourth model)
Recovery
facilities SC LC PR QO–QI TP/SU TP×DT UI PC

R11 5 9 1 3 5 7.33 7.33 1

R12 9 3 9 5 3 9 3 3

R13 5 7.33 3 1 7.33 9 1 1
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7.6.2 Phase II (Individual Decision Making)

Suppose that there are three recovery facilities, R11, R12, and R13, of inter-
est. A fuzzy TOPSIS method uses the impacts obtained in the first phase to 
calculate the overall ratings of the three recovery facilities.

The decision matrices formed for the consumers, local government offi-
cials, and supply chain company executives (with defuzzified ratings for 
R11, R12, and R13) in this example are shown in tables 7.37–7.39, respectively 
(table 7.30 is used here as well, to convert linguistic ratings given by each cat-
egory into TFNs). Like in the third model (see section 7.5), the matrices can be 
constructed by inviting representatives from each category of decision mak-
ers to participate in relevant survey questionnaires, individual interviews, 
focus groups, and on-site observations.

Now one is ready to perform the six steps in the TOPSIS for each category 
of decision makers. The following steps show the implementation of the 
TOPSIS for the consumers to evaluate R11, R12, and R13.

Step 1: Construct the normalized decision matrix. Table 7.40 shows the 
normalized decision matrix formed by applying equation (4.49) on 
each element of table 7.37 (decision matrix for the consumers). For 
example, the normalized rating of recovery facility R12 with respect 
to criterion PH (see tables 7.37 and 7.40) is calculated as follows:

r22 2 2 2

5
5 5 9

0 4369. .

Step 2: Construct the weighted normalized decision matrix. Table 7.41 shows 
the weighted normalized decision matrix for the consumers. This 
is constructed using the impacts of the criteria listed in table 7.34 
and the normalized decision matrix in table 7.40. For example, the 
weighted normalized rank of recovery facility R12 with respect to 
criterion PH, i.e., 0.0793 (see table 7.41), is calculated by multiplying 
the impact of PH, i.e., 0.18 (see table 7.34), with the normalized rating 
of R12 with respect to PH, i.e., 0.4369 (see table 7.40).

Step 3: Determine the ideal and negative-ideal solutions. Each column in 
the weighted normalized decision matrix shown in table 7.41 has a 
maximum rating and a minimum rating. They are the ideal and neg-
ative-ideal solutions, respectively, for the corresponding criterion. 
For example (see table 7.41), with respect to criterion PH, the ideal 
solution (maximum rating) is 0.1428, and the negative-ideal solution 
(minimum rating) is 0.0793.

Step 4: Calculate the separation distances. The separation distances (see 
table 7.42) for each recovery facility are calculated using equations 
(4.52) and (4.53). For example, the positive separation distance for 
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recovery facility R12 (see table 7.42) is calculated using equation 
(4.52), which contains the weighted normalized ratings of R12 (see 
table 7.41) and the ideal solutions (obtained in step 3) for the criteria.

Step 5: Calculate the relative closeness coefficient. Using equation (4.54), the 
relative closeness coefficient is calculated for each recovery facility 
(see table 7.43). For example, the relative closeness coefficient (i.e., 
0.6398) for recovery facility R12 (see table 7.43) is the ratio of R12’s 
negative separation distance (i.e., 0.2602) to the sum (i.e., 0.2602 + 
0.1464 = 0.4066) of its negative and positive separation distances (see 
table 7.42).

Step 6: Rank the preference order. Because the best alternative is the one 
with the highest relative closeness coefficient, the preference order 
for the recovery facilities is R12, R13, and R11 (that means R12 is the 
best recovery facility, as evaluated by the consumers).

Similarly, TOPSIS is implemented for the local government officials and 
supply chain company executives. The relative closeness coefficients of 
the recovery facilities, as calculated for those two categories, are shown in 
table 7.44.

TABLE 7.42

Separation distances for consumers (fourth model)
Recovery
facilities S* S–

R11 0.2526 0.0712

R12 0.1464 0.2602

R13 0.2136 0.2086

TABLE 7.40

Normalized decision matrix for consumers (fourth model)
Recovery
facilities PS PH EO SA

R11 0.1923 0.4369 0.1400 0.4663

R12 0.1925 0.4369 0.7001 0.8393

R13 0.9623 0.7863 0.7001 0.2798

TABLE 7.41

Weighted normalized decision matrix for consumers (fourth model)
Recovery
facilities PS PH EO SA

R11 0.0330 0.0793 0.0371 0.1780

R12 0.0330 0.0793 0.1857 0.3203

R13 0.1650 0.1428 0.1857 0.1068
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7.6.3 Phase III (Group Decision Making)

Table 7.45 shows the marks of the recovery facilities as given using Borda’s 
choice rule for the consumers, local government officials, and supply chain 
company executives. Borda scores (group evaluations) calculated for R11, 
R12, and R13 (viz., 1, 6, and 2, respectively) are also shown. For example, the 
Borda score for R12 (i.e., 6) is calculated by summing the marks of R12 for 
the consumers, local government officials, and supply chain company execu-
tives (i.e., 2 + 2 + 2). Because R12 has the highest Borda score, it is the best of 
the lot.

TABLE 7.43

Relative closeness coefficients for consumers 
(fourth model)

Recovery facilities C*

R11 0.2199

R12 0.6398

R13 0.4942

TABLE 7.44

Relative closeness coefficients for local 
government officials and supply chain company 
executives (fourth model)

Recovery
facilities

Local
government

officials

Supply chain 
company

executives

R11 0 0.458016

R12 0.646968 0.695261

R13 0.588066 0.29753

TABLE 7.45

Marks and Borda scores of recovery facilities (fourth model)

Recovery
facilities Consumers

Local
government

officials

Supply chain 
company

executives Borda scores

R11 0 0 1 1

R12 2 2 2 6

R13 1 1 0 2
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7.7 Fifth Model (Two-Dimensional Chart)

Here, a simple two-dimensional chart, where only the two most impor-
tant evaluation criteria are considered, is presented. In this approach, it is 
assumed that the two most important criteria are (1) n value in n Sigma of the 
recovery facility and (2) TP/SU value.

This approach is similar (but with some important modifications) to Linn 
et al.’s approach [5] for selection of suppliers in a traditional supply chain. 
Linn et al.’s approach uses Cpk (process capability index) and a price com-

integrates the process capability and price information of multiple suppliers 
(assuming every other criterion value is either unimportant or the same for 
all suppliers), provides a method to consider quality and price simultane-
ously in the supplier selection process.

Cpk is drawn on the Y-axis, and the ratio (R) of target price desired to price 
quoted by the supplier is drawn on the X-axis. Cpk and R of each supplier are 
then plotted on the chart. The chart is partitioned into six different zones 
representing the quality performance and price levels. The zones are defined 
as follows:

Cpk

3.0

2.5

2.0

1.5

1.0

0.5

0.0

H Zone 

E Zone

EGSC

G

S
C

U Zone 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
R

FIGURE 7.3

CPC chart

for the concept of process capability). The CPC chart (see figure 7.3), which 
parison (CPC) chart for the selection of efficient suppliers (see section 4.16 
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E zone: Excellent zone, E = {(R, Cpk) | Cpk > 2.0 and R > 2.0}
G zone: Good zone, G = {(R, Cpk) | Cpk > 1.5 and R > 1.5} – E zone
S zone: Satisfactory zone, S = {(R, Cpk) | Cpk > 1.33 and R > 1.33} – G zone 

– E zone
C zone: Capable zone, C = {(R, Cpk) | Cpk > 1.0 and R > 1.0} – G zone – E

zone – S zone
H zone: High-price zone, H = {(R, Cpk) | Cpk > 1.0 and R < 1.0}
U zone: Unacceptable zone, U = {(R, Cpk) | Cpk < 1.0 and R > 0}

Because of their high-quality performance and low-cost quotation, those 
suppliers falling in the E zone are considered the best group of suppliers to 
choose from. Those falling in the U zone are simply not acceptable because 
their Cpk value is too low. The supplier selection should start from the E zone 
and follow the sequence of E G  S  C  H  U. Within the same zone, 
those falling in the lower-half zone (below the 45° line) have better cost per-
formance. In contrast, those in the upper-half zone (above the 45° line) have 
better quality performance. Therefore, if the objective is to select a better-
cost performer, those in the lower half of the zone should be selected. If the 
objective is to find a better-quality performer, those in the upper-half zone 
should be selected. If quality and cost are equally important, those close to 
the 45° line should be selected.

Although the above approach can integrate both quality and price, it must 
be noted that the Cpk value is not enough to judge quality; one needs the 
Cp (process capability ratio) value as well. To overcome this problem in the 
selection of efficient recovery facilities, the n value (instead of Cpk) is used on 
the Y-axis of the chart (see section 4.16 for the concepts of process capability 
and n Sigma).

The n value for a recovery facility represents the facility’s quality, which 
could be a function of factors such as efficiency of reprocessing and effi-
ciency of delivery (of reprocessed goods to demand centers). For example 
(see figure 7.4), let the upper specification (U) of the width (critical dimen-
sion) of a reprocessed good at a candidate recovery facility be 100 inches, 
the lower specification (L) 60 inches, and the target value ( ) 80 inches. If the 
standard deviation ( ) of the width is 5 inches and the mean shift ( ) is 
6 inches, then reprocessing in the candidate recovery facility is a Four Sigma 
process.

chart that is used for selection of efficient recovery facilities.
The chart is partitioned into five acceptable regions (I–V) and an unaccept-

able region. These zones are defined as follows:

Zone I = {(TP/SU, n) | 0.9 ≤ TP/SU ≤ 1 and n ≥ 5.0}
Zone II = {(TP/SU, n) | TP/SU ≥ 0.8 and n ≥ 4.0} – zone I
Zone III = {(TP/SU, n) | TP/SU ≥ 0.7 and n ≥ 3.0} – zone I – zone II

For the chart’s X-axis, the TP/SU criterion is used. See figure 7.5 for the 
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Zone IV = {(TP/SU, n) | TP/SU ≥ 0.6 and n ≥ 2.0} – zone I – zone II 
– zone III

Zone V = {(TP/SU, n) | TP/SU ≥ 0.5 and n ≥ 2.0} – zone I – zone II – zone 
III – zone IV

Unacceptable zone = {(TP/SU, n) | TP/SU ≤ 0.5 or n < 2.0}

10060 80

6 inches 

 = 5 inches 

Inches

FIGURE 7.4

Critical dimension of a reprocessed good at recovery facility (fifth model).
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n and TP/SU chart (fifth model).
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Because of their high-quality (Five Sigma or higher) performance and high 
TP/SU value, those recovery facilities falling in zone I are considered the best 
group of recovery facilities to choose from. Those falling in the unacceptable 
zone are simply not acceptable because their n value (2 or lower) is too low, 
their TP/SU value is low, or both. The recovery facility selection should start 
from zone I and follow the sequence of I  II  III  IV  V.

If the decision maker wishes to raise or lower the bar for quality, he or 
she can revise the respective charts accordingly. For example, if the decision 
maker considers only those recovery facilities with at least Six Sigma quality 
(besides high TP/SU ratio) the best, then zone I in his or her chart will be {(n,
TP/SU) | n ≥ 6.0 and 0.9 ≤ TP/SU ≤ 1}.

7.8 Conclusions

In this chapter, five models are presented for identifying efficient recovery 
facilities in a region where a reverse supply chain is to be designed. The 
first model uses analytic hierarchy process in a situation where the evalu-
ation criteria can be given numerical impacts. The second model employs 
linear physical programming in a situation where the evaluation criteria are 
presented in terms of ranges of different degrees of desirability. The third 
and fourth models have decision makers with conflicting evaluation criteria. 
Whereas the third model uses the eigen vector method, TOPSIS, and Borda’s 
choice rule, the fourth model uses neural network, fuzzy logic, TOPSIS, and 
Borda’s choice rule. Finally, the fifth model presents a two-dimensional chart 
that can be used when a very simple evaluation technique is desired (only 
the two most important evaluation criteria are considered).
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8
Optimization of Transportation of Products

8.1 The Issue

In this chapter, the focus is on achieving transportation of the right quanti-
ties of products (used, remanufactured, and new) across a reverse or closed-
loop supply chain while satisfying certain constraints. The various scenarios 
for this problem could differ as follows:

1. Decision-making criteria for a reverse supply chain could be given 
in terms of classical supply-and-demand constraints.

2. Decision-making criteria for a reverse supply chain could be pre-
sented in terms of ranges of different degrees of desirability.

3. Besides optimal transportation of products, there could be a need to 
address the following issues in one continuous phase for a closed-
loop supply chain: selection of used products and evaluation of 
production facilities. Also, the decision-making criteria could be 
presented in terms of classic supply-and-demand constraints.

4. The situation could be the same as in scenario 3, but the decision-
making criteria could be presented in terms of different degrees of 
desirability.

5. The situation could be the same as in scenario 3, but the decision-
making criteria could be imprecise.

In this chapter, various models to address the above scenarios are pre-
sented. The first model addresses scenario 1 and employs linear integer 
programming. The second model is for scenario 2 and employs linear physi-
cal programming. The third and fourth models are for scenarios 3 and 4, 
respectively, and use goal programming and linear physical programming, 
respectively. The fifth model is for scenario 5 and employs fuzzy goal pro-
gramming. For the last three models, it is assumed that the manufacturer 
has incorporated a remanufacturing process into his or her original produc-
tion system, so that products can be manufactured directly from raw materi-
als or remanufactured from used products (the final demand for the product 
is met with either new or remanufactured products).
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This chapter is organized as follows: Section 8.2 presents the first model. 
Section 8.3 shows the second model. Section 8.4 presents the third model. 
Section 8.5 gives the fourth model. Section 8.6 presents the fifth model. 
Finally, section 8.7 gives some conclusions.

8.2 First Model (Linear Integer Programming)

This model considers a generic reverse supply chain consisting of collection 
centers, remanufacturing facilities, and demand centers. Optimal transpor-
tation of products (used and remanufactured) is achieved using linear inte-
ger programming. See [1] for a review of a number of models similar to the 
one presented in this section. Nomenclature for the model is given in section 
8.2.1, the model is formulated in section 8.2.2, and a numerical example is 
given in section 8.2.3.

8.2.1 Nomenclature

a1 Space occupied by one unit of remanufactured product

a2 Space occupied by one unit of used product

CAPv Capacity of remanufacturing facility v to remanufacture 
products

Cu Cost per product retrieved at collection center u

dw Demand of remanufactured products at demand center w

Iuv Decision variable representing the number of products to be 
transported from collection center u to remanufacturing facility 
v

Ovw Decision variable representing the number of products to be 
transported from remanufacturing facility v to demand center 
w

Rv Cost of remanufacturing per product at production facility v

S1v Storage capacity of remanufacturing facility v for remanufac-
tured products

S2v Storage capacity of remanufacturing facility v for used products

Su Storage capacity of collection center u for used products

SUPu Supply at collection center u

TIuv Cost of transporting one product from collection center u to 
remanufacturing facility v

TOvw Cost of transporting one product from remanufacturing facility 
v to demand facility w
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u Collection center

v Remanufacturing facility

w Demand center

Yv Binary variable (0/1) for selection of recovery facility v

8.2.2 Model Formulation

The following is the single-period and single-product transshipment model 
formulation that is implemented to achieve minimum overall cost, i.e., sum 
of the costs of retrieval, inventory, remanufacturing, and transportation of 
products (used and remanufactured) across the supply chain (in the formu-
lation, it is assumed that the inventory cost of a used product is 25% of its 
retrieval cost, Cu, and that of a remanufactured product is 25% of its remanu-
facturing cost, Rv):

Minimize

Retrieval costs
Transportation costs
Remanufacturing costs
Inventory costs

C I

TI I TO O

R O

u uv

uv uv vw vw

v vw

vu

vu wv

wv

( / ). ( / ).C I R Qu uv v vw

vu wv

4 4
(8.1)

subject to

Demand at each demand center must be met

O d wvw w

v

;
(8.2)

Total output of each remanufacturing facility is at most its total input
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I O vuv vw

u w

; (8.3)

Total space occupied by remanufactured products at each remanufactur-
ing facility is at most its capacity for remanufactured products

Total space occupied by used products at each collection center is at most 
its capacity

a O S Y vvw v v

w
1 1. . ; (8.4)

a I S uuv u

v
2 . ; (8.5)

Total space occupied by used products at each remanufacturing facility is 
at most its capacity for used products

a I S Y vuv v v

u
2 2. . ; (8.6)

Quantities of transported products are non-negative numbers

I u vuv 0; , (8.7)

Total output of each remanufacturing facility is at most its capacity to 
remanufacture

O v wvw 0; , (8.8)

Total quantity of used products supplied to remanufacturing facilities by 
each collection center is at most the supply to that collection center

O CAP vvw v

w

; (8.9)

I SUP uuv u

v

; (8.10)

Note that a1 and a2 are possibly different. The reason is that a component 
from a used product of one model may be used in a remanufactured product 
of a different model that may occupy a different amount of space.
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Also, the model assumes that there is always enough supply of the used 
products to satisfy the demand for the remanufactured products and that 
enough storage space (for used and remanufactured products) is always 
available at the remanufacturing facilities. Moreover, inventory costs at 
the collection centers and demand centers are not considered in the model 
(for example, if the supply of used products is higher than the demand for 
remanufactured products, the collection centers are deemed to incur inven-
tory costs). However, the model may be revised accordingly in response to 
revision of existing constraints or addition of new constraints.

8.2.3 Numerical Example

Three collection centers, two remanufacturing facilities, and three demand 
centers are considered in the example (see figure 8.1). Let the total supply of 
the used product per period be a triangular fuzzy number (TFN): (600, 650, 
700). The defuzzified supply is 633.33 per period (see section 4.4 for the con-
cepts of TFN and defuzzification). Assuming an equal supply rate at all three 
collection centers, one gets SUP1 = SUP2 = SUP3 = 211.11. The other data used 
for implementation of the model are as follows:

C1 = 29; C2 = 25; C3 = 37; TI1A = 3; TI2A = 4; TI3A = 5.3; TI1B = 3.2; TI2B = 1.4; TI3B

= 6.7; TOA1 = 2.6; TOB1 = 3.2; TOA2 = 3.4; TOB2 = 2.5; TOB3 = 1.6; TOB3 = 2.1; RA

= 4; RB = 4.3; d1 = 100; d2 = 200; d3 = 150; a1 = a2 = 0.5; S1A = 550; S1B = 550; S2A

= 550; S2B = 550; S1 = 550; S2 = 550; S3 = 550; CAPA = 300; CAPB = 250

Upon application of the above data to the model, using LINGO (v4), the 
following optimal solution is obtained:

I1A = 211, i.e., 211 products are to be transported from collection center 
1 to recovery facility A

I1B = 0, i.e., no products are to be transported from collection center 1 to 
recovery facility B

I2A = 0, i.e., no products are to be transported from collection center 2 to 
recovery facility A

I2B = 211, i.e., 211 products are to be transported from collection center 
2 to recovery facility B

Collection
Centers

Remanufacturing
Facilities
A and B 

ConsumersUsed Products Used Products 
Demand
Centers

Remanufactured
Products

FIGURE 8.1

Reverse supply chain (first and second models).
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I3A = 28, i.e., 28 products are to be transported from collection center 3 
to recovery facility A

I3B = 0, i.e., no products are to be transported from collection center 3 to 
recovery facility B

OA1 = 100, i.e., 100 products are to be transported from recovery facility 
A to demand center 1

OA2 = 0, i.e., no products are to be transported from recovery facility A 
to demand center 2

OA3 = 139, i.e., 139 products are to be transported from recovery facility 
A to demand center 3

OB1 = 0, i.e., no products are to be transported from recovery facility B 
to demand center 1

OB2 = 200, i.e., 200 products are to be transported from recovery facility 
B to demand center 2

OB3 = 11, i.e., 11 products are to be transported from recovery facility B 
to demand center 3

8.3 Second Model (Linear Physical Programming)

This model considers a generic reverse supply chain consisting of collection 
centers, remanufacturing facilities, and demand centers. Optimal transporta-
tion of products (used and remanufactured) is achieved using linear physical 
programming. Section 8.3.1 presents the model formulation (using the nomen-
clature given in section 8.2.1), and section 8.3.2 gives a numerical example.

8.3.1 Model Formulation

Class 1H criteria

Total retrieval cost per period (h1) given by

h1 = 
C Iu uv

vu (8.11)

Class 1S criteria (smaller is better)

Total transportation cost per period (g1) given by

g1 = TI I TO Ouv uv

vu

vw vw

wv

(8.12)
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Total remanufacturing cost per period (g2) given by

g2 = R Ov
wv

vw (8.13)

Total inventory cost per period (g3) given by

g3 = ( / ). ( / ).C I R Qu uv

vu

v vw

wv

4 4 (8.14)

Goal constraints

h1 ≤ RETMAX (retrieval cost is not more than maximum allowed  
value—RETMAX) (8.15)

gp – dpr  ≤ tp r( )1  (deviation is measured from corresponding target value) (8.16)

gp ≤ tp5  (criterion value is in acceptable range) (8.17)

dpr  ≥ 0; (deviation is a nonnegative number) (8.18)

System constraints

O d wvw

v

w  (demand at each demand center must be met) (8.19)

I SUP vuv

u

u  (all products must be transported from each collection 

center) (8.20)

O I vvw

w

uv

u

 (number of remanufactured products is equal to number

 of used ones) (8.21)
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a I S vuv

u

v2 2. ; (space occupied by used products is at most capacity) (8.22)

I u vuv 0 , (quantities of used products are nonnegative numbers) (8.23)

O v wvw 0 , (quantities of remanufactured products are  
nonnegative numbers) (8.24)

It should be noted here that more constraints may be added to the above 
model, as desired by the decision maker.

8.3.2 Numerical Example

Consider the reverse supply chain shown in figure 8.1 in this example as 
well. The data used for implementation of the model are as follows:

C1 = 0.1; C2 = 0.1; C3 = 0.2; TI1A = 0.02; TI1B = 0.1; TI2A = 0.2; TI2B = 3; TI3A = 0.1; 
TI3B = 1.2; TOA1 = 4; TOA2 = 5; TOA3 = 0.04; TOB1 = 1; TOB2 = 0.1; TOB3 = 0.2; RA

= 0.2; RB = 0.3; d1 = 90; d2 = 80; d3 = 80; SUP1 = 75; SUP2 = 150; SUP3 = 25; a1 = 
a2 = 0.5; S2A = S2C = 400

Furthermore, the target values for each soft criterion are shown in table 8.1, 
and the incremental weights obtained by the LPP weight algorithm [2] are 
shown in table 8.2.

Upon application of the above data to the model, using LINGO (v4), the 
following optimal solution is obtained:

TABLE 8.1

Preference table (second model)
Criteria tp1+ tp2+ tp3+ tp4+ tp5+

g1 100 200 300 400 500

g2 150 250 290 450 600

g3 70 150 250 300 450

TABLE 8.2

Output of LPP weight algorithm (second model)
Criteria Δwp2+ Δwp3+ Δwp4+ Δwp5+

g1 0.025 0.085 0.132 0.024

g2 0.017 0.011 0.026 0.479

g3 0.013 0.031 0.881 0.012



© 2009 by Taylor & Francis Group, LLC

Optimization of Transportation of Products 161

I1A = 0; I2A = 80; I3A = 0; I1B = 75; I2B = 70; I3B = 25; OA1 = 0; OA2 = 0; OA3 = 80; 
OB1 = 90; OB2 = 80; OB3 = 0

Interpretation of this solution could be made in a way similar to that in sec-
tion 8.2.3.

8.4 Third Model (Goal Programming)

This model considers a generic closed-loop supply chain consisting of col-
lection centers, production facilities, and demand centers. Goal program-
ming is employed to address the following issues in one continuous phase, 
besides optimal transportation of products: selection of used products and 
evaluation of production facilities. Section 8.4.1 gives the nomenclature for 
the model, section 8.4.2 presents the formulation of the model, and section 
8.4.3 illustrates the model with a numerical example.

8.4.1 Nomenclature

Aiuv Decision variable representing number of used products of 
type i transported from collection center u to production 
facility v

Bivw Decision variable representing number of new/remanufac-
tured products of type i transported from production facil-
ity v to demand center w

bi Probability of breakage of product i

TAuv Cost to transport one product from collection center u to 
production facility v

TBvw Cost to transport one product from production facility v to 
demand center w

CCu Cost per product retrieved at collection center u

CNPv Cost to produce one unit of new product at production facil-
ity v

CRv Cost to produce one unit of remanufactured product at pro-
duction facility v

Cdi Disposal cost of product i

DIi Disposal cost index of product i (0 = lowest, 10 = highest)

DTi Disassembly time for product i

DC Disassembly cost/unit time

i Product type
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MINTPS Minimum throughput per supply

Nivw Decision variable representing number of new products of 
type i transported from production facility v to demand cen-
ter w

Ndiw Net demand for product type i (remanufactured or new) at 
demand center w

PRCi Percent of recyclable contents by weight in product i

RCYRi Total recycling revenue of product i

RSRi Total resale revenue of product i

RCRIi Recycling revenue index of product i

S1v Storage capacity of production facility v for used products

S2v Storage capacity of production facility v for remanufactured 
and new products

Su Storage capacity of collection center u

SPi Selling price of one unit of new product of type i

SUiu Supply of used product i at collection center u

SFv Supply of used products that are fit for remanufacturing 
(viz., excluding products selected for recycling or disposal) 
and new products, at production facility v

TPv Throughput (considering only remanufactured products) of 
production facility v

u Collection center

v Production facility

w Demand center

Wi Weight of product i

x1 Space occupied by one unit of used product

x2 Space occupied by one unit of remanufactured or new 
product

Yv Decision variable signifying selection of production facility 
v (1 if selected, 0 if not)

Ziu Decision variable representing number of units of product 
type i picked for remanufacturing at collection center u (SUiu

– Ziu = recycled or disposed)

v Factor that accounts for unassignable causes of variations at 
production facility v

8.4.2 Model Formulation

This goal programming model, in one continuous phase, determines the 
number of used products of each type to be picked for remanufacturing, 
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identifies efficient production facilities, and achieves transportation of the 
right quantities of products (used, remanufactured, and new) across a closed-
loop supply chain.

It is assumed that the inventory costs of a used product and a remanufac-
tured product are 20% of the collection and remanufacturing costs, respec-
tively, and that of a newly produced product is 25% of the production cost.

The following three goals are considered:

1. Maximize the total profit in the supply chain (TP).
2. Maximize the revenue from recycling (RR).
3. Minimize the number of disposed items (NDIS).

The first two goals involve minimizing the negative deviation from the 
respective target values, whereas the third goal, which has an environmen-
tally benign focus rather than a financial focus, involves minimizing the posi-
tive deviation from the target value.

The revenue and cost criteria and the system constraints considered in the 
model are:

Revenues

1. Reuse revenue:

{ }Z RSRiu i
ui

(8.25)

2. Recycle revenue:

{( ) }SU Z RCRI W PRCiu iu i i i
ui

(8.26)

3. New product sale revenue:

SP Ni ivw
wvi

(8.27)

Costs

1. Collection/retrieval cost:

CC SUu iu
iu

(8.28)
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2. Processing cost = disassembly cost of used products + reman-
ufacturing cost of used products + new products’ production 
cost:

DC DT A CR B CNi iuv
vui

v ivw PP Nv ivw
wvivui

(8.29)

3. Inventory cost = cost of carrying used products’ inventory at 
collection centers + cost of carrying remanufactured products’ 
inventory at production facilities + cost of carrying newly manu-
factured products’ inventory at production facilities:

( / ) {( / ) (CC A CR B CNPu
vui

iuv v ivw
wvi

5 4 vv ivwN/ ) }4

(8.30)

4. Transportation cost = cost of transporting used products from col-
lection centers to production facilities + cost of transporting reman-
ufactured and new products from production facilities to demand 
centers:

TA A TB B Nuv iuv
vui

vw ivw ivw
wvi

( ) (8.31)

5. Disposal cost: Apart from the number of units disposed of and 
the cost to dispose of a product, disposal cost depends on the 
percentage of recyclable content in the product, and the disposal 
cost index (a number on a scale 0–10; the higher the number, the 
more difficult or expensive it is to dispose of the product):

{( ) ( )}SU Z DI W PRC Ciu iu i i i
ui

di1 (8.32)

System constraints

1. The number of used products sent to all production facilities 
from collection center u must be equal to the number of used 
products picked for remanufacturing at that collection center:

A Ziuv
v

iu (8.33)
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2. The demand at each center w must be met by either new or 
remanufactured products:

( )B N Nd wivw ivw iw
v

(8.34)

3. The number of remanufactured products transported from pro-
duction facility v to demand center w equals (number of used 
products fit for remanufacturing that are transported from col-
lection center u to that production facility) multiplied by v. v

is a factor that accounts for the unassignable (common) causes 
of variation at production facility v. That is, there is no loss of 
products in the supply chain due to reasons other than common 
cause variations over which there is no control:

B A vivw iuv v
uw (8.35)

4. The number of used products of type i picked for remanufactur-
ing at collection center u must be at most equal to the total num-
ber of used products fit for remanufacturing:

Z SU biu iu i( )1 (8.36)

5. The total number of used products of all types collected (before 
accounting for probability of breakage) at all collection centers 
must be at least equal to the net demand (this is to encourage the 
use of remanufactured products):

SU Ndiu iw
wiui

(8.37)

6. The number of remanufactured products must be at most equal 
to the net demand (this is to avoid excess remanufacturing):

Z Ndiu
ui

iw
wi

(8.38)

7. The space occupied by used products at production facility v
must at most be equal to the space available for used products at 
that facility:
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x A S Yiuv

ui

v v1 1 .

(8.39)

8. The space occupied by new and remanufactured products at pro-
duction facility v must at most be equal to the space available 
for new and remanufactured products at that production facility 
(assuming both new and remanufactured products occupy the 
same space):

x B N S Yivw ivw v v
wi

2 2( )
(8.40)

9. The space occupied by used products at collection center u must 
at most be equal to the space available for used products at that 
collection center:

x a Siuv u
vi

1 (8.41)

10. The ratio of throughput to supply of used products of a produc-
tion facility must at least be equal to a preset value for the pro-
duction facility to be considered efficient (this is valid only for 
remanufactured products):

TP SF Y MINTPSv v v/ (8.42)

11. Nonnegativity constraints:

A B N Z u v w iiuv ivw ivw iu, , , , , , ,0 (8.43)

12. Y vv 0 1, , 0 if facility v not selected, 1 if selected (8.44)

8.4.3 Numerical Example

Three collection centers, two production facilities, two demand centers, and 
three types of products are considered in the example (see figure 8.2). The 
data used to implement the goal programming model are:

CCu = 0.01; SU11 = 50; SU12 = 45; SU1 = 25; SU21 = 35; SU22 = 38; SU23 = 22; SU31 

= 30; SU32 = 35; SU33 = 28; DC = 0.05; DT1 = 10; DT2 = 12; DT3 = 9; CR1 = 13; CR2

= 10; CNP1 = 60; CNP2 = 45; TA11 = 0.01; TA12 = 0.09; TA21 = 0.5; TA22 = 0.1; TA31 
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= 0.02; TA32 = 0.04; TB11 = 0.04; TB12 = 0.03; TB21 = 0.09; TB22 = 0.05; DI1 = 4; DI2

= 6; DI3 = 5; W1 = 0.8; W2 = 1.0; W3 = 0.9; PRC1 = 0.5; PRC2 = 0.6; PRC3 = 0.75; 
Cd1 = 0.2; Cd2 = 0.5; Cd3 = 0.3; RSR1 = 30; RSR2 = 40; RSR3 = 45; RCYR1 = 1.5; 
RCYR2 = 2; RCYR3 = 2.5; RCRI1 = 7; RCRI2 = 4; RCRI3 = 5; SP1 = 65; SP2 = 55; 
SP3 = 60; Nd11 = 20; Nd12 = 15; Nd21 = 16; Nd22 = 22; Nd31 = 25; Nd32 = 20; 1 = 0.4; 

2 = 0.6; b1 = 0.2; b2 = 0.4; b3 = 0.3; X1 = 0.7; S11 = 400; S12 = 400; S1 = 150; S2 = 150; 
S3 = 150; X2 = 0.7; S21 = 500; S22 = 500; MINTPS = 0.25

Upon application of the above data to the model, using LINGO (v4), the 
following optimal solution is obtained:

TP = 3,945 (target = 2,500); RR = 951 (target = 750); NDIS = 74 (target = 50); 
Z12 = 35; Z21 = 2; Z22 = 23; Z23 = 13; Z31 = 20; Z32 = 12; Z33 = 12; N111 = 3; N112 = 5; 
N211 = 8; N222 = 1; N211 = 3; N312 = 14; A121 = 15; A122 = 20; A212 = 2; A221 = 5; A222 =
18; A231 = 5; A232 = 8; A311 = 11; A312 = 9; A321 = 12; A331 = 3; B111 = 8; B112 = 4; B211 

= 5; B212 = 3; B311 = 15; B312 = 6; B121 = 9; B122 = 6; B221 = 3; B222 = 18; B321 = 7; Y1 = 1; 
Y2 = 1

It is evident from the above solution that both of the production facilities 
are chosen for the network design. Also, 71% of the net demand is satisfied 
by remanufactured products and the remaining 29% by newly manufac-
tured products.

Collection
Centers

1, 2, and 3 

Production
Facilities
1 and 2 

Demand
Centers
1 and 2 

New Products 
Remanufactured Products 

Consumers

New Products 
Remanufactured Products

Used Products Used Products 

FIGURE 8.2

Closed-loop supply chain (third, fourth, and fifth models).
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8.5 Fourth Model (Linear Physical Programming)

This model considers a generic closed-loop supply chain consisting of col-
lection centers, production facilities, and demand centers. Linear physical 
programming is employed to address the following issues in one continuous 
phase, besides optimal transportation of products: selection of used prod-
ucts and evaluation of production facilities. Section 8.5.1 presents the model 
formulation using the nomenclature given in section 8.4.1, and section 8.5.2 
gives a numerical example.

8.5.1 Model Formulation

This linear physical programming model, in one continuous phase, deter-
mines the number of used products of each type to be picked for remanufac-
turing, identifies efficient production facilities, and achieves transportation 
of the right quantities of products (used, remanufactured, and new) across a 
closed-loop supply chain.

It is assumed that the inventory costs of a used product and a remanufac-
tured product are 20% of the collection and remanufacturing costs, respec-
tively and that the inventory cost of a newly produced product is 25% of the 
production cost.

The revenue and cost criteria and system constraints considered in the 
model are:

Costs: Class 1S (smaller is better)

1. Collection/retrieval cost:

CC SUu iu
iu (8.45)

2. Processing cost = disassembly cost of used products + reman-
ufacturing cost of used products + new products’ production 
cost:

DC DT A CR B CNi iuv
vui

v ivw PP Nv ivw
wvivui

(8.46)

3. Transportation cost = cost of transporting used products from col-
lection centers to production facilities + cost of transporting reman-
ufactured and new products from production facilities to demand 
centers:
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TA A TB B Nuv iuv
vui

vw ivw ivw
wvi

( )
(8.47)

4. Disposal cost: Apart from the number of units disposed of and 
the cost to dispose of a product, disposal cost depends on the 
percentage of recyclable content in the product and the disposal 
cost index (a number on a scale 0–10; the higher the number, the 
more difficult or expensive it is to dispose of the product):

{( ) ( )}SU Z DI W PRC Ciu iu i i i
ui

di1
(8.48)

Revenues: Class 2S (larger is better)

1. Reuse revenue:

{ }Z RSRiu i
ui (8.49)

2. Recycle revenue:

{( ) }SU Z RCRI W PRCiu iu i i i
ui (8.50)

3. New product sales revenue:

SP Ni ivw
wvi

(8.51)

System constraints

1. The number of used products sent to all production facilities 
from collection center u must be equal to the number of used 
products picked for remanufacturing at that collection center:

A Ziuv
v

iu (8.52)

2. The demand at each center w must be met by either new or 
remanufactured products:

( )B N Nd wivw ivw iw
v

(8.53)
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3. The number of remanufactured products transported from pro-
duction facility v to demand center w equals (number of used 
products fit for remanufacturing that are transported from col-
lection center u to that production facility) multiplied by v. v

is a factor that accounts for the unassignable (common) causes 
of variation at production facility v. That is, there is no loss of 
products in the supply chain due to reasons other than common 
cause variations, over which there is no control:

B A vivw iuv v
uw

(8.54)

4. The number of used products of type i picked for remanufactur-
ing at collection center u must be at most equal to the total num-
ber of used products fit for remanufacturing:

Z SU biu iu i( )1 (8.55)

5. The total number of used products of all types collected (before 
accounting for probability of breakage) at all collection centers 
must be at least equal to the net demand (this is to encourage the 
use of remanufactured products):

SU Ndiu iw
wiui

(8.56)

6. The number of remanufactured products must be at most equal 
to the net demand (this is to avoid excess remanufacturing):

Z Ndiu
ui

iw
wi

(8.57)

7. The space occupied by used products at production facility v
must at most be equal to the space available for used products at 
that facility:

x A S Yiu
ui

v v1 1 . (8.58)

8. The space occupied by new and remanufactured products at pro-
duction facility v must at most be equal to the space available 
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for new and remanufactured products at that production facility 
(assuming both new and remanufactured products occupy the 
same space):

x B N S Yivw ivw v v
wi

2 2( ) (8.59)

9. The space occupied by used products at collection center u must 
at most be equal to the space available for used products at that 
collection center:

x a Siuv u
vi

1 (8.60)

10. The ratio of throughput to supply of used products of a produc-
tion facility must at least be equal to a preset value for the pro-
duction facility to be considered efficient (this is valid only for 
remanufactured products):

TP SF Y MINTPSv v v/ (8.61)

11. Nonnegativity constraints:

A B N Z u v w iiuv ivw ivw iu, , , , , , ,0 (8.62)

12. Y vv 0 1, , 0 if facility v not selected, 1 if selected  (8.63)

8.5.2 Numerical Example

Three collection centers, two production facilities, two demand centers, and 
three types of products are considered in the example (see figure 8.2). The 
data used to implement the linear physical programming model are:

CCu = 0.01; SU11 = 20; SU12 = 25; SU13 = 15; SU21 = 25; SU22 = 18; SU23 = 15; SU31 

= 17; SU32 = 9; SU33 = 15; DC = 0.005; DT1 = 10; DT2 = 12; DT3 = 9; CR1 = 10; CR2

= 8; CNP1 = 55; CNP2 = 65; TA11 = 0.001; TA12 = 0.009; TA21 = 0.01; TA22 = 0.002; 
TA31 = 0.004; TA32 = 0.003; TB11 = 0.004; TB12 = 0.003; TB21 = 0.009; TB22 = 0.005; 
DI1 = 4; DI2 = 6; DI3 = 5; W1 = 0.8; W2 = 1.0; W3 = 0.9; PRC1 = 0.65; PRC2 = 0.6; 
PRC3 = 0.75; Cd1 = 0.02; Cd2 = 0.05; Cd3 = 0.03; RSR1 = 80; RSR2 = 80; RSR3 =
65; RCYR1 = 5; RCYR2 = 7; RCYR3 = 105; RCRI1 = 7; RCRI2 = 4; RCRI3 = 6; SP1

= 100; SP2 = 110; SP3 = 95; Nd11 = 20; Nd12 = 15; Nd21 = 16; Nd22 = 22; Nd31 = 25; 



© 2009 by Taylor & Francis Group, LLC

172 Strategic Planning Models for Reverse and Closed-Loop Supply Chains

Nd32 = 20; 1 = 0.85; 2 = 0.75; b1 = 0.2; b2 = 0.4; b3 = 0.3; X1 = 0.7; S11 = 400; S12 =
400; S1 = 150; S2 = 150; S3 = 150; X2 = 0.7; S21 = 500; S22 = 500; MINTPS = 0.25

The target values for the criteria are given in table 8.3 (target values are 
scaled by a factor of 10), and table 8.4 shows the incremental weights obtained 
using the LPP weight algorithm [2].

Upon application of the above data to the model, using LINGO (v4), the 
following optimal solution is obtained:

Z11 = 0; Z12 = 0; Z13 = 0; Z21 = 15; Z22 = 11; Z23 = 9; Z31 = 3; Z32 = 6; Z33 = 6; N111 

= 15; N112 = 11; N211 = 0; N212 = 0; N311 = 18; N312 = 15; N121 = 5; N122 = 4; N221 = 4; 
N222 = 5; N321 = 0; N322 = 5; A111 = 0; A112 = 0; A121 = 0; A122 = 0; A131 = 0; A132 = 0; 
A211 = 11; A212 = 4; A221 = 8; A222 = 3; A231 = 7; A232 = 2; A311 = 3; A312 = 0; A321 = 5; 
A322 = 2; A331 = 0; A332 = 0; B111 = 0; B112 = 0; B211 = 8; B212 = 14; B311 = 6; B312 = 0; 
B121 = 0; B122 = 0; B221 = 4; B222 = 3; B321 = 1; B322 = 0; Y1 = 1; Y2 = 1

It is evident from the above solution that both production facilities are 
chosen for the network design. Also, 69% of the net demand is satisfied by 
newly manufactured products and the remaining 31% by remanufactured 

TABLE 8.3

Target values of criteria (fourth model)
Criteria tp1+ tp2+ tp3+ tp4+ tp5+

g1 1 3 5 7 9

g2 5 10 13 17 20

g3 2 2.5 5 7 10

g4 2 5 7 9 13

Criteria tp1– tp2– tp3– tp4– tp5–

g5 10 15 20 25 30

g6 10 15 17 19 22

g7 15 17 20 25 35

TABLE 8.4

Output of LPP weight algorithm (fourth model)
Criteria Δwp2+ Δwp3+ Δwp4+ Δwp5+ Δwp2– Δwp3– Δwp4– Δwp5–

g1 0.05 0.17 0.75 3.29 — — — —

g2 0.02 0.13 0.34 2.34 — — — —

g3 0.20 0.02 1.34 4.29 — — — —

g4 0.03 0.25 1.29 2.82 — — — —

g5 — — — — 0.02 0.02 0.05 0.12

g6 — — -— — 0.02 0.09 0.13 0.11

g7 — — — — 0.05 0.03 0.04 0.02
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products. In addition, demand for the first product type is completely satis-
fied by newly manufactured products of that type.

8.6 Fifth Model (Fuzzy Goal Programming)

This model considers a generic closed-loop supply chain consisting of col-
lection centers, production facilities, and demand centers. Fuzzy goal pro-
gramming is employed to address the following issues in one continuous 
phase, besides optimal transportation of products: selection of used prod-
ucts and evaluation of production facilities. Section 8.6.1 presents the model 
formulation using the nomenclature given in section 8.4.1, and section 8.6.2 
gives a numerical example.

8.6.1 Model Formulation

This fuzzy goal programming model, in one continuous phase, determines 
the number of used products of each type to be picked for remanufactur-
ing, identifies efficient production facilities, and achieves transportation of 
the right quantities of products (used, remanufactured, and new) across a 
closed-loop supply chain.

It is assumed that the inventory costs of a used product and a remanufac-
tured product are 20% of the collection and remanufacturing costs, respec-
tively, and that the inventory cost of a newly produced product is 25% of the 
production cost.

Three goals are considered in the model:

1. Maximize the total profit in the closed-loop supply chain (TP).

2. Maximize the revenue from recycling (RR).

3. Minimize the number of disposed items (NDIS).

The first two goals involve minimizing the negative deviation from the 
respective target values, whereas the third goal, which has an environmen-
tally benign character rather than a financial basis, involves minimizing the 
positive deviation from the target value. The membership functions for the 
three goals are

1

1

0

if TP TP

TP TP
TP TP

if TP TP TP

if TP

L

L
L

*

*
*

TTPL (8.64)
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where TP* is the aspiration level of total profit (TP) and TPL is the lower toler-
ance level of TP;

2

1

0

if RR RR

RR RR
RR RR

if RR RR RR

if RR

L

L
L

*

*
*

RRRL (8.65)

where RR* is the aspiration level of recycling revenue (RR) and RRL is the 
lower tolerance level of RR; and

3

1 if NDI NDI

NDI NDI
NDI NDI

if NDI NDI NU

U

*

*
* DDI

if NDI NDI

U

U0 (8.66)

where NDI* is the aspiration level of number of disposed items (NDI) and 
NDIU is the upper tolerance level of NDI.

According to the concept of Fibonacci numbers, starting with 1 and 2, the 
weight values for μ1, μ2, and μ3 are 0.5, 0.33, and 0.17. The objective function 
for the weighted fuzzy goal programming model is as follows:

MaximizeV( ) ( . ) ( . ) ( . )0 5 0 33 0 171 2 3 (8.67)

The cost and revenue criteria and the system constraints considered in the 
model include:

Revenues

1. Reuse revenue:

{ }Z RSRiu i
ui

(8.68)

2. Recycle revenue:

{( ) }SU Z RCYI W PRCiu iu i i i
ui

(8.69)
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3. New product sales revenue:

SP Ni ivw
wvi

(8.70)

Costs

1. Collection/retrieval cost:

CC SUu iu
iu

(8.71)

2. Processing cost = disassembly cost of used products + remanu-
facturing cost of used products + new products production cost 
in the forward supply chain:

DC DT A CR B CNi iuv
vui

v ivw PP Nv ivw
wvivui

(8.72)

3. Inventory cost = cost of carrying used products inventory at the 
collection center + cost of carrying remanufactured products 
inventory at the production facility + cost of carrying newly 
manufactured products inventory at the production facility:

( / ) {( / ) (CC A CR B CNPu
vui

iuv v ivw
wvi

5 4 vv ivwN/ ) }4

(8.73)

4. Transportation costs = cost of transporting used products from 
collection centers to production facility + remanufactured and 
new products from production facilities to demand centers:

TA A TB B Nuv iuv
vui

vw ivw ivw
wvi

( ) (8.74)

5. Disposal cost: Apart from the number of units disposed of and 
the cost to dispose of a product, disposal cost depends on the 
percentage of recyclable content in the product and the disposal 
cost index (a number on a scale 0–10; the higher the number, the 
more difficult or expensive it is to dispose of the product):
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{( ) ( )}SU Z DI W PRC Ciu iu i i i
ui

di1 (8.75)

System constraints

1. The number of used products sent to all production facilities 
from a collection center u must be equal to the number of used 
products picked for remanufacturing at that collection center:

A Ziuv
v

iu (8.76)

2. The demand at each center w must be met by either new or 
remanufactured products:

( )B N Nd wivw ivw iw
v

(8.77)

3. The number of remanufactured products transported from a pro-
duction facility v to a demand center w equals (number of used 
products fit for remanufacturing that are transported from col-
lection center u to that production facility) multiplied by v v, i.e., 
no loss of products in the supply chain due to reasons other than 
common cause variations, over which there is no control. v is a 
factor that accounts for the unassignable (common) causes of vari-
ation at the production facility v:

B A vivw iuv v
uw

(8.78)

4. The total number of used products of type i picked for remanu-
facturing at collection center u must be at most equal to the total 
number of used products fit for remanufacturing:

Z SU biu iu i( )1 (8.79)

5. The total number of used products of all types collected (before 
accounting for probability of breakage) at all collection centers 
must be at least equal to the net demand (this is to encourage the 
use of remanufactured products):



© 2009 by Taylor & Francis Group, LLC

Optimization of Transportation of Products 177

SU Ndiu iw
wiui

(8.80)

6. The number of remanufactured products must be at most equal 
to the net demand (this is to avoid excess remanufacturing):

Z Ndiu
ui

i
wi

(8.81)

7. The space occupied by used products at the production facil-
ity, v, must at most be equal to the space available for used 
products at that facility:

x A S Yiuv

ui

v v1 1 .

(8.82)

8. The space occupied by new and remanufactured products at the 
production facility, v, must at most be equal to the space available 
for new and remanufactured products at that production facility 
(assuming both new and remanufactured products occupy the 
same space):

x B N S Yivw ivw v v
wi

2 2( ) (8.83)

9. The space occupied by used products at the collection center, u,
must at most be equal to the space available for used products at 
that collection center:

x a Siuv u
vi

1 (8.84)

10. The ratio of throughput to supply of used products of a produc-
tion facility must at least be equal to a preset value for the pro-
duction facility to be considered efficient (this is valid only for 
remanufactured products):

TP SF Y MINTPSv v v/ (8.85)
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11. Nonnegativity constraints:

A B N Z u v w iiuv ivw ivw iu, , , , , , ,0 (8.86)

12. Y vv 0 1, , 0 if facility v not selected, 1 if selected (8.87)

8.6.2 Numerical Example

Three collection centers, two production facilities, two demand centers, and 
three types of products are considered in the example (see figure 8.2). The 
data used to implement the fuzzy goal programming model are:

CCu = 0.01; SU11 = 50; SU12 = 45; SU1 = 25; SU21 = 35; SU22 = 38; SU23 = 22; SU31 

= 30; SU2 = 35; SU33 = 28; DC = 0.05; DT1 = 10; DT2 = 12; DT3 = 9; CR1 = 13; CR2

= 10; CNP1 = 60; CNP2 = 45; TA11 = 0.01; TA12 = 0.09; TA21 = 0.5; TA22 = 0.1; 
TA31 = 0.02; TA32 = 0.04; TB11 = 0.04; TB12 = 0.03; TB21 = 0.09; TB22 = 0.05; DI1 = 
4; DI2 = 6; DI3 = 5; W1 = 0.8; W2 = 1.0; W3 = 0.9; PRC1 = 0.5; PRC2 = 0.6; PRC3 = 
0.75; Cd1 = 0.2; Cd2 = 0.5; Cd3 = 0.3; RSR1 = 30; RSR2 = 40; RSR3 = 45; RCYR1 = 
1.5; RCYR2 = 2; RCYR3 = 2.5; RCRI1 = 7; RCRI2 = 4; RCRI3 = 5; SP1 = 65; SP2 = 
53; SP3 = 60; Nd11 = 20; Nd12 = 15; Nd21 = 16; Nd22 = 22; Nd31 = 25; Nd32 = 20; 1

= 0.4; 2 = 0.6; b1 = 0.2; b2 = 0.4; b3 = 0.3; X1 = 0.7; S11 = 400; S12 = 400; S1 = 150; 
S2 = 150; S3 = 150; X2 = 0.7; S21 = 500; S22 = 500; TP* = 3,500; TPL = 2,000; RR* = 
1,000; RRL = 800; NDI* = 60; NDIU = 100; MINTPS = 0.25

Upon application of the above data to the model using LINGO (v4), the fol-
lowing optimal solution is obtained:

Z12 = 15; Z13 = 20; Z21 = 21; Z22 = 17; Z31 = 5; Z32 = 18; Z33 = 18; N111 = 7; N211 = 9; 
A121 = 15; A131 = 20; A212 = 21; A222 = 17; A311 = 5; A312 = 9; A321 = 18; A331 = 17; A332 

= 20; B111 = 13; B112 = 15; B311 = 25; B312 = 6; B221 = 7; B222 = 22; B322 = 14; Y1 = 1; Y2

= 1; TP = 3,500; RR = 1,000; NDI = 77; μ1 = 1; μ2 = 1; μ3 = 0.59

It should be noted that the achievements of TP and RR (μ1 and μ2) are at 
their maximum, whereas that of NDI is not (μ3). In addition, both production 
facilities are chosen for the network design. Also, 86% of the net demand 
is satisfied by remanufactured products and the remaining 14% by newly 
manufactured products.
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8.7 Conclusions

In this chapter, five models are presented for achieving transportation of the 
right quantities of products (used, remanufactured, and new) across a reverse 
or closed-loop supply chain while satisfying certain constraints. The first and 
second models are for a reverse supply chain and use linear integer program-
ming and linear physical programming, respectively. The third, fourth, and 
fifth models are for a closed-loop supply chain and employ goal programming, 
linear physical programming, and fuzzy goal programming, respectively.
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9
Evaluation of Marketing Strategies

9.1 The Issue

The success of a reverse/closed-loop supply chain program is heavily depen-
dent on the level of public participation (in the program), which in turn is 
shouldered by the marketing strategy of that program. Hence, evaluating 
the marketing strategy of a reverse/closed-loop supply chain program is 
equivalent to evaluating how well the strategy is driving the public to par-
ticipate in the program. Studies (for example, see [1] and [2]) are conducted in 
numerous cities around the world in order to assess the level of participation 
of the public in the respective reverse/closed-loop supply chain programs. 
The officials of each program painstakingly approach many homes in the 
respective city with questions regarding how convenient the program is to 
the public and how the program can be improved. Although the drivers for 
governments and companies to implement these programs and evaluate the 
programs’ marketing strategies are environmental consciousness and profit-
ability, respectively, the drivers for the public to participate in the programs 
are numerous and often conflicting with each other (for example, the more 
regularly a reverse/closed-loop supply chain program offers to collect used 
products from consumers, the higher the taxes the consumers will have to 
pay; high regularity of collection and low tax levied on the consumers are 
conflicting drivers here).

The various scenarios for evaluating the marketing strategy of a reverse/
closed-loop supply chain program could differ as follows:

1. The program could be exclusively for reverse supply chain opera-
tions, i.e., absence of a closed loop.

2. The program could be for a closed-loop supply chain and the deci-
sion maker could be uninterested in considering interdependencies 
among evaluation criteria.

3. The program could be for a closed-loop supply chain and the deci-
sion maker could be interested in considering interdependencies 
among evaluation criteria.
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In this chapter, various models to address the above scenarios are pre-
sented. The first model addresses scenario 1 and employs fuzzy logic and 
technique for order preference by similarity to ideal solution (TOPSIS). The 
second model is for scenario 2 and employs fuzzy logic, quality function 
deployment (QFD), and method of total preferences. The third model is for 
scenario 3 and uses fuzzy logic, extent analysis method, and analytic net-
work process. This chapter is organized as follows: Section 9.2 presents the 
first model, section 9.3 shows the second model, section 9.4 presents the third 
model, and section 9.5 gives some conclusions.

9.2 First Model (Fuzzy Logic and TOPSIS)

In section 9.2.1, a list of drivers for the public to participate in a reverse sup-
ply chain program are identified. Then, in section 9.2.2, using a numerical 
example, fuzzy logic and TOPSIS are employed to evaluate the marketing 
strategy of a reverse supply chain program with respect to the drivers identi-
fied in section 9.2.1.

9.2.1 Drivers of Public Participation

The following is a fairly exhaustive list of self-explanatory drivers for the 
public to participate in a reverse supply chain:

1. Knowledge of the drivers of implementation of the reverse supply 
chain program (KD)

2. Awareness of the reverse supply chain program being imple-
mented (AR)

3. Simplicity of the reverse supply chain program (SR)

4. Convenience for disposal of used products at collection centers (CD)

5. Incentives for disposal of used products (ID)

6. Effectiveness of collection methods (EC)

7. Information supplied about used products being collected (IU)

8. Regularity of collection of used products (RC)

9. Design of special methods for abusers of the reverse supply chain 
program (AB)

10. Good locations of demand centers where reprocessed goods are 
sold (LR)

11. Incentives to buyers of reprocessed goods (IB)

12. Cooperation of the program organizers with the local government (CL)
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9.2.2 Methodology

Suppose there are three representatives of a community to weigh the drivers 
of public participation, depending on which driver greatly motivates them to 
participate, which driver is not so important for them, and so on. Because it 
is difficult for them to assign numerical weights, they give linguistic weights 
like “very high,” “low,” and “medium.” Table 9.1 illustrates the linguistic 
weights. Using fuzzy logic, these linguistic weights are converted into trian-
gular fuzzy numbers (TFNs; table 9.2 shows one of the many ways for such 
a conversion) and then averaged to form another TFN called the average 
weight. For example, the average weight of the driver ID (see tables 9.1 and 
9.2) is

Low High Low
3

TABLE 9.1

Linguistic weights of drivers of public participation (first model)
Driver Rep. 1 Rep. 2 Rep. 3

KD Low Medium High

AR Medium High Very high

SR Low Low Very high

CD Very high Very high Medium

ID Low High Low

EC High Medium Very high

IU Low Low High

RC Medium Low Low

AB Medium Low Medium

LR Very high High High

IB High High Medium

CL Medium High Low

TABLE 9.2

Conversion table for weights of drivers (first model)
Linguistic weight TFN

Very high (0.7, 0.9, 1.0)

High (0.5, 0.7, 0.9)

Medium (0.3, 0.5, 0.7)

Low (0.1, 0.3, 0.5)

Very low (0.0, 0.1, 0.3)
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which is

0 1 0 5 0 1
3

0 3 0 7 0 3
3

0 5 0 9 0 5
3

. . . , . . . , . . .
 = (0.23, 0.43, 0.63)

(see table 9.3).
The sum of the average weights of all the drivers is calculated using equa-

tion (4.4) as (4.27, 6.33, 8.93). The ratio of the average weight of each driver to 
the sum of the average weights of all the drivers gives the corresponding 
normalized weight. For example, the normalized weight of ID is 

( . , . , . )
( . , . , . )
0 23 0 43 0 63
4 27 6 33 8 93

 which is simplified using equation (4.7) as (0.03, 0.06, 0.15) (see table 9.4).
Suppose that one is interested in evaluating marketing strategies of two dif-

ferent reverse supply chain programs. Now that the weights (normalized) of 
the drivers of public participation are ready, the two marketing strategies are 
linguistically rated by the three representatives with respect to each driver. 
Table 9.5 is used for conversion of linguistic ratings into TFNs. Assuming (for 
arithmetic simplicity) that the representatives come to a consensus about the 
rating of each marketing strategy with respect to each driver, the decision 
matrix shown in table 9.6 (S1 and S2 are the marketing strategies) is formed. 
For example, the rating (TFN) of marketing strategy S2 with respect to driver 
ID is (5, 7, 10) (see table 9.6) because the representatives unanimously rate it 
as good with respect to ID (the TFN for the linguistic rating good is (5, 7, 10) 
(see table 9.5)).

TABLE 9.3

Average weights of drivers of public participation (first model)
Driver Average weight

KD (0.3, 0.5, 0.7)

AR (0.5, 0.7, 0.87)

SR (0.3, 0.5, 0.67)

CD (0.57, 0.77, 0.9)

ID (0.23, 0.43, 0.63)

EC (0.5, 0.7, 0.87)

IU (0.23, 0.43, 0.63)

RC (0.17, 0.37, 0.57)

AB (0.17, 0.43, 0.63)

LR (0.57, 0.77, 0.93)

IB (0.43, 0.63, 0.83)

CL (0.3, 0.5, 0.7)

Sum (4.27, 6.73, 8.93)
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TABLE 9.4

Normalized weights of drivers of public participation (first model)
Driver Normalized weight

KD (0.03, 0.07, 0.16)

AR (0.06, 0.10, 0.20)

SR (0.03, 0.07, 0.16)

CD (0.06, 0.11, 0.21)

ID (0.03, 0.06, 0.15)

EC (0.07, 0.10, 0.20)

IU (0.03, 0.06, 0.15)

RC (0.02, 0.05, 0.13)

AB (0.02, 0.06, 0.15)

LR (0.06, 0.11, 0.22)

IB (0.05, 0.09, 0.20)

CL (0.03, 0.07, 0.16)

TABLE 9.5

Conversion for ratings of marketing strategies (first model)
Linguistic rating TFN

Very good (7, 10, 10)

Good (5, 7, 10)

Fair (2, 5, 8)

Poor (0, 3, 5)

Very poor (0, 0, 3)

TABLE 9.6

Decision matrix (first model)
Driver S1 S2

KD (7, 10, 10) (0, 0, 3)

AR (2, 5, 8) (7, 10, 10)

SR (2, 5, 8) (2, 5, 8)

CD (0, 0, 3) (7, 10, 10)

ID (7, 10, 10) (5, 7, 10)

EC (5, 7, 10) (2, 5, 8)

IU (0, 3, 5) (2, 5, 8)

RC (0, 0, 3) (7, 10, 10)

AB (2, 5, 8) (5, 7, 10)

LR (5, 7, 10) (5, 7, 10)

IB (0, 3, 5) (7, 10, 10)

CL (0, 0, 3) (5, 7, 10)
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Now one is ready to perform the six steps in TOPSIS.

Step 1: Construct the normalized decision matrix. Table 9.7 shows the 
normalized decision matrix formed by applying equation (4.49) on 
each element of table 9.5. For example, the normalized fuzzy rating 
of strategy S2 with respect to driver ID (see table 9.7) is calculated 
using equation (4.49) as follows:

r52 =

( , , )
( , , ) ( , , )

( . , . , .5 7 10
7 10 10 5 7 10

0 35 0 57 1 1
2 2

66)

Note that equations (4.4), (4.6), and (4.7) are used to perform the basic 
operations in the calculation of r52 above.

Step 2: Construct the weighted normalized decision matrix. Table 9.8 shows 
the weighted normalized decision matrix. This is constructed using 
the normalized weights of the drivers listed in table 9.6 and the 
normalized decision matrix in table 9.7. For example, the weighted 
normalized fuzzy rating of strategy S2 with respect to driver ID,
i.e., (0.01, 0.04, 0.17) (see table 9.8), is calculated by multiplying the 
normalized weight of ID, i.e., (0.03, 0.07, 0.15) (see table 9.6), with the 
normalized fuzzy rating of S2 with respect to ID, i.e., (0.35, 0.57, 1.16) 
(see table 9.7). Equation (4.6) is used for the multiplication.

Step 3: Determine the ideal and negative-ideal solutions. Each row in the 
decision matrix shown in table 9.8 has a maximum rating and a 
minimum rating. They are the ideal and negative-ideal solutions, 
respectively, for the corresponding driver. For arithmetic simplicity, 
it is assumed here that the rating with the highest most promising 

TABLE 9.7

Normalized decision matrix (first model)
Driver S1 S2

KD (0.67, 1.00, 1.43) (0.00, 0.00, 0.43)

AR (0.16, 0.45, 1.10) (0.55, 0.89, 1.37)

SR (0.18, 0.71, 2.83) (0.18, 0.71, 2.83)

CD (0.00, 0.00, 0.43) (0.67, 1.00, 1.43)

ID (0.50, 0.82, 1.16) (0.35, 0.57, 1.16)

EC (0.39, 0.81, 1.86) (0.16, 0.58, 1.49)

IU (0.00, 0.51, 2.50) (0.21, 0.86, 4.00)

RC (0.00, 0.00, 0.43) (0.67, 1.00, 1.43)

AB (0.16, 0.58, 1.49) (0.39, 0.81, 1.86)

LR (0.35, 0.71, 1.41) (0.35, 0.71, 1.41)

IB (0.00, 0.29, 0.71) (0.63, 0.96, 1.43)

CL (0.00, 0.00, 0.60) (0.48, 1.00, 2.00)
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quantity (second parameter in the TFN) is the maximum, and the 
rating with the lowest most promising quantity is the minimum. For 
example (see table 9.8), with respect to driver ID, the maximum rat-
ing is (0.01, 0.05, 0.17) and the minimum rating is (0.01, 0.04, 0.17). 
This is because, in the row for that driver, (0.01, 0.05, 0.17) is the TFN 
with the highest second parameter and (0.01, 0.04, 0.17) is the TFN 
with the lowest second parameter.

Step 4: Calculate the separation distances. The separation distances (see 
table 9.9) for each marketing strategy are calculated using equations 
(4.52) and (4.53). For example, the positive separation distance for 
strategy S2 (see table 9.9) is calculated using the weighted normal-
ized fuzzy ratings of S2 (see table 9.8) and the ideal solution (obtained 
in step 3) for each driver of public participation.

Step 5: Calculate the relative closeness coefficient. Using equation (4.54), the 
relative closeness coefficient is calculated for each marketing strat-
egy (see table 9.10). For example, the relative closeness coefficient (i.e., 
0.692) for strategy S2 (see table 9.10) is the ratio of the strategy’s nega-
tive separation distance (i.e., 0.215) to the sum (i.e., 0.215 + 0.097 = 
0.312) of its negative and positive separation distances (see table 9.9).

Step 6: Rank the preference order. Because the relative closeness coefficient 
of strategy S2 (i.e., 0.692) is much higher than that of strategy S1 (i.e., 
0.308) (see table 9.10), it is evident that S2 is much better than S1.

TABLE 9.8

Weighted normalized decision matrix (first model)
Driver S1 S2

KD (0.02, 0.07, 0.23) (0.00, 0.00, 0.07)

AR (0.01, 0.05, 0.22) (0.03, 0.09, 0.28)

SR (0.01, 0.05, 0.44) (0.01, 0.05, 0.44)

CD (0.00, 0.00, 0.09) (0.04, 0.11, 0.30)

ID (0.01, 0.05, 0.17) (0.01, 0.04, 0.17)

EC (0.03, 0.08, 0.38) (0.01, 0.06, 0.30)

IU (0.00, 0.03, 0.37) (0.01, 0.06, 0.59)

RC (0.00, 0.00, 0.06) (0.01, 0.05, 0.19)

AB (0.00, 0.04, 0.22) (0.01, 0.05, 0.28)

LR (0.02, 0.08, 0.31) (0.02, 0.08, 0.31)

IB (0.00, 0.03, 0.14) (0.03, 0.09, 0.28)

CL (0.00, 0.00, 0.10) (0.02, 0.07, 0.33)
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9.3 Second Model (Fuzzy Logic, Quality Function 
Deployment, and Method of Total Preferences)

In this section, a model to evaluate the marketing strategy planned by a 
closed-loop supply chain program is presented. Fuzzy logic, quality func-
tion deployment (QFD), and method of total preferences are employed in the 
approach. Section 9.3.1 presents the performance aspects and their enablers 
considered in the use of QFD, and section 9.3.2 gives a numerical example 
illustrating the model’s application.

9.3.1 Performance Aspects and Enablers

The following performance aspects of the marketing strategies are consid-
ered in the employment of quality function deployment:

1. Program simplicity (PS) (reflects the relative ease with which the pub-
lic can participate in the program)

2. Manufacturing practices (MP) (reflects the production facility’s green 
image, innovation, and improvement capability compared to its peers)

3. Government issues (GI) (reflects how stringent the local government 
regulations are)

4. Incentives (reflects the incentives offered by the collection centers and 
the local government to the public for participating in the program)

5. Public knowledge (PK) (reflects the awareness among the public about 
the program being implemented)

The following enablers are considered for the above-listed performance 
aspects:

TABLE 9.9

Separation distances of marketing strategies (first model)
Marketing strategy Positive distance S* Negative distance S–

S1 0.215 0.097

S2 0.096 0.215

TABLE 9.10

Relative closeness coefficients of marketing strategies (first model)
Marketing strategy Relative closeness coefficient

S1 0.311

S2 0.692
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1. Program simplicity (PS): Strategic location of collection centers (SL), 
effectiveness of collection methods (ECM)

2. Manufacturing practices (MP): Green competency (GC), innovation, 
and improvement capability (I&I)

3. Government issues (GI): Regulations (Reg.), company’s level of coop-
eration with local governments (Co-op)

4. Incentives: Disposal incentives by the local government and the collec-
tion centers (DI), incentives for buying remanufactured goods (BI)

5. Public knowledge (PK): Good advertisement of the program being 
implemented (AD), socioeconomic status of the society where the 
program is implemented (SES)

For the convenience of the reader, the performance aspects and the respec-
tive enablers are shown in a four-level hierarchy (see figure 9.1). The first 
level represents the goal (evaluating the marketing strategies), the second 
level contains the performance aspects, the third level contains the enablers 
of the performance aspects considered in the second level, and the fourth 
level contains the candidate marketing strategies (A and B) to be evaluated.

FIGURE 9.1

Performance aspects and enablers of marketing strategies (second model).
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9.3.2 Numerical Example

Suppose that there are three experts (E1, E2, and E3) for giving linguistic val-
ues to Rij (relationship score for performance aspect i and enabler j) and di

(importance value of performance aspect i relative to the other performance 
aspects) data. Table 9.11 shows the linguistic scale for Rij and di.

Tables 9.12–9.16 show the linguistic relationship scores (Rij) as given by 
three experts to the enablers of PS, MP, GI, Incentives, and PK, respectively.

Table 9.17 gives the linguistic importance values (di) of PS, MP, GI, Incen-
tives, and PK as given by the three experts.

These linguistic relationship scores are converted into TFNs using the con-
version scale shown in table 9.11. The TFNs are averaged before defuzzify-
ing. For example, consider SL’s linguistic relationship scores given by the 
three experts (see table 9.12). The average relationship score for SL, calculated 
using equations (4.4) and (4.7), is

7 5 5 7 5
3

10 7 5 10
3

10 10 10
3

. . , . , = (6.67, 9.17, 10)

The defuzzified relationship score for SL, calculated using equation (4.8), is 
8.61. The average relationship scores and the corresponding defuzzified val-
ues for PS, MP, GI, Incentives, and PK are calculated as (6.67, 9.17, 10) (defuzzi-
fied value = 8.61), (4.17, 6.67, 9.17) (defuzzified value = 6.67), (5.83, 8.33, 9.17) 
(defuzzified value = 7.78), (5.83, 8.33, 10) (defuzzified value = 8.05), and (3.33, 
6.83, 8.33) (defuzzified value = 5.83), respectively.

The ATIRs and RTIRs of the enablers are then calculated using equations 
(4.30) and (4.31), respectively (see table 9.18).

Table 9.19 shows the scale for converting linguistic WAnj (degree to which 
alternative n can deliver enabler j) values given by the three experts into 
TFNs (for arithmetic simplicity, we assume consensus among the experts).

The WAnj linguistic value and the corresponding defuzzified TFN (calcu-
lated using equation (4.8)) for each alternative are shown in table 9.20.

Using equation (4.32), the TUP value for each alternate marketing strat-
egy is calculated. For example, TUP for marketing strategy A is calculated 
using the RTIR values from table 9.18 and the defuzzified WAnj values from 
table 9.20 as (0.13)×(10) + (0.095)×(7.33) + (0.087)×(10) + (0.077)×(5) + (0.121)×(5) 
+ (0.117)×(7.33) + (0.089)×(7.33) + (0.125)×(5) + (0.0821)×(3) + (0.07)×(5) = 6.64.

Finally, using equation (4.33), the NTUP value for each alternative market-
ing strategy is calculated. For example, NTUP for marketing strategy A is 
calculated as

6 64
6 64 6 62

0 5007.
. .

.

 It is evident that marketing strategy A has more potential than marketing 
strategy B, and hence the decision maker would choose strategy A.
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TABLE 9.11

Linguistic weight conversion table for Rij and di (second model)
Linguistic rating TFN

Very strong (VS) (7.5, 10, 10)

Strong (S) (5, 7.5, 10)

Medium (M) (2.5, 5, 7.5)

Weak (W) (0, 2.5, 5)

Very weak (VW) (0, 0, 2.5)

TABLE 9.12

Linguistic relationship scores of PS and its enablers (second model)
E1 E2 E3

SL VS S VS

ECM S M S

TABLE 9.13

Linguistic relationship scores of MP and its enablers (second model)
E1 E2 E3

GC VS VS S

I&I S S VS

TABLE 9.14

Linguistic relationship scores of GI and its enablers (second model)
E1 E2 E3

Reg. S VS M

Co-op VS M M

TABLE 9.15

Linguistic relationship scores of incentives and its enablers (second model)
E1 E2 E3

DI VS S VS

BI S M S

TABLE 9.16

Linguistic relationship scores of PK and its enablers (second model)
E1 E2 E3

AD VS M VS

SES M S S
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9.4 Third Model (Fuzzy Logic, Extent Analysis  
Method, and Analytic Network Process)

In this section, a model to evaluate the marketing strategy planned by a 
closed-loop supply chain program is presented. Fuzzy logic and analytic 
network process are employed in the approach. The difference between this 
model and the second one (see section 9.3) is that interdependencies among 
criteria are considered here (unlike in the second model). Section 9.4.1 pres-

TABLE 9.17

Linguistic relationship scores of performance aspects (second model)
E1 E2 E3

PS S VS VS

MP S S M

GI VS VS M

Incentives S VS S

PK S M M

TABLE 9.18

ATIRs and RTIRs of enablers (second model)
Enabler ATIR RTIR

SL 74.15 0.13

ECM 52.62 0.10

GC 48.15 0.09

I&I 42.59 0.08

Reg. 66.98 0.12

Co-op 64.81 0.12

DI 49.23 0.09

BI 69.37 0.13

AD 45.37 0.08

SES 38.89 0.07

TABLE 9.19

Conversion table for linguistic WAnj (second model)
Linguistic rating TFN

Very good (VG) (7, 10, 10)

Good (G) (5, 7, 10)

Fair (F) (2, 5, 8)

Poor (P) (1, 3, 5)

Very poor (VP) (0, 0, 3)
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ents the main criteria and subcriteria for evaluation, and section 9.4.2 gives a 
numerical example illustrating the model’s application.

9.4.1 Main Criteria and Subcriteria

The main criteria and subcriteria are shown in a four-level hierarchy (see fig-
ure 9.2; differs slightly from figure 9.1). For a description of these criteria, see 
section 9.3.1 (performance aspects and enablers). The first level represents 
the goal (evaluating the marketing strategies), the second level contains the 
main criteria, the third level contains the subcriteria of the main criteria con-
sidered in the second level, and the fourth level contains the candidate mar-
keting strategies (C and D) to be evaluated.

9.4.2 Numerical Example

Suppose that there are three experts to carry out pair-wise comparisons among 
the main criteria and subcriteria using linguistic weights (high, medium, low, 
etc.). These linguistic weights are converted into TFNs using table 9.21.

Table 9.22 illustrates the comparative linguistic weights (H = high, M = 
medium, L = low) given to the main criteria. Using fuzzy logic, these lin-
guistic weights are converted into TFNs (using table 9.21) and then averaged 
to form another TFN called the average weight. For example, the average 
weight of “simplicity” criteria with respect to government issues (GI) is

H H M
3

which is

TABLE 9.20

Linguistic and corresponding defuzzified WA values of marketing strategies 
(second model)

Enabler A B

SL VG 10 G 7.33

ECM G 7.33 F 5

GC VG 10 VG 10

I&I F 5 VG 10

Reg F 5 G 7.33

Co-op G 7.33 G 7.33

DI G 7.33 F 5

BI F 5 P 3

AD P 3 P 3

SES F 5 VG 10
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0 5 0 5 0 3
3

0 7 0 7 0 5
3

0 9 0 9 0 7
3

. . . , . . . , . . .
 = (0.43, 0.63, 0.83)

(see table 9.23).
Then the extent analysis method (see equations (4.9)–(4.11)) is applied to the 

average weights of the main criteria to calculate the fuzzy synthetic extent 
values for the same. By applying equations (4.12)–(4.14) to the fuzzy synthetic 
extent values, the weight vectors are obtained for the main criteria, which are 
then normalized to get the normalized weights shown in table 9.24.

FIGURE 9.2

Main criteria and subcriteria (third model).
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TABLE 9.21

Linguistic weight conversion table for criteria and subcriteria (third model)
Linguistic weight TFN

Very high (VH) (0.7, 0.9, 1.0)

High (H) (0.5, 0.7, 0.9)

Medium (M) (0.3, 0.5, 0.7)

Low (L) (0.1, 0.3, 0.5)

Very low (VL) (0.0, 0.1, 0.3)

TABLE 9.22

Linguistic weights of main criteria (third model)
Criteria PS GI Incentives MP PK

PS (1, 1, 1) (H, H, M) (M, L, M) (L, VL, M) (L, VL, L)

GI 1/(H, H, M) (1, 1, 1) (VH, H, H) (H, M, H) (M, H, M)

Incentives 1/(M, L, M) 1/(VH, H, H) (1, 1, 1) (H, M, H) (M, L, M)

MP 1/(L, VL, M) 1/(H, M, H) 1/(H, M, H) (1, 1, 1) (H, M, H)

PK 1/(L, VL, L) 1/(M, H, M) 1/(M, L, M) 1/(H, M, H) (1, 1, 1)

TABLE 9.23

Average weights of main criteria (third model)
Criteria PS GI Incentives MP PK

PS (1, 1, 1) (0.43, 0.63, 
0.83)

(0.23, 0.43, 
0.63)

(0.14, 0.3, 0.5) (0.07, 0.23, 
0.43)

GI (1.20, 1.58, 
2.32)

(1, 1, 1) (0.57, 0.77, 
0.63)

(0.43, 0.63, 
0.83)

(0.37, 0.57, 
0.77)

Incentives (1.58, 2.32, 
4.34)

(1.58, 1.29, 
1.75)

(1, 1, 1) (0.43, 0.63, 
0.83)

(0.23, 0.43, 
0.63)

MP (2, 3.33, 7.14) (1.2, 1.58, 
2.32)

(1.2, 1.58, 
2.32)

(1, 1, 1) (0.43, 0.63, 
0.83)

PK (2.32, 4.34, 
4.28)

(1.29, 0.07, 
2.7)

(1.58, 2.32, 
4.34)

(1.2, 1.58, 
2.32)

(1, 1, 1)

Sum (8.11, 12.59, 
29.1)

(5.52, 4.58, 
8.61)

(4.59, 6.11, 
8.93)

(3.2, 4.14, 
5.58)

(2.1, 2.86, 
3.66)

TABLE 9.24

Normalized weights of main criteria (third model)
Criteria Weight

PS 0.015

GI 0.131

Incentives 0.217

MP 0.304

PK 0.331
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In a similar manner, the normalized weight of each subcriterion with 
respect to its main criteria is obtained (see table 9.25).

Table 9.26 shows the matrix of interdependencies obtained after carrying 
out pair-wise comparisons among the subcriteria and the steps involved in 
the extent analysis method.

The super matrix M is made to converge to obtain a long-term stable set of 
weights. For convergence, M must be made column stochastic, which is done 
by raising M to the power of 2k+1, where k is an arbitrarily large number; in 
the example here, k = 59. Table 9.27 shows the converged super matrix.

TABLE 9.26

Matrix of interdependencies (third model)
SL ECM RC Reg. Co-op GC I&I TQ DI BI AD SES

SL 0 0.2 0.08 0 0 0 0 0 0 0 0 0

ECM 0.11 0 0.92 0 0 0 0 0 0 0 0 0

RC 0.889 0.8 0 0 0 0 0 0 0 0 0 0

Regulations 0 0 0 0 0.5 0 0 0 0 0 0 0

Co-op 0 0 0 0.5 0 0 0 0 0 0 0 0

GC 0 0 0 0 0 0 0.51 0.259 0 0 0 0

I&I 0 0 0 0 0 0.11 0 0.74 0 0 0 0

TQ 0 0 0 0 0 0.88 0.48 0 0 0 0 0

DI 0 0 0 0 0 0 0 0 0 0.5 0 0

BI 0 0 0 0 0 0 0 0 0.5 0 0 0

AD 0 0 0 0 0 0 0 0 0 0 0 0.5

SES 0 0 0 0 0 0 0 0 0 0 0.5 0

TABLE 9.25

Normalized weights of subcriteria with respect to main criteria 
(third model)

Subcriteria Weight

SL 0.37

ECM 0.33

RC 0.30

Regulations 0.12

Co-op 0.88

GC 0.80

I&I 0.20

TQ 0.06

DI 0.29

BI 0.65

AD 0.89

SES 0.11
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Table 9.28 shows the linguistic ratings (and their corresponding TFNs) that 
are used to evaluate the marketing strategies with respect to the subcriteria.

Relative ratings of the marketing strategies (C and D) are obtained by 
carrying out pair-wise comparisons among the marketing strategies with 
respect to the subcriteria and applying the steps involved in the extent 
analysis method. In the example here, there are seventeen subcriteria that 
lead to seventeen such pair-wise comparison matrices. Table 9.29 shows the 
relative ratings of the marketing strategies.

Using equation (4.2), the desirability indices (DI) for each marketing strat-
egy are calculated (see table 9.30).

The overall performance index for each marketing strategy is calculated 
by multiplying the desirability indices (table 9.30) of each marketing strategy 
by the weights of the criteria (table 9.24) and summing up over all the criteria 
and normalizing those indices. Table 9.31 shows the overall weighted indices 
for the two marketing strategies.

Strategy D’s overall weighted index is greater; hence, the decision maker 
would choose marketing strategy D.

TABLE 9.27

Converged super matrix (third model)
SL 0.121

ECM 0.487

RC 0.45

Regulations 0

Co-op 0

GC 0.271

I&I 0.326

TQ 0.401

DI 0

BI 0

AD 0

SES 0

TABLE 9.28

Linguistic weight conversion table for ratings of marketing strategies (third model)
Linguistic weight TFN

Very good (VG) (7, 10, 10)

Good (G) (5, 7, 10)

Fair (F) (2, 5, 8)

Poor (P) (1, 3, 5)

Very poor (VP) (1, 1, 3)
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9.5 Conclusions

In this chapter, three models to evaluate marketing strategies for a reverse/
closed supply chain program are presented. The first model employs fuzzy 
logic and technique for order preference by similarity to ideal solution (TOP-
SIS). The second model employs fuzzy logic, quality function deployment 
(QFD), and method of total preferences. Finally, the third model uses fuzzy 
logic, extent analysis method, and analytic network process. Whereas the 
first model is for a reverse supply chain program, the second and third mod-
els are for a closed-loop supply chain program. The difference between the 
second and third models is that interdependencies among criteria are con-
sidered in the third model, but not in the second one.

TABLE 9.29

Relative ratings of marketing strategies with respect to subcriteria (third model)
C D

SL 0.50 0.50
ECM 0.48 0.52
RC 0.50 0.50

Regulations 0.50 0.50
Co-op 0.48 0.52

GC 0.48 0.52
I&I 0.48 0.52
TQ 0.49 0.51
DI 0.48 0.52
BI 0.50 0.50

AD 0.49 0.51
SES 0.48 0.52

TABLE 9.30

Desirability indices (third model)
Criterion S1 S2

PS 0.16 0.16

GI 0.00 0.00

Incentives 0.18 0.19

MP 0.00 0.00

PK 0.00 0.00

TABLE 9.31

Overall weighted indices for marketing strategies (third model)
Marketing strategy Overall weighted index

C 0.49

D 0.51
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10
Evaluation of Production Facilities

10.1 The Issue

In addition to selecting efficient collection centers (see chapter 6), strategic 
planning of a closed-loop supply chain involves selecting efficient produc-
tion facilities where not only new products are produced but also used 
products are reprocessed. The various scenarios for evaluating production 
facilities for efficiency could differ as follows:

1. The decision maker could desire to structure the problem using a 
simple hierarchical model, wherein interactions among evaluation 
criteria could be ignored.

2. Interactions among evaluation criteria could not be ignored, which 
in turn leads to a more complex problem structure.

3. Interactions among evaluation criteria could not be ignored, and the 
decision maker could desire to see how close the rating of a candi-
date production facility is to the “ideal” solution.

In this chapter, three models to address the above scenarios are presented. 
These models evaluate production facilities in terms of both environmen-
tal consciousness and potentiality. The first model addresses scenario 1 and 
employs fuzzy logic and technique for order preference by similarity to ideal 
solution (TOPSIS). The second model is for scenario 2 and employs fuzzy 
logic, extent analysis method, and analytic network process. The third model 
is for scenario 3 and employs fuzzy multicriteria analysis method.

This chapter is organized as follows: section 10.2 presents the first model, 
section 10.3 shows the second model, section 10.4 presents the third model, 
and section 10.4 gives some conclusions.



© 2009 by Taylor & Francis Group, LLC

202 Strategic Planning Models for Reverse and Closed-Loop Supply Chains

10.2 First Model (Fuzzy Logic and TOPSIS)

The problem of evaluation of production facilities for designing a closed-loop 
supply chain is framed as a four-level hierarchy. The first level in the hierar-
chy contains the objective, i.e., evaluation of the efficiency of each candidate 
production facility; the second level contains the main criteria for evalua-
tion; the third level contains the subcriteria under each main criterion; and 
the fourth (last) level contains the candidate production facilities. Figure 10.1 
illustrates these hierarchy levels.

FIGURE 10.1

Levels of hierarchy.
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Section 10.2.1 gives brief descriptions of the main and subcriteria for evalu-
ation, and section 10.2.2 illustrates the model using a numerical example.

10.2.1 Evaluation Criteria

The following are brief descriptions of the main criteria on the second level 
in the hierarchy and the corresponding subcriteria on the third level (see [1] 
for detailed descriptions of some of the criteria).

10.2.1.1 Environmentally Conscious Design (ECD)

ECD is concerned with designing products with certain environmental con-
siderations. The following subcriteria fall under ECD.

10.2.1.1.1 Design for Disassembly (DD)

Disassembly is used in both recycling and remanufacturing to increase the 
recovery rate by allowing selective separation of parts and materials. Thus, 
DD initiatives lead to the correct identification of design specifications to 
minimize the complexity of the structure of the product by minimizing the 
number of parts, increasing the use of common materials, and choosing a 
fastener and joint types that are easily removable.

10.2.1.1.2 Design for Recycling (DC)

DC suggests making better choices for material selection such that the pro-
cesses of material selection and material recovery become more efficient. 
Some important characteristics of DC are long product life with the mini-
mized use of raw materials (source reduction), more adaptable materials for 
multiproduct applications, and fewer components within a given material in 
an engineered system.

10.2.1.1.3 Design for Remanufacturing (DR)

DR suggests the use of reusable parts and packaging in the design of new 
products for source reduction.

10.2.1.2 Environmentally Conscious Manufacturing (ECM)

In addition to environmentally friendly product designs, issues involving 
manufacturing must be addressed to have a complete concept of environ-
mentally conscious production. These issues (subcriteria on the third level in 
the hierarchy) are the following:

Selecting low-pollution energy sources for manufacturing (ES)

Designing cooling systems such that the coolant can be reused and 
the heat collected by it can be utilized as an energy source (CS)

Monitoring waste generation as a result of manufacturing (WM)
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10.2.1.3 Attitude of Management (AMT)

The attitude of the decision makers (managers) in the facility matters a great 
deal when it comes to implementing the above practices (ECD and ECM). All 
the managers in the facility must have the following credentials (subcriteria 
on the third level in the hierarchy):

Environmentally friendly thoughts (EF)
Flexibility to handle uncertainties in the supply and quality of used 
products (FU)
Readiness to usage of automated disassembly systems (AD) to avoid 
high lead time, expensive labor use, and possible human exposure 
to hazardous by-products

10.2.1.4 Potentiality (POT)

A candidate production facility is also evaluated in terms of its potentiality 
to efficiently reprocess the incoming used products. The following factors 
(subcriteria on the third level in the hierarchy) serve as potentiality measures 
(these factors are explained in detail in section 7.2.1):

Throughput (TP)/supply (SU)
Throughput (TP)×disassembly time (DT)
Quality of reprocessed products (QO)–quality of used products (QI)

10.2.1.5 Cost (COS)

Cost incurred by a production facility can be divided into the following 
types (subcriteria on the third level in the hierarchy):

Fixed cost (FC), which is the sum of space cost, machinery cost, per-
sonnel cost, etc.
Operational cost (OC), which is the sum of employee salaries, main-
tenance cost, etc.

10.2.1.6 Customer Service (CSE)

Customer service basically gives an idea about how well a production facil-
ity is:

Giving incentives to the collection centers supplying used products 
(IC)
Giving incentives to the customers buying reprocessed goods (IS)
Utilizing incentives provided by the government (UG)
Meeting environmental regulations established by the government (ER)
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Note that the term customer service is used here because any beneficiary is a 
customer, be it the government, the collection center, or the actual customer 
buying reprocessed goods.

10.2.2 Numerical Example

In this example, linguistic (high, medium, etc.) weights are given by three 
experts to the main criteria (second level in the hierarchy) and the subcriteria 
(third level in the hierarchy). These linguistic weights are quantified using 
triangular fuzzy numbers (TFNs) in table 10.1.

Table 10.2 shows the linguistic weights given by the three experts to the 
main criteria. These are quantified using table 10.1 and then averaged to form 
another TFN called the average weight. For example, the average weight of 
the main criterion, ECD, is (H + H + M)/3, which is

0 5 0 5 0 3
3

0 7 0 7 0 5
3

0 9 0 9 0 7
3

. . . , . . . , . . .
 = (0.43, 0.63, 0.83)

(see table 10.2).
The sum of the average weights of all the main criteria is calculated, using 

equation (4.4), as (2.29, 3.45, 4.59). The ratio of the average weight of each main 

TABLE 10.1

Linguistic weight conversion table for criteria and subcriteria (first model)
Linguistic weight Triangular fuzzy number

Very high (VH) (0.7, 0.9, 1.0)

High (H) (0.5, 0.7, 0.9)

Medium (M) (0.3, 0.5, 0.7)

Low (L) (0.1, 0.3, 0.5)

Very low (VL) (0.0, 0.1, 0.3)

TABLE 10.2

Relative weights of main criteria (first model)
Criterion Expert E1 Expert E2 Expert E3 Average weight Relative weight

ECD H H M (0.43, 0.63, 0.83) (0.09, 0.18, 0.36)

ECM VH H VH (0.63, 0.83, 0.97) (0.14, 0.24, 0.42)

AMT L L VL (0.07, 0.23, 0.43) (0.02, 0.07, 0.19)

POT H H H (0.50, 0.70, 0.90) (0.11, 0.20, 0.39)

COS M H H (0.43, 0.63, 0.83) (0.09, 0.18, 0.36)

CSE M L M (0.23, 0.43, 0.63) (0.05, 0.12, 0.28)
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criterion to the sum of the average weights of all the main criteria gives the 
corresponding relative weight. For example, the relative weight of ECD is

( . , . , . )
( . , . , . )
0 43 0 63 0 83
2 29 3 45 4 59

which is simplified, using equation (4.7), as (0.09, 0.18, 0.36) (see table 10.2).
Similarly, linguistic weights, average weights, and relative weights of sub-

criteria of ECD, ECM, AMT, POT, COS, and CSE are calculated and shown in 
tables 10.3–10.8, respectively.

TABLE 10.3

Relative weights of subcriteria of ECD (first model)
Subcriterion E1 E2 E3 Average weight Relative weight

DD H H M (0.43, 0.63, 0.83) (0.21, 0.42, 0.89)

DC L L VL (0.07, 0.23, 0.43) (0.03, 0.15, 0.46)

DR M H H (0.43, 0.63, 0.83) (0.21, 0.42, 0.89)

TABLE 10.4

Relative weights of subcriteria of ECM (first model)
Subcriterion E1 E2 E3 Average weight Relative weight

ES H H H (0.50, 0.70, 0.90) (0.21, 0.40, 0.78)

CS M H H (0.43, 0.63, 0.83) (0.18, 0.36, 0.72)

WM M L M (0.23, 0.43, 0.63) (0.10, 0.24, 0.54)

TABLE 10.5

Relative weights of subcriteria of AMT (first model)
Subcriterion E1 E2 E3 Average weight Relative weight

EF L L VL (0.07, 0.23, 0.43) (0.04, 0.18, 0.59)

FU M H H (0.43, 0.63, 0.83) (0.23, 0.49, 1.14)

AD M L M (0.23, 0.43, 0.63) (0.12, 0.33, 0.86)

TABLE 10.6

Relative weights of subcriteria of POT (first model)
Subcriterion E1 E2 E3 Average weight Relative weight

TP/SU H H M (0.43, 0.63, 0.83) (0.21, 0.42, 0.89)

TP×DT L L VL (0.07, 0.23, 0.43) (0.03, 0.15, 0.46)

QO–QI M H H (0.43, 0.63, 0.83) (0.21, 0.42, 0.89)
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Because the weights considered in the TOPSIS method must sum to unity, 
the weight of each subcriterion on the third level in the hierarchy is multi-
plied by the weight of its corresponding main criterion on the second level 
in the hierarchy. The weights of the criteria on the third level in the hierar-
chy, which are ready for use in the TOPSIS method, are shown in table 10.9. 
Table 10.10 shows the linguistic ratings (performance measures) and their 
corresponding TFNs, which are used to evaluate the production facilities 
with respect to each subcriterion, except TP/SU, TP×DT, QO–QI, FC, and OC.
The reason for this exception is that historical crisp (nonfuzzy) measures of 
these subcriteria (viz., TP/SU, TP×DT, QO–QI, FC, and OC) for each produc-
tion facility can be easily obtained. Table 10.11 shows the crisp measures that 
are considered for these subcriteria for each production facility.

Now one is ready to perform the six steps in the TOPSIS.

Step 1: Construct the normalized decision matrix. Table 10.12 shows the 
decision matrix whose elements are the fuzzy ratings of the pro-
duction facilities with respect to each subcriterion, as given by the 
three experts (for arithmetic simplicity, it is assumed here that the 
experts give a consensus rating). For example, the rating of facility 
C with respect to subcriterion DD is (1, 3, 5) (see table 10.12) because 
the experts unanimously rate it as poor with respect to DD (the TFN 
for the linguistic rating “poor” is (1, 3, 5) (see table 10.10)). Also, for 
consistency in the TOPSIS, the crisp measures of subcriteria TP/
SU, TP×DT, QO–QI, FC, and OC are converted into TFNs, each of 
whose parameters are all equal. For example, crisp measure 10 of 
subcriterion FC for facility A is converted into the TFN (10, 10, 10) 
(see table 10.12). Table 10.13 shows the normalized decision matrix 
formed by applying equation (4.49) to each element of table 10.12. For 
example, the normalized fuzzy rating of facility C with respect to 

TABLE 10.7

Relative weights of subcriteria of COS (first model)
Subcriterion E1 E2 E3 Average weight Relative weight

FC H H M (0.43, 0.63, 0.83) (0.34, 0.73, 1.66)

OC L L VL (0.07, 0.23, 0.43) (0.06, 0.27, 0.86)

TABLE 10.8

Relative weights of subcriteria of CSE (first model)
Subcriterion E1 E2 E3 Average weight Relative weight

IC M H H (0.43, 0.63, 0.83) (0.17, 0.35, 0.78)

IS L L VL (0.07, 0.23, 0.43) (0.03, 0.13, 0.40)

UG H H H (0.50, 0.70, 0.90) (0.19, 0.39, 0.84)

ER L L VL (0.07, 0.23, 0.43) (0.03, 0.13, 0.40)
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TABLE 10.9

Weights of subcriteria for TOPSIS (first model)

Subcriterion

Weight for TOPSIS (relative weight of 
subcriterion × relative weight of 

corresponding main criterion)

DD (0.02, 0.08, 0.32)

DC (0.00, 0.03, 0.17)

DR (0.02, 0.08, 0.32)

ES (0.03, 0.10, 0.33)

CS (0.03, 0.09, 0.30)

WM (0.01, 0.06, 0.23)

EF (0.00, 0.01, 0.11)

FU (0.00, 0.03, 0.22)

AD (0.00, 0.02, 0.16)

TP/SU (0.02, 0.08, 0.35)

TP8 × DT (0.00, 0.03, 0.18)

QO–QI (0.02, 0.08, 0.35)

FC (0.03, 0.13, 0.60)

OC (0.00, 0.05, 0.31)

IC (0.01, 0.04, 0.22)

IS (0.00, 0.02, 0.11)

UG (0.01, 0.05, 0.24)

ER (0.00, 0.02, 0.11)

TABLE 10.10

Linguistic rating conversion table for production facilities (first model)
Linguistic rating Triangular fuzzy number

Very good (VG) (7, 10, 10)

Good (G) (5, 7, 10)

Fair (F) (2, 5, 8)

Poor (P) (1, 3, 5)

Very poor (VP) (0, 0, 3)

TABLE 10.11

Crisp measures of subcriteria for evaluation (first model)

Subcriterion

Production facilities

A B C D

TP/SU 0.9 0.7 0.9 0.5

TP×DT 25 30 15 40

QO–QI 0.6 0.7 0.3 0.5

FC ($) 100,000 150,000 70,000 200,000

OC ($) 500 300 450 400



© 2009 by Taylor & Francis Group, LLC

Evaluation of Production Facilities 209

subcriterion DD (see table 10.13) is calculated using equation (4.49) 
as follows:

r13 = ( , , )
( , , ) ( , , ) ( , , ) ( , ,

1 3 5
7 10 10 2 5 8 1 3 5 5 7 102 2 2 ))

( . , . , . )
2

0 06 0 22 0 56

Note that equations (4.4) and (4.7) are used to perform the basic oper-
ations in the calculation of r13 above.

Step 2: Construct the weighted normalized decision matrix. Table 10.14 shows 
the weighted normalized decision matrix. This is constructed using 
the weights of the subcriteria listed in table 10.9 and the normalized 
decision matrix in table 10.13. For example, the weighted normalized 
fuzzy rating of facility C with respect to subcriterion DD, i.e., (0, 0.02, 
0.18) (see table 10.14), is calculated by multiplying the weight of DD,
i.e., (0.02, 0.08, 0.32) (see table 10.9), by the normalized fuzzy rating 
of facility C with respect to DD, i.e., (0.06, 0.22, 0.56) (see table 10.13). 
Equation (4.6) is used for the multiplication.

TABLE 10.12

Decision matrix for TOPSIS (first model)

Subcriterion

Production facilities

A B C D

DD (7, 10, 10) (2, 5, 8) (1, 3, 5) (5, 7, 10)

DC (5, 7, 10) (0, 0, 3) (5, 7, 10) (5, 7, 10)

DR (2, 5, 8) (7, 10, 10) (2, 5, 8) (5, 7, 10)

ES (1, 3, 5) (5, 7, 10) (1, 3, 5) (1, 3, 5)

CS (0, 0, 3) (5, 7, 10) (1, 3, 5) (0, 0, 3)

WM (1, 3, 5) (0, 0, 3) (2, 5, 8) (2, 5, 8)

EF (1, 3, 5) (5, 7, 10) (5, 7, 10) (7, 10, 10)

FU (5, 7, 10) (7, 10, 10) (2, 5, 8) (7, 10, 10)

AD (0, 0, 3) (7, 10, 10) (1, 3, 5) (0, 0, 3)

TP/SU (0.9, 0.9, 0.9) (0.7, 0.7, 0.7) (0.9, 0.9, 0.9) (0.5, 0.5, 0.5)

TP×DT (25, 25, 25) (30, 30, 30) (15, 15, 15) (40, 40, 40)

QO–QI (0.6, 0.6, 0.6) (0.7, 0.7, 0.7) (0.3, 0.3, 0.3) (0.5, 0.5, 0.5)

FC (10, 10, 10) (15, 15, 15) (7, 7, 7) (20, 20, 20)

OC (5, 5, 5) (3, 3, 3) (4.5, 4.5, 4.5) (4, 4, 4)

IC (0, 0, 3) (0, 0, 3) (5, 7, 10) (1, 3, 5)

IS (1, 3, 5) (2, 5, 8) (7, 10, 10) (5, 7, 10)

UG (2, 5, 8) (0, 0, 3) (1, 3, 5) (0, 0, 3)

ER (1, 3, 5) (5, 7, 10) (5, 7, 10) (2, 5, 8)
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Step 3: Determine the ideal and negative-ideal solutions. Each row in the 
decision matrix shown in table 10.14 has a maximum rating and a 
minimum rating. They are the ideal and negative-ideal solutions, 
respectively, for the corresponding subcriterion. For arithmetic sim-
plicity, it is assumed here that the rating with the highest most prom-
ising quantity (second parameter in the TFN) is the maximum and 
the rating with the lowest most promising quantity is the minimum. 
For example (see table 10.14), with respect to subcriterion DD, the 
maximum rating is (0.01, 0.06, 0.36) and the minimum rating is (0, 
0.02, 0.18). This is because, in the row for that subcriterion, (0.01, 0.06, 
0.36) is the TFN with the highest second parameter and (0, 0.02, 0.18) 
is the TFN with the lowest second parameter.

Step 4: Calculate the separation distances. The separation distances (see 
table 10.15) for each production facility are calculated using equa-
tions (4.52) and (4.53). For example, the positive separation distance 
for facility C (see table 10.15) is calculated using equation (4.52), 
which contains the weighted normalized fuzzy ratings of C (see 
table 10.14) and the ideal solution (obtained in step 3) for each subcri-
terion. It is important to note that because some TFNs with negative 
smallest possible quantities or negative most promising quantities 

TABLE 10.13

Normalized decision matrix (first model)

Subcriterion

Production facilities

A B C D

DD (0.41, 0.74, 1.13) (0.12, 0.37, 0.90) (0.06, 0.22, 0.56) (0.29, 0.52, 1.13)

DC (0.28, 0.58, 1.15) (0, 0, 0.35) (0.28, 0.58, 1.15) (0.28, 0.58, 1.15)

DR (0.11, 0.35, 0.88) (0.39, 0.71, 1.1) (0.11, 0.35, 0.88) (0.28, 0.50, 1.1)

ES (0.11, 0.58, 2.89) (0, 0, 1.73) (0.11, 0.58, 2.89) (0.11, 0.58, 2.89)

CS (0, 0, 0.59) (0.42, 0.92, 1.96) (0.08, 0.39, 0.98) (0, 0, 0.59)

WM (0.08, 0.39, 1.67) (0, 0, 1) (0.16, 0.65, 2.67) (0.16, 0.65, 2.67)

EF (0.06, 0.21, 0.5) (0.28, 0.49, 1) (0.28, 0.49, 1) (0.39, 0.7, 1)

FU (0.26, 0.42, 0.89) (0.37, 0.6, 0.89) (0.1, 0.3, 0.71) (0.37, 0.6, 0.89)

AD (0, 0, 0.42) (0.59, 0.96, 1.41) (0.08, 0.29, 0.71) (0, 0, 0.42)

TP/SU (0.59, 0.59, 0.59) (0.46, 0.46, 0.46) (0.59, 0.59, 0.59) (0.33, 0.33, 0.33)

TP×DT (0.43, 0.43, 0.43) (0.52, 0.52, 0.52) (0.26, 0.26, 0.26) (0.69, 0.69, 0.69)

QO–QI (0.55, 0.55, 0.55) (0.64, 0.64, 0.64) (0.28, 0.28, 0.28) (0.46, 0.46, 0.46)

FC (0.36, 0.36, 0.36) (0.54, 0.54, 0.54) (0.25, 0.25, 0.25) (0.72, 0.72, 0.72)

OC (0.6, 0.6, 0.6) (0.36, 0.36, 0.36) (0.54, 0.54, 0.54) (0.48, 0.48, 0.48)

IC (0, 0, 0.59) (0, 0, 0.59) (0.42, 0.92,1.96) (0.08, 0.39, 0.98)

IS (0.06, 0.22, 0.56) (0.12, 0.37, 0.90) (0.41, 0.74, 1.13) (0.29, 0.52, 1.13)

UG (0.19, 0.86, 3.58) (0, 0, 1.34) (0.1, 0.51, 2.24) (0, 0, 1.34)

ER (0.06, 0.26, 0.67) (0.29, 0.61, 1.35) (0.29, 0.61, 1.35) (0.12, 0.44, 1.08)
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are obtained in this step, those TFNs are defuzzified using equation 
(4.8) before squaring them in the process of calculating separation 
distances.

Step 5: Calculate the relative closeness to the ideal solution. Using equation 
(4.54), the relative closeness coefficient for each facility in the supply 
chain is calculated (see table 10.16). For example, the relative close-
ness coefficient (i.e., 0.592) for facility C (see table 10.16) is the ratio of 
the facility’s negative separation distance (i.e., 0.29) to the sum (i.e., 
0.29 + 0.2 = 0.49) of its negative and positive separation distances (see 
table 10.15).

Step 6: Rank the preference order. Because the relative closeness coeffi-
cients of facilities A and C (0.547 and 0.592, respectively) are much 
higher than those of facilities B and D (0.394 and 0.434, respectively) 
(see table 10.16), it is evident that facilities A and C are much better 
than facilities B and D. If the cutoff value of the relative closeness 
coefficient decided by the decision maker is, say, 0.45, he or she will 
identify facilities A and C as the efficient ones in the region where 
the closed-loop supply chain is to be designed.

TABLE 10.14

Weighted normalized decision matrix (first model)

Subcriterion

Production facilities

A B C D

DD (0.01, 0.06, 0.36) (0, 0.03, 0.29) (0, 0.02, 0.18) (0.01, 0.04, 0.36)

DC (0, 0.02, 0.20) (0, 0, 0.06) (0, 0.02, 0.20) (0, 0.02, 0.20)

DR (0, 0.03, 0.28) (0.01, 0.06, 0.35) (0, 0.03, 0.28) (0.01, 0.04, 0.35)

ES (0, 0.06, 0.95) (0, 0, 0.57) (0, 0.06, 0.95) (0, 0.06, 0.95)

CS (0, 0, 0.18) (0.01, 0.08, 0.59) (0, 0.03, 0.29) (0, 0, 0.18)

WM (0, 0.02, 0.38) (0, 0, 0.23) (0, 0.04, 0.61) (0, 0.04, 0.61)

EF (0, 0, 0.06) (0, 0, 0.11) (0, 0, 0.11) (0, 0.01, 0.11)

FU (0, 0.01, 0.20) (0, 0.02, 0.20) (0, 0.01, 0.16) (0, 0.02, 0.20)

AD (0, 0, 0.07) (0, 0.02, 0.23) (0, 0.01, 0.11) (0, 0, 0.07)

TP/SU (0.01, 0.05, 0.20) (0.01, 0.04, 0.16) (0.01, 0.05, 0.20) (0.01, 0.03, 0.11)

TP×DT (0, 0.01, 0.08) (0, 0.02, 0.09) (0, 0.01, 0.05) (0, 0.02, 0.12)

QO–QI (0.01, 0.04, 0.19) (0.01, 0.05, 0.22) (0.01, 0.02, 0.10) (0.01, 0.04, 0.16)

FC (0.01, 0.05, 0.22) (0.02, 0.07, 0.32) (0.01, 0.03, 0.15) (0.02, 0.09, 0.43)

OC (0, 0.03, 0.18) (0, 0.02, 0.11) (0, 0.03, 0.17) (0, 0.02, 0.15)

IC (0, 0, 0.13) (0, 0, 0.13) (0, 0.04, 0.43) (0, 0.02, 0.22)

IS (0, 0, 0.06) (0, 0.01, 0.10) (0, 0.01, 0.12) (0, 0.01, 0.12)

UG (0, 0.04, 0.86) (0, 0, 0.32) (0, 0.03, 0.54) (0, 0, 0.32)

ER (0, 0.01, 0.07) (0, 0.01, 0.15) (0, 0.01, 0.15) (0, 0.01, 0.12)
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10.3 Second Model (Fuzzy Logic, Extent Analysis 
Method, and Analytic Network Process)

In this model, the main criteria and corresponding subcriteria are the same 
as those in the first model (see figure 10.1); the only difference is that the 
IC and IS are combined and simply called incentives. The following numeri-
cal example illustrates the use of fuzzy logic, extent analysis method, and 
analytic network process in the model. Three experts carry out pair-wise 
comparisons among the main and subcriteria using linguistic weights (high, 
medium, low, etc.). These linguistic weights are converted into TFNs using 
table 10.17. Table 10.18 provides the comparative linguistic weights (H = high, 
M = medium, L = low) given to the main criteria on the second level of the 
hierarchy. Using fuzzy logic, these linguistic weights are converted into 
TFNs (using table 10.17) and then averaged to form another TFN called the 
average weight. For example, the average weight of criteria ECD with respect 
to ECM is

H H M
3

which is

TABLE 10.15

Separation measures of facilities (first model)
Production facility Positive distance S* Negative distance S–

A 0.239 0.288

B 0.320 0.208

C 0.200 0.290

D 0.305 0.233

TABLE 10.16

Relative closeness coefficients of production facilities (first model)
Production facility Relative closeness coefficient

A 0.547

B 0.394

C 0.592

D 0.434



© 2009 by Taylor & Francis Group, LLC

Evaluation of Production Facilities 213

0 5 0 5 0 3
3

0 7 0 7 0 5
3

0 9 0 9 0 7
3

. . . , . . . , . . .
 = (0.43, 0.63, 0.83)

(see table 10.19).
The steps of the extent analysis method are applied to the average weights 

to get the normalized weight vectors of main criteria. For example, consider 
the normalized weight vector of main criterion ECD shown in table 10.20; 
applying equations (4.9)–(4.11) to the average weights in table 10.19, the syn-
thetic extent value of ECD is calculated as (0.052, 0.12, 0.181). By applying 
equations (4.12)–(4.14) to the synthetic extent values, the weight vectors are 
obtained for the main criteria, which are then normalized to get the normal-
ized weight vectors shown in table 10.20.

Similarly, table 10.21 shows normalized weight vectors of each subcrite-
rion with respect to its main criterion, obtained after carrying out pair-wise 
comparisons among subcriteria with respect to their main criteria and then 
applying the steps of the extent analysis method.

Table 10.22 shows the matrix of interdependencies obtained after carrying 
out pair-wise comparisons among the subcriteria and carrying out the steps 
involved in the extent analysis method.

The super matrix M is made to converge to obtain a long-term stable set of 
weights. For convergence, M must be made column stochastic, which is done 

TABLE 10.17

Linguistic weight conversion table for criteria and subcriteria (second model)
Linguistic weight TFN

Very high (VH) (0.7, 0.9, 1.0)

High (H) (0.5, 0.7, 0.9)

Medium (M) (0.3, 0.5, 0.7)

Low (L) (0.1, 0.3, 0.5)

Very low (VL) (0.0, 0.1, 0.3)

TABLE 10.18

Linguistic weights of main criteria (second model)
Criterion ECD ECM AMT POT COS CSE

ECD (1, 1, 1) (H, H, M) (M, L, M) (L, VL, M) (L, VL, L) (M, L, L)

ECM 1/(H, H, M) (1, 1, 1) (VH, H, H) (H, M, H) (M, H, M) (H, VH, M)

AMT 1/(M, L, M) 1/(VH, H, H) (1, 1, 1) (H, M, H) (M, L, M) (M, H, L)

POT 1/(L, VL, M) 1/(H, M, H) 1/(H, M, H) (1, 1, 1) (H, M, H) (M, L, H)

COS 1/(L, VL, L) 1/(M, H, M) 1/(M, L, M) 1/(H, M, H) (1, 1, 1) (H, M, H)

CSE 1/(M, L, L) 1/(H, VH, M) 1/(M, H, L) 1/(M, L, H) 1/(H, M, H) (1, 1, 1)
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by raising M to the power of 2k+1, where k is an arbitrarily large number; in 
this example, k = 59. Table 10.23 shows the converged super matrix ( Akj

I ).
Table 10.24 shows the linguistic ratings and their corresponding TFNs, which 

are used to evaluate the production facilities with respect to each subcriterion.
Relative weights of the production facilities are obtained by carrying out 

pair-wise comparisons among the production facilities with respect to the 
subcriteria and applying the steps involved in the extent analysis method. 
Table 10.25 shows the relative weights of the production facilities ( Sikj ).

Using equation (4.2) of analytic network process (ANP), the desirabil-
ity indices (DI) for each production facility are calculated and shown in 
table 10.26.

The overall performance index for each production facility is calculated 
by multiplying the desirability index (table 10.26) of each production facility 
for each criterion by the weight of the criterion (table 10.20), summing over 

TABLE 10.19

Average weights of main criteria (second model)
Criterion ECD ECM AMT POT COS CSE

ECD (1, 1, 1) (0.43, 0.63, 
0.83)

(0.23, 0.43, 
0.63)

(0.14, 0.3, 
0.5)

(0.07, 0.23, 
0.43)

(0.17, 0.37, 
0.57)

ECM (1.20, 1.58, 
2.32)

(1, 1, 1) (0.57, 0.77, 
0.63)

(0.43, 0.63, 
0.83)

(0.37, 0.57, 
0.77)

(0.5, 0.7, 
0.57)

AMT (1.58, 2.32, 
4.34)

(1.58, 1.29, 
1.75)

(1, 1, 1) (0.43, 0.63, 
0.83)

(0.23, 0.43, 
0.63)

(0.3, 0.5, 
0.7)

POT (2, 3.33, 
7.14)

(1.2, 1.58, 2.32) (1.2, 1.58, 
2.32)

(1, 1, 1) (0.43, 0.63, 
0.83)

(0.3, 0.5, 
0.7)

COS (2.32, 4.34, 
4.28)

(1.29, 0.07, 2.7) (1.58, 2.32, 
4.34)

(1.2, 1.58, 
2.32)

(1, 1, 1) (0.43, 0.63, 
0.83)

CSE (1.75, 2.7, 
5.88)

(1.75, 1.42, 2) (1.42, 2, 
3.33)

(1.42, 2, 
3.33)

(1.2, 1.58, 
2.32)

(1, 1, 1)

Sum (9.87, 15.29, 
34.9)

(7.27,6.01,10.6) (6.02, 8.11, 
12.2)

(4.63, 6.14, 
8.81)

(3.3, 4.44, 
5.98)

(2.7, 3.7, 
4.37)

TABLE 10.20

Weights of main criteria (Pi) (second model)
Criterion Weight

ECD 0.008

ECM 0.093

AMT 0.159

POT 0.223

COS 0.253

CSE 0.260
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all the criteria, and normalizing those weighted sums. Table 10.27 shows the 
overall performance indices for the four production facilities.

Facility S’s overall performance index is the largest; hence, it is the best of 
the lot.

10.4 Third Model (Fuzzy Multicriteria Analysis Method)

In this model, the main criteria and corresponding subcriteria are the same 
as those in the second model. The model is illustrated using a numerical 
example, as follows. Table 10.28 shows the TFNs used for making qualitative 
assessments (pair-wise comparisons). Table 10.29 shows the pair-wise com-
parisons among the main criteria with respect to the goal of evaluation of 
production facilities using the membership functions shown in table 10.28. 
By applying the extent analysis method on the matrix of pair-wise compari-
sons (table 10.29), the corresponding weights of the main criteria are calcu-
lated and shown in table 10.30.

Similarly, pair-wise comparisons are carried out among the candidate 
production facilities with respect to the subcriteria, and the extent analysis 
method is applied on each of those matrices to derive the corresponding 

TABLE 10.21

Weights of subcriteria with respect to main criteria ( Akj
D ) (second model)

Subcriterion Weight

DD 0.365

DC 0.333

DR 0.302

ES 0.057

CS 0.290

WM 0.653

EF 0.067

FU 0.335

AD 0.598

TP/SU 0.136

TP×DT 0.334

QO–QI 0.527

FC 0.121

OC 0.879

Incentives 0.097

UG 0.477

ER 0.427
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TABLE 10.22

Matrix of interdependencies (super matrix M) (second model)
DD DC DR ES CS WM EF FU AD TP/SU TP×DT QO–QI FC OC Incentives UG ER

DD 0 0.2 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DC 0.11 0 0.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DR 0.88 0.79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ES 0 0 0 0 0.11 0.14 0 0 0 0 0 0 0 0 0 0 0

CS 0 0 0 0.51 0 0.85 0 0 0 0 0 0 0 0 0 0 0

WM 0 0 0 0.48 0.88 0 0 0 0 0 0 0 0 0 0 0 0

EF 0 0 0 0 0 0 0 0.5 0.33 0 0 0 0 0 0 0 0

FU 0 0 0 0 0 0 0.51 0 0.66 0 0 0 0 0 0 0 0

AD 0 0 0 0 0 0 0.48 0.46 0 0 0 0 0 0 0 0 0

TP/SU 0 0 0 0 0 0 0 0 0 0 0.5 0.25 0 0 0 0 0

TP×DT 0 0 0 0 0 0 0 0 0 0.11 00.4 0.74 0 0 0 0 0

QO–QI 0 0 0 0 0 0 0 0 0 0.88 0 0 0 0 0 0 0

FC 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0

OC 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0

Incentives 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.33

UG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0.66

ER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.88 0.79 0

© 2009 by Taylor & Francis Group, LLC
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fuzzy weights. In this example, there are seventeen subcriteria that result 
in seventeen such pair-wise comparisons among the candidate production 
facilities. For example, tables 10.31 and 10.32 show the pair-wise compari-
sons among the candidate production facilities with respect to the subcrite-
ria design for disassembly (DD) and design for recycling (DC), respectively.

Table 10.33 shows the decision matrix (X), the matrix showing the perfor-
mance of each candidate production facility with respect to the subcriteria. 
These weights are obtained by applying the extent analysis method on each 
of the pair-wise comparison matrices of candidate production facilities with 
respect to the subcriteria.

Pair-wise comparisons are carried out among the subcriteria with respect 
to their main criteria. The fuzzy weights of the subcriteria with respect to the 

TABLE 10.23

Converged super matrix (second model)
Subcriterion Weight

DD 0.121

DC 0.427

DR 0.45

ES 0.11

CS 0.44

WM 0.44

EF 0.29

FU 0.37

AD 0.32

TP/SU 0.27

TP×DT 0.32

QO–QI 0.4

FC 7.89E-31

OC 7.89E-31

Incentives 0.21

UG 0.32

ER 0.45

TABLE 10.24

Linguistic weight conversion table for production facilities (second model)
Linguistic weight TFN

Very good (VG) (7, 10, 10)

Good (G) (5, 7, 10)

Fair (F) (2, 5, 8)

Poor (P) (1, 3, 5)

Very poor (VP) (1, 1, 3)
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TABLE 10.25

Relative weights of production facilities with respect to subcriteria (second model)
Subcriteria/
production

facilities P Q R S

DD 0.26 0.26 0.24 0.24

DC 0.26 0.25 0.24 0.24

DR 0.26 0.26 0.24 0.24

ES 0.26 0.26 0.24 0.24

CS 0.26 0.25 0.25 0.24

WM 0.26 0.26 0.24 0.24

EF 0.26 0.25 0.25 0.24

FU 0.26 0.26 0.23 0.25

AD 0.26 0.25 0.25 0.24

TP/SU 0.26 0.25 0.25 0.24

TP×DT 0.25 0.27 0.24 0.24

QO–QI 0.26 0.25 0.25 0.24

FC 0.26 0.23 0.26 0.25

OC 0.26 0.23 0.26 0.25

Incentives 0.26 0.25 0.25 0.24

UG 0.26 0.25 0.24 0.25

ER 0.26 0.25 0.25 0.24

TABLE 10.26

Desirability indices (DI) (second model)
Criterion P Q R S

ECD 0.09 0.08 0.08 0.08

ECM 0.11 0.11 0.10 0.10

AMT 0.09 0.09 0.08 0.08

POT 0.09 0.09 0.09 0.15

COS 0.00 0.00 0.00 0.00

CSE 0.10 0.09 0.09 0.09

TABLE 10.27

Overall performance indices for production facilities (second model)
Production facility Overall performance index

P 0.26

Q 0.20

R 0.19

S 0.35
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TABLE 10.28

Triangular fuzzy numbers used for qualitative assessments (third 
model)

Fuzzy number Membership function

1 (1, 1, 3)

x (x – 2, x, x + 2) for x = 3, 5, 7

9 (7, 9, 11)

TABLE 10.29

Pair-wise comparisons among main criteria (third model)
ECD ECM AMT POT COS CSE

ECD (1, 1, 3) (1, 3, 5) (7, 9, 11) (5, 7, 9) (1, 3, 5) (1, 3, 5)

ECM 1/(1, 3, 5) (1, 1, 3) (1, 3, 5) (7, 9, 11) (1, 1, 3) (5, 7, 9)

AMT 1/(7, 9, 11) 1/(1, 3, 5) (1, 1, 3) (3, 5, 7) (5, 7, 9) (7, 9, 11)

POT 1/(5, 7, 9) 1/(7, 9, 11) 1/(3, 5, 7) (1, 1, 3) (7, 9, 11) (1, 3, 5)

COS 1/(1, 3, 5) 1/(1, 1, 3) 1/(5, 7, 9) 1/(7, 9, 11) (1, 1, 3) (5, 7, 9)

CSE 1/(1, 3, 5) 1/(5, 7, 9) 1/(7, 9, 11) 1/(1, 3, 5) 1/(5, 7, 9) (1, 1, 3)

TABLE 10.30

Fuzzy weights of main criteria (third model)
Criterion TFN

ECD (0.12, 0.29, 0.62)

ECM (0.11, 0.23, 0.52)

AMT (0.12, 0.25, 0.51)

POT (0.05, 0.13, 0.29)

COS (0.03, 0.08, 0.20)

CSE (0.01, 0.02, 0.09)

TABLE 10.31

Pair-wise comparisons among production facilities with respect to DD (third 
model)

P1 P1 P3 P4

P1 (1, 1, 3) (3, 5, 7) (1, 3, 5) (5, 7, 9)

P2 1/(3, 5, 7) (1, 1, 3) (5, 7, 9) (3, 5, 7)

P3 1/(1, 3, 5) 1/(5, 7, 9) (1, 1, 3) (1, 3, 5)

P4 1/(5, 7, 9) 1/(3, 5, 7) 1/(1, 3, 5) (1, 1, 3)
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main criteria are obtained by applying the extent analysis method to those 
pair-wise comparison matrices. Table 10.34 shows the fuzzy weights of the 
subcriteria with respect to their main criteria.

Table 10.35 shows the fuzzy reciprocal judgment matrix (W) that is obtained 
by multiplying the fuzzy weights of the subcriteria by the corresponding 
main criteria weights.

A fuzzy performance matrix Z representing the overall performance of all 
candidate production facilities with respect to each criterion is obtained by 
multiplying the weight vector (fuzzy reciprocal judgment matrix, W) by the 
decision matrix, X. Table 10.36 shows the fuzzy performance matrix, Z.

An interval performance matrix is derived by using an -cut on the per-
formance matrix, Z, where 0 ≤  ≤ 1. The value of  represents the decision 

TABLE 10.32

Pair-wise comparisons among production facilities with respect to DC
 (third model)

P1 P1 P3 P4

P1 (1, 1, 3) (1, 3, 5) (5, 7, 9) (7, 9, 11)

P2 1/(1, 3, 5) (1, 1, 3) (3, 5, 7) (5, 7, 9)

P3 1/(5, 7, 9) 1/(3, 5, 7) (1, 1, 3) (1, 3, 5)

P4 1/(7, 9, 11) 1/(5, 7, 9) 1/(1, 3, 5) (1, 1, 3)

TABLE 10.33

Fuzzy decision matrix (X) (third model)
P1 P2 P3 P4

DD (0.17, 0.45, 1.04) (0.16, 0.37, 0.84) (0.04, 0.12, 0.4) (0.025, 0.04, 0.19)

DC (0.22, 0.5, 1.04) (0.15, 0.33, 0.74) (0.03, 0.11, 0.31) (0.02, 0.04, 0.16)

DR (0.12, 0.34, 0.76) (0.17, 0.36, 0.74) (0.13, 0.25, 0.52) (0.02, 0.03, 0.12)

ES (0.17, 0.42, 0.88) (0.16, 0.35, 0.77) (0.07, 0.16, 0.41) (0.02, 0.04, 0.17)

CS (0.14, 0.39, 0.96) (0.12, 0.31, 0.75) (0.1, 0.23, 0.54) (0.02, 0.05, 0.22)

WM (0.38, 0.82, 1.64) (0.35, 0.78, 1.45) (0.2, 0.47, 0.91) (0.04, 0.07, 0.25)

EF (0.38, 0.96, 2.08) (0.22, 0.60, 1.44) (0.13, 0.33, 0.84) (0.04, 0.08, 0.35)

FU (0.19, 0.45, 0.96) (0.15, 0.33, 0.72) (0.06, 0.15, 0.38) (0.02, 0.04, 0.17)

AD (0.18, 0.41, 0.84) (0.14, 0.3, 0.65) (0.12, 0.24, 0.47) (0.02, 0.03, 0.11)

TP/SU (0.38, 0.82, 1.64) (0.35, 0.78, 1.45) (0.2, 0.47, 0.91) (0.04, 0.07, 0.25)

TP×DT (0.17, 0.45, 1.04) (0.16, 0.37, 0.84) (0.04, 0.12, 0.4) (0.02, 0.04, 0.19)

QO–QI (0.17, 0.45, 1.04) (0.16, 0.37, 0.84) (0.04, 0.12, 0.4) (0.02, 0.04, 0.19)

FC (0.12, 0.32, 0.71) (0.2, 0.39, 0.75) (0.12, 0.24, 0.49) (0.02, 0.03, 0.11)

OC (0.22, 0.46, 0.91) (0.14, 0.3, 0.62) (0.09, 0.19, 0.4) (0.022, 0.03, 0.12)

Incentives (0.75, 2.22, 4.66) (0.53, 1.55, 3.37) (0.62, 1.45, 2.95) (0.1, 0.22, 0.84)

UG (0.22, 0.46, 0.91) (0.14, 0.3, 0.62) (0.09, 0.19, 0.4) (0.022, 0.03, 0.12)

ER (0.17, 0.45, 1.04) (0.16, 0.37, 0.84) (0.04, 0.12, 0.4) (0.02, 0.04, 0.19)
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TABLE 10.34

Fuzzy weights of subcriteria with respect to main criteria 
 (third model)

Subcriterion Fuzzy weight

DD (0.14, 0.43, 1.03)

DC (0.24, 0.49, 0.99)

DR (0.03, 0.06, 0.28)

ES (0.16, 0.53, 1.43)

CS (0.13, 0.37, 0.98)

WM (0.04, 0.09, 0.41)

EF (0.28, 0.56, 1.16)

FU (0.12, 0.31, 0.69)

AD (0.04, 0.11, 0.29)

TP/SU (0.15, 0.48, 1.2)

TP×DT (0.19, 0.44, 1.04)

QO–QI (0.039, 0.07, 0.28)

FC (0.3, 0.83, 1.94)

OC (0.085, 0.16, 0.64)

Incentives (0.15, 0.48, 1.2)

UG (0.19, 0.44, 1.04)

ER (0.03, 0.07, 0.28)

TABLE 10.35

Fuzzy reciprocal judgment matrix (W) (third model)
Subcriterion Fuzzy weight

DD (0.017, 0.12, 0.64)

DC (0.02, 0.14, 0.615)

DR (0.004, 0.019, 0.177)

ES (0.01, 0.12, 0.74)

CS (0.015, 0.08, 0.514)

WM (0.005, 0.02, 0.215)

EF (0.03, 0.14, 0.59)

FU (0.015, 0.07, 0.35)

AD (0.005, 0.028, 0.151)

TP/SU (0.008, 0.06, 0.34)

TP×DT (0.01, 0.05, 0.3)

QO–QI (0.002, 0.009, 0.08)

FC (0.01, 0.06, 0.39)

OC (0.002, 0.01, 0.13)

Incentives (0.002, 0.011, 0.028)

UG (0.002, 0.01, 0.024)

ER (0.0005, 0.0001, 0.0006)
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maker’s degree of confidence in his or her fuzzy assessments regarding the 
production facility ratings and criteria weights. The larger the value of , the 
more confident the decision maker is about the fuzzy assessments, i.e., the 
assessments are closer to the most possible value a2 of the triangular fuzzy 
number (a1, a2, a3). In this example,  = 0.5. For example, consider the fuzzy 
performance rating of candidate production facility P1 (shown in bold in 
table 10.36) with respect to subcriterion DD. The -cut on this performance 
rating can be performed as (( . ) ,( . ) ) ( . , . ). .0 003 0 674 0 055 0 820 5 0 5 . Table 10.37 shows 
the interval performance matrix, Z , obtained by performing an -cut on the 
matrix shown in table 10.36.

An overall crisp performance matrix that incorporates the decision maker’s 
attitude toward risk, using an optimism index  (  = 1 implies the decision 
maker has an optimistic view, 0 implies a pessimistic view, and 0.5 implies 
a moderate view), is calculated using equations (4.22) and (4.23). Table 10.38 
shows the crisp performance matrix at an optimism index  = 0.5. For example, 
consider the -cut on the performance rating (shown in bold in table 10.37) of 

TABLE 10.36

Fuzzy performance matrix (Z) (third model)
P1 P1 P3 P4

DD (0.003, 0.056, 0.674) (0.002, 0.04, 0.54) (0.0007, 0.015, 0.25) (0.0004, 0.005, 0.12)

DC (0.006, 0.07, 0.64) (0.004, 0.04, 0.45) (0.001, 0.01, 0.195) (0.0006, 0.005, 0.09)

DR (0.0005, 0.006, 0.13) (0.0008, 0.007, 
0.13)

(0.0006, 0.005, 0.09) (0.00009, 0.0007, 
0.022)

ES (0.003, 0.05, 0.65) (0.003, 0.04, 0.57) (0.001, 0.02, 0.31) (0.0004, 0.005, 0.12)

CS (0.002, 0.03, 0.49) (0.001, 0.02, 0.38) (0.001, 0.02, 0.281) (0.004, 0.004, 0.116)

WM (0.001, 0.017, 0.35) (0.001, 0.016, 
0.312)

(0.001, 0.01, 0.19) (0.0002, 0.001, 0.05)

EF (0.012, 0.135, 1.23) (0.007, 0.08, 0.85) (0.004, 0.04, 0.5) (0.001, 0.01, 0.212)

FU (0.003, 0.03, 0.34) (0.002, 0.02, 0.25) (0.001, 0.01, 0.136) (0.0003, 0.003, 0.06)

AD (0.001, 0.01, 0.12) (0.0008, 0.008, 
0.09)

(0.0007, 0.006, 0.07) (0.0001, 0.0009, 
0.017)

TP/SU (0.003, 0.03, 0.57) (0.002, 0.04, 0.5) (0.001, 0.02, 0.31) (0.0003, 0.004, 0.08)

TP×DT (0.001, 0.02, 0.31) (0.001, 0.02, 0.25) (0.0004, 0.007, 0.12) (0.0002, 0.002, 0.35)

QO–QI (0.0003, 0.0004, 
0.08)

(0.0003, 0.003, 
0.06)

(0.00008, 0.001, 
0.032)

(0.00005, 0.0004, 
0.016)

FC (0.001, 0.022, 0.28) (0.002, 0.02, 0.29) (0.001, 0.01, 0.19) (0.0002, 0.002, 0.04)

OC (0.0006, 0.006, 0.11) (0.0004, 0.004, 
0.08)

(0.0002, 0.002, 0.05) (0.00006, 0.0005, 
0.01)

Incentives (0.001, 0.02, 0.13) (0.001, 0.017, 0.09) (0.001, 0.016, 0.082) (0.0002, 0.002, 0.02)

UG (0.0005, 0.004, 
0.022)

(0.0003, 0.003, 
0.015)

(0.0002, 0.002, 
0.009)

(0.00005, 0.0003, 
0.003)

ER (0.00008, 0.0007, 
0.006)

((0.00008, 0.0006, 
0.005)

(0.00002, 0.0002, 
0.002)

(0.00001, 0.00007, 
0.001)
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TABLE 10.37

Interval performance matrix, Z  (third model)
P1 P2 P3 P4

DD (0.055, 0.82) (0.05, 0.73) (0.02, 0.5) (0.02, 0.35)

DC (0.08, 0.8) (0.06, 0.67) (0.032, 0.44) (0.025, 0.31)

DR (0.024, 0.368) (0.028, 0.36) (0.024, 0.3) (0.009, 0.15)

ES (0.05, 0.81) (0.05, 0.76) (0.03, 0.55) (0.02, 0.36)

CS (0.04, 0.7) (0.044, 0.62) (0.04, 0.53) (0.02, 0.34)

WM (0.043, 0.596) (0.04, 0.55) (0.03, 0.44) (0.014, 0.233)

EF (0.11, 1.11) (0.08, 0.92) (0.06, 0.7) (0.03, 0.46)

FU (0.055, 0.58) (0.04, 0.504) (0.032, 0.369) (0.019, 0.247)

AD (0.032, 0.357) (0.028, 0.313) (0.026, 0.267) (0.01, 0.131)

TP/SU (0.05, 0.75) (0.05, 0.7) (0.04, 0.56) (0.02, 0.29)

TP×DT (0.042, 0.561) (0.041, 0.503) (0.02, 0.347) (0.016, 0.243)

QO–QI (0.019, 0.292) (0.018, 0.262) (0.009, 0.181) (0.007, 0.127)

FC (0.03, 0.53) (0.04, 0.54) (0.03, 0.43) (0.01, 0.21)

OC (0.02, 0.345) (0.02, 0.285) (0.017, 0.23) (0.008, 0.128)

Incentives (0.03, 0.36) (0.03, 0.3) (0.03, 0.28) (0.014, 0.15)

UG (0.023, 0.148) (0.018, 0.123) (0.015, 0.099) (0.007, 0.055)

ER (0.009, 0.083) (0.009, 0.07) (0.004, 0.051) (0.003, 0.036)

TABLE 10.38

Crisp performance matrix (third model)
P1 P2 P3 P4

DD 0.57 0.54 0.44 0.37

DC 0.36 0.42 0.54 0.59

DR 0.38 0.39 0.36 0.24

ES 0.57 0.55 0.47 0.37

CS 0.53 0.50 0.47 0.36

WM 0.49 0.48 0.42 0.30

EF 0.70 0.63 0.55 0.44

FU 0.50 0.47 0.39 0.32

AD 0.39 0.36 0.34 0.23

TP/SU 0.55 0.54 0.48 0.34

TP×DT 0.48 0.46 0.37 0.31

QO–QI 0.34 0.32 0.26 0.22

FC 0.46 0.48 0.43 0.29

OC 0.37 0.34 0.31 0.22

Incentives 0.40 0.37 0.36 0.26

UG 0.27 0.24 0.22 0.16

ER 0.19 0.18 0.15 0.13
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production facility P1 with respect to subcriterion DD. Using equation (4.23), 
the crisp performance rating is ( . . . . ) .. .0 5 0 82 0 5 0 055 0 570 5 0 5 .

The crisp performance matrix is normalized using equation (4.25) to obtain 
the normalized performance matrix. Table 10.39 shows the normalized per-
formance matrix. For example, the normalized performance score of produc-
tion facility P1 (shown in bold in table 10.39) with respect to subcriterion DD
is calculated using equation (4.25) as

( . )
. . . .

.0 5707
0 5707 0 5442 0 438 0 3713

0 58
2 2 2 2

55

(Note that the values 0.5707, 0.5442, 0.438, and 0.3713 are in the first row of 
table 10.38.)

Using equations (4.26) and (4.27), the positive- and negative-ideal solutions 
are calculated by selecting maximum and minimum ratings across all candi-
date production facilities. Table 10.40 shows the positive- and negative-ideal 
solutions. For example, the positive- and negative-ideal solutions across all 
candidate production facilities with respect to DC are the maximum and 
minimum values, respectively, from the second row of table 10.39.

By applying the vector-matching function, the degree of similarity (see 
table 10.41) between the normalized performance score of each candidate 

TABLE 10.39

Normalized performance matrix (third model)
P1 P2 P3 P4

DD 0.585 0.558 0.449 0.381

DC 0.606 0.554 0.434 0.371

DR 0.550 0.557 0.513 0.352

ES 0.540 0.524 0.445 0.354

CS 0.536 0.509 0.474 0.370

WM 0.544 0.528 0.469 0.335

EF 0.593 0.536 0.469 0.374

FU 0.588 0.547 0.464 0.375

AD 0.577 0.540 0.505 0.346

TP/SU 0.571 0.555 0.492 0.352

TP×DT 0.585 0.558 0.449 0.380

QO–QI 0.585 0.558 0.449 0.381

FC 0.546 0.567 0.508 0.349

OC 0.593 0.537 0.484 0.355

Incentives 0.569 0.525 0.517 0.366

UG 0.593 0.537 0.484 0.354

ER 0.586 0.559 0.447 0.380
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production facility and the positive- and negative-ideal solutions can be cal-
culated using equation (4.28).

A preferred candidate production facility should have a higher degree of 
similarity to the positive-ideal solution and a lower degree of similarity to the 
negative-ideal solution. Hence, an overall performance index for each candi-
date facility with the decision maker’s level of confidence and degree of 
optimism toward risk is determined using equation (4.29). Table 10.42 shows 
the overall performance indices of the four candidate production facilities. The 
larger the performance index, the better the candidate. For example, for facil-
ity P3, the overall performance index is calculated using equation (4.29) as

( . )
( . ) ( . )

.0 822
0 822 1 290

0 389

TABLE 10.40

Positive- and negative-ideal solutions (third model)
Subcriterion Positive-ideal solution Negative-ideal solution

DD 0.585 0.381

DC 0.606 0.371

DR 0.557 0.352

ES 0.540 0.354

CS 0.536 0.370

WM 0.544 0.335

EF 0.593 0.374

FU 0.588 0.375

AD 0.577 0.346

TP/SU 0.571 0.352

TP×DT 0.585 0.380

QO–QI 0.585 0.381

FC 0.567 0.349

OC 0.593 0.355

Incentives 0.569 0.366

UG 0.593 0.354

ER 0.586 0.380

TABLE 10.41

Degree of similarity to positive- and negative-ideal solutions (third model)

Production facility
Degree of similarity to 
positive-ideal solution

Degree of similarity to 
negative-ideal solution

P1 0.997 1.576

P2 0.946 1.495

P3 0.822 1.290

P4 0.646 1.013
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Because production facility P4’s overall performance index is the largest, it 
is the best of the lot.

10.5 Conclusions

In this chapter, three models to evaluate production facilities operating in a 
region where a closed-loop supply chain is to be designed were presented. 
These models evaluate production facilities in terms of both environmen-
tal consciousness and potentiality. The first model employs fuzzy logic and 
technique for order preference by similarity to ideal solution (TOPSIS); the 
second model employs fuzzy logic, extent analysis method, and analytic net-
work process; the third model employs fuzzy multicriteria analysis method.
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TABLE 10.42

Overall performance indices (third model)
Production facility Overall performance index

P1 0.388

P2 0.387

P3 0.389

P4 0.390
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11
Evaluation of Futurity of Used Products

11.1 The Issue

A major driver for companies interested in collecting used products is recov-
erable value through reprocessing (remanufacturing or recycling). However, 
the companies seldom know when those products were bought and why 
they were discarded. Also, the products do not indicate their remaining 
life periods. Hence, they often undergo partial or complete disassembly for 
subsequent reprocessing. The authors are of the opinion that for some used 
products, it might make more sense to make necessary repairs to the prod-
ucts and sell them on secondhand markets than to disassemble them for sub-
sequent reprocessing. To this end, in this chapter, using a numerical example, 
it is shown how an expert system can be built using Bayesian updating and 
fuzzy logic to decide whether it is sensible to repair a used product of inter-
est for subsequent sale on a secondhand market. It is assumed here that the 
used product of interest functions improperly; it is obviously sensible to sell 
a properly functioning used product on a secondhand market.

Consider the used product shown in figure 11.1. Given that this product is 
not functioning properly, one shall decide whether it is sensible to repair it 
for subsequent sale on a secondhand market. Table 11.1 shows the probabil-
ity values used to implement Bayesian updating.

Section 11.2 presents the procedure to use fuzzy logic in Bayesian updat-
ing. Section 11.3 gives the list of the rules used in Bayesian updating. Section 
11.4 presents the implementation of Bayesian updating. Section 11.5 presents 
the employment of FLEX shell [1] to build an expert system that can be used 
to decide whether it is sensible to repair an improperly functioning used 
product of interest for subsequent sale on a secondhand market. Finally, sec-
tion 11.6 gives some conclusions.
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S1
S2

C1 C2 C3 C4 C5

R

FIGURE 11.1

Used product.

TABLE 11.1

Probability values used in Bayesian updating
H E P(H) O(H) P(E|H) P(E|~H) A D

S1 needs repair Product needs 
repair

0.60 1.50 1.00 0.60 1.67 0.00

S2 needs repair Product needs 
repair

0.70 2.33 1.00 0.40 2.50 0.00

C1 needs repair S1 needs repair 0.45 0.82 1.00 0.45 2.22 0.00

C2 needs repair S1 needs repair 0.55 1.22 1.00 0.30 3.33 0.00

C3 needs repair S1 needs repair 0.30 0.43 1.00 0.55 1.82 0.00

C4 needs repair S2 needs repair 0.32 0.47 1.00 0.70 1.43 0.00

C5 needs repair S2 needs repair 0.10 0.11 1.00 0.80 1.25 0.00

Sensible to repair 
product

C1 needs repair 0.60 1.50 0.70 0.20 3.50 0.38

Sensible to repair 
product

C2 needs repair 0.60 1.50 0.60 0.30 2.00 0.57

Sensible to repair 
product

C3 needs repair 0.60 1.50 0.45 0.60 0.75 1.38

Sensible to repair 
product

C4 needs repair 0.60 1.50 0.10 0.75 0.13 3.60

Sensible to repair 
product

C5 needs repair 0.60 1.50 0.85 0.40 2.13 0.25
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11.2 Usage of Fuzzy Logic

Because it is difficult for an expert to guess the probabilities shown in 
bold (unlike the rest) in table 11.1, fuzzy logic is used to calculate them as 
follows:

1. Ask the expert to assign a linguistic rating to P(E|H) for each compo-
nent in the used product with respect to each of the following factors 
(see table 11.2):

a. Is it economical to repair or replace the component (more eco-
nomical implies higher rating)?

b. If disposed of, will the component be harmful to the environ-
ment (more harmful implies higher rating)?

c. What is the remaining life period of the component (longer life 
implies higher rating)?

d. Is the raw material used to make the component depleting 
quickly (faster depletion implies higher rating)?

e. Is it difficult to repair the component (more difficult implies lower 
rating)?

2. Use the data in table 11.3 to convert the linguistic ratings into TFNs.

3. Calculate the average fuzzy P(E|H) value for each component.

TABLE 11.2

Linguistic P(E|H) ratings
a b c d e

C1 High High Medium Medium High

C2 Very high High Very high Medium Low

C3 Low Low Very low Very high Medium

C4 High High High High Very low

C5 Medium High High High Medium

TABLE 11.3

Conversion table for linguistic P(E|H) ratings in Bayesian updating
Linguistic rating Triangular fuzzy number

Very high (VH) (0.7, 0.9, 1.0)

High (H) (0.5, 0.7, 0.9)

Medium (M) (0.3, 0.5, 0.7)

Low (L) (0.1, 0.3, 0.5)

Very low (VL) (0.0, 0.1, 0.3)
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4. Defuzzify the average P(E|H) for each component using equation (4.8).

Apply steps 1–4 to calculate appropriate P(E|~H) values for each compo-
nent. In order to be saved from tedious calculations, it is assumed here that 
the values shown in bold in table 11.1 are the defuzzified average probabili-
ties obtained after performing steps 1–4. For the sake of clarity, however, the 
calculation procedure is explained using an example below.

Suppose that one wishes to calculate the P(E|H) value (numerical) for a 
component in a used product. The four steps are implemented as follows:

1. The expert linguistically rates the component with respect to factors 
a–e as very high, high, medium, medium, and low, respectively.

2. Using table 11.3, the linguistic ratings are converted into TFNs.

3. The average fuzzy P(E|H) is equal to

0 7 0 5 0 3 0 3 0 1
5

0 9 0 7 0 5 0 5 0 3
5

1. . . . . , . . . . . , .. . . . .0 0 9 0 7 0 7 0 5
5 ,

i.e., (0.38, 0.58, 0.76).

4. Defuzzifying the average fuzzy P(E|H) using equation 4.8, one gets

( . . ) ( . . ) .0 76 0 38 0 58 0 38
3

0 38  = 0.57

11.3 Rules Used in Bayesian Updating

Rule 1: IF product needs repair (AFFIRMS: 1.67; DENIES: 0.00), THEN 
S1 needs repair.

Rule 2: IF product needs repair (AFFIRMS: 2.50; DENIES: 0.00), THEN 
S2 needs repair.

Rule 3: IF S1 needs repair (AFFIRMS: 2.22; DENIES: 0.00), THEN C1 
needs repair.

Rule 4: IF S1 needs repair (AFFIRMS: 3.33; DENIES: 0.00), THEN C2 
needs repair.

Rule 5: IF S1 needs repair (AFFIRMS: 1.82; DENIES: 0.00), THEN C3 
needs repair.

Rule 6: IF S2 needs repair (AFFIRMS: 1.43; DENIES: 0.00), THEN C4 
needs repair.
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Rule 7: IF S2 needs repair (AFFIRMS: 1.25; DENIES: 0.00), THEN C5 
needs repair.

Rule 8: IF C1 needs repair (AFFIRMS: 3.50; DENIES 0.38) AND C2 
needs repair (AFFIRMS: 2.00; DENIES 0.57) AND C3 needs repair 
(AFFIRMS: 0.75; DENIES 1.38) AND C4 needs repair (AFFIRMS: 0.13; 
DENIES 3.60) AND C5 needs repair (AFFIRMS: 2.13; DENIES 0.25), 
THEN it is sensible to repair the product.

11.4 Bayesian Updating

Refer to table 11.1 while reading this section.

Rule 1: H = S1 needs repair; O(H) = 1.50; E = product needs repair; A = 
1.67; O(H|E) = O(H)×(A) = 2.51.

Rule 2: H = S2 needs repair; O(H) = 2.33; E = product needs repair; A = 
2.50; O(H|E) = O(H)×(A) = 5.83.

Rule 3: H = C1 needs repair; O(H) = 0.82; E = S1 needs repair; O(E) = 
2.51; P(E) = 0.72; A = 2.22; A’ = [2(A – 1)×P(E)] + 2 – A = 1.54; O(H|E) = 
O(H)×(A’) = (0.82)×(1.54) = 1.26.

Rule 4: H = C2 needs repair; O(H) = 1.22; E = S1 needs repair; O(E) = 
2.51; P(E) = 0.72; A = 3.33; A’ = [2(A – 1)×P(E)] + 2 – A = 2.03; O(H|E) = 
O(H)×(A’) = (1.22)×(2.03) = 2.48.

Rule 5: H = C3 needs repair; O(H) = 0.43; E = S1 needs repair; O(E) = 
2.51; P(E) = 0.72; A = 1.82; A’ = [2(A – 1)×P(E)] + 2 – A = 1.36; O(H|E) = 
O(H)×(A’) = (0.43)×(1.36) = 0.58.

Rule 6: H = C4 needs repair; O(H) = 0.47; E = S2 needs repair; O(E) = 
5.83; P(E) = 0.85; A = 1.43; A’ = [2(A – 1)×P(E)] + 2 – A = 1.30; O(H|E) = 
O(H)×(A’) = (0.47)×(1.30) = 0.61.

Rule 7: H = C5 needs repair; O(H) = 0.11; E = S2 needs repair; O(E) = 
5.83; P(E) = 0.85; A = 1.25; A’ = [2(A – 1)×P(E)] + 2 – A = 1.18; O(H|E) = 
O(H)×(A’) = (0.11)×(1.18) = 0.13.

Rule 8: H = sensible to repair product; O(H) = 1.50;
E1 = C1 needs repair; O(E1) = 1.26; P(E1) = 0.56; A1 = 3.50; A1’ = [2·(A1 
– 1)×P(E1)] + 2 – A1 = 1.30;
E2 = C2 needs repair; O(E2) = 2.48; P(E2) = 0.71; A2 = 2.00; A2’ = 
[2·(A2 – 1)×P(E2)] + 2 – A2 = 1.42;
E3 = C3 needs repair; O(E3) = 0.58; P(E3) = 0.37; D3 = 1.38; D3’ = [2·(1 
– D3)×P(E3)] + D3 = 1.09;
E4 = C4 needs repair; O(E4) = 0.61; P(E4) = 0.38; D4 = 3.60; D4’ = [2·(1 
– D4)×P(E4)] + D4 = 1.88;
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E5 = C5 needs repair; O(E5) = 0.13; P(E5) = 0.12; D5 = 0.25; D5’ = 
 [2×(1 – D5)×P(E5)] + D5 = 0.43;
O(H|E1&E2&E3&E4&E5) = O(H)×(A1’)×(A2’)×(D3’)×(D4’)×(D5’) = 
(1.50)×(1.30)×(1.42)×(1.09)×(1.88)×(0.43) = 2.44;
P(H|E1&E2&E3&E4&E5) = (2.44)/(3.44) = 0.71.
That is, P(sensible to repair the product) = 0.71.

If the cutoff value as decided by the decision maker is, say, 0.55, he will 
decide to send the used product for repair and for subsequent sale on a sec-
ondhand market.

11.5 FLEX-Based Expert System

An excellent tool called FLEX shell [1] is used to build an expert system that 
can decide if it is sensible to repair a particular used product for subsequent 
sale on the secondhand market. Figure 11.2 shows the user interface for exe-
cuting the expert system.

In figure 11.2, the probability that it is sensible to repair the product is 
calculated by the FLEX-based expert system as 0.61. The difference in the 
probability obtained manually in section 11.4 and the one obtained by the 
expert system in this section is most likely due to the difference in the for-
mulae used to calculate A’ and D’ (they are interpolated values). The user of 
an expert system shell cannot know how exactly the inference engine of the 
shell works. When there is a significant difference in the probability values, 
it is advisable to build the expert system using a knowledge representation 
language like Lisp or Prolog rather than an expert system shell.

11.6 Conclusions

In this chapter, using a numerical example, it is shown how an expert system 
can be built using Bayesian updating and fuzzy logic to decide whether it 
is sensible to repair an improperly functioning used product of interest for 
subsequent sale on a secondhand market instead of disassembling the prod-
uct for subsequent reprocessing (remanufacturing or recycling).
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FIGURE 11.2

FLEX user interface for executing expert system.
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12
Selection of New Products

12.1 The Issue

The focus of this issue is to help companies select and produce only those new 
products for which revenues in the closed-loop supply chain are expected to 
be higher than the costs. In this chapter, a cost-benefit function is formulated 
and then used to perform a multicriteria economic analysis for selecting an 
economical new product to produce in a closed-loop supply chain. The cost-
benefit function can be defined as the ratio of the equivalent value of benefits 
associated with the object of interest to the equivalent value of costs associ-
ated with the same object. The equivalent value can be present worth, annual 
worth, future worth, etc. In this case, the object of interest is the new product 
to be produced in a closed-loop supply chain. The cost-benefit function (F)
is formulated as

F B
C

(12.1)

where B represents the equivalent value of the benefits (revenues) and C rep-
resents the equivalent value of the costs. An F value greater than 1.0 indicates 
that the object is economically advantageous. A notable point here is that due 
to uncertainties in supply, quality, and disassembly times in the reverse flow 
of the product (as a used product) in the closed-loop supply chain, decision 
makers must rely on experts’ knowledge to obtain imprecise data for calcu-
lating B, C, and F values. Hence, fuzzy logic is used in the model presented 
in this chapter, and the cost-benefit function will hereafter be referred to as 
fuzzy cost-benefit function.

The fuzzy cost-benefit function consists of equivalent values of the follow-
ing terms:

New product sale revenue (revenue from selling new products, viz., 
products in the forward flow of the closed-loop supply chain)
Reuse revenue (revenue from direct sale/usage in remanufacturing 
of usable components of used products)



© 2009 by Taylor & Francis Group, LLC

236 Strategic Planning Models for Reverse and Closed-Loop Supply Chains

Recycle revenue (revenue from selling material obtained from recy-
cling of unusable components of used products)

New product production cost (cost to produce new products)

Collection cost (cost to collect used products from consumers)

Reprocessing cost (cost to remanufacture/recycle used products)

Disposal cost (cost to dispose of the material left over after remanu-
facturing or recycling of used products)

Loss-of-sale cost (cost due to loss of sale, which might occur occa-
sionally due to lack of supply of used products)

Investment cost (capital required for facilities and machinery 
involved in production of new products and collection and repro-
cessing of used products)

The chapter is organized as follows. In section 12.2, the assumptions made 
while formulating the fuzzy cost-benefit function are presented. In section 
12.3, the nomenclature for the formulation of the fuzzy cost-benefit function is 
given. In section 12.4, the fuzzy cost-benefit function is formulated. In section 
12.5, the model (economic analysis) for selecting an economical new prod-
uct to produce in a closed-loop supply chain is presented. In section 12.6, a 
numerical example is given. Finally, section 12.7 provides some conclusions.

12.2 Assumptions

The following assumptions are made while formulating the fuzzy cost-ben-
efit function:

1. The product of interest in the reverse flow (as a used product) of the 
closed-loop supply chain is completely disassembled.

2. All usable components of the product of interest in the reverse flow 
(as a used product) will be reused for direct sale or in remanufactur-
ing, and all the remaining ones are recycled/disposed of.

12.3 Nomenclature

bij Probability of bad quality (broken, worn out, low perform-
ing, etc.) of component j in used product i

Ci Cost to produce one new product i

CCi Total collection cost of used product i per period

CD Cost of reprocessing per unit time
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CF Recycling revenue factor ($/unit weight)

CRi Total recycle revenue of used product i per period

COi Cost to collect one used product i

DCi Total disposal cost of used product i per period

Di Demand for new product i per period

DIij Disposal cost index of component j in used product i (index 
scale 0 = lowest, 10 = highest)

DF Disposal cost factor ($/unit weight)

Eik Subassembly k in product i

FCBi Fuzzy cost-benefit function for product i

i Product type

ICi Investment cost of product i

j Component type

LCi Loss-of-sale cost of used product i

Mi Total number of subassemblies in product i

mij Probability of missing component j in used product i

MCi Total production cost of new product i per period

Nij Multiplicity of component j in product i

RCPij Percentage of recyclable contents by weight in component j of 
used product i

RCi Total reprocessing cost of used product i per period

RIij Recycling revenue index of component j in used product i
(index scale 0 = lowest, 10 = highest)

Rooti Root node (for example, outer casing) of product i

RVij Resale value of component j in used product i

SPi Selling price of new product i

SRi Total new product sale revenue of product i per period

SUi Supply of used product i per period

T(Rooti) Time to disassemble Rooti

T(Eik) Time to disassemble subassembly k in used product i

URi Total reuse revenue of used product i per period

Wij Weight of component j in used product i

ΔBZ Incremental total revenues (between the challenger and the 
defender)

ΔCZ Incremental total costs (between the challenger and the 
defender)
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12.4 Formulation of Fuzzy Cost-Benefit Function

The fuzzy cost-benefit function (FCB) of product i of interest consists of equiv-
alent values (EV) of nine terms (total new product sale revenue per period 
(SRi), total reuse revenue per period (URi), total recycle revenue per period 
(CRi), total new product production cost per period (MCi), total collection cost 
per period (CCi), total reprocessing cost per period (RCi), total disposal cost 
per period (DCi), loss-of-sale cost (LCi), and investment cost (ICi)), as follows:

FCB SR UR CR
MC CC RCi

i i i

i i i

EV of (
EV of (

)
DD LC ICi i iC ) (12.2)

The following subsections explain how the above nine terms are calcu-
lated. Some of the terms are modified versions of those in [1].

12.4.1 Total New Product Sale Revenue per Period (SR)

SR of product i per period is influenced by the demand for new products 
per period (Di) and the selling price of each new product (SPi). This revenue 
equation can be written as follows:

SR D SPi i i. (12.3)

Often, in practice, objective data are available to express Di and SPi as crisp 
real numbers. Hence, SRi is a crisp real number as well.

12.4.2 Total Reuse Revenue per Period (UR)

UR of product i is influenced by the fuzzy supply of the product per period 
(SUi) and the following data of components of each type j in the product: the 
resale value (RVij), the number of components (Nij), the fuzzy probability of 
missing (mij), and the fuzzy probability of bad quality (broken, worn out, low 
performing, etc.) (bij). This revenue equation can be written as follows:

UR SU RV N b mi i ij ij ij ij
j

. . .( )1 (12.4)

Because SUi, bij, and mij are expressed as fuzzy numbers, the resulting URi is 
a fuzzy number as well.
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12.4.3 Total Recycle Revenue per Period (CR)

CR of product i is calculated by multiplying the component recycling rev-
enue factors by the number of components recycled per period as follows:

CR
SU RI W RCP

N m N b
i

i ij ij ij

ij ij ij i

. . . .

{ ( ) (1 1 jj ij m
CF

)}
. (12.5)

Note that each component has a percentage of recyclable contents (RCPij). RIij

is the recycling revenue index (varying in value from 1 to 10) representing 
the degree of benefit generated by the recycling of component of type j (the 
higher the value of the index, the more profitable it is to recycle the compo-
nent), Wij is the weight of the component of type j, and CF is the recycling 
revenue factor. Because SUi, bij, and mij are expressed as fuzzy numbers, the 
resulting CRi is a fuzzy number as well.

12.4.4 Total New Product Production Cost per Period (MC)

MC of product i is calculated by multiplying the demand for new products 
per period (Di) by the cost to produce one new product (Ci), as follows:

MC D Ci i i. (12.6)

Often, in practice, objective data are available to express Di and Ci as crisp 
real numbers. Hence, MCi is a crisp real number as well.

12.4.5 Total Collection Cost per Period (CC)

CC of product i is calculated by multiplying the supply of used products per 
period (SUi) by the cost of collecting one used product from consumers (COi), 
as follows:

CC SU COi i i. (12.7)

Because SUi is expressed as a fuzzy number, the resulting CCi is a fuzzy 
number as well.

12.4.6 Total Reprocessing Cost per Period (RC)

RC of product i can be calculated from the supply of used products per 
period (SUi), disassembly time of the root node (for example, outer casing) of 
the product (T(Rooti)), disassembly time of each subassembly in the product 
(T(Eik)), the reprocessing cost per unit time (CD), as follows:
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RC SU T Root T E CDi i i ik
k

Mi

. ( ) ( ) .
1

(12.8)

Depending upon the type (vague or objective) of data available for the disas-
sembly times, RCi is a fuzzy or crisp real number.

12.4.7 Total Disposal Cost per Period (DC)

DC of product i is calculated by multiplying the component disposal cost by 
the number of component units disposed per period, as follows:

DC
SU DI W RCP

N m N
i

i ij ij ij

ij ij ij

. . .( ).

{ ( ) (

1

1 11 b m
DF

ij ijj )
. (12.9)

Note that DIij is the disposal cost index (varying in value from 1 to 10) rep-
resenting the degree of nuisance created by the disposal of components of 
type j (the higher the value of the index, the more nuisance the component 
creates, and hence it costs more to dispose it), Wij is the weight of the compo-
nent of type j, and DF is the disposal cost factor. Because SUi, bij, and mij are 
expressed as fuzzy numbers, the resulting CRi is a fuzzy number as well.

12.4.8 Loss-of-Sale Cost per Period (LC)

LC of product i represents the cost of not meeting its demand in a timely 
manner. This occurs because of the unpredictable supply of used products, 
as consumers do not discard them in a predictable manner. LC is difficult to 
predict and thus is usually guessed by experts. Due to the involvement of the 
experts’ guesses, LCi is expressed as a fuzzy number.

12.4.9 Investment Cost (IC)

IC of product i is the capital required for facilities and machinery involved 
in production of new products and collection and reprocessing of used 
products. Depending upon the type (vague or objective) of data available 
for the product and the location of the facilities, ICi is a fuzzy or crisp real 
number.
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12.5 Model

In order to select the most economical new product to produce in a closed-loop 
supply chain, from a set of candidate products, the following steps are used:

Step 1: Eliminate every candidate product whose FCB is less than 1.0.
Step 2: Assign the candidate product that has the lowest IC as the 

defender and the product with the next-lowest IC as the challenger.
Step 3: Calculate the ratio of the EV of incremental total revenue ΔBZ

(between the challenger and the defender) to the EV of incremen-
tal total cost ΔCZ (between the challenger and the defender). If the 
ratio is less than 1.0, eliminate the challenger. Otherwise, eliminate 
the defender.

Step 4: Repeat steps 2 and 3 until only one product (which is the most 
economical one in the set) is left.

12.6 Numerical Example

Three different products (products 1–3) whose structures are shown in fig-
ures 12.1–12.3, respectively, are considered for the example.

It is assumed that the supplies of all these products are perpetual. Hence, 
capitalized worth (CW) [2] is taken as the EV. Therefore, FCB is the ratio of 
CW of total revenues to CW of total costs. The data necessary to calculate 
FCB of products 1–3 are given in tables 12.1–12.2 and 12.3, respectively.

Also, T(Root1) = 2 min; T(Root2) = 1.5 min; T(Root3) = 1.5 min; T(E11) = 9 min; 
T(E21) = 7 min; T(E22) = 8 min; T(E31) = 7 min; T(E32) = 8 min; SU1 = (200, 230, 
250) products per year; SU2 = (210, 220, 230) products per year; SU3 = (600, 650, 
700) products per year; CO1 = $20; CO2 = $21; CO3 = $18; IC1 = $20,000; IC2 = 
$25,000; IC3 = $30,000; D1 = 900 products per year; D2 = 850 products per year; 
D3 = 1,000 products per year; SP1 = $70; SP2 = $28; SP3 = $58; C1 = $25; C2 = $30; 
C3 = $28; LC1 = $(300, 500, 700) per year; LC2 = $(100, 400, 500) per year; LC3 = 
$(900, 1,000, 1,100) per year; CF = 0.2 $/lb; DF = 0.1 $/lb; and CD = 0.55 $/min.

Upon calculating revenues and costs for each product, one gets FCB1 = 
(2.13, 2.45, 2.88), FCB2 = (0.77, 0.84, 0.91), and FCB3 = (1.76, 2.11, 2.68). Defuzzi-
fying these numbers using equation (4.8), one gets FCB1 = 2.48, FCB2 = 0.94, 
and FCB3 = 2.17. Because FCB2 is less than 1.0, product 2 is eliminated from 
further analysis.

Now, because IC1 is less than IC3, product 1 is considered the defender and 
product 3 is considered the challenger. The defuzzified ratio of CW of ΔBZ 
to CW of ΔCZ is now calculated as 1.86, which is greater than 1.0. Hence, the 
defender (product 1) is eliminated. Therefore, the remaining product (prod-
uct 3) is the most economical new product (among the three products) to 
produce in the closed-loop supply chain.
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Root1

E11

P14

P15P13

P11 P12

FIGURE 12.1

Structure of product 1.

Root 2

P21 E 21 E 22

P22
P23 P24 P25

FIGURE 12.2

Structure of product 2.

Root 3

P31 E 31 E 32

P32
P33 P34 P35

FIGURE 12.3

Structure of product 3.
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12.7 Conclusions

In this chapter, a cost-benefit function is formulated and then used to perform 
a multicriteria economic analysis for selecting an economical new product to 
produce in a closed-loop supply chain. Fuzzy logic is used in formulating 
the cost-benefit function.

TABLE 12.1

Data of product 1
Component RV1j ($) N1j W1j (lb) RI1j RCP1j DI1j b1j m1j

P11 7.0 3 4.5 5 65% 6 (0.1,0.1, 0.2) (0.3, 0.4, 0.4)

P12 8.0 4 6.5 5 50% 4 (0.5, 0.6, 0.7) (0.1, 0.2, 0.2)

P13 9.0 2 7.0 3 75% 4 (0.2, 0.3, 0.4) (0.3, 0.4, 0.4)

P14 6.9 1 2.7 9 35% 5 (0.2, 0.2, 0.3) (0.1, 0.1, 0.2)

P15 8.4 5 7.5 6 70% 1 (0.1, 0.1, 0.2) (0.3, 0.4, 0.5)

TABLE 12.2

Data of product 2
Component RV2j ($) N2j W2j (lb) RI2j RCP2j DI2j b2j m2j

P21 1.0 1 3.9 2 40% 3 (0.1, 0.1, 0.2) (0.0, 0.1, 0.1)

P22 1.5 3 1.5 4 20% 1 (0.1, 0.2, 0.2) (0.0, 0.0, 0.0)

P23 1.2 7 4.1 1 70% 2 (0.2, 0.3, 0.4) (0.2, 0.2, 0.3)

P24 2.5 4 3.2 5 90% 4 (0.3, 0.4, 0.5) (0.1, 0.1, 0.2)

P25 3.1 3 2.0 2 50% 2 (0.3, 0.4, 0.4) (0.1, 0.1, 0.2)

TABLE 12.3

Data of product 3
Component RV3j ($) N3j W3j (lb) RI3j RCP3j DI3j b3j m3j

P31 9.0 2 4.0 9 30% 4 (0.2, 0.3, 0.4) (0.1, 0.2, 0.3)

P32 8.0 5 5.0 7 60% 3 (0.1, 0.2, 0.2) (0.1, 0.2, 0.2)

P33 9.0 3 2.0 8 70% 1 (0.3, 0.4, 0.4) (0.1, 0.2, 0.2)

P34 7.0 2 6.0 9 25% 3 (0.2, 0.3, 0.3) (0.3, 0.3, 0.4)

P35 7.0 1 5.2 6 50% 2 (0.3, 0.3, 0.4) (0.1, 0.1, 0.2)
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13
Selection of Secondhand Markets

13.1 The Issue

In chapter 11, an expert system is built using Bayesian updating and fuzzy 
logic to decide whether it is sensible to repair a used product of interest for 
subsequent sale on a secondhand market. In this chapter, fuzzy logic, qual-
ity function deployment (QFD), and method of total preferences are used to 
select the market with the most potential to sell a used product in, from a set 
of candidate secondhand markets.

This chapter is organized as follows: Section 13.2 gives the performance 
aspects and enablers for the application of QFD. Section 13.3, using a numeri-
cal example, presents the implementation of the model that uses fuzzy logic, 
quality function deployment (QFD), and method of total preferences to select 
the market with the most potential to sell a used product in, from a set of can-
didate secondhand markets. Finally, section 13.4 gives some conclusions.

13.2 Performance Aspects and Enablers
for Application of QFD

The following are the performance aspects of the secondhand markets,* 
which are considered in the application of QFD:

1. Before-sale performance (BSP) (reflects the ability to attract new cus-
tomers to the secondhand market)

2. While-sale performance (WSP) (reflects the ability to motivate the 
customers to buy secondhand products while the customers are in 
the secondhand market)

* It should be noted that a secondhand market here means a “store” where secondhand (i.e., 
used) products are sold, along with new products.
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3. After-sale performance (ASP) (reflects the ability to attract old cus-
tomers to the secondhand market)

The following are the enablers considered in the application of QFD:

Good advertisement (AD)

High difference of prices between new and secondhand products (DP)

Greenness of the sale (GS)

Incentives (warranty, service, etc.) (IC)

Low average price of products (LP)

Good location of sale of secondhand products (placement in front of 
the new ones, etc.) (LS)

Proper maintenance of secondhand products (as proper as it is for 
new products) (MN)

Discounts to returning customers (RC)

Good return/exchange policy (RP)

Reputation of the store (RS)

Variety of secondhand products on the shelves (VS)

The enablers for BSP are LP, IC, RS, and AD; those for WSP are DP, GS, IC,
MN, AD, VS, RP, and LS; and those for ASP are RC and AD.

13.3 Selection of Potential Secondhand Markets

A numerical example is used to present the approach as follows. Two sec-
ondhand markets are compared, and the one that has more potential than 
the other is to be selected. Suppose that there are five experts (M’s) for giving 
linguistic values to Rij and di data. Table 13.1 shows the linguistic scale for Rij

as well as for di.
Tables 13.2–13.4 show the linguistic relationship scores (Rij) as given by the 

five experts to the enablers of BSP, WSP, and ASP, respectively.
Table 13.5 gives the linguistic importance values (di) of BSP, WSP, and ASP,

as given by the five experts.
The ATIRs and RTIRs of the enablers are then calculated using equations 

(4.30) and (4.31), respectively. It must be noted that the triangular fuzzy 
numbers (TFNs) are averaged before defuzzifying. For example, consider 
AD, which is an enabler for three performance aspects, BSP, WSP, and ASP.
The linguistic relationship scores, as given by the five experts, for AD and 
BSP (see table 13.2), for AD and WSP (see table 13.3), and for AD and ASP
(see table 13.4) are converted into TFNs using table 13.1. These TFNs are then 
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TABLE 13.1

Conversion table for linguistic Rij data
Linguistic Rij Triangular fuzzy number (TFN)

Very strong (VS) (7.5. 10, 10)

Strong (S) (5, 7.5, 10)

Medium (M) (2.5, 5, 7.5)

Weak (W) (0, 2.5, 5)

Very weak (VW) (0, 0, 2.5)

TABLE 13.2

Linguistic relationship scores of BSP and its enablers
M1 M2 M3 M4 M5

LP VS VS M W S

IC S S M VS S

RS M S VS W M

AD VS VS VS VS VS

TABLE 13.3

Linguistic relationship scores of WSP and its enablers
M1 M2 M3 M4 M5

DP V VS M W S

GS N M VS VS S

IC S S M VS S

MN M S VS W M

AD S S VS M W

VS VS VS VS VS VS

RP S VS M VS S

LS M S VS W N

TABLE 13.4

Linguistic relationship scores of ASP and its enablers
M1 M2 M3 M4 M5

RC VS VS M W S

AD VW S M S VS
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averaged as follows: The average relationship score for AD and BSP, as calcu-
lated using equations (4.4) and (4.7), is

7 5 7 5 7 5 7 5 7 5
5

10 10 10 10 10
5

10 10. . . . . , , 110 10 10
5

= (7.5, 10, 10)

Similarly, the average relationship scores for AD and WSP and AD and 
ASP are calculated as (4, 6, 8.5) and (4, 6, 8), respectively. Defuzzified average 
relationship scores for AD and BSP, AD and WSP, and AD and ASP, as cal-
culated using equation (4.8), are 9.17, 6.33, and 6, respectively. The linguistic 
importance values (di) of BSP, WSP, and ASP, as given by the five experts 
(see table 13.5), are converted into TFNs using table 13.1 again. The average 
importance values for BSP, WSP, and ASP are then calculated as (6.5, 9, 10) 
(defuzzified value = 8.5), (5, 7.5, 9.5) (defuzzified value = 7.33), and (5.5, 8, 9.5) 
(defuzzified value = 7.67), respectively. ATIR of AD is then calculated using 
equation (4.30) as (8.5)×(9.17) + (7.33)×(6.33) + (7.67)×(6) = 212.79. The ATIRs of 
all the enablers are shown in table 13.6. RTIR of each enabler is then calcu-

TABLE 13.5

Linguistic importance values of performance aspects
M1 M2 M3 M4 M5

BSP VS VS VS S S

WSP S S M S VS

ASP VS M S S VS

TABLE 13.6

ATIRs and RTIRs of enablers
Enabler ATIR RTIR

AD 170.36 0.24

DP 48.89 0.07

GS 46.44 0.06

IC 116.11 0.16

LP 56.67 0.08

LS 36.67 0.05

MN 36.67 0.05

RC 51.11 0.07

RP 42.50 0.06

RS 42.50 0.06

VS 67.22 0.10

Sum 715.14 1.00
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lated using equation (4.31). For example, RTIR of AD is the ratio of its ATIR 

to the sum of the ATIRs of all the enablers, i.e., 
170 36
715 14

.

.
 = 0.24. RTIRs are also 

shown in table 13.6.
Table 13.7 shows the scale for converting the linguistic WAnj value given by 

the five experts (for arithmetic simplicity, we assume here that there is a con-
sensus among the experts). The WAnj (linguistic) values and the correspond-
ing defuzzified TFNs (calculated using equation (4.8)) for each secondhand 
market are shown in table 13.8.

Then, using equation (4.32), the TUPs for the two secondhand markets 
are calculated. For example, the TUP for secondhand market 1 is calculated 
using the RTIRj values (see table 13.7) and the defuzzified WA1j values (see 
table 13.8) as follows: (0.24)×(7.33) + (0.07)×(1) + (0.06)×(3) + (0.16)×(7.33) + 
(0.08)×(7.33) + (0.05)×(9) + (0.05)×(5) + (0.07)×(1) + (0.06)×(7.33) + (0.06)×(1) + 
(0.09)×(3) = 5.35. Similarly, the TUP for secondhand market 2 is calculated as 
6.74.

TABLE 13.7

Conversion table for linguistic WAnj data
Linguistic WAnj TFN

Very good (VG) (7, 10, 10)

Good (G) (5, 7, 10)

Fair (F) (2, 5, 8)

Poor (P) (1, 3, 5)

Very poor (VP) (0, 0, 3)

TABLE 13.8

Linguistic and corresponding defuzzified WA values of secondhand markets

Enabler

Market 1 Market 2

Linguistic WAnj TFN Linguistic WAnj TFN

AD G 7.33 G 7.33

DP VP 1 VG 9

GS P 3 VG 9

IC G 7.33 VG 9

LP G 7.33 G 7.33

LS VG 9 VP 1

MN F 5 P 3

RC VP 1 F 5

RP G 7.33 G 7.33

RS VP 1 VP 1

VS P 3 G 7.33
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Finally, using equation (4.33), NTUPs are calculated for the two secondhand 
markets. For example, NTUP for secondhand market 1 is calculated as follows:

5 35
5 35 6 74

.
. . = 0.44

Similarly, NTUP for secondhand market 2 is calculated as 0.56.
It is evident that secondhand market 2 has more potential than second-

hand market 1.

13.4 Conclusions

In this chapter, fuzzy logic, quality function deployment (QFD), and method 
of total preferences are used to select the market with the most potential to 
sell a used product in, from a set of candidate secondhand markets.
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14
Design of a Synchronized 
Reverse Supply Chain

14.1 The Issue

Effective management of a supply chain requires synchronization among 
the internal business processes of the supply chain. Synchronization in a 
supply chain means reducing the variability among the internal business 
processes or partners such that each stakeholder in the supply chain acts in 
a way that is appropriately timed with the actions of the other stakeholders 
[1]. The delivery performance of a supply chain is maximized largely by syn-
chronizing the internal business processes (reducing variability) such that 
the final product fits in the customer-specified delivery window with a very 
high probability.

In this chapter, a model consisting of two design experiments that use 
the Six Sigma concept to achieve better synchronization in a reverse supply 
chain is presented. This model tailors the individual processes in such a way 
that the overall delivery performance is maximized.

The chapter is organized as follows: section 14.2 presents the model, and 
section 14.3 gives some conclusions.

14.2 Model (Two Design Experiments)

In this section, two design experiments are presented. The first experiment 
(section 14.2.1) determines the range of nominal values (for a Six Sigma deliv-
ery performance) for the lead times of different individual processes of a 
reverse supply chain. The second experiment (section 14.2.2) determines a 
variance pool for the lead times of the different individual processes.

14.2.1 First Experiment (Determination of Nominal Pool)

Six processes of a reverse supply chain are considered:
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1. Procurement: Procurement involves obtaining the used products 
from the consumers at the collection centers.

2. Inspection/testing: Inspection/testing involves determining the con-
dition of the products collected in order to determine whether to 
remanufacture, refurbish, or recycle the product.

3. Disassembly

4. Remanufacture/refurbish

5. Transportation: Involves transporting the remanufactured products 
to the markets.

6. Delivery

It is assumed that the supply chain deals only with remanufacturing or 
refurbishing of the used products (a third-party recycler takes care of the 
products meant for recycling). It is also assumed that there is no waiting time 
between the six processes. Hence, the nominal value of the reverse supply 
chain’s lead time, y, is described as the sum of the nominal values of lead 
times of the individual processes:

y i
i 1

6

(14.1)

Also [2],

Y i
i

n

i
i

pki

T
C

2 2

1
3

; (14.2)

where i and Ti are the standard deviations and tolerances of the individual 
processes and Y is the overall process standard deviation.

In finding a nominal pool, the tolerances for the lead times of the individual 
processes of the reverse supply chain are given in this experiment, as are the 
nominal values of the lead times of some of the processes (in this experiment, 

2, 3, 4). The nominal value of the lead time of the reverse supply chain, as 
well as its tolerance, is also known. The problem (see table 14.1) is now to find 
a range of values for the other nominal values (in this case, 1, 5, 6), so as to 
achieve a Six Sigma delivery performance. Note that this has its implications 
on the choice of suppliers, carriers, and other logistics providers.

Let y = 100 days, Ty = 12 days, T1 = 3 days, T2 = 4 days, T3 = 1 day, T4 = 2 days, 
T5 = 2 days, and T6 = 1 day. Also, let the nominal values of inspection/test-
ing, disassembly, and remanufacturing/refurbishing be 20, 25, and 30 days, 
respectively. It is now required to find a range of values for the pool of other 
nominal values ( 1 + 5 + 6) such that the probability of delivery is at least 
0.9999966 within the delivery window, which is ( y – Ty, y + Ty) = (88, 112).

Suppose that the individual processes are Six Sigma processes, which 
implies a Cpk value of 1.5 for each process. Using equation (14.2), the standard 
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deviations (σ) of the individual processes as well as the reverse supply chain 
are found to be σ1 = 0.67, σ2 = 0.87, σ3 = 0.22, σ4 = 0.44, σ5 = 0.44, σ6 = 0.22, and 
σy = 1.299. For example,

1
1

13
3

3 1 5
0 67T

Cpk .
.

Also, from equation (14.1), one can see that (τ1 + τ5 + τ6) = τy – (τ2 + τ3 + 4)
= 100 – 75 = 25. From equation (14.2), the overall standard deviation for the 
lead times of the three processes (1, 5, and 6) is 156 1

2
5
2

6
2 0 99945. .

For the set of these three processes to have Six Sigma performance, a shift of 
at most 1.5 standard deviations from the target (= 25) is acceptable. Hence, 
as long as the nominal value of the lead time of the set falls in the range (τ156 

± 1.5σ156), Six Sigma delivery performance is guaranteed. In other words, if 
( 1 + τ5 + τ6) is in the range (23.5, 26.5), Six Sigma delivery performance is 
guaranteed. That is, for this range of values, the probability of y to be in the 
range (88, 112) is at least 0.9999966. The maximum probability is attained at 
25 days.

14.2.2 Second Experiment (Determination of Variance Pool)

In this experiment, the nominal values of the lead times of the individual 
processes considered in the reverse supply chain are given, as are the toler-
ances for the lead times of some of the processes. The nominal value of the 
lead time of the reverse supply chain, as well as its tolerance is also known. 
The problem now is to find a variance pool that can be distributed across the 
individual processes whose tolerances are not known (see table 14.2).

Let τy = 100 days, Ty = 12 days; τ1 = 20 days, τ2 = 5 days, τ3 = 25 days, τ4 = 30 
days, τ5 = 12 days, and τ6 = 8 days. Also, let the tolerance of the lead time of 
procurement, disassembly, and remanufacturing be 3 days, 2 days, and 1 
day, respectively.

Here, too, it is assumed that the individual processes are Six Sigma pro-
cesses, which implies a Cpk value of 1.5 for each process. Also, a Six Sigma 

TABLE 14.1

Finding a nominal pool (first experiment)
Given:
τy = nominal value (target) of the lead time of the reverse supply chain, y
Ty = tolerance range of the lead time of the reverse supply chain, y
Ti (i = 1, 2, …, 6) = tolerances of the lead times of the individual processes
τ2, τ3, τ4 = nominal values of lead times of individual processes 2, 3, and 4

To compute:
A range of values for each of the nominal values, τ1, τ5, τ6, over which Six Sigma delivery 
performance is guaranteed
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delivery performance implies Cp for the reverse supply chain = 2 and Cpk for 
the reverse supply chain = 1.5. Using equation (14.2), the standard deviations 
of the individual processes whose tolerances are known (procurement, disas-
sembly, and remanufacturing, in this experiment) as well as the reverse sup-
ply chain are found to be 1 = 2, 3 = 0.44, 4 = 0.22, and y = 2.67. Again, using 
equation (14.2), one can get the variance pool ( ),2

2
5
2

6
2  for the three pro-

cesses (inspection/testing, transportation, and delivery) whose tolerances 
are unknown (inspection/testing, transportation, and delivery in this exam-
ple) as 2.89. This variance pool can now be distributed among the individual 
processes based on engineering judgment that ensures a Six Sigma delivery 
performance for the reverse supply chain. That is, for this variance pool, the 
probability of y to be in the range (88, 112) is at least 0.9999966. 

14.3 Conclusions

The delivery performance of a supply chain is maximized by synchroniz-
ing the internal business processes such that the final product fits in the 
customer-specified delivery window with a very high probability. In this 
chapter, a model consisting of two design experiments that use the Six 
Sigma concept to achieve better synchronization in a reverse supply chain 
was presented. Six individual processes—procurement, inspection/testing, 
disassembly, remanufacture/refurbish, transportation, and delivery—were 
considered in the supply chain. The model tailors the individual processes 
in such a way that the overall delivery performance of the reverse supply 
chain is maximized.

TABLE 14.2

Finding a variance pool (second experiment)
Given:
τy = nominal value (target) of the lead time of the reverse supply chain, y
Ty = tolerance range of the lead time of the reverse supply chain, y
τi (i = 1, 2, …, 6) = nominal values of the lead times of the individual processes
T1, T3, T4 = tolerances of lead times of the individual processes 1, 3, and 4

To compute:
A variance pool that can be distributed across the individual processes whose tolerances are 

not known
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15
Performance Measurement

15.1 The Issue

In the era of globalization of markets and business process outsourcing, 
many firms realize the importance of continuous monitoring of their sup-
ply chain’s performance for its effectiveness and efficiency [1]. Traditionally, 
performance measurement is defined as the process of quantifying the effec-
tiveness and efficiency of action [2]. In the modern era, performance measure-
ment has a far more significant role than just quantification and accounting. 
It provides management with important feedback to monitor performance, 
reveal progress, diagnose problems, and enhance transparency among the 
several tiers of the supply chain, thus making a phenomenal contribution to 
decision making, particularly in redesigning business goals and reengineer-
ing processes [3, 4].

Developing the performance measurement systems is a difficult aspect of 
performance measure selection. It involves the methods by which an orga-
nization creates its measurement system. Important questions that need to 
be addressed include [5]: What to measure? How often to measure? How 
are multiple individual measures integrated into a measurement system? 
Also, the way each performance aspect is weighed is industry specific [6]. 
For example, although customer satisfaction is an indication of the standard 
level of service, for different industries, customers look at different mea-
sures. By the same token, due to the inherent differences in various aspects 
between the forward and reverse supply chains (see chapter 1), the perfor-
mance aspects and evaluation techniques used in a forward supply chain 
cannot be extended to a reverse/closed-loop supply chain.

In this chapter, appropriate performance aspects and their enablers (drivers 
of performance aspects) are identified for a reverse/closed-loop supply chain 
environment, and a performance measurement model that uses linear physical 
programming (LPP) and quality function deployment (QFD) is presented.

The chapter is organized as follows. Section 15.2 describes the application 
of LPP to QFD optimization. Section 15.3 enlists the performance aspects 
and enablers identified for a reverse/closed-loop supply chain environment 
and then illustrates the model using a numerical example. Finally, section 
15.4 gives some conclusions.
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15.2 Application of LPP to QFD Optimization

Applying LPP to QFD optimization involves two steps [6]. The first step 
involves collecting information for LPP through the traditional QFD approach 
and building the house of quality (HOQ); this step helps the design team 
to complete a qualitative analysis of the design problem. The second step 
involves mathematical modeling using LPP. The complete process is illus-
trated in figure 15.1. 

15.2.1 First Step

The house of quality (HOQ) shows the customer requirements, engineer-
ing characteristics, and the competitor’s performance analysis (see figure 
15.2). Some engineering characteristics are interrelated; as a result, changing 

Collect customer information

Model the body and roof of the HOQ

Classify the satisfaction level of
enablers of performance aspects

Build the HOQ

Construct the LPP class functions and
compute the LPP weights

Formulate and solve the mathematical
model

FIGURE 15.1

Application of LPP to QFD optimization.
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the value of one engineering characteristic may alter its impact on customer 
requirements or on other engineering characteristics. Notice that the roof of 
the HOQ shows the interrelationships among the engineering characteris-
tics. These relationships are based on the knowledge and experience of the 
design team. In this chapter, the notation jk, which denotes the elements of 
the correlation matrix, is introduced to describe the correlation between the 
jth and kth engineering characteristics. The body of the HOQ shows the rela-
tionships between engineering characteristics and customer requirements. 
Rik denotes the relationship between the ith customer requirement and jth 
engineering characteristic. These relationships are expressed on a scale of 
1–9, where 1 denotes a weak relation and 9 denotes the strongest relationship. 
In order to quantify the impact of the dependencies between the engineering 
characteristics on the relationship between the customer requirements, the 
model transformation shown in equation (15.1) is used:

R
R

R
iij

norm
ik kj

k

n

ij jk
k

n

j

n
1

11

1 2, , ,...., ; , , ...,m j n1 2

(15.1)

where Rij
norm  can be interpreted as the incremental change in the level of ful-

fillment of the ith customer requirement when the jth engineering character-
istic is satisfied to a certain level; m is the number of customer requirements 
and n is the number of engineering characteristics.
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Using LPP, the satisfaction level of each customer requirement is classi-
fied in one of the six different ranges: ideal, desirable, tolerable, undesirable, 
highly undesirable, and unacceptable. Each objective is described by one of 
the eight subclasses, four soft and four hard.

The roof of the HOQ contains the interrelationships between the engi-
neering characteristics, denoted by jk, and the body represents the inter-
relationships between the customer requirements and the engineering 
characteristics, denoted by Rij

norm .
The bottom of the HOQ shows the cost index for each engineering char-

acteristic. In most cases, improvements in engineering characteristics 
will result in an increase in cost. Xj (j = 1, 2, …, n) is defined as the value 
of engineering characteristic j, and the maximum value of the engineering  
characteristic is max {Xj}. Then the normalized value of engineering charac-
teristic j is defined as

xj = Xj/max {Xj}, j = 1, 2, …, n (15.2)

Suppose that when cj is invested in engineering characteristic j, it can 
achieve its maximum value, max {Xj}; however, because of constraints, in 
most cases not all engineering characteristics can achieve their maximum 
value. To make engineering characteristic j achieve xj, the design team needs 
to invest cj×xj in engineering characteristic j, thus making the cost function a 
monotonically increasing one.

15.2.2 Second Step

The aim of the design team would be to attain the highest customer satisfac-
tion level while meeting the budget limitations. The LPP problem is formu-
lated as follows:

Minimize w d w dis ps is ps
si

~ ~

2

5

1

m

(15.3)

where dps represents the deviations of the customer requirements from their 
target values, subject to:

                                Rij
norm

j

n

1

d t R t

i

is i s ij
norm

j

n

i( )1
1

5and

for all inn classes1 3 4 1 2 2 5S S S i n ssc, , , , , .., ; , .., ;
(15.4)
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B c xj j
j

n

1

(15.6)

where B is the maximum available budget;

d dis is0 0; (15.7)

0 1x j (15.8)

Note that in the above formulation, total budget is the only system con-
straint; however, depending on the decision environment, other constraints, 
such as minimum satisfaction level for the ith customer requirement or 
maximum achievement level for the jth engineering characteristic, can be 
added.

15.3 Reverse/Closed-Loop Supply Chain
Performance Measurement

In this section, performance aspects and their enablers for measuring the 
performance of a reverse/closed-loop supply chain are identified, and then 
the model that uses LPP and QFD for performance measurement is pre-
sented. Note that in the LPP–QFD methodology described in section 15.2, 
the engineering characteristics are replaced by performance aspects and the 
customer requirements are replaced by enablers.

15.3.1 Performance Aspects and Enablers

The following are the performance aspects considered in the model:

1. Reputation: This aspect deals with the firm’s overall reputation in 
the industry. It is driven by enablers such as on-time delivery ratio, 
returning customers ratio, and the firm’s green image. Green image 
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can be measured in a number of different ways, such as the envi-
ronmental expenses incurred, the amount of waste disposed of, or 
the fairs/symposiums related to environmentally conscious manu-
facturing in which the firm participates. In this model, the amount 
of waste disposed of is used to measure the green image.

2. Innovation and improvement: This aspect is driven by enablers such 
as the R&D expenses ratio or the number of new products and pro-
cesses launched.

3. Public participation: This aspect is a measure of the firm’s market-
ing capabilities that may be driven by enablers such as flexibility, 
or the firm’s ability to handle uncertainties, after-sales service effi-
ciency, and the markets targeted (markets targeted is quantified as 
the percentage of customers who are knowledgeable about the firm’s 
product; the more knowledgeable the customers are, the better the 
participation will be). After-sales service efficiency can be defined as 
the ratio of the number of customers served to the number of cus-
tomers seeking service.

4. Facility potentiality: Potentiality of the remanufacturing facilities can 
be driven by several enablers, such as the location of the facilities, 
the increment in the quality of products (quality of outgoing repro-
cessed products–quality of incoming used products), disassembly 
time multiplied by throughput, throughput divided by the supply 
of used products (see section 7.2.1 for a detailed explanation of these 
enablers), and usage of automated disassembly systems. Location can 
be quantified by specifying it as the distance from the nearest major 
city, and usage of automated disassembly systems can be quantified 
using the investment on automated disassembly systems.

5. Responsiveness: This aspect reflects how well the firm responds to the 
ever-changing customer specifications and can be driven by enablers 
such as flexibility, the firm’s ability to handle uncertainties, and the 
firm’s after-sales service efficiency. Flexibility can be quantified using 
the number of different varieties of products the firm manufactures/
remanufactures.

6. Delivery reliability: This aspect reflects how well the firm meets the 
due dates specified by the customers and can be driven by enablers 
such as the effectiveness of the firm’s master production schedule, 
the usage of automated disassembly systems, the supply of used 
products,  and the quality of used products. The effectiveness of the 
firm’s master production schedule can be defined as the ratio of the 
number of orders delivered no later than the due date to the total 
number of orders delivered.

Other operational aspects, such as resource utilization, cost per operating 
hour, and manufacturing lead time, are also considered in the model.
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15.3.2 Numerical Example

In this section, LPP–QFD methodology detailed in section 15.2 is illustrated 
using a numerical example. Table 15.1 shows the LPP preference ranges for 
the enablers that constitute the right-hand side of the HOQ.

Table 15.2 shows the relationships between the performance aspects, 
denoted as jk, evaluated on a 1 to 9 scale.

Table 15.3 shows the relationships between the ith enabler and the jth per-
formance aspect, denoted as Rij .

Using equation (15.1), the relationships between performance aspects and 
enablers are normalized and the normalized scores form the body of the 
HOQ. Table 15.4 shows the HOQ for the performance measurement. For sim-
plicity, the roof has been removed after normalizing Rij .

TABLE 15.1

LPP preference ranges for enablers

Enabler
LPP 
class Unit Ideal Desirable Tolerable

Highly 
undesirable Unacceptable

On-time delivery 
ratio

2S % 100 80 75 65 50

Returning
customers ratio

2S % 100 90 80 75 65

Green image 1S $ 0 1,200 1,500 2,000 2,500
R&D expenses 
ratio

4S % 50 45 40 35 30
60 65 75 80 100

New products/
processes

4S Unit 20 15 10 8 5
25 30 35 40 45

Flexibility 2S Unit 65 55 50 40 35
After-sales service 

efficiency
2S % 100 85 75 60 50

Markets targeted 2S % 100 80 75 60 55
Throughput × 

Disassembly time 
(TP × DT)

2S % 100 90 80 75 65

Throughput/
supply of used 

products (TP/SU)

2S % 100 95 85 70 65

Quality of 
reprocessed 
products–quality 
of used products 
(QO–QI)

2S % 65 60 50 45 40

Effectiveness of 
MPS

2S % 100 85 75 70 65

Facility location 4S Unit 35 30 25 20 15

20 25 35 40 50
Labor cost per hour 1S $ 20 25 35 40 50
Usage of automated 

DA systems
4S $ 1,000 750 600 500 250

2,000 2,500 3,500 4,000 5,000
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TABLE 15.2

Relationships between performance aspects ( jk)
Performance aspect Reputation I&I PP RES FP DR RU C/Oh MLT

Reputation — 7 8 7 6 8 4 3 7

Innovation & 
improvement (I&I)

7 — 6 4 4 3 3 3 2

Public participation 
(PP)

8 6 — 7 3 2 2 3 2

Responsiveness
(RES)

7 4 7 — 3 4 3 3 2

Facility potentiality 
(FP)

6 4 3 3 — 6 8 8 8

Delivery reliability 
(DR)

8 3 2 4 6 — 7 5 5

Resource utilization 
(RU)

4 3 2 3 8 7 — 6 8

Cost per operating 
hour (C/Oh)

3 3 3 2 8 5 6 — 5

Manufacturing lead 
time (MLT)

7 2 2 2 8 5 8 5 —

TABLE 15.3

Relationships between performance aspects and enablers ( Rij )

Reputation I&I PP RES FP DR RU C/Oh MLT

On-time delivery 
ratio

7 4 5 4 6 9 6 5 7

Returning
customers ratio

7 5 5 7 5 8 6 4 6

Green image 8 3 4 7 6 4 6 3 3

R&D expenses ratio 4 7 3 5 4 5 5 6 3

New
products/processes

6 7 4 4 5 4 4 3 4

Flexibility 7 4 7 8 6 5 4 3 4

After-sales service 
efficiency

8 4 8 8 4 4 3 5 3

Markets targeted 5 3 7 5 3 5 3 5 3

TP×DT 5 3 5 4 8 8 8 7 8

TP/SU 5 3 5 4 8 8 8 7 8

QO–QI 7 3 6 5 9 7 8 7 7

Effectiveness of 
MPS

4 2 4 5 5 8 7 5 7

Facility location 5 3 6 5 4 6 5 7 5

Labor cost per hour 5 2 5 4 6 6 6 8 5

Usage of automated 
DA systems

5 7 5 4 8 8 8 8 8
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TABLE 15.4

House of quality for performance measurement
Performance aspects Reputation I&I PP RES FP DR RU C/Oh MLT

Enablers t1 t2 t3 t4 t5

On-time delivery ratio 0.138 0.091 0.087 0.093 0.134 0.114 0.12 0.106 0.114 100 80 75 65 50

Returning customers ratio 0.142 0.092 0.097 0.091 0.131 0.101 0.116 0.881 0.111 100 90 80 75 65

Green image 0.117 0.093 0.096 0.084 0.112 0.102 0.098 0.098 0.113 0 1,200 1,500 2,000 2,500

R&D expenses ratio 0.128 0.075 0.091 0.078 0.12 0.101 0.102 0.093 0.102 50 45 40 35 30

60 65 75 80 100

New products/processes 0.122 0.078 0.09 0.085 0.109 0.095 0.102 0.082 0.098 20 15 10 8 5

25 30 35 40 45

Flexibility 0.128 0.091 0.092 0.085 0.105 0.106 0.1 0.083 0.098 65 55 50 40 35

After-sales service efficiency 0.122 0.083 0.08 0.088 0.109 0.106 0.096 0.104 0.095 100 85 75 60 50

Markets targeted 0.128 0.083 0.075 0.0884 0.115 0.109 0.1 0.102 0.096 100 80 75 60 55

TP×DT 0.13 0.087 0.078 0.082 0.126 0.104 0.116 0.1 0.181 100 90 80 75 65

TP/SU 0.135 0.084 0.08 0.08 0.126 0.109 0.116 0.102 0.11 100 95 85 70 65

QO–QI 0.124 0.087 0.078 0.079 0.12 0.104 0.111 0.1 0.111 65 60 50 45 40

Effectiveness of MPS 0.135 0.088 0.075 0.083 0.131 0.102 0.115 0.102 0.107 100 85 75 70 65

Facility location 0.125 0.076 0.079 0.078 0.126 0.102 0.108 0.088 0.102 35 30 25 20 15

20 25 35 40 50

Labor cost 0.125 0.09 0.082 0.079 0.121 0.108 0.113 0.094 0.112 20 25 35 40 50

Usage of automated DA 
systems

0.13 0.094 0.078 0.081 0.124 0.103 0.112 0.097 0.105 1,000 750 600 500 250

Cost index 4,000 2,500 2,000 2,500 2,500 3,000 2,000 2,000 2,000

© 2009 by Taylor & Francis Group, LLC
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TABLE 15.5

Normalized LPP weights of enablers
Enablers Weights

On-time delivery 
ratio w

~

12  = 0.000068 w
~

13  = 0.00414 w
~

14  = 0.028 w
~

15  = 0.967

Returning
customers ratio w

~

22  = 0.000224 w
~

23  = 0.0034 w
~

24  = 0.034 w
~

25  = 0.956

Green image
w
~

32  = 0.000114 w
~

33  = 0.006 w
~

34  = 0.05 w
~

35  = 0.93

R&D expenses 
ratio

w
~

42  = 0.0002 w
~

43  = 0.003 w
~

44  = 0.06 w
~

45  = 0.93

w
~

42  = 0.001 w
~

43  = 0.0073 w
~

44  = 0.251 w
~

45  = 0.74

New
products/processes

w
~

52  = 0.00016 w
~

53  = 0.0023 w
~

54  = 0.094 w
~

55  = 0.9

w
~

52  = 0.00027 w
~

53  = 0.0034 w
~

54  = 0.06 w
~

55  = 0.935

Flexibility
w
~

62  = 0.00041 w
~

63  = 0.0122 w
~

64  = 0.084 w
~

65  = 0.902

After-sales service 
efficiency w

~

72  = 0.000183 w
~

73  = 0.0043 w
~

74  = 0.039 w
~

75  = 0.956

Markets targeted
w
~

82  = 0.00006 w
~

83  = 0.00414 w
~

84  = 0.0174 w
~

85  = 0.97

TP×DT
w
~

92  = 0.000274 w
~

93  = 0.0039 w
~

94  = 0.125 w
~

95  = 0.87

TP/SU
w
~

102  = 0.00028 w
~

103  = 0.0018 w
~

104  = 0.019 w
~

105  = 0.97

QO–QI
w
~

112  = 0.00028 w
~

113  = 0.0018 w
~

114  = 0.06 w
~

115  = 0.935

Effectiveness of 
MPS w

~

122  = 0.00009 w
~

123  = 0.002 w
~

124  = 0.06 w
~

125  = 0.935

Facility location
w
~

132  = 0.000274 w
~

133  = 0.0039 w
~

134  = 0.06 w
~

135  = 0.93

w
~

132  = 0.00054 w
~

133  = 0.0036 w
~

134  = 0.125 w
~

135  = 0.87

(continued)
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Table 15.5 shows the LPP weights of the enablers.
The model is formulated as detailed in section 15.2.3. Apart from the total 

budget constraint, we consider three other constraints (see equations (15.9)–
(15.11)). Equations (15.9) and (15.10) limit the maximum achievement levels of 
performance aspects, facility potentiality, and resource utilization to realistic 
values of 0.85 and 0.8, respectively. Equation (15.11) sets the minimum level 
for the enabler, on-time delivery ratio, to 0.65. It is assumed that the total 
budget in this example is 19,000 monetary units.

xpotentiality 0 85. (15.9)

x sourceUtilizationRe .0 8 (15.10)

R xOntime Delivery Ratio j
norm

j
j, .0 65

(15.11)

The model is solved using LINGO (v8), and tables 15.6 and 15.7 show the 
respective results. Table 15.6 shows the budget allocation and the achieve-
ment levels of performance aspects, and table 15.7 shows the satisfaction lev-
els of the enablers

 (= R xij
norm

j
j ).

From table 15.6, it is evident that the satisfaction levels of the enablers are 
almost the same. This can be attributed to the fact that they are coordinated 
with the preference of LPP that always puts more effort into the aspects that 
lag behind.

TABLE 15.5 (continued)

Normalized LPP weights of enablers
Enablers Weights

Labor cost per hour
w
~

142  = 0.0006 w
~

143  = 0.006 w
~

144  = 0.05 w
~

145  = 0.94

Usage of 
automated DA 
systems

w
~

152  = 0.0002 w
~

153  = 0.006 w
~

154  = 0.155 w
~

155  = 0.83

w
~

152  = 0.0005 w
~

153  = 0.003 w
~

154  = 0.125 w
~

155  = 0.87
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TABLE 15.6

Budget allocation and achievement levels of performance aspects

Reputation I&I
Public

participation Responsiveness
Facility

potentiality
Delivery

reliability
Resource

utilization  Cost/Oh
Manufacturing

lead time

Budget allocation 1,272 2,500 2,000 2,500 2,125 2,700 1,600 2,000 1,520

Achievement
level (xj)

0.318 1.0 1.0 1.0 0.85 0.9 0.8 1.0 0.76

© 2009 by Taylor & Francis Group, LLC
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15.4 Conclusions

In this chapter, aspects and enablers (drivers of aspects) for measurement of 
performance of a reverse/closed-loop supply chain were identified, and then 
a model that uses linear physical programming and quality function deploy-
ment for performance measurement was presented.
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TABLE 15.7

Enabler satisfaction levels
Enabler Satisfaction level (%)

On-time delivery ratio 82.21

Returning customers ratio 82.18

Green image 77.27

R&D expenses ratio 72.84

New products/processes 73.35

Flexibility 73.74

After-sales service efficiency 73.07

Markets targeted 72.41

TP×DT 81.82

TP/SU 76.42

QO–QI 76.53

Effectiveness of MPS 76.73

Facility location 74.49

Labor cost per hour 76.20

Usage of automated DA systems 74.28
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16
Conclusions

The growing desire of consumers to acquire the latest technology, both at 
home and in the workplace, along with the rapid technological development 
of new products, has led to a new environmental problem: waste, viz., used 
products that are discarded prematurely. But as the saying goes that behind 
every problem lies an opportunity, reprocessing of this waste means

1. Saving natural resources: We conserve land and reduce the need to drill 
for oil and dig for minerals by making products using materials and 
components obtained from reprocessing instead of virgin materials.

2. Saving energy: It usually takes less energy to make products from 
reprocessed materials and components than from virgin materials.

3. Saving clean air and water: Making products from reprocessed mate-
rials and components creates less air pollution and water pollution 
than from virgin materials.

4. Saving landfill space: When reprocessed materials and components 
are used to make a product, they do not go into landfills.

5. Saving money: It costs much less to make products from reprocessed 
materials and components than from virgin materials.

Besides the above opportunities, an important driver for companies to 
engage in reprocessing is the enforcement of environmental regulations by 
local governments.

A reverse supply chain consists of a series of activities required to collect 
used products from consumers and reprocess them (used products) to either 
recover their leftover market values or properly dispose of them. Today, in 
practice, it has become common for companies involved in a forward sup-
ply chain (series of activities required to produce new products from virgin 
materials and distribute the former to consumers) to also carry out collec-
tion and reprocessing of used products. This combined practice of forward 
and reverse supply chains is called a closed-loop supply chain. In the past 
decade, there has been an explosive growth of reverse and closed-loop sup-
ply chains in both scope and scale.

Strategic planning (also called designing) primarily involves the structur-
ing (which products should be processed/produced in which facilities) of 
a supply chain over the next several years. It is long-range planning and is 
typically performed every few years when a supply chain needs to expand 
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its capabilities. The issues faced by strategic planners of reverse and closed-
loop supply chains are:

Selection of used products

Evaluation of collection centers

Evaluation of recovery facilities

Optimization of transportation of goods

Evaluation of marketing strategies

Evaluation of production facilities

Evaluation of futurity of used products

Selection of new products

Selection of secondhand markets

Synchronization of supply chain processes

Supply chain performance measurement

In all of these issues, strategic planners must meet the following chal-
lenges: uncertainty in supply rate of used products, unknown condition of 
used products, and imperfect correlation between supply of used products 
and demand for reprocessed goods.

This book addressed the above issues amidst the above challenges in a 
variety of decision-making situations using efficient models. These models 
implement several quantitative techniques, such as:

Analytic hierarchy process

Eigen vector method

Analytic network process

Fuzzy logic

Extent analysis method

Fuzzy multicriteria analysis method

Quality function deployment

Method of total preferences

Linear physical programming

Goal programming

Technique for order preference by similarity to ideal solution (TOPSIS)

Borda’s choice rule

Expert systems

Bayesian updating

Taguchi loss function

Six Sigma
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Neural networks
Geographical information systems
Linear integer programming

The issues addressed in this book can serve as foundations for other 
researchers to build bodies of knowledge in this new and fast-growing field of 
research, i.e., strategic planning of reverse and closed-loop supply chains. Fur-
thermore, the models proposed in this book for those issues can be utilized by 
industrialists for understanding how a particular issue in the strategic plan-
ning of reverse and closed-loop supply chains can be effectively approached 
in a particular decision-making situation, using a suitable quantitative tech-
nique or a suitable combination of two or more quantitative techniques.
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